TD - Limite et continuité

Exercice 1: Calculer les limites:

$$1) \lim_{x \to 4} \frac{\sqrt{x} - 2}{x^2 - 5x + 4} \quad 2) \lim_{x \to 0} \sqrt{x} \, \left| \, \frac{1}{x} \, \right| \quad 3) \lim_{x \to +\infty} \left(\sqrt{x + 5} - \sqrt{x - 3} \right) \quad 4) \lim_{x \to 0} \left(\frac{\sqrt{1 + x} - 1}{x^2} - \frac{1}{2x} \right)$$

Exercice 2: Calculer les limites:

1)
$$\lim_{x \to 0} \sin x \sin \frac{1}{x}$$
 2) $\lim_{x \to \frac{\pi}{3}} \frac{\sin 3x}{1 - 2\cos x}$ 3) $\lim_{x \to \frac{\pi}{2}} \left(x \tan x - \frac{\pi}{2\cos x} \right)$ 4) $\lim_{x \to 0} x^{\sin x}$

Exercice 3: Calculer les limites:

1)
$$\lim_{x \to 0} \frac{x^2 \ln^5 x}{\ln(1+2x)}$$
 2) $\lim_{x \to 0} (1+x)^{\frac{1}{x}}$ 3) $\lim_{x \to 2} \frac{e^x - e^2}{x^2 + x - 6}$ 4) $\lim_{x \to +\infty} \left(\cos \frac{1}{x}\right)^{x^2}$

Exercice 4: Montrer que les limites suivantes n'existent pas :

$$1) \lim_{x \to 1} \frac{x^2 - 1}{|x - 1|} \quad 2) \lim_{x \to 0} \frac{\lfloor x \rfloor}{x} \quad 3) \lim_{x \to +\infty} \sin\left(x + \frac{1}{x}\right) \quad 4) \lim_{x \to +} \frac{x^x}{\lfloor x \rfloor^{\lfloor x \rfloor}}$$

Exercice 5: Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction périodique.

Montrer que si f admet une limite en $+\infty$ alors f est constante.

Exercice 6: Équation fonctionnelle: Soit une fonction $f:]0, +\infty[\to]0, +\infty[$ telle que:

$$\forall x, y \in \mathbb{R}, f(xf(y)) = yf(x), \lim_{t \to \infty} f = +\infty \text{ et } \lim_{t \to \infty} f = 0$$

1: Montrer que f admet au moins un point fixe a.

2: Montrer que $\forall n \in \mathbb{N}, f(a^n) = a^n$.

3 : En déduire que a = 1.

4: Montrer que $\forall x > 0, f(x) = \frac{1}{x}$.

Exercice 7: Équation fonctionnelle:

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue sur \mathbb{R} telle que $\forall x \in \mathbb{R}, f(2x+1) = f(x)$.

1: Soit $x \in \mathbb{R}$ et on considère la suite (x_n) définie par $x_0 = x$ et $\forall n \in \mathbb{N}, x_{n+1} = \frac{x_n - 1}{2}$. Montrer que $\forall n \in \mathbb{N}, f(x_n) = f(x)$.

2: Déterminer le terme général de la suite (x_n) . En déduire $\lim x_n$.

3: En déduire que f est constante.

Exercice 8 : Équation fonctionnelle :

Soit une fonction $f: \mathbb{R} \to \mathbb{R}$ continue sur \mathbb{R} telle que $\forall x, y \in \mathbb{R}$, f(x+y) = f(x) + f(y).

1 : Calculer f(0). En déduire que $\forall x \in \mathbb{R}, f(-x) = -f(x)$.

2 : Montrer que $\forall n \in \mathbb{Z}, \forall x \in \mathbb{R}, f(nx) = nf(x)$.

3: On pose f(1) = a. Montrer que $\forall n \in \mathbb{N}^*, f\left(\frac{1}{n}\right) = \frac{a}{n}$.

4: En déduire, $\forall r \in \mathbb{Q}, f(r) = ar$.

5: Montrer que $\forall x \in \mathbb{R}, f(x) = ax$.

Exercice 9:

- **1**: Montrer que $\forall n \in \mathbb{N}$, l'équation $x^n + x 1 = 0$ admet au moins une racine réelle.
- **2 :** Montrer que l'équation $e^x = \sin^2 x$ admet au moins une racine réelle.

Exercice 10 : Soit $f:[a,b] \to \mathbb{R}$ une fonction continue.

Montrer que $\exists c \in [a, b], 2f(a) + 3f(b) = 5f(c).$

Exercice 11:

1: Soit $f: I \to \mathbb{R}$ une fonction continue telle $\forall x \in I, f(x) \in \mathbb{Z}$. Montrer que f est constante sur I.

2: Application : Soit $f: I \to \mathbb{R}$ une fonction continue telle $f^2 = f$. Montrer que f = 0 ou f = 1.

Exercice 12:

1 : Soit $-\infty \le a < b \le +\infty$ et $f:]a, b[\to \mathbb{R}$ une fonction continue sur]a, b[telle que $\lim_a f \lim_b f < 0$. Montrer que $\exists x \in]a, b[$ tel que f(x) = 0.

2: Application : Montrer que toute fonction polynomiale de degré impair admet une racine réelle.

3: Application : Montrer que $\forall n \in \mathbb{N}$, l'équation $\tan x = x$ admet une racine dans $n\pi, n\pi + \frac{\pi}{2}$.

4: Application : Soit $f: \mathbb{R} \to \mathbb{R}$ continue décroissante. Montrer que $\exists x \in \mathbb{R}$ tel que f(x) = x.

Exercice 13 : Points fixes : Soit $a, b \in \mathbb{R}$ avec a < b.

1: Soit $f:[a,b] \to [a,b]$ une fonction continue. Montrer que $\exists c \in [a,b]$ tel que f(c)=c.

2: Application : Soient $f, g : [a, b] \to [a, b]$ deux fonctions continues telles que $f \circ g = g \circ f$.

2 - a : Montrer que l'ensemble A des points fixes de f admet une borne inférieure m.

2 - b : Montrez que $m \in A$.

2 - c: Montrez que $\forall a \in A, g(a) \in A$. En déduire que $g(m) \geq m$ puis que $g(m) \geq f(m)$.

2 - d : Conclure que $\exists c \in [a, b], f(c) = g(c)$.

Exercice 14: Soit $f:[a,b] \to \mathbb{R}$ une fonction continue telle que $\forall x \in [a,b], f(x) > 0$.

Montrer que $\exists m > 0, \forall x \in [a, b], f(x) > m$.

Exercice 15: Déterminer, lorsqu'ils existent, le plus grand élément, le plus petit élément, la borne supérieure et la borne inférieure des ensembles :

$$A = \{x^3 - x/x \ge [0,1]\}$$
 et $B = \{x \ln x/x > 0\}$

Exercice 16: Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue sur \mathbb{R} de limites finies en $+\infty$ et $-\infty$.

1: On pose $a = \lim_{x \to a} f$. Montrer que $\exists A > 0$ tel que $\forall x \in [A, +\infty[, a-1 \le f(x) < a+1]$.

2 : On pose $b = \lim_{-\infty}^{+\infty} f$. Montrer que $\exists B > 0$ tel que $\forall x \in]-\infty, B], b-1 \le f(x) < b+1$.

3 : Montrer que f est bornée sur [A, B].

4 : En déduire que f est bornée sur \mathbb{R} . f atteint-elle ses bornes ?

Exercice 17: Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue sur \mathbb{R} telle que $\lim_{-\infty} f = \lim_{+\infty} f = +\infty$.

1: Montrer que $\exists A>0$ tel que $\forall |x|\geq A, f(x)\geq |f(0)|+1.$

2: Montrer que $\exists c \in [-A, A], f(c) = \inf_{[-A, A]} f$.

3 : En déduire que f est minorée sur \mathbb{R} et que f atteint sa borne inférieure.

Exercice 18:

1: Montrer que l'équation $x^2 = x \sin x + \cos x$ admet exactement deux solutions réelles.

2 : Construire une fonction Python qui retourne deux valeurs approchées des solutions à la précision 10^{-3} .

Exercice 19:

1: Montrer que la fonction $f(x) = \frac{e^x}{x^2 + 1}$ réalise une bijection de \mathbb{R} vers un intervalle à déterminer.

2 : Étudier la continuité et la monotonie de f^{-1} .

Exercice 20 : On considère la fonction :

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \frac{x}{x^2 + 1}$$

1: Déterminer les images des intervalles \mathbb{R} , $[0, +\infty[$, $]-2, +\infty[$ et [-2, 2].

2 : Montrer que la fonction f réalise une bijection de l'intervalle [-1, 1] vers un intervalle à déterminer.

3: Déterminer la réciproque de f et donner, sans calcul, sa monotonie.