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REVIEW

Role of Different Moisture Sources in Driving the Western Himalayan 
Past-glacier Advances

Prachita Arora1,2, Sheikh Nawaz Ali1,2*
 

, Anupam Sharma1

1 Birbal Sahni Institute of Palaeosciences, Lucknow, 226007, India
2 Academy of Scientific and Innovative Research, Ghaziabad, 201002, India

ABSTRACT
The fragmented pattern and the rapidly declining preservation of older glacial features/evidences limits the precision, 

with which glacial chronologies can be established. The challenge is exacerbated by the scarcity of datable material 
and limitations of dating methods. Nevertheless, the preserved glacial landforms have been fairly utilized to establish 
glacial chronologies from different sectors of the Indian Himalayas. The existing Himalayan glacial chrono-stratigraphies 
have revealed that in a single valley, past glacial advances rarely surpass four stages. Thus, local and regional glacial 
chronologies must be synthesized to understand glacial dynamics and potential forcing factors. This research presents 
an overview of glacier responses to climate variations revealed by glacial chrono-stratigraphies in the western Indian 
Himalayan region over the Quaternary (late). The synthesis demonstrated that, although the glacial advances were 
sporadic, glaciers in western Himalayas generally advanced during the Marine isotope stage (MIS)-3/4, MIS-2, late 
glacial, Younger Dryas (YD) and Holocene periods. The Holocene has witnessed multiple glacial advances and the scatter 
is significant. While previous glacial research revealed that Himalayan glaciers were out of phase with the global last 
glacial maximum (gLGM), weak Indian Summer Monsoon (ISM) has been implicated (ISM was reduced by roughly 
20%). Recent research, however, has shown that gLGM glaciation responded to the global cooling associated with the 
enhanced mid-latitude westerlies (MLW). Further, the magnitude of gLGM glacier advance varied along and across the 
Himalayas particularly the transitional valleys located between the ISM and MLW influence. It is also evident that both 
the ISM and MLW have governed the late Quaternary glacial advances in the western Himalayan region. However, the 
responses of glaciers to ISM changes are more prominent. The insights gained from this synthesis will help us understand 
the dynamics of glacier response to climate change, which will be valuable for future climate modelling.
Keywords: Glacial chrono-stratigraphy; Dating technique limits; Climate drivers; Western Himalaya; India
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1. Introduction
The Himalayan mountain range, which spans 

eight Asian nations and shelters the most glaciers 
outside of the Polar regions, is referred to be Asia’s 
“third pole or water tower” [1,2]. The reason is that the 
melt water from the snow and glaciers feeds some 
of the most important river systems that provide 
freshwater to millions of people in the Indo-Gangetic 
Plain and Central and East China [2,3]. However, since 
the little ice age (LIA), a general receding trend of 
the Himalayan glaciers has been observed, with few 
exceptions from the Karakoram region, where some 
glaciers have been reported to be standstill or to be 
advancing, a phenomenon referred to as the Karako-
ram anomaly [4-7]. According to recent studies, the 
rate of melting in the Himalayan region has acceler-
ated over the last four decades, making the situation 
more worrying [8]. Considering the present trend of 
glacier melting, it is anticipated that future scenarios 
would have cascading consequences on mountain 
hydrology, biodiversity, and ecosystem services [9,10].  
Although a precise understanding of the climatic 
characteristics of mountain regions is crucial, com-
plexity arises from a lack of observational data with 
an adequate spatial and temporal resolution, particu-
larly in the complex topographic regions, and signif-
icant difficulty in representing such terrains in cur-
rent general circulation climate models (GCMs) [11].  
Since alternative palaeoclimatic archives, such as 
lake sequences, are limited and sometimes represent 
a shorter time frame, the study of past glacial ad-
vances in the Himalayan region becomes increasing-
ly essential. 

High mountain glaciers are among the most sen-
sitive and best recorders of climate change due to 
their propensity to respond to the combined effects 
of snowfall and temperature changes [12-14]. The en-
tire Himalayan ecosystem, including glaciers, has 
responded to climate change; however, because this 
region is so vast and diverse—including variations 
in climate (temperature and precipitation)—it is 
extremely difficult to comprehend the dynamics of 
glaciers at different time scales across the region. As 
a result, understanding and determining the impact 

of diverse climatic conditions on glacier dynamics 
across the Himalayas will be challenging until and 
unless extensive data sets of past changes are com-
piled from various catchments. During the past two 
decades, glacial chronologies have been developed 
in several sectors of the Indian Himalayas, notably 
the western and central Himalayas. However, the 
palaeoclimatic patterns and the timing of past glacia-
tions, in particular, remain controversial not only for 
the tropical/monsoonal sectors of the Himalayas [15],  
but also for the entire Indian Himalayan region, 
owing to the vast environmental diversity and geo-
graphical vibrancy of the region [16].

The Indian summer monsoon (ISM) and the 
mid-latitude westerlies (MLW) are the two principal 
precipitation sources that feed the Himalayas and the 
Himalayan glaciers from a climatological standpoint. 
The influence of these two weather systems on the 
glacial dynamics of the Himalayas is highly com-
plicated and yet to be thoroughly investigated. In 
addition, the timing and extent of glacier oscillations 
are poorly known over the majority of the Himalayas 
and Tibet. In recent years, a great deal of effort and 
attention has been devoted to this region, especially 
with the aid of new remote-sensing techniques and 
numerical dating methods such as optically stimulat-
ed luminescence (OSL) and terrestrial cosmogenic 
radio-nuclide (TCN) surface exposure dating, which 
have provided new insights into the nature of Pleis-
tocene and Holocene glacial oscillations [3,17-20]. 

As mentioned before glaciers respond to the com-
bined effects of precipitation (snowfall) and temper-
ature [13]; however, glaciers in low precipitation areas 
are more susceptible to precipitation changes, whereas 
glaciers in high precipitation regions are more sensi-
tive to temperature changes [13,14,21]. Established chro-
nologies (mainly exposure ages) indicate that glaciers, 
particularly in the MLW-dominated north-western 
Himalaya (Ladakh and Karakoram), appear to have 
gained mass (advanced) during times of enhanced 
insolation and ISM as well as enhanced MLW phases 
[16], although the exact mechanisms of glacier advanc-
es are still unclear. Given the lack of chronological 
data and the complexity mentioned above, the present 
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research is an attempt to analyze the glacial chronol-
ogies established in various sectors of the western 
Himalaya and to comprehend the mechanisms respon-
sible for driving the glacier advances.

2. Study area
The present synthesis and review of the past gla-

cier advances (phases/stages) of the western Himala-
yan region include the state of Himachal Pradesh and 
the two union territories; Jammu and Kashmir and 
Ladakh of India (Figure 1). The majority of the land 
area of this region shelters the mountains and experi-
ences moderate to scanty summer rainfall (ISM) and 
is also contributed by the winter snowfall (MLW), 
which is the primary source of glacier sustenance at 
the current time. 

Figure 1. Shuttle Radar Topography Mission (SRTM) dig-
ital elevation model (DEM) showing the trajectories of two 
major weather systems viz. the Indian summer monsoon and 
the mid-latitude westerly along with the onset of monsoon in 
different parts of India. The red (dash) line shows the position of 
summer The Inter-Tropical Convergence Zone (ITCZ).

The high mountain areas (above 3000 m asl) of 
this region comprise snow-clad peaks, glaciated 
valleys, glaciers and alpine meadows. The Ladakh 
Batholith and Palaeozoic to Cretaceous sediments, 
meta-sediments, granitic intrusions, make up the 

majority of the area [22]. Climatologically, the two 
primary weather systems (ISM and MLW) nourish 
the glaciers in such a way that the MLW strongly 
influences the glaciers in the western Himalayas dur-
ing the winter season (December to February), while 
the ISM governs/nourishes the glaciers in the eastern 
and central Himalayas [16,23,24]. The current glacier 
chronology synthesis is focused on the western Him-
alayan region, which is influenced by both summer 
ISM and winter MLW precipitation. As a result, the 
research area extends from the Chandra valley in the 
east (Himachal Pradesh) to the Nubra-Shyok valley 
in the west, Ladakh (Figure 2). 

Figure 2. Shuttle Radar Topography Mission (SRTM) digital 
elevation model (DEM) showing the elevation ranges and the 
locations of various palaeo-glacial (chrono-stratigraphic) studies 
from the western and north western Indian Himalayan region.

The semi-arid to arid high altitude terrain of the 
western Himalayas is referred to “cold desert” due 
to the scanty rainfall which is attributed to a steady 
decline in ISM rainfall from east to west/northwest. 
This decline in the precipitation is ascribed to the 
Higher Himalayan ranges which act as a barrier and 
prevent the propagation of moisture laden ISM winds 
further northward [24-26]. Owing to the low precipita-
tion and hence the low erosional rates, the landforms 
created by past glacier advances (moraines) are bet-
ter preserved in this region (Figure 3).
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3. Methodology
To understand the palaeoclimatic history of the 

western Himalayas and the response of glaciers to 
the major driving factors in the region as a whole, 
twenty-three (23) previously published research pa-
pers on past glacial reconstructions from the region 
(Figure 4) that showed moisture conditions and the 
response of glacier to the major weather systems 
(ISM and MLW) during the last 450 ka were synthe-
sized. Figure 4 depicts a time-series breakdown of 
the glacier advances documented in the palaeocli-
matic data for the western Himalayan region. Here 
we have used the inferred span of the glacial stages 
rather than the probability reconstructed on the basis 
of individual moraine ages. In this way, the synthe-
sis is largely based on the inferences of individual 
studies and the staking gives a general idea about the 
synchrony of various glacial advances in this region. 
These glacial chronologies are predominantly based 
on optically stimulated luminescence (OSL) and cos-

mogenic radionuclide (CRN) dating techniques. Ta-
ble 1 gives an overview of fundamental information 
pertaining to the study, such as the location, dating 
method, and temporal range of these aforementioned 
palaeoclimatic records. It should be noted that the 
usage of the question mark “?” in the table implies a 
lack of chronology for the distinct phases. 

Besides synthesizing the glacial records as per the 
inferences drawn in the available glacial records, we 
have also used all the reported ages of the moraines 
to develop a probability density function (PDF). The 
higher probability shows that the glacier advances 
were predominant and hence reported in a number of 
studies. Hence the higher PDF would imply that the 
glaciers have synchronously responded to the con-
temporary climatic conditions since the past 450 ka 
(Table 1 and Figure 5). Here the probability density 
function (PDF) determines the probability of glacier 
advances and the values range from 0 to 1. It is esti-
mated in the current study using the NORMDIST, or 
normal distribution tool. The NORMDIST function 

Figure 3. Field photographs showing some well-preserved lateral moraines and the largest glacier (Drang-Drung Glacier) in the Zan-
skar valley, Western Himalaya.
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Table 1. Established glacial chronologies using radiocarbon, luminescence and CRN exposure dating techniques from the western Himalayas, India.

S.No. Location Glacial Stage Dating method Reference

1. Lahaul Himalaya
Chandra glacial 
stage
(?)

Batal glacial 
stage
(60-45 ka)

Kulti glacial stage
(29-10 ka)

Sonapani-I glacial 
stage
(7.5-2.5 ka)

Sonapani-II glacial 
stage
(0.4-0.3 ka)

OSL Owen et al. [70]

2. Zanskar Range
Chandra glacial 
Stage
(?)

Batal glacial Stage
(78-40 ka)

Kulti glacial Stage
(22-8 ka)

Sonapani glacial 
Stage
(0.4-0.3 ka)

OSL Taylor and Mitchell 
[64]

3. Tangste valley (Leh) Moraine age
(105-75 ka; MIS-4) CRN Brown et al. [21]

4. Ladakh Range
Indus valley glacial 
Stage
(> 430ka)

Leh stage (200-
130 ka) Kar stage

(105-80 ka)
Bazgo stage (74-41 
ka)

Khalling stage (10-6 
ka) CRN Owen et al. [30]

5. Nubra-Shyok valley Deshkit 3
(157-107 ka)

Deshkit 2
(87-75 ka)

Deshkit 1
(49-45 ka) CRN Dortch et al. [35]

6.
Southern Zanskar 
Range
(Puga valley)

PM-0 stage 
(131-107 ka)

PM-1 stage (55-36 
ka )

PM-2 stage (7.6-2.1 
ka)

PM-3 stage
(1.2-0.2 ka) CRN Hedrick et al. [31]

7.
Southern Zanskar 
Range
(Karzok valley)

KM-0 stage
(314-306 ka)

KM-1 stage
KM-2 stage
KM-3 stage
(72 ± 31 ka)

KM-4 stage
(3.6 ± 1.1 ka) CRN Hedrick et al. [31]

8. Ladakh Range Ladakh-4 glacial 
stage (100-60 ka)

Ladakh-3 glacial 
stage 

Ladakh-2 glacial 
stage (25-19 ka)

Ladakh-1 glacia l 
stage (22-2 ka)

Ladakh Cirque 
glacial stage
(2.2-1.4 ka)

CRN Dortch et al. [46]

9. Pangong Range Pangong-2 glacial 
stage (105-70 ka)

Pangong-1 glacial 
stage
(43-37 ka)

Pangong
Cirque glacial stage
(0.7-0.1 ka)

CRN Dortch et al. [46]

10. Nubra Valley Khimi 1/10 (24.0 ± 
2 ka)

TIRIT 1/10 (18 ± 1.0 
ka) OSL Nagar et al. [85]

11. Nun-Kun massif
Achambur glacial 
stage (62.7-38.7 
ka) (MIS-4 - 3)

Tongul glacial 
stage (17.4-16.7 
ka)

Amantick glacial 
stage (14.3 ka; 
12.4-11.7 ka)

Lomp glacial stage 
dated to the Little 
Ice Age (0.5-0.4 ka)

Tanak glacial stage 
(recent) CRN Lee et al. [65]

12. Chandra Valley CVG
(20 ka) CRN Eugster et al. [18]

13. Yunam valley 79 to 52 ka 17-15 ka 9-7 ka 1.4-1 ka CRN Saha et al. [73]
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S.No. Location Glacial Stage Dating method Reference

14. Zanskar Range 
(Sarchu Plain)

Sarchu Glaciation 
Stage-1
(MIS-4)

Sarchu Glaciation 
Stage-2
(22-19 ka)

Sarchu Glaciation 
Stage-3
(8.2 ka cooling 
event)

OSL Sharma et al. [44]

15. Lahaul Himalaya Miyar stage (pre-
gLGM)

Khanjar stage (10-6 
ka)

Menthosa Advance 
(LIA)
0.3-0.2 ka

OSL Deswal et al. [74]

16. Gopal Kangri valley  MG
 (124-78 ka)

MG
 (33-24 ka)

MG
 (37-12 ka)

MG
 (1.5-1 ka) CRN Orr et al. [36]

17. Stok Kangri valley MS4
38.7 ± 6.6 ka)

MS3
 (16 ± 2.4 ka)

MS2
 (0.6 ± 0.2 ka)

MS1
 (1.2 ± 0.3 ka) CRN Orr et al. [36]

18. Nubra valley (Tirith-II) 60.4 ± 
5.2 ka (MIS-4)

(Tirith-I) 30 ± 2.5 
ka
beginning of MIS-
2

Third minor glacial 
advance 6.8 ± 
1.0/7.2 ± 1.4 ka

Youngest stage
(1.0 ± 0.4 ka )and 
(0.5 ± 0.2 ka)

OSL Ganju et al. [19]

19. Lato massif, Zanskar 
Range

Lato glacial stage
(244-49 ka)

Shiyul glacial stage
(25-15 ka)

Kyambu glacial 
stage
(3.4-0.2 ka)

CRN Orr et al. [32]

20. Southern Zanskar 
Range

Southern 
Zanskar Glacier 
Stage-4
(MIS-4)

Southern Zanskar 
Glacier Stage-3
(24-17 ka)

Southern Zanskar 
Glacier Stage-2
(17-13 ka)

Southern Zanskar 
Glacier Stage-1 (5-4 
ka)

OSL Sharma and Shukla 
[45]

21. Suru valley  Tongul glacier stage
(24 to 20 ka; gLGM) OSL Ali et al. [86]

22.
Southern Ladakh 
Range
(Puche valley)

PGA-I
(35-29 ka)

PGA-II
(15-13 ka)

PGA-III
(?/Holocene) OSL Shukla et al. [55]

23. Suru Valley Suru-I
 (33-23 ka)

Suru-II
(17-15 ka)

Suru-III
(13-11 ka)

Suru-IV
(10-7.3 ka)

Suru-V 
(2.8-2.3 ka) OSL Kumar et al. [20]

Table 1 continued
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takes four arguments: The X-value, the mean, the 
standard deviation, and the cumulative value. Each 
X-value is calculated once the mean and standard 
deviation have been determined. The cumulative 
value is also set to “false”, enabling the function to 
produce the normal probability density. After calcu-
lating a PDF for each X-value, it is plotted against 
the timing of glacier advances. To visually enhance 
the PDF peaks, each value is multiplied by its asso-
ciated age. For a more precise regional correlation, 
PDF was created for moraine ages up to 100 ka as 
well (Figure 5). In addition, for each study, an age 
rank plot was created to show the distribution of 
ages (with errors), arranged in ascending order. The 
objective was to visualize any patterns or trends in 
the age distribution. 

It is to be noted that each study’s description of 
moisture (precipitation) conditions is qualitative, and 
the nomenclature is highly generic. Since both OSL 
and CRN dating methods have been used for estab-
lishing the chronologies, a general comparison of the 
two is necessary (explained in the following section). 

Figure 4. OSL and CRN derived chronologies of the glacial advances in the western Himalayas, India on three different timescales. 

Figure 5. Moraine ages of the past glacier advances and the 
Gaussian probability density function to represent the probability 
of glacier advances over the western Himalayas along with the 
rank plot (bottom) showing the distribution of the chronologies 
from the western Himalayas used in the study: 1). Owen  
et al. [30], 2). Dortch et al. [35], 3). Taylor and Mitchell [64], 4). Ali 
et al. [86], 5). Brown et al. [21], 6). Deswal et al. [74], 7). Eugester 
et al. [18], 8). Ganju et al. [19], 9). Lee et al. [65], 10). Sharma and 
Shukla [45], 11). Shukla et al. [55] 12). Sharma et al. [44], 13). Roth-
lisberger and Geyh [89], 14). Owen et al. 2001, 15). Saha  
et al. 2016, 16). Kumar et al. [20], 17). Orr et al. [36], 18). Orr  
et al. [32], 19). Nagar et al. [85], 20). Dortch et al. [46], 21). Hedrick 
et al. [31] (Puga) 22). Hedrick et al. [31] (Karzok).
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Therefore, to quantify the precipitation informa-
tion associated with ISM and westerlies, inferences 
drawn from the 23 palaeo-glacial (climatic) records 
rather than the reported ages, were used to synthe-
size the palaeoclimatic data. For the cluster analysis 
using TILIA, the phases/events/stages that reported 
a glacial advance were assigned a weightage of 10, 
while the remaining ages were assigned a weightage 
of 0.1 (Figures 6 and 7). The platform TILIA was 
originally designed for the storage, analysis and 
display of palaeoecological data. One of its analyti-
cal tools CONISS carries out stratigraphically con-
strained cluster analysis in order to group variables 
into zones to facilitate better description and corre-
lation. The analysis is done by using the method of 
incremental sum of squares and although the method 
was initially intended for stratigraphic data, it has 
been found useful for other types of linearly ordered 
data as well and thus used in the present study. For 
more details on cluster analysis using TILIA, please 
see Grimm, 1987 [27]. 

In order to get a better understanding of the role 
of different weather systems (ISM/MLW), the PDF 
form using the published ages was correlated with 

the regional and global palaeoclimatic archives. This 
is because these archives are direct/indirect indica-
tors of ISM/MLW intensities. Such correlations can 
provide useful insights into the complex interactions 
between various climate processes and give insights 
regarding the response and drivers of past glacier 
changes. 

4. Results and discussion
In high mountain regions, where biotic prox-

ies are generally scarce or discontinuous and of 
shorter durations, the glaciers offer the potential to 
reconstruct past climate due to their sensitivity to 
ever-changing temperature and precipitation [3,14]. 
Understanding past climate change through glacial 
responses can provide valuable information in sim-
ulations for futuristic climatic simulations (models). 
Over the past few decades, various researchers have 
made use of well-preserved glacier landforms in 
reconstructing the past glacier changes in order to 
decipher the complexities of the driving mechanisms 
of such glaciations as well as understand their syn-
chrony in the topographically and climatologically 

Figure 6. Cluster analysis of glacier advances constructed using TILIA is plotted against the Gaussian probability density function 
(PDF) to represent the probability of glacier advances over the western Himalayas.
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complex Himalayan region. Thus synthesizing the 
available glacial chronological datasets enables us to 
identify broad trends in climatic variability over the 
region and correlations between the glacial chron-
ological datasets and past climatic records lays the 
foundation for reliable future climate model simula-
tions (Figures 4-6). Keeping this in view, the present 
study attempts to provide a comprehensive analysis 
of Late Quaternary climate of westerly dominated 
Indian Himalaya based on a compilation of 23 avail-
able (Figures 6 and 7) palaeoclimate records. 

The results and discussions are divided into two 
sections: The MLW-dominated NW Himalaya and 
the transitional climatic zone impacted by both ISM 
and MLW.

4.1 Chronologies from NW Himalaya

It has been observed that the oldest records of 
glaciation are available from the northwestern (NW) 
region (Figures 4 and 5) of the Indian Himalayas 
and very slow erosional rates may be implicated 
[28,29]. The slow erosion driven preservation of these 
records can be attributed to the region’s climate, 
which is characterized by low summer rainfall (being 
in the rain-shadow zone), resulting in less erosion 
and hence the preservation of landforms for longer 
time scales. The oldest and most extensive glacial 
advance in this region is reported from the Ladakh 
Range and has been named as ‘Indus valley glacial 
stage’ (Figures 4 and 5). Terrestrial cosmogenic 
radio-nuclide surface exposure dating (CRN) of the 
preserved moraine boulders assigned this stage to be 
430 ka [30]. From the Zanskar Himalaya, the first and 
oldest glacial stage reported is KM-0, which is dated 
beyond 300 ka [31] (Karazok valley), corresponding 
tentatively to MIS-9/10 (Figures 2 and 6). The cli-
matic correlations of these glacial advances are dif-
ficult, since these glacial advances do not provide an 
absolute age bracket for the glacial advance. 

Chronologically, the subsequent glacier advance 
has been reported from the Ladakh range and based 
on the clustering of ages between ca. 200 and 130 
ka, the moraines of the ‘Leh stage’ have been as-
signed the penultimate glacial cycle—MIS 6 [30]. In 

the Zanskar valley, another older glacier advance 
(Lato glacial stage) preserved within the Lato massif 
is dated between MIS 8-3 (244-49 ka) [32], but has a 
very huge age spread (Table 1; Figures 4 and 5). 
The spread in the 10Be ages prevents this stage to be 
statistically correlated with the other regional stages 
as well as with other climatic records. During the 
late MIS-6 and early MIS-5, different glacial ad-
vances were observed in the northwestern Himalayas 
that coincided with the period of intensified  
ISM [16,33,34]. These included the Deshkit 3 stage 
(145 ± 12 ka) from Nubra valley [35], the PM-0 stage 
(131-107 ka) from Puga valley [31], and the MG4 
stage (124-78 ka) from Gopal Kangri [36]. Another 
glacier advance of a relatively lesser extent has been 
recorded in the Ladakh range (Kar glacial stage); 
however, due to a wide spread in the ages, it has 
been assigned to the last glacial cycle (MIS-5) [30]. 
While there is significant glacial evidence (advance) 
indicating Himalayan glaciers expanded during the 
MIS-6 and early MIS-5 glaciations, there is no gen-
eral agreement on the timing, extent, and climatic 
forcing of these (especially MIS-6) glacier stages/
advances throughout the Himalayan mountain sys-
tem [37]. Yet, it is possible that these glacial records 
reflect the penultimate glacial maximum (140 ka), 
which is in phase with the Northern Hemisphere ice 
sheets [38,39]. Additionally, ISM precipitation induced 
by insolation has been suggested to be the primary 
determinant of such glacier advances throughout 
the Himalayas [3,40,41]. Taking this into account, it has 
been hypothesized that, on a regional scale, the MIS-
6 glacier advances correspond with the coldest phase 
and are so advanced as a result of cold climatic con-
ditions and limited melting [40]. Even so, because of 
the large age range, the primary driving factor (tem-
perature versus precipitation) cannot be precisely 
defined and requires additional studies, wherein a 
definite age bracket for such glacier advances can be 
established.

Dortch et al. [35] identified another 81 ka glacier 
advance (Deshkit 2) in the Nubra-Shyok valley 
(where present-day precipitation is governed by 
MLW), which corresponded with the late MIS-5 to 
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early MIS-4 glaciations, which were mostly record-
ed from monsoon-dominated regions (Figures 6-8). 
Moreover, two glacial advances, Ladakh-4 (81 ± 20 
ka) and Pangong glacial stage-2 (85 ± 15 ka), were 
documented from the Ladakh and Pangong ranges. 
These glacial advances have been found to coincide 
with the negative d18O excursions of the Guliya ice 
core as well as more negative speleothem d18O val-
ues from the Sanbao cave indicating an increase in 
monsoon strength during the early-mid MIS-5 [37,42,43]. 
The strengthening was immediately followed by a 
cold trough of late MIS-5 and early MIS 4 corre-
sponding to a period of lower insolation (Figure 8). 

Glacial advances occurred in several parts of Zan-
skar during the MIS 4 epoch, including the Sarchu 
plain (Sarchu glaciation stage-I; MIS 4) [44] and 
the Southern Zanskar range (SZS-4 stage; MIS-4; 
Figures 2 and 4) [45]. The Bazgo glacial stage, which 
corresponds to the middle of the last glacial cycle 
(MIS-3 and/or MIS-4) [30], represents a subsequent 
glaciation of lesser extent in the Ladakh territory (Ta-
ble 1). Deshkit 1 (45 ka) [35] and Pangong 1 glacial 
stage (40 ± 3 ka) [46] glacial deposits correlative to the 

Bazgo stage have been reported in the Nubra Shyok 
valley. A prominent peak in the probability function 
(PDF; Figure 7) implies that the glacier in the NW 
Himalayas has advanced during the Mid- MIS-3. 
This time frame coincides with the prominent nega-
tive δ18O excursions of the NGRIP δ18O record [47,48],  
and Guliya ice core [42] (Figure 8). On the basis of 
data presented in Figure 8, it is suggested that the 
mid-MIS-3 glacier advance is a manifestation of 
amplified mid-latitude westerlies induced by low in-
solation; as expected in orographic exteriors like the 
NW Himalayas [43]. Besides the gLGM glacier, there 
are reports of an early MIS-2 glacier advance [19], 
which has been ascribed to lower temperatures and 
a weaker ISM phase. This early MIS-2 cooling has 
been related to the cooler sea surface temperature 
resulting in discharging of huge icebergs into north 
Atlantic Laurentide [49-52]. While the gLGM (19-23 
ka) is suggested to be an expression of enhanced 
MLW associated with lower temperatures [16,18,40,53-55].  
Furthermore, it is also suggested that the weaker 
ISM during the gLGM is a result of enhanced MLW, 
increased snow accumulation on the Himalayan-Ti-

Figure 7. Cluster analysis of glacier advances for last 100 ka plotted against the Gaussian probability density function to represent 
the probability of glacier advances over the western Himalayas. The pink and white bands show the odd and even marine isotopic 
stages respectively. 
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betan orogeny which resulted in the southward shift 
of the inter-tropical convergence zone (ITCZ) and 
resulted in a weaker ISM [56-58]. 

The younger glacial stages of lesser extent, name-
ly Sarchu glaciation stage 2 (Sarchu plain) [49], Shi-
yul glacial stage (Lato massif) [32], Southern Zanskar 
glacial stage 3 (Southern Zanskar range) [45], Ladakh 
2 glacial stage (Ladakh range) [46], Tirith-I (Nubra 
Shyok valley) [19] correlate with MIS-2 and consti-
tute the gLGM in this region (Figure 7). It has been 
observed that several glacial advances in the western 
Himalayas that are contemporaneous with the gLGM 
are less extensive than prior glacial advances (lLGM). 
These glacial advances, however, are larger than 
those recorded in the central and eastern Himalayas. 
Significant negative δ18O excursions of the NGRIP 
δ18O record [47,48], and Guliya ice core [42], suggest en-
hanced MLW, while less negative values from Spele-
othem δ18O records from Bittoo cave (dark green [59]), 
δ18O from Hulu (olive [60]), Dongge Cave (orange [31]), 
suggest a weaker monsoon during low insolation 
period (Figure 8). Given that insolation driven ISM 
precipitation was much lower during gLGM than the 
MIS-3 and 1 [62], this likely explains the restricted 
glacial extent in parts of the NW Himalayas that get 
moisture primarily from the MLW [16]. This would 
imply that the glacier in the exterior of the contem-
porary ISM influence is more sensitive to insolation 
driven ISM precipitation.

The glacier advances during the late glacial and 
MIS-1 periods better represent the changes in tem-
perature and precipitation. Small glacier advances in 
the Southern Zanskar range are indicated by termi-
nal moraines corresponding to SZS-2 that date back  
to 15.7 ± 1.3 and 14.3 ± 1.3 ka [40]. Late-glacial 
advances have been documented throughout the 
Himalayan orogeny, including the NW and Zanskar 
Himalayas [32,36-65]. On the basis of their correlations 
with the ice core and speleothem data (Figure 8), 
it has been suggested that these glacier advances 
correspond to the northern hemisphere cold events. 
A prominent peak at the late-glacial and Holocene 
transitional implies that the NW Himalayan glaciers 
responded sensitively to the YD (13-11 ka) cooling 

event which is recorded throughout the Himalayan 
Tibetan orogeny [43,60,66,67]. The YD, a 1300 yr cold 
event that marked the end of the last deglacial and 
beginning of the Holocene period (between 12.9-
11.7 ka), is linked to the catastrophic release of fresh 
water from pro-glacial Lake Agassiz and/or the 
extensive formation of winter sea ice cover, which 
increased albedo and affected the thermohaline 
circulation of the Atlantic Ocean [67-69]. Prominent 
negative values from both NGRIP and Guliya d18O 
records [42,47-48] suggest cooling associated with en-
hanced MLW and highlight the sensitivity of glaciers 
to millennial-scale cold events [43,55].

The Southern Zanskar range experienced the 
youngest glacial advance by mid-Holocene (6 ka), 
which is linked to a millennial-scale cold event 
during the enhanced westerlies phase [45]. Siachen 
Glacial Advance (SGA) is a modest glacial advance 
dating to the mid-Holocene (6.8 ± 1.0/7.2 ± 1.4 ka) 
in the Nubra valley [19]. While, in the Lato massif, the 
Kyambu glacial stage is dated 3.4 ± 0.2 ka, repre-
senting the area’s youngest stage of glaciation during 
which glaciers were limited to the massif’s cirques 
and headwalls [32]. The youngest glacier expansion, 
associated with the Little Ice Age (LIA), is distin-
guished by snout proximal glacier advance and has 
been well documented in the Lato massif [32], Ladakh 
range [46], Nubra valley [19], Pangong range [46], and 
Nun Kun massif [1-3]. Based on the available data 
from the NW Himalaya, it is evident that glaciers 
have sensitively responded and advanced both dur-
ing the insolation driven intensified ISM and cooler 
mid-latitude Westerlies [16,40] (Figures 4-8).

4.2 Chronologies from W Himalayas

Establishing the timing of glacier advances in 
Lahaul, W Himalaya was first attempted by Owen 
et al. [70] using optically simulated luminescence 
(OSL) and radiocarbon dating techniques. The study 
suggested that the area has witnessed three glacier 
advances, namely the ‘Chandra Glacial Stage’, the 
‘Batal Glacial Stage’, and the ‘Kulti Glacial Stage’ 
along with the two minor Holocene advances (Table 
1 and Figure 4). OSL dating indicated that the gla-
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ciers began to retreat between 43400 ± 10300 and 
36900 ± 8400 years ago (during the Batal Stage). 
The less extensive Kulti Glacial Stage is constrained 
between 36900 ± 8400 cal years BP during which 
the glaciers extended 12 km downstream from the 
contemporary snout. Radiocarbon dating of peat bog 
revealed basal age of 9160 ± 7014 cal years BP rep-
resenting a phase of climatic amelioration that was 
coincident with post-Kulti deglaciation. Therefore, 
the Kulti glaciation was suggested to be equivalent to 
parts of late MIS-3, MIS-2, and early MIS-1 respec-
tively. In addition, two minor Holocene advances 
viz. Sonapani Glacial Stage I (early mid-Holocene) 
and Sonapani-II glacial advance corresponding to 
Little Ice Age (LIA) were identified. Later, in another 
study using the cosmogenic radionuclide dating (10Be 
and 26Al) technique, Owen et al. [71] provided a more 
explicit estimate of the timing of individual glacial 
advances in the Lahaul valley. They could not date 
the oldest Chandra Glacial Stage, however, Batal 
Glacial Stage was ascertained to occur at 15.5-12 ka, 
and has been suggested to be coeval with the North-
ern Hemisphere Late-glacial Interstadial (Bølling/
Allerød). These ages are significantly younger as 
compared to previously suggested OSL ages of 43.4 
ka and 36.9 ka [70,72]. These overestimated OSL ages 
were attributed to the partial bleaching of the OSL 
signal. Based on the exposure ages, deglaciation 
of the Batal Glacial Stage was completed by 12 ka 
and was followed by a small re-advancement corre-
sponding to the Kulti Glacial Stage during the early 
Holocene, at 10-11.4 ka (Figure 6).

Recently, Eugster et al. [18] revisited the Chandra 
Valley in the Lahaul region, W Himalaya, and sug-
gested that the trunk of Chandra glacier extended 
at least up to Udaipur Village (200 km downstream 
from the present-day glacier snout). Based on their 
new chronology they suggested that Chandra Valley 
was occupied by a glacier up to 1000 m thick during 
the gLGM. However, during the subsequent deglaci-
ation (post 18 ka), the trunk-valley glacier retreated 
by 70 km and after 15 ka, the main trunk valley must 
have been mostly ice-free. In this study, they have 
suggested that the Chandra Valley was occupied by a 

1000 m thick and 200 km long glacier and proposed 
that the LGM glaciation was not restricted in this 
area and the temperature changes during the LGM 
controlled the onset of deglaciation [18,72]. This is the 
first report of such a mega glacier advance from the 
Himalaya region and a more robust explanation for 
such an advance is required.

Similarly, glacial advances from the Yunam val-
ley (W Himalaya) were reported using cosmogenic 
10Be surface exposure dating [73]. The exposure ages 
showed that glaciers advanced in this area during the 
early part of the Last Glacial (79 to 52 ka), and that 
they may have been coincident with Heinrich events 
5 and 6. Another glacier advance was reported to the 
south of Yunam valley during the Oldest Dryas and/
or the Late glacial, 17-15 ka. This time window is 
also defined by more negative 18O excursions from 
the Guliya ice core [67] in the current synthesis (Fig-
ures 7-8). Our findings are supported by the regional 
glacial stages of Dortch et al. [46], which indicate that 
this younger glaciation was most likely driven by 
mid-latitudinal westerlies. The glacier advance that 
followed was based on exposure ages obtained from 
boulders inset in drumlins 7.9 ± 1.0 and 6.9 ± 0.9 ka. 
Based on these findings, it was determined that the 
main valley glacier advanced before 8-7 ka and that 
the drumlins and other streamlined landforms origi-
nated prior to or during the early Holocene.

Another study from the Lahaul Himalaya iden-
tified three stages of glacial advance, of decreasing 
magnitude and termed, from oldest to youngest, the 
Miyar stage (MR-I), Khanjar stage (KH-II), and 
Menthosa advance (M-III). Despite the fact that the 
oldest Miyar stage could not be dated, it has been 
suggested to be older than the global Last Glacial 
Maximum (gLGM) based on the magnitude of the 
ELA, which is 606 meters. The subsequent glacier 
advance was constrained between 10-6 ka during the 
cold Bond event-7 and was sustained beyond the ear-
ly Holocene climatic optimum. The sustenance was 
due to the ice-albedo feedback, where an increase in 
precipitation during the early Holocene was believed 
to have lowered the summer temperature due to an 
increase in the cloudiness, and evaporative cooling. 
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Given the close proximity of the end moraine com-
plex to an ancient human settlement, the third glacier 
advance has been given the LIA designation, even if 
the date has not been determined [74]. 

Figure 8. Regional correlation of glacial advances up to 100 ka 
(overlain by June insolation 30°N data; Berger and Loutre [75]) 
are compared with the stacked (from the top) Speleothem δ18O 
records from Bittoo cave (dark green; Kathayat et al. [59]), δ18O 
from Hulu (olive; Wang et al. [60]), Dongge Cave (orange; Yuan 
et al. [61]), Sanbao Cave (dark blue; Dong et al. [37]), NGRIP δ18O 
record from Greenland (Johnsen et al. [47]; Andersen et al. [48]), 
δ18O in Guliya ice core (Thompson et al. [42]) and marine δ18O 
curve of Lisiecki and Raymo [39] and the simulated monsoon 
index.

Recent investigations have shown considerable 
variations in moraine ages using various dating 
methods. Ganju et al. [19], for example, derived con-
siderably younger optical ages from the Nubra-Shy-
ok valley (NW Himalaya) than Dortch et al. [35]  
for the three major glacial advances (60.4 ± 5.2 
to 42.0 ± 3.0 ka; 30 ± 2.5 to 18.2 ± 1.8 ka; and  
7.2 ± 1.4/6.8 ± 1.0 ka). Similar inconsistencies have 
been found in other studies, emphasizing the need 
of utilizing at least two dating techniques to cross-

check the chronology. These differences in CRN and 
OSL ages result in different climatic interpretations, 
which create more uncertainty in comprehending the 
primary driving mechanisms and climate triggers. 

Overall, the dynamics of late Quaternary glacier 
advances in the western and northwestern Hima-
layan region reveal a complex interaction among 
insolation-induced ISM and MLW changes [24,46,75-78].  
The available data and inferences suggest that the 
glaciers have sensitively responded to the enhanced 
phases of ISM as well as the MLW, however during 
the enhanced ISM phases the glacier response is 
more pronounced and may be attributed to the avail-
ability of moisture (Figure 8). From the present syn-
thesis it can be suggested that during the late MIS-5 
and MIS-4, western and northwestern Himalayan re-
gion witnessed multiple glacier advances which co-
incide with the periods of increased insolation (higher 
ISM) as well as during the low insolation and en-
hanced mid-latitude westerly phase (MIS 4). Consid-
ering that the glaciers in low precipitation are more 
sensitive to precipitation changes, it is argued that 
during the increased monsoonal intensity, the ISM 
moisture laden could have propagated in the region 
and resulted in the glacier advances. The increased 
ISM would have resulted in more snowfall at higher 
altitudes, which could have been assisted by lower 
temperatures caused by increased cloudiness as well 
as evaporative cooling [16,24,43,79]. A significant expan-
sion of the glaciers during the gLGM may be attrib-
uted to the cooler climate phases associated with the 
intensified MLW during the MIS-2 [17,43,55,80-87]. The 
modest glacier advance in this region, compared to 
the eastern and central Himalayas, is attributed to 
the geographic location of the area which receives 
more precipitation from the MLW. The mid-late Hol-
ocene glacier advances generally coincide with the 
enhanced ISM phases and are suggested to be driv-
en by ISM precipitation. Considering that the ISM  
intensity is generally related to the insolation chang-
es, therefore, the Holocene glacier advances would 
have required optimal temperature conditions during 
enhanced ISM phases. As a result of the increased 
cloud cover, which limits the influx of shortwave 
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radiation and enhances evaporative cooling, summer 
temperatures would have been lower and summer 
snowfall at higher elevations would have been easier [79]. 
Increased snow and glacier cover produce additional 
cooling due to the ice-albedo feedback process [66], 
which likely reduces radiative heating [87].

5. Conclusions
Since high mountain glaciers are sensitive cli-

mate probes, they provide both an opportunity and 
a challenge for understanding past climates and 
anticipating future changes [3]. Despite the fact that 
the palaeoclimatic reconstructions of the Himalayan 
glaciers have been fairly well established, there is 
still a discrepancy in ages obtained using different 
dating methods (e.g., OSL vs. CRN vs. radiocarbon). 
Nevertheless, contrary to previous research that sug-
gested that Himalayan glaciers were out of phase 
with the global LGM, for which a weak ISM was 
implicated (ISM was decreased by around 20%), 
recent research, however, has shown that gLGM 
glacial responded to the global cooling and showed a 
modest expansion. Besides that, the extent of gLGM 
glaciation varied throughout the Himalayas, with 
transitional valleys (e.g., Chandra valley) seeming to 
have responded more amply than the westerly dom-
inated NW and ISM dominated central and eastern 
Himalayas. The age and expansion discrepancies 
discovered highlight the need for a meticulous and 
systematic mapping of moraines and other landforms 
in different climatic zones. Due to the importance 
of chronometric data in linking stratigraphically 
constrained deposits with climatic proxies, glacial 
episodes must be dated using a combination of CRN 
and OSL dating techniques. It is worth mentioning 
here that although there is a broad consensus that 
both the ISM and the mid-latitude Westerlies dictat-
ed the pattern of late Quaternary glacial advances 
in the Himalayan region yet, glacial responses to 
ISM changes are more apparent. However, the exact 
mechanisms, timing, and geographical influence of 
the two weather systems and (a) synchronous re-
sponse of the glaciers are still being debated. This is 
large because the influence of these two weather sys-

tems varies spatially, i.e. ISM east to west (NW) and 
MLW NW to south east. Therefore, it’s essential to 
carry out a thorough and systematic investigation of 
a wide range of landforms (including moraines) from 
distinct climatic regimes, and to utilize a variety of 
techniques in combination to establish a reliable 
chronology.
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ABSTRACT
Meteorologists are experiencing many challenges in the reliable forecasting of the track and intensity of tropical 

cyclones (TC). Uses of the potential vorticity (PV) technique will enrich the current forecasting system. The use of 
PV analysis of TC intensification over the North Indian Ocean (NIO) is rare. In this study, the authors analyze the 
behaviour of upper-level PV with dynamic parameters of TCs over NIO. The authors used NCEP FNL reanalysis  
1 × 1 degree data as input in WRF model version 4.0.3 with one-way nesting between the parent and child domains. 
The authors used a coupling of the Kain-Fritsch (new Eta) scheme and the WSM 6-class graupel scheme as cumulus 
and microphysics options to run the model. The authors found that at least one potential vorticity unit (PVU)  
(1 PVU = 10–6 m2s–1KKg–1) upper PV is required to maintain the intensification of TC. Larger upper PV accelerates 
the fall of central pressure. The high value of upper PV yields the intensification of TC. The wind shear and upper PV 
exhibited almost identical temporal evolution. Upper PV cannot intensify the TCs at negative wind shear and shear 
above the threshold value of 12 ms–1. The upper PV and geopotential heights of 500 hPa change mutually in opposite 
trends. The upper PV calculated by the model is comparable to that of ECMWF results. Therefore, the findings of this 
study are admissible.
Keywords: Dynamic; Vorticity; Geopotential; WRF; Tropical and intensification
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1. Introduction
A tropical cyclone maintains its life cycle by the 

energy that originates from the warmed moisture 
of the ocean surface. This warmed moisture releas-
es latent heat in the eye wall of TC. The low-level 
inflow of moisture content wind and its spiraling 
upward motion flare up the PV of TC. The analysis 
of PV is a promising technique in meteorology. The 
facts from that analysis make the tropical cyclones 
(TC) more perceptible. Incorporating the concept of 
PV structure in current meteorology, forecasters and 
researchers may have many advantages in synop-
tic-scale forecasting of atmospheric events. Superpo-
sition of the upper PV anomaly and low-level centre 
nourish the TC’s intensification [1].

The formation of a hollow tower of PV structure 
also favours the rapid intensification of TC. On the 
other hand, the detritions of PV structure decline the 
TC intensification [2,3]. Upper-level PV anomalies are 
crucial for storm motion. The impact of PV anoma-
lies on the storm motions depends on the upper-trop-
ospheric PV characteristics and corresponding loca-
tions of the vortex [4,5].

Upper-level PV streamer and middle-low-level 
PV anomalies exist in the genesis stage of the Medi-
terranean cyclone. Also, an acute PV tower stretches 
from the upper troposphere to the lower stratosphere 
found in one of the Mediterranean cyclones [6]. Con-
vective heating gives rise to positive potential vor-
ticity in and outside the ring area of TC. Positive po-
tential vorticity at the matured stage of TC is crucial 
to maintaining the ring structure and the feedback 
process [7].

A narrow tower of maximum potential vorticity 
exists on the inner edge of the eyewall cloud of a 
matured Hurricane. In such a structure, potential vor-
ticity can reach several hundred PV units [8]. Higher 
PV within the stratiform regions is the prime PV 
source for the intensification of TC [9]. Latent heat re-
lease originates the low-level PV. Vertical advection 
of latent heat broadens the low-level PV and stretch-
es it up to the upper level [10,11]. 

The term annular heating function is suitable to 
describe the distribution of latent heat release in the 

eye wall of TC. Vertical advection of annular heating 
is more realistic than the descending of isentropes. 
The PV maximum exists adjacent to the radius of 
maximum heating [12]. The entropy difference be-
tween the air and sea allows more and more energy 
to TC from the underneath sea surface. The PV 
mixing from the eye wall to the inner core limits the 
entropy difference between the air-sea surfaces and 
prevents the TC intensity [13]. Heating the outer spiral 
rain bands declines the intensity of TC and increases 
the size of TC. Cooling the outer rain bands favour 
the strength and tightly packed inner core of TC [14]. 

Outward distribution of high PV from the inner 
core of TC raises the local isentropic surfaces and 
establishes a cold dome stretching from the mid to 
lower troposphere [15]. A considerable generation of 
PV in the rain band area is an indispensable factor 
for the secondary eyewalls in TC [16]. Concentric and 
compact eyewalls approaching smaller sizes exist in 
the intense stage of TC. Circular bands of maximum 
PV establish in the corresponding maximum vertical 
motions area of the eyewall and have powerful inter-
action with eyewall convection [17]. 

500 hPa level is considered half of the earth’s 
troposphere. Below this level, the wind flow has 
the same direction. Hence atmospheric events at 
this level play a vital role in the genesis and inten-
sification of TC. Fall of geopotential height cause 
turbulent weather phenomena. This atmospheric 
condition favour instability and convection of cloud 
accompanied by heavy rainfall [18]. The variation of 
geopotential heights of 500 hPa level may impact the 
dynamics of climate change via the change in circu-
lation pattern [19].

The aim of this study is to find out the influence 
of upper PV on the dynamic parameters of TC over 
the NIO. 

2. Synoptic study of TCs
A) Ashoba: A low-level cyclonic circulation 

developed over southeast AS on 5th June 2015 due 
to the southwest monsoon onset over Kerala. By 
the morning of 6th June, it moved northwards and 
concentrated into an LPA over the southeast and 
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adjoining east-central AS. Sufficient SST, low-level 
convergence, upper-level divergence, low-level rel-
ative vorticity and weak to moderate vertical wind 
shear favoured the concentration of the system into 
depression at 0300 UTC of 7th June over east-cen-
tral AS. The system moved north-northwestward 
and intensified into DD at 0000 UTC on 8th June. 
At 0300 UTC on 8th June, the system turned into CS 
Ashoba. It continued its north-northwestward move-
ment till 0900 UTC on 8th June and then moved 
northwards till 0600 UTC on 9th June. After that, it 
moved west-northwards till 0600 UTC on 10th June 
and west-southwestwards till 0000 UTC on 11th 
June. Later, the system moved westwards slowly and 
switched into DD at 1800 UTC on the 11th of June. 
It weakened into a depression at 0000 UTC on 12th 
June and WML over the northwest AS and adjoining 
Oman coast at 1200 UTC on 12th June. 

B) Titli: A Very Severe Cyclonic Storm (VSCS) 
Titli formed over southeast BoB is considered in 
our present study. This system originated from the 
low-pressure area (LPA) over southeast BoB and 
adjoining north Andaman Sea at 0300 UTC on 7th 
October 2018. It intensified into a well-marked low 
(WML) at 1200 UTC on 7th October 2018. It then 
concentrated into a depression (D) over east-central 
BoB at 0300 UTC on 8th October 2018. The system 
advanced west north-westward and intensified into a 
deep depression (DD) over east central BoB at about 
1800 UTC on 8th October 2018 and further inten-
sified into cyclonic storm (CS) Titli at around 0600 
UTC on 9th October 2018. It intensified into a severe 
cyclonic storm (SCS) at 2100 UTC on 9th October 
2018 during its north-westward movement. Then it 
moved north-northwestwards at 0600 UTC on 10th 
October 2018 and evolved as a very severe cyclonic 
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into a cyclonic storm (CS) around 1200 UTC of the 
same day. It turned into a DD over south Odisha at 
midnight (1800 UTC) on 11th October 2018. 
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shadweep and its neighbourhood caused the forma-
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D) Amphan: A remnant of LPA over the south 
Andaman Sea and adjoining southeast BOB from 
6th to 12th May 2020 influenced the formation of 
another fresh LPA over southeast BOB and adjacent 
south Andaman Sea at 0300 UTC on 13th May 2020. 
It became WML over southeast BOB and its neigh-
bourhood at 0300 UTC on 14th May. Under favour-
able conditions, it turned into a depression (D) at 
0000UTC and concentrated into DD at 0900UTC on 
16th May over southeast BOB. After the north-north-
westward movement, it developed as CS Amphan at 
1200 UTC on 16th May 2020 over southeast BOB. 
It further intensified into a Severe Cyclonic Storm 
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(SCS) at 0300UTC, Very Severe Cyclonic Storm 
(VSCS) at 0900 UTC and Extremely Severe Cyclon-
ic Storm (ESCS) at 2100 UTC on 17th May. At 0600 
UTC on 18th May 2020, it intensified into Supper 
Cyclonic Storm (SuCS). This stage lasted about 24 
hours and weakened into ESCS over west-central 
BOB at 0600 UTC on 19th May. It crossed the West 
Bengal-Bangladesh coasts as a VSCS across Sund-
arbans during 1000-1200 UTC on 20th May with a 
maximum sustained wind speed of 155-165 Kmph.

3. Data and methods
The WRF model version 4.0.3 is used to simulate 

the dynamic features of TCs. The model runs took 
place following the best track position and status 
provided by the satellite observations of the Indian 
Meteorological Department (IMD) (Table 1). We 
used NCEP FNL reanalysis 1 × 1 degree data in the 
simulations. A one-way nesting method is used to set 
up the domains. The horizontal resolutions of parent 
and child domains were 21 and 7 km. Arakawa C-grid 
staggering was used as grid distribution. Mercator 
map used in projection for the model run. A coupling 
of the Kain-Fritsch (new Eta) scheme and WSM6-
class graupel scheme as cumulus and microphysics 
option was used in the runs. Ertel’s hydrostatic po-

tential vorticity equation PV = –
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this study, where  is the relative vorticity,  is the coriolis parameter,  is the gravitational
acceleration,  is the potential temperature and � is the pressure. This study was accomplished
using the outputs of the inner domain of 10° × 10° areal extent. We calculated maximum PV at
200 hPa level, wind speed at 850 hPa, central pressure and vertical wind shear between 850 and
200 hPa within the corresponding area of the inner domain. We also calculated the geopotential
height GPH = Φ

0
, where Φ = gz the geopotential and g0 is the standard value of gravitational

acceleration. We visualized the model outputs using the GrADS software. The model outputs
compared with the ECMWF Reanalysis 5th Generation (ERA5) hourly data of 0.25° × 0.25°
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 the geo-
potential and g0 is the standard value of gravitational 
acceleration. We visualized the model outputs using 
the GrADS software. The model outputs compared 
with the ECMWF Reanalysis 5th Generation (ERA5) 
hourly data of 0.25° × 0.25° horizontal resolution. 

4. Results and discussion 

4.1 Temporal evolution of upper potential vorticity

The analysis of PV for forecasting the genesis 
and intensification of TC is very significant in cur-
rent meteorology. The temporal evolution of upper 
tropospheric PV may give us important insights into 
the intensification of TC. Therefore, the facts and 
findings from the PV analysis will enrich the pres-
ent forecasting system. At least 1 PVU is required 
to sustain the TC intensification shown in the PV’s 
time evolution for the matured TCs. The time evolu-
tion of PV in the model and ECMWF is comparable 
(Figure 1). For Amphan and Mekunu, the model and 
ECMWF have calculated PVs that are close to each 

Table 1. Schedule of WRF model run following IMD satellite-based best track positions.

Event 
Name Location Model run start at Model run

end at
Initial 
condition

End 
condition

Maximum intensity 
during model run

Ashoba AS 0600UTC of June 08, 
2015

0600UTC of June 11, 
2015 CS CS CS

Titli BOB 0600UTC of October 
09, 2018

0600UTC of October 
12, 2018 CS DD VSCS

Mekunu AS 1200UTC of May 22, 
2018

1200UTC of May 25, 
2018 CS ESCS ESCS

Amphan BOB 1200UTC of May 16, 
2020

1200UTC of May 19, 
2020 CS ESCS SuCS 

*DD: Deep Depression, CS: Cyclonic Storm, VSCS: Very Severe Cyclonic Storm, ESCS: Extremely Severe Cyclonic Storm, SuCS: Supper Cyclonic Storm.
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other most of the time. The ups and downs of upper 
PVs have a similar fashion in all TCs. In the peaks 
of upper PV from the model, the TCs experienced 
the maximum intensity. A significant contribution 
to PV comes from the term  where  is the potential 
temperature and p is the pressure. Hence model and 
ECMWF calculated comparatively higher PV in TCs 
over the BOB because of the warmer than AS. The 
model used NCEP FNL reanalysis of six hourly 1 × 
1 degree data as input. The results compared with the 
corresponding values come from the globally scaled 
ECMWF reanalysis high-resolution 5th Generation 
(ERA5) hourly data of 0.25° × 0.25°. Therefore, the 
results from the model may differ slightly from the 
corresponding values of ECMWF. Hence the results 
from the model outputs have shown that the WRF 
model successfully simulated the parameters used to 
calculate PV.

4.2 Intensification of TC

There are many challenges in the intensity fore-
casting of TC due to the lack of observations. There-
fore to improve the existing forecasting system, me-
teorologists have been taking numerous measures. 
The use of the PV technique in the analysis of TC 
intensity may yield new insights into the NIO. Low 
pressure at the centre and wind speed around the 
centre are important parameters to measure the in-
tensity of TC. 

Central pressure
The central pressure calculated by the model ap-

peared as though upper PV suppressed the central 
pressure of the TCs. The increase of the upper tropo-
spheric PV caused a decrease in the central pressure. 
Such inverse relation was maintained in all the stud-
ied events for a particular time (Figure 2). This in-
verse relation continued until the upper PV reached 
below 3 × 10–6 m2s–1KKg–1. Pressure drop continued 
in Mekunu over the whole period of model run (Fig-
ure 2). In Amphan, the pressure drop stopped over 
the last 24-hour spell even though it had sufficient 
upper PV and underwent decay. Such behaviour of 
upper PV in Amphan requires extensive study. Figure 1. Time evolution of 200 hPa level PV.
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Wind 
Dry and warm conditions are the dominant fea-

tures of the centre of TC. The most devastating and 
threatening phenomena exhibited by the eyewall of 
TC. The interaction between upper PV and low-level 
wind speed is significant in the eye wall region. The 
low-level maximum wind speed computed by the 
model was found closer to that of ECMWF values. 
The peak values of low-level wind by the model 
followed the corresponding peak values of ECMWF  
(Figure 3). Comparatively, ECMWF computed wind 
speeds are of smaller values. The low-level wind 
speed was found incremental with upper PV over the 
ocean surface in all the studied events. Almost all of 
the cyclones we studied found high wind speeds at the 
peak of the upper PVs (Figure 4). Therefore, higher PV 
favoured the intensification of TCs.

4.3 PV and shear

Wind shear removes the energy in terms of heat 
and moisture from the TC core. Wind shear causes 
the TC vortex to tilt away from its base. The high 
wind shear resists the formation and intensification 
of TC. Therefore, wind shear is a significant param-
eter for the genesis and intensification of TC. The 
wind shear and upper PV exhibited almost identical 
temporal evolution. The PV line has appeared as 
though simultaneously it works as a suppressor and 
exaggerator of the wind shear. That is, it seems as if 
the upper PV acts as a regulator of the wind shear. In 
Mekunu, the wind shear didn’t exceed the threshold 
value (12 ms–1) required for the formation and inten-
sification of TC for the whole period of the model 
run. In Ashoba, Titli and Amphan, the wind shear 
during the last 12 hours spell of the model run was 
found negative and above the threshold value. Such 
characteristics of the wind shear forced the decay 
of Ashoba, Titli and Amphan though they had suffi-
cient upper PV (Figure 5). This relationship between 
upper PV and wind shear requires further extensive 
study for accurate forecasting.

Figure 2. Variation of the model calculated 200 hPa level 

PV with central pressure.
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Figure 3. Variation of 850 hPa wind speed with time by model 
and ECMWF.

Figure 4. Evolution of 200 hPa level PV and 850 hPa maximum 
wind speed.
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Figure 5. Variation of 200 hPa PV and vertical wind shear with 
time by model.

4.4 Geopotential height of 500 hPa level

The 500 hPa level in the troposphere has consid-
erable importance for forecasting storms. The wind 
flow below this level is almost in the same direction. 
As a result, any event occurring at this level substan-
tially affects the weather below it. Variations in ge-
opotential height at the 500 hPa level affect various 
atmospheric events at the sea surface. High and low 
geopotential heights at the said level produce ridges 
and troughs. Anti-cyclones and cyclones form grad-
ually under these ridges and troughs at sea level. The 
geopotential heights decrease with the increase of 
upper PV. The model results show that the upper PV 
and geopotential heights alternate mutually in oppo-
site trends over the ocean. Acute fall of geopotential 
height found in Titli, Mekunu and Amphan with the 
rising of upper PV. Ashoba experienced a slower 
decline in geopotential height and didn’t favour the 
intensification. The lowering of geopotential height 
continued over the whole period of the model run of 
Mekunu and kept up its intensification. A sharp fall 
of geopotential height found in Titli, Mekunu and 
Amphan underwent decrying (Figures 4 and 6). 

5. Concluding remarks
Previous research has shown that upper PV dom-

inates the genesis and intensification of TC. Studies 
have also shown that upper PV plays a significant 
role in steering TC’s motion. As PV has an implicit 
effect on tropical cyclone intensification, there is a 
need for research on the relationship of dynamical 
parameters with upper PV in the NIO. Fine-scale 
observational study of PV structure may provide un-
revealed insights into TC intensifications. To unearth 
the role of PV in the structure and intensity change 
of TC over the NIO is crucial. The following insights 
are the outcomes of the present study:

1) At least 1 PVU upper PV is required to main-
tain the intensification of TC.

2) In BOB, upper PV was found higher than that 
of AS.

3) An increase in upper PV accelerates the pres-
sure drop in the centre of the TC.
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4) The rise in upper PV favours the low-level 
wind speed over the ocean.

5) The wind shear and upper PV exhibit almost 
similar temporal evolution over the ocean.

6) The TCs with negative wind shear and wind 
shear above the threshold value of 12 m/s couldn’t 
intensify even if they had sufficient upper PV. 

7) The upper PV and geopotential heights change 
in opposite trends.

The results obtained from the present study will 
play a significant role in forecasting tropical cyclones 
in the Bay of Bengal basin. Furthermore, considera-
ble attention should pay to the effect of upper PV on 
atmospheric dynamic and thermodynamic instability.
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ARTICLE

Relationship and Variability of Atmospheric Precipitation 
Characteristics in the North-West of Ukraine

Svetlana Vasilievna Budnik 

The Central Geophysical Observatory of a Name of Boris Sreznevsky, Kyiv, 02000, Ukraine

ABSTRACT
The paper deals with the issues of differentiation of atmospheric precipitation into gradations according to their 

characteristics and established meteorological practices. The division of atmospheric precipitation into gradations 
allows one to have an idea of the possible consequences of their fallout on life in the area. The dependence of the 
average intensity of precipitation on their duration for the entire series of observations is not described by a power-law 
dependence with a sufficient degree of reliability, and when differentiating into gradations according to the amount of 
precipitation (< 2.5 mm, 2.5-10 mm, ≥ 10 mm), the dependences are obtained with a high degree of correlation. The 
scatter of points can be explained by the presence of intermediate categories of precipitation, which does not take into 
account the accepted division of the data. Thus, for large values of the amount of precipitation, the existence of a sepa-
rate curve is possible, since the existing classifications of precipitation imply the division of heavy showers into sepa-
rate gradations. Differentiation of rains by their duration shows a stronger stratification of the field of points for shorter 
rains (up to 60 minutes). This stratification of the field of points is successfully differentiated into shorter segments of 
20, 30 minutes. Associated with the greater heterogeneity of shorter precipitation, it can be both rains of low intensi-
ty and heavy downpours of short duration. The probability of the position of the maximum intensity of precipitation 
during rain has more significant differences for precipitation less than 2.5 mm (the curves are more curved). For rains 
with a precipitation amount of 2.5 mm or more, the probability curves approach straight lines, which is associated with 
greater heterogeneity of precipitation less than 2.5 mm.
Keywords: Precipitation; Gradation; Intensity; Duration; Shower
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1. Introduction
Atmospheric precipitation is an integral part 

of the cycle of substances in nature. They carry 
out the moistening of the territory, dissolution and 
transportation of substances on the surface of the 
earth and in the soil layer, which contributes to the 
interaction of all elements in natural and territorial 
complexes, which, in turn, ensures the development 
of vegetation, the existence of animals and humans 
as well.

Various manifestations of atmospheric precip-
itation (dew, hail, drizzle, rains, showers, etc.) are 
important for ecosystems. Humidification of the ter-
ritory is provided not only by showers, but also by 
smaller rains, especially in areas where their percent-
age of the total precipitation is the largest.

Actually, low-intensity rains provide replenish-
ment of groundwater reserves and support low-wa-
ter runoff in rivers, have a beneficial effect on the 
development of vegetation cover and, as a result, 
reduce the heating of the soil surface and evapora-
tion. Downpours are responsible for floods and soil 
erosion, which often leads to large material costs, 
however, in the current physical and geographical 
conditions, they also provide channel formation and 
ecological cleaning of river channels.

The question arises of dividing atmospheric fall-
out (precipitation) into gradations that allow one to 
have an idea of their possible influences on natural 
and economic processes and human life in a given 
area.

Precipitation is divided by origin and by the 
nature of precipitation, they are divided into types, 
views, and classes. There are types of precipitation: 
cyclonic, convective and orographic. Types of 
precipitation: drizzle, rain, ice, freezing rain, snow, 
snow pellets, ice pellets, and hail [1,2].

As criteria for dividing atmospheric precipita-
tion into gradations, such consequences of rainfall 
as the beginning of runoff formation, erosion of the 
soil surface, the formation of mudflows, etc. are also 
used.

There is no generally accepted division of genet-
ically different types of sediments according to mor-

phometric features [3,4]. The most common morpho-
logical definitions relate to shower and non-storm 
precipitation and are conditional. The reason for this 
may be the physical and geographical features of 
the area under study [5]. Showers are typical for arid 
regions and, in particular, for the forest-steppe and 
steppe zones of the European territory of the USSR [2]  
and are characterized by great diversity and local 
distribution, covering at the same time, as a rule, 
small areas of the order of tens, less often hundreds 
of square kilometers.

The first researcher of showers in Russia, E.Yu. 
Berg, considered showers as the most intense areas 
of rain with an average intensity of more than 0.5 
mm/min with a duration of 5 minutes, etc. [2,5,6].

A.I. Voeikov proposed to consider rain with an 
intensity of at least 0.5 mm/min as a downpour [7]. In 
other countries, the shower is determined by different 
intensity figures [7]: Switzerland (Riggenbach)—0.34, 
America (Fassig)—1.28 mm/min, England (Si-
mon)—0.76 mm/min, Germany (Gellmann)—1.01 
mm/min.

As mentioned, there are differences in the defini-
tion of showers among states—for example, in Can-
ada it is considered light rain at 0.2 mm/h and heavy 
rain at 7.6 mm/h [8].

Currently, rains with an intensity of up to 2.5 
mm/h (0.04 mm/min) are often considered light rain, 
rains with a precipitation intensity of 2.5-7.5 mm/
h (0.04-0.125 mm/min). Heavy rains are considered 
with an intensity of more than 7.5 mm/h (more than 
0.125 mm/min).

Drizzle is considered light drizzle < 0.1 mm/
h, moderate drizzle 0.1-0.5 mm/h, heavy drizzle 
0.5 mm/min [9]. The rain is classified as light rain <  
2.5 mm/h, moderate rain 2.5 to 10.0 mm/h, and 
heavy rain over 10.0 m/h. Rainfall over 50 mm/h is 
considered heavy.

In Spain [4], the National Meteorological Institute 
has defined the following average hourly intensity 
(I) thresholds: light rainfall I ≤ 2 mm/h, moderate 
rainfall 2 < I ≤ 15 mm/h, heavy rainfall 15 < I ≤ 30 
mm/h, very heavy rainfall 30 < I ≤ 60 mm/h, heavy 
rain I > 60 mm/h. However, these thresholds vary 
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considerably from one country to another, which 
means that it would be difficult to obtain a universal 
classification based on different thresholds [4].

Rains with a precipitation amount of up to 10 mm 
are considered light, 11-30 mm—moderate, 31-50—
heavy, and more than 51 mm—very heavy [10].

In the territory of Ukraine, the intensity of 
precipitation increases from north to south [11]. The 
highest maximum intensity for a 5-minute interval in 
the southern steppe zone (including the steppe part 
of the Crimea) and Transcarpathia reach 30-40 mm/
min, in the northern part of Ukraine—20-30 mm/
min. The highest maximum precipitation intensity 
for a 10-minute interval is much lower than for a 
5-minute interval, and reaches 2.5-3 mm/min in the 
southern steppe, the steppe part of the Crimea and 
Transcarpathia, and 1.0-2 in the northern part of the 
territory 2 mm/min.

Studies of the seasonal dynamics of large-scale 
and convective precipitation in the territory covering 
the East European Plain and the Black Sea region re-
vealed an excess (2 times) of the number of showers 
over precipitation [12].

Our study of rains with more than 10 mm of 
precipitation in the Northwest of Ukraine showed 
that at the present stage of climate change in the 
Northwest of Ukraine, there is a general tendency to 
increase the amount of precipitation per year. This 
trend is not the same across the territory and depends 
on the height and latitude of the area. The amount 
of precipitation varies both in space and time, but 
the distribution of the characteristics of the rains 

themselves (intensity, duration, and others) continues 
to be similar throughout the researched territory [13,14].

The creation of automated precipitation tracking 
systems (radar complexes, etc.) in recent years re-
quires the same autonomous system for their differ-
entiation and recognition [10]. Deepening and refining 
our understanding of the structure and relationships 
in rainfall will make it possible to make the right de-
cisions in their forecasting. Making decisions based 
on the results of observations and forecasts also 
requires specification in terms of precipitation grada-
tions in order to prevent damage to the economy of 
the region and the population.

The task of this work was to identify the features 
of grouping the range of changes in rain characteris-
tics with different parameters. To trace the relation-
ship and change in the characteristics of rains (their 
number, intensity, duration) of different gradations 
over time in the Northwest of Ukraine.

2. Materials and methods of research
The analysis used materials from observations 

of all rains that could be recorded at meteorological 
stations in Kyiv and Kamenka-Bugskaya. The loca-
tions of the stations on the territory of Ukraine were 
presented earlier [14] (Figure 1).

The completeness and coverage of the range of 
precipitation measured at meteorological stations 
are presented in Tables 1-2. The order and trend 
of changes in the characteristics of rain for the two 
weather stations, in general, coincide.

Table 1. Characteristics of the series of observations of atmospheric precipitation at meteorological stations Kyiv and Kamenka-Bug-
skaya.

Characteristics
Weather stations

Kyiv Kamenka-Bugskaya

Precipitation observation period, total (number of years of observation) 1856-2020 (162) 1894-1905, 1932-1934, 
1946-2020 (89)

Period of observations with pluviographs, total (number of years of 
observations)

1913, 1924-1929, 1950-
1980, 1993-2020 (59) 1963-1985-1988-2018 (56)

Average long-term precipitation per year, mm 599 645

Range of changes in the amount of precipitation per year, mm 331-925 311-959
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On the network of the hydrometeorological service 
of Ukraine, observations of heavy rains have been in-
troduced since 1934-1935 [15], however, observations 
of the course of atmospheric precipitation, including 
rainfall, with the help of pluviographs at individual 
weather stations were also carried out earlier (from the 
end of the 19th to the beginning of the 20th century). 
Since 1961, dew has been excluded from the number 
of observed phenomena, only its presence is noted 
without describing the time of the beginning and end 
of the phenomenon and its intensity, which was noted 
according to the instructions for meteorological stations 
in 1928-1935 [16]. Instructions to weather stations 
in 1954 and 1958 [17,18] emphasize that heavy rain 
determines the nature of rainfall, and not the amount of 
precipitation, which may be insignificant. Heavy rain 
has a significant intensity of precipitation in a short 
time. The amount of precipitation here may be less than 
that of rains with low intensity but long duration.

Rain observations with the help of a pluviograph 

at the studied meteorological stations were carried 
out with interruptions in observations for almost 100 
years at the Kyiv meteorological station and 56 years 
at the Kamenka-Bugskaya meteorological station. 
Rain records were made using a Gelman pluviograph 
with a receiving area of 500 cm2. During this time, 
the approach to the analysis of recorder tapes (pluvi-
ographs) and the selection of pluviograph records for 
analysis changed. Unfortunately, materials decipher-
ing the tapes of the pluviograph until 1952 according 
to the Kyiv weather station have not been preserved.

So, until 1935 [19], heavy rains were selected for 
analysis and publication according to the E. Berg 
norms (Table 3) [6], where showers were understood 
as rains during which, for a given time, the rain in-
tensity did not fall below values presented in Table 
3. Later [4], the processing of tapes was carried out 
according to the method presented in the Manual 
for Hydrometeorological Stations and Posts [18], in 
the collection [15] materials were published on rains, 

Table 2. Characteristics of rainfall observation series for meteorological stations Kyiv and Kamenka-Bugskaya.

Weather station Characteristics
Precipitation, mm

less than 2.5 mm 
(by 1970) 2.5-10 mm 10 mm or 

more All

Kyiv

number of recorded rains 738 1112 407 2257

Precipitation range for rain, mm 0.1-2.4 2.5-9.9 10-76.7 0.1-76.7

Range of average intensity of 
precipitation for rain, mm/min 0.00085-0.58 0.002-1.2 0.01-0.60 0.00085-1.2

Range of maximum intensity of 
precipitation for rain, mm/min 0.00097-0.8 0.002-3.15 0.013-7.1 0.00097-0.71

Precipitation duration range for rain, 
min 1-567 6-1837 21-2218 1-2218

Kamenka-Bugskaya

number of recorded rains 85 1355 521 1961

Precipitation range for rain, mm 0.4-2.4 2.5-10 10-98.5 0.4-98.5

Range of average intensity of 
precipitation for rain, mm/min 0.01-0.22 0.01-1.02 0.01-1.58 0.01-1.58

Range of maximum intensity of 
precipitation for rain, mm/min 0.02-0.53 0.01-3.0 0.03-2.62 0.01-3.0

Precipitation duration range for rain, 
min 3-423 5-1272 11-2505 3-2505
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the amount of precipitation for which was 10 mm or 
more. Priority in the publication of data on observa-
tions of the course of rains using pluviographs with a 
rainfall of 10 mm or more has been preserved to this 
day [20]. 

Table 3. The norms of E.Yu. Berg (1905) in the definition of the 
concept of shower [6].

Shower duration, 
min

The amount of 
precipitation for the 
specified time, mm

Shower intensity, 
mm/min

5 2.5 0.50
10 3.8 0.38
15 5.0 0.33
20 6.0 0.30
25 7.0 0.28
30 8.0 0.27
35 9.0 0.26
40 9.6 0.24
45 10.25 0.23
50 11.00 0.22
10 12.00 0.20
120 18.00 0.15
240 27.00 0.11
720 45.00 0.06
1440 60.00 0.04

Until the 1970s, data on decoding tapes of pluvi-
ographs with all recorded liquid atmospheric precip-
itation were placed in TM-14; later, only materials 
with precipitation of 2.5 mm or more began to be 
placed there. Since 1984, the data of observations 
with the help of pluviographs for rains with a precip-
itation amount of 2.5 mm or more have been placed 
in the TMS-1 summary meteorological tables. In 
addition, at most meteorological stations, rainfall is 
recorded with the help of pluviographs from May to 
September (this also applies to the Kamenka-Bug-
skaya meteorological station).

However, for individual weather stations, includ-
ing the Kyiv weather station, in recent years, rain ob-
servations with the help of pluviographs were carried 
out from 2009 to 2013 from April to November, and 
since 2014 they have been carried out almost month-
ly (if weather conditions permit). That is, the series 
of observations of precipitation are not homogeneous 
according to several criteria—the time of observa-

tion and the boundary conditions of selection (2.5 
mm or more).

However, if we also take into account the periods 
when the pluviographs were not able to record the 
falling precipitation (the intensity and amount of 
precipitation exceeded the limits of the speed of the 
device or the breakdown of the device mechanisms, 
etc.), then there will be even more heterogeneous 
breaks in the rows. However, in general, the series 
under consideration can be considered assets of ran-
dom variables characterizing the corresponding peri-
ods.

In the study of the presented materials, a graphi-
cal-analytical method, descriptive statistics, elements 
of probability theory and regression analysis were 
used.

3. Results
Many researchers [2,5,7,21,22] confirm the existence 

of a close relationship between the duration of show-
ers and their average intensity. The highest mean 
intensities occur during short showers. The longer 
the duration of the shower, the lower its average and 
maximum intensity. Most researchers believe that 
these dependencies are characterized by a power 
function [6].

Studies show that the dependence of the amount 
of precipitation on their duration is positive, but the 
field of points is strongly dispersed from year to 
year. The grouping of years according to the amount 
of atmospheric precipitation per year brings the com-
munication lines somewhat closer, but the dispersion 
of points remains.

The existing practice of processing rain observa-
tion data using pluviographs [15], used in the USSR 
and Ukraine, including (as mentioned above), makes 
it possible to distinguish between the available se-
ries of rain observations into three gradations: 1) 
less than 2.5 mm, 2) 2.5-10.0 mm, 3) more than and 
equal to 10 mm, and analyze the presence of differ-
ences between these gradations. 

Thus, the dependence of the average intensity of 
precipitation on their duration for the entire series is 
not described by a power-law dependence with a suf-
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ficient degree of reliability, and when differentiated 
into these gradations, the dependences are obtained 
with a high degree of correlation (Figures 1 and 3).

The scatter of points can be explained by the 
presence of intermediate categories, which does 
not take into account the accepted division of the 
data. Thus, for large amounts of precipitation, the 
existence of a separate curve is possible, since the 
existing classifications of precipitation imply the 
division of heavy showers into separate gradations 
(heavy, mountainous, Texas, etc.) [23]. Figure 2 
clearly confirms this.

Rains of varying intensity and duration affect the 
water balance of the study area and the economic 
indicators of the region’s development stability in 
different ways. The probability of precipitation with 
different intensity and duration is shown in Figures 
4-6. According to the classifications of precipitation 
discussed above, the probability of occurrence of 
rains of different “power” of impact on natural and 
economic systems is different (Table 4).

The experience of meteorological and climatic 
studies [3] shows that a fairly reliable and clear cri-
terion for separating precipitation, reflecting both 
genetic and morphometric features, is their duration. 
All rains according to this criterion [3] are divided 
into rains lasting < 1 h, from 1 to 3 h and more than 
3 h. So, on a meteorological station Kyiv Kamenka-
Bugskaya (Figures 7 and 9) the differentiation of 
rains on their duration shows stronger stratification 
of a field of points for less long rains (till 60 
minutes). This stratification of the field of points 
successfully differentiates into shorter time intervals 
(Figure 8) of 20, 30 minutes. 

The general field of points is strongly scattered. 
However, when data are differentiated by precipi-
tation duration, this chaos of points becomes more 
ordered. The deepening of differentiation by the 
duration of precipitation of shorter rains increases 
the tightness of the grouping of points near the trend 
lines. Different colors show the dependence of the 
intensity of precipitation on their amount for differ-
ent durations.

According to a number of authors [3], the course 

Figure 1. The dependence of the average intensity of precipita-
tion on their duration at the Kyiv weather station, differentiated 
by the amount of precipitation per rain.

Figure 2. Dependence of the average intensity of precipitation 
over 10 mm on their duration according to the Kyiv meteoro-
logical station, differentiated by the amount of precipitation per 
rain.

Figure 3. Dependence of the average intensity of precipitation 
on their duration at the Kamenka-Bugskaya meteorological 
station, differentiated by the amount of precipitation per rain.
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Table 4. Probability of occurrence of rains of different intensities, %.

Characteristic Gradations

Weather station

Kyiv Kamenka-Bugskaya Kyiv Kamenka-Bugskaya

Average intensity of precipitation, mm/min Precipitation duration, min

0.01 0.04 0.125 0.5 0.01 0.04 0.125 0.5 10 20 60 180 10 20 60 180

The amount of 
precipitation for 
rain, mm

< 2.5 mm 52 20 3 - 91 51 4 - 80 65 35 10 93 75 30 2.3

2.5-10 mm 79 37 11 - 85 50 13 0.5 99.6 97 80 45 99 96 77.7 39

> 10 mm 95 56 22 1 98 73 26 2.7 - - 95 72 99.8 98.6 92 62.6

Whole range 73 35 10 0.5 89 57 16 1 95 88 68 39 99.5 95.9 79.6 44

Precipitation 
duration for rain, 
min

< 60 min 92 57 22 1 99.9 96 52 5.5

60-180 min 92 52 8 - 99.9 71 13.5 -

> 180 min 93 21 1 - 99.9 26 1.7 -

Whole range, 
min 93 42 10 1 99.9 56.5 16.2 1

Figure 4. Availability of average intensity of precipitation at the 
meteorological station Kyiv is differentiated by the amount of 
precipitation per rain.

Figure 6. Availability of precipitation duration according to 
Kyiv weather station differentiated by the amount of precipita-
tion per rain.

Figure 5. Availability of average precipitation intensity at the 
weather station Kamenka-Bugskaya is differentiated by the 
amount of precipitation per rain.

Figure 7. Dependence of the intensity of precipitation on their 
amount, differentiated by the duration of rain at the meteorologi-
cal station Kyiv.
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of rain does not depend on either the amount of pre-
cipitation or its duration. The change in the intensity 
of precipitation presumably depends on the synoptic 

conditions of their formation, as well as on the power 
of the process and baric gradients. At the front line, 
in the presence of a large temperature contrast, the 
most intense precipitation falls, and with the distance 
from the frontal section, their intensity weakens [3]. 
Our studies of the rain [24] show that the position of 
the intensity maximum during rain depends on the 
amount of precipitation, its duration and average 
intensity, air and soil surface temperature, air 
humidity, and wind speed.

Studies by N.V. Gladun et al. [25] show a large 
weight of precipitation of low intensity in the struc-
ture of shower precipitation. The duration of pre-
cipitation with an intensity of 0.01-0.10 mm/min is 
51% of the duration of the rest of the precipitation, 
and the area occupied by them is 44% of the area of 
precipitation of greater intensity.

According to the course of rain intensity Z.P. 
Bogomazova and Z.P. Petrova [26] identified 6 types 
of rains.

The probability of the position of the maximum 
intensity of precipitation during rain for rains with 
different amounts of precipitation has more signif-
icant differences for precipitation less than 2.5 mm 
(the curves are more curved), for rains of 2.5 mm and 
more, the probability curves are closer to straight lines 
(Figure 10). Apparently, this is due to the fact that 
precipitation less than 2.5 mm is more heterogeneous 
in origin, it can be dew and drizzle, etc.

Figure 8. Dependence of the intensity of precipitation on their 
amount, differentiated in more detail by the duration of the rain, 
Kyiv meteorological station.

Figure 9. Dependence of the intensity of precipitation on their 
amount, differentiated in more detail by the duration of rain, 
meteorological station Kamenka-Bugskaya.

Figure 10. Availability of the position of the maximum intensity of precipitation at meteorological stations Kyiv (a) and Kamen-
ka-Bugskaya (b) differentiated by the amount of precipitation per rain.
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When differentiating the probability curves for 
the position of the maximum intensity of precipi-
tation during rain by the duration of the rain, it is 
noted that rains of longer duration (more than 180 
min) line up more in a straight line than rains of 
shorter duration (Figure 11). Moreover, rains lasting 
less than 60 minutes show a greater curvature of the 
probability curve, which is most likely due to the 
greater heterogeneity of the nature of precipitation 
in this category, there may be short rains with low 
precipitation and intense showers.

Figure 11. Availability of the position of the maximum in-
tensity of precipitation at the meteorological station Kyiv is 
differentiated by the duration of precipitation per rain.

4. Discussion and conclusions
The dependence of the average intensity of pre-

cipitation on their duration for the entire range of se-
ries of observations is not described by a power law 
with a sufficient degree of reliability, and when dif-
ferentiated into gradations according to the amount 
of precipitation (< 2.5 mm, 2.5-10 mm, ≥ 10 mm), 
the dependences are obtained with a high degree of 
correlation (Figures 1 and 3).

The scatter of points can be explained by the 
presence of intermediate categories, which does not 
take into account the accepted division of the data. 
Thus, for large values of the amount of precipitation, 
the existence of a separate curve is possible, since 
the existing classifications of precipitation imply the 
division of heavy showers into separate gradations 
(heavy, mountainous, texases, etc. [23]).

Differentiation of rains by their duration shows 
a stronger stratification of the field of points for 
shorter rains (up to 60 minutes). This stratification 
of the field of points is successfully differentiated 
into shorter segments of 20, 30 minutes. Associated 
with greater heterogeneity of shorter duration pre-
cipitation, it can be both rains of low intensity and 
heavy downpours of short duration. The deepening 
of differentiation by the duration of precipitation of 
shorter rains increases the tightness of the grouping 
of points near the trend lines.

The probability of the position of the maximum 
intensity of precipitation during rain for rains with 
different amounts of precipitation has more signif-
icant differences for precipitation less than 2.5 mm 
(the curves are more curved), for rains of 2.5 mm 
and more, the probability curves are closer to straight 
lines, which is associated with a greater rainfall het-
erogeneity less than 2.5 mm.

The conducted studies show the possibility of 
creating a classification of atmospheric precipitation 
based on the quantitative principle. Why is it neces-
sary to increase the spatial coverage of the territory 
and introduce into consideration the characteristics 
of the state of the weather at the time of precipitation 
(air temperature, atmospheric pressure, wind speed, 
etc.).
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ABSTRACT
According to World Health Organization (WHO) estimates and based on a world population review, Iraq ranks 

tenth among the most air-polluted countries in the world. In this study, the authors tried to evaluate the outdoor air 
of Kirkuk City north of Iraq. The authors relied on two types of data: field measurements and remotely sensed data. 
Fifteen air quality points were determined in the study region representing the monthly average measurements im-
plemented for the one-year dataset. Geographic information systems (GIS) based geo-statistic and geo-processing 
techniques have been applied to collected data. Spatial distribution data related to Air Quality Index (AQI), and Par-
ticulate Matter (PM10 and PM2.5) were obtained by mapping collected records. Remotely sensed data of PM2.5 were 
analyzed and compared with the collected data. Health impacts were assessed per each air pollutant determined in the 
study. Spatial distribution maps revealed the hazardous air type in the study area. Overall AQI ranged between 300 and 
472 µg/m3 referring to unhealthy, very unhealthy, and hazardous classes of pollution. Also, PM10 ranged between 300 
and 570 µg/m3 indicating the same class of air pollution from unhealthy to hazardous. While PM2.5 ranged between 
40 and 60 µg/m3 which represents unhealthy air for sensitive persons and unhealthy air. The remotely sensed data re-
vealed different air types for the study period ranging from 14.5 to 52.5 µg/m3 represented in moderate and unhealthy 
air for sensitive persons. Significant correlations were obtained where the mean local R2 (coefficient of determination) 
was obtained as 0.83. The assessed data were within high air pollution that requires immediate intervention for con-
trolling causes and eliminating their effects.
Keywords: Air pollution risk; AQI; GIS; Particulate matter; Remote sensing
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1. Introduction
Iraq is known as an oil exporting country and this 

industry is considered the main source of pollution 
in Iraq [1,2]. Besides, the country has suffered from 
many wars that led to many effects including high 
rates of air pollution [3]. Also, it today suffers from 
increased daily dust storms [4]. Dust storms cross the 
borders of countries and increase their intensity and 
frequency by increasing desertification and reduc-
ing vegetation cover. They have adverse effects that 
carry particles suspended in the air for a long time 
and cause health effects [5]. The entire world is going 
through major climate change, including the Middle 
East region in which Iraq is located [2]. Besides the 
rapid urbanization and industrialization development 
combined with the increased number of cars in the 
streets, have led to serious air contamination in terms 
of haze. This increased the particulate matter in the 
air more than standard levels [6]. All these conditions 
have caused many problems in the country involving 
high levels of air contamination dramatically [2,3]. 
Various forms of air pollution are available, but most 
of them include particulate matter PM2.5 and PM10. 
PM2.5 particularly, has been detected to be harmful 
to people according to many epidemiological stud-
ies. So, researchers emphasized PM2.5 in air quality 
evaluation and monitoring [7]. The outcomes of many 
research show the exceeding levels of these pollut-
ants in various regions in Iraq which passes stand-
ard criteria [3,8], where according to an exploratory 
analysis using a GIS-based spatial method applied 
in Kirkuk City, defined the high concentrations of 
PM2.5 as unhealthy air [9]. 

The U.S. Environmental Protection Agency intro-
duced the AQI which is a useful reporting index of 
daily air criteria. It reports the air quality data per its 
health effects [10]. 

Numerous studies have highlighted the adverse 
effects of air pollution on public health and the en-
vironment [11-13]. However, conducting a comprehen-
sive air pollution risk assessment that incorporates 
spatial analysis and remote sensing techniques can 
provide a more detailed understanding of pollution 
sources, dispersion patterns, and potential exposure 

hotspots. GIS enables the integration of diverse data 
layers, including meteorological, topographical, and 
land-use data, to create accurate pollution models 
and visualizations [14]. Meanwhile, remotely sensed 
data acquired from satellites and aerial platforms offer 
valuable information on pollutant concentrations, at-
mospheric conditions, and land cover characteristics [15].  
By combining these technologies, a holistic approach 
to air pollution assessment can be achieved [16].

Environmental modeling has a significant history 
and many applications in environmental-related prob-
lems [17]. These problems relate to the study of large 
areas where the geographic information system (GIS) 
is a beneficial tool for assessing and evaluating [18].

Whereas, GIS is able to integrate different infor-
mation sources that allow the interpretation of data via 
different modeling and visualization techniques [19]. 
Therefore, GIS is considered a decision support 
system for the experts concerned with conducting 
evaluations and management [20-22]. Where using the 
modeling and GIS-based spatial analysis is risen to 
date [23]. modern techniques for analyzing, assessing, 
and modeling have been developed [24]. For instance, 
air quality assessment is useful in controlling air 
pollution problems [25]. Geographic information sys-
tems (GIS) and remotely sensed data have emerged 
as invaluable resources for analyzing and visualizing 
complex environmental phenomena, including air 
and water pollution [26,27].

In recent years, geographical information systems 
(GIS) and remotely sensed (RS) data have emerged 
as valuable tools for analyzing air pollution patterns 
and assessing associated risks. This study focuses on 
utilizing GIS and remotely sensed data to conduct an 
air pollution risk assessment in Kirkuk City, Iraq, a 
region facing increasing pollution challenges due to 
rapid urbanization and industrialization. 

In the past decade, high levels of air pollution in 
the city of Kirkuk have become a problem, and have 
contributed to an increase in the rate of diseases as-
sociated with the respiratory system. Most asthma 
and other respiratory diseases are due to inhaling 
unclean air, which is polluted and loaded with “toxic 
gases and smoke emissions” from the oil indus-
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try and factories operating in Kirkuk. The city has 
become the third most polluted city in Iraq. Many 
causes lie behind the city’s air pollution, including 
the oil industry, vehicle emissions, and waste. It is 
necessary to assess the risks and aggravation of air 
pollution in the city. The increasing number of cars 
in the streets of the city, the large number of private 
electrical generators, in addition to the industrial de-
velopment, and the establishment of factories inside 
or near the city are all factors that have contributed 
significantly to the high levels of pollution in the air. 
Nowadays most of Iraq’s cities suffering from severe 
air contamination causing serious health impacts.

This study aimed to investigate the contamination 
levels in Kirkuk City based on field measurements 
and remote sensing imagery. Moreover, GIS-based 
assessment was applied using geo-statistical analysis 
so health impacts can be determined and hazards of 
exposure detected. This work can be used for refer-
ence to air pollution management.

2. Materials and methods

2.1 Study area

Kirkuk city belongs to Kirkuk province and it’s 

located in the northern part of Iraq. It lies between 
longitudes (44°14’ and 44°28’) E and latitudes 
(35°18’ and 35°32’) N. Figure 1 represents the 
Kirkuk study area of air quality.

The study area climate is described as dry, very 
hot, and hot semi-arid in the summer season while, is 
cold in winter with rain periods from October to April, 
with an average annual precipitation of 342.7 mm. 
The evapotranspiration ranges about 1662.9 mm with 
average annual temperatures of 3 °C to 43 °C [28].

2.2 Datasets and measurements

Fifteen air quality points were selected in the 
study area, each point representing an area in the 
study site, the city of Kirkuk. The study period ex-
tended from April 2022 to January 2023, which was 
applied in the city of Kirkuk and included all areas 
within the city limits.

Data were collected in three ways: manually 
applied field measurements, remote sensing-based 
data downloaded as satellite imagery, and station 
data downloaded from global atmospheric sites. 
Field data have been collected regularly by five 
daily measurements at each point then we used the 
average value of all applied monthly measurements. 

Figure 1. Kirkuk study area of air quality.
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While AQI data were gathered from the historical 
data of the Kirkuk ground station for each month. 
The average value was used for mapping. Remotely 
sensed PM2.5 extracted from specific images for 
each month.

We relied on manual measurements using an 
Air Quality Monitor for trained data and Air Qual-
ity Multimeter for tested data. Air Quality Monitor 
(ZH01-B) a portable dust concentration device meas-
ures suspended dust particles data of PM10, PM5, 
PM2.5, and PM1 with a range of 0-1000 μg/m3, ± 20% 
accuracy and 1 μg/m3 resolution. In terms of health 
effects according to the criteria, we divided the type 
of data into two parts PM10 and less, and PM2.5 
and less. Air Quality Multimeter device was used to 
collect tested PM2.5 data which was used later for 
validations. The device measures dust PM2.5 with a 
range of 0-500 μg/m3 and ± 10% accuracy.

Remotely sensed PM2.5 data were downloaded 
from an open-source application via [29]. These data 
comprise PM2.5 dust mass levels extracted from the 
M2TMNXAER dataset which is data collection in 
(MERRA-2) Modern-Era Retrospective analysis for 
Research and Applications version 2. This group data 
comprise integrated aerosol diagnostics, for example 
(dust PM2.5, sulfate, black and organic carbon, aer-
osol, and Aerosol Optical Thickness (AOT) at 550 
nm). In addition, it contains a variance of definite 
factors. MERRA-2 is the modern ver. of universal 
atmospheric re-analysis for the satellite era created 
by NASA Global Modeling and Assimilation Office 
(GMAO) via the Goddard Earth Observing System 
Model (GEOS) version 5.12.4.

Moreover, AQI data were obtained from the Air 
Matter Global Service downloaded from [30]. Air 
Matter displays air AQI for Kirkuk city station in the 
study area. We collected the ten months’ data and 
then used the average in our investigation.

2.3 Methods

In this study, two GIS techniques were applied 
to draw distributed air pollution maps and to predict 
new locations based on the coordinates of each re-
gion and city boundaries of Kirkuk.

GIS-based geo-processing was used for the raster 
conversion of the downloaded images of each date 
(April 2022, June 2022, August 2022, October 2022, 
December 2022, and January 2023). The geo-pro-
cessing outcomes have resulted in polygon data 
which was used later for mapping and point data es-
timation.

Besides, GIS-based geo-statistics has been ap-
plied for mapping air pollution distributed maps of 
the field data. Which was used to interpolate the 
points by Inverse Distance Weighted (IDW) to pre-
dict the new points data based on used 15 air quality 
points. This was applied to field group PM data.

The applied methods in the study are shown in 
Figure 2. Furthermore, Table 1 represents the air 
quality criterion. 

Figure 2. The applied methods in the study.

Table 1. Air quality criterion [3].

AQI PM2.5 (μg/m3) PM10 (μg/m3) Air quality

0-50 0-12.0 0-54 Good

51-100 12.1-35.4 55-154 Moderate

101-150 35.5-55.4 155-254 Unhealthy for
sensitive groups

151-200 55.5-150.4 255-354 Unhealthy

201-300 150.5-250.4 355-424 Very unhealthy

301-500 250.5-500.4 425-604 Hazardous

Table 1 involves the air quality criteria for AQI, 
PM2.5, and PM10. Based on these criteria we can 
describe whether air quality is healthy or not. Air 
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quality is classified as good, moderate, and un-
healthy. Besides the table involve the very unhealthy 
with hazardous air type and the unhealthy for sensi-
tive people who suffer from respiratory diseases such 
as allergies and asthma, in addition to the elderly, 
and people who suffer from chronic diseases or heart 
diseases.

3. Results

3.1 GIS-based geo-statistics results

Figure 3 represents the air quality spatial distri-
butions in Kirkuk City from April 2022 to January 
2023. 

Based on Figure 3(a) The AQI was within a very 
unhealthy air class with an average of 386 AQI. 
Based on Figure 3(b) PM10 was within unhealthy 
air to hazardous with values of 300 to 570 µg/m3. 

Regions 1, 2, 6, 7, 10, and 14 have shown haz-
ardous values of PM10. Regions 3, 4, 5, 8, 9, and 15 
have shown unhealthy air of PM10 concentrations. 
The remaining areas had very unhealthy air in terms 
of PM10.

Furthermore, PM2.5 values were between 40 and 
60 µg/m3 as shown in Figure 3(c) which represents 
unhealthy air and values out of standards that result 
in health effects.

Regions 5, 6, 10, 11, and 15 have shown un-
healthy air of PM2.5 concentrations. While the rest 
areas were within 40-55.4 µg/m3 unhealthy for sen-
sitive groups of people and they should limit outdoor 
exertion. 

The levels of PM2.5 in Figure 3  showed 
unhealthy air for sensitive people in all regions 
except regions 5, 6, 10, 11, and 15 where depicted 
unhealthy air is situated in the southwestern part of 
the city and some regions in the center. 

Figure 3. Air quality spatial distributions in Kirkuk city from April 2022 to January 2023: (a) AQI, (b) PM10, (c) PM2.5.
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3.2.GIS-based geoprocessing results

Figure 4 represents the remotely sensed PM2.5 
air quality spatial distributions in Kirkuk City from 
April 2022 to January 2023. PM2.5 values were be-
tween 40.5 and 52.5 µg/m3 for the period of April 
to August 2022. The air quality was classified as 
out of criteria that cause some problems for people 
with respiratory diseases and who have allergies. 

The highest value was in April 2022 which ranged 
between 52 and 52.5 µg/m3. While in June 2022 it 
ranged between 42 and 42.5 µg/m3. The lowest value 
was between 40.5 and 41 µg/m3 in August 2022.

From October 2022 to January 2023, the air quality 
was moderate type with no serious effects of PM2.5. 
The highest values were within 29-29.5 µg/m3 in Oc-
tober 2022, 14.5 and 15 µg/m3 in December 2022, 
and 19-19.5 µg/m3 in January 2023.

Figure 4. Remotely sensed PM2.5 air quality spatial distributions in Kirkuk city from April 2022 to January 2023.
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Remotely sensed PM2.5 was at moderate concen-
trations in the entire Kirkuk in the period of October 
2022 to January 2023 as shown in Figure 4. While 
the previous period from April 2022 to August 2022 
was unhealthy for sensitive people.

3.3 Validation

In order to validate our data we used Air Quality 

Multimeter for testing the obtained data based on GIS 
analysis. Our predictions represented Geo-statistical 
PM2.5 which was used as trained samples. In order to 
test and examine obtained predictions tested PM2.5 
samples were used which were measured by Air 
Quality Multimeter in the same 15 regions. Figure 5 
represents the validation of Geo-statistic PM2.5. The 
obtained R2 was 0.82 with Root Mean Square (RMS) 
equal to 51.15 and 1.77 standard deviation. 

(a)

(b)

Figure 5. Validation: (a) PM2.5 dataset (b) Validation of geo-statistic predictions of PM2.5.
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4. Discussion
Air contamination is a significant environmental 

concern that stances numerous risks to public health 
and ecosystems worldwide. In urban areas, the rap-
id pace of industrialization, population growth, and 
urbanization has led to a substantial increase in air 
pollution levels. Kirkuk City, located in northern 
Iraq, is no exception, facing similar challenges due 
to its expanding industrial and urban sectors. To ef-
fectively address and mitigate the risks associated 
with air pollution, it is essential to assess the spatial 
distribution and identify the contributing factors us-
ing advanced tools and techniques. 

AQI values were bad in the entire Kirkuk City 
for the study period. In Figure 3, the concentrations 
of PM10 showed hazardous air in the northern 
and south-eastern parts. Besides unhealthy to very 
unhealthy air was depicted in the south-western part 
of the city and regions 12 and 13.

Based on Figure 4 also bad air quality was 
depicted in some periods of the study.

High levels of air pollution and being unhealthy, 
especially for allergy sufferers, should reduce the 
time spent outside if symptoms such as difficulty 
breathing or throat irritation are felt.

Air pollution has exceeded the natural limits 
and has become outside the national limits, and the 
green areas are few, compared to the size of the city, 
and certain areas of industrial activities show an 
abnormal number of pollution.

Figure 5 the validation applied to the trained 
data to gain the typical accuracy and to investigate 
the equivalent range at the measured points using 
tested points of PM2.5 measured by further devices. 
The result showed that observations were in the 
confidence boundary by a high coefficient of 
determination R2. This indicates that the predicted 
values were verified well.

Based on a study [20], GIS-based analysis in 
Kirkuk City reported an increase in blood disease. 
Their outcomes conformed to the high incidence of 
blood disease situated in southern parts of Kirkuk 
and the minimum spread of blood disease was 
confirmed in northern parts of Kirkuk and a few 

areas in the center.
Alongside the obtained results of unhealthy air 

quality during the study period, a study conducted [9] 
in Kirkuk province in 2021 resulted in unhealthy air 
quality, PM2.5 was unhealthy for sensitive people 
to unhealthy air based on field measurements and 
remotely sensed images. Developing effective 
strategies to mitigate and manage air pollution 
requires accurate assessment and monitoring of 
pollutant levels.

5. Conclusions
Kirkuk City has witnessed rapid urban growth 

and industrial activities in recent years. This urban-
ization process has raised concerns about increas-
ing pollution levels and their potential impacts on 
the population and environment. However, limited 
research has been conducted to comprehensively 
assess air pollution risks in this region. Therefore, 
this study aims to fill this knowledge gap by utilizing 
GIS and remotely sensed data to evaluate air pollu-
tion risks in Kirkuk City. 

In this study, we examined the air quality based 
on some major air pollutants for risk and evalua-
tion. The concerned data involved the measurement 
and downloading of air quality parameters such 
as PM10, PM5, PM2.5, PM1, and AQI. Two GIS-
based techniques have been applied for analysis and 
assessment. The health impacts also were determined 
for each parameter. Unhealthy to Hazardous air 
quality was detected in the study area of Kirkuk City. 
Validation processes resulted in significant value 
with an accuracy of 82%.

The study recommended monitoring, controlling, 
and reducing air pollutants values and exposures by 
methods of alternative strategies and mitigations. 
Should increase people’s awareness of how to deal 
with the contamination impacts along with early 
warning and predictions. Besides, promoting clean 
and renewable energy, and increasing afforestation 
inside the city to lessen the pollution effect, the 
future would be more promising. The findings of 
this research can provide valuable insights for urban 
planners, policymakers, and environmental agencies 
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to formulate effective strategies for pollution control 
and mitigation.

For improving public health, and to a further and 
wide understanding of the impacts of PM2.5 and 
PM10 with their toxicological compounds, addition-
al research on sampling regions and results of air 
pollution should be applied in the study area for fur-
ther periods. 
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