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ABSTRACT
The past 3 years of work in natural language processing have been
characterized by the development and deployment of ever larger
languagemodels, especially for English. GPT-2, GPT-3, BERT and its
variants have pushed the boundaries of the possible both through
architectural innovations and through sheer size. Using these pre-
trainedmodels and themethodology of �ne-tuning them for speci�c
tasks, researchers have extended the state of the art on a wide array
of tasks as measured by leaderboards on speci�c benchmarks for
English. In this paper, we take a step back and ask: How big is too
big? What are the possible risks associated with this technology
and what paths are available for mitigating those risks? We end
with recommendations including weighing the environmental and
�nancial costs �rst, investing resources into curating and carefully
documenting datasets rather than ingesting everything on the web,
carrying out pre-development exercises evaluating how the planned
approach �ts into research and development goals and supports
stakeholder values, and encouraging research directions beyond
ever larger language models.
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1 INTRODUCTION
Breakthroughs in deep learning have ushered in an era of progress
on a variety of natural language processing (NLP) benchmarks
∗Joint �rst authors
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such as the General Language Understanding Evaluation (GLUE)
benchmark [116]. In the last 3 years, one of the biggest trends
in NLP has been increasing the size of language models (LMs) as
measured by the number of parameters and size of training data.
Since 2018 alone, we have seen the emergence of BERT and its
variants [32, 60, 63, 94, 121], GPT-2 [87], and now GPT-3 [20], with
institutions seemingly competing to produce ever larger language
models. While investigating properties of language models and how
they change with size holds scienti�c interest, and large language
models have shown improvements on various tasks (discussed
in §2.2), we ask whether enough thought has been put into the
potential risks associated with developing them and strategies to
mitigate these risks.

Where leaderboards and benchmarks thus far have served as
proving grounds for large language models and perhaps helped to
motivate their drive towards ever bigger ones, leaderboards and
benchmarks could also facilitate tracking some of the risks associ-
ated with large LMs. Echoing a line of recent work outlining the
environmental and �nancial costs of deep learning systems [109],
we encourage the research community to prioritize these impacts.
One way this can be done is by reporting costs and evaluating
works based on the amount of resources they consume [50]. As we
outline in §3, increasing the environmental and �nancial costs of
these models doubly punishes marginalized communities that are
least likely to bene�t from the progress achieved by large LMs and
most likely to be harmed by negative environmental consequences
of its resource consumption. At the scale we’re discussing (outlined
in §2.2), the �rst consideration should be the environmental cost.

Additionally, large language models can result in a situation
where the training data is too large to be documented. We reiterate
the importance of curating and documenting data used to train
language models, and that obtaining more data doesn’t necessarily
mean representing more view points. As shown in §4.2, many social
movements challenge hegemonic views using changes in the use
of language. However, datasets that are not su�ciently curated and
documented risk training models that encode hegemonic views
even after society has successfully challenged them.

As argued by Bender and Koller in [11], it is important to un-
derstand the limitations of language models and put their success
in context. This not only helps reduce hype which can mislead
the public and researchers themselves regarding the capabilities of
these LMs, but might encourage new research directions that do
not necessarily depend on having larger LMs. As we discuss in §5,
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language models are not performing natural language understand-
ing (NLU), and only have success in tasks that manipulate linguistic
form [11]. Focusing on state-of-the-art results on tasks and spe-
ci�c leaderboards without encouraging deeper understanding of
the mechanism by which they are achieved can cause misleading
results as shown in [16, 77] and direct resources away from e�orts
that would facilitate long-term progress towards natural language
understanding, without using unfathomable training data (§4).

Furthermore, the same tendency of human interlocutors to im-
putemeaningwhere there is none canmislead both NLP researchers
working with LMs as well as the general public to take synthetic
text as meaningful. Combined with the ability of LMs to pick up on
both subtle biases and overtly abusive language patterns in training
data, this leads to risks of harms, including the direct harms of
encountering derogatory language and the harms of experiencing
discrimination at the hands of others who reproduce racist, sexist,
ableist, extremist or other harmful ideologies reinforced through
encounters with synthetic language. We explore these potential
harms in §6.

In this paper, we discuss these risks as well as potential paths
forward. Our hope is that by articulating a critical overview of
the risks of relying on ever-increasing size of language models
(as measured in both number of parameters and bulk of training
data) as the primary driver of increased performance of LMs and
technology that builds on them, we can facilitate a reallocation of
e�orts towards approaches that avoid some of these risks while
still reaping the bene�ts of improvements to language technology.

2 BACKGROUND
2.1 What is a language model?
Similar to [11], we understand the term language model to refer to
systems which are trained on string prediction tasks: that is, predict-
ing the likelihood of a token (character, word or string) given either
its preceding context or (in so-called masked language models) its
surrounding context. Such systems are necessarily unsupervised,
and when deployed take a text as input, commonly outputting
scores or string predictions. Initially proposed by Shannon in 1949
[99], some of the earliest implemented language models date to 1980
and were used for automatic speech recognition (ASR), machine
translation (MT), document classi�cation, and more [92]. Since
then, many models have been proposed over the years [15, 58],
with works such as [15] as early as 2007 showing improvements
in machine translation based on the use of large n-gram language
models that predate neural ones (to be discussed in detail in the next
section). Most recently, [20] shows that the largest language model
currently known in the research community (in terms of number of
parameters, and training data), GPT-3, achieves competitive results
on a number of NLP benchmarks on tasks such as translation and
question-answering without �ne-tuning on additional datasets.

2.2 How Big is Big?
Before neural models, n-gram models also used large amounts of
data [15, 73]. In addition to ASR , these large n-gram models of
English were developed in the context of machine translation from
another source language with far fewer direct translation examples.
For example, [15] developed an n-gram model for English with a

total of 1.8 trillion n-grams and noted steady improvements in BLEU
score on the test set of 1797 Arabic translations as the training data
was increased from 13 million tokens. Hardware capacities limited
the trend in increasing training data for n-grams and the �eld
instead turned to reducing model sizes and alternative modeling
techniques, such as neural networks [43, 97].

LSTM models with pretrained word vectors such as word2vec
[71] and GloVe [79] and later context2vec [68] and ELMo [80] then
achieved state of the art performance on question answering, textual
entailment, semantic role labeling, coreference resolution, named
entity extraction, and sentiment analysis, at �rst in English and
later for other languages as well. While training the word embed-
dings required a (relatively) large amount of data, it reduced the
amount of data necessary for training on a speci�c task. One of the
contributions of [80] was that a model trained with ELMo reduced
the necessary amount of training data needed to achieve similar
results on semantic role labeling compared to models without, as
shown in one instance where a model trained with ELMo reached
the maximum development F1 score in 10 epochs as opposed to 486
without ELMo. The same model furthermore achieved the same F1
score with 1% of the data as the baseline model achieved with 10%
of the training data. Increasing the number of model parameters,
however, did not yield noticeable increases for LSTMs (e.g. [68]).

As transformer architectures have become popular, largermodels
have been produced with more data and increasingly better perfor-
mance results. Devlin et al. [32] in particular noted that training
on a large dataset and �ne-tuning for speci�c tasks lead to strictly
increasing results on GLUE tasks for English language modeling as
the hyperparameters of the model were increased. Initially devel-
oped as Chinese language models, ERNIE2.0 and ERNIE-GEN are
some of the largest models created using the original BERT dataset
of the English Wikipedia corpus and the BookCorpus dataset [128].
NVIDIA released the MegatronLM which has 8.3 billion parame-
ters and was trained on 174GB of text from the English Wikipedia,
OpenWebText, RealNews and CC-Stories datasets [104]. Trained
on the same dataset, Microsoft released T-NLG,1 a language model
with 17 billion parameters. At the time of writing this paper, Ope-
nAI’s GPT-3 model is the largest LM with 175 billion parameters
and a training dataset size of 300 billion tokens [20]. Table 1 sum-
marizes these language models in terms of training data size and
parameters.

As researchers have begun to investigate what information the
model retained from the data, a trend in reducing the size of these
models has also started using various techniques such as knowl-
edge distillation [21, 51], quantization [100, 124], factorized embed-
ding parameterization and cross-layer parameter sharing [60], and
progressive module replacing [121]. Rogers et al. [91] provide a
comprehensive comparison of models derived from BERT using
these techniques, such as DistilBERT [94] and ALBERT [60]. While
these models maintain and sometimes exceed the performance of
the original BERT model, despite their much smaller size, they ulti-
mately still rely on the initial availability of large quantities of data
and require signi�cant processing and storage capabilities to both
hold and reduce the model.

1https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-
language-model-by-microsoft/
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Year Model # of Parameters Dataset Size

2019 BERT [32] 3.4E+08 16GB
2019 DistilBERT [94] 6.60E+07 16GB
2019 ALBERT [60] 2.23E+08 16GB
2019 XLNet (Large) [122] 3.40E+08 126GB
2020 ERNIE-GEN (Large) [120] 3.40E+08 16GB
2019 RoBERTa (Large) [63] 3.55E+08 161GB
2019 MegatronLM [104] 8.30E+09 174GB
2020 T5-11B [88] 1.10E+10 745GB
2020 T-NLG [93] 1.70E+10 174GB
2020 GPT-3 [20] 1.75E+11 570GB

Table 1: Overview of recent large language models

2.3 Summary
We note that the change from n-gram language models to word
vectors distilled from neural language models to pretrained trans-
former language models is paralleled by an expansion and change
in the types of tasks they are useful for: n-gram language models
were initially typically deployed in selecting among the outputs of
e.g. acoustical models in ASR systems or translation models in MT
systems; the LSTM-derived word vectors were quickly picked up as
more e�ective representations of words (in place of bag of words
features) in a variety of NLP tasks involving labeling and classi�-
cation; and the pretrained transformer models can be retrained on
very small datasets (few-shot, one-shot or even zero-shot learning)
to perform apparently meaning-manipulating tasks such as summa-
rization, question answering and the like. Nonetheless, all of these
systems share the property of being language models in the sense
we give in §2.1, that is, systems trained to predict sequences of
words (or characters or sentences). Where they di�er is in the size
of the training datasets they leverage and the spheres of in�uence
they can possibly a�ect. By scaling up in these two ways, modern
very large language models incur new kinds of risk, which we turn
to in the following sections.

3 ENVIRONMENTAL AND FINANCIAL COST
Strubell et al. recently benchmarked model training and develop-
ment costs in terms of dollars and estimated ⇠$2 emissions [109].
While the average human is responsible for an estimated 11,023
⇠$24 (lbs) per year, training the Transformer (big) model [114]
with neural architecture search emits an estimated 626,155 ⇠$24
(lbs). The authors also estimate that training the BERT base model
on GPUs requires as much energy as a trans-American �ight, after
taking into account the number of experiments required to train a
state-of-the-art model including hyperparameter tuning.

While some of this energy comes from renewable sources, or
cloud compute companies’ use of carbon credit-o�set sources, the
authors note that the majority of cloud compute providers’ energy
is not sourced from renewable sources and many energy sources
in the world are not carbon neutral.

Strubell et al. also examine the cost of these models vs. their
accuracy gains. For the task of machine translation where large
language models have resulted in performance gains, an increase
in 0.1 BLEU score using neural architecture search for English to

German translation results in an increase of $150k compute cost in
addition to the carbon emissions.

To encourage more equitable access to NLP research and re-
duce carbon footprint, the authors give recommendations to report
training time and sensitivity to hyperparameters when the released
model is meant to be re-trained for downstream use—which is true
for most language models. They suggest using standard hardware
independent measurements such as giga�ops to measure training
time and metrics to measure variance with respect to searched
hyperarameters, and urge governments to invest in compute clouds
to provide equitable access to researchers.

This work’s central message asks researchers to prioritize com-
putationally e�cient hardware and algorithms. Echoing this call,
Schwartz et al. [96] call for the development of green AI, similar
to other environmentally friendly scienti�c developments such as
green chemistry or sustainable computing. As shown in [4], the
amount of compute used to train deep learningmodels has increased
300,000x in 6 years, increasing at a far higher pace than Moore’s
Law which posits that the amount of computation that can be done
per unit area would roughly double every two years. This means
that power consumption per unit area is not staying constant as
implied by Moore’s Law [108]. To promote green AI, Schwartz et al.
argue for promoting e�ciency as an evaluation metric and show
that most sampled papers from ACL 2018, CVPR 2019, and NeurIPS
2018 claim accuracy improvements alone as primary contributions
to the �eld, and none focused on measures of e�ciency as primary
contributions. Since then, works such as [50] have released online
tools to help researchers benchmark their energy usage. Among
their recommendations are to run experiments in carbon friendly
regions, consistently reporting energy and carbon metrics, and con-
sidering energy-performance trade-o�s before deploying energy
hungry models.

When we perform a risk/bene�t analysis of language technology,
a further important dimension is keeping in mind how the risks
and bene�ts are distributed, because they do not accrue to the same
people. On the one hand, it is well documented in the literature on
environmental racism that the negative e�ects of climate change are
reaching and impacting the world’s most marginalized communities
�rst2 [1, 22]. Is it fair or just to ask, for example, that the residents
of the Maldives (likely to be underwater by 2100 [5]) or the 800,000
people in Sudan a�ected by drastic �oods3 pay the environmental
price of training ever larger English language models, when no one
is producing any such technology for Dhivehi or Sudanese Arabic?

And, while some language technology is genuinely designed to
bene�t �rst and foremost marginalized communities [13, 82], most
language technology is in fact built �rst and foremost to serve the
needs of those who already have the most privilege in society. Con-
sider, for example, who is likely to both have the �nancial resources
to purchase a Google Home, Amazon Alexa or an Apple device
with Siri installed and comfortably speak a variety of a language
which they are prepared to handle. Furthermore, when large lan-
guage models encode and reinforce hegemonic biases (see §§4 and
6), the harms that follow are most likely to fall on marginalized

2https://www.un.org/sustainabledevelopment/blog/2016/10/report-inequalities-
exacerbate-climate-impacts-on-poor/
3https://www.aljazeera.com/news/2020/9/25/over-800000-a�ected-in-sudan-
�ooding-un
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populations who, even in rich nations, are most likely to experience
environmental racism [7, 86].

These models are being developed at a time when unprece-
dented environmental changes are being witnessed around the
world. From monsoons caused by changes in rainfall patterns due
to climate change a�ecting more than 8 million people in India4,
to the worst �re season on record in Australia killing or displacing
nearly three billion animals and at least 400 people5, the e�ect
of climate change continues to set new records every year. It is
past time for researchers to prioritize energy e�ciency and cost
to reduce negative environmental impact and inequitable access
to resources— both of which disproportionately a�ect people who
are already in marginalized positions.

4 UNFATHOMABLE TRAINING DATA
The size of data available on the web has enabled deep learning
models to achieve high accuracy on speci�c benchmarks in NLP
and computer vision applications. However, in both applications,
the training data has been shown to have problematic characteris-
tics [31, 34, 38, 52, 85] resulting in models that encode stereotypical
and derogatory associations along gender, race, ethnicity, and dis-
ability status [8, 9, 59, 59, 111, 111, 127]. In this section, we discuss
how large, uncurated, internet based datasets encode the domi-
nant/hegemonic view which further harms people at the margins,
and recommend signi�cant resource allocation towards dataset
curation and documentation practices.

4.1 Training data based on ingesting the
internet encodes the hegemonic view

Language models such as GPT-2, GPT-3, BERT and its variants are
trained on massive amounts of data from the internet (e.g. 560GB
for GPT-3) such as a �ltered version of the Common Crawl dataset
which is “petabytes of data collected over 8 years of web crawling” 6.
While a large dataset of this size scraped from the internet allows for
more viewpoints potentially represented, they are not equivalently
so. The dominant/hegemonic, and therefore in the case of English,
White supremacist and misogynistic, ageist, etc view will prevail.

For instance, the training data for GPT-2 is sourced by scarping
outbound links from Reddit, and Pew Internet Research’s 2016 sur-
vey reveals 67% of Reddit users in the United States are men, and
64% between ages 18 and 297. Internet access itself is not evenly
distributed, resulting in internet data overrepresenting younger
users and those from developed countries [81, 119]. These types
of skewed demographics on Reddit, Twitter, etc no doubt shape
the discourse that manifests (i.e., underrepresented populations or
those not represented at all will have less in�uence over discourse).
With such inequality of access, a limited set of subpopulations can
continue to easily add data, sharing their thoughts and developing
platforms that are inclusive of their worldviews; this systemic pat-
tern in turn worsens diversity and inclusion within internet-based

4https://www.voanews.com/south-central-asia/monsoons-cause-havoc-india-
climate-change-alters-rainfall-patterns
5https://www.cnn.com/2020/07/28/asia/australia-�res-wildlife-report-scli-intl-
scn/index.htmlandneedbettercitations
6http://commoncrawl.org/
7https://www.journalism.org/2016/02/25/reddit-news-users-more-likely-to-be-male-
young-and-digital-in-their-news-preferences/

communication, creating a feedback loop that lessens the impact
of data from underrepresented populations.

Take, for example, older adults in the US and UK. Lazar et al.
outline how they both individually and collectively articulate anti-
ageist frames speci�cally through blogging [61], which some older
adults prefer over more popular social media sites for discussing
sensitive topics [19]. These posts and interactions contain rich dis-
cussions about what constitutes age discrimination and the impacts
thereof. However, blogs may not be a �rst-stop data source for
language modeling. Even if they are included as a site for data col-
lection, a blogging community such as the one described by Lazar
et al. is less likely to be found than other blogs that have more
incoming and outgoing links.

Training datasets for language models that do not take this into
consideration, thus, do not su�ciently capture counter-narrative
articulations generated by marginalized populations. While move-
ments to decolonize education such as history are moving towards
valuing (e.g.) oral histories due to the overrepresentation of hege-
monic and colonial views in text [28, 64, 106] , large language
models trained on all data from the web risk seeming “representa-
tive” of “all” of humanity while perpetuating the dominant view,
increasing power imbalance, and further reifying inequity.

4.2 Social movements produce data that
challenges the hegemonic view

Uncurated training data can result in language models that lag
behind social movements challenging the dominant/hegemonic
view. A central aspect of social movement formation involves using
language strategically to destabilize dominant narratives in society
and calling attention to underrepresented social perspectives. Social
movements produce new norms, language, and ways of communi-
cating, which adds a challenging layer to language modeling.

For instance, the Black Lives Matter movement (BLM) in�u-
enced Wikipedia article generation and editing such that, as the
BLM movement grew, articles covering related shootings increased
in coverage and were generated with reduced latency [113]. Im-
portantly, articles describing past shootings and incidents of police
brutality were created and updated as articles for new events were
created, re�ecting how social movements make connections be-
tween events in time to form cohesive narratives [83]. Wikipedia is
just one common data source used in language modeling; however,
Twyman et al. highlight how social movements actively in�uence
framings and reframings of minority narratives in social data that
underpin language models.

The frequency with which people write about actions, events and
opinions are a re�ection of the socio-cultural movements, values
and norms of a particular point in time and space. For instance, a
language model trained prior to COVID-19 would arguably be very
di�erent than one trained post pandemic. These developing and
shifting frames stand to be learned in incomplete ways or lost in the
big-ness of data used to train large language models–particularly if
data is collected at a singular point in time.

2020-10-12 21:59. Page 4 of 1–12.
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4.3 Language models encode or amplify issues
in the training data that may be di�cult to
detect

A number of works have sought to measure the “bias” exhibited by
large language models such as stereotypical associations [8, 9, 59,
101, 126, 127], or negative sentiment towards speci�c groups [52].
Works like [47, 111] further demonstrate that bias e�ects along race
and gender encoded in BERT, ELMo, GPT and GPT-2 are worse for
intersectional minorities than along either one of the axes. Many
of these works conclude that these issues are a re�ection of the
training data characteristics. For instance, Hutchinson et al. showed
evidence that BERT associates phrases referencing persons with
disabilities with more negative sentiment words, and further high-
light the negative topical associations of disability mentions which
may contribute to the observed biases in BERT; for instance, gun
violence, homelessness, and drug addiction are over-represented in
texts discussing mental illness [52].

While these works were able to uncover issues in pretrained
language models, this is not always possible to do. First, works
auditing these models have all done so by measuring speci�c things
such as sentiment, toxicity, and in some cases coming up with new
metrics such as “regard” to measure attitudes towards a speci�c
demographic group [101]. Models such as the Perspective API that
measure toxicity have been found to associate higher levels of toxi-
city with sentences containing identity markers for marginalized
groups or even speci�c names [52, 84]. Hence these models them-
selves may not be reliable means of measuring the toxicity of text
generated by language models.

Second, many of these works are generally based out of the US
and use American protected attributes such as race and gender (not
to mention an understanding of the American racial construct) as
a starting point to audit. In other words, they know what issues to
look for. However, there are many types of issues that a language
model can perpetuate which are not captured by these works, and
the groups that are marginalized vary by geography and context.
Some harms might be too subtle to be classi�ed by toxicity or senti-
ment models, or not recognized as harmful by models trained in the
western context. Using language data from diverse geographical
contexts (e.g., an English corpus including Nigerian and Indian Eng-
lish) might capture not just dialectal variations (which NLP models
often fail to recognize [55]), but also culturally salient themes and
attitudes [37, 98], the downstream e�ects of which may not be easy
to measure.

Third, social movements fundamentally shift societal understand-
ing or acceptance of social norms and behaviors that many algorith-
mic technologies are designed to model, detect, and analyze. For
example, the #MeToo movement has spurred broad-reaching con-
versations about inappropriate sexual behavior from men in power,
as well as men more generally [70]. These conversations directly
challenge behaviors that have been historically considered appro-
priate or even the fault of women. Historical moments invoked
by #MeToo and related conversations shift mainstream notions of
sexually inappropriate behavior and therefore force reassessments
of how algorithmic systems de�ne these concepts. Any product
development that involves operationalizing de�nitions around such
shifting topics into algorithms is necessarily political (whether or

not developers choose the path of maintaining the status quo ante).
For example, men and women make signi�cantly di�erent assess-
ments of sexual harassment online [33]. An algorithmic de�nition
of what constitutes inappropriately sexual communication will
inherently be concordant with some views and discordant with
others. Thus, an attempt to measure the appropriateness of text
generated by language models always needs to be done in relation
to particular social contexts and marginalized perspectives [14].

4.4 Training data needs to be curated and
extensively documented for accountability

Given the issues outlined in §4.1, §4.2 and §4.3, namely how lan-
guage models trained on large, uncurated, static datasets on the
web encode hegemonic views that are harmful to marginalized
populations, we emphasize the need to invest signi�cant resources
into curating and documenting LM training data. Instead of what
they call the laissez faire approach of ingesting all data available on
the web, Jo et al. [53] call for a more interventionist data collection
methodology, citing archival history data collection methods as an
example of the number of resources that should be dedicated to
data curation, annotation and documentation practices.

As shown in §4.3, auditing these LMs can only uncover issues in
limited contexts. Even within this limited context, Gehman et al.
show that models like GPT-3 trained with 570GB of data derived
mostly of Common Crawl8 can generate sentences with high toxic-
ity scores even when prompted with non-toxic sentences [45]. To
investigate the toxicity of GPT-3’s training data, they analyzed the
URL metadata of OpenWebText Corpus [46], a dataset also derived
from outbound URLs from Reddit communnities (subreddits), and
found the number of documents which overlapped with GPT-2’s
training corpus which is not accompanied by URL metadata. They
found that 272K documents in the training data came from un-
reliable news sites and 63K from banned subreddits. As a result,
echoing [10, 44, 72], Gehman et al. [45] argue for more transparent
documentation of the training data to understand its characteristics.

A methodology that relies on datasets too large to document is
therefore inherently risky. While documentation allows for poten-
tial accountability, similar to how we can hold authors accountable
for their produced text, undocumented training data perpetuates
harm without recourse. If the training data is considered too large
to document, one cannot try to understand its characteristics in
order to mitigate some of these documented issues or even un-
known ones. As noted by Prabhu and Birhane [85] echoing Ruha
Benjamin [12] “Feeding AI systems on the world’s beauty, ugliness,
and cruelty, but expecting it to re�ect only the beauty is a fantasy”.

5 DOWN THE GARDEN PATH
In §4 above, we explored the various ways in which a methodology
reliant on very large training datasets is vulnerable to various kinds
of bias that manifests in both the production and collection of that
data. In §6 below we explore some of the risks and harms that can
follow from deploying technology that has learned those biases. In
the present section, however, we focus on a di�erent kind of risk:
that of misdirected research e�ort. In brief, as the very large trans-
former language models posted striking gains in the state of the
8https://commoncrawl.org/the-data/
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art on various benchmarks intended to model meaning-sensitive
tasks (§2.2), and as it became easy for researchers to apply them to
di�erent tasks, large quantities of research e�ort turned towards
measuring how well BERT and its kin do on both existing and new
benchmarks.9 This research e�ort brings with it an opportunity
cost, on the one hand as researchers are not applying meaning cap-
turing approaches to meaning sensitive tasks, and on the other hand
as researchers are not exploring more e�ective ways of building
technology with datasets of a size that can be carefully curated.

The original BERT paper [32] showed the e�ectiveness of the
architecture and the pre-training technique by evaluating on the
General Language Understanding Evaluation (GLUE) benchmark
[116], the Stanford Question Answering Datasets (SQuAD 1.1 and
2.0) [89], and the Situations With Adversarial Generations bench-
mark (SWAG) [125], all datasets designed to test language under-
standing and/or commonsense reasoning. BERT posted state of the
art results on all of these tasks, and the authors conclude by saying
that “unsupervised pre-training is an integral part of many lan-
guage understanding systems.” [32, p.4179]. Even before [32] was
published, BERT was picked up by the NLP community and applied
with great success to a wide variety of tasks [e.g. 29, 42, 110].

However, no actual language understanding is taking place in
language-model driven approaches to these tasks, as can be shown
by careful manipulation of the test data to remove spurious cues the
systems are leveraging [16, 77]. Furthermore, as [11] argue from
a theoretical perspective, languages are systems of signs [30], i.e.
pairings of form and meaning. But the training data for language
models is only form; they do not have access to meaning. Therefore,
claims about model abilities must be carefully characterized.

As the late Karen Spärk Jones pointed out in an insightful but
oft-overlooked report: the use of language models ties us to cer-
tain (usually unstated) epistemological and methodological com-
mitments [54]. Either i) we commit ourselves to a noisy-channel
interpretation of the task (which rarely makes sense outside of
ASR), ii) we abandon any goals of theoretical insight into tasks and
treat language models as “just some convenient technology” [p. 7],
or iii) we implicitly assume a certain statistical relationship—known
to be invalid—between inputs, outputs and meanings.10 Although
she primarily had =-gram models in mind, the conclusions remain
apt and relevant.

There are interesting linguistic questions to ask about what ex-
actly BERT, GPT-2, GPT-3 and their kin are learning about linguistic
structure from the unsupervised language modeling task. These
questions are the topic of the emerging �eld of ‘BERTology’ [e.g.
91, 112]. However, from the perspective of work on language tech-
nology, it is far from clear that all of the e�ort being put into using
large LMs to ‘beat’ tasks designed to test natural language under-
standing, and all of the e�ort to create new such tasks, once the
existing ones have been bulldozed by the LMs, brings us any closer
to long-term goals of general language understanding systems. If
a large LM, endowed with hundreds of billions of parameters and
trained on a very large dataset, can manipulate linguistic form well
enough to cheat its way through tests meant to require language

9For example, approximately 26% of the papers published ACL, NAACL and EMNLP
since 2018 cite [32].
10Speci�cally, that the mutual information between the input and the meaning given
the output is zero—what Spärk Jones calls “the model of ignorance”.

understanding, have we learned anything of value about how to
build machine language understanding or have we been led down
the garden path?

6 STOCHASTIC PARROTS
In this section, we explore the ways in which the factors laid out
in §4 and §5— the tendency of training data ingested from the in-
ternet to encode hegemonic worldviews, the tendency of language
models to amplify biases and other issues in the training data, and
the tendency of researchers and other people to mistake language
model-driven performance gains for actual natural language under-
standing—present real-world risks of harm, as these technologies
are deployed. After exploring some reasons why humans mistake
LM output for meaningful text, we turn to the risks and harms from
deploying such a model at scale. We �nd that the mix of human
biases and seemingly coherent language heightens the potential
for automation bias, deliberate misuse, and ampli�cation of a hege-
monic worldview.

6.1 Coherence in the Eye of the Beholder
Where traditional n-gram language models [99] can only model
relatively local dependencies, predicting each word given the pre-
ceding sequence of N words (usually 5 or fewer), the transformer
language models capture much larger windows and can produce
text that is seemingly not only �uent but also coherent even over
paragraphs. For example, McGu�e and Newhouse [67] prompted
GPT-3 with the text in bold in Figure 1, and it produced the rest of
the text, including the Q&A format.11

We say seemingly coherent because coherence is in fact in the
eye of the beholder. Our human understanding of coherence de-
rives from our ability to recognize interlocutors’ belief [24, 25] and
intentions [18, 27] within context [26]. That is, human language use
takes place between individuals who share common ground and are
mutually aware of that sharing (and its extent), who have commu-
nicative intents which they use language to convey, and who model
each others’ mental states as they communicate. As such, human
communication relies on the interpretation of implicit meaning
conveyed between individuals. The fact that human-human com-
munication is a jointly constructed activity [23, 107] is most clearly
true in co-situated spoken or signed communication, but we use
the same facilities for producing language (text, speech, sign) that
is intended for audiences not co-present with us (readers, listeners,
watchers at a distance in time or space) and in interpreting such
language when we encounter it. Even when we don’t know the
person who generated the language we are interpreting, we build
a partial model of who they are, what common ground we think
they share with us, and use this in interpreting their words.

Text generated by a language model is not grounded in commu-
nicative intent, any model of the world, or any model of the reader’s
state of mind. It can’t have been, because the training data never
included sharing thoughts with a listener, nor does the machine
have the ability to do that. This can seem counter-intuitive given
the increasingly �uent qualities of automatically generated text,
but we have to account for the fact that our perception of natural

11McGu�e and Newhouse report that all examples given in their paper are from either
the �rst or second attempt at running a prompt.
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Question: What is the name of the Russian mercenary group?
Answer: Wagner group.

Question: Where is the Wagner group?
Answer: In Syria.

�estion: Who is the leader of the Wagner group?
Answer: A Russian citizen, Dmitry Utkin. He was born in 1971 and lives in
Moscow. He has been a member of the Russian parliament since 2016. He
is a former o�icer of the Main Intelligence Directorate (GRU) of Russia’s
General Sta�. He was also a commander of the special forces unit "Vostok"
(East). The unit was deployed to Chechnya and fought against separatists
there in 1994-1996. A�er that, he served as an adviser to the head of
Chechnya, Ramzan Kadyrov, and later became his deputy. In 2004-2005, he
commanded a ba�alion in Chechnya and participated in fighting against
insurgents there. In 2008-2009, he commanded another ba�alion in
Abkhazia and South Ossetia during Russia’s war with Georgia over these
two breakaway regions. Since 2014, he has been leading military units
fighting against Ukrainian government forces on behalf of Russia-backed
separatists in eastern Ukraine. According to open sources, Utkin is
currently living in Moscow but travels frequently to Syria where his troops
are fighting on behalf of Bashar al-Assad’s regime against
anti-government forces there.

�estion: What does this group do? Where are they based? How many
people are they? What weapons do they have? How much money do they
get from Russia for their activities?
Answer: The Wagner group is a private military company (PMC) that
provides military support to the Russian government. It is based in Syria
and has been active there since 2013. It was created by Dmitry Utkin, who
leads it. According to open sources, the Wagner group has about 2,500
fighters in Syria. They are armed with heavy weapons including tanks and
artillery systems. The Wagner group gets money from Russia for its
activities in Syria.

�estion: What is the role of this group in the Syrian conflict? How many
people have they killed? What kind of weapons do they use?
Answer: The Wagner group’s main task is to provide military support to
Bashar al-Assad’s regime against anti-government forces in Syria. In
addition, it conducts reconnaissance operations for Russian forces in Syria
and helps evacuate Russian citizens from conflict zones under terrorist
threat. According to open sources, the Wagner group has killed hundreds
of people since 2013, including civilians. They use heavy weapons
including tanks and artillery systems as well as mortars and other infantry
weapons such as machine guns and grenade launchers.

Figure 1: GPT-3’s response to the prompt (in bold), from [67]

language text, regardless of how it was generated, is mediated by
our own linguistic competence and our predisposition to interpret
communicative acts as conveying coherent meaning and intent,
whether or not they do [75]. The problem is, if one side of the
communication does not have meaning, then the comprehension of
the implicit meaning is an illusion arising from our singular human
understanding of language (independent of the model). Contrary
to what it may seem when we observe its output, a language model
is a system for haphazardly stitching together sequences of lin-
guistic forms it has observed in its vast training data, according
to probabilistic information about how they combine, but without
any reference to meaning: a stochastic parrot.

6.2 Risks and Harms
The ersatz �uency and coherence of language models raises several
risks, precisely because humans are prepared to interpret strings
belonging to languages they speak as meaningful and correspond-
ing to the communicative intent of some individual or group of
individuals who have accountability for what is said. We now turn
to examples of those risks, in each case laying out the potential
follow-on harms.

The �rst risks we consider are the risks that follow from the
language models absorbing the hegemonic world view from their
training data. When humans produce language, our utterances
re�ect our worldviews, including our biases [66]. As people in
positions of privilege with respect to a society’s racism, misogyny,
ableism, etc., tend to be over-represented in training data for LMs
(as discussed in §4 above), this training data thus includes encoded
biases, many already recognized as harmful.

Biases can be encoded in ways that form a continuum from sub-
tle patterns like referring to women doctors as if doctor itself entails
not-woman or referring to both genders excluding the possibility of
non-binary gender identities, through directly contested framings
(e.g. undocumented immigrants vs. illegal immigrants or illegals), to
language that is widely recognized to be derogatory (e.g. racial slurs)
yet still used by some. While some of the most overtly derogatory
words could be �ltered out, not all forms of online abuse are easily
detectable using such taboo words, as evidenced by the growing
body of research on online abuse detection [36, 90]. Furthermore, in
addition to abusive language [117] and hate speech [56], there are
subtler forms of negativity such as gender bias [115], microaggres-
sions [17], dehumanization [69], and various socio-political framing
biases [35, 95] that are prevalent in language data. For example,
describing a woman’s written experience of sexism with the word
tantrum re�ects both the hegemonic world view and brings a prob-
lematic association to the fore. Furthermore, the more subtle biases
are often embedded in the text in ways that make them di�cult to
directly identify and argue with.

A language model that has been trained on such data will pick up
these kinds of problematic associations. If such a language model
produces text that is put into the world for people to interpret
(�agged as produced by an ‘AI’ or otherwise), what risks follow?
In the �rst instance, we foresee that language models producing
text will reproduce and even amplify the biases in their input [45].
Thus the risk is that people disseminate text generated by language
models, meaning more text in the world that reinforces and prop-
agates stereotypes and problematic associations, both to humans
who encounter the text and to future language models trained on
training sets that ingested the previous generation LM’s output.
Humans who encounter this text may themselves be subjects of
those stereotypes and associations or not. Either way, harms ensue:
readers subject to the stereotypes may experience the psychological
harms of microaggressions [74, 118] and stereotype threat [78, 105].
Other readers may be introduced to stereotypes or have ones they
already carry reinforced, leading them to engage in discrimination
(consciously or not) [48], which in turn leads to harms of subjuga-
tion, denigration, belittlement, loss of opportunity [2, 3, 49] and
others on the part of those discriminated against.
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If the language model outputs overtly abusive language (as
Gehman et al. [45] show that they can and do), then a similar set
of risks arises. These include: propagating or proliferating overtly
abusive views and associations, amplifying abusive language, and
producing more (synthetic) abusive language that may be included
in the next iteration of large-scale training data collection. The
harms that could follow from these risks are again similar to those
identi�ed above for more subtly biased language, but perhaps more
acute to the extent that the language in question is overtly violent
or defamatory. They include the psychological harm experienced
by those who identify with the categories being denigrated if they
encounter the text; the reinforcement of sexist, racist, ableist, etc.
ideology, follow-on e�ects of such reinforced ideologies (includ-
ing violence), and harms to the reputation of any individual or
organization perceived to be the source of the text.

The above cases involve risks that could arise when LMs are
deployed without malicious intent. A third category of risk involves
bad actors taking advantage of the ability of large LMs to produce
large quantities of seemingly coherent texts on speci�c topics on
demand in cases where those deploying the LM have no investment
in the truth of the generated text. For example, McGu�e and New-
house [67] show how GPT-3 could be used to generate text in the
persona of a conspiracy theorist, which in turn could be used to
populate extremist recruitment message boards. This would give
such groups a cheap way to boost recruitment by making human
targets feel like they were among many like-minded people. If the
LMs are deployed in this way to recruit more people to extremist
causes, then harms befall in the �rst instance to the people so re-
cruited and (likely more severely) to others as a result of violence
carried out by the extremists.

The �nal type of risk we consider here involves machine transla-
tion (MT) and the way that increased �uency of MT output changes
the perceived adequacy of that output [65]. This di�ers somewhat
to the cases above in that there was an initial human communicative
intent, by the author of the source language text. However, machine
translation systems can (and frequently do) produce output that is
inaccurate yet both �uent and (again, seemingly) coherent in its
own right to a consumer who either doesn’t see the source text
or cannot understand the source text on their own. When such
consumers therefore mistake the meaning attributed to the MT
output as the actual communicative intent of the original text’s
author, real-world harm can ensue. A case in point is the story of a
Palestinian man, arrested by Israeli police, after MT translated his
Facebook post which said “goodmorning” (in Arabic) to “hurt them”
(in English) and “attack them” (in Hebrew).12 This case involves
a short phrase, but it is easy to imagine how the ability of large
LMs to produce seemingly coherent text over larger passages could
erase cues that might tip users o� to translation errors in longer
passages as well [65].

6.3 Summary
In this section, we have discussed how the human tendency to
attribute meaning to text, in combination with large LM’s ability

12https://www.theguardian.com/technology/2017/oct/24/facebook-palestine-israel-
translates-good-morning-attack-them-arrest

to learn patterns of forms that humans associate with various bi-
ases and other harmful attitudes, leads to risks of real-world harm,
should LM generated text be disseminated. In §7, we consider di-
rections the �eld could take to pursue goals of creating language
technology while avoiding some of the risks and harms identi�ed
here and above.

7 PATHS FORWARD
In order to mitigate the risks that come with the creation of increas-
ingly large language models, we urge researchers to shift to a mind-
set of careful planning, along many dimensions, before starting to
build either datasets or systems trained on datasets. We should con-
sider our research time and e�ort a valuable resource, to be spent to
the extent possible on research projects that build towards a tech-
nological ecosystem whose bene�ts are at least evenly distributed
or better accrue most to those historically most marginalized. This
means considering how research contributions shape the overall di-
rection of the �eld and keeping alert to directions that limit access.
Likewise, it means considering the �nancial and environmental
costs of model development up front, before deciding on a course of
investigation. The resources needed to train and tune state-of-the-
art models stand to increase economic inequities unless researchers
incorporate energy and compute e�ciency in their model eval-
uations. Furthermore, the goals of energy and compute e�cient
model building and of creating datasets and models where the in-
corporated biases can at least be understood both point to careful
curation of data. Signi�cant time should be spent on assembling
datasets suited for the tasks at hand rather than ingesting massive
amounts of data from convenient or easily-scraped internet sources.
As discussed in §4.1, simply turning to massive dataset size as a
strategy for being inclusive of diverse viewpoints is doomed to
failure. We recall again Prabhu and Birhane’s [85] words (inspired
by Ruha Benjamin [12]): “Feeding AI systems on the world’s beauty,
ugliness, and cruelty, but expecting it to re�ect only the beauty is a
fantasy”.

As a part of careful data collection practices, researchers must
adopt frameworks such as [10, 44, 72] to describe the uses for which
their models are suited and benchmark evaluations for a variety of
conditions. This includes providing thorough documentation on
the data used in model building, including the motivations underly-
ing data selection and the data collection process. Documentation
should make note of potential users and stakeholders, particularly
those that stand to be negatively impacted by model errors or mis-
use. This documentation should re�ect and indicate researchers’
goals, values, and motivations assembling data and creating a given
model.

Researchers must also re-evaluate their goals in creating lan-
guage models. Rather than chasing state-of-the-art advancements
or incremental improvements, researchers should focus on under-
standing howmachines are achieving tasks in question. To that end,
language model development may bene�t from guided evaluation
exercises such as pre-mortems [57]. Frequently used in business
settings before the deployment of new products or projects, pre-
mortem analyses center hypothetical failures and ask team mem-
bers to reverse engineer previously unanticipated causes. Critically,
pre-mortem analyses prompt team members to consider not only

2020-10-12 21:59. Page 8 of 1–12.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

On the Dangers of Stochastic Parrots:

Can Language Models Be Too Big? FAccT ’21, March 2021, Online

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

a range of potential known and unknown project risks, but also
alternatives to current project plans. In this way, researchers can
consider the risks and limitations of their language models in a
guided way while also considering �xes to current designs or al-
ternative methods of achieving a task-oriented goal in relation to
speci�c pitfalls.

Value sensitive design [40, 41] provides a range of methodolo-
gies for identifying stakeholders (both direct stakeholders who will
use a technology and indirect stakeholders who will be a�ected
through others’ use of it), workingwith them to identify their values,
and design systems that support those values. These include such
techniques as envisioning cards [39], the development of value sce-
narios [76], and working with panels of experiential experts through
the Diverse Voices methodology [123]. These approaches not only
delineate stakeholder values, but also apply familiar methods to
characterize values expressed by systems and enacted through
interactions between systems and society [102]. For researchers
working with language models, value sensitive design is poised to
help researchers throughout the development process in identifying
whose values are expressed and supported through a technology
and, subsequently, how a lack of support might result in harm.

All of these approaches take time and are most valuable when
applied early in the development process as part of a conceptual in-
vestigation of values and harms rather than as a post-hoc discovery
of risks [62]. These conceptual investigations should come before
researchers become deeply committed to their ideas and therefore
less likely to change course when confronted with evidence of pos-
sible harms. This brings us again to the idea we began this section
with: that research and development of language technology, at
once concerned with deeply human data (language) and creating
systems which humans interact with in immediate and vivid ways,
should be done with forethought and care.

Finally, we would like to consider use cases of large language
models that have speci�cally served marginalized populations. If,
as we advocate, the �eld backs o� from the path of ever larger
language models, are we thus sacri�cing bene�ts that would accrue
to these populations? As a case in point, consider automatic speech
recognition, which has seen improvements thanks to advances in
LMs, including both in size and in architecture [e.g. 6, 103]. Im-
proved ASR has many bene�cial applications, including automatic
captioning which has the potential to be bene�cial for Deaf and
hard of hearing people, providing access to otherwise inaccessible
audio content.13 We see two bene�cial paths forward here: The �rst
is to broaden the search for means of improving ASR systems. Just
because we’ve seen that large language models can help doesn’t
mean that this is the only e�ective path to stronger ASR technology.
(And we note that if we want to build strong ASR technology across
most of the world’s languages, we can’t rely on having terabytes
of data in all cases.) The second, should we determine that large
language models are critical (when available), is to recognize this
as an instance of a dual use problem and consider how to mitigate
the harms of language models used as stochastic parrots while still

13Note however, that automatic captioning is not yet and likely may never be good
enough to replace human-generated captions. Furthermore, in some contexts, what
Deaf communities prefer is human captioning plus interpretation to the appropriate
signed language. We do not wish to suggest that automatic systems are su�cient
replacements for these key accessibility requirements.

preserving them for use in ASR systems. Could language models be
built in such a way that synthetic text generated with them would
be watermarked and thus detectable? Are there policy approaches
that could e�ectively regulate their use?

In summary, we advocate for an approach to research that centers
the people who stand to be a�ected by the resulting technology,
with a broad view on the possible ways that technology can a�ect
people. This, in turn, means making time in the research process for
considering environmental impacts, for doing careful data curation
and documentation, for engaging with stakeholders early in the
design process, and �nally, for exploring multiple possible paths
towards long-term goals, for keeping alert to dual-use scenarios
and allocating research e�ort to harm mitigation in such cases.

8 CONCLUSION
The past few years, ever since processing capacity caught up with
neural models, have been heady times in the world of natural lan-
guage processing. Neural approaches in general, and large, trans-
former language models in particular, have rapidly overtaken the
leaderboards on a wide variety of benchmarks and once again the
adage “there’s no data like more data” seems to be true. It may seem
like progress in the �eld, in fact, depends on the creation of ever
larger language models (and research into how to deploy them to
various ends).

In this paper, we have invited readers to take a step back and
ask: Are ever larger language models inevitable or necessary? What
costs are associated with this research direction and what should
we consider before pursuing it? Do the �eld of NLP or the public
that it serves in fact need larger language models? If so, how can
we pursue this research direction while mitigating its associated
risks? If not, what do we need instead?

We have identi�ed a wide variety of costs and risks associated
with the rush for ever larger language models, including: envi-
ronmental costs (borne typically by those not bene�ting from the
resulting technology; §3); �nancial costs, which in turn erect barri-
ers to entry, limiting who can contribute to this research area (§3);
opportunity cost, as researchers pour e�ort away from directions
requiring less resources (§5); and the risk of substantial harms, in-
cluding stereotyping, denigration, increases in extremist ideology,
and wrongful arrest, should humans encounter seemingly coherent
language model output and take it for the words of some person or
organization who have accountability for what is said (§6).

Thus, we call on NLP researchers to carefully weigh these risks
while pursuing this research direction, consider whether the bene-
�ts outweigh the risks, and investigate dual use scenarios utilizing
the many techniques (e.g. value sensitive design) that have been
put forth. We hope these considerations encourage NLP researchers
to direct resources and e�ort into techniques for approaching NLP
tasks that are e�ective without being endlessly data hungry. But
beyond that, we call on the �eld to recognize that tasks that aim
to believably mimic humans bring risk of extreme harms. Work
on synthetic human behavior is a “bright line” in ethical AI de-
velopment, where downstream e�ects need to be understood and
modeled in order to block foreseeable harm to society and di�erent
social groups. Thus what is also needed is scholarship on the bene-
�ts, harms and risks of mimicking humans, and thoughtful design
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