
Chapter 1 C++ Basics

Electrical Engineering Department

1st Year

Programming Languages

Faculty of Engineering

Sohag University

Structure of a program

The best way to learn a programming language is by writing

programs. Typically, the first program beginners write is a

program called "Hello World", which simply prints "Hello World"

to your computer screen. Although it is very simple, it contains

all the fundamental components C++ programs have:

Hello

World!

// my first program in C++

#include <iostream>

int main()

{

std::cout << "Hello

World!";

}

1

2

3

4

5

6

7

Structure of a program

Line 1: // my first program in C++

Two slash signs indicate that the rest of the line is a comment inserted

by the programmer but which has no effect on the behavior of the

program. Programmers use them to include short explanations or

observations concerning the code or program.

Line 2: #include <iostream>

Lines beginning with a hash sign (#) are directives read and interpreted

by what is known as the preprocessor. They are special lines

interpreted before the compilation of the program itself begins. In

this case, the directive #include <iostream>, instructs the preprocessor to

include a section of standard C++ code, known as header iostream, that

allows to perform standard input and output operations, such as

writing the output of this program (Hello World) to the screen.

Line 3: A blank line.

Blank lines have no effect on a program. They simply improve readability

of the code.

Structure of a program

• Line 4: int main ()

• This line initiates the declaration of a function. Essentially, a function
is a group of code statements which are given a name: in this case,
this gives the name "main" to the group of code statements that
follow. Functions will be discussed in detail in a later chapter, but
essentially, their definition is introduced with a succession of a type
(int), a name (main) and a pair of parentheses (()), optionally
including parameters.
The function named main is a special function in all C++ programs; it
is the function called when the program is run. The execution of all
C++ programs begins with the main function, regardless of where
the function is actually located within the code.

• Lines 5 and 7: { and }

• The open brace ({) at line 5 indicates the beginning of main's
function definition, and the closing brace (}) at line 7, indicates its
end. Everything between these braces is the function's body that
defines what happens when main is called. All functions use braces
to indicate the beginning and end of their definitions.

Structure of a program

• Line 6: std::cout << "Hello World!";

• This line is a C++ statement. Statements are executed in
the same order that they appear within a function's body.

• This statement has three parts: First, std::cout, which
identifies the standard character output device (usually,
this is the computer screen). Second, the insertion
operator (<<), which indicates that what follows is
inserted into std::cout. Finally, a sentence within quotes
("Hello world!"), is the content inserted into the standard
output.

•

Fundamental data types
• Fundamental data types are basic types implemented directly

by the language that represent the basic storage units supported
natively by most systems. They can mainly be classified into:

• Character types: They can represent a single character, such
as 'A' or '$'. The most basic type is char, which is a one-byte
character. Other types are also provided for wider characters.

• Numerical integer types: They can store a whole number
value, such as 7 or 1024. They exist in a variety of sizes, and
can either be signed or unsigned, depending on whether they
support negative values or not.

• Floating-point types: They can represent real values, such
as 3.14 or 0.01, with different levels of precision, depending
on which of the three floating-point types is used.

• Boolean type: The boolean type, known in C++ as bool, can
only represent one of two states, true or false.

/ This line is necessary to be able to output information

to the screen #include <iostream>

// The program starts here and carries on line by line 5

int main()

{

// The list of 4 integer numbers to add together

int numbers[4] = {1, 5, 9, -3};

// The sum of the numbers, initialised to zero

int sum = 0;

// For each number in the list

for(int i = 0; i < 4; ++i)

{

/* Add the i-th (running from 0 to 3) number

to the sum */

sum += numbers[i];

}

// Output the sum to the screen

std::cout << sum << std::endl;

// End the program and send a value of 0

(success) back

// to the operating system25

return 0;

}

Fundamental data types

Type sizes above are expressed in bits; the more bits a type

has, the more distinct values it can represent, but at the same

time, also consumes more space in memory:

Notes
Unique representable

valuesSize

= 282568-bit

= 21665 53616-bit

= 232 (~4 billion)4 294 967 29632-bit

= 264 (~18 billion

billion)

18 446 744 073 709

551 616
64-bit

Declaration of variables
// operating with variables

#include <iostream>

using namespace std;

int main ()

{

// declaring variables:

int a, b;

int result;

// process:

a = 5;

b = 2;

a = a + 1;

result = a - b;

// print out the result:

cout << result;

// terminate the program:

return 0;

}

Initialization of variables

// initialization of variables

#include <iostream>

using namespace std;

int main ()

{

int a=5; // initial value: 5

int b(3); // initial value: 3

int c{2}; // initial value: 2

int result; // initial value undetermined

a = a + b;

result = a - c;

cout << result;

return 0;

}

Introduction to strings

One of the major strengths of the C++ language is its rich set

of compound types.

An example of compound type is the string class. Variables of

this type are able to store sequences of characters, such as

words or sentences. A very useful feature!

// my first string

#include <iostream>

#include <string>

using namespace std;

int main ()

{

string mystring;

mystring = "This is a string";

cout << mystring;

return 0;

}

Constants

Constants are expressions with a fixed value.

Literals

Literals are the most obvious kind of constants. They

are used to express particular values within the

source code of a program. Theyare used to give

specific values to variables or to express messages

we wanted our programs to print out, for example,

when we wrote:

The 5 in this piece of code was a literal constant.

a = 5;

Constants
Literal constants can be classified into: integer, floating-

point, characters, strings, Boolean, pointers, and user-

defined literals.

Integer Numerals
These are numerical constants that identify integer values.

1776

707

-273

Floating Point Numerals

They express real values, with decimals and/or exponents.

They can include either a decimal point, an e character (that

expresses "by ten at the Xth height", where X is an integer

value that follows the e character), or both a decimal point

and an e character:

Constants

3.14159 // 3.14159

6.02e23 // 6.02 x 10^23

1.6e-19 // 1.6 x 10^-19

3.0 // 3.0

TypeSuffix

floatf or F

long doublel or L

Special Characters

DescriptionEscape code

newline\n

carriage return\r

tab\t

vertical tab\v

backspace\b

form feed (page feed)\f

alert (beep)\a

single quote (')\'

double quote (")\"

question mark (?)\?

backslash (\)\\

Operators

Assignment operator (=)

The assignment operator assigns a value to a variable.

x = 5;

x = y;

This statement assigns to variable x the value

contained in variable y. The value of x at the moment

this statement is executed is lost and replaced by the
value of y.

This statement assigns the integer value 5 to the variable x.

Operators

Arithmetic operators (+, -, *, /, %)

The five arithmetical operations supported by C++ are:

DescriptionOperator

addition+

subtraction-

multiplication*

division/

modulo%

Operations of addition, subtraction, multiplication and division

correspond literally to their respective mathematical operators.

The last one, modulo operator, represented by a percentage
sign (%), gives the remainder of a division of two values.

Operators

Compound assignment (+=, -=, *=, /=, %=, >>=, <<=, &=,

^=, |=)

Compound assignment operators modify the current value of

a variable by performing an operation on it. They are

equivalent to assigning the result of an operation to the first

operand:

equivalent to...expression

y = y + x;y += x;

x = x - 5;x -= 5;

x = x / y;x /= y;

price = price *

(units+1);
price *= units + 1;

Operators

Increment and decrement (++, --)

Some expression can be shortened even more: the increase
operator (++) and the decrease operator (--) increase or

reduce by one the value stored in a variable. They are
equivalent to +=1 and to -=1, respectively. Thus:

++x;

x+=1;

x=x+1;

1

2

3

Operators

A peculiarity of this operator is that it can be used both as a

prefix and as a suffix. That means that it can be written either

before the variable name (++x) or after it (x++).

Example 2Example 1

x = 3;

y = x++;

// x contains 4,

y contains 3

x = 3;

y = ++x;

// x contains 4, y

contains 4

Operators

Relational and comparison operators (==, !=, >, <, >=, <=)

Two expressions can be compared using relational and

equality operators. The result of such an operation is either

true or false (i.e., a Boolean value).

The relational operators in C++ are:

descriptionoperator

Equal to==

Not equal to!=

Less than<

Greater than>

Less than or equal to<=

Greater than or equal to>=

Operators

|| OPERATOR (or)

a || bba

truetruetrue

truefalsetrue

truetruefalse

falsefalsefalse

Logical operators (!, &&, ||)

The operator ! is the C++ operator for the Boolean operation

NOT. It has only one operand, to its right, and inverts it,

producing false if its operand is true, and true if its operand

is false.

&& OPERATOR (and)

a && bba

truetruetrue

falsefalsetrue

falsetruefalse

falsefalsefalse

Basic Input/Output
C++ uses a convenient abstraction called streams to

perform input and output operations in sequential media

such as the screen, the keyboard or a file. A stream is an

entity where a program can either insert or extract

characters to/from.

descriptionstream

standard input streamcin

standard output streamcout

standard error (output) streamcerr

standard logging (output) streamclog

Basic Input/Output
Standard output (cout)

For formatted output operations, cout is used together with

the insertion operator, which is written as << (i.e., two "less

than" signs).

cout << "Hello"; // prints Hello

cout << Hello; // prints the content of

variable Hello

Multiple insertion operations (<<) may be chained in a

single statement:

cout << "This " << " is a " << "single C++ statement";

Basic Input/Output

To insert a line break, a new-line character shall be inserted at

the exact position the line should be broken. In C++, a new-
line character can be specified as \n (i.e., a backslash

character followed by a lowercase n). For example:

cout << "First sentence.\n";

cout << "Second sentence.\nThird

sentence.";

1

2

Alternatively, the endl manipulator can also be used to break lines.

cout << "First sentence." << endl;

cout << "Second sentence." << endl;

1

2

First sentence.

Second sentence.

Third sentence.

First sentence.

Second sentence.

The endl manipulator produces a newline character,

exactly as the insertion of '\n' does

Basic Input/Output
Standard input (cin)

In most program environments, the standard input by default is the

keyboard, and the C++ stream object defined to access it is cin.

For formatted input operations, cin is used together with the extraction
operator, which is written as >> (i.e., two "greater than" signs). For

example:

int age;

cin >> age;

1

2

Extractions on cin can also be chained to request more than one datum in

a single statement:

cin >> a >> b;

Basic Input/Output
cin and strings

The extraction operator can be used on cin to get strings of

characters in the same way as with fundamental data types:

string mystring;

cin >> mystring;

1

2

To get an entire line from cin, there exists a function,

called getline, that takes the stream (cin) as first argument,

and the string variable as second.

Basic Input/Output
What's your

name? Homer

Simpson

Hello Homer

Simpson.

What is your

favorite

team? The

Isotopes

I like The

Isotopes

too!

// cin with strings

#include <iostream>

#include <string>

using namespace std;

int main ()

{

string mystr;

cout << "What's your name? ";

getline (cin, mystr);

cout << "Hello " << mystr <<

".\n";

cout << "What is your favorite

team? ";

getline (cin, mystr);

cout << "I like " << mystr << "

too!\n";

return 0;

}

1

6

Basic Input/Output
stringstream

The standard header <sstream> defines a type
called stringstream that allows a string to be treated as a

stream, and thus allowing extraction or insertion operations

from/to strings in the same way as they are performed

on cin and cout. This feature is most useful to convert strings

to numerical values and vice versa. For example, in order to

extract an integer from a string we can write:

string mystr ("1204");

int myint;

stringstream(mystr) >> myint;

1

2

3

http://www.cplusplus.com/%3Csstream%3E
http://www.cplusplus.com/stringstream

Basic Input/Output
Enter price:

22.25

Enter quantity:

7

Total price:

155.75

// stringstreams

#include <iostream>

#include <string>

#include <sstream>

using namespace std;

int main ()

{

string mystr;

float price=0;

int quantity=0;

cout << "Enter price: ";

getline (cin,mystr);

stringstream(mystr) >> price;

cout << "Enter quantity: ";

getline (cin,mystr);

stringstream(mystr) >> quantity;

cout << "Total price: " <<

price*quantity << endl;

return 0;

}

2

1

