Word2Vec and all the things

Data Labs @ StitchFix

About

@chrisemoody

Former astrophysicist, supercomputing

Data Labs at Stitch Fix

Fun stuff with Gaussian Processes, t-SNE & word2vec

Credit

Large swathes of this talk are from previous presentations by:

- Tomas Mikolov
- <u>Christopher Olah</u>
- Radim Rehurek
- <u>Richard Socher</u>
- Xin Rong

Omer Levy & Yoav Goldberg

word2vec

Stitch Fix

word2vec

- 2. Learns from raw text
- 4. Pretty simple algorithm
- 5. Comes pretrained

1. king - man + woman = queen3. Huge splash in NLP world

Predict current word given previous words

$P(W) = \prod_{i} P(w_i | w_1 \dots w_{i-1})$

What if we estimate P(w) empirically?

How far back should $w_1 \dots w_{i-1}$ go?

Q

norams

 $\operatorname{argmax}[p(w \mid w_0...w_k)]$

noranns

Q

argmax[p(w | 'now', 'with','a','new','model')]

norams

Q

Α

now with a new model GM

If context is too **long** you overfit....

argmax[p(w | 'now', 'with','a','new','model')]

'GM'

norams

Q

Α

argmax[p(w | 'with','a','new','model','GM')]

now with a new model GM is

If context is too **long** you overfit....

ʻis'

Q Α

norams

now with a new model GM is trying

If context is too **long** you overfit....

argmax[p(w | 'a', 'new', 'model', 'GM', 'is')]

'trying'

norams

Q

Α

argmax[p(w |'new','model','GM','is','trying')]

If context is too **long** you overfit....

'to'

now with a new model GM is trying to

Long n-grams are unique, so we're just memorizing one example.

for prestige. Now, with a new model and a move, G.M. is trying to recapture the swagger.

If context is too **short** your sentences don't make sense...

noranns

...just because the current word *only* depends on the previous word. (but it usually works *grammatically*)

(this is how most internet chatbots work)

*checkout <u>Garkov</u>

Idea: replace one-hot coded words with dense vectors*

 $V_{\rm run} = [0.2, 0.3, -.1, -.9, 0.0]$ $V_{\text{running}} = [0.7, 1, -.7, 0.5, 0.1]$

*or distributed representations Bengio et al.

Idea: replace one-hot coded words with dense vectors*

 $V_{cat} = |0.2,$ $V_{dog} = [0.7]$

• Regularity — directions will be meaningful & consistent

king - man + woman = queen

$$0.3, -.1, -.9, 0.0]$$

 $7, 1, -.7, 0.5, 0.1]$

• Locality — properties change gradually from word to word $quickly \sim quick$

*see more by Rumelhart, Collobert, Bengio

SID

Build a co-occurrence matrix.

SID

Let's SVD the co-occurrence matrix.

SIQ

а

Let's SVD the co-occurrence matrix.

- Doesn't scale.
 - $\sim O(nm^2)$
- Hard to read more than a few millions of documents.

word2vec

- 1.
- 2.
- 3.

Set up an objective function Randomly initialize vectors Do gradient descent

word2vec: learn word vector v_{in} from it's surrounding context

 v_{in}

wordzye

'. The fox jumped **over** the lazy dog

Maximize the likelihood of seeing this **context** given the word *over*.

P(the|over) P(fox|over) P(jumped|over) P(the|over) P(lazy|over)P(dog|over)

...instead of maximizing the likelihood of co-occurrence counts.

What should this be?

P(fox|over)

Should depend on the word vectors.

P(fox|over) $P(v_{fox}|v_{over})$

Also a *context* window around every input word.

" 66 The fox jumped **over** the lazy dog

Twist: we have *two* vectors for every word. Should depend on whether it's the input or the output.

Also a *context* window around every input word.

(f The fox jumped **over** the lazy dog v_{IN}

Twist: we have *two* vectors for every word. Should depend on whether it's the input or the output.

wordzyec

Also a *context* window around every input word.

" 66 The fox jumped **over** the lazy dog v_{OUT} v_{IN}

Twist: we have *two* vectors for every word. Should depend on whether it's the input or the output.

Also a *context* window around every input word.

Twist: we have *two* vectors for every word. Should depend on whether it's the input or the output.

 $P(v_{OUT}|v_{IN})$

" ed over the lazy dog v_{IN}

Also a *context* window around every input word.

(f The fox jumped **over** the lazy dog v_{OUT} v_{IN}

Twist: we have *two* vectors for every word. Should depend on whether it's the input or the output.

Also a *context* window around every input word.

(f The fox jumped **over** the lazy dog v_{IN} v_{OUT}

Twist: we have *two* vectors for every word. Should depend on whether it's the input or the output.

Also a *context* window around every input word.

'The fox jumped **over** the lazy dog " v_{OUT} v_{IN}

Twist: we have *two* vectors for every word. Should depend on whether it's the input or the output.

Also a *context* window around every input word.

(f The fox jumped **over** the lazy dog v_{OUT} v_{IN}

Twist: we have *two* vectors for every word. Should depend on whether it's the input or the output.

Also a *context* window around every input word.

The fox jumped over the lazy dog " v_{IN}

Twist: we have *two* vectors for every word. Should depend on whether it's the input or the output.

Also a *context* window around every input word.

Twist: we have *two* vectors for every word. Should depend on whether it's the input or the output.

 $P(v_{OUT}|v_{IN})$

The fox jumped over **the** lazy dog " v_{IN}
Also a *context* window around every input word.

Twist: we have *two* vectors for every word. Should depend on whether it's the input or the output.

 $P(v_{OUT}|v_{IN})$

The fox jumped over the lazy dog " v_{IN}

Also a *context* window around every input word.

The fox jumped over the lazy dog " v_{OUT} v_{IN}

Twist: we have *two* vectors for every word. Should depend on whether it's the input or the output.

Also a *context* window around every input word.

(f The fox jumped over the lazy dog v_{OUT} v_{IN}

Twist: we have *two* vectors for every word. Should depend on whether it's the input or the output.

Also a *context* window around every input word.

The fox jumped over the lazy dog " $v_{IN} v_{OUT}$

Twist: we have *two* vectors for every word. Should depend on whether it's the input or the output.

Also a *context* window around every input word.

The fox jumped over **the** lazy dog " v_{OUT} v_{IN}

Twist: we have *two* vectors for every word. Should depend on whether it's the input or the output.

- How should we define $P(v_{OUT}|v_{IN})$?
 - Measure loss between v_{IN} and v_{OUT} ?
 - v_{in} v_{out}

$v_{in} \bullet v_{out} \in [-1,1]$

$softmax(v_{in} \bullet v_{out}) \in [0,1]$

 $softmax(v_{in} \bullet v_{out})$

Probability of choosing 1 of N discrete items. Mapping from vector space to a multinomial over words.

 $exp(v_{in} \bullet v_{out})$ $\sum_{k \in V} (v_{in} \bullet v_k)$

softmax =

Normalization term over all words

 $softmax = rac{exp(v_{in} \cdot v_{out})}{\sum_{k=1}^{N} \sum_{k=1}^{N} (v_{in} \cdot v_k)}$ $= P(v_{out}|v_{in})$ $k \in V$

Learn by gradient descent on the softmax prob.

$$v_{in} := v_{in}$$
 -

$$v_{out} := v_{out}$$

For every example we see update v_{in}

 $+ \frac{\partial}{\partial v_{in}} P(v_{out}|v_{in})$ + $\frac{\partial}{\partial v_{out}} P(v_{out}|v_{in})$

What's our performance?

 $exp(v_{in})$ $\sum k \in V$

$$v_{out}$$
)
 $v_{in} \cdot v_k$)

What's our performance?

What's our performance?

$$exp(v_{in} \bullet v_{out})$$

$$\overline{\sum exp(v_{in} \bullet v_k)}_{\in V}$$
operations for every update.
C operations per input word.
CN over the whole corpus.

$$exp(v_{in} \bullet v_{out})$$

$$\overline{\sum exp(v_{in} \bullet v_k)}$$

$$k \in V$$

$$V \text{ operations for every update.}$$

$$VC \text{ operations per input word.}$$

$$VCN \text{ over the whole corpus.}$$

How is O(VCN) supposed to better than SVD that was $O(NV^2)$?

Have an O(V) problem?

Build a tree and get a O(log V) problem!

Hierarchical softmax

V word vectors

*Bengio 2005

 $P(v_{out}|v_{in}) = P(\text{going left at N1}|v_{out})$

Hierarchical softmax

 $P(v_{out}|v_{in}) = P(\text{going left at N1}|v_{in}) P(\text{going left at N2}|v_{in})$

Hierarchical softmax

*Bengio 2005

 $P(v_{out}|v_{in}) = P(\text{left at N1}|v_{in}) P(\text{left at N2}|v_{in}) P(\text{right at N3}|v_{in})$

Hierarchical softmax

*Bengio 2005

Hierarchical softmax

O(logN) steps

~10 comparisons

Hierarchical softmax

O(N) steps

VS

~O(*logN*) steps

nier chical hier chinat

~10 comparisons

~50k comparisons

 $\Sigma exp(v_{in} \cdot v_{out})$

*Bengio 2005

Now we can scale to a 100 billion word corpus.

Now performance is $O(N C \log V)!$

SkipGram Guess the context given the word v_{IN}

Better at syntax. (this is the one we went over)

Model (training time)	Redmond	Havel	ninjutsu	
Collobert (50d) (2 months)	conyers lubbock keene	plauen dzerzhinsky osterreich	reiki kohona karate	
Turian (200d) (few weeks)	McCarthy Alston Cousins	Jewell Arzu Ovitz	-	
Mnih (100d) (7 days)	Podhurst Harlang Agarwal	Pontiff Pinochet Rodionov	- -	
Skip-Phrase (1000d, 1 day)	Redmond Wash. Redmond Washington Microsoft	Vaclav Havel president Vaclav Havel Velvet Revolution	ninja martial arts swordsmanship	

Model	Vector	Training	Accuracy [%]		
	Dimensionality	words			
			Semantic	Syntactic	Total
Collobert-Weston NNLM	50	660M	9.3	12.3	11.0
Turian NNLM	50	37M	1.4	2.6	2.1
Turian NNLM	200	37M	1.4	2.2	1.8
Mnih NNLM	50	37M	1.8	9.1	5.8
Mnih NNLM	100	37M	3.3	13.2	8.8
Mikolov RNNLM	80	320M	4.9	18.4	12.7
Mikolov RNNLM	640	320M	8.6	36.5	24.6
Huang NNLM	50	990M	13.3	11.6	12.3
CBOW	300	783M	15.5	53.1	36.1
Skip-gram	300	783M	50.0	55.9	53.3


```
QUEEN [0.3, 0.9]
       KING [0.5, 0.7]
 WOMAN [0.3, 0.4]
       MAN [0.5, 0.2]
```


KING [0.5, 0.7]

MAN - WOMAN

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

Czech + currency	Vietnam + capital	German + airlines	Russian + river	French + actress
koruna	Hanoi	airline Lufthansa	Moscow	Juliette Binoche
Check crown	Ho Chi Minh City	carrier Lufthansa	Volga River	Vanessa Paradis
Polish zolty	Viet Nam	flag carrier Lufthansa	upriver	Charlotte Gainsbourg
CTK	Vietnamese	Lufthansa	Russia	Cecile De

$ITEM_3469 + 'Pregnant'$

+ 'Pregnant'

Learns word vectors Learn doc vectors

Text feature generation is great for ML models

LDA

Learns a topic distribution for every document

Each of the k topics is a great tag

and now for something completely crazy

All of the following ideas will change what 'words' and 'context' represent.

On the day he took office, President Obama reached out to America's enemies, offering in his first inaugural address to extend a hand if you are willing to unclench your fist. More than six years later, he has arrived at a moment of truth in testing that

What about summarizing documents?

On the day he took office, President Obama reached out to America's enemies, offering in his first inaugural address to extend a hand if you are willing to unclench your fist. More than six years later, he has arrived at a moment of truth in testing that

the definitive answell's whether Mr. Obama's audacious gamelow ill pay off. The fist

Normal skipgram extends C words before, and C words after.

IN

OUT

A document vector simply extends the context to the whole document.

doc_1347

IN

On the day he took office, President Obama reached out to America's enemies, offering in his first inaugural address to extend a hand if you are willing to unclench your fist. More than six years later, he has arrived at a moment of truth in testing that The framework nuclear agreement he reached with Iran on Thursday did not provide the definitive ansv@UB whether Mr. Obama's audacious gam@UD ill pay off. The fist

OUT

from gensim.models import Doc2Vec fn = "item document vectors" model = Doc2Vec.load(fn) model.most similar('pregnant') matches = list(filter(lambda x: 'SENT ' in x[0], matches))

['... I am currently 23 weeks pregnant...', # '...I'm now 10 weeks pregnant...', # '...not showing too much yet...', # '...15 weeks now. Baby bump...', # '...6 weeks post partum!...', # '...12 weeks postpartum and am nursing...', # '... I have my baby shower that...', # '...am still breastfeeding...', ... I would love an outfit for a baby shower... ']

English

translation

(using just a rotation matrix)

Matrix Rotation

Spanish

Australian scientist **discovers** star with telescope

context +/-2 words

hogwarts

BoW

dumbledore hallows half-blood malfoy snape

DEPS

sunnydale collinwood calarts greendale millfield

topically-similar 'functionally' similar VS

word2vec

learn word vectors from sentences

deepwalk

'words' are graph vertices'sentences' are random walks on the graph

 $v_{46} \rightarrow v_{45} \rightarrow v_{71} \rightarrow v_{24} \rightarrow v_5$

Playlists at Spotify

'words' are songs'sentences' are playlists

Playlists at Spotify

Great performance on 'related artists'

Fixes at Stitch Fix? Let's try: 'words' are styles 'sentences' are fixes

Fixes at Stitch Fix? Learn similarity between styles because they co-occur

Learn 'coherent' styles

Fixes at Stitch Fix?

Got lots of structure!

