
Spring Syllabus for:

CSCI 6360: Parallel Computing
CSCI 4320: Parallel Programming

Prof. Christopher D. Carothers

Department of Computer Science

Rensselaer Polytechnic Institute

110 8th Street Troy, New York 12180

e-mail: chris.carothers@gmail.com or chrisc@cs.rpi.edu

Course Materials: Posted in Submitty “Course Materials” under CSCI4320 Course

Class Lecture: Via WebEx Events until Classroom Scheduled - URL(s) posted in Submitty

Course Materials.

Office Hours: Via WebEx Personal Room:

https://rensselaer.webex.com/meet/carotc;

Mon./Thurs., 2:00 p.m. to 3:30 p.m. and by appointment.

January 10, 2022

1 Course Description and Textbook Information

This course is an introduction to parallel computing and programming. Topics include, but are not

exclusively limited to:

• Introduction and Motivation: Amdahl’s Law, and review of uni-processor memory and CPU

organization.

• Parallel architectures: Message passing, shared-memory system, vector/SIMD and commu-

nications networks.

• Parallel Programming: CUDA and Message Passing Interface (MPI).

• Parallel Filesystems: MPI File interface.

• Performance Analysis Tools: Tau.

• Other Parallel Programming Paradigms: MapReduce, Transactional Memory.

• Fault Tolerance

• Applications: from across the spectrum of computational science and engineering (CSE).

1



The overall goal for this course is for students to gain expert knowledge of the design, devel-

opment and execution of massively parallel programs on the AiMOS supercomputer located at the

Center for Computational Innovations (CCI). This new supercomputer is a hybrid CPU/GPU ar-

chitecture and so many of the programming assignments will involve GPU programming. This is

a big shift in the course from previous offerings.

1.1 Prerequisite

The principle prerequisite for this class is CSCI 2500, Computer Organization. However, I under-

stand that many of you come from fields of study that are outside of Computer Science. So below

I have listed some prerequisites and course assumptions:

• Some programming experience in FORTRAN, C, C++. Java is great but not for HPC. You

will have a choice to do your assignment in C, C++ or FORTRAN subject to the language

support of the programming paradigm.

• This course assumes you have never touched a parallel or distributed computer. How-

ever, we do assume you have touched a computer and have some knowledge of Linux/Unix

as all of our parallel computing systems only use the Linux OS.

• You should possess a strong desire and love to write software. While both theory and

practice are presented in lecture, the class assignments and group project is focused on get-

ting real programs to execute in parallel such that performance improvement is demonstrated.

1.2 Optional Textbooks

• Introduction to Parallel Computing, by Grama, Gupta, Karypis and Kumar. Make sure you

have the 2nd edition. This book is available online at Amazon.com.

• An Introduction to Parallel Programming, by Peter S. Pancheo, 2011.

2 Performance Expectations

As a professor, student adviser and course instructor, I get asked, “Is Parallel Computing/Programming

Hard?”.

If you like writing software and you enjoy the challenging task of debugging programs that

have a non-deterministic execution order when not properly made to execute in parallel, this is the

course for you. Also, if you are a “performance junky” and like to tweak programs to make them

run as fast as possible, this course is for you. If you are a weak programmer or you do not really

enjoy writing software, then I would say this course is probably not your cup of tea.

If you find yourself getting “deadlocked” (pun intended) on an assignment and you are unable

to make progress, please contact Prof. Carothers and/or the TA(s) early. Do not wait until the last

minute. Also, do not try to stay up all night in a marathon debugging session. Try to work smarter

by asking questions and getting help from the instructor and our class TA(s).

2



3 Graduate Teaching Assistants

We have the following Graduate TA assigned to our class.

1. Ian Bogle. Email: boglei@rpi.edu. Office hours: Via WebEx Personal Room, https:

//rensselaer.webex.com/meet/boglei; Time - Tuesday and Wednesday, 2-3

p.m.

4 Course Format and Schedule of Topics

This course is largely a lecture format where class readings will come from the conference, journal

articles and technical reports. The anticipated order of topics is:

• Introduction and Motivation: Amdahl’s Law, and review of uni-processor memory and CPU

organization.

• Parallel architectures: Message passing, shared-memory system, vector/SIMD and commu-

nications networks.

• Parallel Programming: CUDA and Message Passing Interface (MPI).

• Parallel Filesystems: MPI File interface.

• Performance Analysis Techniques & Tools:

• Other Parallel Programming Paradigms: MapReduce, Transactional Memory.

• Fault Tolerance

• Applications: Distributed AI/Machine Learning, Parallel Discrete-Event simulation, Neuro-

morphic Computing and other CSE applications.

5 Schedule of Homeworks, Project and NO CLASS days

All homeworks and class project will be submitted using submitty.cs.rpi.edu grading sys-

tem. The approximate schedule of class assignments is as follows:

• Assignment 1 assigned on Thursday, January 13th, due on Monday, January 31st.

• Assignment 2 assigned on Monday, January 31st, due on Monday, February 14th.

• Assignment 3 assigned on Monday, February 14th, due on Monday, February 28th.

• Assignment 4 assigned on Monday, February, 28th due on Monday, March 14th.

• Assignment 5 assigned on Monday, March 14th, due on Monday, March, 28th.

3



• Project assigned on Monday March 28th, due on Wednesday, April 27th (Last Day of

Classes).

The NO CLASS days are as follows:

• Monday, January 17th in observance of MLK Day.

• Monday, February 21st (President’s Day) but takes place on Tuesday, February 22nd.

• Monday, March 7th and Thursday, March 10th for Spring Break.

• Monday, April 25th, Last Day of Class. No Lecture but hand-in last lecture summary and

Q&A session for project.

6 Grading and Other Class Policies

• 50%: 5 programming assignments worth 10 pts each. Some maybe group assignments.

Submitted using submitty.cs.rpi.edu grading system.

• 20%: 20 reading/lecture summaries (across approx. 25 lectures) each counts 1pt. Submitted

using submitty.cs.rpi.edu grading system.

• 30%: Group project. Submitted using submitty.cs.rpi.edu grading system.

Attendance Policy: Attendance at lectures is not required, but it will be very hard to write the

summary without having attended lecture.

Late Assignments Policy: Late assignments and summaries will not be graded. You will get

a zero for that assignment, except under extenuating circumstances, such as illness, family death

etc. If you are ill, please be prepared to provide a note from the health center or your own family

physician.

Grade Modifiers Policy: Grade modifiers will be used in this class. Precise break points will

be determine by overall class performance. Nominally, for example, you expect to earn a B- if

your score is greater than 79.5 and less than 83.0, B if your score is greater than 83 and less than

86, B+ if your score is greater than 86 and less than 89.5. The similar modifier points occur for

the A, C and D ranges subject to overall class performance except that there is no A+ nor is a D-

allowed under the RPI Grade Modifier Policy.

Assignment Grading Criteria: Programming assignments are graded as follows: 15% for

proper comments (e.g., each function should indicate what it does) and 85% for a correct work-

ing implementation. We typically divide the correctness points over key functions working. For

example, file reading - worth 10 points, file writing – worth 10 points, and then doing the calcula-

tion correctly – worth 65 points. Note that programs that either don’t compile or generate a “core

dump” typically get no more than 20 points of the 85. Thus, your max score for a “properly

commented” program that fails in some fundamental way is only 35 points even if you spent

100 hours of time on it.

Note: a more specific grading rubric will be made available on the submitty grading system

used in the class.

4



7 Academic Integrity

While I strongly encourage you to form study groups and work together in learning this

material, the programming assignments are to be done individually unless otherwise noted

by the assignment/project specification. What this means is that you should do whatever

is necessary to ensure your work remains your work. For example, in doing programming

assignments you might want to prepend variable names with your initials. If during the

grading process, it is determined that students shared or duplicated work, those students

will automatically take a zero for the offense plus a 5 point total average deduction. For a

second offense, the student or students involved will fail this course and a report will be sent

to the Dean of Students office which could result in additional disciplinary action.

8 Learning Outcomes

By the end of this course, you will be able to:

1. Apply the concept of the Amdahl’s Law to the estimation of the fraction of a program that

can be serialized and still yield a “good” speedup / program performance improvement.

2. Apply the concepts of a Parallel Computer Architecture by creating a parallel program

that will maximize the performance of the parallel program when executed on that class of

parallel computing systems.

3. Apply the concepts of Message Passing to the creation of a program that executes efficiently

on this class of parallel computer architecture.

4. Apply the concepts of Threads to the creation of a program that executes efficiently on this

class of parallel computer architecture.

5. Apply the concepts of CUDA to the creation of a program that executes efficiently on this

class of parallel computer architecture. Note that the concept of “threads” will be covered

in the context of CUDA programming.

6. Apply the concepts of Parallel File I/O to the creation of a parallel program that efficiently

reads and writes data to disk.

7. Apply the concepts of Performance to the analysis of computer performance problems.

8. Apply the concepts of Performance Counters to the analysis of parallel program perfor-

mance.

9. Apply the concepts from Various Research Papers to the development of a group research

project and workshop/conference quality paper.

5


