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1 Introduction

Trying to find a method to calculate the sine of an arbitrary angle was an im-
portant problem in mathematics prior to the advent of calculus. With calculus,
it became relatively easy to derive a method to approximate arbitrary functions
as polynomials.

However, prior to the discovery of calculus, Madhava had discovered a
method of calculating trigonometric functions in a similar manner. How ex-
actly he derived his formulae is unknown, which provided the motivation for
trying to derive the Taylor series of sine without a derivative.

This is accomplished roughly in 3 steps. First, a formula for sin((2n+ 1)θ),
n ∈ N, in terms of powers of sin(θ) is derived. After a slight change of variable,
the small angle approximation will be substituted in to reduce the formula to a
polynomial. Finally a limiting process will be taken to derive the Taylor series
of sine.

2 Proof

2.1 Power series of the Multi-Angle Expansion

Using De Moivre’s Theorem and equating the imaginary component with sine
one acquires

sin((2n+ 1)θ) =

n∑
m=0

(−1)m
(

2n+ 1

2m+ 1

)
sin2m+1(θ) cos2n−2m(θ). (1)

We chose the argument of sine to be 2n+ 1 so that in 1, all powers of cosine are
even. Doing so allows us to use the Pythagorean identity to obtain

cos2n−2m(θ) = (1− sin2(θ))n−m. (2)

Our next step is to rewrite 1 as a power series of sin(θ) using 2 to eliminate
cosine. In expanding 2 we acquire

(1− sin2(θ))n−k =

n∑
i=0

(−1)i
(
n−m
i

)
sin2i(θ). (3)
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Note that the upper bound is n not n−m, this is because ∀a > b we have that(
a
b

)
= 0, so all terms after i = n−m are 0. Now, substituting 3 into 1 we obtain

n∑
m=0

n∑
i=0

(−1)i+m

(
2n+ 1

2m+ 1

)(
n−m
i

)
sin2i+2m+1(θ). (4)

Now, all that remains is to reorganize into the proper form of a power series.
For an arbitrary power, call it 2k + 1, to find the coefficient, we need to select
the terms from 4 that have the correct power. All such terms from 4 will satisfy
i+m = k which we use to eliminate i

n∑
k=0

(−1)k sin2k+1(θ)

n∑
m=0

(
2n+ 1

2m+ 1

)(
n−m
k −m

)
. (5)

2.2 Small Angle Approximation

It is well know that for small enough values of x

sin(θ) ≈ θ

and therefore, by substituting x
2n+1 for θ we get

sin(
x

2n+ 1
) ≈ x

2n+ 1
. (6)

By making the previous substitution into 5 we obtain the equation

sin(x) ≈
n∑

k=0

(−1)kx2k+1
n∑

m=0

(
2n+1
2m+1

)(
n−m
k−m

)
(2n+ 1)2k+1

. (7)

Since we replaced sin(x) with an approximation that is only accurate for small
values, to make the error as small as possible we shoot make n as large as
possible.

2.3 Limiting Process

While the equation
n∑

m=0

(
2n+1
2m+1

)(
n−m
k−m

)
(2n+ 1)2k+1

may look intimidating, it is in fact only the sum of rational expressions, mean-
ing taking the limit should be relatively easy. Let us start by rewriting each
summand using the definition of binomial coefficients(

2n+1
2m+1

)(
n−m
k−m

)
(2n+ 1)2k+1

=
1

(2m+ 1)!(k −m)!
∗ (2n+ 1)!(n−m)!

(2n+ 1)2k+1(2n− 2m)!(n− k)!
.

The left fraction on the RHS is a coefficient independent of n, while the right is a
rational expression. The numerator has degree (2n+ 1) + (n−m) = 3n+ 1−m
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and the denominator (2k + 1) + (2n − 2m) + (n − k) = 3n + k + 1 − 2m.
Therefore the limit as goes to infinity of a given term will be non zero only if
3n+ 1−m ≥ 3n+ 1 + k− 2m or m ≥ k. We also have k ≥ m, otherwise

(
n−m
k−m

)
would be 0. This means m = k. Putting all that together we may simplify to
say

lim
n→∞

n∑
m=0

(
2n+1
2m+1

)(
n−m
k−m

)
(2n+ 1)2k+1

=
1

(2k + 1)!
lim

n→∞

(2n+ 1)!

(2n+ 1)2k+1(2n− 2k)!
.

Only one limit left to evaluate. By expanding out the numerator and denomi-
nator of

(2n+ 1)!

(2n+ 1)2k+1(2n− 2k)!

we see that the leading coefficient of both the numerator and denominator are
22k+1 so the limit of the rational expression is 1. Therefore we may conclude
that

lim
n→∞

n∑
m=0

(
2n+1
2m+1

)(
n−m
k−m

)
(2n+ 1)2k+1

=
1

(2k + 1)!
.

Given that our approximation of sine becomes more accurate the smaller the
angle, we may therefore conclude with confidence that

sin(x) =

∞∑
k=0

(−1)kx2k+1

(2k + 1)!
�
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