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PCI Express Elastic Buffers 
 

Introduction 
 
Elastic Buffers (also known as Elasticity Buffers, Synchronization Buffers, and 
Elastic Stores) are used to ensure data integrity when bridging two different clock 
domains. This buffer is simply a FIFO (First-In-First-Out) where data is deposited 
at a certain rate based on one clock and removed at a rate derived from a different 
clock. Because these two clocks could (and almost always do) have minor 
frequency differences, there is the potential for this FIFO to eventually overflow 
or underflow. To avoid this situation, an Elastic Buffer has the ability to insert or 
remove special symbols, during specified intervals that allow the buffer to 
compensate for the clock differences. 
 
The Elastic Buffer, or the concept of the Elastic Buffer, has been around since at 
least 1960. Maurice Karnaugh was granted a patent for this technology back in 
1963 for its use in transmitting Pulse-Code Modulated (PCM) signals in telephone 
networks (Pat. 3,093,815). However, this was just the first of many applications 
that these buffers would be used in. The robustness of Elastic Buffers is indicated 
by their inclusion in modern day technologies. These buffers can be found in 
protocols such as USB, InfiniBand, Fibre Channel, Gigabit Ethernet, and of 
course PCI Express.  
 
This paper describes the necessity of Elastic Buffers in a serialized, source-
synchronous timing architecture such as PCI Express. Next, a brief description of 
the protocol used to implement clock tolerance compensation is discussed, as well 
as the placement of the Elastic Buffer within the data flow of a PCI Express 
device. Finally, this paper shows some viable implementations (including sizes) 
of Elastic Buffers in PCI Express devices as well as the advantages and 
disadvantages of each design.  
 
 

The Need for Elastic Buffers 
 

The PCI Express technology is a high-speed, serialized, source-synchronous 
timing (clock-forwarding), data transfer protocol. These characteristics are 
significantly different than the characteristics implemented by PCI Express’ 
predecessor buses, namely PCI and PCI-X. Both PCI and PCI-X use a multi-drop, 
parallel bus that utilizes a synchronous timing architecture.  
 
A synchronous timing architecture is where a common clock source supplies a 
clock to all the devices on the bus, and that clock is used to enable the device’s 
transceivers to clock data in and out. This scheme requires that the clocks arrive at 
each device at precisely the same time. There is a very small amount of pin-to-pin 
skew allowed, which means that the lengths of these clock traces have to be 
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PCI Express Elastic Buffers 
matched to minimize the amount of skew between devices. It now becomes 
apparent that as the speed of the clock increases, the allowed pin-to-pin skew 
must decrease, which requires the matched routing of these clock traces to 
become increasingly difficult. 
 
A source-synchronous timing architecture is where both the data and clock are 
transmitted from the originating device’s driver. This means that there is no 
common clock that all devices must use to clock data in and out with. Instead, a 
transmitting device forwards the clock it used to transmit the data and the receiver 
will use that forwarded clock to latch the transmitted data.  
 
As previously mentioned, PCI Express utilizes a source-synchronous timing 
architecture. It employs a scheme where the forwarded clock is “embedded” into 
the data stream by encoding the data using IBM’s 8B/10B encoding tables. This 
encoding mechanism ensures that the data stream will have a sufficient number of 
0-to-1 and 1-to-0 transitions to allow the clock to be recovered on the receiving 
side with the use of a Phase-Locked Loop (PLL). With this timing architecture, 
we no longer have the problem of carefully routing the same clock to each device 
with very small amounts of skew. However, a different problem arises. Each 
device now has at least two clock domains: (1) the Local Clock Domain that it 
uses to clock all of its internal gates and to transmit data with, and (2) the 
Recovered (or received) Clock Domain that it uses to latch inbound data. The data 
being received will have to cross the clock boundary from the Recovered Clock 
Domain to the Local Clock Domain in order for the device to process that 
information. Elastic Buffers are implemented in PCI Express devices for this 
exact purpose, to allow received data to transition from the Recovered Clock 
Domain to the Local Clock Domain. The next section describes this transition in 
detail, including the protocol embedded in PCI Express to make this process 
work. 
 
 

How These Buffers Work… 
 
All of the first generation PCI Express devices must transmit data at a rate of 
2.5Gbps (Giga-bits per second) with a tolerance of +/- 300 ppm (parts per 
million). This translates into an allowed frequency range of 2.49925GHz – 
2.50075GHz at the transmitter of a device. Due to the tolerance allowed, two 
devices connected to each other can (and most likely will) be running at slightly 
different frequencies. This creates two clock domains within one device that the 
received data must transition across. As shown in Figure 1, the function of the 
Elastic Buffer is to bridge these two clock domains by compensating for their 
phase and frequency differences, thereby allowing the received data to maintain 
its integrity as it flows upstream in the target device.  
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Device A Device B 

 
 
Bridging these two clock domains is accomplished by depositing the received 
data into the buffer using one clock domain (the recovered clock) and pulling the 
data out of the buffer using the other clock domain (the local clock of the device). 
Since these two clock domains can be running at different frequencies, the buffer 
has the potential to overflow or underflow. However, these error conditions are 
prevented by designing the buffer to monitor its own state (or fill-level) and 
enabling it to insert or remove special symbols at the appropriate rate (hence the 
name, Elastic Buffer). PCI Express defines these special symbols that can be 
inserted or removed as SKP symbols which are only found in SKP ordered-sets. A 
transmitted SKP ordered-set is comprised of a single COM symbol followed by 
three SKP symbols. Transmitters are required to send SKP ordered-sets 
periodically for the exact reason just discussed; to prevent an overflow or 
underflow condition in the Elastic Buffer.  
 
The rate at which these SKP ordered-sets are transmitted is derived from the max 
tolerance allowed between two devices, 600ppm. This worst-case scenario would 
result in the local clocks of the two devices shifting by one clock cycle every 
1666 cycles. Therefore, the transmitter must schedule a SKP ordered-set to be 
sent more frequently than every 1666 clocks. The spec defines the allowed 
interval between SKP ordered-sets being scheduled for transmission as being 
between 1180 – 1538 symbol times. (Since SKP symbols are removed and 
inserted an entire symbol at a time, the 1180-1538 interval is measured in symbol 
times, a 4ns period, and not bit times.) Upon receipt of the SKP ordered-set, the 
Elastic Buffer can either insert or remove up to 2 SKP symbols per ordered-set to 
compensate for the differences between the recovered clock and the local clock. 
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Figure 1. Elastic Buffers bridging the clock domains in each PCI Express device. 

6 



PCI Express Elastic Buffers 
There will be instances where a device will not be able to transmit a SKP ordered-
set within the defined interval of 1180-1538 symbol times. This occurs during the 
transmission of a large Transaction Layer Packet (TLP) that prevents the device 
sending a SKP ordered-set at the regularly scheduled time. Since the device 
cannot interrupt the transmission of the TLP, it must wait until the entire TLP is 
transmitted and then it can transmit the delayed SKP ordered-set(s). During the 
large TLP transmission, multiple symbol shifts can occur at the receiver between 
the Recovered Clock Domain and the Local Clock Domain. (The number shifts 
that can occur is described in a later section of this paper.) To ensure that the 
Elastic Buffer in the target device receives enough SKP ordered-sets to 
compensate for the multiple symbol shifts, the SKP ordered-sets that were 
scheduled for transmission during the TLP are accumulated. These accumulated 
SKP ordered-sets are sent consecutively, immediately following the end of the 
TLP. 
 
 

Placement within the Data Flow 
 
There are several components within the Physical Layer of a PCI Express device. 
This section discusses the logical placement of the Elastic Buffer in relation to the 
following three components: the Deserializer, the 8B/10B Decoder, and the 
Deskew circuitry. The following descriptions for the placement of the Elastic 
Buffer are only recommendations that are based on information given in the spec. 
 
As described earlier in this paper, the Elastic Buffer works by inserting or 
removing SKP symbols contained in SKP ordered-sets. The key word in the 
previous sentence is “symbol.” This means that the Elastic Buffer accomplishes 
clock tolerance compensation (bridging clock domains) at the symbol level and 
not the bit level. The logic block which generates valid symbols from the received 
bit-stream is the Deserializer. Therefore, the received data should pass through the 
Deserializer before being deposited into the Elastic Buffer. 
 
The positioning relationship of the 8B/10B Decoder to the Elastic Buffer is not as 
intuitive as the buffer’s relationship to the Deserializer. At first glance, it seems to 
make sense to place the buffer after the Decoder for various reasons, as follows: 

• If the Elastic Buffer is placed after the Decoder, it does not have to be as 
wide, only 9-bits wide (8-bits of data plus the data or control symbol 
indicator) instead of 10-bits wide if it was placed before the Decoder. 

• If the 8B/10B decoding was taken care of before the clock tolerance 
compensation, then the Elastic Buffer would not have to pay attention to 
the disparity of the SKP symbols in the SKP ordered-set because there is 
no concept of disparity after the Decoder.  

Despite the reasons stated above for placing the Elastic Buffer after the Decoder, 
this buffer really should be placed before the 8B/10B Decoder. To understand the 
justification for placing the Elastic Buffer before the Decoder, we must look at the 
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characteristics of a PCI Express device when it is acting as a Loopback Slave. A 
Loopback Slave is required to “retransmit the received 10-bit information exactly 
as received, while continuing to perform clock tolerance compensation.” This 
implies that the 10-bit symbols being received should not be decoded and later re-
encoded for transmission. The spec re-enforces this concept by also stating that 
“No modifications of the received 10-bit data is allowed by the Loopback Slave.” 
For Loopback Slaves, even though the 8B/10B decoding and re-encoding is 
prohibited, clock tolerance compensation still has to be employed by sending this 
data through the Elastic Buffer. Inserting and removing SKP symbols is the only 
allowed modification to the received 10-bit data. (This information as well as the 
references above can be found on page 197 of the 1.0a version of the PCI Express 
Specification. It should also be noted that all devices are required to be able to 
support being a Loopback Slave. It is optional whether a device is capable of 
being a Loopback Master.)  
 
Due to the Loopback Slave scenario, the Elastic Buffers should be placed before 
the 8B/10B decoding logical blocks. Because of this placement, the Elastic Buffer 
now has to pay attention to the disparity of the SKP symbols when inserting 
additional SKP symbols into a SKP ordered-set. (For more information on the 
8B/10B decoding process and the topic of disparity, please refer to Chapter 11 of 
MindShare’s book entitled “PCI Express System Architecture.”) 
 
To determine the placement of the Elastic Buffer in relation to the Deskew 
circuitry in the Receiver, the functionality of the Deskew circuitry must be 
considered.  
 
A PCI Express link can be comprised of multiple lanes. The transmitting device 
delivers pieces of a packet on all of these lanes at the same time (by byte striping 
the packet across all the lanes). However, the receiving device on the other end of 
the link may not receive the data on each lane at the exact same time due to 
varying trace lengths for the different lanes between the two devices or possibly 
due to some other board characteristics. This effect is shown in Figure 2. The time 
difference for data arrival across the lanes is known as lane-to-lane skew. This 
indicates that each lane on the receiving side must recover its own clock from the 
data stream arriving on that lane. Each of these recovered clocks should have the 
same frequency (because they are all locking onto the transmit frequency), 
however, due to driver and trace delays, they can have different phases in relation 
to each other. These phases can even be off by more than 360 degrees with 
respect to each other, as shown in Figure 2. The purpose of the Deskew circuitry 
is to re-align the phases of the received data effectively. This process can be 
accomplished entirely in the digital realm in two simple steps. (Conversely, if this 
deskewing was attempted in the analog domain, it would involve having to shift 
received information by fractions of a clock and can become very complicated to 
implement.) The first step in the digital solution is to latch the symbols 
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on all of the lanes with a common clock (one of the recovered clocks could be 
used as this common clock). This aligns the received symbols on clock 
boundaries. They may still be out phase with respect to each other, but now they 
are out of phase in 360 degree increments (clock cycles). An illustration showing 
this concept can be found in Figure 3. (We will come back and revisit this first 
step and how it relates to the Elastic Buffer in the next paragraph). At this point, 
the symbols are all transitioning on clock boundaries (their phase differences are 
now in increments of clocks, as shown in Figure 3), so the second step of the 
deskewing procedure is simply to delay the “faster” lanes by the appropriate 
number of clocks. Now the data has been deskewed across all of the lanes for the 
receiver to process that information. 
 
The first step of the deskewing process described above (and shown in Figure 3) 
can also be accomplished by using the skewed data as the input to the Elastic 
Buffer. The symbols in each lane are pulled out of the Elastic Buffers using the 
same clock edge accomplishing step one (because the skew is then in increments 
of the clock). Therefore, by placing the Elastic Buffer before the Deskew 
circuitry, half of the Deskew circuitry’s job is already finished.   

SKP SKP SKP COM 

SKP SKP SKP COM 

SKP SKP SKP COM 

SKP SKP SKP COM 

SKP SKP SKP COM 

SKP SKP SKP COM 

SKP SKP SKP COM 

SKP SKP SKP COM 

Lane 0
The symbols of different 
lanes are transmitted at the 
same time with respect to 
each other. 

Lane 1

Lane 2

Lane 3

However, the same 
symbols arriving at the 

receiver may not all 
arrive at the same time. 

Figure 2. Illustration of Lane-to-Lane Skew. 
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Implementations and Sizes 
 
This section identifies two of the most common Elastic Buffer implementations, 
describe their functionality, and calculate the minimum size of each based on the 
device’s characteristics. The sizes of these buffers are dependent on three factors: 
the interval at which the transmitter schedules SKP ordered-sets to be sent, the 
Max Payload Size supported by the device, and the Link Width. Each of these 
terms are used to determine the maximum amount of time between SKP ordered-
sets arriving at the receiver. The maximum amount of time between SKP ordered-
sets being received may be longer than the specified 1180 – 1538 symbol times 
scheduling interval. For example, if the transmitter is currently in the middle of 
sending a TLP when it determines that another SKP ordered-set needs to be sent, 
it must finish transmitting the current packet before sending the SKP ordered-set. 
This is why the Max Payload Size supported by a device and the Link Width need 
to be considered, because the amount of time it takes to finish transmitting that 
packet affects the amount of time between SKP ordered-sets being transmitted on 
the link. 
 

SKP SKP SKP COM 

SKP SKP SKP COM 

SKP SKP SKP COM 

SKP SKP SKP COM 

Timing diagram of 
the symbols received 

on all 4 lanes with 
respect to each other. 

Figure 3. Aligning Skewed data on a common clock boundary. 
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Timing diagram of 
the received symbols 

after being latched by 
a common clock. 
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The worst-case scenario would be when two PCI Express devices are connected 
together with a x1 link, the transmitter has sent the first symbol of a maximum 
sized packet when it determines that it needs to send a SKP ordered-set. To 
properly calculate the sizes of the Elastic Buffer implementations (described later) 
we first must determine the number of symbols that can shift during this worst-
case scenario. As mentioned earlier, based on the clock tolerance allowed by the 
spec, two connected devices could have a symbol shift every 1666 symbol times. 
Therefore, the number of symbols that could shift during the worst-case scenario 
is described in the equation below. 
 
 

1666

1538
_

___

__
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +

=
WidthLink

OverheadTLPSizePayloadMax

ShiftedSymbolsMax  

 

he Max_Payload_Size term in the equation above is the only variable and is 

• start framing symbol (1) 

 symbol (1) 
 

he Link_Width term should be a constant of 1 and NOT the max link width that 

 
T
based on the Max Payload Size parameter of the device. The TLP_Overhead term 
is a constant of 28 symbol times and is comprised of:  
 

• sequence number (2) 
• header (16) 
• ECRC (4) 
• LCRC (4) 
• end framing

T
the device supports. This is because the smaller the link width, the longer the 
interval is between SKP ordered-sets, which is a component of the worst-case 
scenario. Since a device may not always know what the link width capability will 
be of the device it is connected to, the required link width of x1 should always be 
used in this equation. The 1538 value in the equation represents the max interval 
between SKP ordered-sets being scheduled by the transmitter. A sample 
calculation is shown below indicating the maximum number of symbols that can 
shift given a device’s characteristics. Table 1 shows the results of the equation 
based on different Max Payload Sizes. 
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Max_Payload_Size 128 256 512 1024 2048 4096 

Max_Symbols_Shifted 1.02 1.09 1.25 1.55 2.17 3.40 
 

Table 1. Max number of shifted symbols based on payload size. 
 

Primed Method 
tic Buffer implementations described in this paper is what we 

he number of entries before and after the middle entry is determined by the 

The first of two Elas
will refer to as the Primed Method.  This implementation involves a buffer whose 
normal state is half-full (primed) with enough entries before and after the middle 
entry to ensure that the max clock differences can be compensated for by inserting 
or removing SKP symbols from SKP ordered-sets. This implementation is 
illustrated in Figure 4. 
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8b/10b 
Decoder 
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data 

Local Clock Domain Recovered Clock Domain 

Elastic Buffer 

The Elastic Buffer’s normal 

Figure 4. Implementation of Elastic Buffer using Primed Method 

state is half-full. 

 
 
T
maximum number of symbols that could shift between received SKP ordered-sets. 
The number of symbol shifts is given in Table 1, based on the Max_Payload_Size 
parameter of the device. For example, a device which is capable of receiving a 
packet with a payload size of 4096 bytes should have an Elastic Buffer that is 8 
entries deep. This is determined by taking the 3.40 result from Table 1 for a 
Max_Payload_Size of 4096 and rounding that value up to 4, then doubling that to 
allow for shifting in either direction. If the Max_Payload_Size parameter for a 
device is 2048, then using the result from Table 1, its Elastic Buffer should be 6 
entries deep. 
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The goal of the Primed Method is to keep the Elastic Buffer half-full. Since the 

igure 5 illustrates the scenario where the Local Clock is faster than the 

n Figure 6a, the Elastic Buffer is getting close to overflowing because the Local 

Recovered Clock Domain and the Local Clock Domain will have slightly 
different frequencies, the Elastic Buffer’s fill level will vary depending on the 
frequency difference of the two clock domains and the interval between received 
SKP ordered-sets. However, each time the device does receive one (or more) SKP 
ordered-sets, it returns the Elastic Buffer to the half-full state by inserting or 
removing SKP symbols from these SKP ordered-sets. (As mentioned earlier, it 
should be noted that not more than 2 SKP symbols can be inserted or removed 
from a single SKP ordered-set.) Examples of this process are shown in Figure 5, 
and also in Figure 6a and 6b. 
 

 
 
F
Recovered Clock, so two more symbols have been pulled out of the Elastic Buffer 
than have been deposited into it. This is compensated for by inserting two 
additional SKP symbols into the received SKP ordered-set. 
 
I
Clock is slower than the Recovered Clock and a SKP ordered-set has not been 
received in a long time. This situation occurs when a very large packet (possibly 
of max size) is being transmitted and thus SKP ordered-sets cannot be sent until 
the device finishes transmitting the TLP. In this case, a single SKP ordered-set is 
not sufficient to return the Elastic Buffer to its half-full state. However, since the 
SKP ordered-sets that were scheduled to be sent during the transmission of the 
large TLP are accumulated, the Elastic Buffer will receive multiple SKP ordered-
sets in a row following the end of the large TLP. The receiving device uses these 
subsequent SKP ordered-sets to return the Elastic Buffer to its normal state. 
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In this paper the examples show two SKP symbols being inserted and removed 
from SKP ordered-sets, which is compliant with the spec. However, it should be 
noted that some documents attempting to standardize portions of the PCI Express 
PHY, such as Intel’s PIPE (Physical Interface for PCI Express) document, only 
allow one SKP symbol to be inserted or removed from a single SKP ordered-set. 
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Flow Control Method 
Implementing an Elastic Buffer using the Flow Control Method differs from an 
implementation based on the Primed Method because it does not use the same 
mechanism to compensate for the case where the Local Clock Domain is faster 
than the Recovered Clock Domain. In other words, the Flow Control Method does 
not use SKP ordered-sets when compensating for the case described above. 
However, SKP ordered-sets are still needed when compensating for the case 
where the Recovered Clock Domain is faster than the Local Clock Domain. 
 
When the Local Clock Domain is faster than the Recovered Clock Domain, the 
Flow Control Method simply gates off the clocks supplied to the logical blocks 
upstream of the Elastic Buffer when the bottom entry of the buffer is not valid. 
Using this method, the device allows the Elastic Buffer to underflow and simply 
notifies the logical blocks upstream of the event. So instead of inserting an 
additional meaningless symbol (SKP) into the data flow to prevent an underflow 
condition as the Primed Method does, the Flow Control Method effectively stalls 
the upstream logical blocks for a single cycle when an Elastic Buffer underflow 
condition occurs. A diagram illustrating this method is shown in Figure 7.  
 
When the Recovered Clock Domain is faster than the Local Clock Domain, the 
Flow Control Method works exactly the same as the Primed Method. SKP 
symbols are removed from SKP ordered-sets to return the Elastic Buffer to its 
normal state. The only difference is with the Flow Control Method, the normal 
state of the buffer is having only a single entry valid instead of having half of the 
entries valid as with the Primed Method. 
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The size of an Elastic Buffer that uses the Flow Control Method is also 
determined by the maximum number of symbols that could shift between received 
SKP ordered-sets. The number of symbol shifts is based on the 
Max_Payload_Size parameter of the device, and is given in Table 1. For example, 
a device which is capable of receiving a packet with a payload size of 4096 bytes 
should have an Elastic Buffer that is 5 entries deep. This is determined by taking 
the 3.40 result from Table 1 for a Max_Payload_Size of 4096 and rounding that 
value up to 4, then adding one to that for the valid bottom entry. If the 
Max_Payload_Size parameter for a device is 1024, then using the result from 
Table 1, its Elastic Buffer should be 3 entries deep. 
 
The Flow Control Method has a small advantage over the Primed Method in 
terms of latency. Since the Prime Method tries to keep the Elastic Buffer half-full, 
received symbols will spend more time in a Primed Method Elastic Buffer than in 
a Flow Control Method Elastic Buffer. However, this latency difference between 
the two implementations will be very minor (a max difference of 3 symbol times). 
Something else that should be taken into consideration when choosing one of the 
described methods is that the Flow Control Method could be more complex to 
implement, depending on how the other logical blocks in the system are 
implemented and how easy it is to enable or disable them. 
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