
Feasability of a Benchmarking Framework for Context-Switching in
RTOS

Julien Gomez – julien.gomez@student.uclouvain.be
Trong-Vu Tran – trong-vu.tran@student.uclouvain.be

I. INTRODUCTION

One of the goal of our thesis is to write a framework
able to compute the context switching time between different
tasks of an application. Commonly, the context switching
is measured using an oscilloscope. However, that kind of
hardware is costly and not everyone can have access to
such device. In order to compute the context switching time
without an oscilloscope, we developped a framework. Its
implementation and its usage are discussed in this paper.

The first section describes the framework we built on
different OS’s. The second section talks about reference
measurements we performed to assess our framework per-
formances. Section 3 shows the impact of the framework on
the application performances.

II. BENCHMARKING FRAMEWORK

Every time a task runs, it calls the bench ping function
providing its process ID. The framework then checks if a
context switch happened by comparing the active process ID
with the previous one. If the IDs do not match, it means that
the active task has changed and the framework will compute
the elapsed time and print it.

The source code of the benchmarking framework imple-
mented in Contiki can be found in listing 1.

1 /∗ ∗
2 ∗ S t r u c t t h a t s t o r e s benchmark ing i n f o r m a t i o n .
3 ∗
4 ∗ p r e v i o u s i d : The i d o f t h e p r e v i o u s t h r e a d t h a t

p e r f o r m s a p ing ;
5 ∗ new id : The i d o f t h e c u r r e n t t h r e a d t h a t has

pe r fo rmed a p ing ;
6 ∗ c u r r e n t t i m e : t h e t i m e r
7 ∗ /
8 s t r u c t BContext {
9 u i n t 3 2 t p r e v i o u s i d ;

10 u i n t 3 2 t new id ;
11 c l o c k t i m e t c u r r e n t t i m e ;
12 } b e n c h c o n t e x t ;
13

14

15 vo id b e n c h p i n g (u i n t 3 2 t i d) {
16 / / Save t h e new i d
17 b e n c h c o n t e x t . new id = i d ;
18 / / Save t h e c u r r e n t t ime
19 / / Check f o r s w i t c h i n g c o n t e x t
20 i f (! c h e c k c h a n g e ()) {
21 b e n c h c o n t e x t . c u r r e n t t i m e = RTIMER NOW () ; / /

T i c k s
22 }
23 }
24

25 i n t c h e c k c h a n g e (vo id) {
26 i f (b e n c h c o n t e x t . new id != b e n c h c o n t e x t .

p r e v i o u s i d) {

27 / / Compute t h e d i f f e r e n c e
28 c l o c k t i m e t p r e v i o u s = b e n c h c o n t e x t .

c u r r e n t t i m e ;
29 c l o c k t i m e t c u r r e n t = RTIMER NOW () ;
30 c l o c k t i m e t r e s u l t = c u r r e n t − p r e v i o u s ;
31

32 / / Keep t h e p r e v i o u s i d f o r l o g
33 u i n t 3 2 t p r e v i o u s i d = b e n c h c o n t e x t .

p r e v i o u s i d ;
34 / / Change p r e v i o u s i d t o new id
35 b e n c h c o n t e x t . p r e v i o u s i d = b e n c h c o n t e x t .

new id ;
36

37 b e n c h c o n t e x t . c u r r e n t t i m e = RTIMER NOW () ; / /
T i c k s

38

39 p r i n t f (” [BENCH CONTEXT SWITCHING] %l u %l u %l u \n
” , p r e v i o u s i d , b e n c h c o n t e x t . new id , r e s u l t) ;

40

41 r e t u r n 1 ; / / Change o c c u r s
42 }
43 r e t u r n 0 ; / / No change
44 }

Listing 1. Source code of the benchmarking framework implemented in
Contiki

III. REFERENCE MEASUREMENT

The first step is to perform a measurement that will
be used as a reference point. It will be used to assess if
our benchmarking framework compute the correct context
switching values and if it adds any overhead during the
process.

In order to perform this measurement, we used the Pocket
Science Lab device from PSLab.io.

Fig. 1. Pocket Science Lab device

This board comes with a built-in oscilloscope that we used
to perform our measurements. A real oscilloscope could have
been used but, in the context of this work, no such hardware
was available.

Our experience was made on a simple application which
consists of two tasks. The first task sets a GPIO up, waits
for 1ms then sets the same GPIO down. The other task does

the same but with an other GPIO. Using the collaborative
scheduling, each task runs after the other.

In order to have a collaborative scheduling, we used
Contiki to run the application.

Using the Pocket Science Lab device, we were able
to measure the voltage of the two GPIO’s used by the
application. In the Fig.2, we can see each GPIO being up and
down for 1ms. We can also see during a small amount of time
that none of the GPIO’s are up. The context switch happens
during this period. No task is in the foreground during this
time.

Fig. 2. Reference measurement made with PSLab

Using this reference, we can see how our framework
change the performances of the application. Ideally, the time
between two tasks should not change with our framework.

IV. EMBEDDED FRAMEWORK OVERHEAD

Using the Pocket Science Lab device, we did the same
experience described in section III. Fig.3 illustrates the
results of the experiment.

Fig. 3. Embedded Framework Overhead measured with PSLab

Table I compares the context switching time with and
without our benchmarking framework. We can see that the
framework adds a huge overhead.

TABLE I
CONTEXT SWITCHING TIMES MEASURED WITH THE POCKET SCIENCE

LAB DEVICE WITH AND WITHOUT THE FRAMEWORK

Mean (µs) Median (µs) Mode (µs)
Without the framework 18.47 15.75 15.75
With the framework 1864.33 1863.75 1863.75

V. PYTHON ALTERNATIVE

Considering that our benchmarking framework adds a
large overhead, we tried a new alternative.

The idea is to perform every computational task on a
computer instead of the board. Using the UART protocol
over USB, the board sends a single byte containing the
process ID that is read by a Python script on the computer.
In the same way described in section II with the framework,
the Python script computes the context switching time.

The motivations for using this alternative are:
• Sending one byte of data over USB with UART have

a smaller impact than computing the context switching
time locally on the board;

• Heavy computational tasks of the framework are done
on the computer and not on the board;

• Using Python3.7, we can achieve a time precision at the
nanosecond.

A first drawback of this method is that the communication
between the board and the computer using UART over USB
adds a large amount of milliseconds that is counted in the
context switching time by the Python script. A solution
would be to compute this overhead added by the UART
protocol and remove it from the computed values.

VI. CONCLUSION

Different methodologies were used to create a benchmark-
ing framework to compute the context switching time of a
RTOS. The first step was to implement the framework inside
the RTOS. We predicted that an overhead due to the serial
output and the computational tasks made in the board would
be present. However, the overhead was bigger than expected.

Moreover, the capabilities of the board are not big enough
to reach high timing precision. The next step of this work is
to externalize the computation using Python and UART over
USB.

