	^{T05} 2 Motivation
Solving Systems of Linear Algebraic Equations A systematic approach to stuff you've done before Read Chapters 9 and 10	 We have already encountered a couple situations in which we have needed to solve a system of equations: Calculating the remaining terms of an Eigenvector:
3 Motivation	4 Motivation
$- \text{Multi-dimensional Newton-Raphson} \\ \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \frac{\partial f_1}{\partial x_3} & \frac{\partial f_1}{\partial x_4} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \frac{\partial f_2}{\partial x_3} & \frac{\partial f_2}{\partial x_4} \\ \frac{\partial f_3}{\partial x_1} & \frac{\partial f_3}{\partial x_2} & \frac{\partial f_3}{\partial x_3} & \frac{\partial f_3}{\partial x_4} \\ \frac{\partial f_4}{\partial x_1} & \frac{\partial f_4}{\partial x_2} & \frac{\partial f_4}{\partial x_3} & \frac{\partial f_4}{\partial x_4} \end{bmatrix} \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \\ \Delta x_3 \\ \Delta x_4 \end{bmatrix} = - \begin{bmatrix} f_1(ix_1, ix_2, ix_3, ix_4) \\ f_2(ix_1, ix_2, ix_3, ix_4) \\ f_3(ix_1, ix_2, ix_3, ix_4) \\ f_4(ix_1, ix_2, ix_3, ix_4) \end{bmatrix}$	 System of linear equations also encountered in: Electrical engineering current equations in a resistor network Chemical engineering how final properties relate to batch ingredients Finite element analysis Civil engineering truss under load System could be solved by inverting matrix Matrix inversion is <u>very</u> time consuming!!!

5 Manual solution	^{T05} Systematic manual solution
• Consider the following system of linear algebraic equations 4q + 2r + 3s - 4t = -1 $q - 6r + 2s - 2t = 2$ $3r - 2s + 3t = -3$ $4q + s + 4t = 4$	• For a systematic approach, you may decide to solve the 1 st equation for q : q = -0.5r - 0.75s + 1t - 0.25 - and substitute the result in the 2 nd equation: (-0.5r - 0.75s + 1t - 0.25) - 6r + 2s - 2t = 2 -6.5r + 1.25s - 1t = 2.25
 You could try to randomly combine equations hoping to eliminate variables Impossible to implement on a computer 	- and into the 4 th equation: 4(-0.5r - 0.75s + 1t - 0.25) + s + 4t = 4 -2r - 2s + 8t = 5
$\frac{705}{7}$ Systematic manual solution (cont.)	^{T05} ⁸ Systematic and numeric solution
^{T05} ₇ Systematic manual solution (cont.) • Resulting in a 3 rd order system: -6.5r + 1.25s - 1t = 2.25 3r - 2s + 3t = -3 -2r - 2s + 8t = 5	 ^{T05}/₈ Systematic and numeric solution While the approach described here is certainly systematic, symbolic manipulations are difficult (or impossible) to implement on a computer
 ^{T05} 7 Systematic manual solution (cont.) Resulting in a 3rd order system: -6.5r+1.25s-1t = 2.25 3r-2s+3t = -3 -2r-2s+8t = 5 The same method could now be used to eliminate <i>r</i> from the new Equations 3 and 4, then eliminate <i>s</i> from the newer Equation 4: leaving one equation with one unknown <i>t</i> 	 ^{T05}/₈ Systematic and numeric solution While the approach described here is certainly systematic, symbolic manipulations are difficult (or impossible) to implement on a computer However, I contend that solving Equation 1 for <i>q</i>, and substituting the result into Equation 2 is exactly the same as

^{T05} Systematic and numeric (cont.)	^{T05} Systematic process
- taking Equation 1 - multiplying it by the appropriate value - and subtracting the result from Equation 2 $q-6r+2s-2t=2$ $-\left(\frac{1}{4}\right)*(4q+2r+3s-4t=-1)$ $-6.5r+1.25s-1t=2.25$	• Generic form of a 4 th order system of linear eq's $a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 = b_1$ $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 = b_2$ $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + a_{34}x_4 = b_3$ $a_{41}x_1 + a_{42}x_2 + a_{43}x_3 + a_{44}x_4 = b_4$ • q, r, s, t have been replaced by $x_1, x_2, x_3,$
 The results are certainly the same, and the processes are, in fact, equivalent 	• On the coefficient subscripts (a_{ij}) , <i>i</i> is the equation number, <i>j</i> matches the variable number
^{T05} Systematic process (cont.)	^{T05} Systematic process (cont.)
To5 11 Systematic process (cont.) • Use Equation 1 to eliminate $a_{21}, a_{31}, and a_{41}$ $a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 = b_1$ $0x_1 + a'_{22}x_2 + a'_{23}x_3 + a'_{24}x_4 = b'_2$ $0x_1 + a'_{32}x_2 + a'_{33}x_3 + a'_{34}x_4 = b'_3$ $0x_1 + a'_{42}x_2 + a'_{43}x_3 + a'_{44}x_4 = b'_4$ - where a single prime indicates one modification away from the original $-a_1a_1 - a_2a_1 - a_3a_1 - a_4a_1 -$	Tos 12 Systematic process (cont.) • Now use equation 2' to eliminate a'_{32} and a'_{42} $a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 = b_1$ $0x_1 + a'_{22}x_2 + a'_{23}x_3 + a'_{24}x_4 = b'_2$ $0x_1 + 0x_2 + a''_{33}x_3 + a''_{34}x_4 = b''_3$ $0x_1 + 0x_2 + a''_{43}x_3 + a''_{44}x_4 = b''_4$ - where: $a''_{34} = a'_{34} - a'_{24} \left(\frac{a'_{32}}{a'_{22}}\right)$ - and $b''_4 = b'_4 - b'_2 \left(\frac{a'_{42}}{c'_4}\right)$

^{T05} Systematic process (cont.)	
• And finally use equation 3" to eliminate a''_{43} $a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 = b_1$ $0x_1 + a'_{22}x_2 + a'_{23}x_3 + a'_{24}x_4 = b'_2$ $0x_1 + 0x_2 + a''_{33}x_3 + a''_{34}x_4 = b''_3$ $0x_1 + 0x_2 + 0x_3 + a'''_{44}x_4 = b'''_4$ - where: $a'''_{44} = a''_{44} - a''_{34}\left(\frac{a'_{43}}{a'_{33}}\right)$ - and $b'''_{44} = b''_{44} - b''_{3}\left(\frac{a''_{43}}{a''_{33}}\right)$	Gauss Elimination Chapra & Canale Chapter 9
^{T05} Systematic and numeric	^{T05} 16 Systematic and numeric
 But we want a process that is numeric <u>only</u> there were clearly still symbols (variables) in those equations all the a_{ij} terms are actually numbers 	 Expressed generically as: [A]{x} = {b} Now we can perform our mathematical operations on rows of the matrix [A]
• Let's consider the system of equations in its matrix format: $\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$	- e.g. to eliminate a_{31} , the math looks like this: $ \begin{bmatrix} a_{31} & a_{32} & a_{33} & a_{34} \\ -\left(\begin{array}{c}a_{31}\\$

^{T05} Systematic and numeric	Gauss Elimination
• Furthermore, we notice that the same operations are applied to each <i>b</i> term as are applied the <i>a</i> terms in the same row $a''_{34} = a'_{34} - a'_{24} \left(\frac{a'_{32}}{a'_{22}}\right) \qquad b''_{3} = b'_{3} - b'_{2} \left(\frac{a'_{32}}{a'_{22}}\right)$ - we can think of <i>b_i</i> as <i>a_{i,N+1}</i> (N is the system order) - rename <i>b</i> _{3} as <i>a</i> _{35} (in the case of a 4 th order system) $a''_{34} = a'_{34} - a'_{24} \left(\frac{a'_{32}}{a'_{22}}\right) \qquad a''_{35} = a'_{35} - a'_{25} \left(\frac{a'_{32}}{a'_{22}}\right)$	• Sum total of these observations lead to the Gauss Elimination process – Given an N th order system: $[A]{x} = {b}$ – Concatenate ${b}$ onto the right side of $[A]$ • Result is call the augmented A matrix $[A^*]$ • e.g. for a 3 rd order system $\begin{bmatrix} A^* \end{bmatrix} = \begin{bmatrix} A b \end{bmatrix}_{N \times (N+1)} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ a_{31} & a_{32} & a_{33} & b_3 \end{bmatrix}$
T05 19 Gauss Elimination - Perform row operations on [A*] to eliminate all terms below the diagonal in the 1 st column - e.g., to eliminate a_{31} • Row3' = Row3 - ((a_{31}/a_{11}) * Row1)	 Gauss Elimination (cont.) Move rightward through the columns, continuing the process as you go Last column operated on is the N-1 column, where N is the order of the original system

- Bottom N-1 rows of the resulting $[A^*]'$ matrix
- represent a self-contained N-1 order system
- Perform row operations on $[A^*]'$ to eliminate all terms <u>below the diagonal</u> in the 2nd column

- Result is an upper triangular augmented matrix
- e.g. for a 4th order system:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & b_1 \\ 0 & a_{22}' & a_{23}' & a_{24}' & b_2' \\ 0 & 0 & a_{33}'' & a_{34}'' & b_3'' \\ 0 & 0 & 0 & a_{44}''' & b_4''' \end{bmatrix}$$

T05 T05 **Back propagation Example:** Gauss Elimination 22 21 Last row represents a 1st order system: Solve the following system of equations: $x_1 + 2x_2 - x_3 + 2x_4 = -3$ $a'''_{AA} x_{A} = b'''_{A}$ $-2x_1 - 2x_2 + 4x_3 - 2x_4 = 6$ $4x_1 + 4x_2 + 2x_3 - x_4 = 3$ Back propagation process: $-x_1 + x_2 - 4x_3 + 2x_4 = -3$ - Solve the last row (equation) for x_N • Create the augmented [A*] matrix: - With x_N , solve the next to last row for x_{N-1} - Continue upward through the rows until all variables are solved T05 T05 Example (cont.) Example (cont.) 23 24 • Use the first row to: – and eliminate a_{41} • Use the 2nd row of [A*]' to: - eliminate a'_{32} \longrightarrow $-\left(-\frac{4}{2}\right)$ 2 2 2 0 • $row_{3''} = row_{3'} - (a'_{32}/a'_{22})row_{2'}$ 0 10 -5 15 • $row4' = row4 - (a_{41}/a_{11})row1$ - eliminate a_{21} -1 1 -4 2 -3 • $row2' = row2 - (a_{21}/a_{11})row1$ - and eliminate $a'_{42} \longrightarrow -\binom{3}{2} \frac{3}{2} \frac{-5}{2} \frac{4}{2} \frac{-6}{2}$ • $row4'' = row4' - (a'_{42}/a'_{22})row2' -\binom{3}{2} \frac{2}{2} \frac{2}{2} \frac{2}{2} \frac{2}{0}$ $0 -8 \frac{1}{-6}$ • the new [A*] after one full set of row operations – eliminate a_{31} • $row3' = row3 - (a_{31}/a_{11})row1$

Example (cont.)	^{T05} Example: Back propagation
• Use the 3 rd row of [A*]" to eliminate a''_{43} $-row4''' = row4'' - (a''_{43}/a''_{33})row3''$ $-\binom{-8}{10} \frac{10}{10} \frac{-5}{15} \frac{15}{0}$	 The 4th row of [A*][™] represents a single equation with one unknown Solve this equation for the last system variable -3x₄ = 6 → x₄ = -2
• The resulting [A*] after three sets of row operations $\left[\mathbf{A}^*\right]'' = \begin{bmatrix} 1 & 2 & -1 & 2 & -3 \\ 0 & 2 & 2 & 2 & 0 \\ 0 & 0 & 10 & -5 & 15 \\ 0 & 0 & 0 & -3 & 6 \end{bmatrix}$	• The 3 rd row of [A*]''' represents a single equation with two unknowns $10x_3 - 5x_4 = 15$ - but we know x_4 , and can therefore solve for x_3 : $10x_3 = 15 + 5(-2) \rightarrow x_3 = 0.5$
Example: Back propagation	^{T05} Example: Back propagation (cont.)
 The 2nd row of [A*]^{'''} represents a single equation with three unknowns but we know x₄ and x₃, and can solve for x₂: 2x₂ + 2x₃ + 2x₄ = 0 2x₂ = -2(0.5) - 2(-2) → x₂ = 1.5 Finally, solve the top "equation" for the remaining system variable: x₁ + 2x₂ - x₃ + 2x₄ = -3 	 We can check our solution in MATLAB: > A = [1 2 -1 2; -2 -2 4 -2; 4 4 2 -1; -1 1 -4 2] >x = [-1.5 1.5 0.5 -2]' >b = A*x b = -3 6 Which agrees with our

TO5 29 Terminology	Terminology
 Current column = column in which we are zeroing out all values below the diagonal 	 Target row = row in which we are zeroing out the "current column" term
 Pivot term = diagonal term in current column 	• Row factor = a _{target row, current column} ÷ pivot term
 Control row (all of the below are true) row that contains the pivot term row that is being used to zero out other terms "control row" number always equals "current column" number 	 Upper triangular = form of the final [A*] matrix
To5 31 Terminology, graphically	^{T05} ₃₂ Aside: There's no such thing as a free lunch
$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & b_1 \\ 0 & a'_{22} & a'_{23} & a'_{24} & a'_{25} & b'_2 \\ 0 & 0 & a''_{33} & a''_{34} & a''_{35} & b''_3 \\ 0 & a'_{42} & a'_{43} & a'_{44} & a'_{45} & b'_4 \\ 0 & a'_{52} & a'_{53} & a'_{54} & a'_{55} & b'_5 \end{bmatrix}$	 ^{T05}₃₂ Aside: There's no such thing as a free lunch This is one of the recurring concepts we will encounter this semester You know it as "three unknowns, three equations" Better to think of as:
T05 31 Terminology, graphically $\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & b_1 \\ 0 & a'_{22} & a'_{23} & a'_{24} & a'_{25} & b'_2 \\ 0 & 0 & a''_{33} & a''_{34} & a''_{35} & b''_3 \\ 0 & a'_{42} & a'_{43} & a'_{44} & a'_{45} & b'_4 \\ 0 & a'_{52} & a'_{53} & a'_{54} & a'_{55} & b'_5 \end{bmatrix}$ • Current column = 2 = Control row	 ^{T05}₃₂ Aside: There's no such thing as a free lunch This is one of the recurring concepts we will encounter this semester You know it as "three unknowns, three equations" Better to think of as: If we wish to determine N pieces of information, we need N pieces of information
To5 31 Terminology, graphically $\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & b_1 \\ 0 & a'_{22} & a'_{23} & a'_{24} & a'_{25} & b'_2 \\ 0 & 0 & a''_{33} & a''_{34} & a''_{35} & b''_3 \\ 0 & a'_{42} & a'_{43} & a'_{44} & a'_{45} & b'_4 \\ 0 & a'_{52} & a'_{53} & a'_{54} & a'_{55} & b'_5 \end{bmatrix}$ • Current column = 2 = Control row • Current pivot term = a'_{22}	 ^{T05} 32 Aside: There's no such thing as a free lunch This is one of the recurring concepts we will encounter this semester You know it as "three unknowns, three equations" Better to think of as: If we wish to determine N pieces of information, we need N pieces of information In our current case, we wish to determine the
Tos 31 Terminology, graphically $\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & b_1 \\ 0 & a'_{22} & a'_{23} & a'_{24} & a'_{25} & b'_2 \\ 0 & 0 & a''_{33} & a''_{34} & a''_{35} & b''_3 \\ 0 & a'_{42} & a'_{43} & a'_{44} & a'_{45} & b'_4 \\ 0 & a'_{52} & a'_{53} & a'_{54} & a'_{55} & b'_5 \end{bmatrix}$ • Current column = 2 = Control row • Current pivot term = a'_{22} • Next target row = Row 4	 ^{T05}₃₂ Aside: There's no such thing as a free lunch This is one of the recurring concepts we will encounter this semester You know it as "three unknowns, three equations" Better to think of as: If we wish to determine N pieces of information, we need N pieces of information In our current case, we wish to determine the values of x₁ thru x_N, so we need N unique

 Possible outcomes A unique solution exists, and you find it 	^{T05} ₃₄ Ramifications of how numbers are stored in computers
– Whoot	 In Naïve Gauss Elimination we are repeatedly multiplying the control row times the row factor
 An infinite set of constrained solutions exist – Some equations not independent 	 in some cases, the row factor may be several orders of magnitude greater than 1
– Final 1 st order system looks something like: $0*x_5 = 0$	 in other cases, the row factor may be several orders of magnitude less than 1
 No solution exists 	
 Some equations not compatible 	 This is undesirable because of how numbers
- Final 1 st order system looks something like: $0^*x_5 = 3$	are stored in the computer
Additional danger	Solution: Partial pivoting
 Furthermore, the row factor calculation involves dividing some term by the pivot term if the pivot term is zero, the result is undefined 	 Immediately upon entering a new column, swap rows of the (primed) [A*] matrix to obtain the largest absolute-value pivot term Find the largest magnitude term in the current column at or below the control row

T05 37	Solution: Partial pivoting	T05 38	Pseudo-code for Gauss Elimination
• R -	emaining operations stay the same: Reduce the matrix of equations to upper triangular form using row operations Back-substitute to sequentially find solution vector	Row 1.co 2. 3. 4. 5. 6.if r go –	<pre>operations to produce upper triangular form lumn = 1 row = column + 1 factor = A(row,column)/A(column,column) target_row = target_row - factor*control_row if not last row, increment row value, go to line 3 not next-to-next-to-last column, increment column, to 2 Note that lines 2&5 represent a for loop, as do lines 1&6</pre>
T05 39	Pseudo-code for Gauss Elimination	T05 40	Pseudo-code for Gauss Elimination
Bac	k substitution to generate answers	<u>Parti</u>	al pivoting operation
x(ro	wsA) = A(rowsA,rowsA+1)/A(rowsA,rowsA)	upor	entering new current column, find location of
for r	row = rowsA-1 to 1 by -1	la	rgest absolute value on or below the diagonal
รเ	um = 0	if ma	x absolute value not on diagonal
fo	r column = row+1 to rowsA	SI	wap (row with max absolute value) and (control row)
	sum = sum + A(row,column) * x(column)	(perf	orm row operations as normal)
er	nd		
x((row) = (A(row,rowsA+1) - sum)/A(row,row)		
end			

41 Other Gauss Elim. Enhancements	^{T05} 42 So, what else can go wrong?
 Full Pivoting: upon entering a new column, you could swap both rows and columns to get the largest possible absolute value in the pivot term Swapping columns rearranges the positions of <i>x</i>₁, <i>x</i>₂, etc, so you must keep track of the final position of each column!! Scaling: It is an easy and effective approach to add a scaling step, i.e. scale each row by the largest element in that row before doing the pivoting operation. (Chapra & Canale, § 9.4.3) 	 In certain cases, the solution vector {x} values can be highly dependent on the values in the [A] matrix This makes the results susceptible to not only rounding and chopping (number storage) errors, but also to measurement errors in setting up the problem description We call a matrix of this type "ill-conditioned."
Ex: Ill-conditioned matrix	^{T05} 44 Solving multiple simultaneous inputs
 Ex: Ill-conditioned matrix The MATLAB function cond(A) calculates the condition number of the matrix [A] 	 ^{T05} 44 Solving multiple simultaneous inputs We can think of our linear algebraic equations as representing a physical system, in which: - [A] represents the system characteristics
Ex: Ill-conditioned matrix • The MATLAB function cond(A) calculates the condition number of the matrix [A] • Condition number = 259 - 0.5% change in A(3,2) - causes 29% change in x_3 $A = \begin{bmatrix} 15 & 16 & 19 \\ 15 & 19 & 23 \\ 15 & 20 & 25 \end{bmatrix}$	 ^{T05}₄₄ Solving multiple simultaneous inputs We can think of our linear algebraic equations as representing a physical system, in which: [A] represents the system characteristics {b} represents external inputs {x} represents the system's response to those specific inputs

^{T05} Multiple simultaneous inputs (cont)	^{T05} Multiple simultaneous inputs (cont)
 What if we want to predict the system response under multiple input conditions, 1{b}, 2{b}, etc? If we consider the three systems: [A]*1{x} = 1{b} [A]*2{x} = 2{b} [A]*3{x} = 3{b} We could define three unique augmented [A*] matrices [A*]=[A 1{b}] [A*]=[A 2{b}] [A*]=[A 3{b}] 	 and perform Gauss Elimination three times that would be tedious and <u>redundant</u>, since the row operations depend only on the values in [A] Furthermore, matrix math allows us to combine these three equations into one equation: [A][X]=[B] where [X]=[₁{x} ₂{x} ₃{x}] [B]=[₁{b} ₂{b} ₃{b}]
^{T05} 47 Multiple simultaneous inputs (cont)	48 Multiple simultaneous inputs (cont)
– I leave it to you to convince yourself that $_{3}$ {b} depends only on [A] and $_{3}$ {x}, etc.	 After N-1 sets of row operations, the results of the Gauss Elimination process are:
 Similarly, we could create a single augmented [A*] matrix: 	$\begin{bmatrix} \mathbf{A}^* \end{bmatrix}^{final} = \begin{bmatrix} \mathbf{A}^{final} \mid_{1} \{ \mathbf{b} \}^{final} \mid_{2} \{ \mathbf{b} \}^{final} \mid_{3} \{ \mathbf{b} \}^{final} \end{bmatrix}$
$\begin{bmatrix} \mathbf{A}^* \end{bmatrix} = \begin{bmatrix} \mathbf{A} \mathbf{B} \end{bmatrix} = \begin{bmatrix} \mathbf{A} _1 \{ \mathbf{b} \} _2 \{ \mathbf{b} \} _3 \{ \mathbf{b} \} \end{bmatrix}$	• where the \mathbf{A}^{final} part of $[\mathbf{A}^*]^{final}$ is upper
 and perform Gauss Elimination on this "uber" augmented [A*] matrix 	triangular in form

^{T05} Multiple simultaneous inputs (cont)	Gauss Elimination recap
 Then we would: use back propagation on [A]^{final} and ₁{b}^{final} to solve for the ₁{x} response, use back propagation on [A]^{final} and ₂{b}^{final} to solve for the ₂{x} response, etc. 	 We can describe the Gauss-Elimination process thus: [A {b}] → Gauss → [A^{final} {b}^{final}] where A^{final} is upper triangular, and [A]^{final} * {x} = {b}^{final} In Gauss Elimination, the row operations are limited to eliminating terms below the diagonal
Gauss-Jordan	Gauss-Jordan
 In <u>Gauss Jordan</u> 1) the row operations are extended to eliminate ALL non-diagonal elements process will include row operations such as: row1' ⇐ row1 - (a₁₂/a'₂₂) * row2' row2''' ⇐ row2'' - (a''₂₄/a'''₄₄) * row4''' <u>Note</u>: In Gauss-Jordan, row operations will be performed in the Nth column, unlike in Gauss-Elimination 2) After all row operations are done, each row is scaled by the inverse of the pivot term 	 Recap of Gauss-Jordan: ALL non-diagonal terms are eliminated with row operations each row is divided by its diagonal term, making the diagonal term equal to 1 As a result, the final [A] matrix looks like this: final [A] = 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1

Gauss-Jordan	Gauss-Jordan
 Therefore, our equation becomes: 	 Our previous example would look like this:
$final [A] * \{x\} = final \{b\}$ $[I] * \{x\} = final \{b\}$ $\{x\} = final \{b\}$ $ and the Gauss-Jordan method can be expressed as$ $[A b] \xrightarrow{Gauss}{Jordan} [I x]$	$\begin{bmatrix} 1 & 2 & -1 & 2 & -3 \\ -2 & 2 & 4 & -2 & 6 \\ 4 & 4 & 2 & -1 & 3 \\ -1 & 1 & -4 & 2 & -3 \end{bmatrix} \xrightarrow{\text{Gauss}} \begin{bmatrix} 1 & 0 & 0 & 0 & -1.5 \\ 0 & 1 & 0 & 0 & 1.5 \\ 0 & 0 & 1 & 0 & 0.5 \\ 0 & 0 & 0 & 1 & -2 \end{bmatrix}$
Why Gauss-Jordan?	Why Gauss-Jordan?
 Gauss-Jordan converts an Nth order system into quantity N 1st order systems Each equation represented by the final [A*] matrix has only one variable (one non-zero coefficient) and thanks to the scaling, the right hand column of the final [A*] matrix is exactly the solution vector {x} Basically, the Gauss Jordan technique has exchanged the back propagation process for additional row operations 	 This is not computationally advantageous Perhaps it is psychologically advantageous Regardless, it does lead to a convenient way of inverting a matrix

57 Matrix inversion	58 Matrix inversion
 We established that we can solve for multiple inputs at once: [A][X]=[B] – using Gauss Elimination We can also solve for multiple inputs using Gauss-Jordan: [A B] → Gauss Jordan 	 We also know that: [A][X]=[B] So, if [B] = [I], then, by definition, [X] = [A]⁻¹ Applied to the Gauss-Jordan process, this condition looks like this: [A I] → Gauss → [I A⁻¹]
LU Decomposition Chapra & Canale Chapter 10	 ^{T05} Gauss computational expense In Gauss elimination, the row operations are performed on the augmented [A*] matrix <i>after</i> the {b} vector is determined. The number of required mathematical operations is approximately (2/3)n³. Is there a way to do some math before-hand, to reduce the number of operations that are necessary after the {b} vector is determined? Yes. LU Decomposition is one of those methods.

T05 T05 Concept – LU Decomposition Decomposition concept (cont.) 61 62 We start with the same system of linear • Substitute this identity into our original equation: algebraic equations: $[\mathbf{L}][\mathbf{U}]\{\mathbf{x}\} = \{\mathbf{b}\}$ $[\mathbf{A}]\{\mathbf{x}\} = \{\mathbf{b}\}$ • Now, if we let • Now, let's decompose the coefficient matrix: $[\mathbf{U}]\{\mathbf{x}\} = \{\mathbf{d}\}$ $[\mathbf{A}] = [\mathbf{L}][\mathbf{U}]$ - then - we can do this off-line, before the $\{\mathbf{b}\}$ vector is $[\mathbf{L}]\{\mathbf{d}\} = \{\mathbf{b}\}$ determined T05 T05 Decomposition concept (cont.) Decomposition concept (cont.) 63 64 • This is helpful if we specify that: • Given the stipulated forms of [U] and [L], - Once $\{b\}$ is determined, $\{d\}$ can be calculated - [U] is upper triangular through forward substitution: - [L] is lower triangular $\begin{bmatrix} \mathbf{U} \end{bmatrix} = \begin{bmatrix} u_{11} & u_{12} & u_{13} & \cdots & u_{1,N} \\ 0 & u_{22} & u_{23} & \cdots & u_{2,N} \\ 0 & 0 & u_{33} & \ddots & u_{3,N} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & u_{N,N} \end{bmatrix} \quad \begin{bmatrix} \mathbf{L} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ l_{21} & 1 & 0 & \cdots & 0 \\ l_{21} & 1 & 0 & \cdots & 0 \\ l_{21} & l_{22} & 1 & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ l_{N,1} & l_{N,2} & l_{N,3} & \cdots & 1 \end{bmatrix} \quad \begin{bmatrix} \mathbf{L} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ l_{21} & 1 & 0 & \cdots & 0 \\ l_{21} & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ l_{N,1} & l_{N,2} & l_{N,3} & \cdots & 1 \end{bmatrix} \quad \begin{bmatrix} \mathbf{L} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ l_{21} & 1 & 0 & \cdots & 0 \\ l_{21} & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ l_{N,1} & l_{N,2} & l_{N,3} & \cdots & 1 \end{bmatrix} \quad \begin{bmatrix} \mathbf{L} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ l_{21} & 1 & 0 & \cdots & 0 \\ l_{21} & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ l_{N,1} & l_{N,2} & l_{N,3} & \cdots & 1 \end{bmatrix} \quad \begin{bmatrix} \mathbf{L} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ d_{3} \\ \vdots \\ b_{N} \end{bmatrix} \quad \begin{bmatrix} \mathbf{L} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \\ \vdots \\ b_{N} \end{bmatrix} \quad \begin{bmatrix} \mathbf{L} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ l_{21} & 1 & 0 & \cdots & 0 \\ l_{21} & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ l_{N,1} & l_{N,2} & l_{N,3} & \cdots & 1 \end{bmatrix} \quad \begin{bmatrix} \mathbf{L} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \\ \vdots \\ b_{N} \end{bmatrix} \quad \begin{bmatrix} \mathbf{L} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \\ \vdots \\ b_{N} \end{bmatrix} \quad \begin{bmatrix} \mathbf{L} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \\ \vdots \\ b_{N} \end{bmatrix} \quad \begin{bmatrix} \mathbf{L} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \\ \vdots \\ b_{N} \end{bmatrix} \quad \begin{bmatrix} \mathbf{L} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \\ \vdots \\ b_{N} \end{bmatrix} \quad \begin{bmatrix} \mathbf{L} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \\ \vdots \\ b_{N} \end{bmatrix} \quad \begin{bmatrix} \mathbf{L} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \\ \vdots \\ b_{N} \end{bmatrix} \quad \begin{bmatrix} \mathbf{L} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \\ \vdots \\ b_{N} \end{bmatrix} \quad \begin{bmatrix} \mathbf{L} \end{bmatrix} \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \\ \vdots \\ b_{N} \end{bmatrix} \quad \begin{bmatrix} \mathbf{L} \end{bmatrix} \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \\ \vdots \\ b_{N} \end{bmatrix} \quad \begin{bmatrix} \mathbf{L} \end{bmatrix} \end{bmatrix} \quad \begin{bmatrix} b_{1} \\ b_{2} \\ b_{2} \\ b_{N} \end{bmatrix} \quad \begin{bmatrix} b_{1} \\ b_{2} \\ b_{N} \end{bmatrix} \quad \begin{bmatrix} b_{1} \\ b_{2} \\ b_{N} \\ b_{N} \end{bmatrix} \quad \begin{bmatrix} b_{1} \\ b_{2} \\ b_{N} \end{bmatrix} \quad \begin{bmatrix} b_{1} \\ b_{1} \\ b_{2} \\ b_{N} \end{bmatrix} \quad \begin{bmatrix} b_{1} \\ b_{1} \\ b_{2} \\ b_{N} \end{bmatrix} \quad \begin{bmatrix} b_{1} \\ b_{2} \\ b_{N} \end{bmatrix} \quad \begin{bmatrix} b_{1} \\ b_{1} \\ b_{1} \\ b_{1} \\ b_{N} \end{bmatrix} \quad \begin{bmatrix} b_{1} \\ b_{1} \\ b_{1} \\ b_{1} \\ b_{1} \\$

T05 T05 Decomposition concept (finished) How to determine [L] and [U] 65 66 - With $\{d\}$ known, $\{x\}$ can be calculated through Let's look at a 3x3 system. backward substitution: - The algorithm can be generalized by induction $[\mathbf{L}][\mathbf{U}] = [\mathbf{A}]$ $\begin{vmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{vmatrix} \begin{vmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$ $x_{1} = \frac{\left(d_{1} - \sum_{p=2}^{N} u_{1,p} x_{p}\right)}{u_{11}} \qquad \left[\begin{array}{cccc}u_{11} & u_{12} & u_{13}\\l_{21}u_{11} & l_{21}u_{12} + u_{22} & l_{21}u_{13} + u_{23}\\l_{31}u_{11} & l_{31}u_{12} + l_{32}u_{22} & l_{31}u_{13} + l_{32}u_{23} + u_{33}\end{array}\right] = \begin{bmatrix}a_{11} & a_{12} & a_{13}\\a_{21} & a_{22} & a_{23}\\a_{31} & a_{32} & a_{33}\end{bmatrix}$ T05 T05 Decomposition process (cont.) Decomposition process (cont.) 67 68 Set individual terms equal to one another: • Now the rest of the second column: - Let's start with the really easy ones: $l_{31}u_{12} + l_{32}u_{22} = a_{32}$ $l_{21}u_{12} + u_{22} = a_{22}$ $u_{11} = a_{11}$ $u_{12} = a_{12}$ $u_{13} = a_{13}$ $l_{32} = \frac{a_{32} - l_{31}u_{12}}{u_{22}}$ $u_{22} = a_{22} - l_{21}u_{12}$ - The rest of the first column is pretty easy also: $u_{22} = a_{22} - \frac{a_{21}}{a_{11}}a_{12} \qquad \qquad l_{32} = \frac{a_{32} - \frac{a_{31}}{a_{11}}a_{12}}{u_{22}}$ $l_{21}u_{11} = a_{21} \implies l_{21} = a_{21} / u_{11} = a_{21} / a_{11}$ $l_{31}u_{11} = a_{31} \implies l_{31} = a_{31} / u_{11} = a_{31} / a_{11}$

TOS
BE
 Decomposition process (cont.)
 TOS
TO
 Let's take a closer look

 • And finally the rest of the third column:

$$l_{21}u_{13} + u_{23} = a_{23}$$

 $u_{23} = a_{23} - l_{21}u_{13}$
 $u_{23} = a_{23} - l_{21}u_{13}$
 $u_{23} = a_{23} - l_{21}u_{13}$
 $u_{33} = a_{33} - l_{31}u_{13} - l_{32}u_{23}$
 $u_{33} = a_{33} - \frac{a_{31}}{a_{11}}a_{13} - l_{32}u_{23}$
 • Start with 3x3 system
 • Eliminate a_{31}

 • Use the stake a closer look
 • Start with 3x3 system
 • Eliminate a_{31}
 $a_{31} = a_{22} - a_{33}^{2}$
 $a_{31} = a_{32} - l_{32}u_{23}$
 • Start with $3x3$ system
 • Eliminate a_{31}

 • $u_{23} = a_{23} - l_{21}u_{13}$
 $u_{23} = a_{33} - l_{31}u_{13} - l_{32}u_{23}$
 • Eliminate a_{21}
 • Eliminate a_{21}

 • u_{23} = a_{22} - (a_{21}/a_{11})a_{13}
 • Continuing our Gauss
Elimination
 $a_{22}^{\prime} = a_{22} - (a_{21}/a_{11})a_{12}$
 • Start with $a_{21} = a_{21} - (a_{21}/a_{21})a_{12}$
 • and a_{31}/a_{11} is exactly l_{31}

 • which is exactly u_{22}
 • Continuing our Gauss
Elimination
 $a_{23}^{\prime} = a_{22} - (a_{21}/a_{11})a_{12}$
 • Start with $a_{31} = a_{31} - (a_{31}/a_{11})a_{12}$
 • where $a_{31}^{\prime}/a_{32}^{\prime} = \frac{a_{32} - (a_{31}/a_{11})a_{12}}{a_{22} - (a_{31}/a_{11})a_{12}}$
 • where $a_{31}^{\prime}/a_{32}^{\prime} = \frac{a_{32} - (a_{31}/a_{11})a_{12}}{a_{32} - (a_{31}/a_{11})a_{12}}$
 • which is exactly l_{32}

 • which is exactly u_{23}
 • (a_{32} - a_{33})
 $(a_{32} - a_{33} - a_{31})a_{33} - (a_{33} - a_{33})a_{33} - (a_{33} - a_{33})a_{33} - (a_{33} - a_{33})a_{33} - (a_{33} - a_$

Generalized results

- The terms in the [U] matrix are exactly the terms that appear in the final upper triangular [A] matrix
- The non-diagonal terms in [L] are the row factors that arise during Gauss Elimination

 $l_{21} = \frac{a_{21}}{a_{11}}$ $l_{31} = \frac{a_{31}}{a_{11}}$ $l_{32} = \frac{a_{32}}{a_{22}}$ $l_{41} = \frac{a_{41}}{a_{11}}$ $l_{42} = \frac{a_{42}}{a_{22}}$ $l_{43} = \frac{a_{43}'}{a_{33}'}$

Pivoting

 Since the LU Decomposition process is so closely related to Gauss Elimination, it suffers all the same potential setbacks

T05

74

T05

76

- including problems arising from number storage and orders of magnitude differences between different row factors
- Can we pivot with LU Decomposition?

T05 75

Pivoting

- Remember, pivoting is equivalent to re-ordering your equations
 - In Gauss Elimination, {b} was part of the [A*] matrix, so it was automatically re-ordered at the same time as [A]
- In LU Decomposition, $\{b\}$ is separate from [A]
 - Pivot operations must be tracked
 - Same pivot operations must be applied to {b}
 before forward substitution begins

Notes on LU Decomposition

- LU Decomposition is not unique
 - There are other possible forms of matrix pairs (e.g. Crout Decomposition, which is in your textbook)
 - Other decomposition matrices take advantage of special situations, such a symmetrical [A] matrix
 - Choices are generally driven by best computational efficiency
- The matrices in LU Decomposition have the advantage of being easily related to the Gauss elimination routine

	Remember
Jacobi Method Gauss-Seidel Method Chapra & Canale Chapter 11	• Previously, when confronted with multiple equations in multiple unknowns: $7x_1 + 4x_2 - 2x_3 = 2$ $2x_1 - 8x_2 + 3x_3 = -3$ $-2x_1 + 2x_2 + 6x_3 = 5$ • We have thought of it in the following terms: $y_1 = f_1(x_1, x_2, x_3) = 7x_1 + 4x_2 - 2x_3 = 2$ $y_2 = f_2(x_1, x_2, x_3) = 2x_1 - 8x_2 + 3x_3 = -3$ $y_3 = f_3(x_1, x_2, x_3) = -2x_1 + 2x_2 + 6x_3 = 5$
An iterative approach	^{T05} 80 Iterative approach (cont)
• Instead, let's think of the first equation as being an equation for x_1 in terms of x_2 and x_3 : 2 = (4x - 2x)	• Using h_1 and our initial guesses ${}^{0}x_2$ and ${}^{0}x_3$, calculate a new guess for x_1
$x_1 = h_1(x_2, x_3) = \frac{2 (4x_2 - 2x_3)}{7}$ • Similarly, we can rearrange equations 2 and 3:	${}^{1}x_{1} = h_{1}({}^{0}x_{2}, {}^{0}x_{3}) = \frac{2 - (4 {}^{\circ}x_{2} - 2 {}^{\circ}x_{3})}{7}$ • Similarly, we can calculate new guesses for x_{2}
$x_{2} = h_{2}(x_{1}, x_{3}) = \frac{-3 - (2x_{1} + 3x_{3})}{-8}$ $x_{3} = h_{3}(x_{1}, x_{2}) = \frac{5 - (-2x_{1} + 2x_{2})}{6}$ • Now make initial guesses ${}^{0}x_{1} - {}^{0}x_{2}$ and ${}^{0}x_{3}$	and x_3 : ${}^{1}x_2 = h_2({}^{0}x_1, {}^{0}x_3) = \frac{-3 - (2{}^{0}x_1 + 3{}^{0}x_3)}{-8}$ ${}^{1}x_3 = h_3({}^{0}x_1, {}^{0}x_2) = \frac{5 - (-2{}^{0}x_1 + 2{}^{0}x_2)}{6}$

^{T05} 81 Iterative approach (cont)	Example: Jacobi method
 Repeat this process, using our new guesses each time, until we (hopefully) get convergence Let's see how this works out: 	
Example: Jacobi method (cont)	^{T05} 84 Convergence (cont)
	 Our example worked out pretty well, but can we be sure it will always work? Let's consider the 1st order error propagation approximation we derived from Taylor Series
	$\Delta g_{j} = \sum_{i} \left(\left \frac{\partial g_{j}}{\partial x_{i}} \right _{\tilde{x}} \right \cdot \Delta x_{i} \right)$
	 And let's apply that to our original system:
	$x_{1} = g_{1}(x_{2}, x_{3}) = \frac{2 - (4x_{2} - 2x_{3})}{7}$ $x_{2} = g_{2}(x_{1}, x_{3})$ $x_{3} = g_{3}(x_{1}, x_{2})$

T05 85

• From the previous slide, we can estimate the error in x_1 : $\Delta x_1 = \left| \frac{\partial g_1}{\Delta x_1} \right|_{\Delta x_1} + \left| \frac{\partial g_1}{\Delta x_2} \right|_{\Delta x_2}$

$$\Delta x_1 = \left| \frac{\partial s_1}{\partial x_2} \right| \Delta x_2 + \left| \frac{\partial s_1}{\partial x_3} \right| \Delta x_3$$

- Note: Because we're dealing with a linear system, the partial derivatives are constants
- This equation basically says that the error in *x*₁ is a weighted sum of the errors in *x*₂ and *x*₃
- How do we guarantee that the error keeps getting smaller?

T05 87

Convergence criterion

- However, similar criteria must be met for <u>each</u> of the other equations in the system
- Therefore, we write the convergence criteria for an Nth order system:

For i = 1...N $\sum_{j=1...N}^{j \neq i} \left| \frac{\partial g_i}{\partial x_j} \right| < 1$ For an Nth order linear system, we can recast each of the equations in the format:

• And the convergence criterion becomes:

For i = 1...N $|a_{ii}| \ge \sum_{j=1...N}^{j \neq i} |a_{ij}|$

T05 86

Convergence (cont)

• If the sum of the weighting factors is < 1, i.e.

$$\left|\frac{\partial g_1}{\partial x_2}\right| + \left|\frac{\partial g_1}{\partial x_3}\right| < 1$$

- then the error in *x*₁ is guaranteed to be less than the maximum of the errors in *x*₂ and *x*₃
- We can make a similar statement for the 1st equation of an nth order linear system:

$$\left|\frac{\partial g_1}{\partial x_2}\right| + \left|\frac{\partial g_1}{\partial x_3}\right| + \dots + \left|\frac{\partial g_1}{\partial x_{N-1}}\right| + \left|\frac{\partial g_1}{\partial x_N}\right| < 1$$

T05 88

Jacobi algorithm

$${}^{i+1}x_1 = \frac{b_1 - \left(a_{12}{}^i x_2 + \dots + a_{1N}{}^i x_N\right)}{a_{11}}$$
$${}^{i+1}x_2 = \frac{b_2 - \left(a_{21}{}^i x_1 + a_{23}{}^i x_3 + \dots + a_{2N}{}^i x_N\right)}{a_{22}}$$
$$\vdots$$

$${}^{i+1}x_{N} = \frac{b_{N} - \left(a_{N,1}{}^{i}x_{1} + a_{N,2}{}^{i}x_{2} + \dots + a_{N,N-2}{}^{i}x_{N-1}\right)}{a_{N}}$$

^{T05} Two similar, but different, methods	^{T05} 90 Gauss-Seidel algorithm
 Some of you may have noticed that even after we calculate a new estimate for x1 we use the old estimate of x1 to calculate new values of x2, x3, etc. The Gauss-Seidel Method incorporates each new estimate as it becomes available, e.g. new x3 = b3 - (a31 new x1 + a32 new x2 + a34 old x4 + + a3n old xN) a33 Gauss-Seidel generally converges faster, while Jacobi method may be more stable 	${}^{i+1}x_1 = \frac{b_1 - \left(a_{12}{}^i x_2 + \dots + a_{1,N}{}^i x_N\right)}{a_{11}}$ ${}^{i+1}x_2 = \frac{b_2 - \left(a_{21}{}^{i+1}x_1 + a_{23}{}^i x_3 + \dots + a_{2,N}{}^i x_N\right)}{a_{22}}$ \vdots ${}^{i+1}x_N = \frac{b_N - \left(a_{N,1}{}^{i+1}x_1 + a_{N,2}{}^{i+1}x_2 + \dots + a_{N,N-1}{}^{i+1}x_{N-1}\right)}{a_{N,N}}$
^{T05} When are Jacobi / Gauss-Seidel beneficial?	When are Jacobi / Gauss-Seidel beneficial?
 Jacobi and Gauss-Seidel are particularly useful when dealing with an [A] matrix that is characterized by: Dominant diagonal terms Lots of zeroes off the diagonal (called "sparse") Jacobi and Gauss-Seidel can save math operation by ignoring the 0 terms 	 The type of matrix described above is representative of several engineering situations, including: Multi-body spring-mass systems Finite element modeling

Notes

- When presented with a system of equations, don't just blindly solve the first equation for x₁, the second for x₂, etc.
 - (unless specifically told to do so, as in the homework)

Notes (cont.)

• Rearrange the equations so as to get the largest possible terms in the diagonal

T05

94

- Both methods obviously require that the terms in the denominators be non-zero
- May be able to satisfy, or at least "get closer to" the convergence criterion

T05 93