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Abstract: Excessive levels of reactive nitrogen species (RNS), such as peroxynitrite, promote ni-
trosative stress, which is an important cause of impaired sperm function. The metalloporphyrin
FeTPPS is highly effective in catalyzing the decomposition of peroxynitrite, reducing its toxic effects
in vivo and in vitro. FeTPPS has significant therapeutic potential in peroxynitrite-related diseases;
however, its effects on human spermatozoa under nitrosative stress have not been described. This
work aimed to evaluate the in vitro effect of FeTPPS against peroxynitrite-mediated nitrosative stress
in human spermatozoa. For this purpose, spermatozoa from normozoospermic donors were exposed
to 3-morpholinosydnonimine, a molecule that generates peroxynitrite. First, the FeTPPS-mediated
peroxynitrite decomposition catalysis was analyzed. Then, its individual effect on sperm quality
parameters was evaluated. Finally, the effect of FeTPPS on ATP levels, motility, mitochondrial mem-
brane potential, thiol oxidation, viability, and DNA fragmentation was analyzed in spermatozoa
under nitrosative stress conditions. The results showed that FeTPPS effectively catalyzes the de-
composition of peroxynitrite without affecting sperm viability at concentrations up to 50 µmol/L.
Furthermore, FeTPPS mitigates the deleterious effects of nitrosative stress on all sperm parameters
analyzed. These results highlight the therapeutic potential of FeTPPS in reducing the negative impact
of nitrosative stress in semen samples with high RNS levels.

Keywords: nitrosative stress; peroxynitrite; human sperm; antioxidant

1. Introduction

Nitrosative stress is caused by excessive levels of reactive nitrogen species (RNS),
which include nitrogen dioxide (NO2), nitric oxide (NO), and peroxynitrite (ONOO−) [1].
Peroxynitrite anion is a short-lived oxidant species formed by the spontaneous and diffusion-
limited reaction of nitric oxide and superoxide anion [2]. Peroxynitrite is a particularly
cytotoxic RNS, which affects several biomolecules, including tyrosine residues, thiols,
DNA, and phospholipids [3]. These negative effects are mediated by reactions of oxidation
and/or nitration either directly by peroxynitrite or by peroxynitrite-derived radicals [4].
Peroxynitrite-mediated nitrosative stress contributes to the pathophysiological processes
of several clinical conditions, and, accordingly, pharmacological agents that successfully
prevent peroxynitrite-mediated cellular damage may have important, wide-ranging clinical
applications [2].
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The negative impact of peroxynitrite-mediated nitrosative stress is also associated
with male reproductive problems [5]. Peroxynitrite overproduction is observed in infertile
patients [6] and negatively correlates with sperm motility [7,8], morphology [9], enzymatic
activity, and intracellular calcium concentration [10]. The negative effects of peroxynitrite
on human spermatozoa have recently been characterized, and this kind of cellular stress
has emerged as an important cause of decreased sperm function. Excessive peroxynitrite
levels cause the impairment of several sperm quality parameters, including a decrease in
motility [11,12] and ATP levels by impairing both glycolysis and oxidative phosphoryla-
tion [13]. Mitochondrial membrane potential is also affected [12], and the mitochondrial
permeability transition (MPT) process is triggered after exposure to peroxynitrite [14].
Peroxynitrite-mediated nitrosative stress is associated with an increase in lipid peroxi-
dation [11], DNA oxidation and fragmentation [14], as well as post-translational protein
modifications, including thiol oxidation [15] and tyrosine nitration [14]. All these cellular
alterations lead to the regulated variant of cell death known as MPT-driven necrosis in
human spermatozoa [14]. Thus, it is clear that nitrosative stress is detrimental to sperm
quality and contributes to the etiology of male infertility, highlighting the need to develop
strategies to counteract the harmful effects of this type of stress on sperm cells.

Among the possible strategies for reducing peroxynitrite-mediated nitrosative stress
are the metalloporphyrin compounds. These molecules are characterized by having a
porphyrin structure coordinated with a redox-active transition metal (Mn or Fe), and de-
pending on their side chain, these compounds exhibit different properties, acting either as
superoxide dismutase mimics or as peroxynitrite decomposition catalysts, allowing them
to mitigate oxidative/nitrosative stress in biological systems [16]. The metallophorphyrin
FeTPPS (5,10,15,20-Tetrakis(4-sulfonatophenyl)porphyrinate iron (III) chloride) is a syn-
thetic, heme-derived molecule, which is highly effective in catalyzing the conversion of
peroxynitrite into less toxic subproducts, attenuating the harmful effects of peroxynitrite
in vivo and in vitro [17]. Thus, the peroxynitrite scavenger FeTPPS has shown promis-
ing results and is currently being proposed as a therapeutic agent for various clinical
conditions [2,18,19].

Considering the negative impact of peroxynitrite on sperm function, the possible
beneficial effects of FeTPPS in preserving sperm quality under nitrosative stress conditions
are clear; however, although some reports have evaluated the effect of this compound
as a supplement of cryopreservation media for stallion spermatozoa [20,21], the effect
of the metalloporphyrin FeTPPS on human spermatozoa subjected to nitrosative stress
has not been described. Thus, this work aimed to evaluate the effect of FeTPPS against
peroxynitrite-mediated nitrosative stress in human sperm cells.

2. Materials and Methods
2.1. Semen Preparation and Analysis

Semen samples from healthy donors were used for this study. They were informed
about the nature of the study and signed a written consent form. The study was approved
by the Scientific Ethics Committee of the Universidad de La Frontera, Temuco, Chile.

Semen samples were obtained after at least 3 days of sexual abstinence, collected by
masturbation in sterile containers, and immediately delivered to the laboratory. Semen
samples from normozoospermic donors were used, and in order to perform the experiments
with a uniform sperm population in terms of sperm quality, the swim-up technique was
used to select the motile spermatozoa from the semen samples. The swim-up technique was
performed with human tubular fluid (HTF) medium [22] following a previously described
protocol [23].

2.2. Evaluation of FeTPPS as a Peroxynitrite Decomposition Catalyst

First, the ability of FeTPPS to effectively catalyze the decomposition of peroxynitrite
was analyzed under our experimental conditions. For the in vitro generation of peroxyni-
trite the compound 3-morpholinosydnonimine (SIN-1; Enzo Life Science Inc., Farmingdale,
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NY, USA) was used, according to a previous report [12]. For the experiments, aliquots of
sperm suspension at 2 × 106 mL−1 were exposed to 0.8 mmol/L of SIN-1 in HTF medium
supplemented with different concentrations of FeTPPS (25, 50, and 100 µmol/L) for 4 h at
37 ◦C. A control of spermatozoa exposed to 0.8 mmol/L of SIN-1 and an untreated control
were included.

In order to measure the peroxynitrite level, the fluorescent compound dihydrorho-
damine 123 (DHR; Enzo Life Science Inc.) was used, and this had been previously used
to detect peroxynitrite levels in human sperm suspensions [12]. The measurement of the
mean fluorescence intensity (MFI) of DHR was made by flow cytometry, according to a
previously described procedure [12].

2.3. Evaluation of the Effect of FeTPPS on Sperm Quality

Then, the individual effect of FeTPPS on sperm quality was evaluated. For this pur-
pose, 500 µL of sperm suspension at 2 × 106 mL−1 was exposed to different concentrations
of FeTPPS, ranging from 5 to 100 µmol/L. An untreated control consisting of sperm cells
not exposed to FeTPPS was included. The incubation lasted 4 h at 37 ◦C, and thereafter,
the cells were washed with HTF three times by centrifugation at 700× g for 5 min at room
temperature. Subsequently, the sperm viability, peroxynitrite production, mitochondrial
membrane potential (MMP), and thiol oxidation were evaluated using a multiparameter
flow cytometry assay, following a previously described protocol [24]. Briefly, sperm cells
were simultaneously incubated with 0.75 µmol/L of propidium iodide to evaluate sperm vi-
ability, 1 µmol/L of fluorescein-boronate to detect peroxynitrite production, 250 nmol/L of
tetramethylrhodamine methyl ester perchlorate (TMRM) to analyze MMP, and 300 nmol/L
of monobromobimane (mBBr) to evaluate thiol oxidation. The sperm cells were incubated
with the fluorochromes for 30 min at 37 ◦C, washed once via centrifugation at 730× g for
5 min, and finally resuspended in 300 µL of HTF prior to flow cytometry analysis [24].

2.4. Evaluation of the Effect of FeTPPS on Motility, ATP Levels, MMP, and Thiol Oxidation in
Spermatozoa Subjected to Nitrosative Stress

In order to evaluate the beneficial effect of FeTPPS on sperm cells subjected to ni-
trosative stress conditions, the effect of FeTPPS on motility, ATP levels, MMP, and thiol
oxidation in spermatozoa exposed to peroxynitrite was evaluated. For the experiments,
aliquots of sperm suspension at 2 × 106 mL−1 were exposed to 0.8 mmol/L of SIN-1 in
human tubular fluid (HTF) medium supplemented with different concentrations of FeTPPS
(25 and 50 µmol/L) for 4 h at 37 ◦C. A control of spermatozoa exposed to 0.8 mmol/L
of SIN-1 and an untreated control were included. The concentration and incubation time
with SIN-1 were selected based on previous reports that demonstrated a decrease in these
parameters under these experimental conditions [12,13,15].

For the evaluation of sperm motility, the Computer-Aided Sperm Analysis (CASA)
through the Integrated Sperm Analysis System software (ISAS; Proiser, Valencia, Spain)
was used, and a minimum of 200 spermatozoa were examined for each test using negative
contrast. The analysis of the ATP level was conducted using the ATP assay kit (Merck
KGaA, Darmstadt, Germany), according to a previous report [13]. The analysis of MMP
and thiol oxidation was performed by flow cytometry using TMRM and mBBr, respectively,
as was previously described.

2.5. Evaluation of the Effect of FeTPPS on DNA Integrity and Viability in Spermatozoa Subjected
to Nitrosative Stress

To analyze sperm viability and DNA integrity, aliquots of sperm suspension at
2 × 106 mL−1 were exposed to 0.8 mmol/L of SIN-1 in HTF medium supplemented with
25 and 50 µmol/L of FeTPPS for 24 h at 37 ◦C. The incubation time was increased to 24 h
because, at this time, a significant decrease in viability and an increase in the DNA fragmen-
tation of spermatozoa exposed to peroxynitrite is observed [14]. A control of spermatozoa
exposed to 0.8 mmol/L of SIN-1 and an untreated control were included.
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The modified TUNEL (TdT terminal (deoxynucleotidyltransferase)-mediated dUTP
nick-end labeling) technique using the In Situ Cell Death Detection kit (Roche, Mannheim,
Germany) was used to analyze the sperm DNA fragmentation [25] by flow cytometry. The
percentage of live spermatozoa was determined by incubation with 1 µmol/L of propidium
iodide (PI; Sigma-Aldrich Inc., St. Louis, MO, USA) and analyzed by flow cytometry [12].

2.6. Flow Cytometry Analysis

Fluorescence analyses were performed either on an FACSCanto II or an FACSAria fu-
sion flow cytometer (Becton, Dickinson and Company, BD Biosciences, San Jose, CA, USA).
Samples were acquired and analyzed with the FACSDivaTM software (Becton, Dickinson
and Company). Data from 10,000 sperm events were recorded. The excitation of mBBr was
performed at 405 nm, while the excitation of the other fluorochromes was performed with
a 488 nm argon laser, and all analyses were conducted on logarithmic scales.

2.7. Statistical Analysis

The sperm treatment was performed in duplicate, and the experiments were repeated
at least three times on different days with different semen samples. The results were
expressed as the mean ± standard deviation (SD). Statistical evaluation was performed
with the Prism 5 software (GraphPad, La Jolla, CA, USA), applying a D’Agostino’s K2 test
to assess the Gaussian distribution. For the analysis of quality parameters in spermatozoa
exposed either to FeTPPS or to peroxynitrite plus FeTPPS, a one-way analysis of variance
(ANOVA) followed by Bonferroni’s post-test was used when data followed Gaussian
distribution, while a Kruskal–Wallis test followed by Dunn’s post-test was used when
data did not pass the normality test. To evaluate the effect of FeTPPS on sperm motility,
a two-way ANOVA followed by Bonferroni’s post-test was used. p values less than 0.05
were considered statistically significant.

3. Results
3.1. FeTPPS Acts as a Peroxynitrite Decomposition Catalyst

First, the ability of FeTPPS to effectively catalyze the decomposition of peroxynitrite
was verified. The results showed that the fluorescence intensity of DHR in spermatozoa ex-
posed to 0.8 mmol/L of SIN-1 was significantly higher than that in untreated spermatozoa
after 4 h of incubation (425.1 ± 58.3 vs. 10.9 ± 4.2, respectively, p < 0.0001), demonstrating
that peroxynitrite was properly generated by SIN-1 (Figure 1). The fluorescence intensity
of DHR in human spermatozoa incubated with 0.8 mmol/L of SIN-1 in a medium sup-
plemented with 50 and 100 µmol/L of FeTPPS was significantly lower than that of the
control spermatozoa treated with 0.8 mmol/L of SIN-1 (Figure 1), indicating that FeTPPS
effectively catalyzes the decomposition of peroxynitrite, decreasing its levels under our
experimental conditions. Representative flow cytometry histograms of DHR fluorescence
including the untreated control, sperm exposed to SIN-1, and sperm exposed to SIN-1 plus
FeTPPS are in Figure 2a.
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Figure 1. Analysis of FeTPPS as a peroxynitrite decomposition catalyst. Human spermatozoa were
exposed to 0.8 mmol/L of 3-morpholinosydnonimine (SIN-1) in order to generate peroxynitrite
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in sperm suspensions. Different concentrations of FeTPPS were also added, and the sperm cells
were incubated for 4 h at 37 ◦C. A control of spermatozoa exposed to 0.8 mmol/L of SIN-1 and
an untreated control were included. The level of peroxynitrite was evaluated by the fluorescent
compound dihydrorhodamine 123 (DHR). The results are presented as the mean ± SD of six different
experiments. (*) p < 0.05, (***) p < 0.0001 compared to the control treated only with SIN-1. MFI, mean
fluorescence intensity; AU, arbitrary units.
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Figure 2. Analysis of quality parameters in human spermatozoa by flow cytometry. Representative
flow cytometry histograms or dot plots of peroxynitrite production (a), mitochondrial membrane
potential (MMP, b), thiol oxidation (c), DNA fragmentation (d), and viability (e) are presented.
For each analysis, untreated control, sperm exposed to SIN-1, and sperm exposed to SIN-1 plus
50 µmol/L of FeTPPS are depicted. Details of the fluorochromes used to analyze each parameter can
be found in the Section 2. MFI, mean fluorescence intensity.

3.2. Effect of FeTPPS on Sperm Quality Parameters

Then, the individual effect of FeTPPS on sperm quality was evaluated. The re-
sults showed that the exposure of human spermatozoa to FeTPPS up to 50 µmol/L
for 4 h at 37 ◦C did not impair sperm viability (Figure 3a). Additionally, the antioxi-
dant FeTPPS at concentrations up to 100 µmol/L did not affect peroxynitrite production
(Figure 3b), MMP (Figure 3c), or thiol status (Figure 3d). Considering these results, concen-
trations up to 50 µmol/L, which do not affect sperm viability, were used to perform the
following experiments.
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Figure 3. Effect of FeTPPS on sperm quality parameters. Human spermatozoa were exposed to
different concentrations of FeTPPS. An untreated control was included, and the incubation was for
4 h at 37 ◦C. The sperm viability (a), peroxynitrite production (b), mitochondrial membrane potential
(MMP) (c), and thiol oxidation (d) were evaluated. The results are presented as the mean ± SD of
five different experiments. (*) p < 0.05 compared to the untreated control.

3.3. Effect of FeTPPS on Motility, ATP Levels, MMP, and Thiol Oxidation in Spermatozoa
Subjected to Nitrosative Stress

The beneficial effect of FeTPPS in human spermatozoa under nitrosative stress condi-
tions was evaluated. The results showed that the exposure to SIN-1 induced a decrease
in total and progressive motility when compared to the untreated control, which was
statistically significant from 2 h of incubation (Figure 4). After 4 h of incubation with SIN-1,
the spermatozoa reached a percentage of total and progressive motility of 49.7 ± 29.0 and
20.7 ± 15.3, respectively, while the untreated control in each group evidenced 91.3 ± 8.0
and 88.0% ± 8.5, respectively, at the same incubation time (Figure 4). However, sper-
matozoa incubated with 0.8 mmol/L of SIN-1 in a medium supplemented with FeTPPS
evidenced a higher motility than the control spermatozoa treated with only 0.8 mmol/L
of SIN-1. This effect was statistically significant after 2 h of incubation (Figure 4). Sperm
kinetic parameters were also evaluated, and a significant decrease in VCL, VSL, and VAP
was observed in spermatozoa exposed to SIN-1; however, in spermatozoa exposed to SIN-1
plus FeTPPS, no differences were observed in these parameters compared to the untreated
control (Table 1).
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Figure 4. Effect of FeTPPS on sperm motility in human spermatozoa subjected to nitrosative stress.
Human spermatozoa were co-incubated with 0.8 mmol/L of SIN-1 plus 25 or 50 µmol/L of FeTPPS for
4 at 37 ◦C. An untreated control (0 mmol/L of SIN-1 and 0 µmol/L of FeTPPS) and a control exposed
only to SIN-1 were included in each experiment. The total (a) and progressive motility (b) were
analyzed. The results are presented as the mean ± SD of three different experiments. (*) p < 0.05,
(**) p < 0.01, (***) p < 0.001.

Table 1. Effect of FeTPPS on kinetic parameters of motility in spermatozoa subjected to nitrosative
stress at 4 h of incubation.

Parameter Untreated
Control SIN-1

SIN-1 +
FeTPPS 25
µmol/L

SIN-1 +
FeTPPS 50
µmol/L

VCL (µm/s) 78.5 ± 20.6 45.5 ± 11.5 * 59.6 ± 20.3 65.7 ± 25.4
VSL (µm/s) 34.8 ± 4.7 17.5 ± 3.3 * 25.8 ± 7.1 28.6 ± 8.3
VAP (µm/s) 48.0 ± 9.2 26 ± 5.8 * 35.1 ± 10.4 38.6 ± 11.6
LIN (%) 45.7 ± 9.6 39.9 ± 11.7 43.8 ± 3.2 45.1 ± 7.0
STR (%) 73.2 ± 7.0 68.2 ± 8.1 73.7 ± 2.0 74.3 ± 4.5
WOB (%) 62.1 ± 9.2 57.9 ± 10.9 59.5 ± 2.7 60.5 ± 7.0
ALH (µm) 2.5 ± 0.5 2.4 ± 0.8 2.9 ± 0.6 2.9 ± 0.9
BCF (Hz) 10.3 ± 0.4 6.5 ± 2.6 9.3 ± 1.0 9.0 ± 1.6

Values correspond to the mean + SD of three different experiments. VCL, curvilinear velocity; VSL, straight-line
velocity; VAP, average path velocity; LIN, linearity; STR, straightness; WOB, wobble; ALH, amplitude of lateral
head displacement; BCF, beat-cross frequency. (*) p < 0.05 compared to the untreated control.

Similarly, the ATP levels in spermatozoa exposed to 0.8 mmol/L of SIN-1 were sig-
nificantly decreased when compared to untreated spermatozoa after 4 h of incubation
(Figure 5a), indicating a negative effect of peroxynitrite on ATP production. However, sper-
matozoa incubated with 0.8 mmol/L of SIN-1 in a medium supplemented with 25 µmol/L
of FeTPPS evidenced a significantly higher ATP level compared to the control spermatozoa
treated with 0.8 mmol/L of SIN-1 (Figure 5a).

In the same way, the MMP analysis showed that the exposure to SIN-1 caused a
decrease in this parameter (Figure 5b); however, in the spermatozoa exposed to SIN-1
plus FeTPPS, no significant differences were observed compared to the untreated control
(Figure 5b). Representative flow cytometry histograms of TMRM fluorescence including
the untreated control, sperm exposed to SIN-1, and sperm exposed to SIN-1 plus FeTPPS
are in Figure 2b.

Exposure to SIN-1 also caused thiol oxidation in sperm cells compared to the untreated
control, which was evidenced by a decrease in mBBr fluorescence (Figure 5c). Similar to the
previous results, in the sperm cells co-incubated with SIN-1 and FeTPPS, thiol oxidation was
less accentuated than it was in sperm cells only exposed to SIN-1 (Figure 5c). Representative
flow cytometry histograms of mBBr fluorescence for the analysis of thiol oxidation are in
Figure 2c.
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Figure 5. Effect of FeTPPS on ATP levels, mitochondrial membrane potential, and thiol oxidation
in human spermatozoa subjected to nitrosative stress. Human spermatozoa were co-incubated
with 0.8 mmol/L of SIN-1 plus 25 or 50 µmol/L of FeTPPS for 4 h at 37 ◦C. An untreated control
(0 mmol/L of SIN-1 and 0 µmol/L of FeTPPS) and a control exposed only to SIN-1 (0.8 mmol/L of
SIN-1 and 0 µmol/L of FeTPPS) were included in each experiment. The ATP levels (a), mitochondrial
membrane potential (MMP) (b), and thiol oxidation (c) were analyzed. The results are presented as
the mean ± SD of five (ATP levels) and three (MMP, thiol oxidation) different experiments. (*) p < 0.05,
(***) p < 0.001.

3.4. Effect of FeTPPS on DNA Integrity and Viability in Spermatozoa Subjected to
Nitrosative Stress

Finally, the effect of FeTPPS on sperm cells subjected to nitrosative stress under late
incubation times was evaluated. The results showed that the exposure of spermatozoa
to 0.8 mmol/L of SIN-1 for 24 h induced a significant increase in DNA fragmentation
compared to untreated spermatozoa (23.0 ± 5.0 vs. 4.0 ± 2.4, respectively, p < 0.001),
demonstrating a negative effect of peroxynitrite on sperm DNA integrity. Spermatozoa
incubated with 0.8 mmol/L of SIN-1 in a medium supplemented with 25 and 50 µmol/L
of FeTPPS did not evidence a significant increase in DNA fragmentation compared to the
untreated control (Figure 6a).
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Figure 6. Effect of FeTPPS on DNA fragmentation and viability in human spermatozoa subjected
to nitrosative stress. Human spermatozoa were co-incubated with 0.8 mmol/L of SIN-1 plus 25 or
50 µmol/L of FeTPPS for 24 h at 37 ◦C. An untreated control (0 mmol/L of SIN-1 and 0 µmol/L
of FeTPPS) and a control exposed only to SIN-1 (0.8 mmol/L of SIN-1 and 0 µmol/L of FeTPPS)
were included in each experiment. The DNA fragmentation (a) and viability (b) were analyzed. The
results are presented as the mean ± SD of four (viability) and three (DNA fragmentation) different
experiments. (***) p < 0.001.

Regarding the sperm viability, this parameter was significantly decreased after expo-
sure to 0.8 mmol/L of SIN-1 for 24 h when compared to the untreated control (10.38 ± 4.4
vs. 86.85 ± 6.1, respectively, p < 0.0001). However, spermatozoa incubated with 0.8 mmol/L
of SIN-1 in a medium supplemented with 25 and 50 µmol/L of FeTPPS evidenced a less
accentuated decrease in this parameter, and a significantly higher viability compared to
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that of the control spermatozoa treated only with 0.8 mmol/L of SIN-1 was observed
(Figure 6b). Representative flow cytometry histograms of TUNEL and viability analysis are
in Figure 2d,e, respectively.

Together, these results indicate that FeTPPS can, at least in part, prevent the decrease
in sperm quality and the induction of cell death triggered by nitrosative stress in human
sperm cells.

4. Discussion

FeTPPS is a metalloporphyrin that belongs to a group of compounds known as perox-
ynitrite decomposition catalysts, whose therapeutic potential is currently being developed
to be applied to different clinical conditions [2,16,18,19,26]. Here, we demonstrate the
beneficial effects of FeTPPS in antagonizing the adverse effects of peroxynitrite-mediated
nitrosative stress in sperm cells, evidenced by an improvement of ATP, motility, MMP, thiol
status, viability, and DNA fragmentation.

Several studies have demonstrated the beneficial effects of FeTPPS in preserving viabil-
ity in different cell types, envisioning its application to different clinical conditions. When
the potential therapeutic use of FeTPPS in type 2 diabetes to improve the pancreatic β-cell
dysfunction was explored, this metalloporphyrin significantly attenuated the cytotoxicity
induced by human islet amyloid polypeptide (hIAPP) in a dose-dependent mode [19].
Similar to our results, FeTPPS antagonized the dissipation of MMP and cell death induced
by SIN-1 in cardiomyocyte cells, via a mechanism probably related to the prevention of
mitochondrial protein nitration [27]. FeTPPS significantly inhibited peroxynitrite genera-
tion, tyrosine nitration, the dissipation of MMP, and the activation of caspases 3 and 9 in
response to interferon-gamma, and the reduction in cell viability was markedly rescued by
FeTPPS in interferon-gamma-treated cancer cell lines of hepatoma and fibrosarcoma [28].

FeTPPS also has cardioprotective effects, evidenced by the prevention of myocardial
dysfunction in an in vitro model of inflammatory heart failure [29]. In a model of sepsis,
FeTPPS prevented the accumulation of peroxynitrite and heart nitrotyrosine staining and
improved endotoxin-induced myocardial contractile dysfunction, which was associated
with the reduced degradation of nuclear factor kappa B inhibitory protein I-kappa-B,
plasma TNF-alpha levels, and microvascular endothelial cell-leukocyte activation [30].

It has been proposed that FeTPPS may be a valuable tool in counteracting the delete-
rious cerebrovascular effects of angiotensin II-induced hypertension, since FeTPPS abol-
ished angiotensin II-induced tyrosine nitration and prevented the deleterious effects of
angiotensin II [31]. In line with this, in a rat model of chronic neonatal pulmonary hyper-
tension, treatment with FeTPPS (30 mg/kg/day, ip) prevented apoptosis and completely
normalized right-ventricular output in animals exposed to inhaled nitric oxide [32].

In other lines of research, FeTPPS has also demonstrated a beneficial effect on insulin
sensitivity. Peroxynitrite synthesis is increased in insulin-resistant animals and humans and
induces the nitration of insulin signaling proteins, impairing insulin action [33]. Treatment
with FeTPPS normalized the fasting plasma glucose and insulin levels, attenuated the
hyperglycaemic response to an intraperitoneal glucose challenge, and improved the insulin-
induced decrease in plasma glucose levels in HFD-fed mice. Moreover, FeTPPS restored
insulin-stimulated Akt phosphorylation and insulin-stimulated glucose uptake in isolated
skeletal muscle in vitro [33]. Thus, the stimulation of peroxynitrite catalysis attenuates HFD-
induced insulin resistance in mice by restoring insulin signaling and insulin-stimulated
glucose uptake in skeletal muscle tissue [33,34].

In line with the previous literature, the results presented here demonstrated that the
metalloporphyrin FeTPPS effectively protects several sperm parameters from peroxynitrite-
mediated nitrosative stress, highlighting some related to mitochondrial function. Mito-
chondria are essential organelles that support several processes of sperm physiology. In
human spermatozoa, 50–75 mitochondria are helically arranged, exclusively located in the
middle piece, and play a crucial role in sperm functions, including the ATP production for
supporting sperm motility, and the generation of physiological levels of reactive oxygen
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species, which are required for sperm maturation, capacitation, and acrosome reaction [35].
Mitochondria also play a role in calcium signaling cascades by acting as a storage of intra-
cellular Ca2+, as well as in the regulation of apoptosis-like phenomena [36] and other cell
death modalities [14]. According to this, MMP is a sensitive parameter for assessing sperm
quality since it is correlated with standard semen parameters [37] and, in some cases, is the
most sensitive parameter for analyzing sperm quality [38]. MMP is also correlated with
fertilizing capacity due to spermatozoa with high MMP being able to undergo acrosome
reactions [39], and it may contribute to identifying the most appropriate treatment for an
individual patient during assisted reproduction techniques [40]. According to this variety
of functions supported by sperm mitochondria, any structural or functional dysfunction
of these organelles results in the increased production of reactive oxygen species, which
promotes a state of oxidative stress, associated with decreased energy production, sperm
DNA damage, impaired sperm motility, and reduced male fertility [35]. Mitochondria
are vulnerable to attack by free radicals, and specifically, peroxynitrite causes a decrease
in mitochondrial activity in sperm cells by affecting MMP and ATP production, which
is associated with a decrease in sperm motility [12,13]. The impairment of sperm motil-
ity caused by peroxynitrite can be mediated by different mechanisms, including lipid
peroxidation [11] and post-translational protein modifications, including thiol oxidation
and tyrosine nitration, which damage the structure or function of contractile proteins
responsible for the movement [14], the dissipation of MMP [12], and the alteration of ATP
production, affecting both the glycolytic and mitochondrial pathways [13]. Here, we report
a protective effect of FeTPPS in preventing the negative impact of peroxynitrite in MMP,
ATP production, and motility in human sperm cells. Considering the crucial role of motility,
MMP, and the production of ATP in accomplishing the final goal of spermatozoa, which is
to fertilize the oocyte and to transmit the paternal genome to offspring, any strategy for
minimizing the impairment of these parameters would be a valuable tool to be applied to
laboratory sperm handling or to assisted reproductive techniques.

Additionally, FeTPPS demonstrated beneficial effects by protecting thiol groups from
oxidation mediated by peroxynitrite. Thiol groups in sperm are mainly found in enzymes,
antioxidant molecules, and structural proteins in the axoneme [15]. An appropriate level of
thiol oxidation in proteins is necessary for sperm motility; however, the proteins involved
in motility are very sensitive to oxidation [41] and overoxidation in thiol groups in mature
spermatozoa, modifying progressive motility [15,42]. Peroxynitrite impairs the thiol oxida-
tion status by reacting with thiol groups of cysteine residues, forming sulfenic acid (RSOH),
which in turn reacts with another thiol group to form disulfide groups (RSSR). Thiol groups
may also be oxidized by peroxynitrite-derived radicals, generating thiyl radicals (RS•), and
once these react with oxygen, they can increase free radical reactions, leading to oxidative
stress [3]. In human sperm cells, peroxynitrite-mediated nitrosative stress increases thiol
oxidation, mainly affecting the sperm axoneme, and might be another way by which perox-
ynitrite reduces sperm motility [15]. Thus, the beneficial effects demonstrated by FeTPPS
in sperm cells under nitrosative stress conditions highlight its potential as a strategy for
better preserving the sperm quality.

Finally, sperm DNA was also protected from fragmentation induced by peroxynitrite.
Sperm DNA is highly vulnerable to oxidative modifications, and oxidative DNA damage
in sperm could have important clinical consequences for male fertilizing potential, opti-
mal embryonic development, and the health and well-being of the offspring [43]. Thus,
oxidative damage to the spermatozoa genome is an important issue and a cause of male
infertility, usually associated with single- or double-strand paternal DNA breaks [44]. Due
to the lack of a spermatozoa DNA repair system and the possibility that the egg is unable
to correct the sperm oxidized bases, there is a risk of de novo mutation transmission to the
embryo and its progeny [44]. Peroxynitrite causes DNA damage in sperm cells, including
oxidation and fragmentation [14]. Considering that sperm DNA damage has an important
clinical impact associated with reduced male fertility as well as with birth defects and
several forms of morbidity in the offspring [45], the protection conferred by FeTPPS, which
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includes the maintenance of a higher DNA integrity in conditions of nitrosative stress,
could have important clinical applications aimed at protecting the sperm genome, mainly
is semen samples with high RNS levels.

According to this background, the application of FeTPPS to reduce the negative impact
of nitrosative stress in andrology could allow for the use of this compound in the semen
samples of patients affected by high levels of peroxynitrite in semen. FeTPPS could be used
for the in vitro improvement of sperm quality during assisted reproductive techniques or,
alternatively, as a supplement of media during sperm cryopreservation, a process that has
been shown to induce an increase in reactive nitrogen species [24,46,47].

5. Conclusions

The supplementation of the sperm incubation medium with the metalloporphyrin
FeTPPS effectively catalyzes the decomposition of peroxynitrite, and the impairment of
ATP production, thiol oxidation, motility, MMP, viability, and DNA integrity, all induced
in vitro by peroxynitrite, can be reduced by the supplementation of the incubation medium
with FeTPPS. The ability of FeTPPS to reduce the deterioration of sperm quality and cell
death induced by reactive nitrogen species suggests that FeTPPS is a useful agent for
better preserving sperm viability and functionality and could be beneficial in different
andrology-related procedures.
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