College of Science ### **Department of Earth Sciences** Course Code: ERSC3021 Course Title: Structural Geology I #### General Information **Number of Credits:** 3 **Instructional Format:** 2 hours lectures +(2+2) labs Contact Hours/Week: 6 **Prerequisite:** ERSC2101 Introduction to Geology **Co-requisite:** **Assessment:** Mid-term exam, labs, field report, final exam **Grading (A–F, Pass/Fail):** Grading A-F **Textbook:** Park, R.G. 1997. Foundations of Structural Geology **References (optional):** ### 1. Course Description Introduction to the main topics of the structural geology: stress and strain, faults, folds, joints, foliation and lineation. Lab classes will include stereographic projection, geometric problems, construction of cross sections. ### 2. Course Objectives - Know the basics of stress and strain - Differentiate the different types of structures - Application of structures - Application to the geology of Oman #### 3. Learning Outcomes - Understand the difference and relationship between stress and strain. - Know different types of structures (faults, folds, and joints), their basic nomenclatures and geometries, how to classify and describe them, and why they form. - Identify the types of features associated with the faults. - Know the types of structures covered by the term "foliation" and define the geometrical relationship between foliations and folds. - Know what an active fault is, how to recognize it, and what features indicate its activity. ### Knowledge and Understanding - Understand the relationship between stress and strain - Know & describe different types of structures - Understand the applications of structures ## Skills (Thinking) - Using the geological compass - Recognize structures in the field - Using stereographic projection - Using the geological map ### 4. Assessment Lab exercises (20%), Mid-term exam (20%), Field report (20%), and Final exam (40%). ### **Assessment Criteria** | Learning | Assessment criteria | | | | | | |--|--|--|---|---|--|--| | outcome: | A | В | С | D | F | | | By the end of the course, students will be able to: | | | | | | | | 1. Use and interpret
the notion of joint
and conditional
distributions | Clear ability to recognize environmental hazards and suggest suitable remediation technique | Able to recognize environmental hazards and suggest suitable remediation technique | Satisfactory Ability
to recognize
environmental
hazards and suggest
suitable remediation
technique | Having difficulty
to recognize
environmental
hazards and
suggest suitable
remediation
technique | Unable to recognize environmental hazards and suggest suitable remediation technique | | | 2.Differentiate
between stress and
strain, and their basic
applications | Competent to understand the impacts of shortages in natural resources | Able to understand the impacts of shortages in natural resources | Satisfactory
understanding of the
impacts of shortages
in natural resources | Struggle to
understand the
impacts of
shortages in
natural resources | Incapable to understand the impacts of shortages in natural resources | | | 3. Identify different
types of faults and
folds in theory and in
the field | Easy to identify the precursors of geological hazards. | Can identify the precursors of geological hazards. | Satisfactory ability
to identify the
precursors of
geological hazards. | Struggle to identify the precursors of geological hazards. | Hard to identify
the precursors of
geological
hazards. | | | 4. understanding of
basic concepts in
structural geology,
including the use of
the compass and the
Schmid'net | Very able to
assess the
quality of
water, soil and
air and advise
the public
accordingly | Able to assess
the quality of
water, soil and
air and advise
the public
accordingly | Could assess the
quality of water, soil
and air and advise
the public
accordingly | know how to
assess the quality
of water, soil and
air but can't
advise the public | Cannot assess the quality of water, soil and air | | | 6. Basic interpretation of structural maps and cross sections | Having the skill to take necessary precautions to mitigate geohazards | Having the knowledge to take necessary precautions to mitigate geohazards | Satisfactory ability
to take necessary
precautions to
mitigate geo-
hazards | Having difficulty
to take necessary
precautions to
mitigate geo-
hazards | Incapable to take
necessary
precautions to
mitigate geo-
hazards | | # **5.** Course Structure The course is designed to be delivered in one semester of 15 weeks with 6 contact hours per week (2 theoretical and 4 practical). The course weight is 3 credit hours. ## 6. Topics | | Topics | | | |------|---------------------------|----------|----------------| | Unit | Topics | Sections | Lectures/Weeks | | 1 | Stress & Strain | | 1-3 | | 2 | Normal faults | | 4-6 | | 3 | Reverse faults | | 7-8 | | 4 | Strike-slip faults | | 9-10 | | 5 | Folds | | 11-12 | | 6 | Joints | | 13 | | 7 | Foliations and lineations | | 14 | # 7. Lab/tutorial content | Week | Content | |------|--| | 2 | Compass readings | | 3 | Compass Measurements | | 4 | Stereographic projection (introduction) | | 5 | Stereographic projection (apparent and true dip) | | 6 | Stereographic projection (folds) | | 7 | Stereographic projection (fault slip) | | 8 | Stereographic projection (stress) | | 9 | Maps and cross sections | | 10 | Folds and folding | | 11 | Joints and veins | | 12 | Seismic profile |