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Linear Regression

CHAPTER OBJECTIVES

The primary objective of this chapter is to introduce you to how least-squares

regression can be used to fit a straight line to measured data. Specific objectives and

topics covered are

• Familiarizing yourself with some basic descriptive statistics and the normal

distribution.

• Knowing how to compute the slope and intercept of a best-fit straight line with

linear regression.

• Knowing how to generate random numbers with MATLAB and how they can be

employed for Monte Carlo simulations.

• Knowing how to compute and understand the meaning of the coefficient of

determination and the standard error of the estimate.

• Understanding how to use transformations to linearize nonlinear equations so that

they can be fit with linear regression.

• Knowing how to implement linear regression with MATLAB.

14

YOU’VE GOT A PROBLEM

I
n Chap. 1, we noted that a free-falling object such as a bungee jumper is subject to the

upward force of air resistance. As a first approximation, we assumed that this force was

proportional to the square of velocity as in

FU = cdv
2

(14.1)

where FU = the upward force of air resistance [N = kg m/s2], cd = a drag coefficient

(kg/m), and v = velocity [m/s].

Expressions such as Eq. (14.1) come from the field of fluid mechanics. Although such

relationships derive in part from theory, experiments play a critical role in their formula-

tion. One such experiment is depicted in Fig. 14.1. An individual is suspended in a wind



tunnel (any volunteers?) and the force measured for various levels of wind velocity. The

result might be as listed in Table 14.1.

The relationship can be visualized by plotting force versus velocity. As in Fig. 14.2,

several features of the relationship bear mention. First, the points indicate that the force

increases as velocity increases. Second, the points do not increase smoothly, but exhibit

rather significant scatter, particularly at the higher velocities. Finally, although it may not

be obvious, the relationship between force and velocity may not be linear. This conclusion

becomes more apparent if we assume that force is zero for zero velocity. 
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FIGURE 14.1
Wind tunnel experiment to measure how the force of air resistance depends on velocity.

FIGURE 14.2
Plot of force versus wind velocity for an object suspended in a wind tunnel.
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TABLE 14.1 Experimental data for force (N) and velocity (m/s) from a wind tunnel
experiment.

v, m/s 10 20 30 40 50 60 70 80
F, N 25 70 380 550 610 1220 830 1450



In Chaps. 14 and 15, we will explore how to fit a “best” line or curve to such data. In

so doing, we will illustrate how relationships like Eq. (14.1) arise from experimental data.

14.1 STATISTICS REVIEW

Before describing least-squares regression, we will first review some basic concepts

from the field of statistics. These include the mean, standard deviation, residual sum of

the squares, and the normal distribution. In addition, we describe how simple descriptive

statistics and distributions can be generated in MATLAB. If you are familiar with these

subjects, feel free to skip the following pages and proceed directly to Section 14.2. If you

are unfamiliar with these concepts or are in need of a review, the following material is

designed as a brief introduction.

14.1.1 Descriptive Statistics

Suppose that in the course of an engineering study, several measurements were made of a

particular quantity. For example, Table 14.2 contains 24 readings of the coefficient of ther-

mal expansion of a structural steel. Taken at face value, the data provide a limited amount

of information—that is, that the values range from a minimum of 6.395 to a maximum of

6.775. Additional insight can be gained by summarizing the data in one or more well-

chosen statistics that convey as much information as possible about specific characteristics of

the data set. These descriptive statistics are most often selected to represent (1) the location

of the center of the distribution of the data and (2) the degree of spread of the data set. 

Measure of Location. The most common measure of central tendency is the arithmetic

mean. The arithmetic mean (ȳ) of a sample is defined as the sum of the individual data

points (yi ) divided by the number of points (n), or

ȳ =
∑

yi

n
(14.2)

where the summation (and all the succeeding summations in this section) is from i = 1

through n.

There are several alternatives to the arithmetic mean. The median is the midpoint of a

group of data. It is calculated by first putting the data in ascending order. If the number of

measurements is odd, the median is the middle value. If the number is even, it is the arith-

metic mean of the two middle values. The median is sometimes called the 50th percentile.

The mode is the value that occurs most frequently. The concept usually has direct util-

ity only when dealing with discrete or coarsely rounded data. For continuous variables such

as the data in Table 14.2, the concept is not very practical. For example, there are actually
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TABLE 14.2 Measurements of the coefficient of thermal expansion of structural steel.

6.495 6.595 6.615 6.635 6.485 6.555
6.665 6.505 6.435 6.625 6.715 6.655
6.755 6.625 6.715 6.575 6.655 6.605
6.565 6.515 6.555 6.395 6.775 6.685



four modes for these data: 6.555, 6.625, 6.655, and 6.715, which all occur twice. If the num-

bers had not been rounded to 3 decimal digits, it would be unlikely that any of the values

would even have repeated twice. However, if continuous data are grouped into equispaced

intervals, it can be an informative statistic. We will return to the mode when we describe his-

tograms later in this section.

Measures of Spread. The simplest measure of spread is the range, the difference be-

tween the largest and the smallest value. Although it is certainly easy to determine, it is not

considered a very reliable measure because it is highly sensitive to the sample size and is

very sensitive to extreme values.

The most common measure of spread for a sample is the standard deviation (sy) about

the mean:

sy =
√

St

n − 1
(14.3)

where St is the total sum of the squares of the residuals between the data points and the

mean, or

St =
∑

(yi − ȳ)2 (14.4)

Thus, if the individual measurements are spread out widely around the mean, St (and, con-

sequently, sy) will be large. If they are grouped tightly, the standard deviation will be small.

The spread can also be represented by the square of the standard deviation, which is called

the variance:

s2
y =

∑

(yi − ȳ)2

n − 1
(14.5)

Note that the denominator in both Eqs. (14.3) and (14.5) is n − 1. The quantity n − 1

is referred to as the degrees of freedom. Hence St and sy are said to be based on n − 1 de-

grees of freedom. This nomenclature derives from the fact that the sum of the quantities

upon which St is based (i.e., ȳ − y1, ȳ − y2, . . . , ȳ − yn) is zero. Consequently, if ȳ is

known and n − 1 of the values are specified, the remaining value is fixed. Thus, only n − 1

of the values are said to be freely determined. Another justification for dividing by n − 1 is

the fact that there is no such thing as the spread of a single data point. For the case where

n = 1, Eqs. (14.3) and (14.5) yield a meaningless result of infinity.

We should note that an alternative, more convenient formula is available to compute

the variance:

s2
y =

∑

y2
i −

(
∑

yi

)2
/n

n − 1
(14.6)

This version does not require precomputation of ȳ and yields an identical result as Eq. (14.5).

A final statistic that has utility in quantifying the spread of data is the coefficient of

variation (c.v.). This statistic is the ratio of the standard deviation to the mean. As such, it

provides a normalized measure of the spread. It is often multiplied by 100 so that it can be

expressed in the form of a percent:

c.v. =
sy

ȳ
× 100% (14.7)
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EXAMPLE 14.1 Simple Statistics of a Sample

Problem Statement. Compute the mean, median, variance, standard deviation, and coeffi-

cient of variation for the data in Table 14.2.

Solution. The data can be assembled in tabular form and the necessary sums computed

as in Table 14.3.

The mean can be computed as [Eq. (14.2)],

ȳ =
158.4

24
= 6.6

Because there are an even number of values, the median is computed as the arithmetic

mean of the middle two values: (6.605 + 6.615)/2 = 6.61.

As in Table 14.3, the sum of the squares of the residuals is 0.217000, which can be

used to compute the standard deviation [Eq. (14.3)]:

sy =
√

0.217000

24 − 1
= 0.097133
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TABLE 14.3 Data and summations for computing simple descriptive statistics for the
coefficients of thermal expansion from Table 14.2.

i yi ( yi − y
�)2 y2i

1 6.395 0.04203 40.896
2 6.435 0.02723 41.409
3 6.485 0.01323 42.055
4 6.495 0.01103 42.185
5 6.505 0.00903 42.315
6 6.515 0.00723 42.445
7 6.555 0.00203 42.968
8 6.555 0.00203 42.968
9 6.565 0.00123 43.099

10 6.575 0.00063 43.231
11 6.595 0.00003 43.494
12 6.605 0.00002 43.626
13 6.615 0.00022 43.758
14 6.625 0.00062 43.891
15 6.625 0.00062 43.891
16 6.635 0.00122 44.023
17 6.655 0.00302 44.289
18 6.655 0.00302 44.289
19 6.665 0.00422 44.422
20 6.685 0.00722 44.689
21 6.715 0.01322 45.091
22 6.715 0.01322 45.091
23 6.755 0.02402 45.630
24 6.775 0.03062 45.901
∑

158.400 0.21700 1045.657



the variance [Eq. (14.5)]:

s2
y = (0.097133)2 = 0.009435

and the coefficient of variation [Eq. (14.7)]:

c.v. =
0.097133

6.6
× 100% = 1.47%

The validity of Eq. (14.6) can also be verified by computing

s2
y =

1045.657 − (158.400)2/24

24 − 1
= 0.009435

14.1.2 The Normal Distribution

Another characteristic that bears on the present discussion is the data distribution—that is,

the shape with which the data are spread around the mean. A histogram provides a simple

visual representation of the distribution. A histogram is constructed by sorting the mea-

surements into intervals, or bins. The units of measurement are plotted on the abscissa and

the frequency of occurrence of each interval is plotted on the ordinate. 

As an example, a histogram can be created for the data from Table 14.2. The result

(Fig. 14.3) suggests that most of the data are grouped close to the mean value of 6.6. 

Notice also, that now that we have grouped the data, we can see that the bin with the most

values is from 6.6 to 6.64. Although we could say that the mode is the midpoint of this bin,

6.62, it is more common to report the most frequent range as the modal class interval.

If we have a very large set of data, the histogram often can be approximated by a

smooth curve. The symmetric, bell-shaped curve superimposed on Fig. 14.3 is one such

characteristic shape—the normal distribution. Given enough additional measurements, the

histogram for this particular case could eventually approach the normal distribution.
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FIGURE 14.3
A histogram used to depict the distribution of data. As the number of data points increases, the
histogram often approaches the smooth, bell-shaped curve called the normal distribution.



The concepts of the mean, standard deviation, residual sum of the squares, and nor-

mal distribution all have great relevance to engineering and science. A very simple exam-

ple is their use to quantify the confidence that can be ascribed to a particular measurement.

If a quantity is normally distributed, the range defined by ȳ − sy to ȳ + sy will encompass

approximately 68% of the total measurements. Similarly, the range defined by ȳ − 2sy to

ȳ + 2sy will encompass approximately 95%.

For example, for the data in Table 14.2, we calculated in Example 14.1 that ȳ = 6.6

and sy = 0.097133. Based on our analysis, we can tentatively make the statement that

approximately 95% of the readings should fall between 6.405734 and 6.794266. Because it

is so far outside these bounds, if someone told us that they had measured a value of 7.35, we

would suspect that the measurement might be erroneous.

14.1.3 Descriptive Statistics in MATLAB

Standard MATLAB has several functions to compute descriptive statistics.1 For example,

the arithmetic mean is computed as mean(x). If x is a vector, the function returns the mean

of the vector’s values. If it is a matrix, it returns a row vector containing the arithmetic

mean of each column of x. The following is the result of using mean and the other statisti-

cal functions to analyze a column vector s that holds the data from Table 14.2:

>> format short g

>> mean(s),median(s),mode(s)

ans =

6.6

ans =

6.61

ans =

6.555

>> min(s),max(s)

ans =

6.395

ans =

6.775

>> range=max(s)-min(s)

range =

0.38

>> var(s),std(s)

ans =

0.0094348

ans =

0.097133

These results are consistent with those obtained previously in Example 14.1. Note that

although there are four values that occur twice, the mode function only returns the first of

the values: 6.555.
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1 MATLAB also offers a Statistics Toolbox that provides a wide range of common statistical tasks, from random

number generation, to curve fitting, to design of experiments and statistical process control.
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FIGURE 14.4
Histogram generated with the MATLAB hist function.

MATLAB can also be used to generate a histogram based on the hist function. The

hist function has the syntax 

[n, x] = hist(y, x)

where n = the number of elements in each bin, x = a vector specifying the midpoint of

each bin, and y is the vector being analyzed. For the data from Table 14.2, the result is

>> [n,x] =hist(s)

n = 

1  1   3     1    4   3   5   2 2   2

x = 

6.414 6.452 6.49 6.528 6.566 6.604 6.642 6.68 6.718 6.756

The resulting histogram depicted in Fig. 14.4 is similar to the one we generated by hand in

Fig. 14.3. Note that all the arguments and outputs with the exception of y are optional. For

example, hist(y) without output arguments just produces a histogram bar plot with

10 bins determined automatically based on the range of values in y.

14.2 RANDOM NUMBERS AND SIMULATION

In this section, we will describe two MATLAB functions that can be used to produce a

sequence of random numbers. The first (rand) generates numbers that are uniformly

distributed, and the second (randn) generates numbers that have a normal distribution.



14.2.1 MATLAB Function: rand

This function generates a sequence of numbers that are uniformly distributed between 0

and 1. A simple representation of its syntax is

r = rand(m, n)

where r = an m-by-n matrix of random numbers. The following formula can then be used

to generate a uniform distribution on another interval:

runiform = low + (up – low) * rand(m, n)

where low = the lower bound and up = the upper bound.

EXAMPLE 14.2 Generating Uniform Random Values of Drag

Problem Statement. If the initial velocity is zero, the downward velocity of the free-falling

bungee jumper can be predicted with the following analytical solution (Eq. 1.9):

v =
√

gm

cd

tanh

(
√

gcd

m
t

)

Suppose that g = 9.81m/s2 , and m = 68.1 kg, but cd is not known precisely. For example,

you might know that it varies uniformly between 0.225 and 0.275 (i.e., ±10% around a

mean value of 0.25 kg/m). Use the rand function to generate 1000 random uniformly 

distributed values of cd and then employ these values along with the analytical solution to

compute the resulting distribution of velocities at t = 4 s.

Solution. Before generating the random numbers, we can first compute the mean velocity:

vmean =
√

9.81(68.1)

0.25
tanh

(
√

9.81(0.25)

68.1
4

)

= 33.1118
m

s

We can also generate the range:

vlow =
√

9.81(68.1)

0.275
tanh

(
√

9.81(0.275)

68.1
4

)

= 32.6223
m

s

vhigh =
√

9.81(68.1)

0.225
tanh

(
√

9.81(0.225)

68.1
4

)

= 33.6198
m

s
6

Thus, we can see that the velocity varies by

1v =
33.6198 − 32.6223

2(33.1118)
×100% = 1.5063%

The following script generates the random values for cd , along with their mean, standard

deviation, percent variation, and a histogram:

clc,format short g

n=1000;t=4;m=68.1;g=9.81;

cd=0.25;cdmin=cd-0.025,cdmax=cd+0.025

r=rand(n,1);
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cdrand=cdmin+(cdmax-cdmin)*r;

meancd=mean(cdrand),stdcd=std(cdrand)

Deltacd=(max(cdrand)-min(cdrand))/meancd/2*100.

subplot(2,1,1)

hist(cdrand),title('(a) Distribution of drag')

xlabel('cd (kg/m)')

The results are

meancd =

0.25018

stdcd =

0.014528

Deltacd =

9.9762

These results, as well as the histogram (Fig. 14.5a) indicate that rand has yielded 1000

uniformly distributed values with the desired mean value and range. The values can then be

employed along with the analytical solution to compute the resulting distribution of veloc-

ities at t = 4 s.

vrand=sqrt(g*m./cdrand).*tanh(sqrt(g*cdrand/m)*t);

meanv=mean(vrand)

Deltav=(max(vrand)-min(vrand))/meanv/2*100.

subplot(2,1,2)

hist(vrand),title('(b) Distribution of velocity')

xlabel('v (m/s)')
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(b) Distribution of velocity

(a) Distribution of drag

cd (kg/m)

v (m/s)

50

100

150

0
0.23 0.24 0.25 0.26 0.27 0.280.22

50

100

150

0
32.6 32.8 33 33.2 33.4 33.6 33.832.4

FIGURE 14.5
Histograms of (a) uniformly distributed drag coefficients and (b) the resulting distribution of velocity.
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The results are

meanv =

33.1151

Deltav =

1.5048

These results, as well as the histogram (Fig. 14.5b), closely conform to our hand cal-

culations.

The foregoing example is formally referred to as a Monte Carlo simulation. The term,

which is a reference to Monaco’s Monte Carlo casino, was first used by physicists working

on nuclear weapons projects in the 1940s. Although it yields intuitive results for this simple

example, there are instances where such computer simulations yield surprising outcomes

and provide insights that would otherwise be impossible to determine. The approach is fea-

sible only because of the computer’s ability to implement tedious, repetitive computations

in an efficient manner.

14.2.2 MATLAB Function: randn

This function generates a sequence of numbers that are normally distributed with a mean

of 0 and a standard deviation of 1. A simple representation of its syntax is

r = randn(m, n)

where r = an m-by-n matrix of random numbers. The following formula can then be used

to generate a normal distribution with a different mean (mn) and standard deviation (s),

rnormal = mn + s * randn(m, n)

EXAMPLE 14.3 Generating Normally-Distributed Random Values of Drag

Problem Statement. Analyze the same case as in Example 14.2, but rather than employ-

ing a uniform distribution, generate normally-distributed drag coefficients with a mean of

0.25 and a standard deviation of 0.01443.

Solution. The following script generates the random values for cd, along with their mean,

standard deviation, coefficient of variation (expressed as a %), and a histogram:

clc,format short g

n=1000;t=4;m=68.1;g=9.81;

cd=0.25;

stdev=0.01443;

r=randn(n,1);

cdrand=cd+stdev*r;

meancd=mean(cdrand),stdevcd=std(cdrand)

cvcd=stdevcd/meancd*100.

subplot(2,1,1)

hist(cdrand),title('(a) Distribution of drag')

xlabel('cd (kg/m)')

The results are

meancd =

0.24988
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FIGURE 14.6
Histograms of (a) normally-distributed drag coefficients and (b) the resulting distribution of velocity.

stdevcd =

0.014465

cvcd =

5.7887

These results, as well as the histogram (Fig. 14.6a) indicate that randn has yielded 1000

uniformly distributed values with the desired mean, standard deviation, and coefficient

of variation. The values can then be employed along with the analytical solution to com-

pute the resulting distribution of velocities at t  4 s.

vrand=sqrt(g*m./cdrand).*tanh(sqrt(g*cdrand/m)*t);

meanv=mean(vrand),stdevv=std(vrand)

cvv=stdevv/meanv*100.

subplot(2,1,2)

hist(vrand),title('(b) Distribution of velocity')

xlabel('v (m/s)')

The results are

meanv =

33.117

stdevv =

0.28839

cvv =

0.8708

These results, as well as the histogram (Fig. 14.6b), indicate that the velocities are also nor-

mally distributed with a mean that is close to the value that would be computed using the

mean and the analytical solution. In addition, we compute the associated standard deviation

which corresponds to a coefficient of variation of ±0.8708%.



Although simple, the foregoing examples illustrate how random numbers can be easily gen-

erated within MATLAB. We will explore additional applications in the end-of-chapter problems.

14.3 LINEAR LEAST-SQUARES REGRESSION

Where substantial error is associated with data, the best curve-fitting strategy is to derive

an approximating function that fits the shape or general trend of the data without neces-

sarily matching the individual points. One approach to do this is to visually inspect the

plotted data and then sketch a “best” line through the points. Although such “eyeball”

approaches have commonsense appeal and are valid for “back-of-the-envelope” calcula-

tions, they are deficient because they are arbitrary. That is, unless the points define a perfect

straight line (in which case, interpolation would be appropriate), different analysts would

draw different lines.

To remove this subjectivity, some criterion must be devised to establish a basis for the

fit. One way to do this is to derive a curve that minimizes the discrepancy between the data

points and the curve. To do this, we must first quantify the discrepancy. The simplest exam-

ple is fitting a straight line to a set of paired observations: (x1, y1), (x2, y2), . . . , (xn, yn).

The mathematical expression for the straight line is

y = a0 + a1x + e (14.8)

where a0 and a1 are coefficients representing the intercept and the slope, respectively, and

e is the error, or residual, between the model and the observations, which can be repre-

sented by rearranging Eq. (14.8) as

e = y − a0 − a1x (14.9)

Thus, the residual is the discrepancy between the true value of y and the approximate value,

a0 + a1x , predicted by the linear equation.

14.3.1 Criteria for a “Best” Fit

One strategy for fitting a “best” line through the data would be to minimize the sum of the

residual errors for all the available data, as in

n
∑

i=1

ei =
n

∑

i=1

(yi − a0 − a1xi ) (14.10)

where n = total number of points. However, this is an inadequate criterion, as illustrated by

Fig. 14.7a, which depicts the fit of a straight line to two points. Obviously, the best fit is the

line connecting the points. However, any straight line passing through the midpoint of the

connecting line (except a perfectly vertical line) results in a minimum value of Eq. (14.10)

equal to zero because positive and negative errors cancel.

One way to remove the effect of the signs might be to minimize the sum of the ab-

solute values of the discrepancies, as in

n
∑

i=1

|ei | =
n

∑

i=1

|yi − a0 − a1xi | (14.11)

Figure 14.7b demonstrates why this criterion is also inadequate. For the four points shown,

any straight line falling within the dashed lines will minimize the sum of the absolute val-

ues of the residuals. Thus, this criterion also does not yield a unique best fit.
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A third strategy for fitting a best line is the minimax criterion. In this technique, the line

is chosen that minimizes the maximum distance that an individual point falls from the line.

As depicted in Fig. 14.7c, this strategy is ill-suited for regression because it gives undue

influence to an outlier—that is, a single point with a large error. It should be noted that

the minimax principle is sometimes well-suited for fitting a simple function to a compli-

cated function (Carnahan, Luther, and Wilkes, 1969).

A strategy that overcomes the shortcomings of the aforementioned approaches is to

minimize the sum of the squares of the residuals:

Sr =
n

∑

i=1

e2
i =

n
∑

i=1

(yi − a0 − a1xi )
2

(14.12)
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FIGURE 14.7
Examples of some criteria for “best fit” that are inadequate for regression: (a) minimizes the sum
of the residuals, (b) minimizes the sum of the absolute values of the residuals, and (c) minimizes
the maximum error of any individual point.



This criterion, which is called least squares, has a number of advantages, including that it

yields a unique line for a given set of data. Before discussing these properties, we will pre-

sent a technique for determining the values of a0 and a1 that minimize Eq. (14.12).

14.3.2 Least-Squares Fit of a Straight Line

To determine values for a0 and a1, Eq. (14.12) is differentiated with respect to each

unknown coefficient:

∂Sr

∂a0

= −2
∑

(yi − a0 − a1xi )

∂Sr

∂a1

= −2
∑

[(yi − a0 − a1xi )xi ]

Note that we have simplified the summation symbols; unless otherwise indicated, all sum-

mations are from i = 1 to n. Setting these derivatives equal to zero will result in a minimum

Sr . If this is done, the equations can be expressed as

0 =
∑

yi −
∑

a0 −
∑

a1xi

0 =
∑

xi yi −
∑

a0xi −
∑

a1x2
i

Now, realizing that 
∑

a0 = na0, we can express the equations as a set of two simultaneous

linear equations with two unknowns (a0 and a1):

n a0 +
(

∑

xi

)

a1 =
∑

yi (14.13)

(

∑

xi

)

a0 +
(

∑

x2
i

)

a1 =
∑

xi yi (14.14)

These are called the normal equations. They can be solved simultaneously for

a1 =
n

∑

xi yi −
∑

xi

∑

yi

n
∑

x2
i −

(
∑

xi

)2
(14.15)

This result can then be used in conjunction with Eq. (14.13) to solve for

a0 = ȳ − a1 x̄ (14.16)

where ȳ and x̄ are the means of y and x, respectively.

EXAMPLE 14.4 Linear Regression

Problem Statement. Fit a straight line to the values in Table 14.1.

Solution. In this application, force is the dependent variable (y) and velocity is the

independent variable (x). The data can be set up in tabular form and the necessary sums

computed as in Table 14.4.
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The means can be computed as

x̄ =
360

8
= 45 ȳ =

5,135

8
= 641.875

The slope and the intercept can then be calculated with Eqs. (14.15) and (14.16) as

a1 =
8(312,850) − 360(5,135)

8(20,400) − (360)2
= 19.47024

a0 = 641.875 − 19.47024(45) = −234.2857

Using force and velocity in place of y and x, the least-squares fit is

F = −234.2857 + 19.47024v

The line, along with the data, is shown in Fig. 14.8.
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TABLE 14.4 Data and summations needed to compute the best-fit line for the data
from Table 14.1.

i xi yi x2i xi yi

1 10 25 100 250
2 20 70 400 1,400
3 30 380 900 11,400
4 40 550 1,600 22,000
5 50 610 2,500 30,500
6 60 1,220 3,600 73,200
7 70 830 4,900 58,100
8 80 1,450 6,400 116,000
∑

360 5,135 20,400 312,850

FIGURE 14.8
Least-squares fit of a straight line to the data from Table 14.1
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Notice that although the line fits the data well, the zero intercept means that the equa-

tion predicts physically unrealistic negative forces at low velocities. In Section 14.4, we

will show how transformations can be employed to derive an alternative best-fit line that is

more physically realistic.

14.3.3 Quantification of Error of Linear Regression

Any line other than the one computed in Example 14.4 results in a larger sum of the squares

of the residuals. Thus, the line is unique and in terms of our chosen criterion is a “best” line

through the points. A number of additional properties of this fit can be elucidated by

examining more closely the way in which residuals were computed. Recall that the sum of

the squares is defined as [Eq. (14.12)]

Sr =
n

∑

i=1

(yi − a0 − a1xi )
2

(14.17)

Notice the similarity between this equation and Eq. (14.4)

St =
∑

(yi − ȳ)2
(14.18)

In Eq. (14.18), the square of the residual represented the square of the discrepancy between

the data and a single estimate of the measure of central tendency—the mean. In Eq. (14.17),

the square of the residual represents the square of the vertical distance between the data and

another measure of central tendency—the straight line (Fig. 14.9).

The analogy can be extended further for cases where (1) the spread of the points

around the line is of similar magnitude along the entire range of the data and (2) the distri-

bution of these points about the line is normal. It can be demonstrated that if these criteria
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FIGURE 14.9
The residual in linear regression represents the vertical distance between a data point and the
straight line.



are met, least-squares regression will provide the best (i.e., the most likely) estimates of a0

and a1 (Draper and Smith, 1981). This is called the maximum likelihood principle in statis-

tics. In addition, if these criteria are met, a “standard deviation” for the regression line can

be determined as [compare with Eq. (14.3)]

sy/x =
√

Sr

n − 2
(14.19)

where sy/x is called the standard error of the estimate. The subscript notation “y/x” desig-

nates that the error is for a predicted value of y corresponding to a particular value of x.

Also, notice that we now divide by n − 2 because two data-derived estimates—a0 and a1—

were used to compute Sr ; thus, we have lost two degrees of freedom. As with our discus-

sion of the standard deviation, another justification for dividing by n − 2 is that there is no

such thing as the “spread of data” around a straight line connecting two points. Thus, for

the case where n = 2, Eq. (14.19) yields a meaningless result of infinity.

Just as was the case with the standard deviation, the standard error of the estimate

quantifies the spread of the data. However, sy/x quantifies the spread around the regression

line as shown in Fig. 14.10b in contrast to the standard deviation sy that quantified the

spread around the mean (Fig. 14.10a).

These concepts can be used to quantify the “goodness” of our fit. This is particularly

useful for comparison of several regressions (Fig. 14.11). To do this, we return to the orig-

inal data and determine the total sum of the squares around the mean for the dependent

variable (in our case, y). As was the case for Eq. (14.18), this quantity is designated St . This

is the magnitude of the residual error associated with the dependent variable prior to

regression. After performing the regression, we can compute Sr , the sum of the squares of

the residuals around the regression line with Eq. (14.17). This characterizes the residual
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(a) (b)

FIGURE 14.10
Regression data showing (a) the spread of the data around the mean of the dependent variable
and (b) the spread of the data around the best-fit line. The reduction in the spread in going from
(a) to (b), as indicated by the bell-shaped curves at the right, represents the improvement due to
linear regression.



error that remains after the regression. It is, therefore, sometimes called the unexplained

sum of the squares. The difference between the two quantities, St − Sr , quantifies the im-

provement or error reduction due to describing the data in terms of a straight line rather

than as an average value. Because the magnitude of this quantity is scale-dependent, the

difference is normalized to St to yield

r2 =
St − Sr

St

(14.20)

where r2 is called the coefficient of determination and r is the correlation coefficient

(=
√

r2) . For a perfect fit, Sr = 0 and r2 = 1, signifying that the line explains 100% of the

variability of the data. For r2 = 0, Sr = St and the fit represents no improvement. An

alternative formulation for r that is more convenient for computer implementation is

r =
n

∑

(xi yi ) −
(
∑

xi

) (
∑

yi

)

√

n
∑

x2
i −

(
∑

xi

)2
√

n
∑

y2
i −

(
∑

yi

)2
(14.21)

EXAMPLE 14.5 Estimation of Errors for the Linear Least-Squares Fit

Problem Statement. Compute the total standard deviation, the standard error of the esti-

mate, and the correlation coefficient for the fit in Example 14.4.

Solution. The data can be set up in tabular form and the necessary sums computed as in

Table 14.5.
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FIGURE 14.11
Examples of linear regression with (a) small and (b) large residual errors.



The standard deviation is [Eq. (14.3)]

sy =
√

1,808,297

8 − 1
= 508.26

and the standard error of the estimate is [Eq. (14.19)]

sy/x =
√

216,118

8 − 2
= 189.79

Thus, because sy/x < sy , the linear regression model has merit. The extent of the improve-

ment is quantified by [Eq. (14.20)]

r2 =
1,808,297 − 216,118

1,808,297
= 0.8805

or r =
√

0.8805 = 0.9383. These results indicate that 88.05% of the original uncertainty

has been explained by the linear model.

Before proceeding, a word of caution is in order. Although the coefficient of determi-

nation provides a handy measure of goodness-of-fit, you should be careful not to ascribe

more meaning to it than is warranted. Just because r2 is “close” to 1 does not mean that the

fit is necessarily “good.” For example, it is possible to obtain a relatively high value of r2

when the underlying relationship between y and x is not even linear. Draper and Smith

(1981) provide guidance and additional material regarding assessment of results for linear

regression. In addition, at the minimum, you should always inspect a plot of the data along

with your regression curve.

A nice example was developed by Anscombe (1973). As in Fig. 14.12, he came up with

four data sets consisting of 11 data points each. Although their graphs are very different, all

have the same best-fit equation, y = 3 + 0.5x , and the same coefficient of determination,

r2 = 0.67! This example dramatically illustrates why developing plots is so valuable.
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TABLE 14.5 Data and summations needed to compute the goodness-of-fit statistics
for the data from Table 14.1.

i xi yi a0 + a1xi ( yi − ȳ)2 ( yi − a0 − a1xi)2

1 10 25 −39.58 380,535 4,171
2 20 70 155.12 327,041 7,245
3 30 380 349.82 68,579 911
4 40 550 544.52 8,441 30
5 50 610 739.23 1,016 16,699
6 60 1,220 933.93 334,229 81,837
7 70 830 1,128.63 35,391 89,180
8 80 1,450 1,323.33 653,066 16,044
∑

360 5,135 1,808,297 216,118



14.4 LINEARIZATION OF NONLINEAR RELATIONSHIPS

Linear regression provides a powerful technique for fitting a best line to data. However, it

is predicated on the fact that the relationship between the dependent and independent vari-

ables is linear. This is not always the case, and the first step in any regression analysis

should be to plot and visually inspect the data to ascertain whether a linear model applies.

In some cases, techniques such as polynomial regression, which is described in Chap. 15,

are appropriate. For others, transformations can be used to express the data in a form that

is compatible with linear regression.

One example is the exponential model:

y = α1eβ1x
(14.22)

where α1 and β1 are constants. This model is used in many fields of engineering and sci-

ence to characterize quantities that increase (positive β1) or decrease (negative β1) at a rate

that is directly proportional to their own magnitude. For example, population growth or

radioactive decay can exhibit such behavior. As depicted in Fig. 14.13a, the equation rep-

resents a nonlinear relationship (for β1 6= 0) between y and x.

Another example of a nonlinear model is the simple power equation:

y = α2xβ2 (14.23)

where α2 and β2 are constant coefficients. This model has wide applicability in all fields of

engineering and science. It is very frequently used to fit experimental data when the

underlying model is not known. As depicted in Fig. 14.13b, the equation (for β2 6= 0) is

nonlinear.
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FIGURE 14.12
Anscombe’s four data sets along with the best-fit line, y = 3 + 0.5x.



A third example of a nonlinear model is the saturation-growth-rate equation:

y = α3

x

β3 + x
(14.24)

where α3 and β3 are constant coefficients. This model, which is particularly well-suited

for characterizing population growth rate under limiting conditions, also represents a

nonlinear relationship between y and x (Fig. 14.13c) that levels off, or “saturates,” as x

increases. It has many applications, particularly in biologically related areas of both engi-

neering and science.

Nonlinear regression techniques are available to fit these equations to experimental

data directly. However, a simpler alternative is to use mathematical manipulations to trans-

form the equations into a linear form. Then linear regression can be employed to fit the

equations to data.
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For example, Eq. (14.22) can be linearized by taking its natural logarithm to yield

ln y = ln α1 + β1x (14.25)

Thus, a plot of ln y versus x will yield a straight line with a slope of β1 and an intercept of

ln α1 (Fig. 14.13d ).

Equation (14.23) is linearized by taking its base-10 logarithm to give

log y = log α2 + β2 log x (14.26)

Thus, a plot of log y versus log x will yield a straight line with a slope of β2 and an inter-

cept of log α2 (Fig. 14.13e). Note that any base logarithm can be used to linearize this

model. However, as done here, the base-10 logarithm is most commonly employed.

Equation (14.24) is linearized by inverting it to give

1

y
=

1

α3

+
β3

α3

1

x
(14.27)

Thus, a plot of 1/y versus 1/x will be linear, with a slope of β3/α3 and an intercept of 1/α3

(Fig. 14.13f ).

In their transformed forms, these models can be fit with linear regression to evaluate

the constant coefficients. They can then be transformed back to their original state and used

for predictive purposes. The following illustrates this procedure for the power model.

EXAMPLE 14.6 Fitting Data with the Power Equation

Problem Statement. Fit Eq. (14.23) to the data in Table 14.1 using a logarithmic trans-

formation.

Solution. The data can be set up in tabular form and the necessary sums computed as in

Table 14.6.

The means can be computed as

x̄ =
12.606

8
= 1.5757 ȳ =

20.515

8
= 2.5644
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TABLE 14.6 Data and summations needed to fit the power model to the data from 
Table 14.1

i xi yi log xi log yi (log xi)
2 log xi log yi

1 10 25 1.000 1.398 1.000 1.398
2 20 70 1.301 1.845 1.693 2.401
3 30 380 1.477 2.580 2.182 3.811
4 40 550 1.602 2.740 2.567 4.390
5 50 610 1.699 2.785 2.886 4.732
6 60 1220 1.778 3.086 3.162 5.488
7 70 830 1.845 2.919 3.404 5.386
8 80 1450 1.903 3.161 3.622 6.016
∑

12.606 20.515 20.516 33.622



The slope and the intercept can then be calculated with Eqs. (14.15) and (14.16) as

a1 =
8(33.622) − 12.606(20.515)

8(20.516) − (12.606)2
= 1.9842

a0 = 2.5644 − 1.9842(1.5757) = −0.5620

The least-squares fit is

log y = −0.5620 + 1.9842 log x

The fit, along with the data, is shown in Fig. 14.14a.
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FIGURE 14.14
Least-squares fit of a power model to the data from Table 14.1. (a) The fit of the transformed data.
(b) The power equation fit along with the data.



We can also display the fit using the untransformed coordinates. To do this, the coeffi-

cients of the power model are determined as α2 = 10−0.5620 = 0.2741 and β2 = 1.9842.

Using force and velocity in place of y and x, the least-squares fit is

F = 0.2741v1.9842

This equation, along with the data, is shown in Fig. 14.14b.

The fits in Example 14.6 (Fig. 14.14) should be compared with the one obtained

previously in Example 14.4 (Fig. 14.8) using linear regression on the untransformed data.

Although both results would appear to be acceptable, the transformed result has the advan-

tage that it does not yield negative force predictions at low velocities. Further, it is known

from the discipline of fluid mechanics that the drag force on an object moving through a

fluid is often well described by a model with velocity squared. Thus, knowledge from the

field you are studying often has a large bearing on the choice of the appropriate model

equation you use for curve fitting.

14.4.1 General Comments on Linear Regression

Before proceeding to curvilinear and multiple linear regression, we must emphasize the in-

troductory nature of the foregoing material on linear regression. We have focused on the

simple derivation and practical use of equations to fit data. You should be cognizant of the

fact that there are theoretical aspects of regression that are of practical importance but are

beyond the scope of this book. For example, some statistical assumptions that are inherent

in the linear least-squares procedures are

1. Each x has a fixed value; it is not random and is known without error.

2. The y values are independent random variables and all have the same variance.

3. The y values for a given x must be normally distributed.

Such assumptions are relevant to the proper derivation and use of regression. For

example, the first assumption means that (1) the x values must be error-free and (2) the

regression of y versus x is not the same as x versus y. You are urged to consult other refer-

ences such as Draper and Smith (1981) to appreciate aspects and nuances of regression that

are beyond the scope of this book.

14.5 COMPUTER APPLICATIONS

Linear regression is so commonplace that it can be implemented on most pocket calcula-

tors. In this section, we will show how a simple M-file can be developed to determine the

slope and intercept as well as to create a plot of the data and the best-fit line. We will also

show how linear regression can be implemented with the built-in polyfit function.
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14.5.1 MATLAB M-file: linregr

An algorithm for linear regression can be easily developed (Fig. 14.15). The required

summations are readily computed with MATLAB’s sum function. These are then used to

compute the slope and the intercept with Eqs. (14.15) and (14.16). The routine displays the

intercept and slope, the coefficient of determination, and a plot of the best-fit line along

with the measurements.

A simple example of the use of this M-file would be to fit the force-velocity data analyzed

in Example 14.4:

>> x = [10 20 30 40 50 60 70 80];

>> y = [25 70 380 550 610 1220 830 1450];

>> linregr(x,y)

r2 =

0.8805

ans =

19.4702 -234.2857 

It can just as easily be used to fit the power model (Example 14.6) by applying the

log10 function to the data as in

>> linregr(log10(x),log10(y))

r2 =

0.9481

ans =

1.9842   -0.5620 
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FIGURE 14.15
An M-file to implement linear regression.

function [a, r2] = linregr(x,y)

% linregr: linear regression curve fitting

% [a, r2] = linregr(x,y): Least squares fit of straight

% line to data by solving the normal equations

% input:

% x = independent variable

% y = dependent variable

% output:

% a = vector of slope, a(1), and intercept, a(2)

% r2 = coefficient of determination

n = length(x);

if length(y)~=n, error('x and y must be same length'); end

x = x(:); y = y(:); % convert to column vectors

sx = sum(x); sy = sum(y);

sx2 = sum(x.*x); sxy = sum(x.*y); sy2 = sum(y.*y);

a(1) = (n*sxy—sx*sy)/(n*sx2—sx^2);

a(2) = sy/n—a(1)*sx/n;

r2 = ((n*sxy—sx*sy)/sqrt(n*sx2—sx^2)/sqrt(n*sy2—sy^2))^2;

% create plot of data and best fit line

xp = linspace(min(x),max(x),2);

yp = a(1)*xp+a(2);

plot(x,y,'o',xp,yp)

grid on



14.5.2 MATLAB Functions: polyfit and polyval

MATLAB has a built-in function polyfit that fits a least-squares nth-order polynomial to

data. It can be applied as in

>> p = polyfit(x, y, n)

where x and y are the vectors of the independent and the dependent variables, respectively,

and n = the order of the polynomial. The function returns a vector p containing the poly-

nomial’s coefficients. We should note that it represents the polynomial using decreasing

powers of x as in the following representation:

f (x) = p1xn
+ p2xn−1

+ · · · + pn x + pn+1

Because a straight line is a first-order polynomial, polyfit(x,y,1) will return the

slope and the intercept of the best-fit straight line.

>> x = [10 20 30 40 50 60 70 80];

>> y = [25 70 380 550 610 1220 830 1450];

>> a = polyfit(x,y,1)

a =

19.4702 -234.2857

Thus, the slope is 19.4702 and the intercept is −234.2857.

Another function, polyval, can then be used to compute a value using the coeffi-

cients. It has the general format:

>> y = polyval(p, x)

where p = the polynomial coefficients, and y = the best-fit value at x. For example,

>> y = polyval(a,45)

y =

641.8750
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14.6 CASE STUDY ENZYME KINETICS

Background. Enzymes act as catalysts to speed up the rate of chemical reactions in

living cells. In most cases, they convert one chemical, the substrate, into another, the prod-

uct. The Michaelis-Menten equation is commonly used to describe such reactions:

v =
vm[S]

ks + [S]
(14.28)

where v = the initial reaction velocity, vm = the maximum initial reaction velocity, [S] =

substrate concentration, and ks = a half-saturation constant. As in Fig. 14.16, the equation

describes a saturating relationship which levels off with increasing [S]. The graph also

illustrates that the half-saturation constant corresponds to the substrate concentration at

which the velocity is half the maximum.


