TD - Espaces vectoriels normés

Exercice 1: Norme $\| \|_p$: Soient E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$ et $\mathscr{B} = (e_1, \dots, e_n)$ une base de E.

Pour tout $1 \le p$ et tout $x = \sum_{k=1}^n x_k e_k \in E$, on pose $||x||_p = \sqrt[p]{\sum_{k=1}^n |x_k|^p} = \left(\sum_{k=1}^n |x_k|^p\right)^{\frac{p}{p}}$.

- 1: Construire une fonction Python de paramètre $(x,q) \in A \in \mathbb{K}^n \times [1,+\infty[$ qui retourne $||x||_p$.
- **2**: On suppose que $n \ge 2$. Montrer que si $0 alors <math>\| \|_p$ n'est une norme sur E.
- **3**: Montrer que $\forall a, b, p, q \in \mathbb{R}^+$ avec $\frac{1}{p} + \frac{1}{q} = 1$ on a $ab \leq \frac{1}{p}a^p + \frac{1}{q}b^q$.

4: Montrer l'inégalité de Hölder : $\forall x = \sum_{k=1}^n x_k e_k, y = \sum_{k=1}^n y_k e_k \in E, \forall p, q \in \mathbb{R}^+ \text{ avec } \frac{1}{p} + \frac{1}{q} = 1 \text{ on a } \left| \sum_{k=1}^n x_k y_k \right| \leq \|x\|_p \|y\|_q.$ **5:** Montrer l'inégalité de Minkowski : $\forall p > 1, \forall x, y \in E, \|x + y\|_p \leq \|x\|_p + \|y\|_p.$ En déduire que $\|\cdot\|_p$ est une norme sur E.

6 : Montrer que $\forall x \in E, \lim_{p \to +\infty} \|x\|_p = \|x\|_{\infty}.$

Exercice 2 : Opérations sur les boules : Soit E un \mathbb{K} -espace vectoriel normé, $x, y \in E$, $\lambda \in \mathbb{K}^*$ et r, r' > 0.

1: Montrer que $\mathscr{B}(x,r) \subset \mathscr{B}(y,r+\|x-y\|)$.

2 : Montrer que $\lambda \mathscr{B}(x,r) = \mathscr{B}(\lambda x,|\lambda|r), \ \mathscr{B}(x,r) = x + r\mathscr{B}(0,1)$ et $\mathscr{B}(x+y,r+r') = \mathscr{B}(x,r) + \mathscr{B}(y,r')$.

Exercice 3: Montrer que $N(f) = \|f\|_{\infty} + \|f'\|_{\infty}$ et $\|f\| = |f(0)| + \|f'\|_{\infty}$ sont deux normes équivalentes sur $\mathscr{C}^1([0,1])$.

Exercice 4: Normes matricielles: Soient $m, n, p \in \mathbb{N}^*$.

1: Construire une fonction *Python* de paramètre $(A,q) \in \mathcal{M}_{mn}(\mathbb{K}) \times \{1,2,\infty\}$ qui retourne $||A||_p$.

2 : Montrer que $\forall A \in \mathcal{M}_{mn}(\mathbb{K}), \forall B \in \mathcal{M}_{np}(\mathbb{K}), \forall r \in \{1, 2, \infty\}, \|AB\|_r \leq \|A\|_r \|B\|_r$.

Exercice 5: Soit $n \in \mathbb{N}$. Montrer que $\exists \alpha > 0, \forall P \in \mathbb{K}_n[X]$ unitaire, $\int_0^1 |P(t)| dt \geq \alpha$.

Exercice 6: Soit E un \mathbb{K} -espace vectoriel normé et $(x_n) \in E^{\mathbb{N}}$ non bornée.

Montrer qu'il existe une suite $(x_{\varphi(n)})$ extraite de (x_n) telle que $||x_{\varphi(n)}|| \to +\infty$.

Exercice 7: Soit E un \mathbb{K} -espace vectoriel normé, $(u_n) \in E^{\mathbb{N}}$ et $l \in E$.

Montrer que (u_n) ne converge pas vers l si, et seulement si, $\exists \varepsilon > 0, \exists \varphi : \mathbb{N} \to \mathbb{N}$ strictement croissante tels que $\forall n \in \mathbb{N}$ $\mathbb{N}, \|u_{\varphi(n)} - l\| \ge \varepsilon.$

Exercice 8 : Soit E, F deux \mathbb{K} -espaces vectoriels normés. On considère $E \times F$ muni de la norme produit.

1: Montrer que $\forall x \in E, \forall y \in F, \forall r > 0, \mathscr{B}(x,r) \times \mathscr{B}(y,r) = \mathscr{B}((x,y),r).$

2 : En déduire que si A est un ouvert de E et B un ouvert de F alors $A \times B$ est un ouvert de $E \times F$.

3 : Montrer que si A est un fermé de E et B un fermé de F alors $A \times B$ est un fermé de $E \times F$.

Exercice 9 : Soit E un \mathbb{K} -espace vectoriel normé et $A \subset E$. Montrer que $\forall x \in E, d(x, A) = 0 \iff x \in \overline{A}$.

Exercice 10: Déterminer l'adhérence de $A = \{(x, y) \in \mathbb{R}^2 / xy > 1\}$.

Exercice 11: Déterminer l'adhérence de l'ensemble $A = \left\{\frac{1}{n}/n \in \mathbb{N}^*\right\}$. **Exercice 12:** Déterminer l'adhérence et l'intérieur de l'ensemble $\mathscr{A} = \{f \in \mathscr{C}([0,1],\mathbb{R})/f(0) = f(1) = 0\}$ dans $(\mathscr{C}([0,1],\mathbb{R}),\|\|_{\infty}).$

Exercice 13 : Soit E un \mathbb{K} -espace vectoriel normé, O un ouvert de E et $A \subset E$. Montrer que si $O \cap \bar{A} \neq \emptyset$ alors $O \cap A \neq \emptyset$.

Exercice 14: Soit E un \mathbb{K} -espace vectoriel normé, $A, B \subset E$ et $\lambda \in \mathbb{K}^*$.

1: Montrer que si A est ouvert alors A + B et λA sont ouverts. Que dire de la somme de deux ouverts?

2 : Montrer que $\mathring{A} + B \subset \mathring{A} + \mathring{B}$ et $\overline{A} + \overline{B} \subset \overline{A + B}$. Donner des exemples où les inclusions sont strictes.

Exercice 15: Soit E un \mathbb{K} -espace vectoriel normé et $A, B \subset E$. Montrer que $\overline{A \cup B} = \overline{A} \cup \overline{B}$, $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$, $\overline{A} \cup \overline{B} \subset \overline{A} \cap \overline{B}$, $\overline{A} \cap \overline{B} \subset \overline{A} \cap \overline{B}$, $\overline{A} \cap \overline{B} \subset \overline{A} \cap \overline{B} \subset \overline{A} \cap \overline{B}$

 $A \cup B$ et $A \cap B = A \cap B$. Donner des exemples où les inclusions sont strictes.

Exercice 16: Soit E un \mathbb{K} -espace vectoriel normé et F un sous-espace vectoriel de E.

1: Montrer que \bar{F} est un sous-espace vectoriel de E.

2: En déduire qu'un hyperplan de E est soit fermé soit dense dans E.

3: Montrer que soit $F = \emptyset$ soit F = E. Quels sont les sous-espaces ouverts de E? Que dire de CF?

Exercice 17: Soit E un \mathbb{K} -espace vectoriel normé et $A \subset E$ convexe. Montrer que \overline{A} et A sont convexes.

Exercice 18: Étudier les limites en (0,0) des fonctions suivantes :

 $1) f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}} \quad 2) f(x,y) = \frac{xy^2}{x^2 + y^2} \quad 3) f(x,y) = \frac{\sin xy}{x^2 + y^2} \quad 4) f(x,y) = x \ln(x^2 + y^2) \quad 5) f(x,y) = \frac{x^2y^3}{x^4 - 2xy + 3y^2}$ $6) f(x,y) = \frac{xy^2}{x^2 + y^4} \quad 7) f(x,y) = \frac{\sin(xy)}{|x| + |y|} \quad 8) f(x,y) = \frac{2xy - y^2}{x^2 + y^2} \quad 9) f(x,y) = x \ln(x^2 + y^2) \quad 10) f(x,y) = \frac{\ln(x + e^y)}{\sqrt{x^2 + y^2}}$

Exercice 19: Étudier, suivant les valeurs de $p,q \in \mathbb{R}$, la continuité de la fonction $f(x,y) = \begin{cases} \frac{x^p y^q}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$.

Exercice 20 : Soit E un \mathbb{K} -espace vectoriel normé.

1 : Montrer que tout fermé de E est intersection dénombrable d'ouverts de E.

- **2 :** Montrer que tout ouvert de E est réunion dénombrable de fermés de E.
- **Exercice 21:** Déterminer les fonctions $f: \mathbb{R} \to \mathbb{R}$ continues et périodiques de périodes 1 et $\sqrt{2}$.
- **Exercice 22 :** Soient E, F deux \mathbb{K} -espaces vectoriels normés, $A \subset E$ et $f: E \to F$ continue.
- **1**: Montrer que si A est dense dans E alors f(A) est dense dans f(E).
- **2**: Application : Montrer que $\{\cos n/n \in \mathbb{N}\}$ est dense dans [-1,1].
- **Exercice 23**: Soit $z \in \mathbb{K}$. Étudier la continuité de l'application f(P) = P(z) sur les espaces $(\mathbb{K}[X], \|\|_{\infty})$ et $(\mathbb{K}[X], \|\|_{1})$.
- **Exercice 24**: Étudier la continuité de l'application f(P) = (X+1)P sur $(\mathbb{K}[X], \|\|_{\infty})$.
- **Exercice 25**: Montrer que l'application u(f) = f(0) n'est pas continues sur $(\mathscr{C}([0,1]), |||_1)$.
- **Exercice 26**: Soit E, F deux \mathbb{K} -espaces vectoriels normés. Montrer que l'application f(x,y) = ||x||y est continue sur $E \times F$ muni de la norme produit.
- Exercice 27 : Une caractérisation des formes linéaires continues par le noyau : Soit E un K-espace vectoriel normé et f une forme linéaire non nulle sur E. On veut montrer que f est continue sur E ssi ker f est fermé dans E.
- 1 : Montrer que si f est continue sur E alors ker f est fermé dans E.
- **2 :** Réciproquement, on suppose que ker f est fermé dans E. Montrer que $\exists a \in E$ tel que f(a) = 1 et ker $f + \mathbb{K}x = E$.
- **3 :** Montrer que $\exists r > 0$ tel que $\mathscr{B}(0,r) \cap f^{-1}(\{1\}) = \emptyset$.
- **4:** Montrer que $\forall x \in \mathcal{B}(0,r), |f(x)| < 1$. En déduire que f est continue sur E.
- **5**: Montrer que si f n'est pas continue sur E alors ker f est dense dans E.
- **Exercice 28**: Soit $\|\|$ une norme sur $\mathcal{M}_n(\mathbb{R})$. Montrer que $\exists k > 0, \forall M, N \in \mathcal{M}_n(\mathbb{R}), \|MN\| \leq k \|M\| \|N\|$.
- **Exercice 29**: Soit $n \in \mathbb{N}^*$. Montrer que l'application $A \mapsto A^{-1}$ est continue sur $\mathcal{M}_n(\mathbb{K})$.
- **Exercice 30:** Soit $n \in \mathbb{N}^*$. Montrer que $SL_n(\mathbb{K})$, les ensembles des matrices nilpotentes, des matrices de projection et des matrices symétriques sont fermés dans $\mathcal{M}_n(\mathbb{K})$.
- **Exercice 31 :** Soit E un \mathbb{K} -espace vectoriel normé, $A, B \subset E$ compacts et $F \subset E$ fermé.
- **1**: Montrer que A + B est compact.
- **2 :** Montrer que A + F est fermé. Donner un contre-exemple lorsque A est supposé seulement fermé.
- **Exercice 32 :** Soit E un \mathbb{K} -espace vectoriel normé et (A_n) une suite décroissante de compacts non vides de E.
- Montrer que $\bigcap A_n$ est un compacts non vide.
- **Exercice 33**: Soit E un \mathbb{K} -espace vectoriel de dimension finie, $F \subset E$ fermé et $a \in E$.
- Montrer que $\exists b \in E, d(a, A) = ||b a||$.
- **Exercice 34 :** Soit E un \mathbb{K} -espace vectoriel de dimension finie et $A, F \subset E$ avec A compact et F fermé.
- Montrer que $\exists a \in A, \exists b \in F, d(A, F) = ||a b||$.
- **Exercice 35**: Soient E, F deux \mathbb{K} -espaces vectoriels normés avec E de dimension finie et $f: E \to F$ continue. Montrer que si ||f|| admet une limite infinie à l'infini alors f atteint la borne inférieur de sa norme.
- **Exercice 36:** Soient $A, B \subset E$ compacts. Montrer que l'ensemble des segments joignant A et B est compact.
- **Exercice 37 :** Montrer que si F est un fermé de \mathbb{C} et $P \in \mathbb{C}[X]$ alors P(F) est un fermé de \mathbb{C} .
- **Exercice 38:** Soient E, F deux \mathbb{K} -espaces vectoriels normés avec E de dimension finie et $f: E \to F$ une fonction continue sur E qui admet une limite finie à l'infini et on veut montrer que f est uniformément continue sur E.
- Supposons, par l'absurde, que f n'est pas uniformément continue sur E.
- **1**: Montrer que $\exists \varepsilon > 0, \exists (x_n), (y_n) \in E$ tels que $x_n y_n \to 0$ et $\forall n \in \mathbb{N}, ||f(x_n) f(y_n)|| \ge \varepsilon$.
- **2 :** Montrer que (x_n) et (y_n) sont bornées et conclure.
- **Exercice 39:** En considérant la suite $Q_n = \sum_{k=0}^n \frac{X^k}{k!}$, montrer que $(\mathbb{K}[X], \|\|_1)$ n'est pas Banach.
- **Exercice 40 :** Soit E un \mathbb{K} -espace de Banach et (F_n) une suite décroissante de fermés non vides telle que $\delta F_n \to 0$.
- Montrer que $\bigcap F_n$ est un singleton.
- **Exercice 41**: Soit E un \mathbb{K} -espace de Banach. Montrer que l'espace $\mathscr{B}(E)$ des suites bornées sur E muni de la norme $\|\cdot\|_{\infty}$ est un Banach.
- **Exercice 42**: Montrer que $\mathscr{C}([0,1])$ muni de la norme $\|\cdot\|_{\infty}$ est un Banach.
- **Exercice 43**: Montrer que \mathbb{C}^* est connexe par arcs. En déduire que \mathbb{R} et \mathbb{C} ne sont pas homéomorphes.
- **Exercice 44**: Soit E un \mathbb{K} -espace vectoriel normé et $f,g:E\to\mathbb{R}$ continues telles que $e^{2i\pi f}=e^{2i\pi g}$.
- Montrer que $\exists \lambda \in \mathbb{Z}, g = f + \lambda$.
- **Exercice 45**: Soit E un \mathbb{K} -espace vectoriel normé.
- 1: Soit $A \subset E$ à la fois ouverte et fermée. Montrer que la fonction caractéristique χ_A de A est continue.
- **2 :** En déduire que E et \emptyset sont les seules parties de E à la fois ouvertes et fermées.
- **3 :** Montrer que E et \emptyset sont les seules parties de E de frontières vides.
- **Exercice 46:** Soit E un \mathbb{R} -espace vectoriel de dimension finie. Montrer que le complémentaire d'un hyperplan de E n'est pas connexe par arcs.
- **Exercice 47:** Soit E un \mathbb{K} -espace vectoriel de dimension $n \geq 2$ et F un sous-espace vectoriel de E de dimension $p \leq n-2$. Montrer que ${}^{\circ}F$ est connexe par arcs.