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Preface

The main purpose of this book is to help bridge a gap in the landscape of
modal logic. A great deal is known about modal systems based on propo-
sitional logic. However, these logics do not have the expressive resources
to handle the structure of most philosophical argumentation. If modal
logics are to be useful to philosophy, it is crucial that they include quanti-
fiers and identity. The problem is that quantified modal logic is not as well
developed, and it is difficult for the student of philosophy who may lack
mathematical training to develop mastery of what is known. Philosophical
worries about whether quantification is coherent or advisable in certain
modal settings partly explains this lack of attention. If one takes such
objections seriously, they exert pressure on the logician to either elimi-
nate modality altogether or eliminate the allegedly undesirable forms of
quantification.

Even if one lays those philosophical worries aside, serious technical
problems must still be faced. There is a rich menu of choices for formu-
lating the semantics of quantified modal languages, and the completeness
problem for some of these systems is difficult or unresolved. The philoso-
phy of this book is that this variety is to be explored rather than shunned.
We hope to demonstrate that modal logic with quantifiers can be simpli-
fied so that it is manageable, even teachable. Some of the simplifications
depend on the foundations – in the way the systems for propositional
modal logic are developed. Some ideas that were designed to make life
easier when quantifiers are introduced are also genuinely helpful even
for those who will study only the propositional systems. So this book can
serve a dual purpose. It is, I hope, a simple and accessible introduction
to propositional modal logic for students who have had a first course
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xiv Preface

in formal logic (preferably one that covers natural deduction rules and
truth trees). I hope, however, that students who had planned to use this
book to learn only propositional modal logic will be inspired to move on
to study quantification as well.

A principle that guided the creation of this book is the conviction
that visualization is one of the most powerful tools for organizing one’s
thoughts. So the book depends heavily on diagrams of various kinds. One
of the central innovations is to combine the method of Haus diagrams (to
represent Kripke’s accessibility relation) with the truth tree method. This
provides an easy and revealing method for checking validity in a wide
variety of modal logics. My students have found the diagrams both easy
to learn and fun to use. I urge readers of this book to take advantage of
them.

The tree diagrams are also the centerpiece for a novel technique for
proving completeness – one that is more concrete and easier to learn than
the method of maximally consistent sets, and one that is extremely easy to
extend to the quantifiers. On the other hand, the standard method of max-
imally consistent sets has its own advantages. It applies to more systems,
and many will consider it an indispensable part of anyone’s education in
modal logic. So this book covers both methods, and it is organized so that
one may easily choose to study one, the other, or both.

Three different ways of providing semantics for the quantifiers are
introduced in this book: the substitution interpretation, the intensional
interpretation, and the objectual interpretation. Though some have
faulted the substitution interpretation on philosophical grounds, its sim-
plicity prompts its use as a centerpiece for technical results. Those who
would like a quick and painless entry to the completeness problem may
read the sections on the substitution interpretation alone. The intensional
interpretation, where one quantifies over individual concepts, is included
because it is the most general approach for dealing with the quantifiers.
Furthermore, its strong kinships with the substitution interpretation pro-
vide a relatively easy transition to its formal results. The objectual inter-
pretation is treated here as a special case of the intensional interpretation.
This helps provide new insights into how best to formalize systems for the
objectual interpretation.

The student should treat this book more as a collection of things to do
than as something to read. Exercises in this book are found embedded
throughout the text rather than at the end of each chapter, as is the more
common practice. This signals the importance of doing exercises as soon

       
            

       



Preface xv

as possible after the relevant material has been introduced. Think of the
text between the exercises as a preparation for activities that are the
foundation for true understanding. Answers to exercises marked with a
star (*) are found at the end of the book. Many of the exercises also
include hints. The best way to master this material is to struggle through
the exercises on your own as far as humanly possible. Turn to the hints or
answers only when you are desperate.

Many people should be acknowledged for their contributions to this
book. First of all, I would like to thank my wife, Connie Garson, who has
unfailingly and lovingly supported all of my odd enthusiasms. Second, I
would like to thank my students, who have struggled though the many
drafts of this book over the years. I have learned a great deal more from
them than any of them has learned from me. Unfortunately, I have lost
track of the names of many who helped me make numerous important
improvements, so I apologize to them. But I do remember by name the
contributions of Brandy Burfield, Carl Feierabend, Curtis Haaga, James
Hulgan, Alistair Isaac, JoBeth Jordon, Raymond Kim, Kris Rhodes, Jay
Schroeder, Steve Todd, Andy Tristan, Mako Voelkel, and especially Julian
Zinn. Third, I am grateful to Johnathan Raymon, who helped me with the
diagrams. Finally, I would like to thank Cambridge University Press for
taking an interest in this project and for the excellent comments of the
anonymous readers, some of whom headed off embarrassing errors.

       
            

       



       
            

       



Introduction: What Is Modal Logic?

Strictly speaking, modal logic studies reasoning that involves the use of the
expressions ‘necessarily’ and ‘possibly’. The main idea is to introduce the
symbols ∫ (necessarily) and ∂ (possibly) to a system of logic so that it is
able to distinguish three different modes of assertion:∫A (A is necessary),
A (A is true), and ∂A (A is possible). Introducing these symbols (or
operators) would seem to be essential if logic is to be applied to judging
the accuracy of philosophical reasoning, for the concepts of necessity and
possibility are ubiquitous in philosophical discourse.

However, at the very dawn of the invention of modal logics, it was
recognized that necessity and possibility have kinships with many other
philosophically important expressions. So the term ‘modal logic’ is also
used more broadly to cover a whole family of logics with similar rules and
a rich variety of different operators. To distinguish the narrow sense, some
people use the term ‘alethic logic’ for logics of necessity and possibility.
A list describing some of the better known of these logics follows.

System Symbols Expression Symbolized
Modal logic ∫ It is necessary that

(or Alethic logic) ∂ It is possible that

Tense logic G It will always be the case that
F It will be the case that
H It has always been the case that
P It was the case that

Deontic logic O It is obligatory that
P It is permitted that
F It is forbidden that

1

       
            

       



2 Modal Logic for Philosophers

Locative logic Tx It is the case at x that

Doxastic logic Bx x believes that

Epistemic logic Kx x knows that

This book will provide you with an introduction to all these logics, and it
will help sketch out the relationships between the different systems. The
variety found here might be somewhat bewildering, especially for the stu-
dent who expects uniformity in logic. Even within the above subdivisions
of modal logic, there may be many different systems. I hope to convince
you that this variety is a source of strength and flexibility and makes for
an interesting world well worth exploring.
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The System K: A Foundation for Modal Logic

1.1. The Language of Propositional Modal Logic

We will begin our study of modal logic with a basic system called K in
honor of the famous logician Saul Kripke. K serves as the foundation
for a whole family of systems. Each member of the family results from
strengthening K in some way. Each of these logics uses its own symbols
for the expressions it governs. For example, modal (or alethic) logics use
∫ for necessity, tense logics use H for what has always been, and deontic
logics use O for obligation. The rules of K characterize each of these
symbols and many more. Instead of rewriting K rules for each of the
distinct symbols of modal logic, it is better to present K using a generic
operator. Since modal logics are the oldest and best known of those in
the modal family, we will adopt ∫ for this purpose. So ∫ need not mean
necessarily in what follows. It stands proxy for many different operators,
with different meanings. In case the reading does not matter, you may
simply call ∫A ‘box A’.

First we need to explain what a language for propositional modal logic
is. The symbols of the language are ƒ, ç, ∫; the propositional variables:
p, q, r, p′, and so forth; and parentheses. The symbol ƒ represents a contra-
diction, ç represents ‘if . . then’, and ∫ is the modal operator. A sentence
of propositional modal logic is defined as follows:

ƒ and any propositional variable is a sentence.
If A is a sentence, then ∫A is a sentence.
If A is a sentence and B is a sentence, then (AçB) is a sentence.
No other symbol string is a sentence.

3

       
            

       



4 Modal Logic for Philosophers

In this book, we will use letters ‘A’, ‘B’, ‘C’ for sentences. So A may be
a propositional variable, p, or something more complex like (pçq), or
((pçƒ)çq). To avoid eyestrain, we usually drop the outermost set of
parentheses. So we abbreviate (pçq) to pçq. (As an aside for those who
are concerned about use-mention issues, here are the conventions of this
book. We treat ‘ƒ’, ‘ç’, ‘∫’, and so forth as used to refer to symbols with
similar shapes. It is also understood that ‘∫A’, for example, refers to the
result of concatenating ∫ with the sentence A.)

The reader may be puzzled about why our language does not con-
tain negation: ~ and the other familiar logical connectives: &, √, and ≠.
Although these symbols are not in our language, they may be introduced
as abbreviations by the following definitions:

(Def~) ~A =df Açƒ
(Def&) A&B =df ~(Aç ~B)
(Def√) A√B =df ~AçB
(Def≠) A≠B =df (AçB)&(BçA)

Sentences that contain symbols introduced by these definitions are under-
stood as shorthand for sentences written entirely with ç and ƒ. So for
example, ~p abbreviates pçƒ, and we may replace one of these with the
other whenever we like. The same is true of complex sentences. For exam-
ple, ~p&q is understood to be the abbreviation for (pçƒ)&q, which by
(Def&) amounts to ~((pçƒ)ç~q). Replacing the two occurrences of ~ in
this sentence, we may express the result in the language of K as follows:
((pçƒ)ç(qçƒ))çƒ. Of course, using such primitive notation is very
cumbersome, so we will want to take advantage of the abbreviations as
much as possible. Still, it simplifies much of what goes on in this book to
assume that when the chips are down, all sentences are written with only
the symbols ƒ, ç, and ∫.

EXERCISE 1.1 Convert the following sentences into the primitive notation
of K.

a) ~~p
b) ~p&~q
c) p√(q&r)
d) ~(p√q)
e) ~(p≠q)

       
            

       



The System K: A Foundation for Modal Logic 5

Our use of ƒ and the definition for negation (Def~) may be unfa-
miliar to you. However, it is not difficult to see why (Def~) works.
Since ƒ indicates a contradiction, ƒ is always false. By the truth table
for material implication, Açƒ is true (T) iff either A is false (F) or ƒ
is T. But, as we said, ƒ cannot be T. Therefore Açƒ is T iff A is F.
So the truth table for Açƒ corresponds exactly to the truth table for
negation.

The notion of an argument is fundamental to logic. In this book, an
argument H / C is composed of a list of sentences H, which are called the
hypotheses, and a sentence C called the conclusion. In the next section,
we will introduce rules of proof for arguments. When argument H / C
is provable (in some system), we write ‘H ÷ C’. Since there are many
different systems in this book, and it may not be clear which system we
have in mind, we subscript the name of the system S (thus: H ÷S C) to
make matters clear. According to these conventions, p, ~qç~p / q is the
argument with hypotheses p and ~qç~p and conclusion q. The expression
‘p, ~qç~p ÷K q’ indicates that the argument p, ~qç~p / q has a proof in
the system K.

1.2. Natural Deduction Rules for Propositional Logic: PL

Let us begin the description of K by introducing a system of rules called
PL (for propositional logic). We will use natural deduction rules in this
book because they are especially convenient both for presenting and find-
ing proofs. In general, natural deduction systems are distinguished by
the fact that they allow the introduction of (provisional) assumptions or
hypotheses, along with some mechanism (such as vertical lines or depen-
dency lists) for keeping track of which steps of the proof depend on which
hypotheses. Natural deduction systems typically include the rule Condi-
tional Proof (also known as Conditional Introduction) and Indirect Proof
(also known as Reductio Ad Adsurdum or Negation Introduction). We
assume the reader is already familiar with some natural deduction system
for propositional logic. In this book, we will use vertical lines to keep
track of subproofs. The notation:

       
            

       



6 Modal Logic for Philosophers

indicates that B has been proven from the hypothesis A. The dots indicate
intervening steps, each of which follows from previous steps by one of the
following five rules. The abbreviations for rule names to be used in proofs
are given in parentheses.

The System PL
Hypothesis

A new hypothesis A may be added to a proof
at any time, as long as A begins a new subproof.

Modus Ponens
This is the familiar rule Modus Ponens.
It is understood that A, AçB, and B must
all lie in exactly the same subproof.

Conditional Proof
When a proof of B is derived from the hypothesis A,
it follows that AçB, where AçB lies outside
hypothesis A.

Double Negation
~~ A The rule allows the removal of double

negations. As with (MP), ~~A and A
A (DN) must lie in the same subproof.

Reiteration
Sentence A may be copied into a new subproof.
(In this case, into the subproof headed by B.)

These five rules comprise a system for propositional logic called PL. The
rules say that if you have proven what appears above the dotted line,

       
            

       



The System K: A Foundation for Modal Logic 7

then you may write down what appears below the dotted line. Note that
in applying (MP) and (DN), all sentences involved must lie in the same
subproof. Here is a sample proof of the argument pçq, ~q / ~p, to
illustrate how we present proofs in this book.

The proof begins by placing the premises of the argument (namely pçq
and ~q) at the head of the outermost subproof. Then the conclusion (~p)
is derived from these using the five rules of PL. Since there are no rules
concerning the negation sign, it is necessary to use (Def~) to convert all
occurrences of ~ into ç and ƒ as we have done in the third and last steps.
We do not bother writing the name (Hyp) where we used the hypothesis
rule. That the (Hyp) rule is being used is already clear from the presence
of the subproof bracket (the horizontal “diving board” at the head of a
subproof).

Most books use line numbers in the justification of steps of a proof.
Since we only have four rules, the use of line numbers is really not nec-
essary. For example, when (CP) is used, the steps at issue must be the
beginning and end of the preceding subproof; when (DN) is used to pro-
duce A, it is easy to locate the sentence ~~A to which it was applied;
when (MP) is used to produce B, it is easy enough to find the steps A and
AçB to which (MP) was applied. On occasion, we will number steps to
highlight some parts of a proof under discussion, but step numbers will
not be part of the official notation of proofs, and they are not required in
the solutions to proof exercises.

Proofs in PL generally require many uses of Reiteration (Reit). That
is because (MP) cannot be applied to A and AçB unless both of these

       
            

       



8 Modal Logic for Philosophers

sentences lie in the same subproof. This constant use of (Reit) is annoying,
especially in longer proofs, so we will adopt a convention to leave out the
(Reit) steps where it is clear that an official proof could be constructed
by adding them back in. According to this more relaxed policy, the proof
just given may be abbreviated as follows:

We will say that an argument H / C is provable in PL (in symbols:
H ÷PL C) exactly when it is possible to fill in a subproof headed by mem-
bers of H to obtain C.

It is possible to prove some sentences outside of any subproof. These
sentences are called theorems. Here, for example, is a proof that pç(qçp)
is a theorem.

EXERCISE 1.2 Prove the following in PL.

a) pçq / (qçƒ)ç(pçƒ)
b) pçq, pç(qçƒ) / pçƒ
c) Show (pçq)ç(~qç~p) is a theorem of PL.

       
            

       



The System K: A Foundation for Modal Logic 9

1.3. Derivable Rules of PL

PL is a complete system for propositional logic. Every valid argument
written in the language of propositional logic has a proof in PL. However,
proofs involving the abbreviations ~, &, √, and ≠ may be very com-
plicated. The task of proof finding is immensely simplified by introduc-
ing derivable rules to govern the behavior of the defined connectives.
(A rule is derivable in a system iff it can be proven in the system.)
It is easy to show that the rule Indirect Proof (IP) is derivable in PL.
Once this is established, we may use (IP) in the future, with the under-
standing that it abbreviates a sequence of steps using the original rules
of PL.

The (IP) rule has been stated at the left, and to the right we have indicated
how the same result can be obtained using only the original rules of PL.
Instead of using (IP) to obtain A, (CP) is used to obtain ~Açƒ. This by
(Def~) is really ~~A, from which we obtain A by (DN). So whenever
we use (IP), the same result can be obtained by the use of these three
steps instead. It follows that adding (IP) to PL cannot change what is
provable.

We may also show derivable a rule (ƒIn) that says that ƒ follows from
a contradictory pair of sentences A, ~A.

Proof of Derivability:

A A
~A ~A
----- -----
ƒ (ƒIn) Açƒ (Def~)

ƒ (MP)

       
            

       



10 Modal Logic for Philosophers

Once (IP) and (ƒIn) are available, two more variations on the rule of
Indirect Proof may be shown derivable.

EXERCISE 1.3 Show that the following variant of Indirect Proof is also
derivable. (Feel free to appeal to (ƒIn) and (IP), since they were previously
shown derivable.)

With (~Out) available it is easy to show the derivability of a variant of
Double Negation.

       
            

       



The System K: A Foundation for Modal Logic 11

Now it is easy to prove the rule of Contradiction (Contra), which says
that from a contradiction anything follows:

It is possible to show that the standard natural deduction rules for the
propositional connectives &, √, and ≠ are also derivable.

A A&B A&B
B ----- -----
----- A (&Out) B (&Out)
A&B (&In)

(It is understood that all steps in these derivable rules must lie in the same
subproof.) The hardest demonstrations of derivability concern (&Out)
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and (√Out). Here are derivations for (√Out) and (one half of) (&Out) to
serve as models for proofs of this kind. You will show derivability of the
other rules in the next exercise.
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EXERCISE 1.4 Show that (&In), the other half of (&Out), (√In), (≠In),
and (≠Out) are all derivable. You may use rules already shown to be deriv-
able ((~Out) and (~In) are particularly useful), and you may abbreviate
proofs by omitting (Reit) steps wherever you like. (Hint for (&Out). Study
the proof above. If you still have a problem, see the discussion of a similar
proof below.)

The following familiar derivable rules: Modus Tollens (MT),
Contraposition (CN), De Morgan’s Law (DM), and (çF) may also
come in handy during proof construction. (Again it is assumed that all
sentences displayed in these rules appear in the same subproof.) Showing
they are derivable in PL provides excellent practice with the system PL.

AçB AçB
~B --------
-------- ~Bç~A (CN)
~A (MT)

~(A√B) ~(A&B)
------------ -----------
~A&~B (DM) ~A√~B (DM)

~(AçB) ~(AçB)
----------- -----------
A (çF) ~B (çF)

To illustrate the strategies in showing these are derivable rules, the proof
for (çF) will be worked out in detail here. (It is similar to the proof for
(&Out).) We are asked to start with ~(AçB) and obtain a proof of A.
The only strategy that has any hope at all is to use (~Out) to obtain A.
To do that, assume ~A and try to derive a contradiction.
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The problem is to figure out what contradiction to try to prove to complete
the subproof headed by ~A. There is a simple principle to help guide the
solution. When choosing a contradiction, watch for sentences containing
~ that have already become available. Both ~A and ~(AçB) qualify, but
there is a good reason not to attempt a proof of the contradiction A and
~A. The reason is that doing so would put us in the position of trying to
find a proof of A all over again, which is what we were trying to do in the
first place. In general, it is best to choose a sentence different from the
hypothesis for a (~In) or (~Out). So the best choice of a contradiction
will be ~(AçB) and its opposite AçB.

The remaining problem is to provide a proof of AçB. Since (CP) is the
best strategy for building a sentence of this shape, the subproof necessary
for (CP) is constructed.

At this point the proof looks near hopeless. However, that is simply a
sign that (~Out) is needed again, this time to prove B. So a new subproof
headed by ~B is constructed with the hope that a contradiction can be
proven there. Luckily, both A and ~A are available, which solves the
problem.
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EXERCISE 1.5 Show that (MT), (CN), (DM), and the second version of
(çF) are derivable rules of PL.

In the rest of this book we will make use of these derivable rules
without further comment. Remember, however, that our official system
PL for propositional logic contains only the symbols ç and ƒ, and the
rules (Hyp), (MP), (CP), (Reit), and (DN). Given the present collection
of derivable rules, constructing proofs in PL is a fairly straightforward
matter.

Proofs involving √ tend to be difficult. However, they are often signif-
icantly easier if (√Out) can be used in the appropriate way. Let us illus-
trate by proving p√q / q√p. We make p√q a hypothesis and hope to derive
q√p.

At this point many students will attempt to prove either p or q, and
obtain the last step by (√In). This is a poor strategy. As a matter of fact,
it is impossible to prove either p or q from the available hypothesis p√q.
When faced with a goal of the form A√B, it is a bad idea to assume the goal
comes from (√In), unless it is obvious how to prove A or B. Often when
the goal has the shape A√B, one of the available lines is also a disjunction.
When this happens, it is always a good strategy to assume that the goal
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comes from (√Out). In our example, we have p√q, so we will use this step
to get our goal q√p using (√Out).

If q√p follows from p√q by (√Out), we will need to complete two sub-
proofs, one headed by p and ending with q√p and the other headed by q
and ending with q√p.

Now all we need to do is complete each subproof, and the goal q√p will
be proven by (√Out). This is easily done using (√In).

In order to save paper, and to see the structure of the (√Out) process
more clearly, I suggest that you put the two subproofs that are introduced
by the (√Out) rule side by side:
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This way of notating proofs will play an important role in showing parallels
between proofs and the truth tree method in Section 7.1.

EXERCISE 1.6 Prove the following using the (√Out) strategy just des-
cribed. Place the paired subproofs introduced by (√Out) side by side to save
space.

a) p√q, pçr, qçs / r√s
b) p√(q&r) / (p√q)&(p√r)
c) ~p√~q / ~(p&q)
d) p√(q√r) / (p√q)√r

1.4. Natural Deduction Rules for System K

Natural deduction rules for the operator ∫ can be given that are econom-
ical and easy to use. The basic idea behind these rules is to introduce a
new kind of subproof, called a boxed subproof. A boxed subproof is a
subproof headed by ∫ instead of a sentence:

One way to interpret a boxed subproof is to imagine that it prefixes each
sentence it contains with ∫. For example, suppose A is proven in a sub-
proof headed by ∫:

This means that ∫A has been proven outside that subproof.
Given this understanding of boxed subproofs, the following (∫Out)

and (∫In) rules seem appropriate.
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The (∫Out) rule says that when we have proven ∫A, we may put A in
a boxed subproof (which indicates that A prefixed by a ∫ is proven).
The (∫In) rule says that once we have proven A in a boxed subproof,
(indicating that A prefixed by ∫ is proven), it follows that ∫A is proven
outside that subproof. (∫Out) and (∫In) together with natural deduction
rules for PL comprise the system K.

System K = PL + (∫Out) + (∫In).

There is an important difference between boxed and ordinary subproofs
when it comes to the use of (Reit). (Reit) allows us to copy a sentence
into the next deepest subproof, provided the subproof is headed by a
sentence B.

But the (Reit) rule does not allow A to be copied into a boxed sub-
proof:

 

   

This is incorrect because it amounts to reasoning from A to ∫A, which is
clearly fallacious. (If A is so, it doesn’t follow that A is necessary, oblig-
atory, etc.) So be very careful when using (Reit) not to copy a sentence
into a boxed subproof.

Strategies for finding proofs in K are simple to state and easy to use.
In order to prove a sentence of the form ∫A, simply construct a boxed
subproof and attempt to prove A inside it. When the proof of A in that
boxed subproof is complete, ∫A will follow by (∫In). In order to use a
sentence of the form ∫A, remove the box using (∫Out) by putting A in
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a boxed subproof. The following proof of ∫p&∫q ÷ ∫(p&q) illustrates
these strategies.

The numbers to the right in square brackets are discovery numbers. They
indicate the order in which steps were written during the process of proof
construction. Most novices attempt to construct proofs by applying rules
in succession from the top of the proof to the bottom. However, the best
strategy often involves working backwards from a goal. In our sample,
(&Out) was applied to line 1 to obtain the conjuncts: ∫p and ∫q. It is
always a good idea to apply (&Out) to available lines in this way.

Having done that, however, the best strategy for constructing this proof
is to consider the conclusion: ∫(p&q). This sentence has the form ∫A.
Therefore, it is a good bet that it can be produced from A (and a boxed
subproof) by (∫In). For this reason a boxed subproof is begun on line 4
and the goal for that subproof (p&q) is entered on line 7.
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The proof is then completed by applying (∫Out) to lines 2 and 3, from
which 7 is obtained by (&In).

EXERCISE 1.7 Prove the following in K (derivable rules are allowed):

a) ∫p / ∫(p√q)
b) ∫(pçq) / ∫pç∫q
c) ∫(p&q) / ∫p&∫q
d) ∫(p√q), ∫(pçr), ∫(qçr) / ∫r
e) ∫p√∫q / ∫(p√q) (Hint: Set up (√Out) first.)

1.5. A Derivable Rule for ∂

In most modal logics, there is a strong operator (∫) and a corresponding
weak one (∂). The weak operator can be defined using the strong operator
and negation as follows:

(Def∂) ∂A =df ~∫~A

(∂A may be read ‘diamond A.’) Notice the similarities between (Def∂)
and the quantifier principle åxA ≠ ~Öx~A. (We use å for the universal
and Ö for the existential quantifier.) There are important parallels to be
drawn between the universal quantifier å and ∫, on the one hand, and
the existential quantifier Ö and ∂ on the other. In K and the systems
based on it, ∫ and ∂ behave very much like å and Ö, especially in their
interactions with the connectives ç, &, and √. For example, ∫ distributes
through & both ways, that is, ∫(A&B) entails ∫A&∫B and ∫A&∫B
entails ∫(A&B). However, ∫ distributes through √ in only one direction,
∫A√∫B entails ∫(A√B), but not vice versa. This is exactly the pattern of
distribution exhibited by å. Similarly, ∂ distributes through √ both ways,
and through & in only one, which mimics the distribution behavior of Ö.
Furthermore, the following theorems of K:

∫(A ç B) ç (∫A ç ∫B)

and

∫(A ç B) ç (∂A ç ∂B)
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parallel important theorems of quantificational logic:

åx(Ax ç Bx) ç (åxAx ç åxBx)

and

åx(Ax ç Bx) ç (ÖxAx ç ÖxBx).

To illustrate how proofs involving ∂ are carried out, we will explain
how to show ∫(pçq) ç (∂pç∂q) is a theorem. The strategies used in
this proof may not be obvious, so it is a good idea to explain them in detail.
The conclusion is the conditional, ∫(pçq) ç (∂pç∂q), so the last line
will be obtained by (CP), and we need to construct a proof from ∫(pçq)
to ∂pç∂q. Since the latter is also a conditional, it will be obtained by
(CP) as well, so we need to fill in a subproof from ∂p to ∂q. At this stage,
the proof attempt looks like this:

Since we are left with ∂q as a goal and we lack any derivable rules for
∂, the only hope is to convert ∂q (and the hypothesis ∂p) into ∫ using
(Def∂).
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At this point there seems little hope of obtaining ~∫~q. In situations like
this, it is a good idea to obtain your goal with (~Out) or (~In). In our case
we will try (~In). So we need to start a new subproof headed by ∫~q and
try to derive a contradiction within it.

The most crucial stage in finding the proof is to find a contradic-
tion to finish the (~In) subproof. A good strategy in locating a likely
contradiction is to inventory steps of the proof already available that
contain ~. Step 3 (namely, ~∫~p) qualifies, and this suggests that a
good plan would be to prove ∫~p and reiterate ~∫~p to complete the
subproof.

At this point our goal is ∫~p. Since it begins with a box, (∫In) seems the
likely method for obtaining it, and we create a boxed subproof and enter
~p at the bottom of it as a new goal.
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But now it is possible to use (∫Out) (and (Reit)) to place pçq and ~q
into the boxed subproof, where the goal ~p can be obtained by (MT),
Modus Tollens. So the proof is complete.

EXERCISE 1.8 Show that the following sentences are theorems of K by
proving them outside any subproofs:

a) ∫(p&q) ≠ (∫p&∫q)
b) (∫p√∫q) ç ∫(p√q)
c) (∂p√∂q) ≠ ∂(p√q)
d) ∂(p&q) ç (∂p&∂q)
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As you can see from Exercises 1.8c–d, proofs in K can be rather com-
plex when ∂ is involved. We have no rules governing ∂, and so the only
strategy available for working with a sentence of the form ∂A is to trans-
late it into ~∫~A by (Def∂). This introduces many negation signs, which
complicates the proof. To help overcome the problem, let us introduce a
derivable rule called (∂Out).

EXERCISE 1.9 Show that (∂Out) is a derivable rule of the natural deduction
formulation for K. (Hint: From the two subproofs use (CP) and then (∫In)
to obtain ∫(AçB). Now use the strategy used to prove ∫(pçq)ç(∂pç∂q)
above.)

To illustrate the use of this rule, we present a proof of problem d) of
Exercise 1.8: ∂(p&q) ç (∂p&∂q). Since this is a conditional, a subproof
headed by ∂(p&q) is constructed in hopes of proving ∂p&∂q. This latter
sentence may be obtained by (&In) provided we can find proofs of ∂p
and ∂q. So the proof attempt looks like this so far:

The (∂Out) rule comes in handy whenever a sentence of the shape
∂A is available, and you are hoping to prove another sentence of the
same shape. Here we hope to prove ∂p, and ∂(p&q) is available. To set
up the (∂Out), subproofs headed by ∫ and p&q must be constructed,
within which p must be proven. But this is a simple matter using (&Out).
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Using the same strategy to obtain ∂q completes the proof.

Since we will often use (∂Out), and the double subproof in this rule is
cumbersome, we will abbreviate the rule as follows:

Here the subproof with ∫, A at its head is shorthand for the double
subproof.
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We will call this kind of abbreviated subproof a world-subproof. This
abbreviation is a special case of the idea that we will adopt for arguments,
namely, that a sequence of subproofs can be abbreviated by listing the
hypotheses in a single subproof. For example, instead of writing

we may write:

instead.
Given the world-subproof abbreviation, it should be clear that (∫Out)

can be applied to a boxed sentence ∫A to place A into a world-subproof
directly below where ∫A appears. Using world-subproofs, we may rewrite
the last proof in a more compact format.

EXERCISE 1.10

a) Redo Exercise 1.8c using (∂Out) with world-subproofs.
b) Show that the following useful rules are derivable in K:

~∫A ~∂A
------- -------
∂~A (~∫) ∫~A (~∂)

c) Using the rules (~∫) and (~∂) and other derivable rules if you like, prove
∫~∫p / ∫∂~p and ∂~∂p / ∂∫~p.
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1.6. Horizontal Notation for Natural Deduction Rules

Natural deduction rules and proofs are easy to use, but presenting them is
sometimes cumbersome since it requires the display of vertical subproofs.
Let us develop a more convenient notation. When sentence A is proven
under the following hypotheses:

we may first abbreviate it as follows:

This can in turn be expressed in what we will call horizontal notation as
follows:

B, ∫, C, D, ∫ ÷ A

Notice that B, ∫, C, D, ∫ is a list of the hypotheses (in order) under which
A lies, so we can think of B, ∫, C, D, ∫ / A as a kind of argument. Of course
∫ is not strictly speaking a hypothesis, since hypotheses are sentences, but
we will treat ∫ as an honorary hypothesis nevertheless, to simplify our
discussion. When we write ‘B, ∫, C, D, ∫ ÷ A’, we mean that there is a
proof of A under the hypotheses B, ∫, C, D, ∫, in that order. We will use
the letter ‘L’ to indicate such lists of the hypotheses, and we will write
‘L ÷ A’ to indicate that A is provable given the list L. Notice that L is a
list; the order of the hypotheses matters. Given this new notation, the rules
of K may be reformulated in horizontal notation. To illustrate, consider
Conditional Proof.
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This rule may be applied in any subproof, so let L be a list of all the
hypotheses under which AçB lies in the use of this rule. Then the conclu-
sion of this rule may be expressed in horizontal notation as L ÷ AçB. To
indicate the portion of the rule above the dotted line we consider each sen-
tence that is not a hypothesis. In this case, the only such sentence is B. Now
B lies under the hypothesis A, and all hypotheses L under which AçB
lies. So the horizontal notation for this line is L, A ÷ B. Putting the two
results together, the horizontal notation for the rule (CP) is the following:

L, A ÷ B
--------------
L ÷ A ç B

In similar fashion, all the rules of K can be written in horizontal notation.
A complete list follows for future reference.

Horizontal Formulation of the Rules of K

Hypothesis L, A ÷ A (Hyp)

Reiteration L ÷ A
----------
L, B ÷ A (Reit)

(Note that B in the conclusion is the head of the subproof into which A
is moved.)

Modus Ponens L ÷ A
L ÷ AçB
-------
L ÷ B (MP)

Conditional Proof L, A ÷ B
-------
L ÷ AçB (CP)

Double Negation L ÷ ~~A
-------
L ÷ A (DN)

∫In L, ∫ ÷ A
----------
L ÷ ∫A (∫In)
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∫Out L ÷ ∫A
----------
L, ∫ ÷ A (∫Out)

EXERCISE 1.11 Express (&Out), (IP), and (∂Out) in horizontal notation.

Instead of presenting proofs in subproof notation, we could also write
them out in horizontal notation instead. For each line A of the proof, one
constructs the list L of all hypotheses under which A lies, and then writes
L ÷ A. In the case of a hypothesis line A, the sentence A is understood to
lie under itself as a hypothesis, so the horizontal notation for a hypothesis
always has the form L, A ÷ A. When several sentences head a subproof,
like this:

it is understood that this abbreviates three separate subproofs, one for
each sentence. Therefore, the horizontal notation for these steps is given
below:

For example, here is a proof written in subproof form on the left with
the horizontal version to the right.

EXERCISE 1.12 Convert solutions to Exercises 1.7c–d into horizontal
notation.
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When proofs are viewed in horizontal notation, it becomes appar-
ent that the rules of K apply to arguments L / C. In all proofs, the
(Hyp) rule first introduces arguments of the form L, A ÷ A (where L
is empty in the first step), and then rules are applied to these argu-
ments over and over again to create new provable arguments out of
old ones. You are probably more familiar with the idea that rules of
logic apply to sentences, not arguments. However, the use of subproof
notation involves us in this more general way of looking at how rules
work.

1.7. Necessitation and Distribution

There are many alternative ways to formulate the system K. Using boxed
subproofs is quite convenient, but this method was not invented when
the first systems for modal logic were constructed. In the remainder of
this chapter, two systems will be presented that are equivalent to K, which
means that they agree with K exactly on which arguments are provable.
The traditional way to formulate a system with the effect of K is to add
to propositional logic a rule called Necessitation (Nec) and an axiom
called Distribution (Dist). We will call this system TK, for the traditional
formulation of K.

System TK=PL+(Nec)+(Dist).

÷ A ÷ ∫(AçB)ç(∫Aç∫B) (Dist)
-------
÷ ∫A (Nec)

The rule of Necessitation may appear to be incorrect. It is wrong,
for example, to conclude that grass is necessarily green (∫A) given that
grass is green (A). This objection, however, misinterprets the content of
the rule. The notation ‘÷ A’ above the dotted line indicates that sen-
tence A is a theorem, that is, it has been proven without the use of
any hypotheses. The rule does not claim that ∫A follows from A, but
rather that ∫A follows when A is a theorem. This is quite reasonable.
There is little reason to object to the view that the theorems of logic are
necessary.
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The derivation of a sentence within a subproof does not show it to
be a theorem. So Necessitation does not apply within a subproof. For
example, it is incorrectly used in the following “proof”:

We surely do not want to prove the sentence pç∫p, which says that if
something is so, it is so necessarily. The next proof illustrates a correct use
of (Nec) to generate an acceptable theorem.

It is easy enough to show that (Nec) and (Dist) are already avail-
able in K. To show that whatever is provable using (Nec) can be derived
in K, assume that ÷ A, that is, there is a proof of A outside of all
hypotheses:

:
A

For example, suppose A is the theorem pç(p√q), which is provable as
follows:

 

The steps of this proof may all be copied inside a boxed subproof, and
(∫In) applied at the last step.
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The result is a proof of ∫A outside all hypotheses, and so we obtain
÷ ∫A. In the case of our example, it would look like this:

To show that (Dist) is also derivable, we simply prove it under no
hypotheses as follows:

1.8. General Necessitation

K can also be formulated by adding to PL a single rule called General
Necessitation (GN). Let H be a list of sentences, and let ∫H be the list
that results from prefixing ∫ to each sentence in H. So for example, if H
is the list p, q, r, then ∫H is ∫p, ∫q, ∫r.

H ÷ A
-------------
∫H ÷ ∫A (GN)

The premise of General Necessitation (GN) indicates that A has a proof
from H. The rule says that once such an argument is proven, then there
is also a proof of the result of prefixing ∫ to the hypotheses and the
conclusion.
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General Necessitation can be used to simplify proofs that would other-
wise be fairly lengthy. For example, we proved ∫p, ∫q ÷ ∫(p&q) above in
eight steps (Section 1.4). Using (GN), we can give a much shorter proof,
using horizontal notation. Simply begin with p, q ÷ p&q (which is provable
by (Hyp) and (&In)), and apply (GN) to obtain the result.

p, q ÷ p (Hyp)
p, q ÷ q (Hyp)
p, q ÷ p&q (&In)
∫p, ∫q ÷ ∫(p&q) (GN)

EXERCISE 1.13 Produce “instant” proofs of the following arguments using
(GN).

a) ∫p ÷ ∫(pvq)
b) ∫p, ∫(pçq) ÷ ∫q
c) ∫(p√q), ∫(pçr), ∫(qçr) ÷ ∫r
d) ∫~p, ∫(p√q) ÷ ∫q
e) ∫(pçq), ∫~q ÷ ∫~p

Now let us prove that (GN) is derivable in PL + (Nec) + (Dist). Since we
showed that (Nec) and (Dist) are derivable in K, it will follow that (GN)
is derivable in K. First we show that the following rule (∫MP) is derivable
in any propositional logic that contains Distribution.

H ÷ ∫(AçB)
-------------------
H, ∫A ÷ ∫B (∫MP)

The proof is as follows:

H ÷ ∫(AçB) Given
H, ∫A ÷ ∫(AçB) (Reit)
÷ ∫(AçB)ç(∫Aç∫B) (Dist)
H, ∫A ÷ ∫(AçB)ç(∫Aç∫B) (Reit) (many times)
H, ∫A ÷ ∫Aç∫B (MP)
H, ∫A ÷ ∫A (Hyp)
H, ∫A ÷ ∫B (MP)
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To show that (GN) is derivable, we must show that if H ÷ A, then
∫H ÷ ∫A for any list of sentences H. This can be shown by cases
depending on the length of H. It should be clear that (GN) holds when
H is empty, because in that case, (GN) is just (Nec). Now suppose
that H contains exactly one sentence B. Then the proof proceeds as
follows:

B ÷ A Given
÷ BçA (CP)
÷ ∫(BçA) (Nec)
∫B ÷ ∫A (∫MP)

In case H contains two members B1 and B2, the proof is as follows:

B1, B2 ÷ A Given
÷ B1ç(B2çA) (CP) (two times)
÷ ∫(B1ç(B2çA)) (Nec)
∫B1, ∫B2 ÷ ∫A (∫MP) (two times)

EXERCISE 1.14 Now carry out the same reasoning in case H contains three
members B1, B2, and B3.

(GN) can be shown in general when H is an arbitrary list B1, . . , Bi using
the same pattern of reasoning.

B1, . . , Bi ÷ A Given
÷ B1ç . . (BiçA) (CP) (i times)
÷ ∫(B1ç . . (BiçA)) (Nec)
∫B1, . . , ∫Bi ÷ ∫A (∫MP) (i times)

This completes the proof that (GN) is derivable in K. It follows that
anything provable in PL + (GN) has a proof in K. In Section 9.4 it will be
shown that whatever is provable in K is provable in PL + (GN). So PL +
(GN) and K are simply two different ways to formulate the same notion
of provability.
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1.9. Summary of the Rules of K

Rules of PL

Derivable Rules of PL
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K=PL+(∫Out)+(∫In)
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Derivable Rules of K

The Traditional Formulation of K: tK=PL+(Nec)+(Dist).
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Extensions of K

2.1. Modal or Alethic Logic

A whole series of interesting logics can be built by adding axioms to the
basic system K. Logics for necessity and possibility were the first systems
to be developed in the modal family. These modal (or alethic) logics are
distinguished from the others in the modal family by the presence of the
axiom (M). (M stands for ‘modal’.)

(M) ∫ AçA

(M) claims that whatever is necessary is the case. Notice that (M) would
be incorrect for the other operators we have discussed. For example, (M)
is clearly incorrect when ∫ is read ‘John believes’, or ‘it was the case that’,
(although it would be acceptable for ‘John knows that’). The basic modal
logic M is constructed by adding the axiom (M) to K. (Some authors call
this system T.) Notice that this book uses upper case letters, for example:
‘M’ for systems of logic, and uses the same letter in parentheses: ‘(M)’ for
their characteristic axioms. Adding an axiom to K means that instances
of the axiom may be placed within any subproof, including boxed sub-
proofs. For example, here is a simple proof of the argument ∫∫p / p in the
system M.
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Line 2: ∫∫pç∫p counts as an instance of (M) because it has the shape
∫AçA. (Just let A be ∫p.) Proof strategies in M often require using
complex instances of (M) in this way.

Any interesting use of an axiom like (M) pretty much requires the use
of (MP) in the next step. This can make proofs cumbersome. To make
proofs in M shorter, it is useful to introduce the following derivable rule,
which we will also call (M).

The Rule (M)

∫A
------

A (M)

With this rule in hand, the proof of ∫∫p / p is simplified.

In the future, whenever axioms with the form AçB, are introduced, it
will be understood that a corresponding derived rule of the form A / B
with the same name is available.

EXERCISE 2.1

a) Prove Aç∂A in M. (Hint: Use the following instance of (M): ∫~Aç~A.)
b) Prove ∫Aç∂A in M.
c) Prove (M): ∫AçA in K plus Aç∂A.

The rule (M) allows one to drop a ∫ from a formula whenever it is the
main connective. You might think of this as an elimination rule for ∫.
Exercise 2.1c shows that the system M may be formulated equivalently
using Aç∂A in place of (M), or by adopting a ∂ introduction rule that
allows one to prefix any proven formula with a ∂. This corresponds to
the intuition that A must be possible if it is true.

Many logicians believe that M is too weak, and that further principles
must be added to govern the iteration, or repetition, of modal operators.
Here are three well-known iteration axioms with their names.

(4) ∫Aç∫∫A
(B) Aç∫∂A
(5) ∂Aç∫∂A
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EXERCISE 2.2 Write an essay giving your reasons for either accepting or
rejecting each of (4), (B), and (5).

To illustrate the use of these axioms (and their corresponding rules), here
are some sample proofs that appeal to them. Here is a proof of ∫p / ∫∫∫p
that uses (4).

Using the derived rule (4), the proof can be shortened.

Next we illustrate a somewhat more complex proof that uses (B) to prove
the argument p / ∫∂∂p.

Note we have taken advantage of the solution to Exercise 2.1a to save
many steps in this proof. Feel free to do likewise in coming exercises.
Finally, here is a proof that uses (5) to prove ∂p / ∫∫∂p.

You can see that strategies for proof finding can require more creativity
when the axioms (4), (B), and (5) are available.

Although names of the modal logics are not completely standard,
the system M plus (4) is commonly called S4. M plus (B) is called B
(for Brouwer’s system) and M plus (5) is called S5. The following chart
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reviews the systems we have discussed so far.

System M = K + (M): ∫AçA.

System S4 = M + (4): ∫Aç∫∫A.

System B = M + (B): Aç∫∂A.

System S5 = M + (5): ∂Aç∫∂A.

It would be more consistent to name systems after the axioms they
contain. Under this proposal, S4 would be named M4 (the system M
plus (4)), and S5 would be M5. This is, in fact, the common practice for
naming systems that are less well known. However, the systems S4 and
S5 were named by their inventor C. I. Lewis, before systems like K and M
were proposed, and so the names ‘S4’ and ‘S5’ have been preserved for
historical reasons.

EXERCISE 2.3 Prove in the systems indicated. You may appeal to any results
established previously in this book or proven by you during the completion of
these exercises. Try to do them without looking at the hints.

a) ∫∫A≠∫A in S4. (Hint: Use a special case of (M) for one direction.)
b) ∫∫~A / ∫~~∫~A in K.
c) ∂∂A≠∂A in S4. (Hint: Use the solution to Exercise 2.1a for one direc-

tion, and use 2.3b for the other.)
d) ∫∂∂A≠∫∂A in S4. (Hint: Use (GN) with the solution for 2.3c.)
e) ∫∂A≠∂A in S5. (Hint: Use a special case of (M) for one direction.)
f) (B) in S5. (Hint: Use the solution to Exercise 2.1a.)
g) ∫~∫~~A / ∫~∫A in K.
h) ∂∫AçA in B. (Hint: Use this version of B: ~Aç∫∂~A, and the previous

exercise.)
i) ∂∫A≠∫A in S5. (Hint: In one direction, use Exercise 2.1a. In the other,

use (~∫) (see Exercise 1.10b), this instance of (5): ∂~Aç∫∂~A, and the
solution to g.)

The scheme that names a system by listing the names of its axioms is
awkward in another respect. There are many equivalent ways to define
provability in S5. All of the following collections of axioms are equivalent
to S5 = M+(5).

M+(B)+(5)
M+(4)+(5)
M+(4)+(B)+(5)
M+(4)+(B)
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By saying S5 is equivalent to a collection of rules, we mean that the argu-
ments provable in S5 are exactly the ones provable with the rules in that
collection. For example, consider M+(B)+(5). This is equivalent to S5,
because we showed in Exercise 2.3f that (B) is provable in S5. Therefore
(B) adds nothing new to the powers of S5. Whenever we have a proof of
an argument using (B), we can replace the use of (B) with its derivation
in S5.

EXERCISE 2.4

a) Prove (4) in S5. (Hint: First prove ∫Aç∫∂∫A (a special case of (B)) and
then prove ∫∂∫Aç∫∫A using the solution to Exercise 2.3i.)

b) Using the previous result, explain why S5 is equivalent to M+(4)+(5), and
M+(4)+(B)+(5).

c) Prove S5 is equivalent to M+(4)+(B) by proving (5) in M+(4)+(B). (Hint:
Begin with this special case of (B): ∂Aç∫∂∂A. Then use (4) to obtain
∫∂∂Aç∫∂A.)

It is more natural to identify a formal system by what it proves rather
than by how it is formulated. We want to indicate, for example, that
M+(5) and M+(4)+(B) are really the same system, despite the dif-
ference in their axioms. If we name systems by their axioms, we will
have many different names (‘M5’, ‘MB5’, ‘M45’, . . and so on) for the
same system. For a system like S5, which has many equivalent formula-
tions, it is just as well that there is a single name, even if it is somewhat
arbitrary.

Exercise 2.3 was designed to familiarize you with some of the main
features of S4 and S5. In S4, a string of two boxes (∫∫) is equivalent to
one box (∫). As a result, any string of boxes is equivalent to a single box,
and the same is true of strings of diamonds.

EXERCISE 2.5 Prove ∫∫∫A≠∫A, ∂∂∂A≠∂A, and ∫∫∫∫A≠∫A
in S4, using the strategies employed in Exercises 2.3a and 2.3c.

The system S5 has stronger principles for simplifying strings of modal
operators. In S4 a string of modal operators of the same kind can be
replaced for the operator, but in S5 strings containing both boxes and
diamonds are equivalent to the last operator in the string. This means
that one never needs to iterate (repeat) modal operators in S5 since the
additional operators are superfluous.
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EXERCISE 2.6 Prove ∂∫∂A≠∂A and ∫∂∫A≠∫A in S5.

The following chart reviews the iteration principles for S4 and S5.

S4: ∫∫ . . ∫ = ∫ ∂∂ . . ∂ = ∂
S5: 00 . . ∫ = ∫ 00 . . ∂ = ∂, where 0 is ∫ or ∂

The axiom (B): Aç∫∂A raises an important point about the inter-
pretation of modal formulas. (B) says that if A is the case, then A is nec-
essarily possible. One might argue that (B) should always be adopted
in modal logic, for surely if A is the case, then it is necessary that
A is possible. However, there is a problem with this claim that can
be exposed by noting that ∂∫AçA is provable from (B). (See Exer-
cise 2.3.h.) So ∂∫AçA should be acceptable if (B) is. However,
∂∫AçA says that if A is possibly necessary, then A is the case, and
this is far from obvious.

What has gone wrong? The answer is that we have not been careful
enough in dealing with an ambiguity in the English rendition of Aç∫∂A.
We often use the expression ‘if A then necessarily B’ to express that the
conditional ‘if A then B’ is necessary. This interpretation of the English
corresponds to ∫(AçB). On other occasions we mean that if A, then
B is necessary: Aç∫B. In English, ‘necessarily’ is an adverb, and since
adverbs are usually placed near verbs, we have no natural way to indicate
whether the modal operator applies to the whole conditional, or to its
consequent. This unfortunate feature creates ambiguities of scope, that
is, ambiguities that result when it is not clear which portion of a sentence
is governed by an operator.

For these reasons, there is a tendency to confuse (B): Aç∫∂A with
∫(Aç∂A). But ∫(Aç∂A) is not the same as (B), for ∫(Aç∂A) is
a theorem of M, and (B) is not. So one must take special care that our
positive reaction to ∫(Aç∂A) does not infect our evaluation of (B). One
simple way to protect ourselves is to consider the sentence: ∂∫AçA,
where ambiguities of scope do not arise.

EXERCISE 2.7 Prove ∫(Aç∂A) in M.

One could engage in endless argument over the correctness or incor-
rectness of (4), (B), (5) and the other iteration principles that have been
suggested for modal logic. Failure to resolve such controversy leads some
people to be very suspicious of modal logic. “How can modal logic be
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logic at all,” they say, “if we can’t decide what the axioms should be?” My
answer is to challenge the idea that we must decide on the axioms in order
for modal logic to be coherent. Necessity is a many-sided notion, and so
we should not expect it to correspond to a single logic. There are several
viable modal systems, each one appropriate for a different way in which
we understand and use the word ‘necessarily’. This idea will be explored
in more detail when we provide semantics for modal logics in Chapter 3.

2.2. Duals

The idea of the dual of a sentence is a useful notion in modal logic. The
following pairs of symbols are defined to be mates of each other.

& √
∫ ∂
å Ö

We have not introduced quantifiers å and Ö in our logics yet, but we will
later, and so they are included now for future reference. Let A* be the
sentence that results from replacing each symbol in A on the above list
with its mate. Now we may define the dual for sentences that have the
shapes AçB and A≠B, provided ç, ≠, and ~ do not appear in A
or B. The dual of AçB is B*çA* and the dual of A≠B is A*≠B*.
Notice that sentences that do not have the shapes AçB or A≠B do not
have duals. The best way to understand what duals are is to construct a
few. The dual of (B): Aç∫∂A is (∫∂A)*ç(A)*, that is ∂∫AçA.
The dual of ∫(A&B)ç(∂A√∂B) is (∂A√∂B)*ç∫(A&B)*. But
(∂A√∂B)* is ∫A&∫B and ∫(A&B)* is ∂(A√B), and so we obtain
(∫A&∫B)ç∂(A√B), which is, therefore, its own dual.

EXERCISE 2.8 Find the duals of the following sentences.

a) ∫Aç∫∫A
b) (∫A&∫B)≠∫(A&B)
c) ∂Aç∫∂A
d) ∫(A√B)ç(∫A√∫B)
e) åx∫Ax≠∫åxAx
f) ∫(∫AçA) (trick question)
g) ∫Aç∂A
h) Aç∫∂A

The reason duals are interesting is that adding an axiom to K is equiv-
alent to adding its dual as an axiom. Since sentences with the shape
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Aç∫∂A are provable in B, it follows that all sentences of the (dual)
shape ∂∫AçA are provable in B as well. In fact, we could have used
∂∫AçA instead of Aç∫∂A to define the system B. Being able to rec-
ognize duals can be very helpful in working out proof strategies and for
appreciating the relationships between the various modal logics.

EXERCISE 2.9 Using duals, produce alternatives to the axioms (M), (4),
and (5).

EXERCISE 2.10 To help verify that an axiom is equivalent to its dual, recon-
struct proofs of the following facts:

a) The dual of (M) is derivable in K plus (M). (Exercise 2.1a)
b) The dual of (4) is derivable in K plus (4). (Exercise 2.3c)
c) The dual of (B) is derivable in K plus (B). (Exercise 2.3h)
d) The dual of (5) is derivable in K plus (5). (Exercise 2.3i)

2.3. Deontic Logic

A number of modal logics can be built from the basic system K that are
not appropriate for necessity and possibility. They lack the characteris-
tic axiom of M: ∫AçA. Deontic logics, the logics of obligation, are an
important example. Deontic logics introduce the primitive symbol O for
‘it is obligatory that’, from which symbols for ‘it is permitted that’ and ‘it
is forbidden that’ are defined as follows:

(DefP) PA =df ~O~A
(DefF) FA =df O~A

The symbol ‘O’ in deontic logic plays exactly the same role as ∫ did in the
system K. A basic system D of deontic logic can be constructed by adding
the characteristic deontic axiom (D) to the rules of K, with O playing the
role of ∫.
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Although the principles of K seem reasonable for deontic logic, one
feature has bothered some people. The rule of Necessitation is derivable
in K, so OA follows when A is a theorem. For example, since pçp is
provable in PL, O(pçp) will follow. However, it is odd to say that pçp
is obligatory (though just as odd, I would think, to deny that pçp is
obligatory). Questions about whether A is obligatory or not do not arise
when A is a theorem, because the language of obligation and permission
applies to sentences whose truth values depend on our actions. No matter
what we do, pçp will remain true, so there is no point in commanding or
even permitting it.

Even though our feelings about K are, for this reason, neutral, K does
lead to reasonable results where we do have strong intuitions. For exam-
ple, the theorems about K concerning the distribution of operators over
the connectives all seem reasonable enough. We will be able to prove that
O(A&B) is equivalent to OA&OB, that O(A√B) is entailed by OA√OB
but not vice-versa, that P(A√B) is equivalent to PA√PB, that O(AçB)
entails PAçPB, and so forth. These are widely held to be exactly the sort
of logical properties that O and P should have. Later, when we learn about
modal semantics, we will find further support for the view that deontic
logics can be built on the principles for K.

2.4. The Good Samaritan Paradox

There is a second problem with using K for deontic logic that has been
widely discussed (Aqvist, 1967). The objection concerns a special case of
the deontic version of General Necessitation (GN):

A ü B
---------- -
OA ü OB

Now imagine that a Good Samaritan finds a wounded traveler by the
side of the road. Assume that our moral system is one where the Good
Samaritan is obliged to help the traveler. Consider the following instance
of (GN):

1. The Good Samaritan binds the traveler’s wound ÷ the traveler is
wounded.

2. The Good Samaritan ought to bind the traveler’s wound ÷ the trav-
eler ought to be wounded.

Argument (1) appears to be logically valid, for you can’t fix a person’s
wounds if the person is not wounded. However, the second argument (2)
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appears to be invalid. It is true that the Good Samaritan should help the
traveler, but it is false that the traveler ought to be wounded. So it appears
we must reject (GN) since it leads us from a valid to an invalid argument.

Let us resolve the paradox by symbolizing (1) in deontic logic.
Although a full analysis requires predicate letters and quantifiers, it is
still possible to present the gist of the solution to the problem using
propositional logic. (For a more sophisticated treatment, see Exercise
18.18 in Chapter 18.) The central issue concerns how we are to translate
sentence (3).

(3) The Good Samaritan binds the traveler’s wound.

Sentence (3) really involves two different ideas: that the traveler is
wounded, and that the Good Samaritan binds the wound. So let us use
the following vocabulary:

W = The traveler is wounded.
B = The Good Samaritan binds the wound.

Now arguments (1) and (2) may be represented as an instance of (GN)
as follows.

W&B ü W
---------- - - - - - - -
O(W&B) ü OW

However, this does not count as a reason to reject (GN), for if it were,
the argument O(W&B) ÷ OW would need to have a true premise and
a false conclusion. However, the premise is false. It is wrong to say that
it ought to be the case that both the traveler is wounded and the Good
Samaritan binds the wounds, because this entails that the traveler ought
to be wounded, which is false.

One might object that the claim that the Good Samaritan ought to
bind the traveler’s wound, appears to be true, not false. There is, in fact, a
way to represent this where it is true, namely W&OB. This says that the
traveler is wounded and the Good Samaritan ought to bind the wound.
In this version, W does not lie in the scope of the modal operator, so
it does not claim that the traveler ought to be wounded. But if this is
how the claim is to be translated, then (1) and (2) no longer qualify as
an instance of (GN), for in (GN) the O must include the whole sentence
W&B.

W&B W
---------- - - - - -
W&OB OW not an instance of (GN)!
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So the Good Samaritan paradox may be resolved by insisting that we pay
close attention to the scope of the deontic operator O, something that
is difficult to do when we present arguments in English. Sentence (3) is
ambiguous. If we read it as O(W&B), we have an instance of (GN), but
the second argument’s premise is false, not true. If we read (3) as W&OB,
the premise of that argument is true, but the argument does not have the
right form to serve as a case of (GN). Either way it is possible to explain
why the reasoning is unsound without rejecting (GN).

2.5. Conflicts of Obligation and the Axiom (D)

We have already remarked that we do not want to adopt the analogue of
(M), OAçA, in deontic logic. The reason is that if everything that ought
to be is the case, then there is no point to setting up a system of obligations
and permissions to regulate conduct. However, the basic deontic system
D contains the weaker axiom (D), which is the analogue of ∫Aç∂A, a
theorem of M.

(D) OAçPA

Axiom (D) guarantees the consistency of the system of obligations
by insisting that when A is obligatory, it is permissible. A system that
commands us to bring about A, but doesn’t permit us to do so, puts us in
an inescapable bind.

Some people have argued that D rules out conflicts of obligations. They
claim we can be confronted with situations where we ought to do both A
and ~A. For example, I ought to protect my children from harm, and I
ought not to harbor a criminal, but if my child breaks the law and I am
in a position to hide him so that he escapes punishment, then it seems
I ought to turn him in because he is a criminal (OA), and I ought not
to turn him in to protect him from harm (O~A). However, it is easy to
prove ~(OA&O~A) in D, because (D) amounts to OAç~O~A, which
entails ~(OA&O~A) by principles of propositional logic. So it appears
that OA&O~A, which expresses the conflict of obligations, is denied
by D.

I grant that conflicts of obligation are possible, but disagree with the
conclusion that this requires the rejection of D. Conflicts of obligation
arise not because a single system of obligations demands both A and ~A,
but because conflicting systems of obligation pull us in different directions.
According to the law, there is no question that I am obligated to turn in
my son, but according to a more primitive obligation to my children, I
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should hide him. Very often, there are higher systems of obligation that
are designed specifically to resolve such conflicts. If O is used to express
obligation in a higher moral system that says that the law comes first in
this situation, then it is simply false that I should refrain from turning him
in, and it is no longer true that both OA and O~A.

Sometimes we have no explicit system that allows us to resolve con-
flicts between different types of obligation. Even so, we still do not have a
situation where any one system commands both A and ~A. In our exam-
ple, we have two systems, and so we ought to introduce two symbols: (say)
Ol for legal, and Of for familial obligation. Then OlA is true but Ol~A
is false, and Of~A is true while OfA is false when A is read ‘I turn in
my child’. The axiom (D) is then perfectly acceptable for both deontic
operators Ol and Of, and so the conflict of obligations does not show that
(D) is wrong.

2.6. Iteration of Obligation

Questions about the iteration of operators, which we discussed for modal
logics, arise again in deontic logic. In some systems of obligation, we
interpret O so that OOA just amounts to OA. ‘It ought to be that it ought
to be’ is just taken to be a sort of stuttering; the extra ‘oughts’ just don’t
add anything. If this is our view of matters, we should add an axiom to D
to ensure the equivalence of OOA and OA.

(OO) OA ≠ OOA

If we view (OO) as composed of a pair of conditionals, we find that
it ‘includes’ the deontic analogue OAçOOA of the modal axiom (4),
∫Aç∫∫A. In system M, the converse ∫∫Aç∫A is derivable, so it
guarantees the equivalence of ∫∫A and ∫A. But in deontic logic, we
don’t have (M), and so we need the equivalence in (OO). Once we have
taken the point of view that adopts (OO), there seems to be no reason
not to accept the policy of iteration embodied in S5 and simply ignore any
extra deontic operators. So we would add an equivalence to guarantee
the equivalence of OPA and PA.

(OP) PA ≠ OPA

There is another way to interpret O so that we want to reject both
(OO) and (OP). On this view, ‘it ought to be that it ought to be that A’
commands adoption of some obligation that we may not already have.
This is probably a good way to look at the obligations that come from
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the legal system, where we generally have legal methods for changing the
laws and, hence, our obligations. Most systems that allow us to change
our obligations do so only with limits, and these limits determine the obli-
gations that are imposed on us concerning what we can obligate people
to do. Under this reading, OOA says that according to the system, we
have an obligation to obligate people to bring about A, that is, that no
permissible changes in our obligations would release us from our duty
to bring about A. Similarly, OPA says that we have an obligation in the
system to permit A, that is, that we are not allowed to change the obliga-
tions so that people aren’t permitted to do A. For example, according to a
constitutional system, one might be allowed to make all sorts of laws, but
not any that conflict with the fundamental principles of the constitution
itself. So a system of law might obligate its citizens to permit freedom
of speech (OPs), but this would be quite different from saying that the
system permits freedom of speech (Ps).

If this is how we understand O and P, it is clear that we cannot accept
(OO) or (OP). If A is obligatory, it doesn’t follow that it has to be that way,
that is, that it is obligatory that A be obligatory. Also, if A is permitted,
it doesn’t follow that it has to be permitted. On this interpretation of
obligation it is best to use the deontic logic D and drop (OO) and (OP).

There is one further axiom that we may want to add in deontic logics
regardless of which interpretation we like. It is (OM).

(OM) O(OAçA)

This says that it ought to be the case that if A ought to be the case, then it
is the case. Of course, if A ought to be, it doesn’t follow that A is the case.
We already pointed out that OAçA is not a logical truth. But even so, it
ought to be true, and this is what (OM) asserts. In almost any system of
obligation then, we will want to supplement D with (OM).

EXERCISE 2.11 Show that sentences of the following form can be proven
in D plus (OO): OAçOPA.

2.7. Tense Logic

Tense Logics (Burgess, 1984; Prior, 1967) have provoked much less philo-
sophical controversy than have deontic or even modal logics. This is prob-
ably because the semantics for tense logics can be given in a very natural
way, one that is hard to challenge. Still there is no one system for tense that
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everyone agrees on. There are many tense logics, each one corresponding
to a different set of assumptions made about the structure of time. There
is general agreement, however, that these logics can all be based on the
principles of K. A lot is known about how assumptions about the struc-
ture of time correspond to the various systems, a topic to be covered in
Chapter 5.

In tense logic, we have two pairs of operators, one pair for the future,
and the other pair for the past. The operators G and F abbreviate the
expressions ‘it always will be that’ and ‘it will be that’, whereas H and P
abbreviate ‘it always was that’ and ‘it was that’. G and H are the strong
operators and behave like ∫, whereas F and P are weak and behave like
∂. As we would expect, the operators in each pair are interdefinable.

(DefF) FA =df ~G~A (DefP) PA =df ~H~A

So we can construct tense logic using only G and H. Of course we could
start with F and P instead. This has some merit because F and P are the
standard tense operators in English. However, that would complicate the
rules for tense logics, and we would lose the parallels with the other logics
in the modal family. A minimal system of tense logic called Kt results
from adopting the principles of K for both G and H, plus two axioms to
govern the iteration of G and H.

System Kt = PL + (GOut) + (GIn) + (HOut) + (HIn) + (GP) + (HF)

The axiom (HF) may appear to be incorrect, for it says that if A, then
it always was the case that it will be that A. This may seem to have
deterministic overtones. When we develop semantics for tense logic in
Section 5.2, we will show that this worry results from a simple confu-
sion and that (HF) is perfectly acceptable. At the same time, we will
explain which axioms are correctly associated with deterministic assump-
tions about the nature of time.
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Note that the characteristic axiom of modal logic, (M): ∫AçA, is not
acceptable for either H or G since A does not follow from ‘it always was
the case that A’, nor from ‘it always will be the case that A’. However, it
is acceptable in a closely related system where G is read ‘it is and always
will be’, and H is read ‘it is and always was’.

EXERCISE 2.12 Show that sentences of the following forms can be proven
in Kt:

a) PGAçA
b) FHAçA

EXERCISE 2.13 Define what a dual is for tense logics.

2.8. Locative Logic

Now let us discuss a logic that can be interpreted as a logic of time, space,
or of locations in general. Systems of this kind have been called topo-
logical logics (Rescher and Urquart, 1971, Ch. 2), but to avoid confusion
with the very different subject of topology, the term ‘locative logic’ is cho-
sen here. In locative logic, operators Ta, Tb, Tc, and so forth are added
to the notation of PL. The sentence TnA is read ‘It is the case at (or
as of) n that A’, where the term n may abbreviate such expressions as
‘now’, ‘forty years ago’, ‘noon on July 26, 1943’, ‘the Eiffel Tower’, ‘lat-
itude 40 degrees, longitude 30 degrees’, ‘John’s point of view’, and so
forth.

In this sort of logic, we want Tn~A and ~TnA to be equivalent. If not
A holds at n (Tn~A), then it is not the case that A holds at n (~TnA).
Similarly if it is not the case that A holds at n (~TnA), then ~A must hold
at n (Tn~A). A basic system T of locative logic results from adopting the
principles of K along with Tn~A ≠ ~TnA. (It is understood that in the
principles of K the ∫ is replaced with Tn throughout.)

System T = K + (T∼).
(T~) Tn~A ≠ ~TnA

Because of the presence of (T~) in T, we cannot distinguish a
strong and a weak operator. The deontic axiom (D): ∫Aç∂A is
equivalent to ∫~Aç~∫A by (Def∂) and contraposition; the converse
∂Aç∫A amounts to ~∫Aç∫~A, and so (T~) is the locative analogue
of ∫A≠∂A, which ensures that the strong and weak operators are
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equivalent. It will come as no surprise, then, that the T operator behaves
like ∫ as well as ∂ by distributing across &, √, and ç both ways.

EXERCISE 2.14 Show that sentences of the following shapes are provable
in T:

a) Tn(A√B) ≠ (TnA√TnB)
b) Tn(A&B) ≠ (TnA&TnB)
c) Tn(AçB) ≠ (TnAçTnB)

A system stronger than T can be constructed by adding an axiom that
is an analogue of (4).

(TT) TnAçTmTnA

Since there is no distinction between strong and weak operators in T, we
might think of this as the analogue of (5) as well. This axiom is appro-
priate when the term n picks out a fixed “position”. For example, if A
is the case at noon, July 26, 1943, then this is itself the case at any other
time. However, the axiom is not acceptable when n abbreviates an expres-
sion like ‘5 hours ago’, which does not pick out any one time, but refers
to different times depending on the time at which it is evaluated. If A
is true 5 hours ago, it doesn’t follow that this is so at noon, July 26,
1943.

Because of the presence of (T~), the addition of (TT) to T entails
TmTnAçTnA. So the resulting system can demonstrate the equivalence
of TmTnA and TnA, which means that any string of T-operators is equiv-
alent to the right-most one, exactly as was the case in S5.

EXERCISE 2.15 Show that TmTnA ≠ TnA is provable in T plus (TT).

2.9. Logics of Belief

We may introduce operators Ba, Bb, Bc, and so forth so that Bn is read
‘n believes that’. We might think of Bn as a locative operator where the
term n refers to a person’s “position” on what is or isn’t so. But there are
basic differences between a logic of belief and locative logic. First of all,
we clearly do not want ~BnA ≠ Bn~A. A person who doesn’t believe A
does not necessarily believe ~A; he may have no beliefs one way or the
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other. So we will have to reject the axiom that yields the belief analogue
of ∂Aç∫A, and we need to distinguish strong from weak operators in
this logic.

Some people have argued that the analogue of (D) is also unacceptable
for belief. On this view it is possible for a person to hold contradictory
beliefs so that both BnA and Bn~A are true. If this is so, BnAç~Bn~A
would have a true antecedent and a false conclusion.

There are also some difficulties with adopting the rules of K in belief
logic, for these rules would sanction the inference from any theorem A
to BnA. As a result, the principles of K ensure that every theorem of
logic is believed. But that view is controversial to say the least. Let us
imagine a very complicated theorem of logic, say one that would fill a
whole book if it were written down. It would be unlikely that a person
could understand it, much less believe it. So it seems wrong to adopt a
rule that ensures that all theorems are believed. One might argue in reply
that all theorems of logic count as the same belief, so that any person
who is committed to any simple tautology (say p√~p) is thereby commit-
ted to any other theorem. However, this reply takes a fairly nonstandard
attitude toward what count as identical beliefs. So it would appear that
constructing a logic of belief is a difficult project. It seems that virtually
all of the principles we have discussed for modal logics are controver-
sial on some grounds or other. For this reason we may feel at a loss.
Part of the problem is that acceptability of the axioms we are consid-
ering depends on one’s theory of what beliefs are and how to tell the
difference between them. This is a difficult problem in the philosophy of
mind. Until it is solved, we cannot commit ourselves to any particular
logic.

However, there is another way of looking at belief logic. Instead of
describing belief behavior, a logic of belief might be a normative theory,
recording what people ought to believe (whether they actually do so or
not). On the normative reading, BnA says that n ought to believe A. Now
the project of building a belief logic looks more promising. Clearly we will
want to rule out contradictory beliefs, by accepting (D): BnAç~Bn~A.
Furthermore, the objection to the principles of K no longer worries us.
There may be a theorem of logic that is too long for me to believe, but I
ought at least to believe it. So it looks as though a normative belief logic
should be at least as strong as D.

EXERCISE 2.16 Write an essay giving reasons for or against accepting (M),
(4), and (5) in a normative belief logic.
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2.10. Provability Logic

(This section is for students with some knowledge of the foundations of
mathematics.)

Modal logic has been useful in clarifying our understanding of central
results concerning provability in the foundations of mathematics (Boolos,
1993). Provability logics are systems where the propositional variables p,
q, r, and so forth range over formulas of some system S for mathemat-
ics, for example Peano’s system PA for arithmetic. Godel showed that
arithmetic has strong expressive powers. Using code numbers for arith-
metic sentences, he was able to demonstrate a correspondence between
sentences of mathematics and facts about which sentences are and are
not provable in PA. For example, he showed that there is a sentence C
that is true just in case no contradiction is provable in PA and there is a
sentence G (the famous Godel sentence) that is true just in case it itself
is not provable in PA.

In provability logics, ∫p is interpreted as a formula (of arithmetic)
that expresses that what p denotes is provable in a given system S for
arithmetic. Using this notation, sentences of provability logic express facts
about provability. Since ƒ indicates a contradiction, ~∫ƒ says that S is
consistent, and ∫AçA says that S is sound in the sense that when it
proves A, A is indeed true. Furthermore, the box may be applied to any
sentence. So, for example, when S is PA, ∫~∫ƒ makes the dubious claim
that PA is able to prove its own consistency, and ~∫ƒ ç ~∫~∫ƒ asserts
(what Godel proved in his second incompleteness theorem) that if PA is
consistent then PA is unable to prove its own consistency.

Although provability logics form a family of related systems, the system
GL is by far the best known. It results from adding the following axiom
to K:

(GL) ∫(∫AçA)ç∫A

The axiom (4): ∫Aç∫∫A is provable in GL, so GL is actually a strength-
ening of K4. However, axioms such as (M): ∫AçA, and even the weaker
(D): ∫Aç∂A, are not available (nor desirable) in GL. In provability
logic, provability is not to be treated as a brand of necessity. The reason
is that when p is provable in a given system S for mathematics, it does
not follow that p is true since S may not be consistent. Furthermore, if p
is provable in S (∫p), it need not follow that ~p lacks a proof (~∫~p =
∂p). S might be inconsistent and so prove both p and ~p.

Axiom (GL) captures the content of Loeb’s Theorem, an important
result in the foundations of arithmetic. ∫AçA says that S is sound for A,
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that is, that if A were proven, A would be true. Such a claim might not be
secure since if S goes awry, A might be provable and false. Axiom (GL)
claims that if S manages to prove the sentence that claims soundness for
a given sentence A, then A is already provable in PA. Loeb’s Theorem
reports a kind of modesty on the part of the system PA (Boolos, 1993,
p. 55). PA never insists (proves) that a proof of A entails A’s truth, unless
it already has a proof of A to back up that claim.

It has been shown that system GL is adequate for provability in the
following sense. Let a sentence of GL be always provable exactly when
the sentence of arithmetic it denotes is provable no matter how its vari-
ables are assigned values to sentences of PA. Then the provable sentences
of GL are exactly the sentences that are always provable. This adequacy
result has been extremely useful since general questions concerning prov-
ability in PA can be transformed into easier questions about what can be
demonstrated in GL. For example, it is a straightforward matter to prove
~∫ƒ ç ~∫~∫ƒ in GL, and this allows us to demonstrate immediately
the content of Godel’s second incompleteness theorem, namely, that if
PA is consistent, then PA cannot prove its consistency.

EXERCISE 2.17 Prove ~∫ƒ ç ~∫~∫ƒ in GL.
(Hint: Begin with the following instance of GL: ∫(∫ƒçƒ)ç∫ƒ. Use (Def~)
and principles of K to demonstrate ∫~∫ƒ ç ∫(∫ƒçƒ). Put these two results
together to obtain ∫~∫ƒç∫ƒ, and then apply Contraposition to the result.)
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Basic Concepts of Intensional Semantics

3.1. Worlds and Intensions

A pervasive feature of natural languages is that sentences depend for their
truth value on the context or situation in which they are evaluated. For
example, sentences like ‘It is raining’ and ‘I am glad’ cannot be assigned
truth values unless the time, place of utterance, and the identity of the
speaker is known. The same sentence may be true in one situation and
false in another. In modal language, where we consider how things might
have been, sentences may be evaluated in different possible worlds.

In the standard extensional semantics, truth values are assigned directly
to sentences, as if the context had no role to play in their determination.
This conflicts with what we know about ordinary language. There are
two ways to solve the problem. The first is to translate the content of a
sentence uttered in a given context into a corresponding sentence whose
truth value does not depend on the context. For example, ‘It is raining’
might be converted into, for example, ‘It is raining in Houston at 12:00 EST
on Dec. 9, 1997 . .’. The dots here indicate that the attempt to eliminate all
context sensitivity may be a never-ending story. For instance, we forgot
to say that we are using the Gregorian Calendar, or that the sentence is
to be evaluated in the real world.

There is a more satisfactory alternative. Instead of trying to repair
ordinary language by translating each of its context-dependent sentences
into a complex one that makes the context of its evaluation explicit, the
account of truth assignment is adjusted to reflect the fact that the truth
value depends on the context. The central idea of intensional semantics is
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to include contexts in our description of the truth conditions of sentences
in this way.

To do this, let us introduce a set W, which contains the relevant contexts
of evaluation. Since logics for necessity and possibility are the paradigm
modal logics, W will be called the set of (possible) worlds. But in the
same way that � is a generic operator, W should be understood as a
generic set including whatever contexts are relevant for the understand-
ing of � at issue. No attempt is made in intensional semantics to fix the
“true nature” of W, and there is no need to do so. When one wishes
to apply modal logic to the analysis of a particular expression of lan-
guage, then more details about what the members of W are like will
be apparent. If � is a temporal operator, for example, W will contain
times; if � means necessarily, W will contain possible worlds, and so on.
The semantics given here lays out only the broadest features concerning
how truth values are calculated, allowing it to be used for many different
applications.

Some students worry that this failure to define W in more detail is a
defect. However, a similar complaint could be lodged against the seman-
tics for quantificational logic. There a domain D of quantification is intro-
duced, but no attempt is made to say exactly what D contains. This is only
proper, for it is not the province of logic to decide ontological questions
about what really exists, or what the quantifier “really” means. The same
point can even be made for propositional semantics. The truth values T
(true) and F (false) are, as far as semantics goes, merely two separate
objects. There is no attempt to explain what a truth value really is, nor is
one needed.

In intensional semantics, an intensional model (for a language) is
defined as a pair <W, a> where W is understood as a (nonempty) set
of contexts (called worlds), and a is an assignment function for the lan-
guage. In extensional semantics, the assignment function a would assign
truth values to sentences directly. So if g abbreviates ‘grass is green’ and s
abbreviates ‘snow is green’, then assignment a might give truth values as
follows: a(g)=T and a(s)=F. However, in intensional semantics, the truth
value of sentence A depends on the world w at which A is evaluated. For
this reason, an assignment in intensional semantics assigns to A a different
truth value for each of the possible worlds w in W. The truth value of A
on assignment a at world w is notated aw(A). So, for example, if r is the
real world, then ar(g)=T, and ar(s)=F, but in the case of an unreal world
u, where grass is white and snow is green, we would have au(g)=F, and
au(s)=T. We will call aw(A) the extension of A (on a at w).
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3.2. Truth Conditions and Diagrams for ç and ƒ

The main task of semantics is to give the truth conditions for the log-
ical symbols ƒ, ç, and �. This means that a definition must be pro-
vided that explains how the truth values of complex sentences depend
on the values of their parts. In propositional logic the truth conditions
for the connectives are ordinarily given by the familiar truth tables.
Instead diagrams will be used in this book to present and calculate truth
conditions.

To represent that A is true at world w (aw(A)=T), we will draw a
region, labeled by w, which contains A.

To show A is false at w (aw(A)=F), we could place A outside the region.

An assignment should not be allowed to give sentences truth values
in an arbitrary way. For example, if aw(p)=T and aw(q)=F, we do not
want aw(pçq) to be T. To complete our definition of what an assignment
a is, we must lay down conditions on how a assigns values to ƒ and to
sentences containing ç. First, we will insist that a respects the idea that
ƒ stands for a contradictory sentence by stipulating that a always assigns
ƒ the value F in all the possible worlds.

(ƒ) aw(ƒ)=F.

In this and all future statements about a, it is assumed that w is any member
of W. Second, we stipulate that a assigns values to sentences of the form
AçB according to the truth table for the material conditional. The table
can be summarized in the following condition:

(ç) aw(AçB)=T iff aw(A)=F or aw(B)=T.

The conditions (ƒ) and (ç) together fix the truth conditions for all the
other connectives. For example, the truth clause of ~ must be (~).

(~) aw(~A)=T iff aw(A)=F.
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This can be shown as follows:

aw(~A)=T iff aw(Açƒ)=T (Def~)
iff aw(A)=F or aw(ƒ)=T (ç)
iff aw(A)=F because (ƒ) rules

out the possibility
that aw(ƒ)=T.

The semantical condition (~) ensures that ~A is true in a world exactly
when A is false in the world. This means that the following two diagrams
are equivalent:

It is inconvenient to have sentences “dangling” outside worlds in our
diagrams, so when we want to show that aw(A) is F, we will put ~A inside
the world w instead.

The condition (~) ensures the following:

(~F) If aw(~A)=F, then aw(A)=T.

We can represent this fact in a diagram as follows:

This diagram represents a rule for adding sentences to worlds. Above the
line, we have shown ~A is F in w by putting ~~A there; below the line,
we show what follows, namely, that A is T in w.

We will also want to diagram the condition (ç), which gives the truth
behavior of ç.

(ç) aw(AçB)=T iff aw(A)=F or aw(B)=T.

To do so, two diagrams are needed, one for when AçB is true and one for
when AçB is false. First, consider what (ç) tells us when aw(AçB)=F.
In that case aw(AçB)�=T, and by (ç) it follows that it is not the case
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that aw(A)=F or aw(B)=T. But this amounts to saying that aw(A)=T
and aw(B)=F.

Summarizing, we have the following fact:

(çF) If aw(AçB)=F, then aw(A)=T and aw(B)=F.

(çF) can be expressed in the following diagram:

The diagram says that if we find ~(AçB) in world w, we may also add
both A and ~B to w. This amounts to saying that if AçB is F in w, then
A is T in w and B is F in w.

In case AçB is true, condition (ç) tells us the following:

(çT) If aw(AçB)=T, then aw(A)=F or aw(B)=T.

Here is the diagram for the condition (çT).

Above the line, we have indicated that AçB is T in w. Below the line we
have constructed two branches, indicating that either A is F or B is T in
w. If you know the tree method for checking for validity in propositional
logic, this use of branches to indicate alternatives will be familiar.

EXERCISE 3.1 Create diagrams that express the following facts:

a) If aw(A)=T and aw(AçB)=T, then aw(B)=T.
b) If aw(AçB)=T and aw(B)=F, then aw(A)=F.
c) aw(A&B)=T iff aw(A)=T and aw(B)=T. (Use two diagrams, one indicating

what happens when aw(A&B)=T, and the other when aw(A&B)=F.)

3.3. Derived Truth Conditions and Diagrams for PL

The propositional logic connectives &, √, and ≠ are defined in terms of
ç and ~ (actually ~ is defined in turn using ƒ). Given (Def&), (Def√),
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(Def≠), and the truth conditions (ç) and (~), it is possible to calculate
the truth clauses for &, √, and ≠. Diagrams are an especially perspicuous
way to present this sort of reasoning. For example, the truth clause for &
is (&):

(&) aw(A&B)=T iff aw(A)=T and aw(B)=T.

This can be presented in two diagrams as follows:

These diagrams can be shown derivable as follows:

Similar methods may be used to show the derivability of (√), the truth
condition for √, which can be expressed in the following diagrams for √:

(√) aw(A√B)=T iff aw(A)=T or aw(B)=T.

EXERCISE 3.2 Show that the above diagram rules follow from the rules for
~ and ç.

So far, diagrams for ≠ have not been given. It may be just as easy
for you to work out truth conditions for ≠ by converting A≠B into
(AçB)&(BçA) and using the rules for ç and &. However, if you are
interested in derived rules for ≠, the following pair will do. They indicate
the basic facts about the ≠ truth table. When A≠B is T, the values of A

       
            

       



Basic Concepts of Intensional Semantics 63

and B match, so either A and B are both T or A and B are both F. When
A≠B is F, the values for A and B fail to match, which means that either
A is T and B is F or A is F and B is T.

These diagrams together correspond to the following derived truth clause
for ≠:

(≠) aw(A≠B)=T iff aw(A)=T iff aw(B)=T.

3.4. Truth Conditions for �

So far, nothing has been said about truth conditions for the modal operator
�. A simple way of defining them is to stipulate that �A is true iff A is
true in every possible world. We will call this the global interpretation of
�. Although the global interpretation is appropriate for some uses of ‘it is
necessary that’, it is too restrictive for a generic modal operator. Imagine,
for example, that � symbolizes the future tense operator ‘it will always be
the case that’. On this interpretation, �A does not say that A is true at all
worlds (times), it claims that A is true at times in the future. It is enough
for �A to be true at w if A is true at all times later than w. Similarly, in
deontic logic, where � is read ‘it is obligatory that’, the truth of �A does
not demand the truth of A in every possible world, but only in worlds
where people do what they ought. Even in modal logic, we may wish
to restrict the range of possible worlds that are relevant in determining
whether �A is true. For example, I might say that it is necessary for me
to turn my paper in on time, even though I know full well that there is a
possible world where I turn it in late. In ordinary speech, the necessity of
A does not demand truth of A in all possible worlds, but only in a certain
class of worlds that I have in mind (for example, worlds where I avoid
penalties for late papers). To provide a generic treatment of �, we must
say that �A is true in w iff A is true in all worlds that are related to w
in the right way. So for each operator �, we introduce a corresponding
(binary) relation R on the set of possible worlds W, traditionally called
the accessibility relation (or the Kripke relation in honor of Saul Kripke,
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who first proposed it). The accessibility relation R holds between worlds
w and v iff v is a world where A must be true if �A is true at w. Exactly
what R is will depend on our reading of �. In a future tense logic, for
example, R is the relation earlier than on the set of times W. In Chap-
ter 5, we will say more about how R is understood.

Since the accessibility relation R is needed to give the truth conditions
for �, we need to add it to our intensional models. So let a K-model (for a
language) be a triple <W, R, a>, where W is not empty, and R is a binary
relation on W. The initial part of the K-model <W, R> is called the frame
of the model. The assignment function a in a K-model obeys the truth
clauses (ç) and (ƒ), together with the following condition for �:

(�) aw(�A)=T iff for each v such that wRv, av(A)=T.

This condition is equivalent to a pair of conditions, one for when �A is
true and one for when �A is false.

(�T) If aw(�A)=T, then for each v such that wRv, av(A)=T.
(�F) If aw(�A)=F, then for some v such that wRv, av(A)=F.

To see why (�F) follows from (�), note that if aw(�A)=F, then
aw(�A)�=T, so it follows by (�) that it is not the case that for each v
such that wRv, av(A)=T. But that means that there must be some world
v such that wRv where av(A)=F.

Chapter 5 will explain how details concerning the semantical behavior
of the various modal operators may be reflected in this treatment of
� by introducing special conditions on R. For example, to obtain the
global interpretation, simply stipulate that wRv for all worlds w and v.
Then (�) has the effect of saying that aw(�A)=T iff av(A)=T in all
possible worlds v.

Condition (�) is the first clause that involves the worlds in a funda-
mental way. The clause for ~ has the property that the extension of ~A
at w depends on the extension of A at the same world, and similarly for
ç. But we cannot determine the extension of �A at w on the basis of the
extension of A at w. For �A to be T at w, A must be T at all accessible
worlds. This means that the extension of A at a world does not deter-
mine the extension of �A at that world; instead we must know the whole
intension of A, that is, we need to know the truth values A takes in other
worlds. This is the defining feature of the intensional operator �. It is not
truth functional because the extension (truth value) of A (in w) does not
determine the extension of �A (in w). However, this failure does not rule
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out a semantical analysis of � because we can still specify the truth value
of �A in terms of the intension of A, that is, the pattern of truth values
that A has across all the possible worlds.

The truth condition for � may be represented in diagrams, provided
that we have a way to represent the accessibility relation R. We will rep-
resent wRv by drawing an arrow from world w to world v.

This arrow represents a pathway that makes v accessible from w.
Condition (�) may then be represented by two diagrams, one for when

�A is true (�T), and the other for when �A is false (�F). Here is the
diagram for (�T):

(�T) If aw(�A)=T, then for each v such that wRv, av(A)=T.

Above the line, we see a world w where �A is T, and another world v
that is accessible from w; below the line we record what follows from this,
namely, that A is T in v.

For (�F) we have the following diagram:

(�F) If aw(�A)=F, then for some v such that wRv, av(A)=F.

Here we see that �A is F at w. From this it follows that there is another
world v accessible from w, at which A is F.

       
            

       



66 Modal Logic for Philosophers

Notice the difference in the position of the horizontal line in the last two
diagrams. This is crucially important. In the case of (�T), the parts above
the line must already be in place before the conclusion may be drawn.
The line cuts through situation v, indicating that the existence of v and the
arrow from w to v must be already available before A may be placed in v.
In the case of (�F), only world w is above the line, which shows that once
we know �A is F, we know there must be some accessible world where A
is F. This means that (�T) and (�F) behave very differently. In order to
apply (�T), we must have �A in world w and an arrow to another world
v before the rule can be applied.

On the other hand, (�F) is quite different. To apply this rule, all we need
is ~�A in world w. We do not need to have the arrow pointing to another
world. Instead, the rule requires the introduction of a new arrow and a
new world where ~A is placed.

3.5. Truth Conditions for ∂

(Def∂), the definition of ∂ in terms of �, along with the truth conditions
(�) and (~), entails that the truth clause for ∂ must be the following:

(∂) aw(∂A)=T iff for some v, wRv and av(A)=T.

We will give the proof in one direction using diagrams and leave the
other direction as an exercise. We want to show (∂T), which corresponds
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to the following diagram:

(∂T) If aw(∂A)=T then for some v, wRv and av(A)=T.

The proof can be presented using diagram rules for (�) and (~) as follows:

EXERCISE 3.3

a) For the following diagram rule for (∂F), draw diagrams for Before and
After the rule is applied.

(∂F) If aw(∂A)=F and wRv, then av(A)=F.

b) Show that (∂F) follows from (�), (~), and (Def∂) using diagrams.

3.6. Satisfiability, Counterexamples, and Validity

The purpose of providing semantics for a language is to give a careful
definition of what it means for an argument to be valid. We are now ready
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to give this definition for a generic intensional operator �. Remember
that a K-model for a language was a triple <W, R, a>, consisting of a
nonempty set of worlds W, a (binary) relation R, and an assignment
function a that assigns to each sentence of the language at every world w in
W a truth value (either T or F) according to the truth conditions (ƒ), (ç),
and (�).

The definition of validity is developed by first defining the terms ‘sat-
isfied’, ‘satisfiable’, and ‘counterexample’.

A list of sentences H is satisfied at w on assignment a
iff aw(B)=T for every member B of H.

We write ‘aw(H)=T’ to indicate that H is satisfied at w on a.

A list of sentences H is K-satisfiable
iff there is a K-model <W, R, a> for a language containing sentences
of H and a world w in W where aw(H)=T (i.e. where H is satisfied
at w).

When a list of sentences H is K-satisfiable, it is logically possible for
the sentences to be true together. Some logic books call satisfiable sets
logically consistent (or consistent for short).

An argument H / C has a K-counterexample
iff the list H, ~C is K-satisfiable.

So the argument H / C has a K-counterexample exactly when it is possible
to find a model and a world where the hypotheses are all true and the
conclusion is false.

An argument H / C is K-valid
iff H / C has no K-counterexample.

We will also say that a sentence A is K-valid iff the argument /A is K-valid,
that is, when the argument with no hypotheses and A as its conclusion is
K-valid.

It will be useful to introduce a few abbreviations. To indicate that the
argument H / C is K-valid, we will write: ‘H …K C’. Since an argument
has a K-counterexample exactly when it is not K-valid, ‘H ÚK C’ indicates
that H / C has a K-counterexample. Finally, ‘…K A’ says that the sentence
A is K-valid.

This definition of validity may seem to be unnecessarily long-winded,
especially since there is a more direct way to do the job. The basic intuition
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is that a valid argument has the feature that if all its hypotheses are T,
then so is its conclusion. In the case of modal logic, an alternative (and
more direct) definition would go like this:

H …K C iff
for all K-models <W, R, a> and all w in W,
if aw(H)=T, then aw(C)=T.

However, we have chosen the long-winded definition to set the stage for
later developments and to establish the relationship between validity and
other important logical concepts such as that of a counterexample and
a satisfiable set. It is worth pausing a moment to check that the long-
winded definition and the alternative definition say the same thing. This
can be done by showing that the alternative definition is equivalent to the
long-winded one. Here is how. Note that H …K C holds iff H / C has no
K-counterexample. But to say that H / C has no K-counterexample is to
say that H, ~C is not K-satisfiable, which means in turn that you cannot
find a K-model <W, R, a> with a w in W where aw(H)=T and aw(C)=F.
But that just means that for all K-models <W, R, a> and all w in W, if
aw(H)=T, then aw(C)=T. This is the alternative definition.

EXERCISE 3.4

a) Show that …K A iff for all models <W, R, a> and all w in W, aw(A)=T.
(Hint: Unpack the definition for …K A.)

b) Show that H …K A iff for all models <W, R, a> and all w in W, if aw(H)=T,
then aw(A)=T.

c) Create a diagram that shows that H ÚK C, that is, that the argument H / C
has a K-counterexample.

3.7. The Concepts of Soundness and Completeness

The main reason for developing semantics for a logical system is to provide
a standard for correctness – a way to distinguish the valid arguments
from the invalid ones. The semantics for a logic gives a formal account
of which arguments are the valid ones. However, there is no guarantee
that a system of rules that we happen to chose is correct. There may be
provable arguments of the system that are not valid, and there may be
valid arguments that are not provable. One of the primary concerns of
this book will be to show that the rules for the various modal logics are
adequate. When the rules are adequate, the arguments that are provable
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are exactly the valid ones. Showing adequacy of a system of logic S involves
two steps. First we must show soundness of S.

(Soundness) If an argument is provable in S, then it is valid.

Showing soundness is relatively easy. The hard part is showing complete-
ness.

(Completeness) If an argument is valid, then it is provable in S.

The material in the next chapters is designed to provide tools for showing
completeness of modal logics.

3.8. A Note on Intensions

We have referred to aw(A) (the truth value of A at world w assigned by
a) as the extension of A (on w). On the other hand a(A), the intension
of A (on assignment a), is a function that describes the whole pattern of
truth values assigned to A (by a) at the different possible worlds. Here
is an example to make the idea of an intension more concrete. Consider,
for example, the following abbreviations:

g=‘Grass is green’ s=‘Snow is green’ d=‘Dogs are pets’

Imagine that there are three possible worlds: r (the real one), u (a world
like the real one except that snow is green and grass is white), and v (a
world like the real one except that dogs aren’t pets), Then the assignment
function a should award the following truth values:

ar(g)=T ar(s)=F ar(d)=T
au(g)=F au(s)=T au(d)=T
av(g)=T av(s)=F av(d)=F

Now consider the left-hand column in this chart. It keeps track of the val-
ues assigned to g in the different possible worlds. This column corresponds
to a function a(g) called the intension of g, with the following behavior: to
world r it assigns T, to u it assigns F, and to v it assigns T. So a(g) is a func-
tion whose domain is W and range is the set of truth values {T, F}. It gives
an account of what the truth value of g is for each of the worlds in W. The
intension of g allows us to determine the truth value as soon as a world w
is given, for all we have to do is apply the function a(A) to w to obtain the
appropriate truth value. In general, the intension a(A) (of A on model
<W, R, a>) is a function that assigns to each member of W a member of
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the set of truth values {T, F}. The result of applying the function a(A) to
the world w is a truth value aw(A), which is the extension of A at w on
assignment a.

It is a standard tradition in modal semantics to identify the intension of
a sentence with its meaning (Carnap, 1947). Though there are problems
with this treatment of meaning, many philosophers still find the basic idea
an attractive starting point for more sophisticated accounts (Cresswell,
1985).
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Trees for K

4.1. Checking for K-Validity with Trees

The diagram rules reviewed in the last chapter provide an efficient method
for checking whether an argument is K-valid. Let us illustrate the method
with a few examples. First, we will show that the argument ∫(pçq) /
~∫qç~∫p is K-valid. The basic strategy is to assume that the argument
is not K-valid and derive a contradiction. So assume that ∫(pçq) ÚK
~∫qç~∫p, that is, that ∫(pçq) / ~∫qç~∫p has a K-counterexample.
Then there must be a K-model <W, R, a> and some world w in W where
aw(∫(pçq))=T and aw(~∫qç~∫p)=F. Let us diagram that world w.

Since aw(~∫qç~∫p)=F, it follows by (çF) that aw(~∫q)=T and
aw(~∫p)=F.

But if aw(~∫p)=F, then by (~F), we know that aw(∫p)=T.
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Since aw(∫q)=F, we know by (∫F) that there is a world v where av(q)=F.

(The arrow between w and v has been drawn to the side to clarify the
structure of the tree and to make for more compact diagrams.) Since
aw(∫p)=T, and aw(∫(pçq))=T, we know by (∫T) and the fact that wRv
that av(p)=T and av(pçq)=T.

Because av(pçq)=T, we know that either av(p)=F or av(q)=T by (çT).
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The left-hand branch in v indicates that av(p)=F. But this alternative is
not possible because we already know that av(p)=T. We will record that
this alternative is impossible by entering the contradiction mark on the
left branch. This corresponds to applying the (ƒIn) rule to that branch,
so we label that step with (ƒIn).

Here is a picture that presents the (ƒIn) rule for trees:

This rule allows us to enter ƒ on any branch that contains a contradictory
pair in the same world. We will say a branch is closed when it contains
ƒ. So the left-hand branch of v is closed. The right-hand branch is also
closed because it shows that a assigns q both T and F in v.

Both branches of the tree in world v are now closed, which shows that our
attempt to find a model where aw(∫(pçq))=T and aw(~∫qç~∫p)=F
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failed. So the argument ∫(pçq) / ~∫qç~∫p has no counterexample,
and so must be K-valid.

A tree is closed when all of its branches are closed. A closed tree indi-
cates that the argument from which it was constructed is K-valid. If every
possible step has been carried out and the tree contains a branch that
is not closed, the tree is open and the argument from which it was con-
structed is not K-valid. In order to avoid incorrectly diagnosing validity, it
is important to have a check-off procedure to make sure that every possi-
ble step in a tree has been carried out. Otherwise the tree may appear to
be open when there is a step yet to perform that would close it. Crossing
out steps as they are performed is a good practice since it makes it easy
to see whether all possible steps have been carried out. Any sentence not
crossed out, other than a propositional variable p or its negation ~p, has
yet to be worked on.

It is important to apply the (∫F) and (∫T) rules in the right order. For
example, it would not be correct to complete the tree for the argument
∫(pçq) / ~∫qç~∫p in this manner:

The reason this is wrong has been explained in Section 3.4. Here (∫T)
has been applied to ∫p in world w to create an arrow and a new world v.
But the (∫T) rule cannot be applied unless the arrow and world v already
exist in the tree. (The same is true of the (∂F) rule.) When sentences of
the form ∫A or ~∂A appear in a world, nothing can be done with them
until an arrow pointing to a new world has been added to the tree by some
other rule. So it is important that (∫F) be applied to ~∫q, first, to create
world v, so that (∫T) can be correctly applied afterwards.
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To avoid this kind of problem, the best strategy is to apply all steps one can
within a world, then apply (∫F) and (∂T), and follow with applications
of (∫T) and (∂F).

In the argument we just checked, ~, ç, and ∫ were the only logical
symbols. So we needed only the basic semantical rules. In the next two
examples, we will need to use some of the derived rules. Let us show that
∫(p&q) / ∫p&∫q is K-valid. We begin by assuming that this argument
has a counterexample. So there must be a model with a world w such that
aw(∫(p&q))=T and aw(∫p&∫q)=F.

Since aw(∫p&∫q)=F, it follows from (&F) that either aw(∫p)=F or
aw(∫q)=F.

Since aw(∫p)=F, it follows by (∫F) that there is a world v such that wRv
and av(p)=F. By (∫T) and aw(∫(p&q))=T, it follows that av(p&q)=T.

But now world v closes because av(p)=T follows from (&T).

So the left-hand branch in w is closed.
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The right-hand branch is also closed by parallel reasoning: If aw(∫q)
were F, there would have to be a world u where wRu and au(q)=F. Then
by (∫T) au(p&q)=T and au(q)=T, which is contradictory.

It follows that both alternatives are impossible, and so the assumption that
the argument has a counterexample must be rejected. We have discovered
that it is impossible for ∫(p&q) / ∫p&∫q to have a K-counterexample,
and so we know that it is K-valid.

EXERCISE 4.1 Use diagrams to show that the following arguments are
K-valid:

a) ∫(pçq) / ∂pç∂q
b) ∫p&∫q / ∫(p&q)
c) ∂p√∂q / ∂(p√q)

In more complex trees it may not be entirely clear how results of apply-
ing a rule should be placed on the branches of a tree. To illustrate the prob-
lem and its solution, let us work out the tree for the following argument:
∫((p&q)çr), ∫p ÷ ∫(qçr). The initial steps of the tree look like
this:
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We must now apply (&F) to ~(p&q), and there are two open branches
left. The natural (and correct) thing to do at this point is replace the results
of applying the rule below ~(p&q), at which point the tree closes.

There are two reasons why the results of applying the (&F) rule to ~(p&q)
should not go on the right-hand branch that ends with r. First, that branch
already contains a contradiction, so there is no need to work there any
more. The general principle follows.

There is no need to add new steps to a branch that is already closed.

The second reason is that the results of applying a tree rule are only
placed on the open branches below the point that a rule is applied. This
principle is important, and so worth naming.

The Placement Principle. The results of applying a rule to a tree are
placed on every branch below the sentence to which the rule is applied.

There is an important point about arrows between worlds that has yet
to be discussed. We will show that the argument ∫(p√q), ∫~p / ∫q√∫r is
valid. Assume that the argument has a counterexample, and apply (√F)
to obtain the following diagram.
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This indicates that both ∫q and ∫r are false at w. Since ∫r is false, it
follows by (∫F) that there is some world where q is F.

Now (∫T) and (√T) can be used to complete work in world v leaving an
open branch on the right.

There is still work to be done on this tree because we have yet to apply
(∫F) to the sentence ~∫q in world w. So we need to continue the open
branch by adding a new world u (headed by ~q) to the diagram, with an
arrow from w to u.
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Note that the branch does not close at this point because ~q appears in u
while q appears in v, which is not a contradictory assignment of values to
q. Notice also that the fact that ~∫r and ~∫q were in w tells us that there
are worlds containing ~r and ~q, but we do not know whether q and r are
false in the same world. So it is essential to create a new world for each use
of (∫F). When we complete the diagram for world u, we discover that the
tree closes, which means that the argument was K-valid.

Had (∫F) been applied to ~∫q before it was applied to ~∫r, the tree
would have closed much more quickly.
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Some students become confused when a tree contains a single open
branch and more than one use of (∫F) must be applied. There is a ten-
dency for some of them to leave steps “dangling”, that is, unattached to
any branch. For example, in constructing the above tree, after creating
world v, some students do this:

But this tree is INCORRECT because it violates the Placement Principle.
That principle demands that when (∫F) is applied to ~∫q, creating world
u, the results must be placed at the end of an open branch already in
the tree. This means that the world u and its contents must be placed
so that they form an extension of the open branch that ends with q in
world v. Following the Placement Principle is important in such cases
because violating it would cause us to incorrectly diagnose the validity
of arguments. The incorrect tree just given would prompt us to diagnose
the argument as invalid since there appears to remain an open branch in
world v; but the argument is in fact valid.

EXERCISE 4.2 Show K-valid with trees.

a) ∫p, ∫(pçq) / ∂rç∫q
b) ∂p&∂q / ∂(p√r)
c) ∂~qç∫∫~~p / ∫∫p√∫q

4.2. Showing K-Invalidity with Trees

Now we will show how the tree method may be used to detect K-invalid
arguments. Our first trees will demonstrate that the difference in scope
between ∫(pçq) and pç∫q matters. Both of these arguments will be
shown invalid: ∫(pçq) / pç∫q and pç∫q / ∫(pçq). Here is the
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beginning of the tree diagram for the argument ∫(pçq) / pç∫q. We
have begun by negating the conclusion and applying (çF).

Because ~∫q is in w, we must apply (∫F) to create a new world v, to
which we add pçq by (∫T).

We then apply (çT) in world v.

Notice that the right-hand branch in v is closed because it contains ƒ.
However, the left-hand branch is open, for it contains no contradiction.
This means the opening segment in world v remains open, leaving the
branch in world w open as well. (Though p and ~p both appear on the
open branch, this does not represent an inconsistent assignment because
p and ~p are found in different worlds.)

So the tree is open, and this tells us that ∫(pçq) / (pç∫q) is invalid. In
fact, the tree can be used to construct an explicit K-counterexample to the
argument. Remember, a K-counterexample for ∫(pçq) / (pç∫q) would
be a K-model <W, R, a>, such that for some w in W, aw(∫(pçq))=T and
aw(pç∫q)=F. In order to give such a counterexample, we must say what
W is, we must define R, and we must define the assignment function a.
W will be the set of worlds we have constructed in our tree diagram. In
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this case we have two worlds in W, namely, w and v. The definition of R
is given by the arrows in the diagram. We see an arrow from w to v, so we
know that wRv. Since no other arrows appear, there are no more positive
facts about R, with the result that the following are all false: wRw, vRv,
vRw. Now we are ready to define the assignment function a. We note
which propositional variables appear (unnegated) in each world on our
open branch. If variable p appears in a world w, then we let aw(p)=T,
and if it does not appear, we let aw(p)=F. So, for example, in the tree just
completed, aw(p)=T (because p appears in w), whereas aw(q)=F (because
q does not appear in w). Furthermore, av(p)=F and av(q)=F. The values
given by a for ƒ, and complex sentences are determined by the standard
semantical clauses (ƒ), (ç), and (∫).

The model constructed from a tree in this manner is called the tree
model. Let us represent the tree model we have just created in a “cleaned-
up” version, where we include only the propositional letters or negations
of propositional letters in the original tree. Note that although ~q does
not appear in w in the original tree, we put it in the cleaned-up tree to
indicate that our assignment function makes q F in w.

This diagram represents the tree model for our open tree. It is a K-model
<W, R, a> for a language with p and q as its only variables, where W
contains two worlds w and v, where wRv, and where a is defined so that
aw(p)=T, aw(q)=F, av(p)=F, and av(q)=F. Clearly <W, R, a> satisfies
the definition for a K-model (Section 3.6). This model, we claim, is a
counterexample to ∫(pçq) / (pç∫q). To verify that this is so, let us
fill in the cleaned-up diagram to represent the values for the complex
formulas. For example, aw(∫q) must be F according to (∫) because q is F
in a world v such that wRv. Since aw(p)=T, pç∫q must be F in w by (ç).
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We can see also that since av(p)=F, av(pçq) must be T. Since v is the
only world such that wRv, pçq is T in all worlds such that wRv, and so
∫(pçq) must be T in w.

We have verified that the model we have constructed is a counterexam-
ple to ∫(pçq) / (pç∫q), for aw(∫(pçq))=T and aw(pç∫q)=F. Notice
the strategy we have used in verifying the counterexample diagram. We
have given reasons for adding back the complex sentences that appeared
in the original tree.

Now let us use the same method to find a counterexample for pç∫q /
∫(pçq). Here is the beginning of the tree:

We have begun by applying (çT), which means we must draw a fork in
world w. This represents two possibilities about the values a gives at w:
either aw(p)=F or aw(∫q)=T. We will need to work out the diagram for
each branch. We will start our work on the right.

The right-hand branch closes; however, we may still generate an open
branch on the left.
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In world u, the branch remains open, and so we can construct the fol-
lowing counterexample. Note that the right-hand branch and world v are
removed from the diagram because they are closed.

Since q does not appear at w in our tree, we place ~q in world w in the
cleaned-up diagram to indicate that aw(q)=F.

EXERCISE 4.3 Add formulas to the diagram we just completed to verify
that it counts as a counterexample to pç∫q / ∫(pçq).

Using the same technique, a counterexample to ∫(p√q) / ∫p√∫q can
be constructed using the following tree:
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From the open branch in this tree, we may form a counterexample
diagram as follows:

Again, we have filled in values of F for the letters that didn’t turn up in
world w. Notice that this diagram tells us exactly why we might object to
the validity of ∫(p√q) / ∫p√∫q. Though ∫(p√q) may be T in w because
either p or q is T in every world related to w, it does not follow that
either p is T in all related worlds, or that q is T in all related worlds.
Our counterexample gives us a simple example of this, for it displays a
situation where neither p nor q is T in all worlds related to w.

EXERCISE 4.4 Verify that the last diagram is a counterexample to ∫(p√q) /
∫p√∫q.

EXERCISE 4.5 Construct counterexamples to the following arguments
using the tree method. Verify that the diagrams you create are counter-
examples.

a) ∫pç∫q / ∫(pçq)
b) ∂p&∂q / ∂(p&q)
c) ~∂~p / ∂p

We need to discuss another complication that may arise in constructing
trees. We will illustrate it with a tree for the argument∫p,∫~qç∫~p /∫q.
The diagram might look like this about midway through the construction:

Note that we have yet to apply (çT) to the second line in world w. Ordi-
narily this would be done by placing a fork in world w with ~∫~q on the
left and ∫~p on the right. Unfortunately, doing so is not straightforward
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since we have already begun a new world v using the (∫F) rule. We cannot
place the result of applying (çT) in the new world v because the truth of
∫~qç∫~p in w guarantees that either ∫~q is F or ∫~p is T in w, not v.

The problem we are facing in applying (çT) would have been avoided
if we simply had applied (çT) earlier in the process. This suggests a
general strategy for avoiding the problem, namely, to postpone as much
as possible any steps that would create new worlds. The idea is to carry
out all the propositional logic steps you can in any world before you apply
(∫F) and (∂T). Reordering the steps in this way so that (çT) is applied
before world v is created yields the following diagram:

At this point the tree may be completed in the usual way.
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EXERCISE 4.6 Verify that the counterexample diagram just given is indeed
a K-counterexample to ∫p, ∫~qç∫~p / ∫q.

Although the reordering strategy resolves the problem in simple propo-
sitional modal logics like K, there are modal logics (such as B) where
reordering the steps is not possible. (For more on this point see Sec-
tion 6.3.) Furthermore, even when working in K, it would be nice to have
a policy that allows us to continue work on a tree when we forget to
postpone use of world-creating steps, rather than redrawing the whole
tree from scratch. For this reason we will introduce a method that allows
work to be continued on worlds that have been “left behind” during tree
construction. To illustrate how the continuation method works, let us
complete the diagram that began our discussion.

We now need to apply (çT) to world w, so we simply draw a new copy of
world w (called its continuation) and place the results of applying (çT)
to ∫~qç∫~p into it.

From here the tree may be completed in the usual way.
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Note that when we returned to w, we needed to draw another copy of
the arrow from w to v in order to close world v. We also needed to apply
(∫T) to ∫p (in the top copy of w) to put p in (the second copy of) world v.
At this point the arrows between worlds, and the contents of the various
worlds along the open branch can be collected to create the following
counterexample diagram:

When more than one open branch remains during tree construction, it
is very important to follow the Placement Principle correctly. For exam-
ple, consider the following partially constructed tree diagram for ∫(p√q),
p√q / (∫p√∫q):
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At this point we have two open branches, so when (∫F) is applied to ~∫p
and ~∫q, and (∫T) to ∫(p√q), the corresponding steps must be added to
both of the open branches.

Sometimes, as in this case, tree diagrams specify more than one coun-
terexample for an argument. Notice that there are two open branches
in this tree, one running through p in world w, and the other running
through q in world w. This means that either of the choices in world w
could be used in constructing a counterexample to our argument. How-
ever, in order to specify a single counterexample, we will have to make a
choice between the two branches. So let us do so by “pruning” our tree to
remove one of the two branches in w (say, the right one). When we remove
the closed branches as well, we obtain a pruned tree, which specifies one
counterexample to the argument.

       
            

       



Trees for K 91

EXERCISE 4.7 Suppose we pruned the left-hand branch in the above tree.
What would the counterexample diagram look like?

EXERCISE 4.8 Use the tree method to determine whether the following
arguments are K-valid or K-invalid. If an argument is K-invalid create counter-
example diagrams, and verify that each diagram is a counterexample. For e)
and f) you may use (≠T) and (≠F). Or if you like, you could convert the ≠
into ç and & and work the trees from there.

a) ∂(p√q) / ∂ p√∂q
b) / ∫(~∫pç(∂~p& ∂ q))
c) ∂p / ∫(∂p√∂q)
d) ∫q, ∂p√∂q / ∂(p&q)
e) ∫(p≠q / ∫p≠∫q)
f) ∫p≠∫q / ∫(p≠q)

∗g) ∫(qçp)√∫(~pçq),~∫(~p√q) / ∫(~pç~q)
h) ∫p / ∂ p (Hint: You may not apply (∫T) unless an arrow has been placed

in the diagram by some other rule.)
∗Note that answers are provided in the back of the book for exercises marked
with an asterisk.

4.3. Summary of Tree Rules for K

Basic Truth Rules:
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Derived Tree Rules:
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The Accessibility Relation

Chapter 3 introduced the accessibility relation R on the set of worlds
W in defining the truth condition for the generic modal operator. In K-
models, the frame <W, R> of the model was completely arbitrary. Any
nonempty set W and any binary relation R on W counts as a frame for
a K-model. However, when we actually apply modal logic to a particular
domain and give ∫ a particular interpretation, the frame <W, R> may
take on special properties. Variations in the principles appropriate for a
given modal logic will depend on what properties the frame should have.
The rest of this chapter explains how various conditions on frames emerge
from the different readings we might chose for ∫.

5.1. Conditions Appropriate for Tense Logic

In future tense logic, ∫ reads ‘it will always be the case that’. Given (∫),
we have that ∫A is true at w iff A is true at all worlds v such that wRv.
According to the meaning assigned to ∫, R must be the relation earlier
than defined over a set W of times. There are a number of conditions
on the frame <W, R> that follow from this interpretation. One fairly
obvious feature of earlier than is transitivity.

Transitivity: If wRv and vRu, then wRu.

When wRv (w is earlier than v) and vRu (v is earlier than u), it follows
that wRu (w is earlier than u). So let us define a new kind of satisfiability
that corresponds to this condition on R. Let a 4-model be any K-model
<W, R, a> where R is a transitive relation on W. Then concepts of satis-
fiability, counterexample, and validity can be defined in terms of this new
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kind of model as you would expect. For example, a list of sentences H
is 4-satisfiable just in case there is a 4-model <W, R, a> and a world w
in W where aw(H)=T. An argument H / C has a 4-counterexample iff H,
~C is 4-satisfiable, and H / C is 4-valid (in symbols: H …4 C) iff H / C has
no 4-counterexample. We use the name ‘4’ to describe such a transitive
model because the logic that is adequate for 4-validity is K4, the logic that
results from adding the axiom (4): ∫Aç∫∫A to K. (Remember that to
say K4 is adequate for 4-validity means that K4 is both sound and com-
plete for 4-validity.) Although (4) is not K-valid, it is 4-valid, and in fact
(4) is all we need to add to K to guarantee proofs of all the 4-valid argu-
ments. Each of the axioms we have discussed in Chapter 2 corresponds
to a condition on R in the same way. The relationship between conditions
on R and corresponding axioms is one of the central topics in the study
of modal logics. Once an interpretation of the intensional operator ∫ has
been decided on, the appropriate conditions on R can be determined to
fix the corresponding notion of validity. This, in turn, allows us to select
the right set of axioms for that logic.

The nature of the correspondence between axioms and conditions on
R is difficult for some students to grasp at first. It helps to consider an
example. Consider this instance of the (4) axiom: ∫pç∫∫p. The fol-
lowing tree and counterexample diagram shows that this sentence is
K-invalid.

However, this counterexample is not a good reason to reject ∫pç∫∫p
in the case of tense logic, because here the relation R is earlier than
and this relation is transitive. The K-counterexample given here is not
transitive; there is no arrow from w to u even though both wRv and vRu.
In tense logic, the acceptability of ∫pç∫∫p depends on whether it has
a 4-counterexample, that is, a K-model where R is transitive. If we try to
create a 4-counterexample to this sentence by drawing the missing arrow
from w to u in order to ensure that R is transitive, the tree closes. This
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is a symptom of the fact that there is no 4-counterexample to ∫pç∫∫p,
that is, that ∫pç∫∫p is 4-valid.

I hope this helps you appreciate how conditions on R can affect the assess-
ment of validity. The sentence ∫pç∫∫p is K-invalid, but it is 4-valid,
where models are restricted to those with a transitive R.

When discussing properties of frames <W, R>, it is convenient to have
a way of diagramming conditions such as transitivity. We want a diagram
for the conditional: if wRv and vRu, then wRu. We may indicate the
antecedent wRv and vRu by putting two diagrams together.

Transitivity says that if

then it follows that

In order to have a single diagram for the transitivity condition, we can
indicate the situation in the antecedent of the condition with “over”
arrows:
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and the situation that follows with an “under” arrow below a horizontal
line:

Using these conventions, our diagram for transitivity looks like this:

For simplicity, we will often shrink the worlds to dots:

Transitivity is not the only property that we might want to enforce
on <W, R> if R is to be earlier than and W is a set of times. One
condition (which is only mildly controversial) is that there is no last
moment of time, that is, that for every time w there is some time v
later than w. The diagram of this condition (which is known as seriality)
follows:

This diagram shows that every world has an arrow emerging from it
pointing to some other world. Seriality of R corresponds to the axiom
(D): ∫Aç∂A, in the same way that transitivity corresponds to (4). A
D-model is a K-model whose frame <W, R> is serial, that is, <W, R>

meets the condition that for any w in W there is a world v in W such
that wRv. From the idea of a D-model, the corresponding notions of D-
satisfiability, D-counterexample, and D-validity can be defined just as we
did in the case of (4). As you probably guessed from the name ‘D’, the
system that is adequate with respect to D-validity is KD, or K plus (D).
Not only that, but the system KD4 (that is K plus (4) and (D)) is adequate
with respect to D4-validity, where a D4-model is one where <W, R> is
both serial and transitive.
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Another property that might hold for the relation earlier than is density,
the condition that says that between any two times we can always find
another.

This condition would be false if time were atomic, that is, if there were
intervals of time that could not be broken down into any smaller parts.
Density corresponds to the axiom (C4): ∫∫Aç∫A, the converse of (4),
so for example, the system KC4, which is K plus (C4), is adequate with
respect to models where <W, R> is dense, and KDC4 is adequate with
respect to models that are serial and dense, and so on.

EXERCISE 5.1 Define validity in the case where <W, R> is dense, tran-
sitive, and serial. What system do you think is adequate with respect to this
notion of satisfiability?
(Hint: Review the opening paragraph of this section. Define first what a C4-D4
model is.)

There are many other conditions we might place on <W, R>, depend-
ing on the structure of time.

EXERCISE 5.2 Invent two more conditions that could plausibly hold given
R is earlier than. Draw their diagrams.

One important frame condition for modal logics is reflexivity. Reflexivity
says that every world is accessible from itself.

However, earlier than is not reflexive on the set of times. As a matter of
fact, earlier than is irreflexive, that is, no time is earlier than itself. (Actu-
ally, if the structure of time happens to be circular, then every moment
would be earlier than itself and R would be reflexive.)
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Note we express R’s failing to hold in our diagram by crossing out the
arrow. It is interesting to note that the irreflexivity does not correspond to
an axiom the way that seriality and transitivity of <W, R> do. (For more
on this see Section 8.8.) Whether we accept or reject irreflexivity does
not affect which arguments are valid, and so the decision has no effect on
which axioms must be selected to produce an adequate logic. Reflexivity,
on the other hand, corresponds to (M), the characteristic axiom of modal
logic: ∫AçA. By ‘corresponds’ we mean that a logic that is adequate for
a notion of validity defined by models with reflexive frames must contain
(M) as a theorem. Clearly we do not want (M) for tense logic. (No time is
earlier than itself.) However, there is another reading of ∫ (and R) where
reflexivity is acceptable, namely, where ∫ reads ‘is and will always be’,
and where R is interpreted as ‘simultaneous to or earlier than’. For this
reading, (M) is acceptable, and so there are logics of time that adopt (M).

Another condition on earlier than that it appears we should reject is
symmetry.

In fact we may want to adopt asymmetry.

The symmetry condition corresponds to the axiom (B): Aç∫∂A. Just
as was the case with irreflexivity, asymmetry corresponds to no axiom.

Actually, there are reasons for rejecting the asymmetry of R in tem-
poral logic. If the series of times is circular, then it is possible for both w
to be earlier than v, and v to be earlier than w. To see why, imagine our
times arranged in a circle thus:

We will show you that this diagram, together with transitivity, entails that
for each arrow on the diagram there must be a reverse arrow connecting
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the points in the opposite direction. To show this, consider the arrows
from v to u and u to x. By transitivity we have an arrow from v to x.

Now we have arrows from v to x and x to w, so by transitivity again we
obtain an arrow in the reverse direction from v back to w.

5.2. Semantics for Tense Logics

In tense logic, there are two pairs of intensional operators. G and F are
used for the future tense and H and P for the past tense. Their English
readings are as follows:

G it always will be the case that
F it will be the case that
H it always was the case that
P it was the case that

G is the strong intensional operator analogous to ∫, while F is defined
from G just as ∂ is defined from ∫.

(DefF) FA =df ~G~A

Similarly, H is the strong past tense operator, and P is defined by (DefP).

(DefP) PA =df ~H~A
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So far, we have allowed only a single pair of intensional operators, corre-
sponding to ∫ and ∂. However, semantics for a second pair may be easily
constructed by introducing a second accessibility relation. In the case of
the past tense, the accessibility relation we want is later than, which we
abbreviate: L. A model for tense logic with future and past tense opera-
tors is a quadruple <W, R, L, a>, which satisfies all the conditions familiar
for K-models <W, R, a>, and such that L is another binary relation on
W, and a meets the following conditions for H and G:

(H) aw(HA) = T iff for each v in W, if wLv, then av(A)=T.
(G) aw(GA) = T iff for each v in W, if wRv, then av(A)=T.

The logic that is adequate with respect to this semantics is K “doubled”;
it consists of the principles of PL plus versions of (∫In) and (∫Out) for
both G and H.

This system, however, is too weak. There are obvious conditions we
will want to place on the relations L and R, which correspond to axioms
that must be added to tense logic. First, as we explained in Section 5.1, R
and L should be transitive, which corresponds to the G and H versions of
the (4) axiom:

(G4) GAçGGA (H4) HAçHHA

Second, earlier than and later than are related to each other. If w is earlier
than v, then v must be later than w, and vice versa. So we will want to add
the following two conditions:

Since there are two relations R and L in the model, the arrows in these
diagrams are labeled to distinguish R from L.

The converse conditions look very much like the symmetry condition
for a single R, so it should not surprise you that their corresponding axioms
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resemble (B): Aç∫∂A. If we label the ∫ and ∂ in (B) with L and R,
the two versions of (B) look like this:

Aç∫R ∂LA Aç∫L ∂RA

If we identify H with ∫L, P with ∂L, G with ∫R, and F with ∂R, you will
recognize them (I hope) as two axioms of the system Kt.

(GP) AçGPA (HF) AçHFA

When these axioms were first presented, it was pointed out that some
people have a tendency to disagree with (HF) on the grounds that it
implies fatalism. However, we have just found out that the axiom corre-
sponds to a perfectly acceptable condition on the relationship between
earlier than and later than. This is a sign that the objection to (HF) rests
on a mistake.

Why does (HF) appear to deny that the future is open? The reason
is that we often use ‘A will be’ to say that present facts determine that
A will happen at some future time, rather than that A just happens to
occur at a future time. The old saying ‘whatever will be will be’ plays off
these two meanings of ‘will be’. If there weren’t two meanings, the saying
would amount to a tautology. If we are to think clearly about fatalism and
the future, then we must have the resources to distinguish between those
things that are merely true of the future and those which are determined
to be so. To do this, we should make it clear that F is used for the sense
of ‘will’ that has no deterministic overtones, and we should introduce a
separate operator D for ‘it is determined that’. D will need its own relation
RD, which is not earlier than. Instead wRDv holds exactly when the facts
of v are compatible with what is determined given the facts of w. The
proper way to express the mistaken deterministic reading of (HF) in this
logic is AçHDFA, that is, if A, then it has always been the case that it
was determined that A will be.

EXERCISE *5.3 Give the truth condition for D.
*(The answers to this and all other exercises marked with an asterisk are given
in the back of the book.)

In the scientific view of the world, especially that of physics, we repre-
sent the structure of time with the real numbers. The times are thought of
as comprising a linear and dense ordering. This understanding of the
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nature of time specifically rules out the possibility that times branch
toward the future (or the past). A structure like the following:

for example, is inconsistent with the linear view of time, which insists that
each time is either earlier or later than any other time, so that there are
never two times that are alternatives one to the other. The condition on
time that rules out this kind of future branching is connectedness.

The condition that rules out branching toward the past is just the con-
nectedness of L.

To illustrate why connectedness rules out forking, let us put the con-
nectedness diagram on its side. The condition insists that whenever we
have a potential fork:

then what we have in actuality is a single temporal series with either v
earlier than u:

or u earlier than v:

or v identical to u:

Connectedness corresponds to the axiom (L): ∫(∫AçB) √
∫((B&∫B)çA), which means that in a tense logic, G(GAçB) √
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G((B&GB)çA) rules out future branching, and H(HAçB) √
H((B&HB)çA) rules out past branching.

A relation that is both transitive and connected is said to be linear.
Any linear relation has the property that the set of things that bear the
relation can be numbered in such a way that for any two things w, v such
that wRv, their corresponding numbers nw and nv are such that nw<nv.
So linearity is a crucial condition to adopt for R if we are to represent the
times and their order with numbers.

Some people will feel that the linear approach to time is entirely mis-
guided because it rules out variety in what is possible in the future. Though
it is clear that there is no reason to assume branching into the past, the
future, they claim, is open, so we should not rule out branching struc-
tures toward the future by imposing linearity. I believe this reasoning is
confused, though there is something right about it. To help clarify this sit-
uation, let us ask ourselves just exactly what it is that we want to branch
in order to capture the notion that the future is open. Remember that the
issue that concerns tense logic is the nature of the relation earlier than. If
we reject the connectedness of R, we will allow the possibility that there
are two times t and t′ that are incommensurable, that is, such that it makes
no sense to say that one or the other is the earlier one. Now that seems an
odd thing to say about earlier than, and even when we say it, there seems
to be a tenuous relationship between this rejection and the rejection of
fatalism. On the other hand, it does make perfect sense to insist on the
rejection of connectedness for RD, for it makes perfect sense to say of
two situations v and u that though their facts are compatible with what is
determined by the situation w:

nevertheless, the facts of v and the facts of u are not compatible with
each other. For example, w might be a situation where I am choosing
whether to get married, and v the situation where I do, and u the situation
where I do not do so. Here, the facts of v are not compatible with what
is determined by the facts of u, and vice versa, and so we must reject the
view that vRDu or uRDv or u=v.

In the end, then, it does make perfect sense to reject the nonbranch-
ing condition, but this rejection should be focused on the right relation,
namely, the relation RD of determination, not the purely temporal rela-
tion R for earlier than. The demand for an open future is really a demand
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for openness in what is determined by the present, and should not be
treated as a condition on the structure of time. Those who argue for an
open “future” are really interested in the structure of determination, not
the structure of time.

5.3. Semantics for Modal (Alethic) Logics

Most of the formal concepts needed to understand semantics for modal,
deontic, and locative logics have already been developed in discussing
tense logic. In this section, we will explain how to apply these concepts to
shed light on modal inferences.

In modal (or alethic) logic, the set W is understood as the set of possible
worlds. If we identify each time with the world as it happens to be at that
time, then a time ends up being a possible world. The intuitive appeal
of this identification helps us appreciate the strong contacts that exist
between tense and modal logic.

EXERCISE 5.4 What difficulties might arise in taking times to be identi-
cal to their corresponding possible worlds? (Hint: Consider the possibility of
eternal recurrence, where the events of the world repeat themselves over and
over again.)

Given that W is understood as a set of possible worlds, we can go
on to ask ourselves how to characterize the semantical behavior of ∫,
and to identify its corresponding logic. As we said before, there are a
number of formal systems that could legitimately claim to be modal logics.
The differences arise because there are a number of ways to understand
‘necessarily’. So a variety of modal logics may be developed reflecting
these differences. Let us begin by trying to characterize a relatively easy
concept: that of tautological necessity. The sentence A is tautologically
necessary just in case A is a truth-functional tautology, that is, just in case A
is true on all rows of its truth table. Each row of a truth table describes
the features of a possible world, for it indicates which atomic sentences
are true and which are false there. So on this understanding, W can be
identified with the different possible rows of a truth table.

The truth condition on a that we want for ∫ on this reading is (∫5).

(∫5) aw(∫A)=T iff av(A)=T for all v in W.

This says that ∫A is true on truth table row w just in case A is true on all
rows of its truth table.
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Although (∫5) appears to be an entirely new truth clause for ∫, we
can obtain exactly its effect by laying down a condition on R, namely, that
R is universal, that is, that each world is accessible from any other.

EXERCISE 5.5 Show that (∫5) is equivalent to (∫) when R is universal.

So instead of adopting the truth condition (∫5), we can use (∫) provided
we also stipulate that R is universal. (Strictly speaking, it is the frame
<W, R> not R that is universal.) As you might have guessed from the
name ‘(∫5)’, universality corresponds to the system S5. The introduction
of universality illustrates a basic strategy we will use in working out the
semantics of modal logics. We may be tempted to write separate truth
conditions (such as (∫5)) to handle a given interpretation of a modal
operator. But it is more convenient, and more helpful in understanding
the relationships between the various systems, to always adopt (∫) and
to search for some condition on R (like universality) that will have the
same effect.

Now let us see how things fare when we turn to physical necessity. Here
W is the set of all possible worlds where the laws of physics hold. There
may be some disagreement as to exactly what the laws of physics are,
but in any case, we will want our W to be some subset of all the logically
possible worlds, namely, those that obey the laws of physics. Despite this
change, the formal definition for validity is exactly the same as for logical
necessity. The only difference is in our intuitive understanding of the
contents of W. Again we want (∫5) or the universality of R, and so the
appropriate logic is S5.

There are notions of necessity and possibility, however, where univer-
sality does not hold. For example, consider the kind of necessity involved
when we say “I can’t possibly finish my work this term”. We might call this
personal necessity since it records what a person is capable of bringing
about. When I say “I can’t possibly finish my work this term,” I am not
claiming that finishing is either logically or physically impossible. I am
saying instead that given all sorts of contingent facts about me, namely,
the speed I can work, the amount of time I have left to devote to it, the
amount of sleep I need to function, and so forth, there is no way I can
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finish up. Notice that this kind of necessity is world relative, that is, the
truth value of ∫A may change from one world to another. For example,
though it is necessary that I fail to finish my work given the facts of the
real world, that may be false (say) in a world where I can work effectively
with only two hours of sleep, and other things are the same.

In order to do justice to world-relative concepts of necessity we must
reject universality of R. For example, in the case of personal necessity,
wRv should hold just in case v is a world where abilities I have in w also
are true of me in v, that is, where I can work at the same top speed, need
the same amount of sleep, and so on. On this interpretation of ∫, to say
∫A is true at w is not to say that A is true in all worlds, but only that A is
true in those worlds properly related to w, worlds that hold my relevant
abilities the same. So clearly it is not the case that wRv for all w and v.

Though we lose universality, there are still other conditions on R worth
considering. In modal logic, wRv may be read ‘world v is a possible alter-
native to w’. We clearly want R to be reflexive since any world is clearly
possible relative to itself. (In the case of personal necessity, for example,
it is obvious that my abilities in w are the same as my abilities in w.)
Once we see that R must be reflexive under this interpretation, it is clear
why the system M for modal logic is an appropriate choice to match our
intuitions.

At least two important questions remain about the behavior of
<W, R>. We will want to know whether to adopt the conditions for
(4) (transitivity) and (B) (symmetry). Even though we have introduced
a world-relative concept of necessity, we may still end up needing the
principles of S5. Remember that one way to formulate S5 is to add
axioms (4) and (B) to M, so if we have reasons for accepting the tran-
sitivity and symmetry of R, we will know that S5 is adequate for our
semantics.

Given what we have said so far about the nature of <W, R> for per-
sonal necessity, it does seem to need both transitivity and symmetry. We
wanted wRv to hold when w and v are the same with respect to certain
facts about me. But being the same in a certain respect is an equivalence
relation, that is, a relation where reflexivity, transitivity, and symmetry
all hold. So our concept of personal necessity, which seemed at first to
open the door for the modal logics weaker than S5, in fact supports the
adoption of S5.

It is beginning to look as if S5 is the only logic that could be adequate for
modal logic. Are there any ways of interpreting ∫ so that the accessibility
relation is not transitive or not symmetric? The answer is ‘yes’ in both
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cases. We can develop interpretations of these kinds by examining our
concept of personal necessity a little more deeply. First, let us see why
we might want to reject transitivity. Perhaps we have been too rigid in
stipulating what counts as a world accessible from the real world. Suppose,
for example, that there are possible situations where I do finish my work
on time, but where my motivation to do that work improved by (say)
5 points out of 1,000 on a measure of mental discipline (MD). Do we
really want to say that it is impossible for me to finish my work? I think
that on some standards of evaluation, you would say that it is possible
for me to finish. If this is the interpretation we take, then R ceases to
be transitive, for suppose that we say wRv just in case my abilities in w
and v differ by no more than 5 MD points. Then it is possible for my
abilities in w and v to differ by 4, and those in v and u to differ by 4, while
the difference in w and u is 8. Here wRv and vRu both hold, but wRu
does not.

So far the accessibility relation is symmetrical, for if my abilities in
w differ by 5 points from those in v, then my abilities in v differ by 5
points from those in w. Nevertheless, there are other features of personal
necessity that may rule against symmetry as well. If we say that it is possible
for me to finish my work on time, we are saying that there is a situation
that I bring about in which I am doing it on time. For v to be accessible
from w, then v must be a situation that could be caused (or at least partly
caused) by my actions in w. This accessibility relation is not symmetrical
because causation operates only in one direction. If my actions of w cause
events of v, then it does not follow that my actions in v could cause events
in w.

Personal necessity, at least under the last understanding of the acces-
sibility relation, provides a motivation for modal logics that reject the
transitivity and symmetry of R. Our discussion illustrates a method for
constructing relations that fail to be transitive and symmetric. Transitiv-
ity fails when the relation links two objects within a certain tolerance.
For example, near to is a nontransitive relation. Symmetry fails when the
relation applies in one direction, but not the other. Here greater than is
a good example.

EXERCISE *5.6 Invent another reading of ∫ for which the accessibility
relation is neither transitive nor symmetric.

What is the upshot of this whole discussion? Which of the various
conditions on R are correct for modal logic? The question is misguided.
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One of the strengths of modal logic is in the variety of systems it offers,
each one crafted to a different way of understanding ‘necessarily’. There
is no one “right” modal logic, nor are the choices between them arbitrary.
Given a choice to apply modal logic to evaluate philosophical reasoning,
it will be necessary to explicitly examine the concept of necessity in order
to locate the appropriate logic.

5.4. Semantics for Deontic Logics

In deontic logics, W is again the set of possible worlds or situations. Here
R is interpreted so that wRv iff v is a morally acceptable alternative to
w, that is, given the situation found in w, v would be a morally correct
outcome. If anything is clear about properties of this frame <W, R>, we
certainly do not want symmetry. If v is a morally correct alternative to w,
then v is presumably better than (or at least as good as) w. However, as
good or better is an asymmetrical relation.

One condition we clearly do want for <W, R> is seriality: ∃vwRv, for
this says that there is always a moral alternative to any world. If there
were no moral alternative to our world, then there would be nothing
coherent we could say about what we ought to do in our world. It is
ordinarily thought that if I ought to do something then it follows that I
can. Unless seriality holds to ensure that there is a possible world where
I do as I ought, I would be unable to act in a morally acceptable fashion.
Furthermore, if there is no world related to (say) world w, then it turns
out that aw(Oƒ)=T. That happens because the truth condition for O rates
aw(Oƒ)=T provided that av(ƒ)=T in every world v such that wRv, which
is vacuously true when there is no world related to w. So without seriality,
there can be worlds where Oƒ is true, which seems unacceptable since Oƒ
says that I ought to bring about a contradiction – something I surely cannot
do. You may remember that the axiom that corresponds to seriality is the
characteristic axiom of deontic logic: (D) OAçPA. Our examination of
semantics with conditions on R gives us deeper insight into exactly why
we find this principle acceptable.

In deontic logic, we cannot accept reflexivity of R, for this would
amount to the claim that every world is a morally acceptable alternative
to itself. But some worlds will contain deeds that are morally unaccept-
able. However, there is a property related to reflexivity that seems more
palatable. We call it shift reflexivity. This property corresponds to the
axiom: O(OAçA). We have recommended this principle in Section 2.6,
but we should point out that it corresponds to an assumption about the
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moral alternatives that can be challenged. The diagram for shift reflexivity
follows:

This says that when a world is a moral alternative to ours, then it is a
moral alternative to itself. This can be challenged if we believe that a
moral alternative can itself have moral flaws. Then an alternative to our
world would not have to have itself as an alternative, as long as we believe
that we always have a moral obligation to do better if we can.

The decisions to be made concerning whether <W, R> is transitive,
symmetric, dense, and so forth are much more difficult to make. Resolving
them requires careful study of the details of the concept of morality being
dealt with.

There is another variant of possible-worlds semantics for deontic logic
that helps explain the intuitions that lead us to accept the iteration prin-
ciples (OP) and (OO).

(OP) OPA≠PA
(OO) OOA≠OA

The idea here is that regardless of the situation in which we find ourselves,
there is just one set M (which is a nonempty subset of W) of morally perfect
worlds. If we define R so that wRv iff v is in M, then we discover that the
standard truth condition for O is equivalent to the following:

(OM) aw(OA)=T iff av(A)=T for all v in M.

EXERCISE 5.7 Given that wRv iff v is in M, show that (O) is equivalent to
(OM).

(O) aw(OA)=T iff for all v, if wRv then av(A)=T.

Notice that (OM) is not the same as (∫5) because M is not the set W
of all possible worlds. Intuitively it is the much smaller set of worlds that
are morally acceptable.

We can easily determine which axioms correspond to the acceptance of
this semantic clause by examining what conditions are placed on R when
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wRv iff v is in M. We discover that R must be serial, dense, transitive,
symmetric, and shift reflexive (at least), and so (D), (OP), (OO), and
O(OAçA) are all needed in the corresponding deontic logic.

EXERCISE 5.8 Show that any R such that wRv iff v is in M is serial, dense,
transitive, symmetric, and shift reflexive. Show that such an R need not be
reflexive or symmetric.

Notice that the concept of obligation is not world relative on condition
(OM).

EXERCISE 5.9 Show that given (OM), O is not world relative, that is, show
that for any two w, u in W, aw(OA) is au(OA).

From this point of view, the facts about a given world (including contracts,
laws, and other social arrangements) are irrelevant to determining the
correct moral alternatives for that situation. So deontic logics that accept
this semantics are limited to systems of morality of this kind (if there are
any).

Although (OM) is seemingly equivalent to the S5 truth condition (O5),
there is an important difference.

(05) aw(OA)=T iff av(A)=T, for any v in W.

In fact, there had better be a difference since we do not want the principle
OAçA, which would follow from S5. Notice that on (OM), we do not
require that A be true in all worlds in order for OA to be true, but only
that A be true in all morally acceptable worlds. So it is possible for OA
to be T at a morally imperfect world u, where A is F, and so OAçA is
invalid on (OM).

There is a danger that many moral systems face, one to which Utili-
tarianism is particularly prone. On the Greatest Happiness Principle, we
are obligated to act in such a way as to maximize the greatest common
good. So it is highly likely that there is only one truly moral alternative
to any world, the world where the Greatest Happiness is brought about.
(Chances for a tie between worlds would be vanishingly small.) If the
moral course of action requires that we select the best world, then the
accessibility relation turns out to be unique, that is, there is at most one
alternative to any world.
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Uniqueness validates the axiom (CD): PAçOA. This is odd because in
the presence of (D), it follows that OA and PA are equivalent. A moral
system where permission and obligation are the same strains our concepts
beyond what most people will tolerate. This is the price one has to pay
for a moral system that lays such strict requirements on what it takes to
meet our obligations.

5.5. Semantics for Locative Logic

Uniqueness is probably not appropriate for tense, modal, or deontic logics,
but it does make sense in a locative logic, where ∫ is read ‘at position n’.
(See Section 2.8.) In fact, a basic semantics for the locative operator Tn
stipulates that R is both serial and unique. Any relation that is serial and
unique is a function. When R is a function, there is exactly one thing
v such that wRv. The condition that R is a function corresponds to the
axiom (T~): TnA≠~Tn~A, which ensures the distribution of ~ over Tn.
Since there is exactly one situation that is accessible from any other, the
standard truth clause (T) merely amounts to saying that TnA is true at w
iff A is T at the one world v that R picks out for w.

(T) aw(TnA)=T iff for all v, if wRv then av(A)=T.

If we use the notation “f” for the function given by R, then (Tn) can be
rewritten as follows:

(Tf) aw(TnA)=T iff af(w)(A)=T.

EXERCISE 5.10 Show that (T) and (Tf) are equivalent when f is the function
defined from a serial and unique R by f(w)=v iff wRv.

This truth clause (Tf) is exactly what we want in a locative logic that han-
dles such expressions as ‘5 years ago’. For example, ‘there was a depression
five years ago’ is true in 1940, just in case ‘there was a depression’ is T in
the situation you get by applying the function minus five years to the year
1940, that is, just in case there was a depression in 1935.

Since there are infinitely many operators Ta, Tb, Tc, . . . in locative logic,
we will need to set up a separate function f for each. The most convenient
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way to do this is to let the assignment function assign to each term n a
function a(n) from W into W. Then our truth clause will read:

(Tn) aw TnA=T iff aa(n)(w)(A)=T.

In case we want to handle such expressions as ‘in 1940’ that pick out spe-
cific situations, rather than picking out one situation relative to another,
we may simply add the assumption that a assigns this expression a con-
stant function, that is, a function that gives the same output for every
input. When this condition is added to what we have said about what a
assigns to the terms n, we validate what seems to be the S5 analogue in
locative logic.

(TT) TnA≠TmTnA

EXERCISE 5.11 Show that (TT) is valid in a semantics where a model
<W, F, a> contains a set F of constant functions from W into W, where a
assigns to each term n a member a(n) of F, and (Tn) is used as the truth clause
for Tn.

EXERCISE 5.12 Show that the semantics of Exercise 5.11 is equivalent to
one where the truth clause reads: aw(TnA) = T iff aa(n)(A) = T, and a model
is such that a(n) is not a function from W into W, but instead a member of W.

5.6. Relevance Logics and Conditional Logics

Unfortunately this book is already too large to include an adequate dis-
cussion of logics where a binary modal operator ⇒ is introduced for
conditional expressions – expressions involving the word ‘if’. The best we
can do here is whet your appetite for studying these interesting logics
on your own. A strong motivation for developing such systems is that
material implication (which is symbolized with ç in this book) provides
an inadequate account of many different conditional English expressions,
including (most tellingly) ‘if A then B’. Although AçB is true when A is
false, this is hardly the way ‘if A then B’ is understood in natural language.
It is false that I am going to live another 1000 years, but that hardly entails
the truth of: ‘if I am going to live another 1000 years then I will die tomor-
row’. When A and B are incompatible with each other as in this case, the
normal reaction is to count ‘if A then B’ false, even when A is false. This
illustrates that in English, the truth of ‘if A then B’ requires some sort of
relevant connection between A and B. This demand cannot be captured
with ç or any other binary connective whose truth conditions are given
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with standard truth tables. Related problems arise in the analysis of strict
implication ‘if A then necessarily B’, nomic conditionals (conditionals
that express natural laws), and the counterfactual or subjunctive condi-
tional ‘if A were the case, then B would be’. The need for a better analysis
is especially clear for subjunctive conditionals. Since the antecedents of
such sentences are presumed false, treating these as material implications
would require that every counterfactual be true!

Relevance logics are an attempt to define systems that are more faithful
to relevance requirements that we normally bring to the use of ‘if . . . then’
(Dunn, 1986; Mares, 2004). The basic idea is that for ‘if A then B’ to be
true, B must express something relevant to what A expresses. Let us use
the symbol ⇒ for the relevant sense of ‘if . . . then’. A main concern in rel-
evance logic is to avoid validating the Paradoxes of Material Implication –
formulas that clearly violate the relevance requirement: A⇒(B⇒A) and
A⇒(~A⇒B). (Just because A is true, it does not follow that some other
sentence B relevantly entails A; moreover, from A and ~A an arbitrary
sentence B does not relevantly follow.)

It is a ticklish matter to define a system of rules to block exactly the
unwanted cases, and there are some disagreements about which system
for ⇒ is best. Part of the problem is that it has been difficult to find an
intuitively satisfying semantics for ⇒, especially when negation is to be
included in the language. Several truth conditions for ⇒ have been pro-
posed, but one of the most widely known is due to Routley and Meyer,
where a three-place relation R is defined over a set W of situations or sets
of information. Situations differ intuitively from possible worlds because
they may be incomplete and inconsistent. They might fail to provide infor-
mation that would decide the truth value of some sentences, and they
may also include contradictory information. The truth condition for ⇒
on Routley–Meyer semantics goes as follows:

(⇒) aw (A⇒B=T iff
for all v and u in W, if Rwvu and av(A)=T then au(B)=T.

Notice how (⇒) is simply a generalization of the standard truth condition
(∫) for a one-place modal operator ∫. A number of different conditions
(such as Triple Reflexivity: Rwww, and Right Hand Symmetry: if Rwvu
then Rwuv) must be added to the definition of a model to validate what
intuitively are the right rules for ⇒. The main problem with this semantics
is that it is not compatible with the standard truth condition for ~. Further
devices must be introduced to prove the semantics for ~, and some people
complain that these are not well motivated. Mares (2004) presents a heroic
effort to address those objections.
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Although relevance logics concern conditionals, the term ‘conditional
logic’ is reserved for systems that address somewhat different concerns
(Nute, 1984). Here the aim is not to address the Paradoxes of Material
Implication, but to capture other logical behavior of such conditionals as
strict implication (‘if A then necessarily B’), and counterfactuals (‘if A
were to hold, then so would B’). A straightforward way to handle strict
implication is to define it from material implication using a suitable modal
operator ∫ as follows:

(DefÓ) AÓ B =df ∫(A ç B)

The use of the symbol ‘Ó’ goes back to C. I. Lewis, who introduced it as
a primitive to provide an analysis of logical entailment.

Although (DefÓ) is a relatively straightforward way to define a con-
ditional logic, it is not thought to be an adequate system for most of the
conditional expressions of English. The problems are clearest in the case
of counterfactual conditionals, for which we use the symbol ‘>’. Here it
appears that a number of principles that would be valid given (Ó) are no
longer acceptable.

Transitivity: ((A>B)&(B>C)) > (A>C)
Contraposition: (A>~B) > (B>~A)
Strengthening Antecedents: (A>B) > ((A&C)>B)

EXERCISE 5.13 Show that the above three formulas are provable from (Ó)
in M, assuming that Ó is identified with >.

Nute (1984, p. 394) gives counterexamples to all three of these. Transitivity
fails because from ‘if Carter had died in 1979, then Carter would not have
lost the election in 1980’ and ‘if Carter had not lost the election in 1980,
Reagan would not have been president in 1981’ it does not follow that ‘if
Carter had died in 1979, then Reagan would not have been president in
1981’. Contraposition fails because from ‘if it were to rain, I would not
water the lawn’ it does not follow that ‘if I were to water the lawn then it
would not rain’.

EXERCISE 5.14 Give a counterexample to Strengthening Antecedents.

The best known semantics for > is due to David Lewis (Lewis, 1973).
Here a model includes a function f that assigns a subset of the set W of
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possible worlds to each world w and sentence A. The idea is that f(w, A)
picks out a set of worlds that are most similar to w given that A holds in
those worlds. People sometimes refer to f(w, A) as the (set of) A-worlds
closest to w. The truth condition for > is given in terms of f as follows:

(>) aw(A>B)=T iff for all v in W, if v is in f(w, A) then av(B)=T.

A number of conditions on f are then needed to satisfy our intuitions about
closeness of worlds. Lewis’s analysis is often employed when philosophical
discussion turns on the use of counterfactuals.

5.7. Summary of Axioms and Their Conditions on Frames

In this list of conditions on <W, R>, the variables ‘w’, ‘v’, and ‘u’ and
the quantifier ‘Öv’ are understood to range over members of W. (We use
symbols of logic to express the conditions with the understanding that
‘ç’ is always the main connective.)

Axiom Condition on <W, R> <W, R> is . .
(D) ∫Aç∂A Öv wRv Serial
(M) ∫AçA wRw Reflexive
(4) ∫Aç∫∫A wRv&vRuçwRu Transitive
(B) Aç∫∂A wRvçvRw Symmetric
(5) ∂Aç∫∂A wRv&wRuçvRu Euclidean

(CD) ∂Aç∫A wRv&wRuçv=u Unique
(∫M) ∫(∫AçA) wRvçvRv Shift Reflexive

(L) ∫(∫AçB)√∫ ((B&∫B)çA) wRv&wRuçvRu√uRv√v=u Connected

(M)+(5) = S5 wRv Universal
(C4) ∫∫Aç∫A wRvçÖu(wRu&uRv) Dense
(C) ∂∫Aç∫∂A wRv&wRuçÖx(vRx&uRx) Convergent

EXERCISE 5.15 We have not discussed two conditions that appear on this
list: the euclidean condition, and convergence. Draw diagrams for these con-
ditions. Then consider which of them holds when R is earlier than for various
structures of time.
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Trees for Extensions of K

6.1. Trees for Reflexive Frames: M-Trees

So far we have not explained how to construct trees for systems stronger
than K. Trees were used, for example, to show that ∫(pçq) / pç∫q has
a K-counterexample, but so far, no method has been given to show that
the same argument has an M-counterexample, or a 4-counterexample. It
is easy enough to adapt the tree method for M, S4, and other modal logics
stronger than K. For example, here is the beginning of an M-tree that
generates an M-counterexample to ∫(pçq) / pç∫q.

Since the frame <W, R> is reflexive in M-models, we know that wRw,
for every member w of W. So we add an arrow from w that loops back
to w (which we have labeled: M). An M-tree must always include such
reflexivity arrows for each of the possible worlds in the tree.
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This arrow, along with the fact that ∫(pçq) is true in w, means we need
to add pçq to w by (∫T).

When we apply (çT) to pçq, the world forks, and the left-hand branch
closes.

The right branch is still open, and because it contains ~∫q, we need to
apply (∫F) to create a new world v. Since we are building an M-model,
we must remember to add a reflexivity arrow to this and any other new
world we construct.
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Since ∫(pçq) is in w, we must use (∫T) to add pçq to v.

Completing the steps in world v, we obtain the following tree:

Selecting the open branch, we obtain the following M-counterexample:
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EXERCISE 6.1 Find M-counterexamples to the following arguments:

a) ∫pç∫q / ∫(pçq)
b) ∂p & ∂q / ∂(p&q)

∗c) pç∫q / ∫(pçq)
Construct M-counterexamples for the following axioms:

∗d) (4) ∫pç∫∫p
∗e) (B) pç∫∂p
∗f) Explain how to construct trees for the system K+(∫M), where (∫M) is the

axiom ∫(∫AçA).

The following M-tree illustrates the case of the argument ∫(pçq),
∫~q / ~p, which is M-valid.

Special care must be taken when arrows are added to a tree in order
to ensure that a desired condition on R is satisfied. We will illustrate the
point by showing that pçq, pç∫p / q is M-invalid. After applying (çT)
to both premises the tree looks like this:

The problem is that the reflexivity arrow together with the (so far) open
branch that ends with ∫p may prompt you to add p at the top of the
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world. Doing so would cause the tree to close, and you would obtain the
incorrect verdict that the argument is M-valid.

Note that all branches on the left are now closed because ~p contradicts
p. The reason that placing p at the top of the world is incorrect is that p
follows from ∫p only on the middle branch. The occurrence of ∫p on this
branch indicates that ∫p is T on one of two alternative ways of providing
a counterexample for the argument. The other option (indicated by the
left branch) is to make ~p T. The fact that p is T when ∫p is T does not
mean that ~p might not be T. By entering p at the top of the tree we
are (incorrectly) indicating that p is T on all possible assignments, and
this is not justified by the information that one of the options is to make
∫p T. This error is easily avoided if you follow the Placement Principle
of Section 4.1. It requires that the result of applying a rule is entered on
every open branch below that line.

According to the Placement Principle, the p that results from (∫T)
must be entered below ∫p on the same branch. The middle branch then
closes. The left-hand branch is still open, however, indicating (correctly)
that the argument is M-invalid.
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EXERCISE 6.2 Verify that the counterexample above assigns the following
values: aw(pçq)=T; aw(pç∫p)=T; and aw(q)=F, thus demonstrating that
pçq, pç∫p / q is M-invalid.

EXERCISE 6.3 Check the following arguments for M-validity. Give M-
counterexamples for the invalid ones:

a) ∫∫∫p / p
b) ∂(p√q) / ∂p√∂q
c) ∂p / ∫(∂p√∂q)
d) ∫(p≠q) / ∫p≠∫q (Hint: A good strategy is to convert ≠ to ç and &.)
e) ∫p≠∫q / ∫(p≠q)
f) ∫(qçp) √ ∫(~pçq), ~∫(~p√q) / ~∫(~pç~q)

6.2. Trees for Transitive Frames: 4-Trees

In systems with transitive frames, like K4 and S4, extra arrows must be
added to a tree to ensure that the relation R is transitive. To illustrate the
process, here is a K4-tree for the argument ∫p / ∫∫p. In early stages of
tree construction the tree looks like this:

Since there are arrows from w to v and from v to u, it follows by transitivity
that there should be an added arrow (labeled: 4) from w to u.

Now it is possible to close the tree using (∫T) with the 4-arrow we just
added.
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The following 4-tree shows the K4-validity of ∫p / ∫~∂∂~p. Here, it was
necessary to add several 4-arrows to guarantee transitivity.

It is a simple matter to check for S4-validity using exactly the same
method, except in this case, M-arrows must also be added to the dia-
gram to guarantee reflexivity. What follows is an S4-tree with an S4-
counterexample that demonstrates that ∂∂∫p / p is S4-invalid:

Adding the M- and 4-arrows may lead to complex diagrams. One way
to avoid the clutter is to omit the M- and 4-arrows but to modify the (∫T)
rule so that it applies to those worlds that would have qualified had the
arrows been drawn in. In the case of K4, the modified rule, called (∫T4),
states that when ∫A is in world w, then A may be placed in any world v
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such that there is a path of one or more arrows leading from w to v. In
the case of S4, we add a rule (∫TM) that says that if ∫A is in w, then A
can also be added to w as well. Diagrams for these modified rules follow:

You may work the next set of exercises in two ways, first by drawing in the
M- and 4-arrows as necessary, and second using the modified (∫T) rules.
(In case of invalid arguments, you will need to put the M- and 4-arrows
back into the diagram if you used the modified rules.)

EXERCISE 6.4 Check the following arguments for both K4-validity and
S4-validity. Give counterexamples for the invalid ones.

a) ∂∂∂p / ∂p
b) ∂(p√q) / ∂∂p√∂q
c) ∂∂p / ∫(∂p√∂q)
d) ∫∫∫p / p
e) ∫pç∫q / ∫(pçq)
f) ∫(∫pçp) / ∫p (Hint: You may not be able to perform every step of the

tree!)

6.3. Trees for Symmetrical Frames: B-Trees

Unfortunately, the Placement Principle (of Section 4.1) cannot be met in
some trees where R is symmetric. Let us attempt to show that p / ∫∂p
is KB-valid using trees to illustrate the difficulty. About halfway through
the construction, the tree looks like this:
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Since KB-models have symmetric frames, and there is an arrow from
w to v, we must draw a reverse arrow (labeled ‘B’ below) from world v
back to w. Then (∂F) may be used to obtain a contradiction in world w.

However, this violates the Placement Principle since the result of applying
(∂F) appears above the line to which it was applied (namely, the ~∂p in
world v). We appear to have no alternative but to violate the Placement
Principle since our goal is to obtain ~p in world w, and world w lies above
world v.

In this example, where there are no forks in the worlds, our reasons
for enforcing the Placement Principle are not operative. In fact, a more
liberal placement principle for trees follows:

Liberal Placement Principle. The results of applying a rule to a step
on a branch may be placed above that step, provided there are no
forks between the point where the rule is applied and the point
where the result of the rule is placed.

Adopting this liberal placement principle, the tree we have just con-
structed qualifies as a correctly formed B-tree and correctly diagnoses
the argument as valid.

EXERCISE *6.5 Using the Liberal Placement Principle, find a KB-
counterexample to ~(∫pç~∫∫p) / ∫q.

Now let us illustrate the Liberal Placement Principle with a more com-
plex example. We will show that ∫∂qç∂∫p / q is KB-invalid. About
halfway through the construction the tree looks like this:
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To ensure symmetry, we add an arrow from v back to w. For simplicity, this
can be done by simply converting that arrow into a double-headed one.

Using the Liberal Placement Principle, (∂F) may be applied to ~∂q in
world v, to insert ~q on the left branch in w, thus closing that branch.

However, work still needs to be done on the right-hand branch, which
remains open.

The tree is now complete. When the closed branch is pruned, we obtain
the following counterexample.
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EXERCISE 6.6 Check these arguments for KB-validity, and give KB-
counterexamples for any that are KB-invalid.

a) ∫∫p, ~p / ∫(p√q) & ∫(r√p)
b) ∂∫p √ ∂∫q / p

Although the Liberal Placement Principle will work in the case of
many arguments, it is not sufficient to correctly manage arguments where
forks occur within possible worlds. The following example illustrates
the problem. Here we have constructed a B-tree to determine whether
∫~(∫p√∫~p) is KB-valid.

Since there is an arrow from w to v, (∫T) must be applied to ∫p in world
v, which would place a p in world w. But even the Liberal Placement
Principle does not allow this, because there is a fork between the point
where ∫p is found and world w. (It is the fork that leads to ∫~p on the
right.) We can not liberalize the Placement Principle further and simply
place p into w, because if we do, the same privileges would apply to the
∫~p on the right-hand branch, and that will produce a contradiction in
world w. This would indicate that ~(∫p√∫~p) is BK-valid when it is not,
as we will soon prove.

One solution to the problem will be to employ an idea that was intro-
duced in Section 4.2. Instead of drawing the symmetry arrow upwards
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from v towards world w, we draw it downwards to a new copy of w below v,
where work on w may be continued. We will call this second copy of w
the continuation of w.

Since we will also need to apply (∫Out) to ∫~p on the right-hand branch,
we will need a continuation of w there as well.

The tree is now complete. It has two open branches so there are two
counterexamples. Selecting the right-hand branch, the following KB-
counterexample to ∫~(∫p√∫~p) can be defined.

EXERCISE 6.7 Double check that the above diagram is a KB-
counterexample to ∫~(∫p√∫~p). Now select the left-hand branch, pro-
duce a second counterexample to ∫~(∫p√∫~p), and verify that it is a KB-
counterexample.
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Given the continuation method, it is never necessary to use the Liberal
Placement Principle. Any case where one would copy a step upwards
can be duplicated by introducing a continuation and working downwards
instead. To illustrate the point, here is a KB-tree that uses continuations
to verify the KB-validity of p / ∫∂p. Applying (∂F) to ~∂p in world v,
we introduce ~p into the continuation of w.

Since p appears in w (in the top copy) and ~p appears in the continua-
tion of w, it follows that there is a contradiction in world w and the tree
closes.

EXERCISE 6.8 Check the following for KB-validity using the continuation
method:

a) ~(∫pç~∫∫p) / ∫q
b) ∂∫p / p
c) ∫∫p, ~p / ∫(p√q) & ∫(r√p)
d) ∂∫p √ ∂∫q / p
e) ∂∫p / ∫p

It is a simple matter to combine the methods used with M-trees with
those used for KB, to construct trees that test for B-validity. Simply add
reflexivity arrows to each world in the trees. The following exercise pro-
vides practice.

EXERCISE 6.9 Check ~∫~(∫p√∫~p) / p and the problems in Exercise 6.8
for B-validity.
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6.4. Trees for Euclidean Frames: 5-Trees

Both the Liberal Placement Principle and continuations may be used to
build trees based on (5), which corresponds to the euclidean condition: if
wRv and wRu, then vRu. However, special care must be taken in adding
extra arrows to trees in order to guarantee the frame <W, R> is euclidean.
Here we will need to ensure that if wRv and wRu, then vRu for any three
worlds w, v, and u in W.

Note that when wRv and wRu hold, it follows (trivially) that wRu and
wRv. But by the euclidean condition it follows that uRv. So the euclidean
condition entails the following one:

For any w, u, and v in W, if wRv and wRu, then both vRu and uRv.

Therefore a euclidean tree allows double arrows to be placed between
any worlds v and u such that wRv and wRu. Not only that, when wRv, it
follows (trivially again) that wRv and wRv, with the result that vRv. So
there will be reflexive arrows on every world pointed to by an arrow.
It follows then that the rule for adding 5-arrows to a diagram looks
like this:

It is easy to overlook 5-arrows that must be added to a tree; however,
there is a simple rule about where they go. The euclidean condition guar-
antees that the tree is nearly universal. This means that there are arrows
between all worlds except for the one that heads the tree. If we call the
set of all worlds other than the world that begins the tree the body of the
tree, then the body is universal, that is, each world in this set has an arrow
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to every other world in the set, and each of those worlds has an arrow
looping back to itself.

EXERCISE 6.10

a) Consider trees with the following three structures:

Add all possible 5-arrows to them in order to show that these trees are
nearly universal. Now add a new arrow and world to the second and
third of these trees and repeat the process. Now explain why adding any
arrow to a nearly universal tree results in another tree that is nearly uni-
versal. Explain why these considerations show that all 5-trees are nearly
universal.

b) Use mathematical induction to show that any 5-tree is nearly universal.

A problem arises concerning how arrows should be added to a tree
when there is a fork in a world. The situation arises, for example, in the
course of building the K5-tree for ∂∫p√∂p / ∫p, which is K5-invalid,
as we shall see. About halfway through the construction the following
diagram is obtained:

Since we are working in K5, it is necessary to draw in extra arrows to
ensure that <W, R> is euclidean. A euclidean tree requires double arrows
be placed between any worlds v and u such that wRv, and reflexive arrows
as well. So a double arrow must be drawn between v and u. When (∫T)
is applied to this side of the left-hand branch, it closes.
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It appears that more 5-arrows must be added to this diagram. Since there
are arrows from w to v and w to v′, one might expect that there should be
a 5-arrow joining these two worlds. However, joining these worlds is fatal
since this closes the entire tree, and yet the argument, as we said before,
is actually K5-invalid.

The reason that the placement of this 5-arrow is incorrect is that worlds
v and v′ do not belong to the same branch in world w. World v′ lies beneath
the branch that contains ∂p, whereas world v lies beneath the branch that
contains ∂∫p. When a fork is created within a world, any 5-arrow to be
added to the tree must join only those worlds that lie along the same
branch.

Arrow Placement Principle. Add arrows to a diagram only between
worlds that lie on the same branch.

Another way to diagnose this error is to point out that the use of (∫T)
violates the Placement Principle, which requires that results of applying
a rule must lie on open branches below the point at which the rule is
applied. But in this tree, p is placed at a point that does not lie below ∫p
in world v.
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Notice that a 5-arrow does need to be placed between v′ and u′ since
these worlds are on the same branch. Furthermore, reflexive arrows need
to be added to worlds v′ and u′. (Reflexive arrows are not needed for
worlds v and u since this side of the tree is already closed.) The tree is
now complete.

Since the right-hand branch is open, we obtain the following counter-
example:

EXERCISE 6.11 Verify that the above diagram is a K5-counterexample to
∂∫p√∂p / ∫p.

Trees for M5 (better known as S5-trees) differ very little from K5-trees.
It is not hard to see that when a relation is reflexive as well as euclidean,
it follows that the tree has a universal R.

EXERCISE 6.12 Repeat Exercise 6.10 for S5-trees in order to show that
M5-trees are universal.

So the only difference between the structure of S5-trees and K5-trees is
in the arrow structure for the opening world w. World w has a reflexive
arrow and is fully connected in an S5-tree but not necessarily in a K5-
tree. So S5-tree construction is very similar to the process for K5. In both
cases, however, the large number of extra arrows in the diagram can be
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annoying. Instead of adding them, the same effect is obtained by adopting
the following variations on the (∫T) rule.

(∫T5) If ∫A is in any world on a branch, then add A to all worlds
on that branch other than the opening one.

(∫TS5) If ∫A is in any world on a branch, add A to all worlds on
that branch.

EXERCISE 6.13 Check the arguments in Exercise 6.8 for K5-validity and
S5-validity. You may use the (∫T5) and (∫TS5) rules to simplify your trees if
you like.

6.5. Trees for Serial Frames: D-Trees

The deontic logics do not have a reflexive R. Instead, the accessibility
relation is serial, that is, for each world w there is another world v such
that wRv. It is a simple matter to check arguments in deontic logics by
simply adding arrows to diagrams to ensure that R is serial. To illustrate
this, consider the tree for the argument ∫p / ∂p, which begins as follows:

We have begun the tree, but note that if we were working in K there would
be no further step we could do. (Remember that neither the (∫T) nor the
(∂F) rules can be applied until other rules add arrows to the diagram.)
However, now that we are working with a serial R, we may simply add
an arrow (labeled D) to ensure that there is a world v such that wRv.

Given the new D-arrow, (∫T) and (∂F) can be applied to close the tree.
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An awkward problem arises when testing D-invalid arguments with trees.
For example, consider the following attempt to find a D-counterexample
for axiom (4):

This does not count as a completed D-tree because seriality requires there
be an arrow pointing from u to another world. If an arrow is added point-
ing to a new world x, there will need to be an arrow pointing from x to
yet another world.

It seems that the process will never terminate. However, there is a simple
strategy that can be used to construct a D-counterexample. Eventually
there will be worlds (such as x) that contain no sentences, and at this point
it is safe to simply add a loop arrow to guarantee seriality.

From this diagram, a D-counterexample to (4) is easily constructed.

EXERCISE 6.14 Show that the following axioms are all D4-invalid with
trees: (B), (5), and (M).
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6.6. Trees for Unique Frames: CD-Trees

In the case of CD-trees, the relation R must be unique. That means that
when wRv and wRu, v and u are the very same world. It is impossible
to guarantee this condition using K-tree rules because if ~∫p and ~∫q
ever appear in a world, then when (∫F) is applied to each there will be
two arrows exiting that world. To guarantee uniqueness, we will need to
modify the (∫F) rule as follows. If an arrow already exits from a world,
and we would need to use (∫F) to create a new world, use the following
rule (U∫F) instead:

To illustrate how this new rule is applied to CD-trees, here is a tree
that demonstrates that ~∫p / ∫~p is CD-valid:

EXERCISE 6.15 Check the following arguments for CD-validity:

a) ∫(p√q) / ∫p√∫q
b) (∫pç∫q) / ∫(pçq)
c) Let c be any of the following connectives: &, √, ç. Verify that the following

two arguments are CD-valid: ∫(AcB) / ∫Ac∫B and ∫Ac∫B / ∫(AcB).
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Converting Trees to Proofs

7.1. Converting Trees to Proofs in K

Not only is the tree method useful for checking validity in modal logics, but
it may also be used to help construct proofs. Trees provide a mechanical
method for finding proofs that might otherwise require a lot of ingenuity.
If an argument has a proof at all in a system S, the tree method can be
used to provide one. The process is easiest to understand for system K, so
we will explain that first, leaving the stronger systems for Sections 7.3–7.9.
The fundamental idea is to show that every step in the construction of a
closed tree corresponds to a derivable rule of K.

It is easiest to explain how this is done with an example, where we
work out the steps of the tree and the corresponding steps of the proof
in parallel. We will begin by constructing a proof of ∫(pçq) / ∫pç∫q
using the steps of the tree as our guidepost. The tree begins with ∫(pçq)
and the negation of the conclusion: ~(∫pç∫q). The first step in the
construction of the proof is to enter ∫(pçq) as a hypothesis. In order to
prove ∫pç∫q, enter ~(∫pç∫q) as a new hypotheses for Indirect Proof.
If we can derive ƒ in that subproof, the proof will be finished.

In the tree, we apply (çF) to the second line. Since (çF) was shown to
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be a derivable rule of propositional logic in Section 1.3, we may enter
exactly the same steps in our proof.

EXERCISE 7.1 Reconstruct the proofs that both versions of (çF) are deriv-
able rules of propositional logic. Version 1: ~(AçB) / A; Version 2: ~(AçB) /
~B. (Hint: See Section 1.3, Exercise 1.5.)

The next step of the tree is to apply (∫F) to ~∫q, creating a new world con-
taining ~q. This step corresponds to entering a world-subproof, headed by
~q. (A world-subproof, as was explained in Section 1.5, is an abbreviation
for the double subproof structure used by (∂Out).)

Next, (∫T) is applied two times in the tree. These steps correspond to
two uses of (∫Out) in the proof. (Actually (Reit) is also needed, but we
will ignore (Reit) steps in this discussion to simplify the presentation.)
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At this point (çT) is applied to the tree creating two branches, one con-
taining ~p, and the other q. In the proof, this corresponds to beginning
two subproofs headed by the same two sentences.

In general, the (çT) rule for trees corresponds to the creation of a pair
of side-by-side subproofs of the kind we used with (√Out).

Both branches in the lower world of the tree are closed. Placing ƒ on
these branches corresponds to using (ƒIn) (and (Reit)) in the proof to
place ƒ in the subproofs headed by ~p and q.
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We now have contradictions in the subproofs headed by ~p and q. The
next project will be to derive contradictions in all subproofs that enclose
these two. The result of that process will place ƒ in the subproof headed
by ~(∫pç∫q), which was our goal. The first stage of this process will
appeal to a derived rule of propositional logic that we will call (çƒ).

EXERCISE 7.2 Show that (çƒ) is a derivable rule of PL. (Hint: From the
left subproof derive A, and from the right one derive ~B.)

This rule is similar to (√Out). It says that when we have a “parent” sub-
proof containing AçB and two side-by-side subproofs, one headed by
~A and the other by B, both of which contain ƒ, then ƒ may be placed
into the parent subproof. In our example, we have pçq, the conditional
that caused the fork in the tree, and subproofs headed by ~p and q con-
taining ƒ. When (çƒ) is applied to the proof, we obtain ƒ in the subproof
headed by ~q. In both the tree and the proof, we have shown that the
initial segment of the bottom world leads to a contradiction.
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In general it is guaranteed that wherever the tree forks, there was
a conditional AçB that caused that fork through the use of (çT). The
two branches beyond the fork will be headed by ~A and B. In the corre-
sponding proof, the same conditional will be present, which will cause the
creation of two subproofs, one headed by ~A and the other by B. When
the two subproofs are shown to contain ƒ, (çƒ) may then be applied to
the proof to derive ƒ in the parent subproof, which is, in our case, the
world-subproof headed by ∫, ~q.

The next step in constructing the proof is to derive ƒ in the subproof
headed by ~(∫pç∫q). This process corresponds to a derivable rule of K
that is similar to (∂Out).

EXERCISE 7.3 Show that (~∫ƒ) is a derivable rule of K.

This rule allows us to place ƒ in the subproof that was headed by
~(∫pç∫q). Using (IP) on this subproof, we obtain the desired
conclusion.
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This example demonstrates a general strategy for converting any
closed K-tree into a proof in K. Each entry in a tree corresponds (in
a proof) to a hypothesis or the result of applying a derivable rule of K.
When the tree rules (~F), (çF), and (∫T) are used in the tree, we may use
corresponding rules of proof – (DN), (çF), and (∫Out) (respectively) –
to derive the same steps. When (∫F) and (çT) are applied in the tree,
the corresponding sentences head new subproofs. Since the tree is closed,
we can be assured that each of its innermost subproofs contains ƒ. Then
(çƒ) and (~∫ƒ) can be applied repeatedly to drive ƒ to the parents of
those subproofs, then to their parents, and so on. It follows that ƒ can be
proven in the subproof for (IP) headed by the negation of the conclusion.
The conclusion can then be proven by (IP).

In the next example, we present the corresponding proof for the tree
of the argument ~pç∫~∫~~p / ~∫~∫pçp. We leave the justifications
for the lines of this proof as an exercise.

EXERCISE 7.4 Give the rule names for each step of the above proof, using
the tree at the left as guidance.

When converting trees to proofs, it is important to let the arrow struc-
ture in the tree guide the structure of the subproofs in the corresponding
proofs. The tree and corresponding proof for ∫(pçq), ∫p / ~∫qç∫r
will illustrate the point.
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The subproof for the world v cannot be completed since the right-hand
subproof headed by q contains no contradiction. (This is why reasons
for the steps in that subproof were omitted.) However, the proof can
be completed nevertheless because the subproof for the world u does
contain the needed contradictions, allowing (~∫ƒ) to be applied to place
ƒ in the main subproof. So none of the steps in the subproof for world
v are needed, and this “failed” subproof may be simply eliminated from
the final solution.
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Note how important it was for a successful conversion that the sub-
proof for world u was placed within the subproof for world w rather
than within the subproof headed by v. The correct choice of subproof
layout is guided by the fact that there is no arrow from v to u, but
instead an arrow from w to u. One feature of trees that can lead to
confusion in this example is that it appears that world u lies within
world v. So when constructing the corresponding proof, one might be
tempted to place the subproof for world u within the subproof for world
v. But that would be a mistake since the proof will be blocked when the
subproofs are laid out this way. The difficulty is illustrated in the next
diagram.

If the subproof for world u were placed in the right-hand subproof (headed
by q) for world v, it would be impossible to apply (~∫ƒ) correctly since
~∫q is in the subproof for world w rather than in the subproof for world
v, where it would be needed. (It is not possible to reiterate ~∫q to place
it into the subproof for world v because this is a boxed subproof so that
(Reit) does not apply.)

So when two worlds (such as v and u in the above example) are “sib-
lings” in the arrow structure, it is important that their corresponding
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subproofs not be placed one inside the other when the proof is con-
structed. Instead they should lie “side by side” as illustrated by the original
layout for this proof. The arrows determine the subproof layout, not the
order in which worlds appear along a branch.

When sibling worlds appear in a tree along the same branch, it
is always possible to simplify the tree and hence the corresponding
proof. By working first on those steps that produce the world that com-
pletely closes, steps for its sibling never have to be performed. The
result is a proof where the “failed” boxed subproof for the other sib-
ling never has to be considered. So for example, the tree we have been
discussing can be simplified by applying (∫F) to ~∫q before applying
(∫F) to ~∫r. The result is a shorter tree and quicker discovery of the
proof.

The moral of this example is that whenever sibling worlds appear
along a branch in a closed tree, it is possible to save time and trouble
by deleting parts of a branch that contain any “failed” sibling worlds –
sibling worlds that remain open. The result is a tree where each world
has at most one arrow exiting from it. When the tree is simplified in
this way, the potential confusion concerning subproof layout for sib-
ling worlds will not arise and “failed” subproofs will never occur in the
corresponding proofs. Although it is not always easy to predict which
worlds will end up as failed siblings during tree construction, it is pos-
sible to simplify a closed tree after it is completed and every branch is
closed.
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EXERCISE 7.5 Use the conversion process without simplifying to create
proofs for the following trees. Then simplify each tree and do the conversion
again.

In case a K-tree contains continuations, whether a world counts as a
failed sibling depends on how you look at it. For example, consider the
following tree:

From the point of view of the left branch, world v is a failed sibling, but
from the point of view of the right-hand branch, v is not since the branch
is closed by world v. To avoid these and other complications introduced
by continuations, one should reorder steps in a K-tree so that all continu-
ations are eliminated before the conversion process begins. When this is
done to the above tree, the problem does not arise.
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EXERCISE 7.6 Explore the difficulties raised in attempting to convert the
above tree into a proof. Then reorder the steps to eliminate the continuation
and convert the tree into a proof.

By performing (çT) before (∫F), two separate branches are formed and
it is clear that v would be a failed sibling on the left branch.

Here is a summary of the tree rules and their corresponding rules of
proof:

Tree Rule K Rule
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7.2. Converting Trees that Contain Defined Notation into Proofs

Officially, the only tree rules are (çT), (çF), (∫T), (∫F), and (~F). Since
use of these rules corresponds to principles of K, we know that every
closed tree corresponds to a proof. However, tree rules for the defined
connectives &, √, and ∂ were introduced for convenience. These rules
were not required because any tree that contains them can be rewritten
in favor of ~, ç, and ∫. The new tree can then be closed using the official
rules and the proof constructed from that tree using the method explained
in Section 7.1. The proofs that result from applying this method are neither
obvious nor elegant. However, what matters ultimately is that we are
certain to find a proof this way if the tree is closed. To illustrate how this
is done, here is a proof for the argument ∫p&∫q / ∫(p&q) from its tree:
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Overall, however, the translation technique can be cumbersome. A
more convenient alternative is to identify the derived tree rules for &,
√, and ∂ with the corresponding derived K rules. The following list
explains the correspondence:

Tree Rule K Rule
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EXERCISE 7.7 Show that the rules (√F), (∂F), (√ƒ), (~&ƒ), and (∂ƒ) are
all derivable in K.

With these rules available, the creation of a proof from the tree for
∫p&∫q / ∫(p&q) is simplified.

EXERCISE 7.8 Reconstruct tree diagrams for the arguments given in Exer-
cises 4.1 and 4.2, and convert these trees to proofs. Now do the same for
Exercise 4.8, problem a).

7.3. Converting M-Trees into Proofs

The previous section shows how to convert any closed K-tree into a proof
in K. A variation on the same method may be used to convert trees
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to proofs for stronger modal logics. The trees we construct for systems
stronger than K may contain additional arrows and worlds that were
introduced to satisfy the corresponding conditions on frames. These added
arrows and worlds introduce new sentences into the tree, usually through
the use of (∫T). So the primary issue to be faced in the conversion process
for systems stronger than K is to show how these additional steps in the
tree can be proven.

In order to pave the way for this demonstration, it helps to consider
a variant on the tree method that introduces axioms or rules to the tree
rather than extra arrows and worlds. The idea is that any use of (∫T) that
added new sentences to the tree because of the addition of an S-arrow
could be duplicated by the addition of a derived axiom or rule of S to the
tree. So whenever the S-tree is closed, that tree could be reformulated
using axioms or rules in place of the additional arrows. Since the new tree
will appeal only to steps of K and to derived principles of S, it will be a
straightforward matter to convert the reformulated tree into a proof.

Let us start with a simple example in the system M. We will begin with
a closed M-tree for the argument ~p / ~∫p. Notice that (∫T) was used
with the M-arrow to obtain p from ∫p. Let us use the notation ‘(M∫T)’
to record the idea that this step was applied because of the presence of
the M-arrow in this tree.

Clearly we could obtain exactly the effect of (M∫T) in a tree that lacked
the M-arrow, by applying the (M) rule to the tree instead.

(M) ∫A
-----
A
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Clearly any step justified by (M∫T) (where (∫T) is applied along an
M-arrow) can also be duplicated instead using (M). Let us call a tree
constructed in this fashion an (M)K-tree, to emphasize that it, like a K-
tree, lacks M-arrows but appeals to (M) instead. (M)K-trees can be a
convenient alternative to M-trees, especially where excessive numbers of
reflexivity arrows clutter up the tree diagram.

Another advantage of (M)K-trees is that it is easy to see how to convert
them into proofs. The method is identical to the one used for K, with the
exception that there will be appeals to (M) in the proof where they are
found in the (M)K-tree. For example, a proof is easily constructed for the
(M)K-tree just given as follows:

EXERCISE 7.9 Construct proofs in M from (M)K-trees for valid arguments
of Exercise 6.3.

7.4. Converting D-Trees into Proofs

Now let us consider the system D. In D-trees, the frame must be serial,
which means that for each world w in the tree there must be an arrow from
w to some world v. To guarantee this condition on frames, new D-arrows
and worlds may have been added to the tree. So the problem is to explain
how to convert this extra structure into corresponding steps of the proof.
To handle this kind of case, K-trees for the system D may be constructed
that allow an additional step that will guarantee the presence of worlds
needed to ensure seriality. It is not difficult to show that the following
axiom is derived in D:

(ƒD) ~ ∫ƒ

EXERCISE 7.10 Prove ~∫ƒ in D. (Hint: Use the following instance of (D):
∫~ƒ ç ∂~ƒ, and then show that ∫~ƒ is provable using (Def~), (CP), and
(∫In).)
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(D)K-trees are K-trees (that is, trees that lack D-arrows), but allow instead
the introduction of (ƒD) into any world of the tree. When ~∫ƒ is added
to a world, (∫F) must be applied, creating a new world headed by ~ƒ. In
this way, the tree will obey seriality, but without the explicit addition of
any D-arrows.

Since (ƒD) constitutes a derived principle in D, converting a (D)K-tree
into a proof in D is straightforward.

Here is an illustration of the conversion process. We have presented
the (D)K-tree for the argument ∫(p&q) / ∂(p√q) along with the corre-
sponding proof.

EXERCISE 7.11 Construct a D-tree that shows that the argument ∫∫p /
~∫∫~p is D-valid. Now convert this tree into a proof in D.

7.5. Converting 4-Trees into Proofs

In the case of 4-trees, extra 4-arrows are added to guarantee that the
frame is transitive. This means that (∫T) may be used with the added
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arrows to place new sentences into the tree. Let us use ‘(4∫T)’ to notate
these steps. Exactly the same effect can be achieved in K-trees that lack
the 4-arrows provided that the rule (4) is added to the tree rules.

(4) ∫A
--------
∫∫A

So a (4)K-tree is a K-tree where rule (4) may be applied in any world of
the tree. It should be obvious that once the (4)K-tree for an argument is
closed, it is a straightforward matter to convert the result into a proof.
So to convert any 4-tree to a proof in K4, we need only explain how
(4) can be used to duplicate any (4∫T) step in the original 4-tree. To
illustrate, consider the 4-tree for the argument ~∫∫p / ~∫p, along with
the corresponding (4)K-tree.

In this case, the (4∫T) step was applied to the ∫p in world w along the
4-arrow to place p in world u. The same effect may be obtained in the
(4)K-tree to the right by applying the (4) rule to ∫p in world w, allowing
the placement of p in u using (∫T) twice with the original K-arrows.
Clearly the resulting (4)K-tree can be converted into a proof with the
help of (4).

In some 4-trees, many 4-arrows must be added to guarantee transitivity.
In cases like this it may be necessary to eliminate (4∫T) steps in favor of
uses of the (4) rule repeatedly. For example, below on the left is a 4-tree
for the argument: ∫p / ∫~∂∂~p. To its right, each 4-arrow is eliminated
in favor of a use of (4), starting with the 4-arrow last entered into the tree
and working in reverse order. The result is a (4)K-tree that contains every
step in the original 4-tree but lacks the 4-arrows.
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It should be clear that no matter how many 4-arrows have been intro-
duced into a 4-tree, it is possible to use this strategy to create a (4)K-tree
that lacks all 4-arrows, but obtains the same steps using (4). Simply con-
vert each 4-arrow into the corresponding steps in the reverse of the order
in which the 4-arrows are added to the tree.

EXERCISE 7.12 Construct a proof in K4 from the right-most tree of the last
diagram.

This strategy can be easily combined with the strategies used for M-
and D-trees. So it is a straightforward matter to convert D4- and M4-trees
(that is, S4-trees) into (D4)K and (M4)K trees from which proofs in D4
and M4 are easily constructed.

EXERCISE 7.13 Construct trees for the following arguments and convert
them to proofs in the systems mentioned:

a) ∂∂∂(pçq), ∫p / ∂q in K4
b) ∫∫p / ~∫∂∂~p in D4
c) ∫~~p√∫∫∫q / ∫∫∫p√∫q in S4

7.6. Converting B-Trees into Proofs

In this section, we will explain how to convert B-trees into proofs in sys-
tems that contain (B). Since the strategies for D-trees and M-trees may
be adopted along with the methods we are about to explain, this will
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show how to convert trees into proofs for DB and B (=MB) as well.
We must explain how to duplicate (B∫T) steps (steps introduced using
(∫T) along B-arrows added to ensure that the frame is symmetric). The
result will be a closed (B)K-tree that lacks all the B-arrows but obtains
the effect of (B∫T) steps by appealing to a derived principle of the sys-
tem KB. Consider the following closed B-tree for the KB-valid argument
∫∫p / ~pç∫p. Here (B∫T) has been used to place p in world w, by
applying (∫T) to ∫p along the B-arrow from world v to world w.

We are hoping to find a principle of B that we can add to trees that will
guarantee that p occurs in world w, but without the help of the B-arrow.
One strategy that works uses the axiom (√B), which is equivalent to the
dual of axiom (B).

(√B) ∫~∫A√A

(By principles of propositional logic ∫~∫A√A is equivalent to
~∫~∫AçA, which is the dual of (B): ∂∫AçA.) Notice what happens
once ∫~∫p√p is added to world w and (√T) is applied.
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The resulting tree lacks the B-arrow, but it duplicates the original tree
in placing p in world w on the right-hand branch. This branch closes in the
same way it did in the original tree because p was available. But the axiom
also produces the branch on the left headed by ∫~∫p, which was not in
the original B-tree. One might worry that this branch could stay open so
that the new (B)K-tree is no longer closed. Notice, however, that the left
branch in world w must close, for the presence of ∫~∫p in w causes ~∫p
to be placed in v, which contradicts ∫p.

This suggests a strategy that is guaranteed to replace any closed KB-
tree that appeals to (B∫T) with a corresponding closed K-tree that lacks
B-arrows, but appeals to (√B) instead. The resulting (B)K-tree is easily
converted into a proof in B. Consider in general any B-tree where there
is a B-arrow from v to w and a branch that contains ∫A in v.

When A is placed in world w using (B∫T), the same effect can be
obtained by placing ∫~∫A√A in world w. When (√) is applied to that
step, duplicates of world v containing ∫A will be entered below world
w in each branch, for whatever rules created world v and placed ∫A in
it in the K-tree must be applied to create the same structure on both
branches of the (B)K-tree. Sentence A will appear in w (as desired)
on the right-hand branch, which duplicates the effect (B∫T), and this
branch will therefore close just as it did in the original tree. Further-
more, the left-hand branch (headed by ∫~∫A) will also close, because
when (∫T) is applied along the K-arrow from w to v, ~∫A will be placed
in v.
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This diagram helps us appreciate that when (√B) is added to world w,
any branch that contains ∫A in world v must either close immediately
(as in the left-hand branch) or contain A in world w and so duplicate
the closed branch in the original tree (the right-hand branch). Therefore,
the (B∫T) steps in a closed B-tree can be duplicated in a corresponding
closed (B)K-tree.

There are some occasions where it is necessary to use continuations
to correctly construct a B-tree. For example, the following KB-tree for
the argument ~q / ∫((~∫qçp)çp) uses (∫T) and a B-arrow to place
q in a continuation of w to close the left-hand branch. This continuation
was unavoidable. If q had been placed in the original world w, then the
Placement Principle would have been violated because of the fork in
world v.

However, the presence of continuations in B-trees requires no modifi-
cation of the strategy used to convert B-trees into corresponding (B)K-
trees. The method works whether the B-arrow points upwards or down-
wards to a continuation. When an arrow points from world w to world
v, and a sentence A is placed in w by applying (B∫T) to ∫A in v
(in our example the q in the continuation of w), simply use (√B) to
place ∫~∫A√A in the first occurrence of the world w. After (√T) is
applied to this step, it will follow that all branches through w will either
contain ∫~∫A or A. It follows that every branch containing ∫A in
v will close immediately by applying (∫T) to ∫~∫A or contain A in
world w, thus duplicating the closed branch in the original tree. To illus-
trate, the corresponding (√B)K-tree is added to the right in the next
diagram.
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∫~∫q                            q
                       ƒ

The method for constructing (B)K-trees can become complex when there
are multiple cases of (B∫T) to deal with. Note, however, that whenever
we use (√B) in world w, the left-hand branches that contain ∫~∫A will
all close. Let a simplified (√B) tree be one that removes any branches that
immediately close in this way. It should be clear that it is always possible
to construct a simplified (B)K-tree that satisfies the following property:

(B-Fact) Whenever there is an arrow from w to v, then any branch
that contains ∫A in v also contains A in w.

Any simplified (B)K-tree can be expanded into a full-dress (B)K-tree
that includes all the steps needed to close the left-hand branches; the
result can then be converted into a proof in KB. It is much easier to work
with simplified (B)K-trees since they are identical to KB trees, save that
B-Fact is appealed to in place of (B∫T). For example, here is the simplified
(B)K-tree for the first example presented in this section:

It should be clear then that each B-tree corresponds to a simplified (B)K-
tree, which can be converted into a full-dress proof in B.
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EXERCISE 7.14 Construct simplified (S)K-trees for the following argu-
ments in the systems S indicated; then construct their (S)K-trees. Finally, con-
vert the (S)K-trees into proofs. You will need to combine B strategies with
those for D and M to solve problems c) and d).

a) ∫∫p,~p / ∫(p√q) in KB
b) ∫∫(pçr), p, ~r / ∫q in KB
c) ∫∫(pçr), p / r in DB
d) ∫∫(pçr), ∫p / ∫∂r in B (Hint: You will need to use (√B) twice.)

EXERCISE 7.15 Consider the following strategy for converting KB-trees
into proofs: in the v subproof containing ∫A, use ∂Out to obtain ∂∫A in
w, from which A is derived by the dual of (B). Explain why this method is
not a general solution to converting KB-trees to proofs. (Hint: Consider the
possibility that the tree might have forked in world v.)

EXERCISE 7.16 Explain how to convert ∫M-Trees into proofs in K+(∫M).
(Hint: Remember (∫M) is the axiom ∫(∫AçA). ∫M-trees obey the property
of shift reflexivity, i.e., if wRv, then vRv. So when an arrow points from w to v,
an arrow looping from v back to v is added to the tree. Explain how to create
(OM)K-trees that allow the introduction of the axiom (OM) into world w to
obtain the same effect as any use of (OM∫T).)

7.7. Converting 5-Trees into Proofs

A method similar to the one used for KB-trees may be used to generate
proofs for closed 5-trees. The secret is to construct corresponding K-trees
that avoid uses of (5∫T) (steps that appeal to (∫T) along 5-arrows) in
favor of uses of the axiom (√5).

(√5) ∫~∫A√∫A

The only difference between (√B) and (√5) is that ∫A (rather than A)
appears in the right disjunct. So it should be clear that an analog of the
strategy outlined for B can be used to construct corresponding simplified
(5)K-trees that satisfy (5-Fact).

(5-Fact) When there is an arrow from w to v, then any branch that
contains ∫A in v also contains ∫A in w.

The following diagram illustrates how the application of (√5) guarantees
the 5-Fact in the simplified tree:
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The 5-fact guarantees that (5)K-trees may be used to duplicate any
step that results from the use of (5∫T). Whenever there are K-arrows
from w to v and w to u, and a 5-arrow between v and u, (5∫T) allows
the placement of A in u along any branch that contains ∫A in v. This
same step may be duplicated in the simplified (5)K-tree because the
5-Fact guarantees that ∫A is in w on any branch that includes ∫A in
v. But if ∫A is in v, (∫T) may be used to place A in u as desired. An
outline of the process appears in the following diagram with the 5-tree on
the left, a simplified (5)K-tree in the middle, and all the gory details of
the full (5)K-tree on the right:

EXERCISE 7.17 Convert the following 5-tree into a proof in K5:

       
            

       



Converting Trees to Proofs 161

It is easy to combine the strategies for M, D, 4, and B-arrows with the
method just explained for 5-arrows. Here are some exercises for practice
with the idea. All you need to do is to eliminate the arrows from the
original tree in the reverse of the order in which they were introduced.

EXERCISE 7.18

a) Construct a simplified (M5)K-tree showing the M5-validity of (B):
Aç∫∂A. Then convert it into a proof.

b) Construct a simplified (45)K-tree for ∂∫p /∫∫p and convert it into a proof
in K45.

So far, we have converted only trees that contain a single 5-arrow, but
of course, there may be many such arrows in a 5-tree. In this case, it can
be difficult to keep track of all the steps needed to complete a conversion.
One way to manage the complexity is to create simplified (5)K-trees by
eliminating, one by one, each use of (5∫T) and the 5-arrow involved in
favor of the corresponding 5-Fact. It is important to do this in the reverse
order in which the (5∫T) steps were entered into the tree. By keeping
good records of what sentences were justified by the 5-Fact, it will be
easy to determine which instances of (√5) will be needed in the final
(5)K-tree. Here is an example to illustrate the idea. On the left is the
K5-tree that demonstrates the 5-validity of the axiom (∫M): ∫(∫AçA).
In the trees to the right, each 5-fact is recorded in turn as the uses of
(5∫T) are eliminated.

Note that in the tree on the left, the 5-arrow from u to v was drawn
because there were arrows from v to u and from v back to v. (∫T) was
used with this 5-arrow and ∫~A in u to place ~A in v. To capture this
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step in a simplified (5)K-tree, use the 5-Fact to place ∫~A in v, from
which ~A follows from (5∫T) and the “reflexive” 5-arrow from v to v.
Now it is necessary to eliminate this step and remove this arrow. It was
drawn because there was an arrow from w to v (and an arrow from w
to v), which meant there had to be a 5-arrow from v back to v. So in
this case, the relevant 5-fact is that ∫~A may be found in world w. Once
∫~A is there, ~A can be placed in v by an ordinary use of (∫T) following
the K-arrow from w to v. The rightmost simplified (5)K-tree can now be
expanded to a (5)K-tree by placing the axiom ∫~∫A√∫A in each world
where ∫A is justified by a 5-Fact.

EXERCISE 7.19 Convert the tree on the right in the last diagram into a
(5)K-tree, using the appropriate instance of (√5) at the two locations where a
5-Fact is noted. It is less confusing if you convert each use of (√5) separately.
Now convert the result into a K5-proof.

Let us illustrate a final example of the conversion process for 5-trees. In
this case we will need to use (√5) three times.

EXERCISE 7.20 Convert the rightmost tree into a K5-proof.
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Notice that the 5-arrow last entered into the 5-tree was the “smallest”
one from u to x. When this arrow is removed, the resulting tree uses (∫T)
twice with the remaining 5-arrow, once to place p in x and again to place
~q in x. So when this arrow is removed, it will be necessary to use the
5-Fact twice to place both ∫p and ∫~q in world w. When this is done,
both p and ~q may be entered into x using (∫T) with the K-arrow from
w to x. The reason why the arrows should be resolved in reverse order
may now be apparent. If the 5-arrow from v to x had been resolved first,
then we would have had trouble seeing that steps for both ∫p and ∫~q
had to be carried out.

EXERCISE 7.21 Construct trees for the following arguments and convert
them into proofs in the systems indicated:

a) ∂p / ∫∫∂p in K45
b) ∫∫p / ∂∫∂p in D5
c) ∫p / ∂∫∂p in D45
d) ~∫p, ∫(qçp) / ~∫∫~∫∫q in K5 (Hint: This is hard since there will be three

5-arrows in the closed tree. Go slowly resolving each arrow separately.)

7.8. Using Conversion Strategies to Find Difficult Proofs

Strategies for converting trees into proofs are genuinely useful for solving
proofs that would otherwise be quite difficult to find. If you suspect an
argument is S-valid for a system S that is formed from principles discussed
in this chapter, but cannot find the proof in S, simply construct its S-tree.
If the tree is open, then you know that the argument is S-invalid, and so
not provable after all. If the S-tree is closed, you simply use the methods
of this chapter to convert it into a proof in S. Some of the resulting proofs
would have been extremely difficult to find without the guidance provided
by trees.

EXERCISE 7.22 Show the following facts using a tree and the conversion
method:

a) (C4): ∫∫Aç∫A is provable in K5
b) ∂∂Aç∂A is provable in KB5
c) ∂∫AçA is provable in M5
d) (M) is provable in D4B (Hint: Make use of seriality to draw an arrow from

the opening world. Then use B to construct a continuation of the opening
world. Transitivity will then ensure there is an arrow from the opening world
to its continuation.)
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e) Use the tree method to construct proofs of ∫(∫AçA), ∫(Aç∫∂A), and
∫(∫Aç∫∫A) in K5 (Hint: Make use of ideas and strategies in the earlier
problems to help organize your work for later ones. The last of these is
difficult.)

7.9. Converting CD-Trees into Proofs in CD and DCD

In systems that adopt the (CD) axiom, frames are unique. To guarantee
that CD-trees meet this condition, we adopted a new tree rule (U∫F) that
requires that when applying (∫F) to a world from which an arrow already
points, a new world should not be created, but the result of applying that
rule is added to the world that already exists.

So in converting from CD-trees to proofs, we will need to explain how
the sentence added by (U∫F) can be derived. Here is an example to
help illustrate the process. Here we have a CD-tree that demonstrates
the validity of the argument ∫(p√q) / ∫p√∫q.

The problem to be faced in constructing the proof is to find a way to derive
the step ~q (at the ????), which was produced by (U∫F) in the CD-tree.

       
            

       



Converting Trees to Proofs 165

The solution makes use of the (CD) axiom. It is an easy matter to show
that the following rule follows in any extension of K that contains (CD):

~∫A
-----
∫~A (CD)

EXERCISE 7.23 Demonstrate that ~∫A ÷KCD ∫~A.

Making use of this rule, the sentence ~∫q to which (U∫F) was applied
in the tree can be transformed to ∫~q, from which ~q can be derived in
the boxed subproof by (∫Out).

The same strategy may be used in any system that results from adding
axioms to KCD, so for example, we may use the same idea to show that
DCD-trees can be converted into proofs in DCD.

7.10. A Formal Proof that Trees Can Be Converted into Proofs

A method for converting K-trees into K-proofs was presented in Sec-
tion 7.1. However, the demonstration given there was informal. One may
worry that complications related to failed siblings and continuations might
hide some flaw in the reasoning. So it is worthwhile for our peace of mind
to give a more careful demonstration that the argument for a closed tree
always has a proof in K. Once the result is established, it can be extended
to the stronger modal logics S discussed in this chapter. In those cases,
note that an (S)K-tree for system S contains only steps for the K-tree
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plus the use of derived axioms or rules (S). It will follow that any closed
(S)K-tree can be converted to a proof in S. In Sections 7.3–7.9, it has
been shown that whenever an S-tree is closed, so is the corresponding
(S)K-tree. So it follows that any S-tree can be converted into a proof
in S.

To simplify what follows, let us presume that all derived notation is
removed before the trees are constructed. As a result, each K-tree is built
using the basic tree rules (~F), (çF), (çT), (ƒIn), (∫T), and (∫F). The
method for showing that arguments with closed K-trees have proofs in K
will be to construct a branch sentence *B for each branch B created in
the construction of the closed K-tree, and to show that each such *B is
K-inconsistent, that is, *B ÷ ƒ. (Here the subscript ‘K’ on ‘÷’ is omitted to
save eyestrain. Furthermore, by ‘inconsistent’, we mean K-inconsistent in
what follows.) Since *B for the opening branch (the one that begins the
tree-construction process) will consist of the conjunction of the premises
with the denied conclusion of the argument H / C being tested, it will
follow that H, ~C ÷ ƒ. It follows immediately by (IP) that the argument
has a proof in K.

To construct *B, *w is defined for each world w on a branch as follows:

Definition of *w. *w is the conjunction of all sentences appearing
in w on the branch (including sentences in any continuations of w)
together with ∂*v, for each world v on the branch such that there
is an arrow from w to v.

*B for a branch B is then defined to be *o, where o is the opening world on
the branch, that is, the one at the top of the tree. So for example, suppose
the branch has the following shape:
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Then *w is calculated as follows:

*w = A & B & ∂*v & ∂*u
= A & B & ∂(C&D) & ∂*u
= A & B & ∂(C&D) & ∂(E & ∂*x)
= A & B & ∂(C&D) & ∂(E & ∂(F&G))

Let *B be the branch sentence for any branch B created during the
construction of a closed K-tree. It will be shown that *B is inconsistent.

Branch Sentence Theorem. *B ÷ ƒ.

Proof of the Branch Sentence Theorem. Suppose that the result(s) of
applying a rule to branch B during the construction of a tree is branch
B′ (or branches B′ and B′′). Then the branch sentence *B will be called
the parent of ∗B′ (and *B′′), and *B′ (and *B′′) will be known as the
child (children) of *B. Branch sentences for branches that contain ƒ
will be called closed. To prove the branch sentence theorem, we will
show two things – first, that all closed branch sentences are inconsistent,
and second, that when child (children) *B′ (and *B′′) is (are) inconsis-
tent, then so is the parent *B. It will follow from this and the fact that
all closed branch sentences are inconsistent that all parents of closed
branch sentences are inconsistent. Similarly, parents of those parents
are inconsistent, and so on all the way back to the branch sentence for
the beginning of the tree. As a result, all branch sentences on the tree
are inconsistent. All that remains, then, is to prove the following two
lemmas:

Closed Branch Lemma. If *B is closed, *B is inconsistent.

Tree Rule Lemma.
If the children of *B are inconsistent, then so is *B.

For the proofs of these lemmas, it helps to establish some facts about
branch sentences *B. Suppose *B contains sentence A. Then *B can be
constructed by starting with A and repeatedly adding a conjunct or ∂ at
each step as many times as are necessary to build up *B. Furthermore,
by following the same construction procedure, but placing conjuncts to
the left of A whenever they would be placed to the right of A in the
construction of *B, it is possible to construct a sentence *(A) equivalent
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to *B such that A is the rightmost sentence in *(A). It follows that the
*(A) so constructed has the form:

C1 & ∂(C2 & . . ∂(Cn&A). .)

A more careful proof of this fact about *(A) is given in the next para-
graph. Those who are already convinced may skip to the proof of the
Closed Branch Lemma. Define a &∂ sentence *(A) to be any sentence
constructed by starting with A and repeatedly adding ∂ and conjuncts to
the left of the result.

&� Lemma. Each branch sentence *w containing A is equivalent
to a &∂ sentence.

Proof of the &∂ Lemma. The proof is by induction on the construction
of *w. When A appears in *w, A must be in the conjunction of members
of w, or in some conjunct ∂*v where there is an arrow from w to v on
the branch. In the first case, *w is equivalent to the result of conjoining
the other members of w to the left of A, and this is a &∂ sentence. When
A is in ∂*v, then we have by the hypothesis of the induction that *v is
equivalent to a &∂ sentence v and *w is equivalent to the result of adding
a conjunct to the left of ∂v. So *w is equivalent to a &∂ sentence in this
case as well.

Since *B is *o where o is the top world of the branch, the &∂ Lemma
guarantees that when *B contains A, it is equivalent to a &∂ sentence
*(A).

Proof of the Closed Branch Lemma. Assume *B is closed so that ƒ appears
on B. A sentence *(ƒ) equivalent to *B can be constructed by starting with
ƒ and repeatedly adding a left conjunct or ∂ at each step. But (&ƒ) and
(∂ƒ) are derivable rules of K.

(&ƒ) A ÷ ƒ (∂ƒ) A ÷ ƒ
------------ -----------
C&A ÷ ƒ ∂A ÷ ƒ

So *(ƒ) ÷ ƒ may be obtained by repeatedly applying these rules to ƒ ÷ ƒ.

EXERCISE *7.24 Show that (&ƒ) and (∂ƒ) are derivable in K. (Hint: for
(∂ƒ): From A ÷ ƒ obtain ÷ ~A, and then ÷ ∫~A by (Nec). Now use (DN) and
(Def∂) to obtain ÷ ~∂A and you are almost done.)
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Tree Rule Lemma.
If the children of *B are inconsistent, then so is *B.

It will be helpful for proving the tree rule lemma to establish some
facts about &∂ sentences *(A), that is, sentences of the form:

C1& ∂ (C2& . . ∂ (Cn&A) . .)

Note first that ~(A&B) is equivalent to Aç~B, and ~∫A is equiv-
alent to ∂~A. So by repeated uses of these equivalences we have the
following:

~ [C1& ∂ (C2& . . ∂ (Cn&A) . .)] is equivalent to

C1 ç ∫(C2 ç . . ∫(Cn ç~ A) . .)

But in the light of this equivalence, (Def~), and the rules (CP), (MP),
(∫In), and (∫Out), the following Lemma holds.

* Lemma.
C1&∂(C2& . . ∂(Cn& A). .) ÷ ƒ iff C1, ∫, C2, . . ∫, Cn, A ÷ ƒ.

EXERCISE *7.25 Prove the * Lemma.

Let ‘*(A)’ abbreviate ‘C1 & ∂(C2 & . . ∂(Cn&A). .)’ and ‘*(A′)’ abbre-
viate ‘C1 & ∂(C2 & . . ∂(Cn&A′). .)’.

Entailment Lemma. If A ÷ A′, then if *(A′) ÷ ƒ, then *(A) ÷ ƒ.

Proof of the Entailment Lemma. Suppose A ÷ A′ and *(A′) ÷ ƒ. Then
*(A′) = C1 & ∂(C2 & . . ∂(Cn&A′). .) ÷ ƒ. Then by the * Lemma C1,
∫, C2, . . ∫, Cn, A′ ÷ ƒ, and so C1, ∫, C2, . . ∫, Cn ÷ ~A′ by (IP). By A
÷ A′ it follows that ÷ AçA′, from which C1, ∫, C2, . . ∫, Cn ÷ AçA′
follows by (Reit) and (Nec). So C1, ∫, C2, . . ∫, Cn, ÷ ~A by (MT). But
C1, ∫, C2, . . ∫, Cn, A ÷ A, and hence C1, ∫, C2, . . ∫, Cn, A ÷ ƒ by (ƒIn).
It follows by the * Lemma that C1&∂(C2& . . ∂(Cn&A). .) ÷ ƒ, and so
*(A) ÷ ƒ.

With the Entailment Lemma in hand, the proof of the Tree Rule
Lemma is not difficult.

       
            

       



170 Modal Logic for Philosophers

Proof of the Tree Rule Lemma. It must be shown that when *B′ ÷
ƒ (and *B′′ ÷ ƒ), then *B ÷ ƒ when *B is the parent of *B′ (and *B′′).
The proof is by cases depending on which rule is applied to B to create
B′ (and B′′). In the cases of the rules (~F), (çF), (ƒIn), (∫T), and (∫F),
the proof is an almost immediate consequence of the Entailment Lemma.
Assume *B′ ÷ ƒ. Cases for (çF) and (∫T) are illustrated here, and the
others are left as exercises.

(çF). When this rule is applied to the sentence ~(AçC) on branch B,
A and ~C are added to the branch. Then *B is equivalent to a sentence
with the form: *(~(AçC)) and *B′ equivalent to *(~(AçC)&A&~C).
But ~(AçC) ÷ ~(AçC)&A&~C. So *B ÷ ƒ by the Entailment Lemma.

(∫T). In this case, *B is equivalent to *(∫A&∂D) and *B′ equivalent
to *(∫A&∂(D&A)). But ∫A&∂D ÷ ∫A&∂(D&A), so given that *B′
÷ ƒ, *B ÷ ƒ by the Entailment Lemma.

EXERCISE 7.26 Show that ∫A&∂D ÷ ∫A&∂(D&A).

EXERCISE *7.27 Complete the cases for (~F), (ƒIn), and (∫F).

The case of (çT) is different because when applied to branch B it cre-
ates two new branches B′ and B′′. In this case *B is equivalent to a
sentence with the form C1&∂(C2& . . ∂(Cn&(A√D)). .). *B′ is equiv-
alent to C1&∂(C2& . . ∂(Cn&(A√D)&A). .), and B′′ to C1&∂(C2& . .
∂(Cn&(A√D)&D). .). Since *B′ ÷ ƒ and *B′′ ÷ ƒ, it follows by the *
Lemma that C1, ∫, C2, . . ∫, Cn, A√D, A ÷ ƒ and C1, ∫, C2, . . ∫,
Cn, A√D, D ÷ ƒ. It follows from these that C1, ∫, C2, . . ∫, Cn, A√D
÷ ~A&~D by (CP), (Def~), and (&In), and so C1, ∫, C2, . . ∫, Cn,
A√D ÷ ~(A√D) by (DM). But C1, ∫, C2, . . ∫, Cn, A√D ÷ A√D and
so C1, ∫, C2, . . ∫, Cn, A√D ÷ ƒ by (ƒIn). By the * Lemma it follows
that C1&∂(C2& . . ∂(Cn&(A√D)) . .) ÷ ƒ. Since *B is equivalent to
C1&∂(C2& . . ∂(Cn&(A√D)) . .), it follows that *B ÷ ƒ, as desired.

This completes the proof that arguments with closed K-trees can always
be proven in K. To obtain the result for stronger modal logics S, all we
need to do is to extend this reasoning to the case of (S)K-trees, where
axioms or rules of S may be added to the tree. But the Entailment Lemma
guarantees the result for these trees as well. In the case of the application
of a rule (such as (M) or (4) or (U∫F)), the proofs are easy since the rules
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entail their results. When an axiom (S) is applied to branch B, then the
parent *B is equivalent to a sentence with the form *(A), and the result
*B′ is equivalent to *(A&(S)). But clearly A ÷S A&(S), so if *B′ ÷ ƒ, then
*B ÷ ƒ as well by the Entailment Lemma.

EXERCISE 7.28 Show the Tree Rule Lemma for systems containing (M),
(4), and (U∫F).
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Adequacy of Propositional Modal Logics

The purpose of this chapter is to demonstrate the adequacy of many of the
modal logics presented in this book. Remember, a system S is adequate
when the arguments that can be proven in S and the S-valid arguments
are exactly the same. When S is adequate, its rules pick out exactly the
arguments that are valid according to its semantics, and so it has been
correctly formulated. A proof of the adequacy of S typically breaks down
into two parts, namely, to show (Soundness) and (Completeness).

(Soundness) If H ÷S C then H …S C.
(Completeness) If H …S C then H ÷S C.

8.1. Soundness of K

Let us begin by showing the soundness of K, the simplest propositional
modal logic. We want to show that if an argument is provable in K (H ÷K
C), then it is K-valid (H …K C). So assume that there is a proof in K of an
argument H / C. Suppose for a moment that the proof involves only the
rules of propositional logic (PL). The proof can be written in horizontal
notation as a sequence of arguments, each of which is justified by (Hyp) or
follows from previous entries in the sequence by one of the rules (Reit),
(CP), (MP), or (DN). For example, here is a simple proof in PL of pçq /
~~pçq, along with the corresponding sequence of arguments written in
horizontal form at the right.
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The usual strategy for showing soundness of propositional logic (PL)
would be to show that any instance of (Hyp) is valid, and that each of
the rules (Reit), (CP), (MP), and (DN) preserves validity, that is, if the
argument(s) to which the rule is applied is (are) valid, then so is the argu-
ment that results. When these two facts are shown, it will follow that
every line of a proof in horizontal notation is a valid argument by the
following reasoning. Any proof in PL starts with one or more instances
of (Hyp), which by the demonstration are valid. For example, the proof
in our example begins with two instances of (Hyp) that are valid and so
indicated with ‘…’ in bold.

The next step of the proof (step 3 in our example) must apply one of the
other rules to one or more of these valid arguments (in our example to
step 2 by (DN)). Since it was assumed that the rules preserve validity, the
argument it produces will be valid as well. (So the argument in step 3 is
valid in our example.)

The same will be true of the step after that (step 4) since it will apply a
validity-preserving rule (in our case (Reit)) to an argument above it in
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the series that is valid. (In the case of (MP), the rule will be applied to
two arguments, both of which will be already known to be valid, so the
result will also be valid.) The same reasoning applies again to each step
of the proof, including the proof’s last line. So the last argument in the
sequence is valid.

But this is the argument being proven. (Consider step 6 in the above
example.) So it follows in general that if an argument can be proven in
PL (H ÷PL C), then it is valid (H …PL C). In summary, the soundness of
PL can be shown by showing that arguments of the form (Hyp) are valid
and that the rules (Reit), (MP), (CP), and (DN) preserve validity.

However, we are interested in demonstrating the soundness of K. In
this case, the strategy must be modified in order to accommodate the
presence of boxed subproofs and the rules for ∫. The corresponding
horizontal notation for a line of a proof in K has the form L / A, where
L might contain one or more boxes. We need some way to deal with the
boxes that may appear in L. To employ the basic “preservation of validity”
strategy, a more general notion of validity must be defined that applies to
arguments whose premises include ∫. The original definition of K-validity
depended on the notion of a set of sentences H being satisfied at a world
w, which we wrote as follows: aw(H)=T. This indicates that every member
of H is true at w. (When H is empty, the value of aw(H) is vacuously T, that
is, since there are no members of H at all, there are none to challenge the
claim that aw(H)=T.) To provide a more general account of K-validity, the
notation: aw(L)=T must be defined, which says that a list L consisting of
sentences and boxes is satisfied at a world w. The definition may be given as
follows:

(L,∫) aw(L, ∫, H)=T iff ∃v av(L)=T and vRw and aw(H)=T.

The meaning of (L,∫) may be appreciated by working out the following
example. Let L be the list A, B, ∫, C, ∫, D, E. Let us calculate what it
means to say aw(L)=T in this case.
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By definition (L,∫), aw(A, B, ∫, C, ∫, D, E)=T iff

∃v av(A, B ∫, C)=T and vRw and aw(D, E)=T.

But by (L,∫) again, av(A, B, ∫, C)=T iff

∃u au(A, B)=T and uRv and av(C)=T.

Putting these two together we obtain:

aw(A, B, ∫, C, ∫, D, E)=T iff

∃v ∃u au(A, B)=T and uRv and av(C)=T and vRw and aw(D, E)=T.

It is easier to appreciate what this means with a diagram.

You can see that each box in L corresponds to an arrow between worlds
in this diagram.

In case the list L ends with a box, as in the list: ∫, A, ∫, we may
work out what aw(L)=T means using (L, ∫) by assuming L is preceded
and followed by the empty list, which we notate ‘ ’. In this case, the
calculation goes as follows:

aw( , ∫, A, ∫, )=T iff

∃v av( , ∫, A)=T and vRw and aw( )=T iff

∃v ∃u au( )=T and uRv and av(A)=T and vRw and aw( )=T.

Since the empty list is automatically satisfied in any world, we may
drop the clauses ‘au( )=T’ and ‘aw( )=T’, so that the result simplifies
to the following.

∃v ∃u uRv and av(A)=T and vRw.

This would be diagrammed as follows:
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EXERCISE 8.1 Use (L,∫) to define the meaning of the following claims and
draw the corresponding diagrams:

a) aw(A, ∫, B, ∫, C)=T
b) aw(A, ∫, ∫, B)=T
c) aw(A, ∫, ∫)=T

Now that the definition for aw(L)=T is in hand, the definition of
K-validity for arguments containing boxes is straightforward, for it pro-
ceeds from the definition of ‘counterexample’ just as it did in Section 3.6.
Suppose that S is one of the modal logics we have studied. A list L is
S-satisfiable iff there is an S-model <W, R, a> and a world w in W where
aw(L)=T. Argument L / C has an S-counterexample (L ªS C) iff the list
L, ~C is S-satisfiable; and argument L / C is S-valid (L …S C) iff L / C has
no S-counterexample. It is a simple matter to verify that this definition
amounts to saying that L …S C iff for all models <W, R, a> and all w in
W, if aw(L)=T then aw(C)=T, or to put it in English, any world where L
is satisfied is one where C is true.

We are now ready to demonstrate the soundness of K by showing that
each of its rules preserves K-validity defined for arguments L / C that may
include boxes in the hypothesis list L. To show that any instance of (Hyp)
is K-valid, we show it has no K-counterexample. Any argument of this
form has the shape L, A / A. So to show that such an argument must be
K-valid, we assume that L, A / A has a K-counterexample, and derive a
contradiction. So let us suppose that L, A / A has a K-counterexample (in
symbols: L, AªK A). Then there is a K-model <W, R, a> such that for some
w in W, aw(L, A)=T and aw(A)=F. But aw(L, A)=T means that aw(L)=T
and aw(A)=T. We may express this situation as a diagram as follows:

We see immediately that assuming this commits us to an inconsistent
assignment of values to A by a at w. This contradicts what we know
about the assignment function, and so we conclude that (Hyp) has no
K-counterexample.

Now let us turn to the rule (Reit). We must show that (Reit) preserves
K-validity. The rule allows us to move from an argument of the form L / A
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to one of the form L, B / A, where a new hypothesis B has been introduced
in the hypothesis list. We must show that if L …K A, then L, B …K A. So let
us assume that L …K A, that is, that L / A is K-valid. This means that in any
model <W, R, a> and any w in W, if aw(L)=T, then aw(A)=T. Assume for
indirect proof that L, B / A has a K-counterexample. Then there must be
a K-model <W, R, a> where for some w in W, aw(L, B)=T and aw(A)=F.

By the K-validity of L / A, we know that any world w where L is T is one
where A is T. We may express this fact as a diagram rule, which shows
that as soon as L is T in world w, then so is A.

Applying this rule to our previous diagram, we have that aw(A)=T. But
this is a contradiction, since we already said aw(A)=F.

The indirect proof is complete; we conclude that if L …K A, then L,
B …K A.

Let us look next at the rule (MP). It allows us to obtain L / B from two
arguments L / A and L / AçB. So we must assume that L …K A and L
…K AçB, and must show that L …K B. Assume for indirect proof that L
ªK B. Then there must be a K-model <W, R, a> and a world w in W such
that aw(L)=T and aw(B)=F.

By the K-validity of both L / A and L / AçB, we have that aw(A)=T and
aw(AçB)=T.
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By the truth condition for ç, we know that if aw(AçB)=T, then aw(A)=F
or aw(B)=T. So our diagram forks.

Whether aw(A) is F or aw(B) is T, we have a contradiction. We conclude
that (MP) preserves K-validity.

EXERCISE 8.2 In similar fashion, show that (CP) and (DN) preserve K-
validity.

L, A ÷ B L ÷ ~~A
------------ ------------
L ÷ AçB (CP) L ÷ A (DN)

The proof of the soundness of K will not be complete until we show
that (∫In) and (∫Out) preserve K-validity. The reasoning makes use
of a special case of (L,∫). It is easier to see what is going on here to
use diagrams, so two useful facts with their diagram rules are recorded
here. The two conditionals that make up the definition (L,∫) have been
separated out and expressed in diagrams.

If aw(L, ∫)=T then ∃v av(L)=T and vRw.
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If ∃v av(L)=T and vRw then aw(L, ∫)=T.

Now we are ready for the demonstration that (∫Out) and (∫In) pre-
serve K-validity. Consider (∫In) first. The rule allows us to move from
L, ∫ / A to L / ∫A, so we must show that if L, ∫ …K A then L …K ∫A.
Assume then that L, ∫ …K A, and suppose that L ªK ∫A for indirect
proof. Then there must be a world v such that av(L)=T and av(∫A)=F.

Since av(∫A)=F, we know by (∫F) that there exists a world w such that
vRw and aw(A)=F.

You can see from the diagram that there is a world v such that av(L)=T
and vRw. By definition (L,∫), it follows that aw(L, ∫)=T.

But we know that L, ∫ …K A, which means that since aw(L, ∫)=T,
aw(A)=T. But this is impossible.
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EXERCISE ∗8.3 In similar fashion, show that (∫Out) preserves K-validity.

8.2. Soundness of Systems Stronger than K

The soundness of a modal logic S stronger than K can be shown by demon-
strating that when the accessibility relation R satisfies the corresponding
S-conditions, the arguments that correspond to the use of S axioms must
be valid. Let us illustrate with the axiom (M): ∫AçA and its corre-
sponding condition: reflexivity. Note that one is allowed to place axioms
anywhere in a proof, so to show that arguments that correspond to such
steps are M-valid, we must show that L / ∫AçA is always M-valid.

We assume for Indirect Proof that L ªM ∫AçA, that is, that
L / ∫AçA has an M-counterexample. It follows that there is an M-model
<W, R, a> and a world w in W where aw(L)=T and aw(∫AçA)=F. By
(çF) it follows that aw(∫A)=T and aw(A)=F.

Since <W, R, a> is an M-model, we know R is reflexive: wRw, for all w in
W. When we draw the reflexivity arrow into our diagram to express that
wRw, we may use (∫T) with aw(∫A)=T to obtain aw(A)=T. But this is
a contradiction.
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Similarly, we can show that (4) is valid on its corresponding condition:
transitivity. Begin by assuming that L / ∫Aç∫∫A is 4-invalid. Then
there is a 4-model <W, R, a> and world w in W where aw(L)=T and
aw(∫Aç∫∫A)=F.

By two uses of (∫F) we obtain the following diagram:

But we know that R is transitive, and so by (∫T) we have a contradiction.

Next we will show that arguments for (B) are KB-valid when R is sym-
metrical. Here is the completed diagram. (We have used the Liberalized
Placement Principle for simplicity.)
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Here is a diagram showing that (5) is 5-valid:

EXERCISE 8.4

a) Show that each of the following axioms is valid on its corresponding con-
dition using diagrams: (D), (CD), (C4), (∫M), (C), (L). Consult the chart
at the end of Chapter 5 for the corresponding conditions.

b) Show that each of the following principles of S5: (M), (4), (5), and (B), is
valid on a semantics where R is universal.

8.3. The Tree Model Theorem

The soundness question has now been fully explored. The rest of this
chapter will be devoted to proving completeness, along with some related
results. At this point, a choice must be made. The completeness proofs
to be presented in this chapter depend on properties of the trees we
have defined for the various modal logics. In the following chapter, a
more standard technique for proving completeness will be covered. It is
based on what are called canonical models. The tree method presented
here is less powerful because it applies to fewer extensions of K. On
the other hand, it has important advantages. First, it is relatively easy
to explain. Second, the theorems proven in the course of demonstrating
completeness can be used to verify the adequacy of S-trees, that is, that an
S-tree for an argument is closed iff the argument is S-valid. Third, it is easy
to extend the method to systems that include quantifiers, something that
cannot be said for the canonical model method. Finally, the tree method
is more concrete. When an argument is valid, not only will it follow that
there is a proof of the argument, but we will have instructions for actually
constructing the proof.

The primary concern in this section is to show what will be called the
Tree Model Theorem. This theorem provides one half of what is needed
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to show the correctness of trees. Once it is established, the completeness
of S follows almost immediately.

Assume that S is either K or one of the extensions of K for which
we have defined S-trees as explained in Chapters 4 and 6. Assume for
simplicity that the defined symbols &, v, and ≠ are replaced so that all
sentences are written in terms of ç, Ü, and ∫ alone. We will prove the
following theorem:

Tree Model Theorem.
If H / C is S-valid, then the S-tree for H / C is closed.

Before the proof of this theorem is given in detail, it is worth reflecting on
the strategies used to prove it. The theorem has the form: if A then B. This
is equivalent to the contrapositive: if not B then not A. So to demonstrate
the Tree Model Theorem, it will be sufficient to prove (TM) instead.

(TM). If the S-tree for H / C is open (not closed), then H / C is
S-invalid.

In Chapters 4 and 6, you learned how to construct counterexamples from
open trees for various modal logics. Although you have applied that
method many times by now, and have often verified that the method
does yield counterexamples of the required kind, no official proof has
been given that the method must always yield a counterexample in every
case. The proof of (TM) will show just that. Given an open S-tree for
H / C, we will demonstrate that the tree model that you construct from
one of its open branches is an S-counterexample to H / C. It will follow,
of course, that H / C is S-invalid. So if an S-tree for H / C is open, then
H / C must be S-invalid, and (TM) will be demonstrated.

To begin, an official definition of the tree model constructed for an
open branch is needed.

The tree model for an open branch of an S-tree is defined to be the
model <W, R, a> such that:

W is the set of all worlds on the open branch.
wRv iff there is an arrow in the tree from world w to v.
aw(p)=T iff p appears (unnegated) in world w of the open branch.

The values that a assigns to ƒ and the complex formulas are defined using
the conditions (ƒ), (ç), and (∫). Since the arrows in an S-tree ensure
that R obeys the corresponding conditions for S, we know that the tree
model is an S-model.
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Now we are ready to prove (TM). The strategy will be to demonstrate
something with which you are familiar from the process of verifying that
open branches provide counterexamples to arguments. It is that every
sentence on the open branch of a tree has the value T in the world in
which it is found on the tree model.

Proof of (TM). Let us say that sentence A is verified iff whenever A
appears in any world w in the tree, a assigns it true at w, (i.e., aw(A)=T).
We already know by the definition of a on the tree model that all propo-
sitional variables are verified. We will now show that the same holds for
all sentences on the open branch.

Open Branch Lemma.
Every sentence is verified on the tree model.

Once we have shown this Lemma, we will have proven the Tree Model
Theorem. The reason is that every tree for H / C begins with a world w
that contains H and ~C. The Open Branch Lemma will ensure that ~C
and all members of H are verified, and so true in w. So on the tree model,
aw(H)=T and aw(C)=F, hence the tree model is an S-counterexample to
H / C, and H / C is S-invalid. Therefore (TM) (and also the Tree Model
Theorem) will follow if we can only prove the Open Branch Lemma.

Proof of the Open Branch Lemma. The proof of this lemma uses the
method of mathematical induction to show that all sentences are verified.
To use mathematical induction, some numerical quantity has to be iden-
tified. In our case we will choose the size of a sentence, which we define
as the number of symbols other than ƒ that it contains. (Omitting ƒ in
the count will make sure that ~B (that is (Bçƒ)) will always be smaller
than (BçC), a fact we need for Case 6 below.) What we hope to show is
that whatever size a sentence might have, it will be verified. To do this, we
will prove two facts, called the Base Case (BC) and the Inductive Case
(IC). The Base Case for this lemma will say that sentences with size 0
are verified. The Inductive Case will say that if all sentences smaller in
size than a given sentence A are verified, then it will follow that A is also
verified. Here is a list of these two facts for review, where it is understood
(of course) that A is any sentence.

(BC) If A has size 0, then A is verified.

(IC) If all sentences smaller in size than A are verified, so is A.

       
            

       



Adequacy of Propositional Modal Logics 185

Let us suppose that we succeed in proving these two claims. Then a simple
argument can be used to show that A is verified no matter what size A
has. To put it another way, it follows that every sentence A is verified.
Why is this so? Well, the Base Case shows that all sentences of size 0
are verified. Now consider a sentence A with size 1. Which sentences
are smaller than A? Well, sentences with size 0. We know that all those
sentences are verified because of the Base Case. But now the Inductive
Case ensures that since all sentences smaller than A are verified, A must
be verified as well. The same reasoning guarantees that any sentence of
size 1 is verified. So now we know that sentences of sizes 0 and 1 are all
verified. Now consider a sentence A with size 2. Since all sentences of sizes
smaller than 2 are now known to be verified, the Inductive Case assures
us that A is also verified and so is any other sentence of size 2. Now we
know sentences of sizes 0, 1, and 2 are verified. I hope it is now clear that
exactly the same argument can be repeated to establish that sentences of
sizes 3, 4, and so on are verified. But if A is verified regardless of size, then
it follows that every sentence is verified, and this will prove the theorem.
So all that remains to prove the Open Branch Lemma is to prove the Base
Case (BC) and the Inductive Case (IC) listed above.

Proof of (BC): If A has size 0, then A is verified.
To prove this, suppose that A has size 0. Then A must be ƒ. There is no
need to consider this case because ƒ can never appear in any world of an
open branch.

Proof of (IC): If all sentences smaller in size than A are verified, so is A.
To prove this, assume that all sentences smaller in size than A are verified.
Let us call this assumption the Inductive Hypothesis (IH).

(IH) All sentences smaller in size than A are verified.

We must show that A is also verified. The Base Case already tells us that
A is verified if it has size 0, so let us now consider the case where A has
size 1 or larger. To show that A is verified, we must show that if A is in
world w, then aw(A)=T. So let us assume (1) and then prove aw(A)=T.

(1) A is in world w.

Since A is size 1 or larger, A must have one of the following four shapes:
p, ~C, BçC, or ∫B. But a sentence of the form ~C must in turn have one
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of the following four forms: ~p, ~~B, ~(BçC), or ~∫B. So let us prove
aw(A)=T in all of the possible seven cases.

Case 1. A has the form p. Variables p are verified because the definition
of a says that aw(p)=T when p is in w.

Case 2. A has the form ~p. To show that ~p is verified, we will assume ~p
appears in w, and demonstrate that aw(~p)=T as follows. Since ~p
appears in w, p cannot appear in w, because the branch was open
and having both p and ~p in w would have closed the branch. By the
definition of the tree model, aw(p)=F. Hence aw(~p)=T by (~).

Case 3. A has the form ~~B.

By (1), ~~B appears in world w. The tree rules require that (~F)
be applied to ~~B so that B is in w. By (IH), B is verified because
B is smaller in size than A. Since B appears in w, it follows that
aw(B)=T. By the truth condition (~), we know that aw(~B)=F, and
by (~) again, aw(~~B)=T. Hence aw(A)=T in this case.

Case 4. A has the form ~(BçC).

EXERCISE *8.5 Complete Case 4.

Case 5. A has the form ~∫B.

By (1), ~∫B appears in w. The (∫F) rule was applied to ~∫B. So
on every open branch through w, there is a world v, with an arrow
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from w to v, such that ~B is in v. Since ~B is smaller than A, (IH)
ensures that ~B is verified. So av(~B)=T and av(B)=F by (~). So
there is a world v′ such that wRv′ and av(B)=F. By (∫), aw(∫B)=F,
and hence by (~), aw(~∫B)=T. So aw(A)=T in this case.

Case 6. A has the form BçC.

By (1), BçC appears in world w. By the (çT) rule, the branch on
which BçC is found forks, with the result that either ~B or C is
in w on the open branch. Suppose it is ~B that appears in w. The
definition of the size of a sentence guarantees that ~B is smaller
in size than A=BçC, so by (IH), ~B is verified. Since ~B is in w,
aw(~B)=T. By the truth condition (~), it follows that aw(B)=F, and
so by (ç), aw(BçC)=T. Now suppose it is C that appears in w.
Again by (IH), C is verified and in w, so aw(C)=T. It follows by (ç)
that aw(BçC)=T. So whether ~B or C is in w, aw(BçC)=T, and
aw(A)=T in this case.

Case 7. A has the form ∫B.

By (1), ∫B appears in w. We must show that aw(∫B)=T. By (∫),
this means that we must show that for any world v, if wRv then
av(B)=T. So let v be any world in W such that wRv. Here is how
to show that av(B)=T. By the definition of R on the tree model it
follows that there is an arrow pointing from w to v. So the (∫T) rule
was applied to ∫B, so as to place B in v. B is smaller in size than
A, and so by (IH), B is verified, with the result that av(B)=T. (Note
that the same reasoning would apply to any other world v′ such that
wRv′.) It follows that for any v in W, if wRv then av(B)=T, so by
(∫), aw(∫B)=T. Therefore aw(A)=T in this case.
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EXERCISE 8.6 Construct a K-tree for the following K-invalid argument:
~~∫(pçq) / ∫(pç~q). Now construct the tree model for the open branch
in the tree. Write an essay explaining how (BC) and (IC) guarantee that each
and every sentence on this open branch is verified.

The proof of the Tree Model Theorem is now complete. Not only does
this theorem contribute to showing that the tree method is correct, but
it will also play an important role in the proof of the completeness of
propositional modal logics, a topic we turn to next.

8.4. Completeness of Many Modal Logics

It is a simple matter to use the results of this chapter to show that many
modal logics are complete. The proof for K illustrates the basic strategy
for all the other systems. To show the completeness of K, we will need
to show that every K-valid argument is provable in K. So suppose that
argument H / C is K-valid. It follows by the Tree Model Theorem that
the tree for this argument is closed. But if the tree for H / C is closed,
H / C must have a proof in K because we have explained how to convert
each K tree into a corresponding proof in Section 7.1. Exactly the same
argument works to show the completeness of any modal logic S for which
we can verify the Tree Model Theorem, and for which we can give a
method for converting closed trees into proofs. Since the Tree Model
Theorem was proven for any given system S, completeness follows for
all the modal logics discussed in Chapter 7. A diagram of this reasoning
follows:

EXERCISE 8.7

a) Demonstrate in detail that M is complete.
b) The solution to Exercise 6.12 guarantees that any S5-tree will have a

universal arrow structure. Use this fact to demonstrate that S5 is complete
for universal frames.
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8.5. Decision Procedures

A decision procedure for a system is a method that determines for each
argument whether it is valid or invalid in a finite number of steps. The com-
pleteness proof given here can be used to show that the tree method serves
as a decision procedure for many of the systems discussed in Chapter 7.
For example, to determine whether an argument is K-valid, construct
its tree. We know that if the tree is open, then the argument must be
invalid by the Tree Model Theorem. If the tree is closed, we know that
the argument is valid because the tree can be converted to a proof, and
any provable argument must be valid because of the soundness of K. So
K-trees will serve as a decision procedure for K provided they can always
be finished in a finite number of steps. However, it is easy to verify that
each step in the construction of a K-tree reduces the number of symbols
in the resulting sentences. So the process of applying the rules eventually
ends in atoms and the tree is finite. The same reasoning may be applied
to show that trees for many systems that are formed from the following
axioms serve as a decision method: (M), (B), (5), (CD), and (∫M).

However, there are difficulties with systems that involve axioms like
(D), (C), and (C4), whose corresponding conditions involve the construc-
tion of new worlds in the tree. For example, when trees are constructed
for a serial R, each world in the tree must have an arrow exiting from it
pointing to another world. But that other world must also have another
world related to it, and so on. As a result, a tree for a serial relation may
go on forever, and so the tree method is not a decision procedure since it
does not terminate in a finite amount of time. In Section 6.5, a strategy was
explained that partly overcomes this problem. It was to add loop arrows
to certain worlds to guarantee seriality. This method works, for example,
to provide a decision procedure for D.

There is a more serious problem in using trees for solving the decision
problem. It can be illustrated by the K4-tree for the following argument,
which was given as Exercise 6.4f: ∫(∫pçp) / ∫p. Here is what the tree
looks like in the early stages of its construction:
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Since this is a K4-tree, it is necessary to add an arrow from world w to
world u, to guarantee transitivity. When this arrow is added, however,
(∫T) must be applied to ∫(∫pçp) in world w, to place ∫pçp in world
u. After (çT) and (∫F) are applied in world u, the tree looks like this:

Notice that the contents of worlds v and u are identical, and that it was
necessary to create a new world x to satisfy (∫F). But now a 4-arrow from
w must be drawn to this new world, with the result that ∫pçp must be
added there. So the contents of x will be identical to those of v and u, with
the result that a new arrow pointing from x to yet another new world will
be needed. It should be clear that this tree will never terminate. Since a
decision procedure requires that we obtain an answer in a finite number
of steps, the tree method does not serve as a decision procedure for K4,
nor for some other systems that contain (4).

The reader should know that trees are not the only method one might
use to show that a modal logic has a decision procedure. A more abstract
and powerful method for doing so is called filtration (Chellas, 1980, Sec-
tions 2.3, 2.8). The basic idea is that to show that whenever an argument
H / C has an S-counterexample, then it also has another S-counterexample
in a model with a finite frame, that is, one where there is a finite number
of possible worlds in W. When this occurs, we say that S has the finite
model property. Filtration is a technique that allows one to reduce an
S-counterexample for an argument H / C, by collapsing together into one
world all those worlds that agree on the values of sentences that appear in
H / C (including sentences that appear as parts of other sentences). Very
often filtration produces a model with a finite frame, so it follows that S
has the finite model property.
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When S has the finite model property, it follows that S has a decision
procedure, for to decide the validity of an argument H / C, one may use the
following (long-winded and impractical, but effective) procedure. First,
order all the finite models for S, and then oscillate between carrying out
steps in the following tasks a) and b).

a) Apply all possible sequences of rules of S to H in an attempt to
derive C.

b) Calculate the value of members of H and C in each finite model in
an attempt to find an S-counterexample to H / C.

If we perform some of task a), followed by some of task b), then some of
task a) and so on, we are guaranteed to eventually have an answer after
a finite number of steps. For if H / C has a proof in S, it will be found by
doing only a finite number of steps of task a), and if H / C has no proof,
then it will (by the adequacy of S) have an S-counterexample, which will
be found after performing only a finite number of steps in task b).

8.6. Automatic Proofs

The tree method has another use. Suppose H / C is provable in any modal
logic S that we have been able to show is sound and complete by the
reasoning in this chapter. Then the S-tree for H / C must close, for if it were
open, it would have an S-counterexample by the Tree Model Theorem,
and this conflicts with the soundness of S. It follows that the tree method
can be used to construct a proof of H / C in S. This means that if H / C has
any proof at all in S, the tree method is guaranteed to find a such a proof.
So there is never any need for creative abilities in proof finding for the
modal logics covered in Chapter 7. If a proof is possible at all, you can
automatically construct a proof by building a tree and converting it to a
proof by the methods of Chapter 7.

8.7. Adequacy of Trees

So far, there is no guarantee that the tree method is adequate, that is, that
S-trees identify exactly the S-valid arguments. By putting together facts
that have already been demonstrated, it is a simple matter to show that
S-trees are indeed adequate, that is, that the S-tree for H / C is closed iff
H / C is S-valid (H …S C). The demonstration depends on the reasoning
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used to prove the completeness of S together with the fact that S is sound.
The structure of the reasoning is illustrated in the following diagram:

We must show the following:

(S-Tree Adequacy) The S-tree for H / C closes iff H …S C.

The Tree Model Theorem provides a proof for one direction of the iff,
namely, that if H …S C then the S-tree for H / C closes. (See the arrow
from the top left to the bottom center of the diagram.) To show the other
direction (namely, that if the S-tree for H / C closes, then H …S C), the
reasoning goes in two steps. Suppose that the S-tree for H / C closes. (See
the bottom center of the diagram.) Section 7 explained how to convert an
S-tree into a proof in S. So H ÷S C. (See the top right part of the diagram.)
But the soundness of S was shown in Sections 8.1–8.2. So it follows that
H …S C. It should be obvious now that three basic concepts introduced in
this book all coincide: S-validity, closure of an S-tree, and provability in
S. This provides strong confirmation that we have been on the right track
in formulating the various propositional modal logics.

8.8. Properties of Frames that Correspond to No Axioms

We know that certain axioms correspond to conditions on frames, in the
sense that by adding these axioms to K we can create a system that is
sound and complete with respect to the notion of validity where frames
meet those conditions. For example, we showed axiom (M) corresponds
to reflexivity, (4) to transitivity, and (B) to symmetry. In this section we ask
a new question. Is it always possible to find an axiom that corresponds to a
given frame condition? It turns out that the answer is “No”. For example,
there are no axioms that correspond to such “negative” conditions as
irreflexivity, intransitivity, and asymmetry, because any such axioms would
already be derivable from the principles of K alone.
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The methods developed to show the Tree Model Theorem may be used
to prove this. The proofs depend on features of the frame defined by the
tree model of any K-tree. The accessibility relation R defined by such
a tree model is such that wRv iff there is an arrow from w to v in the K-
tree. But the arrows in a K-tree diagrams have the structure of an upside
down tree.

Each arrow is entered into the diagram using the (∫F) rule, which places
that arrow so that it points to a new world in the tree. It follows that no
arrows loop back on themselves, that is, none of them point from world
w back to world w, and so the frame for the K-tree model is irreflexive.

This fact may be used to show that there is no axiom that corresponds
to irreflexivity. To do that, let us assume that there is an axiom (I) that
corresponds to irreflexivity, and derive a contradiction. Let I-models be K-
models with irreflexive frames. Then the system K + (I) must be sound and
complete for I-validity, for that is what it means to say that (I) corresponds
to irreflexivity. Since (I) is provable in K + (I), it follows that (I) must
be I-valid. Now consider the K-tree headed by ~(I), the negation of the
axiom (I). If the tree is open, then by the proof of the Tree Model Theorem
we can construct a K-model <W, R, a> such that aw(I)=F. But note that
the tree model so constructed is irreflexive, so it would follow that (I)
has an I-counterexample, which is impossible, since (I) was I-valid. So the
K-tree for ~(I) must be closed, which means that it can be converted into
a proof of (I) in K. Since all modal logics we discuss are extensions of K,
(I) is provable in all modal logics, and so there is no need for adding (I)
as an independent axiom to K. It follows that K is already adequate for
I-validity, so no new axiom is required.

The proof that no axiom corresponds to either asymmetry or intransi-
tivity is similar. Simply show that each K-tree is asymmetric and intran-
sitive, and rehearse the same argument to show that these conditions
correspond to no axioms. Here is why the frame for each K-tree is asym-
metric. Whenever an arrow is introduced in a K-tree by (∫F), the arrow
always points to a new world introduced with that arrow. So no new arrow
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points back to any previously introduced world during tree construction.
As a result, the frame defined by a K-tree can never have wRv and vRw
since any arrow exiting from world v must point to a new world different
from w (or v).

A similar argument works to show that the frame for each K-tree is
intransitive. In this case, it must be shown that if wRv and vRu, then not
wRu. So suppose that wRv and vRu. Then worlds w and u must be distinct
because otherwise wRw, and this conflicts with irreflexivity, which was
proven above. But in K-trees, the introduction of new arrows and worlds
by (∫F) guarantees that no more than one arrow points to a world. So
wRu does not hold, for otherwise there would have to be two distinct
arrows pointing to world u, one for world w and the other for world v.

EXERCISE 8.8 Give proofs in detail that asymmetry and intransitivity cor-
respond to no axioms.
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Completeness Using Canonical Models

Not all the systems mentioned in this book have been shown to be com-
plete, only the ones for which a method has been described for converting
trees into proofs. In this section, a more powerful strategy for showing
completeness will be presented that applies to a wider range of propo-
sitional modal logics. It is a version of the so-called Henkin or canoni-
cal model technique, which is widely used in logic. This method is more
abstract than the method of Chapter 8, and it is harder to adapt to sys-
tems that include quantifiers and identity, but a serious student of modal
logic should become familiar with it. The fundamental idea on which the
method is based is the notion of a maximally consistent set. Maximally
consistent sets play the role of possible worlds. They completely describe
the facts of a world by including either A or ~A (but never both) for each
sentence A in the language.

9.1. The Lindenbaum Lemma

A crucial step in demonstrating completeness with such maximally con-
sistent sets is to prove the famous Lindenbaum Lemma. To develop that
result, some concepts and notation need to be introduced. When M is an
infinite set of sentences, ‘M, A’ indicates the result of adding A to the
set M, and ‘M üS C’ indicates that there is a finite list H formed from
some of the members of M, such that H üS C. Set M′ is an extension of M,
provided that every member of M is a member of M′. We say that set M
is consistent in S iff M ¿S ƒ. M is maximal iff for every sentence A, either
A or ~A is in M. M is maximally consistent for S (or mc for short) iff M is
both maximal and consistent in S. When it is clear from the context what
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system is at issue, or if the results being discussed are general with respect
to S, the subscript ‘S’ on ‘ü’ will be dropped, and we will use ‘consistent’ in
place of ‘consistent for S’. It should be remembered, however, that what
counts as an mc set depends on the system S. We are now ready to state
the Lindenbaum Lemma.

Lindenbaum Lemma. Every consistent set has an mc extension.

This means that it is always possible to add sentences to a consistent set
so that consistency is preserved and the result is maximal. The proof of
the Lindenbaum Lemma depends on displaying a method for doing just
that.

Proof of the Lindenbaum Lemma. Let M be any consistent set, that is,
M ¿ ƒ. We will explain how to construct an mc set m that is an extension
of M. First, order all the sentences of the language in an infinite list: A1,
A2, . . Ai, . . The notation ‘Ai’ stands for the ith sentence in the list. Here
is a method for adding sentences to M in stages so as to create m, the
desired mc set. First we create a whole series of sets: M1, M2, . . Mi, . . in
the following manner. Let M1 be the set M, and consider the first sentence
A1. If M1, A1 would be a consistent set, then let M2 be identical to this
set, but if M1, A1 would be an inconsistent set, then let M2 be M1, ~A1.
In short, add A1 to M1 if doing so leaves the result consistent, otherwise
add ~A1. So M2 is defined officially as follows:

M2=M1, A1 if M1, A1 ¿ ƒ.
M2=M1, ~A1 if M1, A1 ü ƒ.

Now consider the next sentence A2, and create M3 from M2 in the same
fashion. You add A2 to M2 if doing so would make the result consistent,
and you add ~A2 otherwise.

M3=M2, A2 if M2, A2 ¿ ƒ.
M3=M2, ~A2 if M2, A2 ü ƒ.

Continue this construction for each of the sentences Ai.

Mi+1=Mi, Ai if Mi, Ai ¿ ƒ.
Mi+1=Mi, ~Ai if Mi, Ai ü ƒ.

This process of constructing M1, M2, . . , Mi, . . begins with the consistent
set M, and at each stage i, it either adds a sentence Ai if doing so would
be consistent, otherwise it adds ~Ai. Either way, as we will soon see, each
set in this series is a new consistent set.
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Now we can define the mc set m, which is the desired extension of M.
Let m be the set containing the members of M and each of the sentences
(either Aj or ~Aj) that was added in the construction of any of the Mj. So
the set m is the infinite set that would result from adding each sentence
(or its negation) to M according to the recipe for constructing the sets
Mj. By definition, m is an extension of M. So to prove the Lindenbaum
Lemma, we need only show that m is a maximally consistent set. Clearly
the construction of m ensures that it is maximal. So it remains to show
that m is consistent.

Proof that m is consistent. We will show first that the process of
constructing the Mj preserves consistency, that is, that if Mi is consistent,
then so is Mi+1. So suppose that Mi is consistent. Consider Ai. If Ai was
added to Mi, then Mi, Ai ¿ ƒ, and Mi+1 is consistent. If ~Ai was added
to Mi, then Mi, Ai ü ƒ, and we have Mi ü ~Ai by (IP). Suppose for a
minute that Mi+1 is not consistent. Then Mi, ~Ai ü ƒ, and so by (IP),
Mi ü Ai, which means that Mi ü ƒ by (ƒIn). But this is incompatible with
the assumption that Mi is consistent. So Mi+1 must be consistent. We
have just shown that the process of constructing Mi+1 from Mi preserves
consistency. Since this process begins with the consistent set M, it follows
that Mj is consistent for each j.

We still need to demonstrate that m is consistent, which is not (quite)
the same thing as showing that Mj ¿ ƒ for each j. However, the consistency
of m follows from the following general lemma concerning the consistency
of sets of the kind we have constructed.

M Lemma. Suppose that M1, M2, . . Mi, . . is a series of consistent
sets each of which adds sentences to M, and each one an extension
of its predecessor. If m is the set containing all sentences in M and
all sentences added to any of the Mi, then m is consistent.

Proof of the M Lemma. Let M1, M2, . . Mi, . . , M, and m be as described in
the Lemma. We will show m is consistent by supposing the opposite and
deriving a contradiction. So suppose that m ü ƒ (m is not consistent). It
follows by the definition of ü for sets that there is a finite list H of members
of m that are sufficient for the proof of ƒ. So there is a finite subset M′ of
m such that M′ ü ƒ. Since M′ is finite, there must be a largest j such that
the sentence Aj is a member of M′. Since the sets M1, M2, . . Mi, . . grow
larger with larger index j, each of the sentences of M′ must have been
already added by the time Mj was constructed, and so all members of M′
are already in Mj+1. Since M′ ü ƒ, and Mj includes all members of M′, it
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follows that Mj+1 ü ƒ. But that conflicts with the fact that each Mi in the
series is consistent. Therefore we must conclude that m is consistent.

This completes the proof of the Lindenbaum Lemma.

9.2. The Canonical Model

The next stage in the completeness method based on mc sets is to define
what is called the canonical model. Let S be any system obtained by adding
axioms described in this book to K=PL+(∫In)+(∫Out). The canonical
model <W, R, a> for S is defined as follows:

W contains each and every mc set for system S.
(Defa) aw(A)=T iff w üS A.
(DefR) wRv iff for all sentences B, if w üS ∫B then v üS B.

It is important to prove that the canonical model just defined is a K-model.
So the rest of this section is devoted to showing just that. We drop the
subscript ‘S’ in what follows to save eyestrain.

Canonical Model Theorem.
The canonical model for S is a K-model.

Proof of the Canonical Model Theorem. If <W, R, a> is a K-model, W
must be nonempty, R must be a binary relation on W, and a must obey the
clauses for an assignment function. R is clearly a binary relation on W. W
is nonempty by the following reasoning. The system S has been proven
consistent in Chapter 8, Sections 1.2–1.3. Since every provable sentence
is valid in S, and since the sentence ƒ is invalid, we know that ƒ is not
provable. So the empty set {} has the feature that {} ¿S ƒ. Since {} is
consistent, it follows by the Lindenbaum Lemma that {} can be extended
to an mc set w in W. To complete the demonstration that the canonical
model is a K-model, we must show that a obeys (ƒ), (ç), and (∫).

Proof that a obeys (ƒ). We must show that aw(ƒ)=F. According to (Defa),
this means we must show that w ¿ ƒ, that is, that w is consistent. But that
follows from the fact that w is an mc set.

Proof that a obeys (ç). To show (ç), it will be sufficient to show (çT)
and (çF).

(çT) If aw(AçB)=T then aw(A)=F or aw(B)=T.

(çF) If aw(AçB)=F then aw(A)=T and aw(B)=F.
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By (Defa) this amounts to showing (çü) and (ç¿).

(çü) If w ü AçB then w ¿ A or w ü B.
(ç¿) If w ¿ AçB then w ü A and w ¿ B.

To establish (çü), assume w ü AçB. Since w is maximal, we know
that either A or ~A is in w. If A is in w, it follows by the rule (MP) that
w ü B. On the other hand, if ~A is in w, then w ¿ A, since w is consistent.
So it follows that either w ¿ A or w ü B.

To establish (ç¿), assume w ¿ AçB. So AçB is not in w. By the fact
that w is maximal, it follows that ~(AçB) is in w. It is a simple exercise
in propositional logic to show that ~(AçB) entails both A and ~B. (See
Exercise 7.1.) So both w ü A and w ü ~B. Since w is consistent, it follows
that w ¿ B.

Proof that a obeys (∫). To establish (∫), it will be sufficient to show (∫T)
and (∫F).

(∫T) If aw(∫A)=T then for all v in W, if wRv, then av(A)=T.
(∫F) If aw(∫A)=F then for some v in W, wRv, and av(A)=F.

By (Defa), this amounts to showing (ü∫) and (¿∫).

(ü∫) If w ü ∫A, then for all v in W, if wRv, then v ü A.
(¿∫) If w ¿ ∫A, then for some v in W, wRv, and v ¿ A.

Proof of (ü∫). Suppose w ü ∫A, and let v be any member of W such that
wRv. By (DefR), for any sentence B, if w ü ∫B, then v ü B. So v ü A.

The following lemmas will be used in the proof of (¿∫).

Extension Lemma.
If M′ is an extension of M, then if M ü A then M′ ü A.

Proof of the Extension Lemma. This should be obvious. If M ü A, then
H ü A where H is a finite list of some members of M. Since M′ is an
extension of M, H is also a finite list of some members of M′ such that
H ü A. Therefore M′ ü A.

Let V be a list of sentences that result from removing ∫ from those
members of w with the shape ∫B. So set V is defined by (V), where the
symbol ‘µ’ means ‘is a member of’.

(V) B µ V iff ∫B µ w.
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Let ∫V be the set that results from adding ∫ to each member of V. So for
example, if w is the set {A, ∫C, ~∫B, ∫D, ∫AçE}, then V is {C, D},
and ∫V is {∫C, ∫D}. This example illustrates a general feature of ∫V,
namely that all its members are in w.

V-Lemma. w is an extension of ∫V.

Proof of V-Lemma. Consider any member C of ∫V. Then C is ∫B for
some sentence B in V. By (V), ∫B (that is C) is in w. It follows that any
member of ∫V is in w.

Consistency Lemma. If w ¿ ∫A, then V, ~A is consistent.

Proof of the Consistency Lemma. Suppose w ¿ ∫A. We will prove that V,
~A is consistent by assuming the opposite and deriving a contradiction.
So suppose that V, ~A ü ƒ. Then H, ~A ü ƒ, where H, ~A is some finite
list of members of V, ~A. By (IP), H ü A. We proved that the rule of
General Necessitation (GN) is derivable in K (Section 1.8), so it follows
that ∫H ü ∫A. But ∫V is an extension of ∫H, since V is an extension of
H. The V-Lemma tells us that w is an extension of ∫V, so w is an extension
of ∫H and by the Extension Lemma it follows that w ü ∫A. This conflicts
with our first assumption, so V, ~A ¿ ƒ and V, ~A must be consistent.

R Lemma. If v is an extension of V, ~A then wRv.

Proof of the R Lemma. Assume v is an extension of V. According to
(DefR), wRv holds iff for any B, w ü ∫B then v ü B. So to show wRv, let
B be any sentence, suppose w ü ∫B and show v ü B as follows. From w ü
∫B, we know that ∫B µ w, because otherwise it would follow from the
fact that w is maximal that ~∫B µ w, and so w ü ~∫B, which conflicts
with the consistency of w. Since ∫B µ w, it follows by (V) that B µ V. But
v is an extension of V, ~A so B µ v. It follows that v ü B.

We are finally ready to prove (∫¿).

Proof of (∫¿). Suppose w ¿ ∫A. The Consistency Lemma guarantees that
V, ~A is consistent. By the Lindenbaum Lemma, we can extend the set
V, ~A to an mc set v in W. By the R Lemma, wRv. Since v is an extension
of V, ~A, it also follows that ~A µ v, and hence by the consistency of v
that v ¿ A. We have now found a mc set v with the feature that wRv and
v ¿ A, which finishes the proof of (∫¿).
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9.3. The Completeness of Modal Logics Based on K

The canonical model may now be used to show the completeness of many
systems built on K. To demonstrate completeness of one of these systems
S, we must show that if H / C is S-valid, then H üS C. It is easier to show the
contrapositive, that is, if H ¿S C, then H / C is S-invalid. So assume H ¿S C.
It follows by (IP) that H, ~C ¿S ƒ. Since H, ~C is consistent, the Linden-
baum Lemma ensures that the set containing members of H, ~C can be
extended to a mc set w. Now consider the canonical model <W, R, a>.
Since w is an mc set, it is in W. By (Defa), and the fact that every mem-
ber B in H, ~C is such that w ü B, we have aw(H)=T and aw(~C)=T.
So aw(C)=F. By the Canonical Model Theorem, the canonical model is
a K-model. So the canonical model is a K-counterexample to H / C. If
we can show that the frame <W, R> of the canonical model obeys the
corresponding properties for system S, then it will follow that the canon-
ical model is a S-counterexample, and so H / C is S-invalid. It would then
follow that S is complete.

So the only thing that remains for the proof of completeness is to show
that the canonical model’s frame obeys the properties corresponding to
system S. For example, when S is system M, then we must show R is
reflexive. It will follow that the canonical model is an M-counterexample
to H / C so that H / C is M-invalid.

In preparation for demonstrations of this kind, we will first show a
useful fact about R on the canonical model. We present it with its diagram.

EXERCISE *9.1 Prove (~R). (Hint: (~R) can be proven from the contra-
positive of one side of (DefR) along with (Defa)).

It also helps to prove a second fact. Let us say that an mc set w is (deduc-
tively) closed iff if H ü C and aw(H)=T, then aw(C)=T. A closed set w has
the feature that when the argument H / C is provable in S, a will assign its
conclusion T in w as long as its hypotheses were also assigned T in w.

Closed Lemma. In any model that obeys (Defa), w is closed.
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Proof of the Closed Lemma. Suppose H ü C and aw(H)=T. Let B be any
member of H. Then aw(B)=T and by (Defa) w ü B. So each member of
H is provable from w. This, along with H ü C, ensures that w ü C, and so
by (Defa), it follows that aw(C)=T.

Now we are ready to show that R meets the corresponding condition
for a wide range of axioms of modal logic. Let us take (M) first. We want
to show that R is reflexive on the canonical model when (M) (that is,
∫AçA) is provable in S. To do so, we assume the opposite and derive a
contradiction. Assume, then, that R is not reflexive. So for some world w,
not wRw, which is expressed with the following diagram.

By (~R), we have that aw(∫A)=T and aw(A)=F, for some sentence A.

But we know that (M) is provable in S, so ∫A ü A, by (MP). Since every
world w in W is closed, it follows from aw(∫A)=T that aw(A)=T.

However, this conflicts with (~), the truth condition for ~: aw(~A)=T iff
aw(A)=F. Since a contradiction was obtained from the assumption that
R is not reflexive, it follows that R is reflexive on the canonical model.

Let us give the same kind of proof in the case of axiom (4): ∫Aç∫∫A.
Here we want to show that R is transitive on the canonical model given
that (4) is provable in S. We begin by assuming that R is not transitive,
which means that there are worlds w, v, and u such that wRv, and vRu,
but not wRu.
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We apply (~R) to introduce sentences ∫A and ~A into the diagram.

We then use the presence of (4) in S and the fact that w is closed to
obtain aw(∫∫A)=T, from which we obtain a contradiction with two uses
of (∫T).

EXERCISE 9.2

a) Show that R is shift reflexive on the canonical model when (∫M) is provable.
(Hint: Assume wRv and not vRv. Since w is closed and ∫(∫AçA) is
provable, aw(∫(∫AçA))=T. Now produce a contradiction.)

b) Similarly, show R is serial when (D) is provable. (Hint: There are many ways
to do this, but a quick method is to note that (ƒD): ~∫ƒ is derivable in D.
(See Exercise 7.10.) By closure of w, it follows that aw(~∫ƒ)=T. Now use
the fact that the canonical model obeys (∫) to argue that wRu for some u.)

To obtain the relevant results for (B) and (5), it is useful to show the
following fact about R on the canonical model:
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The condition (R∂) makes sense, for if A is T in a world accessible from
w, then this means that A must be possible in w.

EXERCISE *9.3 Show that (R∂) holds on the canonical model.

Now let us turn to the proof for (B). We assume that R is not symmetric,
and then apply both (~R) and (R∂).

We then use the dual of (B) (namely, ∂∫AçA) to argue that any world
where ∂∫A is T also assigns T to A. This provides a contradiction.

EXERCISE 9.4
a) Show that R is euclidean on the canonical model in the presence of (5).
b) Show that R is unique on the canonical model when (CD) is present.

(Hint: Use the fact that if two worlds differ, then there must be some
sentence A such that A is in one world and ~A is in the other.)

*c) Show that R is connected when (L): ∫(∫AçB) √ ∫((B&∫B)çA) is
provable. (Hard.)

EXERCISE 9.5 (Project) Prove that S5 is complete for models with universal
frames. (Hint: Assume H¿C, and use the Lindenbaum Lemma to find an mc set
o such that ao(H)=T and ao(C)=F. Adjust the definition of W in the canonical
model so that w µ W iff oRw. R is then defined in the usual way for members
of W. Establish that <W, R> is reflexive and euclidean and use reflexivity to
prove that o is in W. Then show <W, R> is universal as follows. Let w and v
be members of W. Then oRw and oRv. Since <W, R> is euclidean, wRv. Take
special care with the proof that a obeys (∫F).)
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EXERCISE 9.6 (Project) Show the completeness of TL. TL is a tense logic
that is a strengthening of system Kt mentioned in Section 2.7. TL has two
intensional operators G and H. The weak modal operators F and P are defined
from G and H on analogy with ∫ and ∂.

(DefF) FA=df ~G~A (DefP) PA=df ~H~A

The rest of the notation of TL consists of the propositional connectives ç and
ƒ, and all other notation is defined in the usual way. The rules of TL consist
of the rules of propositional logic, together with (HIn), (HOut), (GIn), and
(GOut), and four axioms:

(FH) FHAçA (PG) PGAçA
(G4) GAçGGA (H4) HAçHHA

The semantics for TL is based on the one found in Section 5.2, and defined
as follows. A TL-model is a quadruple: <W, R, L, a> satisfying the following
conditions:

W is not empty.
R and L are binary relations on W.
R and L are both transitive, and they obey wRv iff vLw.
a is an assignment function that satisfies (ƒ), (ç), (G), and (H).

(G) aw(GA)=T iff for all v in W, if wRv then av(A)=T.
(H) aw(HA)=T iff for all v in W, if wLv then av(A)=T.

EXERCISE 9.7 (Project) Show a locative logic is complete. (See Sections 2.8
and 5.5.)

So far, completeness has been demonstrated only for systems for which
completeness was already shown in Chapter 8. The true power of the
canonical model method becomes apparent when it comes to the more dif-
ficult cases of systems that include (C4) (density) and (C) (convergence).
We will show next that R is dense on the canonical model when (C4):
∫∫Aç∫A is provable. For this proof it will be convenient to prove the
following fact, which is the “converse” of (R∂).

(CR∂) uRv provided that if av(A)=T then au(∂A)=T for all wffs A.

To prove (CR∂) let us assume:

If av(A)=T, then au(∂A)=T, for all wffs A,
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which we may express in the form of a diagram rule.

Now let us assume not uRv for Indirect Proof. By (~R), we know that for
some sentence A, au(∫A)=T and av(A)=F.

By the diagram rule for our assumption, au(∂~A)=T. But ∂~A ü ~∫A
by (∂~) of Exercise 1.10b. Since u is closed, it follows that au(~∫A)=T.

This is impossible because of (~) and au(∫A)=T. Since assuming that not
uRv led to this contradiction, we conclude that uRv.

We are ready to prove R is dense in the canonical model when (C4):
∫∫Aç∫A is provable. We must show for any w and v in W, that if wRv,
then there is an mc set u in W such that both wRu and uRv. So let w and
v be any members of W, and assume that wRv. We will give instructions
for actually constructing an mc set u for which wRu and uRv. Let us
define two sets W and V as follows, where the symbol ‘µ’ abbreviates ‘is
a member of’.

(W) A µ W iff aw(∫A)=T.
(∂V) ∂A µ V iff av(A)=T.

Let U be the union of W with V, namely the set containing all the members
of W and all the members of V. We want to establish first that any mc set
u such that au(U)=T obeys both wRu and uRv.

(U) If au(U)=T then wRu and uRv.

Proof of (U). Suppose that au(U)=T. To show wRu, we will assume that
B is any sentence such that w ü ∫B and show that u ü B. By (Defa),
aw(∫B)=T and so it follows by (W) that B µ W, and hence B µ U. Since
au(U)=T, au(B)=T; hence u ü B by (Defa). To show uRv, we make use
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of (CR∂). Assume that A is any sentence such that av(A)=T. Then by
(∂V), ∂A µ V and ∂A µ U. Since au(U)=T, au(∂A)=T. We have shown
that if av(A)=T, then au(∂A)=T, for any wff A, and so uRv follows by
(CR∂).

Now suppose that we could show that U ¿ ƒ. By the Lindenbaum
Lemma, there would be a member u of W such that au(U)=T. It would
follow by (U) that wRu and uRv, which will ensure the density of R on
the canonical model. So to complete the proof we must show only that U
is consistent.

Proof that U is consistent. Suppose for Indirect Proof that U ü ƒ. Then
by the definition of ü, there is a finite portion U′ of U such that U′ ü ƒ.
Let W′ contain the members of W that are in U′, and let ∂V1, . . , ∂Vi
be the members of V that are in U′. Remember that we assumed that
wRv. We also know by the definitions of W and V that aw(∫W′)=T and
av(V1, . . , Vi)=T. Let us summarize this information in the following
diagram.

Since U′=W′, ∂V1, . . , ∂Vi, we know that W′, ∂V1, . . , ∂Vi üƒ. It follows
that W′ ü~(∂V1& . . &∂Vi). But ~(∂V1& . . & ∂Vi) ü∫~(V1& . . &Vi),
as you will show in the next exercise.

EXERCISE 9.8 Show ~(∂V1& . . &∂Vi) ü ∫~(V1& . . &Vi) (Hint: Show
∂(V1& . . &Vi) ü ∂V1& . . &∂Vi using (∂Out).)

It follows from this that W′ ü ∫~(V1& . . &Vi), from which we obtain
∫W′ ü ∫∫~(V1& . . &Vi) by (GN). By (C4): ∫∫Aç∫A, it follows that
∫W′ ü ∫~(V1& . . &Vi), and since aw(∫W′)=T, it follows by the closure
of w that aw(∫~(V1& . . &Vi))=T.
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We also know that wRv, so by (∫T), it follows that av(~(V1& . . &Vi))=T.

But we also know that av(V1, . . , Vi)=T, and so by (&) that
av(V1& . . &Vi)=T.

This contradicts the fact that v is an mc set that obeys (~). We have derived
a contradiction from U ü ƒ, and so we conclude that U ¿ ƒ. This completes
the proof for the density condition.

The proof for (C) uses some of the same methods we used for (C4).
In this case we want to show that R is convergent given that (C):
∂∫Aç∫∂A is provable in S. Given that wRv and wRu, we must show
that there exists an mc set x in W such that vRx and uRx. To prove this,
let us construct two sets V and U as follows:

A µ V iff av(∫A)=T.
A µ U iff au(∫A)=T.

Let X be the union of V and U. It is a simple matter to show that if any
mc set x satisfies X (i.e., if ax(X)=T), then vRx and uRx.

EXERCISE 9.9 Show that if ax(X)=T, then vRx and uRx.

If we can show X ¿ ƒ, then it will follow by the Lindenbaum Lemma that
there is an mc set x in W that satisfies X and the proof for convergence
will be done.

Proof that X is consistent. To prove X ¿ ƒ, we will assume H ü ƒ and
derive a contradiction. So assume X ü ƒ. Then we have V′, U1, . . , Un ü
ƒ, where V′ is a finite portion of V, and U1, . . , Un is a list of sentences in
U. But then by many uses of (&Out), it follows that V′, (U1& . . &Un) ü
ƒ. So V′ ü ~(U1& . . &Un) by (IP), and hence ∫V′ ü ∫~(U1& . . &Un)
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by (GN). By the definition of V, it follows that av(∫V′)=T. Since v is
closed, av(∫~(U1& . . &Un))=T. By the definition of U, we know that
au(∫U1, . . , ∫Un)=T. The following diagram summarizes what we have
established so far:

Now by (R∂), and av(∫~(U1& . . &Un))=T, it follows that
aw(∂∫~(U1& . . &Un))=T. By the presence of axiom (C), ∂∫A
ü ∫∂A and the closure of w, it follows that aw(∫∂~(U1& . . &Un))=T.

By (∫T), we know that au(∂~(U1& . . &Un))=T, and this, as you will
show, is not consistent with au(∫U1, . . , ∫Un)=T.

EXERCISE 9.10 Show ∫U1, . . , ∫Un, ∂~(U1& . . &Un) üK ƒ, and use
this to explain why it is impossible that both au(∂~(U1& . . &Un))=T and
au(∫U1, . . , ∫Un)=T. (Hint: Given ∫U1, . . , ∫Un, prove ∫(U1 & . . &Un).
From ∂~(U1 & . . &∫Un) obtain ~∫(U1 & . . &∫Un) by (∂~) of Exer-
cise 1.10b.)
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EXERCISE 9.11 (Difficult Project) The basic provability logic GL results
from adding axiom (GL) to K.

(GL) ∫(∫AçA)ç∫A

A corresponding condition on frames for GL-validity is that the frame be
transitive, finite and irreflexive. Prove the adequacy of GL with respect to GL-
validity. You may assume without proof that (4)∫Aç∫∫A is provable in GL.

9.4. The Equivalence of PL+(GN) and K

We have just shown completeness of many logics based on K. Note that
the proof requires only that (GN) (General Necessitation), rules of PL,
and the appropriate axioms be available in the system at issue. So this
shows that a whole host of modal logics based on PL+(GN) (rather than
K=PL+(∫In)+(∫Out)) are also complete. In particular we have the com-
pleteness of PL+(GN) with respect to K-validity. This fact provides an
easy proof that K is equivalent to PL+(GN), a fact we noted in Section 1.8,
but one we have yet to prove. To show this equivalence, we must show
two things:

Fact 1. If H / C has a proof in PL+(GN), then H / C has a proof in K.
Fact 2. If H / C has a proof in K, then H / C has a proof in PL+(GN).

Fact 1 was already shown in Section 1.8, because (GN) was derived in
K. Fact 2 can be shown as follows. Suppose H / C has a proof in K. By
the consistency of K, it follows that H / C is K-valid. By completeness of
PL+(GN), H / C has a proof in PL+(GN).
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Axioms and Their Corresponding Conditions on R

10.1. The General Axiom (G)

So far, the correspondence between axioms and conditions on R must
seem a mystery. Although the diagram technique may be used to help
decide what condition it would take to validate a given axiom, or to deter-
mine which condition the axiom will cause R to obey on the canonical
model, no rigorous account has been given concerning the relationships
between axioms and their corresponding conditions on R. In this section,
we will prove a theorem that may be used to determine conditions on R
from axioms (and vice versa) for a wide range of axioms (Lemmon and
Scott, 1977). (For a more general result of this kind see Sahlqvist, 1975.)

The theorem concerns axioms that have the form (G).

(G) ∂h ∫iA ç ∫j ∂k A

The notation ‘∂n’ represents n diamonds in a row, so, for example, ‘∂3’
abbreviates: ∂∂∂. Similarly, ‘∫n’ represents a string of n boxes. When
the values of h, i, j, and k are all 1, we have axiom (C).

(C) ∂ ∫A ç ∫ ∂ A is ∂1 ∫1A ç ∫1 ∂1 A.

The axiom (B) results from setting h and k to 0, and letting j and k be 1.

(B) A ç ∫ ∂ A is ∂0 ∫0A ç ∫1 ∂1 A.

To obtain (4), we may set h and k to 0, set i to 1 and j to 2.

(4) ∫A ç ∫∫A is ∂0 ∫1A ç ∫2 ∂0 A.

211
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EXERCISE 10.1 Give values for h, i, j, and k for the axioms (M), (D), (5),
(C4), and (CD).

Although axioms such as (∫M) and (L) do not have the shape (G) for
any values of h, i, j, and k, the other axioms we have discussed all have
the shape (G).

Our next task will be to give the condition on R that corresponds to
(G) for a given selection of values for h, i, j, and k. In order to do so, we
will need a definition. The composition of two relations R and R′ is a new
relation RoR′ which is defined as follows.

(Defo) wRoR′v iff for some u, wRu and uR′v.

For example, if R is the relation of being a brother, and R′ is the relation
of being a parent, then RoR′ is the relation of being an uncle (because w
is the uncle of v iff for some person u, both w is the brother of u and u is
the parent of v).

A relation may be composed with itself. For example, when R is the
relation of being a parent, then RoR is the relation of being a grandparent,
and RoRoR is the relation of being a great-grandparent. It will be useful
to write ‘Rn’ for the result of composing R with itself n times. So R2 is
RoR, and R4 is RoRoRoR. We will let R1 be R, and R0 will be the identity
relation, that is, wR0v iff w=v.

EXERCISE 10.2 Let S be the relation sister of, let C be the relation child of,
and let M be mother of. Define the following relations using composition of
relations: aunt, great-great-grandmother.

We may now state the condition on R that corresponds to an axiom of
the shape (G).

(hijk-Convergence)
If wRhv and wRju, then for some x in W, vRix and uRkx.

Let us adopt the notation:

to represent Rn. Then the diagram for hijk-convergence is a generalization
of the diagram for convergence.
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This is to be expected, since convergence is hijk-convergence when
h=i=j=k=1.

It is interesting to see how the diagrams for the familiar conditions on
R result from setting the values for h, i, j, and k according to the values
in the corresponding axiom. We have explained that R0 is the identity
relation. So if we see a zero arrow between two worlds, we know they are
identical, and we can collapse them together in the diagram. To illustrate
this idea, consider the diagram for (5). In this case i=0, and h=j=k=1.

When we shrink together the two dots joined by the zero arrow on the
bottom left of this diagram, we obtain the diagram for the euclidean
condition.

The same thing works for the axiom (B). Here h=i=0, while j=k=1.
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When we resolve the zero arrows, we obtain the diagram for symmetry,
just as we would hope.

In the case of axiom (4), we begin with the following diagram:

Resolving the zero arrows, we obtain:

The 2 arrow at the top of this diagram represents the composition of R
taken twice, so this arrow resolves to a series of two arrows. So we obtain
the familiar transitivity diagram.

The case of axiom (D) involves a slight complication. We begin with
the following diagram:
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which resolves to:

This diagram indicates that for every world w, there is another world
v such that wRv and wRv. But this just amounts to saying in a stut-
tering way that for every world w there is a world v such that wRv.
Clearly, the second arrow is superfluous, and we obtain the diagram for
seriality.

EXERCISE 10.3 Derive diagrams for (M), (C4), and (CD) by setting values
for h, i, j, and k in the diagram for hijk-convergence, and then resolving the
arrows.

10.2. Adequacy of Systems Based on (G)

The rest of this chapter will present an adequacy proof for any system
that results from adding axioms of the form (G) to K. To show sound-
ness, it will be proven that regardless of which values h, i, j, and k are
chosen for an axiom with shape (G), the axiom is valid when R is hijk-
convergent. To show completeness, a demonstration will be given that
when an axiom of the shape (G) is available in a system, then the canonical
model’s relation R must be hijk-convergent for the appropriate values
of h–k.

It will be helpful to have the four general diagram rules that follow:
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The arrows with n on them in these diagrams represent Rn. From the
point of view of diagrams, the arrow:

abbreviates:

The correctness of these four rules is easily shown. For example, (∫nT)
may be proven using n applications of (∫T), and similarly for the others.

EXERCISE 10.4 Prove (∫3T), (∫3F), (∂3T), and (∂3F). Then explain why
(∫nT), (∫nF), (∂nT), and (∂nF) hold for any value of n.

We are ready to show that (G) is valid when R is hijk-convergent. We
assume that (G) has a counterexample and derive a contradiction. If (G)
has a counterexample, then there is a model with a world where (G) is
false. From (çF), (∂hT) and (∫jF), we obtain the following diagram.

Since R is hijk-convergent, there is a world x such that vRix and uRkx.
Using (∫iT) and (∂kT), we obtain a contradiction in world x, and so (G)
cannot have a counterexample when R is hijk-convergent.
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To prove completeness for a system that extends K using axioms of
the form (G), we will first demonstrate the following fact about the
canonical model:

(Rn) wRnv iff if aw(∫nA)=T, then av(A)=T, for all sentences A.

The proof for (Rn) when n=0 requires that we show (R0),
(R0) wR0v iff if aw(∫0A)=T, then av(A)=T, for all sentences A.

This amounts to showing that
w is v iff if aw(A)=T, then av(A)=T, for all sentences A.

The proof from left to right is obvious, and the proof from right to left
requires the following argument. Suppose that if aw(A)=T, then av(A)=T
for all sentences A, and suppose for indirect proof that w is not identical
to v. By the latter assumption, there must be a sentence B for which w
and v differ. This means that either aw(B)=T and av(B)=F, or aw(B)=F
and av(B)=T. In the first case, where aw(B)=T and av(B)=F, it follows
by (~) that av(~B)=T. Since every sentence true in w is true in v, we have
av(B)=T. But this is impossible since the assignment a must obey (~). The
proof of the case where aw(B)=F and av(B)=T is similar.

EXERCISE 10.5 Complete the proof of (R0).

To show that (Rn) holds for n>0, notice first that (Rn) for n=1 is exactly
the truth condition (∫), so this case is easy. To show (Rn) for n>1, we
will use the strategy of mathematical induction by establishing (Rnext).

(Rnext) For any value of k, if (Rk) holds, then (Rk+1) also holds.

This will guarantee that (Rn) holds for all values of n. The reason is that
we have already shown (R0) and (R1). But (Rnext) guarantees that since
(R1), it follows that (R2). By applying (Rnext) again to this last result,
(R3) follows. By continuing this argument as many times as we need,
(Rn) can be established for any value of n.

So all that remains is to show (Rnext). To do this, let k be any value
of n and assume (Rk). We will now show (Rk+1) as follows. (For your
reference we have written out (Rk) and (Rk+1) below, applying the fact
that ∫k+1A=∫k∫A.)

(Rk) wRkv iff if aw(∫kA)=T then av(A)=T for all sentences A.
(Rk+1) wRkoRv iff if aw(∫k∫A) = T then av(A) = T for all sen-

tences A.
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First (Rk+1) is shown from left to right. We assume wRkoRv, and
aw(∫k∫A)=T for a given sentence A, and show that av(A)=T, as
follows. By wRkoRv and the definition of o, it follows that for some mc
set u, both wRku and uRv. By aw(∫k∫A)=T, and (Rk), it follows that
au(∫A)=T, and so av(A)=T follows from uRv by (∫T) and the definition
of a.

To complete the proof, (Rk+1) must be shown from right to left given
(Rk). Let us suppose that (Rk+1R).

(Rk+1R) If aw(∫k∫A)=T, then av(A)=T for all sentences A.

We will show that there is an mc set u such that wRku and uRv. The proof
that such a u exists is similar to the completeness proof for the density
axiom (C4). We define the set U as the union of two sets W and ∂V
defined in turn as follows.

A µ W iff aw(∫kA)=T.

∂A µ ∂V iff av(A)=T.

We then show that any assignment that satisfies U obeys wRku and uRv.

(U) If au(U)=T then wRku and uRv.

(U) is proven as follows. Assume au(U)=T. Since W contains A whenever
aw(∫kA)=T, and all members of W are in U, it follows from au(U)=T
that au(A)=T. So for any sentence A, if aw(∫kA)=T then au(A)=T, with
the result that wRku. Since ∂A µ∂V whenever av(A)=T, it follows that
au(∂A)=T whenever av(A)=T for any wff A. By (CR∂) it follows that
uRv.

To complete the proof, we need show only that U ¿S ƒ, for then by the
Lindenbaum Lemma it will follow that there is an mc set u that satisfies
U, and hence wRku and uRv by (U). This is done by assuming U ÷S ƒ
and deriving a contradiction. If we assume U ÷S ƒ, it follows that W′
÷ ~(∂V1& . . &∂Vi), where W′ is a finite subset of W and ∂V1, . .
∂Vi are members of ∂V. By the solution to Exercise 9.8, we have W′ ÷S
∫~(V1& . . &Vi), from which we obtain ∫kW′ ÷S ∫k∫~(V1& . . &Vi) by
k applications of General Necessitation (GN). We know aw(∫kW′)=T,
so aw(∫k∫~(V1& . . &Vi))=T by the Closed Lemma. We have assumed
(Rk+1R), that is, that if aw(∫k∫A)=T then av(A)=T, so it follows that
av(~(V1& . . &Vi))=T. But this is impossible since av(V1, . . , Vi)=T with
the result that av(V1& . . &Vi)=T. We have the required contradiction,
and so the proof of (Rn) is complete.
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We are ready to show that when (G) is provable in a system, then the
standard model is hijk-convergent. The proof is similar to the proof of
completeness for axiom (C) with respect to convergence, the only dif-
ference being the presence of superscripts. Along the way, the following
generalization of (R∂) will be useful:

The proof is easy using (R∂) n times.

EXERCISE 10.6 Prove (R∂n) by showing that if (R∂k) holds for any value
k, then so does (R∂k+1).

Now suppose that wRhv and wRju. We must show that there is an mc
set x in W such that vRix and uRkx. Let V and U be defined as follows:

A µ V iff av(∫iA)=T.
A µ U iff au(∫kA)=T.

Let X be the union of V and U. It is a straightforward matter to show for
any mc set x that if ax(X)=T, then both vRix and uRkx.

EXERCISE 10.7 Show that if ax(X)=T, then vRix and uRkx.

Now we will show that X is S-consistent, from which it follows from the
Lindenbaum Lemma that there is an mc set x such that ax(X)=T. As
usual, we assume X ÷S ƒ and derive a contradiction. Assuming X ÷S ƒ,
it follows that V′, U1, . . , Un ÷S ƒ, where V′ is a finite subset of V and
U1, . . , Un is a list of sentences of U. So V′ ÷S ~(U1& . . &Un), and hence
∫iV′ ÷ ∫i~(U1& . . &Un) by i applications of (GN). By the definition of
V, av(∫iV′)=T, and so av(∫i~(U1& . . &Un))=T by the Closed Lemma.
By the definition of U, we know that if A µ U then au(∫kA)=T, hence
au(∫kU1, . . , ∫kUn)=T.
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Now wRhv and av(∫i~(U1& . . &Un))=T, so it follows by (R∂h) that
aw(∂h∫i~(U1& . . &Un))=T. By the presence of (C): ∂h∫iAç∫j∂kA
in S and the Closed Lemma, it follows that aw(∫j∂k~(U1& . . &Un))=T.

From this and (Rj), we know that au(∂k~(U1& . . &Un))=T. But this is
not consistent with au(∫kU1, . . , ∫kUn)=T.

EXERCISE 10.8 Show ∫kU1, . . , ∫kUn ÷ K ~∂k~(U1& . . &Un). (Hint:
Use (GN) k times.)
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Relationships between the Modal Logics

Since there are so many different possible systems for modal logic, it is
important to determine which systems are equivalent, and which ones
distinct from others. Figure 11.1 lays out these relationships for some of
the best-known modal logics. It names systems by listing their axioms.
So, for example, M4B is the system that results from adding (M), (4), and
(B) to K. In boldface, we have also indicated traditional names of some
systems, namely, S4, B, and S5. When system S appears below and/or to
the left of S′ connected by a line, then S′ is an extension of S. This means
that every argument provable in S is provable in S′, but S is weaker than
S′, that is, not all arguments provable in S′ are provable in S.

11.1. Showing Systems Are Equivalent

One striking fact shown in Figure 11.1 is the large number of alternative
ways of formulating S5. It is possible to prove these formulations are
equivalent by proving the derivability of the official axioms of S5 (namely,
(M) and (5)) in each of these systems and vice versa. However, there is
an easier way. By the adequacy results given in Chapter 8 (or Chapter 9),
we know that for each collection of axioms, there is a corresponding
concept of validity. Adequacy guarantees that these notions of provability
and validity correspond. So if we can show that two forms of validity
are equivalent, then it will follow that the corresponding systems are
equivalent. Let us illustrate with an example.

We will show that K4B (i.e., K+(4)+(B)) is equivalent to K4B5
(K=(4)+(B)+(5)) by showing that K4B-validity is equivalent to K4B5-
validity. That will follow from a demonstration that a relation is transitive
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Axiom R is . .
(D) ∫Aç∂A Serial ÖvwRv
(M) ∫AçA Reflexive wRw
(4) ∫Aç∫∫A Transitive wRv & vRu ç wRu
(5) ∂Aç∫∂A Euclidean wRv & wRu ç vRu
(B) Aç∫∂A Symmetric wRv ç vRw

Figure 11.1. Relationships between some modal logic systems.

and symmetric if and only if it is transitive, symmetric, and euclidean.
Clearly if a relation is transitive, symmetric, and euclidean, it must be
transitive and symmetric. So to show equivalence of the two kinds of
validity, we need only show that whenever a relation is transitive and
symmetric, it is also euclidean. We begin by assuming that R is transitive
and symmetric. To show that R is also euclidean, assume that wRv and
wRu and prove that vRu. The assumption that wRv and wRu may be
presented in a diagram as follows:
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Since wRv, it follows by the symmetry of R (which corresponds to the
axiom (B)) that vRw.

But this with wRu and the transitivity of R (which corresponds to (4))
yields vRu, the desired result.

It follows that whenever a relation is symmetric and transitive, it is already
euclidean. This means that the requirement that R be symmetric and
transitive is equivalent to the requirement that R is transitive, symmetric,
and euclidean. It follows that K4B-validity is identical to K4B5-validity
and so theorems of K4B and K4B5 are identical. By the same reasoning,
we may prove also that any serial, transitive, and symmetric relation is
euclidean. So it follows that D4B-validity is identical to D4B5-validity
and the systems D4B and D4B5 are equivalent as well.

EXERCISE 11.1

a) Prove that M4B is equivalent to M4B5.
b) Prove that any symmetric euclidean relation is transitive. Use this result

to show that (4) is provable in KB5, DB5, and MB5. Now show KB5 and
K4B5 are equivalent. Use this with previous results to show K4B and KB5
are equivalent.

c) Use these results to show that D4B = D4B5 = DB5, and that M4B =
M4B5 = MB5.

Let us give a second illustration of the method for showing equivalence.
It is perhaps surprising that D4B is equivalent to M4B, for the axiom (D)
is quite a bit weaker than (M). However, this may be proven by showing
that every serial, transitive, and symmetric relation is also reflexive as
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follows. Let w be any world in W. By seriality, (D), we know that there is
a world v such that wRv.

By symmetry (B), it follows that vRw.

We now have both wRv and vRw, so wRw follows from transitivity (4).

EXERCISE *11.2 Using diagrams show that (B) is provable in M5. Use this
and previous results to show that the following are all equivalent to S5: M5,
MB5, M4B5, M45, M4B, D4B, D4B5, DB5.

11.2. Showing One System Is Weaker than Another

Next we will explain how to use facts about the accessibility relation to
prove that one system is weaker than another, and that one is an exten-
sion of the other. How do we know, for example, that (B) is not already
a theorem of M, so that M is equivalent to B? To show that M is really
weaker than B, it is necessary to show that (B) is not a theorem of M.
This may be proven by showing that pç∫∂p (an instance of (B)) is not
M-valid. The demonstration of invalidity may be carried out by showing
that the tree for the argument with no premises and pç∫∂p as a con-
clusion has an open branch. By the Tree Model Theorem (Section 8.3), it
follows that pç∫∂p is invalid on the tree model and so ªM pç∫∂p. It
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follows from this by the adequacy of M that ¿M pç∫∂p. What follows
is the open tree that indicates the M-invalidity of pç∫∂p.

EXERCISE 11.3 Verify that the model defined in the above counterexample
diagram is such that aw(pç∫∂p)=F.

Now that we know that M cannot prove (B), it follows that B is an exten-
sion of M, for anything provable in M is provable in B=MB, and yet there
is a theorem of B that cannot be proven in M (namely, pç∫∂p).

Another result follows from the fact that M cannot prove (B), namely,
that no weaker system can. Therefore, neither D nor K can prove (B),
which shows that DB is an extension of D and KB is an extension of
K. The same diagram may also be used to establish that (B) cannot be
proven in S4. Note the accessibility relation in this diagram is transi-
tive. Transitivity amounts to the claim that any journey following two
arrows in succession may also be completed by following a single arrow.

One two-hop journey in the counterexample diagram above is from w to
w followed by w to v. But obviously this may be accomplished in one step
by simply going from w to v. The only other two-hop journey is w to v
followed by v to v, which can also be done by simply going from w to v.
Since the diagram is transitive, it shows that ªS4 (B), and so we know that
(B) is not provable in S4. It follows from this that S4 must be weaker than
S5, because S5 can prove (B).

EXERCISE 11.4 Show that (4) is not provable in B, and hence that S5 is an
extension of B.
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Given the last exercise, we know that B cannot prove (4). We also showed
that S4 cannot prove B. This means that these systems are incommensu-
rable, meaning that neither system is an extension of the other.

The fact that (4) is not provable in B may be used to obtain many
results about which systems are extensions of others. If B cannot prove
(4), neither can any system with fewer axioms than B. This includes M, D,
K, DB, and KB. So the following facts about extensions hold, where we
use ‘>’ to abbreviate ‘is an extension of’:

M4>M
D4>D
K4>K
K4B>K4.

Not only that, but the same considerations used to show that S4 and B
are incommensurable can be used to show that D4 and DB (and K4 and
KB) are incommensurable.

EXERCISE 11.5 Show that D4 is incommensurable with DB and K4 is
incommensurable with KB.

Now let us show that K4B5 and D4B5 are extensions of K45 and D45,
respectively. The last counterexample diagram will not demonstrate this
because the relation there is not euclidean (wRv and wRw, but not vRw).
A slight change in this diagram will prove what we want. Here we create
a counterexample to pç∫∂p in a D-tree.

Although the accessibility relation in this diagram is not reflexive, it is
serial since there is an arrow exiting each world. Note that the relation is
both transitive and euclidean in this diagram. For transitivity, note there
is only one two-hop journey in the diagram (w to v and v to v), and this
can be done in one hop by going from w to v. To show that the relation is
euclidean, we must show that whenever two arrows exit the same world,
there is a third arrow between the two. But there is no world with two
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arrows exiting it, so the euclidean condition is trivially satisfied. So this
diagram shows that (B) is not provable in D45, which establishes that
D4B5 (alias S5) is an extension of D45. It also follows that (B) is not
provable in K45, so K4B5=K4B=KB5 is an extension of K45.

The fact that S5 is an extension of D45 may be used to establish further
results. D4 could not prove (M) because if it did, then D45 would also
prove (M), and so D45 would be equivalent to M45=S5. But we just
showed that S5 is an extension of D45, and so they are not the same.
Since (M) is not provable in D4, it follows that M4 is an extension of
D4. It also follows that D could not prove (M) either, for again this would
entail the equivalent of D45 and S5. So we also learn that M is an extension
of D.

Now let us show that (D) is not provable in K4B. This can be done with
a very simple diagram.

Note that if there were an arrow exiting the diagram, then (∫T) and
(∂F) rules could be applied to ∫p and ~∂p to obtain a contradiction in
that world. However, this diagram indicates that R holds for no worlds,
and so (∫T) and (∂F) rules do not apply. Since there are no atoms in
the world at the left, and no variables other than p, the counterexample
diagram contains ~p. Notice that since R holds for no worlds, R is trivially
transitive and symmetric. So this diagram serves as a 4B-counterexample
to (D). It follows that K4B=KB5=K4B5 cannot prove (D). So (D) is also
not provable in any of the K systems: K, K4, K5, KB, and K45. It follows
that each of the D systems is an extension of its K counterpart: K<D,
K4<D4, K5<D5, K45<D45, K4B<S5, KB<DB.

EXERCISE 11.6

a) Show the following with diagrams: ¿D4 (5), ¿D5 (4), and ¿DB (M).
b) Use these results to demonstrate the remaining extension facts indicated

on the diagram at the beginning of this chapter, namely, the following:
D4<D45, K4<K45, D5<D45, K5<K45, DB<B.

c) Show that the following pairs are incommensurable: D4, D5; DB, D5.
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Systems for Quantified Modal Logic

It would seem to be a simple matter to outfit a modal logic with quantifiers.
You would simply add the standard (or classical) rules for quantifiers to
the principles of some propositional modal logic. Although systems of this
kind can be constructed, the combination of classical quantifier rules and
modality has unexpected consequences. Logicians interested in a more
general treatment of names and definite descriptions have invented alter-
native systems for the quantifiers called free logics. I believe that free
logics allow a more natural fit between quantifiers and the underlying
propositional modal logics. So the treatment of quantified modal logic
in this book begins with a discussion of the differences between classi-
cal quantification and free logic. To prepare the way for everything that
follows, languages for quantified modal logic need to be defined.

12.1. Languages for Quantified Modal Logic

All the quantifier systems to be discussed in this book result from adding
the universal quantifier å to the language of propositional logic. The
existential quantifier Ö is defined by (DefÖ).

(DefÖ) ÖxA =df ~åx~A

Besides å, the symbols of a quantifier language include an unlimited
supply of variables x, y, z, x′, y′, z′, . . , a set of constants c, b, c′, b′,
c′′ . . , a set of predicate letters P, Q, R, P′, Q′, R′, . . , the propositional
logic symbols ƒ and ç (the symbols ~, &, √, and ≠ are defined), the
intensional operator ∫, the identity sign ≈, and finally parentheses and
the comma. For the moment, the only terms are the constants. In sections
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to come, the collection t, s, u, t′, s′, u′, . . of terms will be expanded
to include terms other than the constants and complex expressions for
definite descriptions. Officially, all systems will include a predicate letter
E for existence. However, in most cases, Et ≠ Öxx≈t is provable, and so
the existence predicate may be eliminated by the following definition.

(DefE) Et =df Öxx≈ t

For more on this issue see Section 12.12.
Now let us define the sentences of the language of quantified modal

logic. The atomic sentences have the forms ƒ, s≈t, and Pl, where s and t
are terms, P is any predicate letter, and l is any list of terms. The official
notation for a list requires parentheses and commas. So a list of terms has
the form (t1, t2, . . , ti). This means that an English sentence such as ‘Joe
loves Mary’ is symbolized by placing a list of constants (j, m) to the right
of the predicate letter L like this: L(j, m). Although the official notation
requires that terms in an atomic sentence appear in a list, writing the extra
parentheses and commas can become tiresome. So we will write ‘Lj,m’,
or even ‘Ljm’ in place of ‘L(j, m)’ when no ambiguity will arise. This
practice conforms to a convention used throughout this book. Although
the official notation for a list has the form (o1, o2, . . , oi), we drop the
parentheses: o1, o2, . . , oi and even the commas: o1 o2 . . oi when this is
convenient.

The identity sign ≈ is considered to be a predicate letter, and so offi-
cially, the notation to indicate (for example) that Jim is identical to Dan
is: ‘≈(j, d)’. However, we will abbreviate ‘≈(j, d)’ to the more famil-
iar notation: ‘j≈d’ when this is convenient. Strictly speaking, the con-
stants fall alphabetically from ‘b’ through ‘c’, and predicate letters (other
than ≈) from ‘P’ through ‘R’. However, a wider range of lower case and
upper case letters will be used for constants and predicate letters when
this is convenient (as has just been done for ‘John loves Mary’).

In order to keep the definition of atomic sentences uniform, predicate
letters followed by the empty list () (for example, ‘P()’) will be used in
place of propositional variables. However, the parentheses will usually be
dropped to obtain the more ordinary notation: (‘P’, ‘Q’, etc.).

On the standard account, predicate letters are classified by the number
of term places they contain. For example, ‘is green’ is a one-place predi-
cate, since it takes only a subject, whereas ‘loves’ is a two-place predicate
taking both a subject and object. However, the definition of atoms given
here allows term lists of varying lengths to follow the same predicate
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letter. So, for example, P(n) and P(n, m) may both be atomic sentences.
This liberal policy reflects the fact that some verbs of English have both
transitive and intransitive forms; for example, consider ‘obeys’ in ‘John
obeys’, and ‘John obeys Mary’. The result is a notational system that
offers a closer match with the form of ordinary language (Grandy, 1976;
Garson, 1981).

In quantificational logic, the idea of an instance of a universal sen-
tence is central. For example, if every philosopher is mortal (in symbols:
åx(PxçMx)), it follows that if Socrates is a philosopher, then Socrates
is mortal: PsçMs. Here, PsçMs is an instance of åx(PxçMx). A nota-
tion for instances will be needed in order to present the quantifier rules.
‘[A]t/x’ will be used to indicate the instance that results from åxA when
åx is dropped and t is replaced for all those occurrences of the variable
x in A that were bound by åx. So, for example, [P(x, t)]t/x is P(t, t), and
[P(x, x)]t/x is also P(t, t). Note that when an instance [A]t/x is formed, t
may replace only occurrences of x bound by the initial quantifier åx in
åxA. For example, a correct instance [PxçåxQx]t/x, for åx(PxçåxQx),
is PtçåxQx. It would be illegal to replace t for the occurrences of x in
åxQx as well since this yields PtçåtQt, which is ill formed. (A technical
definition of [A]t/x is given in Section 15.12.)

A less formal notation is commonly used to indicate instances. It is to
write ‘åxAx’ for the quantifier sentence, and ‘At’ for the corresponding
instance. A problem with this scheme is that when ‘At’ is viewed out of
context, it is impossible to tell which variable was replaced by t in forming
the sentence At. On rare occasions, that is important information that
cannot be recovered from the context. Despite this technical failing, the
informal notation has its attractions. Visually, ‘åx(PxçMx)’ and ‘PtçMt’
resemble ‘åxAx’ and ‘At’, respectively; furthermore, the notation ‘[A]t/x’
introduces annoying clutter. So this book will use the informal notation
for the most part, and resort to the more formal style only when technical
requirements demand it.

Now we are ready to define the set of sentences of quantified modal
logic (QML). A string of symbols is a sentence of QML iff it can be
generated by the following rules:

Atomic sentences are sentences.
If A is a sentence, then ∫A is a sentence.
If A and B are sentences, then (AçB) is a sentence.
If Ac is a sentence, then åxAx is a sentence.

Notice that the last clause constructs the universal sentence åxAx from
one of its instances Ac. This way of defining the sentences ensures that
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variables are always bound by a quantifier. According to this definition,
the open formula Px is not a sentence because variables such as x do not
count as terms. The quantifier clause is the only way in which variables
can be introduced into sentences, and so all variables in sentences end up
bound by a quantifier. A more liberal account of sentences would include
the open formulas among the sentences. Then the quantifier clause could
be simplified to read: if A is a sentence, then åxA is a sentence. However,
the more narrow definition has been chosen to avoid tedious complica-
tions that crop up in proofs concerning substitution of terms for variables.

From time to time, we will talk of the expressions of a language. An
expression is simply any predicate, term, list of terms, or sentence. In this
book, systems written in different languages for QML will be considered.
Usually the languages will differ only with respect to their terms and
predicate letters. In some cases, a given language may be extended by
adding to it a new set of terms, or additional predicate letters. We will even
consider languages where the objects of the domain of quantification are
treated as if they were terms of the language. (See Section 13.5.) Since
languages vary in the course of the discussion, no fixed language will be
defined for this book. For most of the discussion to come, it will be assumed
that some language for quantified modal logic has been provided.

12.2. A Classical System for Quantifiers

You are probably familiar with predicate logic (or quantificational logic
or first order logic, which is the same thing). So a good place to begin
a discussion of modal quantification will be to start with set of standard
rules for quantifiers. A natural deduction system QL- for classical quan-
tificational logic without identity may be given by adding the following two
rules to PL (propositional logic):

System QL- = PL + (QåOut) + (QåIn).

Q∀Out Q∀In
åxAx Ac

Ac åxAx where c is not in åxAx nor in any of its
hypotheses

It is understood that these rules, and rules to be presented in the future,
may be applied within any subproof and that when applied, all lines appear
in the same subproof.

       
            

       



232 Modal Logic for Philosophers

The rule (QåOut) reflects the principle (sometimes called universal
instantiation) that when åxAx holds, so does the instance Ac for any
constant c. A more standard instantiation rule for quantifiers applies to
all terms and not just the constants. For the moment, the constants are
the only terms, so the difference does not matter. However, it will be
important that (QåOut) has been restricted to constants in this book,
because universal instantiation for all terms is invalid in some systems.

The rule (QåIn) may appear to be unacceptable, for it seems to warrant
the invalid inference from a single instance Pc to the general claim that
all things have property P. The restriction on this rule is crucial. When the
constant c does not appear in åxPx nor in any of the hypotheses under
which åxPx lies, then it turns out that a deduction of Pc provides a recipe
for proving Pb for any choice of constant b. The fact that Pb holds for any
choice of b does support the conclusion åxPx.

Most readers of this book will already have had some exposure to the
process of finding proofs in some version of classical quantificational logic.
However, it is still useful to discuss briefly the methods for discovering
proofs in QL-. Here is a proof of the argument ÖxPx, åx(PxçQ) / Q,
to help illustrate some useful strategies. The proof begins by converting
ÖxPx to ~åx~Px by (DefÖ).

At this point, it is not a particularly good strategy to apply (åOut) to line
2. It is best to delay the application of (åOut) until the proof is better
developed. Since there seems little else one can do, a good plan would be
to try to obtain the conclusion by Indirect Proof (IP). Note that the order
in which the proof is developed is recorded with ‘discovery numbers’ in
square brackets to the right.
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The problem now is to derive some contradiction (a pair of the form A
and ~A) in the new subproof so as to obtain ƒ by (ƒIn). Since step 3 is the
only negation available, it is best to assume that the desired contradiction
will be ~åx~Px and its opposite: åx~Px. So what remains is to find a proof
of åx~Px, which in all likelihood will be obtained by (QåIn).

To create a proof of åx~Px, we will need to prove an instance Pc, choosing
c so that it does not appear in any hypothesis or in åx~Px. Luckily any
constant will do, since no constant appears anywhere so far. The proof
can then be completed by applying (QåOut) to step 2 and using MT.

It will be helpful to develop derivable rules for QL- to simplify proofs
involving Ö. Here is a useful pair of rules:
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EXERCISE 12.1 Show (QÖIn) and (QÖOut) are derivable in QL-. (Hint: In
the case of (QÖOut) apply (CP) and (åIn) to the subproof headed by Ac. Then
use strategies discussed above.)

Given the derived rules, the proof of ÖxPx, åx(PxçQ) / Q can be simpli-
fied as follows:

To make sure that you can find proofs in QL- smoothly, complete the
following exercise.

EXERCISE 12.2 Prove in QL-. You may use derivable rules.

a) åx(Px&Qx) ≠ (åxPx & åyQy)
b) åx(PxçQx), ÖxPx / ÖxQx
c) åx(PxçQ) / ÖxPxçQ
d) åx(PxçQx) / åx(Öy(Px&Rxy)çÖz(Qx&Rxz))
e) åxåyLxy / åyåxLxy
f) åxPx √ åyQy / åx(Px√Qx)
g) åxPx ≠ ~Öy~Py
h) åxPx / ÖxPx

12.3. Identity in Modal Logic

A system QL for identity can be constructed by adding the following pair
of rules to QL-:

System QL = QL- + (≈In) + (≈Out).

≈In ≈Out
s≈t

t≈t P(l, s, l′)

P(l, t, l′) where P is a predicate letter (including ≈)
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The rule (≈In) has no premises, so it indicates that t≈t may be added
to any subproof whenever we like. As in propositional modal logic, such
premise-free rules are called axioms. The rule (≈Out) is designed to allow
substitution of one term t for another s when s≈t is available. P(l, s, l′) is
an atomic sentence composed of the predicate letter P followed by the
list of terms (l, s, l′). As you can see, this list contains an occurrence of
s. The list (l, t, l′) that appears in the conclusion of the rule results from
replacing the t for the occurrence of s in the list (l, s, l′). In the special
case where l is the empty list, the rule allows the substitution of (t, l′) for
(s, l′), and when both l and l′ are empty, it warrants substitution of (t)
for (s).

The rule explicitly allows the substitution into other identity sentences
(sentences of the form s≈u). So when s≈t has been proven (officially
≈(s, t)), t may be replaced for s in s≈u (i.e., in ≈(s, u)) to obtain t≈u (i.e.,
≈(t, u)). This means that the following is a special case of (≈Out):

s≈t
s≈u

t≈u (≈Out)

Another instance of (≈Out) is the following:

s≈t
s≈s

t≈s (≈Out)

Here t is replaced for s in the first occurrence of s in s≈s. Since s≈s is
provable in QL by (≈In), this shows that QL also guarantees the symmetry
of ≈, and from that it is easy to show that ≈ is transitive.

(Symmetry) t≈s / s≈t
(Transitivity) t≈s, s≈u / t≈u

EXERCISE 12.3 Prove the following in QL.

a) Öxx≈c
b) t≈s / s≈t
c) t≈s, s≈u / t≈u
d) s≈t, ~Ps / ~Pt
e) s≈t, PsçQ / PtçQ
f) s≈t, ~(PsçQ) / ~(PtçQ)
g) (Hard.) (Pc&åy(Pyçy≈c)) ≠ åy(Py≠c≈y)
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The rule (≈Out) may appear to be overly restrictive since it allows
substitution of identical terms only in atomic sentences. The ordinary rule
of substitution familiar from classical predicate logic allows replacement
of identical terms in complex sentences as well. However, the failure of
the principle of the substitution of identities is a characteristic feature of
modal logics. Since substitution fails in the scope of modal operators like
∫, the ≈ rules should be formulated so that substitution is not possible
in those contexts. The rule (≈Out) embodies this restriction by allowing
substitution of identicals only in atomic sentences. To apply the rule, one
must have both s≈t and an atomic sentence P(l, s, l′), from which P(l, t, l′)
follows. Obviously an atom like P(l, s, l′) cannot contain the modal oper-
ator ∫.

The fact that (≈Out) does not warrant substitution of identities in
all contexts allows us to explain the invalidity of a number of famous
philosophical arguments. Consider the following example concerning the
author of Waverley, which was presented by Russell in ‘On Denoting’
(1905):

(1) Scott is the author of Waverley. s≈w
(2) King George knows Scott is Scott. Kg s≈s
(3) King George knows Scott is the

author of Waverley.
Kg s≈w

(1) and (2) were presumably true, yet (3) was false, for King George
famously asked who the author of Waverley was. The problem is to
explain what is wrong with reasoning from (1) and (2) to (3). From
the point of view of this book, the answer is this. Since ‘King George
knows’ is treated as a modal operator, we may deny that (3) follows from
(1) and (2). Although (3) results from replacing the second s in (2) with
w on the basis of the identity (1), the substitution is blocked because (2)
is not atomic. A similar diagnosis handles Quine’s (1961) famous example.

(4) 9 is the number of planets. 9≈n
(5) Necessarily 9 is greater than 7. ∫9>7
(6) Necessarily the number of planets

is greater than 7.
∫n>7

Here again the premises are true and the conclusion is false. An expla-
nation of this is that the substitution of n for 9 occurs in the nonatomic
sentence (5).
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These two examples illustrate the problems that arise in applying the
law of substitution of identicals beneath a modal operator. However,
the law of substitution has seemed to many philosophers to be beyond
reasonable doubt. They would argue that there is no need to restrict
(≈Out) in any way. On the view that substitution of identicals is legal in
all contexts, some other way of explaining the errors in (1)–(3) and (4)–
(6) must be found. In fact, some have claimed that the failure of the rule
of substitution for an expression in any context is a sign that what was
substituted is not really a term.

This was Russell’s technique for analyzing the error in the argument
about King George. He claimed that the description ‘the author of Waver-
ley’ is not to be treated as a term, and must be translated into the notation
of QL using his theory of descriptions. His strategy has the advantage that
no adjustments to the classical rules for quantifiers or identity need to be
made. Once the theory of descriptions is applied to (1)–(3), the argument
no longer appears to have the form of a substitution of identical terms.
If Russell’s method for eliminating descriptions is thoroughly applied,
one need not place restrictions on (≈Out) because any argument that
would be a purported violation of the unrestricted rule of substitution of
identities would show that substitution of terms did not occur.

The details of Russell’s descriptions strategy, and some complaints
against it, will be presented in the next section, but one objection bears
mentioning here. Russell’s method forces us to treat even proper names
of English as if they were descriptions. For example, consider (7)–(9).

(7) Cicero is Tully. c≈t
(8) King George knows Cicero is Cicero. Kg c≈c
(9) King George knows Cicero is Tully. Kg c≈t

The above argument is invalid, and yet there is no explicit description to
unpack in (7) or (8). A Russellian reaction to this would be to claim that
the argument shows that ‘Cicero’ and ‘Tully’ are not really names, and so
should be represented in the formal theory with descriptions for ‘the thing
with Cicero’s properties’ and ‘the thing with Tully’s properties’ which may
then be unpacked using the theory of descriptions. Since arguments like
(7)–(9) can be constructed for any pair of names, the consequence of the
Russellian strategy is to deny that proper names (or any other denoting
expressions) count as terms of the formal language.

A reluctance to abandon the law of substitution of identicals, tied with
the influence of Russell’s theory of descriptions, has led many to deny
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that expressions like ‘the number of planets’ and ‘Cicero’ should be rep-
resented with terms in logic. Although this is a consistent way to deal with
apparent failures of substitution, this book takes a more general approach.
By restricting the rule of substitution to atoms, systems that include terms
for proper names and definite descriptions may be included directly, with-
out reliance on Russell’s theory of descriptions. This will allow a much
simpler process of translation from English to the formal language. Those
who prefer Russell’s strategy may use those systems to be developed here
that lack the extra terms.

We have explained why substitution beneath ∫ is restricted, but the
restriction actually used in (≈Out) appears stronger, for it allows substitu-
tion only in atomic sentences. This may seem too harsh. For example, s≈t
and PsçQs do not yield PtçQt by (≈Out) because PsçQs is not atomic.
However, it is possible to show that a rule (≈Out+) allowing substitution
of identities outside the scope of modal operators is a derivable rule in fS.

(≈Out+)
s≈t
As

At where At is the result of replacing an occurrence of s in As that is
not in the scope of ∫

Note, however, that the following argument is not available in K, nor any
of the other modal logics we have studied:

s≈t, ∫Ps / ∫Pt

So it is not possible to show that substitution in modal contexts is a derived
rule.

EXERCISE 12.4 (Project for more advanced students.) Prove that (≈Out+)
is a derived rule of QL. Use mathematical induction on the length of At.
(Hint: It is convenient to show first that the following rules are derivable.)
s≈t / As≠At, when As is atomic
As≠At / ~As≠~At
As≠At / (AsçB)≠(AtçB)
Bs≠Bt / (AçBs)≠(AçBt)
As≠At / åy[Ay]s/x≠åy[Ay]t/x

The fact that substitution of identities fails in modal contexts does not
mean that such substitutions are never warranted. Since (≈Out) may be
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applied in any subproof, it follows that arguments of the following form
are derivable:

∫s≈t ∫∫s≈t ∫∫∫s≈t
∫Ps ∫∫Ps ∫∫∫Ps

∫Pt ∫∫Pt ∫∫∫Pt

EXERCISE 12.5 Prove each of the above arguments.

Notice that in general, the identity ∫ns≈t, (i.e., s≈t prefixed by n boxes)
warrants the substitution of t for s in any term position that lies beneath
exactly n boxes.

∫ns≈t
∫nPs

∫nPt

12.4. The Problem of Nondenoting Terms in Classical Logic

One puzzling feature of the classical system QL for the quantifiers is that
it allows us to prove sentences that apparently claim the existence of God,
Pegasus, and anything else for which we have a name. As you saw in the
solution to Exercise 12.3a, the identity g≈g (for ‘God is God’) is provable
by (≈In). From this it is possible to obtain Öxx≈g (‘there exists something
identical to God’) by the rule (ÖIn). However, God’s existence is surely
not something one should expect to prove on the basis of logic alone.
The fact that Öxx≈g is a theorem of QL corresponds to an assumption
traditionally included in the semantics for classical quantification, namely,
that each constant has a referent in the quantifier’s domain. So if ‘God’
counts as a constant, it would seem that it must refer to something that
exists. The problem with this is that we commonly use names to refer to
things that do not exist, such as Pegasus, or things that might not exist,
such as God.

A standard way of resolving the problem that Öxx≈g is provable in
QL is to deny that ‘God’ is to be translated using a constant. Since the
constant g must refer to an existing object, its use presupposes that what
it refers to is something real. Therefore, in a philosophical context where
God’s existence is in question, some other way must be found to express
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the English: ‘God exists’. One alternative is to choose a predicate letter
G for ‘is Godlike’, or ‘has all the properties of God’, and then express
God’s existence with ÖxGx. Using this translation tactic, ‘God exists’ is
no longer classified a logical truth because ÖxGx is not a theorem of QL.

There are a number of difficulties with this strategy. First, it maintains
the classical principles for the quantifiers at the expense of complicat-
ing the process of translation from English to logic, for it must deny
that certain English names are to be treated as terms in logic. Second,
it yields strange consequences for sentences that mention mythical crea-
tures. On this scheme, ‘Pegasus does not exist’ translates to ~ÖxPx. Now
how do we notate such claims as ‘Pegasus is a winged horse’ and ‘Pega-
sus is a hippopotamus’? One way is to use åx(PxçWx) for ‘Everything
that is a Pegasizer is a winged horse’ and åx(PxçHx) for ‘Everything
that is a Pegasizer is a hippopotamus’. The trouble with this is that both
åx(PxçWx) and åx(PxçHx) follow from ~ÖxPx in QL. (In general,
when åx(AxçBx) holds because there are no things with property A,
the quantification is said to be vacuous and the sentence is called a vacu-
ous truth.)

EXERCISE 12.6 Prove ~ÖxPx / åx(PxçHx) in QL.

So QL forces us to conclude that Pegasus is both a winged horse and a
hippopotamus (and anything else for that matter) merely on the grounds
that Pegasus does not exist.

One might reply that this odd result is caused by an incorrect method
of translation. Let us try again, this time using Russell’s theory of descrip-
tions. (For more on descriptions, see Chapter 18.) Let us introduce the
abbreviation 1Px, which is read: ‘only x is a Pegasizer’.

1Px =df Px & åy(Pyçy≈x)

The abbreviation 1Px says that only x is a Pegasizer because it says that
x is a Pegasizer, and that anything that is a Pegasizer is identical to x.
According to Russell’s theory of descriptions ‘the Pegasizer is a winged
horse’ is to be translated as follows:

Öx(1Px&Wx)

This says that there is a thing that is the only Pegasizer that is a winged
horse. Now presuming that ‘Pegasus is a winged horse’ has the same
meaning as ‘The Pegasizer is a winged horse’, the translation for ‘Pegasus
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is a winged horse’ comes to Öx(1Px&Wx). This looks more promising
because ~Öx(1Px&Hx) follows from ~ÖxPx, and so from the nonexistence
of Pegasus you obtain that Pegasus is not a hippopotamus, which seems
correct. However, ~ÖxPx also entails ~Öx(1Px & Wx), and so according
to the description tactic, one must conclude that Pegasus is not a winged
horse, which seems wrong.

EXERCISE 12.7 Prove in QL that ~ÖxPx entails ~Öx(1Px & Wx).

Even if we could solve the problem concerning Pegasus and other
mythical beings, there is another difficulty to face with the view that names
that fail to refer should be dealt with according to Russell’s theory of
descriptions. The sentence ‘Jim was happy’ is presumably translated Hj,
as long as Jim exists. But when Jim dies, we may not use j for ‘Jim’ any
longer, and our translation of ‘Jim was happy’ becomes Öy(1Jy&Hy).
It seems odd that what counts as the correct translation of an English
sentence should depend on the facts of the world in this way. To avoid
embarrassment, defenders of classical logic tend to deny that most proper
names in English are translated using terms in logic. In the extreme, one
will take the view that all proper names need to be treated as descriptions.

There is a second tactic for resolving the difficulty posed by the fact
that QL seems to support the existence of God or Pegasus in theorems
of the form Öxx≈g. On this approach, ‘God’ is treated as a term, but it
is denied that Öxx≈g claims that He really exists. Instead, the domain of
the quantifier is understood to contain all possible objects, not just the
real ones. On this interpretation, Öxx≈g claims only that God is possible.
To translate the claim that God really exists, you write: Eg, where E is a
predicate letter for ‘exists’. Since Eg is not a theorem of QL, you are not
forced into accepting God’s existence.

This strategy raises some important philosophical issues. In the first
place, it treats existence as a predicate, a view that has been hotly debated
in the history of philosophy. We will not take up the controversy here, but
it might be better to choose a logical system that does not force us to take
sides in the matter. A second problem raised by this approach is that the
domain of quantification contains items that do not exist, and yet many
philosophers consider the quantifier domain the best measure of what
there is. Assuming that we want to avoid having possible objects in our
ontology (in the set of things we count as real), we are forced into the
position that the existential quantifier does not mean what it says. This will
seem an especially unacceptable conclusion to philosophers like Quine
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(1963) who consider the existential quantifier the paradigm expression for
making clear what really exists. If the symbol Öx really means ‘there might
exist an x such that’, then we will still be interested in working out the
logic of some other symbol (say Ö) that really does carry the ontological
implications expected of the phrase ‘there is an x such that’. A third
problem is that even if the domain of quantification is understood to
contain only possible objects, the fact that Öxx≈g is a theorem forces one
into the position that God is possible as a matter of logic alone. However,
for all we know, the concept of God may be contradictory, and so God is
not even a possible object. In any case, a logic that allows us to debate the
issue should not count as a theorem the translation of a claim in dispute.

The problems just mentioned do not provide a knock-down, drag-out
demonstration that classical quantification must be abandoned. However,
they do provide motivations for considering an alternative system that
avoids counting Öxx≈g as a theorem. In free logic, the quantifier Öx may
carry strong ontological commitment if we like. At the same time it is
possible to use the constant g for ‘God’ instead of having to employ a
predicate letter G and a complex and unsatisfying translation strategy.
Free logic solves the problems we have been discussing at the cost of
giving up the standard rules of QL. However, the rules of free logic are
not difficult, and they have the added attraction that they allow room for
important flexibility when modal operators are added to the logic.

12.5. FL: A System of Free Logic

The rules of free logic (FL for short) are similar to the QL rules, except the
quantifier rules are restricted to block unwanted inferences, for example,
the inferences from g≈g (God is God) to Öxx≈g (God exists) and from
åxRx (everything is real) to Rp (Pegasus is real). (For more details on
free logic see Bencivenga, 1986). A correct pair of rules for free logic may
be formulated by prefixing instances in the standard rules with ‘Ecç’,
where E is the special predicate for ‘exists’. For those who object to the
idea that existence should be expressed by a predicate letter, note that in
most of the systems to be defined, Et may be eliminated in favor of Öxx≈t.

System FL = PL + (åOut) + (åIn) + (≈In) + (≈Out).

åOut åIn
åxAx EcçAc

EcçAc åxAx where c is not in åxAx nor in any of its
hypotheses
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According to (åOut), it is no longer possible to deduce that Pegasus is
real (Rp) given that everything is real (åxRx). In order to conclude Rp,
one must also have that Pegasus exists (Ep). The system FL is the result
of adding (åOut), (åIn), (≈In), and (≈Out) to PL (propositional logic).
In FL, the proof of Öxx≈g, which claims God’s existence, is no longer
possible, because from g≈g, Öxx≈g cannot be derived.

EXERCISE 12.8 Attempt to derive Öxx≈g in FL. How is the proof blocked?

In order to prove Öxx≈g (God exists) from g≈g (God is God) in free
logic, one must already have a proof of Eg (God exists). One difficulty
with QL is that ‘God is God’ appears to entail ‘God exists’ even though
our intuitions rule that ‘God exists’ is a stronger claim. In free logic, ‘God
is God’ is weaker since it does not entail ‘God exists’.

Some useful derivable rules for Ö follow. As you can see, they
are just like the classical rules except that instances are prefaced by
‘Ec&’.

EXERCISE 12.9 Show (ÖIn) and (ÖOut) are derivable in FL.

The addition of ‘E’ in the FL rules has surprisingly little effect on which
arguments are provable. Most of the standard properties of the quantifiers
in QL carry over to FL.

EXERCISE 12.10 Prove the following in FL.

a) åx(Px&Qx) ≠ (åxPx & åyQy)
b) åx(Px ç Qx), ÖxPx / ÖxQx
c) åx(Px ç Q) / ÖxPx ç Q
d) åx(Px ç Qx) / åx(Öy(Px&Rxy) ç Öz(Qx&Rxz))
e) åxåyLxy / åyåxLxy
f) åxPx √ åyQy / åx(Px√Qx)
g) åxPx ≠ ~Öy~Py
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FL has the nice feature that the principles of classical logic can be
restored by adding Et as an axiom for every term t. So an alternative way
of formulating QL is to add the axiom (Q) to FL.

(Q) Et

EXERCISE 12.11 Show that any argument provable in QL is also provable
in FL + (Q). (Hint: Show that the rules of QL are derivable in FL + (Q).)

Since classical principles may be easily restored using this axiom, there
is no need to fret over whether to adopt classical or free logic rules. The
most general choice is to use free logic. Those who believe that classical
quantification is a better choice may simply add (Q) to FL. In this respect,
FL will play something like the role of K in propositional modal logics.
K is rather weak, but acceptable modal logics may be constructed for
various purposes by adding the right selection of additional axioms. The
approach in this book, then, will be to concentrate on FL and to develop a
number of special axioms and/or rules to capture alternative assumptions
about quantification.

Notice that in FL, the universal instantiation principle (åOut) applies
to the constants and not to other terms. For the moment, the constants are
the only terms so far included in the language, so the difference does not
matter. However, in the future, new terms will be introduced, including
complex terms for the definite descriptions. In that case, we will need to
consider a more general statement (tå) of the instantiation principle.

åxAx

EtçAt (tå)

When (tå) is available, it is easy to see that the more general rule of
existential instantiation (tÖ) is provable.

Et&At

ÖxAx (tÖ)

Unfortunately, (tå) is not correct in some quantified modal logics. (See
Section 13.6 for the details.) So (tå) should not be in the founda-
tional system from which all other systems of quantified modal logic are
constructed.

Although most theorems of QL that lack any term are also theorems
of FL, the following QL theorem is not provable in FL: åxPxçÖxPx.
Perhaps this is a good thing, for åxPxçÖxPx is invalid if the domain of
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discourse of the quantifiers happens to be empty. (In that case åxPx is
vacuously true, but ÖxPx is false.) So acceptance of åxPxçÖxPx depends
on the assumption that at least one thing exists. There are those who
believe that the fact that there is at least one thing in the universe is an
empirical accident, and so not a proper assumption to make in logic. These
people will find FL attractive. When reasoning is evaluated in the normal
case where something exists, one may simply list ÖxEx as a premise for the
argument. For more adventurous logicians who tire of constantly adding
this assumption, ÖxEx may be added as an axiom to FL.

(ÖE) ÖxEx

When this is done, åxPxçÖxPx becomes provable.

EXERCISE 12.12 Show that åxAxçÖxAx is a theorem of the system that
results from adding (ÖE) to FL. Now show that if you add åxAxçÖxAx as
an axiom to FL, (ÖE) is provable. (Hint: For the proof from åxAxçÖxAx to
ÖxEx, show åxEx and use a special case of åxAxçÖxAx.)

12.6. fS: A Basic Quantified Modal Logic

The simplest way to formulate a quantified modal logic is to add to a
given propositional modal logic S the rules of free logic FL forming a
system called fS. For example, fK, the quantified modal logic based on K,
includes all the rules of K and the four rules of FL. fK is the foundation
for all the systems in this book since all the other systems are generated
from it by adding principles of propositional modal logic or additional
principles having to do with the interactions between the quantifiers, E,
≈, and ∫. For example, if a classical treatment of quantification is desired,
one may simply add (Q) as an axiom to fS, so that (QåIn) and (QåOut)
become derivable rules. The resulting system is called qS. To illustrate
some strategies for finding proofs in these systems, we will work out a
proof of the following argument in qK and fK: ∫åx(PxçQx), ~∫åx~Px /
~∫åx~Qx. The proof in qK will be presented first. Since the conclusion
is a negation, the Indirect Proof strategy comes to mind.
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Since ~∫åx~Px is the only negative sentence available, it is a good bet that
ƒ can be obtained by proving the contradictory pair: ∫åx~Px, ~∫åx~Px.
So all that remains is to construct a proof of ∫åx~Px.

Since this step begins with ∫, the best strategy is to try to obtain it with
(∫In).

Now (∫Out) may be applied to steps 1 and 3. What remains is a simple
proof in quantificational logic to be completed inside the boxed subproof.
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The remaining steps can be solved using the classical quantifier rules and
the derivable rule Modus Tollens (MT).

The same strategy can be used to prove ∫åx(PxçQx), ~∫åx~Px /
~∫åx~Qx in fK. The only difference comes in the quantifier steps in
the boxed subproof.
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The following exercises will help you practice proof strategies in qK
and help you appreciate the differences between qK and fK.

EXERCISE 12.13 Prove that the following sentences are theorems of qK.
Then attempt proofs of the same sentences in fK to appreciate how the proof
of each is blocked.

a) ∫Öxx≈c
b) åy∫Öxx≈y
c) ∫åxPx ç åx∫Px
d) åx∫Px ç ∫åxPx
e) ∂ÖxAx ≠ Öx∂Ax

12.7. The Barcan Formulas

An important issue posed by the introduction of quantifiers to modal
logic is how the quantifiers should interact with ∫ and ∂. The best-known
principles governing this interaction are the Barcan Formula (BF) and its
converse (CBF).

(BF) åx∫Axç∫åxAx
(CBF) ∫åxAxçåx∫Ax

(The principles are named in honor of Ruth Barcan Marcus, who first
considered them in print (Barcan, 1946).) These two axioms are often
referred to together as the Barcan Formulas. Adopting them commits us
to the view that åx and ∫ may be exchanged.

If the classical rules for the quantifiers are adopted, there is no
choice but to accept both Barcan Formulas, since they are provable in
qK as follows. (These are solutions to parts c) and d) of the previous
exercise.)
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The traditional formulation TK of propositional modal logic K does
not used boxed subproofs. Instead, Necessitation (Nec) and Distribution
(Dist) are used in place of (∫In) and (∫Out). (TK was discussed in Section
1.7.) The propositional modal logics TK and K are equivalent in the sense
that any modal logic S built from K proves exactly the same arguments
as the corresponding logic TS constructed from TK. It is easy to prove
the converse Barcan Formula (CBF) in qTK, the system that results from
adding classical quantifier rules to TK.

EXERCISE *12.14 Prove (CBF) in qTK. (Hint: Prove ∫åxAxç∫Ac first.)

Although (BF) is provable in systems as strong as qTB, it is (strangely) not
provable in qTS for many modal logics S weaker than B, such as qTM and
qTS4 (Hughes and Cresswell, 1996, Ch. 15). The traditional formulation
has the awkward feature that although intuitions that support (CBF) tend
to support (BF) as well, (BF) needs to be added to qTS as a separate axiom
for weaker modal logics S. So there is an odd asymmetry in the status of
(BF) and (CBF) using the traditional rule set. Although the propositional
logics TS and S are equivalent, the systems differ once quantifier rules are
added. (BF) is provable in qS (and not qTS) because the natural deduction
rules (∫In) and (∫Out) are somewhat stronger than (Nec) and (Dist) in
systems that contain quantifiers. The strange asymmetry induced by the
classical quantifier rules in the traditional formulations for modal logic is
an important motive for adopting the subproof formulations used in this
book.

Another advantage of the subproof formulation is that it simplifies
statement of the rules in some quantified modal logics. For example, the
system Q3 (Thomason, 1970, p. 63) includes a complex rule (GåIn) of
universal instantiation.
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(GåIn) ÷ ∫(A1ç∫(A2ç . . ∫(Anç(EcçAc)) . . ))

÷ ∫(A1ç∫(A2ç . . ∫(AnçåxAx) . . )) where c is not in
the conclusion

However, when boxed subproof notation is used, the effect of this rule
is already obtained without the mention of complex sequences of boxes
and conditionals found in (GåIn). The reason is that the ability to apply
our rule (åIn) within boxed and unboxed subproofs captures exactly the
effect of those sequences.

It is important to note that although classical quantifier rules entail
both of the Barcan Formulas, the principles of free logic entail neither
one. It will be argued below that (BF) and (CBF) should be rejected for
many applications of modal logic, so this provides another reason to build
quantified modal logic around free logic rules. In Exercises 12.13c and
12.13d you showed that attempts to prove instances of (BF) and (CBF)
are blocked in fK. It is worth reviewing here why this occurs in the case
of (BF). Here is a sample proof attempt:

The problem is that (åOut) yields Ecç∫Ac in line two, but what is needed
is a way to derive EcçAc in the boxed subproof. You cannot reiterate
Ecç∫Ac into that subproof to obtain what is needed: EcçAc, since the
box in Ecç∫Ac is not the main connective.

12.8. Constant and Varying Domains of Quantification

Since the classical quantified modal logic qK entails the Barcan Formu-
las, reasons for rejecting the Barcan Formulas would appear to be rea-
sons for abandoning classical quantification. Are the Barcan Formulas
acceptable? It is easier to assess the situation by considering (∂BF), which
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is derivable in qK, as you showed in Exercise 12.13e.

(∂BF) ∂ÖxAx≠Öx∂Ax

On at least some interpretations of ∂ and Ö, it appears that (∂BF) should
be rejected. For example, suppose that ∂ reads ‘it was the case that’, and
we read the quantifier Öx in the present tense: ‘there (now) exists an x
such that’. Let Sx read ‘x signs the Declaration of Independence’. Under
this interpretation ∂ÖxSx claims that at some time in the past, someone
existed who signed the Declaration of Independence, which is true. On
the other hand, Öx∂Sx says that there now exists someone who signed
the Declaration of Independence, which is false.

EXERCISE 12.15. Invent an interpretation of (∂BF) where the left side is
false and the right side is true. Invent interpretations of (∂BF) to show that it
fails (in both directions) when ∂ reads ‘John believes that’.

The tense logic reading of Ö and ∂ illustrates a general issue concerning
how the quantifiers should be treated in modal logic. Two basic options
concerning the quantifier domains have been proposed. The simpler of
the two, the constant domain approach, presupposes a single domain of
quantification. Assuming constant domains is compatible with the Barcan
Formulas. The varying domain option, on the other hand, assumes that
the domain of quantification changes from world to world, and contains
only the objects that exist in a given world. On this understanding, ÖxPx
would be true in a world w iff there is an object that actually exists in w that
has property P. This is sometimes called the actualist interpretation of the
quantifier. The constant domain approach is attractive to many logicians
just because it dovetails so nicely with classical quantifier rules. However,
we have reviewed reasons in Section 12.4 for rejecting the classical prin-
ciples – reasons that were independent of any worries about how to deal
with modality. Apart from their familiarity, classical rules have no decided
advantage over free logic.

In intensional languages, there are further objections to classical prin-
ciples. On ordinary interpretations of ‘there is . .’ in everyday language,
the domain of quantification depends on the context at which it is evalu-
ated. For example, ‘There is a severe economic depression’ is (at the time
of this writing) false, and yet it was once true, for example, in the 1930s. So
the domain of the present-tense expression ‘there is . .’ changes to reflect
what exists at different times. Quantifier domains vary along many other
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dimensions as well. Place, speaker, and even topic of discussion play a role
in determining the domain in ordinary communication. If I say to a class
‘everyone must turn in Exercise 4 tomorrow’, it is clear from the context
that I do not mean to include the president of the USA, the president of
the university, or even myself in the domain of quantification. When we
begin a fairy tale with the words ‘once upon a time there was a king’, we
are establishing a new possible world and peopling the domain with a new
character. If later we say ‘everyone feared the king’, it is clear that we do
not mean all real people, or even all presently existing people, feared that
mythical king, but only that some relevant set of characters in our story
did so. It is a standard feature of storytelling that the domain for the story
and the domain for the real world differ.

The same point extends from storytelling to communication in more
practical settings. It is commonplace in planning, decision making, and
even scientific theorizing to consider (counterfactual) alternatives to our
own possible world that feature “ideal” objects – objects that do not exist
in reality (for example, objects totally isolated from external forces in
Newtonian mechanics). It is also a standard assumption that objects in
the real world need not exist in others. I exist in the real world, but it does
not follow that my existence is necessary. There are clearly possible worlds
where I never existed, for example, ones where my parents did not meet,
or ones where humans never evolved on Earth. So ‘Jim Garson existed’
varies in truth value from one possible world to the next. It seems to be a
fundamental feature of our ordinary understanding of possibility that our
existence is contingent and that different objects exist in different possible
worlds. The only thing that has been widely thought to exist necessarily
is God, but even God’s existence is of course highly controversial. So it
is far from clear that we could find even one thing that exists in all pos-
sible worlds. Yet the constant domain approach to the quantifiers would
appear to claim that everything in the domain of one world exists in all the
others.

It is interesting to explore the relationships between the Barcan For-
mulas and sentences that express conditions on the quantifier domains
more directly. Since the truth of Ec in a world says that the referent of c
exists in that world, sentence (ED) says that when the referent of c exists
in a world, it also exists in all accessible worlds.

(ED) Ecç∫Ec

It should not be too surprising then that adoption of (ED) as an axiom
corresponds to a condition on models (ED) (for expanding domains),
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which says that the domains never shrink as we move from one world to
another accessible world.

(ED) If wRv, then everything in the domain of w is in the domain of v.

It turns out that adoption of (ED) is equivalent to adopting the converse
Barcan Formula (CBF) in fK. Whether (CBF) or (ED) is added to fK as
an axiom, the resulting system proves exactly the same arguments. Since
(ED) is an instance of åx∫Ex, and (ED) yields åx∫Ex by (åIn), it also
follows that the effect of the (CBF) may be obtained by using the axiom
åx∫Ex instead.

EXERCISE 12.16

a) Prove that systems fK+åx∫Ex and fK+(ED) prove exactly the same argu-
ments. That is, prove Ecç∫Ec in fK+åx∫Ex, and then prove åx∫Ex in
fK + the axiom Ecç∫Ec.

∗b) Show that fK+(CBF) and fK+(ED) prove exactly the same arguments.
(Hint: Prove (ED) in fK+(CBF) and prove (CBF) in fK+(ED). To prove
(ED) in fK+(CBF), first prove åxEx in a boxed subproof, from which
∫åxEx follows by (∫In). Then use (CBF) and (åOut) to obtain the desired
result. To prove (CBF) in fK+(ED), obtain ∫Ecç∫Ac from ∫åxAx. Then
use (ED) to obtain Ecç∫Ac, from which åx∫Ax follows by (åIn).)

It follows then that the converse of the Barcan Formula (CBF) expresses
the expanding domain condition (ED). The “mirror image” of domain
condition (ED) is (CD) (for contracting domains). This says that the
domains never include new objects as we move to new accessible
worlds.

(CD) If wRv then everything in the domain of v is in the domain of w.

This condition corresponds to (CD), which asserts that if c fails to exist
in a world then it does not exist in any accessible world.

(CD) ~Ecç∫~Ec

You might guess that (CD) is equivalent to (BF).

(BF) åx∫Axç∫åxAx

However, this guess is only partly right. Although (CD) yields (BF) in fK,
there are some quantified modal logics where (BF) does not entail (CD).
(For more on this point, see Garson, 2005.)
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EXERCISE 12.17 (Hard.) Show that (BF) is derivable in fK+(CD). (Hint:
From åx∫Ax obtain Ecç∫Ac, from which ∂Ecç∫Ac may be proven with
the help of (CD). Now show that ∂Ecç∫Ac entails ∫(EcçAc). (That is
difficult, but it may be solved constructing a tree in propositional logic and
converting the result to a proof using the method given in Section 7.1.) Once
∫(EcçAc) is in hand it is not difficult to prove ∫åxAx by starting a boxed
subproof and using (∫Out), (åIn), and (∫In).)

When the conditions (ED) and (CD) hold together, it follows that
the domains are constant across accessible worlds. This is essentially the
semantical effect of adopting the two Barcan Formulas. The problem with
accepting these conditions is that they validate ∂Etç∫Et, the counter-
intuitive claim that if something possibly exists, then it exists of necessity.

Notice also that the adoption of axiom (Q) (that is, Et) entails the
classical quantifier rules. But this immediately yields both (ED) and (CD).

EXERCISE 12.18 Prove (ED) and (CD) in qK = fK+(Q).

12.9. A Classicist’s Defense of Constant Domains

Defenders of the constant domain interpretation respond to the coun-
terintuitive nature of the Barcan Formulas by proposing the possibilist
account of the role of the quantifier domain (Linsky and Zalta, 1994).
They claim that the domain of quantification contains all the possible
objects, and not the objects that actually exist in a given world or context.
So the sentence ÖxSx does not claim that there is an actual thing (now)
that signed the Declaration of Independence, but only that some possible
object did so. English quantifier expressions with an actualist reading can
still be defined using possibilist quantifiers and special predicate letters.
For example, the present tense quantifier ÖP can be defined using Ö and
a predicate letter P that reads ‘presently exists’ as follows.

ÖPxA =df Öx(Px&A)

To express the present-tense sentence ‘there is now a thing that signed
the Declaration of Independence’, one would write: Öx(Px&Sx), which
says that there is a possible object that presently exists who signed the
Declaration of Independence.

The possibilist response has the advantage that it preserves the stan-
dard quantifier rules. Since the domain contains all possible objects, and
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since there are presumably the same possible objects for each possible
world, there is no need to distinguish domains for each world. So accep-
tance of the Barcan Formulas makes perfect sense. A workable possibilist
logic with classical quantifier rules and both Barcan Formulas can be for-
mulated by adding the axiom Ec to fS.

However, this book presents a full variety of weaker systems to accom-
modate alternatives to the possibilist interpretation. A problem with the
possibilist reading is that it strips the quantifier Öx of its ontological com-
mitment – it no longer indicates what is really there. Actualists, who wish
to preserve the ontological implications of Öx, will want to develop a logic
where Öx is reserved to pick out what is actual (in a given world or context)
rather than what is merely possible. Of course it does not matter whether
the symbol Öx is appropriated for the actualist or the possibilist reading.
The actualist is free to donate the symbol Öx to the possibilist, and use
another one (say Öx or ÖPx) for the actualist interpretation. The point is
that the actualist is interested in developing the logic of the actualist quan-
tifier (however it is to be notated) because this is the reading normally
given to the expression ‘there is’ in English. Even if that quantifier is to
be defined from the possibilist quantifier by (DefÖP), one will still want
to work out the logical rules for the actualist quantifier. It is interesting
to note that the rules determined by (DefÖP) are exactly the principles
of free logic. Far from undermining interest in free logic, the possibilist
vindicates it in this way.

Linksy and Zalta (1994) have argued that the constant domain quan-
tifier has an interpretation that is perfectly acceptable to actualists. Any
actualists who employ possible-worlds semantics routinely quantify over
abstracta (abstract objects) such as possible worlds in formulating seman-
tics for modal logic. So some abstracta are actual by these actualists’
lights. By cleverly outfitting the domain with abstracta no more objec-
tionable than the ones actualists accept, Linsky and Zalta show that the
Barcan Formula and classical quantifier rules can be accepted. Note, how-
ever, that this demonstration does nothing to establish that actualists must
adopt for Öx the specific interpretation of the quantifier domain Linsky
and Zalta have discovered. It is open to actualists (and non-actualists as
well) to investigate the behavior of quantifiers with more robust domains,
for example, domains containing only the (nonabstract) material objects,
or the things present at a given time or place. Under interpretations of
this kind, a varying domain approach will still be needed. To keep our
options open, then, it would be better to explore a full range of possible
quantified modal logics.
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Cresswell (1991) makes the interesting observation that varying quan-
tification has limited expressive power relative to constant domain quan-
tification. Varying domain quantification can be defined with constant
domain quantifiers and E, but there is no way to fully express constant
domain quantifiers with varying ones. When åx is given the actualist read-
ing, there is no way to say that all the possible objects have a certain prop-
erty. One response to this objection is to note that one can easily create
classical quantification within free logic when one wishes by adopting the
axiom Et. Better yet, one can introduce two different quantifiers into the
language, one with actualist and the other with possibilist readings. Either
way, no reason has been given for abandoning the project of working out
the logics of the actualist quantifier expressions that are so common in
natural language. The advantage of doing so is that a logic appropriate
for possibilist quantification can always be obtained when needed as a
special case.

12.10. The Prospects for Classical Systems with Varying Domains

We have good reasons to want to develop an actualist quantified modal
logic with varying domains. Once this decision is made, major difficulties
arise for classical quantification theory. There are systems that use classical
rules with the varying domain quantifiers; however, an examination of
their limitations reveals the advantages to be gained from employing free
logic.

If quantifiers have varying domains, then it should be possible for some-
thing to exist in one world and not another. However, if classical rules
for quantifiers are used with a modal logic as strong as K, it is possible
to prove ∫Öxx≈c for any constant c. (This is the solution to Exercise
12.13a.) ∫Öxx≈c reads: ‘necessarily there is something identical to c’, or
more simply: ‘c exists necessarily’. If this sentence is to be a theorem,
all constants in such a logic must refer to things with the (God-like) fea-
ture that they exist of necessity. One response to this difficulty is to deny
that names like ‘God’ and ‘Pegasus’ count as terms in logic. Pressures in
this direction already exist when classical rules are adopted in nonmodal
logic. In classical logic, every term must refer to something that exists,
with the result that terms like ‘Pegasus’, and (possibly) ‘God’ may not be
treated as terms. In modal logic with classical quantification, the criteria
for termhood are even harder to meet. Now the only terms are those that
refer to objects that exist necessarily. Since it is unclear that anything at
all so qualifies, it follows that no expressions of natural language may
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be translated as terms. It will be necessary to employ some translation
strategy using predicate letters instead. Kripke (1963) gives an example
of a system in this spirit. It uses the varying domain interpretation for
quantifiers and still manages to preserve the classical rules by eliminating
terms from the language.

Even if one is prepared to pay this cost, there is a second problem
to be faced. There remain theorems of qK that are incompatible with
the intuitions behind varying domains. We already showed that (CBF) is
provable in any system that uses the principles of classical logic with K.
But Exercise 12.16b shows that (CBF) entails åx∫Ex, which claims that
everything necessarily exists. This is in direct conflict with the desire to
interpret the quantifier with varying domains. We wanted to allow there
to be accessible possible worlds where one of the things in our world fails
to exist. Just because I exist in the real world, it should not follow that I also
exist in all accessible worlds. However, any varying domain semantics that
accepts åx∫Ex or (CBF) must satisfy the expanding domain condition
(ED).

(ED) If wRv, then everything in the domain of w is in the domain of v.

However, (ED) conflicts with the whole point of introducing varying
domains, namely, to accommodate the intuition that things in the real
world need not exist in related possible worlds The difficulty becomes
even more acute in modal logics as strong as B. Those systems have sym-
metric frames, and it follows from (ED) that all worlds accessible from
a given world contain exactly the same objects. This is in direct conflict
with our intention to distinguish the domains.

Supposing that some way is found to make (ED) palatable, fur-
ther adjustments must be made to preserve classical logic in any sys-
tem that contains terms. The sentence PcçÖxPx, for example, is classi-
cally provable, but it is not valid for varying domains. If Pc is true at
world w, but c refers to an object that does not exist in w, then ÖxPx
can be false at w. It follows that any system that uses classical quanti-
fier principles will be unsound since PcçÖxPx will be provable but not
valid.

One way to recapture the validity of PcçÖxPx is to add to the defi-
nition of a model that the terms are local, that is, that the extension of a
term at a world must always be in the domain of that world. However,
there are serious problems with this requirement. First, it will mean that
nondenoting expressions such as ‘Pegasus’ and ‘the present king of
France’ cannot count as terms since their extensions are not in the real
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world. This objection may not impress the classicist, who must deny the
“termhood” of nonreferring expressions in any case.

A more serious problem arises for rigid terms. Rigid terms are terms
that refer to the same object in every possible world. It is commonly held
that proper names are rigid terms. But if terms are local, there cannot
be any rigid terms at all because locality entails that the referent of any
rigid term must exist in all the possible worlds. It follows that the referent
of any proper name not only must exist, but also must exist necessarily.
I have already explained why there is reason to doubt that there is even
one object that exists in all possible worlds. So there may be no suitable
targets to which rigid terms can refer, and even if there are, the local-terms
condition has the odd consequence that objects that exist in some worlds
and not others cannot be given proper names.

For these reasons, the requirement that terms be local faces serious
difficulties. There is a related idea, however, that appears to work better.
It is to guarantee the validity of PcçÖxPx by stipulating in the definition
of a model that predicate letters are local. This means that their extensions
at a world must contain only objects that exist at that world. The reason
this entails the validity of PcçÖxPx is that from the truth of Pc, it follows
that c refers to an existing object, and so ÖxPx must be true as well.
But this idea does not work as things stand, because the local-predicate
condition does not validate all instances of the classical rules. For example,
consider ~PcçÖx~Px. From the truth of ~Pc, it does not follow that the
extension of c is an existing object, and so it does not follow that Öx~Px is
true. So the local-predicate condition does not manage to rescue classical
quantification.

These problems can be mitigated somewhat by using a semantics with
truth value gaps. Strawson (1950) argued that uses of sentences that con-
tain nonreferring terms do not express statements, and so they lack truth
values. Adapting this idea to modal logic, we could allow terms to refer
to objects outside of the domain of a given world, with the provision
that sentences containing such terms lack truth values. Valid sentences
are then defined as sentences that are never false. On this understanding,
AcçÖxAx is valid since any assignment that gives c an extension outside
the domain of a world leaves the whole conditional without a value, and
assignments that give t an extension inside the domain will make ÖxAx
true if Ac is true.

The introduction of truth-value gaps, however, results in new problems.
Several choices are available concerning the truth clause for the modal
operator ∫. Truth value gaps interest us because they appear to provide
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a way to free ourselves from the expanding domain condition (ED). (See
Gabbay, 1976, pp. 75ff.) However, there are technical problems that pres-
sure us into accepting (ED). Suppose we hope to calculate the value of
∫Ac at world w and the referent of c is in the domain of w. Then ∫Ac
should receive a truth value that depends on the values Ac has in the
worlds accessible from w. But there is no guarantee that c refers to an
existing object in all those accessible worlds, and so Ac may be undefined
in some of them. Adopting (ED) would ensure that whenever the refer-
ent of c is in the domain of w, it is also in the domain of all the accessible
worlds so that the values of Ac in all those accessible worlds would be
defined, and the determination of the value of ∫Ac can be carried out in
the standard way.

If (ED) is dropped, however, the truth clause for ∫ must be revised.
There are two ways to determine the value of ∫Ac at w depending on
whether the failure of Ac to be defined in an accessible world should
make ∫Ac false or undefined. On the first option (Gabbay, 1976, system
GKc), the necessitation rule must be restricted so that (CBF) is no longer
derivable. On the second option (Gabbay, 1976, system GKs), (CBF) is
derivable, but the truth of (CBF) in a model no longer entails (ED). Either
way, the principles of the underlying modal logic are nonstandard.

For these reasons, the more popular choice for truth-value-gap theories
with local predicates has been to assume (ED) (Hughes and Cresswell,
1996, Ch. 15). This approach is attractive from a purely formal point of
view. There are relatively simple completeness proofs for classical systems
based on the major propositional modal logics, provided the language
omits ≈. Proofs are available, for example, for M and S4. In case the
modality is as strong as B, the domains become rigid, and completeness
can be established using methods developed for systems that validate the
Barcan Formula (Garson, 2001, Section 2.2.4).

Those technical results should not cause us to overlook the problems
with the expanding domains condition (ED). (ED) conflicts with the same
intuitions that prompt the use of varying domains, and in stronger modal
systems such as S5, it is flatly incompatible with those ideas. Although
there are semantics for classical logics without (ED), they require truth
value gaps and awkward formal principles. Our conclusion is that there
is little reason to preserve the classical rules in formulating systems with
varying domains. As we will see in coming sections, the semantics for sys-
tems based on free logic is both general and natural, and the formal results
are as easily obtained as those for classical quantified modal logic. Fur-
thermore, whenever classical quantification is desired, it may be obtained
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by simply adding Et as an axiom to fS. For both technical and philosophi-
cal reasons, the varying domain interpretation of the quantifiers provides
good motives for exploring systems based on free logic.

12.11. Rigid and Nonrigid Terms

Kripke’s famous paper “Naming and Necessity” (1972) lays out the impor-
tant distinction between rigid and nonrigid terms. According to him, rigid
terms (also known as rigid designators) include proper names like ‘Saul’
and natural kind terms such as ‘water’ and ‘gold’. A rigid term picks out
exactly the same object in all possible worlds. (Kripke’s definition is actu-
ally more complicated since he counts a term rigid if it picks out the same
object in all worlds where that object exists. That refinement will not be
explored here until the last paragraph of Section 19.4.) Definite descrip-
tions such as ‘the inventor of bifocals’ are assumed to be nonrigid terms
since the referent of this term varies from one possible world to another.
In the real world, it refers to Benjamin Franklin, but in other possible
worlds it refers to other individuals, for example, Thomas Edison or Saul
Kripke.

Whether a term is rigid or not depends on how the modal operator
(and hence the set of possible ‘worlds’) is understood. For example, in
a tense logic, where W is taken to contain instantaneous states of the
universe, one might treat proper names as nonrigid terms, which pick out
instantaneous time slices of objects (Garson, 1987). In such a logic, the
proper name ‘Saul Kripke’ could pick out different instantaneous states
of Kripke – a different one for each instant of time.

The logical behavior of rigid and nonrigid terms is different, and the
issue turns on the rule of substitution for identities. Let us assume for a
moment that the constants are rigid terms. When b≈c holds in a possible
world, it follows that the referents of the constants b and c are the same
there. But since b and c are rigid, it follows that b and c refer to the same
object in all the possible worlds. It follows that if b≈c holds, then so does
∫b≈c. Furthermore, if ~b≈c holds, then ∫~b≈c holds as well. So rigid
constants obey the axiom (RC).

(RC) (b≈cç∫b≈c) & (~b≈cç∫~b≈c)

When (RC) is available, it follows that a rule (R≈Out) of full substitu-
tion for (rigid) constants is derivable.

(R≈Out) b≈c, Ab / Ac
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Note that there is no restriction on the substitution in this rule. The con-
stant c may be replaced for b in any context, even within the scope of ∫.
The proof that this principle holds will be left to Exercise 12.19 below.

The introduction of rigid constants is helpful in solving a technical prob-
lem to be faced in formulating correct principles for some of the quantified
modal logics. In Section 13.5 a standard treatment of the quantifier will
be introduced called the objectual interpretation. Here the domain of
quantification consists of a set of existing objects. A problem with this
approach is that the following instance of the general instantiation rule
(tå) is invalid when t is not rigid:

(tå) åx∫Px / Etç∫Pt

(The full details of the matter are explored in Section 13.6.) Attempts to
formulate an adequate system for the objectual interpretation appropri-
ate for a full range of underlying modal systems has led to the introduction
of very complicated quantifier rules. One costly way to solve the problem
is simply to eliminate nonrigid terms from the language. In that case, an
adequate system can be formulated using the system rS consisting of the
free logic system fS with (RC).

System rS = fS + (RC).

EXERCISE 12.19 (Project for advanced students) Using mathematical
induction, prove that (R≈Out) is derivable in the system rS.

However, the lack of nonrigid terms in the system is a major failing
since such nonrigid expressions are so common in natural language. A
contribution of this book is to show that an adequate system for the
objectual interpretation with nonrigid terms can be formulated with
the help of a rule (Öi) that controls the interaction between the rigid
constants c and the other terms t.

(Öi) L ÷ ~t≈c

L ÷ ƒ where c is a constant not in L or t

The system oS that is adequate for the objectual interpretation results
from adding (Öi) to rS.

System oS = rS + (∃i).
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It was shown in Section 12.8 (Exercise 12.17) that Ecç∫Ec is provable
in fK when (CBF) or åx∫Ex is present, so Ecç∫Ec is also provable
when one of these is in oS. The result is that all three of these formulas
are equivalent in oS. It was remarked there that ~Ecç∫~Ec does not
follow from (BF) in fK, so that ~Ecç∫~Ec is not equivalent to (BF)
there. However, in oS, ~Ecç∫~Ec does follow, with the result that it is
equivalent to (BF) in oS.

(CBF) ∫åxAxçåx∫Ax
(BF) åx∫Axç∫åxAx

EXERCISE 12.20 Show that ~Ecç∫~Ec is a theorem of oK+(BF). (Hint:
It will suffice to show ∂EcçEc. Assume ∂Ec and obtain ∂Öxx≈c, since
Ec≠Öxx≈c is provable in oS (Exercise 12.22 below). The dual of (BF) yields
∂ÖxAxçÖx∂Ax, so Öx∂x≈c can now be derived from (BF). Now assume
Eb&∂b≈c, in order to perform (ÖOut). Obtain b≈c by (RC), and use (≈Out)
to obtain Ec. Since Ec contains no occurrence of b, (ÖOut) yields Ec outside
the subproof headed by Eb&∂b≈c.)

12.12. Eliminating the Existence Predicate

Philosophers who reject the idea that existence is a predicate will be
uncomfortable with those systems based on free logic that include E as
a primitive predicate of the language. Many people presume that free
logic requires that E be a primitive predicate. That is not the case. In fact
for most systems developed in this book, E may be eliminated from the
language using (DefE).

(DefE) Et =df Öxx≈t

Understood this way, the sentence Et does not contain a predicate
letter at all, but merely abbreviates Öxx≈t. To verify that the use of
this definition is legitimate, it must be shown that Et and Öxx≈t are
equivalent in the system at issue. With this equivalence in hand it is
safe to reformulate the system by eliminating E from the language and
using (DefE) instead. The equivalence proof is straightforward in case
the only terms are the constants, for then what needs to be proven is
Ec≠Öxx≈c.
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EXERCISE 12.21 Prove Ec≠Öxx≈c in FL. (Hint: For the proof from left to
right, obtain Ec&Ec from Ec and use (ÖIn). For the other direction, use (ÖOut)
with Öxx≈c. Assume Eb and b≈c, use (≈Out) to obtain Ec, and apply (ÖOut).)

However, when there are terms in the language beyond the constants, the
method used to solve Exercise 12.21 will not work. If the more general
instantiation principle (tå) is available, Et≠Öxx≈t may be obtained using
a parallel strategy to the solution of Exercise 12.21. In systems like oS that
lack (tå), but include the rule (Öi), Et≠Öxx≈t can be proven in a different
way.

EXERCISE *12.22 Prove Et≠Öxx≈t in oS. (Hint: The hard part is proving
Et ÷ Öxx≈t. To do that, first establish Et, ~Öxx≈t ÷ ~c≈t, using (DefÖ), (åOut),
and (≈Out). Then apply (Öi) and Indirect Proof.)

So the only systems for which (DefE) is not available will be those that
include terms that are not constants and contain neither (tå) nor (Öi). I
cannot think of any useful application for such systems, but in order to
present quantified modal logic in the most general way possible, this book
assumes that the language contains E as a primitive predicate. The reader
with qualms about existence as a predicate may safely reformulate all
systems to be discussed below using (DefE), save for the few exceptions
explicitly mentioned.

12.13. Summary of Systems, Axioms, and Rules

QL- = PL + (QOut) + (QIn).

(QåOut) åxAx / Ac
(QåIn) Ac / åxAx, where c is not in åxAx nor in any of its hypotheses

QL= QL- + (≈In) + (≈Out).

(≈In) t≈t
(≈Out) t≈s, P(l, t, l′) / P(l, s, l′), where P is a predicate letter or ≈

FL = PL + (åOut) + (åIn) + (≈In) + (≈Out).

fS = S + (åOut) + (åIn) + (≈In) + (≈Out).

(åOut) åxAx / EcçAc
(åIn) EcçAc / åxAx, where c is not in åxAx nor in its hypotheses
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rS = fS + (RC).

(RC) (b≈cç∫b≈c) & (~b≈cç∫~b≈c)

oS = rS + (Öi).

(Öi) L ÷ ~t≈c / L ÷ ƒ, where c is a constant not in L or t

Quantifier Domain Axioms

(ÖE) ÖxEx (Nonempty Domain)
(Q) Et (Classical Quantification)
(CBF) ∫åxAx ç åx∫Ax (Expanding Domains)
(å∫E) åx∫Ex (Expanding Domains)
(ED) Ecç∫Ec (Expanding Domains)
(BF) åx∫Axç∫åxAx (Contracting Domains)
(CD) ~Ecç∫~Ec (Contracting Domains)
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Semantics for Quantified Modal Logics

There are a number of different approaches one can take to giving the
semantics for the quantifiers. The simplest method uses truth value seman-
tics with the substitution interpretation of the quantifiers (Leblanc, 1976).
Although the substitution interpretation can be criticized, it provides an
excellent starting point for understanding the alternatives since it avoids
a number of annoying technical complications. For students who prefer
to learn the adequacy proofs in easy stages, it is best to master the rea-
soning for the substitution interpretation first. This will provide a core
understanding of the basic strategies, which may be embellished (if one
wishes) to accommodate more complex treatments of quantification.

13.1. Truth Value Semantics with the Substitution Interpretation

The substitution interpretation is based on the idea that a universal sen-
tence åxAx is true exactly when each of its instances Aa, Ab, Ac, . . , is
true. For classical logic, åxAx is T if and only if Ac is T for each constant
c of the language. In the case of free logic, the truth condition states that
åxAx is T if and only if Ac is T for all constants that refer to a real object.
Since the sentence Ec indicates that c refers to a real object, the free logic
truth condition should say that Ac is T for all those constants c such that
Ec is also true.

Semantics for quantified modal logic can be defined by incorporating
these ideas into the definition of a model for propositional modal logic.
When S is one of the propositional modal logics we have studied, a truth
value model for S, or a tS-model <W, R, a> contains the familiar items: a
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frame <W, R> containing a set of possible worlds W and an accessibility
relation R that obeys the conditions for the modal logic S, and an assign-
ment function a, which gives truth values at each world for each sentence
of a language of quantified modal logic. The assignment function a must
obey all the requirements we introduced for propositional logic, namely,
(ƒ), (ç), and (∫).

(ƒ) aw(ƒ)=F.
(ç) aw(AçB)=T iff aw(A)=F or aw(B)=T.
(∫) aw(∫A)=T iff for each v such that wRv, av(A)=T.

Furthermore, a must obey the relevant truth conditions for å and ≈. The
more general truth condition for the quantifier is the one for free logic,
which may be spelled out as follows.

(å) aw(åxAx)=T iff for every constant c, if aw(Ec)=T then aw(Ac)=T.

EXERCISE 13.1 Using (å) and (DefÖ), show that the truth clause for
Ö is (Ö).

(Ö) aw(ÖxAx)=T iff for some constant c, aw(Ec)=T and aw(Ac)=T.

In case the semantics for classical quantification is desired, (Q) can be
added to the definition of a model.

(Q) aw(Et)=T for all terms t.

When (Q) holds, the truth clause (å) entails (Qå).

(Qå) aw(åxAx)=T iff for every constant c, aw(Ac)=T.

EXERCISE 13.2 What would be the classical truth condition (QÖ) for Ö?

Truth value semantics defines truth conditions that explain how to
assign truth values to sentences given the truth values of the sentences
from which they are constructed. However, it does not attempt to explain
how truth values of sentences of the forms Pl, Et, and s≈t depend on the
values of the predicate letters and terms from which they are constructed.
The sentence-based orientation of truth value semantics leads to difficul-
ties in providing a natural semantics for ≈. One would want to say that
the sentence s≈t is T provided that s and t refer to the same thing; and yet
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truth value semantics does not have the resources to develop the notion
of the reference of terms. A richer account designed to provide a better
treatment of ≈ will be developed in the next section. For the moment,
however, the truth behavior of sentences containing ≈ can be regulated
by insisting that the assignment function a obey the following condition
(t≈), which reflects the rules (≈In) and (≈Out) introduced in the previous
chapter:

(t≈) aw(t≈t)=T and if aw(s≈t)=T then aw(Plsl′)=aw(Pltl′).

Although (t≈) is not ideal, it at least makes some sort of sense. The require-
ment is that t≈t never be false and that the substitution of identities hold
for atomic sentences.

It is time to summarize the discussion and provide an official definition
of a truth value (or tS) model. A tS-model <W, R, a> is defined for a
language that contains a primitive existence predicate E. It contains a
frame <W, R> that obeys the conditions for the modal logic S, and an
assignment function a that obeys (ƒ), (ç), (∫), (å), and (t≈). (The reason
the language must include E as a primitive will be explained in the next
section.)

A variety of stronger conditions on models will be introduced later.
However, most of what we have to say will not depend on which selection
of additional conditions is made. To simplify such general discussion, ‘S’
will be used to indicate not only conditions on frames for propositional
modal logic, but any of a selection of further conditions to be introduced
concerning the quantifier, such as (Q). It will be understood from the
context that a tS-model obeys those extra conditions. Once the notion
of a tS-model is in place, corresponding notions of satisfiability, coun-
terexample, and validity are defined just as they were in propositional
logics. Here is a review. When H is a list of sentences, aw(H)=T means
that aw(A)=T, for every sentence A in H. A tS-model <W, R, a> sat-
isfies the set of sentences H at w iff aw(H)=T. A list H of sentences is
tS-satisfiable just in case there is a tS-model for a language containing
sentences of H that satisfies H at some world. An argument H / C has
a tS-counterexample iff H, ~C is tS-satisfiable. A tS-counterexample to
H / C is a tS-model whose assignment function gives all members of H
the value T, and assigns the conclusion C the value F at some world. An
argument H / C is tS-valid iff H / C has no counterexample. Whenever we
define new varieties of model in the future, the corresponding notions of
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satisfiability, counterexample, and validity are assumed to be given in
exactly the same way.

13.2. Semantics for Terms, Predicates, and Identity

The truth values semantics just presented is relatively simple. It is not
too difficult to demonstrate that the basic system fS is adequate for tS-
validity in the case of most of the modal logics S discussed in this book.
However, tS-semantics is problematic in two ways. First, it does not give
a fine analysis of the semantical behavior of the terms and predicates that
make up atomic sentences. This limitation causes an inadequate treatment
of the semantical behavior of ≈. Second, tS-semantics requires that E be
a primitive predicate of the language, for otherwise the attempt to define
truth values by (å) would be circular. To see why, note that according to
(å), the truth value of åxAx depends on the value of Ec, for each constant
c. If each sentence Ec is defined by Ec=Öxx≈c=~åx~x≈c, then Ec is a
complex sentence containing å, and so by (å), its value also depends on
the values of all sentences with the form Ec, including itself. The only way
to break out of this vicious circle and guarantee that the values of the
Ec sentences are fixed in a model is to assume that E is primitive so that
values of sentences with the form Ec are given directly by the assignment
function.

A more satisfying analysis of terms, predicates, and ≈ can be given
by introducing quantifier domains and defining the referents of terms
and predicate letters with their help. A domain structure D consists of
a nonempty set D of possible objects and a subset Dw of D for each
world w. A substitution or sS-model <W, R, D, a> includes a domain
structure D and an assignment function a that gives appropriate exten-
sions to the expressions of the language, including terms and predicate
letters, and meets the truth conditions governing the behavior of the log-
ical symbols. We will describe these conditions in a minute, but first we
must say what an appropriate extension of an expression is. An appro-
priate extension of a term is a member of D, an appropriate extension for
a list of terms is a list of members of D, an appropriate extension of a
sentence is a truth value (either T or F), and an appropriate extension of
a predicate letter is a set containing lists of members of D. (For example,
the extension of a predicate letter G for ‘greater than’ would be a set
containing two member lists (n, m) such that n is greater than m.) We
will also need to define the intensions for terms and predicates. This is
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done on analogy with the way intensions were defined for propositional
modal logics in Section 3.8. There the appropriate extension of a sentence
was a truth value, whereas the intension of a sentence was a function that
takes us from a world (member of W) to a truth value. By analogy, the
appropriate intension of any expression e is a function that takes mem-
bers of W into appropriate extensions for e. As a result, the intension
of a term is a function from worlds to objects, and the intension of a
predicate letter is a function that takes each world into a set of lists of
objects.

Let us spell this out more carefully. The intension a(t) of term t on
assignment a is a function from W into D (the set of objects). Following
Carnap (1947), we will call the intension a(t) of a term an individual
concept. It follows from this definition that the extension aw(t) of t at
w on a is an object in D. The intension a(P) of a predicate letter P is a
function from W into the set containing all sets of lists of objects, and the
extension aw(P) of P at w on a is a set containing lists of objects. We use
the notation ‘aw((t1, . . , tn))’ to abbreviate the list (aw(t1), . . , aw(tn)) of
the extensions of the terms t1, . . , tn.

(ti) aw((t1, . . , tn))=(aw(t1), . . , aw(tn)).

An assignment function is any function a that is defined over the expres-
sions of the language that gives each expression an appropriate intension
and that obeys the truth conditions (ƒ), (ç), (∫), and (å), along with the
following:

(E) aw(E)=Dw.

(The extension of the existence predicate at w is the domain for w.)

(≈) aw(s≈t)=T iff aw(s)=aw(t).

(The sentence s≈t is T iff the terms s and t have the same extension.)

(Pl) aw(Pl)=T iff aw(l) µ aw(P).

The symbol ‘µ’ in (Pl) is read ‘is a member of’. The condition says,
for example, that ‘Loves(John, Mary)’ is true iff the extension of the list
formed of the extensions of ‘John’ and ‘Mary’ is a member of the extension
of ‘Loves’.)

The notions of sS-satisfiability, sS-counterexample, and sS-validity are
defined from the notion of an sS-model in the usual way.
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It has been assumed so far that E is a primitive predicate, so values of
sentences of the form Et are given by (Pl). But given that the assignment
function assigns values to terms and predicate letters, it is possible to
eliminate the predicate letter E and define Et by (DefE).

(DefE) Et=df Öxx≈t.

When E is a predicate letter of the language, it follows by (Pl) that
aw(Et)=T iff aw(t) µ aw(E). But in the light of (E), this comes to (Et).

(Et) aw(Et)=T iff aw(t) µ Dw.

It follows that the substitution truth clause (å) can be rewritten in a way
that avoids any mention of E.

(åDw) aw(åxAx)=T iff for every c, if aw(c) µ Dw then aw(Ac)=T.

Therefore, no problem of circularity can possibly arise in using (DefE)
with this semantics. All that is needed to guarantee that the use of (DefE)
is correct is to verify (EÖ).

(EÖ) aw(Et)=aw(Öxx≈t).

For the moment it is easy to verify that (EÖ) holds, given that constants
are the only terms of the language. Therefore, it will not matter whether
we include a primitive existence predicate and use truth condition (å)
or eliminate it using (DefE) and (åDw). Since it won’t matter which
choice is made, ‘sS-model’ will indicate models that adopt either method
of dealing with the quantifier. Note, however, that when new terms are
added to the language, use of (DefE) will depend on being able to show
(EÖ). (Exercise 13.5 of Section 13.5 illustrates a demonstration of this
kind.)

EXERCISE ∗13.3 Show (EÖ) holds for any sS-model for a language whose
terms include only the constants. What problems with the argument might
arise when there are terms other than constants?

13.3. Strong Versus Contingent Identity

There are two ways to give the truth clause for identity in modal logics.
On the strong interpretation (†), s≈t says that the intensions of s and t are
identical.
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(†) aw(s≈t)=T iff a(s)=a(t).

For the sS-models defined in the previous section, the contingent inter-
pretation (≈) was chosen, where s≈t asserts that the extensions of s and t
agree at the world w.

(≈) aw(s≈t)=T iff aw(s)=aw(t).

The purpose of this section is to explain why contingent identity was
preferred over the strong interpretation. (One could introduce symbols
for both kinds of identity into the language. However, we will leave that
project for another day.)

In ordinary speech, we almost always give identity the contingent inter-
pretation. For example, in 1984 people would have claimed that ‘Ronald
Reagan is the president’ is true even though the terms ‘Ronald Reagan’
and ‘the president’ did not refer to the same object at other times. It is
enough for this sentence to be true in 1984 that the extensions of these
two terms are the same in 1984. Similarly, we count ‘nine is the number of
planets’ true, even though there are possible worlds where the referents
of ‘nine’ and ‘the number of planets’ differ.

Some would object that it is wrong to treat ‘Ronald Reagan is the pres-
ident’ as having the form s≈t. Instead they would opt for an analysis using
Russell’s theory of descriptions where ‘the president’ does not count as a
term. Instead, ‘the president’ is translated away in favor of the existential
quantifier and a predicate letter for being a president. In Sections 12.3
and 12.4 it was explained why this book has chosen to leave open the
possibility that definite descriptions like ‘the president’ and ‘the number
of planets’ count as genuine referring expressions. Given this choice, an
analysis of contingent identity is in order.

Notice that on the strong interpretation, the truth values of identi-
ties are not world-varying. Since ‘w’ does not appear on the right side
of (†), it follows that whether s≈t is true at w does not depend on the
value of w.

EXERCISE 13.4 Show that aw(s≈t)=av(s≈t), for any two worlds w and v,
given (†).

For this reason, the strong interpretation validates the rule of substitution
of identical terms in all contexts, whether beneath a modal operator or
not.
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EXERCISE 13.5 Show that s≈t, ∫Fs / ∫Ft is †S-valid, where an †S-model
is a sS-model that obeys (†) instead of (≈).

This feature is attractive to those who believe that substitution of iden-
ticals is correct in all contexts. However, the strong interpretation has a
price. The substitution of identicals in all contexts guarantees that the
argument s≈t, ∫s≈s / ∫s≈t is valid. It is clear that ∫s≈s is valid on any
interpretation of ≈, and so s≈t / ∫s≈t must also be valid on the strong
interpretation. As a result, all true identities are necessary on the strong
interpretation; in fact, the distinction between contingent and necessary
identities collapses from this point of view. The examples of ‘the president’
and ‘the number of planets’ should make it clear that the strong interpre-
tation is acceptable only under very special circumstances. It would hold,
for example, in a language where all the terms are rigid, but given the
decision that descriptions are to count as terms, many terms of ordinary
language are not rigid.

Given the contingent interpretation, it is possible to show officially that
the substitution of identities fails in the scope of modal operators. Here
for example is a sS-model <W, R, D, a> that is a sS-counterexample to the
following instance of that principle: s≈t, ∫Ps / ∫Pt. The frame <W, R>
of the model and the values a assigns to sentences will be given by the
following diagram:

EXERCISE 13.6 Verify that aw(∫Ps)=T and aw(∫Pt)=F on the above
diagram.

Notice that R in this diagram has the property that wRv for all w and v
in W. A relation of this kind has all of the properties we have studied for
modal logics except uniqueness. To obtain a counterexample for a unique
R, simply remove the two reflexivity (loop) arrows. If we can be assured
that a can be successfully defined so as to give the values shown in the
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diagram, then we will know that substitution of identicals is invalid for all
the modal logics we have studied.

In order to convince you that a model can be defined that assigns to
sentences the values in the above diagram, let us give a more detailed
definition of the countermodel <W, R, D, a> depicted above. W contains
the two worlds w and v that are found in the diagram. In the language
of set theory this is written: W={w, v}, that is, W is the set containing
the objects w and v. R is defined so that wRv for all w and v in W. The
domain structure has domains that all contain two objects: 1 and 2. So
D=Dw={1, 2}. The assignment function a is defined so that aw(s)=1,
av(s)=1, aw(t)=1, av(t)=2, aw(P)={1}, av(P)={1}. Since aw(s)=aw(t),
we know by (≈) that aw(s≈t)=T. Because aw(s) µ aw(P), aw(t) µ aw(P),
and av(s) µ av(P), it follows that aw(Ps)=T, aw(Pt)=T, and av(Ps)=T.
However av(t) is not a member of av(P), so av(Pt)=F. Since a model
has been defined whose assignment function gives the values shown in
the diagram, we have a counterexample to the principle of substitution
of identities in all contexts. Notice, however, that substitution is valid
when it is properly restricted, as in (≈Out). (See Section 15.2.) (Strictly
speaking, aw(P) must be a list, so the correct value on this model would
be aw(P)={(1)}, which is the set containing the list containing the single
member 1. Furthermore, we should have written: (aw(s)) µ aw(P). Here
and in the future, the extra parentheses are omitted to save the reader
eyestrain.)

It is rather cumbersome to specify an assignment to terms and predi-
cates in the language of set theory as we have just done. It will be more
convenient to show how an assignment gives intensions to terms and
predicate letters using diagrams. In order to do so, we set up a chart with
the situations listed on one dimension and the objects listed on the other.
Then the intension of a term may be indicated by a line in the chart. For
example, the diagonal line in the following chart represents an inten-
sion that takes situation w into object 1, and situation v into object
2. The label a(t) shows that this is the intension that a assigns to the
term t.
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To read the value of a function that is represented as a line on this
sort of graph, simply follow the dotted lines thus:

It is also possible to represent the intensions of 1-place predicate letters on
the same kind of diagram. We simply draw a boundary that includes the
region for an object and world just in case the extension of the predicate
letter includes the object in that world. For example, the region indicated
in the following diagram indicates that the intension a(Q) is defined so
that aw(Q) includes both objects 1 and 2, (aw(Q)={1, 2}), whereas av(Q)
includes only object 1, (av(Q)={1}):

Now we may present in a single diagram all the information we have
on the model we used to invalidate the substitution of identities.

It is not difficult to “read off” values of simple formulas using this kind
of diagram. For example, we can see immediately that aw(s≈t) is T because
the two lines for a(s) and a(t) converge at world w. We can also see that
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av(Ps) is T and av(Pt) is F because the line for a(s) lies inside the region
a(P) at world v, whereas the line for a(t) lies outside a(P) at v. Checking
the value of ∫Ps at w is also easily done. We first locate all worlds that
may be reached from w following an arrow. The worlds in question are w
and v. So for ∫Ps to be true at w, Ps must be T in both w and v. Since the
line for a(s) lies within the boundary for a(P) at both worlds, we know
that aw(∫Ps) is T. Similarly, the truth of ∫Pt at w requires that the line
for a(t) lie within the boundary for a(P) at both w and v. Since that line is
outside this boundary in v, we know that aw(∫Pt) is F. For convenience,
the values for sentences that we calculate may be represented by entering
them into the worlds of the diagram.

In the future, we will (where possible) present models in the form
of diagrams so that values of sentences may be more easily calculated.
There is no inaccuracy or ambiguity in doing so since it is always possible
to convert any diagram into a complete description of the model in the
notation of set theory.

EXERCISE 13.7

a) Express the following models as diagrams:
1. W={w, v, u}, R={<w, v>, <v, w>, <u, u>}, D=Dw={1, 2, 3}

aw(t)=1, av(t)=1, au(t)=1, aw(s)=2, av(s)=2, au(s)=3,
aw(P)=av(P)=au(P)={1, 2, 3}, aw(Q)={1, 2}, av(Q)={2, 3},
au(Q)={3}.

2. W={w, v, u}, R={<w, v>, <v, u>}, D=Dw={2, 3}
aw(t)=2, av(t)=3, au(t)=2, aw(s)=3, av(s)=2, au(s)=3,
aw(P)={2, 3}, av(P)={3}, au(P)={}, aw(Q)={}, av(Q)={2},
au(Q)={2, 3}.
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b) Express the following diagrams in the notation of set theory:

c) Calculate the following truth values for the model depicted in diagram
b)2 above: aw(∫Ht), av(∫Hs), aw(Öx∂Qx), aw(åx∫Px), aw(∂åxHx),
av(∂åxHx).

13.4. Rigid and Nonrigid Terms

As we explained in Section 12.11, a rigid term or designator is a denoting
expression that picks out the same object in every world, whereas the
referents of nonrigid expressions may vary from one possible world to
another. In some modal languages, we will want to use the constants to
abbreviate rigid terms only. In order to guarantee that the constants are
rigid, the following condition may be placed on models (where c is any
constant and w and v are any two worlds in W):

(RC) aw(c)=av(c).

The condition (RC) says that the extension of a constant is the same thing
in every possible world. When this condition holds, there is no longer a
need to include the world subscripts, so they can be dropped. In this case,
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a(c) would not indicate a function from possible worlds to objects, but
instead an object (or member of D).

This more direct notation has the merit of simplicity, and it conforms to
the position that a rigid term refers directly to objects. It also corresponds
nicely to the notion that such terms have referents (extensions) but no
meanings (intensions) apart from the objects they pick out.

Some philosophers object that talk of the identity of objects across
possible worlds is misguided or incoherent. Given these qualms, it is dis-
turbing to describe the intension of a rigid term as a term whose referent
is the same in all possible worlds; in fact, the very use of the term ‘rigid’
would seem out of place. For all of these reasons it might be better to
define the referents of rigid constants so that a(c) is a member of D,
rather than a function from W into D.

(CR) a(c) is a member of D.

To keep our presentation as general as possible, (RC) will be the official
way to indicate that the constants are rigid in this book. However, the
alternative approach (CR) may be used whenever constants are rigid, and
it will come in handy for proving a general theorem about substitution in
Section 15.12.

An important question in the design of quantified modal logics is
whether all the terms in the language ought to be rigid. So far, we have
simply assumed that at least some terms are nonrigid. There are good rea-
sons for this choice. It is clear, for example, that definite descriptions are
nonrigid. The term ‘the inventor of bifocals’ refers to Benjamin Franklin in
the real world, but we can easily imagine a possible world where someone
else was the inventor of bifocals. The fact that descriptions are nonrigid
does not conclusively prove that languages for modal logic ought to have
nonrigid terms. Some would argue that descriptions should not be treated
as terms but should be translated away instead according to Russell’s the-
ory of descriptions. This attitude motivates the development of modal
logics where all terms are rigid. An advantage of those systems is that no
restrictions need to be placed on the substitution of identities.

EXERCISE 13.8 Show that b≈c, ∫Pb / ∫Pc is valid, assuming that both b
and c are rigid.

In Section 12.4, complaints were lodged against the thoroughgoing appli-
cation of Russell’s theory of descriptions to eliminate the terms of
ordinary language for the result is a logical language that lacks any terms
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at all. It is better to allow nonrigid terms in the language and so to reject
the substitution of identities in all contexts. The price is the restriction
to atomic sentences in the substitution rule (≈Out), but the benefit is a
much more natural translation between natural and logical languages.

13.5. The Objectual Interpretation

In the previous sections, semantics for the quantifiers was developed using
the substitution interpretation. The substitution interpretation has the
merit of simplicity, but it is superficial. Ordinarily ÖxPx (something is
P) means that there is an object with the property P, not that there is
some instance Pt that is true for some term t. So it will be interesting to
examine ontological interpretations of the quantifier, where the truth of
ÖxPx commits us to the existence of things, rather than merely to the truth
of other sentences (namely, the instances of ÖxPx).

Furthermore, there are reasons for thinking that the substitution inter-
pretation is simply incorrect. Consider a sS-model <W, R, D, a> with
the following features: D=Dw=aw(E)={1, 2}, aw(P)={1}, and aw(c)=1
when c is any constant c′, c′′, c′′′, . . . The diagram at world w for this model
follows:

Intuitively åxPx should be false at w on this model, because there is an
object (namely, 2) that exists at w but does not satisfy the predicate P. How-
ever, the value of aw(åxPx) is T according to (å) because aw(Pc)=T for
every constant c, and so if aw(Ec)=t, then aw(Pc)=T. The difficulty with
the substitution interpretation is that there can be models with objects
(such as 2) that are unnamed. Since the truth value of åxPx depends on
its instances, the presence of an unnamed object will not affect it, even if
this object would intuitively serve as a reason to reject åxPx.

One may repair this defect by stipulating that a model must contain no
unnamed objects. However, this will only go so far. In case the domain
contains as many objects as there are real numbers, it will be impossible
to name every object. Despite the fact that there are infinitely many
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integers, Cantor famously proved that there are still more real numbers
than there are integers, and so more reals than names in our language
(Boolos, Burgess, and Jeffrey, 2002). It is hard to measure how serious
a problem this poses. It depends on whether one needs to quantify over
such immensely large domains as the reals. For safety, however, let us
explore an alternative.

Consider a truth clause for the quantifier where the truth value of
åxAx depends on the features of objects, and not the truth values of
instances of åxAx. There are a number of ways to give quantifier truth
clauses along these lines. One of these uses the notion of satisfaction
of an open sentence by an infinite sequence of terms, and another the
notion of a valuation of the variables. We will employ a different strategy
due to Smullyan (First Order Logic, 1968), where we substitute objects
(not their names) directly into sentences. This approach combines the
technical simplicity of the substitution interpretation, with a solution to
the problem of unnamed objects. The idea is to introduce what we will
call hybrid sentences. These sentences are instances of åxAx that result
from replacing the object d for each free occurrence of x in Ax. This may
sound odd at first, so let me define it clearly. Suppose d is an object in the
domain D, and let P be any predicate letter. The hybrid sentence P(d) is
composed of the predicate letter P followed by a list containing object d.
P(d) is not a sentence because predicate letters are normally followed by
lists of terms, not objects. Nevertheless, we may introduce such hybrids
and give rules for evaluating their truth values. Officially, A is a hybrid
iff A is [B]d/x, the instance of åxBx that results from replacing an object
d for those instances of x bound by åx in åxBx. The hybrid P(d) asserts
that the object d has the property P, so we expect aw(Pd) to be true just
in case (d) µ aw(P). In the case of a sentence involving a binary relation
symbol R, we want to be sure that a(R(d1, d2))=T iff the list of objects
(d1, d2) is a member of the extension a(R) of R.

One simple method of ensuring this is to adopt a notational ruse,
namely, to treat objects in the domain as if they were honorary terms,
and to stipulate that the notation ‘aw(d)’ means d.

(d) aw(d) is d for each d µ D.

This together with abbreviation (ti) entails that the extension of a list of
objects will be that list itself.

(ti) aw((t1, . . , ti))=(aw(t1), . . , aw(ti)).
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This will guarantee that aw(P(d1, . . , di))=T just in case the list (d1, . . ,
di) is a member of aw(P), by the following reasoning:

aw(P(d1, . . , di))=T
iff aw((d1, . . , di)) µ aw(P) (by (Pl))
iff (aw(d1), . . , aw(di)) µ aw(P) (by (ti))
iff (d1, . . , di) µ aw(P) (by (d))

Condition (d) will also ensure the correct truth behavior for hybrid sen-
tences containing terms as well as objects, as can be seen in the next
example:

aw(R(t, d))=T
iff aw((t, d)) µ aw(R)
iff (aw(t), aw(d)) µ aw(R)
iff (aw(t), d) µ aw(R)

We are now ready to define semantics using the hybrid approach.
An objectual or oS-model <W, R, D, a> for a quantified modal lan-
guage contains a frame <W, R> for a propositional modal logic S, a
domain structure D consisting of a set D (of possible objects) and sub-
sets Dw of D to serve as domains for each world w, and an assign-
ment function a (defined over sentences and hybrid sentences), which
obeys (≈), (Pl), (ƒ), (ç), and (∫), along with (oå), the objectual
truth clause for the quantifier, the condition (RC) to guarantee that
constants are rigid, and (E) to ensure that E indicates existence. To
save eyestrain, ‘aw(Ad)=T’ abbreviates ‘aw([A]d/x)=T’ in condition
(oå).)

(oå) aw(åxAx)=T iff for all d µ Dw, aw(Ad)=T.
(RC) aw(c)=av(c).
(E) aw(E)=Dw.

It is a simple matter to show that the following derived truth condition
follows:

(oÖ) aw(ÖxAx)=T iff for some d µ Dw and aw(Ad)=T.

EXERCISE 13.9 Using (DefÖ), and (oå), show that (oÖ) holds.
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At the end of Section 12.2 it was pointed out that (DefE) can be used
to eliminate the existence predicate provided that (EÖ) can be proven.

(EÖ) aw(Et)=aw(Öxx≈t).

On the substitution interpretation, the proof of (EÖ) depended on the
terms including only the constants. However, on the objectual interpre-
tation, (EÖ) can be proven regardless of which terms are in the language.
As a result, we may always eliminate E in oS-models.

EXERCISE 13.10 Show that aw(Et)=aw(Öxx≈t) for any oS-model.

13.6. Universal Instantiation on the Objectual Interpretation

The importance of allowing nonrigid terms in languages for quanti-
fied modal logic has already been argued in Section 13.4. Unfortu-
nately, systems that use nonrigid terms with the objectual interpreta-
tion face a serious difficulty. The problem is that the rules for quantifiers
(whether classical or free) are no longer valid (Hintikka, 1970). In clas-
sical logic, the principle (QtåOut) of universal instantiation is accepted,
which means that existential generalization over terms (QtÖIn) is a deriv-
able rule.

(QtåOut) åxAx / At
(QtÖIn) At / ÖxAx

Now consider (Ö∫).

(Ö∫) ∫t≈t / Öx∫x≈t

This is a special case of (QtÖIn). Since t≈t is provable, ∫t≈t follows by
(∫In), and so Öx∫x≈t is a theorem of any classical quantified modal logic.
However, Öx∫x≈t is not valid on the objectual interpretation. To see this
intuitively, let t read ‘the inventor of bifocals’. Then Öx∫x≈t says that
someone exists who is necessarily the inventor of bifocals. This claim is
at best questionable. Even Benjamin Franklin (bright as he was) was not
necessarily the inventor of bifocals.

It is not difficult to support this informal objection to Öx∫x≈t with a
formal counterexample. Consider the following oK-model:
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The diagram shows that ar(t) is BF (Benjamin Franklin is the inventor
of bifocals in the real world), and that au(t) is TE (Thomas Edison is the
inventor of bifocals in an unreal world). Now consider the hybrid sentence
BF≈t. This is false in u (Benjamin Franklin is not the inventor of bifocals
in the unreal world), and so ∫BF≈t is F at r. Similarly, ∫TE≈t is F at r,
because TE≈t is F at r. The domain Dr=ar(E) for this model contains the
objects BF and TE, and so Öx∫x≈t is T at r provided that either ∫BF≈t
or ∫TE≈t is T at r. But we showed that neither of these hybrids is T at r,
and so Öx∫x≈t is F at r.

The reason that Öx∫x≈t is refuted on this diagram is that the truth
of Öx∫x≈t requires that there is one object that is identical to the ref-
erent of t in both worlds r and u. However, no one object so qualifies
since the value of t shifts from one object to the other as we move from
one world to the other. These reflections help explain why we resist the
inference from ∫t≈t to Öx∫x≈t. We want to say that it is necessary that
the inventor of bifocals is identical to the inventor of bifocals, but it does
not follow that there is some one object that is necessarily the inventor
of bifocals. True, there is “something” that is necessarily the inventor
of bifocals, namely, the inventor of bifocals. But the inventor of bifo-
cals has different manifestations in different worlds. To put it differently,
the inventor of bifocals does not count as a unified object the way BF
and TE do, and for this reason the truth of ‘the inventor of bifocals
is necessarily the inventor of bifocals’ does not support the ontologi-
cal claim that some one thing exists that is necessarily the inventor of
bifocals.

We have shown that the classical rule of Existential Instantiation is
incorrect for the objectual interpretation, but the same problem arises
with the free logic rules. In FL + (tå), Et & ∫t≈t / Öx∫x≈t is provable as
a special case of the derivable rule (tÖ).

(tå) åxAx / EtçAt
(tÖ) Et & At / ÖxAx
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Since ∫t≈t is a theorem of fK, Et / Öx∫x≈t is provable there as well.
However, this argument can be shown to be oK-invalid, using virtually
the same model we used in the case of Öx∫x≈t.

EXERCISE 13.11 Show that Et / Öx∫x≈t is oK-invalid.

So the problem we are facing does not depend on the treatment of the
quantifier domain. A quantified modal logic that is sound with respect to
(oå) must not use the free logic instantiation rule (tå).

The quantifier rules that specify which instances are correct for
nonrigid terms t are not easy to formulate. Although the inference Et
& Ft / ÖxFx is valid when ÖxFx contains no intensional operators, we have
just shown that Et & ∫Ft / Öx∫Fx is invalid. The reason is that the truth of
Et does not ensure that there is one object d for which ∫Fd holds. Notice,
however, that the truth of Öx∫x≈t at world r does guarantee that there is
an object d identical to the referent of t in all worlds related to r. For this
reason, the argument Öx∫x≈t & ∫Ft / Öx∫Fx is oK-valid, and in general
so is Öx∫nx≈t & ∫nFt / Öx∫nFx.

EXERCISE 13.12 Show that Öx∫nx≈t & ∫nFt / Öx∫nFx is oK-valid when
n=2 and n=3. Now explain why this holds for any value of n. (You may use
mathematical induction if you are familiar with it.)

It appears we have made some progress. Let us reformulate this principle
with å in place of Ö in hopes of defining a correct quantifier rule for the
objectual interpretation. The result is the following:

(ånOut) åx∫nAx, Öx∫nx≈t / ∫nAt

Unfortunately, even this complicated rule is not fully adequate. Con-
sider the argument åx∫(Px & ∫Qx), Öx∫x≈t / ∫(Pt & ∫Qt). Here t
lies beneath one box in the conclusion in its first occurrence and beneath
two boxes in its second occurrence. Although Öx∫x≈t warrants the infer-
ence from åx∫Px to ∫Pt, and Öx∫∫x≈t warrants the inference from
åx∫∫Qx to ∫∫Qt, neither Öx∫x≈t nor Öx∫∫x≈t by itself is sufficient
for deducing ∫(Ft & ∫Gt) from åx∫(Fx & ∫Gx). What we need is the
conjunction Öx∫x≈t & Öx∫∫x≈t.

EXERCISE 13.13 Show that (ånOut) is oK-invalid. (Hint: Let At in
(ånOut) be (Ft & ∫Gt).)
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A correct instantiation rule for the objectual interpretation with non-
rigid terms is difficult to summarize. åxAx entails At provided that for
each occurrence of x in Ax, Öx∫nx≈t is provable, where n is the number
of boxes under which that occurrence lies. If many occurrences of x in
Ax lie beneath varying numbers of boxes, we will need to establish many
different sentences of the form Öx∫nx≈t in order to warrant the inference
from åxAx to At. In modal logics as strong as S4, the (åOut) rule may be
simplified a great deal. Since Öx∫nx≈t is equivalent to Öx∫x≈t in S4 (and
since Öx∫x≈t entails Öxx≈t), the (åOut) rule may be given in the form:
åxAx, Öx∫x≈t / At.

The difficulties to be faced in allowing nonrigid terms with the objec-
tual interpretation has exerted strong pressure on researchers to consider
systems where only rigid constants are allowed in the language. On that
assumption, the formulation of a logic for the objectual interpretation is
fairly straightforward. For most underlying modal logics S, an adequate
system rS may be constructed by adding (RC) to fS.

(RC) (b≈cç∫b≈c) & (~b≈cç∫~b≈c)

EXERCISE 13.14 Show that åxAx / Ac is qoK-valid.

Systems of this kind are appealing to those who dislike restrictions on the
substitution of identity. When the only terms are constants and constants
are rigid, it turns out that the substitution of identical terms is valid in all
contexts.

EXERCISE 13.15 (Advanced Project.) Use mathematical induction to prove
that substitution of identical terms is oK-valid in all contexts when terms are
all rigid.

However, it seems fainthearted for logicians to abandon the project of
accommodating the nonrigid terms in logic simply because complications
arise in dealing with them. Perhaps we can do better. It is truly difficult
to formulate quantified modal logic for the objectual interpretation if all
of the terms (including the constants) are nonrigid. However, supplying
the language with a rank of rigid constants simplifies matters immensely,
for then adequate systems can be based on the standard free logic rule
(åOut), which instantiates to constants only.

This point may have been missed in the literature on quantified modal
logic because it appears that a stronger instantiation principle is needed
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to handle the instantiation of nonrigid terms t. Luckily, nothing more is
required. (åOut) is strong enough by itself to guarantee the derivability
of all the valid instantiation principles that we have just discussed. It is
interesting to explore how the correct rules for instantiating åxAx are
already derivable within fK. For example, it is not difficult to show that
the following argument can be proven in fK: åxPx / Öxx≈tçPt as follows:

Now consider the proof of åx∫Px / Öx∫x≈tç∫Pt where the instantiation
occurs beneath a single box.

EXERCISE 13.16

a) Prove in fK: åx(∫Px&∫∫Qx), Öx∫x≈t, Öx∫∫x≈t / ∫Pt&∫∫Qt.
b) Prove in fS4: åx(∫Px√∫∫Qx), Öx∫x≈t / ∫Pt√∫∫Qt.
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These examples illustrate the surprising power of (åOut) to guarantee
proofs of valid instantiation principles for nonrigid terms. The secret is
to let the process of instantiation depend on the substitutions allowed by
(≈Out) to generate all and only the right instances.

Of course a few examples do not prove that a system based on (åOut)
is correct. In fact, completeness requires that the new rule (Öi) be added
to govern the interaction between rigid constants and nonrigid terms t.

(Öi) L ÷ ~t≈c where c is a constant not in L or t

L ÷ ƒ

Fortunately this is the only addition needed for a complete system. (See
Sections 16.3 and 17.8.) So the system oS = rS + (Öi) provides a relatively
simple solution to the problem of formulating rules for the objectual
interpretation with nonrigid terms.

13.7. The Conceptual Interpretation

Let us investigate another approach to avoiding the complications that
arise for the objectual interpretation. It depends on choosing a more
general interpretation of the quantifier. Difficulties with the objectual
interpretation arose because we allowed terms to have intensions (which
is another way to say that they may be nonrigid) while at the same time
we quantified over term extensions, that is, the domain of quantification
was a set of objects in the domain Dw. If we were to quantify over term
intensions or individual concepts, then there would be a better match
between the treatment of quantification and the treatment of terms.

In the conceptual interpretation of the quantifier, the domain of quan-
tification is the set of all term intensions (individual concepts), rather than
the set of all term extensions (objects). For constant domains, the truth
clause is would be (cQå).

(cQå) aw(åxAx)=T iff aw(Af)=T for every individual concept f.

Remember that an individual concept (or term intension) is a function
from the set W of worlds into the set D of objects. Notice also that Af is a
new kind of hybrid sentence, one that is the result of replacing the function
f for occurrences of x bound by åx in åxAx. We will need to explain how
such hybrid sentences are evaluated. In the case of the atomic hybrid Pf,
we want aw(Pf) to be T when f(w) µ aw(P). To obtain the more general
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definition we need for all hybrids, the strategy used for the objectual
interpretation may be generalized. Let us treat functions as honorary
members of the set of terms, and use (f) to define the notation ‘aw(f)’.

(f) aw(f)=f(w).

In the truth condition for atomic sentences (Pl), we understand that the
list l includes terms and/or functions.

The conceptual interpretation promises to simplify the quantifier rules
and to allow a more general understanding of the quantifier domain.
Unfortunately, there are a number of difficulties with it. In the first place,
this interpretation validates the classical quantifier rules. The problem is
that Öx∫x≈t is valid on the conceptual interpretation because there is an
individual concept f (namely, a(t)) such that aw(∫f≈t)=T for any choice
of a and w. On the conceptual interpretation, ‘there is something which is
necessarily the inventor of bifocals’ is true because the inventor of bifocals
counts as something that is necessarily the inventor of bifocals. Since we
quantify over all individual concepts on the conceptual interpretation,
and since the intension of ‘the inventor of bifocals’ counts as an individual
concept, we have no reason to reject Öx∫x≈t.

The conceptual interpretation has another tantalizing consequence,
namely, that Öx∫Öyy≈x is valid. Using (DefE), this amounts to Öx∫Ex, the
claim that something necessarily exists, a conclusion that will gladden the
hearts of those who hope for an ontological proof of the existence of God.
Closer analysis of the meaning of Öx∫Ex on the conceptual interpretation
reveals that its validity is cold comfort to the theist. To show that Öx∫Ex
is true under all interpretations, we may pick any individual concept f
we like, for the hybrid ∫Ef is T on any assignment in any world. (The
reason is that the hybrid f≈f is true in all worlds, and so by the conceptual
interpretation, Öyy≈f is T in all worlds. This means that ∫Öyy≈f [i.e., ∫Ef]
is true on any given world.) An arbitrarily chosen individual concept,
however, does not reflect the Deity, for it may pick out Jim Garson in one
world, Richard Nixon in another, and Adolph Hitler (or even a stone) in
yet another. The sentence ‘something necessarily exists’ is interesting to
those investigating God’s existence only when it is interpreted to mean
that there is some one thing that exists in all possible worlds, and this is
not the interpretation given to it by the conceptual interpretation. So the
conceptual interpretation does not correspond to the usual interpretation
we give to sentences in quantified modal logic, with the consequence that
it is not the proper tool for analyzing philosophical controversies such as
whether God exists.
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The conceptual interpretation suffers from technical problems as well.
As long as the underlying propositional modal logic is S4.3 or less, the
semantics that uses the conceptual interpretation cannot be formalized.
(S4.3 is the system S4 plus the axiom: ∫(∫Aç∫B)√(∫Bç∫A), which
is appropriate for a tense logic where time is a continuous series of
moments.) This means that there is no finite set of axioms or rules that
is adequate (sound and complete) with respect to the brand of validity
defined by the conceptual interpretation. In short, the conceptual inter-
pretation has no logic. This result is proven by showing that there are
sentences in conceptual semantics that express the basic concepts of arith-
metic. Godel’s famous incompleteness theorem showed that arithmetic
is not formalizable, and so it follows that neither is conceptual seman-
tics (Garson, 2001, Section 3.4). These difficulties remain even when the
truth clause for varying domains is used. On a varying domain version
of the conceptual interpretation (cå), åxAx should be true at w only if
Af is true for an individual concept f such that f(w) exists in the domain
for w.

(cå) aw(åxAx)=T iff for all f, if f(w) µ Dw, then aw(Af)=T.

To define semantics for the conceptual interpretation, let a cS-model
<W, R, D, a> contain a frame <W, R> for a propositional modal logic S,
a domain structure D, and an assignment function a that obeys (≈), (Pl),
(ƒ), (ç), (∫), (E), and (cå). cS-validity is defined in the usual way.

Unfortunately, the restriction to varying domains does nothing to solve
the problem. The resulting semantics is still not formalizable, and although
Öx∫Ex is no longer cK-valid, Öx∫Ex still does not receive its intuitive
meaning, for it is enough for the cK-validity of Öx∫Ex merely that some
object exist in each domain Dw.

EXERCISE 13.17 Show that if Dw is not empty for each w µ W, then
aw(Öx∫Ex)=T in every cK-model.

13.8. The Intensional Interpretation

Let us survey the situation. A simple truth value semantics for quan-
tified modal logic using the substitution interpretation was presented.
We explained that it can be formalized with system fS, using free logic
rules. Difficulties, however, have arisen with interpretations of the quan-
tifier that involve ontological commitment. If we choose the objectual
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interpretation, then either very complex rules must be adopted, or the
system must contain rigid constants along with the rules (RC) and (Öi). If
we quantify over individual concepts, the result is a semantics that cannot
be formalized and that interprets sentences in counterintuitive ways. Is
there some way around these complications? The answer is “Yes”. A sim-
ple modification of the conceptual interpretation results in a definition of
validity that picks out exactly the basic system fS. The result is an onto-
logical approach to quantifiers that is general and validates exactly the
arguments valid on the substitution interpretation. For these reasons, it
provides a framework within which the other systems can be formulated
and understood.

To present the new interpretation, it helps to revisit what may have
gone wrong with the conceptual approach. Our rejection of the inference
from ‘necessarily the inventor of bifocals is the inventor of bifocals’ to
‘something is necessarily the inventor of bifocals’ was prompted not by
the fact that the inventor of bifocals does not exist in the real world, but
by the fact that the intension of ‘the inventor of bifocals’ across possible
worlds does not count as a unified substance. Our intuitions rule that there
are only certain individual concepts that count in supporting existential
claims. To reflect this idea, let us introduce a set I of individual concepts
(functions from W into D) that count as substances, that is, that are unified
in the proper way. Let us work out this idea more carefully by defining
what we call intensional models.

A intensional model or iS-model <W, R, D, I, a> contains a frame
<W, R> for a propositional modal logic S, a domain structure D, a set I
of individual concepts for the substances, and an assignment function a
that obeys (≈), (Pl), (ƒ), (ç), (∫), and (E), along with (cI) and (iå).

(cI) a(c) µ I.
(iå) aw(åxAx)=T iff for all i µ I, if i(w) µ Dw then aw(Ai)=T.

Note that (cI) matches the intuition that constants should pick out sub-
stances. It is needed to guarantee the validity of (åOut). In the next
exercise, you may verify that the derived truth condition for Ö comes
to (iÖ).

(iÖ) aw(ÖxAx)=T iff for some i µ I, i(w) µ Dw and aw(Ai)=T.

EXERCISE 13.18 Show that (iÖ) holds.
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The intensional interpretation of the quantifier has a number of impor-
tant advantages. First, Öx∫x≈t and Öx∫Ex are iK-invalid, which conforms
to our intuitive readings of these sentences. Öx∫x≈t will be true at w only
if we can find a function i in I that matches the intension a(t) of t in related
worlds. If a(t) is not unified in the right way, then there will not be such
a function. Similarly, Öx∫Ex is iK-invalid because in order for ∫Ei to be
true in w, i(v) must exist in all worlds v related to w. A model where i(v)
fails to be in the domain Dv at some world v related to w will make ∫Ei
false in w. So all it takes to invalidate Öx∫Ex is to build a model so that
for every function i in I, there is a world v such that i(v) is not in Dv.

EXERCISE 13.19 Construct iK-counterexamples to both Öx∫x≈t and
Öx∫Ex.

A second advantage of the intensional interpretation is that it may be
easily formalized. It is possible to modify the relatively straightforward
completeness results for the substitution interpretation to show complete-
ness of systems based on fS. So the intensional interpretation is the onto-
logical approach that exactly matches the concept of validity generated
by the substitution interpretation. The strong kinships between the truth
value, substitution, and intensional interpretations will play an impor-
tant role in simplifying the adequacy proofs to be presented in future
chapters.

A final advantage of the intensional interpretation is its generality and
flexibility. We have incorporated a notion of substance into the seman-
tics without laying down any conditions on what the substances are. They
might be the constant functions, but they needn’t be (and in fact it might
turn out that no substances correspond to constant functions). The objec-
tual and conceptual interpretations are less general. Each of them can
be treated as special cases of the intensional interpretation when special
assumptions are made about the set of substances I.

On the conceptual interpretation, it is assumed that all individual con-
cepts count as substances, that is, I is the set of all functions from W
into D. The formal problems that arise for the conceptual interpretation
are the result of difficulties in capturing this stipulation with rules. The
objectual interpretation corresponds to the assumption that substances
are reflected by constant functions, for quantification over objects is for-
mally equivalent to quantification over constant functions that pick out
the same objects. This idea will be exploited in Section 15.6 to show that
the objectual interpretation can be exactly captured within intensional
models by adding the extra condition (o) that I contains all and only the
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constant functions defined over D. So adequacy for the objectual inter-
pretation falls out as a special case of the adequacy for the intensional
interpretation once it is shown that the additional rules (RC) and (Öi)
correspond to condition (o). As a result, the intensional interpretation
provides an excellent basis for viewing and comparing a variety of treat-
ments of the quantifier in a unified way (Garson, 2005).

EXERCISE 13.20 Show that Öx∫x=t is iK-invalid, even assuming that t is
rigid.

The reader may wonder if there is any independent reason for prefer-
ring the intensional interpretation over the objectual interpretation. The
notion that substances are the same thing or one thing across possible
worlds seems to be built into our ordinary interpretation of modal sen-
tences, so perhaps the objectual interpretation, less general as it is, is the
proper approach to take in quantified modal logic.

However, there are positive reasons, apart from its technical general-
ity, for preferring the intensional interpretation. A particularly clear case
where the intensional interpretation is necessary arises in tense logic.
Let the worlds in W be times, and the members of D be time slices of
things. A time slice for time w is an object “frozen” as it is at the instant
w. The objects of the real world are thought of as being made up of
time slices; in fact they are represented in the semantics as functions
from times into time slices. The function orders the slices into a “time
worm”, which gives a history of the thing through time. Now imagine that
we adopt the objectual interpretation so that our substances (or things)
are represented by constant functions. Then things would never change
since the function for a thing would give the same time slice for each
moment of time. Since things do change, we need the flexibility of the
intensional interpretation and must reject the objectual interpretation.
Notice that part of the reason for this rejection is that the objects of
our ontology, the enduring things, are not the members of D. The mem-
bers of D are time slices and so are not the things we would ordinarily
say exist. The items in our semantics that correspond to real enduring
objects of our everyday ontology are represented in the semantics by
term intensions, not by the term extensions or “objects” that are members
of D.

Although it is clear that the intensional interpretation is needed in tense
logic, one might still argue that the objectual interpretation is the only cor-
rect one for a logic of necessity. Insistence on the objectual interpretation
in modal logic, however, begs the question against certain theories about
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possible objects. The theory of world-bound individuals (Lewis, 1968)
claims that it never makes sense to say that the same object exists in two
possible worlds on the grounds that there is no way to make sense of
identity conditions across possible worlds. On this view, the sentence ‘Jim
Garson could have been the inventor of bifocals’ is not true because Jim
Garson in some other possible world is the inventor of bifocals. By the
theory of world-bound individuals, there is no Jim Garson in any world
other than the real one. The world-bound individualist takes ‘Jim Garson
could have been the inventor of bifocals’ to be true because a counterpart
of Jim Garson (something like him in the relevant ways, but not identi-
cal to him) is the inventor of bifocals in some other world. On this view,
the notion of a counterpart of an object is used to bind together non-
identical manifestations of Jim Garson into a substance. The term inten-
sion for ‘Jim Garson’, then, must pick out different objects in different
worlds.

Even if you are not a defender of the theory of world-bound individu-
als, it is important to note that the objectual interpretation conflicts with
a consistent view about possible objects held by at least some philoso-
phers. If the semantical theory for quantified modal logics is to serve as a
neutral device for exploring alternative views about possible objects and
substance, it is crucial that it not beg the question against a view that has
had able defenders.

The reader may not be very happy at the prospect of a semantics where
the quantifier domain, the set of real things, contains individual concepts.
Concepts have a very poor claim to existence in any sense. One of the
advantages of the objectual interpretation appears to be that there we
quantify over objects, whose claims to existence cannot be disputed. This
rejoinder may be rebutted by pointing out that the words ‘object’ and
‘individual concept’ are used as convenient labels for items in our seman-
tical theories, and the meanings we ordinarily attribute to these labels
may mislead us when we try to determine the ontological claims of a
semantical theory.

Notice first that the use of the word ‘object’ for the domain D is mis-
leading because D must contain possible objects that do not exist in the
real world. The members of D have no better claim to ontological respect-
ability by being called objects. In fact, in the tense logic example we
used to motivate the intensional interpretation, the members of D were
ontologically suspect (they were time slices of things), whereas the mem-
bers of I (the so called individual concepts or world lines) turned out to
represent the objects of daily life. On this application, term intensions
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correspond to what is real, whereas term extensions are abstract, or
conceptual.

A similar argument may be made in the case of the logic of necessity,
though it is bound to be more controversial. If we have to choose between
what we call objects in the semantics, and substances, I would think it is
substances that correspond to what is truly real. In the temporal case, we
insisted that real things have a temporal dimension; they are not mere
slices. I think that real things also have a modal dimension. A real thing
would be less real if its possibilities were not included. A chair is what it
is partly because it could not possibly be a desk. Part of what makes the
chair what it is is that it ceases to exist though radical change (for example,
if its wood were used to build a desk). I claim that for something to be
real, it must have a modal “history” as well as a temporal one. In the same
way that certain properties such as changing do not apply to time slices,
the notion of what is possible for a thing does not apply to members of D,
the things we paradoxically call possible objects. The members of D are
modally bare particulars, in the sense that though they may have actual
properties, it makes no sense to talk of what is possible or not possible for
them. On the other hand the members of I, the substances, have a modal
history, which reflects the nature of things we take to be fully real. On this
account, it is the objectual interpretation that is ontologically mistaken,
for it quantifies over “things” that are shorn of their modal aspects, and
so have no more reality than do time slices. For more on this point see
Garson (1987).

13.9. Strengthening Intensional Interpretation Models

A number of special conditions on quantifier domains may be added to
form stronger kinds of iS-models. Here is a list of so-called domain rules
(most mentioned in Chapter 12) with their corresponding conditions on
iS-models. The first five of these are axioms, but we will refer to them as
rules since the rule in question is that one may add instances of the axiom
to any subproof.

Domain Rules Corresponding Domain Conditions
(ÖE) ÖxEx For some i µ I, i(w) µ Dw.
(Q) Et Dw=D.
(ED) Ecç∫Ec If wRv and aw(c) µ Dw, then av(c) µ Dv.
(CD) ~Ecç∫~Ec If wRv and av(c) µ Dv, then aw(c) µ Dw.
(RC) (b≈cç∫b≈c) &(~b≈cç∫~b≈c) aw(c)=av(c).
(Öi) L ÷ ~t≈c / L ÷ ƒ, no c in L, t For some i µ I, i(w)=aw(t).

       
            

       



294 Modal Logic for Philosophers

The rules (RC) and (Öi) together correspond to the condition (o) that I
contain all and only the constant functions whose values are in D. It will be
shown in Section 15.6 that the objectual interpretation for the quantifier
is obtained by adding condition (o) to iS-models. So the objectual inter-
pretation can be seen as a special case of the intensional interpretation
where (o) holds.

(o)=(RC)+(Öi) I is the set of all constant functions with values in D.

As a result, the adequacy of systems for the objectual interpretation can
be proven as a special cases of the proof for the intensional interpretation.

When (o) is satisfied, the conditions for (ÖE), (ED), and (CD) may be
simplified as follows:

(ÖE) ÖxEx (oÖE) Dw is not empty.
(ED) Ecç∫Ec (oED) If wRv, then Dw ß Dv.
(CD) ~Ecç∫~Ec (oCD) If wRv, then Dv ß Dw.

(In conditions (oED) and (oCD), the symbol ‘ß’ is used for ‘is a sub-
set of’. So ‘Dw ß Dv’ means that every member of Dw is a member
of Dv.)

In system oS, it turns out (ED) and (CD) are equivalent (respectively)
to the Barcan Formulas, (CBF) and (BF). (See the discussion preceding
Exercises 12.16a and 12.20.)

(BF) åx∫Axç∫åxAx
(CBF) ∫åxAxçåx∫Ax

Therefore, systems that adopt the objectual interpretation and any of
these domain conditions can be viewed as special cases of the intensional
interpretation where (o) and the domain conditions hold. In case a system
with a constant domain is desired, an adequate system may be formulated
using axiom (Q). Since (Q) clearly entails both (ED) and (CD), it follows
that the Barcan Formulas are derivable in that system.

13.10. Relationships with Systems in the Literature

A wide variety of systems for quantified modal logic have been presented
in this book. It is worth exploring how these systems are related to the
logics that have been presented in the literature over the years. For a more
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thorough discussion of this, see the taxonomy of quantified modal logics
developed in Garson (2001).

Kripke’s historic paper (1963) set the stage for introducing quan-
tifiers into modal logic. Kripke adopted the objectual interpretation
with the varying domains approach (oS-models), employing a wide
domain D of possible objects and separate domains Dw for objects
that exist in each world w. Kripke showed that the Barcan Formulas
((BF) and (CBF)) fail on this semantics and pointed out that their valid-
ity can be restored by stipulating the corresponding conditions on the
domains.

Corresponding Condition
(BF) åx∫Axç∫åxAx (oCD) If wRv, then Dv ß Dw.
(CBF) ∫åxAxçåx∫Ax (oED) If wRv, then Dw ß Dv.

Kripke considered M, S4, B, and S5 as suitable choices for the under-
lying propositional modal logic S. It is implicit from his discussion that
if one were to prefer the possibilist or constant domain approach, one
could stipulate Dw=D, and the logic could be formulated in a system
where both Barcan Formulas are derivable. Kripke used the traditional
formulation TK for the underlying modal logics. (See the discussion in
Section 12.7.) He noted (as we have) that (CBF) can be derived from clas-
sical quantifier rules, and that (BF) follows when the underlying modality
is B or stronger.

So Kripke made it clear that using classical quantifier rules with log-
ics built from TK is not compatible with varying quantifier domains.
Although he considered introducing an existence predicate E, and noted
that Et may be defined by Öxx≈t in a system that includes identity, Kripke,
oddly, did not resolve the conflict by choosing the free logic rules for the
quantifiers. Free logics were not well developed in his day, so perhaps he
saw no alternative to classical rules. As we noted in Sections 12.4 and 13.6,
the classical principle of universal instantiation (QåOut) is invalid when
varying domains are used.

(QåOut) åxAx / Ac

Kripke’s solution for the problem was to require that variables be the
only terms of the language and to stipulate that open sentences receive
the closure interpretation, where an open sentence Ax is presumed to
be universally bound: åxAx. On this approach, åxAxçAy is considered
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oS-valid because it is equivalent in content to the oS-valid closed sentence
åy(åxAxçAy).

EXERCISE 13.21 Prove that åy(åxAxçAy) is oK-valid.

In this book, sentences containing free variables are not even well formed,
but a comparison can be made to Kripke’s logic by assuming that our con-
stants play the role of variables and are to be given the closure interpre-
tation. That would mean that Ac is understood to assert åxAx. Allowing
only constants of this kind is a serious limitation on the expressive power
of the language. In the case of ordinary terms t of natural language, we
expect that At should not entail åxAx. For example, it should not follow
from ‘Bush is president’ that ‘everyone is president’. However, in Kripke’s
system there are no terms of this kind.

Kripke adopted the universal closures of classical predicate logic prin-
ciples to formulate his logic, but a further restriction was still needed to
avoid deriving the Barcan Formulas. His rule of Necessitation applied
only to closed sentences. From our point of view, that amounts to the
requirement that Necessitation applies to no sentence containing a con-
stant. Although logics based on Kripke’s systems can be shown to be
complete (Corsi, 2002), they are not able to give a reasonable account of
terms. There have been two different reactions to the problem. One has
been to modify varying domain models in some way to preserve classical
rules, and the other has been the path taken in this book, namely, to adopt
free logic.

Thomason’s influential paper (1970) explores both of these options.
His system Q1 adopts the possibilist approach, namely, to use a single
domain of quantification, or equivalently, to stipulate that D=Dw for
each world w. However, the classical principle of universal instantiation
(QåOut) is invalid on this semantics if c is a nonrigid term, so Thomason
simply presumed that all terms are rigid. It is not difficult to show that
Thomason’s Q1 is equivalent to our system qrS when constants are the
only terms of the language. System qrS, remember, is the result of adding
(Q) and (RC) and modal axioms of S to the basic logic fK.

(Q) Et
(RC) (b≈cç∫b≈c) & (~b≈cç∫~b≈c)

This system has been widely adopted in the literature on quantified modal
logic. It has been argued that it is either superior to other logics (Cresswell,
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1991; Linsky and Zalta, 1994) or the only coherent system (Williamson,
1998). We have explained in Section 12.9 why a preference for this system
is shortsighted.

Thomason (1970) was one of the first people to use free logic to for-
mulate a system Q3 for actualist quantification, a system with varying
domains and nonrigid terms. Some of the problems he faced were dis-
cussed in Section 13.6. The main difficulty was that even the free logic
rule (åOut) is not valid.

(åOut) åxAx / EcçAc

Thomason solved the problem by requiring that his variables (our con-
stants) be rigid terms; but even so, it appeared that the rule of universal
instantiation for nonrigid terms would have to be quite complicated, for
reasons discussed in Section 13.6. To formulate a manageable system, he
presumed the underlying modal logic was as strong as S4, so that åxAx,
Öx∫x≈t / At could be adopted as a valid instantiation rule. Thomason also
noted the need to adopt what amounts to the rule (Öi) in order to obtain
a complete system.

(Öi) L ÷ ~t≈c / L ÷ ƒ, where c does not appear in L, or t

One contribution of this book is to show that there is no need to adopt
complex instantiation principles to manage nonrigid terms. When con-
stants are rigid, (åOut) is valid, and it is sufficient to allow the deduction
of exactly the correct principles for instantiation of the nonrigid terms.
The completeness results in this book, and those given by Thomason,
show that his Q3S4 generates exactly the same provable arguments as
our system oS4. Furthermore, our systems oS are both sound and com-
plete for Thomason’s Q3 models (our oS-models), for a wide variety of
propositional modal logics S, including many weaker than S4.

Before Thomason’s paper was published, Hughes and Cresswell (1968,
Ch. 10) had presented a different way to preserve classical rules for quan-
tified modal logic in a semantics with varying domains. Systems of this
kind have resurfaced in many places. They have been attractive because
they are built from classical predicate logic and their completeness is rel-
atively easy to prove. The essential insight is that (QåOut) would be valid
on varying domain semantics provided that whenever sentence Ac is T in
a world w, the referent aw(c) of c must be an existing object, that is, a mem-
ber of Dw. Under these circumstances, aw(Ac)=T will always entail that
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aw(Ec)=T, and from this it will follow that aw(ÖxAx)=T. Hence (QÖIn),
which is equivalent to (QåOut), will turn out valid.

(QÖIn) Ac / ÖxAx

The success of this approach depends on finding a way to secure (AE), the
principle that when a sentence involving c is true in a world, the referent
of c exists in that world.

(AE) If aw(Ac)=T then aw(c) µ Dw.

(AE) seems counterintuitive because from ‘Superman does not exist’
(~Es) it should not follow that ‘Superman’ refers to something real.
Nonetheless, (AE) can be made plausible if we introduce the idea that
sentences lack truth values when terms they contain do not refer to exist-
ing things. Consider for example, Russell’s famous example: ‘The present
king of France is bald’. Strawson (1950) argues that since there is no
present king of France, a present use this sentence does not make any
statement, and so lacks a truth value. If the assignment function is partial
so that sentences may be undefined, the plausible principle (Undefined)
will provide a good basis for accepting (AE).

(Undefined) If aw(c) Â Dw, then aw(Ac) is not defined.

EXERCISE 13.22 Explain why (Undefined) entails (AE).

Using partial assignment functions is an initially attractive solution to the
problem of validating the classical rules with variable domains. Unfortu-
nately, in formulating the truth condition for ∫, Hughes and Cresswell felt
compelled to adopt (oED), which they called the inclusion requirement.

(oED) If wRv then Dw ß Dv.

That is not too surprising, for (oED) corresponds in oS to the Converse
Barcan Formula (CBF), which we know follows from classical quantifier
rules and principles of K. The problem is that (oED) undermines the
whole motivation for varying domains, namely, to accommodate the intu-
ition that things in the real world need not exist in related possible worlds.
(See the discussion in Section 12.10.)

Since Hughes and Cresswell adopted the traditional formulation TK
for their underlying modal logic, the adoption of classical rules did not
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entail the Barcan Formula (BF). So their system can at least accommodate
the idea that new objects may come into existence in accessible worlds. In
this book, we have adopted the boxed subproof approach to formulating
modal principles. So in our systems, adopting the classical rules (adopting
Et) forces acceptance of both (CBF) and (BF). Therefore, Hughes and
Cresswell’s logic cannot be identified with any system formulated here,
with the exception that when the modal logic S is B or stronger, (BF) is
obtained, and the logic comes to our qS.

In Garson (1984, 2001), a semantics similar to the intensional interpre-
tation of Section 13.8 was presented called the substantial interpretation.
The basic idea was that the problems faced in working out a rule of uni-
versal generalization in a system with nonrigid terms and the objectual
interpretation could be solved if the domain of quantification were gener-
alized so that it “matched” the treatment of terms. Since nonrigid terms
have individual concepts as their intensions, the domain of quantifica-
tion should contain individual concepts rather than objects. (Remember
that individual concepts are functions from the set of possible worlds W
to the set of possible objects D.) To accommodate systems with varying
domains, a separate domain Iw of individual concepts was introduced for
each world w, and an intentional existence predicate E was defined so
that Et was true in a world w just in case the intension of t was a member
of E in w. So the truth conditions for å and E on this semantics read as
follows:

(iwå) aw(åxAx)=T iff for every i µ Iw, aw(Ai)=T.
(iE) aw(Et)=T iff a(t) µ Iw.

The effect of (iE) is that E becomes and intensional predicate. That is, the
rule (eE) of substitution of identicals no longer holds behind E.

(eE) s≈t / EsçEt

However, it can be shown that the (iE), which allows substitution of prov-
able identities, does preserve validity on this semantics.

(iE) ÷ s≈t / ÷ EsçEt

When E is intensional, the (≈Out) rule must be restricted so that it does
not apply to sentences of the form Et. Otherwise (eE) will be obtained.
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This semantics validates (tå), universal generalization for all terms,
including nonrigid terms.

(tå) åxAx / EtçAt

Because this semantics validates (tå), and the objectual interpretation
does not, it does not qualify as a system from which all the other log-
ics can be constructed by laying down extra conditions on the domains
and frames of the models. So it does not serve as a good foundation for
quantified modal logic. To provide such a general starting point, Garson
(2005) introduced a global domain I of individual concepts and proposed
the following more general truth condition in place of (iwå):

(iiå) aw(åxAx)=T iff for every i µ I, if i µ Iw, aw(Ai)=T.

In this semantics, the effect of (iwå) may be obtained by assuming that
every member of Iw is in I, and the effect of the objectual interpretation
is obtained by stipulating that I is the set of all constant functions, and
that E is extensional, in the sense that (eE) holds.

(eE) If aw(s)=aw(t) and aw(Es)=T then aw(Et)=T.

When E is extensional, it is possible to define an extensional domain
Dw from Iw by letting d be in Dw iff for some i in Iw, i(w)=d. Under
these circumstances the truth condition (iiå) reduces to the intensional
interpretation used in this book.

(iå) aw(åxAx)=T iff for every i µ I, if i(w) µ Dw then aw(Ai)=T.

By working with an extensional domain Dw, instead of Iw, this book
avoids complications both in exposition and in the completeness results.
However, the reader who wants to explore a fully general quantified
modal logic will want to consider systems that not only treat E as an inten-
sional predicate, but include other intensional predicates as well. (For the
merits of introducing intensional predicates in general, see Thomason’s
Introduction to (Montague, 1974) and Bressan (1973).)

13.11. Summary of Systems and Truth Conditions

What follows is a table of different quantified modal logics, their model
conditions, and the corresponding rules (including axioms) to be added
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to system fS. Basic truth conditions are listed first, followed by definitions
of the different kinds of models and their special truth conditions. All
models meet the basic truth conditions (ƒ), (ç), (∫). It is also assumed
that <W, R> is a frame for a given propositional modal logic S and that D

is a domain structure consisting of a nonempty set D (of possible objects)
and a subset Dw of D for each world w. It is presumed that aw(e) is the
appropriate extension of expression e, where an appropriate extension of
a term is a member of D, an appropriate extension for a list of terms is a list
of members of D, an appropriate extension of a sentence is a truth value
(either T or F), and an appropriate extension of a predicate letter is a set
containing lists of members of D.

Basic Truth Conditions

(ƒ) aw(ƒ)=F.
(ç) aw(AçB)=T iff aw(A)=F or aw(B)=T.
(∫) aw(∫A)=T iff for each v such that wRv, av(A)=T.
(t≈) aw(t≈t)=T and if aw(s≈t)=T and aw(Plsl′)=T then aw(Pltl′)=T.
(≈) aw(s≈t)=T iff aw(s)=aw(t).
(Pl) aw(Pl)=T iff aw(l) µ aw(P).
(E) Dw=aw(E).

Abbreviations

(ti) aw((t1, . . , ti))=(aw(t1), . . , aw(ti)).
(d) aw(d)=d.
(f) aw(f)=f(w).

Substitution Interpretation

A tS-model <W, R, a> obeys and (t≈) and (å).
A sS-model <W, R, D, a> obeys (≈), (Pl), (E) and (å), or equivalently,

it obeys (≈), (Pl), and (åDw).

(å) aw(åxAx)=T iff for every c, if aw(Ec)=T then aw(Ac)=T.
(åDw) aw(åxAx)=T iff for every c, if aw(c) µ Dw then aw(Ac)=T.

Objectual Interpretation

A oS-model <W, R, D, a> obeys (≈), (Pl), (E), (oå), and (RC).

(oå) aw(åxAx)=T iff for d µ D, if d µ Dw then aw(Ad)=T.
(RC) aw(c)=av(c) for all w, and v in W.
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Conceptual Interpretation

A cS-model <W, R, D, a> obeys (≈), (Pl), (E), and (cå). IC is the set of
all functions from W into D.

(cå) aw(åxAx)=T iff for all f µ IC, if f(w) µ Dw then aw(Af)=T.

Intensional Interpretation

An iS-model <W, R, D, I, a> contains a subset I of the set of individual
concepts (functions from W into D) and obeys (≈), (Pl), (E), (cI), and (iå).

(cI) a(c) µ I.
(iå) aw(åxAx)=T iff for every i µ I, if i(w) µ Dw then aw(Ai)=T.

Stronger systems may be captured within the intensional interpretation
as follows:

Domain Rules Corresponding Domain Conditions
(ÖE) ÖxEx For some i µ I, i(w) µ Dw.
(Q) Et Dw=D.
(ED) Ecç∫Ec If wRv and aw(c) µDw, then av(c) µDv.
(CD) ~Ecç∫~Ec If wRv and av(c) µDv, then aw(c) µDw.
(RC) (b≈cç∫b≈c)& (~b≈cç∫~b≈c) aw(c)=av(c).
(Öi) L ÷ ~t≈c / L ÷ ƒ, no c in L, t For some i µ I, i(w)=aw(t).
(o)=(RC)+(Öi) I is the set of all constant functions

with values in D.
(oÖE)=(o)+(ÖE) (o) + Dw is not empty.
(oED)=(o)+(ED) (o) + if wRv, then Dw ß Dv.
(oCD)=(o)+(CD) (o) + if wRv, then Dv ß Dw.
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Trees for Quantified Modal Logic

14.1. Tree Rules for Quantifiers

In order to calculate whether an argument is valid or invalid, it is useful to
formulate the truth conditions for å in the form of tree rules. For example,
the substitution truth clause (å) supports the following pair of rules:

(å) aw(åxAx)=T iff for every c, if aw(Ec)=T then aw(Ac)=T.

fS-trees will be trees that use these two quantifier rules, together with
the tree rules for a given propositional modal logic S. (Two additional
rules for fS-trees will be given in the next section to manage identity.) In
constructing fS-trees, it is important to pay attention to the difference in
the position of the horizontal line in (åT) and (åF). The (åT) rule requires
that both åxAx and Ec be in a world before the rule can be applied to place
Ac in the same world. On the other hand, (åF) indicates that whenever
~åxAx is in a world, then one may add both Ec and ~Ac to the same
world, provided c is a constant new to the tree. The restriction requiring
that c be new to the diagram is very important. Given aw(åxAx)=F, the
substitution clause (å) entails that there is some constant c such that
aw(Ec)=T and aw(Ac)=F. Since we have no information about which
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constant this is, we may not identify it with any other term found already
in the tree. If a term already in the tree is chosen, it is possible to close
a tree even though the argument being tested is tS-invalid. For safety, a
brand new constant must be chosen instead. One might worry that (åF)
is not safe enough, for neither Ec nor ~Ac follows from ~åxAx, even
given that c is new. This worry is reasonable, but it will be laid to rest in
Section 16.5 where the correctness of trees will be proven.

There is a final worry to contend with concerning (åF). Although trees
are normally constructed from finite arguments, it will be useful to con-
sider the case where the opening world of a tree contains infinitely many
sentences. In this situation, all of the constants of the language may already
appear in the tree before any step is applied. But then it will be impossible
to find a constant c that is new to the tree when applying (åF). This prob-
lem may be overcome by assuming that before tree construction takes
place, the language is expanded (if necessary) so that there are infinitely
many constants that do not appear in the tree.

In case trees for classical quantification are desired, qS-trees can be
defined by adding to the rules for fS-trees a new rule (Q) that says that Et
should be added to every world of the tree, for each term t that occurs in
it. The effect of (Q) is that whenever åxAx appears in a world, Et will be
available to warrant the deduction of At. Furthermore, since Ec may be
placed in any world, there is never any need to derive Ec using (åF). So
the procedures for the quantifiers may be simplified in qS-trees by using
the following derived tree rules:

Here is an fK-tree for the argument åx(PxçQx), åxFx / åxQx to
illustrate the use of these rules:
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EXERCISE 14.1 Fill in the rule names for each step of this tree.

Notice that (åT) could not be applied to the first two steps until Ec was
introduced to the tree by applying (åF) to the third step. This illustrates a
useful ordering strategy: consider applying (åF) steps before (åT) steps
wherever possible. This idea is important for another reason. Consider
the following attempt to construct a qK-tree for the same argument. In
the classical case, Ec is not needed for the (QåT) rule, and so it is legal
to apply (QåT) to the first two steps. But though that is legal, it is a bad
idea because it leads to a violation of the restriction on (QåF) when that
rule is finally applied.

The restriction on (QåF) is violated because the constant c appeared in
the tree when (QåF) was used. The correctly constructed tree applies
(QåF) as soon as possible, before the letter c appears.

Using (DefÖ), it is not difficult to show that the following rules for Ö are
derivable principles for fS-trees:
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In the case of qS-trees the rules for Ö may be simplified to the following
ones:

EXERCISE 14.2 Using (DefÖ), show that (QÖT) and (QÖF) follow from
(QåT) and (QåF). Now do the same for (ÖT) and (ÖF).

Here is a fK-tree for the tK-invalid argument ÖxPx, ÖxQx / Öx(Px&Qx)
to illustrate the use of these rules:

This tree has an open branch ending with ~Pb, so a diagram for a truth
value model (or tK-model) that is a counterexample to the argument has
been constructed to the right. It simply lists the atomic sentences that
appear on this open branch. This corresponds to a tK-counterexample
where aw(Ec)=aw(Pc)=aw(Eb)=aw(Qb)=T, and aw(Qc)=aw(Pb)=F. It
is worth taking a moment to check that this assignment qualifies as
a tK-counterexample to ÖxPx, ÖxQx / Öx(Px&Qx) by verifying that
aw(ÖxPx)=aw(ÖxQx)=T and aw(Öx(Px&Qx))=F. Notice that to obtain
the correct counterexample, every possible step must be applied to
the tree. It was especially important that (ÖF) was applied twice to
~Öx(Px&Qx) to obtain instances for both the constant c and the constant
b. In general you should check carefully that an instance has been obtained
for every term in the tree for those steps to which (ÖF) and (åT) apply.
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EXERCISE 14.3 Check the following arguments for tK-validity and qK-
validity with trees, where a qK-model is a tK-model that satisfies (Q):
aw(Et)=T. Construct tK- or qK-counterexample diagrams for each invalid
argument and verify that the models you constructed are indeed counter-
examples.

a) åx(PxçQx), ÖxPx / ÖxQx
b) åx(Px&Qx) / åxPx&åyQy
c) åx(PxçQ) / (ÖxPxçQ)
d) åxPxçåxQx / åx(PxçQx)
e) åxåyRxy / åyåxRxy
f) åx(Px√Qx) / åxPx√åyQy
g) åxPx ≠ ~Öy~Py
h) åx(PxçQx) / åx(Öy(Px&Rxy) ç Öz(Qx&Rxz))
i) (Hard.) (Pc&åy(Pyçy≈c)) ≠ åy(Pc≠c≈y)

14.2. Tree Rules for Identity

The tree rules for ≈ are the same as the rules for proofs in fS.

To illustrate the use of these rules, here is a fK-tree demonstrating
that åyÖxx≈y is tK-valid:

There are two points worth mentioning about this tree. Once Ec is intro-
duced by applying (åF) to the first step, it becomes possible for (ÖF) to
be applied to obtain the instance ~c≈c. This is legal because there is no
restriction on the (ÖF) rule and ~c≈c is an instance of the right kind.
To check this, note that ~Öxx≈c abbreviates ~~åx~x≈c, which comes to
åx~x≈c. Note that ~c≈c is truly an instance of åx~x≈c because ~c≈c
results from replacing c for x in ~x≈c. Finally, note the introduction of
c≈c by (≈In) in the last step to close the tree. A simpler rule would be to
simply close any branch immediately when it contains a sentence of the
form ~t≈t.
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Here is a fK-tree for the argument Pc / åy(c≈yçPy):

Notice that c≈b and ~Pb were obtained in the fifth and sixth steps, but
(≈Out) does not, strictly speaking, warrant the replacement of c for
b in ~Pb to obtain ~Pc to close the tree. The rule (≈Out) says only
that s≈t and warrants the replacement of t for s in atomic sentences.
That is why it was necessary to introduce c≈c with (≈Out) to reverse
c≈b, so that the substitution could be correctly accomplished. This may
be excessively finicky. To save annoyance of such extra steps, it is safe
enough to adopt a more liberal policy that simply assumes symmetry (and
transitivity) of ≈.

EXERCISE 14.4 Use a fK-tree to show 1Pc / åy(Py≠c≈y) is tK-valid,
where 1Pc is defined by: Pc & åy(Pyçy≈c). Now use a fK-tree to check
whether åy(Py≠c≈y) / 1Pc is tK-valid. Try the same one with a qK-tree.
Can åy(Py≠c≈y) be used as the definition for 1Pc in free logic?

It is worth making clear how these instantiation principles apply to fK-
trees for arguments such as åxPx / ÖxPx where no sentences of the form
Ec appear in the tree. In this case, the fK-tree begins with åxPx and
~ÖxPx. Once (DefÖ) and (~F) are applied to the second line to obtain
åx~Px, no further rule may be applied, for no sentence of the form Ec is
available to warrant the use of (åT). The result is a tK-counterexample
to the argument with the feature that Ec is false for every choice of
constant c, that is, nothing exists in any world of the model. However,
when the qK-tree is constructed, there is no restriction on the instanti-
ation principle, so any instance Ac of åxAx may be placed in the tree
using (QåT).
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EXERCISE 14.5 Complete fK- and qK-trees for åxPx / ÖxPx noting the
differences.

In the interest of efficient tree construction, it is worth noting that it is
never necessary to take an instance of åxAx with respect to a constant
that fails to appear in the tree, with the one exception that in the case of
qK-trees an instance of åxAx is needed if no constant appears so far in
the tree.

14.3. Infinite Trees

In order to construct a completed diagram for an invalid argument, it is
important to make sure that every step that can be applied is in fact applied
in the tree. Otherwise the model constructed from an open branch of the
tree may not qualify as a counterexample. Completing every possible step
in a fS-tree requires that if åxAx appears in world w, then there must be
an instance Ac in w for every constant c such that Ec is in w. For qS-trees
the requirement is that whenever åxAx appears in world w, an instance
Ac must appear in w for every constant c that appears in the tree. (If none
appears, an instance is taken for an arbitrarily selected constant.)

Satisfying these requirements can cause some trees to become infinite,
as the following qK-tree for Öxåyx≈y illustrates. The tree opens by apply-
ing (QÖF) to obtain an instance for the constant c. But then (QåF) must
be applied to introduce a new letter c′ into the tree.

But now it is necessary to apply (QÖF) to the first line to form a new
instance with respect to c′, and this will cause the introduction of yet a
new constant c′′ into the tree. Clearly the process will go on forever.
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Trees may become infinite because sentences with shapes åxAx, and
~ÖxAx cannot be “crossed off” when (QåT) or (QÖF) is applied to them,
for it may be necessary to apply these rules again if new letters are later
introduced into the tree. For this reason, trees do not serve as a decision
procedure for quantificational logic since it is possible that a tree may cycle
infinitely between creating new terms and applying (QåT). In that case,
it will not be possible to determine whether the argument being tested
is valid in a finite numbers of steps. Trees do provide a quasi-decision
procedure, in the sense that, if the argument is valid, the tree will even-
tually close after finitely many steps. However, because of the possibility
of infinite trees, one may work forever on an invalid argument and never
find out that it is invalid in a finite amount of time.

EXERCISE 14.6 There is an important difference between the claim that
everything has a cause: åxÖyCxy and there is a cause of everything: ÖyåxCxy.
Some causation-based arguments for the existence of God blur this important
distinction by proceeding from the idea that each thing has a cause to the idea
that there must be one thing that is the cause of everything. Check the following
arguments with qK-trees: åxÖyCxy / ÖyåxCxy and ÖyåxCxy / åxÖyCxy. What
happens? What is the result in the case of fK-trees? Would the results change
if we were to add ÖxEx as an axiom? How do these results bear on arguments
for the existence of God?

14.4. Trees for Quantified Modal Logic

So far we have explained the tree rules using arguments that did not
contain the modal operator. When rules for ∫ and å are applied in the
same tree, new issues arise concerning the ordering of steps during tree
construction. To illustrate the point, here is a tree that shows the qK-
validity of ∫åxPx / åx∫Px. You may think of this as an “argument”
version of the Converse Barcan Formula (CBF): ∫åxPxçåx∫Px. The
order in which the steps were applied is indicated with circled numerals.

Note that the rules for ∫ require that (∫T) not be applied to ∫åxPx until
a new world v is formed. So before (∫T) could be used, it was necessary
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that (QåF) be applied to ~åx∫Px, and (∫F) applied to the result: ~∫Pc
to create world v. After these steps, (∫T) and (QåT) can be used to close
the tree. This illustrates a general strategy for ordering the construction
of a tree. It is best to apply (QåF) (or (åF) in the case of free logic)
before applying (QåT) (or (åT)). This is reminiscent of the modal logic
principle that it is better to apply (∫F) before (∫T).

An important issue arises during the construction of a qK-tree that
shows (BF) is qK-valid. Here is the tree about halfway through its
construction:

As we explained, (∫F) is applied first, and (QåF) is immediately applied
to the result in world v. Now it is necessary to return to world w and apply
(QåT) to the first line, after which (∫T) can be applied to close the tree.

It is very important that the steps be carried out in this order to guar-
antee that the restriction on the (QåF) rule is honored. If, for example,
(QåT) had been applied before (QåF), then the restriction would require
that the instance for ~åxPx chosen not involve the letter c. So the follow-
ing tree would be illegal because here the instance ~Pc chosen for ~åxPx
contains a letter that has already been introduced into the tree (in the
third step of world w).

To satisfy the restriction on (QåF), it was necessary to delay the applica-
tion of (QåT) until after (QåF) was applied.
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You may wonder whether returning to work in world w violates the
Placement Principle. (See Section 4.1.) Actually it does not, because all
that principle requires is that the result of applying a rule be placed on
every open branch below the step to which it is applied, and that holds
in this case. However, it can become inconvenient to find room to place
steps in a world that has already been completed. To avoid the problem
you might want to use the continuation method described in Section 6.3.
Using it, we may construct a tree where each step is added to the bottom
of the tree as follows.

Our next project will be to use fK-trees to show that “argument” ver-
sions of the Barcan Formulas are tK-invalid. We will construct open trees
for åx∫Px / ∫åxPx and ∫åxPx / åx∫Px, and then explain how to convert
them into counterexamples. We begin with (BF).

Notice that we are unable to apply (åT) to åx∫Px in world w because
Ec is not available there.

The tree is open, and so we are ready to construct a tK-counterexample
to (BF). The diagram to the right of the tree illustrates the basic features
of the open branch model. We choose for the tK-model a language where
P is the only predicate letter and c is the only term. We then define the
tK-model <W, R, a> for that language so that the frame <W, R> con-
tains the worlds w and v of our tree, and where R is given by the arrow
structure found in the tree. (In this case the only fact that holds for R is
that wRv.) Since neither Pc nor Ec appear in w, we follow the principle
for constructing counterexamples in propositional logic and assign to the
absent atoms the value F. So aw(Ec)=F and aw(Pc)=F. In world v, we
have Ec but not Pc, so a gives the following values in v: av(Ec)=T and
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av(Pc)=F. All other sentences are assigned values by a according to the
truth conditions (ƒ), (ç), (∫), and (å).

Let us verify that the model we have just defined represents a coun-
terexample to (BF). Remember, the model is defined for a language that
contains c as its only term. We know that aw(Ec)=F. By (å) we also
know that if aw(åx∫Px)=F, there must be some constant c such that
aw(Ec)=T and aw(∫Pc)=F. Since c is the only constant in the language
of our model and aw(Ec)=F, this condition cannot be satisfied. It fol-
lows that aw(åx∫Px) cannot be F, and so it is T. Now consider world v.
Here av(Ec)=T and av(Pc)=F, so it follows that av(åxPx)=F. By (∫),
aw(∫åxPx)=T only if av(åxPx)=T. Since the latter is not so, it follows
that aw(∫åxPx)=F. In summary, aw(åx∫Px)=T and aw(∫åxPx)=F. So
the tK-model we have just defined is truly a tK-counterexample to (BF)
as we have claimed. Notice that this model corresponds to the intuitive
reason one has for rejecting the Barcan Formula, for it proposes the pos-
sibility that a constant may refer to something in one world w that does
not exist, but that does exist in some accessible world v. If the contracting
domain condition (CD) were to hold, it would have been impossible to
construct such a counterexample.

In the next tree, the tK-invalidity of an instance of (CBF) is shown:

Here (åT) may not be applied to åxPx in world v because Ec does not
appear there. When we construct the tK-counterexample, Ec is false at v.
Since c is the only term of the language, and av(Ec)=F, it follows that for
every constant c such that av(Ec)=T, av(Pc)=T insuring that av(åxPx)=T.
Since v is the only world such that wRv, and åxPx is T there, the premise
∫åxPx is T in w.

EXERCISE 14.7 Explain why åx∫Px is false in w on the above tK-
counterexample diagram.

This tK-model illustrates why (CBF) is fK-invalid, namely, that it is pos-
sible for an object that exists in one world to fail to exist in an accessible
world. In models that meet the expanding domain condition (ED), a
counterexample of this kind is not possible.
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EXERCISE 14.8 Practice using diagrams by showing the following are qK-
valid, using the classical rules (QåT) and (QåF). Then determine which of the
following is tK-valid, using the rules (åT) and (åF). Create counterexamples
for the tK-invalid arguments. You may use the derived tree rules for Ö if you
like.

a) åx(∫Px&∫Qx) / ∫(åxPx & åxQx)
b) ∫(åxPx & åxQx) / åx(∫Px&∫Qx)
c) ∫åx(PxçQx), Öx∂Px / Öx∂Qx
d) åx∫(PxçQ) / Öx∂Pxç∂Q
e) ∫∫åxåyLxy / ∫∫åyåxLxy
f) åx∫Px √ åx∫Qx / ∫åx(Px√Qx)
g) ∫åxPx / ~Öx∂~Px
h) ~Öx∂~Px / ∫åxPx
∗i) ∫åx(PxçQx), ~∫åx~Px / ~∫åx~Qx
j) ∫s≈t, ∫Ps / ∫Pt

k) Öx∫x≈t, åx∫Px / ∫Pt

14.5. Converting Trees into Proofs

It is possible to convert closed fS-trees into proofs in fS, and the same
is true when domain rules to be discussed later are included in fS. This
result is important for two reasons. It will provide a method for locating
proofs that might be otherwise quite difficult, and it serves as a crucial
step in the proof of the completeness of the various systems. The method
for converting trees to proofs in QML is a variant of the method used for
propositional modal logics. The idea is that for each rule applied in a tree,
there is a corresponding step to apply in the proof. For fS, the additional
tree rules are (åT), (åF), (≈In), and (≈Out). But (åT) is just (åOut),
and the identity rules are the same for trees and proofs. So the only
remaining problem is to explain how to get the effect of (åF) in a proof.
To mimic the effect of (åF), it is useful to prove the following derived
rule:

where c is not in ~åxAx nor in any hypothesis under which ~åxAx lies.
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EXERCISE 14.9 Show (~åƒ) is a derivable rule of fK. What would be the
derived rule needed to manage the derived tree rule (ÖT)?

In the case of classical quantification, the following derived rule may be
used for (QåF). It has strong kinships with the (QÖOut) rule introduced
in Section 12.2.

where c is not in ~åxAx nor in any hypothesis under which ~åxAx lies.

EXERCISE 14.10 Show (Q~åƒ) is a derivable rule of qK.

It is simpler to illustrate the conversion method for QML with classical
rules first. Once that method is made clear, the method for the free logic
rules should be obvious. Here is the closed qK-tree for the “argument”
version of (CBF) from which the proof will be constructed in stages.
The first step in the tree applies (QåF) to ~åx∫Px to obtain ~∫Pc. The
corresponding line of the proof will be to add ~∫Pc to the proof as a new
hypothesis.

The plan for solving the problem is to prove ƒ in the subproof headed by
~∫Pc, which we have just introduced. When ƒ is proven there, it will be
possible to place ƒ in the parent subproof using the rule (Q~åƒ). The rest
of the problem can be solved using strategies from propositional modal
logic.
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Unfortunately, the conversion method is not always so straightforward.
There is a complication to be faced that can be illustrated by the following
attempt to convert the qK-tree for (BF) into a proof:

To the right, the first two steps of the tree have been converted into
steps of a proof. The first step used (∫F) to create a new world v,
and the corresponding step of the proof was to create a boxed sub-
proof headed by ~åxPx. The next step was an application of (QåF),
which created the subproof headed by ~Pc. We are faced with a puz-
zle since step 3 of the tree involves applying (åOut) to åx∫Px in the
world w to produce ∫Pc, whereas in our proof, we have already con-
structed the subproof that represents the contents of the world v. We
appear to need some way to return to the subproof for world w to apply
(åOut).

One solution that often works in such cases is to construct the steps
of the proof in the order of their appearance in the tree, rather than the
order in which the steps were entered into the tree. Since the use of (QåT)
is the first step that appears in the tree, the corresponding step, the use
of (åOut), should be entered into the proof before the creation of the
boxed subproof headed by ∫ and åxPx. The conversion process is now
straightforward.
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Note that placing ∫Pc in the third line of this proof did not cause a
violation of the restriction on the (Q~åƒ) rule because that step did not
cause c to appear in any hypothesis for ~åxPx.

EXERCISE 14.11 Convert all closed trees constructed in Exercise 14.8 into
proofs. Double check that the restriction on (Q~åƒ) is not violated in these
proofs.

Although this strategy usually works, it does not provide a general
solution to the problem of converting all trees into proofs. The reason is
that the early use of a (åOut) on a sentence with the form åx(Ax√Bx) may
introduce the step Ac√Bc, which corresponds to a branch in the tree with
Ac on one and Bc on the other branch. But in the corresponding proof,
Ac and Bc will head subproofs within which (~Qåƒ) must be applied,
and this would violate the restriction on the (~Qåƒ) rule. The problem
is illustrated by the following partial proof, which attempts to convert the
tree for the argument åx(∫Px√∫Qx) / ∫åx(Qx√Px):
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EXERCISE 14.12 Construct the tree for the argument åx(∫Px√∫Qx) /
∫åx(Qx√Px).

We seem pulled two ways. It would seem best to postpone the use of
(åOut) since this caused the introduction of hypotheses ∫Pc containing c
with the result that the restriction on (~Qåƒ) is violated. If the steps could
be reordered so that the subproof headed by ∫Pc could lie within the sub-
proof headed by ~(Qc√Pc), the violation could be avoided. However, such
a reordering does not seem possible since a boxed subproof lies between
these two hypotheses, foiling any attempt at a reordering of the steps.

For a general solution to showing that arguments with closed fS-trees
are always provable in fS, it is easier to employ the technique used for
propositional logic presented in Section 7.10. It might be a good idea for
the reader to review that section at this point. The strategy is to show that
the branch sentence B* for any branch of a closed tree is inconsistent,
that is, B* ÷ ƒ. This follows immediately from the Tree Rule Lemma,
which asserts that if the children of *B are inconsistent, then so is *B. All
that is needed to extend the same argument to fS is to add cases for the
rules (åT), (åF), (≈In) and (≈Out) to the Tree Rule Lemma. We give the
reasoning for (åF) here and leave the others as an exercise.

(åF). When rule (åF) is applied, *B is equivalent to a sentence with
the form C1&∂(C2& . . ∂(Cn&~åxAx) . .), and *B′ equivalent to
C1&∂(C2& . . ∂(Cn&~åxAx&(Ec&~Ac)) . .). The (åF) rule requires
that c be new to the tree. Therefore c is not in *B, and so not in any of
the Ci nor in åxAx. Since *B′ ÷ ƒ, it follows by the * Lemma that C1,
∫, C2, . . ∫, Cn, ~åxAx, (Ec&~Ac) ÷ ƒ. It follows that C1, ∫, C2, . . ∫,
Cn, ~åxAx ÷ EcçAc by (IP), (DN), and (Def&). Since c is not in any
of these hypotheses nor in åxAx, (åIn) may be used to obtain C1, ∫,
C2, . . ∫, Cn, ~åxAx ÷ åxAx. But C1, ∫, C2, . . ∫, Cn, ~åxAx ÷ ~åxAx
and so C1, ∫, C2, . . ∫, Cn, ~åxAx ÷ ƒ by (ƒIn). By the * Lemma it
follows that *C1 & ∂(C2 & . . ∂(Cn&~åxAx) . .) ÷ ƒ, and so *B ÷ ƒ
as desired.

EXERCISE ∗14.13 Complete the cases for (åT), (≈In) and (≈Out) in the
Tree Rule Lemma of Section 7.10. (Hint: Use the Entailment Lemma of
Section 7.10.)
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EXERCISE 14.14 Use the method for converting trees into proofs to find
proofs of the following facts:

a) The system fK+Ecç∫Ec is equivalent to fK+(CBF).
b) (BF) is provable in fK+~Ecç∫~Ec.
c) (BF) is provable in FB.

14.6. Trees for Systems that Include Domain Rules

In Section 13.9 a number of different ways were explored to strengthen
fS, depending on the treatment of the quantifier domains.

(ÖE) ÖxEx
(Q) Et
(ED) Ecç∫Ec
(CD) ~Ecç∫~Ec
(tå) åxAxç(EtçAt)
(RC) (b≈cç∫b≈c) & (~b≈cç∫~b≈c)
(Öi) L ÷ ~t≈c / L ÷ ƒ, no c in L, t

It is a simple matter to reflect these principles with trees. In the case of
the first six axioms, simply use a tree rule that lets one add the appro-
priate axiom to any world of the tree. To guarantee that every possible
step of a tree is carried out, it is assumed that the steps are ordered
during tree construction to oscillate between applying an ordinary tree
rule and adding instances of axioms. In the case of (ÖE), the axiom need
be added only once to each world. However, (Q) has infinitely many
instances, one for each of the terms t in the language. It turns out that
the large number of instances can easily be managed because the only
instances that must be added to a tree are those for terms that have been
introduced into the tree. So at each stage in tree construction, one will
only need to add finitely many instances of (Q) to the tree. The same
principle may be used to deal with introducing instances of (CD) and
(ED). In the case of (tå), there is even a larger variety in the possible
instances since the number of possible instances of åxAx is also infinite.
However, this axiom need only be added to a world on a branch of a
tree when åxAx appears in that world and term t is in the tree. So again
there are only finitely many instances of an axiom to add at each stage in
tree construction. Tree construction for (ED), (CD), and (tå) could have
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been simplified somewhat by introducing rules in place of these axioms
as follows:

(ED) Ec (CD) ~Ec (tå) åxAx
Et

∫Ec ∫~Ec
At

However, we will presume that trees are created using the axioms in order
to simplify the proof of the Tree Model Theorem in the next chapter.

It is necessary to find a way to reflect the rule (Öi) with trees.

(Öi) L ÷ ~t≈c

L ÷ ƒ provided c is not in L or t

The effect of this rule can be captured by a tree rule (tc) requiring that for
each term t introduced to the tree, t≈c is added to each world of a tree,
where c is a constant chosen so that it is new to the tree.

Let fS be any system that results from adding to fK any selection of
the rules or axioms we have just discussed and modal logic axioms (D),
(M), (4), (B), (5), and (CD). Then a fS-tree is constructed by using the
corresponding rules that have just been described.

EXERCISE 14.15 Complete trees to demonstrate the following:

a) …fK+(ÖE) åxAxçÖxAx
b) …fK+(RC) (b≈c&∫Pb)ç∫Pc
c) …fK+(ED) ∫åxAxçåx∫Ax
d) …fK+(CD) åx∫Axç∫åxAx
e) …fK+(Q) Ecç∫Ec
f) …fK+(Q) ~Ecç∫~Ec

g) …fK+(Öi) Et≠Öxx≈t

h) …fK+(tå) Et≠Öxx≈t

14.7. Converting Trees into Proofs in Stronger Systems

In this section, the method for converting fS-trees into proofs in fS will be
extended to cover the case when rules discussed in the previous section
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are included in fS. What is needed is to show that when any of the rules or
axioms are added to a fS-tree, the corresponding step can be carried out
in a fS proof. The case of those tree rules that simply add axioms is easily
dealt with since the corresponding system is able to prove these sentences
in exactly the same way. (For a full-fledged proof, see the explanation at
the end of Section 7.10.) So all that remains to show that fS-trees can
always be converted into proofs is to consider the tree rule (Öi).

The corresponding tree rule for (Öi) in this case places t≈c in a world,
where c is new to the tree. To show how to convert each tree into a proof,
we will need to extend the Tree Rule Lemma of Section 7.10 to this new
rule. Here is how the reasoning goes:

When tree rule (Öi) is applied, *B is equivalent to a sentence with the
form C1&∂(C2& . . ∂(Cn&A) . .), and *B′ equivalent to C1&∂(C2& . .
∂(Cn&A&t≈c) . .). The (Öi) rule requires that c be new to the tree.
Therefore, c is not in *B, and so not in any of the Ci nor in t. Since
*B′ ÷ ƒ, it follows by the * Lemma that C1, ∫, C2, . . ∫, Cn, A, t≈c
÷ ƒ. It follows that C1, ∫, C2, . . ∫, Cn, A ÷ ~t≈c by (IP), and (DN).
Since c is not in any of these hypotheses nor in t, the proof rule (Öi)
may be used to obtain C1, ∫, C2, . . ∫, Cn, A ÷ ƒ. By the * Lemma
it follows that *C1 & ∂(C2 & . . ∂(Cn&A) . .) ÷ ƒ, and so *B ÷ ƒ as
desired.

EXERCISE 14.16 Prove the following argument in oS4: åx(∫Px√∫∫Qx),
Öx∫x≈t / ∫Pt√∫∫Qt by first constructing the tree and converting the tree into
a proof.

EXERCISE 14.17 Show Et≠Öxx≈t is oS, with the help of the appropriate
tree. Convert this tree into a proof in oS.

14.8. Summary of the Tree Rules
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15

The Adequacy of Quantified Modal Logics

Many different systems of quantified modal logic have been presented
in this book, each one based on the minimal system fK. In the next few
chapters, we will show the adequacy of many of these logics by showing
both their soundness and completeness. When S is one of the quantified
modal logics discussed, and the corresponding notion of an S-model has
been defined, soundness and completeness together amount to the claim
that provability-in-S and S-validity match.

(Soundness) If H ÷S C then H …S C.
(Completeness) If H …S C then H ÷S C.

This chapter will be devoted to soundness and to some theorems that
will be useful for the completeness proofs to come. Some of these results
are interesting in their own right since they show how the various treat-
ments of the quantifier are interrelated. Sections 15.4–15.8 will explain
how notions of validity for the substitution, intensional, and objectual
interpretations are shown equivalent to corresponding brands of valid-
ity on truth value models – the simplest kind of models. This will mean
that the relatively easy completeness results for truth value models can
be quickly transferred to substitution, intensional, and objectual forms
of validity. Readers who wish to study only truth value models may omit
those sections.

Two different strategies will be presented to demonstrate completeness
for truth value models. Chapter 16 covers completeness using a variation
on the tree method found in Chapter 8. The modifications needed to
extend the completeness result to systems with quantifiers are fairly easy
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to supply. Chapter 17 presents completeness results using the canonical
model technique of Chapter 9. This method is the standard technique
found in the literature, but it requires fairly extensive modifications to
the strategy used for propositional modal logic. Chapters 16 and 17 are
designed to be read independently, so that one may be understood without
the other.

The reader may be disappointed to discover that it is not always pos-
sible to extend completeness results for a propositional modal logic to
the system that results from adding the quantifiers. We will not prove
completeness results for quantified modal logics based on systems whose
corresponding conditions include density or convergence, nor will we be
able to obtain results for the general axiom (G) of Chapter 10. This is not
our fault. We now know that at least some of these systems are in fact
not complete (Cresswell, 1995). Exactly where the incompleteness holds,
and how/whether it can be repaired by adding new rules, is an important
open question in quantified modal logic.

To prove the soundness of systems of quantified modal logic, the sound-
ness proof for the propositional systems must be supplemented with ver-
ification that the rules for the quantifiers preserve validity. We will show
soundness for systems that use the intensional interpretation first (Sec-
tions 15.2 and 15.3), and then explain how the result may be extended to
a proof for the substitution (15.9) and objectual (15.10) interpretations.

15.1. Preliminaries: Some Replacement Theorems

The adequacy proofs for the intensional interpretation depend on show-
ing two basic properties of iS-models concerning replacement of terms
for their values in hybrid sentences. The first result is called the Inten-
sional Instance Theorem. It says that when the intension of t is i, then
sentence At and the hybrid Ai have the same truth values in all worlds.
(Remember, At is the result of replacing the term t for occurrences of a
variable x bound by åx in åxAx, and Ai results from replacing i for x in
the same way.)

Intensional Instance Theorem.
If a(t)=i, then aw(At)=aw(Ai) for all w µ W.

It is not difficult to see why this theorem should hold. When a(t)=i, we
have a(t)=a(i), because the condition (f) ensures that a(f) is f in every
iS-model. But if a(t)=a(i), the result of replacing t for x in list l and the
result of replacing i for x in list l will produce two lists, [l]t/x and [l]i/x, with
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exactly the same values in all the possible worlds, that is, a([l]t/x)=a([l]i/x).
This will ensure that the values of atoms Pltl′ and Plil′ will be identical.
Since the values of all complex sentences depend on the intensions of
the atoms, it will follow that aw(At)=aw(Ai) for any world w. Although
the intuition behind the proof of this theorem is simple, the details are
tedious. So the proof of the Intensional Instance Theorem is given in an
appendix at the end of this chapter.

The Intensional Instance Theorem provides a crucial fact needed to
show soundness and completeness on the intensional interpretation. An
analog of this theorem for objects d (members of the domain D) rather
than intensions would be the following:

(Bad Instance) If aw(t)=d, then aw(At)=aw(Ad) for all w µ W.

As the name suggests, this statement is incorrect, and its failure is the
fundamental reason why formulating valid principles for the objectual
interpretation is difficult. The reason (Bad Instance) does not hold is
related to the problems concerning the objectual interpretation discussed
in Section 13.6, problems that result from a failure of substitution. For
example, when t is a nonrigid term such as ‘the inventor of bifocals’,
and d is Benjamin Franklin, the truth of ∫t≈t (‘it is necessary that the
inventor of bifocals is the inventor of bifocals’) does not entail the truth
of the hybrid ∫d≈t (‘it is necessary that d be the inventor of bifocals’).
The point can be made more formally. In a model where aw(t)=d, wRv,
and av(t)±d, aw(∫t≈t)=T but aw(∫d≈t)=F.

EXERCISE 15.1 Verify that aw(∫d≈t)=F when av(t)±d and wRv.

However, (Bad Instance) does hold when t is rigid, that is, when
aw(t)=av(t) for any w and v in W. So the following will be proven for
iS-models in the appendix of this chapter.

Rigid Instance Theorem.
If t is rigid and aw(t)=d, then aw(At)=aw(Ad) for all w µ W.

We will also to appeal need to a third theorem about replacement of
values that is familiar from predicate logic. It will also be given a proof in
the appendix.

No t Theorem. If two iS-models are identical with the exception
that their respective assignment functions a and b disagree only on
the value of a single term t, and A is a wff (or hybrid) where t does
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not appear, then aw(A)=bw(A). Furthermore, if t is not in L, then
aw(L)=bw(L).

The No t Theorem should be nearly obvious. It holds because the truth
value of every sentence depends only on the values of the symbols it con-
tains in the various possible worlds. If t does not occur in A, then changing
the value of t cannot possibly affect the value of A. So if t is not in a list
L, changing the value of t cannot change whether L is satisfied or not.

15.2. Soundness for the Intensional Interpretation

Assume S is a system that results from adding to fK axioms of a propo-
sitional modal logic that we already know is sound with respect to its
corresponding semantics. We will show that the system S is also sound for
the intensional interpretation of the quantifier by showing that the rules
(≈In), (≈Out), (åOut), and (åIn) preserve iS-validity.

To show that S is sound, one must prove that if H ÷S C then H …iS C, for
any argument H / C. Instead, something stronger will be proven, namely,
that if L ÷S C, then L …iS C, when L is a list containing boxes as well as
sentences. To do this, it helps to remind ourselves of the definition of ‘L …iS
C’, which says that the modal argument L / C is iS-valid. The definition is
found in Section 8.1, where the soundness proof for propositional modal
logics is given. It depends on the following account of the notion of a list
L being satisfied at w on an assignment a (in symbols aw(L)=T).

(L,∫) aw(L, ∫, H)=T iff Öv av(L)=T and vRw and aw(H)=T.

The notation ‘L …iS A’ is then defined as one would expect: L …iS A iff for
any iS-model <W, R, D, I, a> and any member w of W, if aw(L)=T then
aw(A)=T.

We are now ready to show that the rules of S preserve iS-validity, that
is, if the argument (or arguments) to which a rule is applied is (are) iS-
valid, then so is the result of applying the rule. The demonstrations for
all the rules of propositional modal logic are identical to those given in
Section 8.1. All that remains is to show that the rules for å and ≈ preserve
validity, which is what follows. (The index ‘iS’ is dropped from ‘…’ in the
remainder of this section to avoid eye strain.)

(åOut) L ÷ åxAx
-------------
L ÷ EcçAc
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Proof that (åOut) preserves iS-validity. We must show that L … åxAx
entails L … EcçAc. So assume both L … åxAx and L ª EcçAc, and derive
a contradiction. From L ª EcçAc it follows that there is an iS-model
<W, R, D, I, a> and a world w in W such that aw(L)=T, and aw(EcçAc)=F.
But then by (ç), aw(Ec)=T and aw(Ac)=F. By L … åxAx, aw(åxAx)=T.
The situation can be pictured as follows:

Now according to (cI), the intension a(c) of c must be some member i
of I. So a(c)=i for this function i, hence aw(c)=i(w). From aw(Ec)=T and
(Pl) it follows that aw(c) µ aw(E), that is: i(w) µ aw(E). By the truth
clause (iå), it follows that aw(Ai)=T. By the Intensional Instance Theo-
rem, aw(Ai)=T iff aw(Ac)=T. Therefore aw(Ac)=T. But this contradicts
the previous result: aw(Ac)=F, and so the demonstration is complete. The
rest of the reasoning may be diagrammed as follows:

Notice that placing the hybrid Ei in w expresses the fact that i(w) µaw(E).

(åIn) L ÷ EcçAc
----------------
L ÷ åxAx provided c is not in L or åxAx

Proof that (åIn) preserves iS-validity. We are given L … EcçAc, where c
is not in L or åxAx, and we must show that L … åxAx. Again the strategy
will be to assume L ª åxAx and derive a contradiction. From L ª åxAx,
it follows that there is an iS-model <W, R, D, I, a> and a world w in W
such that aw(L)=T and aw(åxAx)=F. By (iå), it follows that for some
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function i in I, i(w) µ aw(E) and aw(Ai)=F. We can diagram the situation
as follows:

At this point the proof takes an unusual turn because it will not be possible
to derive a contradiction by considering only assignment a. Instead we will
construct a new iS-model <W, R, D, I, b> with the same frame <W, R>,
domain structure D, and set I, but with an assignment function b defined
from a as follows: b(e)=a(e) when e is any predicate letter or term other
than c, and b(c)=i. The values of the sentences given by b are fixed by
the standard truth clauses: (≈), (Pl), (ƒ), (ç), (∫), and (iå). Since b is
identical to a except for what it assigns to c, and since c does not appear in
L, we know by the No t Theorem that b agrees with a on these sentences
and so bw(L)=T. Since c is not in åxAx, it cannot be in the hybrid Ai either,
so the No t Theorem also guarantees that bw(Ai)=F. We may diagram this
situation as follows:

Note that since i(w) µaw(E) and a and b agree on every expression other
than c, i(w) µ bw(E). Since b(c)=i, and i(w) µ aw(E), it also follows that
bw(c) µ bw(E) and so bw(Ec)=T by (Pl).

Furthermore, since L … EcçAc, it follows from bw(L)=T that
bw(EcçAc)=T. It follows by the Intensional Instance Theorem and
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bw(Ai)=F that bw(Ac)=F. But bw(Ec)=T and bw(Ac)=F yield
bw(EcçAc)=F by (ç). So there is a contradiction, and the demonstration
is complete.

(≈In) ---------
L ÷ t≈t

Proof that (≈In) preserves iS-validity. We must show that L … t≈t. So
assume the opposite: L ª t≈t. There then is an iS-model <W, R, D, I,
a> and world w in W, such that aw(L)=T and aw(t≈t)=F. But by (≈) if
aw(t≈t)=F, then aw(t)±aw(t), which is clearly impossible. So L … t≈t.

(≈Out) L ÷ s≈t
L ÷ Plsl′
----------
L ÷ Pltl′

Proof that (≈Out) preserves iS-validity. We are given that L … s≈t and
L … Plsl′. We must show L … Pltl′. So we assume aw(L)=T and prove
aw(Pltl′)=T. Since aw(L)=T, we have by L … s≈t that aw(s≈t)=T, and so
by (≈), aw(s)=aw(t). It follows by (ti) that aw(lsl′)=aw(ltl′), and so aw(lsl′)
µ aw(P) iff aw(ltl′) µ aw(P).

(ti) aw((t1, . . , tn)) = (aw(t1), . . , aw(tn)).

We know by L … Plsl′ that aw(Plsl′)=T, and so by (Pl) that aw(lsl′) µaw(P).
It follows that aw(ltl′) µ aw(P), hence aw(Pltl′)=T by (Pl).

15.3. Soundness for Systems with Domain Rules

In the last section, it was assumed that S was a system of logic that results
from adding to fK axioms in a list of principles for propositional modal
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logic. However, in Section 13.9, new domain rules were introduced along
with their corresponding conditions on the domains of iS-models. Let S
be the result of adding as well one or more of those rules. To show that S
is sound, it is necessary to show that each of its new rules is iS-valid when
an iS-model meets their corresponding conditions.

Domain Rules Corresponding Domain Conditions
(ÖE) ÖxEx For some i µ I, i(w) µ Dw.

(Q) Et Dw=D.
(ED) Ecç∫Ec If wRv and aw(c) µ Dw, then av(c) µ Dv.
(CD) ~Ecç∫~Ec If wRv and av(c) µ Dv, then aw(c) µ Dw.

(RC) (b≈cç∫b≈c)& (~b≈cç∫~b≈c) aw(c)=av(c).

(Öi) L ÷ ~t≈c / L ÷ ƒ, no c in L, t For some i µ I, i(w)=aw(t).

(o)=(RC)+(Öi) I is the set of all constant functions
with values in D.

(oÖE)=(o)+(ÖE) (o) + Dw is not empty.

(oED)=(o)+(ED) (o) + if wRv, then Dw Î Dv.

(oCD)=(o)+(CD) (o) + if wRv, then Dv Î Dw.

Remember that an instance of an axiom may be placed within any sub-
proof, so verifying an axiom A amounts to showing the validity of the
argument L / A for any list L. To show that L / A is iS-valid, assume that
<W, R, D, I, a> is an iS-model that meets the corresponding condition, let
w be any member of W such that aw(L)=T, and then show that aw(A)=T.
Here are the details for each axiom A.

(ÖE) ÖxEx For some i µ I, i(w) µ Dw.
The condition guarantees that for some i µ I, i(w) µ Dw, therefore by

(E), and (Pl), aw(Ei)=T. So by (iÖ), aw(ÖxEx)=T.

(Q) Et Dw=D.
The condition requires that Dw=D, so if aw(t) µ D then aw(t) µ Dw.

But by the definition of an iS-model, the appropriate extension aw(t) for
a term t is a member of D. Therefore, aw(t) µ Dw. It follows by (E) that
aw(t) µ aw(E) and so aw(Et)=T by (Pl).

(ED) Ecç∫Ec If wRv and aw(c) µ Dw, then av(c) µ Dv.
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EXERCISE ∗∗15.2 Show that aw(Ecç∫Ec)=T when the above condition
holds. (Hint. Review the proof of the case for (CD) below.)

(CD) ~Ecç∫~Ec If wRv and av(c) µ Dv, then aw(c) µ Dw.
To show aw(~Ecç∫~Ec)=T assume aw(~Ec)=T and prove

aw(∫~Ec)=T, by assuming that v is any world such that wRv, and proving
av(~Ec)=T. Since aw(~Ec)=T, it follows by (~), (E), and (Pl) that aw(c)
Â Dw. By the contracting domain condition (CD), if av(c) µ Dv then
aw(c) µDw. Since aw(c) Â Dw, it follows that av(c) Â Dw. So av(~Ec)=T
follows by (~), (E), and (Pl).

(RC) (b≈cç∫b≈c)&(~b≈cç∫~b≈c) aw(c)=av(c).
To show aw((b≈cç∫b≈c)&(~b≈cç∫~b≈c))=T, given the condition,

it will be sufficient to show (≈∫) and (≈~∫), assuming that b and c are
rigid.

(≈∫) aw(b≈cç∫b≈c)=T.
(≈~∫) aw(~b≈cç∫~b≈c)=T.

Proof of (≈∫). According to (ç), (≈∫) follows provided that if
aw(b≈c)=T then aw(∫b≈c)=T. So assume aw(b≈c)=T, and show
aw(∫b≈c)=T, by assuming wRv and deducing av(b≈c)=T as follows. Since
aw(b≈c)=T, we have aw(b)=aw(c) by (≈). Since b is rigid, b picks out the
same object in all possible worlds. Since b and c pick out the same object
in world w, and since c is also rigid, it follows that b and c pick out the same
object in all possible worlds. So av(b)=av(c), and hence by (≈) av(b≈c)=T,
as desired.

EXERCISE ∗∗15.3 Prove (≈~∫).

(Öi) L ÷ ~t≈c / L ÷ ƒ, no c in L, t For some i µ I, i(w)=d.
It must be shown that (Öi) preserves iS-validity. So suppose c is not in

L or t, that L … ~t≈c, and that L ª ƒ for indirect proof. Then there is an
iS-model <W, R, D, I, a> with world w in W where aw(L)=T. The term t
must have an extension aw(t)=d for some d in D. By the condition, there
is a member i of I such that i(w)=d. Now construct the model <W, R,
D, I, b> where b is like a except that the assignment function b is such
that b(c)=i. Since c does not appear in L nor in t, it follows by the No
t Lemma that bw(L)=aw(L)=T and bw(t)=aw(t)=d=i(w)=bw(c). So by
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(≈), bw(t≈c)=T. But from L … ~t≈c, it follows that bw(t≈c)=F, which is a
contradiction.

(o) = (RC)+(Öi) I is the set of all constant functions with values in D.
When the condition holds, it follows by requirement (cI) on iS-models

(namely, that a(c) is in I) that condition (RC) holds: namely, that a(c) is a
constant function. It was already shown that axiom (RC) is iS-valid, given
this condition, so (RC) will be iS-valid. Furthermore, when (o) holds, it
follows that for each member d of D, there is a function i in I such that
i(w)=d. By the fact that aw(t) is always a member of D, condition (Öi)
follows, namely, that for each term t there is a member i of I such that
i(w)=aw(t). We already showed that the rule (Öi) preserves validity under
this condition, so it also preserves iS-validity when (o) holds.

EXERCISE 15.4 Show that when (o) and any of the following conditions
holds in an iS-model, then the corresponding axiom is iS-valid.

*a) (oÖE)=(o)+(ÖE): ÖxEx (o) + Dw is not empty.
*b) (oED)=(o)+(ED): Ecç∫Ec (o) + if wRv, then Dw Î Dv.

c) (oCD)=(o)+(CD): ~Ecç∫~Ec (o) + if wRv, then Dv Î Dw.

15.4. Expanding Truth Value (tS) to Substitution (sS) Models

In the discussion of the substitution interpretation in Sections 13.1 and
13.2, two different kinds of models were defined. The simpler ones were
tS-models, which only assigned truth values to the sentences. The more
sophisticated sS-models introduced a domain structure D, and assigned
values as well to the terms and predicate letters. In this section, it will be
shown that it does not matter which of the two kinds of models is used
because they provide equivalent accounts of validity.

ts Equivalence Theorem. H …tS C iff H …sS C.

For the moment, sS-models are assumed to be sK-models that obey frame
conditions for a given propositional modal logic S, but not for any of the
quantifier domain rules. Since the rule (Öi) is required for systems with
nonrigid terms, we will assume here that the only terms in the language
are the constants. In Sections 15.7 and following, we will consider the
possibility that sS-models satisfy conditions on the quantifier domains as
well so that we may accommodate nonrigid terms.
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The ts Equivalence Theorem will have two different uses. It will help
establish soundness for the substitution interpretation, and completeness
of many different quantified modal logics. The result follows relatively
easily once we explain how to construct for any given tS-model its ts-
expansion, that is, a corresponding sS-model with the same frame that
agrees with the tS-model on the values of all the sentences.

Given a tS-model <W, R, at>, its ts-expansion <W, R, D, as> is defined
as follows. First, as agrees with at on the values of all the sentences.

(asA) as(A)=at(A).

(Note that ‘as(A)=at(A)’ means that the assignment functions as and
at agree on the intensions of sentence A, from which it follows that
as

w(A)=at
w(A), for every world w in W.) Terms t are assigned exten-

sions that are sets of constants c such that as
w(t≈c)=T.

(ast) c µ as
w(t) iff c is a constant such that as

w(t≈c)=T.

The structure D for the sS-model is defined by (asD) and (asDw).

(asD) d µ D iff for some term t and world w, d=as
w(t).

(asDw) d µ Dw iff for some term t, d=as
w(t) and as

w(Et)=T.

For predicate letters P, as
w(P) is defined as follows:

(asP) o µ as
w(P) iff for some list l′, as

w(l′)=o and as
w(Pl′)=T.

It is worth taking a moment to explain why we have chosen to define
the extensions of the terms by (ast). The main difficulty to overcome in
constructing as is to define extensions for the terms so that (≈) is satisfied.
If, for example, each term is given an arbitrary extension as

w(t), then there
will be no guarantee that as

w(s≈t)=T entails as
w(s)=as

w(t) as (≈) requires.
A standard way of overcoming this problem is to let as

w(t) be the set of
all constants c such that as

w(t≈c)=T. This way, when as
w(s≈t)=T, it will

follow (by (asA) and the truth condition (t≈)) that as
w(s≈c)=as

w(t≈c)=T,
for any constant c, with the result that the extensions of s and t will be the
same as required.

There is a second, often-used method for overcoming the difficulty in
satisfying (≈). Assume that the constants in the language are ordered in
one (possibly infinite) list. Then as

w(t) is defined as the earliest constant
c on the list such that as

w(t≈c)=T. This works because when as
w(s≈t)=T,

it is possible to show that as
w(s) and as

w(t) pick out exactly the same
constant. It is an excellent check on the reader’s understanding to trace
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through the coming theorems and lemmas to verify that the alternative
method works as well.

Note that as automatically obeys (Öc) when the language at issue con-
tains only the constants.

(Öc) For all t and w, there is a constant c such that as
w(t≈c)=T.

The reason is that when t is a constant b, there is a constant c such that
as

w(b≈c)=T because as
w(b≈b)=T by (t≈In), so that the constant in ques-

tion can be b itself. Note condition (Öc) could fail when new terms are
introduced to the language, for when t is not a constant, it is not clear that
as

w(t≈c)=T for some constant c. This is why (Öc) is explicitly mentioned
in the next theorem, for we will need to appeal to (Öc) in the course of its
proof.

ts-Expansion Theorem. The ts-expansion <W, R, D, as> of any
tS-model <W, R, at> that obeys (Öc) is an sS-model that obeys
at(A)=as(A).

Proof of the ts-Expansion Theorem. Let <W, R, at> be any tS-model. Then
the assignment function at assigns values to all sentences in every world
and obeys (ƒ), (ç), (∫), (å), and (t≈). However, at does not assign any-
thing to terms or predicate letters. It will be shown that the ts-expansion
<W, R, D, as> expands the assignment function at of the tS-model to a
corresponding assignment as that agrees with at on the values of all the
sentences, but also assigns values to terms, lists of terms, and predicate
letters over a domain structure D in such a way that conditions (≈), (Pl),
and (E) hold. Since as and at will agree on the values assigned the sen-
tences, all other truth conditions for an sS-model will be obeyed. Since
the frames of the two models are identical, <W, R, D, as> inherits the
frame conditions for S and so <W, R, D, as> will qualify as an sS-model.

We begin by showing (≈). Note that as meets the condition (t≈) for ≈,
since at does. For convenience we will refer to the two conjuncts of (t≈)
as follows:

(t≈In) as
w(t≈t)=T.

(t≈Out) If as
w(s≈t)=T, then as

w(Plsl′)=as
w(Pltl′).

These features of as will be the basis for proving some useful lemmas
about ≈.

Substitution Lemma. If as
w(s≈t)=T then as

w(s≈c)=as
w(t≈c), and

if as
w(s≈c)=T and as

w(t≈c)=T, then as
w(s≈t)=T.
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EXERCISE 15.5 Prove the Substitution Lemma. (Hint: Use (t≈In) and
(t≈Out). It helps to review strategies for proving (Symmetry) and (Transi-
tivity) for ≈ given in Section 12.3.)

≈Lemma. as
w(s≈t)=T iff for any constant c, as

w(s≈c)=T iff
as

w(t≈c)=T.

Proof of the ≈Lemma. By the Substitution Lemma, we have: if
as

w(s≈t)=T then as
w(s≈c)=as

w(t≈c). So the lemma is proven from left to
right. For the proof from right to left, suppose for any constant c,
as

w(s≈c)=T iff as
w(t≈c)=T, and prove as

w(s≈t)=T as follows. By (Öc),
there is a constant b such that as

w(t≈b)=T. Since as
w(s≈c)=T iff

as
w(t≈c)=T holds for any constant c, it follows that as

w(s≈b)=
as

w(t≈b)=T. By the Substitution Lemma, as
w(s≈t)=T as desired.

With these lemmas in hand it is not difficult to show that the expanded
assignment function as obeys (≈). Here is the proof:

(≈) as
w(s≈t)=T iff as

w(s)=as
w(t).

Proof.
as

w(s≈t)=T
iff for any c, as

w(s≈c)=T iff as
w(t≈c)=T ≈ Lemma

iff or any c, c µ as
w(s) iff c µ as

w(t) (ast) used twice
iff as

w(s)=as
w(t) as

w(s) and as
w(t) have

the same members

To prove that as obeys (Pl), it is useful to develop two lemmas con-
cerning how assignment functions behave with respect to lists of terms.
Let l = t1, . . , ti and l′ = t′1, . . , t′i be two lists of terms of the same length i.
Let l′≈l be the list of identity sentences t′1≈t1, . . , t′i≈ti.

l′≈l Lemma. as
w(l′)=as

w(l) iff as
w(l′≈l)=T.

Proof. Remember as
w(l) is defined for lists l = t1, . . , ti as follows:

(ti) aw(t1, . . , ti) = aw(t1), . . , aw(ti)

By (ti), we have the following two facts:

as
w(l) = as

w(t1, . . , ti) = as
w(t1), . . , as

w(ti)
as

w(l′) = as
w(t′1, . . , t′i) = as

w(t′1), . . , as
w(t′i)

So as
w(l′) = as

w(l)
iff as

w(t′1) = as
w(t1) and, . . , and as

w(t′i) = as
w(ti) previous two facts
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iff as
w(t′1≈t1)=T and, . . , and as

w(t′i≈ti)=T (≈) used i times
iff as

w(l′≈l)=T. Definition of l′≈l

Some l′ Lemma.
as

w(Pl)=T iff for some l′, as
w(l′≈l)=T and as

w(Pl′)=T.

Proof of the Some l′ Lemma. For the proof from left to right, suppose
as

w(Pl)=T. By (t≈In) used many times, as
w(l≈l)=T. So for some l′ (namely,

l), as
w(l′≈l)=T and as

w(Pl′)=T. For the proof from right to left, suppose
for some l′, as

w(l′≈l)=T and as
w(Pl′)=T. Let l = t1, . . , ti and l′ = t′1, . . ,

t′i. Then as
w(t′1≈t1)=T and, . . , and as

w(t′i≈ti)=T. By repeated use of
(t≈Out) replace each of the t′j in Pl′ with tj to obtain Pl. So it follows

from as
w(Pl′)=T that as

w(Pl)=T.

We are now ready to show (Pl) holds for as.

(Pl) as
w(Pl)=T iff as

w(l) µ as
w(P).

Proof of (Pl).
as

w(Pl)=T
iff for some l′, as

w(l′≈l)=T and as
w(Pl′)=T Some l′ Lemma

iff for some l′, as
w(l′)=as

w(l) and as
w(Pl′)=T l′≈l Lemma

iff as
w(l) µ as

w(P) (asP)

Finally we must show that (E) holds for as.

(E) as
w(E)=Dw.

Proof of (E). We show that for any d in D, d µas
w(E) iff d µDw. Suppose

that d µ as
w(E). Then by the definition (asD) of D for the ts-expansion,

for some term t, d=as
w(t). So as

w(t) µ as
w(E) and by (Pl), as

w(Et)=T,
and so by (asDw), d µ Dw. Now suppose d µ Dw; then by (asDw), for
some term t, d=as

w(t) and as
w(Et)=T. By (Pl) d=as

w(t) µ as
w(E).

This completes the proof of the ts-Expansion Theorem. It is not hard
to prove the ts Equivalence Theorem now that the ts-Expansion Theorem
is available.

ts Equivalence Theorem. H …tS C iff H …sS C.

Proof of the ts Equivalence Theorem. It will suffice to show the following:

H ªsSC iff H ªtSC.

To show this from left to right, assume H ªsS C, that is, that there is a
sS-model <W, R, D, as> that is a counterexample to H / C. To create a
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tS-model that is a counterexample to the same argument, let its frame be
identical to the frame <W, R> for the sS-model and define its assignment
function so that it agrees with the values as assigns to all the sentences.
The result is a tS-counterexample to H / C.

EXERCISE 15.6 Explain why the model <W, R, D, as> defined above must
be a tS-counterexample to H / C. In particular how do we know it is a tS-model?

For the direction from right to left, assume H ªtS C. So H / C has a tS-
counterexample. Since we have assumed that constants are so far the only
terms in the language, (Öc) holds, and so it follows by the ts-Expansion
Theorem that a corresponding sS-model exists that leaves the values of
all sentences the same in all worlds. So there is an sS-counterexample to
H / C, that is, H ªsS C.

15.5. Expanding Substitution (sS) to Intensional (iS) Models

In this section, we learn how to expand each substitution interpretation
model to create an intensional interpretation model that agrees with it on
the values of all the sentences. This result is useful in several ways. It will
allow us to exploit the proof that system S is sound for iS- (intensional
interpretation) models to obtain the soundness of S for sS- (substitution
interpretation) models. (See Section 15.9.) It will also help us transfer rel-
atively easy completeness results for the substitution interpretation to the
intensional interpretation. Finally, it will help establish the equivalence
of the substitution and intensional interpretations.

These results all depend on an interesting fact. The substitution inter-
pretation truth clause (å) holds in all iS-models that meet condition (s),
which says that each member of I is the intension of some constant.

(å) aw(åxAx)=T iff for every c, if aw(Ec)=T then aw(Ac)=T.
(s) i µ I iff for some constant c, i=a(c).

si Lemma. Any iS-model that obeys (s) also obeys (å).

This lemma shows that the substitution interpretation can be exactly
captured in iS-models that meet the extra condition (s). Since it will be
shown later that (s) does not correspond to any additional axiom or rule,
the equivalence of the concept of validity defined by the two interpreta-
tions follows.

Proof of the si Lemma. Suppose we have an iS-model with assignment
function a that obeys (s). Since a obeys the intensional truth clause (iå),
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to show it also obeys the substitution truth clause (å), we need only
demonstrate that the right-hand sides (rå) and (riå) of the two conditions
are equivalent.

(rå) for all c µ C, if aw(Ec)=T then aw(Ac)=T.
(riå) for all i µ I, if i(w) µ Dw then aw(Ai)=T.

Proof from (rå) to (riå). Suppose (rå). To show (riå), assume that i is
any member of I and i(w) is in Dw and show that aw(Ai)=T as follows. By
(s) there is some constant c such that i=a(c). Since i(w) µ Dw, it follows
that aw(c) µ Dw, from which by (Pl) and (E) it follows that aw(Ec)=T.
By (rå), it follows that aw(Ac)=T. But i=a(c), so the Intensional Instance
Theorem (Section 15.1) yields the desired result: aw(Ai)=T.

Proof from (riå) to (rå). Suppose (riå). To show (rå), assume that c is
any constant such that aw(Ec)=T and show aw(Ac)=T as follows. From
aw(Ec)=T with (Pl) and (E) it follows that aw(c) µ Dw. By (cI), a(c)=i
for some function i in I. So we have that i(w) µ Dw for this function i.
By (riå), it follows that aw(Ai)=T. By the Intensional Instance Theorem,
aw(Ac)=T as desired.

Given the si Lemma, it is a straightforward matter to show how to
construct the si expansion of any sS-model, which is a corresponding iS-
model that leaves the values of all the sentences unaffected. For a given
sS-model <W, R, D, as>, the si-expansion <W, R, D, I, ai> is defined by
the following:

(aie) ai(e)=as(e), when e is a term or predicate letter.
(aiI) i µ I iff for some constant c, i=ai(c).

The values ai
w(A) assigned by ai to the sentences A are defined according

to the truth conditions for an iS-model.

si-Expansion Theorem. The si-expansion <W, R, D, I, ai> of any
sS-model <W, R, D, as> is an iS-model that obeys as(A)=ai(A).

Proof of the si-Expansion Theorem. Note that (aiI) guarantees (s) and
(cI), the condition that a(c) µ I for each constant c. Since the values of
sentences are calculated using the truth conditions for an iS-model, the si-
expansion <W, R, D, I, ai> clearly satisfies all the conditions for being an
iS-model. To show as(A)=ai(A), note that as and ai agree on all terms and
predicate letters and differ only in the truth conditions for the quantifier.
But by the si-Lemma, we know that ai obeys (å), the substitution truth
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clause, so as and ai agree on values assigned to all sentences including
those involving quantifiers.

The final result of this section will be to explain how the equivalence
of the intensional and substitution interpretations can be shown. The
result depends on the si-Expansion Theorem, the soundness of S for the
intensional interpretation proven in Sections 15.2 and 15.3, and the com-
pleteness of S on the substitution interpretation to be proven in following
chapters. Since this result depends on the completeness of S for sS-validity
to be proven later, it is important that the si-Equivalence Theorem not
be appealed to in the course of that completeness proof.

si-Equivalence Theorem. H …sS C iff H …iS C

Proof of the si-Equivalence Theorem. To show this from left to right
assume that H …sS C and note that the completeness of S for the sub-
stitution interpretation yields H ÷S C, from which H …iS C follows by the
soundness of S for the intensional interpretation. For the other direction,
it will suffice to show if H ªsS C, then, H ªiS C. So suppose H ªsS C. So
there is an sS-model that is a counterexample to H / C. By the si-Expansion
Theorem, the si-expansion leaves the values of all sentences the same in
all worlds. So there is an iS-counterexample to H / C, that is, H ªiS C.

15.6. An Intensional Treatment of the Objectual Interpretation

In this section, the groundwork is laid for proving soundness and com-
pleteness for the objectual interpretation. We will begin with a result
that shows how the objectual interpretation can be captured within iS-
models (models that use the intensional interpretation). The main idea
is straightforward. In an oS (objectual interpretation) model, the domain
D of quantification mentioned in (oå) is a set of objects, whereas in an
iS (intensional interpretation) model, the domain I mentioned in (iå)
contains individual concepts, that is, functions from W to D.

(oå) aw(åxAx)=T iff for d µ D, if d µ Dw, then aw(Ad)=T.
(iå) aw(åxAx)=T iff for every i µ I, if i(w) µ Dw, then aw(Ai)=T.

When i is a constant function, one whose value i(w) is object d for each
world w, i always produces the value d, regardless of which world it is
applied to. So the function i will play exactly the role of its value d. Now
consider the following condition (o) on iS-models:

(o) I is the set of all constant functions with values in D.
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This condition will guarantee that the domain I contains only and all
constant functions that pick out members of D. However, these constant
functions are for all practical purposes “stand ins” for their values. So one
should expect that adding (o) as an additional condition on iS-models will
produce a semantics that captures exactly the effect of the oS-models,
models where the domain of quantification is D. That is what we intend
to prove.

Let an ioS-model be any iS-model that obeys (o). Assume that for ioS-
models, values of hybrids Ad are defined just as they were in objectual
interpretation. We will show that any ioS-model automatically satisfies
the objectual truth condition (oå).

oi Lemma. Every ioS-model satisfies (oå).

Proof of the oi Lemma. Since ioS-models satisfy the intensional truth
clause (iå), we need only show that (riå) and (roå), the right-hand sides
of the respective truth conditions, are equivalent.

(riå) For all i µ I, if i(w) µ Dw, then aw(Ai)=T.
(roå) For all d µ Dw, aw(Ad)=T.

Proof from (riå) to (roå). Assume (riå) and d µDw and show aw(Ad)=T
as follows. By (o), the constant function i with value d is in I. So i(w) µ
Dw, and by (riå) aw(Ai)=T. By the Rigid Instance Theorem (of Sec-
tion 15.1), aw(Ad)=T as desired.

Proof from (roå) to (riå). Assume (roå), i µ I, and i(w) µ Dw and show
aw(Ai)=T as follows. The function i must be a constant function with
some value d in D. So d µ Dw, and by (roå), aw(Ad)=T. By the Rigid
Instance Theorem, aw(Ai)=T as desired.

We noted in Section 13.9 that for the objectual interpretation, the fol-
lowing axioms correspond to conditions on oS-models as follows. So in this
section, and the following one, let us assume that oS-models obey any of
the corresponding o-domain conditions from this list and that ioS-models
meet the same conditions.

(oÖE) ÖxEx Dw is not empty.
(Q) Et Dw=D.
(oED) Ecç∫Ec If wRv, then Dw Î Dv.
(oCD) ~Ecç∫~Ec If wRv, then Dv Î Dw.

We are now ready to prove the basis for the claim that oS- and
ioS-models are equivalent. For each oS model <W, R, D, ao>, let its
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oi-expansion <W, R, D, I, ai> be defined so that I is the set of all constant
functions i with values in D, and ai(e)=ao(e), when e is a term or pred-
icate letter, and ai is defined over sentences by the truth clauses for an
iS-model.

oi-Expansion Theorem. The oi-expansion <W, R, D, I, ai> of any
oS-model <W, R, D, ao> is an ioS-model that obeys ai(A)=ao(A).

Proof of the oi-Expansion Theorem. Given any oS-model <W, R, D, ao>,
consider its oi-expansion <W, R, D, I, ai>. Since the only difference in
truth conditions between ioS-models and oS-models is in the treatment
of å, all that is required to show that ai(A)=ao(A) holds is to explain
why ai obeys (oå). But that follows from the oi Lemma. In the light of
the definition of I, (o) holds, and the fact that (RC) holds in oS-models
ensures (cI).

(cI) a(c) µ I.

Since W, R, and D in the two models are the same, <W, R, D, I, ai> will
inherit the o-domain conditions of the oS-model. Therefore, <W, R, D, I,
ai> meets all the conditions to qualify as an ioS-model.

In the light of the last theorem, the equivalence of oS and ioS semantics
is easily secured. This equivalence theorem guarantees that we may obtain
exactly the effect of the objectual interpretation by considering instead
intensional models that meet condition (o).

oi Equivalence Theorem. H ªoS C iff H ªioS C.

Proof of the oi Equivalence Theorem. If H ªoS C, with the result that
<W, R, D, ao> is an oS-counterexample to H / C, then by the oi-Expansion
Theorem, its oi-expansion <W, R, D, I, ai> is an ioS-counterexample
to H / C. For the proof in the other direction, suppose H ªioS C; then
the model <W, R, D, ao> defined by ao(e)=ai(e) for all expressions e is
a counterexample to H / C. Since the ioS-model obeys (oå) by the io
Lemma, it follows that <W, R, D, ao> obeys (oå), and so qualifies as an
oS-counterexample to H / C. Since the two models differ only in that I
is absent in <W, R, D, ao>, and the o-domain conditions at issue do not
mention I, the latter model qualifies as an oS-counterexample to H / C,
that is, H ªoS C.
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15.7. Transfer Theorems for Intensional and Substitution Models

In this section, it will be shown how to transfer completeness results for
truth value semantics to intensional semantics. The transfer theorems to
be proven here state that once the completeness of system S for tS-validity
has been shown, one can exploit that result to obtain a proof of the com-
pleteness of S for iS-validity and also for sS-validity. The proof of these
transfer theorems will depend on an expansion theorem that links cer-
tain tS-models with corresponding iS-models. It is easy to tie together
two previously shown expansion results to demonstrate that a tS-model
can be expanded into a corresponding iS-model. The ti-expansion of a
tS-model is simply the result of constructing its ts-expansion and then
taking the si-expansion of the result. Putting the ts- and si-expansion the-
orems together, it follows that the ti-expansion <W, R, D, I, a> of any tS-
model <W, R, at> that obeys (Öc) is an iS-model that obeys at(A)=a(A).
However, this result dealt only with systems that are the result of adding
propositional modal logic axioms to fK.

In Section 13.6, axioms and a rule were introduced that corre-
spond to various conditions on the domains of quantification. A list of
some of those domain rules along with their corresponding conditions
follows:

Domain Rules Corresponding Domain Conditions
(ÖE) ÖxEx For some i µ I, i(w) µ Dw.

(Q) Et Dw=D.
(ED) Ecç∫Ec If wRv and aw(c) µ Dw, then av(c) µ Dv.
(CD) ~Ecç∫~Ec If wRv and av(c) µ Dv, then aw(c) µ Dw.

(RC) (b≈cç∫b≈c)& (~b≈cç∫~b≈c) aw(c)=av(c).

(Öi) L ÷ ~t≈c / L ÷ ƒ, no c in L, t For some i µ I, i(w)=aw(t).

(o)=(RC)+(Öi) I is the set of all constant functions
with values in D.

(oÖE)=(o)+(ÖE) (o) + Dw is not empty.

(oED)=(o)+(ED) (o) + if wRv, then Dw Î Dv.

(oCD)=(o)+(CD) (o) + if wRv, then Dv Î Dw.

We intend to prove a ti-Expansion Theorem for systems that include
domain rules. This will be helpful in providing completeness results for
the stronger systems so constructed, which accommodate nonrigid terms.
A difficulty to be faced in doing so is that it makes no sense to speak of tS-
models meeting the domain conditions, because truth value models do not
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have any domains. However, there is a way around the problem. Let us say
that an axiom A is satisfied on a model iff its assignment function assigns
A the value T in all the possible worlds. Now let S be a system that results
from adding to fK axioms for a propositional modal logic, and any selec-
tion of the above domain axioms: (ÖE), (Q), (ED), (CD), and (RC). A
tS-model is now understood to be any tK-model <W, R, at> that obeys (Öc),
the frame conditions for the propositional modal logic axioms of S, satis-
fies its domain axioms, and also meets condition (r) if axiom (RC) is in S.

(Öc) For teach term t, there is a constant c such that at
w(t≈c)=T.

(r) If at
w(b≈c)=T then at

v(b≈c)=T.

Let us say that an axiom A expresses its condition iff whenever A is
satisfied in any tS-model, its corresponding condition holds in that
model’s ti-expansion. In order to establish the expansion theorem, we
will first prove that the domain axioms all express their corresponding
conditions. (The reason we are forced to mention (r) in the definition
of a tS-model is that without it (RC) does not express its corresponding
condition.) We were forced to mention (Öc) because it is needed in
order to use the ts-Expansion Theorem in the course of the proof of the
ti-Expansion Theorem below.

Expression Theorem. Each domain axiom of S expresses its cor-
responding condition.

Proof of the Expression Theorem. We need to show that the corresponding
condition for each domain axiom of S holds in the ti-expansion of a tS-
model that satisfies that axiom. Note that since a tS-model now obeys (Öc)
by definition, it follows from the ts- and si- expansion theorems that the
ti-expansion <W, R, D, I, a> of a tS-model <W, R, at> agrees with it on the
values for the sentences. Therefore, the ti-expansion will also satisfy any
given domain axiom. Further useful facts about the assignment function a
for the ti-expansion are stated here for ease of reference. They all follow
directly from the definitions of ts- and si-expansions.

(at) c µ aw(t) iff c is a constant such that aw(t≈c)=T.
(aD) d µ D iff for some term t and some world w, d=aw(t).
(aDw) d µ Dw iff for some term t, d=aw(t) and aw(Et)=T.
(aI) i µ I iff for some constant c, i=a(c).
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Now we are ready to show that satisfaction of each axiom in the ti-
expansion entails the corresponding condition on the domains.

(ÖE) ÖxEx For some i µ I, i(w) µ Dw.
The axiom is satisfied by a, so we have aw(ÖxEx)=T. By (iÖ), aw(Ei)=T

for some i µ I such that i(w) µ Dw.

(Q) Et Dw=D.
In this case we have aw(Et)=T. To prove Dw=D, it must be shown that

d is in Dw exactly when d is in D. Since Dw is by definitions (aD) and
(aDw) a subset of D, it follows that d is in D whenever d is in Dw. So
all that remains is to show that assuming d is in D, it follows that d is in
Dw. But if d is in D, it follows by (aD) that for some term t, d=aw(t). But
aw(Et)=T together with (Pl) and (E) entails that aw(t)=d is in Dw.

(ED) Ecç∫Ec If wRv and aw(c) µDw, then av(c) µDv.

EXERCISE ∗15.7 Complete the case for (ED). (Hint. Model your demon-
stration on the proof for (CD) given below.)

(CD) ~Ecç∫~Ec If wRv and av(c) µDv, then aw(c) µDw.
To prove the condition, assume wRv and av(c) µ Dv, and then prove

aw(c) µ Dw as follows. Suppose for indirect proof that aw(c) Â Dw. By
(~), (Pl), and (E), aw(Ec)=F, hence aw(~Ec)=T. By aw(~Ecç∫~Ec)=T
and (ç), aw(∫~Ec)=T and so av(~Ec)=T by wRv and (∫). But by (~),
(Pl), and (E), av(c) Â Dw, which contradicts av(c) µ Dv.

(RC) (b≈cç∫b≈c)&(~b≈cç∫~b≈c) aw(c)=av(c).
Note that when (RC) is in the system, condition (r) holds. Two special

cases of this condition yield (riff).

(r) If aw(b≈c)=T, then av(b≈c)=T.
(riff) If aw(c≈b)=T, then av(c≈b)=T, and if av(c≈b)=T then aw(c≈b)=T.

Therefore aw(c)=av(c) holds by the following reasoning:

aw(c≈b)=T iff av(c≈b)=T, for any b. by (riff)
b µ aw(c) iff b µ av(c), for any b. two uses of (at)
aw(c)=av(c). previous step, since aw(c) and

av(c) have the same members.
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(Öi) L ÷ ~t≈c / L ÷ ƒ, no c in L, t For some i µI, i(w)=aw(t).
To prove the condition, note that condition (Öc) holds by the definition

of a tS-model. So there is a constant c such that aw(t≈c)=T, and so by (≈),
aw(t)=aw(c). It follows from (cI) that a(c) µ I. So when i is a(c), there is
an i µ I such that i(w)=aw(t).

(o)=(RC)+(Öi) I is the set of all constant functions with values in D.
To prove the condition, we will first show that every member of I is a

constant function. Suppose i µ I. By (aI), i=a(c) for some constant c. But
the reasoning for (RC) above guarantees that a(c) is a constant function.
Next we will show that for each d µ D, there is a member i µ I such that
i(w)=d. This follows because when d µD, it follows by (aD) that for some
term t, d=aw(t). By the reasoning for (Öi) above, there is a member i of I
such that i(w)=aw(t)=d.

(oÖE)=(o)+(ÖE) (o) + Dw is not empty.
It was shown above that axiom (o) expresses condition (o). To prove

Dw is not empty, note that we have already shown above that axiom (ÖE)
expresses the condition that for some i µ I, i(w) µ Dw.

(oED)=(o)+(ED) (o) + if wRv, then Dw Î Dv.
It was already shown that axiom (o) expresses condition (o). Now

assume wRv and d µ Dw and prove that d µ Dv as follows. By (aD), we
know that there is a term t and a world u such that au(t)=d; but by (Öc) and
(≈), there is a constant c such that au(c)=au(t)=d. But (o) and (cI) guaran-
tee that a(c) is a constant function. It follows that aw(c)=av(c)=au(c)=d,
and so aw(c) µ Dw. We already showed that (ED) expresses that if wRv,
then if aw(c) µDw then av(c) µDv. So av(c) µDv. Since av(c)=d, d µDv
as desired.

EXERCISE ∗∗15.8 Complete the case for (oCD).

ti-Expansion Theorem. The ti-expansion <W, R, D, I, ai> of any
tS-model <W, R, at> is an iS-model that obeys at(A)=ai(A).

Proof of the ti-Expansion Theorem. Note that by definition, any tS-model
<W, R, at> obeys (Öc), so given <W, R, at> use the ts-Expansion Theorem
and the si-Expansion Theorem to show that the ti-expansion <W, R, D,
I, ai> of the tS-model obeys at(A)=ai(A). Since the two models have the
same frames, the ti-expansion inherits the frame conditions for system S.
Since the domain axioms of S are all satisfied in the tS-model, the fact
that each axiom expresses its corresponding condition guarantees that the
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ti-expansion satisfies those corresponding conditions, and so it qualifies
as an iS-model.

As stated, the ti-Expansion Theorem applies only to systems that result
from adding the domain axioms on the above list to a quantified modal
logic. However, in Chapters 18 and 19, we will consider new axioms,
each of which expresses a corresponding condition. Since the proof of
the ti-Expansion Theorem requires only that the axioms express their
corresponding conditions, it will continue to hold when S includes these
new axioms as well.

The ti-Expansion Theorem will be useful because it provides a method
for transferring completeness proofs for truth value semantics to results
for the intensional interpretation and the substitution interpretation, and
to the objectual interpretation as well. Suppose we wish to show the com-
pleteness of some system S with respect to iS-models. Then all that will be
necessary is to show the completeness with respect to the much simpler
tS-models instead.

i Transfer Theorem. If system S is complete for tS-models, S is also
complete with respect to iS-models.

Proof of the i Transfer Theorem. Assume S is complete for tS-models.
To show that S is complete for iS-models, assume H øS C and prove H
ªiS C as follows. By the completeness of S with respect to tS-models it
follows from H øS C that there is a tS-counterexample <W, R, at> to
H / C. But by the ti-Expansion Theorem, the ti-expansion of <W, R, at>
is an iS-counterexample to H / C, that is, H ªiS C.

The close affinities between the intensional and substitution interpre-
tations have already been noted. The next theorem shows that com-
pleteness results for tS-models transfer to the case of sS-models as well.
Suppose that S is a system constructed from fK by adding propositional
modal logic axioms and any of the domain axioms whose correspond-
ing conditions fail to mention the domain I. Then the following theorem
shows that completeness of S for sS-models follows from completeness for
tS-models.

s Transfer Theorem. If system S is complete for tS-models, S is also
complete with respect to sS-models.

Proof of the s Transfer Theorem. Assume S is complete for tS-models.
To show that S is complete for sS-models, we prove the contrapositive.
Assume H øS C and prove H ªsS C as follows. By the completeness of
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S with respect to tS-models it follows from H øS C that there is a tS-
counterexample <W, R, at> to H / C. By the ti-Expansion Theorem, the
ti-expansion <W, R, D, I, a> of <W, R, at> is an iS-counterexample to
H / C. Note that by (aI), this model obeys (s), so by the si Lemma of
Section 15.5, it obeys (å), the substitution interpretation truth clause.

(s) i µ I iff for some constant c, i=a(c).
si Lemma. Any iS-model that obeys (s) also obeys (å).

Now consider <W, R, D, a>, the model that results from removing the
domain I from the ti-expansion. The result is clearly an sS-counterexample
to H / C, because the only difference between sS-models and iS-models
is in the quantifier truth condition and the presence or absence of I. It
follows that H ªsS C as desired.

15.8. A Transfer Theorem for the Objectual Interpretation

A transfer theorem for the objectual interpretation can be shown with the
help of a special case of the i Transfer Theorem. Let oS be a system that
includes axiom (RC) and the rule (Öi) in case there are nonrigid terms in
the language. Note that by the definition of a tS-model, a toS-model for
this system oS will satisfy both (Öc) and (r).

(Öc) For teach term t, there is a constant c such that aw(t≈c)=T.
(r) If aw(b≈c)=T, then av(b≈c)=T.

In the course of proving the i Transfer Theorem, it was shown that the
ti-expansion of such a toS-model is an ioS-model, an iS-model that obeys
the condition (o) stating that I contains exactly the constant functions
with values in D. So the following result is immediate.

io Transfer Theorem. If system oS is complete for toS-models, oS
is also complete with respect to ioS-models.

The oi Equivalence Theorem of Section 15.6 established that ioS-validity
and oS-validity are equivalent. So the transfer result for oS-models follows
immediately.

o Transfer Theorem. If oS is complete for toS-models, oS is also
complete with respect to oS-models.
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EXERCISE 15.9 Explain why the io Transfer Theorem is a special case of
the i Transfer Theorem and then prove the o Transfer Theorem.

The o Transfer Theorem can be easily extended to systems that include
new axioms to be introduced in later chapters. If nS is a system that results
from adding new axioms to oS, each of which expresses its corresponding
condition on oS-models, the reasoning of the ti-Expansion Theorem will
extend to nS, and so the o Transfer Theorem will hold for nS as well.
Presuming that a tnS-model is a toS-model that satisfies the new axioms,
and a nS-model is an oS-model that satisfies the corresponding conditions
for those axioms, we have the following:

Extended o Transfer Theorem. If nS results from adding axioms
to oS, each of which expresses its corresponding condition, and if
nS is complete for tnS-models, then nS is complete for nS-models.

EXERCISE 15.10 Prove the Extended o Transfer Theorem.

15.9. Soundness for the Substitution Interpretation

The proof of the ti-Expansion Theorem illustrates the close kinships
between the substitution and intensional interpretations. This relation-
ship can be exploited to show the soundness of S for truth value models,
a result that is otherwise tedious to prove. The contrapositive of the ti-
Expansion Theorem entails that if an argument is iS-valid, then it is also
tS-valid. This result with the soundness of S for the intensional interpre-
tation will provide everything we need. Remember that in tS-models, it
makes no sense to enforce domain conditions since tS-models do not have
any domains. When domain rules were included in system S, the definition
of a tS-model was expanded in an ad hoc way to include the condition
that any domain axioms were satisfied in the tS-model, that it obeyed
(Öc), and that it obeyed condition (r) if axiom (RC) is in S. Since there is
no point in showing soundness of a system for these artificial conditions,
let us assume for simplicity that system S does not contain any of the
domain rules, so that the original conception of a tS-model is at issue in
this section.

Soundness of S for Truth Value Models. If H ÷S C then H …tS C.
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Proof. Suppose that H ÷S C. By the soundness of S on the intensional
interpretation (proven in Section 15.2) it follows that H …iS C. Suppose
that H ªtS C for Indirect Proof. Then H / C has a tS-counterexample
<W, R, a>. By the ti-Expansion Theorem, the ti-expansion of <W, R, a>
is an iS-counterexample to H / C, which contradicts H …iS C.

Now that the proof of the soundness of S for truth value (tS) models is
available, the proof of the soundness of S for sS-models is a direct result
of the ts Equivalence Theorem of Section 15.4, which states that H …tS C
iff H …sS C.

Soundness of S for Substitution Models. If H ÷S C then H …sS C.

Although domain conditions make no sense in the context of tS-models,
sS-models do include the domains D and Dw. It is a simple matter to
expand the soundness result for systems that include domain axioms
whose corresponding conditions mention these domains by showing that
those axioms are sS-valid when the conditions are met.

EXERCISE 15.11 Show that axioms (Q), (ED), (CD), and (RC) are sS-valid
when their corresponding conditions hold in sS-models. (Hint: Just “borrow”
the proofs for the case of iS-models found in Section 15.3.)

15.10. Soundness for the Objectual Interpretation

The system oS was designed to manage the objectual interpretation,
even when nonrigid terms are in the language. It results from adding
to fS the axiom (RC) to make sure that the constants are rigid, and rule
(Öi) to allow constants and nonrigid terms to interact in the right way
when the latter are present. Assume that any of the domain axioms in
the previous section might also be included in oS. The oS-soundness of
oS may be shown by demonstrating that (åOut), (åIn), (RC), and (Öi)
and the domain axioms all preserve oS-validity. (The demonstrations for
the ≈ rules are the same as those given for the soundness of iS.) However,
in light of the oi Equivalence Theorem, there is a faster way to show the
soundness of oS.

Soundness of oS. If H ÷oS C then H …oS C.

Proof of the Soundness of oS. Suppose H ÷oS C. Then H …ioS C by the
soundness proofs given in Section 15.3. By the oi Equivalence Theorem,
H …oS C.
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Although this provides a quick result, it is an instructive exercise to
prove the soundness of oS directly by verifying that all the rules of oS
preserve oS-validity. That project is left to the next exercise.

EXERCISE 15.12 Verify that the rules of oS preserve oS-validity. (Hint:
Review the cases for showing that the rules of S preserve iS-validity, making
modifications as necessary. Note that the Rigid Instance Theorem was shown
only for iS-models, so a new proof will be needed for oS-models.)

15.11. Systems with Nonrigid Terms

This section concerns what happens when (in addition to the constants) a
set N of (possibly) nonrigid terms n1, n2, . . , ni, . . is added to the language.
In systems that that do not adopt (RC), there is no motivation for adding
N, because the constants are nonrigid and may serve already for nonrigid
expressions.

(RC) (b≈cç∫b≈c)&(~b≈cç∫~b≈c)

So assume that N is added to systems for the objectual interpretation that
include (RC), where the constants are rigid. This will mean that terms in
C (rigid) and those in N (nonrigid) have different logical behavior.

The first issue to resolve about the new terms is whether we should
broaden (åOut) (the rule of universal instantiation) to (tå) so that instan-
tiation is possible for all the terms including those in N.

(tå) åxAxç(EtçAt)

It is possible to show that (tå) corresponds to the semantical condition
that a(t) µ I. This means that the intension of every term t (including the
nonrigid ones) is a substance, that is, an entity such as Benjamin Franklin,
rather than a motley picked out by expressions such as “the inventor of
bifocals.” (See the discussion of substance in Section 13.6.) But in systems
rS and oS, I is a set of constant functions. This suggests that for a new term
n to satisfy a(n) µ I, its intension a(n) must be rigid, that is, it must pick
out the same entity (Benjamin Franklin) in each possible world. But that
conflicts with our decision that the new terms be nonrigid. It would seem
that there is a fundamental conflict in any system that adopts (tå) with
nonrigid terms, and this would appear supported by the fact that (tå) is
invalid on the objectual interpretation.
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However, (tå) may make more sense given the intensional interpreta-
tion of the quantifier. This is easiest to appreciate in tense logic where the
extension aw(n) of a term n is understood to be a time slice (at time w) of a
temporally extended individual. (See the discussion in Section 13.8.) Then
it would be possible for the intension of a term a(n) to be nonrigid, while
at the same time picking out a substance comprised of a unified collec-
tion of time slices. If it is presumed that such nonrigid terms always have
intensions that count as substances, then (åt) may be accepted. However,
note that the adoption of (RC) seems incompatible with this choice, for
the requirement (cI) that a(c) µ I means that substances correspond to
constant functions. The upshot is that the correct systems for a semantics
of this kind would be ones that already reject (RC), in which case there
is no need for any new nonrigid terms.

Since there is little motivation for systems that adopt (tå), they will be
treated only in the exercise below. Proofs of soundness are straightfor-
ward, and the ti-Transfer Theorem can be established for them by revising
theorems in Section 15.4 and 15.4, replacing mention of C with the set T
of terms throughout.

EXERCISE 15.13

a) Show that (tå) is iS-valid when iS-models obey the condition a(t) µ I.
b) Prove the ti-Transfer Theorem for systems that include (tå) and the con-

dition a(t) µ I. (Hint: Note that tS-models that satisfy (tå) automatically
obey aw(åxAx)=T iff for every term t, if aw(Et)=T then aw(At)=T. The
ti-expansion should now be defined so that i µ I iff for some term t, i=a(t).
Note that (Öc) will be guaranteed under these circumstances since it claims
that aw(t≈s)=T for some term s, which is trivial since the term s can be t.)

c) Explore what happens in the proof of the transfer theorem of b) for systems
that adopt both (o) and a(t) µI. What strengthening of (r) will be necessary
to obtain the result that the ti-expansion obeys (o)? What variation on (RC)
is going to be necessary to obtain completeness for such systems?

15.12. Appendix: Proof of the Replacement Theorems

Here we prove in detail the theorems about replacement used in this
chapter. Accurate statement and proof of these theorem will require use
of the official notation for substitution. So instead of writing: At, the full-
dress notation will be employed: [A]t/x. Let a g-term (for generalized
term) be any term, any object in D or any individual concept, (i.e., a
function from W into D). First, a formal definition of [e]g/x must be given,
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where e is any expression (including expressions formed from g-terms), g
is any g-term, and x is any variable. We will use ‘l’ for any list of g-terms,
‘P’ for any predicate letter, including E or ≈, and ‘A’ and ‘B’ for any
sentences including hybrids.

[x]g/x = g.
[e]g/x = e, when e±x.
[ƒ]g/x = ƒ.
[l, s]g/x = [l]g/x, [s]g/x, where s is any g-term.
[Pl]g/x = P[l]g/x.
[AçB]g/x = [A]g/x ç [B]g/x.
[∫A]g/x = ∫[A]g/x.
[åxA]g/x = åxA. (x is bound, so no substitution is carried out.)
[åyA]g/x = åy[A]g/x, when x±y.

Our next project will be to establish a simple lemma about multiple sub-
stitution, which will be useful for the theorems to come.

Order Lemma. If x±y, then [[e]i/x]g/y = [[e]g/y]i/x where i is any
individual concept.

Proof of the Order Lemma. The proof is by induction on the structure
of e. When e is a term or a variable other than x or y, [[e]i/x]g/y = e =
[[e]g/y]i/x. When e is x, [[x]i/x]g/y = [i]g/y = i = [x]i/x = [[x]g/y]i/x, and
the proof is similar when e is y. Once the lemma is established for all
terms or variables e, the result can easily be extended to lists and all
sentences. The only case of any interest involves the quantifier. So sup-
pose that e=åzB. We must show that [[åzB]i/x]g/y = [[åzB]g/y]i/x. Sup-
pose that x±z and y±z. Then [[åzB]i/x]g/y = åz[[B]i/x]g/y. By the induc-
tive hypothesis, we have [[B]i/x]g/y=[[B]g/y]i/x. This with [[åzB]g/y]i/x =
åz[[B]g/y]i/x ensures that [[åzB]i/x]g/y = [[åzB]g/y]i/x as desired. Now
suppose that x=z, which by x±y means that y±z. Then [åzB]i/x =
[åxB]i/x = åxB. So [[åzB]i/x]g/y = [åxB]g/y = åx[B]g/y, since y±x. Fur-
thermore, [[åzB]g/y]i/x = [[åxB]g/y]i/x = [åx[B]g/y]i/x = åx[B]g/y also.
So we have [[åzB]i/x]g/y = [[åzB]g/y]i/x in this case. The remaining case,
where y=z, is similar. ∫

EXERCISE 15.14 Show that [[åzB]i/x]g/y = [[åzB]g/y]i/x when y=z. Now
give the proof of the Order Lemma in full detail.
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We are now ready to state and prove the Intensional and Rigid Instance
Theorems for iS-models. In order to save tedious repetition, it will be
convenient to complete the demonstrations together by proving a more
general claim. As we pointed out in Section 13.4, there is no need to
include world subscripts when we write the extension of a rigid con-
stant c. So ‘a(t)’ may be used to indicate the extension of a rigid term
t, since that extension does not depend on w. Under these circumstances,
‘a(t)=d’ would indicate that t is a rigid term, whose extension is the
object d. Using this notation, a general instance theorem may be stated as
follows.

Instance Theorem.
If a(t)=g then, aw([A]t/x) = aw([A]g/x) for all w µ W.

When g ranges over D, so that ‘a(t)=g’ indicates that t is a rigid con-
stant, this result amounts to the Rigid Instance Theorem. When g ranges
over individual concepts, the Intensional Instance Theorem is obtained.
Note that when g is a member d of D, (d) guarantees aw(g)=g. Since
aw(g)=g=av(g), we may drop the subscript and write: a(g)=g. When g is
an individual concept, (f) also guarantees a(g)=g.

(d) aw(d)=d.
(f) aw(f)=fw.

Proof of the Instance Theorem. To show the Instance Theorem, assume
a(t)=g, and then prove a([A]t/x) = a([A]g/x) by induction on the length
of A.

Case 1. A is an atom. Then A is ƒ or has the form Pl. (Since E and ≈
are considered to be predicate letters, atoms with shapes Et and s≈t are
included in this case.)

When A is ƒ, the proof is easy since [ƒ]t/x=[ƒ]g/x.
In case A has the form Pl, remember that [x]t/x = t and [s]t/x = s

when s is not x. So it is easy to see that a([s]t/x) = a([s]g/x) for any g-term
s, for when s is not x, [s]t/x = s = [s]g/x, and when s=x, a([s]t/x) = a(t) =
g = a(g) = a([s]g/x). Since a([s]t/x) = a([s]g/x) holds for all g-terms s, it
follows that the corresponding property holds for lists of terms: a([l]t/x) =
a([l]g/x). Now let w be any member of W. It is not difficult to show
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aw([Pl]t/x) = aw([Pl]g/x) as follows:

aw([Pl]t/x)=T
iff aw(P[l]t/x)=T [Pl]t/x=P[l]t/x
iff aw([l]t/x) µ aw(P) (Pl)
iff aw([l]g/x) µ aw(P) a([l]t/x)=a([l]g/x)
iff aw(P[l]g/x)=T (Pl)
iff aw([Pl]g/x)=t. [Pl]g/x=P[l]g/x

Case 2. A has the form BçC. We must show aw([BçC]t/x)=T iff
aw([BçC]g/x)=T for all w in W. This is done as follows:

aw([BçC]t/x)=T
iff aw([B]t/xç[C]t/x)=T [BçC]t/x=[B]t/xç[C]t/x
iff aw([B]t/x)=F or aw([C]t/x)=T (ç)
iff aw([B]g/x)=F or aw([C]g/x)=T Inductive Hypothesis
iff aw([B]g/xç[C]g/x)=T (ç)
iff aw([BçC]g/x)=T. [BçC]g/x=[B]g/xç[C]g/x

Case 3. A has the form ∫B. We show aw([∫B]t/x)=T iff aw([∫B]g/x)=T
for all w in W as follows:

aw([∫B]t/x)=T
iff aw(∫[B]t/x)=T [∫B]t/x=∫[B]t/x
iff if wRv, then av([B]t/x)=T (∫)
iff if wRv, then av([B]g/x)=T Inductive Hypothesis
iff aw(∫[B]g/x)=T (∫)
iff aw([∫B]g/x)=T. [∫B]g/x=∫[B]g/x

Case 4. A has the form åyB. We show aw([åyB]t/x)=T iff
aw([åyB]g/x)=T for all w in W as follows. Assume first that x=y.
Then [åyB]t/x = åyB = [åyB]g/x, so clearly aw([åyB]t/x)=T iff
aw([åyB]g/x)=T in this case. Now assume x±y. We show aw([åyB]t/x)=T
iff aw([åyB]g/x)=T as follows:

aw([åyB]t/x)=T
iff aw(åy[B]t/x)=T [åyB]t/x=åy[B]t/x for x±y
iff if i µ I and i(w) µ Dw, then aw([[B]t/x]i/y)=T (iå)
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iff if i µI and i(w) µDw, then aw([[B]i/y]t/x)=T Order Lemma
iff if i µI and i(w) µDw, then aw([[B]i/y]g/x)=T Inductive Hypothesis
iff if i µI and i(w) µDw, then aw([[B]g/x]i/y)=T Order Lemma
iff aw(åy[B]g/x)=T (iå)
iff aw([åyB]g/x)=T [åyB]g/x=åy[B]g/x

for x±y

This completes the proof of the Instance Theorem, and so the Intensional
and Rigid Instance Theorems have been proven. We turn now to the proof
of the No t Theorem.

No t Theorem. If two iS-models are identical with the exception
that their respective assignment functions a and b disagree only on
the value of a single term t, and A is a wff (or hybrid) where t does
not appear, then aw(A)=bw(A). Furthermore, if t is not in L, then
aw(L)=bw(L).

Proof of No t Theorem. The proof is by induction on the length of A.
When A is atomic, the proof is easy, for when A has the form Pl and no
t is in l, then aw(l)=bw(l), which by (Pl) ensures that aw(Pl)=bw(Pl). The
inductive cases and the case for ƒ are all straightforward.

EXERCISE 15.15 Prove the inductive cases for the No t Theorem.
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Completeness of Quantified Modal Logics Using Trees

The completeness of quantified modal logics can be shown with the tree
method by modifying the strategy used in propositional modal logic.
Section 8.4 explains how to use trees to demonstrate the completeness of
propositional modal logics S that result from adding one or more of the
following axioms to K: (D), (M), (4), (B), (5), (CD). In this chapter, the
tree method will be extended to quantified modal logics based on the same
propositional modal logics. The reader may want to review Sections 8.3
and 8.4 now, since details there will be central to this discussion. The fun-
damental idea is to show that every S-valid argument is provable in S in
two stages. Assuming that H / C is S-valid, use the Tree Model Theorem
(of Section 8.3) to prove that the S-tree for H / C closes. Then use the
method for converting closed S-trees into proofs to construct a proof in
S of H / C from the closed S-tree. This will show that any S-valid argu-
ment has a proof in S, which is, of course, what the completeness of S
amounts to.

16.1. The Quantified Tree Model Theorem

In order to demonstrate completeness for quantified modal logics, a quan-
tified version of the Tree Model Theorem will be developed here. This will
also be useful in showing the correctness of trees for the quantified sys-
tems. Proofs of the appropriate tree model theorems are complicated by
the fact that there are so many different systems to be considered in quan-
tified modal logic. Several different interpretations of the quantifiers have
been developed. However, the transfer theorems proven in Sections 15.7
and 15.8 show how results for all these systems can be obtained from a

356

       
            

       



Completeness of Quantified Modal Logics Using Trees 357

proof of completeness for truth value models (tS-models). So a demon-
stration of the Tree Model Theorem will be given for tS-validity. Let us
assume that S is a system that results from adding any collection of the
modal logic axioms (D), (M), (4), (B), (5), and (CD) to fK and any of the
principles in the below list:

(ÖE) ÖxEx
(Q) Et
(ED) Ecç∫Ec
(CD) ~Ecç∫~Ec
(tå) åxAxç(EtçAt)
(RC) (b≈cç∫b≈c) & (~b≈cç∫~b≈c)
(Öi) L ÷ ~t≈c / L ÷ ƒ, provided c is not in L or t

Assume the S-tree is constructed according to the instructions in Section
14.6. Finally, it is a requirement on S that if the language contains terms
other than the constants, then the rule (Öi) must be included in S.

For each of these systems S, the corresponding tS-model is defined so
that a tS-model <W, R, a> is any tK-model that obeys (Öc), obeys the
frame conditions for the rules of S, satisfies each domain axiom of S, and
(r) if (RC) is in S.

(Öc) For teach term t, there is a constant c such that aw(t≈c)=T.
(r) If aw(b≈c)=T then av(b≈c)=T.

For simplicity in the proof, the tree model theorem formulated here asserts
the contrapositive of the claim that every tS-valid argument had a closed
S-tree.

Quantified Tree Model Theorem.
If the S-tree for H / C is open, then H ªtS C.

Proof of the Quantified Tree Model Theorem. Assume the S-tree for H / C
has an open branch. The basic strategy of the proof is to construct the tree
model for that branch that is a S-counterexample to H / C. The tree model
(for an open branch) <W, R, a> is defined as follows. W is the set of all
worlds on the open branch. R is defined so that wRv iff there is an arrow
in the tree from w to v. The assignment function a is defined for a language
that contains exactly those terms and predicate letters that appear in the
open branch. It assigns values to atomic sentences A (sentences with the
forms ƒ, and Pl) so that aw(A)=T iff A is in world w.

(aA) If A is an atom, then aw(A)=T iff A appears in w.
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The truth values of the complex sentences are determined by (ç), (∫),
and (å).

If we can show that the tree model is a tS-counterexample to H / C, the
proof of the Quantified Tree Model Theorem will be complete. It should
be clear that the principles for adding arrows to the S-tree ensure that the
frame <W, R> obeys the conditions for S. It satisfies the relevant truth
conditions by definition. If we can establish that the domain rules are
satisfied, that (t≈) and (Öc) hold, and that (r) holds if (RC) is in S, then
the tree model will qualify as a tS-model.

To help establish that the tree model is a tS-counterexample to H / C,
we will prove the Open Branch Lemma for a language that contains the
quantifier. Remember that a sentence A is said to be verified iff when-
ever A appears in any world w in the tree, a assigns it true at w, (i.e.,
aw(A)=T).

Open Branch Lemma.
Every sentence is verified on the tree model.

Once the Open Branch Lemma is in place, it is easy to see that
<W, R, a> qualifies as a tS-counterexample to H / C, for H and ~C are
found at the head of the opening world o of the tree, and so ao(H)=T and
ao(C)=F.

Proof of the Open Branch Lemma. The proof of this lemma pro-
ceeds almost exactly as it did in the case of propositional modal logic
(Section 8.3). The proof is by mathematical induction on the size of a
formula A, where size is defined by the number of symbols other than ƒ
in A. The base case is proven as in the case for propositional logic. The
only modification needed for the inductive case (IC) is to demonstrate
cases where A has one of the forms åxBx and ~åxBx.

(IC) If all sentences smaller in size than A are verified, so is A.

The proof of (IC) requires assuming (IH) and showing that it follows that
A is verified.

(IH) All sentences smaller in size than A are verified.

To say A is verified means that if A is in world w, then aw(A)=T. So to
prove that A is verified, assume (1) and prove aw(A)=T.

(1) A is in world w.
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Cases 1–7 where A has one of the shapes Pl, ~Pl, ~~B, ~(BçC), ~∫B,
BçC, or ∫B are proven exactly as they were in propositional modal logic.
(See Section 8.3.) Only two more cases remain.

Case 8. A has the form ~åxBx. By (1), ~åxBx is in w. (åF) was applied
to ~åxBx to place Ec and ~Bc in w for some constant c new to the
tree. The terms of the language are the terms present in the tree, so c
is one of those terms. By (IH), both Ec and ~Bc are verified, and so
aw(Ec)=T and aw(~Bc)=T, hence aw(Bc)=F. So it is false that for every
constant c, if aw(Ec)=T, then aw(Bc)=T. By (å), aw(åxBx)=F. As a result,
aw(~åxBx)=T, and hence A is verified.

Case 9. A has the form åxBx. By (1), we know that åxBx is in w. To
show that åxBx is verified, we need to prove that aw(åxBx)=T on the
tree model. By (å), aw(åxBx)=T provided that for any constant c, if
aw(Ec)=T then aw(Bc)=T. So suppose that aw(Ec)=T for one of those
constants c. This case will be completed when we show aw(Bc)=T. Now
Ec must be in w, because if Ec were not, then by the definition (aA),
aw(Ec) would be F, which it is not. Since Ec is in w, it follows by (åT) that
Bc must be in w, and since Bc is shorter than A, it is verified by (IH). It
follows that aw(Bc)=T. We have completed the proof that if aw(Ec)=T
then aw(Bc)=T for every constant c in the language, and so it follows by
(å) that aw(åxBx)=T and A is verified in this case.

The Open Branch Lemma has now been proven. So we know the tree
model is a counterexample to H / C. But to show the Quantified Tree
Model Theorem, we need to know that the tree model is a tS-model, in
order to establish that H / C has a tS-counterexample. So to complete the
proof of this theorem, we must show the tree model satisfies the domain
rules, obeys (t≈) and (Öc), and obeys (r) if (RC) is in S.

Proof that the tree model satisfies the domain axioms. Note that by the rules
for tree construction, every instance of an axiom written in the language
of the tree model must appear on every open branch. Since the Open
Branch Lemma assures us that these axioms are verified, they must be
true at every world on the tree model.

(t≈) aw(t≈t)=T and if aw(s≈t)=T and aw(Plsl′)=T then aw(Pltl′)=T.

Proof that the tree model obeys (t≈). The proof is straightforward in the
light of (aA) since the tree rules (≈In) and (≈Out) guarantee the following
property for any world w in the tree.

t≈t is in w and if s≈t and Plsl′ are in w then so is Pltl′.
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Next, we must verify that the tree model obeys (Öc) and that (r) is obeyed
given (RC) is in S. That (Öc) is obeyed when nonrigid terms are in the
language can be shown using facts about the S-tree rules that must have
been applied to the open branch.

(Öc) For teach term t, there is a constant c such that aw(t≈c)=T.

Proof that the tree model obeys (Öc). In case the constants are the only
terms in the language, (Öc) holds immediately, for when t is a constant,
there is always a constant c (namely, t) such that aw(t≈c)=T by (t≈). In
case there are terms other than the constants in the language, it was
required that rule (Öi) be in S. But when (Öi) is a rule of S, the corre-
sponding tree rule (tc) for S says explicitly to add t≈c to each world,
where c is a constant new to the tree. So the condition follows by (aA).

(r) If aw(b≈c)=T then av(b≈c)=T.

Proof that the tree model obeys (r) when (RC) is in S. By the fact
that (RC) is satisfied in the tree model, it follows from (ç) and
(~) that if aw(b≈c)=T, then aw(∫b≈c)=T, and if aw(b≈c)=F, then
aw(∫b≈c)=F. So when wRv, and aw(b≈c)=T, it follows by (∫T)
that av(b≈c)=T. Similarly when wRv, and aw(b≈c)=F, it follows that
av(b≈c)=F. We can express this with the following pair of diagram rules,
called (R≈):

Note that each tree begins with an opening world o, and any world sub-
sequently introduced into the S-tree is an ancestor of o, in the sense that
for each world w of the tree model (including o itself), there is a chain of
(zero or more) arrows extending from o to w. So for each w in W, there is
a number n such that oRnw. Furthermore, whenever oRnw, the value of
b≈c in w is identical to its value in o, for if ao(b≈c)=T, then aw(b≈c)=T,
by many applications of (R≈), and if ao(b≈c)=F, then aw(b≈c)=F for the
same reason. It follows that every member w of W agrees with o on the
value of b≈c, hence any two members w, v of W must agree with each
other on the value of b≈c, and so (r) must hold.
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16.2. Completeness for Truth Value Models

When it comes to the truth value models, both halves of what is needed for
proving completeness are now in place. When S is any quantified modal
logic discussed in Chapter 14, the method for converting a closed S-tree
into an S-proof was given in Sections 14.5 and 14.7. Furthermore, the
Quantified Tree Model Theorem has just been proven. So the complete-
ness of S for tS-models follows immediately.

Completeness of S for tS-Models. If H …tS C then H ÷S C.

Proof. Suppose H …tS C. Then by the contrapositive of the Quantified
Tree Model Theorem, the S tree for H / C is closed. This closed tree can
be converted into a proof by the methods of Sections 14.5 and 14.7. So H
÷S C.

16.3. Completeness for Intensional and Substitution Models

In this section, we will show the completeness of systems for the inten-
sional and substitution interpretations. Let S be any system that results
from adding to fK any selection of modal logic axioms (D), (M), (4), (B),
(5), (CD) and domain axioms from the list below.

Domain Rules Corresponding Domain Conditions
(ÖE) ÖxEx For some i µ I, i(w) µ Dw.
(Q) Et Dw=D.
(ED) Ecç∫Ec If wRv and aw(c) µ Dw, then av(c) µ Dv.
(CD) ~Ecç∫~Ec If wRv and av(c) µ Dv, then aw(c) µ Dw.
(RC) (b≈cç∫b≈c)&(~b≈cç∫~b≈c) aw(c)=av(c).
(Öi) L ÷ ~t≈c / L ÷ ƒ, no c in L, t For some i µ I, i(w)=aw(t).
(o)=(RC)+(Öi) I is the set of all constant functions

with values in D.
(oÖE)=(o)+(ÖE) (o) + Dw is not empty.

(oED)=(o)+(ED) (o) + if wRv, then Dw ì Dv.

(oCD)=(o)+(CD) (o) + if wRv, then Dv ì Dw.

The i Transfer Theorem of Section 15.7 shows that completeness of S for
iS-models that meet the corresponding conditions follows from a proof
of the completeness of S with respect to truth value (tS) models. But that
was shown in the previous section. So the result is immediate.

i Transfer Theorem. If system S is complete for tS-models, S is also
complete with respect to iS-models.

Completeness of S for iS-Models. If H …iS C then H ÷S C.
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Now let S be any system that results from adding to fK any selection
of modal logic axioms (D), (M), (4), (B), (5), (CD) and domain axioms
(Q), (ED), (CD), and (RC). Completeness of S for sS-models follows
immediately from the s Transfer Theorem of Section 15.7.

s Transfer Theorem. If system S is complete for tS-models, S is
also complete with respect to sS-models.

Completeness of S for sS-Models. If H …sS C then H ÷S C.

16.4. Completeness for Objectual Models

Completeness for systems that use the objectual interpretation can be
demonstrated in a similar way. Let us presume for a moment that there
are nonrigid terms in the language. Let S be any system that results from
adding to fK, any selection of modal logic axioms (D), (M), (4), (B), (5),
(CD), and o-domain axioms from the list below.

(ÖE) ÖxEx Dw is not empty.
(Q) Et Dw=D.
(ED) Ecç∫Ec If wRv, then Dw ì Dv.
(CD) ~Ecç∫~Ec If wRv, then Dv ì Dw.

Let oS be the result of adding (RC) and (Öi) to S. It was shown in Sec-
tion 12.8 (Exercises 12.16 and 12.20) that Ecç∫Ec equivalent to (CBF) or
åx∫Ex, and ~Ecç∫~Ec is equivalent to (BF) in oK, so the completeness
results will continue to hold when these alternative axioms are used in oS.

(CBF) ∫åxAxçåx∫Ax
(BF) åx∫Axç∫åxAx

The completeness of oS follows from the o Transfer Theorem of Section
15.8, provided that we can show that oS is complete for toS-models, where
toS-models are tS-models that satisfy (r).

(r) If aw(b≈c)=T then av(b≈c)=T.

o Transfer Theorem. If oS is complete for toS-models, oS is also
complete with respect to oS-models.

So all that remains is to show that oS is complete for toS-models. To make
headway on this, it is worth reviewing a special case of the Quantified Tree
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Model Theorem, where the system S at issue is oS, that is, a system that
includes (RC) and (ÖI).

o Tree Model Theorem.
If the oS-tree for H / C is open, then H toS C.

The proof of this special case of the Quantified Tree Model Theorem
has already been given in Section 16.2. When the system at issue is oS,
we know that the corresponding oS-tree is constructed using (RC). In the
proof of the Quantified Tree Model Theorem given in Section 16.2, it was
shown that when H / C has an open tree of this kind, the tree model is a
tS-model that satisfies (r). But a toS-model is, by definition, a tS-model
that meets this condition. So the tree model is a toS-counterexample to
H / C, hence H toS C.

The completeness of oS for toS-models is now just around the corner.

Completeness of oS for toS-Models. If H …toS C then H ÷oS C.

Proof. Suppose H …toS C. Then by the contrapositive of the o Tree Model
Theorem, the oS tree for H / C is closed. This closed tree can be converted
into a proof by the methods of Sections 14.5 and 14.7. So H ÷oS C.

This last result with the o Transfer Theorem guarantees completeness
of oS for oS-validity.

Completeness of oS for oS-Models. If H …oS C then H ÷oS C.

Note that it has been assumed for this proof that nonrigid terms are in the
language. When they are absent, it is possible to show the completeness
for oS-models of the weaker system rS=S+(RC), which lacks (Öi).

EXERCISE ∗16.1 Show the completeness of rS with respect to oS-models
when the only terms are the constants.

EXERCISE 16.2 Show that system oS5, which is the result of adding (RC),
(Öi), and the axioms of S5 to fK is complete with respect to oS models that
have universal frames, where a frame is universal when wRv for all w and v in
W. (Hint: Show the tree model for any system that includes the S5 axioms is
universal. See Exercise 8.7b for help on this.)
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EXERCISE 16.3 (Project) Use the tree method to prove completeness of a
system where the strong interpretation (≡) of ≈ is used. Use the intensional
interpretation of the quantifier.

(≡) aw(s≈t)=T iff a(s)=a(t).

(Hint: What changes in the principles for ≈ will be needed? How will these
changes affect the proof of the theorems that play a role in the completeness
proof?)

16.5. The Adequacy of Trees

In Section 8.7, it was shown that the tree method for propositional modal
logic is correct in the sense that closed S-trees identify exactly the S-valid
arguments. The proof depended on soundness and completeness results
using the method of trees. Exactly the same strategy can be used in the
case of quantified modal logics discussed in this book. Let S be any system
for which we have defined S-trees. The demonstration that S-trees are
adequate shows that the S-tree for H / C is closed iff H / C is S-valid. The
structure of the reasoning is illustrated in the following diagram:

EXERCISE 16.4 Using the diagram above, explain in more detail why S-
trees are adequate. (Hint. If necessary, review the explanation in Section 8.7.)

       
            

       



17

Completeness Using Canonical Models

Here we give completeness proofs for many quantified modal logics,
using a variant of the method of maximally consistent sets. Although
the previous chapter already established completeness for many quan-
tified modal logics using the tree method, there are good reasons for
covering the method of maximally consistent sets as well. First, this is the
standard approach to obtaining completeness results, so most students
of modal logic will want some understanding of the method. Second, the
tree method applied only to those systems for which it was shown how
to convert a tree into a proof. The method of maximally consistent sets
applies to more systems, though it has limitations described below in
Section 17.2.

17.1. How Quantifiers Complicate Completeness Proofs

One might expect that proving completeness of quantified modal logic
could be accomplished by simply “pasting together” standard results for
quantifiers with those for propositional modal logic. Unfortunately, it
is not so easy. In order to appreciate the problems that arise, and how
they may be overcome, let us first review the strategies used to show
completeness for propositional modal logic with maximally consistent
sets. Then it will be possible to outline the difficulties that arise when
quantifiers are added.

The basic idea behind completeness proofs that use maximally consis-
tent sets is to show that any argument H / C that is not provable has a
counterexample. This is done by showing that given H ¿ C, the set H, ~C
is consistent, and so can be extended to a maximally consistent set h by

365
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the Lindenbaum Lemma. The canonical model is then constructed, and
h is used to show there is a counterexample to H / C.

When the quantifier å is in the language, it is no longer possible to
base this tactic on maximally consistent sets. To see why, let us con-
sider first the simpler case where classical rules (QåIn) and (QåOut) for
the quantifier are used, along with the substitution interpretation truth
clause (Qå).

(Qå) aw(åxAx)=T iff for every constant c, aw(Ac)=T.

It will be important to be able to show (Qå) holds in the canonical model.
Since the canonical model is defined so that aw(A)=T iff w ÷ A for
maximally consistent sets w, guaranteeing (Qå) amounts to showing the
following:

w ÷ åxAx iff for every constant c, w ÷ Ac.

There is no problem showing this from left to right because that is guar-
anteed by features of maximally consistent sets and the (QåOut) rule.

EXERCISE 17.1 Show that if w ÷ åxAx, then for every constant c, w ÷ Ac
when the system at issue is qK.

However, the other direction is a problem. In fact, there are maximally
consistent sets w that prove instances Ac for each constant c, even though
åxAx is not provable from w. To see why, note that the set consisting of
~åxAx and Ac for each constant c is consistent, so it can be extended to
a maximally consistent set that cannot contain åxAx.

The solution to this difficulty is to base the completeness proof on
what are called saturated sets, where saturated sets w are maximally con-
sistent sets that meet a further condition (oc), sometimes called omega
completeness.

(oc) If w ¿ åxAx, then for some constant c, w ¿ Ac.

The contrapositive of this condition guarantees that whenever w ÷ Ac
for every constant c, w ÷ åxAx. This means that for saturated sets w, the
truth condition (Qå) will hold in the canonical model as is required.

So it appears that if the canonical model is defined so that W contains all
and only the saturated sets, the problem will be resolved. Note, however,
that it is now necessary to formulate and prove a new version of the
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Lindenbaum Lemma. Instead of showing that every consistent set can be
extended to a maximally consistent set, it is necessary now to show that
every consistent set can be extended to a saturated one.

This requires modifying the construction given in the Lindenbaum
Lemma used to create a maximally consistent set. In the original con-
struction, one begins with the consistent set M, orders the sentences A1,
A2, . . , Ai, . . , and adds sentences to M in sequence, forming a series of
sets: M1, M2, . . Mi, . . so that either Ai or ~Ai is added to Mi depending
on which choice leaves the result Mi+1 consistent. Unfortunately, this
procedure does not guarantee (oc). To overcome the problem, the stan-
dard thing to do is to adopt the following procedure. When a sentence
Ai with the form ~åxBx is to be added to Mi to form Mi+1, one also
adds an instance ~Bc where c is a constant that has not appeared in Mi.
It is important that the constant chosen is new to Mi because otherwise,
it is not possible to establish that the result remains consistent. It is a
straightforward matter to show that this procedure works, and so estab-
lishes the Saturated Set Lemma, that is, the claim that consistent sets can
be extended to saturated sets.

The requirement that the constant c be new when Ac is added dur-
ing the saturated set construction raises new issues. Consider what hap-
pens when one hopes to construct a saturated set from a consistent set
M whose sentences already contain all the constants of the language.
Since no new constants are available, the saturated set cannot be con-
structed in that language. This is not a problem in the proof of the com-
pleteness of nonmodal quantificational logic. Given H ¿ C, so that the
set H, ~C is consistent, one simply considers a language larger than
the one in which the argument H / C is written, and uses the Satu-
rated Set Lemma to obtain the desired saturated set h written in that
new language. When the canonical model is constructed for the new lan-
guage, it is easy to see that it serves as a counterexample to the original
argument.

The same strategy would work to show completeness of a classical
quantified modal logic qS were it not for one thing. In this case it is nec-
essary to show that the canonical model simultaneously meets truth con-
ditions (Qå) and (∫), so it will be necessary to demonstrate both of the
following:

÷ åxAx iff for every constant c, w ÷ Ac.
÷ ∫A iff for all v µ W, if wRv, then v ÷ A.
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Notice that in the completeness proof for propositional modal logic,
demonstration of the second fact requires a proof of (¿∫), and the proof
of this makes an essential appeal to the Lindenbaum Lemma.

(¿∫) If w ¿ ∫A, then for some v µ W, wRv, and v ¿ A.

(Assuming w ¿ ∫A, one shows that V, ~A is consistent, where B µ V
iff ∫B µ w. But then one needs the Lindenbaum Lemma to create from
V, ~A a maximally consistent set v such that wRv, and v ¿ A.) So in
the case of quantified modal logic, it will be necessary to appeal to the
Saturated Set Lemma a second time to prove that there is a saturated set
v such that wRv, and v ¿ A in order to establish that the canonical model
obeys the ∫ truth condition. The problem is that there is no guarantee
that there are enough constants missing from the set V, ~A to use in
the saturated set construction. As a matter of fact since ∫(PcçPc) is a
theorem, it follows that PcçPc is a member of V, ~A for every constant
c in the language, so there are no new constants at all. If we attempt to
remedy the problem by constructing the world v in a larger language L′,
then one is trapped in a vicious circle. Now one must prove the canonical
model obeys the quantifier truth condition (Qå) for language L′ instead
of the original language. This will force us to define W in the canonical
model as the set of all saturated sets written in L′. But when this is done,
and one returns to the proof of (¿∫), one needs to find new constants
foreign to a set V, ~A written in L′. Of course, there is no guarantee that
there are such constants, and we are right back where we started. Note
that exactly the same problem will arise whether we adopt classical or
free logic approaches to the quantifier.

There are many different methods that one may use to overcome this
fundamental problem (Garson 2001, Section 2.2). However, each works
only for a subset of the quantified modal logics. A method that encom-
passes a fairly wide selection of quantified modal logics will be presented
here. (A more general result is found in Garson (2005).) The basic idea
behind the method is to generalize the definition of omega completeness
so that it is possible to show that any set V, ~A from which we hope
to construct saturated set v is already omega complete, so that no new
constants are needed to create the desired saturated set.

17.2. Limitations on the Completeness Results

It is important to make clear the limitations on the completeness results
to be given in this chapter. For the moment, let system S be the result
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of adding to fK propositional modal logic axioms, and domain axioms
discussed in Section 15, but not (RC) and not the rule (Öi). In Sections 17.5
and 17.6 we will explain how to extend the results to systems that include
these principles. An important restriction concerning these stronger sys-
tems is that when (RC) is present and terms other than the constants are in
the language, it is necessary also to include the rule (Öi).

There is also a restriction on the propositional modal logic on which S is
based. In the case of propositional modal logics with conditions on models
such as density and convergence, the completeness proof involves a third
appeal to the Saturated Set Lemma. For this reason, the method given
here will not work to show completeness of quantifier versions of those
systems. In fact, it is known that it is impossible to prove completeness for
some of these systems because they are in fact not complete (Cresswell,
1995). The proofs given here will show the completeness of modal logics S
only when the canonical model obeys frame conditions that are preserved
by subframes, which means that the condition holds in the frame of the
canonical model, and continues to hold when members of its set of worlds
W are deleted.

The official definition of preservation by subframes goes like this. A
condition on frames for propositional modal logic S is preserved by sub-
frames iff it holds in the canonical model for propositional logic S, and
whenever the condition holds for frame <W′, R′>, it also holds for any
subframe <W, R>, that is, any frame <W, R> such that W ß W′ and
R ß R′, where R ß R′ means that for all w, v in W, wRv iff wR′v. All con-
ditions on R involving universal quantification over worlds are preserved
by subframes. For example, reflexivity, shift reflexivity, transitivity, sym-
metry, the euclidean condition, and linearity are conditions that qualify.
The reason is that when a universal claim holds for a domain W, then it
holds for each member of W; and so it holds for members in any subset of
W. Seriality, density, and convergence do not qualify because these con-
ditions involve existential quantification over W. A true claim that there
exists a member in W with a certain property might fail in a subset of
W that omits some of its members. Despite the fact that seriality is not
preserved by subframes, there is a way to modify the method presented
here to obtain completeness proofs for that condition. Unfortunately, the
method does not work for density, and in fact, we know that complete-
ness must fail for convergence (Cresswell, 1995). It also does not work
for universality, the condition that wRv for all w and v in W, since the
canonical model for S5 is not universal; but completeness can be proven
nonetheless by modifying the method given here. (See Exercise 17.13.)
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The completeness proof follows the same pattern used for propo-
sitional logic in Chapter 9. After the basic ideas are presented in the
next section, it will be shown how to obtain completeness results for tS-
models – truth value models with the substitution interpretation. This
together with the various Transfer Theorems developed in Chapter 15
will allow us to extend the completeness results to the more sophisticated
treatments of the quantifier. This will serve as a framework for proofs for
most of the quantified modal logics mentioned in this book, everything
from systems with constant domains that accept the Barcan Formulas, to
systems that use the objectual interpretation with nonrigid terms.

17.3. The Saturated Set Lemma

The completeness proof for S will follow the discussion in Section 9.1.
When we write ‘M ÷ A’ in the case of a set M, we mean that H ÷S A
for some (finite) list H whose members are all in M. In order to manage
cases involving the quantifier, the notion of an å-set will be introduced.
The basic idea is that when such a set entails EcçAc for all constants c
in the language, then it should also contain åxAx. The reason that we are
interested in such sets is that they obey the analog of (å), the substitution
truth clause for the quantifier. In quantified model logic, however, we
need a more general version of this idea.

To explain it, some new notation is needed. When L / C is an argument,
the corresponding sentence LÓC is the result of applying (∫In) and (çIn)
repeatedly to the argument L / C. For example, when L / C is the argument
A, ∫, B, ∫ / C, then the corresponding sentence LÓC may be constructed
in stages as follows:

A, ∫, B, ∫ / C
A, ∫, B / ∫C (∫In)
A, ∫ / Bç∫C (çIn)
A / ∫(Bç∫C) (∫In)
Aç∫(Bç∫C) (çIn)

EXERCISE 17.2 Construct LÓC in cases where L / C has L is empty, where
L / C = ∫, A, ∫, B / C and where L / C = ∫, ∫, ∫ / C.

The following Lemma should be nearly obvious.

Ó Lemma. When L′ is finite L, L′ ÷ C iff L ÷ L′ÓC.
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Proof of the Ó Lemma. Suppose L, L′ ÷ C. Then L ÷ L′ÓC by repeated
uses of (∫In) and (çIn). Suppose L ÷ L′ÓC. Then L, L′ ÷ C by repeated
uses of (∫Out) and (çOut).

M is a å-set (for a given language) if and only if it obeys the following
property, for any list L:

(å-set) If M ÷ LÓ(EcçAc) for all constants c of the language, then
M ÷ LÓåxAx.

We will say that M is saturated for a language if and only if M is a maximal,
consistent å-set for that language.

As already explained, the reason we are interested in å-sets is so that
we will be able to construct a model that satisfies (å), the truth clause for
the substitution interpretation of the quantifier. You may wonder why a
simpler condition is not used, namely, the result of deleting ‘LÓ’ from
the definition.

If M ÷ EcçAc for all constants c of the language, then M ÷ åxAx.

However, this condition will not accomplish everything we need for
the completeness proof. The gist of the problem is that the more general
property is necessary to simultaneously guarantee (å) and (∫) together
in the canonical model. At the appropriate point in the proof, the need
for the more complex definition of a å-set will be noted.

The main reasoning of the completeness proof will be to establish an
analog of the Lindenbaum Lemma, that is, to show that every consistent
set can be extended to a saturated set. First, the way will be prepared
with some lemmas concerning what we call ready sets. A set M is ready iff
either M is a å-set or there are infinitely many constants of the language
that fail to appear in M.

Ready Addition Lemma. If M′ is finite and M is ready, then M∪M′
(the union of M with M′) is ready.

Proof of the Ready Addition Lemma. Suppose M′ is finite and M is ready. If
the reason M is ready is that there are infinitely many constants of the lan-
guage not in M, then since M′ is finite, there will still be infinitely many con-
stants not in M∪M′ and so M∪M′ is ready. If the reason M is ready is that it
is a å-set, then M∪M′ is also a å-set and so ready as well by the following
reasoning. Suppose that M∪M′ ÷ LÓ(EcçAc) for every constant c of
the language. It follows (by (CP) and (&In)) that M ÷ Hç(LÓ(EcçAc))
for every constant c of the language, where H is the conjunction of the
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members of M′. But by the definition of LÓ, Hç(LÓ(EcçAc)) is just
H, LÓ(EcçAc). Since M is a å-set it follows then that M ÷ H, LÓåxAx,
from which it follows by (MP) and (&Out) that M∪M′ ÷ åxAx. Therefore
M∪M′ is a å-set, and so ready in this case as well.

Ready Lemma. If M is ready and consistent for a given language,
and contains ~(LÓåxAx), then M, ~(LÓ(EcçAc)) ¿ ƒ, for some
constant c of the language.

Proof of the Ready Lemma. Suppose M is ready, consistent, and contains
~(LÓåxAx). To show that M, ~(LÓ(EcçAc)) ¿ ƒ, for some constant
c of the language, suppose the opposite and derive a contradiction. So
suppose that M,~(LÓ(EcçAc))÷ƒ for every constant c. A contradiction
can be obtained as follows. By (IP) it follows that M ÷ LÓ(EcçAc), for
every constant c. If the reason that M is ready is that M is a å-set, then it
follows immediately that M ÷ LÓåxAx. If M is ready because there are
infinitely many constants of the language not in M, then M ÷ LÓåxAx
also holds for the following reason. L is finite, so there are infinitely many
constants not in M, L, or åxAx. Let b be one of these constants. Since
M ÷ LÓ(EcçAc), for any c, we have M ÷ LÓ(EbçAb), and so H ÷
LÓ(EbçAb) for some list H of members of M. So by the Ó Lemma, H,
L ÷ EbçAb. Since b is not in H, L, or åxAx, (åIn) may be applied to
H, L ÷ EbçAb to obtain H, L ÷ åxAx. By the Ó Lemma, it follows that
H ÷ LÓåxAx, and hence M ÷ LÓåxAx. So for whichever reason M is
ready, it follows that M ÷ LÓåxAx. But we also have that ~(LÓåxAx)
is in M, and this conflicts with the consistency of M. Therefore it follows
that M, ~(LÓ(EcçAc)) ¿ ƒ for some constant c.

We are now in a position to prove a quantified modal logic version of
the Lindenbaum Lemma.

Saturated Set Lemma.
If M is consistent and ready, then M has a saturated extension.

Proof of the Saturated Set Lemma. Suppose M is consistent and ready.
We will explain how to construct a saturated set m that is an extension of
M, using a variant of the proof strategy for the Lindenbaum Lemma. We
order all the sentences of the language in an infinite list: A1, A2, . . Ai, . .
and create a series of lists: M1, M2, . . Mi, . . following the main outlines
of the recipe used for propositional logics, starting with M1 = M.

Mi+1 = Mi, Ai if Mi, Ai ¿ ƒ.
Mi+1 = Mi, ~Ai if Mi, Ai ÷ ƒ.
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However, there will be one change in the definition of Mi+1. Suppose
that a sentence of the form ~(LÓåxAx) is Ai, the candidate for addition
to Mi+1. If the addition of this sentence would be consistent (i.e., if Mi,
~(LÓåxAx) ¿ ƒ), then add both ~(LÓåxAx) and ~(LÓ(EbçAb)) to
Mi to form Mi+1, where b is a constant chosen so that Mi+1 is consistent.
There is such a constant by the following reasoning. M is ready, and only
finitely many sentences were added to M to form Mi, ~(LÓåxAx), so
by the Ready Addition Lemma, Mi, ~(LÓåxAx) is ready. Since Mi,
~(LÓåxAx) ¿ ƒ, and ~(LÓåxAx) is in Mi, ~(LÓåxAx), it follows by
the Ready Lemma that Mi, ~(LÓåxAx), ~(LÓ(EcçAc)) ¿ ƒ for some
constant c.

Let m be the union of M with the set of all sentences added in forming
any of the Mi. Clearly m is maximal, and each set Mi in this construc-
tion is clearly consistent by the same reasoning given in the Lindenbaum
Lemma. By the M Lemma of Section 9.1, m is consistent. Below it is
shown that m is a å-set, and so m is the desired saturated extension of M,
and the proof of the Saturated List Lemma is complete.

Proof that m is a å-set. Suppose that m ÷ LÓ(EcçAc) for every
constant c. We will show that m ÷ LÓåxAx, by showing that m ¿
LÓåxAx leads to a contradiction. Suppose m ¿ LÓåxAx. Then by
(IP), m, ~(LÓåxAx) ¿ ƒ. But ~(LÓåxAx) must be Ai, the ith mem-
ber of the list of all sentences for some value of i. If m, ~(LÓåxAx)
¿ ƒ, then Mi, ~(LÓåxAx) ¿ ƒ (since Mi is a subset of m). But then
~(LÓ(EbçAb)) was added to form Mi+1 for some constant b. Hence
m ÷ ~(LÓ(EbçAb)). However, we already supposed m ÷ LÓ(EcçAc)
for every constant c, so in particular, m ÷ LÓ(EbçAb). This conflicts with
the consistency of m. Therefore, we must conclude that m ÷ LÓåxAx,
and so m is a å-set.

17.4. Completeness for Truth Value Models

Now that the Saturated Set Lemma has been proven, we turn to the
details of the completeness proof for S with respect to truth value models
(tS-validity). Remember that this result is limited because so far, the
system S contains neither (RC) nor the rule (Öi). We wish to show that if
H / C is tS-valid, then H / C can be proven in S.

Completeness for tS-Models (for systems without (RC) or (∃i)).
If H …tS C, then H ÷S C.

       
            

       



374 Modal Logic for Philosophers

Proof of the Completeness of S. We will actually show the contra-
positive: if H ¿S C, then H / C has a tS-counterexample. So assume
H ¿S C. Then by (IP), H, ~C ¿S ƒ. Consider the quantified modal lan-
guage that contains all the symbols appearing in H, ~C. Create a new
language from this one by adding infinitely many constants that do not
appear in H, ~C. For this new language H, ~C is ready, so it is a mem-
ber of the set of all consistent and ready sets. Therefore by the Satu-
rated Set Lemma, there is a saturated extension h of H, ~C in this new
language.

Now let us define the canonical model for S that will serve as a coun-
terexample to H / C. The definition closely resembles the one used for
propositional modal logics except that saturated sets now play the role of
maximally consistent sets.

The canonical model <W, R, a> for S is defined over the new language
as follows:

(DefW) W is the set of all saturated sets.
(DefR) wRv iff for all sentences B, if w ÷ ∫B then v ÷ B.
(Defa) aw(A)=T iff w ÷ A.

If it can be shown that the canonical model just defined is a tS-model,
we will have constructed a tS-counterexample to H / C. To see why, note
that the saturated set h constructed from H, ~C entails ~C and all mem-
bers of H, so by (Defa), ah(H, ~C) = T, and so ah(H)=T and ah(C)=F.

All that remains for the completeness proof is to show that the canoni-
cal model for S is a tS-model. To do so, we must verify that W is nonempty,
that R is binary relation on W, and that a obeys the following conditions:
(ƒ), (ç), (∫), (å), (t≈), and (Öc). We must show also that its frame <W,
R> obeys the corresponding conditions for system S. In case there are any
domain axioms in S, we must show also that the canonical model satisfies
those axioms. The proofs that W is nonempty, that R is binary relation on
W, and that a obeys (ƒ) and (ç) are identical to the corresponding cases
in propositional logic. (See Section 9.2.) Let us now cover the remaining
issues.

(∫) bw(∫A)=T iff for all v µ W, if wRv, then av(A)=T.

Proof that a obeys (∫). In the light of (Defa), (∫) follows if we can show
(÷∫) and (¿∫).

(÷∫) If w ÷ ∫A, then for all v µ W, if wRv, then v ÷ A.
(¿∫) If w ¿ ∫A, then for some v µ W, wRv, and v ¿ A.
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Proof of (÷∫). Suppose w ÷ ∫A, and let v be any member of W such
that wRv. By (DefR), for any sentence B, if w ÷ ∫B, then v ÷ B. So
v ÷ A.

The following lemmas, which were already proven in Section 9.2, will
be used in the proof of (¿∫). Remember that V is defined by (Vµ).

(Vµ) B µ V iff ∫B µ w.

Extension Lemma.
If M′ is an extension of M, then if M ÷ A then M′ ÷ A.

V-Lemma. w is an extension of ∫V.

Consistency Lemma. If w ¿ ∫A, then V, ~A is consistent.

R Lemma. If v is an extension of V, ~A then wRv.

EXERCISE 17.3 Review the proofs of the previous four lemmas to ver-
ify that the presence of quantifiers does not affect the reasoning given in
Section 9.2.

One more lemma is needed to show that V, ~A can be extended to a
saturated set. To do this using the Saturated Set Lemma, we will need to
know not only that V, ~A is consistent but also that it is a å-set so that it
will follow that V, ~A is ready.

EXERCISE 17.4 To practice steps taken in the reasoning of the next lemma,
show the following, by working out examples when L is the list C, ∫, D, ∫.

a) ∫(LÓA) = ∫, L Ó A
b) Bç(LÓA) = B, L Ó A

å-Set Lemma. V, ~A is a å-set.

Proof. To show V, ~A is a å-set, assume V, ~A ÷ L Ó (EcçBc) for
all c, and show that V, ~A ÷ L Ó åxBx as follows. From the assump-
tion, it follows by (CP) that V ÷ ~A, L Ó (EcçBc) for all c. By (GN),
∫V ÷ ∫,~A, L Ó (EcçBc) for all c. Since w is an extension of ∫V, it
follows by the Extension Lemma that w ÷ ∫, ~A, L Ó (EcçBc) for all c.
But w is a å-set and so for any list L′, if w ÷ L′ Ó (EcçBc) for all c, then
w ÷ L′ Ó åxAx. So when L′ is the list ∫,~A, L, it follows that w ÷ ∫, ~A,
L Ó åxAx. (This is the point in the proof that illustrates why the more
general definition of a å-set was needed. If ‘LÓ’ had been missing in that
definition, it would not have been possible to argue from the fact that w
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is a å-set to the result that V, ~A is a å-set.) Since w is maximal, either
∫, ~A, L Ó åxBx or its negation is in w. But the negation cannot be in
w since that would make w inconsistent. Therefore ∫, ~A, L Ó åxBx is
in w with the result that ~A, L Ó åxBx is in V. So V ÷ ~A, L Ó åxBx,
and V, ~A ÷ L Ó åxBx by (MP).

Proof of (¿∫). Suppose w ¿ ∫A. The Consistency Lemma guarantees
that V, ~A is S-consistent. The å-Set Lemma guarantees that V, ~A is a
å-set. So by the Saturated Set Lemma, we can extend V, ~A to a saturated
set v in W. By the fact that v is an extension of V, ~A it follows by the
R-Lemma that wRv. Since v is an extension of V, ~A, it also follows that
~A µ v, and hence by the consistency of v that v ¿ A. We have found a
saturated set v in W with the feature that wRv and v ¿ A, which finishes
the proof of (∫¿).

(å) aw(åxAx)=T iff for every constant c, if aw(Ec)=T then aw(Ac)=T.

Proof of (å). By (Defa) it will be sufficient for establishing (å) to show
(÷å) and (¿å).

(÷å) If w ÷ åxAx, then for every constant c, if w ÷ Ec, then w ÷ Ac.
(¿å) If w ¿ åxAx, then for some constant c, w ÷ Ec and w ¿ Ac.

Proof of (÷å). Assume w ÷ åxAx and that c is any constant such that w
÷ Ec. By (åOut), w ÷ Ec ç Ac, hence by (MP), w ÷ Ac.

Proof of (¿å). Assume w ¿ åxAx. Since w is saturated, w is a å-set. So in
the special case where L is empty, we have that if w ÷ EcçAc for every
constant c, then w ÷ åxAx. But by our assumption w ¿ åxAx, so it follows
that it cannot be true that w ÷ EcçAc for every constant c. Therefore,
for some constant c, w ¿ EcçAc, which means EcçAc is not in w. By the
fact that w is maximal, ~(EcçAc) is in w, and by the derived rule (çF),
we have both w ÷ Ec and w ÷ ~Ac. Since w is consistent, w ¿ Ac. So for
this constant c, w ÷ Ec and w ¿ Ac.

(t≈) aw(t≈t)=T and if aw(s≈t)=T and aw(Plsl′)=T, then aw(Pltl′)=T.

Proof of (t≈). By (Defa), (t≈) follows if we can show (1) and (2).

(1) w ÷ t≈t.
(2) If w ÷ t≈s and w ÷ Pltl′ then w ÷ Plsl′.

But (1) and (2) follow from the presence of (≈In) and (≈Out) in fS.
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(Öc) For all t and w, there is a constant c such that aw(t≈c)=T.

Proof of (Öc). Since the only terms so far in the language are the constants,
all we must show is that for each constant b, there is a constant c such that
aw(b≈c)=T. But this follows from (t≈), which guarantees aw(b≈b)=T, so
that the constant c in question can be b itself. (Note that condition (Öc)
could fail when new terms are introduced to the language.)

Our final project is to show that the frame <W, R> of the canonical
model obeys the frame conditions corresponding to the propositional
modal logic axioms of S. We have assumed that the conditions on R
at issue are preserved by subframes. In the course of the completeness
proofs for the propositional modal logics, we proved that for any sys-
tem containing the axioms of S, the frame <W′, R′> for the canonical
model obeys the corresponding properties for those axioms. The very
same reasoning applies to show those same frame conditions would hold
for the canonical model for S if only <W′, R′> were its frame. Remem-
ber W′ contained the maximally consistent sets. In the canonical model
for S, however, its frame <W, R> is defined so that W contains saturated
sets, that is, maximally consistent sets that are also å-sets. Therefore,
<W, R> is a subframe of <W′, R′>. Since the conditions on R for sys-
tem S are preserved by subframes, we know that <W, R> obeys them
as well.

It is possible to show also that seriality holds for the canonical model
if the axiom (D) is in S. Let w be any member of W. Since w is maximal,
it must contain any theorem of S including ~∫ƒ that derivable from (D).
So w ÷ ~∫ƒ and by (Defa), the canonical model is such that aw(~∫ƒ)=T
and so aw(∫ƒ)=F. But we proved that the canonical model obeys (∫),
and so there must be a world v in W such that wRv and av(ƒ)=F. So for
each world w in W there is a word v in W such that wRv. Therefore the
canonical model’s frame is serial when (D) is in S, which means that the
completeness proof will be forthcoming in this case, even though seriality
is not preserved by subframes.

17.5. Completeness for Systems with Rigid Constants

Here we will explore the completeness question for systems that include
the axiom (RC), whose corresponding condition asserts that the constants
are rigid.

(RC) (b≈cç∫b≈c) & (~b≈cç∫~b≈c) aw(c)=av(c)

       
            

       



378 Modal Logic for Philosophers

Now let rS be a system that is the result of adding (RC) to one of
the systems S already described at the end of Section 17.2. Note that
it is a requirement on the language of rS that the constants are the only
terms in the language. The completeness proof for rS follows the out-
lines of the strategy used in the previous section but unfortunately
the presence of (RC) does not guarantee that the canonical model
has rigid constants. So it is necessary to complicate the construction
of the canonical model and adjust the proof to fit. Remember that in
case (RC) is present, it was stipulated that a tS-model must satisfy the
condition (r).

(r) If aw(b≈c)=T then av(b≈c)=T.

So we will show the completeness of system rS with respect to trS-models,
that is, tS-models that obey (r). Note that (Öi) is not present in rS. In the
following section, it will be explained how to manage systems that include
(Öi).

Completeness of rS for trS-Models (for systems without (∃i)).
If H …tS C then H ÷rS C.

Proof. Assume that H ¿rS C. Then H, ~C ¿rS ƒ, and so the Saturated Set
Theorem guarantees that H, ~C can be extended to a saturated set o. The
canonical model for rS is then defined from o so that its set of possible
worlds W is restricted to reflect the fact that the constants are rigid. Let
us call a saturated set r-normal when the sentences it entails of the form
b≈c are exactly the sentences of that form entailed by o. So w is r-normal
exactly when o ÷ b≈c iff w ÷ b≈c, for any two constants b and c. The
canonical model <W, R, a> for rS is identical to canonical model for S
defined in the previous section, except that the set of possible worlds W
is restricted to the r-normal saturated sets.

(DefrW) W = the set of r-normal saturated sets.

All that remains is to show that the canonical model so defined is a
trS-model. It should be obvious from (DefrW) that (r) is satisfied, for
in the light of (Defa) and the fact that w is r-normal, ao(b≈c)=aw(b≈c)
for all w in W. Finally, we can show that <W, R> obeys the appropriate
frame conditions by noting that those conditions are all preserved by sub-
frames and that W in the present model is a subset of W in the canonical
model for S defined in the previous section. The rest of the demonstration
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is identical to the proof given there, with the exception that a modification
of the proof for (∫¿) is needed.

(¿∫) If w ¿ ∫A, then for some v ∈ W, wRv, and v ¿ A.

Proof of (∫¿). We must show that if w ¿ ∫A, then there is a saturated
set v in W, such that wRv and v ¿ A. The reasoning given for that case in
Section 17.4 still shows that there is a saturated set v such that wRv and v
¿ A, but it does not guarantee that v is a member of W unless we can also
show that v is r-normal. To prove that, it must be shown that o ÷ b≈c iff v
÷ b≈c. We know that w is r-normal because it is in W, so all that remains
is to show w ÷ b≈c iff v ÷ b≈c, which breaks into two cases as follows:

(r≈÷) If w ÷ b≈c then v ÷ b≈c.
(r≈¿) If w ¿ b≈c then v ¿ b≈c.

For the proof of (r≈÷) assume w ÷ b≈c. Then by the axiom (RC),
w ÷ ∫b≈c, and so by the fact that wRv and (DefR), it follows that v ÷ b≈c.

For the proof of (r≈¿) assume w ¿ b≈c. Then b≈c is not in w. By
the maximality of w, ~b≈c is in w, and hence w ÷ ~b≈c, from which
w ÷ ∫~b≈c follows by (RC). By the fact that wRv and (DefR), it follows
that v ÷ ~b≈c, and so since v is consistent, v ¿ b≈c.

17.6. Completeness for Systems with Nonrigid Terms

So far, completeness has been shown only when (Öi) is absent from S. Since
(Öi) is required to handle nonrigid terms, it follows that the language of
S does not contain nonrigid terms. But this is a heavy price to pay since
nonrigid terms are commonplace in ordinary language. Let us consider
what can be done to prove completeness for systems with nonrigid terms
that include (Öi).

(Öi) L ÷ ~t≈c / L ÷ ƒ where c is not in L nor in t

Let system oS be the result of adding (Öi) to rS, and assume now that
the language includes terms other than the constants. The completeness
proof for oS will require a major overhaul. Let us say that set M is a ≈-set
when the following property holds:

(≈-set) If M ÷ LÓ~t≈c for every constant c, then M ÷ LÓ~t≈t.

Notice how the condition (≈-set) mimics the content of the (Öi) rule
while at the same time deploying the strategy used in the definition of
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a å-set. (The sentence ~t≈t serves as the contradiction ƒ in the rule.)
A ≈saturated set is a ≈-set that is also saturated. We need to show an
analogue of the Saturated List Lemma, this time for ≈saturated sets. Let
us say that a set M is ≈ready when it is both a å-set and a ≈-set, or there
are infinitely many constants of the language not in M. It is helpful to first
show the following analogues of the Ready Addition Lemma, the Ready
Lemma, and the Saturated Set Lemma:

≈Ready Addition Lemma.
If M′ is finite, and M is ≈ready, then M∪M′ is ≈ready.

EXERCISE *17.5 Using the proof of the Ready Addition Lemma as a guide,
prove the ≈Ready Addition Lemma.

≈Ready Lemma. If M is ≈ready, consistent, and contains
~(LÓ~t≈t), then M, ~(LÓ~t≈c) ¿ ƒ, for some constant c of the
language.

EXERCISE *17.6 Using the reasoning of the Ready Lemma as a guide, show
the ≈Ready Lemma.

≈Saturated Set Lemma.
If M is consistent and ≈ready, then M has a ≈saturated extension.

EXERCISE *17.7 Using the reasoning of the Saturated Set Lemma as a
guide, prove the ≈Saturated Set Lemma. (Hint: Modify the definition of Mi+1

so that when Ai is ~(LÓ~t≈t), and Mi, ~(LÓ~t≈t) ¿ƒ, add both ~(LÓ~t≈t),
and ~(LÓ~t≈c) to form Mi+1, where c is chosen so that Mi+1 is consistent.
You will need to show that m on your construction is a ≈-set, which you may
do following the strategy of the proof that m is a å-set given at the end of
Section 17.3.)

With these new lemmas in hand, completeness of oS for truth value seman-
tics is proven using the same strategy we have established in previous
sections. Let a toS-model be any tS-model that obeys (r).

Completeness of oS for toS-Models. If H …toS C then H ÷oS C.

Proof. From H ¿oS C, we obtain a consistent set H, ~C that is extended to a
≈saturated set o written in a language with infinitely many new constants.
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We then define the canonical model and show it is a toS-model. Since o
will belong to the W of that model, we will have a toS-counterexample
to H / C. The canonical model <W, R, a> is defined as in the previous
section, with the exception the W is restricted to the ≈saturated sets.

(Def≈W) W is the set of all ≈saturated sets.

We then show that the canonical model for S is a toS-model, just as we did
in Section 17.5, using ≈saturated rather than saturated sets throughout.
Only two adjustments to the proof are necessary. First a change is needed
in the proof that the canonical model obeys (∫). The proof of (∫¿) now
requires a demonstration that V, ~A is a ≈-set, so as to show that V, ~A
is ≈ready and so can be extended to a ≈saturated set v. So it is necessary
to establish the following lemma:

≈-Set Lemma. V, ~A is a ≈-set.

EXERCISE *17.8 Show the ≈-Set Lemma.

EXERCISE 17.9 Prove that the canonical model defined in this section
obeys (∫).

The second adjustment required in the proof that the canonical model
is a toS-model is in the proof that it obeys (Öc).

(Öc) For all t and w, there is a constant c such that aw(t≈c)=T.

Now that there are terms other than the constants, showing the canon-
ical model obeys (Öc) requires a special argument. However, the use of
≈saturated sets in the canonical model provides what is needed.

Proof of (Öc). This follows immediately from (Defa), if (cReady) can be
shown.

(cReady) For every term t, there is a constant c such that w ÷ t≈c.

Proof of (cReady). Let t be any term. Since w is ≈saturated, we have the
following:

If w ÷ LÓ~t≈c for every constant c, then w ÷ LÓ~t≈t.

In the special case where L is empty, this comes to the following:

If w ÷ ~t≈c for every constant c, then w ÷ ~t≈t.
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But since w is consistent, w ¿ ~t≈t, for w ÷ t≈t by (≈In). So it follows that
w ¿ ~t≈c for some constant c. We know that w is maximal, so either w ÷
~t≈c or w ÷ t≈c. Since the former is not the case, w ÷ t≈c for this c.

EXERCISE 17.10 (Project) Give a proof of the completeness of oS for
toS-validity in all its details.

This finishes the proof of the completeness of oS. So we now know that
S, rS, and oS are all complete for tS-validity. However, there is one system
we have yet to cover, namely, the system that results from adding only
(Öi) to S. Completeness for this system can be shown using almost exactly
the strategy of the completeness proof for oS. Simply delete mention of
(RC) and (r) in that proof.

EXERCISE 17.11 Prove the completeness of S+(Öi) for tS-models.

17.7. Completeness for Intensional and Substitution Models

When we began the completeness project, we excluded systems that used
(RC) and (Öi). In the previous two sections, we have explained how to
overcome those limitations at the expense of corresponding complica-
tions. It follows that we now have a general completeness result for all
systems S formed by adding to fK axioms whose frame conditions are
preserved by subframes, and any of the domain rules including (RC) and
(Öi). Let ‘S’ refer now to any of these systems. We can summarize the
previous results as follows:

Completeness for tS-models (Unrestricted).
If H …tS C then H ÷S C.

Given the transfer theorems developed in Chapter 15, this result may
be deployed to show completeness for the intensional and substitution
interpretations. The results are immediate given the appropriate transfer
theorems. Suppose first that S is formed by adding to fK, axioms whose
frame conditions are preserved by subframes, and any of the domain
rules. Then completeness of S for iS-validity follows from the i Transfer
Theorem.

i Transfer Theorem. If system S is complete for tS-models, S is also
complete with respect to iS-models.
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Completeness for iS-Models. If H …iS C then H ÷S C.

Now suppose that S is formed by adding to fK, axioms whose frame
conditions are preserved by subframes, and any of the domain rules whose
conditions do not mention I. Completeness of S for sS-validity follows
immediately from the s Transfer Theorem.

s Transfer Theorem. If system S is complete for tS-models, S is also
complete with respect to sS-models.

Completeness for sS-Models. If H …sS C then H ÷S C.

17.8. Completeness for the Objectual Interpretation

Let oS be a system that results from adding to fK, (Öi), (RC) any selec-
tion of propositional modal logic axioms whose frame conditions are pre-
served by subframes, and o-domain axioms from the below list:

(ÖE) ÖxEx Dw is not empty.
(Q) Et Dw=D.
(ED) Ecç∫Ec If wRv, then Dw ß Dv.
(CD) ~Ecç∫~Ec If wRv, then Dv ß Dw.

It was shown in Section 12.8 (Exercises 12.17 and 12.20) that Ecç∫Ec is
equivalent to (CBF) or åx∫Ex, and ~Ecç∫~Ec is equivalent to (BF) in
oK, so the completeness results will continue to hold when these alterna-
tive axioms are used in oS.

(CBF) ∫åxAxçåx∫Ax
(BF) åx∫Axç∫åxAx

The completeness of oS follows from the o Transfer Theorem of Sec-
tion 15.8, provided that we can show that oS is complete for toS-models.
But that was shown in Section 17.6.

o Transfer Theorem. If system S is complete for toS-models, S is
also complete with respect to oS-models.

Completeness oS for toS-Models. If H …toS C then H ÷oS C.

Completeness of oS for oS-Models. If H …oS C then H ÷oS C.
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EXERCISE 17.12 Universality, the condition that wRv for all w and v in W,
is not preserved by subframes because it does not hold in the canonical model
for its corresponding propositional modal logic S5. All that the axioms for S5
require of the canonical model for S5 is that the frame be reflexive, transitive,
and symmetric, and there are such frames that are not universal. Prove that
system oS5 is complete with respect to oS-models that have universal frames.
(Hint: Review the hint for Exercise 9.5. Adapt a similar strategy to defining
the canonical model for the quantified modal logic.)
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Descriptions

18.1. Russell’s Theory of Descriptions

English phrases that begin with ‘the’, such as ‘the man’ and ‘the present
king of France’, are called definite descriptions (or descriptions for short).
So far, we have no adequate logical notation for descriptions. It is possible
to translate ‘the man is bald’ by choosing a constant c for ‘the man’, a
predicate letter P for ‘is bald’, and writing: Pc. However, treating the
description as if it were a constant will cause us to classify some valid
arguments as invalid.

For example, it should be clear that (1) entails (2).

(1) Aristotle is the philosopher who taught Alexander the Great.
(2) Aristotle taught Alexander the Great.

If we choose the constants: a for Aristotle, and g for Alexander the Great,
we might notate (2) as (2′).

(2′) Tag

If we treat “the philosopher who taught Alexander the Great” as a con-
stant g, then (1) is notated by (1′).

(1′) a≈g

However, there is no logical relationship between the atomic sentences
(1′) and (2′) that would cause us to recognize that the argument from (1′)
to (2′) is valid. Clearly we need a way to notate the internal structure of
‘the philosopher who taught Alexander the Great’ if we are ever to show
that (1) entails (2) in logic.

385
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In order to do that, let us introduce the symbol ! for ‘the’. We can use
! with variables much as we do with quantifiers, and notate (3) by (3′).

(3) the philosopher who taught Alexander the Great
(3′) !x(Px&Txg)

Here (3′) reads ‘the x such that x is a philosopher and x taught Alexander
the Great’. To notate (1), we can now write (1!).

(1) Aristotle is the philosopher who taught Alexander the Great.
(1!) a≈!x(Px&Txg)

Similarly to notate (4) we write (4!).

(4) The present king of France is bald.
(4!) B!xPx

We have introduced the new symbol ! to help explain the validity of
the inference from (1) to (2). But to show that the argument is valid,
we will need some logical principles to govern the use of !. Russell, in
his famous paper “On Denoting” (1905), presents a method for handling
arguments involving descriptions. It is to translate each sentence contain-
ing a description into a corresponding formula of predicate logic. Once
the descriptions have been eliminated by this method, the result can be
shown valid using the principles of QL.

The translation that Russell proposed is (Russell’s Def !).

(Russell’s Def !) B!xPx =df Öx(Px & åy(Pyçy≈x) & Bx)

This says that the sentence:

B!xPx

(read ‘the present king of France is bald’), can be rewritten in quantifica-
tion theory as:

Öx(Px & åy(Pyçy≈x) & Bx)

which says that there is something that is a present king of France, nothing
else is a present king of France, and it is bald. The second conjunct ensures
that there is no more than one present king of France. It reflects the idea
that when we use ‘the’ we mean to pick out a unique individual.

It will simplify matters to introduce the following abbreviation:

(Def1) 1Ac =df Ac & åy(Ayçy≈c)
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We can read 1Pc as ‘c and only c is a present king of France’. Using this
abbreviation, Russell’s definition comes to (Def!).

(Def!) B!xAx =df Öx(1Ax & Bx)

So the translation for ‘The present king of France is bald’ comes to: ‘some-
thing is such that it and only it is a present king of France and it is bald’.
Once we translate (1) and (2) into QL with the help of Russell’s method,
it is not too difficult to show that (2) follows from (1).

EXERCISE 18.1 Show that (1) entails (2) using Russell’s method of descrip-
tions. (Hint: a≈!x(Px&Txg) comes to (1′′) and (2) is notated by (2′).

(1′′) Öx(1(Px&Txg) & a≈x) or Öx((Px&Txg) & åy((Py&Tyg)çy≈x) & a≈x)
(2′) aTg

Construct a new subproof headed by 1(Pc&Tcg)&a≈c to set up for a
later use of (ÖOut). From this Pc&Tcg follows by (Def1). Then apply
≈Out to Tcg and a≈c to obtain Tag. The result does not contain c, so
(ÖOut) allows the derivation of Tag outside the subproof and the proof is
complete.)

EXERCISE 18.2 Translate the following sentences into formulas of logic
using the ! notation for descriptions. Invent your own predicate letters and
explain their meaning.

(a) The round square is round.
(b) The tallest man loves the tallest woman.
(c) The cat is on the mat by the fireplace.

EXERCISE 18.3 The following sentence is ambiguous. (So is (c) above, but
the ambiguity is not so striking.)

(d) I visited the fat lady at the circus.

In one sense, I was at the circus during the visit to a fat lady, and in the other,
‘fat lady at the circus’ identifies which lady I visited. Give two translations of
(d) using the ! notation, then say which goes with which sense of (d).

EXERCISE 18.4 Take all formulas produced in the previous two exercises
and translate them according to Russell’s theory of descriptions, first using
the abbreviation 1P, and then without it.
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18.2. Applying Russell’s Method to Philosophical Puzzles

Russell’s method for handling descriptions is useful because it shows
us how to replace descriptions with the standard notation of classical
predicate logic. As a result, we do not need to formulate any new log-
ical rules to govern the behavior of descriptions. The rules of QL will
be sufficient to handle any argument once the descriptions have been
eliminated.

Russell’s method has philosophical as well as logical interest. He used
it to help solve some interesting problems concerning the philosophy
of language. We will present here some of the problems that Russell
mentions in his famous article “On Denoting”, along with their solutions
using the method of descriptions.

Problem 1. How can ‘There is no present king of France’
be contingently true as we believe?

It seems that the description ‘the present king of France’ must refer to
something if the following sentence (~ÖPKF) is to make any sense.

(~ÖPKF) The present king of France does not exist.

But if it does refer, then it presumably refers to something that exists.
By this reasoning, (~ÖPKF) could never be true, and yet it is true. This
puzzle puts a strong pressure on us to find something else to which the
description does refer, such as a thought or idea; a pressure to which many
philosophers succumbed. The same problem turns up in quantificational
logic, because according to it, the formula Öxx≈t is a theorem. If ‘the
present King of France’ is to be treated as a constant t, then (~ÖPKF)
has the shape ~Öxx≈t. In QL, this is a logical contradiction, and so, not
contingently true.

Solution: This puzzle is resolved on Russell’s Theory by denying that
descriptions are referring terms. According to Russell, (~ÖPKF) has the
form: ~Öyy≈!xPx, which amounts to ~ÖyÖz(1Pz&y≈z). This in turn is
equivalent to ~Öy1Py, which claims that no one thing is a present king
of France. This is what (~ÖPKF) seems to say. Notice that Öy1Py is not
a theorem of logic, and so we have no problem explaining the fact that
(~ÖPKF) is contingent. The problem arose, says Russell, because we failed
to recognize that ‘the present King of France’ is not to be treated as a term.
On Russell’s analysis, there is no term that corresponds to this phrase, and
so no need to find a referent for the phrase.
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EXERCISE 18.5 Use a tree to create a qK-counterexample to Öy1Py.

Problem 2. What did King George want to know?
Suppose King George wants to know whether Scott is the author of
Waverley, and suppose that Scott is in fact the author of Waverley. By
substituting ‘Scott’ for ‘the author of Waverley’ in ‘King George wants
to know whether Scott is the author of Waverley’, we conclude that King
George wanted to know whether Scott was Scott. However, no one won-
ders whether Scott is identical to himself. The puzzle is that we have an
argument that appears to have true premises and a false conclusion, which
also seems valid.

Scott is the author of Waverley.
King George wanted to know whether Scott is the author of Waverley.
King George wanted to know whether Scott is Scott.

The argument appears valid because the first premise seems to have the
shape of an identity: s≈!xWx. By the rule of substitution of equalities, we
should be able to replace one of the two terms for the other in the second
premise, and so arrive at the conclusion. On the other hand, this could
not be a valid argument since it has true premises (King George did in
fact want to know whether Scott was the author of Waverley) and a false
conclusion.

Solution: The solution of this problem, according to Russell’s analysis,
depends on our distinguishing between the primary and secondary occur-
rence interpretations of the second premise. If we use the shorthand ‘K’
for the expression ‘King George wanted to know whether’, then we may
represent these two interpretations in a language with a modal operator
K as follows.

(Primary Occurrence) Öx(1Wx & Ks≈x)
(Secondary Occurrence) KÖx(1Wx & s≈x)

The primary occurrence reading makes the claim that there is some-
thing that is in fact the only author of Waverley (namely, Scott) and King
George wanted to know whether that person was Scott. In this case, what
King George wonders about is the person Scott. This is sometimes called
the de re interpretation (Latin for ‘concerning the thing’). Here, the sec-
ond premise attributes to King George an interest in whether Scott (the
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person who in fact was the only author of Waverley) was Scott. This
premise is false, and so the puzzle concerning our argument disappears.

The secondary occurrence interpretation says that King George won-
ders about whether there is exactly one author of Waverley who is Scott.
This is sometimes called the de dicto reading (Latin for ‘concerning the
sentence’). Under this interpretation, the premise is true, but the argu-
ment is no longer valid. Russell explains the invalidity of the argument
form by pointing out that although the first premise appears to have the
form of an identity: s≈!xWx, its translation according to his theory does
not: Öx(1Wx & s≈x). When the descriptions in the argument are translated
away, the argument does not have the form of a substitution of identical
terms.

Problem 3. Is the round square both round and square?
Clearly the round square is round, and clearly the round square is square.
But something cannot be both round and square.

Solution: On Russell’s theory, ‘The round square is round’ translates
to Öx(1(Rx&Sx)&Rx). This is clearly false since it claims that there is a
round square. Both ‘the round square is round’ and ‘the round square is
square’ are false, given their translations according to Russell’s theory of
descriptions, and they are false simply because no such thing exists.

18.3. Scope in Russell’s Theory of Descriptions

When Russell’s theory of description is used, one must take care in apply-
ing (Def!) to complex sentences involving ~ and ∫. Consider (~PKF).

(~PKF) The present king of France is not bald.

Since the description notation for ‘the present king of France is bald’ is
B!xPx, ~B!xPx would be the notation for (~PKF). On Russell’s theory,
B!xPx translates to Öy(By & 1Py), and so we expect ~B!xPx to translate
to the negation of that, namely, (~Ö).

(~Ö) ~Öx(1Px&Bx)

However, (~Ö) reads ‘Nothing is both the only present king of France
and bald’, and this is not what we ordinarily mean by (~PKF) when we
say that the present king of France is not bald. Given that there is no
present king of France, there is no such king that is bald, and so (~Ö) is
true. However, (~PKF), ‘The present king of France is not bald’, is false,
or perhaps meaningless.
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A correct translation of what we ordinarily mean by (~PKF) is (~B),
which claims that there is an only king of France, which is not bald.

(~B) Öx(1Px&~Bx)

Here the scope of the negation is Bx, and not to the whole sentence
Öx(1Px&Bx).

This shows that there two different ways to apply (Def!) to (~PKF)
depending on how the scope of ~ is treated. One needs to distinguish, as
it were, the primary from secondary occurrences of negation in (~PKF).
It follows that the notation ~B!xPx is ambiguous as it stands since one
might unpack it as either (~Ö) or (~B). Russell solved the problem by
introducing special notation to make clear how the scope of ~ is to be
settled in the final result. Here !xPx is treated like a quantifier rather than
a term, so that one may distinguish between (~Ö) and (~B) as follows:

~[!xPx]B!xPx for (~Ö): ~Öx(1Px&Bx)
[!xPx]~B!xPx for (~B): Öx(1Px&~Bx)

The importance of attending to scope in Russell’s theory becomes even
clearer for the modal operator ∫. Consider the following sentence where
b is a constant standing for Benjamin Franklin, and B reads ‘is the inventor
of bifocals’.

1Bb & ∫b≈b

This sentence is presumably true, for it says that Benjamin Franklin was
the only inventor of bifocals, and he was necessarily identical to himself.
From the principles of classical quantificational logic QL, the following
sentence (Ö∫) can be derived by (QÖIn):

(Ö∫) Öx(1Bx & ∫b≈x)

A naive application of Russell’s definition (Def!) would yield the follow-
ing:

∫b≈!xBx

This appears to claim that Benjamin Franklin is necessarily the inventor of
bifocals. We have objected to this claim in Section 13.6, and for good rea-
son. Being the inventor of bifocals is not a necessary property of Benjamin
Franklin because somebody else might easily have qualified had history
been slightly different. However, it appears that we have obtained this
unpalatable result from 1Bb & ∫b≈b in classical logic alone.
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Arthur Smullyan (1948) explains why this reasoning is fallacious. The
notation ∫b≈!xBx is ambiguous between (Ö∫) and (∫Ö).

(Ö∫) Öx(1Bx & ∫b≈x)
(∫Ö) ∫Öx(1Bx & b≈x)

But it is (∫Ö) and not (Ö∫) that asserts that Benjamin Franklin is neces-
sarily the inventor of bifocals. (Ö∫) asserts only that there is exactly one
inventor of bifocals who is necessarily identical with himself. The unpalat-
able version of ∫b≈!xBx is (∫Ö), and this cannot be obtained from 1Bb
& ∫b≈b in classical logic.

The need to indicate scope complicates the notation for descriptions
and underscores a point that has been made in Sections 12.3 and 12.4,
namely, that the Russell’s strategy is not compatible with treating def-
inite descriptions as genuine terms. If !xPx were a genuine term, then
~B!xPx would have the shape ~Bt, where ambiguity of scope can not
arise.

The fact that the Russellian analysis does not treat !xPx as a term can
be appreciated in another way. When !xPx≈!xPx (for ‘the present king of
France is identical to the present king of France’) is translated according
to the theory, we obtain a sentence that asserts the existence of exactly
one present king of France. Since there is no present king of France,
!xPx≈!xPx must be false, and not a logical truth. If !xPx counts as a term,
however, !xPx≈!xPx would amount to an instance of (≈In), and so qualify
as a theorem.

EXERCISE 18.6 Translate !xPx≈!xPx into predicate logic using Russell’s
theory, and show that the result is equivalent to Öx1Px.

18.4. Motives for an Alternative Treatment of Descriptions

One of the best known complaints against Russell’s theory concerns the
fact that sentences involving descriptions entail the existence and unique-
ness of what is described. However, there are many sentences of English
where this does not seem to be the case. Consider the following exam-
ples:

(1) The accident was averted.
(2) The omega minus particle was never found, so physicists now

believe that it does not exist.
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If Russell’s theory is right, (1) entails that there is exactly one accident,
and (2) entails that there is exactly one omega minus particle. Clearly
these sentences do not mean to assert the existence and uniqueness of
such things. Even ‘the cat is on the mat’, which was a favorite example
used by Russell in other contexts, is not correctly treated by his theory.
We simply don’t count ‘the cat is on the mat’ false on the grounds that
there happens to be more than one cat in the world.

EXERCISE 18.7 Prove ÖxÖy(Cx&Cy&~x≈y)ç ~Öx(1Cx&Öy(1My&Oxy)),
and explain what this has to do with the previous discussion.

Russell may reply that his theory doesn’t apply to such uses of ‘the acci-
dent’, ‘the omega minus particle’, ‘the cat’, and ‘the mat’. However, the
vast majority of phrases with the shape ‘the P’ in English do not behave as
Russell predicts. More often, the context of use of a description helps us
decide what it refers to. In most of its uses (for example), ‘the cat’ behaves
more like ‘the cat in a domain of things I am now discussing’.

Strawson (1950) is famous for making a related objection. On Rus-
sell’s theory, ‘the present king of France is bald’ is false, for it entails
the existence of a present king of France, and of course, there is none.
However, Strawson urges that ‘the present king of France is bald’ is not
false, when the term ‘the present king of France’ lacks a referent. Instead
of entailing the existence of a unique present king of France, the sen-
tence presupposes that there is one. If the presupposition fails, the sen-
tence is not false, it simply fails to make a statement, and so lacks a truth
value.

The problem that sentences like (1)–(2) do not appear to entail exis-
tence and uniqueness of what is described becomes more pressing in quan-
tified modal logic. Russell’s theory is normally deployed using a standard
or classical theory of quantification. In Section 12.9 it was shown that clas-
sical rules require a single possibilist domain of quantification where ÖxAx
reads: ‘there is a possible object x such that A’. So on this account, (1)
entails the existence and uniqueness of a possible accident. Although it is
an improvement that (1) no longer entails the existence of an actual acci-
dent, the implication that there is only one possible accident is ludicrous
in the extreme. On a theory that there are many more possible objects
than actual ones, the prospects for satisfying the uniqueness condition for
a description would seem even more remote.

These objections do not close the door on Russell’s theory of descrip-
tions. It could be rescued with a theory of how the context of utterance
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narrows down the domain of quantification to the few objects that are
the topic of discussion in a given context. With such a theory in hand, the
uniqueness problem might be resolved. It is interesting to reflect on the
fact that the actualist interpretation of the quantifier, where the domain
depends on the possible world at issue, promises to provide the right
tools for fleshing out such a theory. If possible worlds are understood to
include information about the context of utterance, then a domain that
varies from one possible world to another could be sensitive to context in
the right way. So it appears that there are better prospects for solving the
uniqueness problem with an actualist treatment of the quantifiers, one
that requires free logic rather than classical rules.

Although the application of Russell’s theory of descriptions to modal
logic could be developed in such a way, this book will explore an alter-
native system !S, which does not rely on Russell’s method. Since not all
philosophers are able to accept Russell’s theory, such an alternative will be
worth exploring. In !S, descriptions are treated as genuine terms – terms
that are typically nonrigid. !S handles definite descriptions directly, with-
out the need for complex translation methods. The description !xPx will
qualify as a term in this logic, and there will be no need for the complex
notation that was required in Russell’s theory to indicate scope in sen-
tences such as ~B!xPx, and ∫b≈!xBx. Problems involving scope simply do
not arise in !S. Furthermore, it will be shown in Section 18.10 that !S can
resolve (in its own way) the philosophical puzzles presented in Section
18.2 that helped motivate Russell’s method.

18.5. Syntax for Modal Description Theory

System !S for modal description theory will be developed as an extension
of the system oS for the objectual interpretation. It will treat descriptions
as complex nonrigid terms. In order to provide a firm foundation for
the theorems in the next few sections, we need to define a language for
modal description theory. Since !S is built from oS, we may presume, if
we like, that E is defined by (DefE), rather than being a primitive symbol
of the language. The language for !S will contain the same basic symbols
as were in oS except the description operator ! is included as well. So the
symbols of !S include the universal quantifier å, the description symbol
!, an unlimited supply of variables x, y, z, x′, . . , a set of constants b, c,
b′, c′, . . , a set of predicate letters P, Q, R, P′, . . , the propositional logic
symbols ƒ, ç, ∫, the identity sign ≈, and finally the parentheses, and the
comma.
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The definition of the atomic sentences of the language is complicated
by the presence of descriptions. One problem that must be faced is that
strings of symbols such as P!xGxt are ambiguous. P!xGxt may be read
as the result of filling the two-place predicate letter P with two terms
!xGx and t. On the other hand, it might be interpreted as the result of
filling the one-place predicate P with the description !xGxt, where G
is a two-place predicate. The official notation for atomic sentences uses
parentheses and commas to clear up such ambiguities. An atomic sentence
(for example R(t, s)) is formed by appending a parenthesized list of the
terms (for example (t, s)) to a predicate letter (R). On this approach, the
two possible readings of the ambiguous formula P!xQxt are distinguished
as follows: P(!xG(x), t) and P(!xG(x, t)). Although the official notation
requires that terms in an atomic sentences appear in a list, writing the
extra parentheses and commas can become tiresome, so the parentheses
and commas will be omitted when no ambiguities arise.

Now we are ready to define the sets of sentences and terms together
in a single definition.

The Definition of Terms and Sentences of !S.

1. Constants are terms.
2. If At is a sentence, and x is a variable, then !xAx is a term.
3. If l is a list of terms and P is a predicate letter, then Pl is a sentence.
4. If A, B, and At are sentences, x is a variable, and both s and t terms,

then ƒ, s≈t, (AçB), ∫A, and åxAx are sentences.
No sequences of symbols count as terms or sentences unless they qual-

ify by clauses 1–4.

It is crucial to this definition that both terms and sentences are defined
together, for atomic sentences such as P(!xAx) may contain complex
descriptions !xAx, where At is a very complex sentence that may itself
contain predicate letters and other terms including (complex) descrip-
tions.

Note that although !x in the formula !xAx has the appearance of a
quantifier, it plays a very different role in the syntax of !S. Quantifiers like
Öx form sentences ÖxAx from an instance Ac. On the other hand, !xAx
forms a term, not a sentence. Although a sentence is the sort of expression
that can be true or false, a term cannot have a truth value, and instead
picks out an individual. The syntactical role of terms is to join with the
predicates to form sentences, so for example, the term ‘the present king of
France’ can be joined with ‘is bald’ to form the sentence ‘the present king
of France is bald’. It follows that although !xAx may have the superficial
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form of a sentence, it is actually a term, which must be combined with a
predicate to obtain a sentence.

18.6. Rules for Modal Description Theory: The System !S

If descriptions are added to quantified modal logic, new rules are needed
to govern the ! notation. The following axiom, when added to oS,
defines the system !S of modal free description theory. Furthermore
!S-trees may be defined by simply including (!) among the tree rules
for oS.

!S = oS + (!)
(!) åy(1Ay≠y≈!xAx)

Given (!) is available in !S, (åOut) may be applied to derive the following:

Ecç(1Ac≠c≈!xAx).

This reports that if c exists, then c is the only A iff c is identical to the
A. In the light of the derivability of this formula, it is easy to see that the
following more convenient rules of inference are derivable in !S:

(!Out) c≈!xAx (!In) 1Ac
Ec Ec
-------- --------
1Ac c≈ !xAx

It is also not hard to prove (!) from the above two rules. So it really does
not matter whether we define !S with the axiom or this pair of rules.

Some formulations of free description theory use the rule (E!Out)
instead of (!Out) (Thomason 1970, p. 63, A9′).

(E!Out) E !xAx
-------
Öx1Ax

But again it will not matter which of those two rules is used since the
resulting systems prove exactly the same arguments.

To illustrate proof strategies in !S, here is a demonstration that (E!Out)
is derivable given (!Out) and other rules of oS.
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E !xAx
----------
Öyy≈!xAx (see Exercise 12.22)

Ec & c≈!xAx
Ec (&Out)
c≈!xAx (&Out)
1Ac (!Out)
Öy1Ay (ÖIn)
Öy1Ay (ÖOut)

This proof illustrates a useful strategy for exploiting an available sentence
of the form Et. It is to unpack Et by (DefE) and then immediately set up
a new subproof headed by Ec & c≈t for the purposes of eventually using
(ÖOut).

EXERCISE. 18.8 Show E!xAxùÖy1Ay in !S. (Hint. For the proof from left
to right use (E!Out). For the proof from right to left set up a subproof for
(ÖOut) and apply (!In).)

The following proof that (!Out) may be derived from
oS+(!In)+(E!Out) raises an interesting issue concerning substitu-
tion of ≈. Here is an outline of the demonstration:

c≈!xAx
Ec
----------
Öyy≈!xAx (ÖIn)
E!xAx (DefE)
Öy1Ay (E!Out)

Eb &1Ab
Eb (&Out)
1Ab (&Out)
b≈!xAx (!In)
!xAx≈c (c≈!xAx and the symmetry of ≈)
b≈c (≈Out)
1Ac (R≈Out)

1Ac (ÖOut)

In the next to last line, 1Ac has been obtained from 1Ab and b≈c, using
(R≈Out), the rule that allows the full substitution of identities in the case
of rigid terms. (See Section 12.11.) Note that this substitution would not
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be legal for terms in general, for the substitution of identities does not
follow for non-rigid terms when the substitution is carried out within the
scope of ∫.

In !S, the rule of universal instantiation (!åOut) appropriate for des-
criptions is derivable in the special case where the description follows a
predicate letter Q.

(!åOut) åxQx / Öx1PxçQ!xPx

EXERCISE 18.9 Prove (!åOut) is derivable in!S, where Q is any predicate
letter.

In Exercise 18.8, you proved that E!xPx (which says that!xPx exists) and
Öx1Px (which says there is exactly one P) are equivalent in!S. So (!åOut)
may be written in an equivalent form, which resembles the free logic
principle of universal instantiation for descriptions.

åxQx / E!xPxçQ!xPx

Note, however, that this principle does not work in general, for the proof of
åxAx / E!xPxçA!xPx is blocked in case Ax is an intensional expression.

EXERCISE 18.10 Attempt a proof of åx∫Qx / E!xPxç∫Q!xPx and explain
why the proof is blocked.

One of the reasons the proof is blocked is that (åOut) allows instantiation
only to constants c. In !S, we do not allow (nor do we want) the rule (tå)
of universal instantiation for all terms, for as we pointed out in Section
13.6, this rule is invalid for nonrigid terms, and descriptions are typically
nonrigid.

(tå) åxAx / EtçAt

Another interesting feature of !S is that P!xPx cannot be proven there.
(See Exercise 18.17a below.) So we are not forced to claim, for example,
that the round square is round and square. The closest we can come in !S
to P!xPx is E!xPxçPIxPx, which says in the case of our example that the
round square is round and square if it exists.
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EXERCISE 18.11 Prove E!xPx / P!xPx in !S. (Hint. Apply (E!Out) to E!xPx
and set up a subproof headed by Ec&1Pc for (ÖOut). Apply (!In) and watch
for an opportunity to make a substitution.) Would the proof be possible where
P replaced by ∫P throughout?

Given the fact that nothing can be both round and square, we conclude
in !S that the round square does not exist.

EXERCISE 18.12 Suppose åx(Rx≠~Sx). Prove ~E!x(Rx&Sx) in !S. (Hint.
Suppose E!x(Rx&Sx) for (IP). By (E!Out) you may obtain Öx1(Rx&Sx).
Set up a subproof for (ÖOut) headed by Ec&1(Rc&Sc). By (Def1) this
amounts to (Rc&Sc) & åy((Ry&Sy)çy≈c). Then derive a contradiction using
åx(Rx≠~Sx)).

EXERCISE 18.13 Prove the following in !S:

a) E!xPx / !xPx≈!yPy (Hint: Assume E!xPx and apply (E!Out). Set up a sub-
proof for (ÖOut) headed by Ec & 1Pc, and then use (!In) twice, once for
the variable x and the other for the variable y.)

b) ~E!x~x≈x (Hint: Assume E!x~x≈x for (IP) and apply (E!Out). Set up a
subproof for (ÖOut) headed by Ec & 1~c≈c, and use (Def1) to obtain a
contradiction.)

c) ÖxÖy(~x≈y & Px & Py) / ~E!xPx (Hint: Assume E!xPx and apply (E!Out).
Set up a subproof headed by Ec & 1Pc for (ÖOut). Then set up (ÖOut) sub-
proofs twice more using ÖxÖy(~x≈y & Px & Py). Watch for an opportunity
to exploit (Def1) to obtain a contradiction.)

d) E!xPx, åx(Px≠Qx) / !xPx≈!xQx (Hint: Use the initial strategy for the
previous problem, constructing a subproof headed by Ec & 1Pc. Obtain
c≈!xPx by (!In). Use åx(Px≠Qx) and (Def1) to obtain a proof of 1Qc,
and then apply (!In) again to obtain c≈!xQx.)

e) E!xx≈t / t ≈ !xt≈x (Hint: Use the initial strategy for the previous two prob-
lems to set up a subproof headed by Ec & 1c≈t. Unpack 1c≈t by (Def1),
and create a proof of 1t≈c. Now apply (!In) to obtain c ≈ !xt≈x, from which
t ≈ !xt≈x follows directly from c≈t. This exercise is difficult because the
notation !xt≈x (and !xx≈t) is hard to “read” especially during applications
of the ! rules. It helps to practice applying (!Out) to Ec and !xt≈x before
you attempt this exercise just to get used to the process.)

The axiom (!) may be added to stronger logics as well. However, one
must be careful about the strength of the underlying logic. For example,
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in the case of constant quantifier domains, (!) may be added to the system
oS+(Q) for classical quantification forming system !qS.

!qS = oS + (Q) + (!).

Trees and proofs for this system may be simplified using the following
description rules:

(!QOut) c≈!xAx (!QIn) 1Ac
------ ------
1Ac c≈!xAx

EXERCISE *18.14 Translate sentences (1) and (2) below. Then attempt a
proof of the resulting argument form in !S. What blocks the proof? Now prove
the argument in !qS.

(1) Aristotle is the philosopher who taught Alexander the Great.
(2) Aristotle taught Alexander the Great.

Although this seems an attractive simplification of !S, the resulting
system is not sound. To see why, note that the axiom (Q) yields E!x~x≈x,
which is incompatible with the results of Exercise 18.13b.

18.7. Semantics for !S

Our next project will be to give a semantics for modal description the-
ory, based on the objectual interpretation. The idea is to supplement the
definition of a oS-model with a semantical condition that explains how
the extension of a description is calculated. We have already remarked in
Section 18.4 (where objections to Russell’s theory were discussed) that
one who uses the sentence ‘the cat is on the mat’ does not think that
there is exactly one cat in the universe. Instead the speaker has in mind
a special domain defined by the context of utterance – one that con-
tains exactly one cat. The varying domain approach to quantified modal
logic is especially well suited to capturing this idea. Presume now that
domain Dw contains the things that a speaker had in mind in a “world”
w that includes the context supplied by him or her. The fundamental idea
behind the semantics for ! is that !xAx should refer to the unique object
in the speaker’s domain such that Ad is T, provided that there is such an
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individual. Let us introduce formal notation to help express this idea. The
notation ‘1aw(Ad)’ indicates that d is the unique object existing in Dw
such that aw(Ad)=T.

1aw(Ad) iff d is the only member of Dw such that aw(Ad)=T.

If there is such an object d, it will be the referent of !xAx. On the other
hand, there may be no such object. Under those circumstances, it is not
clear how we should assign a referent to !xAx, or even that !xAx should
receive any referent at all. The idea that !xAx may have no referent will
be explored further in Exercise 18.20 below. For the moment, however,
let us assume that !xAx is to be given a referent. Then at least one thing
is clear; the referent given to !xAx should not be an object in Dw because
if any referent of !xAx is in Dw, it ought to be the unique existing thing
d for which aw(Ad)=T, and there is no such d.

Putting these two ideas together, the following is the condition that
explains how !xAx is assigned a referent:

(!) If for some object d, 1aw(Ad), then aw(!xAx)=d,
otherwise aw(!xAx) Â Dw.

A !S-model will be any oS-model that also satisfies (!). !S-validity is
defined from the notion of a !S-model in the usual way.

In order to satisfy condition (!), there will have to be a member outside
of Dw to which !xAx can be assigned whenever there is no unique member
d such that aw(Ad)=T. Since all terms refer to objects in D, this object
will have to be in D but outside Dw. It will always be necessary to find
such an object because of descriptions such as !x~x≈x, where 1aw(~d≈d)
cannot hold for any d. Intuitively, the requirement that there be a member
of D outside Dw is not especially burdensome, since one expects there to
be at least one possible object that fails to exist in Dw, especially given
the understanding that Dw is a narrow domain especially defined by the
speaker’s concerns. Note, however, that the constant domain condition
(Q) is not compatible with requirement (!) since aw(!xAx) Â Dw can
never hold when D=Dw.

(Q) D=Dw.

It follows that a viable description theory that employs (!) can not be based
on classical logic. This incompatibility is a reflection of the unsoundness
of !qS noted in the previous section.

       
            

       



402 Modal Logic for Philosophers

18.8. Trees for !S

Trees for !S are constructed by adding to the tree rules for oS the rule that
any instance of axiom (!) may be added to any world during construction
of the tree. In case the tree does not close, it will be necessary to add each
of the infinitely many instances of (!). Therefore, it will be necessary to
adopt the strategy of Section 14.6 to oscillate between applying tree rules
and adding instances of axioms during tree construction. Using the axiom
leads to complex trees because (åT) may be applied to it in many ways,
and furthermore the use of ≠ rules or (Def≠) complicates any tree.
Using the derived rules (!Out), (!In), and (E!Out) in trees can simplify
tree construction. However, although a closed tree that results from the
use of these rules will clearly demonstrate that the argument for which
it is constructed has a proof, there are valid arguments that may not
have closed trees if these rules were adopted in place of the axiom. So
officially, the axiomatic formulation of trees is assumed. Nevertheless it
is convenient to allow the use of the derived rules in trees since they can
simplify trees considerably.

EXERCISE 18.15 Construct trees for the arguments proven in exer-
cise 18.13.

Since trees do not serve as a decision procedure for predicate logic, it
follows that !S-trees could not serve as a decision procedure for validity
in a language that includes descriptions. However, !S-trees do serve as
a quasi-decision procedure in the following sense. From the adequacy
proof to be given in the next section, it follows that when an argument is
!S-valid, the !S-tree will eventually close after finitely many steps. On the
other hand, when an argument is !S-invalid, !S-trees will be infinite since
there are infinitely many instances of the axiom (!) to add to each world.
Despite this problem, it is often possible to use !S-trees to construct a
partial tree for a !S-invalid argument that will yield a !S-counterexample
to it. Consider, for example, the following argument:

Öx(1Bx & ∫b≈x) / ∫b≈!xBx

An informal explanation for why a reading of this principle is unaccept-
able was given in Section 18.3. Even when classical quantifier principles
are used, it does not follow from the fact that there is someone (namely,
Benjamin Franklin) who is the first inventor of bifocals and necessarily
identical to Benjamin Franklin, that it is necessary that Franklin is the
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first inventor of bifocals. Here is a partial tree for this argument that
quickly yields a diagram for a !qK-counterexample. Note that for effi-
ciency, (!QIn) is used in the tree rather than the axiom (!).

EXERCISE 18.16 Using the diagram at the right, write out a description of
a !qK-counterexample to Öx(1Bx & ∫b≈x) / ∫b≈!xBx in the notation of set
theory. (See Exercise 13.7.) Calculate the values of Öx(1Bx & ∫b≈x) and ∫b≈
!xBx on this model to verify that it is indeed a !qK-counterexample.

EXERCISE 18.17 Using a !S-tree, find a !S-counterexamples to the follow-
ing:

a) P!xPx
b) åx∫Qx / E!xPxç ∫Q!xPx
c) B!xAx / Öx(1Ax & Bx)
d) Öx(1Ax & Bx) / B!xAx

18.9. Adequacy of !S

In this section, the adequacy of !S will be proven, where !S is the result
of adding axiom (!) to any system oS that we have so far shown to be
adequate. The result will depend on the following helpful lemmas. The
first says that the hybrid sentence åy(Ayçy≈d) is true at a world w iff
any object e in Dw such that aw(Ae)=T must be d.

=d Lemma.
aw(åy(Ayçy≈d))=T iff if e µ Dw and aw(Ae)=T, then e=d.

Proof.
aw(åy(Ayçy≈d))=T iff
for any e µ Dw, aw(Aeçe≈d)=T iff (oå)
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for any e µ Dw, if aw(Ae)=T then aw(e≈d)=T iff (ç)
for any e µ Dw, if aw(Ae)=T then e=d. (≈) and (d)

The next lemma says that 1aw(Ad) holds exactly when d exists at w
and the hybrid sentence 1Ad is true there as well.

1 Lemma. 1aw(Ad) iff d µ Dw and aw(1Ad)=T.

Proof. For the proof from left to right, assume 1aw(Ad), that is, that d
is the only member of Dw such that aw(Ad)=T. So for any member e of
Dw such that aw(Ae)=T, e=d. By the =d Lemma, aw(åy(Ayçy≈d))=T.
This with aw(Ad)=T, (&) and (Def1) yields aw(1Ad)=T. For the proof
in the other direction, note that from the assumption that aw(1Ad)=T, it
follows that aw(Ad)=T and aw(åy(Ayçy≈d))=T. By the =d Lemma, if
e µDw and aw(Ae)=T, then e=d. So it follows that d is the only member
of Dw such that aw(Ad)=T, which is what 1aw(Ad) claims.

A third lemma states the semantical condition that corresponds to the
(!) axiom being true.

(!) Axiom Lemma. aw(åy(1Ay≠!xAx≈y))=T iff
for any d µ Dw, aw(1Ad)=T iff aw(!xAx)=d.

Proof.
(åy(1Ay≠ !xAx≈y))=T iff
for any d µ Dw, aw(1Ad≠ !xAx≈d)=T iff (oå)
for any d µ Dw, aw(1Ad)=T iff aw(!xAx≈d)=T iff (≠)
for any d µ Dw, aw(1Ad)=T iff aw(!xAx)=d (d) and (≈)

We are now ready to proof the soundness and completeness of !S.

Soundness of !S. If L ÷!S C then L …!S C.

Proof. We know that oS is oS-sound, so to show soundness of !S, it is
necessary to show only that the (!) axiom is !S-valid. But in the light of
the (!) Axiom Lemma we need demonstrate only the following:

For any d µ Dw, aw(1Ad)=T iff aw(!xAx)=d.

To prove this, let d be any member of Dw. To show aw(1Ad)=T iff
aw(!xAx)=d, first assume aw(1Ad)=T. By the 1 Lemma, 1aw(Ad), so
by (!), aw(!xAx)=d. Now suppose aw(!xAx)=d. Since d µ Dw, we have
aw(!xAx) µ Dw. But by (!), aw(!xAx) Â Dw if there is no object e such

       
            

       



Descriptions 405

that 1aw(Ae). So there must be such an object e. However, if 1aw(Ae), it
follows by (!) again that aw(!xAx)=e, and so d=e. Hence 1aw(Ad), from
which aw(1Ad)=T follows by the 1 Lemma.

Completeness of !S. If H …!S C then H ÷!S C.

Proof. We prove the contrapositive: if H ø!S C, then H ø!S C. So assume
H ø!S C. Use the completeness method of either Section 16.4 (using
trees) or 17.8 (using the canonical model) to establish H øt!S C, where a
t!S-model is a toS-model that satisfies the axiom (!). This establishes the
completeness of iS with respect to t!S-models. At this point the Extended
o Transfer Theorem of Section 15.8 will guarantee that !S is complete
for !S-models, provided that we can show that axiom (!) expresses the
semantical condition (!) on oS-models.

Extended o Transfer Theorem. If nS results from adding axioms to
oS, each of which expresses its corresponding condition, and if nS is
complete for tnS-models, then nS is complete for nS-models.

So to show completeness it is sufficient to show that axiom (!) expresses
the condition (!).

(!) If for some object d, 1aw(Ad), then aw(!xAx)=d,
otherwise aw(!xAx) Â Dw.

To show axiom (!) expresses the condition (!), we need to show that
the ti-expansion of any t!S-model obeys (!). Since the t!S-model satisfies
(!), we have aw(åy(1Ay≠!xAx≈y))=T. To prove (!), we need only prove
the two conditionals that form it.

Suppose 1aw(Ad). We must show that aw(!xAx)=d. The fact that
1aw(Ad) yields d µ Dw and aw(1Ad)=T by the 1 Lemma. By
aw(åy(1Ay≠!xAx≈y))=T and the (!) Axiom Lemma, we have that
aw(1Ad)=T iff aw(!xAx)=d, so aw(!xAx)=d.

Suppose there is no d such that 1aw(Ad). We must show that aw(!xAx)
Â Dw. We know aw(!xAx) is assigned to some member e of D. We will
show that this e is not a member of Dw by Indirect Proof. Assuming
e µDw, and the (!) Axiom Lemma, we have aw(1Ae)=T iff aw(!xAx)=e.
But aw(!xAx)=e, so aw(1Ae)=T. This with e µ Dw and the 1 Lemma
yields 1aw(Ae), which conflicts with the first supposition. So d Â Dw, that
is, aw(!xAx) Â Dw.
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EXERCISE 18.18 Review the discussion of the Good Samaritan Paradox in
Section 2.4. Now that notation for descriptions is available, a more sophisti-
cated solution to the problem may be attempted. Use the following vocabulary
to translate the paradoxical argument into the language of free description the-
ory.

Bxy x binds y
Wx x is a wound of the traveler
g Good Samaritan

Use trees to show that in free logic Bg!xWx ø ÖyWy, establishing that there is
no danger in free logic of obtaining OBg!xWx ÷ OÖyWy using (GN) with the
deontic operator O. On the other hand, show that E!xWx, Bg!xWx ÷ ÖyWy, but
explain why the result of applying (GN) to it: OE!xWx, OBg!xWx ÷ OÖyWy
does not result in an intuitively valid argument with true premises.

EXERCISE 18.19 The semantics given in this chapter is weak in some
respects. Devise !K-models to show that (instances of) the following two prin-
ciples are !K-invalid:

(1) t ≈ !xx≈t
(2) åx(Ax≠Bx) / !xAx≈!xBx.

Do you think (1) and (2) are intuitively correct? In Exercise 18.13e you showed
E!xx≈t ÷!S t ≈ !xx≈t. Show also that åx(Ax≠Bx), E!xAx ÷ !K !xAx≈!xBx.
Given that these somewhat weaker principles are available in !S, are your
intuitions pacified? Assuming they are not, explain how to add conditions to
!S-models to validate (1) and (2). Then show completeness of the strengthened
logics.

EXERCISE 18.20 (Project). Strawson (1950) takes the position that the sen-
tence ‘the present king of France is bald’ is not false as Russell claims. It is
instead undefined since the description ‘the present king of France’ has no
referent. Provide a Strawsonian semantics for description theory by revising
the semantics for free description theory given in this section. Assume that
an assignment function may be partial, that is, it may leave values for some
expressions undefined. Your aim should be to define the semantics so that the
resulting concept of validity is equivalent to the one given in Section 18.6. You
should also prove that equivalence. Here are hints about how the semantics
should go. First, sentences that contain undefined terms will also be undefined,
but otherwise the standard truth conditions hold. Let ‘?aw(e)’ indicate that
expression e is undefined by a at world w. Here are sample conditions for the
“Strawsonian” semantics:

If t occurs in sequence l and ?aw(t), then ?aw(l).
If ?aw(l), then ?aw(Pl), but otherwise aw(Pl)=T iff aw(l) µ aw(P).
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If ?aw(A) or ?aw(B) then ?aw(AçB),
but otherwise aw(AçB)=T iff aw(A)=F or aw(B)=T.

If ?av(A) for any v such that wRv, then ?aw(∫A),
but otherwise aw(∫A)=T iff if wRv, then av(A)=T.

If ?aw(Ad) for any d µ Dw, then ?aw(åxA),
but otherwise aw(åxA)=T iff for all d µ Dw, aw(Ad)=T.

What clause would be appropriate for !xAx? There are problems to be faced in
providing a definition of validity when partial assignments are used. How does
one guarantee that standard truths such as PcçPc come out valid? When c is
not defined on a model, PcçPc will be undefined as well, with the result that
PcçPc is not always T in every model, and so presumably not valid. One way
to deal with this is to modify a basic idea from the semantics for propositional
logic. Consider the propositional variable p. As a variable, p has no particular
meaning in English, so we may think of its value as undefined. But pçp may be
validated nonetheless. Let us fill in the value of p in an arbitrary way. Regardless
of how we do that, we can never refute pçp. Whether p is T or F, pçp is T. This
is why pçp is considered valid even though p is undefined. You may adopt
a similar idea to define validity for a Strawsonian semantics. Let assignment
c be a completion of (partial) assignment a if c agrees with a on the values
of all expressions defined by a, but also fills in values for all expressions not
defined by a in some way that satisfies (!). A (partial) assignment function a
satisfies a set H of sentences in world w (in short: aw(H)=T), provided that every
member of H is T at w on some arbitrary completion of a. Now that notation:
‘aw(H)=T’ is defined, the notions of a counterexample and valid argument
are defined in the usual way. You may also be interested in the partial model
semantics found in (van Fraassen 1966) and (van Fraassen and Lambert, 1967),
where a somewhat stronger logic is developed.

18.10. How !S Resolves the Philosophical Puzzles

Russell’s theory was designed to handle philosophical problems con-
nected with descriptions. Let’s see how the modal description theory !S
handles the same issues.

Problem 1. How can ‘The present king of France doesn’t exist’ be
contingently true?

Solution: The translation for ‘the present king of France does not exist’
in the notation of !S is ~E!xPx. Since E!xPx is not a theorem of !S, we are
not left with the puzzle that a sentence that is contingently true is treated
as a contradiction. It would seem that we are left with a puzzle. If the
sentence ~E!xPx is to make sense and so be true, then !xPx would have
to have a referent; yet the sentence itself says that !xPx does not refer to
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anything real. The solution to the problem is simply to deny that a term
of a sentence must refer to an existent object in order for the sentence
to have a meaning, and hence to take on a truth value. We can challenge
our opponent’s basic premise by asking him to explain how sentences like
‘Pegasus is a winged horse’ and ‘Pegasus is not a hippopotamus’ (which
are clearly both true) can be treated on a theory that denies truth values to
all sentences whose terms refer to things that do not exist. In the semantics
for !S, terms may refer to possible objects, and sentences that contain such
terms have truth values.

Problem 2. Did King George really want to know whether
Scott was Scott?

Solution: The argument has the form of a substitution of identical terms.

s≈!xAx
Ks≈!xAx
Ks≈s

But we deny the correctness of substituting identities in the scope of
the intensional operator K (which reads ‘King George wanted to know
whether . .’).

Problem 3. Is the round square both round and square?
Solution: The round square is not round, and it is not square. In fact, it is
not. It does not exist. We can prove neither R!x(Rx&Sx) nor S!x(Rx&Sx)
in free logic unless we also have E!x(Rx&Sx). (The round square exists.)
But we showed in Exercise 18.12 that given the premise that being round
and being square are incompatible, it follows that ~E!x(Rx&Sx). (The
round square does not exist.)
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Lambda Abstraction

19.1. De Re and De Dicto

We have already encountered the de re – de dicto distinction at a number
of points in this book. In this section, we will investigate the distinction
more carefully, explain methods used to notate it, and develop quantified
modal logics that are adequate for arguments involving the new notation.

Some of the best illustrations of the de re – de dicto distinction can be
found among sentences of tense logic. For example, consider (S).

(S) The president was a crook.

This sentence is ambiguous. It might be taken to claim of the present
president that he (Bush at the time this was written) used to be a crook.
On the other hand, it might be read ‘At some time in the past the president
(at that time) was a crook’. On this last reading, we are saying that the
whole sentence (or dictum in Latin) ‘the president is a crook’ was true
at some past time. This is the de dicto reading of (S). Here both ‘the
president’ and ‘is a crook’ are read in the past tense. We can represent
this interpretation of (S) by applying the past tense operator P to the
sentence ‘the president is a crook’, so that both ‘the president’ and ‘is a
crook’ lie in its scope.

P(the president is a crook) de dicto reading of (S)

On the first reading of (S), we are saying a certain thing (in Latin res) has
a past tense property: of having been a crook. This is the de re reading of
(S). Here we read ‘the president’ in the present tense, and ‘is a crook’ in

409

       
            

       



410 Modal Logic for Philosophers

the past tense. We can represent this reading by restricting the scope of
the past tense operator P to the predicate ‘is a crook’.

the president P(is a crook) de re reading of (S)

The distinction between these two readings of (S) is a crucial one, for
given that Bush never was a crook, and that Nixon was, the de dicto version
of (S) is true, while the de re version is false.

EXERCISE 19.1 Distinguish between de re and de dicto applications of the
intensional operators in the following sentences:

a) The number of planets is necessarily greater than 7.
b) King George wanted to know whether Scott was the author of Waverley.

Given standard assumptions about what is (mathematically) necessary and
about what people might want to know, which of the readings of these sentences
are true and which false?

Though notational and semantical machinery exists for handling de
dicto applications of intensional operators, we have no way to treat the de
re applications since intensional operators, so far, do not bind predicates.
This section will discuss two standard approaches to notating the de re –
de dicto distinction. One method involves the use of Russell’s theory of
descriptions.

When descriptions are translated into quantificational logic according
to Russell’s theory, more than one result may be obtained depending on
how the scope of the operators is treated. (See Section 18.2.) For example,
‘King George wanted to know whether Scott was the author of Waverley’
has two readings, which may be represented using a modal operator K
(for ‘King George wanted to know whether’) as follows:

Secondary Occurrence KÖx(1Wx&s≈x)
Primary Occurrence Öx(1Wx&Ks≈x)

This difference in scope may be exploited to give an account of the de
re – de dicto distinction. For example, consider (S).

(S) The president was a crook.

This can be represented in description notation by (S′) (where R reads
‘is the president’).

(S′) PC!xRx
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When !xRx is translated, two different results may be obtained depend-
ing on whether the past tense operator P binds the whole sentence
Öx(Cx&1Rx) or the open sentence Cx in the result.

PÖx(1Rx&Cx) de dicto
Öx(1Rx&PCx) de re

Notice that the first of these says that in the past there was exactly one
president who was a crook, and this is the de dicto reading of (S), whereas
the second claims that there is (now) exactly one president, and he was a
crook, which is the de re reading.

EXERCISE 19.2 Represent the sentences of Exercise 19.1 in description
notation. Then translate away the description in each in two ways, and label
them according to whether they represent de dicto or de re readings.

Although this method for representing the de re – de dicto distinction is
perfectly acceptable, it has some limitations. The main problem is that
there are sentences that have both de re and de dicto readings but fail
to contain any description to which Russell’s translation method can be
applied. For example, consider (K).

(K) Philip believes that Ortcutt is a spy,

This sentence has a de re and a de dicto reading. The de dicto reading
makes the claim that the person whom Philip believes to be Ortcutt is a
spy. (Here the intensional operator B is introduced for ‘Philip believes
that’.)

B(ortcutt is a spy) de dicto

On the other hand, the de re reading says that whoever is in fact Ortcutt
is believed by Philip to be a spy.

Ortcutt B(is a spy) de re

It is not too difficult to imagine a situation where these two readings of
(K) have different truth values. Just suppose that a reliable friend has told
Philip that Ortcutt is the doorman at the Russian Embassy, and that his
friend happens to be wrong about this. Suppose Philip has good evidence
that the doorman at the Russian embassy is a spy, and suppose that the
person who is in fact Ortcutt is someone whom Phillip does not know.
Under these circumstances the de dicto reading of (K) will be true, for
Philip does believe that the person he believes to be Ortcutt (namely, the
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doorman) is a spy. However, the de re reading is false, because although
Philip does believe of the doorman that he is a spy, the man Ortcutt does
not have the property of being believed by Philip of being a spy since
Philip does not know Ortcutt, and so has no beliefs about him one way or
the other. The upshot is that there are sentences where we need to make
the de re – de dicto distinction that do not explicitly contain descriptions.

EXERCISE 19.3 Give another example of a sentence that fails to contain
descriptions where we need to make the de re – de dicto distinction. Give an
example that does not involve the intensional operator ‘believes that’.

If we are to formulate the two senses of sentences like (K) using Russell’s
theory, we will be forced to claim that ‘Ortcutt’ in (K) is a covert descrip-
tion (say ‘the Ortcuttizer’). We have criticized this treatment of proper
names in Section 12.4, when Russell’s theory was proposed as a method
for preserving classical logic in face of the problem of nonreferring terms.
If we wish to avoid the problems mentioned there, we must find some
other method for notating the de re – de dicto distinction in sentences that
fail to contain descriptions.

A second alternative is to notate de re sentences using the method of
abstraction. A new operator ¬ called the abstraction operator is introduced
into the notation (Stalnaker and Thomason, 1968). This operator converts
a sentence Ac into predicate: ¬xAx. So, for example, when Gc reads ‘c is
green’, then¬xGx reads ‘is green’. The main function of the¬operator is to
create complex predicates from complex sentences. Complex predicates
such as ‘is believed by Philip to be a spy’ and ‘is necessarily greater than
7’ and ‘is black or blue but not necessarily black or blue’ can be notated
by forming first the appropriate complex sentences, and then applying
¬x to convert them into the corresponding predicates. For example, to
represent ‘is believed by Philip to be a spy’, form first the representation
of the sentence ‘c is believed by Philip to be a spy’, namely, BSc, to which
we apply ¬x to obtain ¬xBSx. Then one can notate the de re version of (K)
by combining the predicate ¬xBSx with the term o to obtain ¬xBSx(o),

(K) Philip believes that Ortcutt is a spy.
¬xBSx(o) de re

whereas the de dicto version is notated as follows:

BS(o) de dicto
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Note that ¬xSx(o) says that Ortcutt has the property: ¬x x is a spy, that
is, the property expressed by ‘is a spy’, so ¬xSx(o) and So are equivalent
to each other. This means that the de dicto reading of (K) can also be
notated this way:

B¬xSx(o) de dicto

This helps us appreciate that the difference between the de re and de
dicto interpretations of (K) is a matter of scope. It depends on the order
in which B and ¬x appear in the two formulas.

¬xBSx(o) de re
B¬xSx(o) de dicto

EXERCISE 19.4 Notate the de re interpretations of the following sentences
using ¬.

a) The number of planets is necessarily greater than 7.
b) John is black and blue but not necessarily black and blue.
c) The president is necessarily a citizen, but not necessarily an honest man.

Note that parentheses are included around ‘o’ in ‘¬xBSx(o)’ and
‘B¬xSx(o)’. This follows the official the syntax defined in Chapter 12,
which says that predicate letters are followed by lists of terms, and that
lists are enclosed in parentheses. According to this policy, the notation
for a sentence formed from a predicate letter P and a term t is ‘P(t)’.
In this book, the parentheses have usually been dropped: Pt. However,
in the case of complex predicates, the parentheses are needed to help
resolve ambiguity, and they actually make formulas easier to read, espe-
cially when there are complex terms such as descriptions as well. So the
parentheses around terms will be included in sentences involving ¬.

19.2. Identity and the De Re – De Dicto Distinction

Keeping track of the difference between de re and de dicto applications
of an intensional operator is crucial when it comes to evaluating argu-
ments involving identity. Remember the failure of substitutivity of iden-
tical terms in the scope of an operator was a pervasive feature for inten-
sional operators. For example, the truth of the premises and falsity of the
conclusion of the following argument can be used to show that substitu-
tion fails in the scope of ‘necessarily’.
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9 is the number of planets.
9 is necessarily greater than 7.
The number of planets is necessarily greater than 7.

The application of this test, however, is ticklish. There are two ways to read
the conclusion, and it is only on the de dicto reading that the conclusion is
false. On the de re reading, the sentence says that the number of planets
(which is 9) has a certain property, namely, being necessarily greater than
7. Since 9 is necessarily greater than 7, it follows from the identity of
9 with the number of planets that ‘the number of planets is necessarily
greater than 7’ is true on the de re reading. In general, when a sentence is
given the de re reading, the substitution of terms that refer to the same
thing goes through in contexts where it would not be allowed given the
de dicto reading. ‘9’ can be substituted for ‘the number of planets’ in ‘the
number of planets is necessarily greater than 7’ when this sentence is given
the de re reading, but it cannot on the de dicto reading. This difference
in behavior can be explained by the fact that on the de re reading ‘the
number of planets’ does not lie in the scope of ‘necessarily’, whereas on
the de dicto reading it does. We can appreciate the situation by giving
notation for the argument on both the de re and de dicto readings.

DE DICTO DE RE
9≈!xNx invalid because 9≈!xNx valid because
∫(9>7) !xNx is replaced ¬x∫(x>7)(9) !xNx is replaced for
∫(!xNx>7) for 9 in the scope ¬x∫(x>7)(!xNx) 9 outside the scope

of ∫ of ∫

On the left (in the de dicto case), the ‘9’ in the second premise lies inside
the scope of ∫, whereas it lies outside that scope on the right.

A good notation for the de re – de dicto distinction will allow us to
quickly determine which term positions lie inside (and which outside) the
scope of an operator. Otherwise we will have trouble assessing the validity
of arguments that involve the substitution of terms that appear in true
identity statements. Although the ¬ notation does make the distinction
clear, the notation is complex enough that the scope is not all that easy to
assess. To help overcome the problem, let us introduce the abbreviation
that allows the deletion of the cumbersome ¬ notation.

(∫(P)) ∫(P) =df ¬x∫Px
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Then the second premise of the de re version of the argument comes to
∫(>7)(9). Allowing the subject term ‘9’ at the head of the sentence (as is
done in English) results in a considerably more legible notation: 9∫(>7).
Then the de re and de dicto versions of the ‘number of planets’ argument
can be expressed in a way that clearly indicates that the de re version is
valid since substitution of !xNx for 9 lies outside the scope of ∫.

DE DICTO DE RE
9≈!xNx invalid because 9≈!xNx valid because
∫9>7 !xNx is replaced 9∫(>7) !xNx is replaced for
∫!xNx>7 for 9 beneath ∫ !xNx∫(>7) 9 outside ∫

One might introduce the notation ∫(P) directly by defining the syntax
so that the modal operator ∫ binds predicate letters as well as sentences
(Garson, 1981). However, that device will not allow one to construct the
full range of complex predicates that the ¬ notation and variables allow.
So in the quantified modal logic to be defined here, ¬ is a primitive symbol,
and we introduce abbreviations that help overcome visual clutter related
to the use of ¬.

We have already remarked in the previous section that the Russellian
method for handling the de re – de dicto distinction does not work in cases
where there are no descriptions to translate. This and other problems with
Russell’s theory were discussed in Sections 12.3 and 12.4. So for safety, an
alternative system for abstraction will be developed here – one that does
not depend on Russell’s method.

19.3. Principles for Abstraction: The System ¬S

When abstraction notation is used, the correct principles for substitution
of identities are easily formulated. Remember that the rule (≈Out) was
restricted so that it applied only to atomic sentences.

(≈Out) s≈t, P(l, s, l′) / P(l, t, l′)
where P is a predicate letter (including ≈)

It is an easy matter to modify the statement of (≈Out) in the appropri-
ate way, when ¬ is in the language. Simply understand ‘P’ to range over
predicate letters as well as all abstractions of the form ¬xAx, where Ac is
a well-formed sentence. It will follow that the result of notating the de re
version of the ‘planets’ argument in ¬ notation will qualify as an instance
of (≈Out) and so reflect the validity of the argument as desired.
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9≈!xNx
¬x(∫x>7)(9)
¬x(∫x>7)(!xNx)

Here the term positions (9) in the second premise and (!xNx) in
the conclusion follow the predicate ¬x(∫x>7). Since ¬x(∫x>7)(9) and
¬x(∫x>7)(!xNx) have the forms Plsl′ and Pltl′, the (≈Out) rule warrants
the substitution and all is well. This makes sense because neither 9 nor
!xNx lies in the scope of the intensional operator ∫.

Unfortunately, new problems arise if the standard axiom for abstrac-
tion is adopted.

(The Principle of Abstraction) ¬xAx(t) ≠ At

At first, it would seem that this principle is uncontroversial. Since ¬xAx(t)
merely says that t has the property of being A, it would seem that ¬xAx(t)
and At should be equivalent. However, there is a problem if an intensional
operator appears in At. For example, when Ax is ∫x>7 and t is !xNx, the
principle of abstraction asserts that the de re and de dicto translations of
the conclusion of the ‘planets’ argument are equivalent.

¬x∫x>7(!xNx) ≠ ∫!xNx>7

But this would be fatal to any attempt to distinguish the deductive behav-
ior of de re and de dicto sentences. If we are to use the method of abstrac-
tion to handle de re applications of intensional operators, we must care-
fully restrict the principle of abstraction so as to avoid the identification
of de re with de dicto.

The solution to the problem adopted in this book will be to adopt rigid
constants and formulate abstraction for constants only. So a corrected
version of the axiom is (¬).

(¬) ¬xAx(c) ≠ Ac

In Section 19.5 below, the adequacy of a system that uses this principle
will be demonstrated.

19.4. Syntax and Semantics for ¬S

Let us begin with a formal account of a language for a system ¬S that
includes the ¬ operator. The definition will simultaneously define ‘sen-
tence’, ‘term’, and ‘predicate’.
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The Definition of Sentences, Terms and Predicates of ¬S.

1. Constants are terms.
2. If At is a sentence, and x is a variable, then !xAx is a term and ¬xAx

is a predicate.
3. If l is a list of terms and P is a predicate, then Pl is a sentence.
4. If A, B, and At are sentences, x is a variable, and both s and t terms,

then ƒ, s≈t, (AçB), ∫A, and åxAx are sentences.
No sequences of symbols count as sentences, terms, or predicates unless

they qualify by clauses 1–4.

We already have the semantical machinery needed to handle cases of
de dicto applications of the intensional operators. To handle de re appli-
cations, we need to define models that obey the appropriate semantical
condition for ¬. What is needed is a condition that indicates what the
extension aw(¬xAx) of the predicate ¬xAx should be. But ¬xAx is a pred-
icate that indicates some property, so aw(¬xAx) should pick out the set
of objects that have this property. Since the members of predicate letters
were lists of objects, even in the case of one-place predicates, let us pre-
sume that the extension aw(¬xAx) of ¬xAx is the set containing exactly
those (one-item) lists (d) of objects d that bear the relevant property. But
what is the relevant property? It is that (d) is a member of aw(¬xAx)
exactly when d satisfies Ax, that is, when aw(Ad)=T. It follows that (¬) is
the desired condition for fixing the extension of ¬xAx.

(¬) (d) µ aw(¬xAx) iff aw(Ad)=T.

Once (¬) is in place, the truth clause (Pl) can be used to fix the truth
values of atomic sentences that include ¬. To see why, note that (¬Pl) is a
special case of (Pl).

(¬Pl) aw(¬xAx(t))=T iff aw((t)) µ aw(¬xAx).
(Pl) aw(Pl)=T iff aw(l) µ aw(P).

Since (t) is a special case of (ti), when n = 1, the overall result is (¬Pl).

(t) aw((t)) = (aw(t)).
(ti) aw((t1, . . , tn)) = (aw(t1), . . , aw(tn)).
(¬t) aw(¬xAx(t))=T iff (aw(t)) µ aw(¬xAx).

It is visually annoying to include the outside parentheses in the lists: (d)
and (aw(t)), so these will be dropped when no ambiguity would arise.
Using this convention, (¬t) and (¬) may be simplified as follows:

(¬t) aw(¬xAx(t))=T iff aw(t) µ aw(¬xAx).
(¬) d µ aw(¬xAx) iff aw(Ad)=T.
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Now let a ¬S-model be any !S-model for a language for ¬S that obeys
(¬). It is interesting to work out the truth conditions in ¬S-models for
sentences involving the de re and de dicto readings. Consider the truth
behavior of a de re sentence of the shape ∫(P)t, where P is a one-place
predicate, and t is a name. Since ∫(P)t is shorthand for ¬x∫(Px)(t), we
can use (¬) to work out the semantical behavior of ∫(P)t. ∫(P)t says that
what t refers to has a certain property, namely, of being necessarily P. This
means that the referent of t ought to fall into the extension of P in all
worlds accessible from our own. So the semantical clause for the de re
sentence ∫(P)t would be expected to read as follows:

(DR) aw(∫(P)t)=T iff if wRv, then aw(t) µ av(P)

It is interesting to note that (DR) is easy to derive from (¬) as follows.
We know that aw(t) must refer to some object d in D. So we have the
following:

(∫(P)t)=T
iff aw(¬x∫(Px)(t))=T (∫(P))
iff aw(t) µ aw(¬x∫Px) (¬t)
iff d µ aw(¬x∫Px) aw(t) = d
iff aw(∫Pd) = T (¬)
iff if wRv then, av(Pd) = T (∫)
iff if wRv then, av(d) µ av(P) (Pl)
iff if wRv then, d µ av(P) (d): av(d) = d
iff if wRv then, aw(t) µ av(P) aw(t) = d

It is instructive to compare this clause with the truth conditions that
we obtain using the standard semantics for the de dicto sentence ∫Pt.

(DD) aw(∫Pt)=T iff if wRv, then av(t) µ av(P).

EXERCISE 19.5 Show that (DD) is the case using the standard truth clauses
governing atomic sentences and ∫.

The two conditions (DR) and (DD) are identical except for one thing,
namely, that where we have aw(t) in (DR), we have av(t) in (DD). In
the de re case we check the referent aw(t) of t in the original world w to
see whether it falls in the extension of P in all worlds accessible from w,
whereas in the de dicto case we check each accessible world v to see
whether the referent of t in that world v is in the extension of P for
that world. The difference between the two cases can be appreciated
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by thinking of the de re case as identical to the de dicto, save that in the
de re case we always test the referent of t for the original world of the
evaluation.

The diagrams that we used for representing models are quite helpful in
making clear what the distinction between de re and de dicto amounts to.
We already know how to calculate the truth value of a de dicto sentence
∫Pt on a diagram, for example, the following one:

Here we see that ∫Pt is T at w because the extension of t remains inside
the extension of P in all worlds accessible from w. What about the value
of the de re sentence on the same model? Here we must check to see
whether aw(t) is in the extension of P in all worlds accessible from w, and
so we must check to see whether the object 1 in our diagram is inside the
boundary for P at w, v, and u. We see that it is not, and in fact aw(t) lies
outside the extension of P in both v and u. To help us see this fact about
the diagram, let us draw a horizontal dotted line to represent the value
of aw(t). By sighting along this line, we can see that aw(t) falls out of P’s
bounds in worlds v and u.

Notice that although ∫(P)t is F at w, ∫(P)t turns out to be T at v. We can
see this by drawing a horizontal dotted line through the point av(t) and
seeing that it stays inside the extension of P in all the worlds accessible
from v.
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EXERCISE 19.6 Calculate the following extensions on the following dia-
grams.

a) av(∫(P)t)
b) av(∫Pt)
c) aw(∫(P)t)
d) aw(∫(P)s)

a) av(∫(P)t)
b) av(∫(Pt))
c) av(∫t≈s)
d) av(t∫(≈s)) that is av(¬x∫(x≈s)(t))

Diagrams help us appreciate the conditions under which de re and de
dicto sentences are equivalent. When t is a rigid term, that is, when t refers
to the same object in all worlds, then the line for its intension is horizontal,
and so coincides with the dotted line we would draw in calculating the
values of de re sentences involving it. This means that when t is rigid, the
sentences ∫(Ft) and ∫(F)t must have the same truth values. It follows
that if we adopt a semantics where we assume that all the terms are rigid,
then the de re – de dicto distinction collapses. Second, even if t is nonrigid,
we can find a de dicto sentence that is equivalent to ∫(F)t, as long as we
can be sure that a rigid constant of the right kind is available. To illustrate
this, suppose that we have a model where c is a rigid constant that refers
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to the same object that t does in world w. Then the intension for c will be
a horizontal line that points to aw(t), and this line will exactly coincide
with the dotted line we would draw to assess the value at w of de re
sentences.

So any diagram that made ∫(P)t at w would make ∫Pc T at w and vice
versa.

This feature of rigid terms and de re sentences suggests another way
to indicate the de re – de dicto distinction. Since any de re sentence is
equivalent to a de dicto sentence involving a rigid constant that refers
to the right object, we can simply use such de dicto sentences to express
the contents of the de re sentences. One difficulty with this tactic should
be pointed out. For a given term t, the choice we make for c depends on
the possible world. In the above pair of diagrams, ∫(P)t and ∫Pc do not
have the same truth values at v, or u. The dotted line we would draw for
world v in the right-hand diagram points to object 2, and so we would
need to find a new constant b to express the contents of ∫(P)t in world v.
As a result, the sentence we choose for expressing the de re application
of modality is not fixed by any one definition, but changes as the world at
issue changes.

So far, our discussion of de re sentences has not taken account of the
possibility that objects may fail to exist in certain situations. As a matter
of fact, it seems reasonable to suppose that for any object, there is a world
where it fails to exist. If this is true, then our present semantical definition
for de re modality seems too harsh. For example, the de re sentence ‘the
president is necessarily a man’ will be false in our world if there is a world
where the extant president (Bush at the time of this writing) does not fall
into the extension of ‘is a man’. Given that there is a world accessible from
ours where Bush doesn’t exist at all, it would seem that Bush couldn’t be
in the extension of any predicate in that world, and so we would have to
rule the sentence false.

However, this reasoning rests on a debatable assumption, one that is
initially attractive, but probably false. The assumption is that if an object
fails to exist in a world, then it cannot fall in the extension of any predicate
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in that world. This assumption can be challenged by pointing to such true
sentences as ‘Pegasus is a horse’. Though Pegasus does not exist, we still
want to say that this sentence is true, and so we must allow the object
Pegasus to be a member of the extension of ‘is a horse’. Similarly, we
could preserve the truth of ‘the president is necessarily a man’ by making
sure that Bush is in the extension of ‘is a man’ in all accessible worlds.

On the other hand, the insistence that Bush must be in the extension of
‘is a man’ even in worlds where he does not exist seems to be a technical
trick that does not sit well with our intuitions. For this reason it seems
worthwhile to work out the semantics for a version of de re modality
where we only inspect worlds where the object at issue exists. Let us use
the notation [E] for this conception of de re modality. The semantical
clause for the sentence [E](P)t says that it is true at w just in case the
extension d of t (at w) falls in the extension of P in all worlds w where d
exists.

(EDR) aw([E](P)t)=T iff if wRv and aw(t) µ Dv, then aw(t) µ av(P).

EXERCISE 19.7 Construct a model where ∫(P)t is F and [E](P)t is T at
some world.

EXERCISE *19.8 Show how to define [E](P)t using ¬. Demonstrate (EDR)
given your definition.

19.5. The Adequacy of ¬S

In this section the adequacy of ¬S will be shown. Remember that ¬S is !S
plus the axiom (¬), and ¬S-models are !S-models that satisfy the condition
(¬). Here it is shown that ¬S is both sound and complete.

Soundness of ¬S. If L ÷¬S C then L …¬S C.

Proof. We know that !S is !S-sound, so to show soundness of ¬S, it is
necessary to show only that the (¬) axiom is ¬S-valid, that is, that (¬) is
valid in any !S-model that meets the semantical condition (¬). To show
aw(¬xAx(c)≠Ac)=T for any ¬S-model <W, R, D, a>, note first that an
assignment function for a ¬S-model must assign an appropriate extension
to each term, so aw(c) must be identical to some object d in D. Accord-
ing to the truth condition (≠) for ≠, it will be sufficient for proving
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aw(¬xAx(c)≠Ac)=T to show that aw(¬xAx(c))=T iff aw(Ac)=T. This is
done as follows:

(¬xAx(c))=T
iff aw(c) µ aw(¬xAx) (¬t)
iff d µ aw(¬xAx) aw(c) is d
iff aw(Ad)=T (¬)
iff aw(Ac)=T Rigid Instance Theorem

(Remember that ¬S-models have rigid constants, which is why the Rigid
Instance Theorem applies.)

Completeness of ¬S. If H …¬S C then H ÷¬S C.

Proof. We prove the contrapositive: if H ø¬S C, then H Ú¬S C. So assume
H ø¬S C. Use the completeness method of either Section 16.4 (using
trees) or Section 17.8 (using the canonical model) to establish H Út¬S
C, where a t¬S-model is a t!S-model that satisfies the axiom (¬). This
establishes the completeness of ¬S with respect to t¬S-models. At this
point the Extended o Transfer Theorem of Section 15.8 will guarantee
that ¬S is complete for ¬S-models, provided that we can show that axiom
(¬) expresses the semantical condition (¬).

Extended o Transfer Theorem. If nS results from adding axioms
to oS, each of which expresses its corresponding condition, and if
nS is complete for tnS-models, then nS is complete for nS-models.

Note that ¬S is oS plus both (!) and (¬) and it was already shown in
Section 18.8 that axiom (!) expresses the condition (!). To show that axiom
(¬) expresses its condition (¬), we need to show that the ti-expansion
of any t¬S-model obeys (¬). Since the t¬S-model satisfies (¬), the truth
condition (≠) for ≠ yields the following:

(¬c) aw(¬xAx(c))=T iff aw(Ac)=T.

By construction, the ti-expansion of the t¬S-model obeys the following.
(See Section 15.7.)

(aD) d µ D iff for some term t and some world w, d=aw(t).

But we also know that any t¬S-model obeys (Öc). (See Section 15.8.)

(Öc) For teach term t, there is a constant c such that aw(t≈c)=T.

Putting (aD) and (Öc) together, it follows that (aoD).

(aoD) d µ D iff for some constant c and some world w, d=aw(c).
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We are ready to show that (¬) holds in the ti-expansion.

(¬) d µ aw(¬xAx) iff aw(Ad)=T.

Proof of (¬). Let d be any member of D, and let w be any member of W.
By (aoD), there is a constant c, and a world u such that d=au(c). Since
the axiom (RC) is in ¬S, the Expression Theorem of Section 15.7 entails
that the constants are all rigid. It follows that d=aw(c). Note also that the
reasoning of the ti-Expansion Theorem of Section 15.7 guarantees that
the ti-expansion is an iS-model. So (Pl), and hence (¬t) holds. Given all
this, the proof is straightforward.

d µ aw(¬xAx)
iff aw(c) µ aw(¬xAx) d=aw(c)
iff aw(¬xAx(c))=T (¬t)
iff aw(Ac)=T (¬c)
iff aw(Ad)=T Rigid Instance Theorem

19.6. Quantifying In

Quantifying into intensional contexts (or ‘quantifying in’ for short) occurs
when a quantifier binds a variable that lies in the scope of an intensional
operator and the intensional operator lies in the scope of that quantifier.
For example, formulas with the shape Öx∫Px exhibit quantifying in since
the scope of ∫ includes a variable x that is bound by Öx, a quantifier whose
scope includes ∫. The formula ∫ÖxPx is not an example of quantifying
in because here ∫ does not lie in the scope of Öx. Quine has argued in
several places (most famously in “Reference and Modality” [1961]) that
quantifying in is incoherent. Quine calls term positions where substitu-
tion of identities fails opaque contexts. His view is that quantification into
opaque contexts is illicit. If he is right, then either we must never write for-
mulas like Öx∫Px, or we must provide a translation procedure to eliminate
them in favor of formulas where quantification into opaque contexts does
not occur. The only reasonable hope of doing so would be to adopt the
Barcan Formulas, so that Öx∂Px can be converted to ∂ÖxPx, and åx∫Px
to ∫åxPx. But even that would not provide a way to trade Öx∫Px for
∫ÖxPx. Furthermore, one is still faced with formulas like Öx(Gx&∂Fx),
where an attempt to ‘hoist’ the ∂ outside of the quantifier Öx is blocked
by the fact that ∂(Gc&Fc) is not equivalent to (Gc&∂Fc).
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EXERCISE 19.9 Give an English counterexample that shows that
(Gc&∂Fc) and ∂(Gc&Fc) are not equivalent. (Hint: Use a tree to created
a fK-counterexample to help you see what is needed. Try an assignment that
makes (Gc&∂Fc) true and ∂(Gc&Fc) false.)

This book has so far proceeded using opaque contexts without com-
ment, and it argues for systems of quantified modal logic that reject
the Barcan Formulas. It is important, then, to provide a defense against
Quine’s arguments. Quine contends that quantification into opaque con-
texts is incoherent because failure of substitution at a term position under-
mines the normal referring function of terms and variables that occur
there. This in turn undermines coherency of quantification into those
contexts. Consider the argument below, which is a famous example of the
failure of substitution:

9≈n 9 is the number of planets.
∫9>7 Necessarily 9 is greater than 7.
∫n>7 Necessarily the number of planets is greater than 7.

(To simplify the discussion, the argument has been symbolized to the left,
using ‘n’ as an abbreviation for ‘the number of planets’.) The premises
of this argument are presumably true, but at least on one reading, the
conclusion is false. This shows that the term position where ‘9’ occurs in
the second premise ∫9>7 is an opaque context. Quine argues that terms
in opaque contexts do not play their normal referring roles. Both ‘9’ and
‘the number of planets’ refer to nine, so something other than these term’s
referents must explain why the truth values of ∫9>7 and ∫n>7 differ.
What does account for the difference has to do with differences in the
ways of describing or the manner of referring to nine. ‘9’ refers to nine
directly, as it were, whereas ‘the number of planets’ gets at nine indirectly.

Now consider (Ö∫) where we quantify in.

(Ö∫) Öx(necessarily, x is greater than 7).

The objectual truth condition claims that (Ö∫) is true iff the hybrid
sentence ∫d>7 holds for some object d in the domain.

∫d>7 Necessarily d is greater than 7.

Note that ∫d>7 results from replacing d either for ‘9’ in ∫9>7 or for ‘n’,
that is, ‘the number of planets’ in ∫n>7. However, the truth values of
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∫9>7 and ∫n>7 were sensitive to the manner in which nine is described.
Since d is some object, it does not describe anything at all, and so crucial
information needed to make sense of the truth value of ∫d>7 has been
lost.

Presumably we think (Ö∫) is true because nine is necessarily greater
than 7, and so something is necessarily greater than 7. But Quine asks,
‘What number is the object d that supports the purported truth of ∫d>7?’
Presumably it is nine. But nine just is the number of planets, and the
number of planets is not an object d that makes ∫d>7 true since ∫n>7
is false. Quine’s objection, then, rests on the idea that opaque contexts
deprive terms of their normal directly referring roles since the manner
of reference is implicated as well. But the standard truth conditions for
quantifiers depend on their variable positions having normal referring
roles, where the manner of referring is irrelevant.

This reasoning may seem persuasive. However, note that at least on
one reading, Quine’s reasoning employs the substitution of identities
in intensional contexts, which we have urged is questionable. When he
argues that there is something incoherent about the truth conditions for
∫d>7 when d is nine, he presumes that the fact that nine is the num-
ber of planets entails that we must be pulled two ways when evaluating
∫d>7. ∫9>7 prompts us to rule it true, whereas ∫n>7 prompts us to
rule it false. However, the fact that ∫n>7 is false would exert pressure
on us to think that ∫d>7 is false only if substitution of ‘the number of
planets’ for d in ∫d>7 were legitimate. But this amounts to substitu-
tion into intensional contexts, which is invalid. By recognizing the failure
of substitution and the phenomenon of nonrigid designation, one may
provide a clear standard for evaluating ∫d>7 when d is nine. Because
‘9’ is presumably a rigid term referring to nine, it follows by a legiti-
mate replacement of nine for ‘9’ that the truth of ∫9>7 entails the truth
of ∫d>7. The fact that ∫n>7 is false is no problem because ‘the num-
ber of planets’ is a nonrigid term. It refers to different numbers in pos-
sible worlds with different numbers of planets. Since substitution fails
for nonrigid terms, there is all the room we need to hold that ∫n>7
is false whereas ∫d>7 is true. The upshot is that we are not pulled in
two ways as Quine contends, and so we need not accept the view that
quantification is impossible in term positions that lack a directly referring
role.

There is a second way of diagnosing Quine’s objection, which will
require a separate reply. Quine may believe that substitution of ‘the
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number of planets’ for d in ∫d>7 is legitimate because he gives this
sentence the de re reading (d∫>7).

(d∫>7) d∫(>7)=¬x∫x>7(d)

Using the de re analysis throughout, the original argument has the fol-
lowing form:

9≈n
9∫(>7)
n∫(>7)

On this interpretation, both ‘9’ and ‘n’ (i.e., ‘the number of planets’) lie
outside the scope of ∫ and so the substitution of these terms is correct
given 9≈n. On this analysis of the situation, Quine would be right to use
substitution of ‘the number of planets’ for d in d∫>7 to conclude that
n∫(>7).

Does this mean that Quine’s reasoning against quantifying in goes
through on the de re reading? The answer is that it does not. Even if one
could demonstrate that there is something incoherent about the truth
value for d∫>7, this could pose a problem only for understanding the
truth conditions of quantified sentences such as Öxx∫(>7). But here quan-
tifying in does not occur since the variable bound by Öx lies outside the
scope of ∫.

Furthermore, the argument would go through only if there were a
tension in evaluating d∫(>7) when d is nine. But there is no such tension.
In the de re case, the argument form is valid since the substitution occurs
outside the scope of ∫. The premises are true, and therefore so is the
conclusion n∫(>7). This matches the intuition that ‘the number of planets
is necessarily greater than 7’ is true on the de re reading, because the object
referred to by ‘the number of planets’ (namely, 9) is necessarily greater
than 7. It follows that there is no difference in the truth values of 9∫(>7)
and n∫(>7) that could be used to argue an instability in the truth value
for d∫(>7).

Quine’s argument is seductive because of the difficulties we all have in
detecting differences in scope of modal operators. At the crucial juncture
where he reasons that ∫d>7 should be false since ∫n>7 is false, we are
liable to credit his reasoning by adopting the de re reading. The fact that
he needs the de dicto reading to obtain a result about quantifying in may
easily pass us by.
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EXERCISE 19.10 Suppose we give (1) the de re and (2) the de dicto reading.

(1) Necessarily 9 is greater than 7.
(2) Necessarily the number of planets is greater than 7.

What objections to Quine’s reasoning against quantifying in would be appro-
priate now?

Quine’s argument against quantifying in has produced a giant litera-
ture, and there is no room in this book to do it justice. Garson (2006)
provides a useful entry point to the topic in case you would like to study
the issue more deeply. However, two important contributions are worth
reviewing here. One of the telling responses to Quine was the work of
Arthur Smullyan (1948). In Section 12.3 it was pointed out that if terms
are replaced by descriptions whenever an apparent failure of substitution
occurs, and Russell’s theory of descriptions is applied, one may develop
a logical system without any restrictions on a rule of substitution. On this
analysis, there are no opaque contexts, and so Quine’s argument does not
even get off the ground.

A second influential response to Quine was given by Kaplan in “Quan-
tifying In” (1969). It involves selecting a privileged class of terms (the
so-called vivid names). Although the truth values of ∫9>7 and ∫n>7 are
sensitive to the two ways nine is described (‘9’ vs. ‘n’), Kaplan argues that
there is no corresponding indeterminacy in ∫d>7 because one of these
ways is privileged. Since ‘9’ is a more direct way to get at nine, ∫9>7 and
not ∫n>7 is used to resolve the truth status of ∫d>7.

Given the force of these and other responses, Quine has conceded
that his argument does not show quantifying in is (strictly) incoherent.
However, he has continued to object to quantifying in on other grounds.
He contends that appeals to privileged ways of describing things, to rigid
terms, or to any other way of making the truth value of ∫d>7 cogent
boils down to having to make sense of the idea that some objects bear
necessary properties that other objects do not. Quine complains that this
amounts to an unacceptable form of essentialism. What sense can it make
to assert of an object itself (apart from any way of describing it) that it
has necessary properties?

In a well-known passage from Word and Object (1960, p. 199), Quine
supports the view that essentialism is unacceptable. Consider sentences
(1)–(5).
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(1) Mathematicians are necessarily rational.
(2) Mathematicians are not necessarily two-legged.
(3) Cyclists are necessarily two-legged.
(4) Cyclists are not necessarily rational.
(5) John is a cyclist and John is a mathematician.

Assuming that these are all true, he asks us whether John is necessarily
rational. Now John is both a cyclist and a mathematician (by (5)), but from
(1) we conclude that he is rational, and from (4) we conclude he is not. It
seems that under the description ‘cyclist’, John isn’t necessarily rational,
but under the description ‘mathematician’, he is. This prompts Quine to
propose that it is only for an object-under-a-description that one can make
a distinction between necessarily and contingent properties. However, he
admits that one might develop a philosophical theory about objects (like
John) quite apart from their descriptions, which claims that certain proper-
ties are essential for being a given object. For example, we might claim that
rationality (say) is part of the essence of John, whereas two-leggedness is
not, as Aristotle might have done. But then what do we do with the fact
that we may want to claim (3) (cyclists are necessarily two-legged) and
that John is a cyclist? It seems that for an essentialist theory, the only way
out, given that John is not necessarily two-legged, is to deny (3). Medieval
Neo-Aristotelians struggled with a similar issue. One wants to say that qua
cyclist, John is essentially two-legged, and that qua mathematician, he is
essentially rational, and qua man, something else perhaps. But then what
is John, qua the object John? Is there an essence of an object taken simply
as an object? Is there no way to find an object’s essence apart from how it
is categorized, or does the object come with its essential categories built-in
somehow?

These are important issues for an essentialist to clarify, but regardless
of how they are resolved, it can be shown that something is wrong with
Quine’s challenge. It is possible at least for the essentialist to hold (1)–(5)
without a contradiction. The essentialist can say that since (3) and (1) hold,
and John is both a cyclist and a mathematician, it follows that John is nec-
essarily two-legged and necessarily rational; this is a simple consequence
of the following formalization of (1), (3), and (5).

(F1) åx(Mxç∫Rx)
(F3) åx(Cxç∫2x)
(F5) Cj & Mj
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EXERCISE 19.11 Show that ∫Rj & ∫2j follows from (F1), (F3), (F5) using
standard quantification theory. What must we add to get the deduction in free
logic?

But what of (2) and (4)? Don’t these show that John is neither necessarily
rational nor necessarily two-legged? They would if they had the forms
(F~2) and (F~4).

(F~2) åx(Mxç~∫2x)
(F~4) åx(Cxç~∫Rx)

In that case, we could use reasoning similar to that of the preceding exer-
cise to arrive at a contradiction. But (F~2) and (F~4) are not proper
formalizations of (2) and (4). If (2) is a plausible claim at all, it cannot
be represented with a formula that claims that every mathematician is
not necessarily two-legged, for suppose the mathematician is our cyclist
friend John. The correct formalization of (2) must be (~F2) or perhaps
(~∫F2).

(~F2) ~åx(Mxç∫2x)
(~∫F2) ~∫åx(Mxç2x)

(~F2) denies merely that all mathematicians are necessarily two-legged,
whereas (~∫F2) denies the necessity of all mathematicians being two-
legged. In either case the translation does not allow the deduction of
the claim ~∫Rj or ~∫2j (‘John is not necessarily rational’ or ‘John is
not necessarily two-legged’). I believe that (~∫F2) is probably the best
way to translate the intent of (2), for it is equivalent to ∂Öx(Mx&~2x),
which says it is possible for there to be a mathematician without two
legs. (~F2) does not capture (2) very well because (~F2) is equivalent
to Öx(Mx&~∫2x), which says that some mathematician exists who is not
necessarily two-legged. That doesn’t seem to me to capture the spirit of
(2), since (2) does not entail the existence of anything.

Although this response shows that essentialism need not be contradic-
tory, Quine or others might still find other philosophical reasons to object
to essentialism. The most effective reply to this move has been to point
out that even if sentences that quantify in make assertions that are philo-
sophically objectionable, this is hardly a reason to ban quantifying in from
logic. Quantified modal logic should provide an impartial framework for
the analysis and evaluation of all philosophical positions, whether we like
them or not. If quantifying in can be used to express even unpalatable
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versions of essentialism, then this is a point in its favor. In any case, if
Quine is right that quantifying in is by its nature essentialist, then this
amounts to a retraction of his first contention that quantifying in is (liter-
ally) incoherent. If it were incoherent, it could not express essentialism,
since it would express nothing at all.

The semantics for quantified modal logic that has been developed in
this book serves as further evidence that there is nothing wrong with
quantifying in. It has been shown here that by formalizing straightforward
intuitions about the quantifiers, there are quantified modal logics that are
consistent and complete where bound variables lie in opaque contexts.
We have not merely stipulated that a sentence like Öx∫Fx is intelligible,
we have given a semantics that tells us exactly what its truth conditions
are. If the intuitions behind this semantics make any sense at all, so must
quantifying into intensional contexts.

Quine will surely object to this defense, for he challenges possible
worlds semantics with complaints concerning the philosophical creden-
tials of the concepts of a possible world and a possible object. However,
the notions of a possible world and possible object are such a crucial
foundation for the semantics for modal logic that these complaints speak
more against the entire project of developing modal logic than against
quantification into opaque contexts in particular. It would take another
book to adequately present Quine’s challenges and to discuss the answers
to be given to them. This book is long enough.
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Exercise 4.8g

Exercise 5.3

aw(DA)=T iff for each v in W, if wRDv then av(A)=T.
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Exercise 5.6

(One possible solution) Let us say that world v is the neighbor of world
w when it contains all the things that exist in w, and has almost exactly
the same physical laws as w. Suppose that ∫A is T in w iff A is T in all
neighbors of w. The neighborhood relation R is not symmetric because v
can be the neighbor of w, when v contains objects that do not occur in w,
in which case wRv could hold, whereas while vRw does not. Transitivity
fails because it is possible for the laws of w and v to be almost exactly the
same and the laws of v and u to be almost exactly the same without the
laws of w and u being sufficiently similar to make v a neighbor of w.

Exercise 6.1c

Exercise 6.1d
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Exercise 6.1e

Exercise 6.1f

The tree rule for K + (∫M) would say that if you have an arrow from
world w to world v, then you must add a “loop” arrow from v back to v.
This will guarantee that R is shift reflective.

Exercise 6.5

Exercise 7.24
Solution for (∂ƒ)

A ÷ ƒ Given
÷ ~A (CP), (Def~)
÷ ∫~A (Nec)
÷ ~~∫~A (DN)
÷ ~∂A (Def∂)
∂A ÷ ƒ (Def~), (MP)
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Exercise 7.25

C1&∂(C2& . . ∂(Cn& A). .) ÷ ƒ iff
÷ C1&∂(C2& . . ∂(Cn& A). .) ç ƒ iff by (CP) and (MP)
÷ ~[C1&∂(C2& . . ∂(Cn& A). .)] iff by (Def~)
÷ C1ç∫(C2ç . . ∫(Cnç ~A). .) iff shown in the text
C1, ∫, C2, . . ∫, Cn ÷ ~A iff by (CP), (MP), (∫In) and (∫Out)
C1, ∫, C2, . . ∫, Cn, A ÷ ƒ. by (CP), (MP) and (Def~)

Exercise 7.27

(~F). In this case, *B is equivalent to *(~~A) and *B′ equivalent to
*(~~A&A). But ~~A ÷ ~~A&A. So given that *B ÷ ƒ, *B′ ÷ ƒ by the
Entailment Lemma.

(ƒIn). In this case, *B is equivalent to *(A&~A) and *B′ equivalent
to *(A&~A&ƒ). But A&~A ÷ A&~A&ƒ by (ƒIn). So given that *B′ ÷
ƒ, *B ÷ ƒ by the Entailment Lemma.

(∫F). In this case, *B is equivalent to *(~∫A) and *B′ equivalent to
*(~∫A&∂~A). But ~∫A ÷ ~∫A&∂~A by (~∫). So given that *B′ ÷ ƒ,
*B ÷ ƒ by the Entailment Lemma.

Exercise 8.3

We assume that L …K ∫A, and show L, ∫ …K A as follows. Suppose that
L, ∫ ÚK A for indirect proof. Then there is a model with a world w where
aw(L, ∫)=T and aw(A)=F.

By definition (L,∫), there must be a world v such that av(L)=T and vRw.

We know that L …K ∫A, so av(∫A)=T.
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By (∫T) it follows that aw(A)=T, which is impossible.

Exercise 8.5

By (1), ~(BçC) appears in world w. When (çF) is applied to ~(BçC), B
and ~C are placed in w. By (IH), both B and ~C are verified because both
B and ~C are smaller in size than A. Since these sentences are both in w,
aw(B)=T and aw(~C)=T. So aw(C)=F by (~). By the truth condition (ç),
aw(BçC)=F and so aw(~(BçC))=T by (~). So aw(A)=T in this case.

Exercise 9.1

Suppose that not wRv. Then by (DefR), it is not the case that for all
sentences A, if w ÷ ∫A then v ÷ A. This means that for some sentence A,
w ÷ ∫A and v ø A. By (Defa), it follows that aw(∫A)=T and av(A)=F.

Exercise 9.3

Suppose wRv and av(A)=T. We must show that aw(∂A)=T. By (Def∂)
and (~), this amounts to showing that w(∫~A)=F. That is shown by indi-
rect proof. Assume that aw(∫~A)=T; then by (∫T), av(~A)=T. But this
conflicts with av(A)=T, and so the proof is complete.

Exercise 9.4c

To show that R is connected when (L) is provable, assume the opposite
and demonstrate a contradiction as follows. Assuming R is not connected,
we have that wRv and wRu but v is not u and not vRu and not uRv. We
will show that this leads to a contradiction. Since u and v differ, there must
be a sentence C such that C is in v but not in u. Since not vRu, it follows by
(~R) that for some sentence B, ∫B is in v and ~B is in u. Similarly from
not uRv, it follows there is a sentence A such that ∫A is in u and ~A is in v.
By (Defa) we have the following values: au(C)=F, au(B)=F, au(∫A)=T,
av(C)=T, av(∫B)=T and av(A)=F. By (√) and (~), au(B√C)=F, so by
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(ç), au(∫Aç(B√C))=F. Hence by (∫), aw(∫(∫Aç(B√C)))=F. But
every instance of (L) is provable from w, including the following one:
∫(∫Aç(B√C)) √ ∫(((B√C)&∫(B√C))çA). By (Defa), a assigns this
sentence T in world w. Since its left disjunct is F in w, it follows
by (√) that the right disjunct is T in w, and so by (∫T), and wRv
((B√C)&∫(B√C))çA is T in v. Since av(C)=T, it follows by (√) that
av(B√C)=T. Since av(∫B)=T, and ∫B ÷K ∫(B√C), it follows by the
Closed Lemma that av(∫(B√C))=T. So by (&), av((B√C)&∫(B√C))=T,
which means that av(A)=T. But we had av(A)=F, which yields the desired
contradiction.

Exercise 11.2

The following diagram shows (B) is provable in M5.

S5 = M5 by definition
= MB5 by this exercise, (B) is provable in M5
= M4B5 (4) is provable in MB5 (by Exercise 11.1b).
= M45 (B) is provable in M45 (since provable in M5)
= M4B (5) is provable in M4B (by Exercise 11.1a)
= D4B (M) is provable in D4B (shown in the text)
= D4B5 (5) is provable in D4B (shown in the text).
= DB5 (4) is provable in DB5 (by Exercise 11.1b)

Exercise 12.14
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Exercise 12.16b

* (By our lights, the one-line subproof ÷ Ec entails EcçEc by (CP) since
the top and bottom sentences of that subproof are both Ec. Of course
the top and bottom sentences are the very same one, but there is nothing
wrong with appealing to the same line twice in a proof.)

Exercise 12.22

Et, ~Öxx≈t, c≈t ÷ åx~x≈t Definition of Ö and ~~A ÷ A
Et, ~Öxx≈t, c≈t ÷ Ecç~c≈t (åOut)
Et, ~Öxx≈t, c≈t ÷ Ec (≈Out)
Et, ~Öxx≈t, c≈t ÷ ~c≈t (MP)
Et, ~Öxx≈t ÷ ~c≈t (CP) and Aç~A ÷ ~A
Et, ~Öxx≈t ÷ ƒ (Öi)
Et ÷ Öxx≈t (IP)
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Exercise 13.3

We show aw(Et)=T iff aw(Öxx≈t)=T. For the proof from left to right
assume aw(Et)=T. Then by (Et), aw(t) µDw. Since terms are all constants,
t is c for some choice of c, so we have aw(Ec)=T and aw(c)=aw(t). So by
(≈), aw(c≈t)=T, hence aw(Öxx≈t) by (Ö). For the proof from right to left
assume aw(Öxx≈t). Then by (Ö) and (≈), aw(Ec)=T and aw(c)=aw(t), for
some constant c. By (Et), aw(c) µ Dw, so aw(t) µ Dw. Note the proof
depends on being able to identify term t with some constant and this may
not hold when new terms are introduced to the language.

Exercise 14.8i

Exercise 14.13

(åT). In this case, *B is equivalent to *(åxAx) and *B′ amounts to
*(åxAx&(EcçAc)). But åxAx ÷ åxAx&(EcçAc). So given that *B′
÷ ƒ, *B ÷ ƒ by the Entailment Lemma.

Exercise 15.2

To show aw(Ecç∫Ec)=T, assume aw(Ec)=T and prove aw(∫Ec)=T by
assuming that v is any world such that wRv, and proving av(Ec)=T. Since
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aw(Ec)=T, it follows by (E) and (Pl) that aw(c) µ Dw. By the expanding
domain condition (ED), it follows that av(c) µ Dv. So av(Ec)=T follows
by (E) and (Pl).

Exercise 15.3

Proof of (≈~∫). According to (ç), (≈~∫) follows provided that if
aw(~b≈c)=T, then aw(∫~b≈c)=T. So assume aw(~b≈c)=T, and show
aw(∫~b≈c)=T, by assuming wRv and deducing av(~b≈c)=T as follows.
Since aw(~b≈c)=T, aw(b≈c)=F by (~). By (≈) we have aw(b)±aw(c). Since
b and c are rigid, it follows that av(b)±av(c), and hence by (≈), av(b≈c)=F.
By (~), av(~b≈c)=T as desired.

Exercise 15.4a

(oÖE)=(o)+(ÖE): ÖxEx (o) + Dw is not empty.
We showed already that (ÖE) is valid when condition (ÖE) holds,

namely, that for some i µ I, i(w) µ Dw. But when Dw is not empty, there
must be some member d in Dw, and by (o) it follows that there is a con-
stant function i in I with d as a value. So condition (ÖE) holds, which
guarantees that axiom (ÖE) is valid on models that obey (oÖE).

Exercise 15.4b

(oED)=(o)+(ED): Ecç∫Ec (o) + If wRv, then Dw ß Dv.
We already showed that (ED) is valid when condition (ED) holds,

namely, that if wRv and aw(c) µ Dw then av(c) µ Dv. But the condition
(oED) entails this condition by the following reasoning. Suppose wRv
and aw(c) µ Dw. It is possible to show av(c) µ Dv as follows. By (oED),
Dw ß Dv, and aw(c) µ Dv. But (o) guarantees that a(c) is a constant
function because a(c) is in I by (cI). So aw(c)=av(c), and so av(c) µ Dv,
which is the desired result.

Exercise 15.7

(ED) Ecç∫Ec If wRv and aw(c) µ Dw, then av(c) µ Dv.

To prove the condition, assume wRv and aw(c) µ Dw, and then prove
av(c) µDv as follows. By (Pl) and (E), aw(Ec)=T. By aw(Ecç∫Ec)=T, it
follows by (ç) that aw(∫Ec)=T and so av(Ec)=T by wRv and (∫). But
by (Pl) and (E), av(c) µ Dv.
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Exercise 15.8

(oCD)=(o)+(CD) (o) + If wRv, then Dv ß Dw.
It was already shown that axiom (o) expresses condition (o). Now

assume wRv and d µ Dv, and then prove d µ Dw as follows. By (aD), we
know that there is a term t and a world u such that au(t)=d, but by (Öc) and
(≈), there is a constant c such that au(c)=au(t)=d. But (o) and (cI) guaran-
tee that a(c) is a constant function. It follows that aw(c)=av(c)=au(c)=d.
So av(c) µ Dw. We already showed that (CD) expresses that if wRv and
av(c) µ Dv then aw(c) µ Dw. So aw(c) µ Dw. Since aw(c)=d, d µ Dw as
desired.

Exercise 16.1

According to the i Transfer Theorem of Section 15.7, we need show only
that rS is complete for trS-models, that is, tS-models that obey (r). This
can be proven as follows. As a special case of the Quantified Tree Model
Theorem, the tree model for any open rS-tree for argument H / C obeys
(r), and so qualifies as a trS-model that serves as a trS-counterexample
to H / C. Note that we do not need the presence of the rule (Öi) in S
to establish that the tree model obeys (Öc). So assuming H …trS C, it
follows by the contrapositive of the Quantified Tree Model Theorem that
the rS-tree for H / C is closed. It follows that H ÷rS C since we know
how to convert such tree into a proof using the methods of Section 14.5
and 14.7.

Exercise 17.5

Proof of the ≈Ready Addition Lemma. Suppose M′ is finite and M is
≈ready. If the reason M is≈ready is that there are infinitely many constants
of the language not in M, then since M′ is finite there will still be infinitely
many constants not in M∪M′ and so M∪M′ is ≈ready. If the reason M
is ≈ready is that it is both a å-set and a ≈-set, then M∪M′ is a å-set by
the argument given in the Ready Addition Lemma (Section 17.3). That
M∪M′ is also a ≈-set can be shown as follows. Let M′ be any finite set, and
suppose that M∪M′ ÷ L Ó ~t≈c for every constant c of the language. It
follows by (CP) that M ÷ H, L Ó~t≈c for every constant c of the language,
where H is the list of members of M′. Since M is a ≈-set it follows then

       
            

       



442 Modal Logic for Philosophers

that M ÷ H, L Ó ~t≈t, from which it follows that M∪M′ ÷ ~t≈t, by (MP).
Therefore, M∪M′ is ≈ready in this case as well.

Exercise 17.6

Proof of the ≈Ready Lemma. Suppose M is ≈ready, consistent, and con-
tains ~(LÓ~t≈t). There must be a constant c of the language such that
M ø LÓ~t≈c, because otherwise M ÷ LÓ~t≈c for every constant c, which
leads to a contradiction as follows. If the reason that M is ≈ready is that M
is a ≈-set, then we would have M ÷ LÓ~t≈t immediately. If M is ≈ready
is because there are infinitely many constants not in M, then M ÷ LÓ~t≈t
also holds for the following reason. L is finite, so there are infinitely
many constants not in M, L or ~t≈t. Let b be one of those constants. By
M ÷ LÓ~t≈c, for every constant c, it follows that M, L ÷ ~t≈b, and so
H, L ÷ ~t≈b, for some list H of members of M. So by the Ó Lemma
H, L ÷ ~t≈b. Constant b is not in H, L, or t, so we can apply (Öi) to
obtain H, L ÷ ƒ. From this it follows by the rule (Contra) (from ƒ any-
thing follows) that H, L ÷ ~t≈t, and so by the Ó Lemma, and the fact
that H contains members of M, M ÷ LÓ~t≈t. So regardless of the reason
M was ≈ready, M ÷ LÓ~t≈t. But we also have that ~(LÓ~t≈t) is in M,
which conflicts with the consistency of M. So we must conclude that M ø
~(LÓ~t≈c), for some constant c.

Exercise 17.7

Proof of the ≈Saturated Set Lemma. Order the sentences A1 . . , Ai, . . and
create a series of sets: M1, M2, . . Mi, . . in the manner mentioned in the
proof of the Saturated List Lemma, except that when Ai is ~(LÓ~t≈t),
and Mi, ~(LÓ~t≈t) øƒ, then add both ~(LÓ~t≈t) and ~(LÓ~t≈c) to
form Mi+1, where c is chosen so that Mi+1 is consistent. That there is
such a constant c is guaranteed by the ≈Ready Lemma. The reason is
that Mi, ~(LÓ~t≈t) is consistent, and it is ≈ready by the ≈Ready Addi-
tion Lemma because M is ≈ready and only finitely many sentences were
added to form Mi, ~(LÓ~t≈t). Finally, ~(LÓ~t≈t) is in Mi, ~(LÓ~t≈t),
so by the ≈Ready Lemma, Mi, ~(LÓ~t≈t), ~(LÓ~t≈c) øƒ for some
constant c.

Now let m be the set of all sentences in M plus those added during the
construction of any of the Mi. Clearly m is maximal, and each set Mi in
this construction is clearly consistent by the same reasoning given in the
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Lindenbaum Lemma. By the M Lemma of Section 9.1, m is consistent. It
is also a saturated set by the reasoning of the Saturated Set Lemma. So to
show that m is the desired ≈saturated extension of M, all that is needed
is a proof that m is a ≈-set.

To do that, suppose m ÷ LÓ~t≈c for every constant c. We will show
that M ÷ LÓ~t≈t by showing that m ø LÓ~t≈t leads to a contradiction.
Suppose m ø LÓ~t≈t. Then by (IP), m, ~(LÓ~t≈t) øƒ. But ~(LÓ~t≈t)
must be Ai, the ith member of the list of all sentences for some value of
i. If m, ~(LÓ~t≈t) øƒ, then Mi, ~(LÓ~t≈t) øƒ (since Mi is a subset
of m). But then ~(LÓ~t≈b) was added to form Mi+1 for some constant
b. Hence m ÷ ~(LÓ~t≈b). However, we already supposed m ÷ LÓ~t≈c
for every constant c, so in particular m ÷ LÓ~t≈b. This conflicts with the
consistency of m. Therefore, we must conclude that m ÷ LÓ~t≈t, and so
m is a ≈-set.

Exercise 17.8

Proof of the ≈-Set Lemma. To show V, ~A is a ≈-set, assume V, ~A ÷
L Ó t≈c for all c, and show that V, ~A ÷ LÓ~t≈t as follows. From the
assumption it follows that V ÷ ~A, L Ó ~t≈c for all c. By (GN) ∫V ÷
∫,~A, L Ó ~t≈c for all c. Since w is an extension of ∫V, it follows that
w ÷ ∫,~A, L Ó ~t≈c for all c. But w is a ≈-set, so w ÷ ∫, ~A, L Ó ~t≈t.
Since w is maximal, either ∫, ~A, L Ó ~t≈t or its negation is in w. But the
negation cannot be in w since that would make w inconsistent. Therefore
∫, ~A, L Ó ~t≈t is in w with the result that ~A, L Ó ~t≈t is in V. So
V ÷ ~A, L Ó ~t≈t, and V, ~A ÷ L Ó ~t≈t by (MP).

Exercise 18.14

(1′) a≈!x(Px&xTg)
(2′) aTg

What blocks the proof is that Ea is needed but not available. In !qS, Ea
is proven from (Q). This with (!Out) (and symmetry of ≈) yields 1aTg,
from which aTg follows by (Def1).

Exercise 19.8

The definition would be: [E](P)t = ¬x∫(ExçPx)(t). The demonstration
that (EDR) holds goes like this.
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We know aw(t)=d for some d in D.

aw([E](P)t)=T
iff aw(¬x∫(ExçPx)(t))=T Definition of [E](P)t
iff aw(t) µ aw(¬x∫(ExçPx)) (¬t)
iff d µ aw(¬x∫(ExçPx)) aw(t)=d
iff aw(∫(EdçPd))=T (¬)
iff if wRv then av(EdçPd)=T (∫)
iff if wRv and av(Ed)=T then av(Pd)=T (ç)
iff if wRv and av(d) µ Dv then av(d) µ av(P) (Pl) twice
iff if wRv and d µ Dv then d µ av(P) (d): av(d)=d
iff if wRv and aw(t) µ Dv, then aw(t) µ av(P) aw(t)=d
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