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Introduction

Inside a mini-batch episode

o o o 7 o ., ®

~ 4
ol o

£

There remains a huge performance gap between humans and artificial learners when 1t comes
to sample efficiency, and there has recently been a lot of work 1n few-shot learning(FSL)
motivated to bridge that gap.
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However, most work 1s focused on fully supervised FSL. On the other hand, most data Latent Space Embedding el e e = =t Embeddings got magnetized 1o the
collected or observable 1n the world, does not come with a label. We tackle semi-supervised
few-shot learning(SS-FSL), where few-shot learners are expected to improve their @) L o B ©) © OO  cossrrowypes
performance by leveraging unlabeled data. N : Query Set
F = = labeled paints
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We show that state-of-the-art performance 1n the various SS-FSL tasks can be obtained by - _— High AW Probabilty

Low RW Probability

enforcing local and global consistency.

Samplas from mini-imagafat Embaddings got magnelized aver time (episodes), and tha clusters become more compact

Episodic training

Figure 1: Our PRW aims at maximizing the probability of a random walk begins at the class prototype p ;. taking 7 steps among the unlabeled data, before it
lands to the same class prototype. This results in a more discriminative representation, where the embedding of the unlabeled data of a particular class got magnetized
to its corresponding class prototype, denoted as protorypical magnetization.

Methodology

Few-Shot Learning:
* Based on Prototypical Networks(PN)

Algorithm 1: Prototypical Random Walk loss

Data: AM*N sit. A;; = —|lh; — pjlI*.

BM*M st. B;; = —|lh; — h||*.

h are point representations, and p are prototypes
Result: PRW loss

Global Consistency:

Well aligned with PN: enforces a representation where
points of the same class form well separated clusters
around the class prototype.

* Goal is to learn a representation where points of the same class form tight, well-separated .
clusters around the class prototype.

* During training, labelled points' representations are moved to be closer to their prototypes,
but what do we do with unlabelled points? * Takes a global view of the latent space structure, by
constructing a similarity graph for the prototypes and

unlabeled points and simulating a random walk.

* Local & Global consistency // Compute RW transition probabilities
[(P=) = softmax(AT),
[==P) = softmax(A),

[e=e) = softmax(B),

* We add two loss terms to the original PN enforcing local and global consistency. + Prototypical Random Walks(PRW) start at some class

prototype, walk over to the unlabeled points, and
eventually go back to a prototype. The objective is to
maximize the probability that the walk ends at the
starting prototype: The Landing Probability.

* Our loss terms work for semi-supervised meta-training, when additional unlabeled data 1s
available at test time, we can combine our model with a semi-supervised adaptation step
from [1], and benefit from unlabeled data for both meta-training and adaptation.

// Simulate random walk

Local Consistency: . T() = T(P=2) . (Ple=2))7 . T (e=p)

Our PRW loss magnetizes points of a class around the
prototype, while repelling other points and prototypes
away.

* Enforce that points do not fall close to decision boundaries 1.e. in the spaces separating

our tight clusters. // Compute PRW loss

« We minimize the PRW loss as computed in Algorithm 1. Lovalker = D i—g Qi - _NL Zf\i"o log 75 ;

* Based on a Virtual Adversarial Training Loss. We require points close together to have
similar predictions.

e  Minimize KL(f9(£U>, fg(CU + Eadv)) RETURN Lwalker

*  We run experiments on two well know FSL datasets: Omniglot, and Mini-Imagenet.

, , | Benchmark results:
* We follow the labelled/unlabeled split from previous works[1,2], with 10% of the labels

for Omniglot, and 40% of the labels for Mini-Imagenet.

Without distractors: With distractors:

* We use the same Conv-4 network popular in FSL, and used the previous state-of-the-art

. . ) iodel Ommiglol Mini-Imagenet Model Omniglot Mini-Imagenet

in SS-FSL [1,2] for fair comparison. 0ce 1-shot 1-shot 5-shot I-shot I-shot 5-shot
PN, (Snell et al., 2017) 083 794 632 PN 04.62 £0.09 | 43.61 £0.27 | 59.08 £0.22
. - - - . S . PN(Ren et al, 2018) 04.62 £ 0.00 | 43.61 £0.27 | 59.08 £ 022 Ours: PN+PRW 9776 + 0.11 | 50.96 + 0.23 | 67.64 = 0.18
We per.form experlments with/without additional unlabeled data at test time: semi PR s om | 95500 | eadstoar ous: PR el vl
supervised adaptation. Ours: CPN 98.03 + 0.11 | 5103+ 0.23 | 67.78 4 0.20 - T 5 : ey 555 03]
PN+ Semi-supervised imference 9745 £0.05 | 4998 £034 | 6377 £020 £§+ geffnll'(S“perVISe inference 92-8? ig'gg 4;-70 iggg 23-25 18'38

- - - . - - PN+ Soft K-means 97.2540.10 | 50.09 4 045 | 64.59 +0.28 + Soft K-means 95. : : : : :
* We perform experiments with and without the presence of distractor points. Distractors PN+ Soft K-means + cluster 97.68 +0.07 | 49.03+024 | 63.08 % 0.18 PN+ Soft K-means + cluster 97.17 +0.04 | 48.86 +0.32 | 6127 +0.24
are unlabeled points which do not belong to the classes of the labelled data. This setting 1s PN+ Masked soft K-means 97.52 £ 0.07 | 5041 £024 | 64.3940.24 PN+ Masked soft K-means 97.30 +0.30 | 49.04 £0.31 | 62.96 +0.14

. . Ours: CPN + semi-supervised inference | 99.30 & 0.04 | 56.91 £0.25 | 70.11 £ 0.19 : . : :

more realistic but more challengmg. Ours: CPN + semi-supervised inference | 96.76 £0.09 | 53.76 +0.23 | 66.17 +0.21

Ablation study:

e The first row denotes a PN trained on 100% of the
labels, the middle section is results without semi-

* Here we present a comparison with the state-of-the-art in the
challenging distractor case.

Omniglot Mini-I t ' ' ion i ‘ . : . . .
Model Tnllf ’ |sh o magenz_ h sup§w1sed a.daptatlon. T.he bottom scetion 15 results with * The first section denotes experiments without semi-supervised
ot ot ot semi-supervised adaptation -
PN (Renetal,2018) | 94.62 £ 0.09 | 43.61 £0.27 | 59.08 £0.22 adaptation.
PN+VAT 05.66 £ 021 | 44.63 £021 | 64.02F£0.20 . : o o ,
PN+VAT+ENT 97.14 £0.16 | 4448 £0.22 | 66.94 4 0.20 II){Izmar.katbhly,louﬁ (?13;1 qultperforrrlts tl}fhf;l}l%;;pirwsed * Even with distractors, CPN gets significant improvements over
PN+PRW 97.96 £ 0.07 | 50.33 £0.27 | 66.99 4 0.24 all 1n the 1-shot Mini-Imagenet wi U537 1o : : 0 0/ i i
CPN: PNAPRWAVAT | 98.03 = 0.11 | 3103+ 023 | €778 + 0.20 49 4% the baseline, with 50.2% to 43.6% in the 1-shot Mini-Imagenet
for example.
* Here we compare with the vanilla PN (our baseline), denoted PN in the table, and PN with * For all experiments, our model improves greatly on the

* However, without the VAT loss (PN+PRW), performs better
than CPN. This 1s due to the global character of the loss, and
its ability to ignore, to an extent, distractor points.

state-of-the-art, with dramatic increases 1in some cases

* 70.11% to 64.49% 1n the 5-shot Mini-Imagenet with

individual components of our loss.
* ENT refers to Shannon entropy minimization, it has been found the work well with VAT.
* We can see that all our models improve on the baseline, with CPN (our full loss)

performing best on all benchmarks adaptation. * In the case of semi-supervised adaptation, our model still
 Following CPN, we can see that PRW on its own is also effective, and improves * 67.78% to 64.43% 1n the 5-shot Mini-Imagenet without performs strongly, giving remarkable state-of-the-art
significantly on the baseline 1n all tests. It 1s also much faster to train than VAT, as VAT adaptation. improvements on Mini-Imagenet.

requires additional forward and backward passes through the network.

Conclusion

* We presented Consistent Prototypical Networks, which obtains state-of-the-art results 1n a wide range .
of SS-FSL tasks. .

* Both local and global consistency benefit semi-supervised learning in the few-shot setting, with global .
consistency having an edge.

Our loss provides substantial benefit over the baselines, even when distractors are present.

PRW 1s particularly robust to distractor points.

Unlike previous works which tend to be effective for either meta-training or adaptation, we show that
our model can perform 1n both settings.
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