Introduction to the ultra-strong coupling regime

Simone De Liberato Quantum Light and Matter Group

Ultrastrong elevator pitch

From the weak to the ultrastrong

Experimental results

Open quantum systems

Ultrastrong phenomenology

Ultrastrong elevator pitch

Fundamental interactions

Strong interaction

Mass of up quark: 2.3 MeV Mass of down quark: 4.8 MeV Mass of a proton: 938 MeV

99% of proton mass is due to interaction (virtual quark-gluon plasma)

Electromagnetic interaction

In light-matter interaction the dimensionless coupling constant is $\alpha \simeq$ 1 137

Low order perturbation theory works well (photon absorption and emission)

The interaction strength Ω_R is much smaller than the bare frequency ω_0

Ultrastrong coupling

Ultrastrong light-matter coupling regime: Ω_R/ω_0 non negligible

Ultrastrong coupling

Ground state contains virtual photons:

- Quantum phase transitions
- Quantum vacuum radiation
- Topologically protected ground states
- Increase in electrical conductivity
- Modified electroluminescent properties
- Change in chemical properties
- Change in structural molecular properties
- Modified lasing

• …

• Vacuum nonlinear processes

From the weak to the ultrastrong

The single atom Hamiltonian

Rotating wave approximation

Resonant terms

Connect states whose energy difference is $\simeq 0$

$$
H_{\rm int} = \hbar\Omega_R(a+a^{\dagger})(|e\rangle\langle g|+|g\rangle\langle e|) + \frac{\hbar\Omega_R^2}{\omega_0}(a+a^{\dagger})(a+a^{\dagger})
$$

Antiresonant terms

Connect states whose energy difference is $\simeq 2\omega_0$

Fermi golden rule

$$
\Gamma = \frac{2\pi}{\hbar} \sum_{f} |\langle i|H_{\rm int}|f\rangle|^2 \delta(\hbar \omega_i - \hbar \omega_f)
$$

The simpler RWA Hamiltonian gives the same results within first order perturbation

Absorption

\nPhoton renormalisation (second order)

\n
$$
H_{\text{int}}^{\text{RWA}} = \hbar \Omega_R(a|e\rangle\langle g| + a^{\dagger}|g\rangle\langle e|) + \frac{2\hbar \Omega_R^2}{\omega_0}a^{\dagger}a
$$
\nEmission

Strong coupling (time domain)

Fermi golden rule: first order perturbation.

It cannot account for higher order processes, *i.e.* reabsorption. Valid if $\Omega_R < \Gamma$

If $\Omega_R > \Gamma$ the emitted photons is trapped long enough to be reabsorbed

Jaynes-Cummings model

$$
H_{\rm JC} = \hbar \omega_0 a^\dagger a + \hbar \omega_0 |e\rangle\langle e| + \hbar \Omega_R(a|e\rangle\langle g| + a^\dagger |g\rangle\langle e|)
$$

$$
|n, g\rangle = \boxed{\begin{array}{c}\text{where } n, g \text{ is the following matrix: } \\ |n, e \rangle = \boxed{\begin{array}{c}\text{where } n, e \text{ is the following matrix} \end{array}} \end{array}} \begin{array}{c}\text{where } n, e \text{ is the following matrix.} \\ \begin{array}{c}\n\text{where } n, e \text{ is the following matrix: } \\ \text{where } n, g \text{ is the following matrix: } \\ \text{where }
$$

Strong coupling (frequency domain)

The coupling splits the degenerate levels, creating the Jaynes-Cummings ladder.

The losses give the resonances a finite width

Strong coupling: $\Omega_R > \Gamma$

Condition to spectroscopically resolve the resonant splitting.

In the strong coupling regime we cannot consider transitions between uncoupled $\text{modes, } e.g., \quad |0, e\rangle \longrightarrow |1, g\rangle.$

We are obliged to consider the dressed states, $|1,-\rangle$, $|1,+\rangle$, etc...

Perturbation theory

Let us do perturbation using the full Hamiltonian

First order perturbation:
$$
\Delta E_{\phi}^{(1)} \propto \Omega_R
$$
\nSecond order perturbation:
$$
\Delta E_{\phi}^{(2)} = \sum_{|\psi\rangle \neq |\phi\rangle} \frac{|\langle \phi | H_{int} | \psi \rangle|^2}{E_{\phi} - E_{\psi}} \propto \frac{\Omega_R^2}{\omega_0} = \Omega_R \times \frac{\Omega_R}{\omega_0}
$$

- 1. The second order contribution is due to antiresonant terms
- 2. It becomes non negligible when $\frac{P R}{P}$ is non negligible Ω_R ω_0

Ultrastrong coupling regime

Coupling regimes

Is ultrastrong coupling possible?

Hydrogen atom

Wavelength

 $\lambda = \frac{2\pi c}{\ }$ ω_0

 $E_n = -\frac{Ry}{n^2}$

Dimensionless volume

$$
\tilde{V} = \frac{V}{(\lambda/2)^3}
$$

We end up with

$$
\frac{\Omega_R}{\omega_0} = \frac{\alpha^{3/2}}{n\pi\sqrt{\tilde{V}}}
$$
 Coupling
Overlap

• Reducing \tilde{V}

Three ways to ultrastrong coupling

- Increasing the number of dipoles
- Coupling to currents $(\alpha^{-1/2})$

M. Devoret, S. Girvin, and R. Schoelkopf, Ann. Phys. 16, 767 (2007)

Reducing the mode volume

Mode confinement: smaller cavity $=$ larger coupling $\Omega_R \propto$ The field is an harmonic oscillator $H_{\text{field}} = \frac{\epsilon E^2}{2}$

$$
H_{\text{field}} = \frac{\epsilon E^2}{2} + \frac{\mu H^2}{2} = u_E + u_M
$$

1 $\overline{}$ *V*

Consider an electromagentic mode

$$
\sin(\frac{2\pi}{l}x - \omega_0 t) = \sin(\frac{2\pi}{l}x - \frac{2\pi}{\lambda}ct)
$$

 $\nabla \times \mathbf{H} = \epsilon$ ∂ ∂t **E** leads to $u_M = \frac{l^2}{l^2}$ Maxwell equation $\nabla \times \mathbf{H} = \epsilon \frac{\partial}{\partial t} \mathbf{E}$ leads to $u_M = \frac{\epsilon}{\lambda^2} u_E$

Solution: store energy as kinetic energy $u_E = u_M + u_K$ (plasmons, phonon polaritons)

Sub-wavelength confinement is lossy!

J. Khurgin, Nat. Nanotech. 10, 2 (2015)

Increasing the number of dipoles

$$
H_{\text{Dicke}} = \hbar \omega_0 a^{\dagger} a + \sum_{j=1}^{N} \hbar \omega_0 |e_j\rangle\langle e_j| + \sum_{j=1}^{N} \hbar \Omega_R (a + a^{\dagger}) (|e_j\rangle\langle g_j| + |g_j\rangle\langle e_j|)
$$

State with *n* systems in the excited state

j=1 $N \gg n$: $\langle n | [b, b^{\dagger}] | n \rangle = 1 - \frac{2n}{N}$ Bosons in the limit $N \gg n$:

N

 \sum *N*

 $b = \frac{1}{\sqrt{2}}$

Coherent operators: $b = \frac{1}{\sqrt{N}} \sum |g_j\rangle \langle e_j|$

In the one excitation subspace $|g_j\rangle = |g\rangle$ Enhanced coupling $H_{\rm Dicke} = \hbar \omega_0 a^\dagger a + \hbar \omega_0 b^\dagger b + \hbar \Omega_R$ $\overline{}$ $N(a + a^{\dagger})(b + b^{\dagger})$

Superradiance: more dipoles = larger coupling

Formal procedure: Holstein-Primakoff transformation *Phys. Rev. 58, 1098, (1940)*

Partition function:
$$
Z = (1 + e^{-\beta \omega_0})^N = \sum_{m=0}^N {N \choose m} e^{-m\beta \omega_0}
$$

If they are *indistinguishable* instead:

Partition function of a bosonic field

$$
Z = \sum_{m=0}^{N} \left(\bigwedge_{m=0}^{N} e^{-m\beta \omega_0} = \sum_{m=0}^{N} e^{-m\beta \omega_0} \to \frac{1}{1 - e^{-\beta \omega_0}}
$$

The RWA Polariton

We want to solve the full Dicke model but let us start by the RWA version

$$
H_{\rm Dicke}^{\rm RWA} = \hbar \tilde{\omega}_c a^{\dagger} a + \hbar \omega_0 b^{\dagger} b + \hbar \tilde{\Omega}_R (a b^{\dagger} + a^{\dagger} b) \qquad \qquad \tilde{\Omega}_R \propto \sqrt{N}
$$

Introducing the polaritonic operators: $p_j = x_j a + y_j b$, $j \in [LP, UP]$

We can diagonalise the Hamiltonian as: $H_{\text{Dicke}}^{\text{RWA}} = \sum \hbar \omega_j p_j^{\dagger} p_j$ $j \in$ [LP,UP]

With $|x_j|^2 + |y_j|^2 = 1$, in order to have $[p_j, p_i] = \delta_{i,j}$

A linear system of N interacting bosonic fields is (almost) always equivalent to a system of N non-interacting bosonic fields *J. J. Hopfield, Phys. Rev. 112, 1555 (1958)*

The Ultrastrong Polariton

Now the same without RWA. We want to put the Hamiltonian

 $H_{\text{Dicke}} = \hbar \omega_c a^{\dagger} a + \hbar \omega_0 b^{\dagger} b + \hbar \tilde{\Omega}_R (a + a^{\dagger}) (b + b^{\dagger})$

In the diagonal form

$$
H_{\rm Dicke} = \sum_{j \in [\text{LP}, \text{UP}]} \hbar \omega_j p_j^{\dagger} p_j
$$

The previous transformation: $p_j = x_j a + y_j b$ is not enough, as we cannot generate the antiresonant terms multiplying p_j^{\dagger} and p_j

 $p_j = x_j a + y_j b + z_j a^\dagger + w_j b^\dagger$ (non conservation of the bare excitation number) We need instead a transformation that mixes creation and annihilation operators

 $|x_j|^2 + |y_j|^2 - |z_j|^2 - |w_j|^2 = 1$ In order to have $[p_j, p_i] = \delta_{i,j}$, the coefficients have to respect the condition

The minuses imply that the coefficients **are not bounded!**

Virtual photons

The ground state is the state annihilated by the annihilation operators

 $a|0\rangle = b|0\rangle = 0$ We call $|0\rangle$ the ground state of the uncoupled light-matter system

From $p_j = x_j a + y_j b + z_j a^{\dagger} + w_j b^{\dagger}$ we have $p_j |0\rangle \neq 0$

The coupling modifies the ground state

 $p_j |G\rangle = 0$ We introduce the ground state of the coupled system $|G\rangle$

We have then
$$
\langle G | a^{\dagger} a | G \rangle = |z_{\text{LP}}|^2 + |z_{\text{UP}}|^2 \neq 0 \propto \frac{\Omega_R^2}{\omega_0^2} + O(\frac{\Omega_R^3}{\omega_0^3})
$$

The ground state contains a population of bound photons

Experimental results

Spectroscopic evidence

Doped quantum well

First observation

PHYSICAL REVIEW B 79, 201303(R) (2009)

Signatures of the ultrastrong light-matter coupling regime

Aji A. Anappara,¹ Simone De Liberato,^{2,3} Alessandro Tredicucci,^{1,*} Cristiano Ciuti,² Giorgio Biasiol,⁴ Lucia Sorba,¹ and Fabio Beltram¹

First observation

Landau polaritons: a naïf idea

$$
r=\frac{n^2\hbar^2}{e^2m}
$$

A more realistic description

D. Hagenmüller, S. De Liberato, and C. Ciuti, Phys. Rev. B 81, 235303 (2010)

Experimental observation

G. Scalari et al., Science 335, 1323 (2012)

 Ω_R ω_0 $= 0.58$

Experimental observation

C. Maissen et al., Phys. Rev. B 90, 205309 (2014)

$$
\frac{\Omega_R}{\omega_0} = 0.87
$$

Experimental observation

Q. Zhang et al., Nat. Phys. 12, 1005 (2016)

$$
\frac{\Omega_R}{\omega_0}=0.12
$$

$$
\text{Except that:} \qquad \langle G | a^\dagger a | G \rangle = |z_{\text{LP}}|^2 + |z_{\text{UP}}|^2 \neq 0 \propto \frac{\Omega_R^2}{\omega_0^2} + O(\frac{\Omega_R^3}{\omega_0^3})
$$

Emission of photons out of the ground state. **Wrong!**

Master equation
\n
$$
\frac{\partial \rho}{\partial t} = -i[H, \rho] + \mathcal{L}(\rho)
$$
\nLindblad operator
\n
$$
\mathcal{L}(\rho) = \frac{\Gamma}{2} (2a\rho a^{\dagger} - a^{\dagger} a\rho - \rho a^{\dagger} a)
$$
\nStandard ground state
\n
$$
\mathcal{L}(|0\rangle\langle 0|) = \frac{\Gamma}{2} (2a|0\rangle\langle 0|a^{\dagger} - a^{\dagger} a|0\rangle\langle 0| - |0\rangle\langle 0|a^{\dagger} a) = 0
$$
\nUltrastrong ground state
\n
$$
\mathcal{L}(|G\rangle\langle G|) = \frac{\Gamma}{2} (2a|G\rangle\langle G|a^{\dagger} - a^{\dagger} a|G\rangle\langle G| - |G\rangle\langle G|a^{\dagger} a) \neq 0
$$
\nThe ground state is not stable! **Wrong!**

Real Lindblad operator $\mathcal{L}(\rho) = U \rho a^{\dagger} + a \rho U^{\dagger} - a^{\dagger} U \rho - \rho U^{\dagger} a$

2

Integral operator
$$
U = \int_0^\infty dt g(t) e^{-iHt} a e^{iHt}
$$
Normally one assumes
$$
e^{-iHt} a e^{iHt} \simeq a e^{i\omega_0 t} \qquad \tilde{g}(\omega)
$$
 bath's density of states
Leading to
$$
U = \frac{\Gamma}{2} a
$$

We write the jump operator *a* on the eigenbasis of *H*
$$
a = \sum_{\alpha,\beta} |\alpha\rangle a_{\alpha,\beta} \langle \beta|
$$

\n
$$
U = \int_0^\infty dt \, g(t)e^{-iHt}ae^{iHt} = \sum_{\alpha,\beta} |\alpha\rangle\langle \beta| \int_0^\infty a_{\alpha,\beta}e^{i(\omega_\alpha - \omega_\beta)t}g(t)dt
$$
\n
$$
U = \sum_{\alpha,\beta} a_{\alpha,\beta} |\alpha\rangle\langle \beta| \int_{-\infty}^\infty d\omega \, \frac{\tilde{g}(\omega)}{2\pi} \int_0^\infty dt \, e^{i(\omega_\beta - \omega_\alpha - \omega)t}
$$
\n
$$
U = \sum_{\alpha,\beta} a_{\alpha,\beta} |\alpha\rangle\langle \beta| \int_{-\infty}^\infty d\omega \, \frac{\tilde{g}(\omega)}{2\pi} \left[\pi \delta(\omega_\alpha - \omega_\beta + \omega) - \frac{i}{\omega_\alpha - \omega_\beta + \omega} \right]
$$
\n
$$
U = \sum_{\alpha,\beta} \frac{\tilde{g}(\omega_\beta - \omega_\alpha)}{2} a_{\alpha,\beta} |\alpha\rangle\langle \beta|
$$
\nResonance shift\n
$$
[H, \rho] \to [\tilde{H}, \rho]
$$

There is no density of states at negative frequencies! $\tilde{g}(\omega < 0) = 0$

$$
U|G\rangle = \sum_{\alpha} \frac{\tilde{g}(\omega_G - \omega_\alpha)}{2} a_{\alpha,G}|\alpha\rangle = 0 \qquad \Longrightarrow \qquad \mathcal{L}(|G\rangle\langle G|) = 0
$$

Take home message:

On the shelf tools and approximations fail in the ultrastrong coupling regime Always rederive everything from scratch! (From the Lagrangian)

Bibliography:

S. De Liberato, D. Gerace, I. Carusotto, and C. Ciuti, Phys. Rev. A 80, 053810 (2009) F. Beaudoin, J. M. Gambetta, and A. Blais, Phys. Rev. A 84, 043832 (2011) M. Bamba and T. Ogawa, Phys. Rev. A 88 , 013814 (2013) S. De Liberato, Phys. Rev. A 89, 017801 (2014) M. Bamba and T. Ogawa, Physical Review A 89, 023817 (2014)

What about the virtual photons?

They remain also if the system is not in the strong coupling regime

Ultrastrong coupling physics is largely independent from Γ

Virtual photons in the ground state of a dissipative system S. De Liberato To appear in Nature Communication

Ultrastrong phenomenology

Dynamical Casimir effect

A mirror accelerated in vacuum emits photons (due to friction with vacuum fluctuations)

Dynamical Casimir effect

A mirror, accelerated in the vacuum, emits photons

We need the oscillation frequency comparable with the photon one

Impossible for a mechanic spring!

Or, we can keep the length fixed, and change the dielectric constant

 $L_{\text{opt}}(t) = n(t)L$

No moving parts!

First observation

Observed in 2011 using superconducting circuits

C. M. Wilson et al., Nature 479, 376 (2011)

Quantum vacuum emission

A manifestation of ground state virtual photons

C. Ciuti, G. Bastard, and I. Carusotto, Phys. Rev. B 72, 115303 (2005) S. De Liberato, C. Ciuti, and I. Carusotto, Phys. Rev. Lett. 98, 103602 (2007)

Femtosecond buildup of ultrastrong light-matter coupling Nonadiabatic modulation

G. Guenter et al., Nature 458, 178 (2009)

Femtosecond buildup of ultrastrong light-matter coupling Nonadiabatic modulation

G. Guenter et al., Nature 458, 178 (2009)

Weak and Strong coupling regimes: quadratic dependency upon Ω_R

Ultrastrong coupling regime: saturation

$$
H = \omega_c a^{\dagger} a + \omega_0 b^{\dagger} b + \Omega (a^{\dagger} + a)(b^{\dagger} + b) + \frac{\Omega^2}{\omega_0} (a^{\dagger} + a)^2
$$

$$
H = H_{\text{field}} + \frac{\mathbf{p}^2}{2m} + V(\mathbf{r}) - \frac{e\mathbf{p}\mathbf{A}(\mathbf{r})}{m} + \frac{e^2\mathbf{A}(\mathbf{r})^2}{2m}
$$

Intensity of the field at the location of the dipoles

If
$$
\frac{\Omega_R}{\omega_0} > 1
$$
 the last term, **always positive**, becomes dominant

The low energy modes need to minimize the field location over the dipoles

Polariton modes will be pure photon modes that avoid the dipoles pure matter mode

Light and matter decouple in the deep strong coupling regime

The photonic field avoids the dipoles

Light-matter interaction is due to **local** interactions

Light and matter do not exchange energy

Example: a two-dimansional metallic cavity enclosing a wall of in-plane dipoles

S. De Liberato, Phys. Rev. Lett. **112,** 016401 (2014)

The wall becomes a metallic mirror

C. Ciuti and I. Carusotto, Phys. Rev. A 74, 033811 (2006)

S. De Liberato, Phys. Rev. Lett. **112,** 016401 (2014)

 $10⁰$

 $10¹$

 10^{-1}

Breakdown of the Purcell effect!

Light-matter coupling

Light-matter decoupling

Thank you for your attention