

Chapter 2. Python
Environments

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the second chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at mail@claudiojolowicz.com.

At their core, Python installations consist of an interpreter and the modules
from the standard library (and from third-party packages, if you’ve installed
any). Together, these provide the essential components you need to execute
a Python program: a Python environment. Figure 2-1 shows a first
approximation of a Python environment; we’ll keep refining this picture
throughout the present chapter.

Figure 2-1. The essential components of a Python environment

mailto:mail@claudiojolowicz.com

Python installations aren’t the only kind of Python environment. Virtual
environments are stripped-down environments that share the interpreter and
the standard library with a full installation. You use them to install project-
specific modules while keeping the system-wide environment pristine. The
per-user environment allows you to install modules for a single user. As you
will see, neither of these can stand alone as a Python environment; both
require a Python installation to provide an interpreter and the standard
library.

Managing environments is a crucial aspect of Python development. You’ll
want to make sure your code works on your users’ systems, particularly
across the language versions you support, and possibly across major
versions of an important dependency. Furthermore, a Python environment
can only contain a single version of each module— if two programs require
different versions of the same module, they can’t be installed side-by-side.
That’s why it’s considered good practice to install every Python application
in a dedicated environment.

Python environments are primarily runtime environments, which is another
way of saying that they provide the prerequisites for running a Python
program. But environments also provide a build environment: They serve to
build packages—the artifacts used to share modules with the world.

In this and the following chapter, you’ll build a deeper understanding of
what Python environments are and how they work, and you’ll learn about
tools that help you manage them efficiently. This chapter takes a look under
the hood: the contents and structure of an environment, and how your code
interacts with the environment. Specifically, I’ll teach you how— and where
— Python finds the modules you import. In the next chapter, I’ll introduce
you to third-party tools that help you manage environments and the
modules installed in them.

Contents of a Python Environment
Figure 2-2 gives a more complete picture of the components that make a
Python environment.

Figure 2-2. Python environments consist of an interpreter, the standard library, site packages, entry-
point scripts, shared libraries, and more.

Let’s take a quick inventory— feel free to follow along on your own system:

The Python Interpreter

The executable that runs Python programs is named python.exe on
Windows and located at the root of the installation.1 On Linux and
macOS, the interpreter is named python3.x and stored in the bin
directory with a python3 symbolic link.

Python modules

Modules are containers of Python objects that you load via the import
statement. They are organized under Lib (Windows) or lib/python3.x
(Linux and macOS). While modules from the standard library are
distributed with Python, site packages are modules you install from the
Python Package Index (PyPI) or another source.

Entry-point scripts

These are executable files in Scripts (Windows) or bin (Linux and
macOS). They launch Python applications by importing and invoking
their entry-point function.

Shared libraries

Shared libraries contain native code compiled from low-level languages
like C. Their filenames end in .dll or .pyd on Windows, .dylib on
macOS, and .so on Linux. Some have a special entry point that lets you
import them as modules from Python— they’re known as extension
modules. Extension modules, in turn, may use other shared libraries
from the environment or the system.2

Headers

Python installations contain headers for the Python/C API, an
application programming interface for writing extension modules or
embedding Python as a component in a larger application. They are
located under Include (Windows) or include/python3.x (Linux and
macOS).

Static data

Python environments can also contain static data in various locations.
This includes configuration files, documentation, and any resource files
shipped with third-party packages.

The next sections take a closer look at the core parts of a Python
environment: the interpreter, modules, and scripts.

NOTE
By default, Python installations also include Tcl/Tk, a toolkit for creating graphical user
interfaces (GUIs) written in Tcl. The standard tkinter module allows you to use this
toolkit from Python.

The Interpreter
The Python interpreter ties the environment to three things:

a specific version of the Python language

a specific implementation of Python

a specific build of the interpreter

The implementation might be CPython, the reference implementation of
Python, but it could also be any of a number of alternative implementations
— such as PyPy, a fast interpreter with just-in-time compilation, written in
Python itself. Builds differ in their instruction set architecture— for
example, 32-bit versus 64-bit, or Intel versus Apple Silicon— and their
build configuration, which determines things like compile-time
optimizations or the installation layout.

QUERYING THE INTERPRETER ABOUT THE PYTHON
ENVIRONMENT

In an interactive session, import the sys module and inspect the
following variables:

sys.version_info

The version of the Python language, represented as a named tuple
with the major, minor, and micro versions, as well as the release
level and serial number for prereleases

sys.implementation.name

The implementation of Python, such as "cpython" or "pypy"

sys.implementation.version

The version of the implementation, same as sys.version_info for
CPython

sys.executable

The location of the Python interpreter

sys.prefix

The location of the Python environment

sys.base_prefix

The location of the full Python installation, same as sys.prefix
outside of a virtual environment

sys.path

The list of directories searched when importing Python modules

The command py -m sysconfig prints a great deal of metadata
compiled into the Python interpreter, such as the instruction set

architecture, the build configuration, and the installation layout.

Python Modules
Modules come in various forms and shapes. If you’ve worked with Python,
you’ve likely used most of them already. Let’s go over the different kinds:

Simple modules

In the simplest case, a module is a single file containing Python source
code. The statement import string executes the code in string.py and
binds the result to the name string in the local scope.

Packages

Directories with __init__.py files are known as packages—they allow
you to organize modules in a hierarchy. The statement import
email.message loads the message module from the email package.

Namespace packages

Directories with modules but no __init__.py are known as namespace
packages. You use them to organize modules in a common namespace
such as a company name (say acme.unicycle and acme.rocketsled).
Unlike with regular packages, you can distribute each module in a
namespace package separately.

Extension modules

Binary extensions are dynamic libraries with Python bindings; an
example is the standard math module. People write them for
performance reasons or to make existing C libraries available as Python
modules. Their names end in .pyd on Windows, .dylib on macOS, and
.so on Linux.

Built-in modules

Some modules from the standard library, such as the sys and builtins
modules, are compiled into the interpreter. The variable
sys.builtin_module_names lists all of them.

Frozen modules

Some modules from the standard library are written in Python but have
their bytecode embedded in the interpreter. Originally, only core parts of
importlib got this treatment. Recent versions of Python freeze every
module that’s imported during interpreter startup, such as os and io.

NOTE
The term package carries some ambiguity in the Python world. It refers both to modules
and to the artifacts used for distributing modules, also known as distributions. Unless
stated otherwise, this book uses package as a synonym of distribution.

Bytecode is an intermediate representation of Python code that is platform-
independent and optimized for fast execution. The interpreter compiles pure
Python modules to bytecode when it loads them for the first time. Bytecode
modules are cached in the environment in .pyc files under __pycache__
directories.

INSPECTING MODULES AND PACKAGES WITH
IMPORTLIB

You can find out where a module comes from using importlib from
the standard library. Every module has an associated ModuleSpec object
whose origin attribute contains the location of the source file or
dynamic library for the module, or a fixed string like "built-in" or
"frozen". The cached attribute stores the location of the bytecode for
a pure Python module. Example 2-1 shows the origin of each module in
the standard library.

Example 2-1. Listing standard library modules and their origin
import importlib.util
import sys

for name in sorted(sys.stdlib_module_names):
 if spec := importlib.util.find_spec(name):
 print(f"{name:30} {spec.origin}")

Environments also store metadata about installed third-party packages,
such as their authors, licenses, and versions. Example 2-2 shows the
version of each package in the environment using
importlib.metadata from the standard library.

Example 2-2. Listing packages installed in the environment
import importlib.metadata

distributions = importlib.metadata.distributions()
for distribution in sorted(distributions, key=lambda d: d.name):
 print(f"{distribution.name:30} {distribution.version}")

Entry-point Scripts
Package installers like pip can generate entry-point scripts for third-party
packages they install. Packages only need to designate the function that the
script should invoke. This is a handy method to provide an executable for a
Python application.

Platforms differ in how they let you execute entry-point scripts directly. On
Linux and macOS, they’re regular Python files with execute permission (see
Example 2-3). Windows embeds the Python code in a binary file in the
Portable Executable (PE) format— more commonly known as a .exe file.
The binary launches the interpreter with the embedded code.3

Example 2-3. The entry-point script for pydoc
#!/usr/local/bin/python3.11

import pydoc
if __name__ == "__main__":
 pydoc.cli()

Request the interpreter from the current environment using a shebang.
Load the module containing the designated entry-point function.
Check that the script wasn’t imported from another module.
Finally, call the entry-point function to start up the program.

Python installations on Linux and macOS include entry-point scripts for
some applications distributed with Python. The idle command starts IDLE,
an integrated development environment (IDE) for Python, which is based
on the Tcl/Tk GUI toolkit. The pydoc command starts a documentation
browser that displays docstrings embedded in modules. (If you’ve ever
called the built-in help() function, you’ve used its console viewer.)

NOTE
On Windows, you won’t find IDLE and pydoc in the Scripts directory. IDLE is available
from the Windows Start Menu. Pydoc does not come with an entry-point script— use py
-m pydoc instead.

Most environments also include an entry-point script for pip itself. You
should prefer the more explicit form py -m pip over the plain pip
command though. It gives you more control over the target environment for
the packages you install.

The script directory of a Python installation also contains some executables
that aren’t scripts, such as the interpreter, platform-specific variants of the
interpreter, and the python3.x-config tool used for the build configuration
of extension modules.

The Layout of Python Installations
In this section, I’ll discuss how Python installations are structured
internally, and where you can find them on the major platforms. The
location and layout of Python installations varies quite a bit from system to
system. The good news is you rarely have to care— a Python interpreter
knows its environment. This section is supposed to help you when things go
wrong— for example, when you’ve mistakenly installed a package system-
wide instead of within a virtual environment, or when you’re wondering
where a specific package may have come from.

Table 2-1 shows some common locations of Python installations. An
installation might be nicely separated from the rest of your system, but not
necessarily: On Linux, it goes into a shared location like /usr or /usr/local,
with its files scattered across the filesystem. Windows systems, on the other
hand, keep all files in a single place. Framework builds on macOS are
similarly self-contained, although distributions may also install symbolic
links into the traditional Unix locations.

T
a
b
l
e

2
-
1
.
L
o
c
a
t
i
o
n
s

o
f
P
y
t
h
o
n

i
n
s
t
a

l
l
a
t
i
o
n
s

Platform Python installation

Windows (single-
user)

%LocalAppData%\Programs\Python\Python3x

Windows (multi-
user)

%ProgramFiles%\Python3x

macOS (Homebrew) /opt/homebrew/Frameworks/Python.framework/V
ersions/3.xa

macOS (python.org) /Library/Frameworks/Python.framework/Versions
/3.x

Linux (generic) /usr/local

Linux (package
manager)

/usr

a Homebrew on macOS Intel uses /usr/local instead of /opt/homebrew.

Table 2-2 provides a baseline for installation layouts on the major
platforms: the locations of the interpreter, the standard library, third-party
modules, and entry-point scripts within the installation. The location for
third-party modules is known as the site packages directory, and the
location for entry-point scripts as the script directory.

T
a
b
l
e

2
-
2
.
L
a
y
o
u
t
o
f
P
y
t
h
o
n

i
n
s
t
a
l
l
a
t

i
o
n
s

Files Windows Linux and macOS Notes

Interpreter installation
root

bin Virtual environments
on Windows have
the interpreter in
Scripts.

Standard
library

Lib and DLLs lib/python3.x Extension modules
are located under
DLLs on Windows.
Fedora places the
standard library
under lib64 instead
of lib.

Site packages Lib\site-
packages

lib/python3.x/s
ite-packages

Debian and Ubuntu
name the system site
packages dist-
packages. Fedora
places extension
modules under lib64
instead of lib.

Scripts Scripts bin

Linux distributions may have site packages and script directories under both
/usr and /usr/local. These systems allow only the official package manager
to write to the /usr hierarchy. If you install packages using pip with
administrative privileges, they end up in a parallel hierarchy under
/usr/local. (Don’t do this; use the package manager, the per-user
environment, or a virtual environment instead.)

INSTALLATION SCHEMES
Python describes the layout of environments using installation schemes.
Each installation scheme has a name and the locations of some well-
known directories: stdlib and platstdlib for the standard library,
purelib and platlib for third-party modules, scripts for entry-point
scripts, include and platinclude for headers, and data for data files.
The plat* directories are for platform-specific files like binary
extensions.

The sysconfig module defines installation schemes for the major
operating systems and the different kinds of environments— system-
wide installations, per-user installations, and virtual environments.
Downstream distributions like Debian and Fedora often register
additional installation schemes. The main customer of installation
schemes are package installers like pip, as they need to decide where
the various parts of a Python package should go.

You can print the installation scheme for the current environment using
the command py -m sysconfig. Example 2-4 shows how to list all
available installation schemes. (You’re not expanding configuration
variables like the installation root here; they’re only meaningful within
the current environment.)

Example 2-4. Listing installation schemes
import sysconfig

for scheme in sorted(sysconfig.get_scheme_names()):
 print(f"==> {scheme} <==")
 for name in sorted(sysconfig.get_path_names()):
 path = sysconfig.get_path(name, scheme, expand=False)
 print(f"{name:20} {path}")

The Per-User Environment

The per-user environment allows you to install third-party packages for a
single user. It offers two main benefits over installing packages system-
wide: You don’t need administrative privileges to install packages, and you
don’t affect other users on a multi-user system.

The per-user environment is located in the home directory on Linux and
macOS and in the app data directory on Windows (see Table 2-3). It
contains a site packages directory for every Python version. The script
directory is shared across Python versions.4

T
a
b
l
e

2
-
3
.
L
o
c
a
t
i
o
n

o
f
p
e
r
-
u
s
e
r

d
i
r
e

c
t
o
r
i
e
s

Files Windows
macOS
(framework) Linux

Per-user root %AppData%\P
ython

~/Library/Pytho
n/3.x

~/.local

Site packages Python3x\site-
packages

lib/python/site-
packages

lib/python3.x/site-
packagesa

Scripts Scripts bin bin

a Fedora places extension modules under lib64.

You install a package into the per-user environment using pip install --
user. If you invoke pip outside of a virtual environment and pip finds that
it cannot write to the system-wide installation, it will also default to this
location. If the per-user environment doesn’t exist yet, pip creates it for you.

TIP
The per-user script directory may not be on PATH by default. If you install applications
into the per-user environment, remember to edit your shell profile to update the search
path. Pip issues a friendly reminder when it detects this situation.

Per-user environments are not isolated environments: You can still import
system-wide site packages if they’re not shadowed by per-user modules
with the same name. Likewise, distribution-owned Python applications can
see modules from the per-user environment. Applications in the per-user
environment also aren’t isolated from each other. In particular, they cannot
depend on incompatible versions of another package.

In “Installing Applications with Pipx”, I’ll introduce pipx, which lets you
install applications in isolated environments. It uses the per-user script
directory to put applications onto your search path, but relies on virtual
environments under the hood.

Virtual Environments
When you’re working on a Python project that uses third-party packages,
it’s usually a bad idea to install these packages into the system-wide
environment. There are two main reasons why you want to avoid doing this:
First, you’re polluting a global namespace. Testing and debugging your
projects gets a lot easier when you run them in isolated and reproducible
environments. If two projects depend on conflicting versions of the same
package, a single environment isn’t even an option. Second, your
distribution or operating system may have carefully curated the system-
wide environment. Installing and uninstalling packages behind the back of
its package manager introduces a real chance of breaking your system.

Virtual environments were invented to solve these problems. They’re
isolated from the system-wide installation and from each other. Under the
hood, a virtual environment is a lightweight Python environment that stores

third-party packages and a reference to its parent environment. Packages in
virtual environments are only visible to the interpreter in the environment.

You create a virtual environment with the command py -m venv dir. The
last argument is the location where you want the environment to exist— its
root directory. The directory tree of a virtual environment looks much like a
Python installation, except that some files are missing, most notably the
entire standard library. Table 2-4 shows the standard locations within a
virtual environment.

T
a
b
l
e
2
-
4
.
S
t
r
u
c
t
u
r
e
o
f
a
v
i
r
t
u
a
l
e
n
v
i
r
o

n
m
e
n
t

Files Windows Linux and macOS

Interpreter Scripts bin

Scripts Scripts bin

Site packages Lib\site-
packages

lib/python3.x/site-
packagesa

Environment
Configuration

pyvenv.cfg pyvenv.cfg

a Fedora places third-party extension modules under lib64 instead of lib.

Virtual environments have their own interpreter, which is located in the
script directory. On Linux and macOS, this is a symbolic link to the
interpreter you used to create the environment. On Windows, it’s a small
wrapper executable that launches the parent interpreter.5

Virtual environments include pip as a means to install packages into them.
Let’s create a virtual environment, install httpx (an HTTP client library),
and launch an interactive session. On Windows, enter the commands below.

> py -m venv venv

> venv\Scripts\python.exe -m pip install httpx

> venv\Scripts\python.exe

On Linux and macOS, enter the commands below. There’s no need to spell
out the path to the interpreter if the environment uses the well-known name
.venv. The Python Launcher for Unix selects its interpreter by default.

$ py -m venv .venv

$ py -m pip install httpx

$ py

In the interactive session, use httpx.get to perform a GET request to a web
host:

>>> import httpx

>>> httpx.get("https://example.com/")

<Response [200 OK]>

You might think that the interpreter must somehow hardcode the locations
of the standard library and site packages. That’s actually not how it works.
Rather, the interpreter looks at the location of its own executable and checks
its parent directory for a pyvenv.cfg file. If it finds one, it treats that file as a
landmark for a virtual environment and imports third-party modules from
the site packages directory beneath.

This explains how Python knows to import third-party modules from the
virtual environment, but how does it find modules from the standard
library? After all, they’re neither copied nor linked into the virtual
environment. Again, the answer lies in the pyvenv.cfg file: When you create
a virtual environment, the interpreter records its own location under the
home key in this file. If it later finds itself in a virtual environment, it looks
for the standard library relative to that home directory.

NOTE
The name pyvenv.cfg is a remnant of the pyvenv script which used to ship with Python.
The py -m venv form makes it clearer which interpreter you use to create the virtual
environment— and thus which interpreter the environment itself will use.

While the virtual environment has access to the standard library in the
system-wide environment, it’s isolated from its third-party modules.
Although not recommended, you can give the environment access to those
modules as well, using the --system-site-packages option when creating
the environment. The result is quite similar to the way a per-user
environment works.

How does pip know where to install packages? The short answer is that pip
asks the interpreter it’s running on, and the interpreter derives the location
from its own path— just like when you import a module.6 This is why it’s
best to run pip with an explicit interpreter using the py -m pip idiom. If
you invoke pip directly, the system searches your PATH and may come up
with the entry-point script from a different environment.

Virtual environments come with the version of pip that was current when
Python was released. This can be a problem when you’re working with an
old Python release. Create the environment with the option --upgrade-
deps to ensure you get the latest pip release from the Python Package
Index. This method also upgrades any additional packages that may be pre-
installed in the environment.

NOTE
Besides pip, virtual environments may pre-install setuptools for the benefit of legacy
packages that don’t declare it as a build dependency. This is an implementation detail
and subject to change, so don’t assume setuptools will be present.

Activation Scripts

Virtual environments come with activation scripts in the script directory—
these scripts make it more convenient to use a virtual environment from the
command line, and they’re provided for a number of supported shells and
command interpreters. Here’s the Windows example again, this time using
the activation script:

> py -m venv venv

> venv\Scripts\activate

(venv) > py -m pip install httpx

(venv) > py

Activation scripts bring three features to your shell session:

They prepend the script directory to the PATH variable. This allows you
to invoke python, pip, and entry-point scripts without prefixing them
with the path to the environment.

They set the VIRTUAL_ENV environment variable to the location of the
virtual environment. Tools like the Python Launcher use this variable
to detect that the environment is active.

They update your shell prompt to provide a visual reference which
environment is active, if any. By default, the prompt uses the name of
the directory where the environment is located.

TIP
You can provide a custom prompt using the option --prompt when creating the
environment. The special value . designates the current directory; it’s particularly useful
when you’re inside a project repository.

On macOS and Linux, you need to source the activation script to allow it to
affect your current shell session. Here’s an example for Bash and similar
shells:

$ source .venv/bin/activate

Environments come with activation scripts for some other shells, as well.
For example, if you use the Fish shell, source the supplied activate.fish
script instead.

On Windows, you can invoke the activation script directly. There’s an
Activate.ps1 script for PowerShell and an activate.bat script for cmd.exe.
You don’t need to provide the file extension; each shell selects the script
appropriate for it.

> venv\Scripts\activate

PowerShell on Windows doesn’t allow you to execute scripts by default,
but you can change the execution policy to something more suited to
development: The RemoteSigned policy allows scripts written on the local
machine or signed by a trusted publisher. On Windows servers, this policy
is already the default. You only need to do this once— the setting is stored in
the registry.

> Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope

CurrentUser

Activation scripts provide you with a deactivate command to revert the
changes to your shell environment. It’s usually implemented as a shell
function, and works the same on Windows, macOS, and Linux.

$ deactivate

Installing Applications with Pipx
In the previous section, you saw why it makes good sense to install your
projects in separate virtual environments: unlike system-wide and per-user
environments, virtual environments isolate your projects, avoiding
dependency conflicts.

The same reasoning applies when you install third-party Python
applications— say, a code formatter like Black or a packaging manager like

Hatch. Applications tend to depend on more packages than libraries, and
they can be quite picky about the versions of their dependencies.

Unfortunately, managing and activating a separate virtual environment for
every application is cumbersome and confusing— and it limits you to using
only a single application at a time. Wouldn’t it be great if we could confine
applications to virtual environments and still have them available globally?

That’s precisely what pipx does, and it leverages a simple idea to make it
possible: it copies the entry-point script for the application from its virtual
environment into a directory on your search path. Entry-point scripts
contain the full path to the environment’s interpreter, so you can copy them
anywhere you want, and they’ll still work.

Let me show you how this works under the hood. The example commands
below work on macOS and Linux using a Bash-like shell. First, you create a
shared directory for the entry-point scripts of your applications and add it to
your PATH environment variable:

$ mkdir bin

$ export PATH="$(pwd)/bin:$PATH"

Next, you install an application in a dedicated virtual environment— I’ve
chosen the Black code formatter as an example:

$ py -m venv venvs/black

$ venvs/black/bin/python -m pip install black

Successfully installed black-22.12.0 [...]

Finally, you copy the entry-point script into the directory you created in the
first step— that would be a script named black in the bin or Scripts
directory of the environment:

$ cp venvs/black/bin/black bin

Now you can invoke black even though the virtual environment is not
active:

https://pypa.github.io/pipx/

$ black --version

black, 22.12.0 (compiled: no)
Python (CPython) 3.11.1

On top of this simple idea, the pipx project has built a cross-platform
package manager for Python applications with a great developer
experience.

TIP
If there’s a single Python application that you should install on a development machine,
pipx is probably it. It lets you install, run, and manage all the other Python applications
in a way that’s convenient and avoids trouble.

If your system package manager distributes pipx as a package, I
recommend using that as the preferred installation method, as it’s more
likely to provide good integration out-of-the-box, such as shell completion:

$ apt install pipx

$ brew install pipx

$ dnf install pipx

Otherwise, I recommend installing pipx into the per-user environment, like
this:

$ py -m pip install --user pipx

As a post-installation step, update your PATH environment variable to
include the shared script directory, using the ensurepath subcommand. If
you didn’t use the system package manager, this step also puts the pipx
command itself on your search path.

$ py -m pipx ensurepath

If you don’t already have shell completion for pipx, activate it by following
the instructions for your shell, which you can print with this command:

$ pipx completions

With pipx installed on your system, you can use it to install and manage
applications from the Python Package Index (PyPI). For example, here’s
how you would install Black with pipx:

$ pipx install black

You can also use pipx to upgrade an application to a new release, reinstall
it, or uninstall it from your system:

$ pipx upgrade black

$ pipx reinstall black

$ pipx uninstall black

As a package manager, pipx keeps track of the applications it installs and
lets you perform bulk operations across all of them. This is particularly
useful to keep your development tools updated to the latest version and to
reinstall them on a new version of Python.

$ pipx upgrade-all

$ pipx reinstall-all

$ pipx uninstall-all

You can also list the applications you’ve installed previously:

$ pipx list

The commands above provide all the primitives to manage global developer
tools efficiently, but it gets better. Most of the time, you just want to use
recent versions of your developer tools. You don’t want the responsibility of
keeping the tools updated, reinstalling them on new Python versions, or
removing them when you no longer need them. Pipx allows you to run an
application directly from PyPI without an explicit installation step. Let’s use
the classic Cowsay app to try it:

$ pipx run cowsay moo

| moo |
 ===
 \
 \
 ^__^
 (oo)_______
 (__)\)\/\
 ||----w |
 || ||

Behind the scenes, pipx installs Cowsay in a temporary virtual environment
and runs it with the arguments you’ve provided. It keeps the environment
around for a while,7 so you don’t end up reinstalling applications on every
run. Use the --no-cache option to force pipx to create a new environment
and reinstall the latest version.

TIP
Use pipx run [app] as the default method to install and run developer tools from
PyPI. Use pipx install [app] if you need more control over application
environments, for example if you need to install plugins. Replace [app] with the name
of the app.

One situation where you may prefer to install an application explicitly is
when the application supports plugins that extend its functionality. These
plugins must be installed in the same environment as the application. For
example, the packaging managers Hatch and Poetry both come with plugin
systems.

Here’s how you would install Hatch with a plugin that determines the
package version from the version control system:

$ pipx install hatch

$ pipx inject hatch hatch-vcs

By default, pipx installs applications on the same Python version that it runs
on itself. This may not be the latest stable version, particularly if you
installed pipx using a system package manager like Apt. I recommend
setting the environment variable PIPX_DEFAULT_PYTHON to the latest stable
Python if that’s the case. Many developer tools you run with pipx create
their own virtual environments; for example, virtualenv, Nox, tox, Poetry,
and Hatch all do. It’s worthwhile to ensure that all downstream
environments use a recent Python version by default.

$ export PIPX_DEFAULT_PYTHON=python3.11 # Linux and macOS (bash)

> setx PIPX_DEFAULT_PYTHON python3.11 # Windows

Under the hood, pipx uses pip as a package installer. This means that any
configuration you have for pip also carries over to pipx. A common use
case is installing Python packages from a private index instead of PyPI,
such as a company-wide package repository. You can use pip config to
set the URL of your preferred package index persistently:

$ pip config set global.index-url https://example.com

Alternatively, you can set the package index for the current shell session
only. Most pip options are also available as environment variables:

$ export PIP_INDEX_URL=https://example.com

Both methods cause pipx to install applications from the specified index.

Finding Python Modules
Python environments consist, first and foremost, of a Python interpreter and
Python modules. Consequently, there are two mechanisms that play a key
role in linking a Python program to an environment. Interpreter discovery is
the process of locating the Python interpreter to execute a program. You’ve
already seen the most important methods for locating interpreters:

Entry-point scripts reference the interpreter in their environment
directly, using a shebang or a wrapper executable (see “Entry-point
Scripts”).

Shells locate the interpreter by searching directories on PATH for
commands like python, python3, or python3.x (see “Locating
Python Interpreters”).

The Python Launcher locates interpreters using the Windows Registry,
PATH (on Linux and macOS), and the VIRTUAL_ENV variable (see “The
Python Launcher for Windows” and “The Python Launcher for Unix”).

When you activate a virtual environment, the activation script puts its
interpreter and entry-point scripts on PATH. It also sets the
VIRTUAL_ENV variable for the Python Launcher and other tools (see
“Virtual Environments”).

In this section, we’ll take a deep dive into the other mechanism that links
programs to an environment: module import, or more specifically, how the
import system locates Python modules for a program. In a nutshell, just like
the shell searches PATH for executables, Python searches sys.path for
modules. This variable holds a list of locations from where Python can load
modules— most commonly, directories on the local filesystem.

The machinery behind the import statement lives in importlib from the
standard library (see “Inspecting modules and packages with importlib”).
The interpreter translates every use of the import statement into an
invocation of the __import__ function from importlib. The importlib
module also exposes an import_module function that allows you to import
modules whose names are only known at runtime.

Having the import system in the standard library has powerful implications:
You can inspect and customize the import mechanism from within Python.
For example, the import system supports loading modules from directories
and from zip archives out of the box. But entries on sys.path can be
anything really— say, a URL or a database query— as long as you register a

function in sys.path_hooks that knows how to find and load modules
from these path entries.

Module Objects
When you import a module, the import system returns a module object, an
object of type types.ModuleType. Any global variable defined by the
imported module becomes an attribute of the module object. This allows
you to access the module variable in dotted notation (module.var) from the
importing code.

Under the hood, module variables are stored in a dictionary in the __dict__
attribute of the module object. (This is the standard mechanism used to
store attributes of any Python object.) When the import system loads a
module, it creates a module object and executes the module’s code using
__dict__ as the global namespace. Somewhat simplified, it invokes the
built-in exec function like this:

exec(code, module.__dict__)

Additionally, module objects have some special attributes. For instance, the
__name__ attribute holds the fully-qualified name of the module, like
email.message. The __spec__ module holds the module spec, which I’ll
talk about shortly. Packages also have a __path__ attribute, which contains
locations to search for submodules.

NOTE
Most commonly, the __path__ attribute of a package contains a single entry: the
directory holding its __init__.py file. Namespace packages, on the other hand, can be
distributed across multiple directories.

The Module Cache

When you first import a module, the import system stores the module object
in the sys.modules dictionary, using its fully-qualified name as a key.
Subsequent imports return the module object directly from sys.modules.
This mechanism brings a number of benefits:

Performance

Import is expensive because the import system loads most modules
from disk. Importing a module also involves executing its code, which
can further increase startup time. The sys.modules dictionary functions
as a cache to speed things up.

Idempotency

Importing modules can have side effects, for example by executing
module-level statements. Caching modules in sys.modules ensures that
these side effects happen only once. The import system also uses locks
to ensure that multiple threads can safely import the same module.

Recursion

Modules can end up importing themselves recursively. A common case
is circular imports, where module a imports module b, and b imports a.
The import system supports this by adding modules to sys.modules
before they’re executed. When b imports a, the import system returns
the (partially initialized) module a from the sys.modules dictionary,
thereby preventing an infinite loop.

Module Specs
Conceptually, importing a module proceeds in two steps. First, given the
fully-qualified name of a module, the import system locates the module and
produces a module spec. The module spec
(importlib.machinery.ModuleSpec) contains metadata about the module
such as its name and location, as well as an appropriate loader for the
module. Second, the import system creates a module object from the
module spec and executes the module’s code. The module object includes

special attributes with most of the metadata from the module spec (see
Table 2-5). These two steps are referred to as finding and loading, and the
module spec is the link between them.

T
a
b
l
e
2
-
5
.
A
t
t
r
i
b
u
t
e
s
o
f
M
o
d
u
l
e
s
a
n
d
M
o
d

u
l
e
S
p
e
c
s

Module attribute Module spec attribute Description

__name__ name The fully-qualified name of the
module.

__loader__ loader A loader object that knows how to
execute the module’s code.

__file__ origin The location of the module. This is
often the filename of a Python
module, but it can also be a fixed
string like “builtin” for built-in
modules, or None for namespace
packages (which don’t have a single
location).

__path__ submodule
_search
_locations

Locations to search for submodules, if
the module is a package.

__cached__ cached The location of the compiled bytecode
for the module.

__package__ parent The fully-qualified name of the
package that contains the module, or
the empty string for top-level
modules.

Finders and Loaders
The import system finds and loads modules using two kinds of objects.
Finders (importlib.abc.MetaPathFinder) are responsible for locating
modules given their fully-qualified name. When successful, their
find_spec method returns a module spec with a loader; otherwise, it
returns None. Loaders (importlib.abc.Loader) are objects with an
exec_module function which loads and executes the module’s code. The
function takes a module object and uses it as a namespace when executing
the module. The finder and loader can be the same object, in which case
they’re known as an importer.

Finders are registered in the sys.meta_path variable, and the import
system tries each finder in turn. When a finder has returned a module spec
with a loader, the import system creates and initializes a module object. The
import system then passes the module object to the loader for execution.

By default, the sys.meta_path variable contains three finders, which
handle different kinds of modules (see “Python Modules”).

importlib.machinery.BuiltinImporter for built-in modules

importlib.machinery.FrozenImporter for frozen modules

importlib.machinery.PathFinder to search modules on sys.path

The PathFinder is the central hub of the import machinery. It’s responsible
for every module that’s not embedded into the interpreter, and searches
sys.path to locate it.8 The path finder uses a second level of finder objects
known as path entry finders (importlib.abc.PathEntryFinder), each of
which finds modules under a specific location on sys.path. The standard

library provides two types of path entry finders, registered under
sys.path_hooks:

zipimport.zipimporter to import modules from zip archives

importlib.machinery.FileFinder to import modules from a
directory

Typically, modules are stored in directories on the filesystem, so
PathFinder delegates its work to a FileFinder. The latter scans the
directory for the module, and uses its file extension to determine the
appropriate loader. There are three loaders for the different kinds of
modules:

importlib.machinery.SourceFileLoader for pure Python modules

importlib.machinery.SourcelessFileLoader for bytecode
modules

importlib.machinery.ExtensionFileLoader for binary extension
modules

The zip importer works similarly, except that it does not support extension
modules. This is due to the fact that current operating systems don’t allow
loading dynamic libraries from a zip archive.

The Module Path
When your program cannot find a specific module, or when it imports the
wrong version of a module, it can help to take a look at sys.path, the
module path. But where do the entries on sys.path come from, in the first
place? Let’s unravel some of the mysteries around the module path.

NOTE
If you’re curious, you can find the built-in logic for constructing sys.path in the
CPython source code in Modules/getpath.py. Despite appearances, this is not an
ordinary Python module. When you build Python, the code in this file is frozen to
bytecode and embedded in the executable.

When the interpreter starts up, it constructs the module path in two steps.
First, it builds an initial module path using some built-in logic. Most
importantly, this initial path includes the standard library. Second, the
interpreter imports the site module from the standard library. The site
module extends the module path to include the site packages from the
current environment. In this section, we’ll take a look at how the interpreter
constructs the initial module path with the standard library. The next section
explains how the site module appends directories with site packages.

The locations on the initial module path fall into three categories, and they
occur in the order given below:

1. The current directory or the directory of the Python script (if any)

2. The locations in the PYTHONPATH environment variable (if set)

3. The locations of the standard library

Let’s look at each in more detail.

The script or current directory
The first item on sys.path can be any of the following:

If you ran py script, the directory where script is.

If you ran py -m module, the current directory.

Otherwise, the empty string, which also denotes the current directory.

Traditionally, this mechanism provided an easy way to structure an
application: Just put the main entry-point script and all application modules

in the same directory. During development, launch the interpreter from
within that directory for interactive debugging, and your imports still work.

WARNING
Unfortunately, having the working directory on sys.path is quite unsafe, as an attacker
(or you, mistakenly) can override the standard library by placing Python files in the
victim’s directory.

Installing your application into a virtual environment is both a safer and
more flexible option. This requires packaging the application, which is the
topic of Chapter 3. From Python 3.11, you can use the -P interpreter option
or the PYTHONSAFEPATH environment variable to omit the current directory
from sys.path. If you invoke the interpreter with a script, this option also
omits the directory where the script is located.

The PYTHONPATH variable
The PYTHONPATH environment variable provides another way to add
locations before the standard library on sys.path. It uses the same syntax
as the PATH variable. Avoid this mechanism for the same reasons as the
current working directory and use a virtual environment instead.

The standard library
Table 2-6 shows the remaining entries on the initial module path, which are
dedicated to the standard library. Locations are prefixed with the path to the
installation, and may differ in details on some platforms.

T
a
b
l
e
2
-
6
.
T
h
e
s
t
a
n
d
a
r
d
l
i
b
r
a
r
y
o
n
s
y
s
.
p

a
t
h

Windows Linux and macOS Description

python3x.zip lib/python3x.zi
p

For compactness, the standard library
can be installed as a zip archive. This
entry is present even if the archive
doesn’t exist (which it normally
doesn’t).

lib/python3.x Lib Pure Python modules

lib/python3.x/l
ib-dynload

DLLs Binary extension modules

The location of the standard library is not hardcoded in the interpreter (see
“Virtual Environments”). Rather, Python looks for landmark files on the
path to its own executable, and uses them to locate the current environment
(sys.prefix) and the Python installation (sys.base_prefix). One such
landmark file is pyvenv.cfg, which marks a virtual environment and points
to its parent installation via the home key. Another landmark is os.py, the
file containing the standard os module: Python uses os.py to discover the
prefix outside of a virtual environment, and to locate the standard library
itself.

Site Packages
The interpreter constructs the initial sys.path early on during initialization
using a fairly fixed process. By contrast, the remaining locations on

sys.path—known as site packages—are highly customizable and under
the responsibility of a Python module named site.

The site module adds the following path entries if they exist on the
filesystem:

User site packages

This directory holds third-party modules from the per-user environment.
It’s in a fixed location that depends on the OS (see “The Per-User
Environment”). On Fedora and some other systems, there are two path
entries, for pure Python modules and extension modules, respectively.

Site packages

This directory holds third-party modules from the current environment,
which is either a virtual environment or a system-wide installation. On
Fedora and some other systems, pure Python modules and extension
modules are in separate directories. Many Linux systems also separate
distribution-owned site packages under /usr from local site packages
under /usr/local.

In the general case, the site packages are in a subdirectory of the standard
library named site-packages. If the site module finds a pyvenv.cfg file on
the interpreter path, it uses the same relative path as in a system installation,
but starting from the virtual environment marked by that file. The site
module also modifies sys.prefix to point to the virtual environment.

The site module provides a few hooks for customization:

.pth files

Within site packages directories, any file with a .pth extension can list
additional directories for sys.path, one directory per line. This works
similar to PYTHONPATH, except that modules in these directories will
never shadow the standard library. Additionally, .pth files can import
modules directly— the site module executes any line starting with
import as Python code. Third-party packages can ship .pth files to

configure sys.path in an environment. Some packaging tools use .pth
files behind the scenes to implement editable installs. An editable install
places the source directory of your project on sys.path, making code
changes instantly visible inside the environment.

The sitecustomize module

After setting up sys.path as described above, the site module
attempts to import the sitecustomize module, typically located in the
site-packages directory. This provides a hook for the system
administrator to run site-specific customizations when the interpreter
starts up.

The usercustomize module

If there is a per-user environment, the site module also attempts to
import the usercustomize module, typically located in the user site-
packages directory. You can use this module to run user-specific
customizations when the interpreter starts up. Contrast this with the
PYTHONSTARTUP environment variable, which allows you to specify a
Python script to run before interactive sessions, within the same
namespace as the session.

Summary
In this chapter, you’ve learned what Python environments are, where to find
them, and how they look on the inside. At the core, a Python environment
consists of the Python interpreter and Python modules, as well as entry-
point scripts to run Python applications. Environments are tied to a specific
version of the Python language.

There are three kinds of Python environments. Python installations are
complete, stand-alone environments with an interpreter and the full
standard library. Per-user environments are annexes to an installation where
you can install modules and scripts for a single user. Virtual environments
are lightweight environments for project-specific modules and scripts,

which reference their parent environment via a pyvenv.cfg file. They come
with an interpreter, which is typically a symbolic link or small wrapper for
the parent interpreter, and with activation scripts for shell integration. Use
the command py -m venv to create a virtual environment.

Finally, you’ve seen how Python uses sys.path to locate modules when
you import them, and how the module path is constructed during interpreter
startup. You’ve also learned how module import works under the hood,
using finders and loaders as well as the module cache. Interpreter discovery
and module import are the key mechanisms that link Python programs to an
environment at runtime.

1 There’s also a pythonw.exe executable that runs programs without a console window, like GUI
applications.

2 For example, the standard ssl module uses OpenSSL, an open-source library for secure
communication.

3 You can also execute a plain Python file on Windows if it has a .py or .pyw file extension—
Windows installers associate these file extensions with the Python Launcher and register them
in the PATHEXT environment variable. For example, Windows installations use this mechanism
to launch IDLE.

4 Framework builds on macOS use a version-specific directory for scripts, as well. Historically,
framework builds pioneered per-user installation before its standardization.

5 You could force the use of symbolic links on Windows via the --symlinks option— but
don’t. There are subtle differences in the way these work on Windows. For example, the File
Explorer resolves the symbolic link before it launches Python, which prevents the interpreter
from detecting the virtual environment.

6 Internally, pip queries the sysconfig module for an appropriate installation scheme, see
“Installation Schemes”. This module constructs the installation scheme using the build
configuration of Python and the location of the interpreter in the filesystem.

7 At the time of writing, pipx caches temporary environments for 14 days.

8 For modules located within a package, the __path__ attribute of the package takes the place
of sys.path.

Chapter 3. Python Packages

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the third chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at mail@claudiojolowicz.com.

In this chapter you’ll learn how to package your Python projects for
distribution. A package is a single file containing an archive of your code
along with metadata that describes it, like the project name and version.
You can install this file into a Python environment using pip, the Python
package installer. You can also upload the package to a repository such as
the Python Package Index (PyPI), a public server operated by the Python
community. Having your package on PyPI means other people can install it,
too— they only need to pass its name to pip install.

NOTE
Python folks use the word package for two distinct concepts. Import packages are
Python modules that contain other modules, typically directories with an __init__.py
file. Distribution packages are archive files for distributing Python software— they are
the subject of this chapter.

mailto:mail@claudiojolowicz.com
https://pypi.org/

Creating a package from your project makes it easy to share your code with
others. Packaging also has a less obvious benefit: Installing your project as
a package makes it a first-class citizen of a Python environment. The
metadata in a package specifies the minimum Python version and any third-
party packages it depends on. Installers ensure the environment matches
these prerequisites; they even install missing project dependencies and
upgrade those whose version doesn’t match the requirements. Once
installed, the package has an explicit link to the environment it’s installed
in. Compare this to running a script from your working directory, which
may well end up on an outdated Python version, or in an environment that
doesn’t have all the dependencies installed.

Figure 3-1 shows the typical lifecycle of a package. Everything starts with a
project: the source code of an application, library, or other piece of software
that you’re going to package for distribution (1). Next, you build a package
from the project, an installable artifact with a snapshot of your project at
this point in time (2). If author and user are the same person, they may
install this package directly into an environment, say, for testing (5). If they
are different people, it’s more practical to upload the package to a package
index (a fancy word for a package repository) (3). Think of a package index
as a file server specifically for software packages, which allows people to
retrieve packages by name and version. Once downloaded (4), a user can
install your package into their environment (5). In real life, tools often
combine downloading and installing, building and installing, and even
building and publishing, into a single command.

Figure 3-1. The Package Lifecycle

An Example Application
Many applications start out as small, ad-hoc scripts. Example 3-1 fetches a
random article from Wikipedia and displays its title and summary in the
console. The script restricts itself to the standard library, so it runs in any
Python 3 environment.

Example 3-1. Displaying an extract from a random Wikipedia article
import json
import textwrap
import urllib.request

API_URL = "https://en.wikipedia.org/api/rest_v1/page/random/summary"

def main():
 with urllib.request.urlopen(API_URL) as response:
 data = json.load(response)

 print(data["title"])
 print()
 print(textwrap.fill(data["extract"]))

if __name__ == "__main__":
 main()

The API_URL constant points to the REST API of the English Wikipedia
— or more specifically, its /page/random/summary endpoint.
The urllib.request.urlopen invocation sends an HTTP GET request
to the Wikipedia API. The with statement ensures that the connection is
closed at the end of the block.
The response body contains the resource data in JSON format.
Conveniently, the response is a file-like object, so the json module can
load it like a file from disk.
The title and extract keys hold the title of the Wikipedia page and a
short plain text extract, respectively. The textwrap.fill function
wraps the text so that every line is at most 70 characters long.

Store this script in a file random_wikipedia_article.py and take it for a spin.
Here’s a sample run:

> py random_wikipedia_article.py

Jägersbleeker Teich

The Jägersbleeker Teich in the Harz Mountains of central Germany
is a storage pond near the town of Clausthal-Zellerfeld in the
county of Goslar in Lower Saxony. It is one of the Upper Harz Ponds
that were created for the mining industry.

Why Packaging?
Sharing a script like Example 3-1 does not require packaging. You can
publish it on a blog or a hosted repository, or send it to friends by email or
chat. Python’s ubiquity, the “batteries included” approach of its standard
library, and its nature as an interpreted language make this possible. The
Python programming language predates the advent of language-specific
package repositories, and the ease of sharing modules with the world was a
boon to Python’s adoption in the early days.1

Distributing self-contained modules without packaging seems like a great
idea at first: You keep your projects free of packaging cruft. They require
no separate artifacts, no intermediate steps like building, and no dedicated
tooling. But using modules as the unit of distribution also comes with
limitations. Here are the pain points:

Distributing projects composed of multiple modules

At some point, your project will outgrow a (reasonably sized) single-file
module. Once you break it up into multiple files, it becomes more
cumbersome for users to consume your work, and for you to publish it.

Distributing projects with third-party dependencies

Python has a rich ecosystem of third-party packages that lets you stand
on the shoulders of giants. But your users should not have to worry
about installing and updating the modules that your code depends on.

Discovering the project

If you publish a package on PyPI, your users only need to know your
project name to install its latest version. The situation is similar in a
corporate environment, where developer machines are configured to use
a company-wide package repository. People can also search for your
project using various metadata fields like description, keywords, or
classifiers.

Installing the project

Your users should be able to install the project with a single command,
in a portable and safe way. In many situations, downloading the script
and double-clicking it will not (reliably) work. Users should not need to
place modules in specific directories, add shebangs with the interpreter
location, set the executable bit on scripts, rename scripts, or create
wrapper scripts.

Updating the project

Users need to determine if the project is up-to-date and upgrade it to the
latest version if it isn’t. As an author, you need a way to let your users
benefit from new features, bug fixes, and improvements.

Running the project in the correct environment

You should not leave it up to chance if your program runs on a
supported Python version, in an environment with the necessary third-
party packages. Installers should check and, where possible, satisfy your
prerequisites, and ensure that your code always runs in the environment
intended for it.

Binary extensions

Python modules written in a compiled language like C or Rust require a
build step. Ideally, you’ll distribute pre-built binaries for the common
platforms. You may also publish a source archive as a fallback, with an

automated build step that runs on the end user’s machine during
installation.

Packaging solves all of these problems, and it’s quite easy to add. You drop
a declarative file named pyproject.toml into your project, a standard file that
specifies the project metadata and its build system. In return, you get
commands to build, publish, install, upgrade, and uninstall your package.

In summary, Python packages come with many advantages:

You can easily install and upgrade them with pip

You can publish them on repositories like PyPI

They can depend on other packages, so pip installs all of them together

Installed packages run in an environment that satisfies their
requirements

They can contain multiple modules and import packages

They allow you to distribute pre-built binary extensions

They allow you to publish source distributions with automated build
steps

Packaging in a Nutshell
In this section, I’ll take you on a whirlwind tour of Python packaging.
Example 3-2 shows how to package the script from “An Example
Application” with the bare minimum of project metadata— the project name
and version. Place the script and the pyproject.toml file side-by-side in an
otherwise empty directory.

Example 3-2. A minimal pyproject.toml file
[project]
name = "random-wikipedia-article"
version = "0.1"

[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"

In the build-system section, I’ve opted for hatchling as the build
backend—the tool responsible for building packages behind the scenes. It
comes with Hatch, a modern and standards-compliant Python project
manager.

TIP
Change the project name to a name that uniquely identifies your project. Projects on the
Python Package Index share a single namespace— their names are not scoped by the
users or organizations owning the projects.

Installing Projects from Source
First, let’s see how this file allows you to install the project locally. Open a
terminal and change to the project directory. Next, create and activate a
virtual environment (see “Virtual Environments”).

Now you’re ready to use pip to build and install your project:

$ py -m pip install .

Processing path/to/project

 Installing build dependencies ... done
 Getting requirements to build wheel ... done
 Preparing metadata (pyproject.toml) ... done
Building wheels for collected packages: random-wikipedia-article
 Building wheel for random-wikipedia-article (pyproject.toml) ... done
 Created wheel for random-wikipedia-article: …
 Stored in directory: …
Successfully built random-wikipedia-article
Installing collected packages: random-wikipedia-article
Successfully installed random-wikipedia-article-0.1

You can run the script by passing its import name to the -m interpreter
option:

$ py -m random_wikipedia_article

https://hatch.pypa.io/

Invoking the script directly only takes a line in the project.scripts
section. Example 3-3 tells the installer to generate an entry-point script
named like the project. The script invokes the main function from the
Python module.

Example 3-3. A pyproject.toml file with an entry-point script
[project]
name = "random-wikipedia-article"
version = "0.1"

[project.scripts]
random-wikipedia-article = "random_wikipedia_article:main"

[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"

Let’s use pipx to streamline the process of installing the project into a
virtual environment and placing the script on your PATH. (If you activated a
virtual environment above, don’t forget to first deactivate it.)

$ pipx install .

 installed package random-wikipedia-article 0.1, installed using Python
3.10.8
 These apps are now globally available
 - random-wikipedia-article
done!

You can now invoke the script directly:

$ random-wikipedia-article

When you’re making changes to the source code, it saves time to see those
changes reflected in the environment immediately, without repeatedly
installing the project. You could import your modules directly from the
source tree during development. Unfortunately, you’d no longer have the
installer check the requirements of your project, nor would you be able to
access project metadata at runtime.

Editable installs achieve the best of both worlds by installing your package
in a special way that redirects imports to the source tree. You can think of
this mechanism as a kind of “hot reloading” for Python packages. It works
with both pip and pipx:

$ py -m pip install --editable .

$ pipx install --editable .

Once you’ve installed your package in this way, you won’t need to reinstall
it to see changes to the source code— only when you edit pyproject.toml to
change the project metadata or add a third-party dependency.

Building Packages with build
If you want to deploy your code to other machines or share your project
with the world, you’ll need to grab hold of the package instead of letting pip
build it behind the scenes. Enter build, a dedicated build frontend that
creates packages for a Python project:

$ pipx run build

* Creating venv isolated environment...
* Installing packages in isolated environment... (hatchling)
* Getting build dependencies for sdist...
* Building sdist...
* Building wheel from sdist
* Creating venv isolated environment...
* Installing packages in isolated environment... (hatchling)
* Getting build dependencies for wheel...
* Building wheel...
Successfully built random_wikipedia_article-0.1.tar.gz
 and random_wikipedia_article-0.1-py2.py3-none-any.whl

In Example 3-2, you designated hatchling as the build backend for your
project. You can see from the output above that build used hatchling to
perform the actual package build. In “Build Frontends and Build
Backends”, I’ll explain in more detail how the two tools interact to produce
packaging artifacts.

By delegating the work to hatchling, build creates an sdist and a wheel
for the project (see “Wheels and Sdists”). It then places these packages in
the dist directory.

Uploading Packages with Twine
Let’s conclude this little tour of Python packaging by publishing the
packages to TestPyPI, a separate instance of the Python Package Index
intended for testing and experimentation.

First, register an account using the link on the front page of TestPyPI.
Second, create an API token from your account page and copy the token to
your preferred password manager. You can now upload the packages in dist
using Twine, the official PyPI upload tool. Use __token__ as the user name
and the API token as the password.

$ pipx run twine upload --repository=testpypi dist/*

Uploading distributions to https://test.pypi.org/legacy/
Enter your username: __token__

Enter your password: *********

Uploading random_wikipedia_article-0.1-py2.py3-none-any.whl
Uploading random_wikipedia_article-0.1.tar.gz

View at:
https://test.pypi.org/project/random-wikipedia-article/0.1/

Congratulations, you have published your first Python package! Let’s install
the package again, this time from the index instead of the project directory:

$ pipx uninstall random-wikipedia-article

uninstalled random-wikipedia-article!

$ pipx install --index-url=https://test.pypi.org/simple random-

wikipedia-article

 installed package random-wikipedia-article 0.1, installed using Python
3.10.8
 These apps are now globally available
 - random-wikipedia-article
done!

https://test.pypi.org/

Just omit the --repository and --index-url options to use the real PyPI.

DO ONE THING, AND DO IT WELL
You may wonder why the Python community decided to split up
responsibilities between several packaging tools. After all, many
modern programming languages come with a single monolithic tool for
building and packaging.

The answer has to do with the nature and history of the Python project:
Python is a decentralized open-source project driven by a community of
thousands of volunteers, with a history spanning more than three
decades of organic growth. This makes it hard for a single packaging
tool to cater to all demands and become firmly established. Python’s
strength lies in its rich ecosystem— and interoperability standards
promote this diversity. As a Python developer, you have a choice of
small single-purpose tools that play well together. This approach ties in
with the UNIX philosophy of “Do one thing, and do it well.” However,
there are also tools that provide a more integrated workflow; we’ll talk
more about those in Chapter 5.

The pyproject.toml File
Python’s project specification file uses TOML (Tom’s Obvious Minimal
Language), a cross-language format for configuration files that’s both
unambiguous and easy to read and write. The TOML website has an
excellent introduction to the format. Its intuitive syntax will look familiar to
anyone with a Python background. Lists are termed arrays in TOML and
use the same notation as Python:

requires = ["hatchling", "hatch-vcs"]

Dictionaries are known as tables and come in several equivalent forms. You
can put the key/value pairs on separate lines, preceded by the table name in

https://toml.io/

square brackets:

[project]
name = "foo"
version = "0.1"

Inline tables contain all key/value pairs on the same line:

project = { name = "foo", version = "0.1" }

You can also use dotted notation to create a table implicitly:

project.name = "foo"
project.version = "0.1"

Python implementations like the standard tomllib module represent a
TOML file as a dictionary, where keys are strings and values can be strings,
integers, floats, dates, times, lists, or dictionaries. Here’s what the
pyproject.toml file from Example 3-2 looks like in Python:

{
 "project": {
 "name": "random-wikipedia-article",
 "version": "0.1"
 },
 "build-system": {
 "requires": ["hatchling"],
 "build-backend": "hatchling.build"
 }
}

A pyproject.toml file contains up to three tables:

build-system

Specifies how to build packages for the project (see “Build Frontends
and Build Backends”).

project

Holds the project metadata (see “Project Metadata”).

tool

Stores configuration for each tool used by the project. For example, the
Black code formatter uses tool.black for its configuration.

Build Frontends and Build Backends
Pip and build don’t know how to assemble packaging artifacts from source
trees. They delegate that work to the tool you declare in the build-system
table (see Table 3-1). In this relationship, pip and build take the role of
build frontends, the tools an end-user invokes to orchestrate the build
process. The tool that does the actual building is known as the build
backend.

T
a
b
l
e
3
-
1
.
T
h
e
b
u
i
l
d
-
s
y
s
t
e
m
t
a
b
l
e

Field Type Description

requires array of
strings

The list of packages required to build
the project

build-backend string The import name of the build backend
in the format package.module:object

build-path string An entry for sys.path needed to import
the build backend (optional)

Figure 3-2 shows how the build frontend and build backend collaborate to
build a package. First, the build frontend creates a virtual environment, the
build environment. Second, it installs the build dependencies into this
environment— the packages listed under requires, which consist of the
build backend itself as well as, optionally, plugins for that backend. Third,
the build frontend triggers the actual package build by importing and
invoking the build backend interface. This is a module or object declared in
build-backend, which contains a number of functions with well-known
signatures for creating packages and related tasks.

Figure 3-2. Build Frontend and Build Backend

Under the hood, pip performs the equivalent of the following commands
when you install the project from its source directory:

$ py -m venv buildenv

$ buildenv/bin/python -m pip install hatchling

$ buildenv/bin/python

>>> import hatchling.build

>>> hatchling.build.build_wheel("dist")

'random_wikipedia_article-0.1-py2.py3-none-any.whl'
>>>
$ py -m pip install dist/*.whl

While building in an isolated environment is the norm, some build
frontends also give you the option to build in the current environment. In
this case, the frontend checks that the environment satisfies the build
dependencies. Build frontends never install build dependencies into your
current environment. If they did, the build dependencies of different
packages would be at risk of conflicting with each other as well as with
their runtime dependencies.

Each build frontend can talk to any of a plethora of build backends— from
traditional ones like setuptools to modern tools like Hatch and Poetry, or
even exotic builders like maturin (for Python modules written in the Rust
programming language) or sphinx-theme-builder (for Sphinx
documentation themes).

Wheels and Sdists
You may have noticed that build placed not one but two packages for your
project in the dist directory when you invoked it in “Packaging in a
Nutshell”:

random_wikipedia_article-0.1.tar.gz

random_wikipedia_article-0.1-py2.py3-none-any.whl

These artifacts are known as wheels and sdists. Wheels are ZIP archives
with a .whl extension, while sdists are tar archives with gzip compression
(.tar.gz). Wheels are built distributions—for the most part, installers simply
extract them into the environment. Sdists, by contrast, are source
distributions: they require an additional build step to produce an installable
wheel.

The distinction between source distributions and built distributions may
seem strange for an interpreted language, but remember that Python
modules can also be written in a compiled language, for performance or to
provide Python bindings for an existing library. In this case, source
distributions provide a useful fallback for platforms where no pre-built
wheels are available.

As a package author, you should build and publish both sdists and wheels
for your releases. This gives users a choice (see Figure 3-3): They can
download and install the wheel if their environment is compatible (which is
always the case for a pure Python package). Or they can download the sdist
and build and install a wheel from it locally.

Figure 3-3. Wheels and Sdists

The build tool first creates an sdist from the project, and then uses that to
create a wheel. Generally, a pure Python package has a single sdist and a
single wheel for a given release. Binary extension modules, on the other
hand, commonly come in wheels for a range of platforms and
environments.

WHEEL COMPATIBILITY TAGS
Installers select the appropriate wheel for an environment using three
so-called compatibility tags that are embedded in the name of each
wheel file:

Python tag

The target Python implementation

ABI tag

The target application binary interface (ABI) of Python, which
defines the set of symbols that binary extension modules can use to
interact with the interpreter

Platform tag

The target platform, including the processor architecture

Pure Python wheels are usually compatible with any Python
implementation, do not require a particular ABI, and are portable across
platforms. Wheels express such wide compatibility using the tags py3-
none-any.

Wheels with binary extension modules, on the other hand, have more
stringent compatibility requirements. Take a look at the compatibility
tags of these wheels, for example:

numpy-1.24.0-cp311-cp311-macosx_10_9_x86_64.whl

cryptography-38.0.4-cp36-abi3-manylinux_2_28_x86_64.whl

The wheel for NumPy— a fundamental library for scientific computing
— targets a specific Python implementation and version (CPython 3.11),
operating system release (macOS 10.9 and above), and processor
architecture (x86-64).

The wheel for Cryptography— another fundamental library, with an
interface to cryptographic algorithms— demonstrates two ways to
reduce the build matrix for binary distributions: The stable ABI is a
restricted set of symbols that are guaranteed to persist across Python
feature versions (abi3), and the manylinux tag advertises compatibility
with a particular C standard library implementation (glibc 2.28 and
above) across a wide range of Linux distributions.

Let’s peek inside a wheel to a get a feeling for how Python code is
distributed. You can extract wheels using the unzip utility to see the files
installers would place in the site-packages directory. Execute the following
commands in a shell on Linux or macOS, preferably inside an empty
directory. If you’re on Windows, you can follow along using the Windows
Subsystem for Linux (WSL).

$ py -m pip download attrs

$ unzip attrs-22.2.0-py3-none-any.whl

$ ls -1

attr
attrs
attrs-22.2.0.dist-info
attrs-22.2.0-py3-none-any.whl

$ head -5 attrs-22.2.0.dist-info/METADATA

Metadata-Version: 2.1
Name: attrs
Version: 22.2.0
Summary: Classes Without Boilerplate
Home-page: https://www.attrs.org/

In our example, the wheel contains two import packages named attr and
attrs, as well as a .dist-info directory with administrative files. The
METADATA file contains the core metadata for the package, a standardized
set of attributes that describe the package for the benefit of installers and
other packaging tools. You can access the core metadata of installed
packages at runtime using the standard library:

>>> from importlib.metadata import metadata

>>> metadata("attrs")["Version"]

22.2.0
>>> metadata("attrs")["Summary"]

Classes Without Boilerplate

In the next section, you’ll see how to embed core metadata in your own
packages.

Project Metadata
Build backends write out core metadata fields based on what you specify in
the project table of pyproject.toml. Table 3-2 provides an overview of all
the fields you can use in the project table.

T
a
b
l
e
3
-
2
.
T
h
e
p
r
o
j
e
c
t
t
a
b
l
e

Field Type Description

name string The project name

version string The version of the project

description string A short description of the project

keywords array of strings A list of keywords for the project

readme string or table A file with a long description of the
project

license table The license governing the use of this
project

authors array of tables The list of authors

maintainers array of tables The list of maintainers

classifiers array of strings A list of classifiers describing the
project

urls table of strings The project URLs

dependencies array of strings The list of required third-party
packages

optional-

dependencies

table of arrays
of strings

Named lists of optional third-party
packages (extras)

scripts table of strings Entry-point scripts

gui-scripts table of strings Entry-point scripts providing a
graphical user interface

entry-points table of tables
of strings

Entry point groups

requires-python string The Python version required by this
project

dynamic array of strings A list of dynamic fields

Two fields are essential and mandatory for every package: project.name
and project.version. The project name uniquely identifies the project
itself. The project version identifies a release—a published snapshot of the
project during its lifetime. Besides the name and version, there are a
number of optional fields you can provide, such as the author and license, a
short text describing the project, or third-party packages used by the project
(see Example 3-4).

Example 3-4. A pyproject.toml file with project metadata
[project]
name = "random-wikipedia-article"
version = "0.1"
description = "Display extracts from random Wikipedia articles"
keywords = ["wikipedia"]
readme = "README.md"
license = { text = "MIT" }
authors = [{ name = "Your Name", email = "you@example.com" }]
classifiers = ["Topic :: Games/Entertainment :: Fortune Cookies"]
urls = { Homepage = "https://yourname.dev/projects/random-wikipedia-article" }
requires-python = ">=3.7"
dependencies = ["httpx>=0.23.1", "rich>=12.6.0"]

In the following sections, I’ll take a closer look at the various project
metadata fields.

NOTE
Most project metadata fields correspond to a core metadata field (and sometimes two).
However, their names and syntax differ slightly— core metadata standards predate
pyproject.toml by many years. As a package author, you can safely ignore the details of
this translation and focus on the project metadata.

Naming Projects
The project.name field contains the official name of your project.

[project]
name = "random-wikipedia-article"

Your users specify this name to install the project with pip. This field also
determines your project’s URL on PyPI. You can use any ASCII letter or
digit to name your project, interspersed with periods, underscores, and
hyphens. Packaging tools normalize project names for comparison: all
letters are converted to lowercase, and punctuation runs are replaced by a
single hyphen (or underscore, in the case of package filenames). For
example, Awesome.Package, awesome_package, and awesome-package all
refer to the same project.

Project names are distinct from import names, the names users specify to
import your code. The latter must be valid Python identifiers, so they can’t
have hyphens or periods and can’t start with a digit. They’re case-sensitive
and can contain any Unicode letter or digit. As a rule of thumb, you should
have a single import package per distribution package and use the same
name for both (or a straightforward translation, like random-wikipedia-
article and random_wikipedia_article).

Versioning Projects
The project.version field stores the version of your project at the time
you publish the release.

[project]
version = "0.1"

The Python community has a specification for version numbers to ensure
that automated tools can make meaningful decisions, such as picking the
latest release of a project. At the core, versions are a dotted sequence of
numbers. These numbers may be zero, and trailing zeros can be omitted: 1,
1.0, and 1.0.0 all refer to the same version. Additionally, you can append

certain kinds of suffixes to a version (see Table 3-3). The most common
ones identify pre-releases: 1.0.0a2 is the second alpha release, 1.0.0b3 is
the third beta release, 1.0.0rc1 is the first release candidate. Each of these
precedes the next, and all of them precede the final release: 1.0.0. Python
versions can use additional components as well as alternate spellings; refer
to PEP 440 for the full specification.

https://peps.python.org/pep-0440/

T
a
b
l
e

3
-
3
.
V
e
r
s
i
o
n

I
d
e
n
t
i
f
i
e
r
s

Release Type Description Examples

Final release A stable, public snapshot (default) 1.0.0, 2017.5.25

Pre-release Preview of a final release to support
testing

1.0.0a1, 1.0.0b1,
1.0.0rc1

Developmental
release

A regular internal snapshot, such as
a nightly build

1.0.0.dev1

Post-release Corrects a minor error outside of
the code

1.0.0.post1

The Python version specification is intentionally permissive. Two widely
adopted cross-language standards attach additional meaning to version
numbers: Semantic Versioning uses the scheme major.minor.patch,
where patch designates bugfix releases, minor designates compatible
feature releases, and major designates releases with breaking changes.
Calendar Versioning uses date-based versions of various forms, such as
year.month.day, year.month.sequence, or year.quarter.sequence.

Single-Sourcing the Project Version
Normally, you must declare all of the metadata for your project verbatim in
the pyproject.toml file. But sometimes you want to leave a field unspecified
and let the build backend fill in the value during the package build. For
example, you may want to derive your package version from a Python
module or Git tag instead of duplicating it in the project table.

Luckily, the project metadata standard provides an escape hatch in the form
of dynamic fields. Projects are allowed to use a backend-specific
mechanism to compute a field on the fly, as long as they list its name under
the dynamic key.

[project]
dynamic = ["version", "readme"]

https://semver.org/
https://calver.org/

NOTE
The goal of the standards behind pyproject.toml is to let projects define their metadata
statically, rather than rely on the build backend to compute the fields during the package
build. This benefits the packaging ecosystem, because it makes metadata accessible to
other tools. It also reduces cognitive overhead because build backends share a unified
configuration format and populate the metadata fields in a straightforward and
transparent way.

Dynamic fields are a popular method for single-sourcing the project
version. For example, many projects declare their version at the top of a
Python module, like this:

__version__ = "0.2"

Because updating a frequently changing item in several locations is tedious
and error-prone, some build backends allow you to extract the version
number from the code instead of duplicating it in pyproject.toml. This
mechanism is specific to your build backend, so you configure it in the
tool table of your backend. Example 3-5 demonstrates how this works with
Hatch.

Example 3-5. Deriving the project version from a Python module
[project]
name = "random-wikipedia-article"
dynamic = ["version"]

[tool.hatch.version]
path = "random_wikipedia_article.py"

[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"

This line marks the version field as dynamic.
This line tells Hatch where to look for the __version__ attribute.

The astute reader will have noticed that you don’t really need this
mechanism to avoid duplicating the version. You can also declare the

version in pyproject.toml as usual and read it from the installed metadata at
runtime:

Example 3-6. Reading the version from the installed metadata
from importlib.metadata import version

__version__ = version("random-wikipedia-article")

But don’t go and add this boilerplate to all your projects yet. Reading the
metadata from disk is not something you want to do during program startup.
Third-party libraries like click provide mature implementations that
perform the metadata lookup on demand, under the hood— for example,
when the user specifies a command-line option like --version.

Unfortunately, this is usually not enough to truly single-source the version.
It’s considered good practice to tag releases in your version control system
(VCS) using a command like git tag v1.0.0. Luckily, a number of build
backends come with plugins that extract the version number from Git,
Mercurial, and similar systems. This technique was pioneered by the
setuptools-scm plugin; for Hatch, you can use the hatch-vcs plugin (see
Example 3-7).

Example 3-7. Deriving the project version from the version control system
[project]
name = "random-wikipedia-article"
dynamic = ["version"]

[tool.hatch.version]
source = "vcs"

[build-system]
requires = ["hatchling", "hatch-vcs"]
build-backend = "hatchling.build"

If you build this project from a repository and you’ve checked out the tag
v1.0.0, Hatch will use the version 1.0.0 for the metadata. If you’ve
checked out an untagged commit, Hatch will instead generate a
developmental release like 0.1.dev1+g6b80314.2

Entry-point Scripts

Entry-point scripts are small executables that launch the interpreter from
their environment, import a module and invoke a function (see “Entry-point
Scripts”). Installers like pip generate them on the fly when they install a
package.

The project.scripts table lets you declare entry-point scripts. Specify
the name of the script as the key and the module and function that the script
should invoke as the value, using the format module:function.

[project.scripts]
random-wikipedia-article = "random_wikipedia_article:main"

This declaration allows users to invoke the program using its given name:

$ random-wikipedia-article

The project.gui-scripts table uses the same format as the
project.scripts table— use it if your application has a graphical user
interface (GUI).

[project.gui-scripts]
random-wikipedia-article-gui = "random_wikipedia_article:gui_main"

Entry Points
Entry-point scripts are a special case of a more general mechanism called
entry points. Entry points allow you to register a Python object in your
package under a public name. Python environments come with a registry of
entry points, and any package can query this registry to discover and import
modules, using the function importlib.metadata.entry_points from the
standard library. Applications commonly use this mechanism to support
third-party plugins.

The project.entry-points table contains these generic entry points.
They use the same syntax as entry-point scripts, but are grouped in
subtables known as entry point groups. If you want to write a plugin for

another application, you register a module or object in its designated entry
point group.

[project.entry-points.some_application]
my-plugin = "my_plugin"

You can also register submodules using dotted notation, as well as objects
within modules, using the format module:object:

[project.entry-points.some_application]
my-plugin = "my_plugin.submodule:plugin"

Let’s look at an example to see how this works. Random Wikipedia articles
make for fun little fortune cookies, but they can also serve as test fixtures3
for developers of Wikipedia viewers and similar apps. Let’s turn the app
into a plugin for the Pytest testing framework. (Don’t worry if you haven’t
worked with Pytest yet; I’ll cover testing in depth in Chapter 6.)

Pytest allows third-party plugins to extend its functionality with test fixtures
and other features. It defines an entry point group for such plugins named
pytest11. You can provide a plugin for Pytest by registering a module in
this group. Let’s also add Pytest to the project dependencies.

[project]
dependencies = ["pytest"]

[project.entry-points.pytest11]
random-wikipedia-article = "random_wikipedia_article"

For simplicity, I’ve chosen the top-level module that hosted the main
function in Example 3-1. Next, extend Pytest with a test fixture returning a
random Wikipedia article, as shown in Example 3-8.

Example 3-8. Test fixture with a random Wikipedia article
import json
import urllib.request

import pytest

API_URL = "https://en.wikipedia.org/api/rest_v1/page/random/summary"

@pytest.fixture
def random_wikipedia_article():
 with urllib.request.urlopen(API_URL) as response:
 return json.load(response)

A developer of a Wikipedia viewer can now install your plugin next to
Pytest. Test functions use your test fixture by referencing it as a function
argument (see Example 3-9). Pytest recognizes that the function argument
is a test fixture and invokes the test function with the return value of the
fixture.

Example 3-9. A test function that uses the random article fixture
test_wikipedia_viewer.py
def test_wikipedia_viewer(random_wikipedia_article):
 print(random_wikipedia_article["title"])
 print(random_wikipedia_article["extract"])
 assert False

A real test would run the viewer instead of print().
Fail the test so we get to see the full output.

You can try this out yourself in an active virtual environment in the project
directory:

$ py -m pip install .

$ py -m pytest test_wikipedia_viewer.py

============================= test session starts
==============================
platform darwin -- Python 3.11.1, pytest-7.2.1, pluggy-1.0.0
rootdir: ...
plugins: random-wikipedia-article-0.1
collected 1 item

test_wikipedia_viewer.py F
[100%]

=================================== FAILURES
===================================
____________________________ test_wikipedia_viewer

 def test_wikipedia_viewer(random_wikipedia_article):

 print(random_wikipedia_article["title"])
 print(random_wikipedia_article["extract"])
> assert False
E assert False

test_wikipedia_viewer.py:4: AssertionError
----------------------------- Captured stdout call ---------------------------
--
Halgerda stricklandi
Halgerda stricklandi is a species of sea slug, a dorid nudibranch, a shell-
less
marine gastropod mollusk in the family Discodorididae.
=========================== short test summary info
============================
FAILED test_wikipedia_viewer.py::test_wikipedia_viewer - assert False
============================== 1 failed in 1.10s
===============================

Authors and Maintainers
The project.authors and project.maintainers fields contain the list of
authors and maintainers for the project. Each item in these lists is a table
with name and email keys— you can specify either of these keys or both.

[project]
authors = [{ name = "Your Name", email = "you@example.com" }]
maintainers = [
 { name = "Alice", email = "alice@example.com" },
 { name = "Bob", email = "bob@example.com" },
]

The meaning of the fields is somewhat open to interpretation. If you start a
new project, I recommend including yourself under authors and omitting
the maintainers field. Long-lived open-source projects typically list the
original author under authors, while the people in charge of ongoing
project maintenance appear as maintainers.

The Description and README
The project.description field contains a short description as a string.
This field will appear as the subtitle of your project page on PyPI. Some

packaging tools also use this field when displaying a compact list of
packages with human-readable descriptions.

[project]
description = "Display extracts from random Wikipedia articles"

The project.readme field is typically a string with the relative path to the
file with the long description of your project. Common choices are
README.md for a description written in Markdown format and
README.rst for the reStructuredText format. The contents of this file
appear on your project page on PyPI.

[project]
readme = "README.md"

Instead of a string, you can also specify a table with file and content-
type keys.

[project]
readme = { file = "README", content-type = "text/plain" }

You can even embed the long description in the pyproject.toml file using the
text key.

[project]
readme.text = """
Display extracts from random Wikipedia articles

Long description follows...
"""
readme.content-type = "text/markdown"

Writing a README that renders well is not trivial— often, the project
description appears in disparate places, like PyPI, a repository hosting
service like GitHub, and inside official documentation on services like Read
the Docs. If you need more flexibility, you can declare the field dynamic
and use a plugin like hatch-fancy-pypi-readme to assemble the project
description from multiple fragments.

https://readthedocs.org/

Keywords and Classifiers
The project.keywords field contains a list of strings that people can use
to search for your project.

[project]
keywords = ["wikipedia"]

The project.classifiers field contains a list of classifiers to categorize
the project in a standardized way.

[project]
classifiers = [
 "Development Status :: 3 - Alpha",
 "Environment :: Console",
 "Topic :: Games/Entertainment :: Fortune Cookies",
]

PyPI maintains the official registry of classifiers for Python projects. They
are known as Trove classifiers4 and consist of hierarchically organized
labels separated by double colons (see Table 3-4).

https://pypi.org/classifiers

T
a
b
l
e

3
-
4
.
T
r
o
v
e

C
l
a
s
s
i
f
i
e
r
s

Classifier Group Description Example

Development
Status

How mature this release is Development Status :: 5 -

Production/Stable

Environment The environment in which the
project runs

Environment :: No

Input/Output (Daemon)

Operating
System

The operating systems
supported by the project

Operating System :: OS

Independent

Framework Any framework used by the
project

Framework :: Flask

Audience The kind of users served by
the project

Intended Audience ::

Developers

License The license under which the
project is distributed

License :: OSI Approved

:: MIT License

Natural
Language

The natural languages
supported by the project

Natural Language ::

English

Programming
Language

The programming language
the project is written in

Programming Language ::

Python :: 3.12

Topic Various topics related to the
project

Topic :: Utilities

The Project URLs
The project.urls table allows you to point users to your project
homepage, source code, documentation, issue tracker, and similar project-
related URLs. Your project page on PyPI links to these pages using the
provided key as the display text for each link. It also displays an appropriate
icon for many common names and URLs.

[project.urls]
Homepage = "https://yourname.dev/projects/random-wikipedia-article"
Source = "https://github.com/yourname/random-wikipedia-article"
Issues = "https://github.com/yourname/random-wikipedia-article/issues"
Documentation = "https://readthedocs.io/random-wikipedia-article"

The License
The project.license field is a table where you can specify your project
license under the text key or by reference to a file under the file key. You
may also want to add the corresponding Trove classifier for the license.

[project]
license = { text = "MIT" }
classifiers = ["License :: OSI Approved :: MIT License"]

I recommend using the text key with a SPDX license identifier such as
“MIT” or “Apache-2.0”.5 The Software Package Data Exchange (SPDX) is
an open standard backed by the Linux Foundation for communicating
software bill of material information, including licenses.

If you’re unsure which open source license to use for your project,
choosealicense.com provides some useful guidance. For a proprietary
project, it’s common to specify “proprietary”. You can also add a special
Trove classifier to prevent accidental upload to PyPI.

[project]
license = { text = "proprietary" }
classifiers = [
 "License :: Other/Proprietary License",
 "Private :: No Upload",
]

The Required Python Version
Use the project.requires-python field to specify the versions of Python
that your project supports.6

[project]
requires-python = ">=3.7"

https://spdx.org/licenses/
https://choosealicense.com/

Most commonly, people specify the minimum Python version as a lower
bound, using a string with the format >=3.x. The syntax of this field is
more general and follows the same rules as version specifiers for project
dependencies (see Chapter 4).

Tools like Nox and tox make it easy to run checks across multiple Python
versions, helping you ensure that the field reflects reality. As a baseline, I
recommend requiring the oldest Python version that still receives security
updates. You can find the end-of-life dates for all current and past Python
versions on the Python Developer Guide.

There are three main reasons to be more restrictive about the Python
version. First, your code may depend on newer language features— for
example, structural pattern matching was introduced in Python 3.10.
Second, your code may depend on newer features in the standard library—
look out for the “Changed in version 3.x” notes in the official
documentation. Third, it could depend on third-party packages with more
restrictive Python requirements.

Some packages declare upper bounds on the Python version, such as
>=3.7,<4. This practice is discouraged, but depending on such a package
may force you to declare the same upper bound for your own package.
Dependency solvers can’t downgrade the Python version in an
environment; they will either fail or, worse, downgrade the package to an
old version with a looser Python constraint. A future Python 4 is unlikely to
introduce the kind of breaking changes that people associate with the
transition from Python 2 to 3.

WARNING
Don’t specify an upper bound for the required Python version unless you know that your
package is not compatible with any higher version. Upper bounds cause disruption in
the ecosystem when a new version is released.

Dependencies and Optional Dependencies

https://devguide.python.org/

The remaining two fields, project.dependencies and
project.optional-dependencies, list any third-party packages on which
your project depends. You’ll take a closer look at these fields— and
dependencies in general— in the next chapter.

Summary
Packaging allows you to publish releases of your Python projects, using
source distributions (sdists) and built distributions (wheels). These artifacts
contain your Python modules, together with project metadata, in an archive
format that end users can easily install into their environments. The
standard pyproject.toml file defines the build system for a Python project as
well as the project metadata. Build frontends like pip and build use the
build system information to install and run the build backend in an isolated
environment. The build backend assembles an sdist and wheel from the
source tree and embeds the project metadata. You can upload packages to
the Python Package Index (PyPI) or a private repository, using a tool like
Twine.

1 The Python Package Index (PyPI) did not come about for more than a decade. Even the
venerable Comprehensive Perl Archive Network (CPAN) did not exist in February 1991, when
Guido van Rossum published the first release of Python on Usenet.

2 In case you’re wondering, the +g6b80314 suffix is a local version identifier that designates
downstream changes, in this case using output from the command git describe.

3 Test fixtures set up objects that you need to run repeatable tests against your code.

4 The Trove project was an early attempt to provide an open-source software repository,
initiated by Eric S. Raymond.

5 As of this writing, a Python Enhancement Proposal (PEP) is under discussion that changes the
project.license field to a string using SPDX syntax and introduces a separate
project.license-files key for license files that should be distributed with the package (see
PEP 639).

6 You can also add Trove classifiers for each supported Python version. Some backends backfill
classifiers for you— Poetry does this out of the box for Python versions and project licenses.

https://peps.python.org/pep-0639/

Chapter 4. Dependency
Management

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the fourth chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at mail@claudiojolowicz.com.

Python programmers benefit from a rich ecosystem of third-party libraries
and tools. Standing on the shoulders of giants comes at a price: The
packages you depend on for your projects generally depend on a number of
packages themselves. All of these are moving targets— as long as any
project is alive, its maintainers will publish a stream of releases to fix bugs,
add features, and adapt to the evolving ecosystem.

Managing dependencies is one of the great pain points of maintaining
software over time. You need to keep your project up-to-date, if only to
close security vulnerabilities in a timely fashion. Usually this means
updating your dependencies to the latest version— few open-source projects
have the resources to distribute security updates for older releases. You’ll be
updating dependencies all the time, so making the process as frictionless,
automated, and reliable as possible comes with a huge payoff.

mailto:mail@claudiojolowicz.com

Dependencies of a Python project are the third-party packages that must be
installed in the project environment.1 Most commonly, the reason for a
dependency is that the project imports a module that comes distributed with
the package. We also say that the project requires a package, or that a
package is a requirement for the project.

Another reason for a dependency is that your project requires a third-party
tool for developer tasks such as running the test suite or building
documentation. This kind of dependency is known as a development
dependency: you only need those packages during development, not during
normal usage of your project. A related case would be the build
dependencies you have seen in Chapter 3, which are required to build your
own packages from a project.

This chapter explains how to manage dependencies effectively. In the next
section, you’ll learn how to specify dependencies in pyproject.toml, as part
of the project metadata. Afterwards, I’ll talk about development
dependencies and requirement files. Finally, I’ll explain how you can lock
dependencies to precise versions for reliable deployments and repeatable
checks.

As a working example, let’s enhance random-wikipedia-article from
Example 3-1 with the httpx library, a fully featured HTTP client that
supports both synchronous and asynchronous requests, as well as the newer
(and far more efficient) protocol version HTTP/2. Let’s also enhance the
output of the program using rich, a library for rich text and beautiful
formatting in the terminal.

Example: Consuming an API with HTTPX
Wikipedia asks developers to set a User-Agent header with contact details.
Example 4-1 shows how you can use httpx to send a request to the
Wikipedia API with the header. You could also use the standard library to
send a User-Agent header with your requests. But httpx offers a more

https://www.python-httpx.org/
https://rich.readthedocs.io/

intuitive, explicit, and flexible interface, even when you’re not using any of
its advanced features. Try it out:

Example 4-1. Using httpx to consume the Wikipedia API
import textwrap
import httpx

API_URL = "https://en.wikipedia.org/api/rest_v1/page/random/summary"
USER_AGENT = "random-wikipedia-article/0.1 (Contact: you@example.com)"

def main():
 headers = {"User-Agent": USER_AGENT}

 with httpx.Client(headers=headers) as client:
 response = client.get(API_URL, follow_redirects=True)
 response.raise_for_status()
 data = response.json()

 print(data["title"])
 print()
 print(textwrap.fill(data["extract"]))

When creating a client instance, you can specify headers that it should
send with every request— like the User-Agent header. Using the client
as a context manager ensures that the network connection is closed at
the end of the with block.
This line performs two HTTP GET requests to the API. The first one
goes to the random endpoint, which responds with a redirect to the
actual article. The second one follows the redirect.
The raise_for_status method raises an exception if the server
response indicates an error via its status code.
The json method abstracts the details of parsing the response body as
JSON.

Example: Console Output with Rich
While we’re at it, let’s also improve the look and feel of the program.
Example 4-2 uses rich, a library for console output, to display the article
title in bold. This hardly scrapes the surface of rich’s formatting options—
take a look at the official docs for more details.

https://rich.readthedocs.io/

Example 4-2. Using rich to enhance console output
import httpx
from rich.console import Console

def main():
 ...

 console = Console(width=72, highlight=False)

 console.print(data["title"], style="bold")
 console.print()
 console.print(data["extract"])

Console objects provide a feature-rich print method for console
output. Setting the console width to 72 characters replaces our earlier
call to textwrap.fill. You’ll also want to disable automatic syntax
highlighting, since you’re formatting prose rather than data or code.
The style keyword allows you to set the title apart using a bold font.

Specifying Dependencies for a Project
If you haven’t done so yet, create and activate a virtual environment for the
project, and perform an editable install from the current directory (.):

$ py -m venv .venv

$ py -m pip install --editable .

At this point, you may be tempted to install httpx and rich manually into
the environment. Instead, add these packages to the project dependencies in
pyproject.toml. This ensures that whenever users install your project into an
environment, they install httpx and rich along with it.

[project]
name = "random-wikipedia-article"
version = "0.1"
dependencies = ["httpx", "rich"]
...

If you reinstall the project, you’ll see that pip installs the dependencies as
well:

$ py -m pip install --editable .

Dependency specifications allow you to include some other pieces of
information about a package, besides package names: version specifiers,
extras, and environment markers. The following sections explain what these
are. The first, and arguably the most important, specifies with which
versions of the package your project is compatible.

Version Specifiers
Version specifiers define the range of acceptable versions for a package.
When you add a new dependency, it’s a good idea to include its current
version as a lower bound— unless you know your project is compatible with
older releases (and needs to support them). Update this lower bound
whenever you start relying on newer features of the package.

[project]
dependencies = ["httpx>=0.23.1", "rich>=12.6.0"]

Having lower bounds on your dependencies may not seem to matter much,
as long as you install your package in an isolated environment. Installers
will choose the latest version for all your dependencies if there are no
constraints from other packages. But there are three reasons why you
should care. First, libraries are typically installed alongside other packages.
Second, even applications are not always installed in isolation; for example,
Linux distros may want to package your application for the system-wide
environment. Third, lower bounds help you detect version conflicts in your
own dependency tree early. This can happen if you depend on a recent
release of some package, while one of your other dependencies only works
with older releases of that package.

What about upper bounds— should you guard against newer releases that
might break your project? I recommend avoiding upper bounds unless you
know your project is incompatible with the new version of a dependency
(see “Upper Version Bounds in Python”). Later in this chapter, I’ll talk
about lock files. These request “known good” versions of your

dependencies when deploying services and when running automated
checks. Lock files are a much better solution to dependency-induced
breakage than upper bounds.

If a botched release breaks your project, publish a bugfix release to exclude
that specific broken version:

[project]
dependencies = ["awesome>=1.2,!=1.3.1"]

If a dependency breaks compatibility permanently, use an upper bound as a
last resort until you’re able to adapt to the incompatible changes:

[project]
dependencies = ["awesome>=1.2,<2"]

WARNING
Excluding versions after the fact has a pitfall that you need to be aware of. Dependency
resolvers can decide to downgrade your project to a version without the exclusion, and
upgrade the dependency anyway.

UPPER VERSION BOUNDS IN PYTHON
Some people routinely include upper bounds in version constraints,
especially for dependencies that follow Semantic Versioning. In this
widely adopted versioning scheme, major versions signal any breaking
changes, or incompatible changes to the public API. As engineers, we
err on the side of safety to build robust products, so at first glance,
guarding against major releases seems like something any responsible
person would do. Even if most of them don’t break your project, isn’t it
better to opt in after you have a chance to test the release?

Unfortunately, upper version bounds quickly lead to unsolvable
dependency conflicts. Python environments (unlike Node.js
environments, in particular) can only contain a single version of each
package. Libraries that put upper bounds on their own dependencies
also prevent downstream projects from receiving security and bug fixes
for those packages. Before adding an upper version bound, I therefore
recommend that you carefully consider the costs and benefits.

What exactly constitutes a breaking change is less defined than it may
seem. For example, should a project increment its major version every
time it drops support for an old Python version? Even in clear cases, a
breaking change will only break your project if it affects the part of the
public API that your project actually uses. By contrast, many changes
that will break your project are not marked by a version number
(they’re simply bugs). In the end, you’ll still rely on automated tests to
discover “bad” versions and deal with them after the fact.

Version specifiers support several operators, as shown in Table 4-1. You can
use the equality and comparison operators you know from Python: ==, !=,
<=, >=, <, and >. The == operator also supports wildcards (*), albeit only at
the end of the version string; in other words, you can require the version to
match a particular prefix, such as 1.2.*. There’s also a === operator to
perform a simple character-by-character comparison, which is best used as
a last resort for non-standard versions. Finally, the compatible release

operator ~= specifies that the version should be greater than or equal to the
given value, while still starting with the same prefix. For example, ~=1.2.3
is equivalent to >=1.2.3,==1.2.*, and ~=1.2 is equivalent to
>=1.2,==1.*.

T
a
b
l
e

4
-
1
.
V
e
r
s
i
o
n

S
p
e
c
i
f
i
e
r
s

Operator Name Description

== Version Versions must compare equal after

matching
clause

normalization, such as stripping off
trailing zeros.

!= Version
exclusion
clause

The inverse of the == operator

<=, >= Inclusive
ordered
comparison
clause

Performs lexicographical
comparison, with pre-releases
preceding final releases

<, > Exclusive
ordered
comparison
clause

Similar as above, but the versions
must not compare equal

~= Compatible
release clause

Equivalent to >=x.y,==x.* to the
specified precision

=== Arbitrary
equality clause

Simple string comparison for non-
standard versions

You don’t need upper bounds to exclude pre-releases, by the way. Even
when pre-releases are newer than the latest stable release, version specifiers
exclude them by default due to their expected instability. There are only
three situations where pre-releases are valid candidates: when they’re
already installed, when they’re the only ones satisfying the dependency
specification, and when you request them explicitly, using a clause like
>=1.0.0rc1.

Extras and Optional Dependencies

Suppose you want to use the newer HTTP/2 protocol with httpx. This only
requires a small change to the code that creates the HTTP client:

def main():
 headers = {"User-Agent": USER_AGENT}
 with httpx.Client(headers=headers, http2=True) as client:
 ...

Under the hood, httpx delegates the gory details of speaking HTTP/2 to
another package (named h2). That dependency is not pulled in by default,
however. This way, users who don’t need the newer protocol get away with
a smaller dependency tree. You do need it here, so activate the optional
feature using the syntax httpx[http2]:

[project]
dependencies = ["httpx[http2]>=0.23.1", "rich>=12.6.0"]

Optional features that require additional dependencies are known as extras,
and you can have more than one. For example, you could specify
httpx[http2,brotli] to allow decoding responses with Brotli
compression, which is a compression algorithm developed at Google and
commonly used in web servers and content delivery networks.

Let’s take a look at this situation from the point of view of httpx. The h2
and brotli dependencies are optional, so httpx does not declare them
under project.dependencies, but under project.optional-
dependencies. Here’s what that looks like:

Example 4-3. Optional dependencies of httpx (simplified)
[project]
name = "httpx"

[project.optional-dependencies]
http2 = ["h2>=3,<5"]
brotli = ["brotli"]

The optional-dependencies field is a TOML table and can hold multiple
lists of dependencies, one for each extra provided by the package.

Otherwise, optional dependencies are specified in the same way as normal
dependencies, including version constraints.

If you add an optional dependency to your project, how do you use that
dependency in the code— should you check if your package was installed
with the extra? The most common technique is to simply import the
optional package— but catch the ImportError exception in case the user
did not activate the extra:

try:
 import h2
except ImportError:
 h2 = None

Check h2 before use.
if h2 is not None:
 ...

This pattern is so common in Python, even beyond imports, that it has a
name: “Easier to Ask Forgiveness than Permission” (EAFP).2

Environment Markers
The third piece of metadata you can specify for a dependency is
environment markers. But before I explain what these are, let me show you
an example of where they come in handy.

If you looked at the User-Agent header in Example 4-1 and thought, “I
should not have to repeat the version number in the code”, you’re
absolutely right. As you’ve seen in “Single-Sourcing the Project Version”,
you can read the version of your package from its metadata in the
environment. Example 4-4 shows how you can use the function
importlib.metadata.metadata to construct the User-Agent header from
the Name, Version, and Author-email core metadata fields. These fields
correspond to the name, version, and authors fields in the project
metadata.3

Example 4-4. Using importlib.metadata to build a User-Agent header

from importlib.metadata import metadata

USER_AGENT = "{Name}/{Version} (Contact: {Author-email})"

def build_user_agent():
 fields = metadata("random-wikipedia-article")
 return USER_AGENT.format_map(fields)

def main():
 headers = {"User-Agent": build_user_agent()}
 ...

The metadata function retrieves the core metadata fields for the
package.
The str.format_map function replaces each placeholder using a
lookup in the provided mapping (the core metadata fields).

The importlib.metadata library was introduced in Python 3.8. Does this
mean you’re out of luck if your project needs to support an older Python
version? Fortunately not. Many additions to the standard library come with
third-party backports that provide the same interface to legacy
environments. In the case of importlib.metadata, you can fall back to the
importlib-metadata backport from PyPI.

You only need backports in environments that use specific Python versions.
Environment markers allow you to communicate this fact in your
dependency specification: they’re conditions that installers evaluate on the
interpreter of the target environment. Thanks to this mechanism, you can
ask for a dependency to be installed only on specific operating systems,
processor architectures, Python implementations, or Python versions. See
Table 4-2 for the full list of environment markers at your disposal.

Going back to our example, you can use the python_version marker to
require importlib-metadata only in environments with a Python version
older than 3.8:

[project]
dependencies = [
 "httpx[http2]>=0.23.1",
 "rich>=12.6.0",

 "importlib-metadata>=5.2.0; python_version < '3.8'",
]

The import name for the backport is importlib_metadata, while the
standard library module is named importlib.metadata. Use the EAFP
technique from “Extras and Optional Dependencies” to import the
appropriate module in your code:

try:
 from importlib.metadata import metadata
except ImportError:
 from importlib_metadata import metadata

Like extras, environment markers gate the dependency behind a condition.
The difference is that extras are triggered by users, while markers are
triggered by the target environment. In both cases, you need to account for
the possibility that importing the package may fail.

Markers support the same equality and comparison operators as version
specifiers (see Table 4-1). Additionally, you can use in and not in to
match a substring against the marker. You can also combine multiple
markers using the boolean operators and and or. Here’s a contrived
example that combines all of these features:

[project]
dependencies = [""" \
 awesome-package; python_full_version <= '3.8.1' \
 and (implementation_name == 'cpython' or implementation_name == 'pypy') \
 and sys_platform == 'darwin' \
 and 'arm' in platform_version \
"""]

I’ve also relied on TOML’s support for multi-line strings here, which uses
triple quotes just like Python. Dependency specifications cannot span
multiple lines, so you have to escape any newlines with a backslash.

T
a
b
l
e

4
-
2
.
E
n
v
i
r
o
n
m
e
n
t
M
a
r
k
e
r
s

Environment
Marker

Standard
Library Description Examples

os_name os.name() The operating
system family

posix, nt

sys_platform sys.platform() The platform
identifier

linux, darwin,
win32

platform_system platform.system(

)

The system name Linux,
Darwin,
Windows

platform_release platform.release

()

The operating
system release

22.1.0

platform_version platform.version

()

The system release Darwin Kernel

Version 22.1.0:

...

platform_machine platform.machine

()

The processor
architecture

x86_64, arm64

python_version platform.python_

version_tuple()

The Python feature
version in the format
x.y

3.11

python_full_vers

ion

platform.python_

version()

The full Python
version

3.11.0, 3.12.0a1

platform_python_

implementation

platform.python_

implementation()

The Python
implementation

CPython, PyPy

implementation_n

ame

sys.implementati

on.name

The Python
implementation

cpython, pypy

implementation_v

ersion

sys.implementati

on.version

The Python
implementation
version

3.11.0, 3.12.0a1

The python_version and implementation_version markers apply
further transformations to their source in the standard library; see PEP 508
for details.

For completeness, there is another environment marker named extra,
which I haven’t listed in Table 4-2. Build backends use the extra marker
when they generate the core metadata field for an optional dependency. For
example, the core metadata fields for the http2 extra from Example 4-3
look like this:

Provides-Extra: http2
Requires-Dist: h2<5,>=3; extra == 'http2'

Development Dependencies
Development dependencies are third-party packages that you require during
development. As a developer, you might use the pytest testing framework
to run the test suite for your project, the Sphinx documentation system to
build its docs, or a number of other tools to help with project maintenance.
Your users, on the other hand, don’t need to install any of these packages to
run your code.

As a concrete example, let’s add a small test for the build_user_agent
function from Example 4-4. Create a module
test_random_wikipedia_article.py in your project directory with the
code from Example 4-5.

Example 4-5. Testing the generated User-Agent header
from random_wikipedia_article import build_user_agent

def test_build_user_agent():
 assert 'random-wikipedia-article' in build_user_agent()

https://peps.python.org/pep-0508/

Import the function under test, build_user_agent.
Define the test function; pytest looks for functions whose names start
with test.
Use the assert statement to check for the project name in the generated
header.

You could just import and run the test from Example 4-5 manually. But
even for a tiny test like this, pytest adds three useful features. First, you
can run the test by invoking pytest without arguments— and this is true for
any other tests you may add to your project. Second, pytest produces a
summary with the test results. Third, pytest rewrites assertions in your
tests to give you friendly, informative messages when they fail.

Let’s run the test with pytest. Create and activate a virtual environment in
your project, then enter the commands below to install and run pytest
alongside your project:

$ py -m pip install .

$ py -m pip install pytest

$ py -m pytest

========================= test session starts ==========================
platform darwin -- Python 3.11.1, pytest-7.2.1, pluggy-1.0.0
rootdir: ...
plugins: anyio-3.6.2
collected 1 item

test_random_wikipedia_article.py . [100%]

========================== 1 passed in 0.12s ===========================

For now, things look great. Tests ensure that your project can evolve
without breaking things, and the test for build_user_agent is a first step
in that direction. Installing and running the test runner is a small
infrastructure cost compared to these long-term benefits.

But how do you ensure that tools like pytest are set up correctly? Each of
your projects is going to have slightly different requirements. You could
add a small note to the project README for your contributors (and your
future self). But eventually there may be more tools: plugins for pytest,

tools to build the documentation, tools to analyze code for common bugs.
You could add those tools to the project dependencies. But that would be
wasteful; your users don’t need those packages to run your code.

Python doesn’t yet have a standard way to declare the development
dependencies of a project. Generally, people use one of three approaches to
fill the gap: optional dependencies, requirements files, or dependency
groups. In this section you’ll learn how to declare development
dependencies using extras and optional dependencies. Requirements files
allow you to list dependencies in a packaging-agnostic way, outside of the
project metadata; I’ll introduce them in the next section. Dependency
groups are a feature of project managers, which I’ll cover in Chapter 5.

Let’s recap why keeping track of development dependencies is helpful:

You don’t need to remember how to set up the development
environment for each project.

You make life easier for any potential contributors as well.

It helps with automating checks, both locally and in Continuous
Integration (CI).

You can make sure you get compatible versions of the tools. Your test
suite may not work with some versions of pytest, and your docs may
not build (or not look good) on all versions of Sphinx.

Extras are groups of optional dependencies that are recorded in the project
metadata (see “Extras and Optional Dependencies”). The extras mechanism
provides all the necessary ingredients to track development dependencies.
The packages aren’t installed by default, they can be grouped under
declarative names like tests or docs, and they come with the full
expressivity of dependency specifications, such as version constraints and
environment markers. Example 4-6 shows how you can use extras to
represent the development dependencies of a project.

Example 4-6. Using extras to represent development dependencies

[project.optional-dependencies]
tests = ["pytest>=7.2.1", "pytest-sugar>=0.9.6"]
docs = ["sphinx>=6.1.3"]

I’ve added pytest-sugar to the tests extra, which is a pytest plugin that
formats the test output in a nice way. There’s also a docs extra for building
documentation with Sphinx; I’ve added it to demonstrate that you can have
multiple groups of dependencies, but you won’t be using it in this chapter.

Contributors can now install the test dependencies using the tests extra:

$ py -m pip install -e .[tests]

$ py -m pytest

You can also provide a dev extra that combines all the development
dependencies, to make it easy to set up a local development environment.
Instead of repeating all the dependencies, you can just reference the other
extras, as shown in Example 4-7:4

Example 4-7. Providing a dev extra with all development dependencies
[project.optional-dependencies]
tests = ["pytest>=7.2.1", "pytest-sugar>=0.9.6"]
docs = ["sphinx>=6.1.3"]
dev = ["random-wikipedia-article[tests,docs]"]

There’s a slight mismatch between development dependencies and extras.
The primary purpose of extras is to give users control over the installation
of packages that aren’t needed for the primary functionality of a project.
Development dependencies are never intended to be installed by users, so
they’re somewhat misplaced in the public metadata of a package.

Another mismatch is that you can’t install extras without the project itself.
Development tools don’t necessarily need your project to be installed. For
example, linters analyze your source code for bugs and potential
improvements. You can just run them on the Python code without installing
the project into the environment.

Requirements Files

Unlike extras, requirements files are dependency specifications that aren’t
part of the project metadata. You share them with your contributors using
the version control system, not with your users using distribution packages,
which is a good thing. What’s more, requirements files don’t implicitly
include your project in the dependencies. That shaves off time from all
tasks that don’t need the project installed, such as documentation builds and
linting.

At their core, requirements files are plain text files where each line is a
dependency specification (see Example 4-8).

Example 4-8. A simple requirements.txt file
requirements.txt
pytest>=7.2.1
pytest-sugar>=0.9.6
sphinx>=6.1.3

You can install the dependencies listed in a requirements file using pip:

$ py -m pip install -r requirements.txt

The file format is not standardized; in fact, each line of a requirement file is
essentially an argument for pip install. In addition to dependency
specifications (which are standardized), it can have URLs and file paths,
optionally prefixed by -e for an editable install, as well as global options
such as -r to include another requirements file. The file format also
supports Python-style comments (with a leading # character) and line
continuations (with a trailing \ character).

Requirements files are commonly named requirements.txt, but variations
are common. For example, you could have a dev-requirements.txt for
development dependencies or a requirements directory with one file per
dependency group. Let’s replicate Example 4-7 using the third option:

Example 4-9. Using requirements files to specify development dependencies
requirements/tests.txt
-e .
pytest>=7.2.1
pytest-sugar>=0.9.6

requirements/docs.txt
sphinx>=6.1.3

requirements/dev.txt
-r tests.txt
-r docs.txt

NOTE
Paths in requirements.txt are evaluated relative to the current directory. However, if you
include other requirement files using -r, their paths are evaluated relative to the
including file.

Create and activate a virtual environment, then run the following commands
to install the development dependencies and run the test suite:

$ py -m pip install -r requirements/dev.txt

$ py -m pytest

Note that tests do need the project to be installed, so I’ve listed it in
requirements/tests.txt.

Requirements files solve some of the shortcomings of extras when used for
development dependencies. On the downside, requirements files are not
backed by an interoperability standard, and they create some clutter in your
project directory compared to having a dedicated section in pyproject.toml.
In Chapter 5, I’ll introduce a dependency-group feature offered by some
Python project managers that leverages pyproject.toml without polluting the
project metadata.5

Locking Dependencies
You’ve specified your dependencies and development dependencies,
installed them in a development environment, run your test suite and

whichever other checks you have in place: everything looks good, and
you’re ready to deploy your code to production.

There’s just one little hitch. How can you be sure that you install the same
dependencies in production as you did when you ran your checks? The
more exposure your production code gets, the more worrying the possibility
that it might run with a buggy or, worse, hijacked dependency. It could be a
direct dependency of your project or a package deeper down in the
dependency tree— an indirect dependency.

Even if you take care to upgrade your dependencies to the latest version
when testing, a new release could come in just before you deploy. You can
also end up with different dependencies if your development environment
does not match the production environment exactly: the mismatch can
cause installers to evaluate environment markers and wheel compatibility
tags differently.6 Tooling configuration or state can also cause different
results— for example, pip might install from a different package index or
from a local cache.

The problem is compounded if one of your dependencies doesn’t provide
wheels for the target environment— and it’s common for binary extension
modules to lag behind when a new Python version sees the light. The
installer must then build a wheel from the sdist on the fly, which introduces
more uncertainty: your installs are now only as reproducible as your builds.
And in the worst case, that package could compute its own dependencies
dynamically during build time.

Presumably, somewhere in your deployment process, there’s a line like this:

py -m pip install my-awesome-app

The installer will honor all version constraints from the dependencies
table in pyproject.toml. But as you saw above, it won’t select the same
packages on every run and every system. You need a way to define the
exact set of packages required by your application, and you want its
environment to be an exact image of this package inventory. This process is
known as pinning, or locking, the project dependencies.

What if you replace each version range in pyproject.toml with a single
version? Here’s how that would look like for random-wikipedia-article:

[project]
dependencies = [
 "httpx[http2]==0.23.3",
 "rich==13.3.1",
 "importlib-metadata==6.0.0; python_version < '3.8'",
]

There are a couple of problems with this approach. First, you’ve only
pinned the direct dependencies. The application communicates via HTTP/2
using h2, a dependency of httpx—but h2 isn’t mentioned in the list above.
Should you add indirect dependencies to the dependencies table? That list
would quickly become hard to maintain. And you’d start to rely on
implementation details of the packages you actually import in your code.

Second, you’ve lost valuable information about the packages with which
your application is compatible. Pip’s dependency resolver used that
information to compute the versions above in the first place, but you won’t
have it the next time you want to upgrade your dependencies. Losing that
information also makes it that much harder to install the application in a
different environment— for example, when your production environment
upgrades to a new Python release.

Freezing Requirements with pip
Luckily, you know a format for specifying dependencies outside of the
dependencies table: requirements files. In “Requirements Files”, you
wrote them by hand, but pip can also generate this file from an existing
environment.

$ py -m pip install .

$ py -m pip freeze

anyio==3.6.2
Brotli==1.0.9
certifi==2022.12.7
h11==0.14.0
h2==4.1.0

hpack==4.0.0
httpcore==0.16.3
httpx==0.23.3
hyperframe==6.0.1
idna==3.4
markdown-it-py==2.1.0
mdurl==0.1.2
Pygments==2.14.0
random-wikipedia-article @ file:///path/to/project
rfc3986==1.5.0
rich==13.3.1
sniffio==1.3.0

You could store this list in requirements.txt and add the file to your project
repository— omitting the line with the project path. When deploying your
project to production, you could install the project and its dependencies like
this:

$ py -m pip install -r requirements.txt

$ py -m pip install .

If you’ve paid close attention, you may have noticed that the requirements
file didn’t list importlib-metadata. That’s because you ran pip freeze
in an environment with a recent Python version—importlib-metadata is
only required on Python 3.7 and below. If your production environment
uses such an old version of Python, your deployment will break: you need
to lock your dependencies in an environment that matches production.

TIP
Lock your dependencies on the same Python version, Python implementation, operating
system, and processor architecture as those used in production. If you deploy to multiple
environments, generate a requirements file for each one, using a naming convention like
win32-py311-requirements.txt.

Generating a requirements.txt with pip freeze gives you fairly reliable
deployments, but it comes with a few limitations. First, you’ll need to
install your dependencies into an environment every time you want to

refresh the requirements file. That’s especially cumbersome if you upgrade
a single dependency at a time— which makes it easier to pinpoint failure to
particular releases in your dependency tree.

Second, it’s easy to pollute the requirements file inadvertently. If you
quickly install a package locally to try it out or debug a failure, remember to
create the environment from scratch afterward, or the package may end up
in production the next time you update the requirements file. Uninstalling
the package may not be enough: the installation can have side effects on
your dependency tree, such as upgrading or downgrading other packages or
pulling in additional dependencies.

And there’s a third limitation of freezing: Requirements files allow you to
specify package hashes for each dependency. These hashes add another
layer of security to your deployments because they enable you to install
only vetted packaging artifacts in production. For example, the following
requirements file lists SHA256 hashes over the sdist and wheel for an
httpx release:

httpx==0.23.3 \
 --
hash=sha256:9818458eb565bb54898ccb9b8b251a28785dd4a55afbc23d0eb410754fe7d0f9 \
 --
hash=sha256:a211fcce9b1254ea24f0cd6af9869b3d29aba40154e947d2a07bb499b3e310d6

There may be additional hashes for releases with multiple wheels, as is
common with binary extension modules.

Unfortunately, pip freeze does not have access to these hashes (or the
packages over which they should be computed). It takes an inventory of an
environment, and environments don’t record hashes for the packages you
install into them.

Pinning Dependencies with pip-tools
The pip-tools project provides dependency locking for your projects
without these limitations. It generates requirements directly from
pyproject.toml and other files; optionally, you can include package hashes

for every requirement. Under the hood, pip-tools leverages pip and its
dependency resolver.

Pip-tools comes with two commands: pip-compile, to create a
requirements file from dependency specifications, and pip-sync, to apply
the requirements file to an existing environment. Alternatively, you can
invoke pip-tools via the Python Launcher, using the commands py -m
piptools compile and py -m piptools sync (see Table 4-3). Note that
py -m expects the import name of pip-tools, which is piptools without a
hyphen. Import names must be legal Python identifiers, so they cannot
contain hyphens.

T
a
b
l
e
4
-
3
.
P
i
p
-
t
o
o
l
s
s
c
r
i
p
t
s
a
n
d
s
u
b
c
o
m

m
a
n
d
s

Entry-point script Equivalent subcommand Description

pip-compile py -m piptools

compile

Compile requirements.txt from
pyproject.toml and other files

pip-sync py -m piptools

sync

Synchronize virtual environments
with requirements.txt

Install pip-tools in an environment that matches the target environment for
your project— the environment where you’re going to apply the
requirements file. Assuming that the development environment for your
project resembles its production environment, the simplest option is to
install pip-tools into that environment:

$ py -m pip install pip-tools

Just like py -m pip is preferable to plain pip, I recommend py -m
piptools over pip-compile and pip-sync. Here’s an example invocation:

$ py -m piptools compile

You can also install pip-tools globally using pipx— but the same caveat
applies. The pipx-managed environment must closely match the target
environment for the requirements file. Specify the Python version and
implementation using the --python option of pipx install. Additionally,

use the --suffix option to rename the entry-point scripts with a suffix
indicating the interpreter on which they run. This will save you a headache
when one of your projects or environments needs a different interpreter than
the others— and it allows you to install multiple versions of pip-tools
globally.

For example, here’s how you’d install pip-tools for a Python 3.7
environment using PyPy. (This example assumes that your system has a
pypy3.7 command.)

$ pipx install --python=pypy3.7 --suffix=-pypy3.7 pip-tools

 installed package pip-tools 6.12.2 (pip-tools-pypy3.7),
 installed using Python 3.7.13 (...)
[PyPy 7.3.9 with GCC Apple LLVM 13.1.6 (clang-1316.0.21.2)]
 These apps are now globally available
 - pip-compile-pypy3.7
 - pip-sync-pypy3.7
done!

This gives you a global command to compile requirements for any project
using pypy3.7:

$ pip-compile-pypy3.7

By default, pip-compile writes to the file requirements.txt when
processing dependencies from pyproject.toml. You can use the --output-
file option to specify a different destination, including - for standard
output. The tool also prints requirements to standard error with syntax
highlighting, unless you specify --quiet to switch off terminal output.

The option --generate-hashes allows you to include SHA256 hashes for
each package listed in the requirements file. This makes the installation
more deterministic and reproducible. It is also important if you work in an
environment where every artifact that goes into production must be
carefully screened to prevent supply chain attacks—attacks exploiting
vulnerabilities in dependencies rather than the application itself. Hashes
also have the side effect that pip refuses to install packages without them, so
either all packages have hashes, or none do. As a consequence, hashes

prevent you from installing dependencies that are not listed in the
requirements file.

For backward compatibility, pip-tools still defaults to pip’s legacy
dependency resolver. It also excludes pip and setuptools from
requirements files, since pinning these packages is considered unsafe for
legacy dependencies that distribute sdists without a pyproject.toml file. For
new projects, you should opt into the future default behavior using the
options --resolver=backtracking and --allow-unsafe.

Pip-tools annotates the file with useful comments indicating the origin of
each dependency, as well as a header containing the command used to
generate the file. I’m disabling both of these for brevity here, but you may
prefer to keep them in your requirements files.

Without further ado, let’s generate a requirements.txt file for random-
wikipedia-article. (Omit the backslash and line break when you enter
this command at your prompt.)

$ py -m piptools compile \

 --resolver=backtracking --allow-unsafe --no-header --no-

annotate

anyio==3.6.2
brotli==1.0.9
certifi==2022.12.7
h11==0.14.0
h2==4.1.0
hpack==4.0.0
httpcore==0.16.3
httpx[brotli,http2]==0.23.3
hyperframe==6.0.1
idna==3.4
markdown-it-py==2.1.0
mdurl==0.1.2
pygments==2.14.0
rfc3986[idna2008]==1.5.0
rich==13.3.1
sniffio==1.3.0

As before, install the requirements file in the target environment using pip,
followed by the name of the package itself. There are a couple of pip

options you can use to harden the installation: the option --no-deps
ensures that you only install packages listed in the requirements file, and the
option --no-cache-dir prevents pip from reusing downloaded or locally
built artifacts.

$ py -m pip install -r requirements.txt

$ py -m pip install --no-deps --no-cache-dir .

It’s best to update your dependencies periodically. How often depends on
the project, but once per week is a good default for an application running
in production. Otherwise, you may need to perform a “big bang” upgrade
under time pressure: fixing a security vulnerability in one of your
dependencies could, in the worst case, force you to migrate your application
to multiple new APIs. Tools like Dependabot and Renovate greatly help
with this chore by opening pull requests with automated dependency
upgrades.

You can either upgrade all your dependencies at once, or one dependency at
a time. Use the --upgrade option to upgrade all dependencies to their latest
version, or pass a specific package with the --upgrade-package option.
For example, here’s how you’d upgrade rich to the latest version:

$ py -m piptools compile --upgrade-package=rich

If you don’t want to create the target environment from scratch, you can use
pip-tools to synchronize it with the updated requirements file. Don’t install
pip-tools in the target environment for this, as your dependencies may
conflict with those of pip-tools. Instead, use pipx to install pip-tools
globally, then specify the --python-executable option to point it to the
target environment:

$ pipx install pip-tools

$ pip-sync --python-executable=venv/bin/python

$ venv/bin/python -m pip install --no-deps --no-cache-dir .

This example assumes that the target environment is under venv in the
current directory. On Windows, the interpreter path would be
venv\Scripts\python.exe instead. Also, pip-sync always removes the
project itself, so remember to re-install it after synchronizing the
dependencies.

So far, you’ve seen how to lock dependencies for reliable and reproducible
deployments, but locking is also beneficial during development. By sharing
the requirements file with your team and with contributors, you put
everybody on the same page: every developer uses the same dependencies
when running the test suite, building the documentation, or performing
similar tasks. And by using the same requirements during Continuous
Integration, you avoid surprises when developers publish their changes to a
shared repository. However, to truly reap these benefits, you’ll need to
widen your view to include development dependencies.

In “Development Dependencies”, you saw two ways to declare
development dependencies: extras and requirements files. Pip-tools
supports both as inputs. That’s right: you can use requirements files as
inputs for other requirements files. But let’s start with extras.

You can pass an extra to pip-compile using, well, the --extra option. If
your project has a dev extra, generate the requirements file for development
like this:

$ py -m piptools compile --extra=dev --output-file=dev-

requirements.txt \

 --resolver=backtracking --allow-unsafe

If you have finer-grained extras, the process is the same. You may want to
store the requirements files in a requirements directory instead to avoid
clutter.

WARNING
Unfortunately, pip-tools doesn’t currently support recursive extras like the dev extra in
Example 4-7. If you run into this limitation, either specify the development
dependencies in requirements files or duplicate the dependencies from the other extras.

If you specify development dependencies in requirements files outside of
the project metadata, pass each of these files to pip-tools in turn. By
convention, input requirements use the .in extension, while output
requirements— the locked ones— use the .txt extension. If you follow the
requirements.in naming convention, pip-tools will derive the names of the
output files as appropriate.

Example 4-10 shows how you’d set this up for the tests, docs, and dev
requirements from Example 4-9.

Example 4-10. Using requirements files to specify development
dependencies
requirements/tests.in
pytest>=7.2.1
pytest-sugar>=0.9.6

requirements/docs.in
sphinx>=6.1.3

requirements/dev.in
-r tests.in
-r docs.in

Unlike in Example 4-9, I haven’t included the project itself in the input
requirements. If I did, pip-tools would insert the full project path, which
may not be the same for every developer. Instead, pass pyproject.toml
together with tests.in and dev.in to lock the entire set of dependencies
together. You’ll also have to specify the output file explicitly if you pass
more than a single input file. When installing from the resulting files,
remember to install the project as well.

$ py -m piptools compile requirements/tests.in pyproject.toml \

 --output-file=requirements/tests.txt

$ py -m piptools compile requirements/docs.in

$ py -m piptools compile requirements/dev.in pyproject.toml \

 --output-file=requirements/dev.txt

You may wonder why I bothered to compile dev.txt at all. Couldn’t I have
just referenced the generated docs.txt and tests.txt files? In fact, it’s essential
to let the dependency resolver see the full picture— all the input
requirements. If you simply install separately locked requirements on top of
each other, you may well end up with conflicting dependencies.

Table 4-4 summarizes the command-line options for pip-compile you’ve
seen in this chapter:

T
a
b
l
e
4
-
4
.
S
e
l
e
c
t
e
d
c
o
m
m
a
n
d
-
l
i
n
e
o
p
t
i
o

n
s
f
o
r
p
i
p
-
c
o
m
p
i
l
e

Option Description

--generate-hashes Include SHA256 hashes for every packaging artifact

--

resolver=backtrac

king

Don’t use the legacy dependency resolver

--allow-unsafe Pin packages like setuptools, which were deemed
unsafe for legacy projects

--output-file Specify the destination file, or - for standard output

--quiet Do not print the requirements to standard error

--no-header Omit the header with the command used to generate
the file

--no-annotations Omit the comments indicating the origin of each
dependency

--upgrade Upgrade all dependencies to their latest version

--upgrade-

package=PACKAGE

Upgrade a specific package to its latest version

--extra=EXTRA Include dependencies from the given extra in
pyproject.toml

Summary
In this chapter, you’ve learned how to declare the project dependencies
using pyproject.toml and how to declare development dependencies using
either extras or requirements files. You’ve also learned how to lock
dependencies for reliable deployments and reproducible checks using pip-
tools. In the next chapter, you’ll see how the project manager Poetry helps
with dependency management using dependency groups and lock files.

1 In a wider sense, the dependencies of a project consist of all software packages that users
require to run its code. This includes the interpreter, the standard library, third-party modules,
and system libraries. Conda supports this generalized notion of dependencies, and so do distro-
level package managers like apt, dnf, and brew.

2 Its counterpart also has a name: “Look Before You Leap” (LBYL).

3 For the sake of simplicity, this code doesn’t handle multiple authors— which one ends up in
the header is undefined.

4 This technique is sometimes called recursive optional dependencies.

5 For completeness, there’s a fourth way to handle development dependencies, and that’s not to
declare them as project dependencies at all. Instead, you automate the environment creation
using a tool like Nox, tox, or Hatch and include the dependencies as part of that. Chapter 6
covers test automation with Nox in detail.

6 See “Environment Markers” and “Wheel Compatibility Tags”.

Chapter 5. Managing Projects
with Poetry

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the fifth chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at mail@claudiojolowicz.com.

In the preceding chapters, you’ve seen all the building blocks for publishing
production-quality Python packages. You’ve learned how to write a
pyproject.toml for your project, how to create an environment and install
the project with venv and pip, and how to build packages and upload them
with build and twine.

By standardizing the build backend interface and project metadata,
pyproject.toml has broken the setuptools monopoly and brought diversity to
the packaging ecosystem. At the same time, defining a Python package has
gotten easier: the legacy boilerplate of setup.py and untold configuration
files is gone, replaced with a single well-specified file with great tooling
support.

Yet, some problems remain.

Before you can work on a pyproject.toml-based project, you need to
research packaging workflows, configuration files, and associated tooling.

mailto:mail@claudiojolowicz.com

You have to choose one of a number of available build backends (see
“Build Frontends and Build Backends”)—and many people don’t know
what those are, let alone how to choose them. Important aspects of Python
packages remain unspecified— for example, how project sources are laid
out and which files should go into the packaging artifacts.

Dependency and environment management could be easier, too. You need
to handcraft your dependency specifications and compile them with pip-
tools, cluttering your project with requirements files. And it can be hard to
keep track of the many Python environments on a typical developer system.

The project-management tool Poetry has been addressing these problems
since (and even before) the standards governing pyproject.toml were taking
shape. Its friendly command-line interface lets you perform most of the
tasks related to packaging, dependencies, and environments. Poetry brings
its own standards-compliant build backend, poetry.core—but you can
remain blissfully unaware of this fact. It also comes with a strict
dependency resolver and locks all dependencies by default, behind the
scenes.

Poetry abstracts away many of the details I’ve covered in the preceding
three chapters. Still, learning about packaging standards and the low-level
tooling that implements them is well worth your while. Poetry itself largely
works in the framework defined by packaging standards, even though it
also ventures into new territory. Standard mechanisms like dependency
specifications or virtual environments power Poetry’s central features, and
Poetry-managed projects leverage interoperability standards when
interacting with package repositories, build frontends, and installers. An
understanding of the underlying mechanisms helps you debug situations
where Poetry’s convenient abstractions break down, such as when
misconfigurations or bugs cause packages to be installed in the wrong
environment. Finally, the experience of the past decades teaches us that
packaging tools come and go, while packaging standards are here to stay.

THE EVOLUTION OF PYTHON PROJECT MANAGERS
A decade ago, Python packaging was firmly in the hands of three tools:
setuptools, virtualenv, and pip. You’d use setuptools to create Python
packages, virtualenv to set up virtual environments, and pip to install
packages into them. Everybody did. Around 2016— the same year that
the pyproject.toml file became standard— things started to change.

In 2015, Thomas Kluyver began developing flit, an alternative build
tool that could create packages and publish them to PyPI. In 2016,
Donald Stufft from the pip maintainer team started working on Pipfile,
a proposed replacement for requirements files, including a specification
of lock files. In 2017, his work led to Kenneth Reitz’s pipenv, which
allows you to manage dependencies and environments for Python
applications and deploy them in a reproducible way. Pipenv deliberately
didn’t package your application: you’d just keep a bunch of Python
modules in a Git repository.

Poetry, started in 2018 by Sébastien Eustace, was the first tool to
provide a unified approach to packaging, dependencies, and
environments— and its adoption quickly spiraled. Two other tools
follow a similarly holistic approach: PDM, started by Frost Ming in
2019, and Hatch by Ofek Lev in 2017. Hatch has recently grown in
popularity, especially among tooling and library developers.

Poetry, Hatch, and PDM each provide a single user interface and a
streamlined workflow for Python packaging as well as for environment
and dependency management. As such, they have come to be known as
Python project managers.

Installing Poetry
Install Poetry globally using pipx, to keep its dependencies isolated from
the rest of the system:

$ pipx install poetry

A single Poetry installation works with multiple Python versions. However,
Poetry uses its own interpreter as the default Python version. For this
reason, it’s worthwhile to install Poetry on the latest stable Python release.
When installing a new feature release of Python, reinstall Poetry like this:

$ pipx reinstall --python=python3.12 poetry

You can omit the --python option if pipx already uses the new Python
version (see “Installing Applications with Pipx”).

When a prerelease of Poetry becomes available, you can install it side-by-
side with the stable version:

$ pipx install poetry --suffix=@preview --pip-args=--pre

Above, I’ve used the --suffix option to rename the command so you can
invoke it as poetry@preview, while keeping poetry as the stable version.
The --pip-args option lets you pass options to pip, like --pre for
including prereleases.

NOTE
Poetry also comes with an official installer. You can download the installer and run it
with Python. It’s not as flexible as pipx, but it provides a simple and readily available
alternative.

Upgrade Poetry periodically to receive improvements and bugfixes:

$ pipx upgrade poetry

Type poetry on its own to check your installation of Poetry. Poetry prints
its version and usage to the terminal, including a useful listing of all
available subcommands.

https://install.python-poetry.org/

$ poetry

Having successfully installed Poetry, you may want to enable tab
completion for your shell. Use the command poetry help completions
for shell-specific instructions. For example, the following command enables
tab completion in the Bash shell:

$ poetry completions bash >> ~/.bash_completion

Restart your shell for the changes to take effect.

Creating a Project
You can create a new project using the command poetry new. As an
example, I’ll use the random-wikipedia-article project from previous
chapters. Run the following command in the parent directory where you
want to keep your new project:

$ poetry new --src random-wikipedia-article

After running this command, you’ll see that Poetry created a project
directory named random-wikipedia-article, with the following structure:

random-wikipedia-article
├── README.md
├── pyproject.toml
├── src
│ └── random_wikipedia_article
│ └── __init__.py
└── tests
 └── __init__.py

In earlier chapters, the project contained a single top-level module,
random_wikipedia_article.py. In the listing above, you’ve replaced this
with an import package— a directory with an __init__.py file. The --src
option instructs Poetry to place that import package in a subdirectory named
src rather than directly in the project directory.

THE SRC LAYOUT
Until a few years ago, package authors placed the import package
directly in the project directory. These days, a project layout with src,
tests, and docs directories at the top is becoming more common.

Keeping the import package tucked away under src has practical
advantages. During development, the current directory often appears at
the start of sys.path. Without a src layout, you may be importing your
project from its source code, not from the package you’ve installed in
the project environment. In the worst case, your tests could fail to detect
issues in a release you’re about to publish.

On the other hand, whenever you want to execute the source code itself,
editable installs achieve this by design. With a src layout, packaging
tools can implement editable installs by adding the src directory to
sys.path—without the side effect of making unrelated Python files
importable.

Let’s take a look at the generated pyproject.toml (Example 5-1):

Example 5-1. A pyproject.toml file for Poetry
[tool.poetry]
name = "random-wikipedia-article"
version = "0.1.0"
description = ""
authors = ["Your Name <you@example.com>"]
readme = "README.md"
packages = [{include = "random_wikipedia_article", from = "src"}]

[tool.poetry.dependencies]
python = "^3.11"

[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"

Poetry has created a standard build-system table with its build backend,
poetry.core. This means anybody can install your project from source
using pip— no need to set up, or even know about, the Poetry project

manager. Similarly, you can build packages using any standard build
frontend, such as build. Try it yourself from within the project directory:

$ pipx run build

* Creating venv isolated environment...
* Installing packages in isolated environment... (poetry-core)
* Getting build dependencies for sdist...
* Building sdist...
* Building wheel from sdist
* Creating venv isolated environment...
* Installing packages in isolated environment... (poetry-core)
* Getting build dependencies for wheel...
* Building wheel...
Successfully built random_wikipedia_article-0.1.0.tar.gz
 and random_wikipedia_article-0.1.0-py3-none-any.whl

The Project Metadata
You may be surprised to see the project metadata appear under
tool.poetry instead of the familiar project table (see “Project
Metadata”). The Poetry project has promised support for the project
metadata standard in its next major release. As you can see in Table 5-1,
most fields have the same name and the same, or similar, syntax and
meaning.

Let’s fill in the metadata for the project. Example 5-2 shows how you’d
translate Example 3-4 for the tool.poetry table. I’ve omitted the
dependencies section here; you’ll use the command-line interface to add the
project dependencies later.

Example 5-2. Metadata for a Poetry project
[tool.poetry]
name = "random-wikipedia-article"
version = "0.1.0"
description = "Display extracts from random Wikipedia articles"
keywords = ["wikipedia"]
license = "MIT"
classifiers = [
 "License :: OSI Approved :: MIT License",
 "Development Status :: 3 - Alpha",
 "Environment :: Console",
 "Topic :: Games/Entertainment :: Fortune Cookies",

]
authors = ["Your Name <you@example.com>"]
readme = "README.md"
homepage = "https://yourname.dev/projects/random-wikipedia-article"
repository = "https://github.com/yourname/random-wikipedia-article"
documentation = "https://readthedocs.io/random-wikipedia-article"
packages = [{include = "random_wikipedia_article", from = "src"}]

[tool.poetry.urls]
Issues = "https://github.com/yourname/random-wikipedia-article/issues"

[tool.poetry.scripts]
random-wikipedia-article = "random_wikipedia_article:main"

The license field is a string with a SPDX identifier, not a table.
The authors field contains strings in the format name <email>, not
tables. Poetry pre-populates the field with your name and email using
the local Git configuration.
The readme field is a string with the file path. You can also specify
multiple files as an array of strings, such as README.md and
CHANGELOG.md. Poetry concatenates them with a blank line in
between.
Poetry has dedicated fields for some project URLs, namely its
homepage, repository, and documentation; for other URLs, there’s also
a generic urls table.

T
a
b
l
e
5
-
1
.
M
e
t
a
d
a
t
a
f
i
e
l
d
s
i
n
t
o
o
l
.
p
o
e
t

r
y

Field Type Description
Related project
field

name string The project name name

version string The version of the
project

version

description string A short description
of the project

description

keywords array of
strings

A list of keywords
for the project

keywords

readme string or array
of strings

A file or list of files
with a long
description of the
project

readme

license string A SPDX license
identifier, or
“Proprietary”

license

authors array of
strings

The list of authors authors

maintainers array of
strings

The list of
maintainers

maintainers

classifiers array of
strings

A list of classifiers
describing the
project

classifiers

homepage string The URL of the
project homepage

urls

repository string The URL of the
project repository

urls

documentation string The URL of the
project
documentation

urls

urls table of strings The project URLs urls

dependencies array of
strings or
tables

The list of required
third-party packages

dependencies

extras table of arrays
of strings

Named lists of
optional third-party
packages

optional-

dependencies

groups table of arrays
of strings

Named lists of
development
dependencies

none

scripts table of strings
or tables

Entry-point scripts scripts

plugins table of tables Entry point groups entry-points

of strings

Some project fields have no direct equivalent under tool.poetry:

There’s no requires-python field; instead, you specify the required
Python version in the dependencies table, using the python key.

There’s no dedicated field for GUI scripts; use plugins.gui_scripts
instead.

There’s no dynamic field— all metadata is Poetry-specific, so declaring
dynamic fields wouldn’t make much sense.

Before we move on, let’s check that the pyproject.toml file is valid. Poetry
provides a convenient command to validate the TOML file against its
configuration schema:

$ poetry check

All set!

The Package Contents
Poetry allows you to specify which files and directories to include in the
distribution— a feature still missing from the pyproject.toml standards
(Table 5-2).

T
a
b
l
e
5
-
2
.
P
a
c
k
a
g
e
c
o
n
t
e
n
t
f
i
e
l
d
s
i
n
t
o
o

l
.
p
o
e
t
r
y

Field Type Description

packages array of tables Patterns for modules to include in
the distribution

include array of strings
or tables

Patterns for files to include in the
distribution

exclude array of strings
or tables

Patterns for files to exclude from
the distribution

Each table under packages has an include key with a file or directory. You
can use * and ** wildcards in their names and paths, respectively. The from
key allows you to include modules from subdirectories such as src. Finally,
you can use the format key to restrict modules to a specific distribution
format; valid values are sdist and wheel.

The include and exclude fields allow you to list other files to include in,
or exclude from, the distribution. Poetry seeds the exclude field using the
.gitignore file, if present. Instead of a string, you can also use a table with
path and format keys for sdist-only or wheel-only files. Example 5-3
shows how to include the test suite in source distributions.

Example 5-3. Including the test suite in source distributions
packages = [{include = "random_wikipedia_article", from = "src"}]
include = [{path = "tests", format = "sdist"}]

The Source Code
Copy the contents of the random_wikipedia_article.py script into the
__init__.py file in the new project. Example 5-4 has the full listing.

Example 5-4. The source code for random-wikipedia-article
import httpx
from rich.console import Console

try:
 from importlib.metadata import metadata
except ImportError:
 from importlib_metadata import metadata

API_URL = "https://en.wikipedia.org/api/rest_v1/page/random/summary"
USER_AGENT = "{Name}/{Version} (Contact: {Author-email})"

def main():
 fields = metadata("random-wikipedia-article")
 headers = {"User-Agent": USER_AGENT.format_map(fields)}

 with httpx.Client(headers=headers, http2=True) as client:
 response = client.get(API_URL, follow_redirects=True)
 response.raise_for_status()
 data = response.json()

 console = Console(width=72, highlight=False)
 console.print(data["title"], style="bold")
 console.print()
 console.print(data["extract"])

You’ve declared an entry-point script in the scripts section in
pyproject.toml, so users can invoke the application as random-wikipedia-
article. If you’d like to also allow users to invoke the program with py -
m random_wikipedia_article, create a __main__.py module next to
__init__.py as shown in Example 5-5.

Example 5-5. The __main__.py module

from random_wikipedia_article import main

main()

Managing Dependencies
Let’s add the dependencies for random-wikipedia-article, starting with
Rich, the console output library:

$ poetry add rich

Creating virtualenv random-wikipedia-article-eBrMbJNp-py3.11 in ...
Using version ^13.3.1 for rich

Updating dependencies
Resolving dependencies... (0.2s)

Writing lock file

Package operations: 4 installs, 0 updates, 0 removals

 • Installing mdurl (0.1.2)
 • Installing markdown-it-py (2.2.0)
 • Installing pygments (2.14.0)
 • Installing rich (13.3.1)

If you inspect pyproject.toml after running this command, you’ll find that
Poetry has added Rich to the dependencies table (Example 5-6):

Example 5-6. The dependencies table after adding Rich
[tool.poetry.dependencies]
python = "^3.11"
rich = "^13.3.1"

Poetry also created a virtual environment for the project and installed the
package into it (see “Managing Environments”).

Caret Constraints
The caret (^) is a Poetry-specific extension borrowed from npm, the
package manager for Node.js. Caret constraints allow releases with the
given minimum version, except those that may contain breaking changes

according to the Semantic Versioning standard. After 1.0.0, this means
patch and minor releases, but not major releases. Before 1.0.0, only patch
releases are allowed— this is because in the 0.* era, even minor releases are
allowed to introduce breaking changes.

Caret constraints are similar to tilde constraints (see “Version Specifiers”),
but the latter only allow the last version segment to increase. For example,
the following constraints are equivalent:

rich = "^13.3.1"
rich = ">=13.3.1,<14"

On the other hand, tilde constraints typically exclude minor releases:

rich = "~13.3.1"
rich = ">=13.3.1,==13.3.*"

https://semver.org/

SHOULD YOU CAP DEPENDENCIES?
It’s unfortunate that Poetry adds upper bounds to dependencies by
default. For libraries, the practice prevents downstream users from
receiving fixes and improvements, since constraints aren’t scoped to the
packages that introduce them, as in Node.js. Many open-source projects
don’t have the resources to backport fixes to past releases. For
applications, dependency locking provides a better way to achieve
reliable deployments.

The situation is similar but worse for the Python requirement.
Excluding Python 4 by default will cause disruption across the
ecosystem when the core Python team eventually releases a new major
version. It’s unlikely that Python 4 will come anywhere near Python 3
in terms of incompatible changes. Poetry’s constraint is contagious in
the sense that dependent packages must also introduce it. And it’s
impossible for Python package installers to satisfy— they can’t
downgrade the environment to an earlier version of Python.

Whenever possible, replace caret constraints in pyproject.toml with
simple lower bounds (>=), especially for Python itself. Afterward,
refresh the lock file using the command poetry lock --no-update.

Extras and Environment Markers
Let’s add the other two dependencies of random-wikipedia-article, the
HTTP client library httpx and the importlib-metadata backport. Like in
Chapter 4, you’ll activate the http2 extra for HTTP/2 support, and restrict
the backport to Python versions before 3.8.

$ poetry add httpx --extras=http2

$ poetry add importlib-metadata --python='<3.8'

Poetry updates the pyproject.toml file accordingly:

[tool.poetry.dependencies]
python = "^3.11"
rich = "^13.3.1"
httpx = {version = "^0.23.3", extras = ["http2"]}
importlib-metadata = {version = "^6.0.0", python = "<3.8"}

Besides --python, the poetry add command supports a --platform
option to restrict dependencies to a specific operating system, such as
Windows. This option accepts a platform identifier in the format used by
the standard sys.platform attribute: linux, darwin, win32. For other
environment markers, edit pyproject.toml and use the markers property in
the TOML table for the dependency:

[tool.poetry.dependencies]
awesome = {version = ">=1", markers = "implementation_name == 'pypy'"}

The Lock File
Poetry records the current version of each dependency in a file named
poetry.lock, including SHA256 hashes for its packaging artifacts. If you
take a peek inside the file, you’ll notice TOML stanzas for rich, httpx,
and importlib-metadata, as well as their direct and indirect
dependencies, somewhat like the one shown in Example 5-7:

Example 5-7. The TOML stanza for Rich in poetry.lock (simplified)
[[package]]
name = "rich"
version = "13.3.1"
python-versions = ">=3.7.0"
files = [
 {file = "rich-13.3.1-py3-none-any.whl", hash = "sha256:8aa5774..."},
 {file = "rich-13.3.1.tar.gz", hash = "sha256:125d96d..."},
]

Use the command poetry show to display the locked dependencies on the
terminal. Here’s what the output looked like after I added Rich:

$ poetry show

markdown-it-py 2.2.0 Python port of markdown-it. Markdown parsing, done
right!

mdurl 0.1.2 Markdown URL utilities
pygments 2.14.0 Pygments is a syntax highlighting package written in
Python.
rich 13.3.1 Render rich text, tables, progress bars, ...

You can also display the dependencies as a tree to visualize their
relationship:

$ poetry show --tree

rich 13.3.1 Render rich text, tables, progress bars, ...
├── markdown-it-py >=2.1.0,<3.0.0
│ └── mdurl >=0.1,<1.0
└── pygments >=2.14.0,<3.0.0

Resolving dependencies up front means that you can deploy applications
securely and reliably, and it allows larger teams to share a common baseline
during development. Deterministic and repeatable installations also avoid
surprises when you run checks during Continuous Integration (CI). Commit
poetry.lock to source control to reap these benefits.

Poetry’s lock file is designed to work across operating systems and Python
interpreters— an important difference from the requirements files that pip-
tools generates. If your project supports Windows, macOS, and Linux on
the four most recent feature versions of Python, you would need to compile
a dozen requirements files— and those would only cover a single processor
architecture and Python implementation. Having a single lock file for all
environments makes dependency locking a much more practical
development workflow than it would otherwise be.

If you edit pyproject.toml yourself, remember to update the lock file to
reflect your changes:

$ poetry lock --no-update

Resolving dependencies... (0.1s)

Writing lock file

Without the --no-update option, Poetry also upgrades each locked
dependency to the latest version covered by its constraint.

You can also check if the poetry.lock file is consistent with pyproject.toml:

$ poetry lock --check

Updating Dependencies
You can update all dependencies in the lock file to their latest versions
using a single command:

$ poetry update

You can also provide a specific direct or indirect dependency to update:

$ poetry update rich

The poetry update command doesn’t modify the project metadata in
pyproject.toml. It only updates dependencies within the compatible version
range. If you want to bump a dependency to a release not yet covered by the
version constraint, the easiest method is to add the dependency again, with
the special latest version:

$ poetry add rich@latest

This bumps the lower bound of the caret constraint to the latest version of
Rich. You can also specify the new constraint yourself after the @-sign:

$ poetry add rich@'>=13.3.1'

This is a handy method for removing an upper bound that also keeps the
lock file and project environment up-to-date.

If you no longer need a package for your project, you can remove it using
poetry remove:

$ poetry remove importlib-metadata

Managing Environments
As you can see in the output of poetry add and poetry update, these
commands don’t just update dependencies in the pyproject.toml and
poetry.lock files. They also install them into your project environment,
keeping it synchronized with the lock file.

You can enter the project environment by launching a shell session with
poetry shell. Poetry activates the virtual environment using the
activation script for your current shell.

$ poetry shell

With the environment activated, you can run the application from the shell
prompt. But first, you need to install it into the environment. Poetry
performs an editable install of the project, so the environment reflects any
code changes immediately.

(random-wikipedia-article-py3.11) $ poetry install

Run the application, then exit the environment.

(random-wikipedia-article-py3.11) $ random-wikipedia-article

(random-wikipedia-article-py3.11) $ exit

You can also run the application in your current shell session, using the
command poetry run:

$ poetry run random-wikipedia-article

The poetry run command is also handy for starting an interactive Python
session:

$ poetry run python

You can have multiple environments for a project.

Let’s add an environment for Python 3.7 to test the importlib-metadata
backport. First, you need to declare support for Python 3.7 by updating the
python dependency in pyproject.toml:

[tool.poetry.dependencies]
python = "^3.7"

Refresh the lock file to bring it in sync with the updated pyproject.toml:

$ poetry lock --no-update

Now you’re ready to create and activate the environment for Python 3.7:

$ poetry env use 3.7

Creating virtualenv random-wikipedia-article-eBrMbJNp-py3.7 in ...
Using virtualenv: .../random-wikipedia-article-eBrMbJNp-py3.7

Instead of a version like 3.7, you could also specify a command like pypy3
for the PyPy implementation, or a full path like /usr/bin/python3 for the
system Python.

Finally, install the project into the new environment:

$ poetry install

Installing dependencies from lock file

Package operations: 18 installs, 0 updates, 0 removals

 • ...
 • Installing zipp (3.14.0)
 • Installing httpx (0.23.3)
 • Installing importlib-metadata (6.0.0)
 • ...

Installing the current project: random-wikipedia-article (0.1.0)

As expected, Poetry installed importlib-metadata into the Python 3.7
environment.

When you’ve created multiple environments, it’s useful to see them listed in
the terminal. Poetry provides a command for this, too:

$ poetry env list

random-wikipedia-article-eBrMbJNp-py3.11
random-wikipedia-article-eBrMbJNp-py3.7 (Activated)

Use the command poetry env info --path to display the location of the
current environment. By default, Poetry creates virtual environments in a
shared folder. There’s a configuration setting to keep each environment in a
.venv directory inside its project instead:

$ poetry config virtualenvs.in-project true

Even without this setting, Poetry uses the .venv directory in the project if it
already exists.

When you no longer need an environment, remove it like this:

$ poetry env remove 3.7

Deleted virtualenv: .../random-wikipedia-article-eBrMbJNp-py3.7

You can create a clean slate by removing all environments at once:

$ poetry env remove --all

Development Dependencies
Poetry allows you to declare development dependencies, organized in
groups. Development dependencies are not part of the project metadata and
are invisible to end users. Let’s add a dependency group for testing:

$ poetry add --group=tests pytest

Poetry has added the dependency group under the group table in
pyproject.toml:

[tool.poetry.group.tests.dependencies]
pytest = "^7.2.1"

You’re in for a surprise if you try to add a docs group with Sphinx, the
documentation generator. Sphinx has dropped support for Python 3.7, so
Poetry kindly refuses to add it to your dependencies. You could drop Python
3.7 yourself, but Poetry suggests another option— you can restrict Sphinx to
Python 3.8 and newer:

$ poetry add --group=docs sphinx --python='>=3.8'

By default, Poetry installs dependency groups into the project environment,
but you can mark groups as optional using an optional = true
declaration in pyproject.toml. The poetry install command has several
options that provide finer-grained control over which dependencies are
installed into the project environment.

T
a
b
l
e
5
-
3
.
I
n
s
t
a
l
l
i
n
g
d
e
p
e
n
d
e
n
c
i
e
s
w
i
t

h
p
o
e
t
r
y
i
n
s
t
a
l
l

Option Description

--with GROUP Include a dependency group in the installation.

--without GROUP Exclude a dependency group from the installation.

--only GROUP Exclude all other dependency groups from the
installation.

--no-root Exclude the project itself from the installation.

--only-root Exclude all dependencies from the installation.

--sync Remove packages from the environment unless
scheduled for installation.

You can specify a single group or multiple groups (separated by commas).
The special group main refers to packages listed in the
tool.poetry.dependencies table in pyproject.toml. Use the option --
only=main to exclude all development dependencies from an installation.
Similarly, the option --without=main lets you restrict an installation to
development dependencies.

Package Repositories
You can build Poetry-managed projects using standard tooling like build,
or you can use the Poetry command-line interface:

$ poetry build

Building random-wikipedia-article (0.1.0)
 - Building sdist
 - Built random_wikipedia_article-0.1.0.tar.gz
 - Building wheel
 - Built random_wikipedia_article-0.1.0-py3-none-any.whl

Poetry places these artifacts in the conventional dist directory.

Before you can upload the packages to the Python Package Index (PyPI),
you need a PyPI account and an API token to authenticate with the
repository (see “Packaging in a Nutshell”). Next, add the API token to
Poetry:

$ poetry config pypi-token.pypi my-token

You can now publish your package using poetry publish:

$ poetry publish

Publishing random-wikipedia-article (0.1.0) to PyPI
 - Uploading random_wikipedia_article-0.1.0-py3-none-any.whl 100%
 - Uploading random_wikipedia_article-0.1.0.tar.gz 100%

You can also collapse the two commands into one:

$ poetry publish --build

If you want to publish your project to a package repository other than PyPI,
you need to first add that repository to your Poetry configuration. For
example, here’s how you would add TestPyPI to your configured
repositories. TestPyPI is a separate instance of the Python Package Index
for testing distributions.

$ poetry config repositories.testpypi

https://test.pypi.org/legacy/

Since TestPyPI is a separate instance, you need to create an account as well
as an API token, and configure Poetry to use that token when uploading to
TestPyPI:

$ poetry config pypi-token.testpypi my-token

You can now specify the repository when publishing your project:

$ poetry publish --repository=testpypi

If your package repository uses HTTP basic authentication with a username
and password, configure the credentials for the repository like this:

$ poetry config http-basic.my-repo username

The command will prompt you for the password and store it in the system
keyring, if available, or in the auth.toml file on disk. Alternatively, you can
also configure credentials via environment variables:

export POETRY_PYPI_TOKEN_PYPI=<token>
export POETRY_HTTP_BASIC_PYPI_USERNAME=<username>
export POETRY_HTTP_BASIC_PYPI_PASSWORD=<password>

Poetry also supports repositories that are secured by mutual TLS or use a
custom certificate authority; see the official documentation for details.

So far, I’ve talked about how Poetry supports custom repositories on the
publisher side— how to upload your package to a repository other than

https://python-poetry.org/docs/repositories/

PyPI. Poetry also supports custom repositories on the consumer side; in
other words, you can add packages from other repositories to your project.
While upload targets are a per-user setting, alternative package sources are
a per-project setting and stored in pyproject.toml.

$ poetry source add --secondary example https://example.com/

Poetry only searches a secondary package source if the package wasn’t
found on PyPI. If you want to use a different package repository than PyPI
by default, you can configure the default package source:

$ poetry source add --default example https://example.com/

You configure credentials for package sources just like you do for
repositories:

$ poetry config http-basic.example username

You can now add packages from the alternate sources:

$ poetry add httpx --source=example

WARNING
If you use secondary package sources, make sure to specify the source when adding a
dependency. If you don’t, Poetry searches all package sources when looking up the
package. This isn’t just inefficient; it opens the door for a so-called dependency
confusion attack, where an attacker uploads a malicious package to PyPI with the same
name as an internal package.

Use the command poetry source show to list the package sources for the
current project:

$ poetry source show

Extending Poetry with Plugins
Poetry comes with a plugin system that lets you extend its functionality.
Use pipx to inject the plugin into Poetry’s environment:

$ pipx inject poetry plugin

Replace plugin with the name of the plugin on PyPI.

If the plugin affects the build stage of your project, you should also add it to
the build requirements in pyproject.toml. See “The Dynamic Versioning
Plugin” for an example.

By default, pipx upgrades applications without the injected packages. Use
the option --include-injected to also upgrade application plugins:

$ pipx upgrade --include-injected poetry

If you no longer need the plugin, remove it from the injected packages:

$ pipx uninject poetry plugin

In this section, I’ll introduce you to three useful plugins for Poetry:

poetry-plugin-export allows you to generate requirements and
constraints files

poetry-plugin-bundle lets you deploy the project to a virtual
environment

poetry-dynamic-versioning populates the project version from the
VCS

Generating Requirements Files with the Export Plugin
Poetry’s lock file is great to ensure that everybody on your team, and every
deployment environment, ends up with the exact same dependencies. But
what do you do if you can’t use Poetry in some context? For example, you

may need to deploy your project on a system that only has a Python
interpreter and the bundled pip.

As of this writing, there’s no lock file standard in the wider Python world;
each packaging tool that supports locking implements its own format.1
None of these full-fledged lock file formats has support in pip.

The closest thing we do have to a standard lock file would be requirements
files. You can pin packages to an exact version, require their artifacts to
match cryptographic hashes, and use environment markers to restrict
packages to specific Python versions and platforms. Wouldn’t it be nice if
you could generate one from your poetry.lock, for interoperability with non-
Poetry environments?

This is precisely what the export plugin achieves, and it comes distributed
with Poetry, so you don’t even need to install it. The plugin powers the
poetry export command, which sports a --format option to specify the
output format. By default, the command writes to the standard output
stream; use the --output option to specify a destination file.

$ poetry export --format=requirements.txt --

output=requirements.txt

Distribute the requirements file to the target system and use pip to install
the dependencies (typically followed by installing a wheel of your project).

$ python3 -m pip install -r requirements.txt

Exporting to requirements format is useful beyond deploying. Many tools
work with requirements files as the de-facto industry standard. For
example, you can scan a requirements file for dependencies with known
security vulnerabilities using a tool like safety.

Deploying Environments with the Bundle Plugin
In the previous section, I showed you how to deploy your project on a
system without Poetry. If you do have Poetry available, there’s a simpler

https://pyup.io/safety/

way. “I know”, you say, “I can install my project with poetry install.”
While that’s technically true, this method has a few limitations. Poetry
performs an editable install, so you’ll be running your application from the
source tree. That may not be acceptable in a production environment, and it
limits your ability to ship the virtual environment to another destination.
Also, you’ll install into an environment managed by Poetry, typically
somewhere under your home directory.

The bundle plugin allows you to deploy your project and locked
dependencies to a virtual environment of your choosing. It creates the
environment, installs the dependencies from the lock file, then builds and
installs a wheel of your project.

Install the plugin with pipx:

$ pipx inject poetry poetry-plugin-bundle

After installation, you should see a new poetry bundle subcommand.
Let’s bundle the project into a virtual environment in a directory named
production. Use the --python option to specify the interpreter for the
environment.

$ poetry bundle venv --python=/usr/bin/python3 production

 • Bundled random-wikipedia-article (0.1.0) into production

You can test the environment by activating it and invoking the application
or invoke the entry-point script directly. (Replace bin with Scripts if you’re
on Windows.)

$ production/bin/random-wikipedia-article

The bundle plugin is a great way to create a minimal Docker image for
production (Example 5-8). Docker supports multi-stage builds, where you
have a full-fledged build environment for your project in the first stage—
including tools like Poetry or even a compiler toolchain for binary
extension modules— but only a minimal runtime environment in the second

stage. This allows you to ship slim images to production, greatly speeding
up deployments and reducing bloat in your production environments.

Example 5-8. Multi-stage Dockerfile with Poetry
FROM python:3.11 AS builder
RUN python -m pip install pipx
ENV PATH="/root/.local/bin:${PATH}"
RUN pipx install poetry
RUN pipx inject poetry poetry-plugin-bundle
WORKDIR /src
COPY . .
RUN poetry bundle venv --python=/usr/local/bin/python /venv

FROM python:3.11
COPY --from=builder /venv /venv
CMD ["/venv/bin/random-wikipedia-article"]

The first FROM directive introduces the build stage, where you build and
install your project.
The second FROM directive defines the image that you deploy to
production.
The COPY directive allows you to copy the virtual environment over
from the build stage.
The CMD directive lets you run the entry-point script when users invoke
docker run with the image.

If you have Docker installed, you can try this by creating a Dockerfile with
the contents from Example 5-8 in your project and running the following
commands from the project directory:

$ docker build -t random-wikipedia-article .

$ docker run --rm -ti random-wikipedia-article

After the second command, you should see the output from random-
wikipedia-article in your terminal.

The Dynamic Versioning Plugin
Version numbers have the annoying habit of duplicating throughout your
code base and infrastructure. Partly, that’s a good thing, because it means

you’re explicit about the snapshot of your codebase that gets installed. But
it also creates needless redundancy, adding to the chores involved in getting
your application up and running. During development, you often need the
version number in three separate places: the version control system (where
it may be stored as a Git tag), the build system (the version key in
pyproject.toml), and the code, so you can display the version to users (often
a __version__ attribute in a Python module).

The dynamic versioning plugin allows you to derive the version for the
project metadata from a Git tag. You can then reference it in the code using
the standard importlib.metadata.version function. Install it with pipx,
like this:

$ pipx inject poetry poetry-dynamic-versioning

Additionally, you need to list the plugin in your build requirements in
pyproject.toml, so build frontends like pip know they need it to build your
project. Somewhat unusually, the plugin brings its own build backend,
which wraps the one provided by Poetry:

[build-system]
requires = ["poetry-core>=1.0.0", "poetry-dynamic-versioning"]
build-backend = "poetry_dynamic_versioning.backend"

In the tool section, configure the plugin to derive the version from the
VCS:

[tool.poetry-dynamic-versioning]
enable = true
vcs = "git"
style = "semver"

Poetry still requires the version key in its own section. You should set it to
0 to indicate that the key is unused.

[tool.poetry]
version = "0"

You can now add a Git tag to set your project version:

$ git tag v1.0.0

$ poetry build

Building random-wikipedia-article (1.0.0)
 - Building sdist
 - Built random_wikipedia_article-1.0.0.tar.gz
 - Building wheel
 - Built random_wikipedia_article-1.0.0-py3-none-any.whl

Summary
Poetry provides a unified workflow to manage packaging, dependencies
and environments. Poetry projects are interoperable with standard tooling:
you can build them with build and upload them to PyPI with twine. But
the Poetry command-line interface also provides handy commands for these
tasks and many more.

Poetry records the precise working set of packages in its lock file, giving
you deterministic deployments and checks, as well as a consistent
experience when collaborating with others. Poetry can also track
development dependencies for you and organizes them in dependency
groups that can be installed separately or together, as desired. You can
extend Poetry with plugins— for example, to bundle the project into a
virtual environment for deployment or to derive the version number from
Git.

If you need reproducible deployments for an application, if your team
develops on multiple operating systems, or if you just feel that standard
tooling adds too much overhead to your workflows, you should give Poetry
a try.

1 Apart from Poetry’s own poetry.lock and the closely related PDM lock file format, there’s
pipenv’s Pipfile.lock and the conda-lock format for Conda environments.

Chapter 6. Testing with pytest

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the sixth chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at mail@claudiojolowicz.com.

If you think back to when you wrote your first programs, you may recall a
common, recurring experience: You had an idea for how a program could
help with a real-life task, spent a sizable amount of time coding the program
from top to bottom, only to be confronted with screens full of disheartening
error messages when you finally ran it. Or worse, it gave you results that
were sometimes subtly wrong.

There are a few lessons we’ve all learned from experiences like this. One is
to start simple, and to keep it simple as you iterate on the program. Another
lesson is to test early and repeatedly. Initially, this may just mean to run the
program manually and validate that it does what it should. Later on, if you
break the program into smaller parts, you can test those parts in isolation
and in an automated fashion. As a side effect, the program gets easier to
read and work on, too.

In this chapter, I’ll talk about how testing can help you produce value early
and consistently. Good tests amount to an executable specification of the
code you own. They set you free from tribal knowledge in a team or

mailto:mail@claudiojolowicz.com

company, and they speed up your development by giving you immediate
feedback on changes. The chapter focuses on the tooling side of things, but
there’s so much more to good testing practices. Luckily, other people have
written fantastic texts about this topic. Here are three of my personal
favorites:

Architectural Patterns in Python, by Harry Percival and Bob Gregory.
Released March 2020. O’Reilly Media, Inc. ISBN: 9781492052203

Test-Driven Development with Python, 2nd Edition, by Harry
Percival. Released August 2017. O’Reilly Media, Inc. ISBN:
9781491958650

Working Effectively with Legacy Code, by Michael Feathers. Released
September 2004. Pearson. ISBN: 9780131177055

Writing a Test
Example 6-1 revisits the original Wikipedia example from Chapter 3. The
program is as simple as it gets— and yet, it’s far from obvious how you’d
write tests for it. The main function has no inputs and no outputs— only side
effects such as writing to the standard output stream. How would you test a
function like this?

Example 6-1. The random_wikipedia_article module
def main():
 with urllib.request.urlopen(API_URL) as response:
 data = json.load(response)

 print(data["title"])
 print()
 print(textwrap.fill(data["extract"]))

if __name__ == "__main__":
 main()

Let’s write an end-to-end test that runs the program in a subprocess and
checks that it completes with non-empty output. End-to-end tests run the
entire program the way an end-user would. Example 6-2 shows how you

might do this. For now, you can place its code in a file
test_random_wikipedia_article.py next to the module.

Example 6-2. A test for random_wikipedia_article
def test_output():
 process = subprocess.run(
 [sys.executable, "-m", "random_wikipedia_article"],
 capture_output=True,
 check=True,
)
 assert process.stdout

TIP
By convention, tests are functions whose names start with test. Use the built-in assert
statement to check for expected behavior, such as the program output not being empty.

You can run the test by invoking pipx run pytest from the directory
containing both modules. However, this won’t work if your project has any
third-party dependencies. Tests must be able to import your project and its
dependencies, so you need to install pytest and your project in the same
environment.

If you use Poetry to manage your project, add pytest to its dependencies
using poetry add:

$ poetry add --group=tests pytest

You can now run pytest in the project environment:

$ poetry run pytest

========================= test session starts ==========================
platform darwin -- Python 3.11.3, pytest-7.3.1, pluggy-1.0.0
rootdir: ...
collected 1 item

test_random_wikipedia_article.py . [100%]

========================== 1 passed in 0.01s ===========================

If you don’t use a project manager like Poetry, use a tests extra or a
requirements file to record the dependency on pytest, as explained in
“Development Dependencies”. After updating and activating your project
environment, run pytest like this:

$ py -m pytest

Once your test suite consists of more than a single module, keep it under a
tests directory. For larger projects, consider turning your test suite into a
Python package that mirrors the layout of the package under test. This lets
you have test modules in different sub-packages with the same name, and it
gives you the option to import helper modules such as common test utilities.

Designing for Testability
Writing more fine-grained tests for the program is much harder. The API
endpoint returns a random article, so which title and summary should the
tests expect? Every invocation sends an HTTP request to the real Wikipedia
API and receives the server response. Those network roundtrips will make
the test suite excruciatingly slow— and you can only run tests when your
machine is connected to the Internet.

Python programmers have an arsenal of tools at their disposal for situations
like this. Most of these involve some form of monkey patching, which
replaces (“patches”) functions or objects at runtime to make the code easier
to test. For example, you can capture program output by replacing
sys.stdout with a file-like object that writes to an internal buffer for later
inspection. You can replace urlopen with a function that returns canned
HTTP responses of your liking. Libraries like responses, respx, or
vcr.py provide high-level interfaces that monkey patch the HTTP
machinery behind the scenes. More generic approaches use the standard
unittest.mock module or the pretend library.

While these tools serve their purpose, I’d encourage you to focus on the
root of the problem: Example 6-1 has no separation of concerns. A single

function serves as the application entry point, communicates with an
external API, and presents the results on the console. This makes it hard to
test its features in isolation.

The program also lacks abstraction, in two distinct ways. First, it doesn’t
encapsulate implementation details when interfacing with other systems,
like interacting with the Wikipedia API or writing to the terminal. Second,
its central concept— the Wikipedia article— only appears as an amorphous
JSON object: the program doesn’t abstract its domain model in any way.

Example 6-3 shows a simple refactoring that makes the code more testable,
without resorting to monkey patching or third-party libraries. While this
version of the program is longer than the original one, it expresses its logic
more clearly and is more amenable to change. Good tests don’t just catch
bugs: they improve the design of your code.

Example 6-3. Refactoring for testability
@dataclass
class Article:
 title: str = ""
 summary: str = ""

def fetch(url):
 with urllib.request.urlopen(url) as response:
 data = json.load(response)
 return Article(data["title"], data["extract"])

def show(article, file):
 summary = textwrap.fill(article.summary)
 file.write(f"{article.title}\n\n{summary}\n")

def main():
 article = fetch(API_URL)
 show(article, sys.stdout)

The refactoring extracts fetch and show functions from main. It also
defines an Article class as the common denominator of these functions.
Let’s see how these changes allow you to test the parts of the program in
isolation and in a repeatable way.

For the fetch function, tests can set up a local HTTP server and perform a
roundtrip check, as shown in Example 6-4: You serve an Article instance
via HTTP, fetch the article from the server, and check that the served and
fetched instances are equal.1

Example 6-4. Testing the fetch function
def test_fetch():
 article = Article("Lorem Ipsum", "Lorem ipsum dolor sit amet.")
 with serve(article) as url:
 assert article == fetch(url)

The show function accepts any file-like object. While main passes
sys.stdout, tests can pass an io.StringIO instance to store the output in
memory. Example 6-5 uses this technique to check that the output ends with
a newline. The final newline ensures the output doesn’t run into the next
shell prompt.

Example 6-5. Testing the show function
def test_final_newline():
 article = Article("Lorem Ipsum", "Lorem ipsum dolor sit amet.")
 file = io.StringIO()
 show(article, file)
 assert file.getvalue().endswith("\n")

Here are some other properties of the show function that you might check
for in your tests:

It should include all the words of the title and summary.

There should be a blank line after the title.

The summary should not exceed a line length of 72 characters.

There’s another benefit to the refactoring, as far as testing is concerned: The
functions hide the implementation behind an interface that only involves
your problem domain— URLs, articles, files. This means your tests are less
likely to break when you swap out the implementations inside those
functions.

Go ahead and change the program to use httpx and rich like you did in
Chapter 4.2 You won’t need to adapt your tests. In fact, it’s the whole point
of tests to give you confidence that your program still works after making
changes like this. Mocks and monkey patches, on the other hand, are brittle:
They tie your test suite to implementation details, making it increasingly
hard to change your program down the road.

In this chapter, I’ll show you how to write tests with pytest, a popular third-
party testing framework. But before we get to that, let me show you how to
write tests using only the standard library. You’ll understand better what
exactly it is that pytest buys you, compared to an approach that doesn’t
involve third-party dependencies.

The unittest Framework
The standard library includes a testing framework in the unittest module.
This object-oriented framework was inspired by JUnit, an influential Java
testing library from the early days of Test Driven Development, which gave
rise to many similar frameworks in other languages. Replace the module
test_random_wikipedia_article.py with the contents of Example 6-6.

Example 6-6. Testing with unittest
class TestShow(unittest.TestCase):
 def setUp(self):
 self.file = io.StringIO()

 def test_final_newline(self):
 article = Article("lorem", "ipsum dolor")
 show(article, self.file)
 self.assertEqual("\n", self.file.getvalue()[-1])

 def test_all_words(self):
 article = Article("lorem ipsum", "dolor sit amet")
 show(article, self.file)
 for word in ("lorem", "ipsum", "dolor", "sit", "amet"):
 self.assertIn(word, self.file.getvalue())

As before, tests are functions whose names start with test, but the
functions are enclosed in a test class that derives from

unittest.TestCase. The test class has several responsibilities:

It allows the framework to run each test.

It allows tests to check for expected properties, using assert*
methods.

It allows you to prepare a test environment for each test, using the
setUp method.

In Example 6-6, the setUp method initializes an output buffer for the show
function to write to. Sometimes you need to clean up the test environment
after each test; for this purpose, you can define a corresponding tearDown
method.

Run the test suite using the command py -m unittest from the project
directory.

$ py -m unittest

..
--
Ran 2 tests in 0.000s

OK

Thanks to the unittest library, you can test Python modules without
taking on a third-party dependency. If you’re already familiar with an JUnit-
style framework from another language, you’ll feel right at home. But there
are also some problems with this design. The framework forces you to place
tests in a class inheriting from unittest.TestCase. That boilerplate hurts
readability compared to a module with simple test functions. The class-
based design also leads to strong coupling between test functions, the test
environment, and the framework itself. Finally, every assertion method (like
assertEqual and assertIn in Example 6-6) constitutes a unique little
snowflake, which betrays a lack of expressivity and generality.

The pytest Framework

These days, the third-party framework pytest has become somewhat of a
de-facto standard in the Python world. Tests written with pytest are simple
and readable— you write most tests as if there was no framework, using
basic language primitives like functions and assertions. At the same time,
the framework is powerful and expressive, as you’ll see shortly. Finally,
pytest is extensible and comes with a rich ecosystem of plugins.

A SMALL HISTORY OF PYTEST
Pytest originated in the PyPy project, an alternative, fast
implementation of Python written in Python itself. Early on, there was
an attempt to create a separate standard library called std, later
renamed to py. While py is no longer actively developed, its testing
module py.test (based on the earlier std.utest) became an
independent thriving project under the name pytest.

Example 6-4 and Example 6-5 show what tests look like when written using
pytest: they are simple functions whose names start with test. Checks are
just generic assertions— pytest rewrites the language construct to provide
rich error reporting in case of a test failure.

TIP
If you have a test suite written with unittest, there’s no need to rewrite it to start using
pytest— pytest “speaks” unittest, too. Use pytest as a test runner right away and
rewrite your test suite incrementally later.

Every test for the show function starts by setting up an output buffer. You
can use a fixture to remove this code duplication. Fixtures are simple
functions declared with the pytest.fixture decorator:

@pytest.fixture
def file():
 return io.StringIO()

Tests (and fixtures) can use a fixture by including a function parameter with
the same name. When pytest invokes the test function, it passes the return
value of the fixture function. For example, here’s Example 6-5 rewritten to
use the fixture:

def test_final_newline(file):
 article = Article("lorem", "ipsum dolor")
 show(article, file)
 assert file.getvalue().endswith("\n")

The file fixture isn’t coupled to any specific test, so it can be reused freely
across the test suite. That sets it apart from the approach used in Example 6-
6, where the test environment is only accessible to test methods defined in
the same class or class hierarchy.

And there’s another difference: test methods in a unittest.TestCase
share a single test environment; by contrast, test functions in pytest can use
any number of fixtures. For example, you could extract the test article into
an article fixture.

If every test used the same article, you’d likely miss some edge cases,
though— you don’t want your program to crash if an article comes with an
empty summary. Example 6-7 shows how you can run a test against a
number of articles.

Example 6-7. Running tests against multiple articles
articles = [
 Article(),
 Article("test"),
 Article("test", "lorem ipsum dolor"),
 Article(
 "Lorem ipsum dolor sit amet, consectetur adipiscing elit",
 "Nulla mattis volutpat sapien, at dapibus ipsum accumsan eu."
),
]

@pytest.mark.parametrize("article", articles)
def test_final_newline(article, file):
 show(article, file)
 assert file.getvalue().endswith("\n")

Advanced Techniques for Fixtures
If you want to parametrize many tests in the same way, you can create a
parametrized fixture, a fixture with multiple values, as shown in
Example 6-8. As before, pytest runs the test once for each article in
articles.

Example 6-8. Parametrized fixture for running tests against multiple
articles
@pytest.fixture(params=articles)
def article(request):
 return request.param

def test_final_newline(article, file):
 show(article, file)
 assert file.getvalue().endswith("\n")

So what did you gain here? For one thing, you don’t need to decorate each
test with pytest.mark.parametrize. And there’s another advantage if
your tests aren’t all in the same module: You can place any fixture in a file
named conftest.py and use it across your entire test suite without importing
it.

The syntax for parametrized fixtures is somewhat arcane, though. To keep
things simple, I like to define a small helper for it:

def parametrized_fixture(*params):
 return pytest.fixture(params=params)(lambda request: request.param)

You can use the helper like this:

article = parametrized_fixture(Article(), Article("test"), ...)

Fixtures can get large and expensive. The remainder of this section
introduces some techniques that are useful when that happens:

A session-scoped fixture is created only once per test run.

Fixtures can be generators, allowing you to clean up resources after
use.

Fixtures can depend on other fixtures, making your test code more
modular.

A factory fixture returns a function for creating test objects, instead of
the test object itself.

Example 6-4 showed a test that fetches an article from a local server. Its
serve helper function takes an article and returns a URL for fetching the
article. More precisely, it returns the URL wrapped in a context manager,
an object for use in a with block. This allows serve to clean up after itself
when you exit the with block— say, shut down the server.3

Clearly, firing up and shutting down a web server for every test is quite
expensive. Would it help to turn the server into a fixture? At first glance,
not much— every test gets its own instance of a fixture. However, you can
instruct pytest to create a fixture only once during the entire test session:

@pytest.fixture(scope="session")
def httpserver():
 ...

That looks more promising, but how do you shut down the server when the
tests are done with it? Up to now, your fixtures only needed to prepare a test
object and return it. You can’t run code after a return statement. You can
run code after a yield statement, however— and so pytest allows you to
define a fixture as a generator. Example 6-9 shows the resulting
httpserver fixture.

Example 6-9. The httpserver fixture
@pytest.fixture(scope="session")
def httpserver():
 with http.server.HTTPServer(("localhost", 0), ...) as server:
 thread = threading.Thread(target=server.serve_forever, daemon=True)
 thread.start()
 yield server

 server.shutdown()
 thread.join()

I’ve omitted the actual request handling for brevity— let’s assume the server
response returns server.article in its body.4 There’s still a missing piece,
though: How would you define the serve function, now that it depends on
a fixture to do its work?

You can access a fixture from a test and from another fixture. Defining
serve inside test_fetch does little to simplify the test. So let’s define
serve inside its own fixture— after all, fixtures can return any object,
including functions. Example 6-10 shows what that looks like in practice.

Example 6-10. The serve fixture
@pytest.fixture
def serve(httpserver):
 def f(article):
 httpserver.article = article
 return f"http://localhost:{httpserver.server_port}"
 return f

The outer function defines a serve fixture, which depends on
httpserver.
The inner function is the serve function you call in your tests.

The serve function no longer returns a context manager, just a plain URL
— the httpserver fixture handles all of the setting up and tearing down. As
a result, you can simplify the test case quite a bit (Example 6-11). It’s truly
a roundtrip test now!

Example 6-11. Testing the fetch function using fixtures
def test_fetch(article, serve):
 assert article == fetch(serve(article))

Extending pytest with Plugins
One of the best things about pytest is the ecosystem that has evolved around
it. Thanks to pytest’s extensible design, anybody can write a pytest plugin
and publish it to PyPI; see [Link to Come] for a minimal example. If you’re

interested in writing your own plugin, take a look at the cookiecutter-
pytest-plugin template to start out with a solid project structure.

Pytest plugins perform a variety of functions (see Table 6-1). These include
executing tests in parallel or in random order, presenting or reporting test
results in a custom way, or integrating with frameworks and other tools.
Many plugins provide useful fixtures, to interact with external systems, say,
or to create test doubles, which is the umbrella term for the various kinds of
objects tests use in lieu of the real objects used in production code.

T
a
b
l
e
6
-
1
.
A

S
e
l
e
c
ti
o
n
o
f
P
y
t
e
s
t
P
l
u
g
i
n
s

Category Plugins

Execution pytest-randomly, pytest-reverse, pytest-fast-first, pytest-
repeat, pytest-xdist, pytest-timeout, pytest-instafail,
pytest-picked, pytest-watch, pytest-rerunfailures

Presentation
and Reporting

pytest-rich, pytest-sugar, pytest-icdiff, pytest-spec, pytest-
html, pytest-reportlog, pytest-duration-insights

Frameworks pytest-flask, pytest-django, pytest-asyncio, pytest-twisted,
pytest-anyio

Fake Servers pytest-httpserver, pytest-server-fixtures, pytest-devpi-
server, pytest-pyramid-server

Fake Data pytest-faker, pytest-factoryboy, pytest-mimesis

Mocks pytest-mock, respx, pytest-responses, pytest-vcr, pytest-
freezegun

Filesystem
and Storage

pytest-datadir, pytest-git, pytest-svn, pytest-virtualenv

Tooling pytest-cov, pytest-selenium, pytest-profiling, pytest-monitor

Documentatio
n

xdoctest, pytest-codeblocks, pytest_docfiles

Snapshot
testing

pytest-pinned

Configuration pytest_profiles

Extra Checks pytest-checkipdb, pytest-modified-env, typeguard

Let’s use the pytest-httpserver plugin to implement the serve fixture
from Example 6-10. First, add the plugin to your development
dependencies. For example, here’s how you would add the plugin to a
Poetry-managed project:

$ poetry add --group=tests pytest-httpserver

Next, remove the existing httpserver fixture; the plugin provides a fixture
with the same name. Finally, modify the serve fixture as shown in
Example 6-12.

Example 6-12. The serve fixture using pytest-httpserver
@pytest.fixture
def serve(httpserver):
 def f(article):
 handler = httpserver.expect_request("/")
 handler.respond_with_json(
 {"title": article.title, "extract": article.summary}
)
 return httpserver.url_for("/")
 return f

As you can see, plugins can save you much work in testing your code. In
this case, you’ve been able to test the fetch function without implementing
your own test server.

Summary
In this chapter, you’ve learned how to use pytest to test your Python
projects.

In pytest, tests are functions that exercise your code and check for expected
behavior using the assert builtin. Prefix their name— and the name of the
containing modules— with test, and pytest will discover them
automatically. Fixtures are reusable functions or generators that set up and
tear down test objects. Use them in a test by including a parameter named
like the fixture. Plugins for pytest can provide useful fixtures, as well as
modify test execution, enhance reporting, and much more.

It’s a prime characteristic of good software that it’s easy to change. Any
piece of code used in the real world must adapt to evolving requirements
and an ever-changing environment. Tests promote ease of change in several
ways:

They drive software design towards loosely coupled building blocks
that you can test in isolation: fewer inter-dependencies also mean
fewer barriers to change.

Tests document and enforce expected behavior. That gives you the
freedom and confidence to continuously refactor your codebase—
keeping it maintainable as it grows and transforms.

Last but not least, tests reduce the cost of change by detecting defects
early. The earlier you catch an issue, the cheaper it gets to work out the
root cause and develop a fix. Conversely, there’s no more expensive
way to uncover a bug than shipping it to production (and hearing about
it from your users).

But how do you know that your test suite is, in fact, up to this task? When
all tests pass, how confident are you that the latest change won’t break the
world? You might call this the sensitivity of the test suite: the probability of
a test failure when there’s a defect in the code.5 For example, did you cover
all the edge cases of each function or did you test only the “happy paths” of
your program?

There are really several aspects to this question of completeness. One
aspect is that your test suite should capture your expectations towards the
code. A great way to ensure this is to always write a test first when you add

or change behavior, before the code that makes it pass. Another aspect is
that you should test your software with the various inputs and
environmental constraints that you expect it to encounter in the real world
— a notoriously hard problem. And finally, the test suite should exercise all
of your code: every line of source code and every branch in its control flow.

It turns out that this last aspect, known as test coverage, is one that you can
measure quantitatively, and it’s the subject of the Chapter 7.

1 Don’t worry about the serve function for now— you’ll implement it later.

2 You can pass the file-like object to Console using its file parameter.

3 You can implement the function yourself using http.server from the standard library, as
well as the threading module and the @contextmanager decorator from contextlib.

4 If you’d like to try this yourself, derive a class from
http.server.BaseHTTPRequestHandler and pass it to HTTPServer. Its do_GET method
needs to write a response with server.article in JSON format.

5 There’s also the related question of specificity, the probability of tests passing if the code is
free of defects. One example for low specificity is flakiness— tests that fail intermittently due
to external factors, like connectivity, timing, or system load. Another example are tests that
break when you change implementation details, even though the software behaved as expected.

Chapter 7. Measuring Coverage
with Coverage.py

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the seventh chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at mail@claudiojolowicz.com.

Coverage tools record each executed statement while you run your code.
After completion, they report the overall percentage of executed statements
with respect to the entire codebase. You can use this measurement as a
reasonable proxy for the completeness of your test suite, an upper bound: If
your tests cover 100% of your code, you may not be guaranteed that the
code is free of bugs. However, if the tests cover any less than that, they will
definitely not detect any bugs in the parts without test coverage. Therefore,
you should check that all code changes come with adequate test coverage.

How does all of this work in Python? The interpreter allows you to register
a callback— a trace function—using the function sys.settrace from the
standard library. From that point onwards, the interpreter invokes the
callback whenever it executes a line of code— as well as in some other
situations, like entering or returning from functions or raising exceptions.

mailto:mail@claudiojolowicz.com

Coverage tools register a trace function that records each executed line of
source code in a local database.

By the way, coverage tools are not limited to measuring test coverage, even
though it’s their primary purpose. They can also help you determine which
modules in a large codebase are used by each endpoint of an API. Or you
could use them to find out how much of your project is documented in code
examples. What they do is simple: they record each line in your source code
when you run it, be that from test cases or in another way.

The standard trace module
Python’s standard library includes a coverage tool in the trace module.
Let’s use it to measure test coverage for the random-wikipedia-article
project. First, determine where your standard library and third-party
libraries live, so you can exclude them from the measurement using the --
ignore-dir option. Activate the project environment and install the project
in editable mode, for example using the commands poetry shell and
poetry install. Finally, run the test suite via trace, as shown below:1

$ py -m trace --module pytest --count --missing --summary --

ignore-dir /usr

--ignore-dir ~/Library

========================= test session starts ==========================
platform darwin -- Python 3.11.3, pytest-7.3.1, pluggy-1.0.0
rootdir: ...
plugins: httpserver-1.0.8, anyio-3.7.0
collected 21 items

test_random_wikipedia_article.py [100%]

========================== 21 passed in 1.54s ==========================
lines cov% module (path)
 32 84% random_wikipedia_article (...)
 50 94% test_random_wikipedia_article (...)

If you’re curious why the trace module reports less than 100% coverage,
take a look at the generated *.cover files, next to the respective source files.

They contain the source code annotated with execution counts; missing
lines are marked by the string >>>>>>. But don’t worry about those missing
lines too much now, you’ll find out all about them in a bit.

As you can see, measuring coverage using the standard library alone is
quite cumbersome, even for a simple use case as this. While the trace
module is interesting as an early proof of concept, I don’t recommend using
it for any real world project. Instead, you should use the third-party package
coverage.

Using Coverage.py
Coverage.py is a mature, widely use, and feature-complete code coverage
tool for Python. Add coverage to your test dependencies as shown below.2
The toml extra allows coverage to read its configuration from
pyproject.toml on Python versions without TOML support in the standard
library (before 3.11).

$ poetry add --group=tests coverage[toml]

In the simplest case, measuring code coverage is a two-step process. First,
you run a program while gathering coverage data (coverage run). For test
coverage, this means running the test suite under coverage. Second, you
compile an aggregated report from the coverage data (coverage report).

You can invoke coverage run with any Python script, followed by its
command-line arguments. Alternatively, you can use its -m option with an
importable module, similarly to how you’d run py -m pytest. This second
method ensures that you run pytest from the current environment, so let’s
use it here:

$ poetry run coverage run -m pytest

This command creates a file .coverage in the current directory. Under the
hood, this file is just a SQLite database, so feel free to poke around if you

have the sqlite3 tool ready on your system.

The coverage report includes the overall percentage of code coverage and a
break-down per source file. If you specify the --show-missing option, the
report also lists the individual statements that are missing from coverage,
identified by line number.

$ poetry run coverage report --show-missing

Name Stmts Miss Cover Missing
--
random_wikipedia_article.py 32 5 84% 9-10, 43-44, 48
test_random_wikipedia_article.py 37 0 100%
--
TOTAL 69 5 93%

As before, the random_wikipedia_article module has a coverage of
84%, because 5 of the 32 statements in that module never showed up during
the tests. By contrast, coverage reports 100% coverage for the test module
itself, as you would expect. (This result differs from the earlier one reported
by trace, which didn’t correctly account for a list comprehension in a test
case.)

TIP
Measuring code coverage for your test suite may seem strange— but you should always
do it. It ensures that you notice when tests aren’t run by mistake, and it can help you
identify unreachable code in the tests. This boils down to a more general piece of
advice: Treat your tests the same way you would treat any other code.

Let’s add the --show-missing option to the tool configuration, so you
don’t have to specify it every time. Each coverage subcommand has its
own subtable under tool.coverage in pyproject.toml, so the option
corresponds to the following configuration setting:

[tool.coverage.report]
show_missing = true

If your project consists of more than a single Python module, you should
also specify your top-level import package in the configuration. This allows
coverage to report modules even if they’re missing from coverage entirely,
rather than just those that showed up during execution. If your tests are
organized in a tests package with multiple test modules, list that package
as well:

[tool.coverage.run]
source = ["random_wikipedia_article", "tests"]

Measuring across Multiple Environments
Let’s take a closer look at those missing statements now. The Missing
column in the coverage report lists them by line number. You can use your
code editor to display the source code with line numbers, or the standard
cat -n command on Linux and macOS. Here are the first two missing
lines:

try: # 7
 from importlib.metadata import metadata # 8
except ImportError: # 9 (missing)
 from importlib_metadata import metadata # 10 (missing)

Here, the coverage report tells you that you never tested the program with
the importlib_metadata backport. This isn’t a shortcoming of your test
suite, but it is a shortcoming of how you’re running it. You need to test your
program on all supported Python versions, including Python 3.7, which
doesn’t have importlib.metadata in the standard library.

Let’s run the tests on Python 3.7. If you added python-httpserver in
“Extending pytest with Plugins”, you’ll need to revert back to the home-
grown httpserver fixture, as the plugin doesn’t support Python 3.7. Next,
switch to an environment with Python 3.7 and install the project:

$ poetry env use 3.7

$ poetry install

By default, coverage run overwrites any existing coverage data, but you
can tell it to append instead using the --append option:

$ poetry run coverage run --append -m pytest

$ poetry run coverage report

You should no longer see lines 9 and 10 reported as missing, which
confirms that the tests indeed ran against the backport instead of the
standard library.

If you look closely at the try...except statement above, you may notice
that running on Python 3.7 alone would have been enough— the old Python
version exercises all of the lines, because it has to try both imports in turn.

But in a certain sense, coverage is incomplete on Python 3.7: The tests
never exercise the code path where control passes from the try block
directly to the following code, skipping over the except handler. You can
tell coverage to capture the control flow of your program, by measuring not
isolated lines of source code, but transitions from one line to the next. This
type of code coverage is known as branch coverage, and since it is more
precise than its counterpart (statement coverage), you should enable it by
default:

[tool.coverage.run]
branch = true

Parallel Coverage
With a single coverage data file, it’s easy to erase data accidentally by
omitting the --append option. You could configure coverage run to
append by default, but that’s error-prone, too: If you forget to run coverage
erase periodically, you end up with stale data in your report.

There’s a better way to gather coverage across multiple environments. The
coverage tool allows you to record coverage data in separate files for each
run. The option for enabling this behavior is named --parallel. (The
option name is somewhat misleading; it has nothing to do with parallel

execution.) If your tests run on more than a single Python version— or in
more than a single process, as I’ll explain below— it’s a good idea to enable
parallel mode by default in pyproject.toml:

[tool.coverage.run]
parallel = true

Even in parallel mode, coverage reports are based on a single data file.
Before reporting, you’ll therefore need to merge the data files using the
command coverage combine. That changes the two-step process from
above into a three-step one: coverage run — coverage combine —
coverage report.

Let’s put all of this together then. First, you run the test suite on each
supported Python version. For brevity, I’m only showing Python 3.7 and
3.11 here. I’m also omitting poetry install since you’ve already
installed the project into those environments.

$ poetry env use 3.7

$ poetry run coverage run -m pytest

$ poetry env use 3.11

$ poetry run coverage run -m pytest

At this point, you’ll have multiple data files in your current directory. Their
names start with .coverage, followed by the machine name, process ID, and
a random number. The command coverage combine aggregates those files
into a single .coverage file. By default, it also removes the individual files.

$ poetry run coverage combine

Combined data file .coverage.Claudios-MBP.26719.001909
Combined data file .coverage.Claudios-MBP.26766.146311

If you run coverage report again, you’ll notice that lines 9 and 10 are no
longer missing:

$ poetry run coverage report

Name Stmts Miss Cover Missing
--

random_wikipedia_article.py 32 3 91% 43-44, 48
test_random_wikipedia_article.py 37 0 100%
--
TOTAL 69 3 96%

Measuring in Subprocesses
The remaining missing lines in the coverage report correspond to the body
of the main function, and its invocation at the end of the file. This is
surprising— the end-to-end test from Example 6-2 runs the entire program,
so all of those lines are definitely being tested.

If you think about how coverage measurement works, you can maybe guess
what’s going on here. The end-to-end test runs the program in a separate
process, on a separate instance of the Python interpreter. In that process,
coverage never had the chance to register its trace function, so none of
those executed lines were recorded anywhere. Fortunately, the coverage
tool provides a public API to enable tracing for the current process: the
coverage.process_start function.

You could invoke this function from inside random_wikipedia_article,
but it would be better if you didn’t have to modify your application to
support code coverage. As it turns out, a somewhat obscure feature of
Python environments allows you to invoke the function during interpreter
startup (see [Link to Come]). The interpreter executes lines in a .pth file in
the site directory, as long as they start with an import statement. This
means that you can activate coverage by installing a coverage.pth file into
the environment, with the following contents:

import coverage; coverage.process_start()

Install this file to the site-packages directory of your project environment.
You can determine its precise location like this:

$ poetry run python -c 'import sysconfig;

print(sysconfig.get_path("purelib"))'

There’s still a missing piece, though: You need to communicate to
coverage where its configuration file lives, using the environment variable
COVERAGE_PROCESS_START. Here’s an example using the Bash shell:

$ export COVERAGE_PROCESS_START=pyproject.toml

For Powershell, use the following syntax instead:

> $env:COVERAGE_PROCESS_START = 'pyproject.toml'

If you re-run the test suite, the coverage report should now consider the
program to have full coverage:

$ poetry run coverage report

Name Stmts Miss Cover Missing
--
random_wikipedia_article.py 32 0 100%
test_random_wikipedia_article.py 37 0 100%
--
TOTAL 69 0 100%

By the way, this only worked because you enabled parallel coverage earlier.
Without it, the main process would overwrite the coverage data from the
subprocess, since both would be using the same data file.

At this point, you probably think that this is way too much work for all but
the largest projects. If you had to take these steps manually each time, I’d
agree. Bear with me though until Chapter 7, where I’ll explain how to
automate testing and coverage reporting with Nox. Automation can give
you the full benefit of strict checks at minimal cost.3

Setting a Coverage Target
Any coverage percentage under 100% means that some of your source code
doesn’t run during the tests. As a consequence, your tests won’t detect bugs
in those parts. You can, and generally should, configure the coverage
report step to fail if the percentage is below 100%:

[tool.coverage.report]
fail_under = 100

If you’re working on a new project, there really isn’t any meaningful
coverage target other than 100%. That doesn’t mean that you should test
every single line of source code, no matter the cost. For example, you might
have a log statement in your code to debug a rarely occurring situation. The
log statement may be difficult to exercise from a test; at the same time, log
statements are typically low-risk trivial code, so writing that test won’t give
you much additional confidence. In this case, you can exclude the line from
coverage using a special comment:

if rare_condition:
 print("got rare condition") # pragma: no cover

When you decide to exclude code from coverage, base your decision on the
cost-benefit ratio of writing a test, not merely on how cumbersome testing
would be. When you start working with a new library or interfacing with a
new system, it can be hard to figure out how to test your code. Time and
again, I’ve found it paid off to write the difficult test, or to refactor to make
testing easier. Time and again, those tests ended up detecting bugs that
would likely have gone unnoticed and caused problems in production.

Legacy projects often consist of a large codebase with minimal test
coverage. As a general rule, coverage in such projects should monotonically
increase— changes shouldn’t lead to a drop in coverage. You’ll often find
yourself in a dilemma here: To test, you need to refactor the code; but
refactoring is too risky without tests. Your first step should be to find the
minimal, safe refactoring to increase testability. Often, this will consist of
breaking a dependency of the code under test. For example, if you need to
test a function that, among many things, connects to the production
database, consider adding an optional parameter so you can pass the
connection from the outside when testing.

Summary

You can measure the extend to which the test suite exercises your project
using the coverage tool. This is particularly useful to discover edge cases
for which you don’t have a test. Branch coverage captures the control flow
of your program, instead of just isolated lines of source code. Parallel
coverage allows you to measure coverage across multiple environments;
you’ll need to combine the data files before reporting. Measuring coverage
in subprocesses requires setting up a .pth file and an environment variable.

Measuring test coverage effectively for a project requires some amount of
configuration, as well as the right tool incantations. In the next chapter,
you’ll see how you can automate these steps with Nox. You’ll set up checks
that give you confidence in your changes, while staying out of your way
most of the time.

1 Enter the command on a single line.

2 Don’t forget to quote the square brackets if you’re a zsh user, as they’re special characters in
that shell.

3 The widely used pytest plugin pytest-cov aims to run coverage in the right way behind the
scenes. After installing the plugin, run pytest with the --cov option to enable the plugin. You
can still configure coverage in pyproject.toml. Subprocess coverage works out of the box, as
well as some other forms of parallel execution. On the other hand, while trying to be helpful,
the plugin also adds a layer of indirection. You may find that running coverage directly gives
you more fine-grained control and a better understanding of what’s going on under the covers.

About the Author
Claudio Jolowicz is a software engineer with 15 years of industry
experience in C++ and Python, and an open-source maintainer active in the
Python community. He is the author of the Hypermodern Python blog and
project template, and co-maintainer of Nox, a Python tool for test
automation. In former lives, Claudio has worked as a lawyer and as a full-
time musician touring from Scandinavia to West Africa. Get in touch with
him on Twitter: @cjolowicz

	2. Python Environments
	Contents of a Python Environment
	The Interpreter
	Python Modules
	Entry-point Scripts

	The Layout of Python Installations
	The Per-User Environment
	Virtual Environments
	Activation Scripts

	Installing Applications with Pipx
	Finding Python Modules
	Module Objects
	The Module Cache
	Module Specs
	Finders and Loaders
	The Module Path
	Site Packages

	Summary

	3. Python Packages
	An Example Application
	Why Packaging?
	Packaging in a Nutshell
	Installing Projects from Source
	Building Packages with build
	Uploading Packages with Twine

	The pyproject.toml File
	Build Frontends and Build Backends
	Wheels and Sdists
	Project Metadata
	Naming Projects
	Versioning Projects
	Single-Sourcing the Project Version
	Entry-point Scripts
	Entry Points
	Authors and Maintainers
	The Description and README
	Keywords and Classifiers
	The Project URLs
	The License
	The Required Python Version
	Dependencies and Optional Dependencies

	Summary

	4. Dependency Management
	Example: Consuming an API with HTTPX
	Example: Console Output with Rich
	Specifying Dependencies for a Project
	Version Specifiers
	Extras and Optional Dependencies
	Environment Markers

	Development Dependencies
	Requirements Files
	Locking Dependencies
	Freezing Requirements with pip
	Pinning Dependencies with pip-tools

	Summary

	5. Managing Projects with Poetry
	Installing Poetry
	Creating a Project
	The Project Metadata
	The Package Contents
	The Source Code

	Managing Dependencies
	Caret Constraints
	Extras and Environment Markers
	The Lock File
	Updating Dependencies

	Managing Environments
	Development Dependencies
	Package Repositories
	Extending Poetry with Plugins
	Generating Requirements Files with the Export Plugin
	Deploying Environments with the Bundle Plugin
	The Dynamic Versioning Plugin

	Summary

	6. Testing with pytest
	Writing a Test
	Designing for Testability
	The unittest Framework
	The pytest Framework
	Advanced Techniques for Fixtures
	Extending pytest with Plugins
	Summary

	7. Measuring Coverage with Coverage.py
	The standard trace module
	Using Coverage.py
	Measuring across Multiple Environments
	Parallel Coverage
	Measuring in Subprocesses
	Setting a Coverage Target
	Summary

	About the Author

