by The **HAARP** Report

For the last six years, I have watched the Ridiculously Resilient Ridge (stationary - "permanent" high pressure west of California) drag extreme cold air into the heartland of the USA, EVERY YEAR, beginning on Nov 1.

Meteorologists have puzzled over this for years... Finally, on November 7th, 2019, I figured out HOW THEY ARE DOING IT!!!

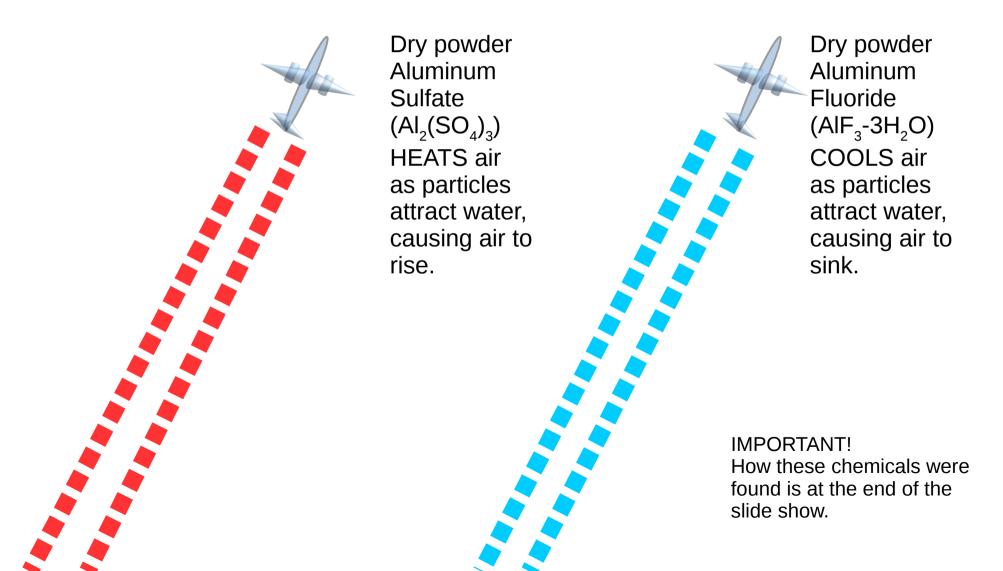
This video discloses the basic ideas of the technology, which are being used to rapidly melt the Arctic, and put the USA into a deep freeze, every winter.

In addition to runaway greenhouse gas emissions, this hidden program is speeding up our extinction and removal from this planet.

Why should you care, if the Arctic becomes ice-free?

When the ice is gone, the jet stream will become very weak, or even non-existent, in the summer.

With no jet streams, if it rains at your house, it will rain for three months. If it is hot and sunny at your house, it will be hot and sunny for three months.


Under those conditions, large scale agriculture becomes impossible, or at best, a vegas gamble.

Extreme food shortages will be the norm, after the Arctic ice is gone. That is just the start, and why you should care about the melting Arctic.

Youtube is suppressing my channel, so please share links. Please download and repost this video – no copyright on this slide show PDF is free to download, look for link in the description.

by The **HAARP** Report

DBAS requires different chemicals sprayed simultaneously, From two tanker jets, flying parallel, at the same altitude:

by The HAARP Report

Let's look at a quick video history

And the revelation that I had, seeing the "candy cane of truth" on GOES west infrared 11-07-2019 1600 UTC in the 10.3 micron band

by The **HAARP** Report

Operational Characteristics:

1) tankers spray dry hygroscopic (absorbs water from the air) powder

by The HAARP Report

- 1) tankers spray dry hygroscopic (absorbs water from the air) powder
- 2) different aerosol powders are sprayed in strategic locations to create horizontal roll clouds, several hundred miles long

by The HAARP Report

- 1) tankers spray dry hygroscopic (absorbs water from the air) powder
- 2) different aerosol powders are sprayed in strategic locations to create horizontal roll clouds, several hundred miles long
- 3) Air heating aerosol has a negative "heat of solution"

by The HAARP Report

- 1) tankers spray dry hygroscopic (absorbs water from the air) powder
- 2) different aerosol powders are sprayed in strategic locations to create horizontal roll clouds, several hundred miles long
- 3) Air heating aerosol has a negative "heat of solution"
- 4) Air cooling aerosol has a positive "heat of solution"

by The HAARP Report

- 1) tankers spray dry hygroscopic (absorbs water from the air) powder
- 2) different aerosol powders are sprayed in strategic locations to create horizontal roll clouds, several hundred miles long
- 3) Air heating aerosol has a negative "heat of solution"
- 4) Air cooling aerosol has a positive "heat of solution"
- 5) Spraying is done at night, when atmosphere is stable and predictable

by The HAARP Report

- 1) tankers spray dry hygroscopic (absorbs water from the air) powder
- 2) different aerosol powders are sprayed in strategic locations to create horizontal roll clouds, several hundred miles long
- 3) Air heating aerosol has a negative "heat of solution"
- 4) Air cooling aerosol has a positive "heat of solution"
- 5) Spraying is done at night, when atmosphere is stable and predictable
- 6) Powerful remote sensing and supercomputers are required

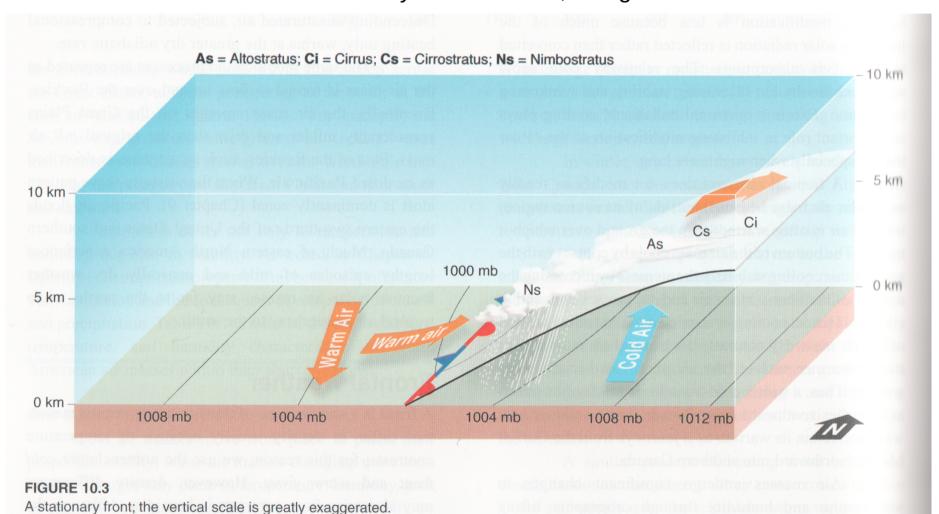
by The HAARP Report

- 1) tankers spray dry hygroscopic (absorbs water from the air) powder
- 2) different aerosol powders are sprayed in strategic locations to create horizontal roll clouds, several hundred miles long
- 3) Air heating aerosol has a negative "heat of solution"
- 4) Air cooling aerosol has a positive "heat of solution"
- 5) Spraying is done at night, when atmosphere is stable and predictable
- 6) Powerful remote sensing and supercomputers are required
- 7) Leaves NO daytime evidence of overnight DBAS weather control (except white haze and chemical fallout)

by The HAARP Report

- 1) tankers spray dry hygroscopic (absorbs water from the air) powder
- 2) different aerosol powders are sprayed in strategic locations to create horizontal roll clouds, several hundred miles long
- 3) Air heating aerosol has a negative "heat of solution"
- 4) Air cooling aerosol has a positive "heat of solution"
- 5) Spraying is done at night, when atmosphere is stable and predictable
- 6) Powerful remote sensing and supercomputers are required
- 7) Leaves NO daytime evidence of overnight DBAS weather control (except white haze and chemical fallout)
- 8) Natural clouds hide operations from nighttime IR satellite imagery

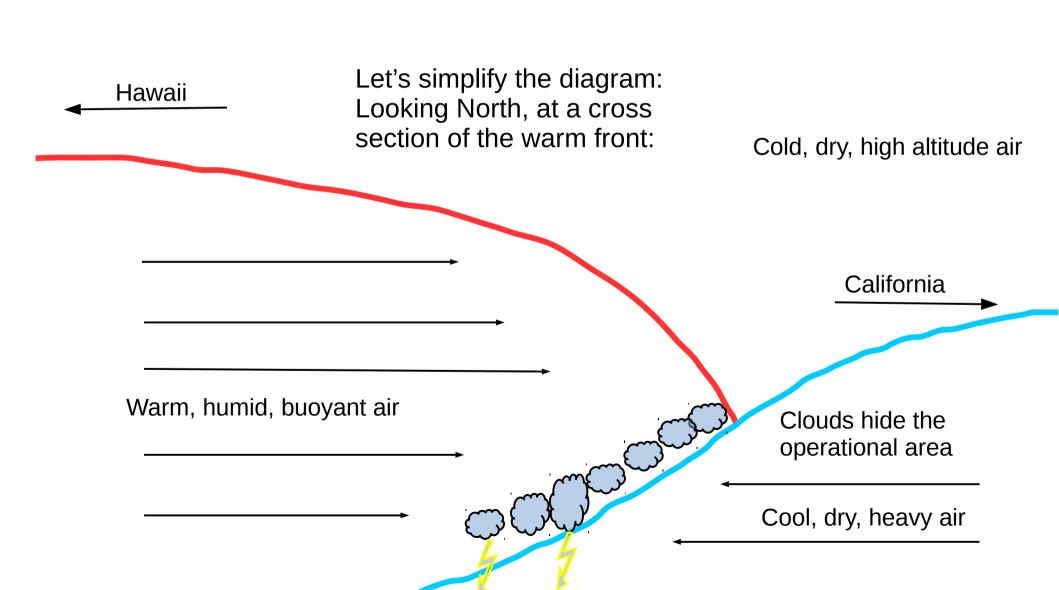
by The **HAARP** Report


- 1) tankers spray dry hygroscopic (absorbs water from the air) powder
- 2) different aerosol powders are sprayed in strategic locations to create horizontal roll clouds, several hundred miles long
- 3) Air heating aerosol has a negative "heat of solution"
- 4) Air cooling aerosol has a positive "heat of solution"
- 5) Spraying is done at night, when atmosphere is stable and predictable
- 6) Powerful remote sensing and supercomputers are required
- 7) Leaves NO daytime evidence of overnight DBAS weather control (except white haze and chemical fallout)
- 8) Natural clouds hide operations from nighttime IR satellite imagery
- 9) Compliments daytime use of Ionospheric Heaters for jet stream control

by The HAARP Report


- 1) tankers spray dry hygroscopic (absorbs water from the air) powder
- 2) different aerosol powders are sprayed in strategic locations to create horizontal roll clouds, several hundred miles long
- 3) Air heating aerosol has a negative "heat of solution"
- 4) Air cooling aerosol has a positive "heat of solution"
- 5) Spraying is done at night, when atmosphere is stable and predictable
- 6) Powerful remote sensing and supercomputers are required
- 7) Leaves NO daytime evidence of overnight DBAS weather control (except white haze and chemical fallout)
- 8) Natural clouds hide operations from nighttime IR satellite imagery
- 9) Compliments daytime use of Ionospheric Heaters for jet stream control
- 10) Supercomputer positions the aerosols to harvest natural energy from Frontal zone temperature difference (natural energy amplification)

by The HAARP Report


What does a stationary front look like, in a good text book?

by The HAARP Report

by The HAARP Report

by The **HAARP** Report

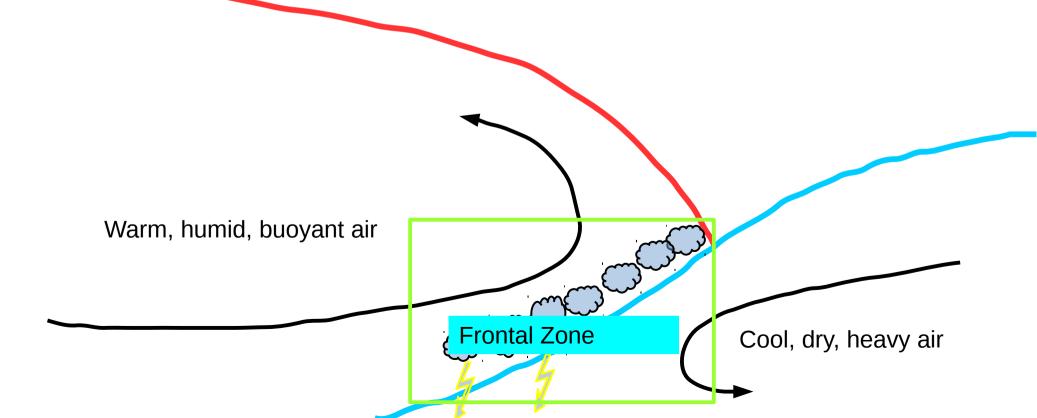
Cold, dry, high altitude air Internal winds can blow either Direction. DBAS can simply be reversed (no two air masses will ever be the same) Warm, humid, buoyant air Cool, dry, heavy air

by The HAARP Report

Cold, dry, high altitude air

Internal winds can blow either Direction.

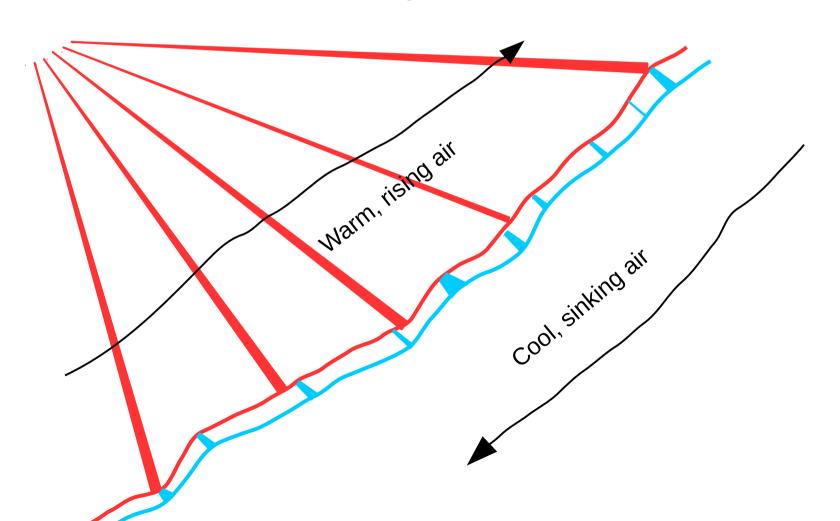
DBAS can simply be reversed (no two air masses will ever be the same)

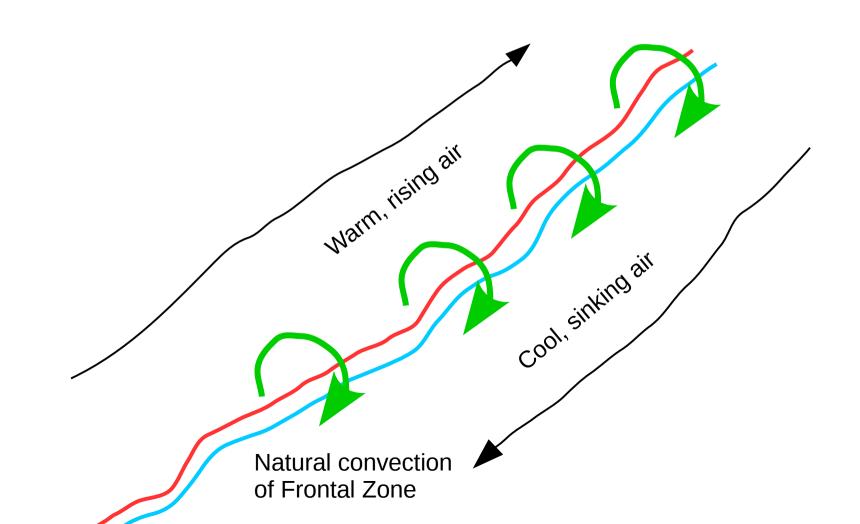

Warm, humid, buoyant air

Cool, dry, heavy air

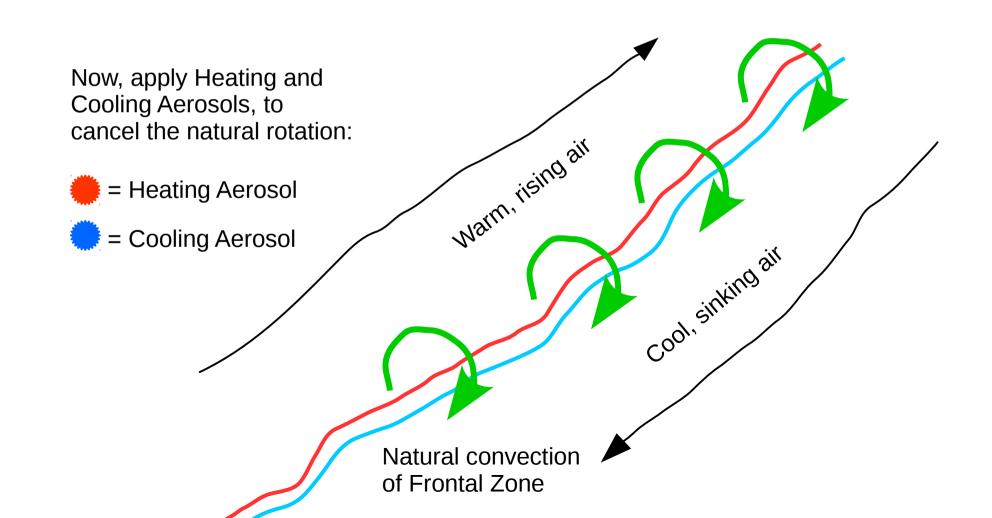
by The HAARP Report

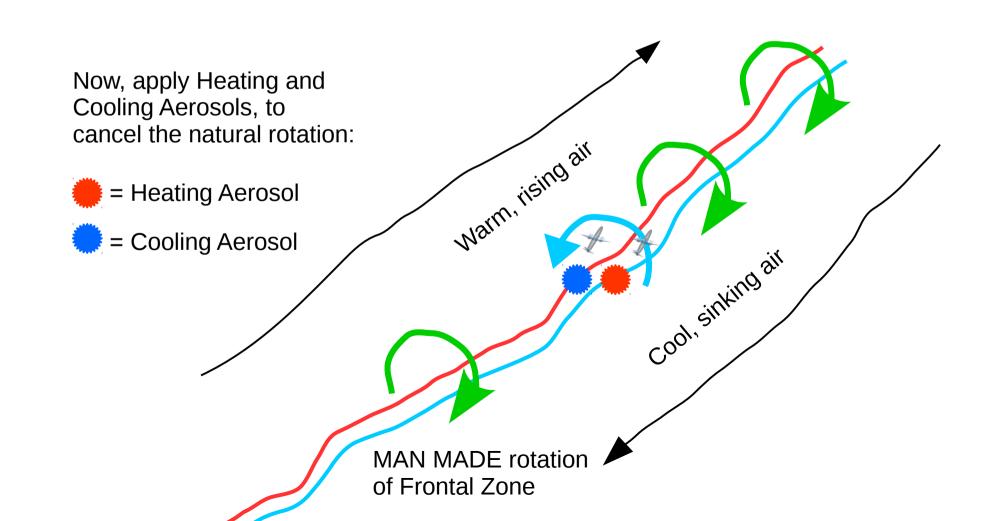
The critical area is where the two air masses touch each other. That is called the Frontal Zone.


Cold, dry, high altitude air

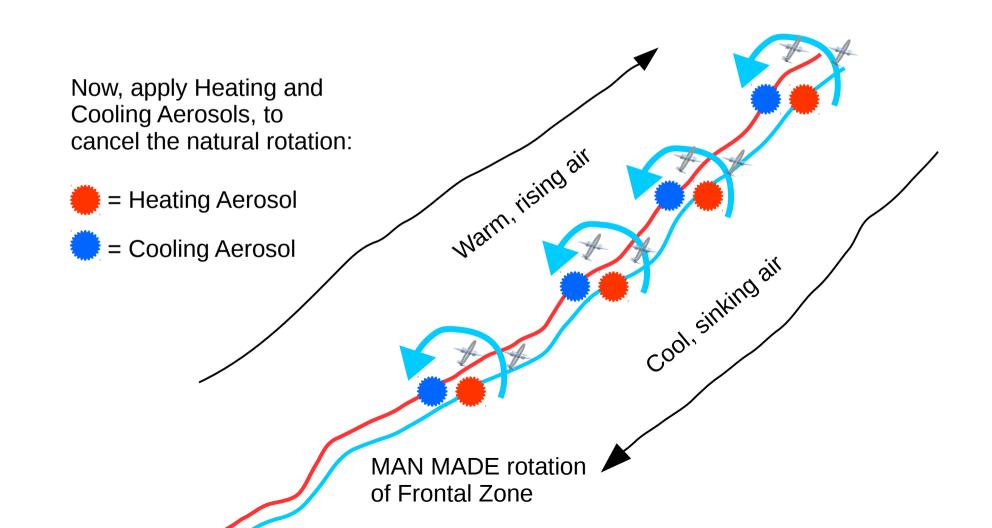

by The **HAARP** Report

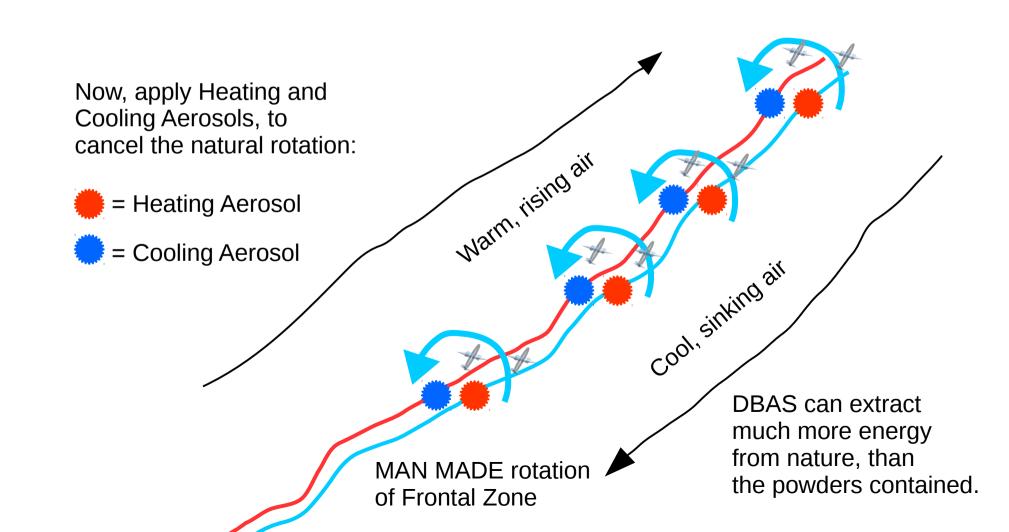
Frontal Zone Detail (looking to North over Pacific)


Two flat sheets of air, extending for hundreds of miles

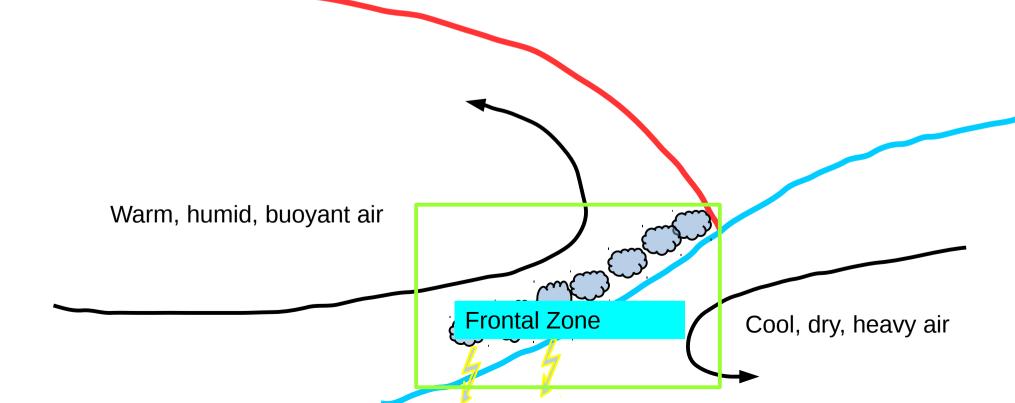

by The HAARP Report


by The **HAARP** Report


by The HAARP Report


by The HAARP Report

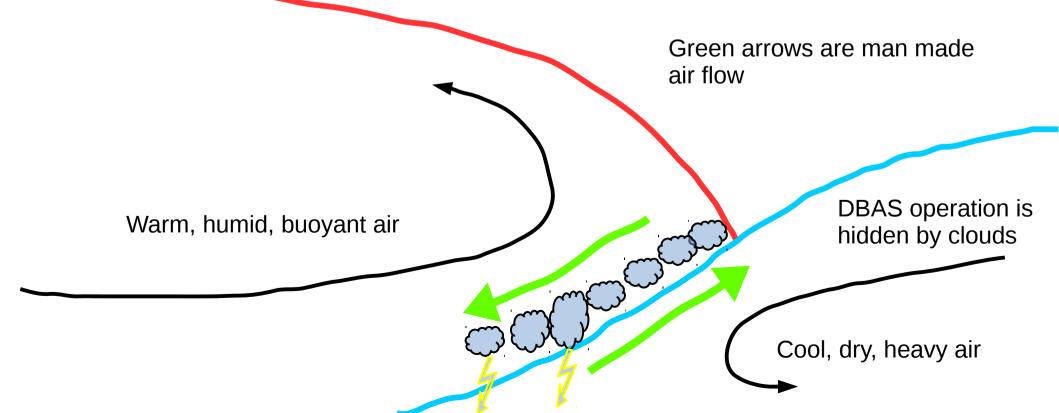
by The HAARP Report



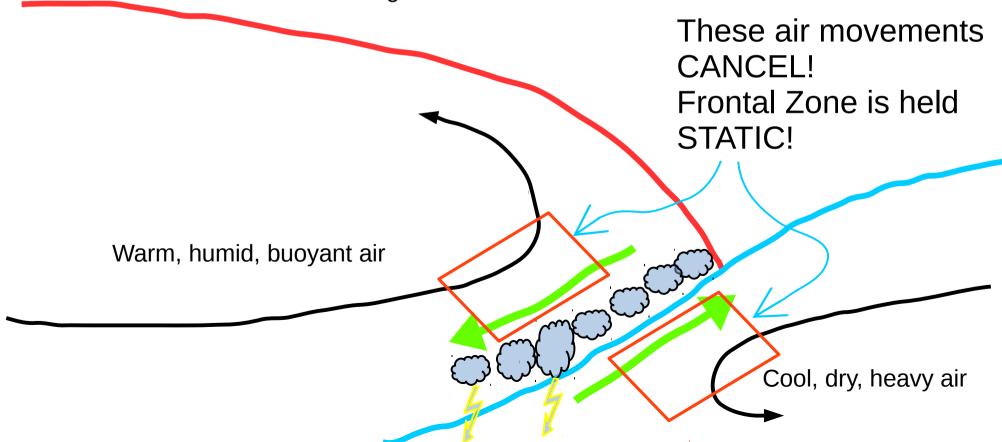
by The HAARP Report

by The **HAARP** Report

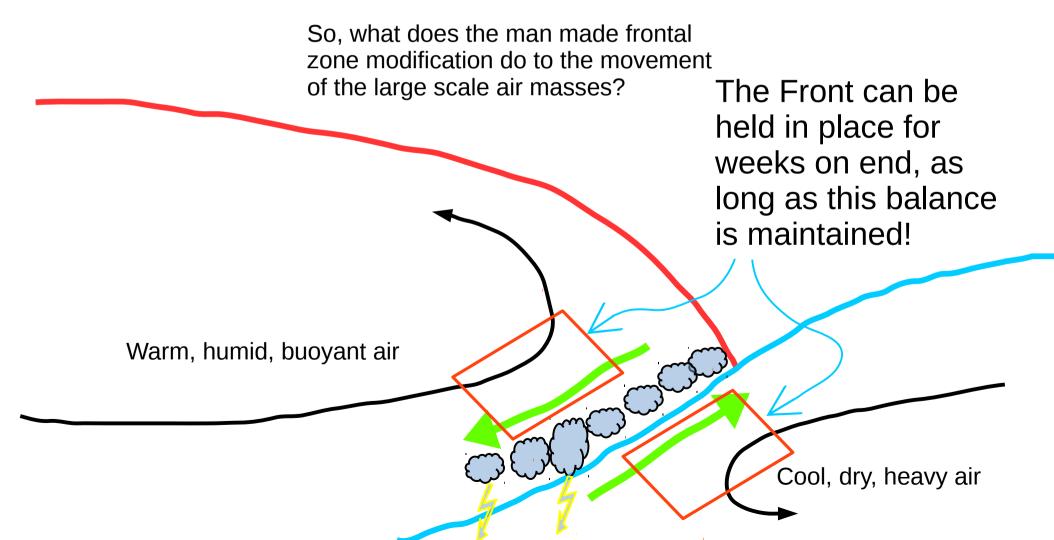
So, what does the man made frontal zone modification do to the movement of the large scale air masses?



by The HAARP Report

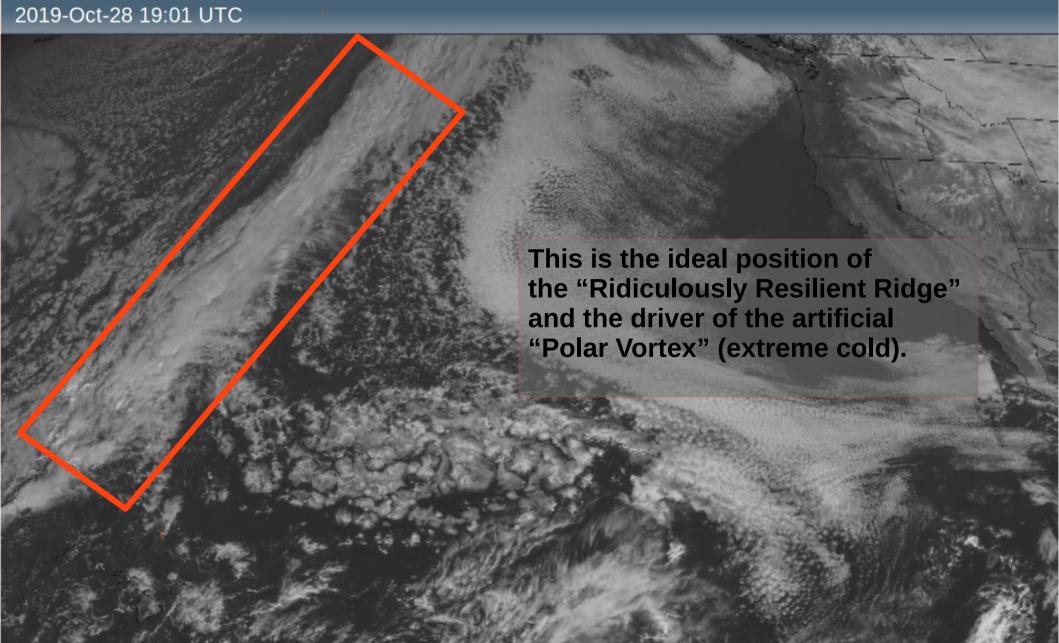

by The **HAARP** Report

So, what does the man made frontal zone modification do to the movement of the large scale air masses?

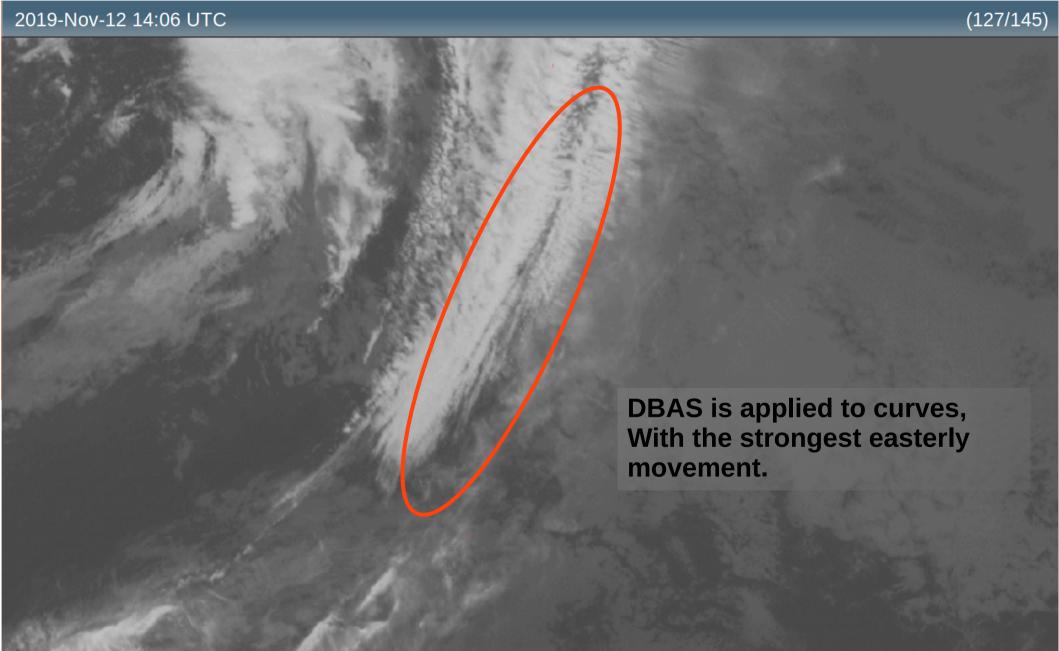


by The **HAARP** Report

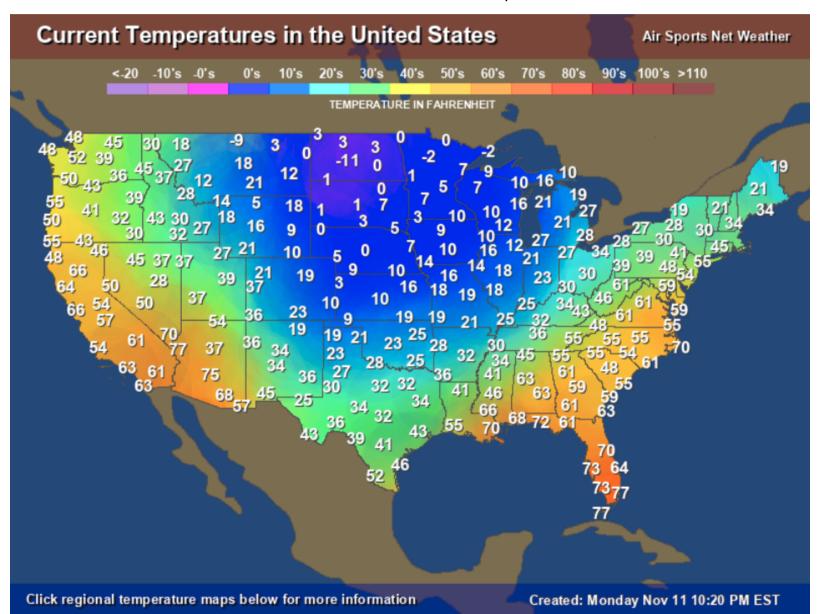
So, what does the man made frontal zone modification do to the movement of the large scale air masses?



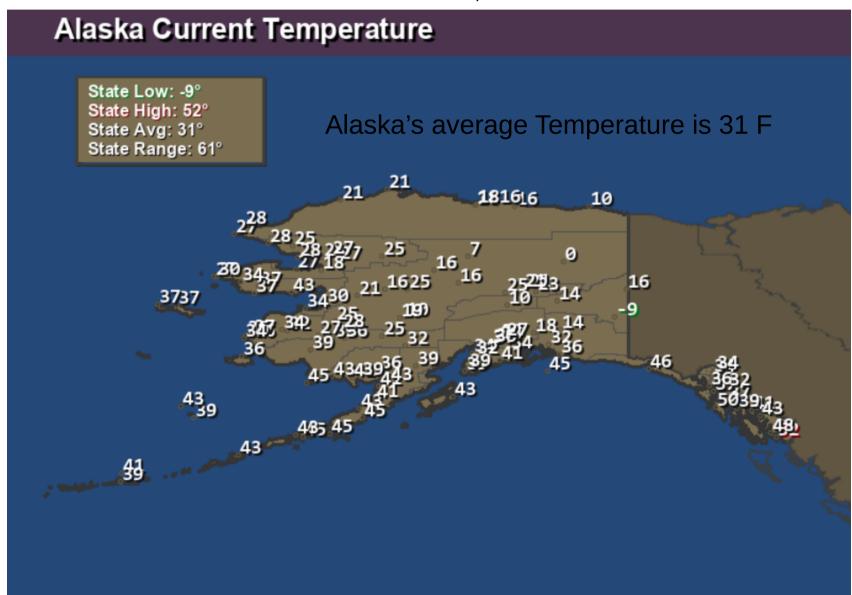
by The **HAARP** Report


How the <u>Ridiculously Resilient Ridge</u> and <u>Polar Vortex</u> are maintained

Differential Buoyancy Aerosol Spraying (**DBAS**) 2019-Oct-28 19:01 UTC

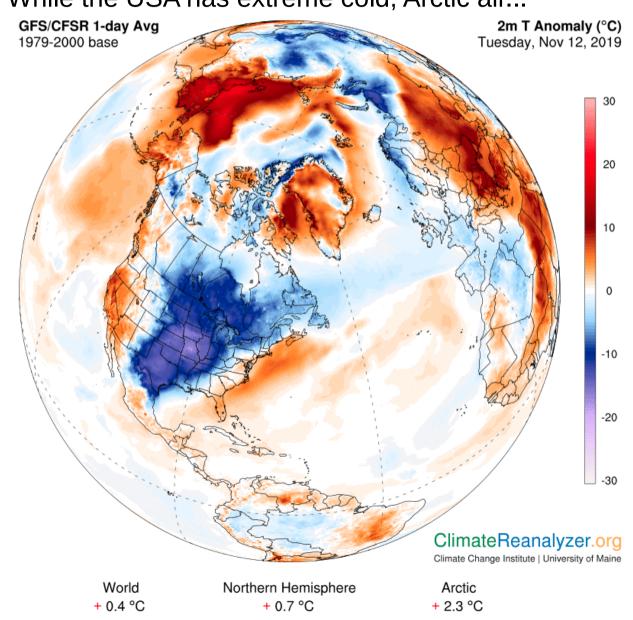


by The **HAARP** Report



by The **HAARP** Report

While the USA has extreme cold, Arctic air...



While the USA has extreme cold, Arctic air...

by The **HAARP** Report

While the USA has extreme cold, Arctic air...

While the USA has extreme cold, Arctic air...

The Russian Arctic, Photo: Thomas Nilsen

It was the warmest ever Arctic summer

The top of the world saw record-beating average temperatures flashing through all three summer months.

Read in Russian | Читать по-русски

Atle Staalesen

September 05, 2019

June, July and August have never been this warm in the Arctic. Data from Russian and U.S weather institutes show that all the three months beat the records.

ADVERTISEMENT

ADVERTISEMENT

While the USA has extreme cold, Arctic air...

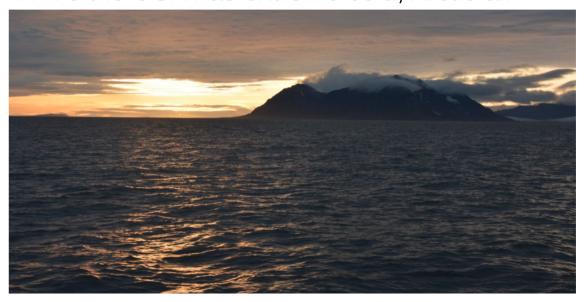


Illustration photo: Atle Staalesen

Arctic islands 8 degrees warmer than normal

After the hottest Arctic summer on record follows the warmest ever fall.

Atle Staalesen

November 04, 2019

The Russian archipelagos of Franz Josef Land and Severnaya Zemlya experienced the warmest ever October on record. According to Russia's meteorological service Roshydromet, average temperatures on the islands were up to eight degrees Celsius higher than normal.

ADVERTISEMENT

ADVERTISEMENT

by The **HAARP** Report

While the USA has extreme cold, Arctic air...

Photo: Thomas Nilsen

September's Arctic sea-ice on track for second lowest on record

September's Arctic sea-ice extent is the second lowest on record, shows recent data from researchers at the Alfred Wegener Institute and the University of Bremen.

Read in Russian | Читать по-русски

Radio Canada International

September 17, 2019

Text by Eilís Quinn

Approximately 3.9 million square kilometres of the Arctic Ocean are covered by sea ice this month, only the second time the annual minimum has dropped below four million square kilometres since satellite measurements began in 1979, the researchers said in a news release

ADVERTISEMENT

ADVERTISEMENT

by The **HAARP** Report

What are the results of maintaining the stationary High pressure west of California (the RidiculouslyResilient Ridge)?

- 1) Warm, humid air is driven into the Arctic, all winter long
- 2) The American sheeple are kept ignorant about the climate Emergency (runaway global heating)
- 3) Drought, high temperatures, and fire, in California
- 4) Warm water "blob" grows in northern Pacific
- 5) Air over the USA is dehumidified in Canada, decreasing Greenhouse effect over the central and eastern USA
- 6) Kills ocean life by decreasing upwelling off California coast
- 7) melts permafrost in Alaska, Canada and Yukon
- 8) California crops fail, reducing food supply and quality
- 9) Corporations cash in on Arctic oil, and Northern Passage

So, which chemicals can be used for DBAS aerosols?

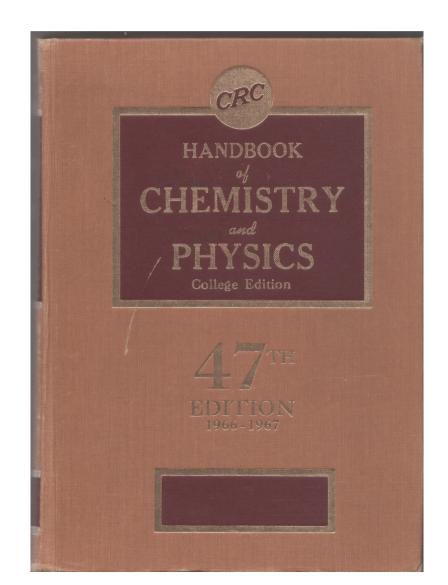
What scientific criteria are needed for DBAS aerosols?

How did I find the best chemicals?

by The **HAARP** Report

These are the best dry powder aerosols:

Hygroscopic?	HEATING	Quantity (J)	COOLING Q	uantity (J)
yes	AICI ₃	-80	AIF ₃ -3H ₂ O	+188 !!!!!
yes	SrCl	-12	$NH_4H_2As0_4$	+4
yes	SrOH	-11	As_4O_6	+12
yes	$ZnBr_{\scriptscriptstyle 2}$	-16	$Ba(NO_3)_2$	+10
yes	$ZnCl_2$	-16	$BaSO_{\scriptscriptstyle 4}$	+5
yes	Ba(OH) ₂	-12	KBr	+5
yes	$Al_2(SO_4)_3$	-77	KBrO₃	+10
yes	Al Iodide ₃	-90	KCI	+4
yes	AINH ₄ -(SO ₄	,)2 -30	KClO₃	+10
yes			KI	+5
yes			KNO_3	+8


by The **HAARP** Report

How to find the candidate dry powder aerosols?

A good reference – the 1967 Handbook of Chemistry and Physics, 47th edition

By Hess's Law: the sum of the enthalpy changes for a number of individual reaction steps equals the enthalpy change of the overall reaction...

Heat of Solution = Heat of Formation - Heat Content in Aqueous state

HEATS OF SOLUTION

From National Standards Reference Data Systems NSRDS-NBS 2

Vivian B. Parker

ΔH° 25°C for uni-univalent electrolytes in H2O

Substance	State	$\Delta H_{\infty}^{\circ}$	Substance	State	$\Delta H_{\infty}^{\circ}$	Substance	State	$\Delta H_{\infty}^{\circ}$
		cal/mole			cal/mole			cal/mole
HF 10 0.88	g	-14,700	LiBr·2H ₂ O	c	-2,250	KCl		4,118
HCl		-17,888	LiBrO ₃	c	340		C	
HClO ₄	g	-21,215	LiI		-15.130	TZOLO	C	9,890
HClO ₄ ·H ₂ O	c	-7,875	LiI·H ₂ O	C	-7.090		C	12,200
HBr		-20,350	LiI·2H ₂ O	C	-7,090	IXDI	C	4,75
HI	g	-19,520	LiI-2H ₂ O LiI-3H ₂ O	C	-3,530		C	9,830
HIO3	g			C	140	KI	C	4,860
HNO ₃	C	2,100	LiNO ₂	c	-2,630	KIO ₃	c	6,630
HCOOH	10.0	-7,954	LiNO ₂ ·H ₂ O	c	1,680	KNO ₂	c	3,190
		-205	LiNO ₃	c	-600	KNO ₃	C	8,340
CH₃COOH	10.0	-360		8.8		KC ₂ H ₃ O ₂	c	-3,668
NTT 0.48	lan	e le hr	NaOH	C	-10,637	KCN	c	2,800
NH ₃	g	-7,290	NaOH·H ₂ O	C	-5,118	KCNO	c	4,840
NH ₄ Cl	c	3,533	NaF	c	218	KCNS	c	5,790
NH ₄ ClO ₄	c	8,000	NaCl	c	928	KMnO ₄	c	10,410
NH ₄ Br	c	4,010	NaClO ₂	c	80			10,110
NH ₄ I	c	3,280	NaClO ₂ ·3H ₂ O	c	6,830	RbOH	c	-14,900
NH4IO3	c	7,600	NaClO ₃	c	5,191	RbOH·H ₂ O	c	-4,310
NH ₄ NO ₂	c	4,600	NaClO ₄	c	3,317	RbOH·2H ₂ O		210
NH ₄ NO ₃	c	6,140	NaClO ₄ ·H ₂ O	c	5,380	RbF	C	-6.240
NH ₄ C ₂ H ₃ O ₂	c	-570	NaBr	c	-144	RbF·H ₂ O	C	-0,240 -100
NH ₄ CN	c	4,200	NaBr·2H ₂ O	c	4.454	RbF-11H2O	c	320
NH ₄ CNS	c	5,400	NaBrO ₃	c	6,430	RbCl RbCl	C	
CH3NH3Cl	c	1,378	NaI	c	-1,800		c	4,130
(CH ₃) ₃ NHCl	c	350	NaI-2H ₂ O			RbClO ₃	c	11,410
N(CH ₃) ₄ Cl	c	975	NaIO3	C	3,855	RbClO ₄	c	13,560
N(CH ₃) ₄ Br	c	5,800	NaNO ₂	c	4,850	RbBr	C	5,230
N(CH ₃) ₄ I	c	10,055	Na NO ₃	C	3,320	RbBrO ₃	C	11,700
14(0113)41	C	10,055		C	4,900	RbI	c	6,000
AgClO ₄	RI	1 700	NaC ₂ H ₃ O ₂	c	-4,140	RbNO ₃	c	8,720
AgNO ₂	c	1,760	NaC ₂ H ₃ O ₂ ·3H ₂ O	C	4,700	10 1 800	GEL	
	c	8,830	NaCN	C	290	CsOH	c	-17,100
AgNO ₃	c	5,400	NaCN-1H2O	C	790	CsOH·H ₂ O	c	-4,900
110:1	. 3 1		NaCN-2H ₂ O	C	4,440	CsF	c	-8,810
LiOH	c	-5,632	NaCNO	c	4,590	CsF·H ₂ O	c	-2,500
LiOH·H ₂ O	C	-1,600	NaCNS	C	1,632	CsF-1½H2O	c	-1.300
LiF 8.08	C	1,130				CsCl	c	4,250
LiCl	C	-8,850	KOH	c	-13,769	CaCIO.	c	13,250
LiCl·H ₂ O	C	-4,560	KOH·H ₂ O	c	-3,500	CsBr	c	6,210
LiClO ₄	c	-6,345	KOH-1½H2O	c	-2,500	CsBrO ₃	c	12,060
LiClO ₄ ·3H ₂ O	c	7,795	KF	c	-4,238	CsI	c	7,970
LiBr	c	-11,670	KF·2H ₂ O	C	1,666	CsNO ₃	C	9,560
LiBr·H ₂ O	c	-5,560			1,000	081108	C	9,500

Incanta	12	1000				Da(1103/2	C	-257.06	-190.0	139.27	51.1
As (gray)	199	0195 1	~ 133 494	OMERICA	2-12/4/3	P-0 002 031	aq	-227.41	-186.8	136.92	73
(β)	C	0.00	0.00	0.000	8.4	BaO	C	-133.4	-126.3	92.58	16.8
(yellow)	am	1.0				BaO ₂ BaO ₂ ·H ₂ O	C	-150.5			
AsO+	C	3.53				BaO ₂ ·8H ₂ O	C	-223.5			
As ₂	aq		-39.1	28.69		Ba(OH) ₂	C	-719.3			
A84	9	29.6	17.5	-12.83	57.3	Ba(OH) ₂	C	-226.2			
AsBra	0	35.7	25.2	-18.47	69	Ba(OH) ₂ ·H ₂ O	aq	-238.58	-209.2	153.34	-2
AsCl ₂	C	-46.61				Ba(OH) ₂ ·H ₂ O Ba(OH) ₂ ·8H ₂ O	C	-299.0			
23018 8T 828	9	-71.5	-68.5	50.21	78.2	Ba ₃ (PO ₄) ₂	C	-799.5			
AsF ₃	lq	-80.2	-70.5	51.68	55.8	BaHPO ₄	C	-998.0			
203 602	9	$ \begin{array}{r} -218.3 \\ -226.8 \end{array} $	-214.7	157.37	69.08	Ba(H ₂ PO ₄) ₂	C	-465.8			
AsH ₃	10	-220.8 41.0	-215.5	157.96	43.31	BaS	C	-749.6			
AsH ₃ ·6H ₂ O	0	-386.7				Dao	9	-106.0			
AsIa	C	-13.7				18.612 19.81	c aq	-100.0 -118.4			
As ₂ O ₅	C	-218.6	-184.6	105 41		Ba(HS) ₂		-118.4 -134.8			
THE THE	ag	-224.6	201	135.41	25.2	Ba(HSO ₃) ₂	aq	-430.7			******
\$2O5.4H2O	c	-500.3				BaSO ₃	C	-282.6			******
1As2O5.5H2O	C	-1007.5				BaSO ₄	C	-350.2	-323.4	007 05	
482O3 · A82O5	C	-351.1				601.0-	aq, ∞	-345.57	-323.4 -311.3	237.05	31.6
48406 (oct)	0	-313.94	-275.36	201.835	51.2	BaS ₂ O ₆	aq	-409.3		228.18	7
(mon)	C	-312.8	210.00			BaS2V6·2H2O	C	-552.5			
1500 000 501	ag	-299.4			914)99	BaS ₂ O ₈	aq	-454.0			
4.82S3	C	-35		0.110		BaS ₂ O ₈ ·4H ₂ O	C	-738.7			
E ₁ AsO ₂	ag	-177.3	-152.9	112	47.0	BaS4O6	ag	-401.3			
E ₁ AsO ₄	C	-215.2	102.0	112	41.0	BaS4O6.2H2O	C	-554.5			Harris.
_ = 0 1 50 201	aq	-214.8	-183.8	134.72	49.3	BaSe	C	-142.0			2.1.1.00
Brium			100.0	101.12	10.0	BaSeO ₄	C	-280.0			POND.
Ba y you wan	0	41.96	34.60	-25.361	40.699	BaSiO ₃	C	-359.5			1.0180
- 00 - 1 000 PAI	C	0.00	0.00	0.000	16	Ba ₂ SiO ₄	C	-496.8			1.3.3.3.
Ba++	aq	-128.67	-134.0	98.22	3	BaWO ₄	C	-407.7			
Ba3(AsO4)2	C	-817.8				Beryllium	The second second	1.16.33.8			buning.
BaHAsO ₄ ·H ₂ O	c	-411.5				Be	9	76.63	67.60	-49.550	32.55
$Ba(H_2AsO_4)_2 \cdot 2H_2O$	C	-694.7			O	MUNEAL 15.011	C	0.00	0.00	0.000	2.28
$3(C_2H_3O_2)_2$	C	-355.1				Be ⁺⁺	aq		-93		
$\mathbb{E}_{a}(\mathbb{C}_{2}\mathbb{H}_{3}\mathbb{O}_{2})_{2}3\mathbb{H}_{2}\mathbb{O}$	C	-567.3				(in acid solution)	51.05	1 1988 9		200000000000000000000000000000000000000	1100
BaBr ₂	C	-180.4				BeBr ₂	C	-88.4			
P.P. II O	aq	-186.47	-183.1	134.21	42	BeBr ₂ (in HCl)	aq	151			
BaBr ₂ ·H ₂ O BaBr ₂ ·2H ₂ O	C	-254.9	*******			BeCl ₂	C	-122.3			
3aOBr ₂	C	-326.3				BeCl ₂ (in HCl)	aq	173.4			
Ba(HCO ₂) ₂	aq	-181.6		· continue		BeCl ₂ ·4H ₂ O BeF ₂	C	-436.8			V
Ba(CN) ₂	C \$18-	-326.5				BeH BeH	aq	-251.4		********	*******
-S(O11)2	C	-47.9				BeI2	0	78.1	71.3	-52.26	40.84
Ba(CN)2·H2O	aq	-50.7				Bel ₂ (in HCl)	C	-50.6			
Ba(CN)2·2H2O	C	$\begin{bmatrix} -120.1 \\ -191.1 \end{bmatrix}$				BeMoO4	aq	$\begin{vmatrix} -120 \\ -330 \end{vmatrix}$			
BaCN ₂	C	$\begin{bmatrix} -191.1 \\ -63.8 \end{bmatrix}$			******	Be ₃ N ₂	C	-350 -135.7	-122.4		
Ba(CNO)2	C	$\begin{bmatrix} -63.8 \\ -209.6 \end{bmatrix}$	10001.00			Be(NO ₃) ₂	ag	-188.3			
BaCO ₃	C	$\begin{bmatrix} -209.6 \\ -291.3 \end{bmatrix}$	-272.2	100 50	00.0	BeO	Q Q	11.8	5.7	-4.18	47 10
10.00	aq	-290.30	-272.2 -260.2	199.52	26.8	186 794 450 401	C	-146.0	-139.0	101.88	47.18 3.37
Ba(HCO ₃) ₂	aq	-459.0	-200.2 -414.6	190.72 303.90	-10	Be(OH);	(a)	-216.8	-109.0		
BaC2O4-1H2O	C	-363.7	414.0		48	13 1-3 1-4 1-23 1-33 1-33 1-33 1-33 1-33 1-33 1-33	c (β)	-216.1		********	
B ₃ C ₂ O ₄ ·2H ₂ O	C	-470.1			******	BeS	C	-55.9			
3C2O4·31H2O	c	-575.3	7.7			BeSO ₄	C	-286.0			Calcilla
BaCl ₂	C	-205.56	-193.8	142.05	30	BeSO ₄ ·H ₂ O	C	-361			
	aq	-208.72	-196.7	144.18	29	BeSO ₄ ·2H ₂ O	c 0	-433.2			
SaCl ₂ ·H ₂ O	C	-278.4	-253.1	185.52	40	BeSO ₄ ·4H ₂ O	C	-576.3			
BaCl ₂ ·2H ₂ O	C	-349.35	309.7	227.01	48.5	BeSO ₄ ·4BeO	C	-871.4			William.
3aOCl ₂	aq	-194.0			10.0	Bismuth		- 福加	-219 792	Challet C	LA CANAS
	aq	-176.1				Bi •	9	49.7	40.4	-29.61	44.67
•											

VALUES OF CHEMICAL THERMODYNAMIC PROPERTIES

All values of energy in these tables are expressed, insofar as possible, in terms of the thermochemical calorie, now defined in terms of the absolute joule. 1 thermochemical calorie = 1 calorie = 4.1840 absolute joule = 4.1833 international joule. The notations used in these tables are as follows:

- ΔHf° = the standard heat of formation of a given substance from its elements at 25°C., kilo -cal/g mole.
- ΔFf° = the standard free energy of formation of a given substance from its elements at 25°C., kilo -cal/g mole.
- log₁₀ Kf = the logarithm of the equilibrium constant for the reaction for forming a given substance from its elements at 25°C.
 - the entropy of the given substance in its thermodynamic reference state at the reference temperature at 25°C., cal/deg. mole.
- c crystalline; in certain cases where a substance exists in more than one crystalline form there is an indication as to which form is concerned.
- g = gaseous.
- am = amorphous.
 - aqueous; unless otherwise indicated the aqueous solution is taken as the hypothetical ideal state of unit molality.
- gls = glass.
 - = liquid.
- ppi 2 2 = precipitate.

The values in these tables were taken from Circular of the National Bureau of Standards 500. "Selected Values of Chemical Thermodynamic Properties, issued February 1, 1952.

RELATIONSHIP TO SI UNITS

The symbols cal. mole⁻¹ deg⁻¹ and gibbs/mol are identical and refer to units of calories per degree-mole. These units can be converted to SI units of joules per degree-mole by multiplying the tabulated values by 4.184. Similarly values in kilocalories per mole can be converted to joules per mole by multiplying with the factor 4184. For further discussions of the SI system and for conversions from other units the reader should consult Pure and Applied Chemistry, 21, 1 (1970).

55TH Edition, 1974

Substance	State	ΔHf°	ΔFf°	Log10 Kf	S°	Substance	State	ΔHf°	ΔFf°	Log ₁₀ Kf	S°
Aluminum		8 918 8	7.7.2.7.3	0,H	((01)all	- 0.00 02.014	0.005	28 180 B	-179.4	131 (308	d) 10000
Al	9	75.00	65.3	-47.86	0039.303	Ammonium	1 .00	0.88 200 82	-194mgg	142(sight)	10) 13.1
	· C · · · · ·	0.00	0.00	0.000	6.77	(NH ₄) ₂ C ₂ O ₄ ·H ₂ O	l c	-340.62		27/1/1/19	86±080.
A]+++	aq	1307.44				NH4HC2O4	aq	-227.02			
AlBr ₁	· C · · · · ·	-125.8	-120.7	88.47	44	NH ₄ Cl	C	-75.38	-48.73	35.718	22.6
THE PARTY OF THE P	aq	-211.9		TALLER!	1 X 42 15 %	L. UNION ACLA	aq, oo	-71.76		· · · · · · · · · · ·	AKERON.
AlaCa	10001-	-30.9	-29.0	21.26	25	NH4ClO4	C .0	-69.42			A Sec. A.
WI(OTIS)S	lq 001-	-26.9			V/1149.	NH ₄ F	C	-111.6			Chipp.y.
1112010	-126 2	-303.6	100.0	111 70	10.0	. Carl area area.	aq, oo	-110.40			oldsee.
AlCla 86.28		-166.2	-152.2	111.56	40	NH4I	CD.0	-48.30		· · · · · · · · ·	(879) 8A.
AlCl ₃ ·6H ₂ O	aq, 600	-245.5 -641.1	-542 4	397.57	90	WAR OF OF	aq, ∞	-45.11		· · · · · · · · · · · · · · · · · · ·	-(-3)
AlFa	C	311	-3424 -294	215.5	23	NH ₄ NO ₂	C	-63.1		********	offere) · · ·
AlF ₂ ·3H ₂ O	C	-549.1	-490.4	359.46	50	28.69	aq	-57.1		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
AIF 3-31120	aq 002 - 8	-361.4	U ARA		100.4	NH4NO3 88 SI-	C 71	-87.27 -81.11		· · · · · · · · · · ·	*****
AlFa-1H2O	C	-357.4	-333.6	244.52	23	NH H DO	aq ag	-31.11 -346.75	-290.46	212.903	20 20
Alla	C	-75.2	-75.0	54.97	48	NH ₄ H ₂ PO ₄	ag, 500	-342.91		595 70	36.32
AMI	ag	-165.8			09%86	(NH ₄) ₂ HPO ₄	C	-376.12			· zidek.
AlN	C	8 57.7	-50.1	36.72	0915	(NH4)2HFU4	ag, 500	-373.04	11 277 2		
Al(NO2)3	ag	-273.65	9.1	71.11.18(35	BafHaP	(NH ₄) ₃ PO ₄	C	-401 8	284. [8]	193,708	
Al(NO ₃) ₃ ·6H ₂ O	C	-680.65	-525.82	385.419	111.8	(11114)31 04 04 161	ag. 660	-394.0	01		
Al(NO3)3-9H2O	· C · · · · ·	-897.34	-700.2	513.24	136	(NH ₄) ₃ PO ₄ ·3H ₂ O	C	-612.8	- 35.8	20.2in.	Hawken.
$Al_2 \cdot O_3(\alpha)^*$	C	-399.09	-376.77	276.167	12.19	(NH ₄) ₂ PtCl ₄	C	-195.3	-126.61	99.80.	
(7)	C	-384.84	99.14		(5H)a6.	8-20 17 AFT	aq	-186.9	-150, 154	111.001	
Al ₂ O ₃ ·H ₂ O	C	-471	-435	318.8	23.15	(NH ₄) ₂ S	aq	-54.5			- secon.
Al ₂ O ₃ ·3H ₂ O†	C	-613.7	-547.9	401.60	33.51	NH4HS	C	-38.10	9.0		The Oak
Al(OH) ₃	am	-304.2			woned.	100000	aq	-35.1	88.17		
Al ₂ S ₃ 81.822	C 116-17	-121.6	-117.7	86.27	23	NH ₄ S ₄	C	-34.0		0	destinate.
Al ₂ (SO ₄) ₃	C	-820.98	-738.99	541.670	57.2	201 835 0 1612	aq are	-29.7			01.0
Cach Language	aq	-897.1			Mary .	(NH ₄) ₂ S ₅	C	-69.4			
Al2(SO4)3.6H2O	C	-1268.14	-1105.14	810.054	112.1		aq	-65.4			
Al ₂ (SO ₄) ₃ 18H ₂ O	C	-2118.5		000 100		$(NH_4)_2SO_3$	C	-212.0			· · · · · ·
AlNH ₄ (SO ₄) ₂	.c	-561.24	-485.95	356.195	51.7	112 12 12 12 1	aq 231-	-211.3			sOakeld.
ANNIE (CO.) 18TE O	aq	-591.74	1170 00	004 007	100 0	$(NH_4)_2SO_8\cdot H_2O$	C	-284.22			OMARI.
AlNH4(SO4)2·12H2O	C	-1419.40	-1179.02	864.207	166.6	NH4HSO2 ST 181	C8.831.	-183.8			
Ammonium	14	11 04	2 070	2.914	46.01		aq	-181.5	015 10	157 700	70 07
NH ₃	0	-11.04	-3.976	2.914	40.01	(NH ₄) ₂ SO ₄	C	-281.86	-215.19	157.732	52.65

by The HAARP Report

These are the best dry powder aerosols:

Hygroscopic?	HEATING	Quantity (J)	COOLING Q	uantity (J)
yes	AICI ₃	-80	AIF ₃ -3H ₂ O	+188 !!!!!
yes	SrCl	-12	$NH_4H_2As0_4$	+4
yes	SrOH	-11	As_4O_6	+12
yes	$ZnBr_{\scriptscriptstyle 2}$	-16	$Ba(NO_3)_2$	+10
yes	$ZnCl_2$	-16	$BaSO_{\scriptscriptstyle 4}$	+5
yes	Ba(OH) ₂	-12	KBr	+5
yes	$Al_2(SO_4)_3$	-77	KBrO₃	+10
yes	Al Iodide ₃	-90	KCI	+4
yes	AINH ₄ -(SO ₄	,)2 -30	KClO₃	+10
yes			KI	+5
yes			KNO_3	+8

by The **HAARP** Report

ADDINOMINATION	0
34	0
	0
Harmful or Irritant	

Reference: Sigma Adrich Handbook of Fine Chemicals 2008

332917-100G	poly btl	100 g	212.50
Aluminum fluor	ride trihydrate,	97%	
[15098-87-0] Al density			
N. 22-30/3//30	001 32		
236098-100G	001 321 002 poly btl	Itd vlog 100 g	26.90
≪r 50 m Jm	.001		26.90 87.20

22:	Harmful if swallowed
23:	Toxic by inhalation
24:	Toxic in contact with skin
25:	Toxic if swallowed
26:	Very toxic by inhalation
27:	Very toxic in contact with skin
28:	Very toxic if swallowed
29:	Contact with water liberates toxic gas
	Manager of the country of the control of the contro

30:	Can become highly flammable in use
31:	Contact with acids liberates toxic gas
32:	Contact with acids liberates very toxic gas
33:	Danger of cumulative effects
34:	Causes burns
35:	Causes severe burns
36:	Irritating to the eyes
37:	Irritating to the respiratory system
38:	Irritating to the skin

26: In case of contact with eyes, rinse immediately with plenty of water and seek medical advice

by The HAARP Report

These are the best dry powder aerosols:

Hygroscopic?	HEATING	Quantity (J)	COOLING Q	uantity (J)
yes	AICI ₃	-80	AIF ₃ -3H ₂ O	+188 !!!!!
yes	SrCl	-12	$NH_4H_2As0_4$	+4
yes	SrOH	-11	As_4O_6	+12
yes	$ZnBr_{\scriptscriptstyle 2}$	-16	$Ba(NO_3)_2$	+10
yes	$ZnCl_2$	-16	$BaSO_{\scriptscriptstyle 4}$	+5
yes	Ba(OH) ₂	-12	KBr	+5
yes	$Al_2(SO_4)_3$	-77	KBrO₃	+10
yes	Al Iodide ₃	-90	KCI	+4
yes	AINH ₄ -(SO ₄	,)2 -30	KClO₃	+10
yes			KI	+5
yes			KNO_3	+8

by The **HAARP** Report

[7446 70 0]	AICL FW 122 24	1 14	F: 4 24
	AlCl ₃ FW 133.34		
	10; 5 ,10; 6 ,17; 7 ,7;	; 8 ,13; 9 ,11; 10 ,9	; 11 ,25; 12 ,26
15 15 14/1	; 16 ,10; 17 ,15		
mp	190 °C	vp 1	mm Ha (100 °C
mp	S: 28-45-7/8 EC No		mm Hg (100 °C # BD0525000
mp	S: 28-45-7/8 EC No. s, powder, 99.999	231-208-1 RTECS	mm Hg (100 °C # BD0525000
R: 34 anhydrous	S: 28-45-7/8 EC No	231-208-1 RTECS	# BD0525000

34: Causes burns

- 28: Very toxic if swallowed
- 29: Contact with water liberates toxic gas
- 30: Can become highly flammable in use
- 31: Contact with acids liberates toxic gas
- 32: Contact with acids liberates very toxic gas
- 33: Danger of cumulative effects
- 34: Causes burns
- 35: Causes severe burns
- 36: Irritating to the eyes

- 37: Irritating to the respiratory system
- 38: Irritating to the skin
- 39: Danger of very serious irreversible effects
- 40: Limited evidence of a carcinogenic effect
- 41: Risk of serious damage to eyes
- 42: May cause sensitization by inhalation
- 43: May cause sensitization by skin contact
- 44: Risk of explosion if heated under confinement
- 45: May cause cancer

7/8: Keep container tightly closed and dry

by The HAARP Report

These are the best dry powder aerosols:

Hygroscopic?	HEATING	Quantity (J)	COOLING Q	uantity (J)
yes	AICI ₃	-80	AIF ₃ -3H ₂ O	+188 !!!!!
yes	SrCl	-12	$NH_4H_2As0_4$	+4
yes	SrOH	-11	As_4O_6	+12
yes	$ZnBr_{\scriptscriptstyle 2}$	-16	$Ba(NO_3)_2$	+10
yes	$ZnCl_2$	-16	$BaSO_{\scriptscriptstyle 4}$	+5
yes	Ba(OH) ₂	-12	KBr	+5
yes	$Al_2(SO_4)_3$	-77	KBrO₃	+10
yes	Al Iodide ₃	-90	KCI	+4
yes	AINH ₄ -(SO ₄	,)2 -30	KClO₃	+10
yes			KI	+5
yes			KNO_3	+8

by The **HAARP** Report

[10043-01-3] Al ₂ (SC	$O_4)_3$ FW 34	2.15 Me	erck 13,30	lonstoich 26
mp	5-39 EC No.		Hygroscop	
202614-5G	poly btl	poly bil	5 g	001-5 41.10
	poly btl	poly pti	5 g 5	41.10

37:	Irritating	to the	respiratory	system
-----	------------	--------	-------------	--------

38: Irritating to the skin

39: Danger of very serious irreversible effects

40: Limited evidence of a carcinogenic effect

41: Risk of serious damage to eyes

- 26: In case of contact with eyes, rinse immediately with plenty of water and seek medical advice
- 27: Take off immediately all contaminated clothing
- 28: After contact with skin, wash immediately with plenty of ... (to be specified by the manufacturer)
- 29: Do not empty into drains
- 30: Never add water to this product
- 33: Take precautionary measures against static discharges
- 35: This material and its container must be disposed of in a safe way
- 36: Wear suitable protective clothing
- 37: Wear suitable gloves
- 38: In case of insufficient ventilation, wear suitable respiratory equipment
- 39: Wear eye/face protection

by The HAARP Report

So, if ANY of my theory is correct...

This explains why everyone is sick, why everything is dying, and why large amounts of aluminum have been found in creeks, lakes, soil, tree roots, etc.

Aluminum is an extreme toxin to all living organisms, and has NO PLACE in biological systems. It is a pure toxin!

Also, fluoride is another super-toxin, and it is probably falling from the sky in large quantities. All living things are killed by fluoride!

These two poisons could explain the death of insects, birds, amphibians, and why all living organisms are in a death spiral.

If you are a scientist, please use your training, and lab resources, to test this new toxic aerosol hypothesis. Our Planet is dying rapidly, and we need NEW ideas, and NEW eyes, right now!

by The HAARP Report

This video has proceeded in a logical, step-by-step, fashion to decode a VERY LIKELY covert weather control technology.

And, what we have disovered is a grim reality, that EXTREME toxic chemicals are PROBABLY being sprayed by the thousands of tons, over our heads.

We, our children, and all living things are being forced to ingest these merciless poisons, with no possible way to avoid eventual deadly doses.

This video is a wakeup call. Now is the time to ACT OR DIE!

I call for a total boycott on airline traffic, starting in 2020.

That is an essential first step, if you, and your children want to survive.

Thank you for watching!

Spread the word!!!

Please help me spend more time on weather research, and less time doing donkey work to keep the lights on.

If you think this type of research is critical for our survival, please donate to my patreon

Https://www.patreon.com/thehaarpreport

Thank you, and blessings to all, who work to protect the biosphere!

Relax, breathe deeply, think positive thoughts...
There is still time to fight back, as long as we organize, and take this crisis seriously. Search "Roger Hallam extinction rebellion" and listen to Dane Wigington on GeoengineeringWatch.org