
The math of Nxt forging

mthcl∗

March 21, 2014. Version 0.3.1

Abstract

We discuss the forging algorithm of Nxt from the probabilistic
point of view, and obtain explicit formulas and estimates for several
important quantities, such as the probability that an account gener-
ates a block, the length of the longest sequence of consecutive blocks
generated by one account, and the probability that one concurrent
blockchain wins over another one.

1 Forging algorithm

In this article we concentrate on the 1-block-per-minute regime, which is
not implemented yet. Assume that there are N forging accounts at a given
(discrete) time, B1, . . . , BN are the corresponding effective balances, and we
denote by

bk =
Bk

B1 + · · ·+BN

, k = 1, . . . , N

the proportion of total forging power that the kth account has. Then, to
determine which account will generate the next block, we take i.i.d. random
variables with Uniform distribution on interval (0, 1), and the account which
maximizes bk/Uk generates the block; i.e., the label k0 of the generating
account is determined by

k0 = arg max
j∈{1,...,N}

bj
Uj

. (1)

∗NXT: 5978778981551971141; author’s contact information: e.monetki@gmail.com,
or send a PM at bitcointalk.org or forums.nxtcrypto.org

1

We refer to the quantity bk/Uk as the weight of the kth account, and to
bk0/Uk0 as the weight of the block. This procedure is called the main al-
gorithm (because it is actually implemented in Nxt at this time), or the
U-algorithm (because the inverse weights have Uniform distribution).

As a general rule, it is assumed that the probability that an account
generates a block is proportional to the effective balance, but, in fact, this is
only approximately true (as we shall see in Section 2). For comparison, we
consider also the following rule of choosing the generating account: instead
of (1), we use

k0 = arg max
j∈{1,...,N}

bj
| lnUj|

. (2)

The corresponding algorithm is referred to as Exp-algorithm (since the inverse
weights now have Exponential probability distribution).

2 Probability of block generation

Observe that (see e.g. Example 2a of Section 10.2.1 of [2]) the random
variable | lnUj|/bj has Exponential distribution with rate bj. Since, obviously,
for the Exp-algorithm we can rewrite (2) as

k0 = arg min
j∈{1,...,N}

| lnUj|
bj

,

the inverse weight of the generated block is also an Exponential random
variable with rate b1 + · · ·+ bN = 1 (cf. (5.6) of [3]), and the probability that
the kth account generates the block is exactly bk (this follows e.g. from (5.5)
of [3]).

However, for U-algorithm the calculation in the general case is not so
easy. We concentrate on the following situation, which seems to be critical
for accessing the security of the system: N is large, the accounts 2, . . . , N
belong to “poor honest guys” (so b2, . . . , bN are small), and the account 1
belongs to a “bad guy”, who is not necessarily poor (i.e., b := b1 need not be
very small).

We first calculate the probability distribution of the biggest weight among

2

the good guys: for x� maxk≥2 bk let us write

P
[

max
k≥2

bk
Uk

< x
]

=
∏
k≥2

P
[
Uk >

bk
x

]
=
∏
k≥2

(
1− bk

x

)
= exp

∑
k≥2

ln
(

1− bk
x

)
≈ e−

1−b
x , (3)

since ln(1−y) ∼ −y as y → 0 and b2+ · · ·+bN = 1−b. We calculate now the
probability f(b) that the bad guy generates the block, in the following way.
Let Y be a random variable with distribution (3) and independent of U1, and
we write (conditioning on U1)

f(b) := P
[b
U1

> Y
]

=

∫ 1

0

P
[
Y <

b

z

]
dz

=

∫ 1

0

e−
1−b
b

z dz

=
b

1− b

(
1− e−

1−b
b

)
. (4)

It is elementary to show that f(b) > b for all b ∈ (0, 1) (see also Figure 1),
and (using the Taylor expansion) f(b) = b+ b2 +O(b3) as b→ 0.

Let us remark also that, since f(b) ∼ b as b→ 0 and using a calculation
similar to (3), if all relative balances are small, the situation very much
resembles that under Exp-algorithm (see also (9) below).

2.1 Splitting of accounts

Here we examine the situation when an owner of an account splits it into
two (or even several) parts, and show that, in general, this strategy is not
favorable to the owner.

First of all, as discussed in the beginning of Section 2, for the Exp-
algorithm, the probability that one of the new (i.e., obtained after the split-
ting) accounts will generate the next block does not change at all. Indeed,

3

Figure 1: The plot of f(b) (black curve)

4

this probability is exactly the proportion of the total active balance owned
by the account, and any splitting does not change this proportion (i.e., all
the new accounts forge exactly as the old one).

Now, let us consider the case of U-algorithm. We shall prove that splitting
is always unfavorable for a Nxt holder. Namely, we can prove the following
result1:

Theorem 2.1. Assume that a person or entity controls a certain number of
Nxt accounts, and let p be the probability of generating the next block (i.e.,
the account that forges the block belongs to this person or entity). Suppose
now that one of these accounts is split into two parts (while the balances of
all other accounts stay intact), and let p′ be the probability of block generation
in this new situation. Then p′ < p.

By induction, one easily obtains the following

Corollary 2.2. Under the U-algorithm, in order to maximize the probability
of generating the next block, all NXT that one controls should be concentrated
in only one account.

Proof of Theorem 2.1. Let b1, . . . , b` be the relative effective balances of ac-
counts controlled by that person or entity, and let b`+1, . . . , bn be the balances
of the other active accounts. Assume without restriction of generality that
the first account is split into two parts with (positive) relative balances b′1, b

′′
1

(so that b′1 + b′′1 = b1).
Let U1, . . . , Un, U ′1, U

′′
1 be i.i.d. Uniform[0, 1] random variables. Let

Y = min
j=1,...,`

Uj

bj
,

Y ′ = min
(U ′1
b′1
,
U ′′1
b′′1
, min
j=2,...,`

Uj

bj

)
,

Z = min
j=`+1,...,n

Uj

bj
.

Let us denote x+ := max(0, x) for x ∈ R. Analogously e.g. to (3), we have

1The author is happy that he is able to add at least one theorem to this text. Without
theorems, he had a strong feeling of doing something unusual.

5

for t > 0

P[Y > t] =
∏

j=1,...,`

(1− bjt)+,

P[Y ′ > t] = (1− b′1t)+(1− b′′1t)+
∏

j=2,...,`

(1− bjt)+,

and a similar formula holds for Z; we, however, do not need the explicit form
of the distribution function of Z, so we just denote this function by ζ.

Observe that for 0 < t < min
(

1
b′1
, 1
b′′1

)
it holds that

(1− b′1t)(1− b′′1t) = 1− b1t+ b′1b
′′
1t

2

> 1− b1t,

so
(1− b′1t)+(1− b′′1t)+ ≥ (1− b1t)+

for all t ≥ 0 (if the left-hand side is equal to 0, then so is the right-hand
side).

Then, conditioning on Z, we obtain

1− p = P[Y > Z]

=

∫ ∞
0

∏
j=1,...,`

(1− bjt)+ dζ(t)

=

∫ ∞
0

(1− b1t)+
∏

j=2,...,`

(1− bjt)+ dζ(t)

<

∫ ∞
0

(1− b′1t)+(1− b′′1t)+
∏

j=2,...,`

(1− bjt)+ dζ(t)

= P[Y ′ > Z]

= 1− p′,

and this concludes the proof of the theorem.

One should observe, however, that the disadvantage of splitting under the
U-algorithm is not very significant. For example, if one person controls 5%
of total active balance and has only one account, then, according to (4), the
forging probability is approximately 0.0526. For any splitting, this probabil-
ity cannot fall below 0.05 (this value corresponds to the the extreme situation
when all this money is distributed between many small accounts).

6

Conclusions:

• Under Exp-algorithm, the probability that an account with relative
active balance b generates the next block is exactly b; if all relative
balances are small, then the U-algorithm essentially works the same
way as the Exp-algorithm.

• For the U-algorithm, if an account has proportion b of the total active
balance and the forging powers of other accounts are relatively small,
then the probability that it generates the next block is given by f(b)
of (4).

• With small b, f(b) ≈ b + b2, i.e., the block generating probability is
roughly proportional to the effective balance with a quadratic correc-
tion.

• It is also straightforward to obtain that the probability that a good
guy k generates a block is bk(1− f(b)), up to terms of smaller order.

• In general, splitting has no effect on the (total) probability of block
generation under Exp-algorithm, and this probability always decreases
under U-algorithm. However, the difference is usually not very signifi-
cant (even if the account is split to many small parts).

• Thus, neither algorithm encourages splitting (anyhow, there is some
cost in maintaining many forging accounts, so, in principle, there is no
reason to increase too much the number of them in the case of Exp-
algorithm as well). The reader should be warned, however, that all the
conclusions in this article are valid for mathematical models, and the
real world can introduce some corrections.

• In particular, it should be observed that, if the attacker could harm
the network by splitting his account into many small ones, then a very
small gain that he achieves by not splitting would not prevent him
from attacking the network. If this attacker’s strategy presents any
real danger, we may consider introducing a lower limit for forging (e.g.,
only accounts with more than, say, 100 NXT are allowed to forge).

7

3 Longest run

We consider a “static” situation here: there are no transactions (so that the
effective balances are equal to full balances and do not change over time).
The goal is to be able to find out, how many blocks in a row can be typically
generated by a given account over a long period n of time.

So, assume that the probability that an account generates the next block
is p (see in Section 2 an explanation about how p can be calculated). It is
enough to consider the following question: let Rn be the maximal number of
consecutive 1’s in the sequence of n Bernoulli trials with success probability p;
what can be said about the properties of the random variable Rn?

The probability distribution of Rn has no tractable closed form, but is
nevertheless quite well studied, see e.g. [4] (this article is freely available in
the internet). The following results are taken from [1]: we have

ERn = log1/p qn+
γ

ln 1/p
− 1

2
+ r1(n) + ε1(n), (5)

VarRn =
π2

6 ln2 1/p
+

1

12
+ r2(n) + ε2(n), (6)

where q = 1− p, γ ≈ 0.577 . . . is the Euler-Mascheroni constant, ε1,2(n)→ 0
as n → ∞, and r1,2(n) are uniformly bounded in n and very small (so, in
practice, r1,2 and ε1,2 can be neglected).

In the same work, one can also find results on the distribution itself.
Let Wp be a random variable with Gumbel-type distribution: for y ∈ R

P[Wp ≤ y] = exp(−py+1).

Then, for x = 0, 1, 2, . . . it holds that

P[Rn = x] ≈ P[x− log1/p qn < Wp ≤ x+ 1− log1/p qn], (7)

with the error decreasing to 0 as n → ∞. So, in particular, one can obtain
that

P[Rn ≥ x] ≈ 1− exp(−px+1qn)

≈ px+1qn (8)

if px+1qn is small (the last approximation follows from the Taylor expansion
for the exponent).

8

For example, consider the situation when one account has 10% of all
forging power, and the others are relatively small. Then, according to (4),
the probability that this account generates a block is p ≈ 0.111125. Take
n = 1000000, then, according to (5)–(7), we have

ERn ≈ 6.00273,

VarRn ≈ 0.424,

P[Rn ≥ 7] ≈ 0.009 .

Conclusions:

• The distribution of the longest run of blocks generated by one particular
account (or group of accounts) is easily accessible, even though there is
no exact closed form. Its expectation and variance are given by (5)–(6),
and the one-sided estimates are available using (8).

4 Weight of the blockchain and concurrent

blockchains

First, let us look at the distribution of the inverse weight of a block. In
the case of Exp-algorithm, everything is simple: as observed in Section 2, it
has the Exponential distribution with rate 1. This readily implies that the
expectation of the sum of inverse weights of n blocks equals n.

As for the U-algorithm, we begin by considering the situation when all
relative balances are small. Analogously to (3), being W the weight of the
block, for x� (maxk bk)−1 we calculate

P
[1

W
> x

]
= P

[
max

k

bk
Uk

<
1

x

]
=
∏
k

P
[
Uk > xbk

]
=
∏
k

(1− xbk)

= exp
∑
k≥2

ln(1− xbk)

≈ e−x, (9)

9

so also in this case the distribution of the inverse weight is approximately
Exponential with rate 1.

We consider now the situation when all balances except the first one are
small, and b := b1 need not be small. For the case of U-algorithm, similarly
to the above we obtain for x ∈ (0, 1/b)

P
[1

W
> x

]
≈ (1− bx)e−(1−b)x, (10)

so

E
1

W
≈
∫ 1/b

0

(1− bx)e−(1−b)x dx

=
be−

1−b
b + 1− 2b

(1− b)2
. (11)

One can observe (see Figure 2) that the right-hand side of (11) is strictly
between 1/2 and 1 for b ∈ (0, 1).

Let us consider now the following attack scenario: account 1 (the “bad
guy”, with balance b) temporarily disconnects from the network and forges
its own blockchain; he then reconnects hoping that his blockchain would be
“better” (i.e., has smaller sum of inverse weights). Then, while the account 1
is disconnected, the “good” part of the network produces blocks with inverse
weights having Exponential distribution with rate 1−b, and thus each inverse
weight has expected value 1

1−b .
Let X1, X2, X3, . . . be the inverse weights of the blocks produced by the

“good part” of the network (after the bad guy disconnects), and we denote
by Y1, Y2, Y3, . . . the inverse weights of the blocks produced by the bad guy.
We are interested in controlling the probability of the following event (which
means that the blockchain produced by the bad guy is better)

Hm = {X1 + · · ·+Xm − Y1 − · · · − Ym ≥ 0}

for “reasonably large” m (e.g., m = 10 or so). If the probability of Hm

is small, this means that the bad guy just does not have enough power to
attack the network; on the other hand, if this probability is not small, then
the system should be able to fence off the attack by other means, which we
shall not discuss in this note.

We obtain an upper bound on the probability of the event Hm using the
so-called Chernoff theorem (see e.g. Proposition 5.2 of Chapter 8 of [2]): we

10

Figure 2: Expectation of the inverse weight (as a function of b)

11

have
P[Hm] ≤ δm,

where
δ = inf

t>0
Eet(X1−Y1). (12)

It is important to observe that this bound is nontrivial (i.e., δ < 1) only in
the case EX1 < EY1.

For U-algorithm, X1 is Exponentially distributed with rate 1− b, and Y1
has Uniform(0, b−1) distribution. So, the condition EX1 < EY1 is equivalent
to (1 − b)−1 < (2b)−1, that is, b < 1/3. Then, for b < 1/3, the parameter δ
from (12) is determined by

δ = δ(b) = b(1− b) inf
0<t<1−b

1− e−t/b

t(1− b− t)
(13)

(see the plot of δ(b) on Figure 3), so we have

P[Hm] ≤ δ(b)m. (14)

For example, for b = 0.1 we have δ(b) ≈ 0.439. We have, however, δ(b) ≈
0.991 for b = 0.3, which means that means that one has to take very large m
in order to make the right-hand side of (14) small in this case.

For the Exp-algorithm, the bad guy would produce blocks with inverse
weights having Exponential distribution with rate b, so each inverse weight
has expected value 1

b
. Similarly to the above, one obtains that the condition

EX1 < EY1 is equivalent to b < 1/2, and

P[Hm] ≤ (4b(1− b))m (15)

(that is, δ can be explicitly calculated in this case and equals 4b(1 − b);
observe that 4b(1− b) < 1 for b < 1/2).

Conclusions:

• We analyse an attack strategy when one account (or a group of ac-
counts) temporarily disconnects from the main network and tries to
forge a “better” blockchain than the one forged by other accounts, in
the situation when one bad rich guy has proportion b of total amount
of NXT, and the stakes of the others are relatively small.

12

Figure 3: The plot of δ(b)

13

• The probability that the bad guy forges a better chain of length m can
be controlled using (14) (for the U-algorithm) or (15) (for the Exp-
algorithm).

• It should be observed that this probability does not tend to 0 (as
m → ∞) if the bad guy has at least 1/3 of all active balances in
the network in the case of U-algorithm (correspondingly, at least 1/2
in the case of Exp-algorithm). There should exist some specific meth-
ods for protecting the network against such an attack in the case when
there is risk that (active) relative balance of the bad guy could become
larger than the above threshold.

• For the current realization of the U-algorithm, the author expects that
this analysis can be performed in a quite similar way (because the
inverse weight is then proportional to the time to the next block, and
the longest blockchain wins), with an additional difficulty due to the
oscillating BaseTarget.

• It may be a good idea to limit the forging power of accounts by some
fixed threshold, e.g., if an account has more than, say, 300K NXT,
then it forges as if it had exactly 300K NXT. Of course, a rich guy can
split his fortune between smaller accounts, but then all those accounts
would forge roughly as one big account (without threshold) under Exp-
algorithm. So, one can use the computationally easier U-algorithm
without having the drawbacks (the 1/3 vs. 1/2 issue) discussed in this
section.

References

[1] L. Gordon, M.F. Schilling, M.S. Waterman (1986) An extreme
value theory for long head runs. Probab. Theory Relat. Fields 72, 279–
287.

[2] Sheldon M. Ross (2009) A First Course in Probability. 8th ed.

[3] Sheldon M. Ross (2012) Introduction to Probability Models. 10th ed.

[4] Mark Schilling (1990) The Longest Run of Heads. The College Math
J., 21 (3), 196–206.

14

