Graphs of some basic mathematical functions

$f(x)=\frac{1}{x}$

$f(x)=\frac{1}{x^{2}}$

$f(x)=\sin x$
$\left(\int_{0}^{M} \sin (x) d x \leq 2\right.$ for all M,
but $\int_{0}^{\infty} \sin (x) d x$ does not converge)

$f(x)=\ln x$

(f is not differentiable at $x=0$)

(Although f is Riemnann-integrable on $[0,2]$, it has no primitive function there)

($\int_{0}^{\infty} f(x) d x$ is conditionally convergent, f has a primitive function, which is not elementary)

$f(x)= \begin{cases}x \sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{cases}$
(f is continuous, but f is not differentiable at $x=0$)

$f(x)= \begin{cases}\sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{cases}$
(f has no limit at $x=0$)

$f(x)= \begin{cases}x^{2} \sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{cases}$
(f is differentiable, $f^{\prime}(0)=0$, but f^{\prime} is not continuous at $x=0$)

$f(x)= \begin{cases}1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q}\end{cases}$
(f has no limit at any point, f is not Riemann-integrable)

$$
f(x)= \begin{cases}x & x \in \mathbb{Q} \\ -x & x \notin \mathbb{Q}\end{cases}
$$

(f is continuous only at $x=0$)

(The Taylor polynomial of f at $x_{0}=0$ is 0 for all n)
"Tent" function
(f is continuous, $f \geq 0$, $\int_{0}^{\infty} f(x) d x<\infty$, but $\left.\lim _{x \rightarrow \infty} f(x) \neq 0\right)$

