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Fig. 1: In-the-wild dribbling on diverse natural terrains including sand, gravel, mud, and snow using onboard sensing and computing.
Our system trained using reinforcement learning successfully adapts to varying ball dynamics on different terrains, and can get up and
recover the ball after falling down from an extreme perturbation.

Abstract— DribbleBot (Dexterous Ball Manipulation with a
Legged Robot) is a legged robotic system that can dribble a
soccer ball under the same real-world conditions as humans
(i.e., in-the-wild). We adopt the paradigm of training policies
in simulation using reinforcement learning and transferring
them into the real world. We overcome critical challenges
of accounting for variable ball motion dynamics on different
terrains and perceiving the ball using body-mounted cameras
under the constraints of onboard computing. Our results
provide evidence that current quadruped platforms are well-
suited for studying dynamic control problems involving simul-
taneous locomotion and manipulation directly from sensory
observations, such as soccer play. Video and code are available
at https://gmargo11.github.io/dribblebot.

I. INTRODUCTION

Consider dynamic mobile manipulation, a family of com-
pound tasks requiring tight integration of perception, dy-
namic locomotion, and object manipulation. In applications
such as delivery and search-and-rescue, a robot is often
required to move quickly while carrying an object. Instead of
the object being held at a fixed position in the robot’s frame
of reference, often the object must be manipulated while
the robot is in motion to achieve the desired performance
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under time constraints. An impressive demonstration to this
effect was recently made by Boston Dynamics. It showcased
the humanoid Atlas robot picking up, running with, and
throwing heavy objects in a construction site [1]. The study
of dynamic mobile manipulation has historically required
expensive, specialized hardware and complex system ar-
chitecture, so despite its relevance, it has received less
attention than the individual sub-problems of locomotion and
manipulation. However, in the past few years, the use of
reinforcement learning has simplified the control stack for
these problems, and advances in hardware have made agile,
well-sensorized robots more accessible. In particular, training
control policies using reinforcement learning in simulation
and deploying them zero-shot in the real world has enabled
fast, robust legged locomotion across challenging terrains
like stairs, hiking trails, sand, and mud [2]–[11]. The same
approach has also succeeded at dynamic object manipulation
using dexterous hands [12]–[15]. What challenges remain in
extending these successes to dynamic mobile manipulation?

As a case study, we investigate the task of soccer ball
dribbling in the wild. Our aim is to develop a system that,
like a human athlete, operates from onboard perception
and dynamically controls a ball across a wide variety of
natural terrains including grass, mud, snow, and pavement. In

https://gmargo11.github.io/dribblebot


contrast, previous studies on robot soccer [16]–[22] assumed
a restricted setting: (i) the playing surface was flat and
smooth; (ii) external perception was used instead of onboard
perception and (iii) interactions largely consisted of static
dribbling, where the ball comes to rest before each kick.

Bringing soccer dribbling from the laboratory into the
wild is not merely a matter of synthesizing techniques from
locomotion and manipulation but presents several unique
challenges. One is adapting to the ball-terrain dynamics,
which varies independently from the robot-terrain dynamics
due to the much lighter ball and the different nature of rolling
contact. On pavement, the ball may roll away faster than the
robot can run; on grass, the ball will slow down quickly and
requires more frequent and stronger kicks. We overcome this
challenge by introducing a custom ball drag model to train a
policy that can adapt to such variation. Another consideration
is the limited precision and range of onboard perception
systems. When a small robot is dribbling close to its body,
it is hard to localize the ball using a conventional body-
mounted camera due to its narrow field of view. Instead, we
use observations from multiple wide-angle fisheye cameras,
which introduces additional challenges that we overcome.
Finally, the robot can lose control of the ball due to failure in
locomotion, especially when traversing challenging terrains.
To address these scenarios, we integrate a recovery policy
that enables the robot to stand up autonomously after falling
down. We find this controller can successfully regain control
of the ball and continue to dribble.

The resulting system, DribbleBot (Dexterous Ball Manip-
ulation with a Legged Robot), demonstrates dynamic real-
world dribbling maneuvers across a variety of terrains. By
providing evidence that existing hardware and sensors are
capable of successful behavior, we hope to motivate more
work in both robot soccer and more generally on the problem
of dynamic mobile manipulation.

II. MATERIALS

Hardware: We use the Unitree Go1 robot [23] and a size 3
soccer ball for all experiments. This small robot quadruped
stands 40 cm tall. We use two onboard 210◦ field-of-view
fisheye cameras to capture images, one facing forward and
one facing downward. All computation is performed on
two onboard NVIDIA Jetson Xavier NX units. Due to
the computation, communication bandwidth, and electrical
power limitations of the robot, we critically process full-
resolution images locally on each board and send only the
ball location estimates to the policy board. We accelerate
perception inference using TensorRT. This allows the system
to process 400×480 resolution images comfortably at 30Hz.

Simulator: We simulate the Unitree Go1 robot in Isaac
Gym [24] using the manufacturer-provided URDF model.
Simulation and training run on a single NVIDIA RTX 3090.

Pretrained Perception Module: We obtain the YOLOv7
[25], [26] model weights from the internet, pretrained on
the COCO dataset [27], to perform our own fine-tuning as
described in section III-B.1.
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Fig. 2: System architecture for DribbleBot. πd and πr are
multilayer perceptrons trained using reinforcement learning in sim-
ulation. YOLOv7 is an object detection network [26] that we fine-
tune on images from our domain using supervised learning.

III. METHOD

Overview: We train control policy at = πd(ot, ct) in
simulation and transfer it to the real world. The observation
ot consists of the proprioceptive sensory data and the ball
position bt. The ball velocity command ct is provided as
input (e.g., by a human user during deployment). We choose
not to train our policy end-to-end on camera images, because
of the numerous challenges including slow simulation speed,
poor sample efficiency in training from high-dimensional
visual observations, and the sim-to-real gap in image obser-
vations. Instead, we train the policy using ball position that
is easily available in simulation. For real-world deployment
a separately trained object detection model (Y) predicts the
ball position from images (ovt ) captured by on-board cam-
eras: b̂t = Y(ovt ). The policy πd outputs actions at, which
are the joint position targets of twelve motors (three motors
per leg) at 50Hz. πd is trained using reinforcement learning
algorithm, Proximal Policy Optimization (PPO) [28].

A. Training the Dribbling Policy

1) Environment Design: We train the robot in simulation
to dribble the ball on flat ground with physical parameters
randomly varied as detailed in Section VIII. At the start
of every episode, the robot’s yaw orientation is randomly
initialized, and its initial leg positions are randomized around
a nominal pose. The soccer ball is initialized at a random
position within 2m of the robot. The target ball velocity is
also uniformly randomized. These considerations ensure that
the robot learns omnidirectional locomotion and dribbling.
The episode length is 40 s and the control timestep is 50Hz.

2) Control Interface for Dribbling in the Wild: Successful
dribbling involves adjusting the leg swings to apply targeted
forces while the robot moves, balances itself, and orients
its position relative to a moving ball. Previous works in
sim-to-real legged locomotion commonly use body velocity
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Fig. 3: Simulated dribbling performance evaluation. (a) Ball position in world frame and turning moment snapshots. The red points
indicate the ball position and darken as time elapses. The dark arrows represent the approximate direction of the commanded velocity.
(b), (c) Ball velocity tracking performance in polar coordinates. Here, the robot is first commanded to dribble the ball forward at 1m/s,
and then to execute a sequence of turns at various speeds. (d) We illustrate the joint position of the front right leg, which is typically
used for dribbling and for executing left turns. The blue highlight around 20 s corresponds to the left turn visualized in the first row of
images above. The orange highlight around 50 s corresponds to the right turn visualized in the second row.

command or position [29] as the control interface, with a few
exceptions that allow the user to tweak gait [9], [30] or foot
placement [31] parameters. The dribbling skill is not easily
expressed just with gait or body-level control commands, and
issuing such commands would be unintuitive for a human
user deploying the robot. Instead, we directly command the
ball’s linear velocity in the 2D ground plane expressed in the
global reference frame. Because the ball has full rotational
symmetry and the robot’s orientation can vary rapidly during
a kicking maneuver, the local reference frames of both the
robot and the ball are constantly changing and less useful for
a human operator. We choose to command the robot in the
global frame as it does not change with the robot’s motion
making it much easier for the human to control the robot.
The local body frame of the robot at the first time step serves
as the global frame of reference.

3) Observation and Action Space: The input to the policy
πd is ot consisting of the 15-step history of command ct,
ball position bt, joint positions and velocities qt, q̇t, gravity
unit vector in the body frame gt, global body yaw ψψψt, and
timing reference variables θθθcmd

t as defined in in [9]. The
commands ct consist of the target ball velocities vcmd

x , vcmd
y

in the global frame (Sec. III-A.2). For the robot to process
commands in the global frame, it must know its orientation in
the global frame for which we provide the global body yaw
ψψψt as input to the policy. The action space at is the twelve
target joint positions that are tracked using a PD controller

with kp = 20.0, kd = 0.5 [9].
4) Reward Model: Table III (Appendix) provides the task

reward terms used for ball dribbling: reward for tracking the
commanded ball velocity in the global reference frame and a
reward shaping term incentivizing the robot to be close to the
ball. Since the camera has limited range, to promote ball vis-
ibility in the camera, the robot is rewarded for facing towards
the ball. Another set of gait reward terms [9], [30] encourage
the robot to adopt a consistent ground contact schedule,
generating well-formed gaits without the constraints of a
full reference trajectory. Additional standard safety reward
terms [8], [9], [32], [33] are included to penalize dangerous
commands and facilitate sim-to-real transfer.

5) Policy Architecture and Optimization: We use Proxi-
mal Policy Optimization (PPO) [28] to train our soccer drib-
bling policy, an MLP with hidden layer sizes [512, 256, 128].
The policy converges after 7 billion timesteps, or about 48
hours of training. For visualization and debugging, it is ideal
to have access to state variables such as the robot’s body
velocity, ball velocity, and ball-terrain drag force coefficient.
A regression model represented as two-layer MLP with
[256, 128] units takes ot (Sec. III-A.3) as input and is
trained using supervised learning to predict these parameters
in simulation [33]. Additionally, these predicted parameters
are also input to the policy network. While prior works
have found concurrent state estimation useful for sim-to-real
transfer of running policies [33], we did not evaluate its effect
on sim-to-real performance on the dribbling task.



Tile Grass

Full 4/4 Full 4/4

-R 4/4 -R 4/4

-Y 0/4 -Y 0/4

-D 4/4 -D 4/4

Sand Snow

Full 4/4 Full 3/4

-R 4/4 -R 3/4

-Y 0/4 -Y 0/4

-D 2/4 -D -

Curb Step-Down Ramp

Full 2/4 Full 0/4

-R 1/4 -R 0/4

-Y - -Y -

-D - -D -

TABLE I: Real-world dribbling performance evaluation. The
robot executes a fixed dribbling trajectory on each trial. We test
each scenario with full system design (Full) and with ablations:
No recovery controller (-R); No YOLO fine-tuning (-Y); No drag
model during training (-D)

B. Measures to Mitigate the Sim-to-Real Gap

1) Perception in Fisheye Images: To make dribbling feasi-
ble, the robot needs to localize a size-3 soccer ball (diameter
18 cm) using a body-mounted camera when the ball is as
close as 10 cm to the body. This mandates a wide field of
view. We found the visible workspace of common cameras
like RealSense (field of view 105◦) much too small for this
application. Our robot is equipped with ultrawide forward-
facing and downward-facing fisheye cameras, each with a
field of view 210◦. With such a wide view, rectification
results in substantial warping of the spherical soccer ball,
making it infeasible to apply off-the-shelf object detection
networks that are trained on datasets of narrow-view rectified
images taken from the internet. To recover good detection
performance in the entire field of view, we fine-tune the
YOLOv7 [26] network on 254 hand-labeled images of soccer
balls from our robot’s camera, including images with the ball
at the edge. Specifically, we fine-tune the YOLOv7 model
that was pretrained on the COCO dataset [27]. The learned
model accurately detects the ball in cluttered environments.

While object detection outputs a bounding box, our control
policy takes as input the ball position. We obtain ball posi-
tion through an approximate application of the equidistant
fisheye lens model. Given the ball pixel coordinates, we first
compute the angle Ψ from the camera principal axis to the
ball center using the equidistant model r = fΨ. Ignoring
warping effects, observing the size of the ball in the image,
and knowing the actual ball radius, we use the perspective
projection ratio to compute the distance between the ball
and the camera. The observed ball positions in the front and
bottom cameras are transformed into the body frame using
the known camera extrinsics. Finally, if the ball is detected
in both cameras, we must fuse this information into a single

position estimate. We found it effective to select the detection
with a higher confidence value output by YOLOv7.

2) Perception Noise Model: While in simulation accurate
ball position estimates are available, in the real world, the
ball position estimates are noisy. To ensure that the policy
is robust to perception noise, we add noise sampled from a
uniform distribution to ball position during training. Further,
to emulate large changes to ball position that might happen
due to a human kicking the ball or the ball going outside the
robot’s field of view, we also randomly teleport the ball in
the ground plane. Finally, because the data rate of the camera
is limited, we simulate camera communication delay. Noise
model details are provided in Section VIII (Appendix).

3) Robot System Identification: To mitigate the sim-to-
real gap in robot dynamics, we employ two standard and
effective system identification measures: (a) Train an actuator
network on real-world torque data to account for the non-
ideal motor dynamics [9], [15], [34]; and (b) Identify and
model the lag between the time the observation is measured
and the time the action is applied [9], [15], [35].

4) Ball-Terrain Interaction Model: Human soccer players
can quickly adapt to variations in ball dynamics, due to
physical factors like air pressure and size as well as external
perturbations to the ball due to uneven terrain or opposing
players. We embed similar robustness in DribbleBot by
implementing a custom ball drag model and random per-
turbation scheme in our training environment. Our ball drag
model applies drag force proportional to the square of the
velocity: FD = CDv

2, following the standard equation for
aerodynamic drag. Different values of CD serve to emulate
terrains with various resistance forces, such as a field with
tall grass (high CD) or pavement (low CD). In addition,
we randomize the ball mass and apply random changes in
ball velocity during training. Ball velocity randomization
simulates external perturbations to the ball such as human
intervention or contact with uneven terrain. The randomiza-
tion range details are given in Table IV (Appendix).

5) Fall Recovery Controller: If the robot encounters a
harsh perturbation such as a shove or a steep curb that results
in locomotion failure, it will also cause loss of ball control.
In this scenario, we would like the robot to get up from its
fall and resume dribbling. Similar to prior works [34], [36],
we train a dedicated recovery policy that enables the robot
to return to a standing position from diverse fall scenarios.
We first generate a set of 1000 initial fall configurations by
randomly dropping the robot from different orientations, then
train a policy with rewards for body orientation, base height,
and action smoothness. The details of the reward function
and training procedure for the recovery policy are provided
in Table III (Appendix). To transition between dribbling
and recovery policy, we define a finite state machine with
transitions based on the body orientation. When the roll
or pitch angle is larger than 1.0 rad, indicating locomotion
failure, the recovery policy executes a return to the standing
pose. When roll and pitch are smaller than 0.5 rad, the
dribbling policy is reactivated.



(a) 180◦ turn maneuver.

(b) Ball control on tile, gravel, and bumpy moss.

(c) Dribble to goal with an evasive turn.

Fig. 4: Overhead images of DribbleBot during real-world deployment.

IV. RESULTS

A. Simulation Performance

1) Dribbling Control: We first evaluate our dribbling
policy in simulation under the same conditions experienced
during training. If the robot is dribbling well, we can
characterize its performance by how closely it tracks the ball
velocity command, how fast it can dribble, and how sharply
it can turn. Figure 3 visualizes a long 60 s run, and shows
the dribbling path, command tracking performance, and joint
motion. The corresponding behavior is shown in Video S1.

We observe that the robot is able to track dribbling
speeds up to 1.5m/s and the entire range of instantaneous
changes in command direction up to 180◦. Unlike in ordinary
locomotion, the task of turning the ball may extend across a
long time horizon, during which the robot establishes control
of the ball and executes multiple kicks. This incurs a delay
between the change in command and the change in ball state,
sometimes as long as several seconds (Figure 3b, 3c).

Dynamically dribbling a soccer ball requires task-oriented
coordination of all the robot’s joints (whole-body control).
Figure 3d shows that dribbling a soccer ball involves different
participation of the right front leg during left and right
turns. This leg is used to kick the ball during a left turn
(blue highlight, Figure 3a upper images), and its motion is
substantially changed during this maneuver. Later, when the
robot makes a right turn (orange highlight, Figure 3a lower
images), the left front leg is used to kick the ball, but the
motion of the right leg also adjusts to stabilize the maneuver.

B. Real-world Deployment

1) Qualitative Results on Diverse Terrains: We qualita-
tively evaluate our dribbling controller under teleoperation
on a number of terrains with different ball-terrain dynamics.
A locomotion controller must adapt when the terrain causes
the feet to slip or stumble. Dribbling additionally requires

that running and kicking adjust depending on how the ball
interacts with the terrain, which may be very different due
to the ball’s lighter mass and rolling surface contact. For
example, on grass, high drag tends to slow down the rolling
ball; on pavement, low drag may cause it to speed away from
the robot; on gravel, the ball tends to roll but the robot slips;
on snow or sand, both ball and robot slip; on bumpy dirt, the
ball changes direction unpredictably as it impacts the terrain
surface. DribbleBot is able to execute dribbling and turning
motions on each terrain, tracking ball velocity commands
from a human. These test terrains are illustrated in Figure 1,
and the behavior is fully shown in the supplementary video.

Because our system operates without a tether or external
sensing, it is capable of manipulating the soccer ball across
large outdoor spaces. To illustrate this, we collect drone
footage of the robot’s entire path across (a) a 180◦ turn, (b)
a series of diverse terrains including tile, gravel, and bumpy
moss, and (c) a 10m run towards a soccer goal, with an
evasive turning maneuver. Figure 4 shows stitched overhead
photos to illustrate the real-world dribbling performance.

2) Quantitative Results and Ablation: We quantitatively
evaluate the fully autonomous behavior of DribbleBot while
executing a scripted trajectory across diverse terrains. The
robot is commanded with a predetermined trajectory: dribble
forward at 1.5m/s for 10 s, then stop the ball for 5 s, then
return towards the starting line at 1.5m/s until the line is
reached. We count a trial as a failure if the robot loses control
of the ball, although if the loss is due to the robot falling, we
allow it to autonomously recover and continue the attempt.

As shown in Table I, the robot executed four consecutive
successful maneuvers using the full system design on tile,
grass, and sand. Snow, step-down, and ramp are progressively
more challenging and yield lower performance. Because the
system was never exposed to steps or ramps during training,
they are examples of out-of-distribution terrain for our policy.
In the step-down task, the robot once fell in a pile of



snow and failed to recover, and once knocked the ball far
away as it fell, and could not perceive it upon recovery.
The ramp was traversed successfully under teleoperation, but
the robot did not make substantial forward progress in the
standard experiment when the dribbling commands were pre-
specified. The ball repeatedly rolled behind the robot which
turned around to recover it, remaining near the bottom.

We also conduct an ablation study to quantify the impact
of our design choices on real-world performance. We eval-
uate the ablated configurations under the same methodology
as above: No recovery controller (-R); No YOLO fine-
tuning (-Y); No custom ball drag model during training (-D).
Ablation results show that YOLO fine-tuning (-Y) is critical
to performance, and recovery policy (-R) improves one run
in the challenging curb environment. The system without ball
drag model (-D) maintains control on both grass and tile,
but the video supplement shows that it dribbles substantially
slower on grass despite the equal velocity command. On
sand, the policy without drag model fails twice during the
turning maneuver after missing a kick on the ball. This
suggests that the additional robustness from the drag model
may also improve response to unexpected ball trajectories.

3) Playing with a Human and Emergent Behaviors: A
real soccer match is not played alone, but with another agent
who is seeking to control the ball. To understand the robot’s
behavior under this scenario, we explore the setting where
the robot interactively plays with a human partner on both
grassy field and flat ground (Video B1). Unlike the typical
locomotion task, the task of controlling ball velocity affords
the robot a high degree of freedom in its behavior, even when
the user is not changing the command. Successful dribbling
is not a monolithic skill: it often involves extended aperiodic
movements to seek the ball, orient the body for a kick, and
double back if the ball has been lost due to an unexpected
perturbation, temporary perception or control failure.

V. RELATED WORK

A. Soccer Skills for Legged Robots

Soccer has long been an area of interest for roboticists.
The RoboCup competition, this year in its 26th season,
has attracted thousands of annual participants. RoboCup
teams have implemented effective rule-based approaches to
kicking, passing, and shooting in the past [16]–[18].

Recently, some works have applied learning to legged ball
manipulation tasks in simulation [19], [37] and in externally
instrumented indoor settings [21], [22], [38]. [38] demon-
strated that a quadruped lying on its back can control and
reorient a ball with its legs. A number of soccer skills such as
dribbling [39] and juggling [37] have been demonstrated for
physically simulated characters using reinforcement learning.
[20] used imitation learning to perform static dribbling in the
real-world indoor setting assisted by motion capture. [21]
applied a hierarchical framework to the soccer shooting task
in the real world, selecting the front right foot Bézier curve
parameters as the low-level command inputs and leveraging
a real-world fine-tuning stage to improve the shooting accu-
racy. [22] trained a control policy for jumping to block an

oncoming ball in an instrumented laboratory setting using
sim-to-real reinforcement learning.

In addition to low-level skill learning, some work has fo-
cused on learning high-level soccer play end-to-end. Notably,
[40] approaches the problems of muscle level control and
long-horizon decision-making by first pretraining low-level
skills using human soccer players’ motion-capture video
clips and then finding solutions for the multi-agent coordina-
tion goal in the low-level control space using reinforcement
learning. To learn low-level skills like dribbling, [40] relies
on motion capture data of human soccer players, which is
not available for the quadruped form factor.

B. Dynamic Object Manipulation

Prior work has explored manipulating objects dynamically
using a fixed or fully actuated base. [41] controlled a robotic
arm to blindly perform ball juggling using an open-loop pol-
icy. Another work on robotic table tennis [42] estimated the
ball state using an extended Kalman Filter which internally
leverages a model of flight and bouncing behaviors. [43]
learned a residue physics model to randomly pick up and
throw a rigid object into a box. [44] bootstrapped a human
behavior model and trained on both simulated and real data
to learn a control policy for a table tennis-playing robot.

Another relevant line of work has investigated manipu-
lating objects using a quadruped with mounted arm. [45]
manipulated objects with a quadruped-mounted arm, coor-
dinating the body and arm motion through learned esti-
mation module. [46] implemented a model-based controller
to manipulate objects with a quadruped-mounted arm in
standing pose. [47] trained an end-to-end controller using
reinforcement learning to perform coordinated manipulation
with a quadruped-mounted arm under teleoperation and
demonstrate vision-guided reaching using AprilTags. These
works investigate complementary problems in the space of
dynamic mobile manipulation.

VI. DISCUSSION

DribbleBot has a number of limitations which we hope to
explore and improve upon in future work. We enumerate sev-
eral here, with videos of failure cases available on the project
website. Slow turning response: our system can execute sharp
turns of the ball, but there is lag between the command
onset and the actual turn (Figure 3). Perception sensitivity to
lighting: We found that the perception module can perform
poorly in bright, direct sunlight that produces glare from
reflection on the ball and cameras. Fine-tuning the perception
network with a more diverse set of outdoor images may
resolve this problem. Imprecision at high speeds: If the ball is
moving too fast on low-drag terrain, or a sharp instantaneous
turn is commanded at high speed, a missed attempt to stop
the ball can fail with the robot losing sight. Lack of geometry
awareness: While the robot can dribble on slippery and
uneven terrains, it cannot traverse larger obstacles like steep
slopes and staircases with good consistency. Moreover, it is
not aware of objects in the environment like poles and walls.
Future work could incorporate more information about the



environment geometry into the controller to improve ball
control in cluttered and harsh settings.

We believe there are many exciting frontiers to explore
with a strong baseline for in-the-wild dribbling as a starting
point. Dribbling is just one component of soccer. In partic-
ular, a combination of shooting [21] and goalkeeping [22]
skills as well as high-level gameplay and awareness of other
agents will be required to play a competitive game. Similarly,
applying dynamic mobile manipulation for practical tasks
like delivery and emergency response will require diverse
skills, high-level planning, and rich world understanding.
In-the-wild soccer may further be an interesting context
in which to study human-robot interaction. While direct
physical interaction with a legged robot is typically limited,
interaction through the soccer ball as a shared medium proves
rich and fun. Future work could explore how the robot is
perceived by humans during play.
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TABLE II: Notation.

Parameter Definition Units Dimension

System Components
πd Dribbling Policy - -
πr Recovery Policy - -
Y YOLOv7 Network [26] - -

Robot State
q Joint Angles rad 12

q̇ Joint Velocities rad/s 12

q̈ Joint Accelerations rad/s 12

τττ Joint Torques rad/s 12

g Gravity Unit Vector, Body Frame m/s2 3

ψψψt Body Yaw, Global Frame rad 1

qdes Joint Position Targets rad 12

θθθcmd Timing Reference Variables [9] - 4

pFRHip Front Right Hip Position m 3

Ball State
ov Fisheye Camera Image - 400 × 480

b Ball Position, Body Frame m 3

b̂ Estimated Ball Position, Body Frame m 3

vb Ball Velocity, Global Frame m/s 2

vcmd Command Ball Velocity, Global Frame m/s 2

ψb Direction of Ball Velocity rad 1

ψcmd Direction of Command Ball Velocity rad 1

Control Policy
o Policy Observation - 37 × 15

a Policy Action - 12

c Command - 2

APPENDIX
VII. REWARD STRUCTURE

Dribbling Policy: Table III provides the reward terms for learn-
ing soccer dribbling. vb and vcmd are the desired and commanded
ball velocity in the global reference frame. ψb and ψcmd are the
desired and commanded direction of the ball velocity in the global
reference frame, which can be directly computed from vb and vcmd.
b is the ball position in the body frame. pFRHip is the front right hip
position in the body frame. erbcmd represents the angle difference
between the robot ball vector and ψb. erbbase is the angle difference
between the base yaw angle and ψb. κκκ is the target contact state
Ccmd

foot (θθθ
cmd, t), where, as in prior work [9], f foot is foot contact

force in stance phase, vfoot is foot velocity in swing phase, Ccmd
foot

denotes desired foot contact sequence, and θθθcmd denotes timing
reference variables. τττ ,q, q̇, q̈ denote joint torque, position, velocity
and acceleration. i is the index of joints. gxy

t denotes the gravity
unit vector projected onto the robot transverse plane. at denotes
the action at timestep t. | · | denotes l2-norm. The total reward at
timestep t is represented as rt = rpost exp(rnegt ), where rpost and
rnegt represent positive task reward and negative penalizing reward
respectively [33].

Recovery Policy: Table III provides the reward terms for learning
the recovery policy, inspired by [34], [36]. Here, gz is the vertical
component of the gravity unit vector in the body frame. When the
robot is perfectly upright, gz = −1. I is shorthand for an indicator
variable 1gz<−0.6 which denotes that the body height, body pose,
and foot height rewards are only activated when the robot’s body
is nearly upright. clamp clamps the value of its input between 0
and 1.

VIII. NOISE MODEL

Robot Physics Randomization: We randomize the robot’s
payload mass, motor strength, joint calibration, foot friction, foot

TABLE III: Reward terms for ball dribbling and recovery policies.

Ball Dribbling Policy

Term Expression Weight

Projected Ball Velocity exp{−δv|vb − vcmd|2} 0.5

Robot Ball Distance exp{−δp|b − pFRHip|2} 4.0

Yaw Alignment exp{−δψ(e2rbcmd + e2rbbase)} 4.0

Ball Velocity Norm exp{−δn(|vcmd| − |vb|)2} 4.0

Ball Velocity Angle 1− (ψb − ψcmd)
2 /π2 4.0

Swing Phase Schedule [1 − κκκ]exp{−δcf |f foot|2} 4.0

Stance Phase Schedule κκκexp{−δcv|vfoot
xy |2} 4.0

Joint Limit Violation 1qi>qmax||qi<qmin
-10.0

Joint Torque |τ |2 -0.0001

Joint Velocity |q̇| -0.0001

Joint Acceleration |q̈| -2.5e-7

Hip/Thigh Collision 1collision -5.0

Projected Gravity |gxy|2 -5.0

Action Smoothing |at−1 − at|2 -0.1

Action Smoothing, 2nd Order |at−2 − 2at−1 + at|2 -0.1

Recovery Policy

Term Expression Weight

Body Orientation (0.5 − 0.5gz)
2 1.0

Body Height I(1.0 − clamp((hbody
target − hbody)/hbody

target)
2) 1.0

Body Pose I(1.0 − clamp(|q − qstanding|2/20.0)) 1.0

Foot Height I(exp−10
∑
i(h

foot
i )2) 1.0

Action |at|2 −1e−3

Joint Torque |τ |2 −1e−5

restitution, and center of mass displacement. Table IV provides the
ranges of randomized parameters.

Ball Physics Randomization: We randomize the ball mass
and ball-terrain drag coefficient. Table IV provides the ranges of
randomized parameters.

Ball Teleportation: We teleport the ball to a uniformly sampled
random location within 1.0m at regular intervals of 7.0 s.

Camera Delay: We model the arrival time of the next observa-
tion as a Poisson distribution with mean arrival time randomized
each episode between 20ms and 60ms.

IX. POLICY OPTIMIZATION

We used the same set of PPO hyperparameters for training the
dribbling and recovery policies. Table V provides these hyperpa-
rameter values. They are the same settings used in prior work for
training locomotion policies on this robot [9].



TABLE IV: Randomization ranges for robot dynamics, ball dynam-
ics, and commands during training.

Dynamics Parameter Range Units

Robot Dynamics
Payload Mass [−1.0, 3.0] kg

Motor Strength [90, 110] %

Joint Calibration [−0.02, 0.02] rad

Robot-Terrain Friction [0.40, 1.00] –
Robot-Terrain Restitution [0.00, 1.00] –
Robot Center of Mass Displacement [−0.15, 0.15] m

Ball Dynamics
Mass [0.159, 0.254] kg

Perception Arrival Rate [0.3, 0.7] –
Teleporting Position [0.0, 1.0] m

Perturbation Velocity [0.0, 0.3] m/s

Ball-Terrain Drag Coefficient [0.0, 1.5] –
Command

vcmd
x [−1.5, 1.5] m/s

vcmd
y [−1.5, 1.5] m/s

Hyperparameter Value

Discount factor 0.99

GAE parameter 0.95

Timesteps per rollout 21

Epochs per rollout 5

Minibatches per epoch 4

Entropy bonus (α2) 0.01

Value loss coefficient (α1) 1.0

Clip range 0.2

Reward normalization yes
Learning rate 1e−3

# Environments 4096

# Total timesteps 7B
Optimizer Adam

TABLE V: PPO hyperparameters.
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