

Elastic Buffer Implementations
in PCI Express Devices

MindShare, Inc.

Joe Winkles
joe@mindshare.com

November 2003

mailto:joe@mindshare.com

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designators appear in this document, and
MindShare was aware of the trademark claim, the designations have been printed in
initial capital letters or all capital letters.

The authors and publishers have taken care in preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

Copyright ©2003 by MindShare, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the
publisher.

Printed in the United States of America.

First Printing, November 2003

Find MindShare on the World-Wide Web at:
http://www.mindshare.com/

http://www.mindshare.com/

Contents

Introduction... 4
The Need for Elastic Buffers .. 4
How These Buffers Work… ... 5
Placement within the Data Flow... 7
Implementations and Sizes ... 10

Primed Method.. 12
Flow Control Method.. 15

iii

PCI Express Elastic Buffers

Introduction

Elastic Buffers (also known as Elasticity Buffers, Synchronization Buffers, and
Elastic Stores) are used to ensure data integrity when bridging two different clock
domains. This buffer is simply a FIFO (First-In-First-Out) where data is deposited
at a certain rate based on one clock and removed at a rate derived from a different
clock. Because these two clocks could (and almost always do) have minor
frequency differences, there is the potential for this FIFO to eventually overflow
or underflow. To avoid this situation, an Elastic Buffer has the ability to insert or
remove special symbols, during specified intervals that allow the buffer to
compensate for the clock differences.

The Elastic Buffer, or the concept of the Elastic Buffer, has been around since at
least 1960. Maurice Karnaugh was granted a patent for this technology back in
1963 for its use in transmitting Pulse-Code Modulated (PCM) signals in telephone
networks (Pat. 3,093,815). However, this was just the first of many applications
that these buffers would be used in. The robustness of Elastic Buffers is indicated
by their inclusion in modern day technologies. These buffers can be found in
protocols such as USB, InfiniBand, Fibre Channel, Gigabit Ethernet, and of
course PCI Express.

This paper describes the necessity of Elastic Buffers in a serialized, source-
synchronous timing architecture such as PCI Express. Next, a brief description of
the protocol used to implement clock tolerance compensation is discussed, as well
as the placement of the Elastic Buffer within the data flow of a PCI Express
device. Finally, this paper shows some viable implementations (including sizes)
of Elastic Buffers in PCI Express devices as well as the advantages and
disadvantages of each design.

The Need for Elastic Buffers

The PCI Express technology is a high-speed, serialized, source-synchronous
timing (clock-forwarding), data transfer protocol. These characteristics are
significantly different than the characteristics implemented by PCI Express’
predecessor buses, namely PCI and PCI-X. Both PCI and PCI-X use a multi-drop,
parallel bus that utilizes a synchronous timing architecture.

A synchronous timing architecture is where a common clock source supplies a
clock to all the devices on the bus, and that clock is used to enable the device’s
transceivers to clock data in and out. This scheme requires that the clocks arrive at
each device at precisely the same time. There is a very small amount of pin-to-pin
skew allowed, which means that the lengths of these clock traces have to be

4

PCI Express Elastic Buffers
matched to minimize the amount of skew between devices. It now becomes
apparent that as the speed of the clock increases, the allowed pin-to-pin skew
must decrease, which requires the matched routing of these clock traces to
become increasingly difficult.

A source-synchronous timing architecture is where both the data and clock are
transmitted from the originating device’s driver. This means that there is no
common clock that all devices must use to clock data in and out with. Instead, a
transmitting device forwards the clock it used to transmit the data and the receiver
will use that forwarded clock to latch the transmitted data.

As previously mentioned, PCI Express utilizes a source-synchronous timing
architecture. It employs a scheme where the forwarded clock is “embedded” into
the data stream by encoding the data using IBM’s 8B/10B encoding tables. This
encoding mechanism ensures that the data stream will have a sufficient number of
0-to-1 and 1-to-0 transitions to allow the clock to be recovered on the receiving
side with the use of a Phase-Locked Loop (PLL). With this timing architecture,
we no longer have the problem of carefully routing the same clock to each device
with very small amounts of skew. However, a different problem arises. Each
device now has at least two clock domains: (1) the Local Clock Domain that it
uses to clock all of its internal gates and to transmit data with, and (2) the
Recovered (or received) Clock Domain that it uses to latch inbound data. The data
being received will have to cross the clock boundary from the Recovered Clock
Domain to the Local Clock Domain in order for the device to process that
information. Elastic Buffers are implemented in PCI Express devices for this
exact purpose, to allow received data to transition from the Recovered Clock
Domain to the Local Clock Domain. The next section describes this transition in
detail, including the protocol embedded in PCI Express to make this process
work.

How These Buffers Work…

All of the first generation PCI Express devices must transmit data at a rate of
2.5Gbps (Giga-bits per second) with a tolerance of +/- 300 ppm (parts per
million). This translates into an allowed frequency range of 2.49925GHz –
2.50075GHz at the transmitter of a device. Due to the tolerance allowed, two
devices connected to each other can (and most likely will) be running at slightly
different frequencies. This creates two clock domains within one device that the
received data must transition across. As shown in Figure 1, the function of the
Elastic Buffer is to bridge these two clock domains by compensating for their
phase and frequency differences, thereby allowing the received data to maintain
its integrity as it flows upstream in the target device.

5

PCI Express Elastic Buffers

Device A Device B

Bridging these two clock domains is accomplished by depositing the received
data into the buffer using one clock domain (the recovered clock) and pulling the
data out of the buffer using the other clock domain (the local clock of the device).
Since these two clock domains can be running at different frequencies, the buffer
has the potential to overflow or underflow. However, these error conditions are
prevented by designing the buffer to monitor its own state (or fill-level) and
enabling it to insert or remove special symbols at the appropriate rate (hence the
name, Elastic Buffer). PCI Express defines these special symbols that can be
inserted or removed as SKP symbols which are only found in SKP ordered-sets. A
transmitted SKP ordered-set is comprised of a single COM symbol followed by
three SKP symbols. Transmitters are required to send SKP ordered-sets
periodically for the exact reason just discussed; to prevent an overflow or
underflow condition in the Elastic Buffer.

The rate at which these SKP ordered-sets are transmitted is derived from the max
tolerance allowed between two devices, 600ppm. This worst-case scenario would
result in the local clocks of the two devices shifting by one clock cycle every
1666 cycles. Therefore, the transmitter must schedule a SKP ordered-set to be
sent more frequently than every 1666 clocks. The spec defines the allowed
interval between SKP ordered-sets being scheduled for transmission as being
between 1180 – 1538 symbol times. (Since SKP symbols are removed and
inserted an entire symbol at a time, the 1180-1538 interval is measured in symbol
times, a 4ns period, and not bit times.) Upon receipt of the SKP ordered-set, the
Elastic Buffer can either insert or remove up to 2 SKP symbols per ordered-set to
compensate for the differences between the recovered clock and the local clock.

L
oc

al
 C

lo
ck

 D
om

ai
n

 R
ecovered

C

lock D
om

ain

L
ocal C

lock D
om

ain

PCI Express

C
lo

ck
 D

om
ai

n

Link

R
ec

ov
er

ed

Elastic Buffers

Figure 1. Elastic Buffers bridging the clock domains in each PCI Express device.

6

PCI Express Elastic Buffers
There will be instances where a device will not be able to transmit a SKP ordered-
set within the defined interval of 1180-1538 symbol times. This occurs during the
transmission of a large Transaction Layer Packet (TLP) that prevents the device
sending a SKP ordered-set at the regularly scheduled time. Since the device
cannot interrupt the transmission of the TLP, it must wait until the entire TLP is
transmitted and then it can transmit the delayed SKP ordered-set(s). During the
large TLP transmission, multiple symbol shifts can occur at the receiver between
the Recovered Clock Domain and the Local Clock Domain. (The number shifts
that can occur is described in a later section of this paper.) To ensure that the
Elastic Buffer in the target device receives enough SKP ordered-sets to
compensate for the multiple symbol shifts, the SKP ordered-sets that were
scheduled for transmission during the TLP are accumulated. These accumulated
SKP ordered-sets are sent consecutively, immediately following the end of the
TLP.

Placement within the Data Flow

There are several components within the Physical Layer of a PCI Express device.
This section discusses the logical placement of the Elastic Buffer in relation to the
following three components: the Deserializer, the 8B/10B Decoder, and the
Deskew circuitry. The following descriptions for the placement of the Elastic
Buffer are only recommendations that are based on information given in the spec.

As described earlier in this paper, the Elastic Buffer works by inserting or
removing SKP symbols contained in SKP ordered-sets. The key word in the
previous sentence is “symbol.” This means that the Elastic Buffer accomplishes
clock tolerance compensation (bridging clock domains) at the symbol level and
not the bit level. The logic block which generates valid symbols from the received
bit-stream is the Deserializer. Therefore, the received data should pass through the
Deserializer before being deposited into the Elastic Buffer.

The positioning relationship of the 8B/10B Decoder to the Elastic Buffer is not as
intuitive as the buffer’s relationship to the Deserializer. At first glance, it seems to
make sense to place the buffer after the Decoder for various reasons, as follows:

• If the Elastic Buffer is placed after the Decoder, it does not have to be as
wide, only 9-bits wide (8-bits of data plus the data or control symbol
indicator) instead of 10-bits wide if it was placed before the Decoder.

• If the 8B/10B decoding was taken care of before the clock tolerance
compensation, then the Elastic Buffer would not have to pay attention to
the disparity of the SKP symbols in the SKP ordered-set because there is
no concept of disparity after the Decoder.

Despite the reasons stated above for placing the Elastic Buffer after the Decoder,
this buffer really should be placed before the 8B/10B Decoder. To understand the
justification for placing the Elastic Buffer before the Decoder, we must look at the

7

PCI Express Elastic Buffers
characteristics of a PCI Express device when it is acting as a Loopback Slave. A
Loopback Slave is required to “retransmit the received 10-bit information exactly
as received, while continuing to perform clock tolerance compensation.” This
implies that the 10-bit symbols being received should not be decoded and later re-
encoded for transmission. The spec re-enforces this concept by also stating that
“No modifications of the received 10-bit data is allowed by the Loopback Slave.”
For Loopback Slaves, even though the 8B/10B decoding and re-encoding is
prohibited, clock tolerance compensation still has to be employed by sending this
data through the Elastic Buffer. Inserting and removing SKP symbols is the only
allowed modification to the received 10-bit data. (This information as well as the
references above can be found on page 197 of the 1.0a version of the PCI Express
Specification. It should also be noted that all devices are required to be able to
support being a Loopback Slave. It is optional whether a device is capable of
being a Loopback Master.)

Due to the Loopback Slave scenario, the Elastic Buffers should be placed before
the 8B/10B decoding logical blocks. Because of this placement, the Elastic Buffer
now has to pay attention to the disparity of the SKP symbols when inserting
additional SKP symbols into a SKP ordered-set. (For more information on the
8B/10B decoding process and the topic of disparity, please refer to Chapter 11 of
MindShare’s book entitled “PCI Express System Architecture.”)

To determine the placement of the Elastic Buffer in relation to the Deskew
circuitry in the Receiver, the functionality of the Deskew circuitry must be
considered.

A PCI Express link can be comprised of multiple lanes. The transmitting device
delivers pieces of a packet on all of these lanes at the same time (by byte striping
the packet across all the lanes). However, the receiving device on the other end of
the link may not receive the data on each lane at the exact same time due to
varying trace lengths for the different lanes between the two devices or possibly
due to some other board characteristics. This effect is shown in Figure 2. The time
difference for data arrival across the lanes is known as lane-to-lane skew. This
indicates that each lane on the receiving side must recover its own clock from the
data stream arriving on that lane. Each of these recovered clocks should have the
same frequency (because they are all locking onto the transmit frequency),
however, due to driver and trace delays, they can have different phases in relation
to each other. These phases can even be off by more than 360 degrees with
respect to each other, as shown in Figure 2. The purpose of the Deskew circuitry
is to re-align the phases of the received data effectively. This process can be
accomplished entirely in the digital realm in two simple steps. (Conversely, if this
deskewing was attempted in the analog domain, it would involve having to shift
received information by fractions of a clock and can become very complicated to
implement.) The first step in the digital solution is to latch the symbols

8

PCI Express Elastic Buffers

on all of the lanes with a common clock (one of the recovered clocks could be
used as this common clock). This aligns the received symbols on clock
boundaries. They may still be out phase with respect to each other, but now they
are out of phase in 360 degree increments (clock cycles). An illustration showing
this concept can be found in Figure 3. (We will come back and revisit this first
step and how it relates to the Elastic Buffer in the next paragraph). At this point,
the symbols are all transitioning on clock boundaries (their phase differences are
now in increments of clocks, as shown in Figure 3), so the second step of the
deskewing procedure is simply to delay the “faster” lanes by the appropriate
number of clocks. Now the data has been deskewed across all of the lanes for the
receiver to process that information.

The first step of the deskewing process described above (and shown in Figure 3)
can also be accomplished by using the skewed data as the input to the Elastic
Buffer. The symbols in each lane are pulled out of the Elastic Buffers using the
same clock edge accomplishing step one (because the skew is then in increments
of the clock). Therefore, by placing the Elastic Buffer before the Deskew
circuitry, half of the Deskew circuitry’s job is already finished.

SKP SKP SKP COM

SKP SKP SKP COM

SKP SKP SKP COM

SKP SKP SKP COM

SKP SKP SKP COM

SKP SKP SKP COM

SKP SKP SKP COM

SKP SKP SKP COM

Lane 0
The symbols of different
lanes are transmitted at the
same time with respect to
each other.

Lane 1

Lane 2

Lane 3

However, the same
symbols arriving at the

receiver may not all
arrive at the same time.

Figure 2. Illustration of Lane-to-Lane Skew.

9

PCI Express Elastic Buffers

Implementations and Sizes

This section identifies two of the most common Elastic Buffer implementations,
describe their functionality, and calculate the minimum size of each based on the
device’s characteristics. The sizes of these buffers are dependent on three factors:
the interval at which the transmitter schedules SKP ordered-sets to be sent, the
Max Payload Size supported by the device, and the Link Width. Each of these
terms are used to determine the maximum amount of time between SKP ordered-
sets arriving at the receiver. The maximum amount of time between SKP ordered-
sets being received may be longer than the specified 1180 – 1538 symbol times
scheduling interval. For example, if the transmitter is currently in the middle of
sending a TLP when it determines that another SKP ordered-set needs to be sent,
it must finish transmitting the current packet before sending the SKP ordered-set.
This is why the Max Payload Size supported by a device and the Link Width need
to be considered, because the amount of time it takes to finish transmitting that
packet affects the amount of time between SKP ordered-sets being transmitted on
the link.

SKP SKP SKP COM

SKP SKP SKP COM

SKP SKP SKP COM

SKP SKP SKP COM

Timing diagram of
the symbols received

on all 4 lanes with
respect to each other.

Figure 3. Aligning Skewed data on a common clock boundary.

SKP SKP SKP COM

Common Clock

SKP SKP SKP COM

SKP SKP SKP COM

SKP SKP SKP COM

Timing diagram of
the received symbols

after being latched by
a common clock.

10

PCI Express Elastic Buffers
The worst-case scenario would be when two PCI Express devices are connected
together with a x1 link, the transmitter has sent the first symbol of a maximum
sized packet when it determines that it needs to send a SKP ordered-set. To
properly calculate the sizes of the Elastic Buffer implementations (described later)
we first must determine the number of symbols that can shift during this worst-
case scenario. As mentioned earlier, based on the clock tolerance allowed by the
spec, two connected devices could have a symbol shift every 1666 symbol times.
Therefore, the number of symbols that could shift during the worst-case scenario
is described in the equation below.

1666

1538
_

__
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +

=
WidthLink

OverheadTLPSizePayloadMax

ShiftedSymbolsMax

he Max_Payload_Size term in the equation above is the only variable and is

• start framing symbol (1)

 symbol (1)

he Link_Width term should be a constant of 1 and NOT the max link width that

T
based on the Max Payload Size parameter of the device. The TLP_Overhead term
is a constant of 28 symbol times and is comprised of:

• sequence number (2)
• header (16)
• ECRC (4)
• LCRC (4)
• end framing

T
the device supports. This is because the smaller the link width, the longer the
interval is between SKP ordered-sets, which is a component of the worst-case
scenario. Since a device may not always know what the link width capability will
be of the device it is connected to, the required link width of x1 should always be
used in this equation. The 1538 value in the equation represents the max interval
between SKP ordered-sets being scheduled by the transmitter. A sample
calculation is shown below indicating the maximum number of symbols that can
shift given a device’s characteristics. Table 1 shows the results of the equation
based on different Max Payload Sizes.

ShiftedSymbolsMax __4.3
1666

1538
1

284096

=
+⎟

⎠
⎞

⎜
⎝
⎛ +

11

PCI Express Elastic Buffers

Max_Payload_Size 128 256 512 1024 2048 4096

Max_Symbols_Shifted 1.02 1.09 1.25 1.55 2.17 3.40

Table 1. Max number of shifted symbols based on payload size.

Primed Method
tic Buffer implementations described in this paper is what we

he number of entries before and after the middle entry is determined by the

The first of two Elas
will refer to as the Primed Method. This implementation involves a buffer whose
normal state is half-full (primed) with enough entries before and after the middle
entry to ensure that the max clock differences can be compensated for by inserting
or removing SKP symbols from SKP ordered-sets. This implementation is
illustrated in Figure 4.

STP
EN

D

data

8b/10b
Decoder

data

data

data

data

Local Clock Domain Recovered Clock Domain

Elastic Buffer

The Elastic Buffer’s normal

Figure 4. Implementation of Elastic Buffer using Primed Method

state is half-full.

T
maximum number of symbols that could shift between received SKP ordered-sets.
The number of symbol shifts is given in Table 1, based on the Max_Payload_Size
parameter of the device. For example, a device which is capable of receiving a
packet with a payload size of 4096 bytes should have an Elastic Buffer that is 8
entries deep. This is determined by taking the 3.40 result from Table 1 for a
Max_Payload_Size of 4096 and rounding that value up to 4, then doubling that to
allow for shifting in either direction. If the Max_Payload_Size parameter for a
device is 2048, then using the result from Table 1, its Elastic Buffer should be 6
entries deep.

12

PCI Express Elastic Buffers
The goal of the Primed Method is to keep the Elastic Buffer half-full. Since the

igure 5 illustrates the scenario where the Local Clock is faster than the

n Figure 6a, the Elastic Buffer is getting close to overflowing because the Local

Recovered Clock Domain and the Local Clock Domain will have slightly
different frequencies, the Elastic Buffer’s fill level will vary depending on the
frequency difference of the two clock domains and the interval between received
SKP ordered-sets. However, each time the device does receive one (or more) SKP
ordered-sets, it returns the Elastic Buffer to the half-full state by inserting or
removing SKP symbols from these SKP ordered-sets. (As mentioned earlier, it
should be noted that not more than 2 SKP symbols can be inserted or removed
from a single SKP ordered-set.) Examples of this process are shown in Figure 5,
and also in Figure 6a and 6b.

F
Recovered Clock, so two more symbols have been pulled out of the Elastic Buffer
than have been deposited into it. This is compensated for by inserting two
additional SKP symbols into the received SKP ordered-set.

I
Clock is slower than the Recovered Clock and a SKP ordered-set has not been
received in a long time. This situation occurs when a very large packet (possibly
of max size) is being transmitted and thus SKP ordered-sets cannot be sent until
the device finishes transmitting the TLP. In this case, a single SKP ordered-set is
not sufficient to return the Elastic Buffer to its half-full state. However, since the
SKP ordered-sets that were scheduled to be sent during the transmission of the
large TLP are accumulated, the Elastic Buffer will receive multiple SKP ordered-
sets in a row following the end of the large TLP. The receiving device uses these
subsequent SKP ordered-sets to return the Elastic Buffer to its normal state.

STP
SK

P
SK

P

8b/10b
Decoder

C
O

M

EN
D

SK
P

SK
P

Local Clock Domain omain

Elastic Buffer

Recovered Clock D

Two SKP symbols inserted into a
SKP ordered-set to return the Elastic

Figure 5. Local Clock Faster than Recovered Clock

Buffer to the half-full state.

13

PCI Express Elastic Buffers

In this paper the examples show two SKP symbols being inserted and removed
from SKP ordered-sets, which is compliant with the spec. However, it should be
noted that some documents attempting to standardize portions of the PCI Express
PHY, such as Intel’s PIPE (Physical Interface for PCI Express) document, only
allow one SKP symbol to be inserted or removed from a single SKP ordered-set.

C
O

M

EN
D

data

8b/10b
Decoder

data

SK
P

C
O

M

data

Local Clock Domain

Elastic Buffer

Recovered Clock Domain

Two SKP symbols are removed from a

Figure 6a. Local Clock is Slower than Recovered Clock

SKP ordered-set in an attempt to return
the Elastic Buffer to the half-full state

SK
P

SK
P

SK
P

SK
P

C
O

M

SK
P

8b/10b
Decoder

C
O

M

SK
P

C
O

M

EN
D

Local Clock Domain Recovered Clock Domain

Elastic Buffer

A single SKP symbol is removed from a

Figure 6b. An additional SKP ordered-set must be used for clock tolerance compensation.

SK
P

different SKP ordered-set which returns
the Elastic Buffer to the half-full state

14

PCI Express Elastic Buffers
Flow Control Method
Implementing an Elastic Buffer using the Flow Control Method differs from an
implementation based on the Primed Method because it does not use the same
mechanism to compensate for the case where the Local Clock Domain is faster
than the Recovered Clock Domain. In other words, the Flow Control Method does
not use SKP ordered-sets when compensating for the case described above.
However, SKP ordered-sets are still needed when compensating for the case
where the Recovered Clock Domain is faster than the Local Clock Domain.

When the Local Clock Domain is faster than the Recovered Clock Domain, the
Flow Control Method simply gates off the clocks supplied to the logical blocks
upstream of the Elastic Buffer when the bottom entry of the buffer is not valid.
Using this method, the device allows the Elastic Buffer to underflow and simply
notifies the logical blocks upstream of the event. So instead of inserting an
additional meaningless symbol (SKP) into the data flow to prevent an underflow
condition as the Primed Method does, the Flow Control Method effectively stalls
the upstream logical blocks for a single cycle when an Elastic Buffer underflow
condition occurs. A diagram illustrating this method is shown in Figure 7.

When the Recovered Clock Domain is faster than the Local Clock Domain, the
Flow Control Method works exactly the same as the Primed Method. SKP
symbols are removed from SKP ordered-sets to return the Elastic Buffer to its
normal state. The only difference is with the Flow Control Method, the normal
state of the buffer is having only a single entry valid instead of having half of the
entries valid as with the Primed Method.

STP

data

8b/10b
Decoder

data

data

EN
D

Elastic Buffer

Other
Blocks

Local Clock Domain Recovered Clock Domain

The Elastic Buffer’s normal
state is with bottom entry valid

Figure 7. Implementation of Elastic Buffer using the Flow Control Method

Enable Logic

Enable Enable

Valid Enable

15

PCI Express Elastic Buffers
The size of an Elastic Buffer that uses the Flow Control Method is also
determined by the maximum number of symbols that could shift between received
SKP ordered-sets. The number of symbol shifts is based on the
Max_Payload_Size parameter of the device, and is given in Table 1. For example,
a device which is capable of receiving a packet with a payload size of 4096 bytes
should have an Elastic Buffer that is 5 entries deep. This is determined by taking
the 3.40 result from Table 1 for a Max_Payload_Size of 4096 and rounding that
value up to 4, then adding one to that for the valid bottom entry. If the
Max_Payload_Size parameter for a device is 1024, then using the result from
Table 1, its Elastic Buffer should be 3 entries deep.

The Flow Control Method has a small advantage over the Primed Method in
terms of latency. Since the Prime Method tries to keep the Elastic Buffer half-full,
received symbols will spend more time in a Primed Method Elastic Buffer than in
a Flow Control Method Elastic Buffer. However, this latency difference between
the two implementations will be very minor (a max difference of 3 symbol times).
Something else that should be taken into consideration when choosing one of the
described methods is that the Flow Control Method could be more complex to
implement, depending on how the other logical blocks in the system are
implemented and how easy it is to enable or disable them.

16

	Introduction
	The Need for Elastic Buffers
	How These Buffers Work…
	Placement within the Data Flow
	Implementations and Sizes
	Primed Method
	Flow Control Method

