
Solving Systems of Linear 
Algebraic Equations

A systematic approach to stuff you’ve 
done before

Read Chapters 9 and 10
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Motivation

• We have already encountered a couple 
situations in which we have needed to solve a 
system of equations:
– Calculating the remaining terms of an Eigenvector:

– Calculating a Householder Matrix for matrix 
deflation

22 23 24 2 21

32 33 34 3 31

42 43 44 4 41

a a a v a
a a a v a
a a a v a






     
            

         
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Motivation
– Multi-dimensional Newton-Raphson
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 
  
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Motivation

• System of linear equations also encountered in:
– Electrical engineering

• current equations in a resistor network

– Chemical engineering
• how final properties relate to batch ingredients

– Finite element analysis
– Civil engineering

• truss under load

• System could be solved by inverting matrix
• Matrix inversion is very time consuming!!!
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Manual solution

• Consider the following system of linear 
algebraic equations

• You could try to randomly combine equations 
hoping to eliminate variables
– Impossible to implement on a computer

4 2 3 4 1
6 2 2 2
3 2 3 3
4 4 4

q r s t
q r s t

r s t
q s t

    
   

   
  
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Systematic manual solution

• For a systematic approach, you may decide to 
solve the 1st equation for q :

– and substitute the result in the 2nd equation:

– and into the 4th equation:

0 5 0 75 1 0 25q . r . s t .    

 0 5 0 75 1 0 25 6 2 2 2. r . s t . r s t       

6 5 1 25 1 2 25. r . s t .   

 4 0 5 0 75 1 0 25 4 4. r . s t . s t      

2 2 8 5r s t   
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Systematic manual solution (cont.)

• Resulting in a 3rd order system:

• The same method could now be used to 
– eliminate r from the new Equations 3 and 4, then
– eliminate s from the newer Equation 4:

– leaving one equation with one unknown t

6 5 1 25 1 2 25
3 2 3 3
2 2 8 5

. r . s t .
r s t
r s t

   
   

   
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Systematic and numeric solution

• While the approach described here is certainly 
systematic, symbolic manipulations are difficult 
(or impossible) to implement on a computer

• However, I contend that
– solving Equation 1 for q,
– and substituting the result into Equation 2

– is exactly the same as
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Systematic and numeric (cont.)
– taking Equation 1
– multiplying it by the appropriate value
– and subtracting the result from Equation 2

• The results are certainly the same, and the 
processes are, in fact, equivalent

 1
4 

6 2 2 2q r s t   



6 5 1 25 1 2 25. r . s t .   

 4 2 3 4 1q r s t    

10
T05

Systematic process

• Generic form of a 4th order system of linear eq’s

• q, r, s, t have been replaced by x1, x2, x3, …
• On the coefficient subscripts (aij), i is the 

equation number, j matches the variable 
number

11 1 12 2 13 3 14 4 1

21 1 22 2 23 3 24 4 2

31 1 32 2 33 3 34 4 3

41 1 42 2 43 3 44 4 4

a x a x a x a x b
a x a x a x a x b
a x a x a x a x b
a x a x a x a x b

   
   
   
   
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Systematic process (cont.)

• Use Equation 1 to eliminate a21, a31, and a41

– where a single prime indicates one modification 
away from the original

– e.g.                                      , 31
3 3 1

11

ab b b
a

 
    

 

11 1 12 2 13 3 14 4 1

1 22 2 23 3 24 4 2

1 32 2 33 3 34 4 3

1 42 2 43 3 44 4 4

0
0
0

a x a x a x a x b
x a x a x a x b
x a x a x a x b
x a x a x a x b

   
      
      
      

21
22 22 12

11

aa a a
a

 
    

 
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Systematic process (cont.)

• Now use equation 2' to eliminate a'32 and a'42

– where:

– and

11 1 12 2 13 3 14 4 1

1 22 2 23 3 24 4 2

1 2 33 3 34 4 3

1 2 43 3 44 4 4

0
0 0
0 0

a x a x a x a x b
x a x a x a x b
x x a x a x b
x x a x a x b

   
      

     
     

32
34 34 24

22

aa a a
a

 
      

42
4 4 2

22

ab b b
a

 
      
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Systematic process (cont.)

• And finally use equation 3'' to eliminate a''43

– where:

– and 

11 1 12 2 13 3 14 4 1

1 22 2 23 3 24 4 2

1 2 33 3 34 4 3

1 2 3 44 4 4

0
0 0
0 0 0

a x a x a x a x b
x a x a x a x b
x x a x a x b
x x x a x b

   
      

     
    

43
44 44 34

33

aa a a
a

 
      

43
4 4 3

33

ab b b
a

 
      

Gauss Elimination

Chapra & Canale
Chapter 9
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Systematic and numeric

• But we want a process that is numeric only
– there were clearly still symbols (variables) in those 

equations
– all the aij terms are actually numbers

• Let’s consider the system of equations in its 
matrix format:

11 12 13 14 1 1

21 22 23 24 2 2

31 32 33 34 3 3

41 42 43 44 4 4

a a a a x b
a a a a x b
a a a a x b
a a a a x b

     
                          
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Systematic and numeric

• Expressed generically as: 

• Now we can perform our mathematical 
operations on rows of the matrix [A]
– e.g. to eliminate a31, the math looks like this:

    A x b

 31
11 12 13 14

11

a a a a aa
  
 

 31 32 33 34a a a a

 32 33 340 a a a  
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Systematic and numeric

• Furthermore, we notice that the same 
operations are applied to each b term as are 
applied the a terms in the same row

– we can think of bi as ai,N+1 (N is the system order)
– rename b3 as a35 (in the case of a 4th order system)

32
34 34 24

22

aa a a
a

 
      

32
3 3 2

22

ab b b
a

 
      

32
34 34 24

22

aa a a
a

 
      

32
35 35 25

22

aa a a
a

 
      
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Gauss Elimination

• Sum total of these observations lead to the 
Gauss Elimination process
– Given an Nth order system: [A]{x} = {b}
– Concatenate {b} onto the right side of [A]

• Result is call the augmented A matrix [A*]

• e.g. for a 3rd order system

 

11 12 13 1

21 22 23 21

31 32 33 3

N N

a a a b
a a a b
a a a b

 

 
         
  

*A = A b
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Gauss Elimination
– Perform row operations on [A*] to eliminate all 

terms below the diagonal in the 1st column
– e.g., to eliminate a31

• Row3' = Row3 – ((a31/a11) * Row1)

– Bottom N-1 rows of the resulting [A*]' matrix 
represent a self-contained N-1 order system

– Perform row operations on [A*]' to eliminate all 
terms below the diagonal in the 2nd column
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Gauss Elimination (cont.)
– Move rightward through the columns, continuing the 

process as you go
• Last column operated on is the N-1 column, where N is 

the order of the original system
• Result is an upper triangular augmented matrix

– e.g. for a 4th order system:

11 12 13 14 1

22 23 24 2

33 34 3

44 4

0
0 0
0 0 0

a a a a b
a a a b

a a b
a b

 
     

   
   
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Back propagation

• Last row represents a 1st order system:

• Back propagation process:
– Solve the last row (equation) for xN

– With xN , solve the next to last row for xN-1

– Continue upward through the rows until all variables 
are solved

44 4 4a x b 
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Example: Gauss Elimination

• Solve the following system of equations:

• Create the augmented [A*] matrix:

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

2 2 3
2 2 4 2 6

4 4 2 3
4 2 3

x x x x
x x x x
x x x x
x x x x

    

    

   

     

1 2 1 2 3
2 2 4 2 6

4 4 2 1 3
1 1 4 2 3

  
    

 
    
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Example (cont.)
• Use the first row to:

– eliminate a21

• row2' = row2 – (a21/a11)row1

– eliminate a31

• row3' = row3 – (a31/a11)row1

– and eliminate a41

• row4' = row4 – (a41/a11)row1

• the new [A*] after one 
full set of row operations

2 2 4 2 6

1 2 1 2 3

0 2 2 2 0

  

 

4 4 2 1 3

1 2 1 2 3

0 4 6 9 15



 

 

1 1 4 2 3

1 2 1 2 3

0 3 5 4 6

  

 

 

 

1 2 1 2 3
0 2 2 2 0
0 4 6 9 15
0 3 5 4 6

  
 

  
  

   

A*

 2
1



 4
1

 1
1


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Example (cont.)
• Use the 2nd row of [A*]' to:

– eliminate a'32

• row3'' = row3' – (a'32/a'22)row2'

– and eliminate a'42

• row4'' = row4' – (a'42/a'22)row2'

• [A*] matrix after two full 
sets of row operations   

4 6 9 15

2 2 2 0

0 10 5 15

 



3 5 4 6

2 2 2 0

0 8 1 6

 

 

 4
2



 3
2

 

1 2 1 2 3
0 2 2 2 0
0 0 10 5 15
0 0 8 1 6

  
 

  
 

   

A*
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Example (cont.)

• Use the 3rd row of [A*]'' to eliminate a''43

– row4''' = row4'' – (a''43/a''33)row3''

• The resulting [A*] after three sets of row 
operations

8 1 6

10 5 15

0 3 6

 





 8
10



 

1 2 1 2 3
0 2 2 2 0
0 0 10 5 15
0 0 0 3 6

  
 

  
 

  

A*
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Example: Back propagation

• The 4th row of [A*]''' represents a single 
equation with one unknown
– Solve this equation for the last system variable

• The 3rd row of [A*]''' represents a single 
equation with two unknowns

– but we know x4, and can therefore solve for x3:

4 43 6 2x x    

3 410 5 15x x 

 3 310 15 5 2 0.5x x    
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Example: Back propagation

• The 2nd row of [A*]''' represents a single 
equation with three unknowns
– but we know x4 and x3 , and can solve for x2 :

• Finally, solve the top “equation” for the 
remaining system variable:

2 3 42 2 2 0x x x  

   2 22 2 0.5 2 2 1.5x x     

1 2 3 42 2 3x x x x    

   1 13 2 1.5 0.5 2 2 1.5x x        
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Example: Back propagation (cont.)

• We can check our solution in MATLAB:
>> A = [1 2 -1 2; -2 -2 4 -2; 4 4 2 -1; 
-1 1 -4 2]
>>x = [-1.5 1.5 0.5 -2]’
>>b = A*x
b = 

-3
6
3
-3

Which agrees with our 
original [b] vector
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Terminology

• Current column = column in which we are 
zeroing out all values below the diagonal

• Pivot term = diagonal term in current column

• Control row (all of the below are true)
– row that contains the pivot term
– row that is being used to zero out other terms
– “control row” number always equals “current 

column” number
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Terminology

• Target row = row in which we are zeroing out 
the “current column” term

• Row factor = atarget row, current column ÷ pivot term

• Upper triangular = form of the final [A*] matrix
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Terminology, graphically

• Current column = 2 = Control row
• Current pivot term = a'22

• Next target row = Row 4
• Next row factor = ( a'42 / a'22 )

11 12 13 14 15 1

22 23 24 25 2

33 34 35 3

42 43 44 45 4

52 53 54 55 5

0
0 0
0
0

a a a a a b
a a a a b

a a a b
a a a a b
a a a a b

 
      

    
      

      
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free lunch
• This is one of the recurring concepts we will 

encounter this semester
– You know it as “three unknowns, three equations”

• Better to think of as:
– If we wish to determine N pieces of information, we 

need N pieces of information

• In our current case, we wish to determine the 
values of x1 thru xN , so we need N unique
equations
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Possible outcomes

• A unique solution exists, and you find it
– Whoot

• An infinite set of constrained solutions exist
– Some equations not independent
– Final 1st order system looks something like: 0*x5 = 0

• No solution exists
– Some equations not compatible
– Final 1st order system looks something like: 0*x5 = 3

34
T05 Ramifications of how numbers are 

stored in computers
• In Naïve Gauss Elimination we are repeatedly 

multiplying the control row times the row factor
– in some cases, the row factor may be several 

orders of magnitude greater than 1
– in other cases, the row factor may be several orders 

of magnitude less than 1

• This is undesirable because of how numbers 
are stored in the computer
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Additional danger

• Furthermore, the row factor calculation involves 
dividing some term by the pivot term
– if the pivot term is zero, the result is undefined
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Solution: Partial pivoting

• Immediately upon entering a new column, swap 
rows of the (primed) [A*] matrix to obtain the 
largest absolute-value pivot term
– Find the largest magnitude term in the current 

column at or below the control row
– If the largest magnitude term is not in the control 

row, swap the control row with the row holding the 
largest magnitude term
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Solution: Partial pivoting

• Remaining operations stay the same:
– Reduce the matrix of equations to upper triangular 

form using row operations
– Back-substitute to sequentially find solution vector
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Pseudo-code for Gauss Elimination
Row operations to produce upper triangular form

1.column = 1

2. row = column + 1

3. factor = A(row,column)/A(column,column)

4. target_row = target_row – factor*control_row

5. if not last row, increment row value, go to line 3

6. if not next-to-next-to-last column, increment column, 
go to 2
– Note that lines 2&5 represent a for loop, as do lines 1&6
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Pseudo-code for Gauss Elimination
Back substitution to generate answers

x(rowsA) = A(rowsA,rowsA+1)/A(rowsA,rowsA)

for row = rowsA-1 to 1 by -1

sum = 0 

for column = row+1 to rowsA

sum = sum + A(row,column) * x(column)

end

x(row) = (A(row,rowsA+1) - sum)/A(row,row)

end
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Pseudo-code for Gauss Elimination
Partial pivoting operation

upon entering new current column, find location of 
largest absolute value on or below the diagonal

if max absolute value not on diagonal

swap (row with max absolute value) and (control row)

(perform row operations as normal)
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Other Gauss Elim. Enhancements

• Full Pivoting:  upon entering a new column, you 
could swap both rows and columns to get the 
largest possible absolute value in the pivot term
– Swapping columns rearranges the positions of x1, 

x2, etc, so you must keep track of the final position 
of each column!!

• Scaling:  It is an easy and effective approach to 
add a scaling step, i.e. scale each row by the 
largest element in that row before doing the 
pivoting operation. (Chapra & Canale, § 9.4.3)
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So, what else can go wrong?

• In certain cases, the solution vector {x} values 
can be highly dependent on the values in the 
[A] matrix

• This makes the results susceptible to not only 
rounding and chopping (number storage) 
errors, but also to measurement errors in 
setting up the problem description

• We call a matrix of this type “ill-conditioned.”
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Ex: Ill-conditioned matrix

• The MATLAB function cond(A) calculates 
the condition number of the matrix [A]

• Condition number = 259
– 0.5% change in A(3,2) 
– causes 29% change in x3

• Condition number = 2.34
– 1.0% change in B(3,1)
– causes 0.7% change in x2

15 15 19
18 19 23
10 10 20

 
   

  

B

15 16 19
15 19 23
15 20 25

 
   
  

A
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Solving multiple simultaneous inputs

• We can think of our linear algebraic equations 
as representing a physical system, in which:
– [A] represents the system characteristics
– {b} represents external inputs
– {x} represents the system's response to those 

specific inputs

• For example, [A] could be the stiffness of an 
airplane wing, {b} could be the aerodynamic 
loads on the wing, and {x} would be the 
displacements of the wing
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Multiple simultaneous inputs (cont)

• What if we want to predict the system response 
under multiple input conditions,  1{b}, 2{b}, etc?

• If we consider the three systems:

• We could define three unique augmented [A*]
matrices

     1 1
A x = b

     2 2
A x = b      3 3

A x = b

   1 1
|  A * = A b

   2 2
|  A * = A b    3 3

|  A * = A b
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Multiple simultaneous inputs (cont)

• and perform Gauss Elimination three times
– that would be tedious and redundant, since the row 

operations depend only on the values in [A]

• Furthermore, matrix math allows us to combine 
these three equations into one equation:

– where

    A X = B

       1 2 3
  X = x x x

       1 2 3
  B = b b b
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Multiple simultaneous inputs (cont)
– I leave it to you to convince yourself that 3{b}

depends only on [A] and 3{x}, etc.

• Similarly, we could create a single augmented 
[A*] matrix:

• and perform Gauss Elimination on this “uber” 
augmented [A*] matrix

       1 2 3
       

*A A | B A | b | b | b
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Multiple simultaneous inputs (cont)

• After N-1 sets of row operations, the results of 
the Gauss Elimination process are:

• where the Afinal part of [A*]final is upper 
triangular in form

     *
1 2 3

final final final finalfinal     A = A | b | b | b
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Multiple simultaneous inputs (cont)

• Then we would:
– use back propagation on [A]final and 1{b}final to solve 

for the 1{x} response,
– use back propagation on [A]final and 2{b}final to solve 

for the 2{x} response,
– etc.
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Gauss Elimination recap

• We can describe the Gauss-Elimination 
process thus:

• where Afinal is upper triangular, and

• In Gauss Elimination, the row operations are 
limited to eliminating terms below the diagonal

   Gauss
Elimination

finalfinal     A | b A | b

     final final A x b
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Gauss-Jordan

• In Gauss Jordan
– 1) the row operations are extended to eliminate ALL 

non-diagonal elements
• process will include row operations such as:

• Note:  In Gauss-Jordan, row operations will be performed 
in the Nth column, unlike in Gauss-Elimination

– 2) After all row operations are done, each row is 
scaled by the inverse of the pivot term

12

22

1 1 2arow row row
a

 
     

24

44

2 2 4arow row row
a

 
      
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Gauss-Jordan

• Recap of Gauss-Jordan:
– ALL non-diagonal terms are eliminated with row 

operations
– each row is divided by its diagonal term, making the 

diagonal term equal to 1

• As a result, the final [A] matrix looks like this:

 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

final

 
 
 
 
 
 

A
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Gauss-Jordan

• Therefore, our equation becomes:

• And the Gauss-Jordan method can be 
expressed as

     
     

   

final final

final

final

 

 



A x b

I x b

x b

   Gauss
JordanA | b I | x
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Gauss-Jordan

• Our previous example would look like this:

Gauss
Jordan

1 2 1 2 3 1 0 0 0 1.5
2 2 4 2 6 0 1 0 0 1.5

4 4 2 1 3 0 0 1 0 0.5
1 1 4 2 3 0 0 0 1 2

     
       

   
         
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Why Gauss-Jordan?

• Gauss-Jordan converts an Nth order system into 
quantity N 1st order systems
– Each equation represented by the final [A*] matrix 

has only one variable (one non-zero coefficient)

– and thanks to the scaling, the right hand column of 
the final [A*] matrix is exactly the solution vector {x}

• Basically, the Gauss Jordan technique has 
exchanged the back propagation process for 
additional row operations
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Why Gauss-Jordan?

• This is not computationally advantageous
– Perhaps it is psychologically advantageous
– Regardless, it does lead to a convenient way of 

inverting a matrix
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Matrix inversion

• We established that we can solve for multiple 
inputs at once:

– using Gauss Elimination

• We can also solve for multiple inputs using 
Gauss-Jordan:

    A X B

   Gauss
Jordan

final final   A | B A | B I | X
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Matrix inversion

• We also know that:

• So, if [B] = [I] , then, by definition, [X] = [A]-1

• Applied to the Gauss-Jordan process, this 
condition looks like this:

    A X B

  Gauss 1
Jordan

  A | I I | A

LU Decomposition

Chapra & Canale
Chapter 10
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Gauss computational expense

• In Gauss elimination, the row operations are 
performed on the augmented [A*] matrix after
the {b} vector is determined.  The number of 
required mathematical operations is 
approximately (2/3)n3.

• Is there a way to do some math before-hand, to 
reduce the number of operations that are 
necessary after the {b} vector is determined?

• Yes. LU Decomposition is one of those 
methods.
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Concept – LU Decomposition

• We start with the same system of linear 
algebraic equations:

• Now, let’s decompose the coefficient matrix:

– we can do this off-line, before the {b} vector is 
determined

    A x = b

    A L U
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Decomposition concept (cont.)

• Substitute this identity into our original equation:

• Now, if we let

– then

    L d = b

     L U x = b

    U x = d
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Decomposition concept (cont.)

• This is helpful if we specify that:

– [U] is upper triangular

– [L] is lower triangular

• [L] also has 1’s on the diagonal, which we’ll discuss later

 
21

31 32

,1 ,2 ,3

1 0 0 0
1 0 0

1 0

1N N N

l
l l

l l l

 
 
 
 
 
 
  

L





    


 

11 12 13 1,

22 23 2,

33 3,

,

0
0 0

0 0 0

N

N

N

N N

u u u u
u u u

u u

u

 
 
 
 
 
 
  

U





    

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Decomposition concept (cont.)

• Given the stipulated forms of [U] and [L] ,
– Once {b} is determined, {d} can be calculated 

through forward substitution:

1 1

21 2 2

31 32 3 3

,1 ,2 ,3

1 0 0 0
1 0 0

1 0

1N N N N N

d b
l d b
l l d b

l l l d b

     
     
             
     
     
         





      


1 1

2 2 21 1

1

,
1

N

N N N p p
p

d b
d b l d

d b l d





 

 


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Decomposition concept (finished)
– With {d} known, {x} can be calculated through 

backward substitution:

11 12 13 1, 1 1

22 23 2, 2 2

33 3, 3 3

,

0
0 0

0 0 0

N

N

N

N N N N

u u u u x d
u u u x d

u u x d

u x d

     
     
             
    
     
         





      


,

1 1,
2

1
11

N
N

N N

N

p p
p

dx
u

d u x
x

u




 
 

 



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How to determine [L] and [U]

• Let’s look at a 3x3 system.
– The algorithm can be generalized by induction

    L U = A

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

1 0 0
1 0 0

1 0 0

u u u a a a
l u u a a a
l l u a a a

     
          
          

11 12 13 11 12 13

21 11 21 12 22 21 13 23 21 22 23

31 11 31 12 32 22 31 13 32 23 33 31 32 33

u u u a a a
l u l u u l u u a a a
l u l u l u l u l u u a a a

   
        

        
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Decomposition process (cont.)

• Set individual terms equal to one another:
– Let’s start with the really easy ones:

– The rest of the first column is pretty easy also:

21 21 11 21 11/ /l a u a a  21 11 21

31 11 31

l u a

l u a



 31 31 11 31 11/ /l a u a a  

11 11 12 12 13 13u a u a u a  
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Decomposition process (cont.)

• Now the rest of the second column:

21 12 22 22l u u a 

32 31 12
32

22

a l ul
u



22 22 21 12u a l u 

31 12 32 22 32l u l u a 

21
22 22 12

11

au a a
a

 
31

32 12
11

32
22

aa a
al

u



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Decomposition process (cont.)

• And finally the rest of the third column:

21 13 23 23l u u a 

33 33 31 13 32 23u a l u l u  23 23 21 13u a l u 

31 13 32 23 33 33l u l u u a  

21
23 23 13

11

au a a
a

  31
33 33 13 32 23

11

au a a l u
a

  
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Let’s take a closer look
• Start with 3x3 system

• Eliminate a21

• Eliminate a31

• But a21/a11 is exactly l21

• and a31/a11 is exactly l31

11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

 
 
 
  

 
 
 

21 22 23

21
11 12 13

11

22 230

a a a
a a a aa

a a

  
 

 

 
 
 

31 32 33

31
11 12 13

11

32 330

a a a
a a a aa

a a

  
 

 
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Solving for [L] and [U]

• Furthermore,

• which is exactly u22

• and

• which is exactly u23

• Continuing our Gauss 
Elimination

– Eliminate a21

21
22 22 12

11

aa a aa
     
 

21
23 23 13

11

aa a aa
     
 

 
 
 

32 33

32
22 23

22

330

a a
a a aa

a

 
     


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• where

– which is exactly l32

• and

– which is exactly u33

Solving for [L] and [U] (cont.)

31
32 12

1132

22 21
22 12

11

aa aaa
a aa aa

         
 

32
33 33 23

22

aa a aa
       

31
33 13 32 23

11

aa a l u
a

  
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Generalized results

• The terms in the [U] matrix are exactly the 
terms that appear in the final upper triangular 
[A] matrix

• The non-diagonal terms in [L] are the row 
factors that arise during Gauss Elimination

21
21

11

31 32
31 32

11 22

4341 42
41 42 43

11 22 33

al a
a al la a

aa al l la a a



  
   
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Pivoting

• Since the LU Decomposition process is so 
closely related to Gauss Elimination, it suffers 
all the same potential setbacks
– including problems arising from number storage 

and orders of magnitude differences between 
different row factors

• Can we pivot with LU Decomposition?
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Pivoting

• Remember, pivoting is equivalent to re-ordering 
your equations
– In Gauss Elimination, {b} was part of the [A*]

matrix, so it was automatically re-ordered at the 
same time as [A]

• In LU Decomposition, {b} is separate from [A]
– Pivot operations must be tracked
– Same pivot operations must be applied to {b}

before forward substitution begins
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Notes on LU Decomposition

• LU Decomposition is not unique
– There are other possible forms of matrix pairs (e.g. 

Crout Decomposition, which is in your textbook)
– Other decomposition matrices take advantage of 

special situations, such a symmetrical [A] matrix
– Choices are generally driven by best computational 

efficiency

• The matrices in LU Decomposition have the 
advantage of being easily related to the Gauss 
elimination routine



Jacobi Method
Gauss-Seidel Method

Chapra & Canale
Chapter 11
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Remember

• Previously, when confronted with multiple 
equations in multiple unknowns:

• We have thought of it in the following terms:

1 2 3

1 2 3

1 2 3

7 4 2 2
2 8 3 3
2 2 6 5

x x x
x x x
x x x

  

   

   

 
 
 

1 1 1 2 3 1 2 3

2 2 1 2 3 1 2 3

3 3 1 2 3 1 2 3

, , 7 4 2 2

, , 2 8 3 3

, , 2 2 6 5

y f x x x x x x

y f x x x x x x

y f x x x x x x

    

     

     
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An iterative approach

• Instead, let’s think of the first equation as being 
an equation for x1 in terms of x2 and x3:

• Similarly, we can rearrange equations 2 and 3:

• Now, make initial guesses 0x1 , 0x2 , and 0x3

   2 3
1 1 2 3

2 4 2
,

7
x x

x h x x
 

 

   1 3
2 2 1 3

3 2 3
,

8
x x

x h x x
  

 


   1 2
3 3 1 2

5 2 2
,

6
x x

x h x x
  

 
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Iterative approach (cont)

• Using h1 and our initial guesses 0x2 and 0x3, 
calculate a new guess for x1

• Similarly, we can calculate new guesses for x2

and x3:

   0 0
2 31 0 0

1 1 2 3

2 4 2
,

7
x x

x h x x
 

 

   0 0
1 31 0 0

2 2 1 3

3 2 3
,

8
x x

x h x x
  

 


   0 0
1 21 0 0

3 3 1 2

5 2 2
,

6
x x

x h x x
  

 



81
T05

Iterative approach (cont)

• Repeat this process, using our new guesses 
each time, until we (hopefully) get convergence

• Let’s see how this works out:
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Example: Jacobi method
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Example: Jacobi method (cont) 84
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Convergence (cont)

• Our example worked out pretty well, but can we 
be sure it will always work?

• Let’s consider the 1st order error propagation 
approximation we derived from Taylor Series

• And let’s apply that to our original system:

j
j i

i i x

g
g x

x

 
     




 
 

2 2 1 3

3 3 1 2

,

,

x g x x

x g x x



   2 3
1 1 2 3

2 4 2
,

7
x x

x g x x
 

 
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Convergence (cont)

• From the previous slide, we can estimate the 
error in x1 :

• Note: Because we’re dealing with a linear 
system, the partial derivatives are constants

• This equation basically says that the error in x1

is a weighted sum of the errors in x2 and x3

• How do we guarantee that the error keeps 
getting smaller?

1 1
1 2 3

2 3

g gx x x
x x
 

    
 
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Convergence (cont)

• If the sum of the weighting factors is < 1, i.e.

• then the error in x1 is guaranteed to be less than 
the maximum of the errors in x2 and x3

• We can make a similar statement for the 1st

equation of an nth order linear system:

1 1

2 3

1g g
x x
 

 
 

1 1 1 1

2 3 1

1
N N

g g g g
x x x x

   
    

   

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Convergence criterion
• However, similar criteria 

must be met for each of 
the other equations in 
the system

• Therefore, we write the 
convergence criteria for 
an Nth order system:

• For an Nth order linear 
system, we can recast 
each of the equations in 
the format:

• And the convergence 
criterion becomes:

1

1

1

For 
j i

i

j N j

i N
g
x















 
1

j i

i ij j
j N

i
ii

b a x
x

a











1
For 1

j i

ii ij
j N

i N a a




  



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Jacobi algorithm

 

 

 

1 12 2 1,1
1

11

2 21 1 23 3 2,1
2

22

,1 1 ,2 2 , 2 11

,

....

....

....

i i
N Ni

i i i
N Ni

i i i
N N N N N Ni

N
N N

b a x a x
x

a

b a x a x a x
x

a

b a x a x a x
x

a





 

  


   


   



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Two similar, but different, methods

• Some of you may have noticed that
– even after we calculate a new estimate for x1

– we use the old estimate of x1 to calculate new 
values of x2 , x3 , etc.

• The Gauss-Seidel Method incorporates each 
new estimate as it becomes available, e.g.

• Gauss-Seidel generally converges faster, while 
Jacobi method may be more stable

 3 31 1 32 2 34 4 3
3

33

....new new old old
n Nnew b a x a x a x a x

x
a

    

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Gauss-Seidel algorithm

 

 

 

1 12 2 1,1
1

11

1
2 21 1 23 3 2,1

2
22

1 1 1
,1 1 ,2 2 , 1 11

,

....

....

....

i i
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beneficial?
• Jacobi and Gauss-Seidel are particularly useful 

when dealing with an [A] matrix that is 
characterized by:
– Dominant diagonal terms
– Lots of zeroes off the diagonal (called “sparse”)

• Jacobi and Gauss-Seidel can save math 
operation by ignoring the 0 terms
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beneficial?
• The type of matrix described above is 

representative of several engineering situations, 
including:
– Multi-body spring-mass systems
– Finite element modeling
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Notes

• When presented with a system of equations, 
don’t just blindly solve the first equation for x1, 
the second for x2, etc.
– (unless specifically told to do so, as in the 

homework)
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Notes (cont.)

• Rearrange the equations so as to get the 
largest possible terms in the diagonal
– Both methods obviously require that the terms in 

the denominators be non-zero
– May be able to satisfy, or at least “get closer to” the 

convergence criterion


