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What is Artificial Intelligence?

Artificial intelligence (AI) seeks to make computers do the sorts of 
things that minds can do.

Some of these (e.g. reasoning) are normally described as “intel­
ligent.” Others (e.g. vision) aren’t. But all involve psychological 
skills—such as perception, association, prediction, planning, motor 
control—that enable humans and animals to attain their goals.

Intelligence isn’t a single dimension, but a richly structured space 
of diverse information-processing capacities. Accordingly, AI uses 
many different techniques, addressing many different tasks.

And it’s everywhere.
AI’s practical applications are found in the home, the car (and 

the driverless car), the office, the bank, the hospital, the sky . . . and 
the Internet, including the Internet of Things (which connects the 
ever-multiplying physical sensors in our gadgets, clothes, and 
environments). Some lie outside our planet: robots sent to the Moon 
and Mars, or satellites orbiting in space. Hollywood animations, 
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video and computer games, sat-nav systems, and Google’s search 
engine are all based on AI techniques. So are the systems used by 
financiers to predict movements on the stock market, and by 
national governments to help guide policy decisions in health and 
transport. So are the apps on mobile phones. Add avatars in virtual 
reality, and the toe-in-the-water models of emotion developed for 
“companion” robots. Even art galleries use AI—on their websites, 
and also in exhibitions of computer art. Less happily, military 
drones roam today’s battlefields—but, thankfully, robot mine­
sweepers do so too.

AI has two main aims. One is technological: using computers to 
get useful things done (sometimes by employing methods very 
unlike those used by minds). The other is scientific: using AI concepts 
and models to help answer questions about human beings and 
other living things. Most AI workers focus on only one of these, 
but some consider both.

Besides providing countless technological gizmos, AI has deeply 
influenced the life sciences. A computer model of a scientific theory 
is a test of its clarity and coherence, and a compelling demonstration 
of its—often unknown—implications. Whether the theory is true 
is another matter, and depends on evidence drawn from the science 
concerned. But even discovering that it’s false can be illuminating.

In particular, AI has enabled psychologists and neuroscientists 
to develop powerful theories of the mind-brain. These include 
models of how the physical brain works, and—a different, but equally 
important, question—just what it is that the brain is doing: what 
computational (psychological) questions it is answering, and 
what sorts of information processing enable it to do that. Many 
unanswered questions remain, for AI itself has taught us that our 
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minds are very much richer than psychologists had previously 
imagined.

Biologists, too, have used AI—in the form of “artificial life” 
(A-Life), which develops computer models of differing aspects 
of living organisms. This helps them to explain various types of 
animal behavior, the development of bodily form, biological 
evolution, and the nature of life itself.

Besides affecting the life sciences, AI has influenced philosophy. 
Many philosophers today base their accounts of mind on AI concepts. 
They use these to address, for instance, the notorious mind–body 
problem, the conundrum of free will, and the many puzzles regard­
ing consciousness. However, these philosophical ideas are hugely 
controversial. And there are deep disagreements about whether any 
AI system could possess real intelligence, creativity, or life.

Last, but not least, AI has challenged the ways in which we think 
about humanity—and its future. Indeed, some people worry 
about whether we actually have a future, because they foresee AI 
surpassing human intelligence across the board. Although a few 
thinkers welcome this prospect, most dread it: what place will 
remain, they ask, for human dignity and responsibility?

All these issues are explored in the following chapters.

Virtual Machines

“To think about AI,” someone might say, “is to think about 
computers.” Well, yes and no. The computers, as such, aren’t the 
point. It’s what they do that matters. In other words, although AI 
needs physical machines (i.e. computers), it’s best thought of as 
using what computer scientists call virtual machines.
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A virtual machine isn’t a machine depicted in virtual reality, nor 
something like a simulated car engine used to train mechanics. 
Rather, it’s the information-processing system that the programmer 
has in mind when writing a program, and that people have in 
mind when using it.

As an analogy, think of an orchestra. The instruments have to 
work. Wood, metal, leather, and cat-gut all have to follow the laws 
of physics if the music is to happen as it should. But the concert-
goers aren’t focused on that. Rather, they’re interested in the music. 
Nor are they concerned with individual notes—still less, with the 
vibrations in the air that are causing the sound. They’re listening to 
the musical “shapes” made up by the notes: the melodies and 
harmonies, themes and variations, slurs and syncopation.

Where AI is concerned, the situation is similar. A word pro­
cessor, for example, is thought of by its designer, and experienced 
by its users, as dealing directly with words and paragraphs. But the 
program itself usually contains neither. (Some do, e.g. copyright 
notices, which can be easily inserted by the user.) And a neural 
network (see Chapter  4) is thought of as doing information 
processing in parallel, even though it’s usually implemented in a 
(sequential) von Neumann computer.

That’s not to say that a virtual machine is just a convenient 
fiction, a thing merely of our imagination. Virtual machines are 
actual realities. They can make things happen, both inside the 
system and (if linked to physical devices such as cameras or robot 
hands) in the outside world. AI workers trying to discover what’s 
going wrong when a program does something unexpected only 
rarely consider hardware faults. Usually, they’re interested in 
the  events and causal interactions in the virtual machinery, or 
software.
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Programming languages, too, are virtual machines (whose 
instructions have to be translated into machine code before they 
can be run). Some are defined in terms of lower-level program­
ming languages, so translation is required at several levels. They’re 
needed because most people can’t think about information 
processing in the bit patterns used for machine code, and no one 
can think about complex processes at that hugely detailed level.

That’s not true only of programming languages. Virtual machines 
in general are comprised of patterns of activity (information pro­
cessing) that exist at various levels. Moreover, it’s not true only of 
virtual machines running on computers. We’ll see in Chapter  6 
that the human mind can be understood as the virtual machine—or 
rather, the set of mutually interacting virtual machines, running in 
parallel (and developed or learned at different times)—that is 
implemented in the brain.

Progress in AI requires progress in defining interesting/useful 
virtual machines. More physically powerful computers (larger, 
faster) are all very well. They may even be necessary for certain 
kinds of virtual machines to be implemented. But they can’t be 
exploited unless informationally powerful virtual machines can be 
run on them. (Similarly, progress in neuroscience requires better 
understanding of what psychological virtual machines are being 
implemented by the physical neurons: see Chapter 7.)

Different sorts of external-world information are used. Every 
AI system needs input and output devices, if only a keyboard and 
a screen. Often, there are also special-purpose sensors (perhaps 
cameras, or pressure-sensitive whiskers) and/or effectors (perhaps 
sound synthesizers for music or speech, or robot hands). The AI 
program connects with—causes changes in—these computer-
world interfaces as well as processing information internally.
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AI processing usually also involves internal input and output 
devices, enabling the various virtual machines within the whole 
system to interact with each other. For example, one part of a 
chess program may detect a possible threat by noticing something 
happening in another, and may then interface with yet another in 
searching for a blocking move.

The Major Types of AI

How the information is processed depends on the virtual machine 
involved. As we’ll see in later chapters, there are five major types, 
each including many variations. One is classical, or symbolic, 
AI—sometimes called GOFAI (Good Old-Fashioned AI). Another 
is artificial neural networks, or connectionism. In addition, there 
are evolutionary programming; cellular automata; and dynamical 
systems.

Individual researchers often use only one method, but hybrid 
virtual machines also occur. For instance, a theory of human action 
that switches continually between symbolic and connectionist 
processing is mentioned in Chapter  4. (This explains why, and 
how, it is that someone may be distracted from following through 
on a planned task by noticing something unrelated to it in the 
environment.) And a sensorimotor device that combines “situated” 
robotics, neural networks, and evolutionary programming is 
described in Chapter 5. (This device helps a robot to find its way 
“home” by using a cardboard triangle as a landmark.)

Besides their practical applications, these approaches can illumi­
nate mind, behavior, and life. Neural networks are helpful for 
modeling aspects of the brain, and for doing pattern-recognition 
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and learning. Classical AI (especially when combined with statis­
tics) can model learning too, and also planning and reasoning. 
Evolutionary programming throws light on biological evolution 
and brain development. Cellular automata and dynamical systems 
can be used to model development in living organisms. Some 
methodologies are closer to biology than to psychology, and some 
are closer to non-reflective behavior than to deliberative thought. 
To understand the full range of mentality, all of them will be 
needed—and probably more.

Many AI researchers don’t care about how minds work: they 
seek technological efficiency, not scientific understanding. Even if 
their techniques originated in psychology, they now bear scant 
relation to it. We’ll see, however, that progress in general-purpose 
AI (artificial general intelligence, or AGI) will require deep under­
standing of the computational architecture of minds.

AI Foreseen

AI was foreseen in the 1840s by Lady Ada Lovelace.1 More accu­
rately, she foresaw part of it. She focused on symbols and logic, 
having no glimmering of neural networks, nor of evolutionary 
and dynamical AI. Nor did she have any leanings towards AI’s 
psychological aim, her interest being purely technological.

She said, for instance, that a machine “might compose elaborate 
and scientific pieces of music of any degree of complexity or extent,” 
and might also express “the great facts of the natural world” in 
enabling “a glorious epoch in the history of the sciences.” (So she 
wouldn’t have been surprised to see that, two centuries later, 
scientists are using “Big Data” and specially crafted programming 
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tricks to advance knowledge in genetics, pharmacology, 
epidemiology . . . the list is endless.)

The machine she had in mind was the Analytical Engine. This 
gears-and-cogwheels device (never fully built) had been designed 
by her close friend Charles Babbage in 1834. Despite being 
dedicated to algebra and numbers, it was essentially equivalent to 
a general-purpose digital computer.

Ada Lovelace recognized the potential generality of the Engine, 
its ability to process symbols representing “all subjects in the 
universe.” She also described various basics of modern program­
ming: stored programs, hierarchically nested subroutines, address­
ing, microprogramming, looping, conditionals, comments, and even 
bugs. But she said nothing about just how musical composition, or 
scientific reasoning, could be implemented on Babbage’s machine. 
AI was possible, yes—but how to achieve it was still a mystery.

How AI Began

That mystery was clarified a century later by Alan Turing. In 1936, 
Turing showed that every possible computation can in principle 
be performed by a mathematical system now called a universal 
Turing machine.2 This imaginary system builds, and modifies, 
combinations of binary symbols--represented as “0” and “1.” After 
codebreaking at Bletchley Park during World War II, he spent the 
rest of the 1940s thinking about how the abstractly defined Turing 
machine could be approximated by a physical machine (he helped 
design the first modern computer, completed in Manchester in 
1948), and how such a contraption could be induced to perform 
intelligently.
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Unlike Ada Lovelace, Turing accepted both goals of AI. He wanted 
the new machines to do useful things normally said to require 
intelligence (perhaps by using highly unnatural techniques), and 
also to model the processes occurring in biologically based minds.

The 1950 paper in which he jokily proposed the Turing Test (see 
Chapter 6) was primarily intended as a manifesto for AI.3 (A fuller 
version had been written soon after the war, but the Off icial 
Secrets Act prevented publication.) It identified key questions 
about the information processing involved in intelligence (game 
playing, perception, language, and learning), giving tantalizing 
hints about what had already been achieved. (Only “hints”, because 
the work at Bletchley Park was still top-secret.) It even suggested 
computational approaches—such as neural networks and evolu­
tionary computing—that became prominent only much later. But 
the mystery was still far from dispelled. These were highly general 
remarks: programmatic, not programs.

Turing’s conviction that AI must be somehow possible was 
bolstered in the early 1940s by the neurologist/psychiatrist Warren 
McCulloch and the mathematician Walter Pitts. In their paper “A 
Logical Calculus of the Ideas Immanent in Nervous Activity,”4 they 
united Turing’s work with two other exciting items (both dating 
from the early twentieth century): Bertrand Russell’s propositional 
logic and Charles Sherrington’s theory of neural synapses.

The key point about propositional logic is that it’s binary. Every 
sentence (also called a proposition) is assumed to be either true or false. 
There’s no middle way, no recognition of uncertainty or probability. 
Only two “truth-values” are allowed, namely true and false.

Moreover, complex propositions are built, and deductive argu­
ments are carried out, by using logical operators (such as and, or, 
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and if–then) whose meanings are defined in terms of the truth/
falsity of the component propositions. For instance, if two (or 
more) propositions are linked by and, it’s assumed that both/all of 
them are true. So “Mary married Tom and Flossie married Peter” is 
true if, and only if, both “Mary married Tom” and “Flossie married 
Peter” are true. If, in fact, Flossie did not marry Peter, then the 
complex proposition containing “and” is itself false.

Russell and Sherrington could be brought together by McCulloch 
and Pitts because they had both described binary systems. The 
true/false values of logic were mapped onto the on/off activity of 
brain cells and the 0/1 of individual states in Turing machines. 
Neurons were believed by Sherrington to be not only strictly on/
off, but also to have fixed thresholds. So logic gates (computing 
and, or, and not) were defined as tiny neural nets, which could be 
interconnected to represent highly complex propositions. Any­
thing that could be stated in propositional logic could be computed 
by some neural network, and by some Turing machine.

In brief, neurophysiology, logic, and computation were bundled 
together—and psychology came along too. McCulloch and Pitts 
believed (as many philosophers then did) that natural language 
boils down, in essence, to logic. So all reasoning and opinion, 
from scientific argument to schizophrenic delusions, was grist for 
their theoretical mill. They foresaw a time when, for the whole of 
psychology, “specification of the [neural] net would contribute all 
that could be achieved in that field.”

The core implication was clear: one and the same theoretical 
approach—namely, Turing computation—could be applied to 
human and machine intelligence. (The McCulloch/Pitts paper even 
influenced computer design. John von Neumann, then intending 
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to use decimal code, was alerted to it and switched to binary 
instead.)

Turing, of course, agreed. But he couldn’t take AI much further: 
the technology available was too primitive. In the mid-1950s, 
however, more powerful and/or easily usable machines were 
developed. “Easily usable,” here, doesn’t mean that it was easier 
to push the computer’s buttons, or to wheel it across the room. 
Rather, it means that it was easier to define new virtual machines 
(e.g. programming languages), which could be more easily used to 
define higher-level virtual machines (e.g. programs to do mathe­
matics, or planning).

Symbolic AI research, broadly in the spirit of Turing’s manifesto, 
commenced on both sides of the Atlantic. One late-1950s landmark 
was Arthur Samuel’s checkers (draughts) player, which made news­
paper headlines because it learned to beat Samuel himself.5 That was 
an intimation that computers might one day develop superhuman 
intelligence, outstripping the capacities of their programmers.

The second such intimation also occurred in the late 1950s, 
when the Logic Theory Machine not only proved eighteen of 
Russell’s key logical theorems, but found a more elegant proof of 
one of them.6 This was truly impressive. Whereas Samuel was only 
a mediocre checkers player, Russell was a world-leading logician. 
(Russell himself was delighted by this achievement, but the Jour
nal of Symbolic Logic refused to publish a paper with a computer 
program named as an author, especially as it hadn’t proved a new 
theorem.)

The Logic Theory Machine was soon outdone by the General 
Problem Solver (GPS)7—“outdone” not in the sense that GPS could 
surpass yet more towering geniuses, but in the sense that it wasn’t 
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limited to only one field. As the name suggests, GPS could be 
applied to any problem that could be represented (as explained in 
Chapter 2) in terms of goals, sub-goals, actions, and operators. It 
was up to the programmers to identify the goals, actions, and 
operators relevant for any specific field. But once that had been 
done, the reasoning could be left to the program.

GPS managed to solve the “missionaries-and-cannibals” problem, 
for example. (Three missionaries and three cannibals on one side of a river; 
a boat big enough for two people; how can everyone cross the river, without 
cannibals ever outnumbering missionaries?) That’s difficult even for 
humans, because it requires one to go backwards in order to go 
forwards. (Try it, using pennies!)

The Logic Theory Machine and GPS were early examples of 
GOFAI. They are now “old-fashioned,” to be sure. But they were 
also “good,” for they pioneered the use of heuristics and planning—
both of which are hugely important in AI today (see Chapter 2).

GOFAI wasn’t the only type of AI to be inspired by the “Logical 
Calculus” paper. Connectionism, too, was encouraged by it. In the 
1950s, networks of McCulloch-Pitts logical neurons, either purpose-
built or simulated on digital computers, were used (by Albert 
Uttley, for instance8) to model associative learning and conditioned 
reflexes. (Unlike today’s neural networks, these did local, not dis
tributed, processing: see Chapter 4.)

But early network modeling wasn’t wholly dominated by 
neuro-logic. The systems implemented (in analogue computers) 
by Raymond Beurle in the mid-1950s were very different.9 Instead 
of carefully designed networks of logic gates, he started from two-
dimensional arrays of randomly connected, and varying-threshold, 
units. He saw neural self-organization as due to dynamical waves 
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of activation—building, spreading, persisting, dying, and some­
times interacting.

As Beurle realized, to say that psychological processes could be 
modeled by a logic-chopping machine wasn’t to say that the brain 
actually is such a machine. McCulloch and Pitts had already pointed 
this out. Only four years after their first groundbreaking paper, 
they had published another one arguing that thermodynamics is 
closer than logic to the functioning of the brain.10 Logic gave way 
to statistics, single units to collectivities, and deterministic purity 
to probabilistic noise.

In other words, they had described what’s now called distributed, 
error-tolerant computing (see Chapter  4). They saw this new 
approach as an “extension” of their previous one, not a contradiction 
of it. But it was more biologically realistic.

Cybernetics

McCulloch’s influence on early AI went even further than GOFAI 
and connectionism. His knowledge of neurology as well as logic 
made him an inspiring leader in the budding cybernetics move­
ment of the 1940s.

The cyberneticians focused on biological self-organization. This 
covered various kinds of adaptation and metabolism, including 
autonomous thought and motor behavior as well as (neuro)
physiological regulation. Their central concept was “circular causa­
tion,” or feedback. And a key concern was teleology, or purpo­
siveness. These ideas were closely related, for feedback depended 
on goal differences: the current distance from the goal was used to 
guide the next step.
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Norbert Wiener (who designed anti-ballistic missiles during the 
war) named the movement in 1948, defining it as “the study of 
control and communication in the animal and the machine.”11 
Those cyberneticians who did computer modeling often drew 
inspiration from control engineering and analogue computers 
rather than logic and digital computing. However, the distinction 
wasn’t clear-cut. For instance, goal differences were used both to 
control guided missiles and to direct symbolic problem solving. 
Moreover, Turing—the champion of classical AI—used dynamical 
equations (describing chemical diffusion) to define self-organizing 
systems in which novel structure, such as spots or segmentation, 
could emerge from a homogeneous origin (see Chapter 5).12

Other early members of the movement included the experi­
mental psychologist Kenneth Craik; the mathematician John von 
Neumann; the neurologists William Grey Walter and William 
Ross Ashby; the engineer Oliver Selfridge; the psychiatrist and 
anthropologist Gregory Bateson; and the chemist and psychologist 
Gordon Pask.13

Craik, who died (aged 31) in a cycling accident in 1943, before the 
advent of digital computers, referred to analogue computing in 
thinking about the nervous system. He described perception and 
motor action, and intelligence in general, as guided by feedback 
from “models” in the brain.14 His concept of cerebral models, or 
representations, would later be hugely influential in AI.

Von Neumann had puzzled about self-organization throughout 
the 1930s, and was hugely excited by McCulloch and Pitts’ first 
paper. Besides changing his basic computer design from decimal 
to binary, he adapted their ideas to explain biological evolution 
and reproduction. He defined various cellular automata: systems 
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made of many computational units, whose changes follow simple 
rules depending on the current state of neighboring units.15 Some 
of these could replicate others. He even defined a universal repli­
cator, capable of copying anything—itself included. Replication 
errors, he said, could lead to evolution.

Cellular automata were specified by von Neumann in abstract 
informational terms. But they could be embodied in many ways, 
for example, as self-assembling robots, Turing’s chemical diffusion, 
Beurle’s physical waves, or—as soon became clear—DNA.

From the late 1940s on, Ashby developed the Homeostat, an 
electrochemical model of physiological homeostasis.16 This intri­
guing machine could settle into an overall equilibrium state no 
matter what values were initially assigned to its 100 param­
eters  (allowing almost 400,000 different starting conditions). It 
illustrated Ashby’s theory of dynamical adaptation—both inside 
the body (not least, the brain) and between the body and its 
external environment, in trial-and-error learning and adaptive 
behavior.

Grey Walter, too, was studying adaptive behavior—but in a very 
different way.17 He built mini-robots resembling tortoises, whose 
sensorimotor circuitry modeled Sherrington’s theory of neural 
reflexes. These pioneering situated robots displayed lifelike 
behaviors such as light-seeking, obstacle-avoidance, and asso­
ciative learning via conditioned reflexes. They were sufficiently 
intriguing to be exhibited to the general public at the Festival of 
Britain in 1951.

Ten years later, Selfridge (grandson of the founder of the London 
department store) used symbolic methods to implement an essentially 
parallel-processing system called Pandemonium.18
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This GOFAI program learned to recognize patterns by having 
many bottom-level “demons,” each always looking out for one 
simple perceptual input, which passed their results on to higher-
level demons. These weighed the features recognized so far for 
consistency (e.g. only two horizontal bars in an F), downplaying 
any features that didn’t fit. Confidence levels could vary, and they 
mattered: the demons that shouted loudest had the greatest effect. 
Finally, a master-demon chose the most plausible pattern, given 
the (often conflicting) evidence available. This research soon 
influenced both connectionism and symbolic AI. (One very recent 
offshoot is the LIDA model of consciousness: see Chapter 6.)

Bateson had little interest in machines, but he based his 1960s 
theories of culture, alcoholism, and “double-bind” schizophrenia 
on ideas about communication (i.e. feedback) picked up earlier at 
cybernetic meetings. And from the mid-1950s on, Pask—described 
as “the genius of self-organizing systems” by McCulloch—used 
cybernetic and symbolic ideas in many different projects. These 
included interactive theater; intercommunicating musical robots; 
architecture that learned and adapted to its users’ goals; chemically 
self-organizing concepts; and teaching machines. The latter enabled 
people to take different routes through a complex knowledge 
representation, so were suitable for both step-by-step and holistic 
cognitive styles (and varying tolerance of irrelevance) on the 
learner’s part.

In brief, all the main types of AI were being thought about, and 
even implemented, by the late 1960s—and in some cases, much 
earlier than that.

Most of the researchers concerned are widely revered today. But 
only Turing was a constant specter at the AI feast. For many years, 
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the others were remembered only by some subset of the research 
community. Grey Walter and Ashby, in particular, were nearly 
forgotten until the late 1980s, when they were lauded (alongside 
Turing) as grandfathers of A-Life. Pask had to wait even longer 
for  recognition. To understand why, one must know how the 
computer modelers became disunited.

How AI Divided

Before the 1960s, there was no clear distinction between people 
modeling language or logical thinking and people modeling 
purposive/adaptive motor behavior. Some individuals worked on 
both. (Donald Mackay even suggested building hybrid computers, 
combining neural networks with symbolic processing.) And all 
were mutually sympathetic. Researchers studying physiological 
self-regulation saw themselves as engaged in the same overall enter­
prise as their psychologically oriented colleagues. They all attended 
the same meetings: the interdisciplinary Macy seminars in the 
USA (chaired by McCulloch from 1946 to 1951), and London’s 
seminal conference on “The Mechanization of Thought Processes” 
(organized by Uttley in 1958).19

From about 1960, however, an intellectual schism developed. 
Broadly speaking, those interested in life stayed in cybernetics, and 
those interested in mind turned to symbolic computing. The 
network enthusiasts were interested in both brain and mind, of 
course. But they studied associative learning in general, not specific 
semantic content or reasoning, so fell within cybernetics rather 
than symbolic AI. Unfortunately, there was scant mutual respect 
between these increasingly separate sub-groups.
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The emergence of distinct sociological coteries was inevitable. 
For the theoretical questions being asked—biological (of varying 
kinds) and psychological (also of varying kinds)—were different. 
So too were the technical skills involved: broadly defined, logic 
versus differential equations. Growing specialization made 
communication increasingly difficult, and largely unprofitable. 
Highly eclectic conferences became a thing of the past.

Even so, the division needn’t have been so ill-tempered. The bad 
feeling on the cybernetic/connectionist side began as a mixture 
of professional jealousy and righteous indignation. These were 
prompted by the huge initial success of symbolic computing, by 
the journalistic interest attending the provocative term “artificial 
intelligence” (coined by John McCarthy in 1956 to name what 
had  previously been called “computer simulation”), and by the 
arrogance—and unrealistic hype—expressed by some of the 
symbolists.

Members of the symbolist camp were initially less hostile, 
because they saw themselves as winning the AI competition. Indeed, 
they largely ignored the early network research, even though some 
of their leaders (Marvin Minsky, for instance) had started out in 
that area.

In 1958, however, an ambitious theory of neurodynamics—
defining parallel-processing systems capable of self-organized 
learning from a random base (and error-tolerant to boot)—was 
presented by Frank Rosenblatt and partially implemented in his 
photoelectric Perceptron machine.20 Unlike Pandemonium, this 
didn’t need the input patterns to be pre-analyzed by the pro­
grammer. This novel form of connectionism couldn’t be ignored 
by the symbolists. But it was soon contemptuously dismissed. As 
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explained in Chapter 4, Minsky (with Seymour Papert) launched 
a stinging critique in the 1960s claiming that perceptrons are 
incapable of computing some basic things.21

Funding for neural-network research dried up accordingly. This 
outcome, deliberately intended by the two attackers, deepened the 
antagonisms within AI.

To the general public, it now seemed that classical AI was the 
only game in town. Admittedly, Grey Walter’s tortoises had received 
great acclaim in the Festival of Britain. Rosenblatt’s Perceptron 
was hyped by the press in the late 1950s, as was Bernard Widrow’s 
pattern-learning Adaline (based on signal-processing). But the 
symbolists’ critique killed that interest stone dead. It was symbolic 
AI which dominated the media in the 1960s and 1970s (and which 
influenced the philosophy of mind as well).

That situation didn’t last. Neural networks—as “PDP systems” 
(doing parallel distributed processing)—burst onto the public 
stage again in 1986 (see Chapter  4). Most outsiders—and some 
insiders, who should have known better—thought of this approach 
as utterly new. It seduced the graduate students, and attracted 
enormous journalistic (and philosophical) attention. Now, it was 
the symbolic AI people whose noses were put out of joint. PDP 
was in fashion, and classical AI was widely said to have failed.

As for the other cyberneticians, they finally came in from the 
cold with the naming of A-Life in 1987. The journalists, and the 
graduate students, followed. Symbolic AI was challenged yet again.

In the twenty-first century, however, it has become clear that 
different questions require different types of answers—horses for 
courses. Although traces of the old animosities remain, there’s 
now room for respect, and even cooperation, between different 
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approaches. For instance, “deep learning” is sometimes used in 
powerful systems combining symbolic logic with multilayer prob­
abilistic networks; and other hybrid approaches include ambitious 
models of consciousness (see Chapter 6).

Given the rich variety of virtual machines that constitute the 
human mind, one shouldn’t be too surprised.



2

General Intelligence as the  
Holy Grail

State-of-the-art AI is a many-splendored thing. It offers a profu
sion of virtual machines, doing many different kinds of informa
tion processing. There’s no key secret here, no core technique 
unifying the field: AI practitioners work in highly diverse areas, 
sharing little in terms of goals and methods. This book can mention 
only very few of the recent advances. In short, AI’s methodological 
range is extraordinarily wide.

One could say that it’s been astonishingly successful. For its 
practical range, too, is extraordinarily wide. A host of AI applica
tions exist, designed for countless specific tasks and used in almost 
every area of life, by laymen and professionals alike. Many out
perform even the most expert humans. In that sense, progress has 
been spectacular.

But the AI pioneers weren’t aiming only for specialist systems. 
They were also hoping for systems with general intelligence. Each 
human-like capacity they modeled—vision, reasoning, language, 
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learning, and so on—would cover its entire range of challenges. 
Moreover, these capacities would be integrated when appropriate.

Judged by those criteria, progress has been far less impressive. 
John McCarthy recognized AI’s need for “common sense” very early 
on.1 And he spoke on “Generality in Artificial Intelligence” in both 
of his high-visibility Turing Award addresses, in 1971 and 1987—but 
he was complaining, not celebrating. In 2016, his complaints aren’t 
yet answered.

The twenty-first century is seeing a revival of interest in artificial 
general intelligence (AGI), driven by recent increases in computer 
power. If that were achieved, AI systems could rely less on special 
purpose programming tricks, benefitting instead from general 
powers of reasoning and perception—plus language, creativity, 
and emotion (all of which are discussed in Chapter 3).

However, that’s easier said than done. General intelligence is still 
a major challenge, still highly elusive. AGI is the field’s Holy Grail.

Supercomputers aren’t Enough

Today’s supercomputers are certainly a help to anyone seeking to 
realize this dream. The combinatorial explosion—wherein more 
computations are required than can actually be executed—is no 
longer the constant threat that it used to be. Nevertheless, 
problems can’t always be solved merely by increasing computer 
power.

New problem-solving methods are often needed. Moreover, even 
if a particular method must succeed in principle, it may need too 
much time and/or memory to succeed in practice. Three such 
examples (concerning neural networks) are given in Chapter  4. 
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Similarly, a brute-force “solution” listing all possible chess moves 
would require more memory locations than there are electrons in 
the Universe—so even a large bunch of supercomputers wouldn’t 
suffice.

Efficiency is important, too: the fewer the number of compu
tations, the better. In short, problems must be made tractable.

There are several basic strategies for doing that. All were 
pioneered by classical symbolic AI, or GOFAI, and all are still 
essential today.

One is to direct attention to only a part of the search space (the 
computer’s representation of the problem, within which the 
solution is assumed to be located). Another is to construct a 
smaller search space by making simplifying assumptions. A third 
is to order the search efficiently. Yet another is to construct a 
different search space, by representing the problem in a new way.

These approaches involve heuristics, planning, mathematical sim­
plification, and knowledge representation, respectively. The next five 
sections consider those general AI strategies.

Heuristic Search

The word “heuristic” has the same root as “Eureka!”: it comes from 
the Greek for find, or discover. Heuristics were highlighted by early 
GOFAI, and are often thought of as “programming tricks.” But the 
term didn’t originate with programming: it has long been familiar 
to logicians and mathematicians. As for the human activity of 
using heuristics in problem solving (whether self-consciously or 
not), this goes back thousands of years—long before AI was a 
twinkle in Ada Lovelace’s eye.
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Whether in humans or machines, heuristics make it easier to 
solve the problem. In AI, they do this by directing the program 
towards certain parts of the search space and away from others.

Many heuristics, including most of those used in the very early 
days of AI, are rules of thumb that aren’t guaranteed to succeed. 
The solution may lie in some part of the search space that the 
heuristic has led the system to ignore. For example, “Protect your 
queen” is a very helpful rule in chess, but it should occasionally be 
disobeyed.

Others can be logically or mathematically proved to be adequate. 
Much work in AI and computer science today aims to identify 
provable properties of programs. That’s one aspect of “Friendly 
AI,”2 because human safety may be jeopardized by the use of 
logically unreliable systems (see Chapter 7). (There’s no principled 
distinction between heuristics and algorithms. Many algorithms 
are, in effect, mini-programs incorporating some particular heuristic.)

Whether reliable or not, heuristics are an essential aspect of AI 
research. The increasing AI specialism mentioned above depends 
partly on the definition of new heuristics that can improve effi
ciency spectacularly, but only in one highly restricted sort of 
problem, or search space. A hugely successful heuristic may not 
be suitable for “borrowing” by other AI programs.

Given several heuristics, their order of application may matter. 
For instance, “Protect your queen” should be taken into account 
before “Protect your bishop”—even though this ordering will 
occasionally lead to disaster. Different orderings will define 
different search trees through the search space. Defining and 
ordering heuristics are crucial tasks for modern AI. (Heuristics are 
prominent in cognitive psychology, too. Intriguing work on “fast 
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and frugal heuristics,” for example, indicates how evolution has 
equipped us with efficient ways of responding to the environment.3)

Heuristics make brute-force search through the entire search 
space unnecessary. But they are sometimes combined with (limited) 
brute-force search. IBM’s chess program Deep Blue, which caused 
worldwide excitement by beating world champion Gary Kasparov 
in 1997, used dedicated hardware chips, processing 200 million 
positions per second, to generate every possible move for the next 
eight.4

However, it had to use heuristics to select the “best” move within 
them. And since its heuristics weren’t reliable, even Deep Blue didn’t 
beat Kasparov every time.

Planning

Planning, too, is prominent in today’s AI—not least in a wide range 
of military activities.5 Indeed, the USA’s Department of Defense, 
which paid for the majority of AI research until very recently, has 
said that the money saved (by AI planning) on battlefield logistics in 
the first Iraq war outweighed all their previous investment.

Planning isn’t restricted to AI: we all do it. Think of packing for 
your holiday, for instance. You have to find all the things you want 
to take, which probably won’t all be found in the same place. You 
may have to buy some new items (sun cream, perhaps). You must 
decide whether to collect all the things together (perhaps on your 
bed, or on a table), or whether to put each one in your luggage 
when you find it. That decision will depend in part on whether you 
want to put the clothes in last of all, to prevent creasing. You’ll 
need a rucksack, or a suitcase, or maybe two: how do you decide?
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The GOFAI programmers who used planning as an AI technique 
had such consciously thought-out examples in mind. (The type of 
AI based on neural networks is very different, for it doesn’t try to 
mimic conscious deliberation: see Chapter 4.) That’s because the 
pioneers responsible for the Logic Theory Machine (see Chapter 1) 
and GPS were primarily interested in the psychology of human 
reasoning. They based their programs on experiments they’d done 
with human subjects, asked to “think aloud” so as to describe their 
own thought processes while doing logic puzzles.

Modern AI planners don’t rely so heavily on ideas garnered 
from conscious introspection or experimental observation. And 
their plans are very much more complex than was possible in the 
early days. But the basic idea is the same.

A plan specifies a sequence of actions, represented at a general 
level—a final goal, plus sub-goals and sub-sub-goals . . . —so that 
all details aren’t considered at once. Planning at a suitable level of 
abstraction can lead to tree pruning within the search space, so 
some details never need to be considered at all. Sometimes, the 
final goal is itself a plan of action—perhaps scheduling the deliveries 
to and from a factory or battlefield. At other times, it’s the answer 
to a question—for example, a medical diagnosis.

For any given goal, and expected situations, the planning pro
gram needs: a list of actions—that is, symbolic operators—or action 
types (instantiated by filling in parameters derived from the pro
blem), each of which can make some relevant change; for every 
action, a set of necessary prerequisites (cf. to grasp something, it 
must be within reach); and heuristics for prioritizing the required 
changes and ordering the actions. If the program decides on a 
particular action, it may have to set up a new sub-goal to satisfy 



General Intelligence as the Holy Grail  27

the prerequisites. This goal-formulating process can be repeated 
again and again.

Planning enables the program—and/or the human user—to 
discover what actions have already been taken, and why. The “why” 
refers to the goal hierarchy: this action was taken to satisfy that 
prerequisite, to achieve such-and-such a sub-goal. AI systems com
monly employ techniques of “forward-chaining” and “backward-
chaining,” which explain how the program found its solution. This 
helps the user to judge whether the action/advice of the program 
is appropriate.

Some current planners have tens of thousands of lines of code, 
defining hierarchical search spaces on numerous levels. These 
systems are often significantly different from the early planners.

For example, most don’t assume that all the sub-goals can be 
worked on independently (i.e. that problems are perfectly decom­
posable). In real life, after all, the result of one goal-directed activity 
may be undone by another. Today’s planners can handle partially 
decomposable problems: they work on sub-goals independently, 
but can do extra processing to combine the resulting sub-plans if 
necessary.

The classical planners could tackle only problems in which the 
environment was fully observable, deterministic, finite, and static. 
But some modern planners can cope with environments that are 
partially observable (i.e. the system’s model of the world may be 
incomplete and/or incorrect) and probabilistic. In those cases, the 
system must monitor the changing situation during execution, so 
as to make changes in the plan—and/or in its own “beliefs” about 
the world—as appropriate. Some modern planners can do this over 
very long periods: they engage in continuous goal formulation, 
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execution, adjustment, and abandonment, according to the chang
ing environment.

Many other developments have been added, and are still being 
added, to classical planning.6 It may seem surprising, then, that 
planning was roundly rejected by some roboticists in the 1980s, 
“situated” robotics being recommended instead (see Chapter  5). 
The notion of internal representation—of goals and possible actions, 
for example—was rejected as well. However, that criticism was 
largely mistaken. The critics’ own systems may not have represented 
goals, but they involved representations of other things, such as 
retinal stimulations and rewards. Moreover, even robotics, where 
this critique originated, often needs planning as well as purely 
reactive responses—to build soccer-playing robots, for instance.7

Mathematical Simplification

Whereas heuristics leave the search space as it is (making the pro
gram focus on only part of it), simplifying assumptions construct 
an unrealistic—but computationally tractable—search space.

Some such assumptions are mathematical. One example is the 
“i.i.d.” assumption, commonly used in machine learning. This 
represents the probabilities in the data as being much simpler than 
they actually are.

The advantage of mathematical simplification when defining the 
search space is that mathematical—that is, clearly definable and, 
to mathematicians at least, readily intelligible—methods of search 
can be used. But that’s not to say that any mathematically defined 
search will be useful. As noted above, a method that’s mathe
matically guaranteed to solve every problem within a certain class 
may be unusable in real life, because it would need infinite time to 
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do so. It may, however, suggest approximations that are more 
practicable: see the discussion of “backprop” in Chapter 4.

Non-mathematical simplifying assumptions in AI are legion—
and often unspoken. One is the (tacit) assumption that problems 
can be defined and solved without taking emotions into account 
(see Chapter 3). Many others are built into the general knowledge 
representation that’s used in specifying the task.

Knowledge Representation

Often, the hardest part of AI problem solving is presenting the 
problem to the system in the first place. Even if it seems that 
someone can communicate directly with a program—by speaking 
in English to Siri, perhaps, or by typing French words into Google’s 
search engine—they can’t. Whether one’s dealing with texts or 
with images, the information (“knowledge”) concerned must be 
presented to the system in a fashion that the machine can 
understand—in other words, that it can deal with. (Whether that 
is real understanding is discussed in Chapter 6.)

AI’s ways of doing this are highly diverse. Some are developments/
variations of general methods of knowledge representation intro
duced in GOFAI. Others, increasingly, are highly specialized 
methods, tailor-made for a narrow class of problems–. There may 
be, for instance, a new way of representing X-ray images, or photo
graphs of a certain class of cancerous cells, carefully tailored to 
enable some highly specific method of medical interpretation (so, 
no good for recognizing cats, or even CAT scans).

In the quest for AGI, the general methods are paramount. Initially 
inspired by psychological research on human cognition, these 
include: sets of IF–THEN rules; representations of individual 
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concepts; stereotyped action sequences; semantic networks; and 
inference by logic or probability.

Let’s consider each of these in turn. (Another form of knowledge 
representation, namely neural networks, is described in Chapter 4.)

Rule-Based Programs

In rule-based programming, a body of knowledge/belief is rep
resented as a set of IF–THEN rules linking Conditions to Actions: 
IF this Condition is satisfied, THEN take that Action. This form 
of knowledge representation draws on formal logic (Emil Post’s 
“production” systems). But the AI pioneers Allen Newell and 
Herbert Simon believed it to underlie human psychology in general.

Both Condition and Action may be complex, specifying a 
conjunction (or disjunction) of several—perhaps many—items. If 
several Conditions are satisfied simultaneously, the most inclusive 
conjunction is given priority. So “IF the goal is to cook roast beef 
and Yorkshire pudding” will take precedence over “IF the goal is 
to cook roast beef ”—and adding “and three veg” to the Condition 
will trump that.

Rule-based programs don’t specify the order of steps in advance. 
Rather, each rule lies in wait to be triggered by its Condition. 
Nevertheless, such systems can be used to do planning. If they 
couldn’t, they would be of limited use for AI. But they do it differently 
from how it’s done in the oldest, most familiar, form of programming 
(sometimes called “executive control”).

In programs with executive control (like GPS and the Logic 
Theory Machine: see Chapter 1), planning is represented explicitly. 
The programmer specifies a sequence of goal-seeking instructions 
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to be followed step by step, in strict temporal order: “Do this, then 
do that; then look to see whether X is true; if it is, do such-and-such; if 
not, do so-and-so.”

Sometimes, the “this” or the “so-and-so” is an explicit instruction 
to set up a goal or sub-goal. For instance, a robot with the goal of 
leaving the room may be instructed [sic] to set up the sub-goal 
of opening the door; next, if examining the current state of the 
door shows it to be closed, set up the sub-sub-goal of grasping 
the door handle. (A human toddler may need a sub-sub-sub-goal—
namely, getting an adult to grasp the unreachable door handle; 
and the infant may need several goals at even lower levels in order 
to do that.)

A rule-based program, too, could work out how to escape 
from the room. However, the plan hierarchy would be repre
sented not as a temporally ordered sequence of explicit steps, but 
as the logical structure implicit in the collection of IF–THEN rules 
that comprise the system. A Condition may require that such-
and-such a goal has already been set up (IF you want to open the 
door, and you aren’t tall enough). Similarly, an Action can include 
the setting up of a new goal or sub-goal (THEN ask an adult). 
Lower levels will be activated automatically (IF you want to ask 
someone to do something, THEN set up the goal of moving near 
to them).

Of course, the programmer has to have included the relevant 
IF–THEN rules (in our example, rules dealing with doors and door 
handles). But he/she doesn’t need to have anticipated all the 
potential logical implications of those rules. (That’s a curse, as 
well as a blessing, because potential inconsistencies may remain 
undiscovered for quite a while.)
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The active goals/sub-goals are posted on a central “blackboard,” 
which is accessible to the whole system. The information displayed 
on the blackboard includes not only activated goals but also percep
tual input, and other aspects of current processing. (That idea has 
influenced a leading neuropsychological theory of consciousness, 
and an AI model of consciousness based on it: see Chapter 6.)

Rule-based programs were widely used for the pioneering 
“expert systems” of the early 1970s. These included MYCIN, which 
offered advice to human physicians on identifying infectious dis
eases and on prescribing antibiotic drugs, and DENDRAL, which 
performed spectral analysis of molecules within a particular area 
of organic chemistry. MYCIN, for instance, did medical diagnosis 
by matching symptoms and background bodily properties (Condi
tions) to diagnostic conclusions and/or suggestions for further 
tests or medication (Actions). Such programs were AI’s first move 
away from the hope of generalism towards the practice of specialism. 
And they were the first step towards Ada Lovelace’s dream of 
machine-made science (see Chapter 1).

The rule-based form of knowledge representation enables pro
grams to be built gradually, as the programmer—or perhaps an 
AGI system itself—learns more about the domain. A new rule can 
be added at any time. There’s no need to rewrite the program from 
scratch. However, there’s a catch. If the new rule isn’t logically 
consistent with the existing ones, the system won’t always do what 
it’s supposed to do. It may not even approximate what it’s supposed 
to do. When dealing with a small set of rules, such logical conflicts 
are easily avoided, but larger systems are less transparent.

In the 1970s, the new IF–THEN rules were drawn from ongoing 
conversations with human experts, asked to explain their decisions. 
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Today, many of the rules don’t come from conscious introspection. 
But they are even more efficient. Modern expert systems (a term 
rarely used today) range from huge programs used in scientific 
research and commerce to humble apps on phones. Many outper
form their predecessors because they benefit from additional forms 
of knowledge representation, such as statistics and special-purpose 
visual recognition, and/or the use of Big Data (see Chapter 4).

These programs can assist, or even replace, human experts in 
narrowly restricted fields. Some surpass the world leaders in those 
fields. Almost forty years ago, a rule-based system could outdo 
the supreme human expert in the diagnosis of soybean diseases.8 
Now, there are countless examples, used to aid human profes
sionals working in science, medicine, law . . . and even dress design. 
(Which isn’t entirely good news: see Chapter 7.)

Frames, Word-Vectors, Scripts, Semantic Nets

Other commonly used methods of knowledge representation 
concern individual concepts, not entire domains (such as medical 
diagnosis or dress design).

For instance, one can tell a computer what a room is by specify
ing a hierarchical data structure (sometimes called a “frame”). This 
represents a room as having floor, ceiling, walls, doors, windows, and 
furniture (bed, bath, dining table . . . ). Actual rooms have varying 
numbers of walls, doors, and windows, so “slots” in the frame allow 
specific numbers to be filled in—and provide default assignments 
too (four walls, one door, one window).

Such data structures can be used by the computer to find 
analogies, answer questions, engage in a conversation, or write or 
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understand a story. And they’re the basis of CYC: an ambitious—
some would say vastly overambitious—attempt to represent all 
human knowledge.

Frames can be misleading, however. Default assignments, for 
instance, are problematic. (Some rooms have no window, and open-
plan rooms have no door.) Worse: what of everyday concepts such 
as dropping, or spilling? Symbolic AI represents our common-sense 
knowledge of “naïve physics” by constructing frames coding such 
facts as that a physical object will drop if unsupported. But a 
helium balloon won’t. Allowing explicitly for such cases is a never-
ending task.

In some applications using recent techniques for dealing with 
Big Data, a single concept may be represented as a cluster, or “cloud,” 
made up of hundreds or thousands of sometimes-associated con
cepts, with the probabilities of the many paired associations being 
distinguished: see Chapter  3. Similarly, concepts can now be 
represented by “word-vectors” rather than words. Here, semantic 
features that contribute to, and connect, many different concepts 
are discovered by the (deep learning) system, and used to predict 
the following word—in machine translation, for instance.9 However, 
these representations aren’t yet as amenable for use in reasoning 
or conversation, as classical frames.

Some data structures (called “scripts”) denote familiar action 
sequences.10 For instance, putting a child to bed often involves 
tucking them up, reading a story, singing a lullaby, and switching 
on the night light. Such data structures can be used for question-
answering, and also for suggesting questions. If a mother omits the 
night light, questions can arise about Why? and What happened next? 
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In other words, therein lies the seed of a story. Accordingly, this 
form of knowledge representation is used for automatic story-
writing—and would be needed by “companion” computers capable 
of engaging in normal human conversation (see Chapter 3).

An alternative form of knowledge representation for concepts 
is semantic networks (these are localist networks: see Chapter 4). 
Pioneered by Ross Quillian in the 1960s as models of human asso
ciative memory, several extensive examples (e.g. WordNet) are now 
available as public data resources. A semantic network links concepts 
by semantic relations such as synonymy, antonymy, subordination, 
super-ordination, part–whole—and often also by associative linkages 
assimilating factual world-knowledge to semantics (see Chapter 3).

The network may represent words as well as concepts, by adding 
links coding for syllables, initial letters, phonetics, and homonyms. Such 
a network is used by Kim Binsted’s JAPE and Graeme Ritchie’s 
STAND UP, which generate jokes (of nine different types) based 
on puns, alliteration, and syllable-switching. For example: Q: What 
do you call a depressed train? A: A low-comotive; Q: What do you get if you 
mix a sheep with a kangaroo? A: A woolly jumper.

A caveat: semantic networks aren’t the same thing as neural 
networks. As we’ll see in Chapter  4, distributed neural networks 
represent knowledge in a very different way. There, individual 
concepts are represented not by a single node in a carefully defined 
associative net, but by the changing pattern of activity across an 
entire network. Such systems can tolerate conflicting evidence, so 
aren’t bedeviled by the problems of maintaining logical con
sistency (to be described in the next section). But they can’t do 
precise inference. Nevertheless, they’re a sufficiently important 
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type of knowledge representation (and a sufficiently important 
basis for practical applications) to merit a separate chapter.

Logic and the Semantic Web

If one’s ultimate aim is AGI, logic seems highly appropriate as a 
knowledge representation. For logic is generally applicable. In 
principle, the same representation (the same logical symbolism) 
can be used for vision, learning, language, and so on, and for any 
integration thereof. Moreover, it provides powerful methods of 
theorem proving to handle the information.

That’s why the preferred mode of knowledge representation in 
early AI was the predicate calculus. This form of logic has more 
representational power than propositional logic, because it can 
“get inside” sentences to express their meaning. For example, con
sider the sentence “This shop has a hat to fit everyone.” Predicate 
calculus can clearly distinguish these three possible meanings: 
“For every human individual, there exists in this shop some hat 
that will fit them”; “There exists in this shop a hat whose size can 
be varied so as to fit any human being”; and “In this shop there 
exists a hat [presumably folded up!] large enough to fit all human 
beings simultaneously.”

For many AI researchers, predicate logic is still the preferred 
approach. CYC’s frames, for example, are based in predicate logic. 
So are the natural language processing (NLP) representations in com
positional semantics (see Chapter 3). Sometimes, predicate logic 
is extended so as to represent time, cause, or duty/morality. Of 
course, that depends on someone’s having developed those forms 
of modal logic—which isn’t easy.
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However, logic has disadvantages, too. One involves the com
binatorial explosion. AI’s widely used “resolution” method for logical 
theorem proving can get bogged down in drawing conclusions 
that are true but irrelevant. Heuristics exist for guiding, and restricting, 
the conclusions—and for deciding when to give up (which the 
Sorcerer’s Apprentice couldn’t do). But they aren’t foolproof.

Another is that resolution theorem proving assumes that not-
not-X implies X. That’s a familiar idea: in reductio ad absurdum 
arguments, one tries to find a contradiction between someone’s 
claim and their premises. If the domain being reasoned about is 
completely understood, that’s logically correct. But users of pro
grams (such as many expert systems) with built-in resolution often 
assume that failure to find a contradiction implies that no con
tradiction exists—so-called “negation by failure.” Usually, that’s a 
mistake. In real life, there’s a big difference between proving that 
something is false and failing to prove that it’s true (think of 
wondering whether or not your partner is cheating on you). That’s 
because much of the evidence (potential premises) is unknown.

A third disadvantage is that in classical (“monotonic”) logic, 
once something is proved to be true, it stays true. In practice, that’s 
not always so. One may accept X for good reason (perhaps it was a 
default assignment, or even a conclusion from careful argument 
and/or strong evidence), but it can turn out later that X is no longer 
true—or wasn’t true in the first place. If so, one must revise one’s 
beliefs accordingly. Given a logic-based knowledge representa
tion, that’s easier said than done. Many researchers, inspired by 
McCarthy,11 have tried to develop “non-monotonic” logics that 
can tolerate changing truth-values. Similarly, people have defined 
various “fuzzy” logics, where a statement can be labeled as 
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probable/improbable, or as unknown, rather than true/false. Even so, no 
reliable defense against monotonicity has been found.

AI researchers developing logic-based knowledge representation 
are increasingly seeking the ultimate atoms of knowledge, or 
meaning, in general. They aren’t the first: McCarthy and Hayes did so 
in “Some Philosophical Problems from an AI Standpoint.”12 That 
paper addressed many familiar puzzles, from free will to counter
factuals. These included questions about the basic ontology of the 
universe: states, events, properties, changes, actions . . . what?

Unless one is a metaphysician at heart (a rare human passion), 
why should one care? And why should these arcane questions be 
“increasingly” pursued today? Broadly, the answer is that trying to 
design AGI raises questions about what ontologies the knowledge 
representation can use. These questions arise also in designing the 
semantic web.

The semantic web isn’t the same as the World Wide Web—which 
we’ve had since the 1990s. For the semantic web isn’t even state of 
the art: it’s state of the future. If and when it exists, machine-driven 
associative search will be improved and supplemented by machine 
understanding. This will enable apps and browsers to access infor
mation from anywhere on the Internet, and to integrate different 
items sensibly in reasoning about questions. That’s a tall order. 
Besides requiring huge engineering advances in hardware and 
communications infrastructure, this ambitious project (directed by 
Sir Tim Berners-Lee) needs to deepen the Web-roaming programs’ 
understanding of what they’re doing.

Search engines like Google’s, and NLP programs in general, can 
find associations between words and/or texts—but there’s no 
understanding there. Here, this isn’t a philosophical point (for 
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that, see Chapter 6), but an empirical one—and a further obstacle 
to achieving AGI. Despite some seductively deceptive examples—
such as WATSON, Siri, and machine translation (all discussed in 
Chapter 3)—today’s computers don’t grasp the meaning of what 
they “read” or “say.”

One aspect of this lack of understanding is programs’ inability 
to communicate with (learn from) each other, because they use 
different forms of knowledge representation and/or different 
fundamental ontologies. If semantic web researchers can develop 
a highly general ontology, this Tower of Babel situation might be 
overcome. So, the metaphysical questions raised in 1960s AI are 
now important for highly practical reasons.

Computer Vision

Today’s computers don’t understand visual images as humans do, 
either. (Again, this is an empirical point: whether AGIs could have 
conscious visual phenomenology is discussed in Chapter 6.)

Since 1980, the various knowledge representations used for AI 
vision have drawn heavily on psychology—especially the theories of 
David Marr and James Gibson.13 Marr focused on building 3D 
representations (by inverting the image-formation process), not on 
using them for action. Gibson stressed visual affordances for action: 
visual cues that suggest a pathway, or a weight-bearing bough—or 
even a friendly or hostile species-member. Despite such psychological 
influences, however, current visual programs are gravely limited.14

Admittedly, computer vision has achieved remarkable feats: 
facial recognition with 98% success, for instance. Or reading 
cursive handwriting. Or noticing someone behaving suspiciously 
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(continually pausing by car doors) in parking lots. Or identifying 
certain diseased cells, better than human pathologists can. Faced 
with such successes, one’s mind is strongly tempted to boggle.

But the programs (many are neural networks: see Chapter  4) 
usually have to know exactly what they’re looking for: for example, 
a face not upside down, not in profile, not partly hidden behind 
something else, and (for 98% success) lit in a particular way.

That word “usually” is important. In 2012, Google’s Research 
Laboratory integrated 1,000 large (sixteen-core) computers to form 
a huge neural network, with over a billion connections. Equipped 
with deep learning, it was presented with 10 million random 
images from YouTube videos. It wasn’t told what to look for, and 
the images weren’t labeled. Nevertheless, after three days one unit 
(one artificial neuron) had learned to respond to images of a cat’s 
face, and another to human faces.

Impressive? Well, yes. Intriguing, too: the researchers were quick 
to recall the idea of “grandmother cells” in the brain. Ever since the 
1920s, neuroscientists have differed over whether or not these exist.15 
To say that they do is to say that there are cells in the brain (either 
single neurons or small groups of neurons) that become active 
when, and only when, a grandmother, or some other specif ic 
feature, is perceived. Apparently, something analogous was going 
on in Google’s cat-recognizing network. And although the cats’ 
faces had to be full on and the right way up, they could vary in 
size, or appear in different positions within the 200 x 200 array. 
A further study, which trained the system on carefully pre-selected 
(but unlabeled) images of human faces, including some in prof ile, 
resulted in a unit that could sometimes—only sometimes—discrim
inate faces turned away from the viewer.
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There will soon be many more—and even more impressive—
such achievements. Multilayer networks have already made huge 
advances in face-recognition, and can sometimes find the most 
salient part of an image and generate a verbal caption (e.g. “people 
shopping in an outdoor market”) to describe it.16 The recently 
initiated Large Scale Visual Recognition Challenge is annually increas
ing the number of visual categories that can be recognized, and 
decreasing the constraints on the images concerned (e.g. the 
number and occlusion of objects). However, these deep-learning 
systems will still share some of the weaknesses of their predecessors.

For instance, they—like the cat’s-face recognizer—will have no 
understanding of 3D space, no knowledge of what a “profile,” or 
occlusion, actually is. Even vision programs designed for robots 
provide only an inkling of such matters.

The Mars Rover robots, such as Opportunity and Curiosity (landed 
in 2004 and 2012 respectively), rely on special knowledge-
representation tricks: heuristics tailored for the 3D problems 
they’re expected to face. They can’t do pathfinding or object manip
ulation in the general case. Some robots simulate animate vision, 
wherein the body’s own movements provide useful information 
(because they change the visual input systematically). But even 
they can’t notice a possible pathway, or recognize that this 
unfamiliar thing could be picked up by their robot hand whereas 
that could not.

By the time this book is published, there may be some excep
tions. But they too will have limits. For instance, they won’t under
stand “I can’t pick that up,” because they won’t understand can and 
cannot. That’s because the requisite modal logic probably still won’t 
be available for their knowledge representation.
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Sometimes, vision can ignore 3D space—when reading hand
writing, for instance. And in many highly restricted 2D tasks, 
computer vision makes fewer errors than humans. Indeed, it can 
sometimes employ highly unnatural techniques to analyze detailed 
patterns (in X-rays, for example) that no human eye could recognize. 
(Similarly, 3D computer vision often achieves remarkable results 
by very unnatural means.)

But even 2D computer vision is limited. Despite considerable 
research effort on analogical, or iconic, representations,17 AI can’t 
reliably use diagrams in problem solving—as we do in geometrical 
reasoning, or in sketching abstract relationships on the back of an 
envelope. (Similarly, psychologists don’t yet understand just how 
we do those things.)

In short, most human visual achievements surpass today’s AI. 
Often, AI researchers aren’t clear about what questions to ask. For 
instance, think about folding a slippery satin dress neatly. No 
robot can do this (although some can be instructed, step by step, 
how to fold an oblong terry towel). Or consider putting on a 
T-shirt: the head must go in first, and not via a sleeve—but why? 
Such topological problems hardly feature in AI.

None of this implies that human-level computer vision is 
impossible. But achieving it is much more difficult than most 
people believe.

That’s because characterizing it is hugely difficult. So this is a 
special case of the fact noted in Chapter 1: that AI has taught us 
that human minds are hugely richer, and more subtle, than 
psychologists previously imagined. Indeed, that is the main lesson 
to be learned from AI.
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The Frame Problem

Finding an appropriate knowledge representation, in whatever 
domain, is difficult partly because of the need to avoid the frame 
problem. (Beware: although this problem arises when using frames 
as a knowledge representation for concepts, the meanings of 
“frame” here are different.)

As originally defined by McCarthy and Hayes,18 the frame 
problem involves assuming (during planning by robots) that an 
action will cause only these changes, whereas it may cause those too. 
More generally, the frame problem arises whenever implications 
tacitly assumed by human thinkers are ignored by the computer 
because they haven’t been made explicit.

The classic case is the monkey and bananas problem, wherein 
the problem-solver (perhaps an AI planner for a robot) assumes 
that nothing relevant exists outside the frame (see Figure 1).

My own favorite example is: If a man of twenty can pick ten pounds 
of blackberries in an hour, and a woman of eighteen can pick eight, how 
many will they gather if they go blackberrying together? For sure, “eighteen” 
isn’t a plausible answer. It could be much more (because they’re 
both showing off) or, more probably, much less. This example was 
even more telling fifty years ago, when I first encountered it. But 
why is that? Just what kinds of knowledge are involved here? And 
could an AGI overcome what appear to be the plain arithmetical 
facts?

The frame problem arises because AI programs don’t have a 
human’s sense of relevance (see Chapter 3). It can be avoided if all 
possible consequences of every possible action are known. In some 
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technical/scientific areas, that’s so. (So AI scientists sometimes 
claim that the frame problem has been solved—or, if they’re 
especially careful, “more or less” solved.19) In general, however, it 
isn’t. That’s a major reason why AI systems lack common sense.

In brief, the frame problem lurks all around us—and is a major 
obstacle in the quest for AGI.

BOX

Figure 1  Monkey and bananas problem: how does the monkey get the 
bananas? (The usual approach to this problem assumes, though doesn’t explicitly 
state, that the relevant “world” is that shown inside the dotted-line frame. In 
other words, nothing exists outside this frame which causes significant changes 
in it on moving the box.)
Reprinted from M. A. Boden, Artificial Intelligence and Natural Man (1977: 387).
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Agents and Distributed Cognition

An AI agent is a self-contained (“autonomous”) procedure, com
parable sometimes to a knee-jerk reflex and sometimes to a mini-
mind.20 Phone apps or spelling correctors could be called agents, 
but usually aren’t—because agents normally cooperate. They use 
their highly limited intelligence in cooperation with—or anyway, 
alongside—others to produce results that they couldn’t achieve 
alone. The interaction between agents is as important as the 
individuals themselves.

Some agent systems are organized by hierarchical control: top 
dogs and underdogs, so to speak. But many exemplify distributed 
cognition. This involves cooperation without hierarchical command 
structure (hence the prevarication, above, between “in cooperation 
with” and “alongside”). There’s no central plan, no top-down 
influence, and no individual possessing all the relevant knowledge.

Naturally occurring examples of distributed cognition include 
ant trails, ship navigation, and human minds. Ant trails emerge 
from the behavior of many individual ants, automatically dropping 
(and following) chemicals as they walk. Similarly, navigation and 
maneuvering of ships results from the interlocking activities of 
many people: not even the captain has all the necessary knowledge, 
and some crew members have very little indeed. Even a single 
mind involves distributed cognition, for it integrates many 
cognitive, motivational, and emotional subsystems (see Chapters 4 
and 6).

Artificial examples include neural networks (see Chapter  4); 
an anthropologist’s computer model of ship navigation,21 and 
A-Life work on situated robotics, swarm intelligence, and swarm 
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robotics (see Chapter 5); symbolic AI models of financial markets 
(the agents being banks, hedge funds, and large shareholders); and 
the LIDA model of consciousness (see Chapter 6).

Awareness of distributed cognition also aids design in human–
computer interaction, such as collaborative workplaces and com
puter interfaces. That’s because (as Yvonne Rogers puts it) it clarifies 
“the complex interdependencies between people, artefacts, and 
technological systems that can often be overlooked when using traditional 
theories of cognition.”

Clearly, then, human-level AGI would involve distributed 
cognition.

Machine Learning

Human-level AGI would include machine learning, too.22 However, 
this needn’t be human-like. The field originated from psychologists’ 
work on concept learning and reinforcement. However, it now 
depends on fearsomely mathematical techniques, because the 
knowledge representations used involve probability theory and 
statistics. (One might say that psychology has been left far behind. 
Certainly, some modern machine learning systems bear little or no 
similarity to what might plausibly be going on in human heads. 
However, the increasing use of Bayesian probability in this area of AI 
parallels recent theories in cognitive psychology and neuroscience.)

Today’s machine learning is hugely lucrative. It’s used for data 
mining—and, given supercomputers doing a million billion 
calculations per second, for processing Big Data (see Chapter 3).

Some machine learning uses neural networks. But much relies 
on symbolic AI, supplemented by powerful statistical algorithms. 
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In fact, the statistics really do the work, the GOFAI merely guiding 
the worker to the workplace. Accordingly, some professionals 
regard machine learning as computer science and/or statistics—
not AI. However, there’s no clear boundary here.

(Some computer scientists deliberately reject McCarthy’s label 
“AI”, because of its problematic philosophical implications: see 
Chapter  6. And some avoid it because they disapprove of the 
experimental, relatively unsystematic, nature of much—though 
by no means all—AI research.)

Machine learning has three broad types: supervised, unsupervised, 
and reinforcement learning. (The distinctions originated in psychol
ogy, and different neurophysiological mechanisms may be involved; 
reinforcement learning, across species, involves dopamine.)

In supervised learning, the programmer “trains” the system by 
defining a set of desired outcomes for a range of inputs (labeled 
examples and non-examples), and providing continual feedback 
about whether it has achieved them. The learning system generates 
hypotheses about the relevant features. Whenever it classifies 
incorrectly, it amends its hypothesis accordingly. Specific error 
messages are crucial (not merely feedback that it was mistaken).

In unsupervised learning, the user provides no desired outcomes or 
error messages. Learning is driven by the principle that co-occurring 
features engender expectations that they will co-occur in future. 
Unsupervised learning can be used to discover knowledge. The 
programmers needn’t know what patterns/clusters exist in the data: 
the system finds them for itself.

Finally, reinforcement learning is driven by analogues of reward 
and punishment: feedback messages telling the system that what it 
just did was good or bad. Often, reinforcement isn’t simply binary, 
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but represented by numbers—like the scores in a video game. 
“What it just did” may be a single decision (such as a move in a 
game), or a series of decisions (e.g. chess moves culminating in 
checkmate). In some video games, the numerical score is updated 
at every move. In highly complex situations, such as chess, success 
(or failure) is signaled only after many decisions, and some 
procedure for credit assignment identifies the decisions most likely 
to lead to success. (Evolutionary AI is a form of reinforcement 
learning in which success is monitored by the fitness function: see 
Chapter 5.)

Symbolic machine learning in general assumes—what’s not 
obviously true—that the knowledge representation for learning 
must involve some form of probability distribution. And many 
learning algorithms assume—what is usually false—that every 
variable in the data has the same probability distribution, and all 
are mutually independent. That’s because this i.i.d. (independent 
and identically distributed) assumption underlies many mathe
matical theories of probability, on which the algorithms are based. 
The mathematicians adopted the i.i.d. assumption because it makes 
the mathematics simpler. Similarly, using i.i.d. in AI simplifies the 
search space, thus making problem solving easier.

Bayesian statistics, however, deals with conditional probabilities, 
where items/events are not independent. Here, probability depends 
on distributional evidence about the domain. Besides being more 
realistic, this form of knowledge representation allows proba
bilities to be changed if new evidence comes in. Bayesian tech
niques are becoming increasingly prominent in AI—and in 
psychology and neuroscience too. Theories of “the Bayesian brain” 
(see Chapter 4) capitalize on the use of non-i.i.d. evidence to drive, 
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and to fine-tune, unsupervised learning in perception and motor 
control.

Given various theories of probability, there are many different 
algorithms suitable for distinct types of learning and different data 
sets. For instance, Support Vector Machines—which accept the 
i.i.d. assumption—are widely used for supervised learning, 
especially if the user lacks specialized prior knowledge about the 
domain. “Bag of Words” algorithms are useful when the order of 
features can be ignored (as in searches for words, not phrases). 
And if the i.i.d. assumption is dropped, Bayesian techniques 
(“Helmholtz machines”) can learn from distributional evidence.

Most machine learning professionals use off-the-shelf statistical 
methods. The originators of those methods are highly prized by 
the industry: Facebook recently employed the creator of Support 
Vector Machines, and in 2013/2014 Google hired several key 
instigators of deep learning.23

Deep learning is a promising new advance based in multilayer 
networks (see Chapter 4), by which patterns in the input data are 
recognized at various hierarchical levels.24 In other words, deep 
learning discovers a multilevel knowledge representation—for 
instance, pixels to contrast detectors, to edge detectors, to shape 
detectors, to object parts, to objects.

One example is the cat’s-face detector that emerged from Google’s 
research on YouTube. Another, recently reported in Nature, is a 
reinforcement learner (the “DQN” algorithm) that has learned to play 
the classic Atari 2600 2D games.25 Despite being given only pixels and 
game scores as input (and already knowing only the number of 
actions available for each game), this surpasses 75% of humans on 29 
of the 49 games, and outperforms professional game testers on 22.
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It remains to be seen how far this achievement can be extended. 
Although DQN sometimes finds the optimal strategy, involving 
temporally ordered actions, it can’t master games whose planning 
encompasses a longer period of time.

Future neuroscience may suggest improvements to this system. 
The current version is inspired by the Hubel–Wiesel vision 
receptors—cells in visual cortex that respond only to movement, 
or only to lines of a particular orientation. (That’s no big deal: 
the  Hubel–Wiesel receptors inspired Pandemonium, too: see 
Chapter 1.) More unusually, this version of DQN is inspired also by 
the “experience replay” happening in the hippocampus during 
sleep. Like the hippocampus, the DQN system stores a pool of 
past samples, or experiences, and reactivates them rapidly during 
learning. This feature is crucial: the designers reported “a severe 
deterioration” in performance when it was disabled.

Generalist Systems

The Atari game player caused excitement—and merited publi
cation in Nature—partly because it seemed to be a step towards AGI. 
A single algorithm, using no handcrafted knowledge representa
tion, learned a wide range of competences on a variety of tasks 
involving relatively high-dimensional sensory input. No previous 
program had done that.

However (as remarked at the outset of this chapter), full AGI would 
do very much more. Difficult though it is to build a high-performing 
AI specialist, building an AI generalist is orders of magnitude harder. 
(Deep learning isn’t the answer: its aficionados admit that “new 
paradigms are needed” to combine it with complex reasoning—
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scholarly code for “we haven”t got a clue”.)26 That’s why most AI 
researchers abandoned that early hope, turning instead to multifarious 
narrowly defined tasks—often with spectacular success.

AGI pioneers who retained their ambitious hopes included 
Newell and John Anderson. They originated SOAR and ACT-R 
respectively: systems begun in the early 1980s, and both still being 
developed (and used) some three decades later. However, they 
oversimplified the task, focusing on only a small subset of human 
competences.

In 1962, Newell’s colleague Simon had considered the zig-zagging 
path of an ant on uneven ground. Every movement, he said, is a 
direct reaction to the situation perceived by the ant at that moment 
(this is the key idea of situated robotics: see Chapter 5). Ten years later, 
Newell and Simon’s book Human Problem Solving described our 
intelligence as similar.27 According to their psychological theory, 
perception and motor action are supplemented by internal rep
resentations (IF–THEN rules, or “productions”) stored in memory, 
or newly built during problem solving.

“Human beings, viewed as behaving systems,” they said, “are 
quite simple.” But the emergent behavioral complexities are signif
icant. For instance, they showed that a system of only fourteen 
IF–THEN rules can solve cryptarithmetic problems (e.g. map the 
letters to the digits 0 to 9 in this sum: DONALD + GERALD = 
ROBERT, where D = 5). Some rules deal with goal/sub-goal organ
ization. Some direct attention (to a specific letter or column). Some 
recall previous steps (intermediate results). Some recognize false 
starts. And others backtrack to recover from them.

Cryptarithmetic, they argued, exemplifies the computational 
architecture of all intelligent behavior—so this psychological 
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approach suited a generalist AI. From 1980, Newell (with John Laird 
and Paul Rosenbloom) developed SOAR (Success Oriented 
Achievement Realized). This was intended as a model of cognition 
as a whole.28 Its reasoning integrated perception, attention, memory, 
association, inference, analogy, and learning. Ant-like (situated) 
responses were combined with internal deliberation. Indeed, 
deliberation often resulted in reflex responses, because a previously 
used sequence of sub-goals could be “chunked” into one rule.

In fact, SOAR failed to model all aspects of cognition, and was 
later extended as people recognized some of the gaps. Today’s 
version is used for many purposes, from medical diagnosis to 
factory scheduling.

Anderson’s ACT-R family (Adaptive Control of Thought) are 
hybrid systems (see Chapter  4), developed by combining pro
duction systems and semantic networks.29 These programs, which 
recognize the statistical probabilities in the environment, model 
associative memory, pattern recognition, meaning, language, pro
blem solving, learning, imagery, and (since 2005) perceptuo-motor 
control. ACT-R is primarily an exercise in scientific AI. Whereas 
commercial machine learning has forgotten its psychological 
roots, ACT-R is still deepening them (recently including neuro
science too: e.g. sets of IF–THEN rules paralleling “modular” brain 
systems).

A key feature of ACT-R is the integration of procedural and 
declarative knowledge. Someone may know that a theorem of 
Euclid’s is true, without knowing how to use it in a geometrical proof. 
ACT-R can learn how to apply a propositional truth, by construct
ing hundreds of new productions that control its use in many 
different circumstances. It learns which goals, sub-goals, and 
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sub-sub-goals . . . are relevant in which conditions, and what results 
a particular action will have in various circumstances. In short, it 
learns by doing. And (like SOAR) it can chunk several rules that are 
often carried out sequentially into a single rule. This parallels the 
difference between how human experts and novices solve “the 
same” problem: unthinkingly or painstakingly.

ACT-R has diverse applications. Its mathematics tutors offer 
personalized feedback, including relevant domain knowledge, and 
the goal/sub-goal structure of problem solving. Thanks to chunking, 
the grain size of their suggestions changes as the student’s learning 
proceeds. Other applications concern NLP; human–computer 
interaction; human memory and attention; driving and flying; and 
visual web search.

SOAR and ACT were contemporaries of another early attempt 
at AGI: Douglas Lenat’s CYC. This symbolic-AI system was launched 
in 1984, and is still under continuous development.30

By 2015, CYC contained 62,000 “relationships” capable of linking 
the concepts in its database, and millions of links between those 
concepts. These include the semantic and factual associations stored 
in large semantic nets (see Chapter 3), and countless facts of naïve 
physics—the unformalized knowledge of physical phenomena 
(such as dropping and spilling) that all humans have. The system 
uses both monotonic and non-monotonic logics, and probabilities 
too, to reason about its data. (At present, all the concepts and links 
are hand-coded, but Bayesian learning is being added; this will 
enable CYC to learn from the Internet.)

It has been used by several US government agencies, including 
the Department of Defense (to monitor terrorist groups, for 
instance) and the National Institutes of Health, and by some major 
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banks and insurance companies. A smaller version—OpenCyc—
has been publicly released as a background source for a variety of 
applications, and a fuller abridgment (ResearchCyc) is available for 
AI workers. Although OpenCyc is regularly updated (most recently 
in 2014), it contains only a small subset of CYC’s database, and a 
small subset of inference rules. Eventually, the complete (or near-
complete) system will be commercially available. However, that 
could fall into malicious hands—unless specific measures are 
taken to prevent this (see Chapter 7).

CYC was described by Lenat in AI Magazine (1986) as “Using 
Common Sense Knowledge to Overcome Brittleness and Knowledge 
Acquisition Bottlenecks.” That is, it was specifically addressing 
McCarthy’s prescient challenge. Today, it’s the leader in modeling 
“common-sense” reasoning, and also in “understanding” the 
concepts it deals with (which even apparently impressive NLP 
programs cannot do: see Chapter 3).

Nevertheless, it has many weaknesses. For example, it doesn’t 
cope well with metaphor (although the database includes many 
dead metaphors, of course). It ignores various aspects of naïve 
physics. Its NLP, although constantly improving, is very limited. 
And it doesn’t yet include vision. In sum, despite its en-CYC-
lopedic aims, it doesn’t really encompass human knowledge.

The Dream Revitalized

Newell, Anderson, and Lenat beavered away in the background for 
30 years. Recently, however, interest in AGI has revived markedly. 
An annual conference was started in 2008, and SOAR, ACT-R, and 
CYC are being joined by other supposedly generalist systems.
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For instance, in 2010 the machine learning pioneer Tom Mitchell 
launched Carnegie Mellon’s NELL (Never-Ending Language Learner). 
This “common-sense” system builds its knowledge by trawling 
the Web non-stop (for five years at the time of writing) and by 
accepting online corrections from the public. It can make simple 
inferences based on its (unlabeled) data: for instance, the athlete 
Joe Bloggs plays tennis, since he’s on the Davis team. Starting with 
an ontology of 200 categories and relations (e.g. master, is due to), 
after five years it had enlarged the ontology and amassed 90 
million candidate beliefs, each with its own confidence level.

The bad news is that NELL doesn’t know, for example, that you can 
pull objects with a string, but not push them. Indeed, the putative 
common sense of all AGI systems is gravely limited. Claims that the 
notorious frame problem has been “solved” are highly misleading.

NELL now has a sister program, NEIL: Never-Ending Image 
Learner. Some part-visual AGIs combine a logical-symbolic knowl
edge representation with analogical, or graphical, representations 
(a distinction made years ago by Aaron Sloman, but still not well 
understood).

In addition, Stanford Research Institute’s CALO (Cognitive 
Assistant that Learns and Organizes) provided the spin-off Siri 
app (see Chapter  3), bought by Apple for $200 million in 2009. 
Comparable currently active projects include Stan Franklin’s 
intriguing LIDA (discussed in Chapter  6) and Ben Goertzel’s 
OpenCog, which learns its facts and concepts within a rich virtual 
world and also from other AGI systems. (LIDA is one of two gen
eralist systems focused on consciousness; the other is CLARION.31)

An even more recent AGI project, started in 2014, aims at 
developing “A Computational Architecture for Moral Competence 
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in Robots” (see Chapter 7). Besides the difficulties mentioned above, 
it will have to face the many problems that relate to morality.

A genuinely human-level system would do no less. No wonder, 
then, that AGI is proving so elusive.

Missing Dimensions

Nearly all of today’s generalist systems are focused on cognition. 
Anderson, for instance, aims to specify “how all the subfields in 
cognitive psychology interconnect.” (“All” the subfields? Although 
he addresses motor control, he doesn’t discuss touch or 
proprioception—which sometimes feature in robotics.) A truly 
general AI would cover motivation and emotion as well.

A few AI scientists have recognized this. Marvin Minsky and 
Sloman have both written insightfully about the computational 
architecture of whole minds, although neither has built a whole-
mind model.32

Sloman’s MINDER model of anxiety is outlined in Chapter 3. His 
work (and Dietrich Dorner’s psychological theory) has inspired 
Joscha Bach’s MicroPsi: an AGI based on seven different “motives,” and 
using “emotional” dispositions in planning and action selection. It has 
also influenced the LIDA system mentioned above (see Chapter 6).

But even these fall far short of true AGI. Minsky’s prescient AI 
manifesto, “Steps Toward Artificial Intelligence,” identified obstacles 
as well as promises.33 Many of the former have yet to be overcome. 
As Chapter 3 should help to show, human-level AGI isn’t within 
sight.

(Many AI professionals disagree. Some even add that AGI will 
soon become ASI—“S” for Superhuman—with Homo sapiens side
lined accordingly: see Chapter 7.)



3

Language, Creativity, Emotion

Some areas of AI seem especially challenging: language, creativity, 
and emotion. If AI can’t model these, hopes of AGI are illusory.

In each case, more has been achieved than many people imagine. 
Nevertheless, significant difficulties remain. These quintessentially 
“human” areas have been modeled only up to a point. (Whether AI 
systems could ever have real understanding, creativity, or emotion 
is discussed in Chapter 6. Here, our question is whether they can 
appear to possess them.)

Language

Countless AI applications use natural language processing (NLP). 
Most focus on the computer’s “understanding” of language that 
is presented to it, not on its own linguistic production. That’s 
because NLP generation is even more difficult than NLP acceptance.
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The difficulties concern both thematic content and grammat­
ical form. For instance, we saw in Chapter 2 that familiar action 
sequences (“scripts”) can be used as the seed of AI stories. But 
whether the background knowledge representation includes enough 
about human motivation to make the story interesting is another 
matter. A commercially available system that writes annual sum­
maries describing a firm’s changing financial position generates 
very boring “stories.” Computer-generated novels and soap-opera 
plots do exist—but they won’t win any prizes for subtlety. (AI 
translations/summaries of human-generated texts may be much 
richer, but that’s thanks to the human authors.)

As for grammatical form, computer prose is sometimes gram­
matically incorrect and usually very clumsy. An AI-generated 
narrative of a game of noughts and crosses (tic-tac-toe) can have 
clausal/sub-clausal structures that match the dynamics of the 
game in a nicely appropriate way.1 But the possibilities and strat­
egies of noughts and crosses are fully understood. Describing the 
succession of thoughts, or actions, of the protagonists in most 
human stories in a similarly elegant fashion would be much more 
challenging.

Turning to AI’s acceptance of language, some systems are bor­
ingly simple: they require only keyword recognition (think of 
the “menus” in e-retailing), or the prediction of words listed in a 
dictionary (think of the automatic completion that happens 
when  writing text messages). Others are signif icantly more 
sophisticated.

A few require speech recognition, either of single words, as in 
automated telephone shopping, or of continuous speech, as in 
real-time TV subtitling and telephone bugging. In the latter case, 
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the aim may be to pick out specific words (such as bomb and Jihad) 
or, more interestingly, to capture the sense of the sentence as a 
whole. This is NLP with knobs on: the words themselves—spoken 
by many different voices, and with different local/foreign accents—
must be distinguished first. (Word distinctions come for free in 
printed texts.) Deep learning (see Chapter 4) has enabled significant 
advances in speech processing.2

Impressive examples of what looks like whole-sentence under­
standing include machine translation; data mining from large 
collections of natural-language texts; summarizing articles in 
newspapers and journals; and free-range question answering 
(increasingly employed in Google searches, and in the Siri app for 
the iPhone).

But can such systems really appreciate language? Can they cope 
with grammar, for instance?

In AI’s early days, people assumed that language understanding 
requires syntactic parsing. Considerable effort went into writing 
programs to do that. The outstanding example—which brought 
AI to the attention of countless people who had previously never 
heard of it, or who had dismissed it as impossible—was Terry 
Winograd’s SHRDLU, written at MIT in the early 1970s.3

This program accepted instructions in English telling a robot to 
build structures made of colored blocks, and worked out just how 
certain blocks should be moved to achieve the goal. It was hugely 
influential for many reasons, some of which applied to AI in gen­
eral. Here, what’s relevant is its unprecedented ability to assign 
detailed grammatical structure to complex sentences, such as: 
How many eggs would you have been going to use in the cake if you hadn’t 
learned your grandmother’s recipe was wrong? (Try it!)
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For technological purposes, SHRDLU turned out to be a dis­
appointment. The program contained many bugs, so could be 
used only by a handful of highly skilled researchers. Various other 
syntax crunchers were built at around that time, but they, too, 
weren’t generalizable to real-world texts. In short, it soon appeared 
that the analysis of fancy syntax is too difficult for off-the-shelf 
systems.

Fancy syntax wasn’t the only problem. In human language-use, 
context and relevance matter too. It wasn’t obvious that they could 
ever be handled by AI.

Indeed, machine translation had been pronounced impossible 
by the US government’s ALPAC Report in 1964 (the acronym 
denoted the Automatic Language Processing Advisory Committee).4 
Besides predicting that not enough people would want to use it to 
make it commercially viable (although machine aids for human 
translators might admittedly be feasible), the report argued that 
computers would struggle with syntax, be defeated by context, 
and—above all—be blind to relevance.

That was a bombshell for machine translation (whose funding 
virtually dried up overnight), and for AI in general. It was widely 
interpreted as showing the futility of AI. The bestseller Computers 
and Common Sense had already claimed (in 1961) that AI was a waste 
of taxpayers’ money.5 Now, it seemed that top governmental 
experts agreed. Two US universities that were about to open AI 
departments canceled their plans accordingly.

Work in AI continued nevertheless, and when the syntax-savvy 
SHRDLU hit the scene a few years later it seemed to be a triumphant 
vindication of GOFAI. But doubts soon crept in. Accordingly, NLP 
turned increasingly to context rather than syntax.
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A few researchers had taken semantic context seriously even 
in the early 1950s. Margaret Masterman’s group in Cambridge, 
England, had approached machine translation (and information 
retrieval) by using a thesaurus rather than a dictionary. They 
saw syntax as “that very superficial and highly redundant part 
of language that [people in a hurry], quite rightly, drop,”6 and 
focused on word clusters rather than single words. Instead of 
attempting word-by-word translation, they searched the sur­
rounding text for words of similar meaning. This (when it worked) 
enabled ambiguous words to be translated correctly. So bank 
could be rendered (in French) as rive or as banque, depending on 
whether the context contained words such as water or money, 
respectively.

That thesaurus-based contextual approach could be strength­
ened by also considering words that often co-occur despite hav­
ing dissimilar meanings (like fish and water). And this, as time passed, 
is what happened. Besides distinguishing various types of lexical 
similarity—synonyms (empty/vacant), antonyms (empty/full), class 
membership (fish/animal) and inclusion (animal/fish), shared class level 
(cod/salmon), and part/whole (fin/fish)—today’s machine translation 
also recognizes thematic co-occurrence (fish/water, fish/bank, fish/
chips, etc.).

It’s now clear that handling fancy syntax isn’t necessary for 
summarizing, questioning, or translating a natural-language text. 
Today’s NLP relies more on brawn (computational power) than on 
brain (grammatical analysis). Mathematics—specifically, statistics—
has overtaken logic, and machine learning (including, but not 
restricted to, deep learning) has displaced syntactic analysis. These 
new approaches to NLP, ranging from written texts to speech 
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recognition, are so efficient that a 95% success rate is taken as the 
norm of acceptability for practical applications.

In modern-day NLP, powerful computers do statistical searches 
of huge collections (“corpora”) of texts (for machine translation, 
these are paired translations done by humans) to find word pat­
terns both commonplace and unexpected. They can learn the sta­
tistical likelihood of fish/water, or fish/tadpole, or fish and chips/salt and 
vinegar. And (as remarked in Chapter 2) NLP can now learn to con­
struct “word vectors” representing the probabilistic clouds of 
meaning that attend a given concept.7 In general, however, the 
focus is on words and phrases, not syntax. Grammar isn’t ignored: 
labels such as ADJective and ADVerb may be assigned, either auto­
matically or by hand, to some words in the texts being examined.8 
But syntactic analysis is little used.

Even detailed semantic analysis isn’t prominent. “Compositional” 
semantics uses syntax in analyzing the meaning of sentences; but 
it is found in research laboratories, not in large-scale applications. 
The “common-sense” reasoner CYC has relatively full semantic 
representations of its concepts (words), and “understands” them 
better accordingly (see Chapter 2). But that is still unusual.

Current machine translation can be astonishingly successful. 
Some systems are restricted to a small set of topics, but others are 
more open. Google Translate offers machine translation on uncon­
strained topics to over 200 million users every day. SYSTRAN is 
used daily by the European Union (for 24 languages) and NATO, 
and by Xerox and General Motors.

Many of these translations, including the EU documents, are 
near-perfect (because only a limited subset of words is used in 
the original texts). Many more are imperfect yet easily intelligible, 
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because informed readers can ignore grammatical errors and 
inelegant word choices—as one does when listening to a non-
native speaker. Some require minimal post-editing by humans. 
(With Japanese, significant pre-editing and post-editing may be 
needed. Japanese contains no segmented words, like the English 
past tense vot-ed, and phrase orderings are reversed. Machine-
matching of languages from different language groups is usually 
difficult.)

In short, the results of machine translation are normally good 
enough for the human user to understand. Similarly, monolingual 
NLP programs that summarize journal papers can often show 
whether the paper merits reading in full. (Perfect translation is 
arguably impossible anyway. For example, requesting an apple in 
Japanese requires language reflecting the interlocutors’ comparative 
social status, but no equivalent distinctions exist in English.)

The real-time translation available on AI applications such as 
Skype is less successful. That’s because the system has to recog­
nize speech, not written text (in which the individual words are 
clearly separated).

Two other prominent NLP applications are forms of information 
retrieval: weighted search (initiated by Masterman’s group in 1976) 
and data mining. The Google search engine, for instance, searches 
for terms weighted by relevance—which is assessed statistically, 
not semantically (that is, without understanding). Data mining can 
find word patterns unsuspected by human users. Long used for 
market research on products and brands, it’s now being applied 
(often using deep learning) to “Big Data”: huge collections of texts 
(sometimes multilingual) or images, such as scientific reports, 
medical records, or entries on social media and the Internet.
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Applications of Big Data mining include surveillance and 
counter-espionage, and the monitoring of public attitudes by 
governments, policy-makers, and social scientists. Such enquiries 
can compare the shifting opinions of distinct sub-groups: men/
women, young/old, North/South, and so on. For instance, the UK 
think tank Demos (working with an NLP data-analytics team at 
the University of Sussex) has analyzed many thousands of Twitter 
messages relating to misogyny, ethnic groups, and the police. 
Sudden bursts of tweeting after specific events (“twitcidents”) can 
be searched to discover, for example, changes in public opinion on 
the police’s reaction to a particular incident.

It remains to be seen whether Big Data NLP will reliably pro­
duce useful results. Often, data mining (using “sentiment analy­
sis”) seeks to measure not only the level of public interest, but its 
evaluative tone. However, this isn’t straightforward. For instance, 
a tweet containing an apparently derogatory racial epithet, and 
so machine-coded as “negative” in sentiment, may not in fact be 
derogatory. A human judge, on reading it, may see the term as 
being used (in this case) as a positive marker of group identity, or 
as a neutral description (e.g. The Paki shop on the corner), not as insult 
or abuse. (The Demos research found that only a small proportion 
of tweets containing racial/ethnic terms are actually aggressive.9)

In such cases, the human’s judgement will rely on the context—
for example, the other words within the tweet. It may be possible 
to adjust the machine’s search criteria so that it makes fewer “neg­
ative sentiment” ascriptions. Then again, it may not. Such judge­
ments are often contentious. Even when they are agreed, it may be 
difficult to identify those aspects of the context which justify the 
human’s interpretation.
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That’s just one example of the difficulty of pinning down 
relevance in computational (or even verbal) terms.

Two well-known NLP applications may seem, at first sight, to 
contradict that statement: Apple’s Siri and IBM’s WATSON.

Siri is a (rule-based) personal assistant, a talking “chat-bot” that 
can quickly answer many different questions. It has access to 
everything on the Internet—including Google Maps, Wikipedia, 
the constantly updated New York Times, and lists of local services 
such as taxis and restaurants. It also calls on the powerful question 
answerer WolframAlpha, which can use logical reasoning to work 
out—not merely find—answers to a wide range of factual questions.

Siri accepts a spoken question from the user (to whose voice 
and dialect it gradually adapts), and answers it by using web-
searching and conversational analysis. Conversational analysis 
studies how people organize the sequence of topics in a con­
versation, and how they arrange interactions such as explanation 
and agreement. This approach enables Siri to consider questions 
such as What does the interlocutor want? and How should it answer?, 
and—up to a point—to adapt to the individual user’s interests and 
preferences.

In short, Siri appears to be sensitive not only to topical relevance, 
but to personal relevance as well. So it’s superficially impressive. 
However, it’s easily led into giving ridiculous answers—and if the 
user strays from the domain of facts, Siri is lost.

WATSON, too, is focused on facts. As an off-the-shelf resource 
(with 2,880 core processors) for handling Big Data, it’s already 
used in some call centers, and it is being adapted for medical 
applications such as assessing cancer therapies. But it doesn’t 
merely answer straightforward questions, as Siri does. It can also 
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deal with the puzzles that arise in the general-knowledge game 
Jeopardy!.10

In Jeopardy!, players aren’t asked direct questions, but are given a 
clue and have to guess what the relevant [sic] question would be. 
For example, they are told “On May 9, 1921, this ‘letter-perfect’ air­
line opened its first passenger office in Amsterdam,” and they 
should answer “What is KLM?”

WATSON can meet that challenge, and many others. Unlike 
Siri, its Jeopardy!-playing version has no access to the Internet 
(although the medical version does), and no notion of the struc­
ture of conversations. Nor can it discover an answer by logical rea­
soning. Instead, it uses massively parallel statistical search over an 
enormous, but closed, database. This contains documents—
countless reviews and reference books, plus the New York Times—
providing facts about leprosy to Liszt, hydrogen to Hydra, and so 
on. When playing Jeopardy!, its search is guided by hundreds of spe­
cially crafted algorithms that reflect the probabilities inherent in 
the game. And it can learn from its human contestants’ guesses.

In 2011, WATSON rivaled the Kasparov moment of its IBM 
cousin Deep Blue (see Chapter 2), by apparently beating the two top 
human champions. (“Apparently,” because the computer reacts 
instantaneously whereas humans need some reaction time before 
pressing the buzzer.) But, like Deep Blue, it doesn’t always win.

On one occasion it lost because, although it correctly focused 
on a particular athlete’s leg, it didn’t realize that the crucial fact in 
its stored data was that this person had a leg missing. That mistake 
won’t reoccur, because WATSON’s programmers have now flagged 
the importance of the word “missing.” But others will. Even in 
mundane fact-seeking contexts, people often rely on relevance 
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judgements that are beyond WATSON. For example, one clue 
required the identity of two of Jesus’ disciples whose names are 
both top-ten baby names, and end in the same letter. The answer 
was “Matthew and Andrew”—which WATSON got immediately. 
The human champion got that answer too. But his first idea had 
been “James and Judas.” He rejected that, he recalled, only because 
“I don’t think Judas is a popular baby name, for some reason.” 
WATSON couldn’t have done that.

Human judgements of relevance are often much less obvious 
than that one, and much too subtle for today’s NLP. Indeed, rele­
vance is a linguistic/conceptual version of the unforgiving “frame 
problem” in robotics (see Chapter  2). Many people would argue 
that it will never be wholly mastered by a non-human system. 
Whether that’s due only to the massive complexity involved, or to 
the fact that relevance is rooted in our specifically human form of 
life, is discussed in Chapter 6.

Creativity

Creativity—the ability to produce ideas or artefacts that are new, 
surprising, and valuable—is the acme of human intelligence, and 
necessary for human-level AGI. But it’s widely seen as mysterious. 
It’s not obvious how novel ideas could arise in people, never mind 
computers.

Even recognizing it isn’t straightforward: people often disagree 
about whether an idea is creative. Some disagreements turn on 
whether, and in what sense, it’s actually new. An idea may be 
new only to the individual involved, or new also to the whole of 
human history (exemplifying “individual” and “historical” creativity 
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respectively). In either case, it may be more or less similar to preced­
ing ideas, leaving room for further disagreements. Other disputes 
turn on valuation (which involves functional, and sometimes phe­
nomenal, consciousness: see Chapter 6). An idea may be valued by 
one social group, but not others. (Think of the scorn directed by 
youngsters today to anyone who prizes their DVDs of Abba.)

It’s commonly assumed that AI could have nothing interest­
ing to say about creativity. But AI technology has generated many 
ideas that are historically new, surprising, and valuable. These arise, 
for instance, in designing engines, pharmaceuticals, and various 
types of computer art.

Moreover, AI concepts help to explain human creativity. They 
enable us to distinguish three types: combinational, exploratory, 
and transformational.11 These involve different psychological 
mechanisms, eliciting different sorts of surprise.

In combinational creativity, familiar ideas are combined in unfa­
miliar ways. Examples include visual collage, poetic imagery, and 
scientific analogies (the heart as a pump, the atom as a solar sys­
tem). The new combination provides a statistical surprise: it was 
improbable, like an outsider winning the Derby. But it’s intelligible, 
so valuable. Just how valuable depends on judgements of relevance, 
discussed above.

Exploratory creativity is less idiosyncratic, for it exploits some 
culturally valued way of thinking (e.g. styles of painting or music, 
or sub-areas of chemistry or mathematics). The stylistic rules are 
used (largely unconsciously) to produce the new idea—much as 
English grammar generates new sentences. The artist/scientist 
may explore the style’s potential in an unquestioning way. Or 
they may deliberately push and test it, discovering what it can and 
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cannot generate. It may even be tweaked, by slightly altering 
(e.g. weakening/strengthening) a rule. The novel structure, despite 
its novelty, will be recognized as lying within a familiar stylistic 
family.

Transformational creativity is a successor of exploratory creativ­
ity, usually triggered by frustration at the limits of the existing 
style. Here, one or more stylistic constraints are radically altered 
(dropped, negated, complemented, substituted, added . . . ), so that 
novel structures are generated which could not have been generated 
before. These new ideas are deeply surprising, because they’re 
seemingly impossible. They’re often initially unintelligible, for they 
can’t be fully understood in terms of the previously accepted way 
of thinking. However, they must be intelligibly close to the previ­
ous way of thinking if they are to be accepted. (Sometimes, this 
recognition takes many years.)

All three types of creativity occur in AI—often, with results 
attributed by observers to humans (in effect, passing the Turing 
Test: see Chapter 6). But they aren’t found in the proportions one 
might expect.

In particular, there are very few combinational systems. One 
might think it’s easy to model combinational creativity. After 
all, nothing could be simpler than making a computer produce 
unfamiliar associations of already stored ideas. The results will 
often be historically novel, and (statistically) surprising. But if 
they’re also to be valuable, they must be mutually relevant. That’s 
not straightforward, as we’ve seen. The joke-generating programs 
mentioned in Chapter 2 use joke templates to help provide rele­
vance. Similarly, symbolic AI’s case-based reasoning constructs anal­
ogies thanks to pre-coded structural similarities.12 So, their 
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“combinational” creativity has a strong admixture of exploratory 
creativity as well.13

Conversely, one might expect that AI could never model trans­
formational creativity. This expectation, also, is mistaken. Cer­
tainly, any program can do only what it’s potentially capable of 
doing. But evolutionary programs can transform themselves (see 
Chapter 5). They can even evaluate their newly transformed ideas—
but only if the programmer has provided clear criteria for selec­
tion. Such programs are routinely used for novelty-seeking AI 
applications—such as designing new scientific instruments or drugs.

This isn’t a magic road to AGI, however. Valuable results are 
rarely guaranteed. Some evolutionary programs (in math or sci­
ence) can reliably find the optimal solution, but many problems 
can’t be defined by optimization. Transformational creativity is 
risky, because previously accepted rules are broken. Any new 
structures must be evaluated, or chaos ensues. But current AI’s fit­
ness functions are defined by humans: the programs can’t adapt/
evolve them independently.

Exploratory creativity is the type best suited to AI. There are 
countless examples. Some exploratory AI novelties in engineering 
(including one generated by a program from CYC’s designer: see 
Chapter 2) have been awarded patents. Although a patented idea 
isn’t “obvious to a person skilled in the art,” it may unexpectedly 
lie within the potential of the style being explored. A few AI explo­
rations are indistinguishable from outstanding human achieve­
ments—such as the composition of music in the style of Chopin 
or Bach.14 (How many humans can do that?)

However, even exploratory AI depends crucially on human 
judgement. For someone must recognize—and clearly state—the 
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stylistic rules concerned. That’s usually difficult. A world expert 
on Frank Lloyd Wright’s Prairie Houses abandoned his attempt 
to describe their architectural style, declaring it “occult.” Later, a 
computable “shape-grammar” generated indefinitely many Prairie 
House designs, including the forty-odd originals—and no implau­
sibilities.15 But the human analyst was ultimately responsible for 
the system’s success. Only if an AGI could analyze styles (in art 
or science) for itself would its creative explorations be “all its own 
work.” Despite some recent—very limited—examples of art styles 
being recognized by deep learning (see Chapters 2 and 4), that’s a 
tall order.

AI has enabled human artists to develop a new art form: com­
puter-generated (CG) art. This concerns architecture, graphics, 
music, choreography, and—less successfully (given NLP ’s difficul­
ties with syntax and relevance)—literature. In CG art, the com­
puter isn’t a mere tool, comparable to a new paintbrush, helping 
the artist to do things they might have done anyway. Rather, the 
work couldn’t have been done, or perhaps even imagined, without it.16

CG art exemplifies all three types of creativity. For the reasons 
given above, hardly any CG art is combinational. (Simon Colton’s 
The Painting Fool has produced visual collages related to war—but it 
was specifically instructed to search for images associated with 
“war,” which were readily available in its database.17) Most is 
exploratory or transformational.

Sometimes, the computer generates the artwork entirely inde­
pendently, by executing the program written by the artist. So 
Harold Cohen’s AARON produces line drawings and colored 
images unaided (sometimes generating colors so daringly beauti­
ful that Cohen says it’s a better colorist than he is himself).18
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In interactive art, by contrast, the form of the final artwork 
depends partly on input from the audience—who may or may not 
have deliberate control over what happens. Some interactive art­
ists see the audience as fellow-creators, others as mere causal fac­
tors who unknowingly affect the artwork in various ways (and some, 
such as Ernest Edmonds, take both approaches). In evolutionary 
art, exemplified by William Latham and Jon McCormack,19 the 
results are continually generated/transformed by the computer—
but the selection is usually done by artist or audience.

In short, AI creativity has many applications. It can sometimes 
match, or even exceed, human standards in some small corner of 
science or art. But matching human creativity in the general case is 
quite another matter. AGI is as far away as ever.

AI and Emotion

Emotion, like creativity, is something usually seen as utterly alien 
to AI. Besides the intuitive implausibility, the fact that moods and 
emotions depend on neuromodulators diffusing in the brain 
seems to rule out AI models of affect.

For many years, AI scientists themselves appeared to agree. 
With a few early exceptions in the 1960s and 1970s—namely 
Herbert Simon,20 who saw emotion as involved in cognitive con­
trol, and Kenneth Colby,21 who built interesting, although grossly 
overambitious, models of neurosis and paranoia—they ignored 
emotion.

Today, things are different. Neuromodulation has been simu­
lated (in GasNets: see Chapter  4). Moreover, many AI research 
groups are now addressing emotion. Most (not quite all) of this 
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research is theoretically shallow. And most is potentially lucrative, 
being aimed at developing “computer companions.”22

These are AI systems—some screen-based, some ambulatory 
robots—designed to interact with people in ways that (besides 
being practically helpful) are affectively comfortable, even satisfy­
ing, for the user. Most are aimed at the elderly and/or disabled, 
including people with incipient dementia. Some are targeted on 
babies or infants. Others are interactive “adult toys.” In short: 
computer carers, robot nannies, and sexual playmates.

The human–computer interactions concerned include: offering 
reminders about shopping, medication, and family visits; talking 
about, and helping to compile, a continuing personal journal; 
scheduling and discussing TV programs, including the daily news; 
making/fetching food and drink; monitoring vital signs (and 
babies’ crying); and speaking and moving in sexually stimulat­
ing ways.

Many of these tasks will involve emotion on the person’s part. 
As for the AI companion, this may be able to recognize emotions 
in the human user and/or it may respond in apparently emotional 
ways. For instance, sadness in the user—caused, perhaps, by men­
tion of a bereavement—might elicit some show of sympathy from 
the machine.

AI systems can already recognize human emotions in various 
ways. Some are physiological: monitoring the person’s breathing 
rate and galvanic skin response. Some are verbal: noting the speak­
er’s speed and intonation, as well as their vocabulary. And some 
are visual: analyzing their facial expressions. At present, all these 
methods are relatively crude. The user’s emotions are both easily 
missed and easily misinterpreted.
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Emotional performance on the computer companion’s part is 
usually verbal. It’s based in vocabulary (and intonation, if the sys­
tem generates speech). But, much as the system watches out for 
familiar keywords from the user, so it responds in highly stereo­
typed ways. Occasionally, it may quote a human-authored remark 
or poem associated with something the user has said—perhaps 
in the diary. But the diff iculties of NLP imply that computer-
generated text is unlikely to be subtly appropriate. It may not even 
be acceptable: the user may be irritated and frustrated by a com­
panion incapable of offering even the appearance of true compan­
ionship. Similarly, a purring robot cat may annoy the user, instead 
of communicating comfortably relaxed contentment.

Then again, it may not: Paro, a cuddly interactive “baby seal” 
with charming black eyes and luxurious eyelashes, appears to be 
beneficial for many elderly people and/or people with dementia. 
(Future versions will monitor vital signs, alerting the person’s 
human carers accordingly.)

Some AI companions can use their own facial expressions, and 
eye gaze, to respond in seemingly emotional ways. A few robots 
possess flexible “skin,” overlying a simulacrum of human facial 
musculature, whose configuration can suggest (to the human 
observer) up to a dozen basic emotions. The screen-based systems 
often show the face of a virtual character, whose expressions change 
according to the emotions it (he/she?) is supposedly undergoing. 
However, all these things [sic] risk falling into the so-called “uncanny 
valley”: people typically feel uncomfortable, or even deeply dis­
turbed, when encountering creatures that are very similar to human 
beings but not quite similar enough. Robots, or screen avatars, with not-
quite-human faces may therefore be experienced as threatening.
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Whether it’s ethical to offer such quasi-companionship to emo­
tionally needy people is questionable (see Chapter  7). Certainly, 
some human–computer interactive systems (e.g. Paro) appear to 
provide pleasure, and even lasting contentment, to people whose 
lives seem otherwise empty. But is that enough?

There’s scant theoretical depth to “companion” models. The emo­
tional aspects of AI companions are being developed for commercial 
purposes. There’s no attempt to make them use emotions in solving 
their own problems, nor to illuminate the role that emotions play 
in the functioning of the mind as a whole. It’s as though emotions 
are seen by these AI researchers as optional extras: to be disregarded 
unless, in some messily human context, they’re unavoidable.

That dismissive attitude was widespread in AI until relatively 
recently. Even Rosalind Picard’s work on “affective computing,” 
which brought emotions in from the cold in the late 1990s, didn’t 
analyze them in depth.23

One reason why AI ignored emotion (and Simon’s insightful 
remarks about it) for so long is that most psychologists and philos­
ophers did so too. In other words, they didn’t think of intelligence 
as something that requires emotion. To the contrary, affect was 
assumed to disrupt problem solving and rationality. The idea that 
emotion can help one to decide what to do, and how best to do it, 
wasn’t fashionable.

It eventually became more prominent, thanks partly to devel­
opments in clinical psychology and neuroscience. But its entry 
into AI was due also to two AI scientists, Marvin Minsky and Aaron 
Sloman,24 who had long considered the mind as a whole, rather than 
confining themselves—like most of their colleagues—to one tiny 
corner of mentality.
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For instance, Sloman’s ongoing CogAff project focuses on emo­
tion’s role in the computational architecture of the mind. CogAff 
has influenced the LIDA model of consciousness, released in 2011 
and still being extended (see Chapter  6). It has also inspired the 
MINDER program, initiated by Sloman’s group in the late 1990s.

MINDER simulates (the functional aspects of ) the anxiety that 
arises within a nursemaid, left to look after several babies sin­
gle-handedly. She/it has only a few tasks: to feed them, to try to 
prevent them from falling into ditches, and to take them to a first-
aid station if they do. And she has only a few motives (goals): feed­
ing a baby; putting a baby behind a protective fence, if one already 
exists; moving a baby out of a ditch for first aid; patrolling the 
ditch; building a fence; moving a baby to a safe distance from the 
ditch; and, if no other motive is currently activated, wandering 
around the nursery.

So she’s hugely simpler than a real nursemaid (although more 
complex than a typical planning program, which has only one 
final goal). Nevertheless, she’s prone to emotional perturbations 
comparable to various types of anxiety.

The simulated nursemaid has to respond appropriately to visual 
signals from her environment. Some of these trigger (or influence) 
goals that are more urgent than others: a baby crawling towards 
the ditch needs her attention sooner than a merely hungry baby, 
and one who’s about to topple into the ditch needs it sooner still. 
But even those goals that can be put on hold may have to be dealt 
with eventually, and their degree of urgency may increase with 
time. So, a starving baby can be put back into its cot if another 
baby is near the ditch; but the baby who has waited longest for 
food should be nurtured before those fed more recently.
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In short, the nursemaid’s tasks can sometimes be interrupted, 
and either abandoned or put on hold. MINDER must decide just 
what the current priorities are. Such decisions must be taken 
throughout the session, and can result in repeated changes of 
behavior. Virtually no task can be completed without interrup­
tion, because the environment (the babies) puts so many conflict­
ing, and ever-changing, demands upon the system. As with a real 
nursemaid, the anxieties increase, and the performance degrades, 
with an increase in the number of babies—each of which is an 
unpredictable autonomous agent. Nevertheless, the anxiety is use­
ful, for it enables the nursemaid to nurture the babies successfully. 
Successfully, but not smoothly: calm and anxiety are poles apart.

MINDER indicates some ways in which emotions can control 
behavior, scheduling competing motives intelligently. A human 
nursemaid, no doubt, will experience [sic] various types of anxiety 
as her situation changes. But the point, here, is that emotions 
aren’t merely feelings. They involve functional, as well as phenom­
enal, consciousness (see Chapter 6). Specifically, they are compu­
tational mechanisms that enable us to schedule competing 
motives—and without which we couldn’t function. (So the 
emotionless Mr. Spock of Star Trek is an evolutionary impossibility.)

If we are ever to achieve AGI, emotions such as anxiety will have 
to be included—and used.



4

Artificial Neural Networks

Artificial neural networks (ANNs) are made up of many intercon-
nected units, each one capable of computing only one thing. 
Described in this way, they may sound boring. But they can seem 
almost magical. They’ve certainly bewitched the journalists. Frank 
Rosenblatt’s “perceptrons,”1 photoelectric machines that learned 
to recognize letters without being explicitly taught, were puffed 
enthusiastically in the 1960s newspapers. ANNs made an espe-
cially noisy splash in the mid-1980s, and are still regularly hailed 
in the media. The most recent ANN-related hype concerns deep 
learning.

ANNs have myriad applications, from playing the stock market 
and monitoring currency fluctuations to recognizing speech or 
faces. But it’s the way they work that is so intriguing.

A tiny handful are run on specifically parallel hardware—or even 
on a hardware/wetware mix, combining real neurons with silicon 
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circuits. Usually, however, the network is simulated by a von 
Neumann machine. That is, ANNs are parallel-processing virtual 
machines implemented on classical computers (see Chapter 1).

They are intriguing partly because they are very different from 
the virtual machines of symbolic AI. Sequential instructions are 
replaced by massive parallelism, top-down control by bottom-up 
processing, and logic by probability. And the dynamical, continu-
ously changing aspect of ANNs contrasts starkly with symbolic 
programs.

Moreover, many networks have the uncanny property of self-
organization from a random start. (The 1960s perceptrons had 
this too: hence their high press profile.) The system starts with a 
random architecture (random weights and connections), and 
gradually adapts itself to perform the task required.

Neural networks have many strengths, and have added signifi-
cant computational capabilities to AI. Nevertheless, they also have 
weaknesses. So they can’t deliver the truly general AI envisaged in 
Chapter 2. For instance, although some ANNs can do approximate 
inference, or reasoning, they can’t represent precision as well as 
symbolic AI can. (Q: What’s 2 + 2? A: Very probably 4. Really?) 
Hierarchy, too, is more difficult to model in ANNs. Some (recurrent) 
nets can use interacting networks to represent hierarchy—but 
only to a limited degree.

Thanks to the current enthusiasm for deep learning, networks 
of networks are less rare now than they used to be. However, they 
are still relatively simple. The human brain must comprise countless 
networks, on many different levels, interacting in highly complex 
ways. In short, AGI is still far distant.
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The Wider Implications of ANNs

ANNs are a triumph of AI considered as computer science. But 
their theoretical implications go much further. Because of some 
general similarities to human concepts and memory, ANNs are of 
interest to neuroscientists, psychologists, and philosophers.

The neuroscientific interest isn’t new. Indeed, the pioneering 
perceptrons were intended by Rosenblatt not as a source of prac-
tically useful gizmos, but as a neuropsychological theory. Today’s 
networks—despite their many differences from the brain—are 
important in computational neuroscience.2

Psychologists, too, are interested in ANNs—and the philoso-
phers haven’t been far behind.3 For instance, one mid-1980s 
example caused a furor well outside the ranks of professional AI.4 
This network apparently learned to use the past tense much as 
children do, starting by making no mistakes but then over-regu-
larizing—so that go/went gives way to go/goed—before achieving 
correct usage for both regular and irregular verbs. That was pos-
sible because the input that was provided to it mirrored the 
changing probabilities of the words typically heard by a child: the 
network wasn’t applying innate grammatical rules.

This was important because most psychologists (and many phi-
losophers) at the time had accepted Noam Chomsky’s claims that 
children must rely on inborn linguistic rules in order to learn 
grammar, and that infantile over-regularizations were irrefutable 
evidence of those rules being put to work. The past-tense network 
proved that neither of these claims is true. (It didn’t prove, of 
course, that children don’t have innate rules: merely that they 
don’t need to have them.)
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Another widely interesting example, which was originally 
inspired by developmental psychology, is research on “representa-
tional trajectories.”5 Here (as also in deep learning), input data that 
is initially confusing is recoded on successive levels, so that less 
obvious regularities are captured in addition to the prominent 
ones. This relates not only to child development, but also to psy-
chological and philosophical debates about inductive learning. 
For it shows that prior expectations (computational structure) are 
needed in order to learn patterns in the input data, and that there 
are unavoidable constraints on the order in which different patterns 
are learned.

In short, this AI methodology is theoretically interesting in 
many ways, as well as being hugely important commercially.

Parallel Distributed Processing

One category of ANNs in particular attracts huge attention: those 
doing Parallel Distributed Processing (PDP).6 Indeed, when people 
refer to “neural networks” or “connectionism” (a term less often 
used today), they usually mean PDP.

Because of the way they work, PDP networks share four major 
strengths. These relate to both technological applications and the-
oretical psychology (and also to the philosophy of mind).

The first is their ability to learn patterns, and associations 
between patterns, by being shown examples instead of being 
explicitly programmed.

The second is their tolerance of “messy” evidence. They can 
do constraint satisfaction, making sense of partially conflicting evi-
dence. They don’t demand rigorous definitions, expressed as lists 
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of necessary and sufficient conditions. Rather, they deal with 
overlapping sets of family resemblances—a feature of human 
concepts, too.

Yet another strength is their ability to recognize incomplete and/
or partly damaged patterns. That is, they have content-addressable 
memory. So do people: think of identifying a melody from the 
first few notes, or played with many mistakes.

And fourth, they are robust. A PDP network with some nodes 
missing doesn’t spout nonsense, or halt. It shows graceful degrada-
tion, in which performance worsens gradually as the damage 
increases. So they aren’t brittle, as symbolic programs are.

These benefits result from the D in PDP. Not all ANNs involve 
distributed processing. In localist networks (such as WordNet: see 
Chapter 2), concepts are represented by single nodes. In distrib-
uted networks, a concept is stored across (distributed over) the 
whole system. Localist and distributed processing are sometimes 
combined, but that’s uncommon. Purely localist networks are 
uncommon too, because they lack the major strengths of PDP.

One could say that distributed networks are localist at base, for 
each unit corresponds to a single microfeature—for example, a 
tiny patch of color, at a particular place in the visual field. (Not too 
tiny, and not too particular: a few coarsely tuned units are provably 
more efficient than many finely tuned ones.) But these are defined at 
a much lower level than are concepts: PDP involves “sub-symbolic” 
computation. Moreover, each unit can be part of many different 
overall patterns, so contributes to many different “meanings.”

There are many types of PDP systems. All are made of three or 
more layers of interconnected units, each unit capable of computing 
only one simple thing. But the units differ.
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A unit in the input layer fires whenever its microfeature is pre-
sented to the network. An output unit fires when it’s triggered 
by the units connected to it, and its activity is communicated to 
the human user. The hidden units, in the middle layer(s), have 
no  direct contact with the outside world. Some are deterministic: 
they fire, or not, depending only on the influences from their con-
nections. Others are stochastic: whether they fire depends partly on 
some probability distribution.

The connections differ, too. Some are feedforward, passing signals 
from a lower layer to a higher one. Some send feedback signals in 
the opposite direction. Some are lateral, linking units within the 
same layer. And some, as we’ll see, are both feedforward and feed-
back. Like brain synapses, connections are either excitatory or 
inhibitory. And they vary in strength, or weight. Weights are 
expressed as numbers between +1 and −1. The higher the weight 
of  an excitatory (or inhibitory) link, the higher (or lower) the 
probability that the unit receiving the signal will fire.

PDP involves distributed representation, for each concept is 
represented by the state of the entire network. This may seem 
puzzling, even paradoxical. It’s certainly very different from how 
representations are defined in symbolic AI.

People interested only in technological/commercial applica-
tions don’t care about that. If they’re satisfied that certain obvious 
questions—such as how a single network can store several differ-
ent concepts, or patterns—aren’t problematic in practice, they’re 
happy to leave it at that.

People concerned with the psychological and philosophical 
implications of AI ask that “obvious question”, too. The answer is 
that the possible overall states of a PDP network are so multifarious 
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that only a few will involve simultaneous activation in this or that 
scattering of units. An activated unit will spread activation only to 
some other units. However, those “other units” vary: any given unit 
can contribute to many different patterns of activation. (In gen-
eral, “sparse” representations, with many unactivated units, are 
more efficient.) The system will saturate eventually: theoretical 
research on associative memories asks how many patterns can, 
in principle, be stored by networks of a certain size.

But those engaged with the psychological and philosophical 
aspects aren’t happy to leave it at that. They are interested also in 
the concept of representation itself, and in debates about whether 
human minds/brains actually do contain internal representa-
tions.7 PDP devotees argue, for example, that this approach refutes 
the Physical Symbol System hypothesis, which originated in 
symbolic AI and rapidly spread into the philosophy of mind (see 
Chapter 6).

Learning in Neural Networks

Most ANNs can learn. This involves making adaptive changes in 
the weights, and sometimes also in the connections. Usually, the 
network’s anatomy—the number of units, and the links between 
them—is fixed. If so, learning alters only the weights. But sometimes, 
learning—or evolution (see Chapter  5)—can add new links and 
prune old ones. Constructive networks take this to the extreme: start-
ing with no hidden units at all, they add them as learning proceeds.

PDP networks can learn in many different ways—and exemplify 
all the types distinguished in Chapter 2: supervised, unsupervised, 
and reinforcement learning.
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In supervised learning, for instance, they come to recognize a 
class by being shown various examples of it—none of which 
needs to possess every “typical” feature. (The input data may be 
visual images, verbal descriptions, sets of numbers. . . .) When an 
example is presented, some input units respond to “their” micro-
features, and activations spread until the network settles down. 
The resulting state of the output units is then compared with the 
desired output (identified by the human user), and further weight 
changes are instigated (perhaps by backprop) so as to make those 
errors less probable. After many examples, differing slightly from 
each other, the network will have developed an activation pattern 
that corresponds to the typical case, or “prototype,” even if no 
such case has actually been encountered. (If a damaged example is 
now presented, stimulating many fewer of the relevant input units, 
this pattern will be completed automatically.)

Most ANN learning is based on the fire together, wire together rule, 
stated in the 1940s by the neuropsychologist Donald Hebb. 
Hebbian learning strengthens often used connections. When two 
linked units are activated simultaneously, the weights are adjusted 
to make this more likely in future.

Hebb expressed the ft/wt rule in two ways, which were neither 
precise nor equivalent. Today’s AI researchers define it in many 
different ways,8 based perhaps on differential equations drawn 
from physics, or on Bayesian probability theory. They use theoret-
ical analysis to compare, and improve, the various versions. So, 
PDP research can be fiendishly mathematical. That’s why so many 
top graduates in physics and mathematics work in financial insti-
tutions—and why so few of their City colleagues really understand 
what their systems are doing.
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Given that a PDP network is using some Hebbian learning rule 
to adapt its weights, when does it stop? The answer isn’t When it 
has achieved perfection (all inconsistencies eliminated), but When it has 
achieved maximum coherence.

An “inconsistency” occurs, for instance, when two microfea-
tures that aren’t usually present together are simultaneously sig-
naled by the relevant units. Many symbolic AI programs can do 
constraint satisfaction, approaching the solution by eliminating 
contradictions between evidence on the way. But they don’t toler-
ate inconsistency as part of the solution. PDP systems are differ-
ent. As the PDP strengths listed above show, they can perform 
successfully even if discrepancies persist. Their “solution” is the 
overall state of the network when inconsistencies have been 
minimized, not abolished.

One way of achieving that is to borrow the idea of equilibrium 
from thermodynamics. Energy levels in physics are expressed 
numerically, as are the weights in PDP. If the learning rule parallels 
the physical laws (and if the hidden units are stochastic), the same 
statistical Boltzmann equations can describe the changes in both 
cases.

PDP can even borrow the method used to cool metals rapidly 
but evenly. Annealing starts at a high temperature and cools down 
gradually. PDP researchers sometimes use simulated annealing, 
wherein the weight changes in the first few cycles of equilibration 
are much larger than those in later cycles. This enables the net-
work to escape from situations (“local minima”) where overall 
consistency has been achieved relative to what went before, but 
even greater consistency (and a more stable equilibrium) could be 
reached if the system were disturbed. Compare shaking a bag of 



Artificial Neural Networks  87

marbles, to dislodge any marbles resting on an internal ridge: one 
should start by shaking forcefully, but end by shaking gently.

A faster, and more widely used, way of achieving maximal con-
sistency is to employ backprop. But whichever of the many learn-
ing rules is employed, the state of the whole network (and especially 
of the output units), at equilibrium, is taken to be the representation 
of the concept involved.

Backprop and Brains–And Deep Learning

PDP enthusiasts argue that their networks are more biologically 
realistic than symbolic AI. It’s true that PDP is inspired by brains, 
and that some neuroscientists use it to model neural functioning. 
However, ANNs differ significantly from what lies inside our heads.

One difference between (most) ANNs and brains is back-
propagation, or backprop. This is a learning rule—or rather, a 
general class of learning rules—that’s frequently used in PDP. 
Anticipated by Paul Werbos in 1974, it was defined more usably by 
Geoffrey Hinton in the early 1980s.9 It solves the problem of credit 
assignment.

This problem arises across all types of AI, especially when the 
system is continually changing. Given a complex AI system that’s 
successful, just which parts of it are most responsible for the success? 
In evolutionary AI, credit is often assigned by the “bucket-brigade” 
algorithm (see Chapter 5). In PDP systems with deterministic (not 
stochastic) units, credit is typically assigned by backprop.

The backprop algorithm traces responsibility back from the 
output layer into the hidden layers, identifying the individual units 
that need to be adapted. (The weights are updated to minimize 
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prediction errors.) The algorithm needs to know the precise state 
of the output layer when the network is giving the right answer. 
(So backprop is supervised learning.) Unit-by-unit comparisons 
are made between this exemplary output and the output actually 
obtained from the network. Any difference between an output 
unit’s activity in the two cases counts as an error.

The algorithm assumes that error in an output unit is due to 
error(s) in the units connected to it. Working backwards through 
the system, it attributes a specific amount of error to each unit 
in  the first hidden layer, depending on the connection weight 
between it and the output unit. Blame is shared between all the 
hidden units connected to the mistaken output unit. (If a hidden 
unit is linked to several output units, its mini-blames are summed.) 
Proportional weight changes are then made to the connections 
between the hidden layer and the preceding layer.

That layer may be another (and another . . .) stratum of hidden 
units. But ultimately it will be the input layer, and the weight 
changes will stop. This process is iterated until the discrepancies at 
the output layer are minimized.

For many years, backprop was used only on networks with one 
hidden layer. Multilayer networks were rare: they are difficult to 
analyze, and even to experiment with. Recently, however, they 
have caused huge excitement—and some irresponsible hype—
by the advent of deep learning.10 Here, a system learns structure 
reaching deep into a domain, as opposed to mere superficial 
patterns. In other words, it discovers a multilevel knowledge 
representation, not a single-level one.

Deep learning is exciting because it promises to enable ANNs, 
at last, to deal with hierarchy. Since the early 1980s, connectionists 
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such as Hinton and Jeff Elman had struggled to represent hierar-
chy—by combining local/distributed representation, or by defin-
ing recurrent nets. (Recurrent nets, in effect, perform as a sequence 
of discrete steps. Recent versions, using deep learning, can some-
times predict the next word in a sentence, or even the next “thought” 
in a paragraph.)11 But they had limited success (and ANNs still 
aren’t suitable for representing precisely defined hierarchies or 
deductive reasoning).

Deep learning, too, was initiated in the 1980s (by Jurgen Schmid
huber). But the field exploded much more recently, when Hinton 
provided an eff icient method enabling multilayer networks to 
discover relationships on many levels.12 His deep-learning systems 
are made of “restricted” Boltzmann machines (no lateral connec-
tions) on half a dozen layers. First, the layers do unsupervised 
learning. They are trained one by one, using simulated annealing. 
The output of one layer is used as input to the next. When the final 
layer has stabilized, the whole system is fine-tuned by backprop, 
reaching down through all the levels to assign credit appropriately.

This approach to learning is interesting to cognitive neurosci-
entists, as well as to AI technologists. That is because it specifies 
“generative models” that learn to predict the (likeliest) causes of 
inputs to the network—thus providing a model of what Helmholtz 
in 1867 called “perception as unconscious inference.” That is, per-
ception is not a matter of passively receiving input from the sense 
organs. It involves active interpretation, and even anticipatory 
prediction, of that input. In brief, the eye/brain is not a camera.

Hinton joined Google in 2013, so backprop will be very busy. 
Google is already using deep learning in many applications, 
including speech recognition and image processing. Moreover, 
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in 2014 it bought DeepMind, whose DQN algorithm mastered the 
classic Atari games by combining deep learning with reinforce-
ment learning (see Chapter  2). IBM also favors deep learning: 
WATSON uses it, and is being borrowed for many specialist apps 
(see Chapter 3).

However, if deep learning is undeniably useful that doesn’t 
mean that it’s well understood. Many different multilayer learning 
rules are being explored experimentally, but theoretical analysis is 
confused.

Among the countless unanswered questions is whether there is 
a depth sufficient for near-human performance. (The cat’s-face 
unit mentioned in Chapter 2 resulted from a nine-layer system.) 
The human visual system, for instance, has seven anatomical lev-
els: but how many are added by computations in the cerebral cor-
tex? Since ANNs are inspired by brains (a point constantly stressed 
in deep-learning hype), that question is natural. But it’s not quite 
so pertinent as it may seem.

Backprop is a computational triumph. But it’s highly non-bio-
logical. No cat’s-face “grandmother cell” in the brain (see Chapter 2) 
could result from processes just like those in deep learning. Real 
synapses are purely feedforward: they don’t transmit in both 
directions. Brains contain feedback connections in various direc-
tions, but each one is strictly one-way. That’s just one of the many 
differences between real and artificial neural networks. (Another 
is that brain networks aren’t organized as strict hierarchies—even 
though the visual system is often described that way.)

The fact that brains contain both forward and backward con-
nections is crucial to predictive coding models of sensorimotor 
control, which are causing great excitement in neuroscience. (These, 
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too, are largely based on Hinton’s work.) Higher neural levels send 
messages downwards predicting the incoming signals from sen-
sors, and only the unpredicted “error” messages are sent upward. 
Repeated cycles of this type fine-tune the predicting networks, 
so  that they gradually learn what to expect. Researchers speak 
of “the Bayesian brain,” because the predictions can be interpreted 
in terms of—and in computer models are actually based in—
Bayesian statistics (see Chapter 2).

Compared with the brain, ANNs are too neat, too simple, too few, 
and too dry. Too neat, because human-built networks prioritize 
mathematical elegance and power, whereas biologically evolved 
brains do not. Too simple, because a single neuron—of which there 
are about thirty different types—is as computationally complex as 
an entire PDP system, or even a small computer. Too few, because 
even ANNs with millions of units are tiny compared with human 
brains (see Chapter  7). And too dry, because ANN researchers 
typically ignore not only temporal factors such as neural spiking 
frequencies and synchronies, but also the biophysics of dendritic 
spines, neuromodulators, synaptic currents, and the passage of ions.

Each of those shortcomings is lessening. Increased computer 
power is enabling ANNs to comprise many more individual units. 
Hugely more detailed models of single neurons are being built, 
already addressing the computational functions of all the neuro-
logical factors just mentioned. The “dry-ness” is even decreasing 
in reality, as well as in simulation (some “neuromorphic” research 
combines living neurons with silicon chips). And much as the DQN 
algorithm simulates processes in visual cortex and hippocampus 
(see Chapter 2), so future ANNs will doubtless borrow other functions 
from neuroscience.
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Nevertheless, it remains true that ANNs are unlike brains in 
countless important ways—some of which we don’t yet know.

Network Scandal

The excitement on PDP’s arrival was due largely to the fact that 
ANNs (a.k.a. connectionism) had been pronounced a dead end 
twenty years earlier. As remarked in Chapter 1, that judgement had 
come in a savage 1960s critique by Marvin Minsky and Seymour 
Papert, both of whom had stellar reputations within the AI com-
munity. By the 1980s, ANNs seemed to be not just a dead end but 
actually dead. Indeed, cybernetics in general had been marginal-
ized (see Chapter 1). Almost all the research funding had gone into 
symbolic AI instead.

Some early ANNs had seemed enormously promising. Rosen
blatt’s self-organizing perceptrons—often watched by mesmer-
ized journalists—could learn to recognize patterns even though 
they started from a random state. He had made hugely ambitious 
claims, covering all of human psychology, for the potential of his 
approach. He had pointed out certain limitations, to be sure. But 
his intriguing “convergence proof” had guaranteed that simple 
perceptrons can learn to do anything that it’s possible to program 
them to do. That was strong stuff.

But Minsky and Papert, in the late 1960s, offered proofs of their 
own.13 They showed mathematically that simple perceptrons can-
not do certain things that one would intuitively expect them to be 
able to do (and which GOFAI could do easily). Their proofs—like 
Rosenblatt’s convergence theorem—applied only to single-layer 
networks. But their “intuitive judgment” was that multilayer systems 
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would be defeated by the combinatorial explosion. In other words, 
perceptrons wouldn’t scale up.

Most AI scientists were persuaded that connectionism could 
never succeed. A few people carried on with ANN research regard-
less. Indeed, some highly significant progress was made on ana-
lyzing associative memory (by Christopher Longuet-Higgins and 
David Willshaw, and later by James Anderson, Teuvo Kohonen, 
and John Hopfield).14 But that work was hidden in the background. 
The groups concerned didn’t identify themselves as “AI” researchers 
and were generally ignored by those who did.

The arrival of PDP trounced this skepticism. Besides some impres-
sive functioning models (such as the past-tense learner), there were 
two new convergence theorems: one guaranteeing that a PDP system 
based on the Boltzmann equations of thermodynamics will reach 
equilibrium (although perhaps after a very long time), and the other 
proving that a three-layer network can in principle solve any prob-
lem presented to it. (Health warning: as is also the case in symbolic AI, 
representing a problem in a way that can be input to the computer is 
often the most difficult part of the exercise.) Naturally, excitement 
ensued. The consensus in mainstream AI was shattered.

Symbolic AI had assumed that effortless intuitive thinking is 
just like conscious inference, but without the consciousness. Now, 
the PDP researchers were saying that these are fundamentally dif-
ferent kinds of thought. The leaders of the PDP movement (David 
Rumelhart, Jay McClelland, Donald Norman, and Hinton) all 
pointed out that both types are key to human psychology. But the 
PDP propaganda—and the general public’s reaction to it—implied 
that symbolic AI, considered as the study of minds, was a waste of 
time. The worm had well and truly turned.
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AI’s main funder, the US Department of Defense, made a U-turn 
too. After an emergency meeting in 1988, they admitted that their 
previous neglect of ANNs had been “undeserved.” Now, PDP 
research was showered with money.

As for Minsky and Papert, they were unrepentant.15 They allowed 
that “the future of network-based learning machines [is] rich 
beyond imagining.” However, they insisted that high-level intelli-
gence cannot arise from pure randomness, nor from a wholly 
non-sequential system. Accordingly, the brain must sometimes 
act as a serial processor, and human-level AI will have to employ 
hybrid systems. They protested that their critique wasn’t the only 
factor that had led ANNs into their wilderness years: for one thing, 
computer power had been insufficient. And they denied that they 
had been trying to divert the research money into symbolic AI. In 
their words, “We did not think of our work as killing Snow White; 
we saw it as a way to understand her.”

Those were respectable scientific arguments. But their initial cri-
tique had dripped with vitriol. (The draft was even more venom-
ous: friendly colleagues persuaded them to tone it down, to give 
the scientific points more prominence.) It’s not surprising that it 
sparked emotion. The persevering ANN devotees deeply resented 
their new-found cultural invisibility. The furor caused by PDP was 
even greater. The “death” and renaissance of ANNs involved jealousy, 
spite, self-aggrandizement, and gleeful gloating: “We told you so! ”

This episode was a prime example of a scientific scandal—and 
not the only one to arise in AI.16 Theoretical disagreements were 
embroiled with personal emotions and rivalries, and disinterested 
thinking was rare. Bitter insults hit the air, and the presses too. 
AI isn’t a passionless affair.
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Connections aren’t Everything

Most accounts of ANNs imply that the only important thing about 
a neural network is its anatomy. Which units are linked to which 
others, and how strong are the weights? Certainly, those questions 
are crucial. However, recent neuroscience has shown that biologi-
cal circuits can sometimes alter their computational function (not 
merely make it more or less probable), due to chemicals diffusing 
through the brain.

Nitrous oxide (NO), for example, diffuses in all directions, and 
its effects—which depend on the concentration at relevant 
points—endure until it decays. (The rate of decay can be varied 
by enzymes.) So NO works on all the cells within a given volume 
of cortex, whether they’re synaptically connected or not. The functional 
dynamics of the neural systems concerned are very different from 
“pure” ANNs, for volume signaling replaces point-to-point signal-
ing. Analogous effects have been found for carbon monoxide and 
hydrogen sulphide, and for complex molecules such as serotonin 
and dopamine.

“So much for ANNs!” an AI skeptic might say. “There’s no 
chemistry inside computers!” This comment is absurd: compare 
the claim that computers can’t model the weather because it can’t 
rain inside a computer. “It follows,” they may add, “that AI can’t 
model moods, or emotions. For these depend on hormones 
and  neuromodulators.” That very objection was voiced by the 
psychologist Ulric Neisser in the early 1960s,17 and some years 
later by the philosopher John Haugeland in his influential cri-
tique of “cognitivism.”18 AI might model reasoning, they said, but 
never affect.
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However, these neuroscientific findings have inspired some 
AI researchers to design ANNs of a radically new type, where link-
age isn’t all.19 In GasNets, some nodes scattered across the network 
can release simulated “gases.” These are diffusible, and modulate 
the intrinsic properties of other nodes and connections in vari-
ous ways, depending on concentration. The size of the diffusion 
volume matters, as does the shape of the source (modeled as a 
hollow sphere, not a point source). So, a given node will behave 
differently at different times. In certain gaseous conditions, a node 
will affect another despite there being no direct link. It’s the interac-
tion between the gas and the electrical connectivities within the 
system that is crucial. And, since the gas is emitted only on certain 
occasions, and diffuses and decays at varying rates, this interaction 
is dynamically complex.

The GasNet technology was used, for example, to evolve “brains” 
for autonomous robots. The researchers found that a specific 
behavior might involve two unconnected subnets, which worked 
together because of the modulatory effects. They found, also, that 
an “orientation-detector” able to use a cardboard triangle as a 
navigation aid could evolve in the form of partially unconnected 
sub-networks. They had previously evolved a wholly connected 
network to do this (see Chapter  5), but the neuromodulatory 
version evolved more quickly and was more efficient.

So some ANN researchers have moved from considering only 
anatomy (connections) to recognizing neurochemistry as well. 
Different learning rules, and their temporal interactions, can now 
be simulated with neuromodulation in mind.

Neuromodulation is an analogue phenomenon, not a digital 
one. Continuously varying concentrations of diffusing molecules 
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are important. Increasingly, AI researchers (using special VLSI 
chips) are designing networks that combine analogue and digital 
functions. The analogue features are modeled on the anatomy 
and  physiology of biological neurons, including the passage of 
ions through the cell membrane. Such “neuromorphic” comput-
ing is being used, for instance, to simulate aspects of perception 
and motor control. Some AI scientists plan to use neuromorphic 
computing within “whole-brain” modeling (see Chapter 7).

Others go even further: instead of modeling ANNs purely in 
silico, they build (or evolve: see Chapter  5) networks comprised 
of both miniature electrodes and real neurons. For example, when 
electrodes X and Y are both stimulated artificially, the resulting 
activity in the “wet” network results in the firing of some other 
electrode, Z—thus implementing an and-gate. This type of com-
puting (envisaged by Donald Mackay in the 1940s20) is in its 
infancy. But it’s potentially exciting.

Hybrid Systems

The analogue/digital and hardware/wetware networks just men-
tioned might understandably be described as “hybrid” systems. 
But this term is normally used to refer to AI programs that encom-
pass both symbolic and connectionist information processing.

These had been said by Minsky, in his early manifesto,21 to be 
probably necessary, and a few early symbolic programs did com-
bine sequential and parallel processing. But such attempts were 
rare. As we’ve seen, Minsky continued to recommend symbolic/
ANN hybrids after the arrival of PDP. However, such systems didn’t 
follow immediately (although Hinton built networks combining 
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localist and distributed connectionism, to represent part/whole 
hierarchies such as family trees).

Indeed, the integration of symbolic and neural-network pro-
cessing is still uncommon. The two methodologies, logical and 
probabilistic, are so different that most researchers have expertise 
only in one.

Nevertheless, some genuinely hybrid systems have been devel-
oped, wherein control is passed between symbolic and PDP mod-
ules as appropriate. So, the model draws on the complementary 
strengths of both approaches.

Examples include the game-playing algorithms developed by 
DeepMind (see Chapter 2). These combine deep learning with GOFAI 
to learn how to play a visually diverse suite of computer games. 
They use reinforcement learning: no handcrafted rules are pro-
vided, only the input pixels and the numerical scores at each step. 
Many possible rules/plans are considered simultaneously, and 
the most promising decides the next action. (Future versions will 
focus on 3D games such as Minecraft, and on applications such as 
driverless cars.)

Other examples are the whole-mind systems ACT-R* and 
CLARION (see Chapter  2) and LIDA (see Chapter  6). These are 
deeply informed by cognitive psychology, having been developed 
for scientific, not technological, purposes.

Some hybrid models take account of specific aspects of neurol-
ogy, too.22 For example, the clinical neurologist Timothy Shallice, 
with the PDP pioneer Norman, published a hybrid theory of famil-
iar (“overlearned”) action in 1980, which was later implemented.23 
The theory explains certain common errors. For instance, stroke 
patients often forget that the letter should be put into the envelope 
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before the sticky flap is licked; or they may get into bed on going 
upstairs to change their clothes, or pick up the kettle instead of the 
teapot. Similar errors—of order, capture, and object substitution—
occur occasionally in all of us.

But why? And why are brain-damaged patients especially prone 
to them? Shallice’s computational theory claims that familiar 
action is generated by two types of control, which can break down 
or take over at specific points. One, “contention scheduling,” is 
automatic. It involves (unconscious) competition between various 
hierarchically organized action schemata. Control goes to the 
one  whose activation has exceeded some threshold. The other 
(“executive”) control mechanism is conscious. It involves the 
deliberative supervision and modulation of the first mechanism—
including planning, and repairing mistakes. For Shallice, contention 
scheduling is modeled by PDP, executive control by symbolic AI.

The activation level of an action schema can be raised by per-
ceptual input. For instance, one’s unthinking glimpse (pattern rec-
ognition) of the bed, on reaching the bedroom, can trigger the 
action schema of getting into bed, even though the original intention 
(plan) had been to change one’s clothes.

Shallice’s theory of action was initiated by using ideas from 
AI (notably, models of planning), which resonated with his own 
clinical experience. It was later supported by evidence from brain 
scanning. And recent neuroscience has discovered other factors, 
including neurotransmitters, implicated in human action. These 
are now represented in the current computer models based on the 
theory.24

Interactions between contention scheduling and executive con-
trol are relevant also to robotics. An agent following a plan should 
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be able to halt or vary it, depending on what it observes in the 
environment. That strategy characterizes robots that combine 
situated and deliberative processing (see Chapter 5).

Anyone interested in AGI should note that those few AI scien-
tists who have seriously considered the computational architec-
ture of the mind as a whole accept hybridism unreservedly. They 
include Allen Newell and Anderson (whose SOAR and ACT * were 
discussed in Chapter 2), Stan Franklin (whose LIDA model of con-
sciousness is outlined in Chapter  6), Minsky (with his “society” 
theory of mind25), and Aaron Sloman (whose simulation of anxiety 
is described in Chapter 3).

In short, the virtual machines implemented in our brains are 
both sequential and parallel. Human intelligence requires subtle 
cooperation between them. And human-level AGI, if it’s ever 
achieved, will do so too.



5

Robots and Artificial Life

Artificial life (A-Life) models biological systems. Like AI in gen-
eral, it has both technological and scientific aims.1 A-life is inte-
gral to AI, because all the intelligence we know about is found in 
living organisms. Indeed, many people believe that mind can 
arise only from life (see Chapter  6). Hard-headed technologists 
don’t worry about that question. But they do turn to biology in 
developing practical applications of many kinds. These include 
robots, evolutionary programming, and self-organizing devices. 
Robots are quintessential examples of AI: they have high visi-
bility and are hugely ingenious—and very big business, too. 
Evolutionary AI, although widely used, is less well known. Self-
organizing machines are even less familiar (unsupervised learning 
excepted: see Chapter 4). Nevertheless, in the quest to understand 
self-organization, AI has been as useful to biology as biology has 
been to AI.
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Situated Robots and Interesting Insects

Robots were built centuries ago—by Leonardo da Vinci, among 
others. AI versions emerged in the 1950s. William Grey Walter’s 
post-war “tortoises” amazed observers by avoiding obstacles 
and  finding light. And a main aim of MIT’s newly founded AI 
Laboratory was to build “the MIT robot,” integrating computer 
vision, planning, language, and motor control.

There has been huge advance since then. Now, some robots can 
climb hills, stairs, or walls; some can run fast, or jump high; and 
some can carry—and throw—heavy burdens. Others can break 
themselves up and re-assemble the parts, sometimes adopting a 
new shape—like a worm (able to traverse a narrow pipe), or a ball 
or multi-legged creature (suited to level or rough ground respec-
tively). What drove that advance was a turn from psychology to 
biology.

Classical AI robots emulated human voluntary action. Drawing 
on theories of cerebral modeling, they employed internal rep-
resentations of the world and of the agent’s own actions. But they 
weren’t impressive. Because they relied on abstract planning, they 
were subject to the frame problem (see Chapter 2). They couldn’t 
react promptly, because even slight environmental changes required 
anticipatory planning to restart; nor could they adapt to novel 
(unmodeled) circumstances. Steady movement was difficult even 
on level, uncluttered ground (hence the SRI robot’s nickname: 
SHAKEY), and fallen robots couldn’t recover. They were useless in 
most buildings—never mind on Mars.

Today’s robots are very different. The focus has changed from 
humans to insects. Insects probably aren’t intelligent enough to 
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model the world, or to plan. Yet they manage. Their behavior—
behavior, not action—is appropriate, adaptive. But it’s mainly reflex 
rather than deliberate. They respond unthinkingly to the current 
situation, not to some imagined possibility or goal state. Hence 
the labels: “situated,” or “behavior-based,” robotics. (Situated 
behavior isn’t confined to insects: social psychologists have 
identified many situation-bound behaviors in humans.)

In trying to give comparable reflexes to AI machines, roboticists 
favor engineering over programming. If possible, sensorimotor 
reflexes are physically embodied in the robot’s anatomy, not 
provided as software code.

How far robot anatomy should match the anatomy of living 
organisms is debatable. For technological purposes, ingenious 
engineering tricks are acceptable. Today’s robots incorporate 
many unrealistic gimmicks. But perhaps biological mechanisms 
are especially efficient? They are certainly adequate. So roboticists 
also consider real animals: what they can do (including their vari-
ous navigational strategies), what sensory signals and specific 
movements are involved, and what neurological mechanisms are 
responsible. The biologists, in turn, employ AI modeling to inves-
tigate these mechanisms: a research field named computational 
neuroethology.

One example is the cockroach robotics of Randall Beer.2 
Cockroaches have six multi-segmented legs—suggesting both 
advantage and disadvantage. Hexopod locomotion is more stable 
than bipedalism (and more generally useful than wheels). However, 
coordinating six limbs appears more difficult than coordinating 
two. Besides deciding which leg should be moved next, the crea-
ture must find the correct placement, force, and timing. And how 
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should the legs interact? They must be largely independent, because 
there could be a pebble near only one leg. But if that leg is lifted 
higher, the others must compensate to retain the balance.

Beer’s robots reflect the neuroanatomy and sensorimotor con-
trols of real cockroaches. They can climb stairs, walk on rough 
ground, clamber over obstacles (instead of merely avoiding them), 
and recover from falling over.

Barbara Webb looks at crickets, not cockroaches.3 Her focus 
isn’t on locomotion (so her robots can use wheels). Rather, she 
wants her devices to identify, locate, and approach a particular 
sound pattern. Clearly, such behavior (“phonotaxis”) could have 
many practical applications.

Female crickets can do this on hearing the song of a conspecific 
male. However, the cricket can recognize only one song, sung at 
only one speed and frequency. Speed and frequency vary for differ-
ent species of cricket. But the female doesn’t choose between different 
songs, for she doesn’t possess feature detectors coding a range of 
sounds. She uses a mechanism that’s sensitive only to one fre-
quency. This isn’t a neural mechanism, like the auditory detectors in 
human brains. It’s a fixed-length tube in her thorax, connected to 
the ears on her front legs and to her spiracles. The length of the tube 
is an exact proportion of the wavelength of the male’s song. The 
physics ensures that phase cancellations (between the air in the tube 
and the air outside) occur only for songs with the right frequency, 
and that the intensity difference depends wholly on the direction 
of the sound source. The female insect is neurally hardwired to 
move in that direction: he sings, she goes. Situated behavior, indeed.

Webb chose cricket phonotaxis because it had been closely 
studied by neuroethologists. But there were many unanswered 
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questions: whether (and how) the song’s direction and sound are 
processed independently; whether identifying and locating it are 
independent; how the female’s walking is triggered; and how its 
zigzagging direction is controlled. Webb devised the simplest pos-
sible mechanism (only four neurons) that could generate similar 
behavior. Later, her model used more neurons (based on detailed 
real-life data); included additional neural features (e.g. latency, fir-
ing rate, and membrane potential); and integrated hearing with 
vision. Her work has clarified many neuroscientific questions, 
answered some, and raised more. So it’s been helpful for biology, 
as well as robotics.

(Although robots are physical things, much robotics research 
is done in simulation. Beer’s robots, for instance, are sometimes 
evolved in software before being built. Similarly, Webb’s are designed 
as programs before being tested in the real world.)

Despite the turn to insects in mainstream robotics, research 
on  android robots continues. Some are mere toys. Others are 
“social,” or “companion,” robots, designed for home use by elderly 
and/or disabled people (see Chapter 3). These are intended less as 
fetch-and-carry slaves than as autonomous personal assistants. 
Some appear “cute,” having long eyelashes and seductive voices. 
They can make eye contact with users, and recognize individual 
faces and voices. Also, they can—up to a point—hold unscripted 
conversations, interpret the user’s emotional state, and generate 
“emotional” responses (human-like facial expressions and/or 
speech patterns) themselves.

Although some robots are large (for handling heavy loads and/
or traversing rough ground), most are small. Some—for use inside 
blood vessels, for example—are very small. Often, they are sent to 
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work in large numbers. Whenever multiple robots are involved 
in a task, questions arise about how (if at all) they communicate, 
and how that enables the group to do things that couldn’t be done 
individually.

For answers, roboticists often consider social insects, like 
ants and bees. Such species exemplify “distributed cognition” (see 
Chapter 2), in which knowledge (and appropriate action) is spread 
across an entire group rather than being available to any one 
animal.

If the robots are extremely simple, their developers may speak 
of “swarm intelligence,” and analyze cooperative robot systems as 
cellular automata (CAs). A CA is a system of individual units, each 
taking one of a finite number of states by following simple rules, 
which depend on the current state of its neighbors. The overall 
pattern of a CA’s behavior may be surprisingly complex. The basic 
analogy is living cells cooperating in multicellular organisms. The 
many AI versions include the flocking algorithms used for crowds 
of bats or dinosaurs in Hollywood animations.

The concepts of distributed cognition and swarm intelligence 
apply also to human beings. The latter is used when the “knowl-
edge” concerned isn’t something which any participating indi-
vidual can possess (e.g. the overall behavior of large crowds). The 
former is more often used when the participating individuals could 
possess all the relevant knowledge, but don’t. For instance, an 
anthropologist has shown how knowledge of navigation is shared 
across a ship’s crew members—and also embodied in physical 
objects, such as charts and (the location of) chart tables.4

To speak of knowledge as being embodied in physical objects 
may seem strange, or at best metaphorical. But there are many 
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today who claim that human minds are literally embodied, not 
only in people’s physical actions but also in the cultural artefacts 
they engage with in the external world. This “external/embodied 
mind” theory is partly grounded in work done by the leader of the 
human-to-insect switch in robotics: MIT’s Rodney Brooks.

Brooks is now a prime developer of robots for the US military. In 
the 1980s, he was a fledgling roboticist frustrated by the impracti-
cality of symbolic AI’s world-modeling planners. He turned to situ-
ated robotics for purely technological reasons, but soon developed 
his approach into a theory about adaptive behavior in general.5 
This went far beyond insects: even human action, he argued, doesn’t 
involve internal representations. (Or, he sometimes implied, doesn’t 
usually involve representations.)

His critique of symbolic AI excited the psychologists and philos-
ophers. Some were highly sympathetic. Psychologists had already 
pointed out that much human behavior is situation-bound: role-
playing in distinct social environments, for example. And cognitive 
psychologists had highlighted animate vision, in which the agent’s 
own bodily movement is key. Today, theories of embodied mind 
are hugely influential outside AI (see Chapter 6).

But some others, such as David Kirsh,6 were—and still are—
vehemently opposed, arguing that compositional representations 
are necessary for those types of behavior which involve concepts. 
For example, recognizing perceptual invariance, in which an object 
can be recognized from many different views; re-identifying indi-
viduals over time; anticipatory self-control (planning); negotiat-
ing, not merely scheduling, conflicting motives; counterfactual 
reasoning; and language. These critics admit that situated robotics 
shows concept-free behavior to be more widespread than many 
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philosophers believe. Nevertheless, logic, language, and thoughtful 
human action all require symbolic computation.

Many roboticists, too, reject Brooks’s more extreme claims. Alan 
Mackworth’s group, one of several working on robot soccer, refers 
to “reactive deliberation”—which includes sensory perception, real-
time decision making, planning, plan recognition, learning, and 
coordination.7 They are seeking an integration of GOFAI and situated 
perspectives. (That is, they’re building hybrid systems: see Chapter 4.)

In general, representations are critical for the process of action 
selection in robotics, but less so for the execution of actions. So, 
the jokers who said that “AI” now stands for “artificial insects” 
weren’t quite right.

Evolutionary AI

Most people assume that AI necessitates meticulous design. Given 
the unforgiving nature of computers, how could it be otherwise? 
Well, it can.

Evolutionary robots (which include some situated robots), for 
instance, result from a combination of rigorous programming/
engineering and random variation. They are unpredictably evolved, 
not carefully designed.

Evolutionary AI in general has this character. It was initiated 
within symbolic AI, but is also used in connectionism. Its many 
practical applications include art (where unpredictability may be 
welcome) and the development of safety-critical systems such as 
aircraft engines.

A program can change itself (instead of being rewritten by a 
programmer), and can even improve itself, by using genetic algorithms 
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(GAs). Inspired by real-life genetics, these enable both random 
variation and non-random selection. The selection requires a 
criterion of success, or “fitness function” (analogous to natural 
selection in biology) working alongside the GAs. Defining the 
fitness function is crucial.

In evolutionary software, the initial task-oriented program 
can’t solve the task efficiently. It may not be able to solve it at all, 
for it may be an incoherent collection of instructions or a randomly 
connected neural network. But the overall program includes 
GAs in the background. These can change the task-oriented rules. 
The changes, made randomly, resemble point mutation and cross-
over in biology. So a single symbol in a programmed instruction 
may be altered, or short symbol sequences may be “swapped” 
across two instructions.

The various task programs within any one generation are com-
pared, and the most successful are used to breed the next gen-
eration. A few (randomly chosen) others may be retained also, so 
that potentially useful mutations that haven’t yet had any good 
effect aren’t lost. As the generations pass, the task program’s effi-
ciency increases. Sometimes, the optimal solution is found. (In 
some evolutionary systems the credit-assignment problem—see 
Chapter 4—is solved by some variant of John Holland’s “bucket-
brigade” algorithm, which identifies just which parts of a complex 
evolutionary program are most responsible for its success.)

Some evolutionary AI is fully automatic: the program applies 
the fitness function at every generation, and is left to evolve 
unsupervised. Here, the task must be very clearly defined—by the 
physics of aircraft engines, for example. Evolutionary art, by contrast, 
is usually highly interactive (the artist selects the best at every 



110  AI 

generation), because the fitness function—aesthetic criteria—can’t 
be stated clearly.

Most evolutionary robotics is intermittently interactive. The 
robot’s anatomy (e.g. sensors and sensorimotor connections) and/
or its controller (“brain”) evolve automatically, but in simulation. 
For most generations, no physical robot exists. But at every 500th 
generation, perhaps, the evolved design is tested in a physical 
device.

Useless mutations tend not to survive. Researchers at the 
University of Sussex found that one of a robot’s two “eyes,” and all 
of its “whiskers,” may lose their initial connections to the con-
trolling neural network if the task needs neither depth vision nor 
touch.8 (Similarly, auditory cortex in the congenitally deaf, or in 
animals deprived of auditory input, gets used for visual computation: 
the brain evolves within a lifetime, not only across generations.)

Evolutionary AI can provide deep surprises. For instance, a 
situated robot being evolved (also at Sussex) to generate obsta-
cle-avoiding movement towards a goal developed an orientation 
detector analogous to those found in brains.9 The robot’s world 
included a white cardboard triangle. Unexpectedly, a randomly 
connected mini-network arose in the controller which responded 
to a light/dark gradient at a particular orientation (one side of the 
triangle). This then evolved as an integral part of a visuo-motor 
mechanism, its (initially random) connections to motor units ena-
bling the robot to use the object as a navigation aid. The mechanism 
didn’t work for a black triangle, nor for the opposite side. And it 
was a stand-alone item, there being no comprehensive system of 
orientation detectors. It was useful, nonetheless. This startling result 
was broadly repeatable. Using neural nets of different types, the 
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Sussex team found that every successful solution evolved some 
active orientation detector—so the high-level behavioral strategy 
was the same. (The exact implementation details varied, but were 
often very similar.)

On another occasion, GAs were being used by the Sussex team 
to design hardware electrical circuits.10 The task was to evolve 
oscillators. However, what emerged was a primitive radio-wave 
sensor, picking up the background signal from a nearby PC moni-
tor. This depended on unforeseen physical parameters. Some were 
predictable (the aerial-like properties of all printed circuit boards), 
although not previously considered by the team. But others were 
accidental, and seemingly irrelevant. These included spatial prox-
imity to a PC monitor; the order in which the analogue switches 
had been set; and the fact that a soldering iron left on a nearby 
workbench was plugged into the mains. (This result wasn’t repeat-
able: next time, the radio antenna might be influenced by the 
chemistry of the wallpaper.)

The radio-wave sensor is interesting because many biologists 
(and philosophers) argue that nothing radically new could emerge 
from AI, since all the results of a computer program (including the 
random effects of GAs) must lie within the space of possibilities 
defined by it. Only biological evolution, they say, can generate new 
perceptual sensors. They allow that a feeble AI visual sensor could 
evolve into a better one. But the very first visual sensor, they say, 
could emerge only in a physical world governed by causation. 
A  random genetic mutation causing a light-sensitive chemical 
could introduce light, already present in the outside world, into the 
organism’s environment. However, the unexpected radio sensor sim-
ilarly brought radio waves into the device’s “environment.” It did 
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depend partly on physical causation (plugs, etc.). But it was an 
exercise in AI, not biology.

Radical novelty in AI does indeed require outside influences, 
because it’s true that a program cannot surpass its possibility 
space. But these influences needn’t be physical. A GA system con-
nected to the Internet might evolve fundamental novelties by 
interacting with a virtual world.

Another, much earlier, surprise within evolutionary AI insti-
gated still ongoing research into evolution as such. The biologist 
Thomas Ray used GAs to simulate the ecology of tropical rainfor-
ests.11 He saw the spontaneous emergence of parasites, resistance 
to parasites, and super-parasites capable of overcoming that 
resistance. He also discovered that sudden “leaps” in (phenotypic) 
evolution can be generated by a succession of tiny underlying 
(genotypic) mutations. Orthodox Darwinians already believed 
this, of course. But it’s so counter-intuitive that some biologists, 
such as Stephen Jay Gould, had argued that non-Darwinian 
processes must also be involved.

Today, simulated mutation rates are being systematically varied 
and traced, and GA researchers are analyzing “fitness landscapes,” 
“neutral [sic] networks,” and “genetic drift.” This work explains 
how mutations can be preserved even though they haven’t (yet) 
increased reproductive fitness. So AI is helping biologists to develop 
evolutionary theory in general.

Self-Organization

The key feature of biological organisms is their ability to structure 
themselves. Self-organization is the spontaneous emergence of 
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order from an origin that’s ordered to a lesser degree. It’s a puz-
zling, even quasi-paradoxical, property. And it’s not obvious that 
it could happen in non-living things.

Broadly speaking, self-organization is a creative phenomenon. 
Psychological creativity (both “historical” and “individual”) was 
discussed in Chapter 3, and self-organized (unsupervised) associ-
ative learning in Chapter  4. Here, our focus is on the types of 
self-organization studied in biology.

Examples include phylogenetic evolution (a form of historical 
creativity); embryogenesis and metamorphosis (analogous to indi-
vidual creativity in psychology); brain development (individual 
creativity followed by historical creativity); and cell formation (his-
torical creativity when life began, individual creativity thereafter). 
How can AI help us to understand these?

Alan Turing explained self-organization by going back to basics.12 
He asked how something homogeneous (such as the undifferenti-
ated ovum) could originate structure. He acknowledged that most 
biological development adds new order to pre-existing order: the 
sequence of changes in the embryo’s neural tube, for instance. But 
order-from-homogeneity is the fundamental (and mathematically 
simplest) case.

Embryologists had already posited “organizers”: unknown chem-
icals directing development in unknown ways. Turing couldn’t 
identify the organizers either. Instead, he considered highly 
general principles about chemical diffusion.

He showed that, if different molecules met, the results would 
depend on their rates of diffusion, their concentrations, and the 
speeds at which their interactions would destroy/construct mole-
cules. He did this by varying the numbers in imaginary chemical 
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equations and investigating the results. Some number combina-
tions produced only formless mixtures of chemicals. But others 
generated order—for example, regular peaks of concentration of a 
certain molecule. Such chemical peaks, he said, might be biologi-
cally expressed as surface markings (stripes), or as the origins of 
repeated structures such as petals or bodily segments. Diffusion 
reactions in three dimensions could produce hollowing-out, like 
gastrulation in the early embryo.

These ideas were immediately recognized as hugely exciting. 
They solved the previously intractable puzzle of how order can 
arise from an unordered origin. But 1950s biologists couldn’t do 
much with them. Turing had relied on mathematical analysis. 
He did do some (grindingly tedious) simulation by hand, followed 
by modeling on a primitive computer. But his machine didn’t have 
enough computational power to do the relevant sums, or to explore 
number variations systematically. Nor were computer graphics 
available, to convert lists of numbers into visibly intelligible form.

Both AI and biology had to wait forty years before Turing’s 
insights could be developed. The computer-graphics expert Greg 
Turk explored Turing’s own equations, sometimes “freezing” the 
results of one equation before applying another.13 This procedure, 
reminiscent of the on/off switching of genes, exemplified pat-
tern-from-pattern—which Turing had mentioned, but couldn’t 
analyze. In Turk’s AI model, Turing’s equations generated not only 
dalmation markings and stripes (as his hand simulations had 
done), but also leopard spots, cheetah spots, giraffe reticulations, 
and lion-fish patterns.

Other researchers used more complicated sequences of equa-
tions, getting more complex patterns accordingly. Some were 
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developmental biologists, who now know more about the actual 
biochemistry.

For instance, Brian Goodwin studied the life cycle of the alga 
Acetabularia.14 This unicellular organism transforms itself from a 
shapeless blob into an elongated stalk; it then grows a flattened 
top; next, it develops a ring of knobs around the edge; these later 
sprout into a whorl of laterals, or branches; finally, the laterals coa-
lesce to form an umbrella-shaped cap. Biochemical experiments 
show that over thirty metabolic parameters are involved (e.g. 
calcium concentrations; the affinity between calcium and certain 
proteins; and the mechanical resistance of the cytoskeleton). 
Goodwin’s computer model of Acetabularia simulated complex, 
iterative feedback loops in which these parameters can change 
from moment to moment. Various bodily metamorphoses resulted.

Like Turing and Turk, Goodwin played around with numerical 
values to see which ones would actually generate new forms. He 
used only numbers within the ranges observed in the organism, 
but these were randomized.

He found that certain patterns—for example, alternating high/
low concentrations of calcium at the tip of a stalk (the emerging 
symmetry of a whorl)—arose repeatedly. They didn’t depend on a 
particular choice of parameter values, but emerged spontaneously 
if the values were set anywhere within a large range. Moreover, 
once the whorls had originated, they persisted. So, said Goodwin, 
they might become the ground for transformations leading on to 
other frequently occurring features. This could happen in phy-
logenesis as well as ontogenesis (historical creativity as well as 
individual creativity)—in the evolution of the tetrapod limb, for 
instance.
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No umbrella cap was ever generated by this model. Possibly, 
that would require extra parameters, representing as yet unknown 
chemical interactions within real Acetabularia. Or perhaps such 
caps do lie within the model’s possibility space, so could in princi-
ple arise from it, but only if the numerical values are so strictly lim-
ited that they’re unlikely to be found by random search. (The 
laterals weren’t generated either, but that was due simply to lack 
of  computational power: the whole program would need to be 
executed on a lower level, for every individual lateral.)

Goodwin drew an intriguing theoretical moral. He saw whorls 
as “generic” forms, occurring—unlike umbrella caps—in many 
animals and plants. This suggests that they’re due not to highly 
specific biochemical mechanisms directed by contingently evolved 
genes, but rather to general processes (like reaction diffusion) 
found in most or even all living things. Such processes might form 
the basis of a “structuralist” biology: a general science of morphol-
ogy, whose explanations would be prior to, although fully con-
sistent with, Darwinian selection. (This possibility was implied by 
Turing’s discussion, and had been stressed by D’Arcy Thompson, 
a biologist he had cited; but Turing himself ignored it.)

Reaction diffusion works by physico-chemical laws determin-
ing local molecular interactions—that is, by laws representable 
in cellular automata. When John von Neumann defined CAs, he 
pointed out that they are in principle applicable to physics. Today’s 
A-Life researchers use CAs for many purposes, the generation of 
biological patterns being particularly relevant here. For example, 
very simple CAs, defined on only one dimension (a line), can 
generate remarkably lifelike patterns—like those on seashells, for 
instance.15
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Especially intriguing, perhaps, is A-Life’s use of CAs in attempt-
ing to describe “life as it could be,” not only “life as we know it.”16 
Christopher Langton (who named “artificial life” in 1987) explored 
numerous randomly defined CAs, noting their propensity to gen-
erate order. Many produced only chaos. Others formed boringly 
repetitive, or even static, structures. But a few generated subtly 
changing yet relatively stable patterns—characteristic, Langton 
said, of living things (and of computation, too). Surprisingly, these 
CAs shared the same numerical value on a simple measure of the 
system’s informational complexity.17 Langton suggested that this 
“lambda-parameter” applies to all possible living things, whether 
on Earth or Mars.18

Self-organization molds not only whole bodies, but also organs. 
The brain, for example, develops by evolutionary processes (within 
a lifetime and across generations), as well as by unsupervised 
learning. Such learning can have highly idiosyncratic (historically 
creative) results. But early cerebral development in each individual 
also creates predictable neural structures.

For instance, newborn monkeys possess orientation detectors 
systematically spanning 360 degrees. These can’t have been learned 
from experience of the external world, so it’s natural to assume 
that they are coded in the genes. But they aren’t. Instead, they arise 
spontaneously from an initially random network.

This has been shown not only by biologically realistic computer 
modeling done by neuroscientists, but also by “pure” AI. The IBM 
researcher Ralph Linsker has defined multilayer feedforward net-
works (see Chapter 4) showing that simple Hebbian rules, given 
random activity (such as “noise” within the embryonic brain), can 
generate structured collections of orientation detectors.19
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Linsker doesn’t rely on practical demonstrations alone, nor 
focus only on orientation detectors: his abstract “infomax” theory 
is applicable to any network of this type. It states that network 
connections develop to maximize the amount of information pre-
served when signals are transformed at each processing stage. 
All connections form under certain empirical constraints, such as 
biochemical and anatomical limitations. However, the mathemat-
ics guarantees that a cooperative system of communicating units 
will emerge. The infomax theory relates to phylogenetic evolu-
tion, too. It makes it less counter-intuitive that a single mutation, 
in the evolution of a complex system, will be adaptive. The appar-
ent need for several simultaneous mutations evaporates if each level 
can spontaneously adapt to a small alteration in another.

As regards self-organization at the cellular level, both intracel-
lular biochemistry and the formation of cells/cell walls have been 
modeled. This work exploits that of Turing on reaction diffusion. 
However, it relies more on biological concepts than on ideas 
originated within A-Life.

In sum, AI provides many theoretical ideas regarding self-
organization. And self-organizing artefacts abound.
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But is it Intelligence, Really?

Suppose that future AGI systems (on-screen or robots) equaled 
human performance. Would they have real intelligence, real under-
standing, real creativity? Would they have selves, moral standing, 
free choice? Would they be conscious? And without consciousness, 
could they have any of those other properties?

These aren’t scientific questions, but philosophical ones. Many 
people feel intuitively that the answer, in each case, is “Obviously, no!”

Things aren’t so straightforward, however. We need careful 
arguments, not just unexamined intuitions. But such arguments 
show that there are no unchallengeable answers to these ques-
tions. That’s because the concepts involved are themselves highly 
controversial. Only if they were all satisfactorily understood could 
we be confident that the hypothetical AGI would, or wouldn’t, really 
be intelligent. In short: no one knows for sure.

Some might say it doesn’t matter: what the AGIs will actually 
do is what’s important. However, our answers could affect how we 
relate to them, as we’ll see.
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This chapter, then, won’t provide unequivocal answers. But it 
will suggest that some answers are more reasonable than others. 
And it will show how AI concepts have been used by (some) 
philosophers to illuminate the nature of real minds.1

The Turing Test

In a paper published in the philosophy journal Mind, Alan Turing 
described what’s called the Turing Test.2 This asks whether someone 
could distinguish, 30% of the time, whether they were interacting (for 
up to five minutes) with a computer or a person. If not, he implied, 
there’d be no reason to deny that a computer could really think.

That was tongue in cheek. Although it featured in the opening 
pages, the Turing Test was an adjunct within a paper primarily 
intended as a manifesto for a future AI. Indeed, Turing described it 
to his friend Robin Gandy as light-hearted “propaganda,” inviting 
giggles rather than serious critique.

Nevertheless, the philosophers pounced. Most argued that even 
if a program’s responses were indistinguishable from a human’s, 
this wouldn’t prove its intelligence. The most common objection 
was—and still is—that the Turing Test concerns only observable 
behavior, so could be passed by a zombie: something behaving 
exactly like us, but lacking consciousness.

This objection assumes that intelligence requires conscious-
ness, and that zombies are logically possible. We’ll see (in the 
section “AI and phenemonal consciousness”) that some accounts 
of consciousness imply that the concept of zombie is incoherent. 
If they are right, then no AGI could be a zombie. In that respect, 
the Turing Test would be justified.
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The Turing Test interests philosophers (and the general public) 
greatly. But it hasn’t been important in AI. Most AI aims to pro-
vide useful tools, not to mimic human intelligence—still less, to 
make users believe they’re interacting with a person. Admittedly, 
publicity-hungry AI researchers sometimes claim, and/or allow 
journalists to claim, that their system passes the Turing Test. 
However, these tests don’t fit Turing’s description. For instance, 
Ken Colby’s model PARRY “fooled” psychiatrists into thinking 
that they were reading interviews with paranoiacs—because they 
naturally assumed that they were dealing with human patients.3 
Similarly, computer art is often ascribed to human beings if 
there’s no hint that a machine might be involved.

The closest thing to a genuine Turing Test is the annual Loebner 
competition (now held in Bletchley Park). The current rules pre-
scribe twenty-five-minute interactions, using twenty pre-selected 
questions designed to test memory, reasoning, general knowl-
edge, and personality. The judges consider relevance, correctness, 
and the clarity and plausibility of expression/grammar. As yet, no 
program has fooled the Loebner judges for 30% of the time. (In 
2014, a program said to be a 13-year-old Ukrainian boy deceived 
33% of its interrogators; but mistakes are readily forgiven in 
non-native speakers, especially children.)

The Many Problems of Consciousness

There’s no such thing as the problem of consciousness. Rather, 
there are many. The word “conscious” is used to make many dif-
ferent distinctions: awake/asleep; deliberate/unthinking; in/out 
of attention; accessible/inaccessible; reportable/non-reportable; 
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self-reflective/unexamined; and so on. No single explanation will 
clarify all of them.

The contrasts just listed are functional ones. Many philosophers 
would allow that they could in principle be understood in infor-
mation-processing and/or neuroscientific terms.

But phenomenal consciousness—sensations (like blueness, or 
pain), or “qualia” (the philosophers’ technical term)—seems to 
be different. The very existence of qualia, in a basically material 
universe, is a notorious metaphysical puzzle.

David Chalmers calls this “the hard problem.”4 And, he says, 
it’s inescapable: “[We must] take consciousness seriously. . . . [To] 
redefine the problem as that of explaining how certain cognitive or 
behavioural functions are performed is unacceptable.”

Various highly speculative solutions have been suggested. These 
include Chalmers’s own version of pan-psychism, a self-confessedly 
“outrageous, or even crazy” theory according to which phenome-
nal consciousness is an irreducible property of the universe, 
analogous to mass or charge. Several other theorists have appealed 
to  quantum physics—using one mystery to solve another, their 
opponents say. Colin McGinn has even argued that humans are 
constitutionally incapable of understanding the causal link between 
brain and qualia, much as dogs cannot understand arithmetic.5 And 
Jerry Fodor, a leading philosopher of cognitive science, believes 
that: “Nobody has the slightest idea how anything material could 
be conscious. Nobody even knows what it would be like to have the 
slightest idea how anything material could be conscious.”6

In short, very few philosophers claim to understand phenomenal 
consciousness—and those who do are believed by almost nobody 
else. The topic is a philosophical morass.
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Machine Consciousness

Thinkers who are sympathetic to AI approach consciousness in 
two ways. One is building computer models of consciousness: this 
is called “machine consciousness” (MC). The other (which is char-
acteristic of AI-influenced philosophers) is analyzing it in broadly 
computational terms, without doing modeling.

A truly intelligent AGI would possess functional conscious-
ness. For example, it would focus on (pay attention to, be aware 
of ) different things at different times. A human-level system 
would be able also to deliberate, and self-reflect. It could gener-
ate creative ideas, and even deliberately evaluate them. Without 
those capacities, it couldn’t generate seemingly intelligent 
performance.

Phenomenal consciousness may be involved when humans eval-
uate creative ideas (see Chapter 3). Indeed, many would say that it 
attends every “functional” difference. Nevertheless, MC research-
ers—all of whom consider functional consciousness—usually 
ignore phenomenal consciousness. (A brave—foolhardy?—few 
claim that their AI system already has this, “in its own way,” because it 
bases discriminations on perceptual input—e.g. light. Whether 
that implies the presence of visual experience is—to put it 
mildly—highly doubtful.)

One interesting MC project is LIDA (Learning Intelligent Distri
bution Agent), developed in Memphis by Stan Franklin’s group.7 
This label names two things. One is a conceptual model—a verbally 
expressed computational theory—of (functional) consciousness. 
The other is a partial, and simplif ied, implementation of that 
theoretical model.
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Both are used for scientific purposes (Franklin’s primary aim). 
But the second also has practical applications. The LIDA imple-
mentation can be customized to suit specific problem domains, 
for example, medicine.

Unlike SOAR, ACT-R, and CYC (see Chapter 2), it’s very recent. 
The first version (built for the US Navy, to organize new jobs for 
end-of-duty sailors) was released in 2011. The current version 
covers attention, and its effects on learning in various types of 
memory (episodic, semantic, and procedural); and sensorimotor 
control is now being implemented for robotics. But many features, 
including language, are still missing. (The description below con-
cerns the conceptual model, irrespective of which aspects are 
already implemented.)

LIDA is a hybrid system, involving spreading activation and sparse 
representations (see Chapter 4) as well as symbolic programming. 
It is based on Bernard Baars’s neuropsychological Global 
Workspace Theory (GWT) of consciousness.8

GWT sees the brain as a distributed system (see Chapter 2), in 
which a host of specialized sub-systems, functioning in parallel, 
compete for access to working memory (see Figure  2). Items 
appear there sequentially (the stream of consciousness), but are 
“broadcast” to all cortical areas.

If a broadcast item, derived from a sense organ or other sub-
system, triggers a response from a certain area, that response may 
be strong enough to win the competition for attention, which 
actively controls access to consciousness. (Novel perceptions/rep-
resentations tend to gain attention, whereas repeated items fade 
from consciousness.) The sub-systems are often complex. Some 
are nested hierarchically, and many have associative linkages of 
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diverse kinds. A variety of unconscious contexts (organized in 
different memories) shape conscious experience, both evoking 
and amending the items in the global workspace. The contents of 
attention, in turn, adapt the enduring contexts by causing learning 
of various types.

Competing
Input Processors:

Global Workspace

(conscious)

Receiving Processors

(unconscious)

Figure 2  A global workspace in a distributed system. The nervous system 
involves various specialized unconscious processors (perceptual analyzers, 
output systems, planning systems, etc.). Interaction, coordination, and control 
of these unconscious specialists requires a central information exchange or 
“global workspace.” Input specialists can cooperate and compete for access 
to it. In the case shown here, four input processors cooperate to place a global 
message, which is then broadcast to the system as a whole.
Adapted from p. 88 of B. J. Baars, A Cognitive Theory of Consciousness (Cambridge: 
Cambridge University Press, 1988) with kind permission.
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These contents, when broadcast, guide the selection of the next 
action. Many actions are cognitive: building or amending internal 
representations. Moral norms are stored (in semantic memory) 
as procedures for appraising potential actions. Decisions can be 
influenced also by the perceived/predicted reactions of other 
social agents.

Consider planning, for instance (see Chapter 2). Intentions are 
represented as largely unconscious but relatively high-level 
structures, which can lead to conscious goal images (selected by 
currently salient features from perception, memory, or imagin
ation). These recruit relevant sub-goals. They “recruit” rather than 
“retrieve,” for the sub-goals themselves decide their relevance. 
Like all cortical sub-systems, they lie in wait to be triggered by 
some broadcast item—here, by an appropriate goal image. LIDA 
can transform a selected goal-directed action schema into low-level 
executable motor actions, responsive to detailed features of an 
unpredictable, and changing, environment.

Baars’s theory (and Franklin’s version of it) wasn’t dreamed up 
in a computer scientist’s workshop. On the contrary, it was designed 
to take into account a wide variety of well-known psychological 
phenomena, and a wide range of experimental evidence (see 
Figure 3). But these authors claim that it also solves some previ-
ously unsolved psychological puzzles.

For example, they say that GWT/LIDA solves the long-disputed 
“binding” problem. This asks how several inputs from different 
senses, in different brain areas—for instance, the feel, appearance, 
smell, and sound of a cat—are attributed to one and the same thing. 
Franklin and Baars claim that it also explains how human minds 
avoid the frame problem (see Chapter 2). When generating creative 
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Contexts

Conscious
contents

Unconscious specialized
processors

Automatic skill components
Long Term Memory
Faculties
Adaptive specializations (Rozin)
Modules (Fodor)
Parallel Distributed Processors
     (Rumelhart & McClelland)

Global Workspace Theory Rough equivalents

Expectations
set (Bruner)

Enduring Dispositions & Momentary
      Intentions (Kahneman)

Activated memory (Bransford)
Activated schemas (Norman & 

         Rumelhart)
Dominant Action System (Shallice)
Aufgabe (Würzburg School, Ach) 

Consciousness
Attention

Central limited capacity
Short Term Memory

Working Memory (Baddeley
J.Anderson)

Stategic/controlled processes
     (Shiffrin & Schneider)

Figure 3  Similarities between GW terms and other widespread concepts. 
Each of these familiar ideas is defined (by GWT) in terms of unconscious and 
conscious functioning. 
Adapted from p. 44 of B. J. Baars, A Cognitive Theory of Consciousness (Cambridge: 
Cambridge University Press, 1988) with kind permission.
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analogies, for instance, there’s no central executive, searching 
the  entire data structure for relevant items. Rather, if a sub-

system recognizes that some broadcast item fits/approximates 
what it’s (always) looking for, it competes for entry to the global 
workspace.

Integrating highly diverse experimental evidence, Franklin uses 
LIDA to explore theories in cognitive psychology and neurosci-
ence. For example, he has simulated the “attentional blink,” in 
which subjects fail to report a second visual target presented very 
soon after the first. There are other theories, and computer mod-
els, of attentional blink. But most are designed to answer isolated 
questions. Franklin’s model arises from a unified, systems-level 
theory of cognition. (Another unified model of attentional blink 
exists, based on ACT-R; but ACT-R doesn’t include emotional pro-
cessing or high-level vision, so can’t explain all the experimental 
results.)

This AI approach is reminiscent of Pandemonium’s “demons,” 
and the “blackboard” architectures used to implement production 
systems (see Chapters  1 and  2). That’s not surprising, for those 
ideas inspired Baars’s neuropsychological theory, which eventually 
led to LIDA. The theoretical wheel has turned full circle.9

AI and Phenomenal Consciousness

MC practitioners ignore the “hard” problem. But three AI-inspired 
philosophers have addressed it head-on: Paul Churchland, Daniel 
Dennett, and Aaron Sloman. To say that their answers are contro-
versial is an understatement. Where phenomenal consciousness is 
concerned, however, that’s par for the course.
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Churchland’s “eliminative materialism” denies the existence of 
immaterial thoughts and experiences.10 Instead, he identifies them 
with brain states.

He offers a scientific theory—part computational (connection-
ist), part neurological—defining a four-dimensional “taste-space,” 
which systematically maps subjective discriminations (qualia) of 
taste onto specific neural structures. The four dimensions reflect 
the four types of taste receptor on the tongue.

For Churchland, this isn’t a matter of mind–brain correlations: to 
have an experience of taste simply is to have one’s brain visit a 
particular point in that abstractly defined sensory space. The 
implication is that all phenomenal consciousness is simply the 
brain’s being at a particular location in some empirically discov-
erable hyperspace. If so, then no computer (possibly excepting a 
whole-brain emulation) could have phenomenal consciousness.

Dennett, too, denies the existence of ontologically distinct expe-
riences, over and above bodily events. (So a common response to 
his provocative book is: “Not Consciousness Explained, but explained 
away.”11)

To experience, in his view, is to discriminate. But in discriminat-
ing something that exists in the material world, one doesn’t bring 
something else into existence in some other, immaterial, world. 
He expresses this in an imaginary conversation:

[otto:]  It seems to me that you’ve denied the existence of the 
most indubitably real phenomena there are: the real seemings 
that even Descartes in his Meditations couldn’t doubt.

[dennett:]  In a sense, you’re right: that’s what I’m denying 
exist. Let’s [consider] the neon colour-spreading phenomenon. 
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There seems to be a pinkish glowing ring on the dust jacket. 
[He’s describing a visual illusion, caused by red and black lines 
on shiny white paper.]

[otto:]  There sure does.
[dennett:]  But there isn’t any pinkish ring. Not really.
[otto:]  Right. But there sure seems to be!
[dennett:]  Right.
[otto:]  So where is it, then?
[dennett:]  Where’s what?
[otto:]  The pinkish glowing ring.
[dennett:]  There isn’t any; I thought you’d just acknowledged 

that.
[otto:]  Well yes, there isn’t any pinkish ring out there on the 

page, but there sure seems to be.
[dennett:]  Right. There seems to be a pinkish glowing ring.
[otto:]  So let’s talk about that ring.
[dennett:]  Which one?
[otto:]  The one that seems to be.
[dennett:]  There is no such thing as a pink ring that merely 

seems to be.
[otto:]  Look, I don’t just say that there seems to be a pinkish 

glowing ring; there really does seem to be a pinkish glowing ring!
[dennett:]  I hasten to agree. . . . You really mean it when you 

say there seems to be a pinkish glowing ring.
[otto:]  Look. I don’t just mean it. I don’t just think there seems 

to be a pinkish glowing ring; there really seems to be a pinkish 
glowing ring!

[dennett:]  Now you’ve done it. You’ve fallen in a trap, along 
with a lot of others. You seem to think there’s a difference 
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between thinking (judging, deciding, being of the firm 
opinion that) something seems pink to you and something 
really seeming pink to you. But there is no difference. There is 
no such phenomenon as really seeming—over and above the 
phenomenon of judging in one way or another that 
something is the case.

In other words, demands for an explanation of qualia can’t be met. 
There are no such things.

Aaron Sloman disagrees. He acknowledges the real existence of 
qualia. But he does so in an unusual way: he analyzes them as 
aspects of the multi-dimensional virtual machines that we call 
minds (see the following section).

Qualia, he says, are internal computational states.12 They can 
have causal effects on behavior (e.g. involuntary facial expres-
sions) and/or on other aspects of the mind’s information pro-
cessing. They can exist only in virtual machines of significant 
structural complexity (he outlines the types of reflexive computa-
tional resources that are required). They can be accessed only by 
some other parts of the particular virtual machine concerned, and 
don’t necessarily have any behavioral expression. (Hence their 
privacy.) Moreover, they cannot always be described—by higher, 
self-monitoring, levels of the mind—in verbal terms. (Hence their 
ineffability.)

This doesn’t mean that Sloman identifies qualia with brain pro-
cesses (as Churchland does). For computational states are aspects 
of virtual machines: they can’t be defined in the language of physi-
cal descriptions. But they can exist, and have causal effects, only 
when implemented in some underlying physical mechanism.
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What of the Turing Test? Both Dennett’s and Sloman’s analyses 
imply (and Dennett explicitly argues) that zombies are impossible.13 
That’s because, for them, the concept of zombie is incoherent. Given 
the appropriate behavior and/or virtual machine, consciousness—
for Sloman, even including qualia—is guaranteed. The Turing Test 
is therefore saved from the objection that it might be “passed” by a 
zombie.

And what of the hypothetical AGI? If Dennett is right, this would 
have all the consciousness that we do—which would not include 
qualia. If Sloman is right, it would have phenomenal consciousness 
in just the same sense that we do.

Virtual Machines and the Mind–Body Problem

Hilary Putnam’s 1960s “functionalism” used the notion of Turing 
machines, and the (then novel) software/hardware distinction, to 
argue—in effect—that the mind is what the brain does.14

The (Cartesian) metaphysical divide between two utterly differ-
ent substances gave way to a conceptual divide between levels 
of  description. The program versus computer analogy allowed that 
“mind” and “body” are indeed very different. But it was fully com-
patible with materialism. (Whether it could encompass qualia was, 
and still is, hotly disputed.15)

Although several intriguing AI programs existed by 1960 (see 
Chapter 1), the functionalist philosophers rarely considered spe-
cific examples. They focused on general principles, such as Turing 
computation. Only with the mid-1980s rise of PDP (see Chapter 4) 
did many philosophers consider how AI systems actually work. 
Even then, very few asked just what computational functions might 
make reasoning, or creativity (for instance), possible.
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The best way of understanding such matters is to borrow the 
computer scientist’s concept of virtual machines. Instead of saying 
that the mind is what the brain does, one should say (following Sloman) 
that the mind is the virtual machine—or, rather, the integrated set of many 
different virtual machines—that is/are implemented in the brain. (The 
mind-as-virtual-machine position has one highly counter-intuitive 
implication, however: see the section “Is neuroprotein essential.”)

As explained in Chapter 1, virtual machines are real, and have 
real causal effects: no metaphysically mysterious mind–body inter-
actions there. So the philosophical significance of LIDA, for instance, 
is that it specifies an organized set of virtual machines that shows 
how the diverse aspects of (functional) consciousness are possible.

The virtual-machine approach amends a core aspect of functional-
ism: the Physical Symbol System (PSS) hypothesis.16 In the 1970s, 
Allen Newell and Herbert Simon defined a PSS as “a set of entities, 
called symbols, which are physical patterns that can occur as compo-
nents of another type of entity called an expression (or symbol struc-
ture). . . . [Within] a symbol structure, . . . instances (or tokens) of 
symbols [are] related in some physical way (such as one token being 
next to another).” Processes exist, they said, for creating and modify-
ing symbol structures—namely, the processes defined by symbolic 
AI. And, they added, “A PSS has the necessary and sufficient means 
for general intelligent action.” In other words, the mind–brain is a PSS.

From the mind-as-virtual-machine perspective, they should 
have called it the Physically-implemented Symbol System hypothesis 
(let’s not express this as an acronym), as symbols are contents of 
virtual machines, not physical machines.

This implies that neural tissue isn’t necessary for intelligence 
unless it’s the only material substrate capable of implementing the 
virtual machines concerned.
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The PSS hypothesis (and most early AI) assumed that a representa-
tion, or physical symbol, is a clearly isolatable and precisely locat
able feature of the machine/brain. Connectionism would offer a 
very different account of representations (see Chapter  4). It saw 
them in terms of entire networks of cells, not clearly locatable 
neurons. And it saw concepts in terms of partially conflicting con-
straints, not strict logical definitions. This was highly attractive to 
philosophers familiar with Ludwig Wittgenstein’s account of 
“family resemblances.”17

Later, workers in situated robotics denied that the brain contains 
representations at all (see Chapter 5). This position was accepted by 
some philosophers, but David Kirsh, for example, argued that 
compositional representations (and symbolic computation) are 
needed for all behavior that involves concepts—including logic, 
language, and deliberative action.18

Meaning and Understanding

According to Newell and Simon, any PSS carrying out the right 
computations really is intelligent. It has “the necessary and sufficient 
means for intelligent action.” The philosopher John Searle called 
this claim “strong AI.”19 (“Weak AI” held merely that AI models 
can help psychologists to formulate coherent theories.)

He argued that strong AI was mistaken. Symbolic computation 
may go on in our heads (though he doubted it), but that alone cannot 
provide intelligence. More accurately, it cannot provide “intentional-
ity”—the philosophers’ technical term for meaning, or understanding.

Searle relied on a thought experiment that’s still controversial 
today: Searle is in a windowless room, with a slot through which paper slips 
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carrying “squiggles” and “squoggles” are passed in. There is a box of slips 
carrying similar doodles, and a rule book saying that if a squiggle is passed 
in then Searle should pass a blingle-blungle out, or perhaps go through a 
long sequence of doodle pairings before passing some slip out. Unbeknownst 
to Searle, the doodles are Chinese writing; the rule book is a Chinese NLP 
program; and the Chinese people outside the room are using him to answer 
their questions. However, Searle entered the room unable to understand 
Chinese, and he still won’t understand it when he leaves. Conclusion: 
Formal computation alone (which is what Searle-in-the-room is doing) can’t 
generate intentionality. So strong AI is mistaken, and genuine understanding 
in AI programs is impossible. (This argument, the so-called “Chinese 
Room,” was originally aimed at symbolic AI, but was later generalized 
to apply to connectionism and robotics.)

Searle’s claim, here, was that the “meanings” attributed to AI 
programs come entirely from human users/programmers. They’re 
arbitrary with respect to the program itself, which is semanti-
cally empty. Being “all syntax and no semantics,” the same pro-
gram might be equally interpretable as a tax reckoner or as 
choreography.

Sometimes, that’s true. But remember Franklin’s claim that 
LIDA models grounded, even embodied, cognition, by means of 
structured couplings between senses, actuators, and environment. 
Remember, too, the control circuit that evolved as a robot’s orien-
tation detector (see Chapter 5). To call this an “orientation detector” 
is not arbitrary. Its very existence depends on its evolution as an 
orientation detector, helpful in achieving the robot’s goal.

The latter example is relevant not least because some philosophers 
see evolution as the source of intentionality. Ruth Millikan, for 
instance, argues that thought and language are biological phenomena, 



136  AI 

whose meanings depend on our evolutionary history.20 If  that is 
right, then no non-evolutionary AGI could have real understanding.

Other scientifically minded philosophers (like Newell and 
Simon themselves) define intentionality in causal terms. But they 
have difficulty accounting for non-veridical statements: if some-
one claims to see a cow, but there’s no cow there to cause the 
words, how can they mean cow?

In summary, no theory of intentionality satisfies all philoso-
phers. Since genuine intelligence involves understanding, that’s 
another reason why no one knows whether our hypothetical AGI 
would really be intelligent.

Is Neuroprotein Essential?

Part of Searle’s reason for rejecting strong AI was that computers 
aren’t made of neuroprotein. Intentionality, he said, is caused by 
neuroprotein much as photosynthesis is caused by chlorophyll. 
Neuroprotein may not be the only substance in the universe that 
can support intentionality and consciousness. But metal and 
silicon, he said, obviously can’t.

That’s a step too far. Admittedly, it’s highly counter-intuitive to sug-
gest that tin-can computers could really experience blueness or pain, 
or really understand language. But qualia being caused by neuroprotein 
is no less counter-intuitive, no less philosophically problematic. (So, 
something that’s counter-intuitive may nevertheless be true.)

If one accepts Sloman’s virtual-machine analysis of qualia, this 
particular difficulty vanishes. However, the overall mind-as-virtual-
machine account brings another similar diff iculty. If a mind-
qualifying virtual machine were implemented in AI hardware, then 
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that very mind would exist in the machine—or perhaps in several 
machines. So mind-as-virtual-machine implies the possibility, in 
principle, of (cloned) personal immortality in computers. For most 
people (however, see Chapter 7), that’s no less counter-intuitive than 
computers supporting qualia.

If neuroprotein actually is the only substance capable of sup-
porting human-scale virtual machines, we can reject the “cloned 
immortality” suggestion. But is it? We don’t know.

Perhaps there are special, maybe highly abstract, properties 
that neuroprotein has which make it capable of implementing 
the wide range of computations carried out by minds. For 
instance, it must be able to construct (fairly rapidly) molecules 
that are stable (and storeable) and yet flexible, too. It must be able 
to form structures, and connections between structures, that 
have electrochemical properties enabling them to pass informa-
tion between them. Possibly, other substances, on other planets, 
could do these things too.

Not Just Brain, but Body too

Some philosophers of mind argue that the brain receives too 
much attention. The whole body, they say, is the better focus.21

Their position often draws on continental phenomenology,22 
which stresses the human “form of life.” This covers both mean-
ingful consciousness (including human “interests,” which ground 
our sense of relevance) and embodiment.

To be embodied is to be a living body situated in, and actively 
engaging with, a dynamical environment. The environment—and 
the engagement—is both physical and sociocultural. The key 
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psychological properties aren’t reasoning or thought, but adapta-
tion and communication.

Philosophers of embodiment have little time for symbolic AI, 
seeing it as overly cerebral. Only cybernetics-based approaches 
are favored (see Chapters 1 and 5). And since, on this view, genuine 
intelligence is body-based, no on-screen AGI could really be 
intelligent. Even if the on-screen system is an autonomous agent 
structurally coupled to a physical environment, it wouldn’t (pace 
Franklin23) count as embodied.

What about robots? After all, robots are physical beings 
grounded in, and adapting to, the real world. Indeed, situated 
robotics is sometimes commended by these philosophers. But do 
robots have bodies? Or interests? Or forms of life? Are they alive at all?

Phenomenologists would say “Certainly not!” They might cite 
Wittgenstein’s famous remark: “If a lion could talk, we would not 
understand him.” The lion’s form of life is so different from ours 
that communication would be near-impossible. Granted, there’s 
enough overlap between a lion’s psychology and ours (e.g. hunger, 
fear, fatigue, etc.) that some minimal understanding—and empa-
thy—might be feasible. But even that wouldn’t be available when 
“communicating” with a robot. (That’s why research on computer 
companions is so worrying: see Chapters 3 and 7.)

Moral Community

Would we—should we?—accept a human-level AGI as a member 
of our moral community? If we did, this would have significant 
practical consequences. For it would affect human–computer 
interaction in three ways.
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First, the AGI would receive our moral concern—as animals do. 
We would respect its interests, up to a point. If it asked someone 
to  interrupt their rest or crossword puzzle to help it achieve a 
“high-priority” goal, they’d do so. (Have you never got up out of 
your armchair to walk the dog, or to let a ladybird out into the 
garden?) The more we judged that its interests mattered to it, the 
more we’d feel obliged to respect them. However, that judgement 
would depend largely on whether we attributed phenomenal 
consciousness (including felt emotions) to the AGI.

Second, we would regard its actions as morally evaluable. Today’s 
killer drones aren’t morally responsible (unlike their users/design-
ers: see Chapter 7). But perhaps a truly intelligent AGI would be? 
Presumably, its decisions could be affected by our reactions to 
them: by our praise or blame. If not, there’s no community. It could 
learn to be “moral” much as an infant (or a dog) can learn to be 
well behaved, or an older child to be considerate. (Consideration 
requires the development of what cognitive psychologists call 
“Theory of Mind,” which interprets people’s behavior in terms of 
agency, intention, and belief.) Even punishment might be justified, 
on instrumental grounds.

And third, we’d make it the target of argument and persuasion 
about moral decisions. It might even offer moral advice to people. 
For us to engage seriously in such conversations, we’d need to 
be confident that (besides having human-level intelligence) it was 
amenable to specifically moral considerations. But just what does 
that mean? Ethicists disagree profoundly not only about the 
content of morality but also about its philosophical basis.

The more one considers the implications of “moral commu-
nity,” the more problematic the notion of admitting AGIs seems 
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to be. Indeed, most people have a strong intuition that the very 
suggestion is absurd.

Morality, Freedom, and Self

That intuition arises largely because the concept of moral respon-
sibility is intimately linked to others—conscious agency, freedom, 
and self—that contribute to our notion of humanity as such.

Conscious deliberation makes our choices more morally account-
able (although unconsidered actions can be criticized, too). Moral 
praise or blame is attributed to the agent, or self, concerned. And 
actions done under strong constraints are less open to blame than 
those made freely.

These concepts are hugely controversial even when applied to people. 
Applying them to machines seems inappropriate—not least due 
to the implications for human–computer interactions cited in the 
previous section. Nevertheless, taking the “mind-as-virtual-machine” 
approach to human minds can help us to understand these phe-
nomena in our own case.

AI-influenced philosophers (starting with Marvin Minsky24) ana-
lyze freedom in terms of certain sorts of cognitive-motivational 
complexity. They point out that people are clearly “free” in ways 
that crickets, for instance, aren’t. Female crickets find their mates 
by a hardwired reflex response (see Chapter 5). But a woman seek-
ing a mate has many strategies available. She also has many other 
motives besides mating—not all of which can be satisfied simul-
taneously. She manages, nevertheless—thanks to computational 
resources (a.k.a. intelligence) that crickets lack.
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These resources, organized by functional consciousness, include 
perceptual learning; anticipatory planning; default assignment; 
preference ranking; counterfactual reasoning; and emotionally 
guided action scheduling. Indeed, Dennett uses such concepts—
and a host of telling examples—to explain human freedom.25 So 
AI helps us to understand how our own free choice is possible.

Determinism/indeterminism is largely a red herring. There is 
some element of indeterminism in human action, but this can’t 
occur at the point of decision because that would undermine 
moral responsibility. It could, however, affect the considerations 
that arise during deliberation. The agent may or may not think 
of x, or be reminded of y—where x and y include both facts and 
moral values. For instance, someone’s choice of a birthday pres-
ent may be influenced by their accidentally noticing something 
that reminds them that the potential recipient likes purple, or 
supports animals’ rights.

All the computational resources just listed would be available 
to  a human-level AGI. So, unless free choice must also involve 
phenomenal consciousness (and if one rejects computational ana-
lyses of that), it seems that our imaginary AGI would have free-
dom. If we could make sense of the AGI’s having various motives 
that mattered to it, then distinctions could even be made between 
its choosing “freely” or “under constraint.” However, that “if” is a 
very big one.

As for the self, AI researchers stress the role of recursive compu-
tation, in which a process can operate upon itself. Many tradi-
tional philosophical puzzles concerning self-knowledge (and 
self-deception) can be dissolved by this AI-familiar idea.
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But what is “self-knowledge” knowledge of? Some philosophers 
deny the reality of the self, but AI-influenced thinkers don’t. They 
see it as a specific type of virtual machine.

For them, the self is an enduring computational structure that 
organizes and rationalizes the agent’s actions—especially their care-
fully considered voluntary actions. (LIDA’s author, for instance, 
describes it as “the enduring context of experience, that organizes 
and stabilizes experiences across many different local contexts.”) 
It isn’t present in the newborn baby, but is a lifelong construc-
tion—to some extent amenable to deliberate self-molding. And its 
multi-dimensionality allows for considerable variation, generating 
recognizably individual agency, and personal idiosyncrasy.

That’s possible because the agent’s Theory of Mind (which initially 
interprets the behavior of others) is applied, reflexively, to one’s own 
thoughts and actions. It makes sense of them in terms of prioritized 
motives, intentions, and goals. These, in turn, are organized by endur-
ing individual preferences, personal relationships, and moral/politi-
cal values. This computational architecture allows for the construction 
of both self-image (representing the sort of person one believes one is) 
and ideal self-image (the sort of person one would like to be), and for 
actions and emotions grounded in the differences between the two.

Dennett (strongly influenced by Minsky) calls the self “the center 
of narrative gravity”: a structure (virtual machine) that, in telling 
the story of one’s own life, both generates and seeks to explain 
one’s actions—especially one’s relationships with other people.26 
This leaves room, of course, for self-deception and self-invisibility 
of numerous kinds.

Similarly, Douglas Hofstadter describes selves as abstract self-
referential patterns that arise from and causally loop back into the 
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meaningless base of neural activity.27 These patterns (virtual 
machines) aren’t superficial aspects of the person. To the contrary, 
for the self to exist just is for that pattern to be instantiated.

(Hofstadter adds that a dearly loved person can still exist after bodily 
death. The self of the “lost” person, previously fully instantiated in 
their brain, is now instantiated at a less fine-grained level in the brains 
of the loving survivor/s. He insists that this isn’t merely a matter of 
“living on” in someone’s memory, or of the survivor’s having adopted 
some of the other’s characteristics, e.g. a passion for opera. Rather, 
the two pre-death selves had interpenetrated each other’s mental 
lives and personal ideals so deeply that each can literally live on in the 
other. Through her widower, a dead mother can even consciously 
experience her children’s growing up. This counter-intuitive claim 
posits something similar to personal immortality—although when 
all the survivors themselves have died, the lost self is no longer instan-
tiated. Lasting personal immortality, in computers, is foreseen by the 
“transhumanist” philosophers: see Chapter 7.)

In sum: deciding to credit AGIs with real human-level intelli-
gence—involving morality, freedom, and self—would be a big 
step, with significant practical implications. Those whose intui-
tion rejects the whole idea as fundamentally mistaken may well 
be  correct. Unfortunately, their intuition can’t be buttressed by 
non-controversial philosophical arguments. There’s no consensus 
on these matters, so there are no easy answers.

Mind and Life

All the minds we know about are found in living organisms. Many 
people—including the cyberneticians (see Chapters  1 and  5)—
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believe this must be so. That is, they assume that mind necessarily 
presupposes life.

Professional philosophers sometimes state this explicitly, but 
rarely argue for it. Putnam, for instance, said it’s an “undoubted 
fact” that if a robot isn’t alive then it can’t be conscious.28 But he 
gave no scientific reasons, relying instead on “the semantical rules 
of our language.” Even the few people—such as the environmen-
talist philosopher Hans Jonas,29 and recently the physicist Karl 
Friston, via his broadly cybernetic “free-energy principle”30—who 
have defended the assumption at length haven’t proved it beyond 
doubt.

Let’s assume, however, that this common belief is true. If so, 
then real intelligence can be achieved by AI only if real life is 
achieved, too. We must ask, then, whether “strong A-Life” (life in 
cyberspace) is possible.

There’s no universally accepted definition of life. But nine features 
are usually mentioned: self-organization, autonomy, emergence, 
development, adaptation, responsiveness, reproduction, evolution, 
and metabolism. The first eight can be understood in informa-
tion-processing terms, so could in principle be instantiated by 
AI/A-Life. Self-organization, for instance—which, broadly under-
stood, includes all the others—has been achieved in various ways 
(see Chapters 4 and 5).

But metabolism is different.31 It can be modeled by computers, 
but not instantiated by them. Neither self-assembling robots nor 
virtual (on-screen) A-Life can actually metabolize. Metabolism 
is  the use of biochemical substances and energy exchanges to 
assemble, and maintain, the organism. So it’s irreducibly physical. 
Defenders of strong A-Life point out that computers use energy, 
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and that some robots have individual energy stores, needing regular 
replenishment. But that’s a far cry from the flexible use of inter-
locking biochemical cycles to build the organism’s bodily fabric.

So if metabolism is necessary for life, then strong A-Life is 
impossible. And if life is necessary for mind, then strong AI is 
impossible too. No matter how impressive the performance of 
some future AGI, it wouldn’t have intelligence, really.

The Great Philosophical Divide

“Analytic” philosophers, and AI researchers too, take it for granted 
that some scientific psychology is possible. Indeed, that position 
has been assumed throughout this book—including this chapter.

Phenomenologists, however, reject that assumption.32 They 
argue that all our scientific concepts arise from meaningful con-
sciousness, so can’t be used to explain it. (Putnam himself now 
accepts that position.33) They even claim that it’s nonsensical to 
posit a real world existing independently of human thought, 
whose objective properties science may discover.

So the lack of consensus about the nature of mind/intelligence 
is even deeper than I’ve indicated so far.

There’s no knock-down argument against the phenomenolo-
gists’ view—nor for it, either. For there’s no common ground from 
which to mount one. Each side defends itself and criticizes the 
other, but using arguments whose key terms aren’t mutually 
agreed. Analytic and phenomenological philosophy give funda-
mentally different interpretations even of basic concepts like rea-
son and truth. (The AI scientist Brian Cantwell Smith has offered 
an ambitious metaphysics of computation, intentionality, and objects 
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that aims to respect the insights of both sides;34 unfortunately, his 
intriguing argument is unpersuasive.)

This dispute is unresolved—and perhaps irresolvable. To some 
people, the phenomenologists’ position is “obviously” right. To 
others, it’s “obviously” absurd. That’s yet another reason why no 
one knows, for sure, whether an AGI could really be intelligent.



7

The Singularity

AI’s future has been hyped since its inception. Overly enthusiastic 
predictions from (some) AI professionals have excited, and some-
times terrified, journalists and cultural commentators. Today, the 
prime example is the Singularity: the proposed point in  time at 
which machines become more intelligent than humans.

First, it’s said, AI will reach human-level intelligence. (It’s tacitly 
assumed that this would be real intelligence: see Chapter 6.) Soon 
afterwards, AGI will morph into ASI—“S” for Superhuman. For 
the systems will be intelligent enough to copy themselves, and so 
outnumber us—and to improve themselves, and so out-think us. 
Most important problems and decisions will then be addressed by 
computers.

This notion is hugely contentious. People disagree about whether 
it could happen, whether it will happen, when it might happen, 
and whether it would be a good or bad thing.
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Singularity believers (S-believers) argue that AI advances make 
the Singularity inevitable. Some welcome this. They foresee human-
ity’s problems solved. War, disease, hunger, boredom, even per-
sonal death . . . all banished. Others predict the end of humanity—or 
anyway, of civilized life as we know it. Stephen Hawking (along-
side Stuart Russell, co-author of AI’s leading textbook1) made 
worldwide waves in May 2014 by saying that to ignore the threat 
of AI would be “potentially our worst mistake ever.”

By contrast, the Singularity skeptics (S-skeptics) don’t expect 
the Singularity to happen—and certainly not in the foreseeable 
future. They allow that AI provides plenty to worry about. But 
they don’t see an existential threat.

Prophets of the Singularity

The idea of an AGI-to-ASI transition has recently become a media 
commonplace, but it originated in the mid-twentieth century. 
The key initiators were “Jack” Good (a fellow codebreaker of Alan 
Turing’s at Bletchley Park), Vernor Vinge, and Ray Kurzweil. (Turing 
himself had expected “the machines to take control,” but didn’t 
elaborate.)

In 1965, Good predicted an ultraintelligent machine, which 
would “far surpass all the intellectual activities of any man how-
ever clever.”2 Since it could design even better machines, it would 
“unquestionably [lead to] an intelligence explosion.” At that time, 
Good was cautiously optimistic: “The first ultraintelligent machine 
is the last invention that man need ever make—provided that the 
machine is docile enough to tell us how to keep it under control.” Later, 
however, he argued that ultraintelligent machines would destroy us.
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A quarter-century later, Vinge popularized the term “Singularity” 
(initiated in this context by John von Neumann in 1958).3 He pre-
dicted “The Coming Technological Singularity”—at which all 
predictions will break down (compare the event horizon of a 
black hole).

The Singularity itself, he allowed, can be foreseen: indeed, it’s 
inevitable. But among the many (unknowable) consequences might 
be the destruction of civilization, and even of humankind. We’re 
heading for “a throwing away of all the previous rules, perhaps 
in the blink of an eye, an exponential runaway beyond any hope 
of control.” Even if every government realized the danger and tried 
to prevent it, he said, they couldn’t.

The pessimism of Vinge and (eventually) Good is countered 
by  Kurzweil.4 He offers not only breath-taking optimism, but 
also dates.

His book, tellingly titled The Singularity is Near, suggests that AGI 
will be achieved by 2030—and that by 2045, ASI (combined with 
nanotechnology and biotechnology) will have defeated war, dis-
ease, poverty, and personal death. It will also have engendered “an 
explosion of art, science, and other forms of knowledge that . . . will 
make life truly meaningful.” By mid-century, too, we’ll be living in 
immersive virtual realities hugely more rich and satisfying than 
the real world. For Kurzweil, “The Singularity” really is singular, and 
“Near” really does mean near.

(This hyper-optimism is sometimes tempered. Kurzweil lists 
many existential risks, largely from AI-aided biotechnology. 
Regarding AI itself, he says: “Intelligence is inherently impossible 
to control . . . It is infeasible today to devise strategies that will abso-
lutely ensure that future AI embodies human ethics and values.”)



150  AI 

Kurzweil’s argument relies on “Moore’s Law,” the observation—
by Gordon Moore, who founded Intel—that the computer power 
available for one dollar doubles every year. (The laws of physics 
will conquer Moore’s Law eventually, but not in the foreseeable 
future.) As Kurzweil points out, any exponential increase is highly 
counter-intuitive. Here, he says, it implies AI advance at an 
unimaginable rate. So, like Vinge, he insists that expectations built 
on past experience are near-worthless.

Competing Predictions

Despite being declared near-worthless, post-Singularity forecasts 
are often made nevertheless. A host of mind-boggling examples are 
found in the literature, of which only a few can be mentioned here.

S-believers fall into two camps: pessimists (following Vinge) 
and optimists (following Kurzweil). They mostly agree that AGI-
to-ASI will happen well before the end of this century. But they 
disagree on just how dangerous the ASI will be.

For example, some foresee evil robots doing all in their power 
to thwart human hopes and lives (a common trope of science 
fiction and Hollywood movies). The idea that we could “pull the 
plug,” if necessary, is specifically denied. The ASIs, we’re told, 
would be canny enough to make this impossible.

Others argue that ASIs will have no malicious intent but will be 
hugely dangerous anyway. We wouldn’t build hatred of humans into 
them, and there’s no reason why they should develop it for them-
selves. Rather, they will be indifferent to us, much as we are to 
most non-human species. But their indifference, if our interests 
conflict with their own goals, could be our downfall: Homo sapiens 
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as dodo. In Nick Bostrom’s widely quoted thought experiment, 
an ASI intent on making paper clips would scavenge the atoms in 
human bodies to manufacture them.5

Or again, consider a general strategy sometimes suggested for 
guarding against Singularity threats: containment. Here, an ASI is 
prevented from directly acting on the world, although it can 
directly perceive the world. It’s used only to answer our questions 
(what Bostrom calls an “Oracle”). However, the world includes 
the Internet, and ASIs might cause changes indirectly by contrib-
uting content—facts, falsehoods, computer viruses . . .—to the 
Internet.

Another form of Singularity pessimism predicts that the 
machines will get us to do their dirty work for them, even if this 
goes against humanity’s interests. This view scorns the idea that 
we could “contain” ASI systems by cutting them off from the 
world. A super-intelligent machine, it’s said, could use bribery or 
threats to persuade one of the few humans to which it is sometimes 
connected to do things that it’s unable to do directly.

That particular worry assumes that the ASI will have learned 
enough about human psychology to know what bribes or threats 
are likely to work, and maybe also which individuals are most likely 
to be vulnerable to a certain type of persuasion. To the objection 
that this assumption is incredible, the reply would be that crude 
financial bribes, or murderous threats, would work with almost 
anyone—so the ASI wouldn’t need psychological insight rivaling 
that of Henry James. Nor would it need to understand, in human 
terms, what persuasion, bribery, and threat actually are. It would merely 
need to know that inputting certain NLP texts to a human being is 
likely to influence their behavior in broadly predictable ways.
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Some of the optimistic forecasts are even more challenging. 
Perhaps the most arresting are Kurzweil’s predictions of living in 
a virtual world and of the elimination of personal death. Bodily 
death, although much delayed (by ASI-aided bioscience), would 
continue. But death’s sting could be drawn by downloading the 
personalities and memories of individual people into computers.

This philosophically problematic assumption, that a person 
could exist either in silicon or in neuroprotein (see Chapter 6), is 
reflected in the subtitle of his 2005 book: When Humans Transcend 
Biology. Kurzweil was expressing his “Singularitarian” vision—
also called transhumanism, or posthumanism—of a world 
containing partly, or even wholly, non-biological people.

These transhumanist “cyborgs”, it’s claimed, will have various 
computerized implants directly connected to their brains, and 
prostheses for limbs and/or sense organs. Blindness and deafness 
will be banished, because visual and auditory signals will be inter-
preted through the sense of touch. Not least, rational cognition 
(as well as moods) will be enhanced by specially designed drugs.

Early versions of such assistive technologies are already with us. 
If they proliferate as Kurzweil suggests, our concept of humanity 
will be profoundly changed. Instead of seeing prostheses as useful 
add-ons to human bodies, they will be seen as (trans)human body 
parts. Widely used psychotropic drugs will be listed alongside 
natural substances like dopamine in accounts of “the brain.” And 
the superior intelligence, strength, or beauty of genetically engi-
neered individuals will be regarded as “natural” features. Political 
views on egalitarianism and democracy will be challenged. A new 
sub-species (or species?) may even develop, from human ancestors 
wealthy enough to exploit these possibilities.
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In short, biological evolution is expected to be replaced by tech-
nological evolution. Kurzweil sees the Singularity as “the culmina-
tion of the merger of our biological thinking and existence with 
our technology, resulting in a world [in which] there will be no 
distinction . . . between human and machine or between physical 
and virtual reality.” (You can be forgiven for feeling that you need 
to take a very deep breath.)

Transhumanism is an extreme example of how AI may change 
ideas about human nature. A less extreme philosophy that assim-
ilates technology into the very concept of mind is “the extended 
mind,” seeing the mind as spread out over the world to include 
cognitive processes that rely upon it.6 Although the notion of the 
extended mind has been widely influential, transhumanism has 
not. It has been enthusiastically endorsed by some philosophers, 
cultural commentators, and artists.7 However, not all S-believers 
accept it.

Skepticism Defended

In my judgement, the S-skeptics are right. The discussion of mind-
as-virtual-machine in Chapter 6 implied that there is no obstacle 
in principle to human-level AI intelligence (possibly excepting phe-
nomenal consciousness). The question here is whether this is likely 
in practice.

Besides the intuitive implausibility of many post-Singularity 
predictions, and the near-absurdity (imho) of transhumanist phi-
losophy, the S-skeptics have other arguments on their side.

AI is less promising than many people assume. Chapters 2 
through 5 mentioned countless things that current AI cannot do. 
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Many require a human sense of relevance (and tacitly assume com-
pletion of the semantic web: see Chapter  2). Moreover, AI has 
focused on intellectual rationality while ignoring social/emotional 
intelligence—never mind wisdom. An AGI that could interact 
fully with our world would need those capacities, too. Add the 
prodigious richness of human minds, and the need for good psy-
chological/computational theories about how they work, and the 
prospects for human-level AGI look dim.

Even if it were practically feasible, it’s doubtful whether the 
necessary funding would materialize. Governments are currently 
putting enormous resources into brain emulation (see the follow-
ing section), but the money required for building artificial human 
minds would be much greater still.

Thanks to Moore’s Law, further AI advances can certainly be 
expected. But increases in computer power, and in data availabil-
ity (given cloud storage, and 24/7 sensors throughout the Internet 
of Things), won’t guarantee human-like AI. That’s bad news for 
S-believers, because ASI needs AGI first.

S-believers ignore the limitations of current AI. They simply 
don’t care, because they have a trump card: the notion that expo-
nential technological advance is rewriting all the rule books. 
This licenses them to make predictions at will. They occasionally 
allow that “by-end-of-the-century” predictions may be unrealistic. 
However, they insist that “never” is a long time.

Never is indeed a long time. So the S-skeptics, myself included, 
may be wrong. They have no knock-down argument— especially 
if they allow AGI’s possibility in principle (as I do). They may even 
be persuaded that the Singularity, albeit hugely delayed, will 
happen eventually.
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Nevertheless, careful consideration of state-of-the-art AI gives 
good reason to back the skeptics’ hypothesis (or their bet,  if you 
prefer), rather than the wild speculations of the S-believers.

Whole-Brain Emulation

S-believers predict exponential technological advance in AI, bio-
technology, and nanotechnology—and in cooperation between 
them. Indeed, it’s already happening. Analyses of Big Data are 
being used to advance genetic engineering and drug development, 
and many other scientifically based projects too (Ada Lovelace 
vindicated: see Chapter 1). Likewise, AI and neuroscience are being 
combined in whole-brain emulation (WBE).

The aim of WBE is to mimic a real brain by simulating its individual 
components (neurons), along with their connections and inform
ation-processing capabilities. The hope is that the scientific know
ledge acquired will have many applications, including treatments for 
mental pathologies ranging from Alzheimer’s to schizophrenia.

This reverse engineering will require neuromorphic computing, 
which models sub-cellular processes such as the passage of ions 
through the cell membrane (see Chapter 4).

Neuromorphic computing depends on knowledge about the 
anatomy and physiology of the various types of neuron. But WBE 
will also need detailed evidence about specific neuronal connec-
tions and functionality, including timing. Much of this will 
require improved brain scanning, with miniaturized neuroprobes 
monitoring individual neurons continuously.

Various WBE projects are now underway, often compared by 
their sponsors to the Human Genome Project or the race to the 
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moon. For instance, in 2013 the European Union announced the 
Human Brain Project, costed at £1 billion. Later that year, US 
President Barack Obama heralded BRAIN, a ten-year project 
funded by $3bn from the US government (plus a significant 
amount of private money). It aims first to generate a dynamic map 
of the connectivity of the mouse brain, and then to emulate the 
human case.

Earlier attempts at partial brain emulation were also govern-
ment-funded. In 2005, Switzerland sponsored the Blue Brain 
project—initially to simulate a rat’s cortical column, but with the 
long-term aim of modeling the million columns in the human 
neocortex. In 2008, DARPA provided nearly $40m for SyNAPSE 
(Systems of Neuromorphic and Plastic Scalable Electronics); by 
2014—and with a further $40m—this was using chips carrying 
5.4bn transistors, each holding one million units (neurons) and 
256m synapses. And Germany and Japan are collaborating in 
using NEST (NEural Simulation Technology) to develop the K 
computer; by 2012, this was taking forty minutes to simulate one 
second of 1% of real-brain activity, involving 1.73bn “neurons” and 
10.4 trillion “synapses.”

Because it’s so expensive, mammalian WBE is rare. But countless 
attempts to map much smaller brains are going on around the world 
(at my own university, they’re focused on honey bees). These may 
provide neuroscientific insights that can help human-scale WBE.

Given the hardware progress already achieved (e.g. SyNAPSE’s 
chips), plus Moore’s Law, Kurzweil’s prediction that computers 
matching the raw processing power of human brains will exist by 
the 2020s is plausible. But his belief that they will match human 
intelligence by 2030 is another matter.
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For it is the virtual machine that’s crucial here (see Chapters  1 
and 6). Some virtual machines can be implemented only in hugely 
powerful hardware. So mega-transistored computer chips may 
well be necessary. But just what computations will they be per-
forming? In other words, just what virtual machines will be 
implemented in them? To match human (or even mouse) intelli-
gence, these will need to be informationally powerful, in ways that 
computational psychologists don’t yet fully understand.

Let’s suppose—what is, I think, unlikely—that every neuron in 
a human brain will, eventually, be mapped. In itself, this won’t tell 
us what they are doing. (The tiny nematode worm C. elegans has 
only 302 neurons, whose connections are known precisely. But we 
can’t even identify the synapses as excitatory/inhibitory.)

For visual cortex, we already have a fairly detailed mapping 
between neuroanatomy and psychological function. But that’s not 
so for neocortex in general. In particular, we don’t know much 
about what it is that the frontal cortex is doing—that is, what vir-
tual machines are implemented in it. That question isn’t promi-
nent in large-scale WBE. The Human Brain Project, for instance, 
has adopted a firmly bottom-up approach: look at the anatomy 
and biochemistry, and mimic it. Top-down questions, about the 
psychological functions that the brain may be supporting, are 
sidelined (very few cognitive neuroscientists are involved). Even 
if the anatomical modeling were fully achieved, and the chemical 
messaging carefully monitored, those top-down questions wouldn’t 
be answered.

Answers would require a wide variety of computational con-
cepts. Moreover, one key topic is the computational architec-
ture of the mind (or mind-brain) as a whole. We saw in Chapter 3 
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that action planning in multi-motive creatures requires complex 
scheduling mechanisms—such as those provided by emotions. 
And the discussion of LIDA in Chapter  6 indicated the huge 
complexity of cortical processing. Even the mundane activity 
of eating with a knife and fork requires that many virtual machines 
be integrated—some dealing with physical objects (muscles, fin-
gers, utensils, various kinds of sensors), others with intentions, 
plans, expectations, desires, social conventions, and preferences. 
To understand how that activity is possible, we need not only neu-
roscientific data about the brain, but also detailed computational 
theories about the psychological processes involved.

In short, considered as a route to understanding human intelli-
gence, bottom-up WBE is likely to fail. It may teach us a lot about 
the brain. And it may help AI scientists to develop further practi-
cal applications. But the notion that mid-century WBE will have 
explained human intelligence is an illusion.

What We Should be Worrying about

If the S-skeptics are right, and there will be no Singularity, it doesn’t 
follow that there’s nothing to worry about. AI already raises mat-
ters of concern. Future advances will surely raise more, so anxiety 
about the long-term safety of AI isn’t wholly out of place. More to 
the point, we need to pay attention to its short-term influences, too.

Some worries are very general. For example, any technology 
can be used for good or ill. Malicious people will use any available 
tools—and sometimes fund the development of new ones—to do 
malicious things. (CYC, for instance, might be useful for wrongdoers: 
its developers are already thinking about how to limit access to the 
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full system, when released—see Chapter 2.) So we must be very 
careful about what we invent.

As Stuart Russell points out, this means more than merely 
being careful about our aims. If there are ten parameters relevant 
to a problem, and statistically optimizing machine learning (see 
Chapter 2) considers only six, then the other four can—and prob-
ably will—be pushed to extremes. Hence we also need to be 
vigilant about what sorts of data are being used.

That general worry concerns the frame problem (see Chapter 2). 
Like the fisherman in the fairy story, whose wish for his soldier-son 
to come home was granted by his being brought back in a coffin, 
we could be nastily surprised by powerful AI systems lacking our 
understanding of relevance.

For example, when a Cold War early-warning system recom-
mended a defensive strike on the USSR, disaster was averted 
only by the operators’ sense of relevance—both political and 
humanitarian.8 They judged that the Soviets at the UN hadn’t been 
especially obstreperous recently, and they feared the horrendous 
consequences of a nuclear attack. So, violating protocols, they 
ignored the automated warning. Several other nuclear near-misses 
have happened; some, recently. Usually, escalation was prevented 
only by people’s common sense.

Moreover, human error is always possible. Sometimes, it’s 
understandable. (The Three Mile Island emergency was made 
worse by humans overriding the computer, but the physical con-
ditions they were facing were highly unusual.) But it can be breath-
takingly unexpected. The Cold War alert mentioned in the previous 
paragraph happened because someone had forgotten leap years 
when programming the calendar—so the moon was in the 
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“wrong” place. All the more reason, then, for testing and (if possi-
ble) proving the reliability of AI programs before they’re used.

Other worries are more specific. Some should be troubling us 
today.

One major threat is technological unemployment. Many man-
ual and low-level clerical jobs have disappeared. Others will follow 
(although manual jobs requiring dexterity and adaptability won’t 
vanish). Most of the lifting, fetching, and carrying in a warehouse 
can now be done by robots. And driverless vehicles will mean 
jobless people.

Middle-managerial positions are at risk also. Many profession-
als are already using AI systems as aids. It won’t be long before jobs 
(in law and accountancy, for instance) involving time-consuming 
research into regulations and precedents can be largely taken over 
by AI. More demanding tasks, including many in medicine and 
science, will fairly soon be affected too. Jobs will be down-skilled, 
even if they’re not lost. And professional training will suffer: how 
will the youngsters learn to make sensible judgements?

While some legal jobs will be redundant, lawyers will also gain 
from AI, because a host of legal traps lie in wait. If something goes 
wrong, who should be responsible: programmer, wholesaler, 
retailer, or user? And might a human professional sometimes be 
sued for not using an AI system? If the system had been shown 
(whether mathematically or empirically) to be highly reliable, such 
litigation would be very likely.

New types of jobs will doubtless appear. But whether these will 
be equivalent in terms of numbers, educational accessibility, and/or 
breadwinning power (as happened after the Industrial Revolution) 
is doubtful.9 Serious sociopolitical challenges lie ahead.
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“Service” positions are less threatened. But even they are endan-
gered. In an ideal world, the opportunity for multiplying, and upgrad-
ing, currently undervalued person-to-person activities would be 
grasped with enthusiasm. However, that’s not guaranteed.

For instance, education is being opened up to personal and/or 
Internet-based AI aids—including MOOCs (Massive Open Online 
Courses) offering lectures by academic stars—that down-skill the 
jobs of many human teachers. Computer psychotherapists are 
already available, at much less expense than human therapists. 
(Some are surprisingly helpful—for recognizing depression, for 
instance.) However, they’re entirely unregulated. And we saw in 
Chapter 3 that demographic change is encouraging research in the 
potentially lucrative area of artificial “carers” for the elderly, as well 
as “robot nannies.”10

Quite apart from any effects on unemployment, the use of 
empathy-free AI systems in such essentially human contexts is 
both practically risky and ethically dubious. Many “computer 
companions” are designed for use by elderly and/or disabled peo-
ple who have only minimal personal contact with the few humans 
they encounter. They’re intended as sources not merely of aid 
and  entertainment but also of conversation, conviviality, and 
emotional comfort. Even if the vulnerable person is made happier 
by such technology (as Paro-users are), their human dignity is 
insidiously betrayed. (Cultural differences are important here: 
attitudes to robots differ hugely between Japan and the West, for 
instance.)

The elderly users may enjoy discussing their personal mem
ories with an artificial companion. But is this really a discussion? It 
might be a welcome reminder, triggering comforting episodes of 
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nostalgia. However, that benefit could be provided without seduc-
ing the user into an illusion of empathy. Often, even in emotion-
ally fraught counseling situations, what the person wants above 
all is an acknowledgement of their courage and/or suffering. But that 
arises from a shared understanding of the human condition. We 
are short-changing the individual by offering only a superficial 
simulacrum of sympathy.

Even if the user is suffering moderately from dementia, their 
“theory” of the AI agent is likely to be much richer than the agent’s 
model of the human. What would result, then, if the agent fails 
to respond as expected, and as needed, when the person reminisces 
about some distressing personal loss (of a child, perhaps)? 
Conventional expressions of sympathy from the companion 
wouldn’t help—and might do more harm than good. Meanwhile, 
the person’s distress would have been aroused with no comfort 
immediately available.

Another worry concerns whether the companion should some-
times be silent, or tell a white lie. Relentless truth-telling (and sud-
den silences) might upset the user. But tactfulness would require 
hugely advanced NLP plus a subtle model of human psychology.

As for robot nannies (and ignoring safety issues), overuse of 
AI systems with babies and infants might warp their social and/or 
linguistic development.

Artificial sex partners are not only being depicted in the movies 
(in the film Her, for instance). They are already being marketed. 
Some are capable of speech recognition, and of seductive speech 
and/or movement. They augment the Internet-based influences that 
are currently coarsening people’s sexual experience (and reinforcing 
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the sexual objectification of women). Many commentators (includ-
ing some AI scientists) have written about sexual encounters with 
robots in terms that reveal an extraordinarily shallow concept of 
personal love, close to confusing it with lust, sexual obsession, and 
mere comfortable familiarity.11 However, such cautionary observa-
tions are unlikely to be effective. Given the huge profitability of 
pornography in general, there’s scant hope of preventing future 
“advances” in AI sex dolls.

Privacy is another knotty issue. It’s becoming even more con-
tentious, as powerful AI search and AI learning are let loose on 
data collected from personal media and home-based or wearable 
sensors. (Google has recently patented a robotic teddy bear, with 
camera eyes, microphone ears, and speakers in its mouth. It will be 
able to communicate with parents as well as child—and, willy-nilly, 
with unseen data collectors too.)

Cyber security has long been a problem. The more that AI 
enters into our world (often in very non-transparent ways), the 
more important it will be. One defense against an ASI takeover 
would be to find ways of writing algorithms that couldn’t be 
hacked/altered (a goal of “Friendly AI”: see the next section).

Military applications, too, raise concerns. Robot minesweepers 
are very welcome. But robot soldiers or robot weapons? Current 
drones are human-instigated, but even so they may increase suf-
fering by enlarging the human (not just geographical) distance 
between operator and target. One must hope that future drones 
won’t be allowed to decide who/what should be a target. Even 
trusting them to recognize a (humanly chosen) target raises ethically 
troubling issues.
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What’s being Done about it

None of these worries is new, although few AI workers have taken 
much notice of them until now.

Several AI pioneers considered the social implications at a meet-
ing at Lake Como in 1972, but John McCarthy refused to join them, 
saying it was too early to speculate. A few years later, the com-
puter scientist Joseph Weizenbaum published a book subtitled 
From Judgment to Calculation, bewailing the “obscenity” of confus-
ing the two—but he was dismissed contemptuously by the AI 
community.12

There were some exceptions, of course. For instance, the first 
book to overview AI included a final chapter on “Social Signifi
cance.”13 And CPSR (Computer Professionals for Social Responsi
bility) was founded in 1983 (partly through the efforts of SHRDLU’s 
author Terry Winograd: see Chapter 3). But that was done primar-
ily to warn of the unreliability of Star Wars technology—the com-
puter scientist David Parnas even addressed the US Senate about 
this. As Cold War worries receded, most AI professionals seemed 
less concerned about their field. Only a few, such as the University 
of Sheffield’s Noel Sharkey (a roboticist who chairs the International 
Committee for Robot Arms Control),14 plus some philosophers of 
AI, for example, Yale’s Wendell Wallach,15 and Sussex’s Blay Whitby,16 
continued over the years to focus on social/ethical issues.

Now, because of both the practice and the promise of AI, the mis-
givings have become more pressing. Within the field (and, to some 
extent, outside it) social implications are receiving more attention.

Some important responses have nothing to do with the 
Singularity. For instance, the UN and Human Rights Watch have 
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long advocated a treaty (not yet signed) banning fully autonomous 
weapons, such as target-selecting drones. And some long-established 
professional bodies have recently reviewed their research priorities 
and/or codes of conduct. But talk of the Singularity has brought 
additional contributors into the debate.

Many people—S-believers and S-skeptics alike—argue that even 
if the probability of the Singularity is extremely small, the possible 
consequences are so grave that we should start taking precautions 
now. Despite Vinge’s claim that nothing can be done about the 
existential threat, several institutions have been founded to guard 
against it.

They include the UK’s Centre for the Study of Existential Risk 
(CSER) in Cambridge and Future of Humanity Institute (FHI) in 
Oxford, and the USA’s Future of Life Institute (FLI) in Boston and 
Machine Intelligence Research Institute (MIRI) in Berkeley. These 
organizations are largely funded by AI philanthropists. For instance, 
CSER and FLI were co-founded by Jaan Tallinn, the co-developer 
of Skype. Both those institutions, besides communicating with 
AI professionals, are trying to alert policy-makers and other influ-
ential members of the public to the dangers.

The president of the American Association for AI (Eric Horwitz) 
organized a small panel in 2009 to discuss what precautions might 
be necessary to guide, or even delay, socially problematic AI work. 
This was pointedly held in Asilomar, California, where profes-
sional geneticists some years earlier had agreed a moratorium 
on certain genetic research. However, as a member of the group, it 
was my impression that not all of the participants were seriously 
concerned about AI’s future. The ensuing report didn’t get extensive 
media coverage.
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A similarly motivated, but larger, meeting (under Chatham 
House rules, and with no journalists present) was convened by 
FLI and CSER in Puerto Rico in January 2015. The organizer, Max 
Tegmark, had co-signed the minatory letter with Russell and 
Hawking six months earlier. Unsurprisingly, then, the atmosphere 
was noticeably more urgent than at Asilomar. It immediately 
resulted in generous new funding (from the Internet millionaire 
Elon Musk) for research on AI safety and ethical AI—plus a 
cautionary open letter, signed by thousands of AI workers and 
widely circulated in the media.

Soon afterwards, a second open letter drafted by Tom Mitchell 
and several other leading researchers warned against developing 
autonomous weapons that would select and engage targets with-
out human intervention. The signatories hoped to “prevent a 
global AI arms race from starting.” Presented at AI’s International 
Conference in July 2015, this was signed by nearly 3,000 AI scien-
tists and by 17,000 people in related fields, and received extensive 
media coverage.

The Puerto Rico meeting also led to an open letter (in June 2015) 
by MIT economists Erik Brynjolfsson and Andy McAfee. This was 
aimed at policy-makers, entrepreneurs, and businessmen, as well 
as at professional economists. Warning of the potentially radical 
economic implications of AI, they suggested some public policy 
recommendations that might ameliorate—though not cancel—
the risks.

These AI-community efforts are persuading the transatlantic 
governmental funders of the importance of social/ethical issues. 
The USA’s Department of Defense and National Science Founda
tion have both recently said that they are willing to fund such 
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research.17 But this support isn’t entirely new: “governmental” 
interest has been growing for some years.

For instance, two UK Research Councils sponsored an interdis-
ciplinary “Robotics Retreat” in 2010, partly to draft a code of con-
duct for roboticists. Five “Principles” were agreed, two of which 
addressed worries discussed above: “(1) Robots should not be 
designed as weapons, except for national security reasons” and 
“(4) Robots are manufactured artefacts: the illusion of emotions 
and intent should not be used to exploit vulnerable users.”

Two more laid the moral responsibility squarely on human shoul-
ders: “(2) Humans, not robots, are responsible agents . . .” and “(5) It 
should be possible to find out who is [legally] responsible for any 
robot.” The group refrained from trying to update Isaac Asimov’s 
“Three Laws of Robotics” (a robot must not harm a human being, 
and must obey human orders and protect its own survival unless 
these conflict with the first Law). They insisted that any “laws” here 
are to be followed by the human designer/builder, not the robot.

In May 2014, an academic initiative funded by the US Navy 
($7.5m for five years) was hailed across the media. This is a five-uni-
versity project (Yale, Brown, Tufts, Georgetown, and Rensselaer 
Institute), aimed at developing “moral competence” in robots. It 
involves cognitive and social psychologists and moral philosophers, 
as well as AI programmers and engineers.

This interdisciplinary group isn’t trying to provide a list of 
moral algorithms (comparable to Asimov’s Laws), nor to prioritize 
a particular meta-ethics (e.g. utilitarianism), nor even to define a set 
of non-competing moral values. Rather, it hopes to develop a com-
putational system capable of moral reasoning (and moral discus-
sion) in the real world. For autonomous robots will sometimes 
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be taking deliberative decisions, not merely following instructions 
(still less, reacting inflexibly to “situated” cues: see Chapter  5). If 
a robot is engaged in search and rescue, for instance, who should 
it evacuate/rescue first? Or if it’s providing social companionship, 
when—if ever—should it avoid telling its user the truth?

The proposed system would integrate perception, motor action, 
NLP, reasoning (both deductive and analogical), and emotion. The 
latter would include emotional thinking (which can signal signifi-
cant events, and also schedule conflicting goals: see Chapter  3); 
robotic displays of “protest and distress,” which could influence 
the moral decisions taken by people interacting with it; and the 
recognition of emotions in the humans surrounding it. And, so 
the official announcement declares, the robot might even “exceed” 
ordinary (i.e. human) moral competence.

Given the obstacles to AGI noted in Chapters 2 and 3, plus the 
difficulties relating specifically to morality (see Chapter 6), one may 
well doubt that this task is achievable. But the project could be 
worthwhile nevertheless. For in considering real-world problems 
(like the two very different examples given above), it may alert us to 
the many dangers of using AI in morally problematic situations.

Besides these institutional efforts, an increasing number of indi-
vidual AI scientists are aiming for what Eliezer Yudkowsky calls 
“Friendly AI.”18 This is an AI that has positive effects for humanity, 
being both safe and useful. It would involve algorithms that are 
intelligible, reliable, and robust, and which fail gracefully if they 
fail at all. They should be transparent, predictable, and not vulner-
able to manipulation by hackers—and if their reliability can be 
proved by logic or mathematics, as opposed to empirical testing, 
so much the better.
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The $6m donated by Musk at the Puerto Rico meeting led 
immediately to an unprecedented “Call for Proposals” from FLI 
(six months later, thirty-seven projects had been funded). Aimed 
at experts in “public policy, law, ethics, economics, or education 
and outreach” as well as in AI, it asked for: “Research projects 
aimed to maximize the future societal benefit of artificial intelli-
gence while avoiding potential hazards” and “limited to research 
that explicitly focuses not on the standard goal of making AI more 
capable, but on making AI more robust and/or beneficial. . . .” That 
welcome appeal for Friendly AI might, perhaps, have happened 
anyway. But the footprint of the Singularity was visible: 
“Priority will be given,” it said, “to research aimed at keeping AI 
robust and beneficial even if it comes to greatly supersede current 
capabilities. . . .”

In sum, near-apocalyptic visions of AI’s future are illusory. But, 
partly because of them, the AI community—and policy-makers 
and the general public, too—are waking up to some very real 
dangers. Not before time.
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