

Don’t worry if you are a beginner and have no idea

about how Solidity works, this cheat sheet will give you

a quick reference of the keywords, variables, syntax

and basics that you must know to get started.

A great way to experiment with Solidity is to use an

online IDE called Remix. With Remix, you can load the

website, start coding and run your first smart contract.

Solidity is an object-oriented programming language

for writing smart contracts. It is used for implementing

smart contracts on various blockchain platforms.

Learning Solidity doesn't mean that you are restricted

to only the Ethereum Blockchain; it will serve you well

on other Blockchains. Solidity is the primary

programming language for writing smart contracts

for the Ethereum blockchain.

Introduction

https://remix.ethereum.org/

Data Types

! Logical negation

&& AND

|| OR

== equality

!= inequality

Data type is a particular kind of data defined

by the values it can take

Logical:

Comparisons:

Boolean

Data Types

& AND

| OR

^ Bitwise XOR

~ Bitwise negation

<< Left Shift

>> Right Shift	

Bitwise operators

Data Types

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

++ Increment

-- Decrement

Arithmetic Operators

Data Types

<= Less than or equal to

< Less than

== equal to

!= Not equal to

>= Greater than or equal to

> Greater than

Relational Operators

Data Types

= Simple Assignment

+= Add Assignment

-= Subtract Assignment

*= Multiply Assignment

/= Divide Assignment

%= Modulus Assignment

Assignment Operators

Value Types

This data type accepts only two values.

True or False.

Boolean

This data type is used to store integer values,

int and uint are used to declare signed and

unsigned integers respectively.

Integer

Address hold a 20-byte value which represents

the size of an Ethereum address. An address

can be used to get balance or to transfer a

balance by balance and transfer method

respectively.

Address

Value Types

Bytes are used to store a fixed-sized character

set while the string is used to store the

character set equal to or more than a byte. The

length of bytes is from 1 to 32, while the string

has a dynamic length.

Bytes and Strings

It is used to create user-defined data types,

used to assign a name to an integral constant

which makes the contract more readable,

maintainable, and less prone to errors. Options

of enums can be represented by unsigned

integer values starting from 0.

Enums

Reference Types

An array is a group of variables of the same

data type in which variable has a particular

location known as an index. By using the index

location, the desired variable can be accessed.

Array can be dynamic or fixed size array.

uint[] dynamicSizeArray;

uint[7] fixedSizeArray;

Arrays

Reference Types

Solidity allows users to create and define their

own type in the form of structures. The structure

is a group of different types even though it’s not

possible to contain a member of its own type.

The structure is a reference type variable which

can contain both value type and reference type

New types can be declared using Struct

struct Book {

 string title;

 string author;

 uint book_id;

}

Struct

Reference Types

Mapping is a most used reference type, that
stores the data in a key-value pair where a key
can be any value types. It is like a hash table or
dictionary as in any other programming
language, where data can be retrieved by key.

_KeyType can be any built-in types plus bytes
and string. No reference type or complex
objects are allowed.

mapping(_KeyType => _ValueType)

- can be any type._ValueType

Mapping

Import files

Syntax to import the files

or

import "filename";

import * as jsmLogo from "filename";

import "filename" as jsmLogo;

import {jsmLogo1 as alias, jsmLogo2} from "filename";

Function Visibility
Specifiers

function returns

return

 () () {

 ;

}

myFunction <visibility specifier> bool

true

visible externally and internally (creates a
getter function for storage/state
variables)

public

only visible in the current contract

private

Function Visibility
Specifiers

only visible externally (only for functions) - i.e.
can only be message-called (via this.func)

external

only visible internally

internal

Modifiers

for functions: Disallows modification or

access of state

pure

for functions: Disallows modification of state

view

for functions: Allows them to receive Ether

together with a call

payable

for events: Does not store event signature

as topic

anonymous

Modifiers

for event parameters: Stores the

parameter as topic

indexed

for functions and modifiers: Allows the

function’s or modifier’s behaviour to be

changed in derived contracts

virtual

States that this function, modifier or public

state variable changes the behaviour of a

function or modifier in a base contract

override

Modifiers

for state variables: Disallows assignment
(except initialisation), does not occupy
storage slot

constant

for state variables: Allows exactly one
assignment at construction time and is
constant afterwards. Is stored in code

immutable

Global Variables

current block’s base fee

block.basefee (uint)

current chain id

block.chainid (uint)

current block miner’s address

block.coinbase (address payable)

current block difficulty

block.difficulty (uint)

current block gaslimit

block.gaslimit (uint)

Global Variables

current block number

block.number (uint)

current block timestamp

block.timestamp (uint)

remaining gas

gasleft() returns (uint256)

complete calldata

msg.data (bytes

sender of the message (current call)

msg.sender (address)

Global Variables

number of wei sent with the message

msg.value (uint)

gas price of the transaction

tx.gasprice (uint)

sender of the transaction (full call chain)

tx.origin (address)

abort execution and revert state changes
if condition is false (use for internal error)

assert(bool condition)

Global Variables

abort execution and revert state changes if
condition is false

require(bool condition)

abort execution and revert state changes if
condition is false

require(bool condition, string memory message)

abort execution and revert state changes

revert()

abort execution and revert state changes
providing an explanatory string

revert(string memory message)

Global Variables

hash of the given block - only works for 256
most recent blocks

blockhash(uint blockNumber) returns (bytes32)

compute the Keccak-256 hash of the input

keccak256(bytes memory) returns (bytes32)

compute the SHA-256 hash of the input

sha256(bytes memory) returns (bytes32)

compute the RIPEMD-160 hash of the input

ripemd160(bytes memory) returns (bytes20)

Global Variables

abort execution and revert state changes if
condition is false

addmod(uint x, uint y, uint k) returns (uint)

compute(x * y) % k where the multiplication
is performed with arbitrary precision &
does not wrap around at 2**256

mulmod(uint x, uint y, uint k) returns (uint)

(current contract’s type): the current
contract, explicitly convertible to address
or address payable

this

Global Variables

the contract one level higher in the
inheritance hierarchy

super

destroy the current contract, sending its
funds to the given address

selfdestruct(address payable recipient)

balance of the Address in Wei

<address>.balance (uint256)

code at the Address (can be empty)

<address>.code (bytes memory)

Global Variables

the codehash of the Address

<address>.codehash (bytes32)

send given amount of Wei to Address,
returns false on failure

<address payable>.send(uint256 amount) returns (bool)

the name of the contract

type(C).name (string)

creation bytecode of the given contract

type(C).creationCode (bytes memory)

Global Variables

runtime bytecode of the given contract

type(C).runtimeCode (bytes memory)

value containing the EIP-165 interface
identifier of the given interface

type(I).interfaceId (bytes4)

the minimum value representable by the
integer type T

type(T).min (T)

the maximum value representable by the
integer type T

type(T).max (T)

Global Variables

ABI-decodes the provided data. The types
are given in parentheses as second
argument

abi.decode(bytes memory encodedData, (...)) returns (...)

 ABI-encodes the given arguments

abi.encode(...) returns (bytes memory)

Performs packed encoding of the given
arguments.

abi.encodePacked(...) returns (bytes memory)

Global Variables

ABI-encodes the given arguments starting
from the second and prepends the given
four-byte selector

abi.encodeWithSelector(bytes4 selector, ...) returns (bytes memory)

ABI-encodes a call to functionPointer with
the arguments found in the tuple. Performs
a full type-check, ensuring the types match
the function signature

abi.encodeCall(function functionPointer, (...)) returns (bytes memory)

Equivalent to

abi.encodeWithSelector(bytes4(keccak256(bytes(signature)), ...)

abi.encodeWithSignature(string memory signature, ...) returns (bytes memory)

Global Variables

Concatenates variable number of
arguments to one byte array

bytes.concat(...) returns (bytes memory)

Concatenates variable number of
arguments to one string array

string.concat(...) returns (string memory)

Reserved Keywords

after

alias

apply

auto

byte

case

copyof

default

Reserved Keywords

define

final

implements

in

inline

let

macro

match

Reserved Keywords

mutable

null

of

partial

promise

reference

relocatable

sealed

Reserved Keywords

sizeof

static

supports

switch

typedef

typeof

var

Important Note

That’s all for this cheat sheet. This is not all the

things that Solidity offers, it offers a lot more.

This was just a small getting started cheat sheet

of Solidity. You can learn much more about

Solidity on their official documentation or

anywhere on the internet.

Thank You for your attention, Subscribe to my youtube

channel for more Advanced Tutorials.

jsmasterypro javascriptmastery

- JavaScript Mastery

Thank you so much

https://docs.soliditylang.org/
https://twitter.com/jsmasterypro
https://www.instagram.com/javascriptmastery/
https://www.youtube.com/javascriptmastery

