Word2Vec and all the things

Data Labs @ StitchFix

About

@chrisemoody
Former astrophysicist, supercomputing
Data Labs at Stitch Fix

Fun stuff with Gaussian Processes, t-SNE \& word2vec

Credit

Large swathes of this talk are from previous presentations by:

- Tomas Mikolov
- Christopher Olah
- Radim Rehurek
- Omer Levy \& Yoav Goldberg
- Richard Socher
- Xin Rong

1 word2vec

Stitch Fix

word2vec

1. king - man + woman $=$ queen
2. Learns from raw text
3. Huge splash in NLP world
4. Pretty simple algorithm
5. Comes pretrained

Predict current word given previous words

$$
P(W)=\prod_{i} P\left(w_{i} \mid w_{1} \ldots w_{i-1}\right)
$$

What if we estimate $\boldsymbol{P}(w)$ empirically?
How far back should $w_{1} \ldots w_{i-1}$ go?

Q
$\operatorname{argmax}[\mathrm{p}(w \mid$ 'now', 'with','a','new','model')]

If context is too long you overfit....

Q $\operatorname{argmax}\left[\mathrm{p}\left(w \mid\right.\right.$ 'now', 'with',' a^{\prime},'new','model')]

A
now with a new model GM

If context is too long you overfit....

Q
$\operatorname{argmax}[\mathrm{p}(\mathrm{w} \mid$ ' with','a','new','model',' 'GM')]
A
'is'
now with a new model GM is

If context is too long you overfit....

Q
$\operatorname{argmax}[p(w \mid ' a ', ' n e w ', ' m o d e l ', ' G M ', ' i s ')]$
A
'trying'
now with a new model GM is trying

If context is too long you overfit....

Q $\operatorname{argmax}\left[\mathrm{p}\left(w \mid\right.\right.$ 'new','model',' ${ }^{\prime}$ 'GM', 'is','trying')]

A 'to'
now with a new model GM is trying to

Long n-grams are unique, so we're just memorizing one example.

66 prestige. Now, with a new model and a move, G.M. is trying to 99 recapture the swagger.

If context is too short your sentences don't make sense...

...just because the current word only depends on the previous word. (but it usually works grammatically)

Gavitov

(this is how most
 internet chatbots work)

Idea: replace one-hot coded words with dense vectors*

$$
\begin{aligned}
\mathrm{V}_{\text {rum }} & =[0,0,1,0,0] \\
\mathrm{V}_{\text {running }} & =[0,1,0,0,0] \\
& \\
& \\
\mathrm{V}_{\text {ruu }} & =[0.2,0.3,-.1,-.9,0.0] \\
\mathrm{V}_{\text {running }} & =[0.7,1,-.7,0.5,0.1]
\end{aligned}
$$

Idea: replace one-hot coded words with dense vectors*

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{cat}}=[0.2,0.3,-.1,-.9,0.0] \\
& \mathrm{V}_{\mathrm{dog}}=[0.7,1,-.7,0.5,0.1]
\end{aligned}
$$

- Locality - properties change gradually from word to word
quickly ~ quick
- Regularity - directions will be meaningful \& consistent

$$
\text { king - man }+ \text { woman }=\text { queen }
$$

Build a co-occurence matrix.

Terms		d1	d2	d3
\downarrow		\downarrow	\downarrow	\downarrow
a		1	1	1
arrived		0	1	1
damaged		1	0	0
delivery		0	1	0
fire		1	0	0
gold	$A=$	1	0	1
in		1	1	1
of		1	1	1
shipment		1	0	1
silver		0	2	0
truck		0	1	1

Let's SVD the co-occurence matrix.

Let's SVD the co-occurence matrix.

Doesn't scale.

$$
\sim O\left(n m^{2}\right)
$$

Hard to read more than a few millions of documents.

word2vec

1. Set up an objective function
2. Randomly initialize vectors
3. Do gradient descent
word2vec: learn word vector $v_{\text {in }}$ from it's surrounding context

$$
v_{i n}
$$

$$
{ }^{66} \text { The fox jumped over the lazy dog }{ }^{99}
$$

Maximize the likelihood of seeing this context given the word over.

$$
\begin{gathered}
P(\text { the } \mid \text { over }) \\
P(\text { fox } \mid \text { over }) \\
P(\text { jumped } \mid \text { over }) \\
P(\text { the } \mid \text { over }) \\
P(\text { lazy } \mid \text { over }) \\
P(\text { dog } \mid \text { over })
\end{gathered}
$$

...instead of maximizing the likelihood of co-occurrence counts.

What should this be?

$$
P(\text { fox } \mid \text { over })
$$

Should depend on the word vectors.

$$
\begin{gathered}
P(\text { fox } \mid \text { over }) \\
P\left(v_{\text {fox }} \mid v_{\text {over }}\right)
\end{gathered}
$$

Twist: we have two vectors for every word. Should depend on whether it's the input or the output.

Also a context window around every input word.

$$
P\left(v_{O U T} \mid v_{I N}\right)
$$

Twist: we have two vectors for every word. Should depend on whether it's the input or the output.

Also a context window around every input word.

$$
P\left(v_{O U T} \mid v_{I N}\right)
$$

Twist: we have two vectors for every word. Should depend on whether it's the input or the output.

Also a context window around every input word.

$$
P\left(v_{O U T} \mid v_{I N}\right)
$$

Twist: we have two vectors for every word. Should depend on whether it's the input or the output.

Also a context window around every input word.

$$
P\left(v_{O U T} \mid v_{I N}\right)
$$

Twist: we have two vectors for every word. Should depend on whether it's the input or the output.

Also a context window around every input word.

$$
P\left(v_{O U T} \mid v_{I N}\right)
$$

Twist: we have two vectors for every word. Should depend on whether it's the input or the output.

Also a context window around every input word.

$$
P\left(v_{O U T} \mid v_{I N}\right)
$$

Twist: we have two vectors for every word. Should depend on whether it's the input or the output.

Also a context window around every input word.

$$
P\left(v_{O U T} \mid v_{I N}\right)
$$

Twist: we have two vectors for every word. Should depend on whether it's the input or the output.

Also a context window around every input word.

$$
P\left(v_{O U T} \mid v_{I N}\right)
$$

Twist: we have two vectors for every word. Should depend on whether it's the input or the output.

Also a context window around every input word.

$$
P\left(v_{O U T} \mid v_{I N}\right)
$$

${ }^{66}$ The fox jumped over the lazy dog ${ }^{99}$

$v_{I N}$

Twist: we have two vectors for every word. Should depend on whether it's the input or the output.

Also a context window around every input word.

$$
P\left(v_{O U T} \mid v_{I N}\right)
$$

Twist: we have two vectors for every word. Should depend on whether it's the input or the output.

Also a context window around every input word.

$$
P\left(v_{O U T} \mid v_{I N}\right)
$$

Twist: we have two vectors for every word. Should depend on whether it's the input or the output.

Also a context window around every input word.

$$
P\left(v_{O U T} \mid v_{I N}\right)
$$

Twist: we have two vectors for every word. Should depend on whether it's the input or the output.

Also a context window around every input word.

$$
P\left(v_{O U T} \mid v_{I N}\right)
$$

Twist: we have two vectors for every word. Should depend on whether it's the input or the output.

Also a context window around every input word.

$$
P\left(v_{O U T} \mid v_{I N}\right)
$$

Twist: we have two vectors for every word. Should depend on whether it's the input or the output.

Also a context window around every input word.

$$
P\left(v_{O U T} \mid v_{I N}\right)
$$

How should we define $P\left(v_{O U T} \mid v_{I N}\right)$?

Measure loss between $v_{I N}$ and $v_{O U T}$?

$$
v_{i n} \cdot v_{o u t}
$$

But we'd like to measure a probability.

$$
v_{\text {in }} \cdot v_{\text {out }} \in[-1,1]
$$

But we'd like to measure a probability.

$$
\operatorname{softmax}\left(v_{\text {in }} \cdot v_{\text {out }}\right) \in[0,1]
$$

But we'd like to measure a probability.

$$
\operatorname{softmax}\left(v_{i n} \cdot v_{o u t}\right)
$$

Probability of choosing 1 of N discrete items.
Mapping from vector space to a multinomial over words.

But we'd like to measure a probability.

$$
\operatorname{softmax}=\frac{\exp \left(v_{i n} \cdot v_{\text {out }}\right)}{\sum_{\mathrm{k} \in \mathrm{~V}} \exp \left(v_{i n} \cdot v_{k}\right)}
$$

Normalization term over all words

But we'd like to measure a probability.

$$
\operatorname{softmax}=\frac{\exp \left(v_{i n} \cdot v_{o u t}\right)}{\sum_{\mathrm{k} \in \mathrm{~V}} \exp \left(v_{i n} \cdot v_{k}\right)}=P\left(v_{o u t} \mid v_{i n}\right)
$$

Learn by gradient descent on the softmax prob.

For every example we see update $v_{i n}$

$$
\begin{aligned}
v_{\text {in }} & :=v_{\text {in }}+\frac{\partial}{\partial v_{i n}} P\left(v_{\text {out }} \mid v_{\text {in }}\right) \\
v_{\text {out }} & :=v_{\text {out }}+\frac{\partial}{\partial v_{o u t}} P\left(v_{\text {out }} \mid v_{\text {in }}\right)
\end{aligned}
$$

What's our performance?

$$
\frac{\exp \left(v_{i n} \cdot v_{o u t}\right)}{\sum_{\mathrm{k} \in \mathrm{~V}} \exp \left(v_{i n} \cdot v_{k}\right)}
$$

What's our performance?

$$
\frac{\exp \left(v_{\text {in }} \cdot v_{\text {out }}\right)}{\sum_{\mathrm{k} \in \mathrm{~V}}^{\exp \left(v_{\text {in }} \cdot v_{k}\right)}} O O(V)
$$

What's our performance?

$$
\begin{aligned}
& \frac{\exp \left(v_{\text {in }} \cdot v_{\text {out }}\right)}{\sum_{\mathrm{k} \in \mathrm{~V}} \exp \left(v_{\text {in }} \cdot v_{k}\right)} \\
& \begin{array}{c}
V \text { operations for every update. } \\
V C \text { operations per input word. } \\
V C N \text { over the whole corpus. }
\end{array} O(V)
\end{aligned}
$$

ఠ_ఠ

How is $O(V C N)$ supposed to better than SVD that was $\mathrm{O}\left(\mathrm{NV}^{2}\right)$?

Have an $O(V)$ problem?
Build a tree and get a $O(\log V)$ problem!

Hierarchical softmax

Hierarchical softmax

$$
P\left(v_{o u t} \mid v_{i n}\right)=\mathrm{P}\left(\text { going left at } \mathrm{N} 1 \mid v_{\text {out }}\right)
$$

Hierarchical softmax

$$
P\left(v_{o u t} \mid v_{i n}\right)=\mathrm{P}\left(\text { going left at } \mathrm{N} 1 \mid v_{i n}\right) \mathrm{P}\left(\text { going left at } \mathrm{N} 2 \mid v_{i n}\right)
$$

Hierarchical softmax

$P\left(v_{\text {out }} \mid v_{i n}\right)=\mathrm{P}\left(\right.$ left at $\left.\mathrm{N} 1 \mid v_{i n}\right) \mathrm{P}\left(\right.$ left at $\left.\mathrm{N} 2 \mid v_{i n}\right) \mathrm{P}\left(\right.$ right at $\left.\mathrm{N} 3 \mid v_{i n}\right)$

Hierarchical softmax
$\mathrm{O}(\log N)$ steps

~10 comparisons

Hierarchical softmax

$\sim \mathrm{O}(\log N)$ steps
$\mathrm{O}(\mathrm{N})$ steps

$$
\Sigma \exp \left(v_{i n} \cdot v_{o u t}\right)
$$

~10 comparisons
~50k comparisons

$$
(050)
$$

Now performance is $O(N C \log V)$!
Now we can scale to a 100 billion word corpus.

SkipGram

Guess the context given the word

${ }^{66}$ The fox jumped over the lazy dog ${ }^{9}$

Better at syntax.
(this is the one we went over)

CBOW

Guess the word given the context

"The fox jumped over the lazy dog'

$\sim 20 \mathrm{x}$ faster.
(this is the alternative.)

Model (training time)	Redmond	Havel	ninjutsu
Collobert (50d) (2 months)	conyers lubbock keene	plauen dzerzhinsky osterreich	reiki kohona karate
Turian (200d) (few weeks)	McCarthy Alston Cousins	Jewell Arzu Ovitz	-
Mnih (100d)	Podhurst (7 days)	Harlang Agarwal	Pontiff Rodionot
Skip-Phrase (1000d, 1 day)	Redmond Wash. Redmond Washington Microsoft	Vaclav Havel president Vaclav Havel Velvet Revolution	ninja martial arts swordsmanship

Model	Vector Dimensionality	Training words	Accuracy [\%]		
			Semantic	Syntactic	Total
Collobert-Weston NNLM	50	660 M	9.3	12.3	11.0
Turian NNLM	50	37 M	1.4	2.6	2.1
Turian NNLM	200	37 M	1.4	2.2	1.8
Mnih NNLM	50	37 M	1.8	9.1	5.8
Mnih NNLM	100	37 M	3.3	13.2	8.8
Mikolov RNNLM	80	320 M	4.9	18.4	12.7
Mikolov RNNLM	640	320 M	8.6	36.5	24.6
Huang NNLM	50	990 M	13.3	11.6	12.3
CBOW	300	783 M	15.5	53.1	36.1
Skip-gram	300	783 M	$\mathbf{5 0 . 0}$	55.9	$\mathbf{5 3 . 3}$

\longleftarrow word2vec

What is king + man - woman?

Load up the word vectors

Start with man - woman

Start with man - woman

Then take king

And add man - woman

And add man - woman

Find nearest word to result

queen is closest to resulting vector

queen is closest to resulting vector

So king + man - woman $=$ queen !

The red direction encodes gender

Which is consistent across all words

This direction always means gender

We have hundreds of directions

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

ITEM_3469 + 'Pregnant'

+ 'Pregnant'

word2vec

Learns word vectors
Learn doc vectors

Text feature generation is

 great for ML modelsand now for something completely crazy

All of the following ideas will change what 'words' and 'context' represent.

What about summarizing documents?

On the day he took office, President Obama reached out to America's enemies, offering in his first inaugural address to extend a hand if you are willing to unclench your fist. More than six years later, he has arrived at a moment of truth in testing that

IN

offering in his first inaugural address to extend a hand if you are willing to unclench

OUT

Normal skipgram extends C words before, and C words after.

OUT
OUT

On the day he took office, President Obama reached out to America's enemies, offering in his first inaugural address to extend a hand if you are willing to unclench your fist. More than six years later, he has arrived at a moment of truth in testing that

OUT
OUT

A document vector simply extends the context to the whole document.

```
from gensim.models import Doc2Vec
fn = "item_document_vectors"
model = Doc2Vec.load(fn)
model.most_similar('pregnant')
matches = list(filter(lambda x: 'SENT_' in x[0], matches))
# ['...I am currently 23 weeks pregnant...',
# '...I'm now 10 weeks pregnant...',
# '...not showing too much yet...',
# '...15 weeks now. Baby bump...',
# '...6 weeks post partum!...',
# '...12 weeks postpartum and am nursing...',
# '...I have my baby shower that...',
# '...am still breastfeeding...',
# '...I would love an outfit for a baby shower...']
```


translation

(using just a rotation matrix)

context

 dependentAustralian scientist discovers star with telescope

$$
\text { context }+/-2 \text { words }
$$

context dependent

context dependent

context

context dependent

word2vec

learn word vectors from sentences
'words' are graph vertices
'sentences' are random walks on the graph

deepwalk

Playlists at Spotify

\[\begin{aligned} \& 'words' are songs
\& 'sentences' are playlists \end{aligned} \]

Great performance on 'related artists'

Playlists at Spotify

Fixes at Stitch Fix?

Let's try:
'words' are styles
'sentences' are fixes

Fixes at Stitch Fix?

Learn similarity between styles because they co-occur

Learn 'coherent' styles

Fixes at Stitch Fix?

Got lots of structure!

GloVe

