
Solving Systems of Linear
Algebraic Equations

A systematic approach to stuff you’ve
done before

Read Chapters 9 and 10

2
T05

Motivation

• We have already encountered a couple
situations in which we have needed to solve a
system of equations:
– Calculating the remaining terms of an Eigenvector:

– Calculating a Householder Matrix for matrix
deflation

22 23 24 2 21

32 33 34 3 31

42 43 44 4 41

a a a v a
a a a v a
a a a v a






     
            

         

3
T05

Motivation
– Multi-dimensional Newton-Raphson

 
 
 

1 1 1 1

1 2 3 4
1 1 2 3 4

12 2 2 2

2 1 2 3 41 2 3 4 2

33 3 3 3 3 1 2 3 4

1 2 3 4 4
4

4 4 4 4

1 2 3 4

, , ,

, , ,

, , ,

i i i i

i i i i

i i i i

i

f f f f
x x x x

f x x x x
xf f f f

f x x x xx x x x x
xf f f f f x x x x

x x x x x
f

f f f f
x x x x

    
    
 

      
          
      
        

    
     

 1 2 3 4, , ,i i ix x x x

 
 
 
 
 
 
  

4
T05

Motivation

• System of linear equations also encountered in:
– Electrical engineering

• current equations in a resistor network

– Chemical engineering
• how final properties relate to batch ingredients

– Finite element analysis
– Civil engineering

• truss under load

• System could be solved by inverting matrix
• Matrix inversion is very time consuming!!!

5
T05

Manual solution

• Consider the following system of linear
algebraic equations

• You could try to randomly combine equations
hoping to eliminate variables
– Impossible to implement on a computer

4 2 3 4 1
6 2 2 2
3 2 3 3
4 4 4

q r s t
q r s t

r s t
q s t

    
   

   
  

6
T05

Systematic manual solution

• For a systematic approach, you may decide to
solve the 1st equation for q :

– and substitute the result in the 2nd equation:

– and into the 4th equation:

0 5 0 75 1 0 25q . r . s t .    

 0 5 0 75 1 0 25 6 2 2 2. r . s t . r s t       

6 5 1 25 1 2 25. r . s t .   

 4 0 5 0 75 1 0 25 4 4. r . s t . s t      

2 2 8 5r s t   

7
T05

Systematic manual solution (cont.)

• Resulting in a 3rd order system:

• The same method could now be used to
– eliminate r from the new Equations 3 and 4, then
– eliminate s from the newer Equation 4:

– leaving one equation with one unknown t

6 5 1 25 1 2 25
3 2 3 3
2 2 8 5

. r . s t .
r s t
r s t

   
   

   

8
T05

Systematic and numeric solution

• While the approach described here is certainly
systematic, symbolic manipulations are difficult
(or impossible) to implement on a computer

• However, I contend that
– solving Equation 1 for q,
– and substituting the result into Equation 2

– is exactly the same as

9
T05

Systematic and numeric (cont.)
– taking Equation 1
– multiplying it by the appropriate value
– and subtracting the result from Equation 2

• The results are certainly the same, and the
processes are, in fact, equivalent

 1
4 

6 2 2 2q r s t   



6 5 1 25 1 2 25. r . s t .   

 4 2 3 4 1q r s t    

10
T05

Systematic process

• Generic form of a 4th order system of linear eq’s

• q, r, s, t have been replaced by x1, x2, x3, …
• On the coefficient subscripts (aij), i is the

equation number, j matches the variable
number

11 1 12 2 13 3 14 4 1

21 1 22 2 23 3 24 4 2

31 1 32 2 33 3 34 4 3

41 1 42 2 43 3 44 4 4

a x a x a x a x b
a x a x a x a x b
a x a x a x a x b
a x a x a x a x b

   
   
   
   

11
T05

Systematic process (cont.)

• Use Equation 1 to eliminate a21, a31, and a41

– where a single prime indicates one modification
away from the original

– e.g. , 31
3 3 1

11

ab b b
a

 
    

 

11 1 12 2 13 3 14 4 1

1 22 2 23 3 24 4 2

1 32 2 33 3 34 4 3

1 42 2 43 3 44 4 4

0
0
0

a x a x a x a x b
x a x a x a x b
x a x a x a x b
x a x a x a x b

   
      
      
      

21
22 22 12

11

aa a a
a

 
    

 

12
T05

Systematic process (cont.)

• Now use equation 2' to eliminate a'32 and a'42

– where:

– and

11 1 12 2 13 3 14 4 1

1 22 2 23 3 24 4 2

1 2 33 3 34 4 3

1 2 43 3 44 4 4

0
0 0
0 0

a x a x a x a x b
x a x a x a x b
x x a x a x b
x x a x a x b

   
      

     
     

32
34 34 24

22

aa a a
a

 
      

42
4 4 2

22

ab b b
a

 
      

13
T05

Systematic process (cont.)

• And finally use equation 3'' to eliminate a''43

– where:

– and

11 1 12 2 13 3 14 4 1

1 22 2 23 3 24 4 2

1 2 33 3 34 4 3

1 2 3 44 4 4

0
0 0
0 0 0

a x a x a x a x b
x a x a x a x b
x x a x a x b
x x x a x b

   
      

     
    

43
44 44 34

33

aa a a
a

 
      

43
4 4 3

33

ab b b
a

 
      

Gauss Elimination

Chapra & Canale
Chapter 9

15
T05

Systematic and numeric

• But we want a process that is numeric only
– there were clearly still symbols (variables) in those

equations
– all the aij terms are actually numbers

• Let’s consider the system of equations in its
matrix format:

11 12 13 14 1 1

21 22 23 24 2 2

31 32 33 34 3 3

41 42 43 44 4 4

a a a a x b
a a a a x b
a a a a x b
a a a a x b

     
                          

16
T05

Systematic and numeric

• Expressed generically as:

• Now we can perform our mathematical
operations on rows of the matrix [A]
– e.g. to eliminate a31, the math looks like this:

    A x b

 31
11 12 13 14

11

a a a a aa
  
 

 31 32 33 34a a a a

 32 33 340 a a a  

17
T05

Systematic and numeric

• Furthermore, we notice that the same
operations are applied to each b term as are
applied the a terms in the same row

– we can think of bi as ai,N+1 (N is the system order)
– rename b3 as a35 (in the case of a 4th order system)

32
34 34 24

22

aa a a
a

 
      

32
3 3 2

22

ab b b
a

 
      

32
34 34 24

22

aa a a
a

 
      

32
35 35 25

22

aa a a
a

 
      

18
T05

Gauss Elimination

• Sum total of these observations lead to the
Gauss Elimination process
– Given an Nth order system: [A]{x} = {b}
– Concatenate {b} onto the right side of [A]

• Result is call the augmented A matrix [A*]

• e.g. for a 3rd order system

 

11 12 13 1

21 22 23 21

31 32 33 3

N N

a a a b
a a a b
a a a b

 

 
         
  

*A = A b

19
T05

Gauss Elimination
– Perform row operations on [A*] to eliminate all

terms below the diagonal in the 1st column
– e.g., to eliminate a31

• Row3' = Row3 – ((a31/a11) * Row1)

– Bottom N-1 rows of the resulting [A*]' matrix
represent a self-contained N-1 order system

– Perform row operations on [A*]' to eliminate all
terms below the diagonal in the 2nd column

20
T05

Gauss Elimination (cont.)
– Move rightward through the columns, continuing the

process as you go
• Last column operated on is the N-1 column, where N is

the order of the original system
• Result is an upper triangular augmented matrix

– e.g. for a 4th order system:

11 12 13 14 1

22 23 24 2

33 34 3

44 4

0
0 0
0 0 0

a a a a b
a a a b

a a b
a b

 
     

   
   

21
T05

Back propagation

• Last row represents a 1st order system:

• Back propagation process:
– Solve the last row (equation) for xN

– With xN , solve the next to last row for xN-1

– Continue upward through the rows until all variables
are solved

44 4 4a x b 

22
T05

Example: Gauss Elimination

• Solve the following system of equations:

• Create the augmented [A*] matrix:

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

2 2 3
2 2 4 2 6

4 4 2 3
4 2 3

x x x x
x x x x
x x x x
x x x x

    

    

   

     

1 2 1 2 3
2 2 4 2 6

4 4 2 1 3
1 1 4 2 3

  
    

 
    

23
T05

Example (cont.)
• Use the first row to:

– eliminate a21

• row2' = row2 – (a21/a11)row1

– eliminate a31

• row3' = row3 – (a31/a11)row1

– and eliminate a41

• row4' = row4 – (a41/a11)row1

• the new [A*] after one
full set of row operations

2 2 4 2 6

1 2 1 2 3

0 2 2 2 0

  

 

4 4 2 1 3

1 2 1 2 3

0 4 6 9 15



 

 

1 1 4 2 3

1 2 1 2 3

0 3 5 4 6

  

 

 

 

1 2 1 2 3
0 2 2 2 0
0 4 6 9 15
0 3 5 4 6

  
 

  
  

   

A*

 2
1



 4
1

 1
1



24
T05

Example (cont.)
• Use the 2nd row of [A*]' to:

– eliminate a'32

• row3'' = row3' – (a'32/a'22)row2'

– and eliminate a'42

• row4'' = row4' – (a'42/a'22)row2'

• [A*] matrix after two full
sets of row operations 

4 6 9 15

2 2 2 0

0 10 5 15

 



3 5 4 6

2 2 2 0

0 8 1 6

 

 

 4
2



 3
2

 

1 2 1 2 3
0 2 2 2 0
0 0 10 5 15
0 0 8 1 6

  
 

  
 

   

A*

25
T05

Example (cont.)

• Use the 3rd row of [A*]'' to eliminate a''43

– row4''' = row4'' – (a''43/a''33)row3''

• The resulting [A*] after three sets of row
operations

8 1 6

10 5 15

0 3 6

 





 8
10



 

1 2 1 2 3
0 2 2 2 0
0 0 10 5 15
0 0 0 3 6

  
 

  
 

  

A*

26
T05

Example: Back propagation

• The 4th row of [A*]''' represents a single
equation with one unknown
– Solve this equation for the last system variable

• The 3rd row of [A*]''' represents a single
equation with two unknowns

– but we know x4, and can therefore solve for x3:

4 43 6 2x x    

3 410 5 15x x 

 3 310 15 5 2 0.5x x    

27
T05

Example: Back propagation

• The 2nd row of [A*]''' represents a single
equation with three unknowns
– but we know x4 and x3 , and can solve for x2 :

• Finally, solve the top “equation” for the
remaining system variable:

2 3 42 2 2 0x x x  

   2 22 2 0.5 2 2 1.5x x     

1 2 3 42 2 3x x x x    

   1 13 2 1.5 0.5 2 2 1.5x x        

28
T05

Example: Back propagation (cont.)

• We can check our solution in MATLAB:
>> A = [1 2 -1 2; -2 -2 4 -2; 4 4 2 -1;
-1 1 -4 2]
>>x = [-1.5 1.5 0.5 -2]’
>>b = A*x
b =

-3
6
3
-3

Which agrees with our
original [b] vector

29
T05

Terminology

• Current column = column in which we are
zeroing out all values below the diagonal

• Pivot term = diagonal term in current column

• Control row (all of the below are true)
– row that contains the pivot term
– row that is being used to zero out other terms
– “control row” number always equals “current

column” number

30
T05

Terminology

• Target row = row in which we are zeroing out
the “current column” term

• Row factor = atarget row, current column ÷ pivot term

• Upper triangular = form of the final [A*] matrix

31
T05

Terminology, graphically

• Current column = 2 = Control row
• Current pivot term = a'22

• Next target row = Row 4
• Next row factor = (a'42 / a'22)

11 12 13 14 15 1

22 23 24 25 2

33 34 35 3

42 43 44 45 4

52 53 54 55 5

0
0 0
0
0

a a a a a b
a a a a b

a a a b
a a a a b
a a a a b

 
      

    
      

      

32
T05 Aside: There’s no such thing as a

free lunch
• This is one of the recurring concepts we will

encounter this semester
– You know it as “three unknowns, three equations”

• Better to think of as:
– If we wish to determine N pieces of information, we

need N pieces of information

• In our current case, we wish to determine the
values of x1 thru xN , so we need N unique
equations

33
T05

Possible outcomes

• A unique solution exists, and you find it
– Whoot

• An infinite set of constrained solutions exist
– Some equations not independent
– Final 1st order system looks something like: 0*x5 = 0

• No solution exists
– Some equations not compatible
– Final 1st order system looks something like: 0*x5 = 3

34
T05 Ramifications of how numbers are

stored in computers
• In Naïve Gauss Elimination we are repeatedly

multiplying the control row times the row factor
– in some cases, the row factor may be several

orders of magnitude greater than 1
– in other cases, the row factor may be several orders

of magnitude less than 1

• This is undesirable because of how numbers
are stored in the computer

35
T05

Additional danger

• Furthermore, the row factor calculation involves
dividing some term by the pivot term
– if the pivot term is zero, the result is undefined

36
T05

Solution: Partial pivoting

• Immediately upon entering a new column, swap
rows of the (primed) [A*] matrix to obtain the
largest absolute-value pivot term
– Find the largest magnitude term in the current

column at or below the control row
– If the largest magnitude term is not in the control

row, swap the control row with the row holding the
largest magnitude term

37
T05

Solution: Partial pivoting

• Remaining operations stay the same:
– Reduce the matrix of equations to upper triangular

form using row operations
– Back-substitute to sequentially find solution vector

38
T05

Pseudo-code for Gauss Elimination
Row operations to produce upper triangular form

1.column = 1

2. row = column + 1

3. factor = A(row,column)/A(column,column)

4. target_row = target_row – factor*control_row

5. if not last row, increment row value, go to line 3

6. if not next-to-next-to-last column, increment column,
go to 2
– Note that lines 2&5 represent a for loop, as do lines 1&6

39
T05

Pseudo-code for Gauss Elimination
Back substitution to generate answers

x(rowsA) = A(rowsA,rowsA+1)/A(rowsA,rowsA)

for row = rowsA-1 to 1 by -1

sum = 0

for column = row+1 to rowsA

sum = sum + A(row,column) * x(column)

end

x(row) = (A(row,rowsA+1) - sum)/A(row,row)

end

40
T05

Pseudo-code for Gauss Elimination
Partial pivoting operation

upon entering new current column, find location of
largest absolute value on or below the diagonal

if max absolute value not on diagonal

swap (row with max absolute value) and (control row)

(perform row operations as normal)

41
T05

Other Gauss Elim. Enhancements

• Full Pivoting: upon entering a new column, you
could swap both rows and columns to get the
largest possible absolute value in the pivot term
– Swapping columns rearranges the positions of x1,

x2, etc, so you must keep track of the final position
of each column!!

• Scaling: It is an easy and effective approach to
add a scaling step, i.e. scale each row by the
largest element in that row before doing the
pivoting operation. (Chapra & Canale, § 9.4.3)

42
T05

So, what else can go wrong?

• In certain cases, the solution vector {x} values
can be highly dependent on the values in the
[A] matrix

• This makes the results susceptible to not only
rounding and chopping (number storage)
errors, but also to measurement errors in
setting up the problem description

• We call a matrix of this type “ill-conditioned.”

43
T05

Ex: Ill-conditioned matrix

• The MATLAB function cond(A) calculates
the condition number of the matrix [A]

• Condition number = 259
– 0.5% change in A(3,2)
– causes 29% change in x3

• Condition number = 2.34
– 1.0% change in B(3,1)
– causes 0.7% change in x2

15 15 19
18 19 23
10 10 20

 
   

  

B

15 16 19
15 19 23
15 20 25

 
   
  

A

44
T05

Solving multiple simultaneous inputs

• We can think of our linear algebraic equations
as representing a physical system, in which:
– [A] represents the system characteristics
– {b} represents external inputs
– {x} represents the system's response to those

specific inputs

• For example, [A] could be the stiffness of an
airplane wing, {b} could be the aerodynamic
loads on the wing, and {x} would be the
displacements of the wing

45
T05

Multiple simultaneous inputs (cont)

• What if we want to predict the system response
under multiple input conditions, 1{b}, 2{b}, etc?

• If we consider the three systems:

• We could define three unique augmented [A*]
matrices

     1 1
A x = b

     2 2
A x = b      3 3

A x = b

   1 1
|  A * = A b

   2 2
|  A * = A b    3 3

|  A * = A b

46
T05

Multiple simultaneous inputs (cont)

• and perform Gauss Elimination three times
– that would be tedious and redundant, since the row

operations depend only on the values in [A]

• Furthermore, matrix math allows us to combine
these three equations into one equation:

– where

    A X = B

       1 2 3
  X = x x x

       1 2 3
  B = b b b

47
T05

Multiple simultaneous inputs (cont)
– I leave it to you to convince yourself that 3{b}

depends only on [A] and 3{x}, etc.

• Similarly, we could create a single augmented
[A*] matrix:

• and perform Gauss Elimination on this “uber”
augmented [A*] matrix

       1 2 3
       

*A A | B A | b | b | b

48
T05

Multiple simultaneous inputs (cont)

• After N-1 sets of row operations, the results of
the Gauss Elimination process are:

• where the Afinal part of [A*]final is upper
triangular in form

     *
1 2 3

final final final finalfinal     A = A | b | b | b

49
T05

Multiple simultaneous inputs (cont)

• Then we would:
– use back propagation on [A]final and 1{b}final to solve

for the 1{x} response,
– use back propagation on [A]final and 2{b}final to solve

for the 2{x} response,
– etc.

50
T05

Gauss Elimination recap

• We can describe the Gauss-Elimination
process thus:

• where Afinal is upper triangular, and

• In Gauss Elimination, the row operations are
limited to eliminating terms below the diagonal

   Gauss
Elimination

finalfinal     A | b A | b

     final final A x b

51
T05

Gauss-Jordan

• In Gauss Jordan
– 1) the row operations are extended to eliminate ALL

non-diagonal elements
• process will include row operations such as:

• Note: In Gauss-Jordan, row operations will be performed
in the Nth column, unlike in Gauss-Elimination

– 2) After all row operations are done, each row is
scaled by the inverse of the pivot term

12

22

1 1 2arow row row
a

 
     

24

44

2 2 4arow row row
a

 
      

52
T05

Gauss-Jordan

• Recap of Gauss-Jordan:
– ALL non-diagonal terms are eliminated with row

operations
– each row is divided by its diagonal term, making the

diagonal term equal to 1

• As a result, the final [A] matrix looks like this:

 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

final

 
 
 
 
 
 

A

53
T05

Gauss-Jordan

• Therefore, our equation becomes:

• And the Gauss-Jordan method can be
expressed as

     
     

   

final final

final

final

 

 



A x b

I x b

x b

   Gauss
JordanA | b I | x

54
T05

Gauss-Jordan

• Our previous example would look like this:

Gauss
Jordan

1 2 1 2 3 1 0 0 0 1.5
2 2 4 2 6 0 1 0 0 1.5

4 4 2 1 3 0 0 1 0 0.5
1 1 4 2 3 0 0 0 1 2

     
       

   
         

55
T05

Why Gauss-Jordan?

• Gauss-Jordan converts an Nth order system into
quantity N 1st order systems
– Each equation represented by the final [A*] matrix

has only one variable (one non-zero coefficient)

– and thanks to the scaling, the right hand column of
the final [A*] matrix is exactly the solution vector {x}

• Basically, the Gauss Jordan technique has
exchanged the back propagation process for
additional row operations

56
T05

Why Gauss-Jordan?

• This is not computationally advantageous
– Perhaps it is psychologically advantageous
– Regardless, it does lead to a convenient way of

inverting a matrix

57
T05

Matrix inversion

• We established that we can solve for multiple
inputs at once:

– using Gauss Elimination

• We can also solve for multiple inputs using
Gauss-Jordan:

    A X B

   Gauss
Jordan

final final   A | B A | B I | X

58
T05

Matrix inversion

• We also know that:

• So, if [B] = [I] , then, by definition, [X] = [A]-1

• Applied to the Gauss-Jordan process, this
condition looks like this:

    A X B

  Gauss 1
Jordan

  A | I I | A

LU Decomposition

Chapra & Canale
Chapter 10

60
T05

Gauss computational expense

• In Gauss elimination, the row operations are
performed on the augmented [A*] matrix after
the {b} vector is determined. The number of
required mathematical operations is
approximately (2/3)n3.

• Is there a way to do some math before-hand, to
reduce the number of operations that are
necessary after the {b} vector is determined?

• Yes. LU Decomposition is one of those
methods.

61
T05

Concept – LU Decomposition

• We start with the same system of linear
algebraic equations:

• Now, let’s decompose the coefficient matrix:

– we can do this off-line, before the {b} vector is
determined

    A x = b

    A L U

62
T05

Decomposition concept (cont.)

• Substitute this identity into our original equation:

• Now, if we let

– then

    L d = b

     L U x = b

    U x = d

63
T05

Decomposition concept (cont.)

• This is helpful if we specify that:

– [U] is upper triangular

– [L] is lower triangular

• [L] also has 1’s on the diagonal, which we’ll discuss later

 
21

31 32

,1 ,2 ,3

1 0 0 0
1 0 0

1 0

1N N N

l
l l

l l l

 
 
 
 
 
 
  

L





    


 

11 12 13 1,

22 23 2,

33 3,

,

0
0 0

0 0 0

N

N

N

N N

u u u u
u u u

u u

u

 
 
 
 
 
 
  

U





    


64
T05

Decomposition concept (cont.)

• Given the stipulated forms of [U] and [L] ,
– Once {b} is determined, {d} can be calculated

through forward substitution:

1 1

21 2 2

31 32 3 3

,1 ,2 ,3

1 0 0 0
1 0 0

1 0

1N N N N N

d b
l d b
l l d b

l l l d b

     
     
             
     
     
         





      


1 1

2 2 21 1

1

,
1

N

N N N p p
p

d b
d b l d

d b l d





 

 



65
T05

Decomposition concept (finished)
– With {d} known, {x} can be calculated through

backward substitution:

11 12 13 1, 1 1

22 23 2, 2 2

33 3, 3 3

,

0
0 0

0 0 0

N

N

N

N N N N

u u u u x d
u u u x d

u u x d

u x d

     
     
             
    
     
         





      


,

1 1,
2

1
11

N
N

N N

N

p p
p

dx
u

d u x
x

u




 
 

 




66
T05

How to determine [L] and [U]

• Let’s look at a 3x3 system.
– The algorithm can be generalized by induction

    L U = A

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

1 0 0
1 0 0

1 0 0

u u u a a a
l u u a a a
l l u a a a

     
          
          

11 12 13 11 12 13

21 11 21 12 22 21 13 23 21 22 23

31 11 31 12 32 22 31 13 32 23 33 31 32 33

u u u a a a
l u l u u l u u a a a
l u l u l u l u l u u a a a

   
        

        

67
T05

Decomposition process (cont.)

• Set individual terms equal to one another:
– Let’s start with the really easy ones:

– The rest of the first column is pretty easy also:

21 21 11 21 11/ /l a u a a  21 11 21

31 11 31

l u a

l u a



 31 31 11 31 11/ /l a u a a  

11 11 12 12 13 13u a u a u a  

68
T05

Decomposition process (cont.)

• Now the rest of the second column:

21 12 22 22l u u a 

32 31 12
32

22

a l ul
u



22 22 21 12u a l u 

31 12 32 22 32l u l u a 

21
22 22 12

11

au a a
a

 
31

32 12
11

32
22

aa a
al

u




69
T05

Decomposition process (cont.)

• And finally the rest of the third column:

21 13 23 23l u u a 

33 33 31 13 32 23u a l u l u  23 23 21 13u a l u 

31 13 32 23 33 33l u l u u a  

21
23 23 13

11

au a a
a

  31
33 33 13 32 23

11

au a a l u
a

  

70
T05

Let’s take a closer look
• Start with 3x3 system

• Eliminate a21

• Eliminate a31

• But a21/a11 is exactly l21

• and a31/a11 is exactly l31

11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

 
 
 
  

 
 
 

21 22 23

21
11 12 13

11

22 230

a a a
a a a aa

a a

  
 

 

 
 
 

31 32 33

31
11 12 13

11

32 330

a a a
a a a aa

a a

  
 

 

71
T05

Solving for [L] and [U]

• Furthermore,

• which is exactly u22

• and

• which is exactly u23

• Continuing our Gauss
Elimination

– Eliminate a21

21
22 22 12

11

aa a aa
     
 

21
23 23 13

11

aa a aa
     
 

 
 
 

32 33

32
22 23

22

330

a a
a a aa

a

 
     



72
T05

• where

– which is exactly l32

• and

– which is exactly u33

Solving for [L] and [U] (cont.)

31
32 12

1132

22 21
22 12

11

aa aaa
a aa aa

         
 

32
33 33 23

22

aa a aa
       

31
33 13 32 23

11

aa a l u
a

  

73
T05

Generalized results

• The terms in the [U] matrix are exactly the
terms that appear in the final upper triangular
[A] matrix

• The non-diagonal terms in [L] are the row
factors that arise during Gauss Elimination

21
21

11

31 32
31 32

11 22

4341 42
41 42 43

11 22 33

al a
a al la a

aa al l la a a



  
   

74
T05

Pivoting

• Since the LU Decomposition process is so
closely related to Gauss Elimination, it suffers
all the same potential setbacks
– including problems arising from number storage

and orders of magnitude differences between
different row factors

• Can we pivot with LU Decomposition?

75
T05

Pivoting

• Remember, pivoting is equivalent to re-ordering
your equations
– In Gauss Elimination, {b} was part of the [A*]

matrix, so it was automatically re-ordered at the
same time as [A]

• In LU Decomposition, {b} is separate from [A]
– Pivot operations must be tracked
– Same pivot operations must be applied to {b}

before forward substitution begins

76
T05

Notes on LU Decomposition

• LU Decomposition is not unique
– There are other possible forms of matrix pairs (e.g.

Crout Decomposition, which is in your textbook)
– Other decomposition matrices take advantage of

special situations, such a symmetrical [A] matrix
– Choices are generally driven by best computational

efficiency

• The matrices in LU Decomposition have the
advantage of being easily related to the Gauss
elimination routine

Jacobi Method
Gauss-Seidel Method

Chapra & Canale
Chapter 11

78
T05

Remember

• Previously, when confronted with multiple
equations in multiple unknowns:

• We have thought of it in the following terms:

1 2 3

1 2 3

1 2 3

7 4 2 2
2 8 3 3
2 2 6 5

x x x
x x x
x x x

  

   

   

 
 
 

1 1 1 2 3 1 2 3

2 2 1 2 3 1 2 3

3 3 1 2 3 1 2 3

, , 7 4 2 2

, , 2 8 3 3

, , 2 2 6 5

y f x x x x x x

y f x x x x x x

y f x x x x x x

    

     

     

79
T05

An iterative approach

• Instead, let’s think of the first equation as being
an equation for x1 in terms of x2 and x3:

• Similarly, we can rearrange equations 2 and 3:

• Now, make initial guesses 0x1 , 0x2 , and 0x3

   2 3
1 1 2 3

2 4 2
,

7
x x

x h x x
 

 

   1 3
2 2 1 3

3 2 3
,

8
x x

x h x x
  

 


   1 2
3 3 1 2

5 2 2
,

6
x x

x h x x
  

 

80
T05

Iterative approach (cont)

• Using h1 and our initial guesses 0x2 and 0x3,
calculate a new guess for x1

• Similarly, we can calculate new guesses for x2

and x3:

   0 0
2 31 0 0

1 1 2 3

2 4 2
,

7
x x

x h x x
 

 

   0 0
1 31 0 0

2 2 1 3

3 2 3
,

8
x x

x h x x
  

 


   0 0
1 21 0 0

3 3 1 2

5 2 2
,

6
x x

x h x x
  

 

81
T05

Iterative approach (cont)

• Repeat this process, using our new guesses
each time, until we (hopefully) get convergence

• Let’s see how this works out:

82
T05

Example: Jacobi method

83
T05

Example: Jacobi method (cont) 84
T05

Convergence (cont)

• Our example worked out pretty well, but can we
be sure it will always work?

• Let’s consider the 1st order error propagation
approximation we derived from Taylor Series

• And let’s apply that to our original system:

j
j i

i i x

g
g x

x

 
     




 
 

2 2 1 3

3 3 1 2

,

,

x g x x

x g x x



   2 3
1 1 2 3

2 4 2
,

7
x x

x g x x
 

 

85
T05

Convergence (cont)

• From the previous slide, we can estimate the
error in x1 :

• Note: Because we’re dealing with a linear
system, the partial derivatives are constants

• This equation basically says that the error in x1

is a weighted sum of the errors in x2 and x3

• How do we guarantee that the error keeps
getting smaller?

1 1
1 2 3

2 3

g gx x x
x x
 

    
 

86
T05

Convergence (cont)

• If the sum of the weighting factors is < 1, i.e.

• then the error in x1 is guaranteed to be less than
the maximum of the errors in x2 and x3

• We can make a similar statement for the 1st

equation of an nth order linear system:

1 1

2 3

1g g
x x
 

 
 

1 1 1 1

2 3 1

1
N N

g g g g
x x x x

   
    

   


87
T05

Convergence criterion
• However, similar criteria

must be met for each of
the other equations in
the system

• Therefore, we write the
convergence criteria for
an Nth order system:

• For an Nth order linear
system, we can recast
each of the equations in
the format:

• And the convergence
criterion becomes:

1

1

1

For
j i

i

j N j

i N
g
x















 
1

j i

i ij j
j N

i
ii

b a x
x

a











1
For 1

j i

ii ij
j N

i N a a




  




88
T05

Jacobi algorithm

 

 

 

1 12 2 1,1
1

11

2 21 1 23 3 2,1
2

22

,1 1 ,2 2 , 2 11

,

....

....

....

i i
N Ni

i i i
N Ni

i i i
N N N N N Ni

N
N N

b a x a x
x

a

b a x a x a x
x

a

b a x a x a x
x

a





 

  


   


   




89
T05

Two similar, but different, methods

• Some of you may have noticed that
– even after we calculate a new estimate for x1

– we use the old estimate of x1 to calculate new
values of x2 , x3 , etc.

• The Gauss-Seidel Method incorporates each
new estimate as it becomes available, e.g.

• Gauss-Seidel generally converges faster, while
Jacobi method may be more stable

 3 31 1 32 2 34 4 3
3

33

....new new old old
n Nnew b a x a x a x a x

x
a

    


90
T05

Gauss-Seidel algorithm

 

 

 

1 12 2 1,1
1

11

1
2 21 1 23 3 2,1

2
22

1 1 1
,1 1 ,2 2 , 1 11

,

....

....

....

i i
N Ni

i i i
N Ni

i i i
N N N N N Ni

N
N N

b a x a x
x

a

b a x a x a x
x

a

b a x a x a x
x

a






  
 

  


   


   




91
T05 When are Jacobi / Gauss-Seidel

beneficial?
• Jacobi and Gauss-Seidel are particularly useful

when dealing with an [A] matrix that is
characterized by:
– Dominant diagonal terms
– Lots of zeroes off the diagonal (called “sparse”)

• Jacobi and Gauss-Seidel can save math
operation by ignoring the 0 terms

92
T05 When are Jacobi / Gauss-Seidel

beneficial?
• The type of matrix described above is

representative of several engineering situations,
including:
– Multi-body spring-mass systems
– Finite element modeling

93
T05

Notes

• When presented with a system of equations,
don’t just blindly solve the first equation for x1,
the second for x2, etc.
– (unless specifically told to do so, as in the

homework)

94
T05

Notes (cont.)

• Rearrange the equations so as to get the
largest possible terms in the diagonal
– Both methods obviously require that the terms in

the denominators be non-zero
– May be able to satisfy, or at least “get closer to” the

convergence criterion

