
Search...

Homemade Arduino Heart Rate Monitor Project

In this day and age, keeping track of your vital parameters and biomarkers remains more critical
than ever and due to many advances in medical technology, it is now more accessible than ever to
do so. With portable blood pressure monitors, finger pulse oximeters and heart rate
monitors/tracker built as standalone devices or into common consumer devices such as
smartwatches, measuring such physiological parameters is certainly much more convenient than
having to rely on manual/analogue devices. Here TechSparks will make a DIY Heart Rate Monitor
via Arduino.

Table of Contents

1. Components to prepare for a DIY heart rate monitor

2. Heart Rate Monitor Circuit Diagram

3 Arduino Heart Rate Monitor Code

Latest
Post

Random
Post

Popular
Post

What is a rigid-flex circuit board?

July 27, 2023

What does SMT mean in the electronics
industry?

July 27, 2023

Comprehensive Overview of PCB Additive
Manufacturing Process

Home Electronic Projects PCB Electronics Technology News

About

Home » Arduino Projects » Homemade Arduino Heart Rate Monitor Project

https://pdfmyurl.com/?src=pdf
https://www.tech-sparks.com/
https://www.tech-sparks.com/rigid-flex-pcb/
https://www.tech-sparks.com/surface-mount-technology/
https://www.tech-sparks.com/3d-pcb-additive-manufacturing-processes/
https://www.tech-sparks.com/
https://www.tech-sparks.com/category/pcb/
https://www.tech-sparks.com/category/electronics/
https://www.tech-sparks.com/category/technology/
https://www.tech-sparks.com/category/news/
https://www.tech-sparks.com/about/
https://www.tech-sparks.com/
https://www.tech-sparks.com/category/arduino-projects/

3. Arduino Heart Rate Monitor Code

3.1. Code Segment

3.2. Code Explanation

4. Summary of Heart Rate Tracker Projects

Components to prepare for a DIY heart rate
monitor
In the Arduino Heart Rate Monitoring Project TechSparks will be using a HW-502 heartbeat sensor,
an OLED display (to display the heart rate readings), and an Arduino, which is a simple
project. However, do keep in mind that the sensor used in this project should not be used as a
replacement for more accurate, commercial medical equipment.

In terms of how the HW-502 sensor is built, it essentially is composed of a phototransistor and an
infrared diode. When your finger is placed onto the phototransistor to measure heart rate, the
phototransistor measures how much light is being detected (i.e. passed through your finger) as
emitted from the photodiode. The sensor then outputs this information as an analogue signal and
when blood flows through your finger (pulse), the amount of light detected by the photodiode will
change and thus will be used to determine heart rate.

It is essential to note that external light can certainly alter the accuracy of the sensor and
resultantly, there may be fluctuations and errors in the heart rate output. Therefore, I would
recommend measuring your heart rate in a dimly lit area away from any mains-powered devices
that may emit infrared radiation, disrupting the sensor.

In terms of the display used, a 0.96″ 128×64 i2c OLED display will once again be used in this project
as a visual display and due to its standard 4-wire i2c connection interface, connecting it up to the
Arduino will not be difficult. In addition to the display of heart rate, within the serial plotter of the
Arduino IDE you will be able to visualize pulse readings as a continuous line graph

July 24, 2023

Through Hole PCB Assembly Guidelines

July 23, 2023

How to carry out the PCB manufacturing
process step by step?

July 21, 2023

What is difference between PCB and
PCBA

July 18, 2023

https://www.tech-sparks.com/through-hole-pcb-assembly/
https://www.tech-sparks.com/pcb-manufacturing-process/
https://www.tech-sparks.com/pcb-vs-pcba/

Arduino IDE, you will be able to visualize pulse readings as a continuous line graph.

Although this project is quite simple to understand, it definitely can be built upon and upgraded if
you wish by combining this sensor with other health sensors to measure other health markers.
Furthermore, by fabricating a custom PCB for this project and a case for this project, building a fully
functional portable heart rate monitor as a next step should be effortless. The components needed
to build this project are as follows:

Arduino Nano (other Arduino-compatible boards will work)
USB cable (compatible with the Arduino board)
Breadboard

Male-Male Jumper Wires (7)
0.96″ 128×64 i2c OLED Display
HW-502 Heartbeat Sensor

Heart Rate Monitor Circuit Diagram
Depending on your Arduino board, you may or may not require a breadboard to plug your board in.
In this example, an Arduino Nano is used, thus requiring a breadboard but if you are using an
Arduino Uno, for example, the jumper wires can be plugged in from the components on the
breadboard directly to the board pins. However, the wiring from the HW-502 sensor module and the
OLED to the Arduino board remains the same. A circuit diagram is also featured below.

1. HW-502 Sensor: Connect the signal (S) pin to A0, the positive (+) pin to +5v and the negative
(-) pin to GND.

2. OLED: Connect SDA (serial data) to A4, SCL/SCK (serial clock) to A5, VDD/VCC (supply
voltage) to +5v and GND to GND.

3. Now, you can plug in your Arduino board via the USB cable to the computer.

Arduino Heart Rate Monitor Code
Code Segment

#include #include <<WireWire..hh>>

#include #include <<Adafruit_GFXAdafruit_GFX..hh>>

#include #include <<Adafruit_SSD1306Adafruit_SSD1306..hh>>

#define screen_width #define screen_width 128128

#define screen_height #define screen_height 6464

#define #define OLED_RESETOLED_RESET 44

Adafruit_SSD1306 Adafruit_SSD1306 displaydisplay((screen_widthscreen_width,, screen_height screen_height));;

#define samp_siz #define samp_siz 44

#define rise_threshold #define rise_threshold 44

int sensorPin int sensorPin == 00;;

voidvoid setupsetup(()) {{

SerialSerial..beginbegin((96009600));;

displaydisplay..beginbegin((SSD1306_SWITCHCAPVCCSSD1306_SWITCHCAPVCC,, 0x3C0x3C));;

displaydisplay..clearDisplayclearDisplay(());;

}}

voidvoid looploop (())

{{

 float reads float reads[[samp_sizsamp_siz]],, sum sum;;

 long int now long int now,, ptr ptr;;

 float last float last,, reader reader,, start start;;

 float first float first,, second second,, third third,, before before,, print_value print_value;;

 bool rising bool rising;;

int rise countint rise count;;

11

22

33

44

55

66

77

88

99

1010

1111

1212

1313

1414

1515

1616

1717

1818

1919

2020

2121

2222

2323

2424

2525

2626

2727

2828

 int rise_count int rise_count;;

 int n int n;;

 long int last_beat long int last_beat;;

 forfor ((int i int i == 00;; i i << samp_siz samp_siz;; i i++++))

 reads reads[[ii]] == 00;;

 sum sum == 00;;

 ptr ptr == 00;;

 whilewhile((11))

 {{

 n n == 00;;

 start start == millismillis(());;

 reader reader == 0.0.;;

 dodo

 {{

 reader reader +=+= analogReadanalogRead ((sensorPinsensorPin));;

 n n++++;;

 now now == millismillis(());;

 }}

 whilewhile ((now now << start start ++ 2020));;

 reader reader /=/= n n;;

 sum sum -=-= reads reads[[ptrptr]];;

 sum sum +=+= reader reader;;

 reads reads[[ptrptr]] == reader reader;;

 last last == sum sum // samp_siz samp_siz;;

 ifif ((last last >> before before))

 {{

 rise_count rise_count++++;;

 ifif ((!!rising rising &&&& rise_count rise_count >> rise_threshold rise_threshold))

 {{

 rising rising == truetrue;;

 first first == millismillis(()) -- last_beat last_beat;;

 last_beat last_beat == millismillis(());;

 print_value print_value == 60000.60000. // ((0.40.4 ** first first ++ 0.30.3 ** second second ++ 0.30.3

SerialSerial printprint((print valueprint value));;

2828

2929

3030

3131

3232

3333

3434

3535

3636

3737

3838

3939

4040

4141

4242

4343

4444

4545

4646

4747

4848

4949

5050

5151

5252

5353

5454

5555

5656

5757

5858

5959

6060

6161

6262

 Serial Serial..printprint((print_valueprint_value));;

 Serial Serial..printprint(('\n''\n'));;

 display display..clearDisplayclearDisplay(());;

 display display..setTextSizesetTextSize((11));;

 display display..setTextColorsetTextColor((SSD1306_WHITESSD1306_WHITE));;

 display display..setCursorsetCursor((00,, 2525));;

 display display..printprint(("Heart Rate:""Heart Rate:"));;

 display display..setCursorsetCursor((7070,, 2525));;

 display display..printprint((print_valueprint_value));;

 display display..setCursorsetCursor((110110,, 2525));;

 display display..printprint(("bpm""bpm"));;

 display display..displaydisplay(());;

 third third == second second;;

 second second == first first;;

 }}

 }}

 elseelse

 {{

 rising rising == falsefalse;;

 rise_count rise_count == 00;;

 }}

 before before == last last;;

 ptr ptr++++;;

 ptr ptr %=%= samp_siz samp_siz;;

 }}

}}

6262

6363

6464

6565

6666

6767

6868

6969

7070

7171

7272

7373

7474

7575

7676

7777

7878

7979

8080

8181

8282

8383

8484

8585

8686

8787

8888

8989

9090

9191

Code Explanation

This code is adapted from Johan Ha’s work on calculating an accurate, usable heart rate

p g ,
reading (in beats per minute) from the analogue output of the HW-502 heartbeat sensor. Due
to the sensor construction consisting of a photodiode that is emitting infrared light and a
phototransistor detecting that light (that passes through the finger), the data that is fed into
the Arduino is an analogue value between 1 to 1023. With this project code, that analogue
value is converted from integer values into a viable heart rate reading using some
calculations.
To start with, the first seven lines should be familiar if you have seen previous projects as
they simply define libraries and parameters that are used for the OLED display. The next two
lines starting with the #define component are involved in the process of translating the
analogue value from the sensor to a heart rate reading by firstly defining a sample size of 4
(to average out readings to improve data accuracy) and a rise threshold of 4 to limit the
variability between heart rate readings (any outliers or errors). The pin (A0) that the HW-502
sensor is connected to is then defined.
The void setup section sets up serial communication by declaring a baud rate of 9600
bauds, defining the OLED display parameters and clearing the display before moving on to
the void loop section.
The first part of the void loop is a series of lines declaring various float, integer and bool
data types that will be used to store data from the sensor and assist in the calculation of
heart rate. Float data types are useful in storing continuous and analogue values which
include decimal numbers whereas the int (integer) data type can only store positive or
negative whole numbers. On the other hand, the bool (boolean) data type stores either a true
or false value.
Now, we move onto quite a large for loop. The first part of the for loop essentially declares
an integer variable which starts at 0, and every time the loop is run, that variable adds one to

its value, counting up. It will count up to 4 (as defined by the samp_size line that we have
seen earlier) and then reset, and this is how we will generate the average of our output
values.
Moving onto the next do/while loop, it essentially commands the Arduino to read and add
the analogue values coming out of the sensor (analogRead) and store it to the float variable
called ‘reader’. At the same time, the float variables called ‘start’ and ‘now’ are used alongside
the millis() function to essentially start a stopwatch to mark different parts of the loop
sequence which will be referred to later.
For the next while loop, the average over four data points is now calculated and we

implement ways to refine the data values for the most accurate readings. The value from the
float variable ‘reader’, which was used to store our incoming data from the sensor, is first
divided (/=) over the sample size (of 4). Then, we minus the oldest reading from the sample
size from the sum of the values, followed by adding the newest reading that we collect to the
sum of the values. The new data value is then saved in the float variable ‘reader’ once again
and a brand new average is calculated and saved to the float variable ‘last’.
The subsequent if statements serve the purpose of detecting a pattern in the curve generated
by the serial plotter. By using a rise_threshold constant and counting the number of times the
curve crosses over that threshold value, the Arduino will know what point of the curve it is
currently at since there is a constant sine wave pattern to the curve. This then helps us to
know when a finger is placed on the sensor and a heartbeat is detected, rather than any
other patterns generated from external noise, for example. If the threshold value is not
crossed four times in a row, the sensor essentially is not detecting a heartbeat and the
Arduino is programmed to reset this procedure and scan the pattern again until it picks up
that heartbeat.
The last few sections of the code essentially print the filtered values calculated to the serial
monitor (for debugging purposes) and the OLED display using the same SSD1306 library
functions as seen in previous projects.

Summary of Heart Rate Tracker Projects

A project like this demonstrates a very practical application for the Arduino in combination with the
HW-502 heartbeat sensor where a portable heart rate monitor can be made. Once again,
TechSparks reiterates that this project should not be used as a replacement for industrial-grade
medical equipment which offers considerably higher reliability and accuracy of results.

However, although the hardware setup was quite simple, the code involved more intermediate
concepts that focused on not only reading out analogue values from the sensor but instead going a
step further and refining the data to produce a usable, heart rate reading in beats per minute. The
code involved several float variables that were used to store data, in addition to several do/while
loops, if statements and mathematical equations to calculate an average from a pre-defined
sample size. There were also lines of code implemented to detect a heartbeat trace based on when

Resource

PCB Terminology

Useful Links

Sitemap

Social Link

https://www.tech-sparks.com/pcb-terminology-glossary/
https://www.tech-sparks.com/sitemap/
https://twitter.com/guidezhan23186
https://www.reddit.com/r/TechSparksDIY/
https://www.pinterest.com/eguidezhan/
https://www.facebook.com/techsparkscircuit/
https://www.tumblr.com/tech-sparks

PDFmyURL.com - convert URLs, web pages or even full websites to PDF online. Easy API for developers!

p p
values crossed a specific threshold. These are all important concepts that can be picked up from
this project and applied to many other data collection projects where values need to be accurately
processed in some way.

With that said, this project can definitely be improved upon by potentially displaying the heart rate
curve trace onto the OLED, building a standalone unit with custom PCBA (alongside a custom
case), or simply adding more sensors to record other health metrics.

https://pdfmyurl.com/?src=pdf

