
Weaknesses of RSA and DSA keys used in networks

How bad entropy can affect your security system

Bruno Keith
ENSIMAG, Grenoble-INP

Grenoble, France
bruno.keith@ensimag.grenoble-inp.fr

Charles-Elie Simon
ENSIMAG, Grenoble-INP

Grenoble, France
charles-elie.simon@ensimag.grenoble-

inp.fr

ABSTRACT
RSA and DSA keys can be vulnerable to attacks when a
very large number of keys have been gathered. In this pa-
per, we discuss such an attack on RSA by reproducing the
attack and we provide a theoretical approach to this attack
by approximating the number of keys necessary to factorize
a given key with a given probability.

We also tried to determine if entropy holes at boot-time can
be used to attack keys that are generated at this moment.

We largely based our work on ”Mining your Ps and Qs: De-
tection of Widespread Weak Keys in Network Devices”[10],
a research paper published in 2012 by Nadia Heninger, Zakir
Durumeric, Eric Wustrow and J. Alex Halderman.

Keywords
RSA, entropy, PRNG

1. INTRODUCTION
RSA keys can be vulnerable to attacks when a very large
number of keys have been gathered. Moreover if multiple
keys have been generated with insufficient entropy, they can
be an easy target for an attack based on gcd computation.

In this paper we conducted a theoretical approach to this at-
tack: we provide a formula that allows someone to estimate
the number of keys necessary to crack a given key using an
attack using gcd computation based on the ”Birthday Para-
dox”[4].

We also reproduced the attack on keys with small size gen-
erated using OpenSSL to check our results.

Then, we checked if certain applications that generate keys
at boot-time could generate keys with insufficient entropy,
we gathered keys from virtual machines that we mounted
just to generate the keys.

Finally, we discuss counter-measures to such attacks and
how we can improve the security regarding random numbers
generation.

We largely based our work on ”Mining your Ps and Qs: De-
tection of Widespread Weak Keys in Network Devices”[10],
a research paper published in 2012 by Nadia Heninger, Zakir
Durumeric, Eric Wustrow and J. Alex Halderman.

2. STATE OF THE ART
In 2012, Nadia Heninger, Zakir Durumeric, Eric Wustrow
and J. Alex Halderman performed an Internet-wide scan of
TLS and SSH servers and found that a lot of them used
vulnerable RSA and DSA keys.

They were able to factorize the RSA keys in about 0.5% of
the servers by computing the gcdx of all pairs of keys but
they do not provide a theoretical approach to this attack.
Their work showed that a lot of RSA and DSA keys used in
networks are vulnerable because of weak entropy at genera-
tion or other problems in implementation.

2.1 RSA
RSA is a well known and widely used public-key cryptosys-
tem. As in such a system, RSA uses two different keys,
one public and another one kept private. We don’t describe
RSA encryption and decryption processes as they are be-
yond the scope of this article and instead focus only on the
key generation process.

The RSA key generation step involves choosing two prime
factors, usually noted p and q, and computing the modulus
n = pq, which is public, used for encryption and decryption.
The security of RSA relies on the fact that given a modulus
n it is computationally infeasible to retrieve p and q for keys
of a certain size. If an attacker retrieve those factors, it is
very easy to compute the private key.

Our paper will focus on finding collisions on those prime
factors.

2.2 Attack using GCDs on a large RSA key
collection

In this section, we will discuss the attack that we conducted
on large collections of keys of variable length. We focused
our efforts on keys of size 32 to 96 bits because we did not
have access to the sufficient infrastructure to conduct attacks
on larger keys.

The main principle behind this attack is the following: given
two moduli N1 and N2, if they share one prime factor, an
attacker can obtain it by computing gcd(N1, N2) thus allow-
ing allowing to efficiently factorize both keys and retrieve the
two private keys.

To attack a key, an attacker can generate a large number of
keys hoping that one of these keys will have one prime factor
in common with the targeted key. It is somewhat similar to
a birthday attack[3] where the likelihood of a collision, that
is to say of a prime factor being repeated, allows a more
efficient attack than to generate all possible keys, as in a
classical brute force attack.

2.3 DSA
DSA is an algorithm used for digital signature. It works as
the following: the public-key is composed of three domain
parameters, two primes p and q and a generator g of the
subgroup of order q mod p, as well of an integer y which is
equals to gxmod p with x the private key. A DSA signature
is a couple of integers r and s where r is r = gkmod p and
s is s = k−1(H(m) + xr) mod q, k is a randomly generated
ephemeral private key and H(m) is the hash of the message
to sign.

2.4 Attack on DSA when low entropy is in-
volved

Since DSA uses an ephemeral randomly generated key to
sign the message, it is really important that enough entropy
is used at generation so that an attacker cannot predict k or
that k does not take two identical values to sign two differ-
ent messages. The following attacks enables an attacker to
compute the private key x when one these situations arise.

In the event that an attacker knows the ephemeral key used
to sign the message, he can retrieve the private key x as
follows:

x = ((sk)−H(m))r−1 mod q

In the event that two messages, ma andmb, have been signed
with the same ephemeral key k, an attacker can retrieve this
key k using the following computation where we note sa the
signature of ma and sb the signature of mb:

sa − sb = k−1(H(ma) + xr)− k−1(H(mb) + xr)

which is equivalent to:

sa − sb = k−1(H(ma)−H(mb))

k can then be computed as:

k =
H(ma)−H(mb)

sa − sb

Once the attacker has retrieved k, he can compute x with
the first formula.

2.5 Generating random numbers using Linux’
random and urandom

2.5.1 Generating random numbers
According to the Linux random(4) manual page[11],
/dev/random and /dev/urandom both are special files that
let the user interact with the kernel random-number gener-
ator. It is important to remember that a CPU cannot cre-
ate randomness by itself. However, device drivers, among
others, constitute sources of noise (coming from the move-
ment of the mouse, for instance) that are external to the
CPU. They can be used by a computer to create true ran-
domness. It should be noticed that embedded and headless
devices benefit from less entropy sources than common per-
sonal computers. The kernel random-number generator thus
collects the noise coming from its environment and stores it
in an entropy pool. /dev/random and /dev/urandom are in-
terfaces that use entropy from the entropy pool so as to
provide data (understand bits) that’s randomly generated.

The command

cat /proc/sys/kernel/random/poolsize

lets the user know the size (in bits) of the entropy pool (4096
bits, usually).

The command

cat /proc/sys/kernel/random/entropy_avail

lets the user know how much entropy (in bits) is currently
available in the pool. This number can be interpreted as
the number of truly randomly generated bits available for
use. The displayed value is, however, only an estimation.
Therefore, when the result is 4096, it means that the pool
is full and that /dev/random and /dev/urandom can provide
the user with 4096 truly randomly generated bits.

A user trying to read data from /dev/random when the en-
tropy pool is not full enough ushers in the said user be-
ing blocked until enough environment noise is gathered by
the kernel random-number generator to satisfy the request.
/dev/random cannot provide more randomly generated bits
than the value displayed by the command:

cat /proc/sys/kernel/random/entropy_avail.

On the contrary, when the entropy pool is not full enough,
/dev/urandom uses a pseudorandom number generator (PRNG)
to provide the requested bits (in a deterministic way): read-
ing from /dev/urandom can never block the user, whereas
reading from /dev/random can.

The Linux random(4) manual page underlines the fact that
the kernel random-number generator was not designed to
produce randomly generated bits at a high pace, but rather
to focus on quality (which means low quantity in our con-
text). Indeed, the truly randomly generated bits provided by
/dev/random and /dev/urandom should be used to seed cryp-

tographic pseudo-random number generators (CPRNG). Pro-
cesses should not read unnecessarily from /dev/random and
/dev/urandom (that is to say squander entropy) as it may
deprive other processes from the truly randomly generated
material they need. Furthermore, this remark is especially
true when it comes to processes reading from /dev/urandom

for they may be actually provided with pseudo-randomly
generated bits instead of truly randomly generated bits.

The authors of Mining your Ps and Qs...[10] highlighted
that /dev/urandom is immensely more used than /dev/random

by developpers for /dev/random is commonly considered to
be too restrictive: such behaviour from programmers is not
consistent with the way the kernel random-number genera-
tor was conceived, for it corresponds to a refusal to wait long
enough to ensure that the produced data is cryptographi-
cally strong. Indeed, the very fact that, in the context of a
lack of entropy, /dev/urandom keeps providing bits (in a de-
terministic way) without any warning can be misleading and
can entail the production of cryptographically weak mate-
rial without anyone noticing. It is also interesting to notice
that most Linux distributions (see Linux random(4) manual
page) save entropy in a file on shutdown, which means that
entropy can be available when booting. However, as stated
in Mining your Ps and Qs...[10], on the first boot, such a
file is not available, which means that using /dev/urandom in
this context can lead to a deterministic output, and therefore
to cryptographically weak content, such as repeated keys, for
instance.

2.5.2 Statistical testing of uniform random number
generators

So as to assess the quality of the output provided by
/dev/urandom, we decided to test it using a utility called
TestU01[13] (version 1.2.3) which is, according to its web-
site, ”a software library [...] for the empirical statistical test-
ing of uniform random number generator”. We performed
two batteries of tests provided by TestU01: SmallCrush,
which is a ”small and fast battery of test” and Crush which
is more thorough. We used a ASUS N550JV laptop which
features a Intel Core i7 4700HQ (2.40 GHz - 3.40 GHz) pro-
cessor and 2 x 4096 Go of DDR3 1600 MHz SDRAM for
the experiment. Our operating system was Ubuntu 14.04.2
LTS. /dev/urandom passed all the tests in SmallCrush. The
execution of this battery of tests took approximately two
minutes on our machine. However, it failed a test called 57

MatrixRank, 60 x 60 in Crush. All other tests were passed.
The execution of Crush took more than three hours on our
machine. Thus, it shows that a lot of work has been achieved
to create quality artificial randomness using computers but
there is still work to be done.

3. THEORETICAL AND EXPERIMENTAL
APPROACH OF THE ATTACK ON GCDS

3.1 Theoretical approach of the attack on GCDs
In this section, we discuss the two parts of our theoretical ap-
proach to the attack on RSA based on GCDs computation,
the first is focused on a collection of key without any focus
on a given key where we distinguish two cases: one where
the length of the key is an even number, another where the
length of the key is an odd number. The other point is cen-
tered around breaking a given key using the same principle.

3.1.1 Attack on a collection of keys
To approximate the number of keys of a given size necessary
to crack at least one of them, we used an approach similar
to the birthday paradox.

Let n be the number of bits of a given modulus N and let
Q(n) be the number of possible values for the factors p and
q of N .

For a key with an even number of bits n, Q(n) can be de-
scribed, for OpenSSL, as the following: it is the number of
primes between 2

n
2
−1 + 2

n
2
−2 and 2

n
2 . To generate a key of

size n, OpenSSL will generate two primes p and q on n
2

bits
by setting the two highest bits to 1 and the lowest bit as
well and randomly generating the bits in between to ensure
that the product pq is on n bits.

Let P̄ (x, n) be the probability that for x generated keys of
size n, all factors of all keys are distinct, i.e there are no
collisions.

P̄ (x, n) can be computed as the following :

P̄ (x, n) =

x−1∏
i=0

Q(n)− 2i

Q(n)

Q(n)− 2i− 1

Q(n)

where x is the number of generated keys.

Therefore the probability that in a given set of keys of same
length, at least two of them share a common factor is :

P (x, n) = 1− P̄ (x, n) = 1−
x−1∏
i=0

Q(n)− 2i

Q(n)

Q(n)− 2i− 1

Q(n)

We tried to predict the number of keys to generate in order
to have a 50% chance to be able to factorize at least one
key (in reality two because if one key is factorized using the
gcd attack, the other key with the common prime factor
will be factorized as well). To approximate the number of
prime numbers in the interval described above, we used the
following approximation of the prime-counting function [6]
noted π(x):

π(x) ' x

log(x)− 1

Therefore we can express Q(n) as the following:

Q(n) = π(2
n
2)− π(2

n
2
−1 + 2

n
2
−2)

Given n the length of our modulus N and p a probability,
let x be the value so that P (x, n) ' p. We note:

X(p, n) = x

We were then able to compute the results shown in Table 1.

In the case where keys are encoded on an odd number of
bits, the probability described before changes slightly. In

Key length n X(0.5, n) Approximation using (1)
32 22 22.7
34 31 31.1
36 42 42.7
38 58 58.8
40 81 81.1
42 112 111.9
44 154 154.7
46 214 214.0
48 296 296.2
50 410 410.4
52 569 569.2
54 790 789.9
56 1097 1096.9
58 1524 1524.3
60 2119 2119.4
62 2948 2948.5
64 4104 4104.1

Table 1: Number of keys to generate when p and q are of the same length

this case one of the prime factors will be on n
2

+ 1 bits and
the other on n

2
bits with n

2
being the result of the integer

division. To simplify the writing of the approach, we suppose
that p will be on n

2
+ 1 bits.

We note Qp(n), the number of possible prime values for p
and Qq(n) the number of possible prime values for q. We
then note Pp(x) (respectively Pq(x)) the probability that all
p (respectively all q) are different for x generated keys. We
have:

Pp(x, n) =

x−1∏
i=0

Qp(n)− i
Qp(n)

and

Pq(x, n) =

x−1∏
i=0

Qq(n)− i
Qq(n)

Therefore if we take our previous notation, P̄ (x, n), which
is the probability that all p and q are different, can be ex-
pressed as the following:

P̄ (x, n) = Pp(x, n)× Pq(x, n)

since Pp(x, n) and Pq(x, n) represent the probability of in-
dependent events.

And therefore:

P (x, n) = 1− Pp(x, n)× Pq(x, n)

3.1.2 Attack on a given key

In this section, we focus on attacking a given key which most
likely is the real-case scenario for an attacker. By using
the same approach we provide formulas to approximate the
number of keys to generate to have a certain probability
of factorizing a given key. We first give the formulas for a
key on an even number of bits and then for a key on an
odd-number of bits.

Taking the same notation from the previous section, we have
the following formula for P̄ (x, n) which represents the prob-
ability, for x generated keys of size n, to not have a collision
with the targeted key:

P̄ (x, n) =

x−1∏
i=0

(
Q(n)− 2

Q(n)

)2

and we also have:

P (x, n) = 1− P̄ (x, n) = 1−
x−1∏
i=0

(
Q(n)− 2

Q(n)

)2

In the case of a key on an odd number of bits, using the
previous notation, the odds of not having a collision for x
keys is:

P̄ (x, n) =

x−1∏
i=0

Qp(n)− 1

Qp(n)

Qq(n)− 1

Qq(n)

and:

P (x, n) = 1− P̄ (x, n) = 1−
x−1∏
i=0

Qp(n)− 1

Qp(n)

Qq(n)− 1

Qq(n)

3.2 Experimental approach of the attack on
GCDs

We did an experiment which consisted of generating the pre-
dicted number of keys for a given length in order to have a
50% chance to be able to factorize at least two keys. Then
we computed the gcd of all pair of keys to see if we could
indeed factorize at least two keys in order to compare the
outcomes against our predicted results using the theoretical
approach.

For this experiment, we developed a program, mainly in
Python, that given two arguments, one for the key size,
the other for the number of keys, generates as many keys as
requested and computes the gcds of all the keys and outputs
the number of factorized keys.

To generate the keys, our program use system calls to OpenSSL
with the required parameters to generate a RSA key. It
works in three steps. The first is to tell OpenSSL to gener-
ate a RSA key without a passphrase and store it in a given
file. The second one is to ask OpenSLL to extract the public
key from the file previously created into a second temporary
file. Finally the program asks OpenSSL to print information
about the public key. We then parse that output to extract
the modulus and put it in a file that will contain all modu-
lus. During the final step we also extract the factor p from
the key and store it in another file containing all p from each
generated key.

The second step is to compute the gcd of each pair of keys.
To do so we used a C++ program that parses the file passed
as an argument containing one number per line in hexadeci-
mal format and prints the results to two different files. One
of the file contains all the keys that were successfully fac-
torized and the second one contains all the corresponding
factors. Our algorithm to compute pairwise key gcd was in-
spired by the algorithm provided by Nadia Heninger, Zakir
Durumeric, Eric Wustrow and J. Alex Halderman. Their
algorithm is based off an algorithm due to Bernstein[2]. In
a nutshell their algorithm works by computing the gcd of
a given key with the product of all the other keys, if one
factor is repeated it will be the result of the gcd, however
if both factors are repeated the result will be the key itself.
On keys of size 1024 or 2048 bits, the odds of the latter case
happening are very slim, therefore making the algorithm
very suitable. But in our case the odds of both factors be-
ing repeated were too high so we had to implement a basic
quadractic computation of the gcds using the GNU Multiple
Precision Arithmetic Library[1] (GMP).

The final step is to extract all the vulnerable moduli and
gcds computed in the previous steps to tell if we were able
or not to factorize some keys.

3.3 Experimental results
We ran the experience as the following: for each size of key
ranging from 32 to 64 bits with a step of 2, we generated 200
times the predicted number of keys to reach a 50% chance
of factorizing at least two keys and we looked at how many
times out of those 200 generations we were able to factorize
at least two keys giving us a percentage. Finally we redid
this ten times to be sure that the results were reproducible.

Our reasoning behind doing it this way instead of just mak-
ing 2000 generations was that we did not want the results
to be influenced by bad entropy resulting from multiple suc-
cessive generations.

At first the results obtained, in number of times we were
able to factorize at least two keys, were far off what we
predicted with our theoretical approach. We took some time
to reevaluate our theoretical approach and after deciding
that it wasn’t faulty, we decided to take an in-depth look
into OpenSSL prime number generation because the prime
factors did not seem to be uniformly distributed. We found
that OpenSSL generates prime number with the following
algorithm:

Algorithm 1: OpenSSL prime number generation

do
x = 11 | random bits | 1;
while !Probable Prime(x) do

x += 2;
end

while !Miller Rabin Primality Test(x);
return x

where the Miller-Rabin primality test[5] is called multiple
times. As we can see, with this algorithm, the distribution
of prime numbers in a given interval will not be uniform.
If we take for instance the interval [11, 13, 15, 17, 19], it is
trivial to see that, if all numbers have an equal chance of
being generated, the odd of having 17 as the output of the
OpenSSL prime generation are higher than those of the other
primes in that interval. Since our theoretical approach is
based on an uniform distribution of all prime numbers in a
given interval, we changed the OpenSSL prime generation
process in order to have a uniform distribution. We did that
simply by removing the while loop of the algorithm described
above.

After doing this, the results found were consistent with what
we predicted and they are displayed in Figure 1.

3.4 Extrapolation on keys of greater size
Since we were able to confirm our theoretical approach with
our experiment, we provide estimations on the number of
keys to generate for keys of size 512, 1024, 2048, 3072 and
4096 bits which are widespread size of keys in todays security
system so that an attacker can find at least one collision.
Those estimations were made so that an attacker has a one
in a million chance of being able to factorize at least two
keys.

To do so we used a C program using the GMP and MPFR[9]
library to have correct rounding when using large values.

Since the formula that we provide in Section 3.1 would re-
quire too many operations to be computed as it is we used
the following approximation for the birthday paradox. Given
a probability p of having a collision the number of drawn
values k required to reach this probability can be computed
with the following formula:

35 40 45 50 55 60 65

3
0

4
0

5
0

6
0

7
0

key size

p
e
rc

e
n
ta

g
e
 o

f
ti
m

e
s
 w

h
e
re

 k
e
y
s
 w

e
re

 f
a
c
to

ri
z
e
d

Figure 1: Experimental results of the gcd attack on RSA - the two red lines represent the lowest and highest
measures and the green line the average of the ten measures

k =

√
2N ln

1

1− p

where N is the number of values that can be drawn. In our
case, using the same notation that we used in the previous
section, we can rewrite this formula:

X(p, n) =
1

2

√
2Q(n) ln

1

1− p (1)

We introduce a factor of 1
2

before the square root because,
in our case, we draw two values for each generated key, and
X(p, n) is a number of keys.

Running this formula in our program yields, for a probability
of 0.000001% to find a collision, the following results that
can be seen in Table 2.

Bounds for the approximation - We decided to give
lower and upper bounds for our formula that can be com-
puted more easily for they only involve polynomial terms.
We remind the following polynomial approximation, where
x ∈ R and is close to 0:

ln(1− x) = −
n∑

k=1

xk

k
+ xnε(x)

ε is a function so that lim
x→0

ε(x) = 0.

We also remind that, for u ∈ R close to 0,

u2

2
≥ u3

3
+
u4

4
+
u5

5
+ ... (2)

Therefore, for p ∈ R sufficiently close to 0, we can find the
following upper bound by truncating the polynomial approx-
imation. The lower bound is found by applying the inequal-
ity 2 to our polynomial approximation. Thus, we get

−p− p2 ≤ ln(1− p) ≤ −p− p2

2

If Q(n) is defined like before (and n is the length of the
modulus), we then get

2Q(n)(p+
p2

2
) ≤ −2Q(n)ln(1− p) ≤ 2Q(n)(p+ p2)

Finally, since all our terms are positive, we get

1

2

√
2Q(n)(p+

p2

2
) ≤ 1

2

√
2Q(n) ln

1

1− p ≤
1

2

√
2Q(n)(p+ p2)

Unfortunately, we were not able to compute the values of the
upper and lower bounds for our approximation (see equation
1) on big keys (see Table 2). We ran out of time to investi-
gate this issue in order to fix it.

Key length in bits Number of keys to generate

512 9.0348792329384588.1033

1024 2.1735426553424143.1072

2048 1.7794731627727216.10149

3072 1.6823291622045329.10226

4096 1.6869942193575589.10303

Table 2: Number of keys to generate using OpenSSL - This table contains the estimated number of keys to
generate to have a 1.e−6 (0.000001%) chance of being able to factorize at least one RSA key using (1).

4. STUDY OF ENTROPY HOLES

4.1 Experimental approach of key generation
at boot-time

The authors of ”Mining your Ps and Qs”[10] highlighted
that what they call a ”boot-time entropy hole” may usher
in /dev/urandom being predictible at boot-time, especially
on first boot. Indeed, at this moment, entropy hasn’t previ-
ously been saved on shutdown, which explains why this is-
sue at first boot is all the more critical. The consequences of
such a vulnerability cannot be neglected, for long-term cryp-
tographic keys can be generated by processes at this very
moment. For instance, on distributions such as CentOS and
Fedora, OpenSSH is installed by default. This means that
the OpenSSH server keys are generated at first boot, and re-
generated at boot time if for some reason they were deleted.
Therefore, we decided to experiment with key generation
at boot time with both these distributions in different ver-
sions: CentOS 6.5, CentOS 7.0, Fedora 19 and Fedora 20.
Our choice was also motivated by the fact that these versions
were available as boxes for Vagrant, which we will explain
later. Our aim was to measure the available entropy at key
generation for OpenSSH thanks to the command previously
mentioned in this article, and to study the generated 2048-
bit RSA private key. The file we are interested in can be
found at /etc/ssh/ssh_host_rsa_key on all the mentioned
versions, and is used by the sshd daemon for version 2 of the
SSH protocol [12]. In CentOS 7.0, Fedora 19 and Fedora 20,
the script launched at boot time to generate the keys for
OpenSSH is located at /usr/sbin/sshd-keygen. We modi-
fied the function do_rsa_keygen() of this script so that the
output of the command

cat /proc/sys/kernel/random/entropy_avail

would be saved in a file on the system at the moment of the
generation of the RSA private key we wish to study. On Cen-
tOS 6.5, the script (which can be found at /etc/init.d/sshd)
was different (because CentOS 6.5 doesn’t feature systemd)
but we modified it to achieve the same goal. We realized
that, given the relatively short amount of time we had, we
would not be able to study entropy and the generation of
keys at first boot for it would imply to create our own cus-
tom distributions featuring the script modification previ-
ously mentioned. Instead, we decided to simply focus on
boot-time and to assess whether we could show that this
moment is critical entropy-wise or not. Indeed, generally
speaking, the available entropy increases after boot-time. It
is another reason why we decided to study entropy at boot-
time, for it is the moment when cryptographically weak ma-
terial is most likely to be produced.

To set up our experiment, we decided to use Vagrant. This
software let us download and set up distributions easily and
quickly. This also means that we experimented on virtual
machines, instead of using regular setups. As explained,
CentOS 6.5, CentOS 7.0, Fedora 19 and Fedora 20 are avail-
able as boxes for Vagrant (understand are available for im-
mediate use with Vagrant). Among the different software
compatible with Vagrant, we decided to use VirtualBox to
host our guest operating systems. One of the biggest asset
of Vagrant is that it lets the user boot the virtualized system
with the following command (from the host machine):

vagrant up

After booting up the system, we used

vagrant ssh

to access the system and modify the script launched at boot
time to generate the keys for OpenSSH. Finally, a single
command lets the user shut down the system (from the host
machine):

vagrant halt

Vagrant also lets the user configure the system through a sin-
gle file. We modified it so that /etc/ssh/ssh_host_rsa_key
would be deleted before shutdown. Thus, OpenSSH regen-
erated ssh_host_rsa_key at each new boot. We created a
bash script which let us boot and shut down a system 30
times in a row using Vagrant. We performed this experi-
ment using CentOS 6.5, CentOS 7.0, Fedora 19 and Fedora
20 as guests systems. Our host system for all the experi-
ments used Ubuntu 14.04.2 LTS. The computer we used for
the experiment is a ASUS N550JV laptop which features
a Intel Core i7 4700HQ (2.40 GHz - 3.40 GHz) processor
and 2 x 4096 Go of DDR3 1600 MHz SDRAM. For each of
the four guest systems, we thus obtained 30 2048-bit private
RSA keys generated at boot time by OpenSSH, that is to
say 30 different copies of the file ssh_host_rsa_key, and the
corresponding entropy measures at the time of key genera-
tion (just before key generation, to be accurate). We could
access the files on the guest machines easily through shared
folders between host and guest machines and designed our
bash script with this information in mind.

4.2 Experimental results
Available entropy at key generation - The distribution
of entropy we obtained during our experiments is shown in
figure 2. We notice that whatever the distribution, all the
measures are located between 120 bits and 200 bits, which
is very low. Indeed, 120 bits (respectively 200 bits) only

Figure 2: Entropy measures obtained through the experiment described in section 4.1 - For each distribution,
we performed 30 measures.

represents 2.93% (respectively 4.88%) of the total capac-
ity of the entropy pool (which is 4096 bits). Furthermore,
OpenSSL uses 32 bits to seed its CPRNG, for instance.
Besides, a key generator actually needs (only !) 128 bits
from /dev/random (understand truly randomly generated
bits) to generate a 3072-bit RSA private key. We remind
that the file /etc/ssh/ssh_host_rsa_key is a 2048-bit pri-
vate RSA key. Therefore, it appears that the amounts of
available entropy right before key generation we have ob-
served during our experiment are critical. At boot-time,
OpenSSH seeds its internal PRNG from /dev/urandom [10].
Should several processes (in addition to the OpenSSH pro-
cess that generates the keys under study at boot-time) re-
quest bits from /dev/urandom at boot-time, it is very likely
that /dev/urandom will not be able to provide enough truly
randomly generated bits and will therefore fill the gaps by
feeding pseudo-randomly generated bits which can lead to
content (e.g. generated keys) that may not be cryptograph-
ically secure.

We can assert that we did witness a boot-time entropy hole
on each of the four distributions we studied in the conditions
of our experiment. Nevertheless, we can assume that such
low entropy levels can be explained by the fact that we per-
formed our experiment through Vagrant and used virtual
machines. We believe that the available entropy at boot-
time would be higher on a regular setup (that is to say not
using a virtual machine), but lack the proper arguments to
prove this assumption for the time being.

We could draw a parallel with the situation of embedded
or headless devices tackled in ”Mining your Ps and Qs”[10]
because it is likely that our guest systems launched through
Vagrant do not benefit from devices such as the keyboard
or the mouse as entropy sources for we only began to in-
teract with the guest after bootup when we typed the com-

mand vagrant ssh in the terminal. In the case of the bash
script we used to perform our experiment (see 4.1), we shut
down our guest systems right after booting up and didn’t
even enter vagrant ssh: there were no interactions from
the host with the guest systems whatsoever. Therefore, in
our context, we can assume, while keeping in mind that we
do not exactly know how Vagrant works, that devices such as
the mouse or the keyboard cannot be considered as entropy
sources for our guest systems, just like embedded or head-
less devices. Thus, we recreated a situation where certain
entropy sources are not available and did observe entropy
holes at boot time.

We also want to underline the fact that we could never mea-
sure the available entropy before key generation at first boot,
since we always needed to boot a first time our guest systems
to modify the script launched at boot time to generate the
keys for OpenSSH. We are fairly certain that the number
of truly randomly generated bits available would have been
even lower than everything we have observed during our ex-
periment, because most Linux distributions save entropy on
shutdown (cf section 2.5.1).

Study of the generated keys We decided to study the
keys we gathered to assess whether they are cryptograph-
ically reliable or not. Using the following command from
OpenSSL,

openssl rsa -in rsa_private_key_file -text -noout

we were able to obtain the modulus and primes for each
generated RSA private key we had gathered in hexadeci-
mal. We used GMP to convert the hexadecimal values of
the primes (we obtained 30 keys and therefore 60 primes
per distribution) to binary. Our aim was to use TestU01 to
evaluate the quality of the randomness of the primes gener-

Key length in bits Uniform distribution Non-uniform distribution
32 25 6
40 85 23
48 304 76
56 1155 231

Table 3: Average number of generation for a collision to be - This table contains the average number of keys
to be generated successively to find a collision.

ated by OpenSSH at our disposal. However, even by gath-
ering all the primes from all the distributions we studied
in a same file, we were unable to run any battery of tests
that TestU01 makes available, for the software needed more
bits to perform even the simplest battery of tests called
SmallCrush. TestU01 displayed that it read 253440 bits
from our file, whereas, for instance, SmallCrush needs more
than 51.320.000 bits to work. Besides, we used a bash script
to find any duplicates among the primes. We didn’t find
any. We couldn’t decide whether this result stemmed from
the fact that OpenSSH could gather enough truly randomly
generated bits from /dev/urandom, or if we couldn’t show
that OpenSSH used pseudo randomly generated bits from
/dev/urandom because we didn’t gather enough bits from
this very device. Beforehand, even though we estimated that
the entropy levels we dealt with at boot time were critical,
we were not sure if these levels were enough for OpenSSH
to generate distinct primes.

5. COUNTER-MEASURES
5.1 Impact of non-uniform distribution when

generating prime factors
Since we discovered that the prime factors are not uniformly
generated in OpenSSL, we tried to evaluate the impact that
non-uniform generation has in regard to the results that we
found in section 3 and see if it has any impact on security,
i.e allowing to find a collision a lot faster.

To do so, we successively generated one key until there was
a collision with those previously generated. We measured
at which generation in average the collisions occurred by
repeating the experiment a hundred time for each size of
key. We did this experiment on keys of size 32, 40, 48 and
56 bits, we did not do it for key of size 64 as we didn’t have
enough time to complete the measures.

We did the previous experiment with two different versions
of OpenSSL, one which generates prime factors uniformly
and the other which is the basic distribution of OpenSSL,
and found the results shown in Table 3 (since we did an
average of all the measures, we rounded this number up).

As we can see, from this set of measures, collisions tend to
happen four times faster with a non uniform distribution
than with a uniform one and this seems to increase slowly
with key size. Thus we can conclude that, for keys of size
1024, 2048 bits and more, this does not impact the secu-
rity of RSA. If we take our extrapolation from part 4.1 for
keys of 2048 bits, we would need to generate approximately
10150 keys, which is greater than 2450, to have a 0.000001%
chance of finding a collision. Using a non-uniform distribu-
tion means that we would reduce this number to 2448 which

is still computationally infeasible. Thus we can say that us-
ing a non-uniform distribution, in order to have a quicker
generation process, is perfectly safe as long as the key size
is sufficient.

It is important to note, however, that this supposes a perfect
random key generation process and that failing to fulfill this
condition, collisions might be found a lot faster, as shown
by the article ”Mining your Ps and Qs”[10].

5.2 Evaluation of entropy at key-generation
During our research, we found that the software we studied
do not present a way of failing gracefully when not enough
entropy is present in the system. We think that such soft-
wares should have a way of evaluating the entropy used to
generate a key and fail gracefully in the event that the soft-
ware estimates the entropy is insufficient. We believe that
the security gains largely outweigh the disagreement poten-
tially caused by this behavior.

We also advised that softwares, in the example of Unix dis-
tributions, use /dev/random to seed their PRNG and not
/dev/urandom. Once again, even though /dev/random
can hang unpredictably, it is better to use the best source
of randomness available when generating keys. OS develop-
ers should also provide an interface so that /dev/random
doesn’t hang endlessly.

We implemented a proof of concept of such a counter-measure
by modifying the ssh daemon. We forced the daemon to first
read the available entropy the system and then, depending
on the read value, either generate the key or not.

5.3 Generating additional entropy
While on a system with keyboard and mouse inputs, we
might not need to add additional entropy as there are good
sources for random input. However this is slightly different
on embedded and headless systems.

The paper at the origin of our work highlighted that a lot
of vulnerable keys were found in such devices. If you expe-
rience worrying levels of entropy on a system, it might be
interesting to generate additional entropy on top of what
the system is already generating. One of the popular way
of doing that is to use an entropy gathering daemon like
Haveged[7]. Such a daemon will use unpredictable source of
information to feed entropy to Linux’ /dev/random such as
the behavior from the processor caches for Haveged.

Another daemon of the same type is the Entropy Gather-
ing Daemon (EGD) [8] for which OpenSSL and OpenSSH
provide interfaces.

5.4 Considerations on regular, safe and strong
primes

In this section, we will briefly discuss the impact of the type
of prime numbers used for the key generation process of
RSA.

If we solely focus on the gcd attack, one can argue that
choosing safe or strong prime numbers would improve the
efficiency of the attack (since there are fewer values possible,
collisions would happen faster). However, as seen in section
5.1, if the length of the key is sufficient (as recommended by
the competent authorities) and the key generation process
is perfectly random, the gcd attack is not a serious threat.

Thus we advise to follow recommendations for prime num-
ber generations, whether it is to generate safe or strong
primes which offers better security against more threatening
attacks.

6. A FEW WORDS ON DSA
Given the short time frame that we had to treat this subject,
we chose to focus mainly on RSA, as it was also the focal
point of the article which inspired our work. Moreover, a
lot of the observations that we made on RSA are directly
applicable to DSA.

We highlighted, in the previous sections, the importance of
good entropy when generating keys and situations where this
value presents a risk of not being sufficient. Such situations
could enable the attacks described in the State of the Art
section about DSA.

The same counter-measures that we described in the previ-
ous section apply on DSA, we advise that softwares respon-
sible for key generation use a set of mechanisms to determine
the entropy of the system in order to avoid generating weak
keys or predictable sequences.

7. CONCLUSIONS
First , we decided to further study an attack on RSA and
DSA keys which was elaborated by the authors of ”Mining
your Ps and Qs”[10]. We established a formula that let us
compute the probability, given a certain number of RSA
keys of a certain size, to encounter a collision and there-
fore to be able to factorize at least two of these keys. We
performed an experiment which confirmed that our formula
can be considered as consistent. Then, we studied entropy
and key generation at boot time and recreated a situation
in which a ”boot time entropy hole” can be witnessed and
discussed the risks it could entail. Finally, we mentioned
several counter-measures we thought could improve the is-
sues we encountered that seemed critical to us.

8. ACKNOWLEDGMENTS
We thank Mr. Jean-Louis Roch for his dedication and his
availability as our tutor.

9. REFERENCES
[1] Gnu multi precision library.

http://en.wikipedia.org/wiki/Prime-counting function.

[2] D. J. Bernstein. How to find smooth parts in integers,
2015.

http://en.wikipedia.org/wiki/Prime-counting function.
[Online, accessed May-2015]

[3] Wikipedia. Birthday attack — Wikipedia, the free
encyclopedia, 2015.
http://en.wikipedia.org/wiki/Birthday attack. [Online,
accessed May-2015]

[4] Wikipedia. Birthday problem — Wikipedia, the free
encyclopedia, 2015.
http://en.wikipedia.org/wiki/Birthday problem.
[Online, accessed May-2015]

[5] Wikipedia. Miller-rabin primality test — Wikipedia,
the free encyclopedia, 2015.
http://en.wikipedia.org/wiki/Miller-
Rabin primality test. [Online, accessed
May-2015]

[6] Wikipedia. Prime-counting function — Wikipedia, the
free encyclopedia, 2015.
http://en.wikipedia.org/wiki/Prime-counting function.
[Online, accessed May-2015]

[7] Haveged - An Entropy Gathering Daemon
http://www.issihosts.com/haveged/

[8] Entropy Gathering Daemon EGD - Entropy Gathering
Daemon http://egd.sourceforge.net/

[9] GNU MPFR - Multi-Precision floating-point
computations http://www.mpfr.org/

[10] Mining your Ps and Qs : Detection of Widespread
Weak Keys in Network devices
https://factorable.net/weakkeys12.extended.pdf

[11] linux random man page http://man7.org/linux/man-
pages/man4/random.4.html

[12] SSH Daemon - RedHat
https://access.redhat.com/documentation/en-
US/Red Hat Enterprise Linux/6/html/Deployment Guide/s1-
ssh-configuration.html

[13] TestU01
http://simul.iro.umontreal.ca/testu01/guideshorttestu01.pdf

