Journal of Strength and Conditioning Research THE NATIONAL STRENGTH AND CONDITIONING ASSOCIATION POSITION STATEMENT ON LONG-TERM ATHLETIC DEVELOPMENT

--Manuscript Draft--

Manuscript Number:	JSCR-08-7191R1
Full Title:	THE NATIONAL STRENGTH AND CONDITIONING ASSOCIATION POSITION STATEMENT ON LONG-TERM ATHLETIC DEVELOPMENT
Short Title:	NSCA Position Statement on LTAD
Article Type:	Brief Review
Keywords:	long-term athlete development; youth physical development; children; adolescents; health; fitness
Corresponding Author:	Rhodri S Lloyd, PhD Youth Physical Development Unit, School of Sport, Cardiff Metropolitan University Cardiff, Wales UNITED KINGDOM
Corresponding Author Secondary Information:	
Corresponding Author's Institution:	Youth Physical Development Unit, School of Sport, Cardiff Metropolitan University
Corresponding Author's Secondary Institution:	
First Author:	Rhodri S Lloyd, PhD
First Author Secondary Information:	
Order of Authors:	Rhodri S Lloyd, PhD
	John B Cronin, PhD
	Avery D Faigenbaum, EdD
	G Gregory Haff, PhD
	Rick Howard, MA
	William J Kraemer, PhD
	Lyle J Micheli, MD
	Gregory D Myer, PhD
	Jon L Oliver, PhD
Order of Authors Secondary Information:	
Manuscript Region of Origin:	UNITED KINGDOM
Abstract:	There has recently been a growing interest in long-term athletic development for youth. Due to their unique physical, psychological and social differences, children and adolescents should engage in appropriately prescribed exercise programs that promote physical development to prevent injury and enhance fitness behaviours that can be retained later in life. Irrespective of whether a child is involved in organized sport or engages in recreational physical activity, there remains a need to adopt a structured, logical and evidence-based approach to the long-term development of athleticism. This is of particular importance considering the alarmingly high number of youth who fail to meet global physical activity recommendations and consequently present with negative health profiles. However, appropriate exercise prescription is also crucial for those young athletes that are physically underprepared and at risk of overuse injury due to high volumes of competition and an absence of preparatory conditioning. Whether the child accumulates insufficient or excessive amounts of exercise, or falls somewhere between these opposing ends of the spectrum, it is generally accepted that the young bodies of modern day youth are often ill-prepared to tolerate the rigors of sports or physical activity. All youth should engage in regular

	physical activity and thus should be viewed as 'athletes' and afforded the opportunity to enhance athleticism in an individualized, holistic and child-centred manner. Due to the emerging interest in long-term athletic development, an authorship team was tasked on behalf of the National Strength and Conditioning Association (NSCA) to critically synthesize existing literature and current practices within the field and to compose a relevant position statement. This document was subsequently reviewed and formally ratified by the NSCA Board of Directors. Figure 1 provides a list of the 10 pillars of successful long-term athletic development, which summarize the key recommendations detailed within the consensus statement. With these pillars in place, it is believed that the NSCA can (i) help foster a more unified and holistic approach to youth physical development, (ii) promote the benefits of a lifetime of healthy physical activity, and (iii) prevent and/or minimize injuries from sports participation for all boys and girls.
Response to Reviewers:	Combined Reviewer Comments: General Comments This position stand is well-written and very informative. It is imperative to the field. The specific comments are minor. Response: Thank you very much for taking the time to review the manuscript and for the complimentary words. Please see the point-by-point responses to the reviewer comments below. Specific Comments Operational Terms: the authors include citations for 2 of the terms but not others. Perhaps citations for all definitions may be more appropriate. Response: accepted; however given that some of the definitions were novel to the paper, it seemed more appropriate to remove the two citations for a consistent approach to the operational definitions. Lines 129-133: I suggest dividing into 2 sentences. Response: accepted and text amended Line 133: I believe the term to be used is "underlie." Response: accepted and text amended Line 153: should be "Physically-active" Response: accepted and text amended Line 159: I suggest starting a new sentence here with "Therefore" Response: accepted and text amended Line 163: should be "data are" Response: accepted and text amended Line 198: should be "well-being". Both spellings are used so the authors should pick one and be consistent. Response: accepted and text amended Line 254: should be "ture frame." Response: accepted and text amended Line 272: should be "ture frame." Response: accepted and text amended Line 303: the authors should use brackets here within the parentheses. Response: accepted and text amended Line 303: the authors should use brackets here within the parentheses. Response: accepted and text amended Line 303: the authors should use brackets here within the parentheses. Response: accepted and text amended on lines 306 and 307. We have divided the sentence into two to avoid the use of multiple brackets. Line 416: should be "support." Response: accepted and text amended Line 421: should be "overexposure." Response: accepted and text amended

Line 527: should be "exist."
Response: accepted and text amended
Line 543: should be "indicate" as data are plural.
Response: accepted and text amended
Line 548: I would caution the authors on the use of the term "tightness" here as it can
be ambiguous. Perhaps discomfort is a better term.
Response: accepted and text amended
Line 562: should be "are" after data.
Response: accepted and text amended
Line 564: should be "time frame."
Response: accepted and text amended
Line 584: should be "indicate" after data.
Response: accepted and text amended
Line 586: should be "two years of"
Response: accepted and text amended
Line 649: should be "instill."
Response: accepted and text amended

1	1	THE NATIONAL STRENGTH AND CONDITIONING ASSOCIATION POSITION
1 2 3	2	STATEMENT ON LONG-TERM ATHLETIC DEVELOPMENT
4 5	3	
6 7 8	4	
9 10	5	
11 12 13	6	
13 14 15	7	
16 17	8	
18 19 20	9	
21 22	10	
23 24 25	11	
26 27	12	
28 29 30	13	
31 32	14	
33 34 25	15	
35 36 37	16	
38 39	17	
40 41 42	18	
43 44	19	
45 46 47	20	
48 49	21	
50 51 52	22	
53 54	23	
55 56	24	
57 58 59	25	
60 61		
62 63 64		1
65		

26 ABSTRACT

There has recently been a growing interest in long-term athletic development for youth. Due to their unique physical, psychological and social differences, children and adolescents should engage in appropriately prescribed exercise programs that promote physical development to prevent injury and enhance fitness behaviours that can be retained later in life. Irrespective of whether a child is involved in organized sport or engages in recreational physical activity, there remains a need to adopt a structured, logical and evidence-based approach to the long-term development of athleticism. This is of particular importance considering the alarmingly high number of youth who fail to meet global physical activity recommendations and consequently present with negative health profiles. However, appropriate exercise prescription is also crucial for those young athletes that are physically underprepared and at risk of overuse injury due to high volumes of competition and an absence of preparatory conditioning. Whether the child accumulates *insufficient* or *excessive* amounts of exercise, or falls somewhere between these opposing ends of the spectrum, it is generally accepted that the young bodies of modern day youth are often ill-prepared to tolerate the rigors of sports or physical activity. All youth should engage in regular physical activity and thus should be viewed as 'athletes' and afforded the opportunity to enhance athleticism in an individualized, holistic and child-centred manner. Due to the emerging interest in long-term athletic development, an authorship team was tasked on behalf of the National Strength and Conditioning Association (NSCA) to critically synthesize existing literature and current practices within the field and to compose a relevant position statement. This document was subsequently reviewed and formally ratified by the NSCA Board of Directors. Figure 1 provides a list of the 10 pillars of successful long-term athletic development, which summarize the key

51	recommendations detailed within the consensus statement. With these pillars in place,
52	it is believed that the NSCA can (i) help foster a more unified and holistic approach to
53	youth physical development, (ii) promote the benefits of a lifetime of healthy physical
54	activity, and (iii) prevent and/or minimize injuries from sports participation for all
55	boys and girls.
56	
57	Key words: long-term athlete development, youth physical development, children,
58	adolescents, health, fitness
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	
72	
73	
74	
75	
	3

76 ****Figure 1 near here****

OPERATIONAL TERMS

79 Throughout this manuscript, the following operational terms are defined as:

- *Athleticism* is the ability to repeatedly perform a range of movements with
 precision and confidence in a variety of environments, which require
 competent levels of motor skills, strength, power, speed, agility, balance,
 coordination and endurance.
- The term *long-term athletic development* refers to the habitual development of
 'athleticism' over time to improve health and fitness, enhance physical
 performance, reduce the relative risk of injury, and develop the confidence and
 competence of all youth.
- The terms *youth* and *young athletes* represent both children (up to the approximate age of 11 years in girls and 13 years in boys) and adolescents
 (typically including girls aged 12-18 years and boys aged 14-18 years).
- *Growth* is the most significant biological activity during the first two decades
 of life and is defined as an increase in the size attained by specific parts of the
 body, or the body as a whole.
 - *Maturation* is defined as progress toward a mature state and varies in timing, tempo and magnitude between different bodily systems.
 - A *qualified professional* possesses (i) an appropriate understanding of pediatric exercise science, exercise prescription, technique evaluation, and testing methods, (ii) relevant coaching experience and a strong pedagogical background, and (iii) a recognized strength and conditioning qualification, for

example, the Certified Strength and Conditioning Specialist (CSCS[®]) certification.

103 INTRODUCTION

In an address at the University of Pennsylvania in 1940, the 32nd President of the United States, Franklin D. Roosevelt delivered the adage "we cannot always build the future for our youth, but we can build our youth for the future." Conceptually, this statement is a suitable philosophy for long-term athletic development. Ultimately, it is impossible to truly determine whether a child will be involved in elite-level sport or simply choose to engage in recreational physical activity later in life; however, it is imperative that all children learn how and why various types of physical conditioning are important to suitably prepare them for the physical and psychological demands of a lifetime of sport and physical activity. While the development of *athleticism* has traditionally been viewed as a goal for aspiring 'young athletes', it is crucial that strength and conditioning coaches, personal trainers, teachers, parents and medical professionals adopt a systematic approach to long-term athletic development for youth of all ages, abilities and aspirations (143).

Long-term athletic development pathways should accommodate for the highly
 individualized and non-linear nature of the growth and development of youth.
 It is commonly stated that "children are not miniature adults" and due to their
 immature physiological and psychosocial state, they should be prescribed appropriate
 training programs commensurate with their technical ability and stage of development
 (145). Children's anatomy and physiology differs from that of adolescents, which in
 turn is different from the physiology of adults. Clear differences between children and

1	125	adolescents/adults exist in muscle structure (133, 193), size (62, 139), activation
1 2 3 4 5	126	patterns (61, 62, 198, 259), and function (77, 262). These differences will typically
	127	predispose children to reduced force-producing or force-attenuating capabilities,
6 7 8	128	which will have implications for absolute measures of physical performance and
9 10	129	relative risk of injury. Additionally, it is clear that children's metabolic profile is more
11 12 13	130	conducive to oxidative metabolism (211) and recovery rates from high-intensity
14 15	131	exercise are shorter in youth in comparison to adults (212, 250). This suggests that
16 17	132	aerobic and anaerobic exercise thresholds will likely vary according to the stage of
18 19 20	133	development. Combined, these examples underlie the potential age- or maturity-
21 22	134	related effects on differential physiology between youth and adults. Notwithstanding
23 24 25	135	other age-related and/or maturity-related differences in physiology (e.g. skeletal,
26 27	136	cardiovascular, respiratory or endocrine systems), practitioners must be cognizant of
28 29 30	137	the fact that these systems will develop during childhood and adolescence at different
31 32	138	rates and in a non-linear manner (157). This variance in physical development is most
33 34	139	notable when comparing a group of children of the same chronological age (23, 145,
35 36 37	140	154, 156), whereby individuals of the same chronological age can differ markedly
38 39	141	with respect to biological maturity (14, 145, 157). Biological maturation reflects the
40 41 42	142	process of progressing towards a mature state, and varies in timing and tempo, and
43 44	143	between different systems within the body (22). Significant inter-individual variance
45 46 47	144	exists for the extent (magnitude of change), timing (onset of change) and tempo (rate
48 49	145	of change) of biological maturation. In addition to these developmental incongruities
50 51	146	amongst youth, the manner in which they respond to, and recover from, training is
52 53 54	147	likely to differ between youth of the same age or maturation status (5, 15, 16, 147,
55 56	148	219). Indeed, a real challenge for sport and exercise scientists and practitioners
57 58 59		
60 61		
62 63 64		6
65		

working with youth is to determine whether changes in performance are mediatedfrom training-induced or growth-related adaptations.

152 Effects of sport and physical activity on growth and development

Physically-active children will typically outperform those that are inactive in most indices of physical performance (155). Being inactive is associated with a high probability of being overweight or obese during the growing years (179, 253). Therefore, physical activity, exercise and sport should be viewed as key preventative treatments for unfavourable weight status and an important precursor for healthy growth and development (75, 76, 183). There exists a positive relationship between motor skill competence and physical activity across childhood (214). Therefore, it is essential that all youth are encouraged to enhance athleticism from an early age by engaging with multi-faceted training inclusive of a range of different training modes (142). Previous misconceptions regarding the impact of physical training on growth and development trajectories are not supported with literature, especially as data are often correlational and cross-sectional in nature (22, 156). While fears previously existed surrounding the effect of physical training on eventual growth of youth (especially in sports such as gymnastics), evidence now indicates that well-supervised physical training does not impair the development of secondary sex characteristics (153), does not delay age at menarche (160) and does not restrict eventual growth height (22, 152). Moreover, when rest and training are prescribed systematically, moderate-to-high intensity exercise is needed to help bone mineral accrual during childhood and adolescence (3, 13, 87, 88, 116, 118, 267), which is of great benefit for long-term skeletal health.

Owing to the unique physiology of children, it is clear that practitioners working with youth require a sound understanding of pediatric exercise science in order to i) prescribe training programs that are commensurate with the needs and abilities of the individual, ii) distinguish between training-induced and growth-related adaptations in performance (either positive or negative), and iii) understand the manner in which growth, maturation and training interact to optimize the training response and the development of athleticism.

Youth of all ages, abilities and aspirations should engage in long-term athletic development programs that promote both physical fitness and psychosocial wellbeing.

The development of physical fitness in youth is a complex process, which involves
the interaction of growth, maturation and training (5, 15, 16, 145, 219, 261).
Practitioners should appreciate the potential impact that other lifestyle factors will
have on physical fitness development and physical activity engagement, including
dietary behaviours (48, 52), educational stress (159), sleep patterns (95, 163),
psychosocial health (24) and unrealistic external pressures from significant others
such as parents or coaches (201, 251). Cumulatively, all these factors can impact the

192 engagement and enjoyment experienced by youth, adherence rates to training

193 programs, and consequently the magnitude and rate of development of physical

194 fitness.

Despite many factors impacting the training process of youth, there is often varying
levels of understanding and a lack of coordinated planning amongst those personnel
who are responsible for the long-term welfare and well_being of children and

adolescents. With these inconsistent approaches between key personnel in mind, from a global perspective two primary corollaries are evident within the pediatric literature. *Firstly*, the number of youth who are physically inactive, overweight or obese and demonstrate poor standards of physical fitness, deficient levels of muscular strength and inadequate motor skill competency follows an unfavourable trajectory (40, 44, 53-55, 105, 107, 175, 194, 195, 220, 257). Of note, the term exercise deficit disorder (EDD) has been proposed to describe a condition characterized by reduced levels of moderate-to-vigorous physical activity that negatively impact the health and wellbeing of youth (75, 76). Importantly, children and adolescents who present with symptoms or behavioural patterns reflective of EDD should be prescribed exercise interventions geared towards the development of fundamental movement skills, foundational strength and general athleticism (76). The prevalence of substandard athleticism in modern-day youth will likely increase the prevalence of overweight or obese youth (114, 115), but also increase the relative risk of injury for inactive youth who eventually engage with physical activity or sports (25). Secondly, a growing concern for practitioners is the number of youth reporting with sport-related injuries as a consequence of over exposure to high volumes of sport-specific training/competition in the absence of adequate rest and recovery (120). Consequently, there are an increased number of young athletes experiencing nonfunctional overreaching, overtraining, burnout and eventual drop out from sport (57, 162). Young athletes should be encouraged to participate in a variety of activities and sports, avoid year-round training for a single sport, and should be carefully monitored in a coordinated manner to prevent the risk of non-functional overreaching or overtraining.

Due to the multifactorial nature of physical fitness development and the current trends linked with both insufficient and excessive (specialized) amounts of physical activity, a long-term and structured approach to the development of athleticism in youth is warranted. Irrespective of the population (e.g. youth, adult, seniors), it is generally accepted that a structured training program will produce superior results than unstructured training or no training at all (206). Long-term and systematically progressed approaches to developing athleticism in youth, delivered by qualified professionals, will enable more effective control over training variables, a reduction in the risk of overtraining and an enhanced overall adaptation in physiology and performance. While a number of authors have previously discussed the role of longterm athletic development models in developing human performance or sporting talent (9, 10, 49, 92, 142, 146), it is vital that practitioners acknowledge that the constructs of long-term athletic development are appropriate for youth of all ages and abilities (143). While a systematic approach to the development of athleticism is required to prepare aspiring young athletes for the demands of sport (69), it is imperative that all youth, including those that are inactive, underweight, overweight or obese are afforded the same opportunity to engage in dynamic, integrated and evidence-based training programs that promote the development of both health and skill-related components of fitness (75, 143, 144, 180, 182).

Performance versus participation pathways

Despite existing models for the long-term development of athleticism providing
structure and guidance for practitioners, it should be noted that any model should not
be viewed as a stringent blueprint that can be superimposed on any participant, within
any environment. Rather, practitioners must ensure that wherever possible, long-term

training programs are tailored to the needs of the individual and within the confines of the unique demands of the training environment. This is a pertinent factor owing to the highly individualised interaction effects of growth and maturation on the training response of youth. Regardless of the model that a child enters, it is imperative that they are able to transition between developmental pathways (143). Adolescence offers a time in which young athletes are more likely to drop out of competitive sport (85), but some individuals will subsequently remain involved in sport or physical activity at a recreational level. Similarly, an adolescent may be identified by a sporting organization as a talented athlete who has previously only participated in recreational physical activities. In either event, the adolescent should be supported from a holistic perspective. Physically, they should be prescribed suitable training that prepares them for the demands of their sport or physical activity while enabling them to achieve recommended exposure to daily physical activity (264). They should also be provided with relevant support that encourages the development of a positive sense of selfworth, self-confidence, motivation and enjoyment to foster a lifetime of engagement in sport and physical activity.

3. All youth should be encouraged to enhance physical fitness from early
 childhood, with a primary focus on motor skill and muscular strength
 development.

Whether a child is engaged with competitive sport or simply participates in
recreational physical activity, a common philosophy of long-term athletic
development models is that engagement in physical activity during early childhood is
vital (143). The developmental time_frame of brain maturation is associated with a
heightened degree of neural plasticity during childhood (37, 38, 181, 215). This stage

1	274	of development
1 2 3	275	synaptic pathway
4 5	276	of the motor skil
6 7 8	277	development ind
9 10	278	based on the acq
11 12 13	279	the development
14 15	280	of fundamental r
16 17 18	281	joint, multi-plan
19 20	282	force production
21 22	283	production are g
23 24 25	284	target the develo
26 27	285	corticospinal tiss
28 29 30	286	coordination and
31 32	287	components of n
33 34 35	288	both qualities du
36 37	289	strength and con
38 39	290	health- and skill-
40 41 42	291	that enhances bo
43 44	292	childhood, is rec
45 46 47	293	and adolescents
48 49	294	
50 51 52	295	For the long-terr
53 54	296	"vocabulary" of
55 56 57	297	foundations on v
57 58 59	298	developed (134,
60 61		
62 63 64		
65		

involves the process of pruning and an overall strengthening of the ys (148, 237, 238, 241) and provides an opportunity to take advantage ll potential of children. Existing models of long-term athletic dicate that training foci during the initial stages of childhood should be uisition of rudimentary and fundamental motor skills in addition to t of foundational strength (10, 39, 143, 146). While correct execution motor skills requires coordinated sequencing of multi-muscle, multiar movements, there will always be a requirement for complimentary and force attenuation. Neuromuscular coordination and force overned by neural activation and control, and thus it is optimal to opment of motor skills and muscular strength at a time when the sue in children is highly 'plastic' (188). Practitioners should not view d muscular strength as separate entities, but rather synergistic notor skill performance (39) and should therefore seek to develop uring early childhood. While youth should engage in multidimensional ditioning programs that use a range of training modes to develop both -related components of fitness, prioritizing neuromuscular training oth muscular strength and motor skill prowess, starting from early commended for the long-term physical development of both children (70, 75, 142).

For the long-term enhancement of athleticism, developing a proficient physical
"vocabulary" of fundamental motor skills during early childhood should serve as the
foundations on which more advanced and complex specific motor skills can be later
developed (134, 142, 188). Specifically, fundamental motor skills encompass the

ability to perform locomotive, manipulative and stabilizing movements (149). Complimenting motor skill training with muscular strength development during early childhood is crucial as muscle strength is a key determinant of motor skill function (70). Muscular strength is strongly associated with a multitude of physical qualities in youth, for example speed and power (45). Additionally, enhancing muscular strength using resistance training can improve physical performance (15, 108, 141), improve markers of health in obese and overweight youth (18, 19, 229-231, 247), and help reduce the risk of sports-related injury (172, 180, 190, 256). Thus, a primary aim of long-term athletic development programs should be to develop resilient, strong and technically proficient youth, who can robustly maintain motor skill competence within the demands of any sporting or recreational activity. This philosophy is of particular importance considering recent trends in the neuromuscular fitness of youth (44, 175, 220). A meta-analytical review of 34 training studies showed that pre- and early-pubertal youth achieved resistance training-induced gains in motor skills that were approximately 50% greater than adolescents (15), thus highlighting the increased trainability of motor skills in children. Aside from the development of athleticism, preparatory conditioning inclusive of motor skill and muscular strength development provides an appropriate strategy for reducing the relative risk of injury for youth during sport and physical activity later in life (69, 80, 111, 112, 190). Motor skill competence, and indeed the perception of motor skill competence, is an important antecedent of physical activity during childhood (42, 83, 107, 135, 214, 242) and adulthood (140, 149). Cumulatively, early engagement in developmentally appropriate training during childhood is warranted for the optimization of athleticism, lifelong health and wellbeing, and the reduction of relative risk of injury.

Starting age

325	Although there is not a single chronological age at which it is deemed acceptable for
326	youth to formally start training, recent guidelines recommended that any child
327	engaging in a form of resistance training is emotionally mature enough to accept and
328	follow directions and possesses competent levels of balance and postural control
329	(approximately 6-7 years of age) (134, 141, 189). However, children should engage
330	with exploratory and deliberate play from early childhood (from birth up to the age of
331	5-6 years) inclusive of activities designed to develop fundamental motor skills (138)
332	and foundational levels of strength (e.g. gymnastics or similar bodyweight
333	management activities) (143). If children are ready to engage with organized sports,
334	they are ready to participate in developmentally appropriate strength and conditioning
335	as part of a long-term approach to developing athleticism (189).
336	
337	4. Long-term athletic development pathways should encourage an early sport
338	sampling approach for youth that promotes and enhances a broad range of
339	motor skills
340	Sampling refers to an approach that encourages youth to engage in a variety of sports
341	or activities and a number of positions within a given sport. Literature has stated that a
342	sampling approach does not restrict elite sporting development, but in fact, facilitates
343	longer sporting careers and increases the chance of sustained participation in physical
344	activity (50). Conversely, early specialization refers to the concept of a child
345	participating in year-round intensive training within a single sport or physical activity
346	at the exclusion of others (57, 265). Concerns exist regarding the adoption of an early
347	specialization approach in youth, largely due to the inherent associations with
348	increased risk of injury (36, 78, 79, 104, 119, 120, 187, 192, 235), the potential
	 326 327 328 329 330 331 332 333 334 335 336 337 338 337 338 337 340 341 342 343 344 345 346 347

'blunting' of an individual's motor skill portfolio (57, 144, 176, 186), a reduced
standard of performance later in life (28, 84, 96, 174, 268), an increased risk of
overtraining or dropout from sport or physical activity (4, 35, 151, 187), and the nonguarantee of achieving elite level performance (28, 101, 174).

- *Effects of early specialization on physical performance*

Irrespective of the potential risks associated with early sport specialization, both children and adolescents are being encouraged to engage earlier with sports often due to the lure of a higher standard of performance, for example securing national team selection, college scholarships or professional contracts. The assumption that earlier specialization will lead to enhanced sports performance has largely been driven by the incorrect extrapolation of data examining the development of expert musicians and the proposed "10,000 hour rule" (66). The rule denotes that an individual must acquire 10,000 hours of deliberate practice to attain mastery in a given sport or activity, which could also be viewed as dedicating specific practice to the same sport or activity for three hours a day for 10 years. However, in a recent editorial it was suggested that their seminal work on expert performers had been misinterpreted and that expert performance had been achieved by some with just 5,000 hours of practice (65), which is more reflective of the training volumes reported for actual sports performers (174). Consequently, practitioners should not subscribe to the hypothetical 10,000 hour rule, but instead value the *quality* of practice rather than a specific quantity of practice.

The early specialization approach is particularly common when young childrendisplay innate talent at a young age, leading to significant others (e.g. parents or

coaches) seeking achievement by proxy distortion and going beyond normal ambition for success (251). However, while it may be a common view that an accumulation of greater volumes and intensities of sport specific practice at a young age will lead to sporting success, existing data do not support this notion, with the number of individuals transitioning from entry level to elite standard across a range of sports in a linear fashion remaining small (101). For sports measured in centimetres, grams or seconds (e.g. track and field, swimming or weightlifting), later specialization and exposure to lower volumes of specific practice earlier in life are significant determinants of elite performance in adulthood (174). Despite potential early accomplishments, in general athletes who specialized at an earlier age experienced less success as they became older (174). Furthermore, athletes who did achieve elite sporting success were found to intensify their training towards the end of adolescence, leading to greater volumes of training towards early adulthood. Similarly, adopting a sampling approach and investing in multiple sports as opposed to specializing in a single sport produced improved performances in gross motor coordination and standing broad jump tests in 10-12 year old boys (84). In addition, the analysis of retrospective data across a multitude of sports indicates that individuals who participated in three sports or more between 11-15 years of age were more likely to play national compared with club standard sport between 16-18 years (28).

394 Effects of early specialization on injury risk

The risks of overuse injury appear to increase as a result of early specialization due to the repetitive sub-maximal loading on the musculoskeletal system in the absence of sufficient recovery time for subsequent adaptation (57, 239). For example, data showed that from a sample of female youth athletes, those who had specialized at an

arlier age had a 1.5-fold greater risk of knee-related injury (104). The authors also
reported that diagnoses including patellar tendinopathy and Osgood Schlatter Disease
exhibited a 4-fold increased relative risk in single sport specialized versus multiple
sport athletes (104). In a similar study, data on 1,190 individuals showed that after
accounting for age and time spent playing sport, sports-specialized training was a
significant independent risk factor for acute and serious overuse injury (120).

The increased training volumes associated with early specialization are a pertinent injury risk factor for youth (119). For example, high training volumes and competitive workloads are strongly associated with an increased risk of overuse injury in adolescent baseball pitchers (200). Additionally, high volumes of weekly running mileage are significantly associated with increased risk of lower limb injury in adolescent runners (248), while a high training volume was the most influential risk factor for injury in a cohort of 2,721 high school athletes across a variety of sports (216). Recently, Jayanthi et al. (120) revealed a heightened risk of injury when youth participated in more hours of sports practice per week than their number of years in age, or whereby the ratio of organized sports to free play time was in excess of 2:1. Regardless of age, existing data support the notion that youth should not train in excess of eight months per year in a single sport (120, 200), while the weekly training volume of 16 hours marks a threshold above which the risk of injury increases (144, 187).

421 Overexposure to a narrow range of specific movement patterns with insufficient rest
422 and recovery, and an ensuing blunted motor skill portfolio are common links to both
423 the reduced physical performance and higher risk of injury associated with early sport

specialization. By exposing youth to different sports and activities and adopting a movement variability approach to motor skill development within different environments, they are less likely to chronically over stress specific regions of the musculoskeletal system, therefore reducing their risk of overuse injury. Adopting a movement variability philosophy will ensure that the point of force application will constantly vary; thus promoting more global whole-body adaptation, facilitating change in coordination, and reducing injury risk (12). With regards to physical performance, developing a broad spectrum of fundamental motor skills will enable more intricate and reactive global movements that are inherently witnessed in sports, physical activity and free play to be developed (149). Qualified professionals should focus on developing a wide breadth of movement skills as opposed to a depth of mastery in a small range of skills to better enable the individual to produce effective and efficient movements in a wide range of environments and to maximize their overall athleticism.

439 5. Health and wellbeing of the child should always be the central tenet of long440 term athletic development programs.

Health can be defined as "a condition of wellbeing free of disease or infirmity and a basic and universal human right" (227). Huppert et al. (117) defined wellbeing as a positive and sustainable state that enabled an individual, group or nation to thrive and flourish. Participation in sports has been acknowledged as a viable means to promote wellbeing in youth (59, 63, 240); however the International Olympic Committee stated that while youth should engage with sports, the process should be both pleasurable and fulfilling in order to sustain participation and success at all levels (21, 177). Collectively, these philosophies should apply to all forms of physical activity

for youth, inclusive of well-rounded strength and conditioning programs (69, 196).
Irrespective of whether a child is involved with competitive sports or recreational
physical activity, health and wellbeing should at all times be a key priority of any
long-term athletic training program.

454 Psychosocial factors in health and wellbeing

Youth should be exposed to positive experiences through sport and physical activity to maximize wellbeing. The primary reason that children initially engage with sport and physical activity is for fun, enjoyment and to experience different activities (2). Similarly a lack of fun and enjoyment is commonly the main cause of dropout from sport (32, 51). To promote wellbeing in youth, practitioners should seek to develop (i) a growth mind-set, (ii) self-determined motivation, (iii) perceived competence, (iv) confidence and (v) resilience (196). Specifically, a growth mind-set will foster the belief that effort, purposeful practice and guidance from qualified professionals will lead to development and success; while self-determined motivation reflects a state of mind that leads to a child participating in sport or physical activity for its interest, enjoyment, inherent satisfaction and sense of challenge (221). Perceived competence is an important attribute to develop in youth, as it is strongly associated with participation in physical activity (140, 214), especially during adolescence where the use of social comparison among youth and the role of peer support becomes more influential (30, 222, 223). Confidence is strongly related to reduced anxiety, positive emotions and successful performance (260), while resilience is defined as the ability of an individual to retain stability or recover quickly under significant adverse conditions (137). To enhance wellbeing, qualified professionals should integrate a combination of strategies, including the use of mental skill training, process-oriented

goals, clear and positive feedback, while maintaining a fun agenda to all sessions.Similarly, qualified professionals should foster a training environment in which

476 developmentally appropriate activities are prescribed, encouragement is reinforced

and whereby task failure is viewed as a positive aspect of the learning process.

479 Physical factors in health and wellbeing

Youth should engage with developmentally appropriate, well-rounded strength and conditioning programs from an early age that prioritize a long-term view to the development of athleticism. Therefore, chronic and sustainable adaptations should be the ultimate goal of youth training provision as opposed to acute gains in performance. Welfare is closely associated with the basic human rights of the child and will aid in the promotion of wellbeing (197). Training should at all times respect these rights and be commensurate with the technical competency, training history, and stage of growth and development of the child (178). Under no circumstance should physical exertion be forced that could be deemed abusive practice within a youth training program (129). Examples may include exercise programs which could be injurious activities that are not in any way beneficial, or prescription that could be viewed as a form of punishment (129). Forced physical exertion, prescribed as a form of physical punishment, can have severe physical consequences such as that which led to a 12-year old boy being hospitalized with exertional rhabdomyolysis (41); a situation that is unethical and entirely unacceptable. Training prescription should be balanced with adequate rest to enable recovery and growth processes to occur and to avoid the risks of accumulated fatigue and associated risks of overtraining (57, 162).

498 6. Youth should participate in physical conditioning that helps reduce the risk of 499 injury to ensure their on-going participation in long-term athletic 500 development programs.

While it is impossible to completely eliminate sport- and physical activity-related injuries, developmentally appropriate training can reduce the relative risks of injury in youth (21, 74, 109, 141, 190, 217, 236, 245, 256). More specifically, when youth participate in well-rounded strength and conditioning programs, inclusive of resistance training, motor skill and balance training, speed and agility training and appropriate rest, the likelihood of experiencing an injury can be reduced by as much as 50% (172, 256). The cause for the reduction in injury incidence, or injury risk factors, is likely due to improved movement biomechanics, increased muscle strength and enhanced functional abilities (74, 110, 158, 184). From a long-term athletic development perspective, it is imperative that youth, and those that are responsible for their developmental programming, realize the importance of following strength and conditioning programs that suitably prepare them for the demands of sport and physical activity. For example, early engagement in neuromuscular training is likely to result in a reduced risk of anterior cruciate ligament injury later in life in female athletes (190). The authors speculated that this finding was likely attributable to a window of opportunity for developing sound motor skills and concomitant strength levels prior to the onset of puberty which is known to be a developmental stage where youth experience significant alterations in movement biomechanics (81, 113), force attenuation capabilities (207) and lower limb strength ratios (208). It should also be recognized that sports participation alone does not provide a sufficient stimulus to develop high levels of athleticism in youth, as many sporting practices fail to provide adequate exposure to recommended daily physical activity guidelines (100, 136), nor

does it allow for individual needs to be addressed such as muscle imbalances orreduced ranges of motion (144).

526 'Underuse' as a risk factor for injury

While an abundance of data now exist that supports the inclusion of preparatory conditioning for young athletes (21, 64, 123, 190, 246, 256), the long-term development of athleticism must also be viewed as a valuable injury prevention tool for non-athletic youth. Physical inactivity is a major risk factor for activity-related injuries in children (25, 243) and global statistics indicate that levels of inactivity in modern day youth remain worryingly high (191, 252, 254). Intuitively, much like young athletes who are often ill prepared for the high volumes of sport-specific practice and competitions, inactive youth are also unlikely to be suitably prepared for the demands of competitive/recreational sports or even general physical activity. For example, overweight and obese youth are twice as likely to suffer an injury during sports or recreational physical activity in comparison to their normal weight peers (165). Thus, 'underuse' is likely the most dangerous risk factor for a number of youth, which highlights the critical importance of appropriately designed long-term athletic development models.

542 Influence of growth and maturation on injury risk

543 Current data indicate that the risk of injury, in particular to the lower limb, peaks 544 around the time of the adolescent growth spurt (33, 58, 113, 185, 258). During this 545 period of rapid development, there are disproportionate growth rates between 546 structural tissues, with bone growing earlier and at a faster rate than both muscle and 547 tendon, which lag behind (130). The growth differential between these tissues can

1	548	lead to discomfort and reduced flexibility around joints (130); however, it is the
2 3	l 549	marked increase in growth rate during this stage of development which leads to
4 5	550	increases in body mass and height of centre of mass in the absence of corresponding
6 7 8	551	adaptations in strength and power, which can lead to excessive loading of the
9 10	552	musculoskeletal system during dynamic and reactive actions (111, 130, 185, 258). For
11 12 13	553	example, the rapid increases in both stature and body mass in female adolescents
14 15	554	places them at increased risk of knee injury due to the increased stature developing
16 17 18	555	without concomitant increases in hip and knee strength (185). The development of
19 20	556	muscular imbalances around the pubertal growth spurt is also a viable risk factor, with
21 22	557	longitudinal data in adolescent females showing that hamstring-to-quadriceps strength
23 24 25	558	ratios decrease from pre-pubertal to pubertal stages (208). This muscle imbalance is
26 27	559	of particular concern as when fatigued, both young and adult females utilize a less
28 29 30	560	favourable activation strategy (56, 128, 167, 202), reducing their ability to
31 32	561	appropriately dissipate aberrant knee loads indicative of an anterior cruciate ligament
33 34 35	562	injury mechanism (112, 132). Although mechanistic data are required for young
36 37	563	males, recently it has been suggested that the adolescent growth spurt is a
38 39 40	564	developmental time_frame in which the risk of traumatic injury in pubertal males is
40 41 42	 565	intensified (228, 258). Finally, bone mineralization typically lags behind linear bone
43 44	566	growth during the pubertal spurt, thus leading to increased bone porosity and
45 46 47	567	exposing the bone to a heightened risk of fracture (8). Consequently, irrespective of
48 49	568	participation in competitive sports or non-competitive recreational physical activity,
50 51 52	569	all youth should participate in long-term training programs to promote the level of
53 54	570	athleticism required to withstand the physical demands associated with their chosen
55 56 57	571	activity and to offset growth- and maturity-associated risk factors.
58 59	572	
60 61		
62 63 64		23
65		

573 7. Long-term athletic development programs should provide all youth with a 574 range of training modes to enhance both health- and skill-related components 575 of fitness

576 Trainability of youth

Trainability refers to the responsiveness of youth to a given training stimulus at various stages of development. As the field of pediatric exercise science continues to evolve, practitioners will gain a greater understanding of how responsive youth are to different modes of training. Our understanding of trainability typically emanates from largely discrete, cross-sectional interventions, and these combined data indicate that both children and adolescents can make significant and worthwhile changes in motor skills (15, 67, 98), muscle strength and power (16, 68, 141), running speed (121, 219), agility (122, 171) and endurance performance (5, 161, 168). Recent data indicates that continual exposure to various training methods can benefit both children and adolescents (125, 126, 224). Of the longer-term interventions, two years of strength training have produced significant improvements in relative lower body strength (125); faster change of direction speed (126); and 30 meter sprint speed (224). Despite showing the many benefits of strength training on measures of physical performance in youth, these studies did not account for the influence of maturation or sex on rate and magnitude of change. Thus, the interaction of growth, maturation and training during childhood and adolescence remains unclear and warrants further research. Whereas strong evidence indicates that worthwhile gains in physical performance are

achieved with strength and motor skill developmental models, limited evidence is
available relative to the mode of exercise that should be prioritized at specific stages
of development. Previous models of long-term athletic development have promoted

the theory of 'windows of opportunity' that provide youth with specific time periods in which to train specific components of fitness (10), and failure to train specifically during these windows limiting performance capacity later in life (10). While this theory attempted to bridge our understanding of growth, maturation and training, this concept has since been challenged largely owing to a lack of supporting longitudinal empirical data (82). Combined with existing pediatric training literature, it becomes clear that both children and adolescents can make worthwhile improvements in all components of fitness irrespective of their stage of development (69, 70, 142, 143), and consequently long-term training programs should seek to develop athleticism throughout the developmental period of childhood and adolescence.

While both children and adolescents can make significant improvements in various physical fitness qualities (e.g. strength, motor skills, speed and power), the most efficacious training modes used to acquire these adaptations may complement the physiological adaptations occurring as a result of growth and maturation, a process recently termed 'synergistic adaptation' (69, 147). Specifically, a meta-analysis examining the effects of different training methods on sprint speed development in male youth showed that boys who were pre-peak height velocity made the greatest improvements in sprinting following plyometric training, while boys who were post-peak height velocity responded more favorably to combined strength and plyometric training (219). Similar findings were recently reported in a 6-week training intervention that showed boys who were either pre- or post-peak height velocity were all able to make significant improvements in jumping and sprinting following various 6-week resistance training programs (147). Plyometric training will promote similar neural adaptations that are occurring naturally as a result of growth and maturation

prior to puberty, while combined strength and plyometric training will likely stimulate both neural and structural adaptations commonly seen after the pubertal growth spurt. Longitudinal research is now required to substantiate these claims of synergistic adaptation and to determine optimal training prescription for youth of different stages of development.

8. Practitioners should use relevant monitoring and assessment tools as part of a long-term athletic development strategy

For the welfare and wellbeing of youth, long-term training prescription should be complimented with appropriate monitoring and assessment tools. In the absence of careful monitoring, youth may be at an increased risk of excessively demanding training loads, insufficient opportunities for rest and regeneration, or contraindicating training methods (144). It is suggested that the training of youth should be monitored by qualified professionals to reduce the risks of excessive training (4, 57, 177) and accumulated fatigue (106), which in severe cases can lead to non-functional overreaching or overtraining (127, 144, 162, 210). Those personnel responsible for the athletic development of youth should adopt a co-ordinated approach to the monitoring process. Wherever possible, qualified professionals should also attempt to educate the child and their parents and raise awareness of the risks and symptoms of non-functional overreaching and related injuries or illnesses. The child and parents should also understand the roles of basic self-reporting monitoring strategies (sleep patterns, nutritional behaviour, physical activity exposure outside of the training environment) and the potential impact of appropriate remedial strategies.

Qualified professionals will typically use monitoring and assessment tools to determine training for effectiveness, to aid in program design, determining mechanisms of adaptation, to instill motivation within the child or adolescent, or to further knowledge and understanding about the physiological demands of a sport or physical activity. However, various testing and assessment strategies are also used for the purposes of talent identification (204). Although a goal of identifying future potential talent is perhaps appealing, the process of identifying and subjectively selecting talent from a very early age typically favours early maturing, while excluding later maturing youth (31, 43, 91, 164, 225). Additionally, a comprehensive talent identification process is often time-consuming, expensive and, crucially, the success rates of identified children transferring through to elite level adult sport is questionable (255).

Although a wealth of monitoring and assessment tools are available for practitioners, the number and sophistication of tools included within any long-term athletic development program should be dependent upon the efficacy and relevance of the tests, their associated measurement error, the availability of time, equipment and facilities, and the degree of the practitioner's expertise. Importantly, practitioners should select tests that are accurate, reliable, and valid and provide meaningful data. Similarly, at all times it is essential that practitioners adhere to the ethics of pediatric testing, clearly explain all protocols to both children and parents, and collect both parental consent and participant assent prior to any testing (244, 266).

670 Monitoring growth and maturation

Due to the influence of growth and maturation on measures of physical performance (22, 261), relative risk of injury (81, 113, 258) and the propensity for early maturing youth to be selected in sports teams as a result of the relative age effect (89, 93, 226), it seems plausible that practitioners should attempt to monitor physical growth throughout childhood and adolescence. Recent reviews have provided summaries of existing methods for the identification, or at least estimation, of biological maturation (145, 156). It is acknowledged that the invasive methods have their own strengths and weaknesses, while non-invasive methods of estimating maturity require further validation especially within different ethnicities (154, 156). Despite the need for further research, it is recommended that where practitioners are working with youth for a prolonged period of time, quarterly assessments of stature, limb length and body mass are taken to allow the analysis of growth curves. This information can be collected and provide practitioners with relevant information to help explain fluctuations in performance and aid in the identification of youth who are experiencing rapid growth, which may potentially place them "at-risk" of growth-related injury (145).

688 Monitoring physical performance

There are a myriad of existing test protocols for assessing physical capacities, such as muscle strength and power (72, 73, 86, 141, 173), running speed (170, 218), aerobic capacity (6, 11, 263), or motor skill competency (46, 47, 60) and practitioners should adopt those that are most viable for their particular environment. For example, it may be feasible for practitioners within elite youth sports teams to assess kinetics and kinematics using force plate diagnostics and motion capture systems (184), whereas a primary school teacher may only be able to test a child's performance on a standing

broad jump (7) and collect some data on how subjectively difficult training sessions were by using a child-modified version of the rating scale of perceived exertion (RPE) (99). Both scenarios are likely to provide valuable information related to athletic development and subsequent training prescription. Qualified professionals should appreciate that when assessing physical capacities in youth, it is important to value both the process of performance (i.e. how technically proficient an individual performs a jumping movement) and the product of performance (i.e. how far do they jump).

Monitoring psychosocial wellbeing

While practitioners may instinctively focus on assessing and monitoring measures of physical performance, for the holistic development of youth, it is imperative that consideration also be given to psychosocial wellbeing (197). Various wellbeing monitoring tools have been reported in the literature; a modified version of the Profile of Mood States questionnaire has previously been shown to be a valid tool for assessing mood in adolescents (249), the recovery-stress questionnaire has been used to identify non-functional overreaching in youth (29), the acute recovery and stress scale has been shown to be a sensitive and valid tool to monitor recovery stress imbalances (131), while researchers recently showed how a simple wellbeing questionnaire (166) was able to detect perceived wellbeing in a group of adolescents (199). The wellbeing questionnaire consists of five key items (fatigue, sleep quality, general muscle soreness, stress levels and mood) in which youth provide a score on a rating scale of 1 (least positive response) to 5 (most positive response) in 0.5 increments (166, 199). While psychosocial wellbeing is multifactorial, it is suggested that practitioners utilize some form of monitoring system to help identify youth that

are potentially "at risk" of low wellbeing and to ensure that children and adolescents remain motivated to participate in sports or physical activity. Where practitioners are unable to directly monitor or record data, they should have an awareness of the warning signs of reduced wellbeing. For example Matos et al. (162) identified the most prevalent symptoms of overtraining in youth as: a loss of appetite, increased frequency of injury, frequent tiredness, inability to cope with training loads, frequent respiratory infections, heavy and stiff muscles and disrupted sleep patterns.

9. Practitioners working with youth should systematically progress and

individualize training programs for successful long-term athletic development When working within a long-term athletic development pathway, it is imperative wherever possible, for qualified professionals to adopt a progressive, individualized and integrated approach to the programming of strength and conditioning activities. Regardless of whether a practitioner is working with an overweight prepubertal boy who is re-engaging with physical activity, or a talented adolescent girl with eight years of high quality training experience, there should be a clear goal commensurate with the needs of the individual. While existing athletic development models provide generic guidelines for qualified professionals to consider for the long-term development of athleticism (142, 143), the process of designing, implementing and refining youth training programs should be dictated by the needs of the individual, their technical competency, and the needs of the relevant sports or activities. Also, program design and delivery should accommodate for other influential factors such as the time and facilities available for training, the pressures of academic work, and the need for socializing with family and friends.

Challenges associated with programming for youth

Periodization represents the theoretical framework for developing a training program (203) and involves planning sequential blocks of training to maximize the overall training response. However, in the event of insufficient time allowance for rest and recovery, fatigue will accumulate and potentially lead to non-functional over-reaching or in extreme cases, overtraining or burnout (169). Fatigue management and the prevention of overtraining are recognized as key determinants of successful programming (206), and the long-term development of athleticism in youth is predicated by balancing exposure to training with sufficient time for rest, recovery and growth. Much like adults, failure to accommodate for periods of rest will undoubtedly make children more susceptible to the negative consequences of overtraining or overuse injury (36, 162). Planning for rest and recovery to enable natural growth processes to occur is a key moderator that differentiates youth programming from that of adults.

The challenge of balancing training stimuli with recovery time becomes even more difficult where youth are engaged with multiple sports or activities in successive seasons (e.g. a fall, a winter and a summer sport), or play for multiple teams within a single season (e.g. youth who play soccer at club, regional and national level). Dismissing the need for adequate rest and recovery blocks will likely predispose youth to decrements in physical and psychological function (36). Therefore, when designing programs practitioners should prescribe rest and recovery periods as mandatory blocks of the overall training plan, irrespective of pressures from sports coaches or parents. In order to optimize physical development and minimize accumulated fatigue, practitioners should also consider the scheduling of training

versus competitions. For young children entering a long-term athletic development pathway, researchers suggest that a large proportion of time should be devoted to general preparatory training with a focus on development of fundamental movement skills and foundational strength; then as the child becomes older, a greater amount of time could then be devoted to their chosen sport or physical activity (103). Practitioners should also be cognizant of the risks associated with prolonged competitions and the amount of rest between, and leading up to, competition (187). Intensive competitions lasting 6 hours or more with insufficient rest are a risk factor for injury (27); while researchers also advocate that in the event of multiple competitions taking place on the same day, youth should be allowed adequate and pre-determined rest intervals between repeated bouts of activity (20). In the lead up to a sporting event, it has also been suggested that youth should be afforded at least 48 hours of rest prior to a competition and encouraged to sleep for longer than 7 hours per night (150) due to the negative effects of insufficient sleep on health, learning and physical performance (21, 34, 90).

787 Influence of growth and maturation on programming

Due to the fact that development in youth occurs in a non-linear fashion, practitioners need to be flexible and responsive to inter-individual variations in the timing, tempo and magnitude of physical maturation, differences in psychosocial maturation, and differences in rates and styles of learning. For example, during the growth spurt a child may experience temporary disruption in motor control and whole-body coordination, commonly termed 'adolescent awkwardness' (205, 209). In such an instance, practitioners may need to adjust the training program by prescribing opportunities to modify existing motor patterns with reduced loadings (145). This

scenario highlights the importance of qualified professionals working with youth to
not only possess a sound understanding of the training process and an ability to
observe and correct technique, but also an understanding of key pediatric exercise
science principles.

801 10. Qualified professionals and sound pedagogical approaches are fundamental 802 to the success of long-term athletic development programs

While a clear understanding of pediatric exercise science and training principles are fundamental to the long-term development of athleticism in youth, a strong grounding in pedagogy and coaching skills is also a necessity in order for the practitioner to effectively communicate and interact with youth of all ages and abilities (71, 142, 144). Practitioners should be able to call on a wide range of teaching strategies to ensure that all youth are exposed to mentally engaging and physically challenging training programs that foster a motivational climate and inspire holistic development from both a physical and psychosocial perspective. The ability to promote a motivational learning climate, in which all youth are able to participate in a variety of developmentally appropriate activities, engage in personal reflection, experience success and enhance competence (102), is an essential tool for practitioners in order to maximize the development of athleticism. From a holistic perspective, practitioners should seek to promote intrinsic motivation in youth as this will encourage a child or adolescent to be interested in participating, improving and developing skills, while also reducing the risk of youth being solely driven by external rewards, such as trophies or scholarships. Cultivating an environment that promotes intrinsic motivation and enjoyment while minimizing the negative effects of stress will result

in the best outcome for youth who need to learn and understand that successful
performance emanates from effort, hard work and desire (26, 124, 232-234).

Within the motivational climate, practitioners should demonstrate, explain, cue and modify exercises in a developmentally appropriate manner. While in the initial stages of developing athleticism a practitioner may need to provide guidance and feedback to teach basic motor patterns, in most instances a combination of visual demonstration with concise external cues should be prioritized to maximize the learning and feedback processes (17, 94). Recent evidence shows the benefits of using external as opposed to internal cues in the performance of rotational jumping techniques in young gymnasts (1), with researchers suggesting that attentional focus is improved when using externally oriented cueing. The effective management of children and adolescents, either within a competitive sporting or recreational physical activity environment, will also require clear and well prepared session structures (144), effective use of instruction (97), behaviour management strategies (213), the use of empowerment, varied use of projection and tone of voice, and a teaching style that inspires youth to continually engage in a lifetime of physical activity.

838 Summary

839 It is clear that the field of long-term athletic development has progressed over recent 840 years; however, owing to the current lack of longitudinal and well-controlled 841 empirical studies, further research is required. Specifically, a better understanding of 842 the training process in youth, the manner in which training interacts with growth and 843 maturation, and how long-term approaches to athletic development influence physical 844 performance, health and wellbeing and injury risk are key areas that require further

1	845	study. This new research is also required to validate existing practices amongst
1 2 3	846	qualified professionals and to ensure that youth are provided with evidence-based
4 5	847	practice at all times. All youth should be afforded training programs commensurate
6 7 8	848	with their individual needs, which foster a fun and motivational training environment.
9 10	849	However, above all else, it is imperative that qualified professionals adhere to the
11 12 13	850	words of President Franklin D. Roosevelt and help to build our youth for a lifelong
14 15	851	future of healthy and enjoyable engagement with sports and physical activity.
16	050	
17	852	
18	853	References
19	854	
20	855	1. Abdollahipour R, Wulf G, Psotta R, and Palomo Nieto M. Performance of
21	856	gymnastics skill benefits from an external focus of attention. J Sports Sci 33:
22		
23	857	1807-1813, 2015.
24		
25		
26	858	2. Allender S, Cowburn G, and Foster C. Understanding participation in sport
27	859	and physical activity among children and adults: a review of qualitative studies.
28 29	860	<i>Health Educ Res</i> 21: 826-835, 2006.
29 30	000	<i>Heunin Lune Res</i> 21. 020-055, 2000.
31		
32	0(1	
33	861	3. Alvarez-San Emeterio C, Antunano NP, Lopez-Sobaler AM, and Gonzalez-
34	862	Badillo JJ. Effect of strength training and the practice of Alpine skiing on bone
35	863	mass density, growth, body composition, and the strength and power of the legs of
36	864	adolescent skiers. J Strength Cond Res 25: 2879-2890, 2011.
37		
38		
39	865	4. American Academy of Pediatrics Council on Sports M. Intensive training and
40		
41	866	sports specialization in young athletes. <i>Pediatrics</i> 106: 154-157, 2000.
42		
43		
44	867	5. Armstrong N and Barker AR. Endurance training and elite young athletes.
45	868	Med Sports Sci 56: 59-83, 2011.
46		
47		
48	869	6. Armstrong N and Welsman JR. Assessment: aerobic fitness, in: Paediatric
49	870	<i>Exercise Science and Medicine, 2nd Ed.</i> N Armstrong, W Van Mechelen, eds.
50		-
51	871	Oxford: Oxford University Press, 2008, pp 97-108.
52		
53		
54	872	7. Artero EG, Espana-Romero V, Castro-Pinero J, Ruiz J, Jimenez-Pavon D,
55	873	Aparicio V, Gatto-Cardia M, Baena P, Vicente-Rodriguez G, Castillo MJ, and
56	874	Ortega FB. Criterion-related validity of field-based muscular fitness tests in youth.
57	875	J Sports Med Phys Fitness 52: 263-272, 2012.
58	075	5 Sports Micu I Hys I uness 52. 205-212, 2012.
59		
60		
61		
62		
63		35
64		

	876	8. Bailey DA, Wedge JH, McCulloch RG, Martin AD, and Bernhardson SC.
1	877	Epidemiology of fractures of the distal end of the radius in children as associated
2	878	with growth. J Bone Joint Surg Am 71: 1225-1231, 1989.
3	070	1111 growal o Done cow Swig 1110 / 11 1225 1251, 19691
4		
5 6	879	9. Bailey R and Morley D. Towards a model of talent development in physical
	880	education. Sport Educ Soc 11: 211-230, 2006.
7 8	000	education. Sport Educ 56c 11. 211-250, 2000.
o 9		
10	001	10 Delvi Lond Hemilton A. Long term athlete dural and their thilite in
11	881	10. Balyi I and Hamilton A. Long-term athlete development: trainability in
12	882	childhood and adolescence. Windows of Opportunity. Optimal trainability.
13	883	Victoria, British Columbia, Canada: National Coaching Institute & Advanced
14	884	Training and Performance, 2004.
15		
16		
17	885	11. Barker AR, Williams CA, Jones AM, and Armstrong N. Establishing maximal
18	886	oxygen uptake in young people during a ramp cycle test to exhaustion. Br J Sports
19	887	Med 45: 498-503, 2011.
20	007	Мей +5. +90-505, 2011.
21		
22 23	888	12. Bartlett R, Wheat J, and Robins M. Is movement variability important for
23 24		
25	889	sports biomechanists? Sports Biomech 6: 224-243, 2007.
26		
27	000	12 Dece CI. The anomaly stall second and involve and start starts of a second start
28	890	13. Bass SL. The prepubertal years: a uniquely opportune stage of growth when
29	891	the skeleton is most responsive to exercise? Sports Med 30: 73-78, 2000.
30		
31		
32	892	14. Baxter-Jones ADG, Eisenmann JC, and Sherar LB. Controlling for maturation
33	893	in pediatric exercise science. Pediatr Exerc Sci 17: 18-30, 2005.
34 35		
36		
37	894	15. Behringer M, Vom Heede A, Matthews M, and Mester J. Effects of strength
38	895	training on motor performance skills in children and adolescents: a meta-analysis.
39	896	<i>Pediatr Exerc Sci</i> 23: 186-206, 2011.
40	070	
41		
42	897	16. Behringer M, Vom Heede A, Yue Z, and Mester J. Effects of resistance
43	898	training in children and adolescents: a meta-analysis. <i>Pediatrics</i> 126: e1199-1210,
44	899	2010.
45	099	2010.
46		
47 48	000	
49	900	17. Benjaminse A, Gokeler A, Dowling AV, Faigenbaum A, Ford KR, Hewett
50	901	TE, Onate JA, Otten B, and Myer GD. Optimization of the anterior cruciate
51	902	ligament injury prevention paradigm: novel feedback techniques to enhance motor
52	903	learning and reduce injury risk. J Orthop Sports Phys Ther 45: 170-182, 2015.
53		
54		
55	904	18. Benson AC, Torode ME, and Fiatarone Singh MA. The effect of high-
56	905	intensity progressive resistance training on adiposity in children: a randomized
57	906	controlled trial. Int J Obes (Lond) 32: 1016-1027, 2008.
58	200	controlled that <i>Int J Obes (Long) 52</i> , 1010-1027, 2000.
59 60		
60 61		
62		
63		24
64		36

1 2 3 4	907 908 909	19. Benson AC, Torode ME, and Fiatarone Singh MA. Effects of resistance training on metabolic fitness in children and adolescents: a systematic review. <i>Obes Rev</i> 9: 43-66, 2008.
5 6 7 8 9	910 911 912	20. Bergeron MF, Laird MD, Marinik EL, Brenner JS, and Waller JL. Repeated- bout exercise in the heat in young athletes: physiological strain and perceptual responses. <i>J Appl Physiol (1985)</i> 106: 476-485, 2009.
10 11 12 13 14 15 16	913 914 915 916	21. Bergeron MF, Mountjoy M, Armstrong N, Chia M, Cote J, Emery CA, Faigenbaum A, Hall G, Jr., Kriemler S, Leglise M, Malina RM, Pensgaard AM, Sanchez A, Soligard T, Sundgot-Borgen J, van Mechelen W, Weissensteiner JR, and Engebretsen L. International Olympic Committee consensus statement on
17 18 19 20 21	917 918 919	 youth athletic development. <i>Br J Sports Med</i> 49: 843-851, 2015. 22. Beunen GP and Malina RM. Growth and biological maturation: relevance to athletic performance, in: <i>The Young Athlete</i>. H Hebestreit, O Bar-Or, eds. Oxford:
22 23 24 25	920 921	Blackwell Publishing, 2008, pp 3-17.23. Beunen GP, Rogol AD, and Malina RM. Indicators of biological maturation
26 27 28 29 30	922 923	and secular changes in biological maturation. <i>Food Nutr Bull</i> 27: S244-256, 2006. 24. Biddle SJ and Asare M. Physical activity and mental health in children and
31 32 33 34	924	adolescents: a review of reviews. Br J Sports Med 45: 886-895, 2011.
35 36 37 38 39	925 926 927	25. Bloemers F, Collard D, Paw MC, Van Mechelen W, Twisk J, and Verhagen E. Physical inactivity is a risk factor for physical activity-related injuries in children. <i>Br J Sports Med</i> 46: 669-674, 2012.
40 41 42 43 44	928 929 930	26. Breiger J, Cumming SP, Smith RE, and Smoll F. Winning, motivational climate, and young athletes' competitive experiences: some notable sex differences. <i>Int J Sports Sci Coach</i> 10: 395-411, 2015.
45 46 47 48 49 50	931 932 933	27. Brenner JS, American Academy of Pediatrics Council on Sports M, and Fitness. Overuse injuries, overtraining, and burnout in child and adolescent athletes. <i>Pediatrics</i> 119: 1242-1245, 2007.
51 52 53 54 55 56	934 935 936	28. Bridge MW and Toms MR. The specialising or sampling debate: a retrospective analysis of adolescent sports participation in the UK. <i>J Sports Sci</i> 31: 87-96, 2013.
57 58 59 60 61 62	937 938 939	29. Brink MS, Visscher C, Coutts AJ, and Lemmink KA. Changes in perceived stress and recovery in overreached young elite soccer players. <i>Scand J Med Sci Sports</i> 22: 285-292, 2012.
63 64 65		37

1 2	940 941	30. Buhrmester D and Furman W. The development of companionship and intimacy. <i>Child Dev</i> 58: 1101-1113, 1987.
3		
4 5	942	31. Burgess DJ and Naughton GA. Talent development in adolescent team sports:
6 7	943	a review. Int J Sports Physiol Perform 5: 103-116, 2010.
8 9	944	32. Butcher J, Lindner KJ, and John DP. Withdrawal from competitive youth
10	945	sport: a retrospective ten-year study. J Sport Behav 25: 145-163, 2002.
11 12		
13 14	946	33. Caine D, Maffulli N, and Caine C. Epidemiology of injury in child and
14 15	947	adolescent sports: injury rates, risk factors, and prevention. <i>Clin Sports Med</i> 27:
16	948	19-50, vii, 2008.
17 18		
19	949	34. Carskadon MA. Sleep and circadian rhythms in children and adolescents:
20 21	950	relevance for athletic performance of young people. Clin Sports Med 24: 319-328,
22	951	x, 2005.
23		
24 25	952	35. Carter CW and Micheli LJ. Training the child athlete for prevention, health
26	952 953	promotion, and performance: how much is enough, how much is too much? <i>Clin</i>
27	954	Sports Med 30: 679-690, 2011.
28 29	<i>y</i> 01	Spons neu 50. 017 050, 2011.
30	955	36. Carter CW and Micheli LJ. Training the child athlete: physical fitness, health
31 32	956	and injury. Br J Sports Med 45: 880-885, 2011.
33	550	
34		
35 36	957	37. Casey BJ, Giedd JN, and Thomas KM. Structural and functional brain
37	958	development and its relation to cognitive development. Biol Psychol 54: 241-257,
38	959	2000.
39 40		
41	960	38. Casey BJ, Tottenham N, Liston C, and Durston S. Imaging the developing
42 42	961	brain: what have we learned about cognitive development? Trends Cogn Sci 9:
43 44	962	104-110, 2005.
45		
46	062	20 Cottuzzo MT Dos Santos Hanrique D. Do AH. de Oliveiro IS. Malo DM. de
47 48	963 964	39. Cattuzzo MT, Dos Santos Henrique R, Re AH, de Oliveira IS, Melo BM, de Sousa Moura M, de Araujo RC, and Stodden D. Motor competence and health
49	964 965	related physical fitness in youth: A systematic review. J Sci Med Sport, 2014.
50	705	Telated physical fittless in youth. A systematic review. J Set Med Sport, 2014.
51 52		
53	966	40. Ceschia A, Giacomini S, Santarossa S, Rugo M, Salvadego D, Da Ponte A,
54	967	Driussi C, Mihaleje M, Poser S, and Lazzer S. Deleterious effects of obesity on
55 56	968	physical fitness in pre-pubertal children. Eur J Sport Sci: 1-8, 2015.
50 57		
58	969	41. Clarkson PM. Case report of exertional rhabdomyolysis in a 12-year-old boy.
59 60	970	Med Sci Sports Exerc 38: 197-200, 2006.
61		A , ,
62		
63 64		38

1	971	42. Cliff DP, Okely AD, Morgan PJ, Jones RA, Steele JR, and Baur LA.
2	972	Proficiency deficiency: mastery of fundamental movement skills and skill
3	973	components in overweight and obese children. <i>Obesity (Silver Spring)</i> 20: 1024-
4	974	1033, 2012.
5		
6	975	43. Cobley S, Baker J, Wattie N, and McKenna J. Annual age-grouping and
7 8		
9	976	athlete development: a meta-analytical review of relative age effects in sport.
10	977	Sports Med 39: 235-256, 2009.
11		
12	978	44. Cohen DD, Voss C, Taylor MJ, Delextrat A, Ogunleye AA, and Sandercock
13	979	GR. Ten-year secular changes in muscular fitness in English children. Acta
14 15	980	Paediatr 100: e175-177, 2011.
16	900	<i>Tueuuur</i> 100. e175-177, 2011.
17		
18	981	45. Comfort P, Stewart A, Bloom L, and Clarkson B. Relationships between
19	982	strength, sprint, and jump performance in well-trained youth soccer players. J
20	983	Strength Cond Res 28: 173-177, 2014.
21 22	905	Strength Cond Res 28. 175-177, 2014.
23		
24	984	46. Cools W, De Martelaer K, Vandaele B, Samaey C, and Andries C. Assessment
25	985	of Movement Skill Performance in Preschool Children: Convergent Validity
26	986	Between MOT 4-6 and M-ABC. J Sports Sci Med 9: 597-604, 2010.
27 28	,00	
28 29		
30	987	47. Cools W, Martelaer KD, Samaey C, and Andries C. Movement skill
31	988	assessment of typically developing preschool children: a review of seven
32	989	movement skill assessment tools. J Sports Sci Med 8: 154-168, 2009.
33		
34 35		
36	990	48. Corder K, van Sluijs EM, Ridgway CL, Steele RM, Prynne CJ, Stephen AM,
37	991	Bamber DJ, Dunn VJ, Goodyer IM, and Ekelund U. Breakfast consumption and
38	992	physical activity in adolescents: daily associations and hourly patterns. Am J Clin
39	993	Nutr 99: 361-368, 2014.
40 41		
42		
43	994	49. Côté J, Baker J, and Abernethy B. Practice to play in the development of sport
44	995	expertise, in: Handbook of Sport Psychology. R Eklund, G Tenenbaum, eds.
45	996	Hoboken, NJ: Wiley, 2007, pp 184-202.
46 47		
48	~~~	
49	997	50. Côté J, Lidor R, and Hackfort D. ISSP position stand: to sample or to
50	998	specialize? Seven postulates about youth sport activities that lead to continued
51	999	participation and elite performance. International Journal of Sport and Exercise
52 53	1000	<i>Psychology</i> 9: 7-17, 2009.
53 54		
55	4004	
56	1001	51. Crane J and Temple V. A systematic review of dropout from organized sport
57	1002	among children and youth. Eur Phys Educ Rev, in press.
58		
59 60		
60 61		
62		
63		39
64		52

1 2 3 4 5 6 7 8 9	1003 1004 1005 1006 1007 1008 1009 1010	52. Cuenca-Garcia M, Ruiz JR, Ortega FB, Labayen I, Gonzalez-Gross M, Moreno LA, Gomez-Martinez S, Ciarapica D, Hallstrom L, Wastlund A, Molnar D, Gottrand F, Manios Y, Widhalm K, Kafatos A, De Henauw S, Sjostrom M, Castillo MJ, and Group HS. Association of breakfast consumption with objectively measured and self-reported physical activity, sedentary time and physical fitness in European adolescents: the HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) Study. <i>Public Health Nutr</i> 17: 2226-2236, 2014.
10 11	1011	53. Cunningham DJ, West DJ, Owen NJ, Shearer DA, Finn CV, Bracken RM,
12 13 14 15 16	1011 1012 1013 1014	Crewther BT, Scott P, Cook CJ, and Kilduff LP. Strength and power predictors of sprinting performance in professional rugby players. <i>J Sports Med Phys Fitness</i> 53: 105-111, 2013.
17 18	1015	54. D'Hondt E, Deforche B, Gentier I, De Bourdeaudhuij I, Vaeyens R,
19 20 21	1015 1016 1017	Philippaerts R, and Lenoir M. A longitudinal analysis of gross motor coordination in overweight and obese children versus normal-weight peers. <i>Int J Obes (Lond)</i>
22 23	1018	37: 61-67, 2013.
24 25 26	1019	55. D'Hondt E, Deforche B, Vaeyens R, Vandorpe B, Vandendriessche J, Pion J,
26 27	1020	Philippaerts R, de Bourdeaudhuij I, and Lenoir M. Gross motor coordination in
28	1021	relation to weight status and age in 5- to 12-year-old boys and girls: a cross-
29 30 31	1022	sectional study. Int J Pediatr Obes 6: e556-564, 2011.
32 33	1023	56. De Ste Croix MB, Priestley AM, Lloyd RS, and Oliver JL. ACL injury risk in
34	1024	elite female youth soccer: Changes in neuromuscular control of the knee
35 36 37	1025	following soccer-specific fatigue. Scand J Med Sci Sports, 2014.
38	1026	57. DiFiori JP, Benjamin HJ, Brenner J, Gregory A, Jayanthi N, Landry GL, and
39 40	1027	Luke A. Overuse injuries and burnout in youth sports: a position statement from
41	1028	the American Medical Society for Sports Medicine. Clin J Sport Med 24: 3-20,
42 43 44	1029	2014.
45	1030	58. DiFiori JP, Puffer JC, Aish B, and Dorey F. Wrist pain in young gymnasts:
46 47	1030	frequency and effects upon training over 1 year. <i>Clin J Sport Med</i> 12: 348-353,
48 49	1031	2002.
50 51	1033	59. Donaldson SJ and Ronan KR. The effects of sports participation on young
52	1033	adolescents' emotional well-being. <i>Adolescence</i> 41: 369-389, 2006.
53 54 55	1054	adolescents emotional wen-being. Autorescence 41. 507-507, 2000.
56	1035	60. Donath L, Faude O, Hagmann S, Roth R, and Zahner L. Fundamental
57	1036	movement skills in preschoolers: a randomized controlled trial targeting object
58 59 60 61	1037	control proficiency. Child Care Health Dev, 2015.
62		
63 64		40
64 65		

1 2	1038 1039	61. Dotan R, Mitchell C, Cohen R, Gabriel D, Klentrou P, and Falk B. Child-adult differences in the kinetics of torque development. <i>J Sports Sci</i> 31: 945-953, 2013.
3 4 5	1040 1041	62. Dotan R, Mitchell C, Cohen R, Klentrou P, Gabriel D, and Falk B. Child-adult differences in muscle activationa review. <i>Pediatr Exerc Sci</i> 24: 2-21, 2012.
6 7	1041	differences in muscle activationa review. I earait Exerc Set 24. 2-21, 2012.
8 9	1042	63. Eime RM, Young JA, Harvey JT, Charity MJ, and Payne WR. A systematic
10	1043	review of the psychological and social benefits of participation in sport for
11 12	1044	children and adolescents: informing development of a conceptual model of health
13 14	1045	through sport. Int J Behav Nutr Phys Act 10: 98, 2013.
15 16	1046	64. Emery CA and Meeuwisse WH. The effectiveness of a neuromuscular
17	1047	prevention strategy to reduce injuries in youth soccer: a cluster-randomised
18 19 20	1048	controlled trial. Br J Sports Med 44: 555-562, 2010.
21 22	1049	65. Ericsson KA. Training history, deliberate practice and elite sports
23	1050	performance: an analysis in response to Tucker and Collins reviewwhat makes
24	1051	champions? Br J Sports Med 47: 533-535, 2013.
25 26		
20 27	4050	
28	1052	66. Ericsson KA, Krampe RT, and Tesch-Römer C. The role of deliberate practice
29 30 31	1053	in the acquisition of expert performance. <i>Psychol Rev</i> 100: 363-406, 1993.
32	1054	67. Faigenbaum AD, Farrell A, Fabiano M, Radler T, Naclerio F, Ratamess NA,
33 34	1055	Kang J, and Myer GD. Effects of integrative neuromuscular training on fitness
35 36	1056	performance in children. Pediatr Exerc Sci 23: 573-584, 2011.
37 38	1057	68. Faigenbaum AD, Kraemer WJ, Blimkie CJ, Jeffreys I, Micheli LJ, Nitka M,
39	1057	and Rowland TW. Youth resistance training: updated position statement paper
40	1059	from the national strength and conditioning association. J Strength Cond Res 23:
41 42 43	1060	S60-79, 2009.
44	10(1	
45 46	1061	69. Faigenbaum AD, Lloyd RS, MacDonald J, and Myer GD. Citius, Altius,
46 47	1062	Fortius: beneficial effects of resistance training for young athletes. <i>Br J Sports</i>
48 49	1063	Med, 2015.
50 51	1064	70. Faigenbaum AD, Lloyd RS, and Myer GD. Youth resistance training: past
52	1065	practices, new perspectives, and future directions. Pediatr Exerc Sci 25: 591-604,
53	1066	2013.
54 55		
56	1067	71. Faigenbaum AD, Lloyd RS, Sheehan D, and Myer GD. The role of the
57	1068	Pediatric Exercise Specialist in treating Exercise Deficit Disorder in youth.
58 59	1069	Strength Cond J 35: 34-41, 2013.
60		
61		
62 63		
63 64		41
65		

1 2	1070 1071	72. Faigenbaum AD, McFarland JE, Herman RE, Naclerio F, Ratamess NA, Kang J, and Myer GD. Reliability of the one-repetition-maximum power clean test in
3 4	1072	adolescent athletes. J Strength Cond Res 26: 432-437, 2012.
5 6 7 8	1073 1074	73. Faigenbaum AD, Milliken LA, and Westcott WL. Maximal strength testing in healthy children. <i>J Strength Cond Res</i> 17: 162-166, 2003.
9 10 11 12 13	1075 1076	74. Faigenbaum AD and Myer GD. Resistance training among young athletes: safety, efficacy and injury prevention effects. <i>Br J Sports Med</i> 44: 56-63, 2010.
14 15 16 17 18	1077 1078	75. Faigenbaum AD and Myer GD. Exercise deficit disorder in youth: play now or pay later. <i>Curr Sports Med Rep</i> 11: 196-200, 2012.
19 20 21 22	1079 1080	76. Faigenbaum AD, Stracciolini A, and Myer GD. Exercise deficit disorder in youth: a hidden truth. <i>Acta Paediatr</i> 100: 1423-1425; discussion 1425, 2011.
23 24 25 26 27 28	1081 1082 1083	77. Falk B, Usselman C, Dotan R, Brunton L, Klentrou P, Shaw J, and Gabriel D. Child-adult differences in muscle strength and activation pattern during isometric elbow flexion and extension. <i>Appl Physiol Nutr Metab</i> 34: 609-615, 2009.
29 30 31 32 33	1084 1085	78. Feeley BT, Agel J, and LaPrade RF. When Is It Too Early for Single Sport Specialization? <i>Am J Sports Med</i> , 2015.
33 34 35 36 37	1086 1087	79. Ferguson B and Stern PJ. A case of early sports specialization in an adolescent athlete. <i>J Can Chiropr Assoc</i> 58: 377-383, 2014.
38 39 40 41 42 43	1088 1089 1090	80. Ford KR, Myer GD, and Hewett TE. Valgus knee motion during landing in high school female and male basketball players. <i>Med Sci Sports Exerc</i> 35: 1745-1750, 2003.
44 45 46 47 48	1091 1092 1093	81. Ford KR, Shapiro R, Myer GD, Van Den Bogert AJ, and Hewett TE. Longitudinal sex differences during landing in knee abduction in young athletes. <i>Med Sci Sports Exerc</i> 42: 1923-1931, 2010.
49 50 51 52 53 54	1094 1095 1096	82. Ford P, De Ste Croix M, Lloyd R, Meyers R, Moosavi M, Oliver J, Till K, and Williams C. The long-term athlete development model: physiological evidence and application. <i>J Sports Sci</i> 29: 389-402, 2011.
55 56 57 58 59 60 61	1097 1098 1099 1100	83. Fransen J, Deprez D, Pion J, Tallir IB, D'Hondt E, Vaeyens R, Lenoir M, and Philippaerts RM. Changes in physical fitness and sports participation among children with different levels of motor competence: a 2-year longitudinal study. <i>Pediatr Exerc Sci</i> 26: 11-21, 2014.
62 63 64 65		42

1 2 3 4 5	1101 1102 1103 1104	84. Fransen J, Pion J, Vandendriessche J, Vandorpe B, Vaeyens R, Lenoir M, and Philippaerts RM. Differences in physical fitness and gross motor coordination in boys aged 6-12 years specializing in one versus sampling more than one sport. <i>J Sports Sci</i> 30: 379-386, 2012.
6 7 8 9 10 11	1105 1106 1107	85. Fraser-Thomas J, Cote J, and Deakin J. Examining adolescent sport dropout and prolonged engagement from a developmental perspective. <i>J Appl Sport Psychol</i> 20: 318-333, 2008.
12 13 14 15 16	1108 1109	86. Fry AC, Irwin CC, Nicoll JX, and Ferebee DE. Muscular Strength and Power in 3-7 Year Old Children. <i>Pediatr Exerc Sci</i> , 2015.
17 18 19 20 21 22	1110 1111 1112	87. Fuchs RK, Bauer JJ, and Snow CM. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. <i>J Bone Miner Res</i> 16: 148-156, 2001.
23 24 25 26 27	1113 1114 1115	88. Fuchs RK and Snow CM. Gains in hip bone mass from high-impact training are maintained: a randomized controlled trial in children. <i>J Pediatr</i> 141: 357-362, 2002.
28 29 30 31 32	1116 1117	89. Fukuda DH. Analysis of the Relative Age Effect in Elite Youth Judo Athletes. <i>Int J Sports Physiol Perform</i> , 2015.
33 34 35 36 37 38 39	1118 1119 1120 1121	90. Fullagar HH, Skorski S, Duffield R, Hammes D, Coutts AJ, and Meyer T. Sleep and athletic performance: the effects of sleep loss on exercise performance, and physiological and cognitive responses to exercise. <i>Sports Med</i> 45: 161-186, 2015.
40 41 42 43	1122 1123	91. Furley P and Memmert D. Coaches' implicit associations between size and giftedness: implications for the relative age effect. <i>J Sports Sci</i> : 1-8, 2015.
44 45 46 47 48 49 50	1124 1125 1126 1127	92. Gagné F. Constructs and models pertaining to exceptional human abilities, in: <i>International Handbook of Research and Development of Giftedness and Talent</i> . KA Heller, Monks, F.J., Passow, A.H., ed. Oxford, United Kingdom: Pergamon Press, 1993.
51 52 53 54 55 56 57	1128 1129 1130 1131	93. Gil SM, Badiola A, Bidaurrazaga-Letona I, Zabala-Lili J, Gravina L, Santos- Concejero J, Lekue JA, and Granados C. Relationship between the relative age effect and anthropometry, maturity and performance in young soccer players. <i>J</i> <i>Sports Sci</i> 32: 479-486, 2014.
58 59 60 61 62	1132 1133	94. Gokeler A, Benjaminse A, Hewett TE, Paterno MV, Ford KR, Otten E, and Myer GD. Feedback techniques to target functional deficits following anterior
63 64 65		43

1 2	1134 1135	cruciate ligament reconstruction: implications for motor control and reduction of second injury risk. <i>Sports Med</i> 43: 1065-1074, 2013.
3 4 5	1136	95. Golley RK, Maher CA, Matricciani L, and Olds TS. Sleep duration or
6 7 8	1137 1138	bedtime? Exploring the association between sleep timing behaviour, diet and BMI in children and adolescents. <i>Int J Obes (Lond)</i> 37: 546-551, 2013.
9		
10 11 12	1139 1140	96. Goncalves CE, Rama LM, and Figueiredo AB. Talent identification and specialization in sport: an overview of some unanswered questions. <i>Int J Sports</i>
13 14	1141	<i>Physiol Perform</i> 7: 390-393, 2012.
15 16	1142	97. Graham G, Holt/Hale SA, and Parker M. Children Moving: A Reflective
17 18 19	1143	Approach to Teaching Physical Education. New York, NY: McGraw Hill, 2013.
20 21	1144	98. Granacher U, Muehlbauer T, Doerflinger B, Strohmeier R, and Gollhofer A.
22 23 24	1145 1146	Promoting strength and balance in adolescents during physical education: effects of a short-term resistance training. <i>J Strength Cond Res</i> 25: 940-949, 2011.
25 26	1147	99. Groslambert A, Hintzy F, Hoffman MD, Dugue B, and Rouillon JD.
27 28	1148	Validation of a rating scale of perceived exertion in young children. Int J Sports
20 29 30 31	1149	Med 22: 116-119, 2001.
32	1150	100. Guagliano JM, Rosenkranz RR, and Kolt GS. Girls' physical activity levels
33 34 35	1151	during organized sports in Australia. Med Sci Sports Exerc 45: 116-122, 2013.
36 37	1152	101. Gulbin J, Weissensteiner J, Oldenziel K, and Gagne F. Patterns of
38 39 40	1153	performance development in elite athletes. Eur J Sport Sci 13: 605-614, 2013.
41	1154	102. Gutierrez M and Ruiz LM. Perceived motivational climate, sportsmanship,
42 43	1155	and students' attitudes toward physical education classes and teachers. Percept
44 45 46	1156	Mot Skills 108: 308-326, 2009.
47	1157	103. Haff GG. Periodization strategies for youth development, in: Strength and
48	1158	Conditioning for Young Athletes: Science and Application. RS Lloyd, JL Oliver,
49 50 51	1159	eds. Oxford, United Kingdom: Routledge, 2013, pp 149-168.
52 53	1160	104. Hall R, Barber Foss K, Hewett TE, and Myer GD. Sport specialization's
54 55 56	1161 1162	association with an increased risk of developing anterior knee pain in adolescent female athletes. <i>J Sport Rehabil</i> 24: 31-35, 2015.
57 58 59		
60 61		
62		
63 64		44

1 2 3	1163 1164 1165	105. Hallal PC, Andersen LB, Bull FC, Guthold R, Haskell W, Ekelund U, and Lancet Physical Activity Series Working G. Global physical activity levels: surveillance progress, pitfalls, and prospects. <i>Lancet</i> 380: 247-257, 2012.
4 5 6 7 8	1166 1167	106. Halson SL. Monitoring training load to understand fatigue in athletes. <i>Sports Med</i> 44 Suppl 2: S139-147, 2014.
9 10 11 12 13 14	1168 1169 1170	107. Hardy LL, Reinten-Reynolds T, Espinel P, Zask A, and Okely AD. Prevalence and correlates of low fundamental movement skill competency in children. <i>Pediatrics</i> 130: e390-398, 2012.
15 16 17 18 19	1171 1172 1173	108. Harries SK, Lubans DR, and Callister R. Resistance training to improve power and sports performance in adolescent athletes: a systematic review and meta-analysis. <i>J Sci Med Sport</i> 15: 532-540, 2012.
20 21 22 23 24 25	1174 1175 1176	109. Hewett TE, Ford KR, and Myer GD. Anterior cruciate ligament injuries in female athletes: Part 2, a meta-analysis of neuromuscular interventions aimed at injury prevention. <i>Am J Sports Med</i> 34: 490-498, 2006.
26 27 28 29 30 31	1177 1178 1179	110. Hewett TE, Lindenfeld TN, Riccobene JV, and Noyes FR. The effect of neuromuscular training on the incidence of knee injury in female athletes. A prospective study. <i>Am J Sports Med</i> 27: 699-706, 1999.
32 33 34 35 36	1180 1181 1182	111. Hewett TE, Myer GD, and Ford KR. Decrease in neuromuscular control about the knee with maturation in female athletes. <i>J Bone Joint Surg Am</i> 86-A: 1601-1608, 2004.
37 38 39 40 41 42 43	1183 1184 1185 1186	112. Hewett TE, Myer GD, Ford KR, Heidt RS, Jr., Colosimo AJ, McLean SG, van den Bogert AJ, Paterno MV, and Succop P. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. <i>Am J Sports Med</i> 33:
44 45 46 47 48 49	1187 1188 1189	492-501, 2005.113. Hewett TE, Myer GD, Kiefer AW, and Ford KR. Longitudinal Increases in Knee Abduction Moments in Females during Adolescent Growth. <i>Med Sci Sports</i>
50 51 52 53 54	1190 1191 1192	<i>Exerc</i>, 2015.114. Hills AP, Andersen LB, and Byrne NM. Physical activity and obesity in children. <i>Br J Sports Med</i> 45: 866-870, 2011.
55 56 57 58 59	1193 1194	115. Hills AP, Okely AD, and Baur LA. Addressing childhood obesity through increased physical activity. <i>Nat Rev Endocrinol</i> 6: 543-549, 2010.
60 61 62 63 64 65		45

1 2	1195 1196	116. Hind K and Burrows M. Weight-bearing exercise and bone mineral accrual in children and adolescents: a review of controlled trials. <i>Bone</i> 40: 14-27, 2007.
3 4 5 6 7	1197 1198	117. Huppert FA, Baylis N, and Keverne B. Introduction: why do we need a science of well-being? <i>Philos Trans R Soc Lond B Biol Sci</i> 359: 1331-1332, 2004.
8 9 10 11 12 13	1199 1200 1201 1202	118. Jackowski SA, Baxter-Jones AD, Gruodyte-Raciene R, Kontulainen SA, and Erlandson MC. A longitudinal study of bone area, content, density, and strength development at the radius and tibia in children 4-12 years of age exposed to recreational gymnastics. <i>Osteoporos Int</i> 26: 1677-1690, 2015.
14 15 16 17 18 19 20	1203 1204 1205	119. Jayanthi N, Pinkham C, Dugas L, Patrick B, and Labella C. Sports specialization in young athletes: evidence-based recommendations. <i>Sports Health</i> 5: 251-257, 2013.
21 22 23 24 25	1206 1207 1208	120. Jayanthi NA, LaBella CR, Fischer D, Pasulka J, and Dugas LR. Sports-specialized intensive training and the risk of injury in young athletes: a clinical case-control study. <i>Am J Sports Med</i> 43: 794-801, 2015.
26 27 28 29 30 31	1209 1210 1211	121. Johnson BA, Salzberg CL, and Stevenson DA. A systematic review: plyometric training programs for young children. <i>J Strength Cond Res</i> 25: 2623-2633, 2011.
32 33 34 35 36 37 38	1212 1213 1214 1215	122. Jullien H, Bisch C, Largouet N, Manouvrier C, Carling CJ, and Amiard V. Does a short period of lower limb strength training improve performance in field-based tests of running and agility in young professional soccer players? <i>J Strength Cond Res</i> 22: 404-411, 2008.
39 40 41 42 43 44	1216 1217 1218	123. Junge A, Rosch D, Peterson L, Graf-Baumann T, and Dvorak J. Prevention of soccer injuries: a prospective intervention study in youth amateur players. <i>Am J Sports Med</i> 30: 652-659, 2002.
45 46 47 48 49	1219 1220	124. Karageorghis C and Terry P. <i>Inside Sport Psychology</i> . Champaign, IL: Human Kinetics, 2011.
50 51 52 53 54	1221 1222 1223	125. Keiner M, Sander A, Wirth K, Caruso O, Immesberger P, and Zawieja M. Strength performance in youth: trainability of adolescents and children in the back and front squats. <i>J Strength Cond Res</i> 27: 357-362, 2013.
55 56 57 58 59 60 61	1224 1225 1226	126. Keiner M, Sander A, Wirth K, and Schmidtbleicher D. Long-term strength training effects on change-of-direction sprint performance. <i>J Strength Cond Res</i> 28: 223-231, 2014.
62 63 64		46

1 2	1227 1228	127. Kentta G, Hassmen P, and Raglin JS. Training practices and overtraining syndrome in Swedish age-group athletes. <i>Int J Sports Med</i> 22: 460-465, 2001.
3 4 5 6	1229 1230	128. Kernozek TW, Torry MR, and Iwasaki M. Gender differences in lower extremity landing mechanics caused by neuromuscular fatigue. <i>Am J Sports Med</i>
7 8	1231	36: 554-565, 2008.
9 10 11	1232	129. Kerr G. Physical and emotional abuse of elite child athletes: the case of
12 13	1233 1234	forced physical exertion, in: <i>Elite Child Athlete Welfare: International Perspectives</i> . CH Brackenridge, D Rhind, eds. London: Brunel University Press,
14 15	1235	2010.
16 17	1236	130. Kerssemakers SP, Fotiadou AN, de Jonge MC, Karantanas AH, and Maas M.
18 19 20 21	1237 1238	Sport injuries in the paediatric and adolescent patient: a growing problem. <i>Pediatr Radiol</i> 39: 471-484, 2009.
22 23	1239	131. Kölling S, Hitzschke B, Holst T, Ferrauti A, Meyer T, Pfeiffer M, and
24	1240	Kellman M. Validity of the acute recovery and stress scale: training monitoring of
25	1241	the German junior national field hockey team. Int J Sports Sci Coach 10: 529-542,
26 27 28 29	1242	2015.
30	1243	132. Krosshaug T, Nakamae A, Boden BP, Engebretsen L, Smith G, Slauterbeck
31 32	1244	JR, Hewett TE, and Bahr R. Mechanisms of anterior cruciate ligament injury in
33 34	1245	basketball: video analysis of 39 cases. Am J Sports Med 35: 359-367, 2007.
35 36	1246	133. Kubo K, Teshima T, Ikebukuro T, Hirose N, and Tsunoda N. Tendon
37	1247	properties and muscle architecture for knee extensors and plantar flexors in boys
38 39 40	1248	and men. Clin Biomech (Bristol, Avon) 29: 506-511, 2014.
41 42	1249	134. Kushner AM, Kiefer AW, Lesnick S, Faigenbaum AD, Kashikar-Zuck S,
43	1250	and Myer GD. Training the developing brain part II: cognitive considerations for
44 45 46	1251	youth instruction and feedback. Curr Sports Med Rep 14: 235-243, 2015.
47	1252	135. Lai SK, Costigan SA, Morgan PJ, Lubans DR, Stodden DF, Salmon J, and
48	1253	Barnett LM. Do school-based interventions focusing on physical activity, fitness,
49 50	1254	or fundamental movement skill competency produce a sustained impact in these
51	1255	outcomes in children and adolescents? A systematic review of follow-up studies.
52 53 54	1256	Sports Med 44: 67-79, 2014.
55	1257	136. Leek D, Carlson JA, Cain KL, Henrichon S, Rosenberg D, Patrick K, and
56 57	1258	Sallis JF. Physical activity during youth sports practices. Arch Pediatr Adolesc
58	1259	Med 165: 294-299, 2011.
59 60		
61		
62 63		
63 64		47

1 2 2	1260 1261	137. Leipold B and Greve W. Resilience: a conceptual bridge between coping and development. <i>Eur Psychol</i> 14: 40-50, 2009.
3 4 5 6 7	1262 1263	138. Lemos AG, Avigo EL, and Barela JA. Physical education in kindergarten promotes fundamental motor skill development. <i>Adv Phys Educ</i> 2: 17-21, 2012.
8 9 10 11 12 13	1264 1265 1266	139. Lexell J, Sjostrom M, Nordlund AS, and Taylor CC. Growth and development of human muscle: a quantitative morphological study of whole vastus lateralis from childhood to adult age. <i>Muscle Nerve</i> 15: 404-409, 1992.
14 15 16 17 18 19	1267 1268 1269	140. Lloyd M, Saunders TJ, Bremer E, and Tremblay MS. Long-term importance of fundamental motor skills: a 20-year follow-up study. <i>Adapt Phys Activ Q</i> 31: 67-78, 2014.
20 21 22 23 24 25 26 27	1270 1271 1272 1273 1274	141. Lloyd RS, Faigenbaum AD, Stone MH, Oliver JL, Jeffreys I, Moody JA, Brewer C, Pierce KC, McCambridge TM, Howard R, Herrington L, Hainline B, Micheli LJ, Jaques R, Kraemer WJ, McBride MG, Best TM, Chu DA, Alvar BA, and Myer GD. Position statement on youth resistance training: the 2014 International Consensus. <i>Br J Sports Med</i> 48: 498-505, 2014.
28 29 30 31 32	1275 1276	142. Lloyd RS and Oliver JL. The youth physical development model: a new approach to long-term athletic development. <i>Strength Cond J</i> 34: 61-72, 2012.
32 33 34 35 36 37 38 39	1277 1278 1279 1280	143. Lloyd RS, Oliver JL, Faigenbaum AD, Howard R, De Ste Croix MB, Williams CA, Best TM, Alvar BA, Micheli LJ, Thomas DP, Hatfield DL, Cronin JB, and Myer GD. Long-term athletic development- part 1: a pathway for all youth. <i>J Strength Cond Res</i> 29: 1439-1450, 2015.
40 41 42 43 44 45	1281 1282 1283 1284	144. Lloyd RS, Oliver JL, Faigenbaum AD, Howard R, De Ste Croix MB, Williams CA, Best TM, Alvar BA, Micheli LJ, Thomas DP, Hatfield DL, Cronin JB, and Myer GD. Long-term athletic development, part 2: barriers to success and potential solutions. <i>J Strength Cond Res</i> 29: 1451-1464, 2015.
46 47 48 49 50 51 52	1285 1286 1287	145. Lloyd RS, Oliver JL, Faigenbaum AD, Myer GD, and De Ste Croix MB. Chronological age vs. biological maturation: implications for exercise programming in youth. <i>J Strength Cond Res</i> 28: 1454-1464, 2014.
52 53 54 55 56 57	1288 1289 1290	146. Lloyd RS, Oliver JL, Meyers RW, Moody JA, and Stone MH. Long-term athletic development and its application to youth weightlifting. <i>Strength Cond J</i> 34: 55-66, 2012.
58 59 60 61 62	1291 1292	147. Lloyd RS, Radnor JM, De Ste Croix MBA, Cronin JB, and Oliver JL. Changes in sprint and jump performance in response to different modes of
63 64 65		48

1 2	1293 1294	ressitance training in boys, pre- and post-peak height velocity. <i>J Strength Cond Res</i> , in press.
3 4 5 6 7 8	1295 1296 1297	148. Low LK and Cheng HJ. Axon pruning: an essential step underlying the developmental plasticity of neuronal connections. <i>Philos Trans R Soc Lond B Biol Sci</i> 361: 1531-1544, 2006.
9 10 11 12 13 14	1298 1299 1300	149. Lubans DR, Morgan PJ, Cliff DP, Barnett LM, and Okely AD. Fundamental movement skills in children and adolescents: review of associated health benefits. <i>Sports Med</i> 40: 1019-1035, 2010.
15 16 17 18 19 20	1301 1302 1303	150. Luke A, Lazaro RM, Bergeron MF, Keyser L, Benjamin H, Brenner J, d'Hemecourt P, Grady M, Philpott J, and Smith A. Sports-related injuries in youth athletes: is overscheduling a risk factor? <i>Clin J Sport Med</i> 21: 307-314, 2011.
21 22 23 24	1304 1305	151. Malina RM. Early sport specialization: roots, effectiveness, risks. <i>Curr Sports Med Rep</i> 9: 364-371, 2010.
25 26 27 28 29 30	1306 1307 1308	152. Malina RM. Physical activity as a factor in growth and maturation., in: <i>Human Growth and Development</i> . N Cameron, B Bogin, eds. Waltham, MA: Academic Press, 2012, pp 375-396.
31 32 33 34 35 36	1309 1310 1311	153. Malina RM, Baxter-Jones AD, Armstrong N, Beunen GP, Caine D, Daly RM, Lewis RD, Rogol AD, and Russell K. Role of intensive training in the growth and maturation of artistic gymnasts. <i>Sports Med</i> 43: 783-802, 2013.
37 38 39 40 41 42	1312 1313 1314	154. Malina RM, Coelho ESMJ, Figueiredo AJ, Carling C, and Beunen GP. Interrelationships among invasive and non-invasive indicators of biological maturation in adolescent male soccer players. <i>J Sports Sci</i> 30: 1705-1717, 2012.
43 44 45 46 47	1315 1316 1317	155. Malina RM, Eisenmann JC, Cumming SP, Ribeiro B, and Aroso J. Maturity- associated variation in the growth and functional capacities of youth football (soccer) players 13-15 years. <i>Eur J Appl Physiol</i> 91: 555-562, 2004.
48 49 50 51 52 53	1318 1319 1320	156. Malina RM, Rogol AD, Cumming SP, Coelho ESMJ, and Figueiredo AJ. Biological maturation of youth athletes: assessment and implications. <i>Br J Sports Med</i> 49: 852-859, 2015.
54 55 56 57 58 59 60	1321 1322	157. Malina RMB, C.; Bar-Or, O. <i>Growth, Maturation and Physical Activity.</i> Champaign, IL: Human Kinetics, 2004.
61 62 63 64 65		49

1 2 3 4 5	1323 1324 1325 1326	158. Mandelbaum BR, Silvers HJ, Watanabe DS, Knarr JF, Thomas SD, Griffin LY, Kirkendall DT, and Garrett W, Jr. Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament injuries in female athletes: 2-year follow-up. <i>Am J Sports Med</i> 33: 1003-1010, 2005.
6 7 8 9 10 11	1327 1328 1329	159. Mann JB, Bryant K, Johnstone B, Ivey P, and Sayers SP. The effect of physical and academic stress on illness and injury in division 1 college football players. <i>J Strength Cond Res</i> , 2015.
12 13 14 15 16	1330 1331	160. Matina RM and Rogol AD. Sport training and the growth and pubertal maturation of young athletes. <i>Pediatr Endocrinol Rev</i> 9: 441-455, 2011.
17 18 19 20	1332 1333	161. Matos N and Winsley RJ. Trainability of young athletes and overtraining. <i>J Sports Sci Med</i> 6: 353-367, 2007.
21 22 23 24 25 26	1334 1335 1336	162. Matos NF, Winsley RJ, and Williams CA. Prevalence of nonfunctional overreaching/overtraining in young English athletes. <i>Med Sci Sports Exerc</i> 43: 1287-1294, 2011.
27 28 29 30 31	1337 1338 1339	163. Matricciani L, Olds T, and Petkov J. In search of lost sleep: secular trends in the sleep time of school-aged children and adolescents. <i>Sleep Med Rev</i> 16: 203-211, 2012.
32 33 34 35 36 37	1340 1341 1342	164. McCarthy N and Collins D. Initial identification & selection bias versus the eventual confirmation of talent: evidence for the benefits of a rocky road? <i>J Sports Sci</i> 32: 1604-1610, 2014.
38 39 40 41 42	1343 1344	165. McHugh MP. Oversized young athletes: a weighty concern. <i>Br J Sports Med</i> 44: 45-49, 2010.
43 44 45 46 47 48 49	1345 1346 1347 1348	166. McLean BD, Coutts AJ, Kelly V, McGuigan MR, and Cormack SJ. Neuromuscular, endocrine, and perceptual fatigue responses during different length between-match microcycles in professional rugby league players. <i>Int J</i> <i>Sports Physiol Perform</i> 5: 367-383, 2010.
50 51 52 53 54	1349 1350 1351	167. McLean SG, Fellin RE, Suedekum N, Calabrese G, Passerallo A, and Joy S. Impact of fatigue on gender-based high-risk landing strategies. <i>Med Sci Sports Exerc</i> 39: 502-514, 2007.
55 56 57 58 59 60 61	1352 1353 1354	168. McNarry M and Jones A. The influence of training status on the aerobic and anaerobic responses to exercise in children: a review. <i>Eur J Sport Sci</i> 14 Suppl 1: S57-68, 2014.
62 63 64		50

	1355	169. Meeusen R, Duclos M, Foster C, Fry A, Gleeson M, Nieman D, Raglin J,
1	1356	Rietjens G, Steinacker J, Urhausen A, European College of Sport S, and American
2	1357	College of Sports M. Prevention, diagnosis, and treatment of the overtraining
3	1358	syndrome: joint consensus statement of the European College of Sport Science
4	1359	and the American College of Sports Medicine. <i>Med Sci Sports Exerc</i> 45: 186-205,
5		
6 7	1360	2013.
8		
9	1361	170. Meyers RW, Oliver J, Lloyd RS, Hughes M, and Cronin J. Reliability of the
10		Spatio-Temporal Determinants of Maximal Sprint Speed in Adolescent Boys Over
11	1362	
12	1363	Single and Multiple Steps. <i>Pediatr Exerc Sci</i> , 2015.
13		
14 15	1364	171 Moylon C and Malatasta D. Effacts of in saason plyomatric training within
16		171. Meylan C and Malatesta D. Effects of in-season plyometric training within
17	1365	soccer practice on explosive actions of young players. <i>J Strength Cond Res</i> 23:
18	1366	2605-2613, 2009.
19		
20	10(7	170 Michall I. I. and Netcia KI. Descentions in inside in terms and the terms
21	1367	172. Micheli LJ and Natsis KI. Preventing injuries in team sports: what the team
22 23	1368	physician needs to know, in: FIMS Team Physician Manual (3rd Edition). LJ
24	1369	Micheli, F Pigozzi, KM Chan, WR Frontera, N Bachl, AD Smith, ST Alenabi,
25	1370	eds. London: Routledge, 2013, pp 505-520.
26		
27	4054	
28	1371	173. Milliken LA, Faigenbaum AD, Loud RL, and Westcott WL. Correlates of
29	1372	upper and lower body muscular strength in children. J Strength Cond Res 22:
30 31	1373	1339-1346, 2008.
32		
33		
34	1374	174. Moesch K, Elbe AM, Hauge ML, and Wikman JM. Late specialization: the
35	1375	key to success in centimeters, grams, or seconds (cgs) sports. Scand J Med Sci
36	1376	Sports 21: e282-290, 2011.
37 38		
30 39		
40	1377	175. Moliner-Urdiales D, Ruiz JR, Ortega FB, Jimenez-Pavon D, Vicente-
41	1378	Rodriguez G, Rey-Lopez JP, Martinez-Gomez D, Casajus JA, Mesana MI,
42	1379	Marcos A, Noriega-Borge MJ, Sjostrom M, Castillo MJ, Moreno LA, Avena, and
43	1380	Groups HS. Secular trends in health-related physical fitness in Spanish
44	1381	adolescents: the AVENA and HELENA studies. J Sci Med Sport 13: 584-588,
45 46	1382	2010.
40 47		
48		
49	1383	176. Mostafavifar AM, Best TM, and Myer GD. Early sport specialisation, does it
50	1384	lead to long-term problems? Br J Sports Med 47: 1060-1061, 2013.
51		
52		
53 54	1385	177. Mountjoy M, Armstrong N, Bizzini L, Blimkie C, Evans J, Gerrard D,
54 55	1386	Hangen J, Knoll K, Micheli L, Sangenis P, and Van Mechelen W. IOC consensus
56	1387	statement: "training the elite child athlete". Br J Sports Med 42: 163-164, 2008.
57		- · · · ·
58		
59		
60 61		
61 62		
63		- /
64		51
65		

1 2 3 4	1388 1389 1390	178. Mountjoy M, Rhind DJ, Tiivas A, and Leglise M. Safeguarding the child athlete in sport: a review, a framework and recommendations for the IOC youth athlete development model. <i>Br J Sports Med</i> 49: 883-886, 2015.
5 6 7 8 9 10	1391 1392 1393	179. Must A and Tybor DJ. Physical activity and sedentary behavior: a review of longitudinal studies of weight and adiposity in youth. <i>Int J Obes (Lond)</i> 29 Suppl 2: S84-96, 2005.
11 12 13 14 15 16 17	1394 1395 1396 1397	180. Myer GD, Faigenbaum AD, Chu DA, Falkel J, Ford KR, Best TM, and Hewett TE. Integrative training for children and adolescents: techniques and practices for reducing sports-related injuries and enhancing athletic performance. <i>Phys Sportsmed</i> 39: 74-84, 2011.
18 19 20 21 22	1398 1399 1400	181. Myer GD, Faigenbaum AD, Edwards NM, Clark JF, Best TM, and Sallis RE. Sixty minutes of what? A developing brain perspective for activating children with an integrative exercise approach. <i>Br J Sports Med</i> , 2015.
23 24 25 26 27 28	1401 1402 1403	182. Myer GD, Faigenbaum AD, Ford KR, Best TM, Bergeron MF, and Hewett TE. When to initiate integrative neuromuscular training to reduce sports-related injuries and enhance health in youth? <i>Curr Sports Med Rep</i> 10: 155-166, 2011.
29 30 31 32 33 34	1404 1405 1406	183. Myer GD, Faigenbaum AD, Stracciolini A, Hewett TE, Micheli LJ, and Best TM. Exercise deficit disorder in youth: a paradigm shift toward disease prevention and comprehensive care. <i>Curr Sports Med Rep</i> 12: 248-255, 2013.
35 36 37 38 39 40	1407 1408 1409	184. Myer GD, Ford KR, Brent JL, and Hewett TE. The effects of plyometric vs. dynamic stabilization and balance training on power, balance, and landing force in female athletes. <i>J Strength Cond Res</i> 20: 345-353, 2006.
40 41 42 43 44 45 46 47	1410 1411 1412 1413	185. Myer GD, Ford KR, Divine JG, Wall EJ, Kahanov L, and Hewett TE. Longitudinal assessment of noncontact anterior cruciate ligament injury risk factors during maturation in a female athlete: a case report. <i>J Athl Train</i> 44: 101-109, 2009.
47 48 49 50 51 52 53	1414 1415 1416	186. Myer GD, Jayanthi N, DiFiori JP, Faigenbaum AD, Kiefer AW, Logerstedt D, and Micheli LJ. Alternative solutions to early sport specialization in young athletes. <i>Sports Health</i> , in press.
54 55 56 57 58 59	1417 1418 1419 1420	187. Myer GD, Jayanthi N, DiFiori JP, Faigenbaum AD, Kiefer AW, Logerstedt D, and Micheli LJ. Sport specialization, part 1: does early sports specialization increase negative outcomes and reduce the opportunity for success in young athletes? <i>Sports Health</i> , in press.
60 61 63 64		52

1 2 3 4	1421 1422 1423	188. Myer GD, Kushner AM, Faigenbaum AD, Kiefer A, Kashikar-Zuck S, and Clark JF. Training the developing brain, part I: cognitive developmental considerations for training youth. <i>Curr Sports Med Rep</i> 12: 304-310, 2013.
5 6 7 8 9	1424 1425	189. Myer GD, Lloyd RS, Brent JL, and Faigenbaum AD. How Young is "Too Young" to Start Training? <i>ACSMs Health Fit J</i> 17: 14-23, 2013.
10 11 12 13 14	1426 1427 1428	190. Myer GD, Sugimoto D, Thomas S, and Hewett TE. The influence of age on the effectiveness of neuromuscular training to reduce anterior cruciate ligament injury in female athletes: a meta-analysis. <i>Am J Sports Med</i> 41: 203-215, 2013.
15 16 17 18 19 20	1429 1430 1431	191. Nader PR, Bradley RH, Houts RM, McRitchie SL, and O'Brien M. Moderate-to-vigorous physical activity from ages 9 to 15 years. <i>JAMA</i> 300: 295-305, 2008.
21 22 23 24 25	1432 1433	192. Nyland J. Coming to terms with early sports specialization and athletic injuries. <i>J Orthop Sports Phys Ther</i> 44: 389-390, 2014.
26 27 28 29 30	1434 1435 1436	193. O'Brien TD, Reeves ND, Baltzopoulos V, Jones DA, and Maganaris CN. Muscle-tendon structure and dimensions in adults and children. <i>J Anat</i> 216: 631-642, 2010.
31 32 33 34 35 36	1437 1438 1439	194. Ogden CL, Carroll MD, Kit BK, and Flegal KM. Prevalence of obesity and trends in body mass index among US children and adolescents, 1999-2010. <i>JAMA</i> 307: 483-490, 2012.
37 38 39 40 41 42	1440 1441 1442	195. Okely AD and Booth ML. Mastery of fundamental movement skills among children in New South Wales: prevalence and sociodemographic distribution. <i>J Sci Med Sport</i> 7: 358-372, 2004.
43 44 45 46 47	1443 1444 1445	196. Oliver JL, Brady A, and Lloyd RS. Well-being of youth athletes, in: <i>Strength and Conditioning for Young Athletes: Science and Application</i> . RS Lloyd, JL Oliver, eds. Oxon: Routledge, 2013, pp 213-225.
48 49 50 51 52	1446 1447	197. Oliver JL, Lloyd RS, and Meyers RW. Training elite child athletes: promoting welfare and well-being. <i>Strength Cond J</i> 33: 73-79, 2011.
53 54 55 56 57 58 59 60	1448 1449	198. Oliver JL and Smith PM. Neural control of leg stiffness during hopping in boys and men. <i>J Electromyogr Kinesiol</i> 20: 973-979, 2010.
61 62 63 64		53

1 2 3	1450 1451 1452	199. Oliver JL, Whitney A, and Lloyd RS. Monitoring of in-season neuromuscular and perceptual fatigue in youth rugby players. <i>Eur J Sport Sci</i> , in press.
4 5 7 8 9	1453 1454 1455	200. Olsen SJ, 2nd, Fleisig GS, Dun S, Loftice J, and Andrews JR. Risk factors for shoulder and elbow injuries in adolescent baseball pitchers. <i>Am J Sports Med</i> 34: 905-912, 2006.
10 11 12 13 14 15	1456 1457 1458	201. Ommundsen Y, Roberts GC, Lemyre PN, and Miller BW. Parental and coach support or pressure on psychosocial outcomes of pediatric athletes in soccer. <i>Clin J Sport Med</i> 16: 522-526, 2006.
16 17 18 19 20 21	1459 1460 1461	202. Padua DA, Arnold BL, Perrin DH, Gansneder BM, Carcia CR, and Granata KP. Fatigue, vertical leg stiffness, and stiffness control strategies in males and females. <i>J Athl Train</i> 41: 294-304, 2006.
22 23 24 25 26 27 28	1462 1463 1464 1465	203. Painter KB, Haff GG, Ramsey MW, McBride J, Triplett T, Sands WA, Lamont HS, Stone ME, and Stone MH. Strength gains: block versus daily undulating periodization weight training among track and field athletes. <i>Int J Sports Physiol Perform</i> 7: 161-169, 2012.
28 29 30 31 32 33 34	1466 1467 1468	204. Pearson DT, Naughton GA, and Torode M. Predictability of physiological testing and the role of maturation in talent identification for adolescent team sports. <i>J Sci Med Sport</i> 9: 277-287, 2006.
35 36 37 38 39 40	1469 1470 1471 1472	205. Philippaerts RM, Vaeyens R, Janssens M, Van Renterghem B, Matthys D, Craen R, Bourgois J, Vrijens J, Beunen G, and Malina RM. The relationship between peak height velocity and physical performance in youth soccer players. <i>J Sports Sci</i> 24: 221-230, 2006.
41 42 43 44 45	1473 1474	206. Plisk SS and Stone MH. Periodization strategies. <i>Strength Cond J</i> 25: 19-37, 2003.
46 47 48 49 50 51	1475 1476 1477	207. Quatman CE, Ford KR, Myer GD, and Hewett TE. Maturation leads to gender differences in landing force and vertical jump performance: a longitudinal study. <i>Am J Sports Med</i> 34: 806-813, 2006.
52 53 54 55 56 57	1478 1479 1480	208. Quatman-Yates CC, Myer GD, Ford KR, and Hewett TE. A longitudinal evaluation of maturational effects on lower extremity strength in female adolescent athletes. <i>Pediatr Phys Ther</i> 25: 271-276, 2013.
58 59 60 61	1481 1482	209. Quatman-Yates CC, Quatman CE, Meszaros AJ, Paterno MV, and Hewett TE. A systematic review of sensorimotor function during adolescence: a
62 63 64 65		54

1 2	1483 1484	developmental stage of increased motor awkwardness? Br J Sports Med 46: 649-655, 2012.
3 4 5 6 7 8	1485 1486 1487	210. Raglin J, Sawamura S, Alexiou S, Hassmen P, and Kentta G. Training practices and staleness in 13-18-year-old swimmers: a cross-cultural study. <i>Pediatr Exerc Sci</i> 12: 61-70, 2000.
9 10 11 12 13	1488 1489	211. Ratel S, Duche P, and Williams CA. Muscle fatigue during high-intensity exercise in children. <i>Sports Med</i> 36: 1031-1065, 2006.
14 15 16 17 18 19	1490 1491 1492	212. Ratel S, Williams CA, Oliver J, and Armstrong N. Effects of age and recovery duration on performance during multiple treadmill sprints. <i>Int J Sports Med</i> 27: 1-8, 2006.
20 21 22 23 24	1493 1494 1495	213. Reddy LA, Fabiano GA, Dudek CM, and Hsu L. Instructional and behavior management practices implemented by elementary general education teachers. <i>J Sch Psychol</i> 51: 683-700, 2013.
25 26 27 28 29 30	1496 1497 1498	214. Robinson LE, Stodden DF, Barnett LM, Lopes VP, Logan SW, Rodrigues LP, and D'Hondt E. Motor Competence and its Effect on Positive Developmental Trajectories of Health. <i>Sports Med</i> 45: 1273-1284, 2015.
31 32 33 34 35 36	1499 1500 1501	215. Rogasch NC, Dartnall TJ, Cirillo J, Nordstrom MA, and Semmler JG. Corticomotor plasticity and learning of a ballistic thumb training task are diminished in older adults. <i>J Appl Physiol (1985)</i> 107: 1874-1883, 2009.
37 38 39 40	1502 1503	216. Rose MS, Emery CA, and Meeuwisse WH. Sociodemographic predictors of sport injury in adolescents. <i>Med Sci Sports Exerc</i> 40: 444-450, 2008.
41 42 43 44 45 46	1504 1505 1506	217. Rossler R, Donath L, Verhagen E, Junge A, Schweizer T, and Faude O. Exercise-based injury prevention in child and adolescent sport: a systematic review and meta-analysis. <i>Sports Med</i> 44: 1733-1748, 2014.
47 48 49 50 51 52	1507 1508 1509	218. Rumpf MC, Cronin JB, Oliver JL, and Hughes M. Assessing youth sprint ability-methodological issues, reliability and performance data. <i>Pediatr Exerc Sci</i> 23: 442-467, 2011.
53 54 55 56 57 58	1510 1511 1512	219. Rumpf MC, Cronin JB, Pinder SD, Oliver J, and Hughes M. Effect of different training methods on running sprint times in male youth. <i>Pediatr Exerc Sci</i> 24: 170-186, 2012.
59 60 61 62		
63 64		55

1 2 3 4	1513 1514 1515	220. Runhaar J, Collard DC, Singh AS, Kemper HC, van Mechelen W, and Chinapaw M. Motor fitness in Dutch youth: differences over a 26-year period (1980-2006). <i>J Sci Med Sport</i> 13: 323-328, 2010.
5 6 7 8 9 10	1516 1517 1518	221. Ryan RM and Deci EL. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. <i>Am Psychol</i> 55: 68-78, 2000.
11 12 13 14	1519 1520	222. Sallis JF, Prochaska JJ, and Taylor WC. A review of correlates of physical activity of children and adolescents. <i>Med Sci Sports Exerc</i> 32: 963-975, 2000.
15 16 17 18 19 20	1521 1522 1523	223. Salvy SJ, de la Haye K, Bowker JC, and Hermans RC. Influence of peers and friends on children's and adolescents' eating and activity behaviors. <i>Physiol Behav</i> 106: 369-378, 2012.
21 22 23 24 25 26	1524 1525 1526	224. Sander A, Keiner M, Wirth K, and Schmidtbleicher D. Influence of a 2-year strength training programme on power performance in elite youth soccer players. <i>Eur J Sport Sci</i> 13: 445-451, 2013.
27 28 29 30 31	1527 1528 1529	225. Sandercock GR, Ogunleye AA, Parry DA, Cohen DD, Taylor MJ, and Voss C. Athletic performance and birth month: is the relative age effect more than just selection bias? <i>Int J Sports Med</i> 35: 1017-1023, 2014.
32 33 34 35 36 37	1530 1531 1532	226. Sandercock GR, Taylor MJ, Voss C, Ogunleye AA, Cohen DD, and Parry DA. Quantification of the relative age effect in three indices of physical performance. <i>J Strength Cond Res</i> 27: 3293-3299, 2013.
38 39 40 41 42	1533 1534	227. Saracci R. The World Health Organisation needs to reconsider its definition of health. <i>BMJ</i> 314: 1409-1410, 1997.
43 44 45 46 47 48	1535 1536 1537	228. Schmikli SL, de Vries WR, Inklaar H, and Backx FJ. Injury prevention target groups in soccer: injury characteristics and incidence rates in male junior and senior players. <i>J Sci Med Sport</i> 14: 199-203, 2011.
49 50 51 52 53 54	1538 1539 1540 1541	229. Schranz N, Tomkinson G, and Olds T. What is the effect of resistance training on the strength, body composition and psychosocial status of overweight and obese children and adolescents? A Systematic review and meta-analysis. <i>Sports Med</i> 43: 893-907, 2013.
55 56 57 58 59 60 61	1542 1543 1544 1545	230. Schranz N, Tomkinson G, Parletta N, Petkov J, and Olds T. Can resistance training change the strength, body composition and self-concept of overweight and obese adolescent males? A randomised controlled trial. <i>Br J Sports Med</i> 48: 1482-1488, 2014.
62 63 64		56

1 2 3 4	1546 1547 1548	231. Shaibi GQ, Cruz ML, Ball GD, Weigensberg MJ, Salem GJ, Crespo NC, and Goran MI. Effects of resistance training on insulin sensitivity in overweight Latino adolescent males. <i>Med Sci Sports Exerc</i> 38: 1208-1215, 2006.
5 6 7 8 9 10	1549 1550 1551	232. Smith RE, Smoll FL, and Cumming SP. Effects of a motivational climate inntervention for coaches on young athletes' sport performance anxiety. <i>J Sport Exerc Psychol</i> 29: 39-59, 2007.
11 12 13 14	1552 1553	233. Smith RE, Smoll FL, and Cumming SP. Motivational climate and changes in young athletes' achievement goal orientations. <i>Motiv Emot</i> 33: 173-183, 2009.
15 16 17 18 19 20	1554 1555 1556	234. Smoll FL, Cumming SP, and Smith RE. Enhancing coach-parent relationships in youth sports: increasing harmony and minimzing hassle. <i>Int J Sports Sci Coach</i> 6: 13-26, 2011.
21 22 23 24 25 26	1557 1558 1559	235. Smucny M, Parikh SN, and Pandya NK. Consequences of single sport specialization in the pediatric and adolescent athlete. <i>Orthop Clin North Am</i> 46: 249-258, 2015.
20 27 28 29 30 31 32 33	1560 1561 1562 1563	236. Soligard T, Myklebust G, Steffen K, Holme I, Silvers H, Bizzini M, Junge A, Dvorak J, Bahr R, and Andersen TE. Comprehensive warm-up programme to prevent injuries in young female footballers: cluster randomised controlled trial. <i>BMJ</i> 337: a2469, 2008.
34 35 36 37 38	1564 1565 1566	237. Sowell ER, Thompson PM, Leonard CM, Welcome SE, Kan E, and Toga AW. Longitudinal mapping of cortical thickness and brain growth in normal children. <i>J Neurosci</i> 24: 8223-8231, 2004.
39 40 41 42 43 44	1567 1568 1569	238. Sowell ER, Trauner DA, Gamst A, and Jernigan TL. Development of cortical and subcortical brain structures in childhood and adolescence: a structural MRI study. <i>Dev Med Child Neurol</i> 44: 4-16, 2002.
45 46 47 48 49	1570 1571	239. Stein CJ and Micheli LJ. Overuse injuries in youth sports. <i>Phys Sportsmed</i> 38: 102-108, 2010.
50 51 52 53	1572 1573	240. Steptoe A and Butler N. Sports participation and emotional wellbeing in adolescents. <i>Lancet</i> 347: 1789-1792, 1996.
54 55 56 57 58 59 60	1574 1575	241. Stiles J and Jernigan TL. The basics of brain development. <i>Neuropsychol Rev</i> 20: 327-348, 2010.
61 62 63 64 65		57

1 2 3 4	1576 1577 1578	242. Stodden DF, Gao Z, Goodway JD, and Langendorfer SJ. Dynamic relationships between motor skill competence and health-related fitness in youth. <i>Pediatr Exerc Sci</i> 26: 231-241, 2014.
5 6 7 8 9 10	1579 1580 1581	243. Stovitz SD and Johnson RJ. "Underuse" as a cause for musculoskeletal injuries: is it time that we started reframing our message? <i>Br J Sports Med</i> 40: 738-739, 2006.
11 12 13 14 15 16	1582 1583 1584	244. Stratton G and Williams CA. Children and fitness testing, in: <i>Sport and Exericse Physiology Testing Guidelines</i> . EM Winter, AM Jones, RCR Davison, PD Bromley, TH Mercer, eds. Oxon: Routledge, pp 211-223.
17 18 19 20 21 22	1585 1586 1587	245. Sugimoto D, Myer GD, Foss KD, and Hewett TE. Dosage effects of neuromuscular training intervention to reduce anterior cruciate ligament injuries in female athletes: meta- and sub-group analyses. <i>Sports Med</i> 44: 551-562, 2014.
23 24 25 26 27 28	1588 1589 1590 1591	246. Swart E, Redler L, Fabricant PD, Mandelbaum BR, Ahmad CS, and Wang YC. Prevention and screening programs for anterior cruciate ligament injuries in young athletes: a cost-effectiveness analysis. <i>J Bone Joint Surg Am</i> 96: 705-711, 2014.
29 30 31 32 33 34	1592 1593 1594	247. Ten Hoor GA, Plasqui G, Ruiter RA, Kremers SP, Rutten GM, Schols AM, and Kok G. A new direction in psychology and health: Resistance exercise training for obese children and adolescents. <i>Psychol Health</i> : 1-8, 2015.
35 36 37 38 39 40	1595 1596 1597	248. Tenforde AS, Sayres LC, McCurdy ML, Collado H, Sainani KL, and Fredericson M. Overuse injuries in high school runners: lifetime prevalence and prevention strategies. <i>PM R</i> 3: 125-131; quiz 131, 2011.
41 42 43 44 45	1598 1599	249. Terry PC, Lane AM, Lane HJ, and Keohane L. Development and validation of a mood measure for adolescents. <i>J Sports Sci</i> 17: 861-872, 1999.
46 47 48 49 50 51 52	1600 1601 1602 1603	250. Tibana RA, Prestes J, Nascimento Dda C, Martins OV, De Santana FS, and Balsamo S. Higher muscle performance in adolescents compared with adults after a resistance training session with different rest intervals. <i>J Strength Cond Res</i> 26: 1027-1032, 2012.
53 54 55 56 57 58 59	1604 1605 1606 1607	251. Tofler IR, Knapp PK, and Larden M. Achievement by proxy distortion in sports: a distorted mentoring of high-achieving youth. Historical perspectives and clinical intervention with children, adolescents, and their families. <i>Clin Sports Med</i> 24: 805-828, viii, 2005.
60 61 62 63 64		58

1 2 3 4 5 6	1608 1609 1610 1611 1612	252. Tremblay MS, Gray CE, Akinroye K, Harrington DM, Katzmarzyk PT, Lambert EV, Liukkonen J, Maddison R, Ocansey RT, Onywera VO, Prista A, Reilly JJ, Rodriguez Martinez MP, Sarmiento Duenas OL, Standage M, and Tomkinson G. Physical activity of children: a global matrix of grades comparing 15 countries. <i>J Phys Act Health</i> 11 Suppl 1: S113-125, 2014.
7 8 9 10 11 12	1613 1614 1615	253. Tremblay MS and Willms JD. Is the Canadian childhood obesity epidemic related to physical inactivity? <i>Int J Obes Relat Metab Disord</i> 27: 1100-1105, 2003.
13 14 15 16 17 18	1616 1617 1618	254. Tudor-Locke C, Johnson WD, and Katzmarzyk PT. Accelerometer- determined steps per day in US children and youth. <i>Med Sci Sports Exerc</i> 42: 2244-2250, 2010.
19 20 21 22 23 24	1619 1620 1621	255. Vaeyens R, Lenoir M, Williams AM, and Philippaerts RM. Talent identification and development programmes in sport : current models and future directions. <i>Sports Med</i> 38: 703-714, 2008.
24 25 26 27 28 29 30 31	1622 1623 1624 1625	256. Valovich McLeod TC, Decoster LC, Loud KJ, Micheli LJ, Parker JT, Sandrey MA, and White C. National Athletic Trainers' Association position statement: prevention of pediatric overuse injuries. <i>J Athl Train</i> 46: 206-220, 2011.
32 33 34 35 36	1626 1627 1628	257. van Beurden E, Zask A, Barnett LM, and Dietrich UC. Fundamental movement skillshow do primary school children perform? The 'Move it Groove it' program in rural Australia. <i>J Sci Med Sport</i> 5: 244-252, 2002.
37 38 39 40 41 42	1629 1630 1631	258. van der Sluis A, Elferink-Gemser MT, Coelho-e-Silva MJ, Nijboer JA, Brink MS, and Visscher C. Sport injuries aligned to peak height velocity in talented pubertal soccer players. <i>Int J Sports Med</i> 35: 351-355, 2014.
43 44 45 46 47	1632 1633	259. Van Praagh E and Dore E. Short-term muscle power during growth and maturation. <i>Sports Med</i> 32: 701-728, 2002.
48 49 50 51 52	1634 1635	260. Vealey RN and Chase MA. Self-confidence in sport, in: <i>Advances in Sport Psychology, 3rd ed.</i> TS Horn, ed. Champaign, IL: Human Kinetics, 2008.
53 54 55 56 57 58 59 60 61	1636 1637 1638	261. Viru A, Loko J, Harro M, Volver A, Laaneot L, and Viru M. Critical periods in the development of performance capacity during childhood and adolescence. <i>European Journal of Physical Education</i> 4: 75-119, 1999.
62 63 64 65		59

1 2 3 4	1639 1640 1641	262. Waugh CM, Korff T, Fath F, and Blazevich AJ. Rapid force production in children and adults: mechanical and neural contributions. <i>Med Sci Sports Exerc</i> 45: 762-771, 2013.
$5 \atop 6 \atop 7 \atop 8 \atop 9 \atop 0 \atop 1 \atop 2 \atop 1 \atop 1$	1642 1643	263. Welsman JR and Armstrong N. The measurement and interpretation of aerobic fitness in children: current issues. <i>J R Soc Med</i> 89: 281P-285P, 1996.
	1644 1645	264. WHO. World Health Organisation - Global recommendations on physical activity for health. Geneva, 2010.
	1646 1647	265. Wiersma LD. Risks and benefits of youth sport specialization: perspectives and recommendations. <i>Pediatr Exerc Sci</i> 12: 13-22, 2000.
	1648 1649 1650	266. Winter EM and Cobb M. Ethics in paediatric research, in: <i>Paediatric Exercise Science and Medicine, 2nd ed.</i> N Armstrong, W Van Mechelen, eds. Oxford: Oxford University Press, 2008, pp 3-12.
	1651 1652	267. Witzke KA and Snow CM. Effects of plyometric jump training on bone mass in adolescent girls. <i>Med Sci Sports Exerc</i> 32: 1051-1057, 2000.
	1653 1654 1655	268. Wojtys EM. Sports Specialization vs Diversification. <i>Sports Health</i> 5: 212-213, 2013.
62 63 64 65		60

1		TITLE:			
2	THE NATIONAL STRENGTH AND CONDITIONING ASSOCIATION POSITION				
3	STATEMENT ON LONG-TERM ATHLETIC DEVELOPMENT				
4					
5		AUTHORS:			
6		RHODRI S. LLOYD ^{1,2}			
7		JOHN B. CRONIN ^{2,3}			
8		AVERY D. FAIGENBAUM ⁴			
9	G. GREGORY HAFF ³				
10	RICK HOWARD ⁵				
11	WILLIAM J. KRAEMER ⁶				
12	LYLE J. MICHELI ^{7,8,9}				
13	GREGORY D. MYER ^{9,10,11,12}				
14	JON L. OLIVER ^{1,2}				
15					
16	AFFILIATIONS:				
17	1. Youth	Physical Development Unit, School of Sport, Cardiff Metropolitan			
18	University, UK				
19	2. Sports Performance Research Institute New Zealand, AUT University, NZ				
20	1	Exercise and Sport Science Research, Edith Cowan University, Western			
21	Australia, AUS				
22	4. The College of New Jersey, Department of Health and Exercise Science, Ewing,				
23	New Jersey, USA				
24	5. Department of Kinesiology, West Chester University, West Chester, Pennsylvania,				
25	USA				
26	6. Department of Human Sciences, Ohio State University, Ohio, USA				
27	7. Department of Orthopaedics, Division of Sports Medicine, Boston Children's				
28	Hospital, Boston, Massachusetts, USA				
29		8. Harvard Medical School, Boston, Massachusetts, USA			
30	9. 7	The Micheli Center for Sports Injury Prevention, Boston, MA			
31	10. Division of Sports Medicine, Cincinnati Children's Hospital Medical Center,				
32	Cincinnati, Ohio, USA				
33	11. Department of Pediatrics and Orthopaedic Surgery, College of Medicine,				
34	University of Cincinnati, Cincinnati, Ohio, USA				
35	12. Sports Health and Performance Institute, Ohio State University, Ohio, USA				
36	1				
37					
38					
39					
40	CORRESPONDENCE:				
41	Name:	Rhodri S. Lloyd, PhD, ASCC, CSCS*D			
42	Address:	School of Sport, Cardiff Metropolitan University			
43		Cyncoed Campus, Cyncoed Road, Cardiff, CF23 6XD, United			
44		Kingdom			
45	Telephone:	02920 417062			
46	Fax:	02920 416768			
47	Email:	rlloyd@cardiffmet.ac.uk			
48					

Figure 1. The 10 pillars for successful long-term athletic development

- 1. Long-term athletic development pathways should accommodate for the highly individualized and non-linear nature of the growth and development of youth.
- Youth of all ages, abilities and aspirations should engage in long-term athletic development programs that promote both physical fitness and psychosocial wellbeing.
- 3. All youth should be encouraged to enhance physical fitness from early childhood, with a primary focus on motor skill and muscular strength development.
- 4. Long-term athletic development pathways should encourage an early sampling approach for youth that promotes and enhances a broad range of motor skills.
- 5. Health and wellbeing of the child should always be the central tenet of long-term athletic development programs.
- Youth should participate in physical conditioning that helps reduce the risk of injury to ensure their on-going participation in long-term athletic development programs.
- 7. Long-term athletic development programs should provide all youth with a range of training modes to enhance both health- and skill-related components of fitness.
- Practitioners should use relevant monitoring and assessment tools as part of a long-term physical development strategy.
- 9. Practitioners working with youth should systematically progress and individualize training programs for successful long-term athletic development.
- 10. Qualified professionals and sound pedagogical approaches are fundamental to the success of long-term athletic development programs.

Cardiff Metropolitan University Cardiff School of Sport Cyncoed Campus Cyncoed Road Cardiff, WALES CF23 6XD

21st January 2016

To whom it may concern,

This is a cover letter for the manuscript entitled:

• THE NATIONAL STRENGTH AND CONDITIONING ASSOCIATION POSITION STATEMENT ON LONG-TERM ATHLETIC DEVELOPMENT

As the first author and author for correspondence I would like to state that:

- The manuscript has been read and approved by all the listed co-authors and meets the requirements of co-authorship as specified in the Authorship Guidelines for the Journal of Strength and Conditioning Research"
- This manuscript contains material that is original and not previously published in text or on the Internet, nor is it being considered elsewhere until a decision is made as to its acceptability by the Journal of Strength and Conditioning Research Editorial Review Board.
- I can confirm that all listed authors have contributed to the production of the manuscript, and no other academics, researchers, affiliations or funding has had any association with the project.
- I can confirm that there are no conflicts of interest to acknowledge

I would like to thank you for considering publishing the manuscript and look forward to hearing from you in the near future.

Sincerely

Dr. Rhodri S. Lloyd Main Author and on behalf of all co-authors Mobile/Cell Number: +447869100427 e-mail for correspondence: rlloyd@cardiffmet.ac.uk

Copyright Transfer Form

Click here to access/download Copyright Transfer Form LTAD Position Statement copyrightTransfer (Lloyd).pdf