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FUNDAMENTAL CONSTANTS

Constant Symbol Value

Power of 10 Units

Speed of light c 2.997 924 58* 108 m s−1

Elementary charge e 1.602 176 565 10−19 C

Planck’s constant h 6.626 069 57 10−34 J s

ħ = h/2π 1.054 571 726 10−34 J s

Boltzmann’s constant k 1.380 6488 10−23 J K−1

Avogadro’s constant NA 6.022 141 29 1023 mol−1

Gas constant R = NAk 8.314 4621 J K−1 mol−1

Faraday’s constant F = NAe 9.648 533 65 104 C mol−1

Mass

 electron me 9.109 382 91 10−31 kg

 proton mp 1.672 621 777 10−27 kg

 neutron mn 1.674 927 351 10−27 kg

 atomic mass constant mu 1.660 538 921 10−27 kg

Vacuum permeability μ0 4π* 10−7 J s2 C−2 m−1

Vacuum permittivity ε0 = 1/μ0c
2 8.854 187 817 10−12 J−1 C2 m−1

4πε0 1.112 650 056 10−10 J−1 C2 m−1

Bohr magneton μB = eħ/2me 9.274 009 68 10−24 J T−1

Nuclear magneton μN = eħ/2mp 5.050 783 53 10−27 J T−1

Proton magnetic moment μp 1.410 606 743 10−26 J T−1

g-Value of electron ge 2.002 319 304

Magnetogyric ratio

 electron γe = –gee/2me –1.001 159 652 1010 C kg−1

 proton γp = 2μp/ħ 2.675 222 004 108 C kg−1

Bohr radius a0 = 4πε0ħ
2/e2me 5.291 772 109 10−11 m

Rydberg constant �R m e h c∞ = e
4 3

0
28/ ε 1.097 373 157 105 cm−1

hcR e�
∞ / 13.605 692 53 eV

Fine-structure constant α = μ0e
2c/2h 7.297 352 5698 10−3

α−1 1.370 359 990 74 102

Second radiation constant c2 = hc/k 1.438 777 0 10−2 m K

Stefan–Boltzmann constant σ = 2π5k4/15h3c2 5.670 373 10−8 W m−2 K−4

Standard acceleration of free fall g 9.806 65* m s−2

Gravitational constant G 6.673 84 10−11 N m2 kg−2

* Exact value. For current values of the constants, see the National Institute of Standards and Technology (NIST) website.
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ABOUT THE BOOK

This new edition follows the approach of the first edition in so 

far as it puts quantum theory in the forefront of the develop-

ment, but we have transformed the presentation. Instead of the 

chapters of conventional texts, we have presented the material 

as a series of short Topics arranged into thematic groups we 

call Focuses. Our aim is to present reader and instructor with 

maximum flexibility. Although we had in mind a particular 

sequence when writing the book, we acknowledge that instruc-

tors might have different ideas. The division into many Topics 

will allow the instructor to tailor the text within the time con-

straints of the course as omissions will be much easier to make. 

The student should also find the Topics easier to assimilate and 

review. No longer is it necessary to take a linear path through 

chapters. Instead, students and instructors can match the 

choice of Topics to their learning objectives. Indeed, we have 

carefully avoided language that suggests the Topics have been 

read in the order they appear in the book.

We did consider avoiding any implication of structure, but 

came to the view that because the Topics do fall into thematic 

groups it would be sensible to acknowledge that fact. Moreover, 

we wanted the student, if not the instructor, to appreciate the 

intellectual coherence of the subject and to understand the con-

text of each Topic. Each Focus therefore begins with a brief dis-

cussion of how its Topics cover a shared theme and how that 

theme links to others in the book. This contextual relationship 

is also captured by the ‘Road Map’ that lies at the head of each 

Focus. These maps also indicate not only how the Topics relate 

to each other but how certain Topics can be discarded and 

how each one draws on and feeds into other Focus groups. We 

wanted to convey the intellectual structure of the subject with-

out imposing our will on its order of presentation.

We have focused on helping students master this sometimes 

daunting material. Thus, each Topic opens with three ques-

tions a student typically asks: ‘Why do you need to know this 

material?’, ‘What is the key idea?’, and ‘What do you need to 

know already?’. The answers to the third question point to other 

Topics that we consider appropriate to have studied or at least 

to refer to as background to the current Topic.

This edition has more Examples, which require readers to 

collect and organize their thoughts about how to proceed, and 

more Brief illustrations, which show how to use an equation in 

a straightforward way. Both have Self-tests to enable the reader 

to assess their grasp of the material. In response to requests 

from students and reviewers, we have added more steps to 

many of the derivations of equations and solutions of Examples 

and have added hints about how to go from one expression to 

the next. Furthermore, we bring to this edition a new feature: 

The chemist’s toolkit, which offers quick and immediate help 

on a concept from mathematics or physics. The Mathematical 

background sections provide more support and appear where 

we judge they are most needed. We have structured the end-

of-Focus Discussion questions, Exercises, and Problems to 

match the grouping of the Topics, but have added Topic- and 

Focus-crossing Integrated activities to emphasize that no Topic 

is an island. We have added new material throughout the text 

and have incorporated as Topics sections that were previously 

‘Further information’ sections.

Teaching and learning are being transformed by technol-

ogy, and this edition of the text incorporates several web-based 

resources that enhance learning: they are identified in the How 

to use this book section that follows this preface.

We hope that you will enjoy using this text as much as we 

have enjoyed writing it. As ever, we hope that you will contact 

us with your suggestions for its continued improvement.

PWA

JdeP

RSF
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USING THE BOOK

Organizing the information

➤  Innovative new structure
Instead of being organized into chapters, the material is 

presented as 97 short Topics grouped into 20 Focus sec-

tions. The Roadmaps at the beginning of each Focus group 

show you the connections between the different Topics. 

Then each Topic opens with a comment on why it is impor-

tant, a statement of the key idea, and a short summary of 

the background needed.

➤  Notes on good practice
Our Notes on good practice will help you avoid making 

common mistakes. They encourage conformity to the 

international language of science by setting out the lan-

guage and procedures adopted by the International Union 

of Pure and Applied Chemistry (IUPAC).

➤  Resource section
The comprehensive ‘Resource section’ at the end of the 

book contains a table of integrals, operators, quantum 

numbers, and data, a summary of conventions about 

units, and character tables. Short extracts of these tables 

often appear in the Topics themselves principally to give 

an idea of the typical values of the physical quantities we 

are introducing. 

For the second edition of Physical Chemistry: Quanta, Matter, 
and Change we have tailored the text even more closely to 

meet the needs of students. First, it has been radically re-

organized to improve its accessibility, clarity, and flexibility. 

Second, in addition to the variety of learning features already 

present in the first edition, we have significantly enhanced the 

mathematics support by adding new ‘Chemist’s toolkit’ boxes, 

equation annotations and labels, and checklists of key equa-

tions at the end of each Topic.
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USING THE BOOK  vii

➤  Checklist of concepts

A checklist of key concepts is provided at the end of each 

Topic, so that you can tick off those concepts which you feel 

you have mastered.

Presenting the mathematics

➤  Justifications
Mathematical development is an intrinsic part of physical 

chemistry, and to achieve full understanding you need 

to see how a particular expression is obtained and if any 

assumptions have been made. The Justifications are set off 

from the text to let you adjust the level of detail that you 

require to your current needs and make it easier to review 

material.

➤  Chemist’s toolkits
New to this edition, the Chemist’s toolkits are succinct 

reminders of the mathematical concepts and techniques 

that you will need in order to understand a particular deri-

vation being described in the main text.

➤  Mathematical backgrounds
There are eight Mathematical background sections dis-

persed throughout the text. They cover in detail the main 

mathematical concepts that you need to understand in 

order to be able to master physical chemistry. Each one is 

located at the end of the Focus where it is first needed.
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viii USING THE BOOK

➤  Annotated equations and  
 equation labels 

We have annotated many equations to help you follow how 

they are developed. An annotation can take you across the 

equals sign: it is a reminder of the substitution used, an 

approximation made, the terms that have been assumed 

constant, the integral used, and so on. An annotation can 

also be a reminder of the significance of an individual 

term in an expression. We sometimes color a collection of 

numbers or symbols to show how they carry from one line 

to the next. Many of the equations are labeled to highlight 

their significance.  

➤  Checklists of equations 
You don’t have to memorize every equation in the text. A 

checklist at the end of each Topic summarizes the most 

important equations and the conditions under which they 

apply.

Setting up and solving problems

➤  Brief illustrations
A Brief illustration shows you how to use equations or 

concepts that have just been introduced in the text. They 

will help you to learn how to use data, manipulate units  

correctly, and become familiar with the magnitudes of 

properties. They are all accompanied by a Self-test which 

you can use to monitor your progress.  
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USING THE BOOK  ix

➤  Worked examples

Worked examples are more detailed illustrations of the 

application of the material, which require you to assemble 

and develop concepts and equations. We provide a sug-

gested method for solving the problem and then implement 

it to reach the answer. Worked examples are also accompa-

nied by Self-tests.

➤  Discussion questions
Discussion questions appear at the end of every Focus, 

where they are organized by Topic. These questions are 

designed to encourage you to reflect on the material you 

have just read, and to view it conceptually.

➤  Exercises and problems
Exercises and problems are also provided at the end of 

every Focus and organized by Topic. They prompt you to 

test your understanding of the Topics in that Focus group. 

Exercises are designed as relatively straightforward numer-

ical tests whereas the problems are more challenging. The 

Integrated activities, which are problems that cross several 

Topics, also appear at the end of each Focus. 

➤  Integrated activities
At the end of most Focus sections, you will find questions 

designed to help you use your knowledge creatively in a 

variety of ways. Some of the questions refer to the ‘Living 

graphs’ on the Book Companion Site, which you will find 

helpful for answering them.

➤  Solutions manuals
Two solutions manuals have been written by Charles 

Trapp, Marshall Cady, and Carmen Giunta to accompany 

this book.

The Student Solutions Manual (ISBN 1-4641-2442-6) pro-

vides full solutions to the ‘a’ exercises and to the odd-

numbered problems.

The Instructor’s Solutions Manual provides full solutions 

to the ‘b’ exercises and to the even-numbered problems 

(available to registered adopters of the book only). The 

Instructor’s Solutions Manual is available online only and 

can be accessed on the Book Companion Site.

Discussion questions
1.1 Summarize the features of the nuclear model of the atom. Define the terms 

atomic number, nucleon number, mass number.

1.2 Where in the periodic table are metals, non-metals, transition metals, 

lanthanoids, and actinoids found?

1.3 Summarize what is meant by a single and a multiple bond.

1.4 Summarize the principal concepts of the VSEPR theory of molecular 

shape.

1.5 Compare and contrast the properties of (a) the solid, liquid, and gas states 

of matter, (b) the condensed and gaseous states of matter.

Exercises
1.1(a) Express the typical ground-state electron configuration of an atom of an 

element in (a) Group 2, (b) Group 7, (c) Group 15 of the periodic table.

1.1(b) Express the typical ground-state electron configuration of an atom of an 

element in (a) Group 3, (b) Group 5, (c) Group 13 of the periodic table.

1.2(a) Identify the oxidation numbers of the elements in (a) MgCl2, (b) FeO, 

(c) Hg2Cl2.

1.2(b) Identify the oxidation numbers of the elements in (a) CaH2, (b) CaC2, 

(c) LiN3.

1.3(a) Identify a molecule with a (a) single, (b) double, (c) triple bond between 

a carbon and a nitrogen atom.

1.3(b) Identify a molecule with (a) one, (b) two, (c) three lone pairs on the 

central atom.

1.4(a) Draw the Lewis (electron dot) structures of (a) SO3
2− , (b) XeF4, (c) P4.

1.4(b) Draw the Lewis (electron dot) structures of (a) O3, (b) CIF3
+, (c) N3

−.

1.5(a) Identify three compounds with an incomplete octet.

1.5(b) Identify four hypervalent compounds.

1.6(a) Use VSEPR theory to predict the structures of (a) PCl3, (b) PCl5, (c) 

XeF2, (d) XeF4.

1.6(b) Use VSEPR theory to predict the structures of (a) H2O2, (b) FSO3
−,  

(c) KrF2, (d) PCl4
+ .

1.7(a) Identify the polarities (by attaching partial charges δ+ and δ–) of the 

bonds (a) C–Cl, (b) P–H, (c) N–O.

1.7(b) Identify the polarities (by attaching partial charges δ+ and δ–) of the 

bonds (a) C–H, (b) P–S, (c) N–Cl.

1.8(a) State whether you expect the following molecules to be polar or 

nonpolar: (a) CO2, (b) SO2, (c) N2O, (d) SF4.

1.8(b) State whether you expect the following molecules to be polar or 

nonpolar: (a) O3, (b) XeF2, (c) NO2, (d) C6H14.

1.9(a) Arrange the molecules in Exercise 1.8(a) by increasing dipole moment.

1.9(b) Arrange the molecules in Exercise 1.8(b) by increasing dipole moment.

1.10(a) Classify the following properties as extensive or intensive: (a) mass, 

(b) mass density, (c) temperature, (d) number density.

1.10(b) Classify the following properties as extensive or intensive: (a) pressure, 

(b) specific heat capacity, (c) weight, (d) molality.

1.11(a) Calculate (a) the amount of C2H5OH (in moles) and (b) the number of 

molecules present in 25.0 g of ethanol.

1.11(b) Calculate (a) the amount of C6H22O11 (in moles) and (b) the number of 

molecules present in 5.0 g of glucose.

1.12(a) Calculate (a) the mass, (b) the weight on the surface of the Earth 

(where g = 9.81 m s−2) of 10.0 mol H2O(l).

1.12(b) Calculate (a) the mass, (b) the weight on the surface of Mars (where 

g = 3.72 m s−2) of 10.0 mol C6H6(l).

1.13(a) Calculate the pressure exerted by a person of mass 65 kg standing 

(on the surface of the Earth) on shoes with soles of area 150 cm2.

1.13(b) Calculate the pressure exerted by a person of mass 60 kg standing 

(on the surface of the Earth) on shoes with stiletto heels of area 2 cm2 

(assume that the weight is entirely on the heels).

1.14(a) Express the pressure calculated in Exercise 1.13(a) in atmospheres.

1.14(b) Express the pressure calculated in Exercise 1.13(b) in atmospheres.

1.15(a) Express a pressure of 1.45 atm in (a) pascal, (b) bar.

1.15(b) Express a pressure of 222 atm in (a) pascal, (b) bar.

1.16(a) Convert blood temperature, 37.0 °C, to the Kelvin scale.

1.16(b) Convert the boiling point of oxygen, 90.18 K, to the Celsius scale.

1.17(a) Equation 1.4 is a relation between the Kelvin and Celsius scales. Devise 

the corresponding equation relating the Fahrenheit and Celsius scales and use 

it to express the boiling point of ethanol (78.5 °C) in degrees Fahrenheit.

1.17(b) The Rankine scale is a version of the thermodynamic temperature scale 

in which the degrees (°R) are the same size as degrees Fahrenheit. Derive an 

expression relating the Rankine and Kelvin scales and express the freezing 

point of water in degrees Rankine.

1.18(a) A sample of hydrogen gas was found to have a pressure of 110 kPa 

when the temperature was 20.0 °C. What can its pressure be expected to be 

when the temperature is 7.0 °C?

1.18(b) A sample of 325 mg of neon occupies 2.00 dm3 at 20.0 °C. Use the 

perfect gas law to calculate the pressure of the gas.

1.19(a) At 500 °C and 93.2 kPa, the mass density of sulfur vapour is 3.710 kg 

m−3. What is the molecular formula of sulfur under these conditions?

1.19(b) At 100 °C and 1.60 kPa, the mass density of phosphorus vapour is 0.6388 kg 

m−3. What is the molecular formula of phosphorus under these conditions?

1.20(a) Calculate the pressure exerted by 22 g of ethane behaving as a perfect 

gas when confined to 1000 cm3 at 25.0 °C.

1.20(b) Calculate the pressure exerted by 7.05 g of oxygen behaving as a perfect 

gas when confined to 100 cm3 at 100.0 °C.

1.21(a) A vessel of volume 10.0 dm3 contains 2.0 mol H2 and 1.0 mol N2 at 5.0 °C. 

Calculate the partial pressure of each component and their total pressure.

1.21(b) A vessel of volume 100 cm3 contains 0.25 mol O2 and 0.034 mol CO2 at 

10.0 °C. Calculate the partial pressure of each component and their total pressure.
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THE BOOK COMPANION SITE

The Book Companion Site to accompany Physical Chemistry: 
Quanta, Matter, and Change, second edition provides a num-

ber of useful teaching and learning resources for students and 

instructors. 

The Book Companion Site can be accessed by visiting:

 www.whfreeman.com/qmc2e

Instructor resources are available only to regisered adopters of 

the textbook. To register, simply visit www.whfreeman.com/

qmc2e and follow the appropriate links. 

Student resources are openly available to all, without 

registration.

Online Impact sections
Impact sections place the subject of physical chemistry in con-

text by showing how it has been applied in a variety of modern 

contexts. New for this edition, the Impacts are linked from the 

text by QR codes. Alternatively, visit the URL displayed next 

to the QR code.

Group theory tables
Comprehensive group theory tables are available to download.

Figures and tables from the book

Instructors can find the artwork and tables from the book 

online in ready-to-download format. These may be used for 

lectures without charge (but not for commercial purposes 

without specific permission).

Molecular modelling problems
PDFs containing molecular modelling problems can be down-

loaded, designed for use with the Spartan Student™ software. 

However they can also be completed using any modeling soft-

ware program that allows Hartree–Fock, density functional, 

and MP2 calculations.

Living graphs
These interactive graphs can be used to explore how a proper-

ty changes as various parameters are changed. Living graphs 

are sometimes referred to in the ‘Integrated activities’ section 

of a Focus group.

       Materials on the Book Companion Site include:
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Chemistry is the science of matter and the changes it can undergo. Physical chemistry is the branch 
of chemistry that establishes and develops the principles of the subject in terms of the underlying 
concepts of physics and the language of mathematics. It provides the basis for developing new spec-
troscopic techniques and their interpretation, for understanding the structures of molecules and the 
details of their electron distributions, and for relating the bulk properties of matter to their constitu-
ent atoms. Physical chemistry also provides a window on to the world of chemical reactions, and 
allows us to understand in detail how they take place.

Throughout the text we draw on a number of concepts that should already be familiar from intro-
ductory chemistry, such as the ‘nuclear model’ of the atom, ‘Lewis structures’ of molecules, and the 
‘perfect gas equation’. Topic 1 reviews these and other concepts of chemistry that appear at many 
stages of the presentation.

Because physical chemistry lies at the interface between physics and chemistry, we also need to 
review some of the concepts from elementary physics that we need to draw on in the text. Topic 2 
begins with a brief summary of ‘classical mechanics’, our starting point for discussion of the motion 
and energy of particles. Then it reviews concepts of ‘thermodynamics’ that should already be part of 
your chemical vocabulary. Finally, we introduce the ‘Boltzmann distribution’ and the ‘equipartition 
theorem’, which help to establish connections between the bulk and molecular properties of matter.

Topic 3 describes waves, with a focus on ‘harmonic waves’, which form the basis for the classical 
description of electromagnetic radiation. The classical ideas of motion, energy, and waves in Topics 2 
and 3 are then expanded with The principles of quantum mechanics, setting the stage for the treat-
ment of electrons, atoms, and molecules. From quantum mechanics we develop through the text 
principles of chemical structure and change, and the basis of many techniques of investigation.

FOCUS 1  ON  Foundations

Topic  3

WavesWaves

Topic  2

Energy

Topic  1

Matter

The entire
text
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TOPIC 1

Matter

The presentation of physical chemistry in this text is based on 

the experimentally verified fact that matter consists of atoms. 

In this Topic, which is a review of elementary concepts and lan-

guage widely used in chemistry, we begin to make connections 

between atomic, molecular, and bulk properties. Most of the 

material is developed in greater detail later in the text.

1.1 Atoms

The atom of an element is characterized by its atomic number, 

Z, which is the number of protons in its nucleus. The number 

of neutrons in a nucleus is variable to a small extent, and the 

nucleon number (which is also commonly called the mass 

number), A, is the total number of protons and neutrons in the 

nucleus. Protons and neutrons are collectively called nucleons. 

Atoms of the same atomic number but different nucleon num-

ber are the isotopes of the element.

(a) The nuclear model
According to the nuclear model, an atom of atomic number Z 

consists of a nucleus of charge +Ze surrounded by Z electrons 

each of charge –e (e is the fundamental charge: see inside the 

front cover for its value and the values of the other fundamental 

constants). These electrons occupy atomic orbitals, which are 

regions of space where they are most likely to be found, with no 

more than two electrons in any one orbital. The atomic orbit-

als are arranged in shells around the nucleus, each shell being 

characterized by the principal quantum number, n = 1, 2, …. 

A shell consists of n2 individual orbitals, which are grouped 

together into n subshells; these subshells, and the orbitals they 

contain, are denoted s, p, d, and f. For all neutral atoms other 

than hydrogen, the subshells of a given shell have slightly differ-

ent energies.

(b) The periodic table
The sequential occupation of the orbitals in successive shells 

results in periodic similarities in the electronic configurations, 
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 ➤ Why do you need to know this material?
Because chemistry is about matter and the changes 
that it can undergo, both physically and chemically, the 
properties of matter underlie the entire discussion in this 
book.

 ➤ What is the key idea?
The bulk properties of matter are related to the identities 
and arrangements of atoms and molecules in a sample.

 ➤ What do you need to know already?
This Topic reviews material commonly covered in intro-
ductory chemistry.
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1 Matter  3

the specification of the occupied orbitals, of atoms when they 

are arranged in order of their atomic number. This periodicity 

of structure accounts for the formulation of the periodic table 

(see inside the back cover). The vertical columns of the peri-

odic table are called groups and (in the modern convention) 

numbered from 1 to 18. Successive rows of the periodic table 

are called periods, the number of the period being equal to the 

principal quantum number of the valence shell, the outermost 

shell of the atom.

Some of the groups also have familiar names: Group 1 con-

sists of the alkali metals, Group 2 (more specifically, calcium, 

strontium, and barium) of the alkaline earth metals, Group 17 

of the halogens, and Group 18 of the noble gases. Broadly 

speaking, the elements towards the left of the periodic table 

are metals and those towards the right are non-metals; the two 

classes of substance meet at a diagonal line running from boron 

to polonium, which constitute the metalloids, with properties 

intermediate between those of metals and non-metals.

The periodic table is divided into s, p, d, and f blocks, accord-

ing to the subshell that is last to be occupied in the formula-

tion of the electronic configuration of the atom. The members 

of the d block (specifically the members of Groups 3–11 in the 

d block) are also known as the transition metals; those of the 

f block (which is not divided into numbered groups) are some-

times called the inner transition metals. The upper row of the 

f block (Period 6) consists of the lanthanoids (still commonly 

the ‘lanthanides’) and the lower row (Period 7) consists of the 

actinoids (still commonly the ‘actinides’).

(c) Ions
A monatomic ion is an electrically charged atom. When an atom 

gains one or more electrons it becomes a negatively charged 

anion; when it loses one or more electrons it becomes a posi-

tively charged cation. The charge number of an ion is called the 

oxidation number of the element in that state (thus, the oxida-

tion number of magnesium in Mg2+ is +2 and that of oxygen in 

O2– is –2). It is appropriate, but not always done, to distinguish 

between the oxidation number and the oxidation state, the lat-

ter being the physical state of the atom with a specified oxidation 

number. Thus, the oxidation number of magnesium is +2 when 

it is present as Mg2+, and it is present in the oxidation state Mg2+.

The elements form ions that are characteristic of their location 

in the periodic table: metallic elements typically form cations by 

losing the electrons of their outermost shell and acquiring the 

electronic configuration of the preceding noble gas atom. Non-

metals typically form anions by gaining electrons and attaining 

the electronic configuration of the following noble gas atom.

1.2 Molecules

A chemical bond is the link between atoms. Compounds that 

contain a metallic element typically, but far from universally, 

form ionic compounds that consist of cations and anions in a 

crystalline array. The ‘chemical bonds’ in an ionic compound 

are due to the Coulombic interactions between all the ions in 

the crystal, and it is inappropriate to refer to a bond between 

a specific pair of neighbouring ions. The smallest unit of an 

ionic compound is called a formula unit. Thus NaNO3, con-

sisting of a Na+ cation and a NO3
−  anion, is the formula unit 

of sodium nitrate. Compounds that do not contain a metallic 

element typically form covalent compounds consisting of dis-

crete molecules. In this case, the bonds between the atoms of 

a molecule are covalent, meaning that they consist of shared 

pairs of electrons.

A note on good practice Some chemists use the term ‘mol-

ecule’ to denote the smallest unit of a compound with the 

composition of the bulk material regardless of whether it is an 

ionic or covalent compound and thus speak of ‘a molecule of 

NaCl’. We use the term ‘molecule’ to denote a discrete cova-

lently bonded entity (as in H2O); for an ionic compound we 

use ‘formula unit’.

(a) Lewis structures

The pattern of bonds between neighbouring atoms is displayed 

by drawing a Lewis structure, in which bonds are shown as 

lines and lone pairs of electrons, pairs of valence electrons that 

are not used in bonding, are shown as dots. Lewis structures are 

constructed by allowing each atom to share electrons until it 

has acquired an octet of eight electrons (for hydrogen, a duplet 

of two electrons). A shared pair of electrons is a single bond, 

two shared pairs constitute a double bond, and three shared 

pairs constitute a triple bond. Atoms of elements of Period 3 

and later can accommodate more than eight electrons in their 

valence shell and ‘expand their octet’ to become hypervalent, 

that is, form more bonds than the octet rule would allow (for 

example, SF6), or form more bonds to a small number of atoms 

(see Brief illustration 1.1). When more than one Lewis struc-

ture can be written for a given arrangement of atoms, it is sup-

posed that resonance, a blending of the structures, may occur 

and distribute multiple-bond character over the molecule (for 

example, the two Kekulé structures of benzene). Examples of 

these aspects of Lewis structures are shown in Fig. 1.1.
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Figure 1.1 Examples of Lewis structures.
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4 1 Foundations

Definition 
Magnitude of the 
electric dipole moment 

(1.1)

(b) VSEPR theory

Except in the simplest cases, a Lewis structure does not express 

the three-dimensional structure of a molecule. The simplest 

approach to the prediction of molecular shape is valence-

shell electron pair repulsion theory (VSEPR theory). In this 

approach, the regions of high electron density, as represented 

by bonds—whether single or multiple—and lone pairs, take 

up orientations around the central atom that maximize their 

separations. Then the position of the attached atoms (not the 

lone pairs) is noted and used to classify the shape of the mol-

ecule. Thus, four regions of electron density adopt a tetrahe-

dral arrangement; if an atom is at each of these locations (as 

in CH4), then the molecule is tetrahedral; if there is an atom at 

only three of these locations (as in NH3), then the molecule is 

trigonal pyramidal, and so on. The names of the various shapes 

that are commonly found are shown in Fig. 1.2. In a refinement 

of the theory, lone pairs are assumed to repel bonding pairs 

more strongly than bonding pairs repel each other. The shape a 

molecule then adopts, if it is not determined fully by symmetry, 

is such as to minimize repulsions from lone pairs.

(c) Polar bonds
Covalent bonds may be polar, or correspond to an unequal 

sharing of the electron pair, with the result that one atom has 

a partial positive charge (denoted δ+) and the other a partial 

negative charge (δ–). The ability of an atom to attract electrons 

to itself when part of a molecule is measured by the electro-

negativity, χ (chi), of the element. The juxtaposition of equal 

and opposite partial charges constitutes an electric dipole. If 

those charges are +Q and –Q and they are separated by a dis-

tance d, the magnitude of the electric dipole moment, μ, is

μ =Qd

Brief illustration 1.1 Octet expansion 

Octet expansion is also encountered in species that do not 

necessarily require it, but which, if it is permitted, may acquire 

a lower energy. Thus, of the structures (1a) and (1b) of the SO4
2− 

ion, the second has a lower energy than the first. The actual 

structure of the ion is a resonance hybrid of both structures 

(together with analogous structures with double bonds in dif-

ferent locations), but the latter structure makes the dominant 

contribution.

S
O

O
OO

2–

1a  

S
O

O
OO

2–

1b

Self-test 1.1 Draw the Lewis structure for XeO4.

Answer:  Xe
O

O
OO2

Linear Angular (bent)

Square planar Trigonal planar

Tetrahedral Trigonal bipyramidal Octahedral

Figure 1.2 The shapes of molecules that result from 
application of VSEPR theory.

Brief illustration 1.2 Molecular shapes 

In SF4 the lone pair adopts an equatorial position and the two 

axial S–F bonds bend away from it slightly, to give a bent see-

saw shaped molecule (Fig. 1.3).

Self-test 1.2 Predict the shape of the SO3
2−  ion.

Answer: Trigonal pyramid

(a) (b)

Figure 1.3 (a) In SF4 the lone pair adopts an equatorial 
position. (b) The two axial S–F bonds bend away from it 
slightly, to give a bent see-saw shaped molecule.
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1 Matter  5

1.3 Bulk matter

Bulk matter consists of large numbers of atoms, molecules, or 

ions. Its physical state may be solid, liquid, or gas:

 A solid is a form of matter that adopts and maintains a 

shape that is independent of the container it occupies.

 A liquid is a form of matter that adopts the shape of the part 

of the container it occupies (in a gravitational field, the 

lower part) and is separated from the unoccupied part of the 

container by a definite surface.

 A gas is a form of matter that immediately fills any container 

it occupies.

A liquid and a solid are examples of a condensed state of  matter. 

A liquid and a gas are examples of a fluid form of  matter: they 

flow in response to forces (such as gravity) that are applied.

(a) Properties of bulk matter
The state of a bulk sample of matter is defined by specifying the 

values of various properties. Among them are:

 The mass, m, a measure of the quantity of matter present 

(unit: 1 kilogram, 1 kg).

 The volume, V, a measure of the quantity of space the 

sample occupies (unit: 1 cubic metre, 1 m3).

 The amount of substance, n, a measure of the number of 

specified entities (atoms, molecules, or formula units) 

present (unit: 1 mole, 1 mol).

An extensive property of bulk matter is a property that 

depends on the amount of substance present in the sample; 

an intensive property is a property that is independent of the 

amount of substance. The volume is extensive; the mass density, 

ρ (rho), with

ρ = m

V  
 Mass density  (1.2)

is intensive.

The amount of substance, n (colloquially, ‘the number of 

moles’), is a measure of the number of specified entities pre-

sent in the sample. ‘Amount of substance’ is the official name 

of the quantity; it is commonly simplified to ‘chemical amount’ 

or simply ‘amount’. The unit 1 mol is currently defined as the 

number of carbon atoms in exactly 12 g of carbon-12. (In 2011 

the decision was taken to replace this definition, but the change 

has not yet, in 2014, been implemented.) The number of enti-

ties per mole is called Avogadro’s constant, NA; the currently 

accepted value is 6.022 × 1023 mol−1 (note that NA is a constant 

with units, not a pure number).

The molar mass of a substance, M (units: formally kilograms 

per mole but commonly grams per mole, g mol−1), is the mass 

per mole of its atoms, its molecules, or its formula units. The 

amount of substance of specified entities in a sample can read-

ily be calculated from its mass, by noting that

n = m

M  
 Amount of substance  (1.3)

A note on good practice Be careful to distinguish atomic or 

molecular mass (the mass of a single atom or molecule; units 

kg) from molar mass (the mass per mole of atoms or mol-

ecules; units kg mol−1). Relative molecular masses of atoms 

and molecules, Mr = m/mu, where m is the mass of the atom or 

molecule and mu is the atomic mass constant (see inside front 

cover), are still widely called ‘atomic weights’ and ‘molecular 

weights’ even though they are dimensionless quantities and 

not weights (the gravitational force exerted on an object).

A sample of matter may be subjected to a pressure, p (unit: 

1 pascal, Pa; 1 Pa = 1 kg m−1 s−2), which is defined as the force, 

F, it is subjected to, divided by the area, A, to which that force 

is applied. A sample of gas exerts a pressure on the walls of its 

container because the molecules of gas are in ceaseless, random 

motion, and exert a force when they strike the walls. The fre-

quency of the collisions is normally so great that the force, and 

therefore the pressure, is perceived as being steady.

Brief illustration 1.4 Volume units 

Volume is also expressed as submultiples of 1 m3, such as cubic 

decimetres (1 dm3 = 10−3 m3) or cubic centimetres (1 cm3 = 10−6 

m3). It is also common to encounter the non-SI unit litre 

(1 L = 1 dm3) and its submultiple the millilitre (1 mL = 1 cm3). 

To carry out simple unit conversions, simply replace the frac-

tion of the unit (such as 1 cm) by its definition (in this case, 

10−2 m). Thus, to convert 100 cm3 to cubic decimetres (litres), 

use 1 cm = 10−1 dm, in which case 100 cm3 = 100 (10−1 dm)3, 

which is the same as 0.100 dm3.

Self-test 1.4 Express a volume of 100 mm3 in units of cm3.

Answer: 0.100 cm3

Brief illustration 1.3 Nonpolar molecules with polar bonds

Whether or not a molecule as a whole is polar depends on the 

arrangement of its bonds, for in highly symmetrical molecules 

there may be no net dipole. Thus, although the linear CO2 

molecule (which is structurally OCO) has polar CO bonds, 

their effects cancel and the molecule as a whole is nonpolar.

Self-test 1.3 Is NH3 polar?

Answer: Yes
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6 1 Foundations

Although 1 pascal is the SI unit of pressure (The chem-

ist’s toolkit 1.1), it is also common to express pressure in bar 

(1 bar = 105 Pa) or atmospheres (1 atm = 101 325 Pa exactly), both 

of which correspond to typical atmospheric pressure. Because 

many physical properties depend on the pressure acting on a 

sample, it is appropriate to select a certain value of the pressure 

to report their values. The standard pressure for reporting phys-

ical quantities is currently defined as p< = 1 bar exactly.

To specify the state of a sample fully it is also necessary to give 

its temperature, T. The temperature is formally a property that 

determines in which direction energy will flow as heat when 

two samples are placed in contact through thermally conduct-

ing walls: energy flows from the sample with the higher temper-

ature to the sample with the lower temperature. The symbol T is 

used to denote the thermodynamic temperature, which is an 

absolute scale with T = 0 as the lowest point. Temperatures above 

T = 0 are then most commonly expressed by using the Kelvin 

scale, in which the gradations of temperature are expressed as 

multiples of the unit 1 kelvin (1 K). The Kelvin scale is currently 

defined by setting the triple point of water (the temperature at 

which ice, liquid water, and water vapour are in mutual equi-

librium) at exactly 273.16 K (as for certain other units, a deci-

sion has been taken to revise this definition, but it has not yet, 

in 2014, been implemented). The freezing point of water (the 

melting point of ice) at 1 atm is then found experimentally to 

lie 0.01 K below the triple point, so the freezing point of water 

is 273.15 K. The Kelvin scale is unsuitable for everyday meas-

urements of temperature, and it is common to use the Celsius 

scale, which is defined in terms of the Kelvin scale as

θ / .°C /K 273 15= −T
 

Definition  Celsius scale  (1.4)

Thus, the freezing point of water is 0 °C and its boiling point (at 

1 atm) is found to be 100 °C (more precisely 99.974 °C). Note 

that in this text T invariably denotes the thermodynamic (abso-

lute) temperature and that temperatures on the Celsius scale 

are denoted θ (theta).

A note on good practice Note that we write T = 0, not T = 0 K. 

General statements in science should be expressed without 

reference to a specific set of units. Moreover, because T (unlike 

θ) is absolute, the lowest point is 0 regardless of the scale used 

to express higher temperatures (such as the Kelvin scale). 

Similarly, we write m = 0, not m = 0 kg and l = 0, not l = 0 m.

(b) The perfect gas equation
The properties that define the state of a system are not in gen-

eral independent of one another. The most important example 

of a relation between them is provided by the idealized fluid 

known as a perfect gas (also, commonly, an ‘ideal gas’):

pV  = nRT
 

 Perfect gas equation  (1.5)

Here R is the gas constant, a universal constant (in the sense 

of being independent of the chemical identity of the gas) with 

the value 8.3145 J K−1 mol−1. Throughout this text, equations 

applicable only to perfect gases (and other idealized systems) 

are labelled, as here, with the number in blue.

A note on good practice Although the term ‘ideal gas’ is almost 

universally used in place of ‘perfect gas’, there are reasons for 

preferring the latter term. In an ideal system the interactions 

between molecules in a mixture are all the same. In a perfect 

The chemist’s toolkit 1.1 Quantities and units

The result of a measurement is a physical quantity that is 

reported as a numerical multiple of a unit:

physical quantity = numerical value unit×

It follows that units may be treated like algebraic quantities and 

may be multiplied, divided, and cancelled. Thus, the expres-

sion (physical quantity)/unit is the numerical value (a dimen-

sionless quantity) of the measurement in the specified units. 

For instance, the mass m of an object could be reported as 

m = 2.5 kg or m/kg = 2.5. See Table 1.1 in the Resource section for 

a list of units. Although it is good practice to use only SI units, 

there will be occasions where accepted practice is so deeply 

rooted that physical quantities are expressed using other, non-

SI units. By international convention, all physical quantities are 

represented by sloping symbols; all units are roman (upright).

Units may be modified by a prefix that denotes a factor of a 

power of 10. Among the most common SI prefixes are those 

listed in Table 1.2 in the Resource section. Examples of the use 

of these prefixes are:

1nm 1 m 1ps 1 s 1 mol 1 mol9 12= = =0 0 0 6− − −μ

Powers of units apply to the prefix as well as the unit they mod-

ify. For example, 1 cm3 = 1 (cm)3, and (10−2 m)3 = 10−6 m3. Note 

that 1 cm3 does not mean 1 c(m3) . When carrying out numeri-

cal calculations, it is usually safest to write out the numerical 

value of an observable in scientific notation (as n.nnn × 10n).

There are seven SI base units, which are listed in Table 1.3 

in the Resource section. All other physical quantities may be 

expressed as combinations of these base units (see Table 1.4). 

Molar concentration (more formally, but very rarely, amount of 

substance concentration), for example, which is an amount of 

substance divided by the volume it occupies, can be expressed 

using the derived units of mol dm−3 as a combination of the 

base units for amount of substance and length. A number of 

these derived combinations of units have special names and 

symbols and we highlight them as they arise.
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Checklist of concepts

☐ 1. In t he nuclear model  of an atom, negat ively  

charged electrons occupy atomic orbitals which  

are arranged in shells around a positively charged 

nucleus.

☐ 2. The periodic table highlights similarities in electronic 

configurations of atoms, which in turn lead to similari-

ties in their physical and chemical properties.

☐ 3. Covalent compounds consist of discrete molecules in 

which atoms are linked by covalent bonds.

☐ 4. Ionic compounds consist of cations and anions in a 

crystalline array.

☐ 5. Lewis structures are useful models of the pattern of 

bonding in molecules.

☐ 6. The valence-shell electron pair repulsion theory 

(VSEPR theory) is used to predict the three-dimensional 

shapes of molecules from their Lewis structures.

☐ 7. The electrons in polar covalent bonds are shared une-

qually between the bonded nuclei.

☐ 8. The physical states of bulk matter are solid, liquid, and gas.

☐ 9. The state of a sample of bulk matter is defined by speci-

fying its properties, such as mass, volume, amount, 

pressure, and temperature.

☐ 10. The perfect gas equation is a relation between the pressure, 

volume, amount, and temperature of an idealized gas.

☐ 11. A limiting law is a law that becomes increasingly valid 

in a particular limit.

gas not only are the interactions all the same but they are in 

fact zero. Few, though, make this useful distinction.

Equation 1.5, the perfect gas equation, is a summary of three 

empirical conclusions, namely Boyle’s law (p∝1/V at constant 

temperature and amount), Charles’s law (p ∝ T at constant vol-

ume and amount), and Avogadro’s principle (V ∝ n at constant 

temperature and pressure).

All gases obey the perfect gas equation ever more closely 

as the pressure is reduced towards zero. That is, eqn 1.5 is an 

example of a limiting law, a law that becomes increasingly 

valid in a particular limit, in this case as the pressure is reduced 

to zero. In practice, normal atmospheric pressure at sea level 

(about 1 atm) is already low enough for most gases to behave 

almost perfectly, and, unless stated otherwise, we assume in 

this text that the gases we encounter behave perfectly and obey 

eqn 1.5.

A mixture of perfect gases behaves like a single perfect gas. 

According to Dalton’s law, the total pressure of such a mixture 

is the sum of the pressures to which each gas would give rise if it 

occupied the container alone:

p= p pA B+ + …
 

 Dalton’s law  (1.6)

Each pressure, pJ, can be calculated from the perfect gas equa-

tion in the form pJ = nJRT/V.

Example 1.1 Using the perfect gas equation 

Calculate the pressure in kilopascals exerted by 1.25 g of nitro-

gen gas in a flask of volume 250 cm3 at 20 °C.

Method To use eqn 1.5, we need to know the amount of mol-

ecules (in moles) in the sample, which we can obtain from the 

mass and the molar mass (by using eqn 1.3) and to convert the 

temperature to the Kelvin scale (by using eqn 1.4).

Answer The amount of N2 molecules (of molar mass 28.02 g 

mol−1) present is

n
m

M
( )

( )

.

.

.

.
N

N

g

g mol
mol2

2
1

1 25

28 02

1 25

28 02
= = =−

The temperature of the sample is

T T =/K = 2 273 15  so 273 15  K0 + . , .(20 + )

Therefore, after rewriting eqn 1.5 as p = nRT/V,

p

n R

=
× × +− −( . . ) ( . ) (1 25 28 02 8 3145 201 1/ mol JK mol

� ��� ��� � ���� ����
2273 15

2 50

1 25 28 02

4 3

. )

( . )

( . . )

K

m

T

V
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� ��� 	��
×

=

−10

× (8.314/ 55) × (20 + 273.15)
× 102 50

4 35 10 435

4 3

1 1

5

3

.

.

−

=

= × =
−

J

m
J m Pa

Pa kPa



A note on good practice It is best to postpone a numerical 

calculation to the last possible stage, and carry it out in a 

single step. This procedure avoids rounding errors. When 

we judge it appropriate to show an intermediate result 

without committing ourselves to a number of significant 

figures, we write it as n.nnn….

Self-test 1.5 Calculate the pressure exerted by 1.22 g of carbon 

dioxide confined to a flask of volume 500 dm3 (5.00 × 102 dm3) at 

37 °C.

Answer: 143 Pa
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Checklist of equations

Property Equation Comment Equation number

Electric dipole moment μ = Qd 1.1

Mass density ρ = m/V Intensive property 1.2

Amount of substance n = m/M Extensive property 1.3

Celsius scale θ/°C = T/K − 273.15 Temperature is an intensive property 1.4

Perfect gas equation pV = nRT 1.5

Dalton’s law p = pA + pB + … 1.6
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TOPIC 2

Energy

Much of chemistry is concerned with transfers and transforma-

tions of energy, and from the outset it is appropriate to define 

this familiar quantity precisely. We begin here by reviewing 

classical mechanics, which was formulated by Isaac Newton 

in the seventeenth century, and establishes the vocabulary used 

to describe the motion and energy of particles. These classical 

ideas prepare us for quantum mechanics, the more fundamen-

tal theory formulated in the twentieth century for the study of 

small particles, such as electrons, atoms, and molecules. We 

develop the concepts of quantum mechanics throughout the 

text. Here we begin to see why it is needed as a foundation for 

understanding atomic and molecular structure.

2.1 Force

Molecules are built from atoms and atoms are built from suba-

tomic particles. To understand their structures we need to 

know how these bodies move under the influence of the forces 

they experience.

(a) Momentum
‘Translation’ is the motion of a particle through space. The 

velocity, v, of a particle is the rate of change of its position r:

v = d

d

r
t  

Definition  Velocity  (2.1)

For motion confined to a single dimension, we would write 

vx = dx/dt. The velocity and position are vectors, with both 

direction and magnitude (vectors and their manipulation are 

treated in detail in Mathematical background 4). The magni-

tude of the velocity is the speed, v. The linear momentum, p, of 

a particle of mass m is related to its velocity, v, by

p= mv
 

Definition  Linear momentum  (2.2)

Like the velocity vector, the linear momentum vector points in 

the direction of travel of the particle (Fig. 2.1); its magnitude is 

denoted p.

Contents
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(a) Momentum 9

Brief illustration 2.1: The moment of inertia 10
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Checklist of equations 18

 ➤ Why do you need to know this material?

Energy is the central unifying concept of physical chemistry, 
and you need to gain insight into how electrons, atoms, 
and molecules gain, store, and lose energy.

 ➤ What is the key idea?
Energy, the capacity to do work, is restricted to discrete 
values in electrons, atoms, and molecules.

 ➤ What do you need to know already?
You need to review the laws of motion and principles of 
electrostatics normally covered in introductory physics, 
and concepts of thermodynamics normally covered in 
introductory chemistry.
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10 1 Foundations 

The description of rotation is very similar to that of trans-

lation. The rotational motion of a particle about a central 

point is described by its angular momentum, J. The angular 

momentum is a vector: its magnitude gives the rate at which 

a particle circulates and its direction indicates the axis of 

rotation (Fig. 2.2). The magnitude of the angular momen-

tum, J, is

J I= ω   Angular momentum  (2.3)

where ω is the angular velocity of the body, its rate of 

change of angular position (in radians per second), and I is 

the moment of inertia, a measure of its resistance to rota-

tional acceleration. For a point particle of mass m moving in 

a circle of radius r, the moment of inertia about the axis of 

rotation is

I mr= 2
 Point particle  Moment of inertia  (2.4)

(b) Newton’s second law of motion
According to Newton’s second law of motion, the rate of change 

of momentum is equal to the force acting on the particle:

d

d

p F
t

=
 

 Newton’s second law of motion  (2.5a)

For motion confined to one dimension, we would write  

dpx/dt = Fx. Equation 2.5a may be taken as the definition of 

force. The SI units of force are newtons (N), with

1N 1kg m s 2= −
 

Because p = m(dr/dt), it is sometimes more convenient to write 

eqn 2.5a as

m
t

a F a r= = d

d

2

2
 

where a is the acceleration of the particle, its rate of change of 

velocity. It follows that if we know the force acting everywhere 

and at all times, then solving eqn 2.5 will give the trajectory, 

the position and momentum of the particle at each instant.

Alternative 
form 

Newton’s 
second law 
of motion 

(2.5b)

Brief illustration 2.1 The moment of inertia 

There are two possible axes of rotation in a C16O2 molecule, 

each passing through the C atom and perpendicular to the 

axis of the molecule and to each other. Each O atom is at a dis-

tance R from the axis of rotation, where R is the length of a CO 

bond, 116 pm. The mass of each 16O atom is 16.00mu, where 

mu=1.660 54 × 10−27 kg is the atomic mass constant. The C atom 

is stationary (it lies on the axis of rotation) and does not con-

tribute to the moment of inertia. Therefore, the moment of 

inertia of the molecule around the rotation axis is

I m R

m

m

=

= × × × −

2

2 16 00 1 66054 10

16 2

27

16

( )

. .

( )

O

kg

u

O

� ���� ����
� ����� ������

� ��� ���
⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

× ×
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= ×

−

−

1 16 10

7 15 10

10

2

.

.

m

R

446 kg m2

Note that the units of moments of inertia are kilograms-metre 

squared (kg m2).

Self-test 2.1 The moment of inertia for rotation of a hydro-

gen molecule, 1H2, about an axis perpendicular to its bond is 

4.61 × 10−48 kg m2. What is the bond length of H2?

Answer: 74.1 pm

x

y

z

px
py

pz

p

Figure 2.1  The linear momentum p is denoted by a vector 
of magnitude p and an orientation that corresponds to the 
direction of motion.

x

y

z

Jx
Jy

Jz

J

Figure 2.2 The angular momentum J of a particle is 
represented by a vector along the axis of rotation and 
perpendicular to the plane of rotation. The length of the vector 
denotes the magnitude J of the angular momentum. The 
direction of motion is clockwise to an observer looking in the 
direction of the vector.
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2 Energy  11

To accelerate a rotation it is necessary to apply a torque, T, a 

twisting force. Newton’s equation is then

d

d

J T
t

=
 

Definition  Torque  (2.6)

The analogous roles of m and I, of v and ω, and of p and J 

in the translational and rotational cases respectively should be 

remembered because they provide a ready way of constructing 

and recalling equations. These analogies are summarized in 

Table 2.1.

2.2 Energy: a first look

Before defining the term ‘energy’, we need to develop another 

familiar concept, that of ‘work’, more formally. Then we preview 

the uses of these concepts in chemistry.

(a) Work
Work, w, is done in order to achieve motion against an oppos-

ing force. For an infinitesimal displacement through ds (a vec-

tor), the work done is

d dw =− ⋅F s
 

Definition  Work  (2.7a)

where F⋅ds is the ‘scalar product’ of the vectors F and ds (see 

also Mathematical background 4):

F s⋅ = + +d d d dF x F y F zx y z  
Definition  Scalar product  (2.7b)

For motion in one dimension, we write dw = –Fxdx. The total 

work done along a path is the integral of this expression, allow-

ing for the possibility that F changes in direction and mag-

nitude at each point of the path. With force in newtons and 

distance in metres, the units of work are joules (J), with

1J 1Nm 1kg m s2 2= = −
 

Brief illustration 2.2  Newton’s second law of motion 

A harmonic oscillator consists of a particle that experiences 

a ‘Hooke’s law’ restoring force, one that is proportional to its 

displacement from equilibrium. An example is a particle of 

mass m attached to a spring or an atom attached to another 

by a chemical bond. For a one-dimensional system, Fx = –kfx, 

where the constant of proportionality kf is called the force con-

stant. Equation 2.5b becomes

m
x

t
k x

d

d f

2

2
= −

 

(Techniques of differentiation are reviewed in Mathematical 

background 1). If x = 0 at t = 0, a solution (as may be verified by 

substitution) is

x t A t
k

m
( )

/

= = ⎛
⎝⎜

⎞
⎠⎟

sin f2
1

2

1 2

π π� �

 

This solution shows that the position of the particle varies har-

monically (that is, as a sine function) with a frequency ν, and 

that the frequency is high for light particles (m small) attached 

to stiff springs (kf large).

Self-test 2.2 How does the momentum of the oscillator vary 

with time?

Answer: p = 2πνAm cos (2πνt)

Brief illustration 2.3 The work of stretching a bond 

The work needed to stretch a chemical bond that behaves like a 

spring through an infinitesimal distance dx is

d d d df fw F x k x x k x xx= − = − − =( )
 

The total work needed to stretch the bond from zero displace-

ment (x = 0) at its equilibrium length Re to a length R, corres-

ponding to a displacement x = R – Re, is

w k x x k x x k R R
R R R R

= = = −
− −

∫ ∫f f f e

Integral A.

d d
e e

0

1
2

2

0

1

( )

 

where we have used Integral A.1 from the Resource section 

(techniques of integration are reviewed in Mathematical back-

ground 1). We see that the work required increases as the square 

of the displacement: it takes four times as much work to stretch 

a bond through 20 pm as it does to stretch the same bond 

through 10 pm.

Self-test 2.3 The force constant of the H–H bond is about 

575 N m−1. How much work is needed to stretch this bond by 

10.0 pm?

Answer: 2.88 × 10−20 J

Table 2.1 Analogies between translation and rotation

Translation Rotation

Property Significance Property Significance

Mass, m Resistance to 
the effect of a 
force

Moment of 
inertia, I

Resistance to 
the effect of 
a torque

Speed, v Rate of change 
of position

Angular velocity, 
ω

Rate of change 
of angle

Magnitude 
of linear 
momentum, p

p = mv Magnitude 
of angular 
momentum, J

J = Iω

Translational 
kinetic energy, Ek

Ek = 1
2

mv2 = p2/2m Rotational kinetic 
energy, Ek

Ek = 1
2

Iω 2 = J 2/2I

Equation of 
motion

dp/dt = F Equation of 
motion

dJ/dt = T
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12 1 Foundations 

(b) The definition of energy
Energy is the capacity to do work. The SI unit of energy is the 

same as that of work, namely the joule. The rate of supply of 

energy is called the power (P), and is expressed in watts (W):

1W 1Js 1= −
 

Calories (cal) and kilocalories (kcal) are still encountered 

in the chemical literature. The calorie is now defined in terms 

of the joule, with 1 cal = 4.184 J (exactly). Caution needs to be 

exercised as there are several different kinds of calorie. The 

‘thermochemical calorie’, cal15, is the energy required to raise 

the temperature of 1 g of water at 15 °C by 1 °C and the ‘dietary 

Calorie’ is 1 kcal.

A particle may possess two kinds of energy, kinetic energy 

and potential energy. The kinetic energy, Ek, of a body is the 

energy the body possesses as a result of its motion. For a body 

of mass m travelling at a speed v,

E mk
2= 1

2
v

 
Definition  Kinetic energy  (2.8)

It follows from Newton’s second law that if a particle of mass m 

is initially stationary and is subjected to a constant force F for a 

time τ, then its speed increases from zero to Fτ/m and therefore 

its kinetic energy increases from zero to

E
F

mk =
2 2

2

τ
 

(2.9)

The energy of the particle remains at this value after the force 

ceases to act. Because the magnitude of the applied force, F, 

and the time, τ, for which it acts may be varied at will, eqn 2.9 

implies that the energy of the particle may be increased to any 

value.

The potential energy, Ep or V, of a body is the energy it pos-

sesses as a result of its position. Because (in the absence of 

losses) the work that a particle can do when it is stationary in a 

given location is equal to the work that had to be done to bring 

it there, we can use the one-dimensional version of eqn 2.7 to 

write dV = –Fxdx, and therefore

F
V

xx = − d

d  
Definition  Potential energy  (2.10)

No universal expression for the potential energy can be given 

because it depends on the type and magnitude of the force the 

body experiences. For a particle of mass m at an altitude h close 

to the surface of the Earth, the gravitational potential energy is

V h V mgh( ) ( )= +0
 

 Gravitational potential energy  (2.11)

where g is the acceleration of free fall (g depends on loca-

tion, but its ‘standard value’ is 9.81 m s−2). The zero of poten-

tial energy is arbitrary. For a particle close to the surface of the 

Earth, it is common to set V(0) = 0.

The total energy of a particle is the sum of its kinetic and 

potential energies:

E E E E E V= + = +k p k or ,
 

Definition  Total energy  (2.12)

We make use of the apparently universal law of nature that 

energy is conserved; that is, energy can neither be created nor 

destroyed. Although energy can be transferred from one loca-

tion to another and transformed from one form to another, the 

total energy is constant. In terms of the linear momentum, the 

total energy of a particle is

E
p

m
V= +

2

2  
(2.13)

This expression may be used in place of Newton’s second law to 

calculate the trajectory of a particle.

(c) The Coulomb potential energy
One of the most important kinds of potential energy in chem-

istry is the Coulomb potential energy between two electric 

Brief illustration 2.4  The trajectory of a particle 

Consider an argon atom free to move in one direction (along 

the x-axis) in a region where V = 0 (so the energy is independ-

ent of position). Because v = dx/dt, it follows from eqns 2.1 and 

2.8 that dx/dt = (2Ek/m)1/2. As may be verified by substitution,  

a solution of this differential equation is

x t x
E

m
t( ) ( )

/

= +⎛
⎝⎜

⎞
⎠⎟

0
2

1 2

k

 

The linear momentum is

p t m t m
x

t
mE( ) ( ) ( ) /= = =v

d

d k2 1 2

 

and is a constant. Hence, if we know the initial position and 

momentum, we can predict all later positions and momenta 

exactly.

Self-test 2.4 Consider an atom of mass m moving along the x 

direction with an initial position x1 and initial speed v1. If the 

atom moves for a time interval Δt in a region where the poten-

tial energy varies as V(x), what is its speed v2 at position x2?

Answer: v v2 1
1

= − d /d /V x x t m
x

( ) Δ
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2 Energy  13

charges. The Coulomb potential energy is equal to the work 

that must be done to bring up a charge from infinity to a dis-

tance r from a second charge. For a point charge Q1 at a dis-

tance r in a vacuum from another point charge Q2, their 

potential energy is

V r
Q Q

r
( )= 1 2

04πε  
Definition  Coulomb potential energy  (2.14)

Charge is expressed in coulombs (C), often as a multiple of the 

fundamental charge, e. Thus, the charge of an electron is –e 

and that of a proton is +e; the charge of an ion is ze, with z the 

charge number (positive for cations, negative for anions). The 

constant ε0 (epsilon zero) is the vacuum permittivity, a fun-

damental constant with the value 8.854 × 10−12 C2 J−1 m−1. It is 

conventional (as in eqn 2.14) to set the potential energy equal 

to zero at infinite separation of charges. Then two opposite 

charges have a negative potential energy at finite separations 

whereas two like charges have a positive potential energy.

In a medium other than a vacuum, the potential energy of 

interaction between two charges is reduced, and the vacuum 

permittivity is replaced by the permittivity, ε, of the medium. 

The permittivity is commonly expressed as a multiple of the 

vacuum permittivity:

ε ε ε= r 0  
Definition  Permittivity  (2.15)

with εr the dimensionless relative permittivity (formerly, the 

dielectric constant). This reduction in potential energy can be 

substantial: the relative permittivity of water at 25 °C is 80, so 

the reduction in potential energy for a given pair of charges at 

a fixed difference (with sufficient space between them for the 

water molecules to behave as a fluid) is by nearly two orders of 

magnitude.

Care should be taken to distinguish potential energy from 

potential. The potential energy of a charge Q1 in the presence 

of another charge Q2 can be expressed in terms of the Coulomb 

potential, φ (phi):

V r Q
Q

r
( )= =1

2

04
φ φ

επ  

The units of potential are joules per coulomb, J C−1, so when φ 

is multiplied by a charge in coulombs, the result is in joules. The 

combination joules per coulomb occurs widely and is called a 

volt (V):

1V 1JC 1= −
 

If there are several charges Q2, Q3, … present in the system, the 

total potential experienced by the charge q1 is the sum of the 

potential generated by each charge:

φ φ φ= + +2 3 …
 

(2.17)

Just as the potential energy of a charge Q1 can be written 

V = Q1φ, so the magnitude of the force on Q1 can be written 

F = Q1E, where E is the magnitude of the electric field strength 

(units: volts per metre, V m−1) arising from Q2 or from some 

more general charge distribution. The electric field strength 

(which, like the force, is actually a vector quantity) is the neg-

ative gradient of the electric potential. In one dimension, we 

write the magnitude of the electric field strength as

E = − d

d

φ
x  

 Electric field strength  (2.18)

The language we have just developed inspires an important 

alternative energy unit, the electronvolt (eV): 1 eV is defined 

as the kinetic energy acquired when an electron is accelerated 

Brief illustration 2.5  The Coulomb potential energy 

The Coulomb potential energy resulting from the electrostatic 

interaction between a positively charged sodium cation, Na+, 

and a negatively charged chloride anion, Cl−, at a distance of 

0.280 nm, which is the separation between ions in the lattice of 

a sodium chloride crystal, is

V

Q Q

= − × × ×− −

− +

( . ) ( . )

( ) ( )

1 602 10 1 602 1019 19C C

Cl Na� ��� ��� � ��� ���

44 8 854 10 0 280 1012 9

0

π× × × ×− − − −( . ) ( . )C J m m2 1 1

ε
� ����� 	���� � ��� 	

r

���

= − × −8 24 10 19. J

This value is equivalent to a molar energy of

V N× = − × × ×
= −

− −

−
A J mol

kJ mol

( . ) ( . )8 24 10 6 022 10

496

19 23 1

1

A note on good practice Write units at every stage of a cal-

culation and do not simply attach them to a final numeri-

cal value. Also, it is often sensible to express all numerical 

quantities in scientific notation using exponential format 

rather than SI prefixes to denote powers of ten.

Self-test 2.5 The centres of neighbouring cations and ani-

ons in magnesium oxide crystals are separated by 0.21 nm. 

Determine the molar Coulomb potential energy resulting 

from the electrostatic interaction between a Mg2+ and a O2– 

ion in such a crystal.

Answer: −2600 kJ mol−1

Definition 
Coulomb 
potential 

(2.16)
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14 1 Foundations 

from rest through a potential difference of 1 V. The relation 

between electronvolts and joules is

1eV 1 6 2 1 J19= × −. 0 0
 

Many processes in chemistry involve energies of a few electron-

volts. For example, to remove an electron from a sodium atom 

requires about 5 eV.

A particularly important way of supplying energy in chem-

istry (as in the everyday world) is by passing an electric current 

through a resistance. An electric current (I) is defined as the rate 

of supply of charge, I = dQ/dt, and is measured in amperes (A):

1A 1C s 1= −
 

If a charge Q is transferred from a region of potential φi, where 

its potential energy is Qφi, to where the potential is φf and its 

potential energy is Qφf, and therefore through a potential dif-

ference Δφ = φf – φi, the change in potential energy is QΔφ. The 

rate at which the energy changes is (dQ/dt)Δφ, or IΔφ. The 

power is therefore

P I= Δφ
 

  Electrical power  (2.19)

With current in amperes and the potential difference in volts, 

the power is in watts. The total energy, E, supplied in an interval 

Δt is the power (the rate of energy supply) multiplied by the 

duration of the interval:

E P t I t= =Δ Δ Δφ
 

(2.20)

The energy is obtained in joules with the current in amperes, 

the potential difference in volts, and the time in seconds.

(d) Thermodynamics
The systematic discussion of the transfer and transformation 

of energy in bulk matter is called thermodynamics. This subtle 

subject is treated in detail in the text, but it will be familiar from 

introductory chemistry that there are two central concepts, 

the internal energy, U (unit: joule, J), and the entropy, S (unit: 

joules per kelvin, J K−1).

The internal energy is the total energy of a system. The First 

Law of thermodynamics states that the internal energy is con-

stant in a system isolated from external influences. The inter-

nal energy of a sample of matter increases as its temperature is 

raised, and we write

Δ ΔU C T=   Change in internal energy  (2.21)

where ΔU is the change in internal energy when the tempera-

ture of the sample is raised by ΔT. The constant C is called the 

heat capacity (units: joules per kelvin, J K−1) of the sample. 

If the heat capacity is large, a small increase in temperature 

results in a large increase in internal energy. This remark can 

be expressed in a physically more significant way by invert-

ing it: if the heat capacity is large, then even a large transfer of 

energy into the system leads to only a small rise in tempera-

ture. The heat capacity is an extensive property, and values for 

a substance are commonly reported as the molar heat capac-

ity, Cm = C/n (units: joules per kelvin per mole, J K−1 mol−1) or 

the specific heat capacity, Cs = C/m (units: joules per kelvin per 

gram, J K−1 g−1), both of which are intensive properties.

Thermodynamic properties are often best discussed in terms 

of infinitesimal changes, in which case we would write eqn 2.21 

as dU = CdT. When this expression is written in the form

C
U

T
= d

d  
 Definition  Heat capacity  (2.22)

we see that the heat capacity can be interpreted as the 

slope of the plot of the internal energy of a sample against the 

temperature.

As will also be familiar from introductory chemistry and will 

be explained in detail later, for systems maintained at constant 

pressure it is usually more convenient to modify the internal 

energy by adding to it the quantity pV, and introducing the 

enthalpy, H (unit: joule, J):

H U pV= +
 

Definition  Enthalpy  (2.23)

The enthalpy, an extensive property, greatly simplifies the 

discussion of chemical reactions, in part because changes in 

enthalpy can be identified with the energy transferred as heat 

from a system maintained at constant pressure (as in common 

laboratory experiments).

Brief illustration 2.6  The relation between U and H

The internal energy and enthalpy of a perfect gas, for which 

pV = nRT, are related by

H U nRT= +  

Division by n and rearrangement gives

H U RTm m− =  

where Hm and Um are the molar enthalpy and the molar inter-

nal energy, respectively. We see that the difference between  

Hm and Um increases with temperature.

Self-test 2.6 By how much does the molar enthalpy of oxygen 

gas differ from its molar internal energy at 298 K?

Answer: 2.48 kJ mol−1
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2 Energy  15

The entropy, S, is a measure of the quality of the energy 

of a system. If the energy is distributed over many modes of 

motion, for example, the rotational, vibrational, and transla-

tional motions for the particles which comprise the system, 

then the entropy is high. If the energy is distributed over only 

a small number of modes of motion, then the entropy is low. 

The Second Law of thermodynamics states that any spontane-

ous (that is, natural) change in an isolated system is accompa-

nied by an increase in the entropy of the system. This tendency 

is commonly expressed by saying that the natural direction of 

change is accompanied by dispersal of energy from a localized 

region or to a less organized form.

The entropy of a system and its surroundings is of the great-

est importance in chemistry because it enables us to identify 

the spontaneous direction of a chemical reaction and to iden-

tify the composition at which the reaction is at equilibrium. 

In a state of dynamic equilibrium, which is the character of 

all chemical equilibria, the forward and reverse reactions are 

occurring at the same rate and there is no net tendency to 

change in either direction. However, to use the entropy to iden-

tify this state we need to consider both the system and its sur-

roundings. This task can be simplified if the reaction is taking 

place at constant temperature and pressure, for then it is pos-

sible to identify the state of equilibrium as the state at which the 

Gibbs energy, G (unit: joules, J), of the system has reached a 

minimum. The Gibbs energy is defined as

G H TS= −  Definition  Gibbs energy  (2.24)

and is of the greatest importance in chemical thermodynamics. 

The Gibbs energy, which informally is called the ‘free energy’, 

is a measure of the energy stored in a system that is free to do 

useful work, such as driving electrons through a circuit or caus-

ing a reaction to be driven in its unnatural (nonspontaneous) 

direction.

2.3 The relation between molecular 
and bulk properties

The energy of a molecule, atom, or subatomic particle that 

is confined to a region of space is quantized, or restricted to 

certain discrete values. These permitted energies are called 

energy levels. The values of the permitted energies depend on 

the characteristics of the particle (for instance, its mass) and 

the extent of the region to which it is confined. The quantiza-

tion of energy is most important—in the sense that the allowed 

energies are widest apart—for particles of small mass confined 

to small regions of space. Consequently, quantization is very 

important for electrons in atoms and molecules, but usually 

unimportant for macroscopic bodies, for which the separation 

of translational energy levels of particles in containers of mac-

roscopic dimensions is so small that for all practical purposes 

their translational motion is unquantized and can be varied 

virtually continuously.

The energy of a molecule other than its unquantized trans-

lational motion arises mostly from three modes of motion: 

rotation of the molecule as a whole, distortion of the molecule 

through vibration of its atoms, and the motion of electrons 

around nuclei. Quantization becomes increasingly important 

as we change focus from rotational to vibrational and then to 

electronic motion. The separation of rotational energy levels (in 

small molecules, about 10−21 J or 1 zJ, corresponding to about 

0.6 kJ mol−1) is smaller than that of vibrational energy levels 

(about 10−100 zJ, or 6−60 kJ mol−1), which itself is smaller than 

that of electronic energy levels (about 10−18 J or 1 aJ, where a 

is another uncommon but useful SI prefix, standing for atto, 

10−18, corresponding to about 600 kJ mol−1). Figure 2.3 depicts 

these typical energy level separations.

(a) The Boltzmann distribution
The continuous thermal agitation that the molecules experi-

ence in a sample at T > 0 ensures that they are distributed over 

the available energy levels. One particular molecule may be 

in a state corresponding to a low energy level at one instant, 

and then be excited into a high energy state a moment later. 

Although we cannot keep track of the state of a single molecule, 

we can speak of the average numbers of molecules in each state; 

even though individual molecules may be changing their states 

as a result of collisions, the average number in each state is con-

stant (provided the temperature remains the same).

The average number of molecules in a state is called the 

population of the state. Only the lowest energy state is occu-

pied at T = 0. Raising the temperature excites some molecules 

into higher energy states, and more and more states become 

E
n

er
g

y

C
o

n
ti

n
u

u
m

Translation Rotation Vibration Electronic

1 
zJ

10
–1

00
 z

J

1 
aJ

 (
10

00
 z

J)

Figure 2.3 The energy level separations typical of four types of 
system. (1 zJ = 10−21 J; in molar terms, 1 zJ is equivalent to about 
0.6 kJ mol−1.)
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16 1 Foundations 

accessible as the temperature is raised further (Fig. 2.4). The 

formula for calculating the relative populations of states of 

various energies is called the Boltzmann distribution and was 

derived by the Austrian scientist Ludwig Boltzmann towards 

the end of the nineteenth century. This formula gives the ratio 

of the numbers of particles in states with energies εi and εj as

N

N
i

j

kTi j= − −e ( )/ε ε

 
 Boltzmann distribution  (2.25a)

where k is Boltzmann’s constant, a fundamental constant with 

the value k = 1.381 × 10−23 J K−1. In chemical applications it is 

common to use not the individual energies but energies per 

mole of molecules, Ei, with Ei = NAεi, where NA is Avogadro’s 

constant. When both the numerator and denominator in the 

exponential are multiplied by NA, eqn 2.25a becomes

N

N
i

j

E E RTi j= − −e ( )/

 

where R = NAk. We see that k is often disguised in ‘molar’ form 

as the gas constant. The Boltzmann distribution provides the 

crucial link for expressing the macroscopic properties of matter 

in terms of microscopic behaviour.

The important features of the Boltzmann distribution to bear 

in mind are:

The distribution of populations is an exponential 

function of energy and temperature.

At a high temperature more energy levels are 

occupied than at a low temperature.

More levels are significantly populated if they are 

close together in comparison with kT (like 

rotational and translational states), than if they 

are far apart (like vibrational and electronic states).

Figure 2.5 summarizes the form of the Boltzmann distribu-

tion for some typical sets of energy levels. The peculiar shape 

of the population of rotational levels stems from the fact that 

eqn 2.25 applies to individual states, and for molecular rota-

tion quantum theory shows that the number of rotational states 

corresponding to a given energy level—broadly speaking, the 

number of planes of rotation—increases with energy; therefore, 

although the population of each state decreases with energy, the 

population of the levels goes through a maximum.

One of the simplest examples of the relation between micro-

scopic and bulk properties is provided by kinetic molecular 

theory, a model of a perfect gas. In this model, it is assumed 

that the molecules, imagined as particles of negligible size, are 

in ceaseless, random motion and do not interact except during 

where Ea and Ee are molar energies. The number of molecules 

in an axial conformation is therefore just 9 per cent of those in 

the equatorial conformation.

Self-test 2.7 Determine the temperature at which the relative 

proportion of molecules in axial and equatorial conforma-

tions in a sample of methylcyclohexane is 0.30 or 30 per cent.

Answer: 600 K

P
h

ys
ic

al
 

in
te

rp
re

ta
ti

o
n

Alternative 
form 

Boltzmann 
distribution 

(2.25b)

Brief illustration 2.7  Relative populations

Methylcyclohexane molecules may exist in one of two confor-

mations, with the methyl group in either an equatorial or an 

axial position. The equatorial form is lower in energy with the 

axial form being 6.0 kJ mol−1 higher in energy. At a tempera-

ture of 300 K, this difference in energy implies that the relative 

populations of molecules in the axial and equatorial states is

N

N
E E RTa

e

J mol J K mol K
e ea e= =− − − × ×( )− − −

( )/ . )/( .6 0 10 8 3145 3003 1 1 1

== 0 090.

E
n

er
g

y
T = 0 T = ∞

Figure 2.4  The Boltzmann distribution of populations for a 
system of five energy levels as the temperature is raised from 
zero to infinity.

Rotational Vibrational Electronic

E
n

er
g

y

Figure 2.5 The Boltzmann distribution of populations for 
rotational, vibrational, and electronic energy levels at room 
temperature.
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2 Energy  17

their brief collisions. Different speeds correspond to different 

energies, so the Boltzmann formula can be used to predict the 

proportions of molecules having a specific speed at a particular 

temperature. The expression giving the fraction of molecules 

that have a particular speed is called the Maxwell–Boltzmann 

distribution and has the features summarized in Fig. 2.6. The 

Maxwell–Boltzmann distribution can be used to show that the 

average speed, vmean, of the molecules depends on the tempera-

ture and their molar mass as

vmean =⎛
⎝⎜

⎞
⎠⎟

8
1 2

RT

Mπ

/

 

Thus, the average speed is high for light molecules at high tem-

peratures. The distribution itself gives more information. For 

instance, the tail towards high speeds is longer at high tem-

peratures than at low, which indicates that at high temperatures 

more molecules in a sample have speeds much higher than 

average.

(b) Equipartition
Although the Boltzmann distribution can be used to calculate 

the average energy associated with each mode of motion of an 

atom or molecule in a sample at a given temperature, there is a 

much simpler shortcut. When the temperature is so high that 

many energy levels are occupied, we can use the equipartition 

theorem:

For a sample at thermal equilibrium the average value of 

each quadratic contribution to the energy is 1
2
kT.

By a ‘quadratic contribution’ we mean a term that is propor-

tional to the square of the momentum (as in the expression for 

the kinetic energy, Ek = p2/2m) or the displacement from an 

equilibrium position (as for the potential energy of a harmonic 

oscillator, Ep = 1
2
kfx

2). The theorem is strictly valid only at high 

temperatures or if the separation between energy levels is small 

because under these conditions many states are populated. The 

equipartition theorem is most reliable for translational and 

rotational modes of motion. The separation between vibra-

tional and electronic states is typically greater than for rotation 

or translation, and so the equipartition theorem is unreliable 

for these types of motion.

Checklist of concepts

☐ 1. Newton’s second law of motion states that the rate of 

change of momentum is equal to the force acting on the 

particle.

☐ 2. Work is done in order to achieve motion against an 

opposing force.

☐ 3. Energy is the capacity to do work.

☐ 4. The kinetic energy of a particle is the energy it pos-

sesses as a result of its motion.

☐ 5. The potential energy of a particle is the energy it 

 possesses as a result of its position.

Brief illustration 2.8  Average molecular energies

An atom or molecule may move in three dimensions and 

its translational kinetic energy is therefore the sum of three 

quadratic contributions:

E m m mx y ztrans = + +1

2

1

2

1

2
2 2 2v v v

 

The equipartition theorem predicts that the average energy for 

each of these quadratic contributions is 
1
2kT. Thus, the average 

kinetic energy is Etrans = 3
2kT. The molar translational energy is 

thus Etrans,m = 
3
2kT × NA = 

3
2RT. At 300 K

Etrans m
1 1

1

8 3145JK mol 3 K

37  Jmol 3 7 kJmol

, ( . ) ( )

.

= × ×

= =

− −

− −

3

2
00

00 11

 

Self-test 2.8 A linear molecule may rotate about two axes 

in space, each of which counts as a quadratic contribution. 

Calculate the rotational contribution to the molar energy of a 

collection of linear molecules at 500 K.

Answer: 4.2 kJ mol−1

Perfect gas 
Average 
speed of 
molecules

(2.26)
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Speed, v

Low temperature or
high molecular mass

Intermediate
temperature
or
molecular
mass

High 
temperature
or  low
molecular 
mass

Figure 2.6 The (Maxwell–Boltzmann) distribution of molecular 
speeds with temperature and molar mass. Note that the most 
probable speed (corresponding to the peak of the distribution) 
increases with temperature and with decreasing molar mass, 
and simultaneously the distribution becomes broader.
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18 1 Foundations 

☐ 6. The total energy of a particle is the sum of its kinetic 

and potential energies.

☐ 7. The Coulomb potential energy between two charges 

separated by a distance r varies as 1/ .r

☐ 8. The First Law of thermodynamics states that the inter-

nal energy is constant in a system isolated from exter-

nal influences.

☐ 9. The Second Law of thermodynamics states that any 

spontaneous change in an isolated system is accompa-

nied by an increase in the entropy of the system.

☐ 10. Equilibrium is the state at which the Gibbs energy of 

the system has reached a minimum.

☐ 11. The energy levels of confined particles are quantized.

☐ 12. The Boltzmann distribution is a formula for calculat-

ing the relative populations of states of various energies.

☐ 13. The equipartition theorem states that for a sample at 

thermal equilibrium the average value of each quad-

ratic contribution to the energy is 1
2 kT.

Checklist of equations

Property Equation Comment Equation number

Velocity v = dr/dt Definition 2.1

Linear momentum p = mv Definition 2.2

Angular momentum J = Iω, I = mr2 Point particle 2.3–4

Force F = ma = dp/dt Definition 2.5

Torque T = dJ/dt Definition 2.6

Work dw = −F⋅ds Definition 2.7

Kinetic energy Ek = 1
2

mv2 Definition 2.8

Potential energy Fx = −dV/dx One dimension 2.10

Coulomb potential energy V(r) = Q1Q2/4πε0r Vacuum 2.14

Coulomb potential φ = Q2/4πε0r Vacuum 2.16

Electric field strength E = −dφ/dx One dimension 2.18

Electrical power P = IΔφ 2.19

Heat capacity C = dU/dT U is the internal energy 2.22

Enthalpy H = U + pV Definition 2.23

Gibbs energy G = H – TS Definition 2.24

Boltzmann distribution Ni/Nj = e−(εi − εj)/kT 2.25a

Average speed of molecules vmean = (8RT/πM)1/2 Perfect gas 2.26
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TOPIC 3

Waves

A wave is an oscillatory disturbance that travels through space. 

Examples of such disturbances include the collective motion of 

water molecules in ocean waves and of gas particles in sound 

waves. A harmonic wave is a wave with a displacement that can 

be expressed as a sine or cosine function.

3.1 Harmonic waves

A harmonic wave is characterized by a wavelength, λ (lambda), 

the distance between the neighbouring peaks of the wave, and 

its frequency, ν (nu), the number of times per second at which 

its displacement at a fixed point returns to its original value 

(Fig. 3.1). The frequency is measured in hertz, where 1 Hz =  

1 s−1. The wavelength and frequency are related by

λ� =v   Relation between frequency and wavelength  (3.1)

where v is the speed of propagation of the wave.

First, consider the snapshot of a harmonic wave at t = 0. The 

displacement ψ(x,t) varies with position x as

ψ λ φ( , ) {( / ) }x A x0  cos 2= +π
  Harmonic wave at t = 0  (3.2a)

where A is the amplitude of the wave, the maximum height of 

the wave, and φ is the phase of the wave, the shift in the loca-

tion of the peak from x = 0 and which may lie between –π and π 

(Fig. 3.2). As time advances, the peaks migrate along the x-axis 

(the direction of propagation), and at any later instant the dis-

placement is

ψ λ φ( , ) {( ) }x t A x t= − +cos 2 / 2π π�

A given wave can also be expressed as a sine function with the 

same argument but with φ replaced by φ + 1
2
π.

If two waves, in the same region of space, with the 

same wavelength, have different phases then the resultant wave, 

the sum of the two, will have either enhanced or diminished 

amplitude. If the phases differ by ±π (so the peaks of one wave 

coincide with the troughs of the other), then the resultant 

wave, the sum of the two, will have a diminished amplitude. 

Contents

3.1 Harmonic waves 19

Brief illustration 3.1: Resultant waves 20

3.2 The electromagnetic field 20

Brief illustration 3.2: Wavenumbers 20

Checklist of concepts 21
Checklist of equations 22

 ➤ Why do you need to know this material?
Several important investigative techniques in physical 
chemistry, such as spectroscopy and X-ray diffraction, 
involve electromagnetic radiation, a wavelike electromag-
netic disturbance. We shall also see that the properties of 
waves are central to the quantum mechanical description 
of electrons in atoms and molecules. To prepare for those 
discussions, we need to understand the mathematical 
description of waves.

 ➤ What is the key idea?
A wave is a disturbance that propagates through space 
with a displacement that can be expressed as a harmonic 
function.

 ➤ What do you need to know already?
You need to be familiar with the properties of harmonic 
(sine and cosine) functions.

Harmonic 
wave at t > 0 (3.2b)

(a) (b)

Wavelength, λ Propagation

Figure 3.1 (a) The wavelength, λ , of a wave is the peak-to-
peak distance. (b) The wave is shown travelling to the right at 
a speed v. At a given location, the instantaneous amplitude 
of the wave changes through a complete cycle (the six dots 
show half a cycle) as it passes a given point. The frequency, ν, 
is the number of cycles per second that occur at a given point. 
Wavelength and frequency are related by λν = v.
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20 1 Foundations

This effect is called destructive interference. If the phases of 

the two waves are the same (coincident peaks), the resultant 

has an enhanced amplitude. This effect is called constructive 

interference.

3.2 The electromagnetic field

Light is a form of electromagnetic radiation. In classical phys-

ics, electromagnetic radiation is understood in terms of the 

electromagnetic field, an oscillating electric and magnetic dis-

turbance that spreads as a harmonic wave through space. An 

electric field acts on charged particles (whether stationary or 

moving), and a magnetic field acts only on moving charged 

particles.

The wavelength and frequency of an electromagnetic wave in 

a vacuum are related by

λ� = c

where c = 2.997 924 58 × 108 m s−1 (which we shall normally 

quote as 2.998 × 108 m s−1) is the speed of light in a vacuum. 

When the wave is passing through a medium (even air), its 

speed is reduced to c′ and although the frequency remains 

unchanged, its wavelength is reduced accordingly. The reduced 

speed of light in a medium is normally expressed in terms of 

the refractive index, nr, of the medium, where

n
c

cr =
′  

 Refractive index  (3.4)

The refractive index depends on the frequency of the light, 

and for visible light typically increases with frequency. It also 

depends on the physical state of the medium. For yellow light 

in water at 25 °C, nr = 1.3, so the wavelength is reduced by 30 

per cent.

The classification of the electromagnetic field according to its 

frequency and wavelength is summarized in Fig. 3.4. It is often 

desirable to express the characteristics of an electromagnetic 

wave by giving its wavenumber, �� (nu tilde), where

��
�=

λc
= 1

 
Electromagnetic radiation  Wavenumber  (3.5)

A wavenumber can be interpreted as the number of complete 

wavelengths in a given length (of vacuum). Wavenumbers are 

normally reported in reciprocal centimetres (cm−1), so a wave-

number of 5 cm−1 indicates that there are five complete wave-

lengths in 1 cm.

Electromagnetic 
wave in a vacuum

Relation between 
frequency and 
wavelength

(3.3)

Brief illustration 3.2 Wavenumbers 

The wavenumber of electromagnetic radiation of wavelength 

660 nm is

��= λ
1 1

660 10
1 5 10 15 000

9
6 1 1= = =−

− −

×
×

m
m cm.

You can avoid errors in converting between units of m−1 and 

cm−1 by remembering that wavenumber represents the num-

ber of wavelengths in a given distance. Thus, a wavenumber 

expressed as the number of waves per centimetre and hence in 

units of cm−1 must be 100 times less than the equivalent quan-

tity expressed per metre in units of m−1.

Self-test 3.2 Calculate the wavenumber and frequency of red 

light, of wavelength 710 nm.

Answer: ��  = 1.41×106 m−1 = 1.41×104 cm−1, ν = 422 THz (1THz = 1012 s−1)

φ = 0 φ = π/2 φ = π

Figure 3.2 The phase φ of a wave specifies the relative location 
of its peaks.

Brief illustration 3.1 Resultant waves

To gain insight into cases in which the phase difference is 

a value other than  ±π, consider the addition of the waves 

f(x) = cos(2πx/λ) and g(x) = cos{(2πx/λ) + φ}. Figure 3.3 shows 

plots of f(x), g(x), and f(x) + g(x) against x/λ for φ = π/3. The 

resultant wave has a higher amplitude than either f(x) or g(x), 

and has peaks between the peaks of f(x) and g(x).

Self-test 3.1 Consider the same waves, but with φ = 3π/4. Does 

the resultant wave have diminished or enhanced amplitude?

Answer: Diminished amplitude

0

1

2

–1

–2 0 2 3 4
x/λ

f(x)

f(x) + g(x) 

g(x)

1 5 6

Figure 3.3 Interference between the waves discussed in 
Brief illustration 3.1.
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3 Waves 21

The functions that describe the oscillating electric field, 

E(x,t), and magnetic field, B(x,t), travelling along the x-direc-

tion with wavelength λ and frequency ν are

E E( , ) {( ) }x t x t= − +0cos 2 / 2π πλ φ�  

B B( , ) {( ) }x t x t= − +0cos 2 / 2π πλ φ�  

where E0 and B0 are the amplitudes of the electric and mag-

netic fields, respectively, and φ is the phase of the wave. In this 

case the amplitude is a vector quantity, because the electric 

and magnetic fields have a direction as well as an amplitude. 

The magnetic field is perpendicular to the electric field and 

both are perpendicular to the propagation direction (Fig. 3.5). 

According to classical electromagnetic theory, the intensity of 

electromagnetic radiation, a measure of the energy associated 

with the wave, is proportional to the square of the amplitude of 

the wave.

Equation 3.6 describes electromagnetic radiation that is 

plane polarized; it is so called because the electric and mag-

netic fields each oscillate in a single plane. The plane of polari-

zation may be orientated in any direction around the direction 

of propagation. An alternative mode of polarization is circular 

polarization, in which the electric and magnetic fields rotate 

around the direction of propagation in either a clockwise or an 

anticlockwise sense but remain perpendicular to it and to each 

other (Fig. 3.6).

Checklist of concepts

☐ 1. A wave is an oscillatory disturbance that travels through 

space.

☐ 2. A harmonic wave is a wave with a displacement that 

can be expressed as a sine or cosine function.
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Figure 3.4 The electromagnetic spectrum and its classification into regions (the boundaries are not precise).

E B

Figure 3.5 In a plane polarized wave, the electric and magnetic 
fields oscillate in orthogonal planes and are perpendicular to 
the direction of propagation.

E
B

L

Figure 3.6 In a circularly polarized wave, the electric and 
magnetic fields rotate around the direction of propagation 
but remain perpendicular to one another. The illustration also 
defines ‘right-’ and ‘left-handed’ polarizations (‘left-handed’ 
polarization is shown as L).

Atkins09819.indb   21 9/11/2013   10:56:50 AM



22 1 Foundations

☐ 3. A harmonic wave is characterized by a wavelength, fre-

quency, phase, and amplitude.

☐ 4. Destructive interference between two waves of the 

same wavelength but different phases leads to a result-

ant wave with diminished amplitude.

☐ 5. Constructive interference between two waves of the 

same wavelength and phase leads to a resultant wave 

with enhanced amplitude.

☐ 6. The electromagnetic field is an oscillating electric and 

magnetic disturbance that spreads as a harmonic wave 

through space.

☐ 7. An electric field acts on charged particles (whether sta-

tionary or moving).

☐ 8. A magnetic field acts only on moving charged particles.

☐ 9. In plane polarized electromagnetic radiation, the elec-

tric and magnetic fields each oscillate in a single plane 

and are mutually perpendicular.

☐ 10. In circular polarization, the electric and magnetic 

fields rotate around the direction of propagation in 

either a clockwise or an anticlockwise sense but remain 

perpendicular to it and each other.

Checklist of equations

Property Equation Comment Equation number

Relation between the frequency and wavelength λν = v For electromagnetic radiation in a vacuum, v = c 3.1

Refractive index nr = c/c′ Definition; nr ≥ 1 3.4

Wavenumber ��  = ν/c = 1/λ Electromagnetic radiation 3.5
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Exercises and problems  23

Focus 1 on  Foundations

Topic 1 Matter

Discussion questions
1.1 Summarize the features of the nuclear model of the atom. Define the terms 

atomic number, nucleon number, mass number.

1.2 Where in the periodic table are metals, non-metals, transition metals, 

lanthanoids, and actinoids found?

1.3 Summarize what is meant by a single and a multiple bond.

1.4 Summarize the principal concepts of the VSEPR theory of molecular 

shape.

1.5 Compare and contrast the properties of (a) the solid, liquid, and gas states 

of matter, (b) the condensed and gaseous states of matter.

Exercises
1.1(a) Express the typical ground-state electron configuration of an atom of an 

element in (a) Group 2, (b) Group 7, (c) Group 15 of the periodic table.

1.1(b) Express the typical ground-state electron configuration of an atom of an 

element in (a) Group 3, (b) Group 5, (c) Group 13 of the periodic table.

1.2(a) Identify the oxidation numbers of the elements in (a) MgCl2, (b) FeO, 

(c) Hg2Cl2.

1.2(b) Identify the oxidation numbers of the elements in (a) CaH2, (b) CaC2, 

(c) LiN3.

1.3(a) Identify a molecule with a (a) single, (b) double, (c) triple bond between 

a carbon and a nitrogen atom.

1.3(b) Identify a molecule with (a) one, (b) two, (c) three lone pairs on the 

central atom.

1.4(a) Draw the Lewis (electron dot) structures of (a) SO3
2− , (b) XeF4, (c) P4.

1.4(b) Draw the Lewis (electron dot) structures of (a) O3, (b) CIF3
+, (c) N3

−.

1.5(a) Identify three compounds with an incomplete octet.

1.5(b) Identify four hypervalent compounds.

1.6(a) Use VSEPR theory to predict the structures of (a) PCl3, (b) PCl5, (c) 

XeF2, (d) XeF4.

1.6(b) Use VSEPR theory to predict the structures of (a) H2O2, (b) FSO3
−,  

(c) KrF2, (d) PCl4
+ .

1.7(a) Identify the polarities (by attaching partial charges δ+ and δ–) of the 

bonds (a) C–Cl, (b) P–H, (c) N–O.

1.7(b) Identify the polarities (by attaching partial charges δ+ and δ–) of the 

bonds (a) C–H, (b) P–S, (c) N–Cl.

1.8(a) State whether you expect the following molecules to be polar or 

nonpolar: (a) CO2, (b) SO2, (c) N2O, (d) SF4.

1.8(b) State whether you expect the following molecules to be polar or 

nonpolar: (a) O3, (b) XeF2, (c) NO2, (d) C6H14.

1.9(a) Arrange the molecules in Exercise 1.8(a) by increasing dipole moment.

1.9(b) Arrange the molecules in Exercise 1.8(b) by increasing dipole moment.

1.10(a) Classify the following properties as extensive or intensive: (a) mass, 

(b) mass density, (c) temperature, (d) number density.

1.10(b) Classify the following properties as extensive or intensive: (a) pressure, 

(b) specific heat capacity, (c) weight, (d) molality.

1.11(a) Calculate (a) the amount of C2H5OH (in moles) and (b) the number of 

molecules present in 25.0 g of ethanol.

1.11(b) Calculate (a) the amount of C6H22O11 (in moles) and (b) the number of 

molecules present in 5.0 g of glucose.

1.12(a) Calculate (a) the mass, (b) the weight on the surface of the Earth 

(where g = 9.81 m s−2) of 10.0 mol H2O(l).

1.12(b) Calculate (a) the mass, (b) the weight on the surface of Mars (where 

g = 3.72 m s−2) of 10.0 mol C6H6(l).

1.13(a) Calculate the pressure exerted by a person of mass 65 kg standing 

(on the surface of the Earth) on shoes with soles of area 150 cm2.

1.13(b) Calculate the pressure exerted by a person of mass 60 kg standing 

(on the surface of the Earth) on shoes with stiletto heels of area 2 cm2 

(assume that the weight is entirely on the heels).

1.14(a) Express the pressure calculated in Exercise 1.13(a) in atmospheres.

1.14(b) Express the pressure calculated in Exercise 1.13(b) in atmospheres.

1.15(a) Express a pressure of 1.45 atm in (a) pascal, (b) bar.

1.15(b) Express a pressure of 222 atm in (a) pascal, (b) bar.

1.16(a) Convert blood temperature, 37.0 °C, to the Kelvin scale.

1.16(b) Convert the boiling point of oxygen, 90.18 K, to the Celsius scale.

1.17(a) Equation 1.4 is a relation between the Kelvin and Celsius scales. Devise 

the corresponding equation relating the Fahrenheit and Celsius scales and use 

it to express the boiling point of ethanol (78.5 °C) in degrees Fahrenheit.

1.17(b) The Rankine scale is a version of the thermodynamic temperature scale 

in which the degrees (°R) are the same size as degrees Fahrenheit. Derive an 

expression relating the Rankine and Kelvin scales and express the freezing 

point of water in degrees Rankine.

1.18(a) A sample of hydrogen gas was found to have a pressure of 110 kPa 

when the temperature was 20.0 °C. What can its pressure be expected to be 

when the temperature is 7.0 °C?

1.18(b) A sample of 325 mg of neon occupies 2.00 dm3 at 20.0 °C. Use the 

perfect gas law to calculate the pressure of the gas.

1.19(a) At 500 °C and 93.2 kPa, the mass density of sulfur vapour is 3.710 kg 

m−3. What is the molecular formula of sulfur under these conditions?

1.19(b) At 100 °C and 1.60 kPa, the mass density of phosphorus vapour is 0.6388 kg 

m−3. What is the molecular formula of phosphorus under these conditions?

1.20(a) Calculate the pressure exerted by 22 g of ethane behaving as a perfect 

gas when confined to 1000 cm3 at 25.0 °C.

1.20(b) Calculate the pressure exerted by 7.05 g of oxygen behaving as a perfect 

gas when confined to 100 cm3 at 100.0 °C.

1.21(a) A vessel of volume 10.0 dm3 contains 2.0 mol H2 and 1.0 mol N2 at 5.0 °C. 

Calculate the partial pressure of each component and their total pressure.

1.21(b) A vessel of volume 100 cm3 contains 0.25 mol O2 and 0.034 mol CO2 at 

10.0 °C. Calculate the partial pressure of each component and their total pressure.
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Topic 2 Energy

Discussion questions
2.1 What is energy?

2.2 Distinguish between kinetic and potential energy.

2.3 State the Second Law of thermodynamics. Can the entropy of the system 

that is not isolated from its surroundings decrease during a spontaneous 

process?

2.4 What is meant by quantization of energy? In what circumstances are the 

effects of quantization most important for microscopic systems?

2.5 What are the assumptions of the kinetic molecular theory?

2.6 What are the main features of the Maxwell distribution of speeds?

Exercises
2.1(a) A particle of mass 1.0 g is released near the surface of the Earth, where 

the acceleration of free fall is g = 8.91 m s−2. What will be its speed and kinetic 

energy after (a) 1.0 s, (b) 3.0 s. Ignore air resistance?

2.1(b) The same particle in Exercise 2.1(a) is released near the surface of Mars, 

where the acceleration of free fall is g = 3.72 m s−2. What will be its speed and 

kinetic energy after (a) 1.0 s, (b) 3.0 s? Ignore air resistance.

2.2(a) An ion of charge ze moving through water is subject to an electric field 

of strength E which exerts a force zeE, but it also experiences a frictional drag 

proportional to its speed s and equal to 6πηRs, where R is its radius and 

η (eta) is the viscosity of the medium. What will be its terminal velocity?

2.2(b) A particle descending through a viscous medium experiences a 

frictional drag proportional to its speed s and equal to 6πηRs, where R is its 

radius and η (eta) is the viscosity of the medium. If the acceleration of free fall 

is denoted g, what will be the terminal velocity of a sphere of radius R and 

mass density ρ (rho)?

2.3(a) Confirm that the general solution of the harmonic oscillator equation of 

motion (md2x/dt2 = –kf x) is x(t) = A sin ωt + B cos ωt with ω = (kf /m)1/2.

2.3(b) Consider a harmonic oscillator with B = 0 (in the notation of Exercise 

2.3a); relate the total energy at any instant to its maximum displacement 

amplitude.

2.4(a) In an early (‘semiclassical’) picture of a hydrogen atom, an electron 

travels in a circular path of radius 53 pm at 2188 km s−1. What is the 

magnitude of the average acceleration that the electron undergoes during one-

quarter of a revolution?

2.4(b) Given the acceleration calculated in Exercise 2.4(a), what is the 

magnitude of the average force that the electron experiences in its orbit?

2.5(a) Use the information in Exercise 2.4(a) to calculate the magnitude of the 

angular momentum of an electron in the semiclassical picture of the hydrogen 

atom. Go on to express your result as a multiple of h/2π, where h is Planck’s 

constant (see inside front cover).

2.5(b) In a continuation of the semiclassical picture (Exercise 2.5(a)), the 

electron is excited into an orbit of radius 4a0 but continues to travel at 

2188 km s−1. Calculate the magnitude of the angular momentum of the 

electron and express your result as a multiple of h/2π, where h is Planck’s 

constant (see inside front cover).

2.6(a) The force constant of a C–H bond is about 450 N m−1. How much work 

is needed to stretch such bond by (a) 10 pm, (b) 20 pm?

2.6(b) The force constant of the H–H bond is about 510 N m−1. How much 

work is needed to stretch such bond by 20 pm?

2.7(a) An electron is accelerated in an electron microscope from rest through a 

potential difference Δϕ = 100 kV and acquires an energy of eΔϕ. What is its 

final speed? What is its energy in electronvolts (eV)?

2.7(b) A C H6 4
2+ ion is accelerated in a mass spectrometer from rest through a 

potential difference Δϕ = 20 kV and acquires an energy of eΔϕ. What is its final 

speed? What is its energy in electronvolts (eV)?

2.8(a) Calculate the work that must be done in order to remove a Na+ ion from 

200 pm away from a Cl− ion to infinity (in a vacuum). What work would be 

needed if the separation took place in water?

2.8(b) Calculate the work that must be done in order to remove an Mg2+ ion 

from 250 pm away from an O2– ion to infinity (in a vacuum). What work 

would be needed if the separation took place in water?

2.9(a) Calculate the electric potential due to the nuclei at a point in a LiH 

molecule located at 200 pm from the Li nucleus and 150 pm from the H 

nucleus.

2.9(b) Plot the electric potential due to the nuclei at a point in a Na+Cl− ion 

pair located on a line halfway between the nuclei (the internuclear separation 

is 283 pm) as the point approaches from infinity and ends at the midpoint 

between the nuclei.

2.10(a) An electric heater is immersed in a flask containing 200 g of water, and 

a current of 2.23 A from a 15.0 V supply is passed for 12.0 minutes. How 

much energy is supplied to the water? Estimate the rise in temperature (for 

water, Cm = 75.3 J K−1 mol−1).

2.10(b) An electric heater is immersed in a flask containing 150 g of ethanol, 

and a current of 1.12 A from a 12.5 V supply is passed for 172 s. How much 

energy is supplied to the ethanol? Estimate the rise in temperature (for 

ethanol, Cm = 111.5 J K−1 mol−1).

2.11(a) The heat capacity of a sample of iron was 3.67 J K−1. By how much 

would its temperature rise if 100 J of energy was transferred to it as heat?

2.11(b) The heat capacity of a sample of water was 5.77 J K−1. By how much 

would its temperature rise if 50.0 kJ of energy was transferred to it as heat?

2.12(a) The molar heat capacity of lead is 26.44 J K−1 mol−1. How much energy 

must be supplied (by heating) to 100 g of lead to increase its temperature by 

10.0 °C?

2.12(b) The molar heat capacity of water is 75.2 J K−1 mol−1. How much energy 

must be supplied by heating to 10.0 g of water to increase its temperature by 

10.0 °C?

2.13(a) The molar heat capacity of ethanol is 111.46 J K−1 mol−1. What is its 

specific heat capacity?

2.13(b) The molar heat capacity of sodium is 28.24 J K−1 mol−1. What is its 

specific heat capacity?

2.14(a) The specific heat capacity of water is 4.18 J K−1 g−1. What is its molar 

heat capacity?

2.14(b) The specific heat capacity of copper is 0.384 J K−1 g−1. What is its molar 

heat capacity?
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2.15(a) By how much does the molar enthalpy of hydrogen gas differ from its 

molar internal energy at 1000 °C? Assume perfect gas behaviour.

2.15(b) The mass density of water is 0.997 g cm−3. By how much does the molar 

enthalpy of water differ from its molar internal energy at 298 K?

2.16(a) Which do you expect to have the greater entropy at 298 K and 1 bar, 

liquid water or water vapour?

2.16(b) Which do you expect to have the greater entropy at 0 °C and 1 atm, 

liquid water or ice?

2.17(a) Which do you expect to have the greater entropy, 100 g of iron at 300 K 

or 3000 K?

2.17(b) Which do you expect to have the greater entropy, 100 g of water at 0 °C 

or 100 °C?

2.18(a) Give three examples of a system that is in dynamic equilibrium. What 

might happen when the equilibrium is disturbed?

2.18(b) Give three examples of a system that is in static equilibrium. What 

might happen when the equilibrium is disturbed?

2.19(a) Suppose two states differ in energy by 1.0 eV (electronvolts, see inside 

the front cover); what is the ratio of their populations at (a) 300 K, (b) 3000 K?

2.19(b) Suppose two states differ in energy by 2.0 eV (electronvolts, see inside 

the front cover); what is the ratio of their populations at (a) 200 K, (b) 2000 K?

2.20(a) Suppose two states differ in energy by 1.0 eV; what can be said about 

their populations when T = 0?

2.20(b) Suppose two states differ in energy by 1.0 eV; what can be said about 

their populations when the temperature is infinite?

2.21(a) A typical vibrational excitation energy of a molecule corresponds to a 

wavenumber of 2500 cm−1 (convert to an energy separation by multiplying by 

hc; see Topic 3). Would you expect to find molecules in excited vibrational 

states at room temperature (20 °C)?

2.21(b) A typical rotational excitation energy of a molecule corresponds to a 

frequency of about 10 GHz (convert to an energy separation by multiplying by 

h; see Topic 3). Would you expect to find gas-phase molecules in excited 

rotational states at room temperature (20 °C)?

2.22(a) Suggest a reason why most molecules survive for long periods at room 

temperature.

2.22(b) Suggest a reason why the rates of chemical reactions typically increase 

with increasing temperature.

2.23(a) Calculate the relative mean speeds of N2 molecules in air at 0 °C 

and 40 °C.

2.23(b) Calculate the relative mean speeds of CO2 molecules in air at 20 °C 

and 30 °C.

2.24(a) Calculate the relative mean speeds of N2 and CO2 molecules in air.

2.24(b) Calculate the relative mean speeds of Hg2 and H2 molecules in a 

gaseous mixture.

2.25(a) Use the equipartition theorem to calculate the contribution of 

translational motion to the internal energy of 5.0 g of argon at 25 °C.

2.25(b) Use the equipartition theorem to calculate the contribution of 

translational motion to the internal energy of 10.0 g of helium at 30 °C.

2.26(a) Use the equipartition theorem to calculate the contribution to the total 

internal energy of a sample of 10.0 g of (a) carbon dioxide, (b) methane at 

20 °C; take into account translation and rotation but not vibration.

2.26(b) Use the equipartition theorem to calculate the contribution to the total 

internal energy of a sample of 10.0 g of lead at 20 °C, taking into account the 

vibrations of the atoms.

2.27(a) Use the equipartition theorem to compute the molar heat capacity of 

argon.

2.27(b) Use the equipartition theorem to compute the molar heat capacity of 

helium.

2.28(a) Use the equipartition theorem to estimate the heat capacity of 

(a) carbon dioxide, (b) methane.

2.28(b) Use the equipartition theorem to estimate the heat capacity of (a) water 

vapour, (b) lead.

Topic 3 Waves

Discussion questions
3.1 How many types of wave motion can you identify? 3.2 What is the wave nature of the sound of a sudden ‘bang’?

Exercises
3.1(a) What is the speed of light in water if the refractive index of the latter is 

1.33?

3.1(b) What is the speed of light in benzene if the refractive index of the latter 

is 1.52?

3.2(a) The wavenumber of a typical vibrational transition of a hydrocarbon is 

2500 cm−1. Calculate the corresponding wavelength and frequency.

3.2(b) The wavenumber of a typical vibrational transition of an O–H bond is 

3600 cm−1. Calculate the corresponding wavelength and frequency.

Integrated activities

F1.1 In Topic 78 we show that for a perfect gas the fraction of molecules that 

have a speed in the range v to v + dv is f(v)dv, where f
M

RT
M RT( )

/

/v v v= ⎛
⎝⎜

⎞
⎠⎟

−4
2

3 2

2 22π π e
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26 1 Foundations

is the Maxwell–Boltzmann distribution with T the temperature and M the 

molar mass. Use this expression and mathematical software, a spreadsheet, or 

the Living graphs (labelled LG) on the website of this book for the following 

exercises:

(a) LG Refer to the graph in Fig. 2.6. Plot different distributions by keeping the 

molar mass constant at 100 g mol−1 and varying the temperature of the sample 

between 200 K and 2000 K.

(b) LG Consider a sample of gas consisting of a substance with molar mass 

100 g mol−1. Evaluate numerically the fraction of molecules with speeds in the 

range 100 m s−1 to 200 m s−1 at 300 K and 1000 K.

F1.2 Based on your observations from Problem F1.1, provide a molecular 

interpretation of temperature.
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Differentiation and integration  27

Mathematical background 1 Differentiation and integration

Two of the most important mathematical techniques in the 

physical sciences are differentiation and integration. They 

occur throughout the subject, and it is essential to be aware of 

the procedures involved.

MB1.1 Differentiation: definitions
Differentiation is concerned with the slopes of functions, such 

as the rate of change of a variable with time. The formal defini-

tion of the derivative, df/dx, of a function f(x) is

d

d

f

x

f x x f x

xx
= + −

→
lim

( ) ( )

δ

δ
δ0  

Definition  First derivative  (MB1.1)

As shown in Fig. MB1.1, the derivative can be interpreted as the 

slope of the tangent to the graph of f(x). A positive first deriva-

tive indicates that the function slopes upwards (as x increases), 

and a negative first derivative indicates the opposite. It is some-

times convenient to denote the first derivative as f ′(x). The sec-

ond derivative, d2f/dx2, of a function is the derivative of the 

first derivative (here denoted f ′):

d

d

2

2 0

f

x

f x x f x

xx
= + − ′

→
lim

( ) ( )

δ

′ δ
δ  

It is sometimes convenient to denote the second derivative 

f ″. As shown in Fig. MB1.1, the second derivative of a func-

tion can be interpreted as an indication of the sharpness of 

the curvature1 of the function. A positive second derivative 

indicates that the function is  ∪  shaped, and a negative second 

derivative indicates that it is  ∩  shaped.

The derivatives of some common functions are as follows:

d

dx
x nxn n= −1

 
(MB1.3a)

d

d
e e

x
aax ax=

 
(MB1.3b)

d

d

d

dx
ax a ax

x
ax a axsin cos cos sin= = −

 
(MB1.3c)

d

d
ln

x
ax

x
= 1

 
(MB1.3d)

When a function depends on more than one variable, we 

need the concept of a partial derivative, ∂f/∂x. Note the change 

from d to ∂ : partial derivatives are dealt with at length in 

Mathematical background 8; all we need know at this stage is 

that they signify that all variables other than the stated variable  

are regarded as constant when evaluating the derivative.

MB1.2 Differentiation: manipulations

It follows from the definition of the derivative that a variety of 

combinations of functions can be differentiated by using the 

following rules:

d

d

d

d

d

dx
u

u

x x
( )+ = +v

v
 

(MB1.4a)

Definition Second 
derivative (MB1.2)

Brief illustration MB1.1 Partial derivatives

Suppose we are told that f is a function of two variables, and 

specifically f = 4x2y3. Then, to evaluate the partial derivative of 

f with respect to x, we regard y as a constant (just like the 4), 

and obtain

∂
∂

∂
∂

∂
∂

f

x x
x y y

x
x xy= = =( )4 4 82 3 3 2 3

 

Similarly, to evaluate the partial derivative of f with respect to 

y, we regard x as a constant (again, like the 4), and obtain

∂
∂

∂
∂

∂
∂

f

y y
x y x

y
y x y= = =( )4 4 122 3 2 3 2 2

 

1 We are using the term ‘curvature’ informally. The precise technical 

definition of the curvature of a function f is (d2f/dx2)/{1 + (df/dx)2}3/2.

x x

f

df/dx

df/dx

d2f/dx2

0

(a) (b)

Figure MB1.1 (a) The first derivative of a function is equal to 
the slope of the tangent to the graph of the function at that 
point. The small circle indicates the extremum (in this case, 
maximum) of the function, where the slope is zero. (b) The 
second derivative of the same function is the slope of the 
tangent to a graph of the first derivative of the function. It can 
be interpreted as an indication of the sharpness of curvature of 
the function at that point.
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d
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dx
u u
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(MB1.4b)
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xv v v
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(MB1.4c)

MB1.3 Series expansions
One application of differentiation is to the development of 

power series for functions. The Taylor series for a function f(x) 

in the vicinity of x = a is

f x f a
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where the notation (...)a means that the derivative is evaluated 

at x = a and n! denotes a factorial given by

n n n n! ( )( ) , != − − =1 2 1 0 1�   Factorial  (MB1.6)

The Maclaurin series for a function is a special case of the 

Taylor series in which a = 0.

The following Taylor series (specifically, Maclaurin series) 

are used at various stages in the text:
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(MB1.7a)
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(MB1.7b)
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�
 

(MB1.7c)

Taylor series are used to simplify calculations, for when 

x � 1 it is possible, to a good approximation, to terminate the 

series after one or two terms. Thus, provided x � 1 we can write

( )1 11 + −−x x≈  (MB1.8a)

ex x≈ +1  (MB1.8b)

ln( )1+ ≈x x  (MB1.8c)

A series is said to converge if the sum approaches a finite, 

definite value as n approaches infinity. If the sum does not 

approach a finite, definite value, then the series is said to 

diverge. Thus, the series in eqn MB1.7a converges for x < 1 and 

diverges for x ≥ 1.There are a variety of tests for convergence, 

which are explained in mathematics texts.

MB1.4 Integration: definitions
Integration (which formally is the inverse of differentiation) 

is concerned with the areas under curves. The integral of a 

Taylor series  (MB1.5)

Brief illustration MB1.3 Series expansion

To evaluate the expansion of cos x around x = 0 we note that

d
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Brief illustration MB1.2 Derivatives

To differentiate the function f = sin2 ax/x2 use eqn MB1.4 to 

write

d
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x x
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The function and this first derivative are plotted in Fig. MB1.2.

0

0.5

1

–0.5

–10 –5 0 5 1

f(x)

df(x)/dx

x

Figure MB1.2 The function considered in Brief illustration 
MB1.2 and its first derivative.
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function f(x), which is denoted ∫f dx (the symbol ∫ is an elon-

gated S denoting a sum), between the two values x = a and x = b 

is defined by imagining the x axis as divided into strips of width 

δx and evaluating the following sum:

f x x f x x
x

i

i
a

b

( ) lim ( )d =
→ ∑∫ δ

δ
0

 

Definition  Integration  (MB1.9)

As can be appreciated from Fig. MB1.3, the integral is the area 

under the curve between the limits a and b. The function to 

be integrated is called the integrand. It is an astonishing math-

ematical fact that the integral of a function is the inverse of the 

differential of that function in the sense that if we differentiate 

f and then integrate the resulting function, then we obtain the 

original function f (to within a constant). The function in eqn 

MB1.9 with the limits specified is called a definite integral. If it 

is written without the limits specified, then we have an indefi-

nite integral. If the result of carrying out an indefinite integra-

tion is g(x) + C, where C is a constant, the following notation is 

used to evaluate the corresponding definite integral:

I f x x g x C g b C g a C

g b g a

a
b

a

b

= = + = + − +

= −
∫ ( ) { ( ) }| { ( ) } { ( ) }

( ) ( )

d

 

Note that the constant of integration disappears. The definite 

and indefinite integrals encountered in this text are listed in the 

Resource section.

MB1.5 Integration: manipulations
When an indefinite integral is not in the form of one of those 

listed in the Resource section it is sometimes possible to 

transform it into one of the forms by using integration tech-

niques such as:

Substitution. Introduce a variable u related to the 

independent variable x (for example, an algebraic relation 

such as u = x2 – 1 or a trigonometric relation such as 

u = sin x ). Express the differential dx in terms of du (for 

these substitutions, du = 2x dx and du = cos x dx, 

respectively). Then transform the original integral written 

in terms of x into an integral in terms of u upon which, in 

some cases, a standard form such as one of those listed in 

the Resource section can be used.

Integration by parts. For two functions f(x) and g(x),

∫ ∫= −f
g

x
x fg g

f

x
x

d

d
d

d

d
d

 
 Integration by parts  (MB1.11a)

which may be abbreviated as

∫ ∫= −f g fg g fd d
 

(MB1.11b)

Definite 
integral

 (MB1.10)

Brief illustration MB1.4 Integration by substitution

To evaluate the indefinite integral ∫cos2 x sin x dx we make the 

substitution u = cos x. It follows that du/dx = –sin x, and there-

fore that sin x dx = –du. The integral is therefore

∫ ∫= − = − + = − +cos sin cos2 2 3 31

3

1

3
x x x u u u C x Cd d

 

To evaluate the corresponding definite integral, we have 

to convert the limits on x into limits on u. Thus, if the lim-

its are x = 0 and x = π , the limits become u = cos 0 = 1 and 

u = cos π = –1:

cos sin2 2 3

1

1

1

1

0

1

3

2

3
x x x u u u Cd d= − = − +⎧
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∫∫
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Brief illustration MB1.5 Integration by parts

Integrals over xe−ax and their analogues occur commonly in 

the discussion of atomic structure and spectra. They may be 

integrated by parts, as in the following:

x x x
a a
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0
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2

1
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∞ −
∞ − ∞
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=

∫ e d
e

x

f(x)

a b

δx

Figure MB1.3 A definite integral is evaluated by forming the 
product of the value of the function at each point and the 
increment δx, with δx → 0, and then summing the products  
f(x)δx for all values of x between the limits a and b. It follows 
that the value of the integral is the area under the curve 
between the two limits.
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30 Mathematical background 1

MB1.6 Multiple integrals
A function may depend on more than one variable, in which 

case we may need to integrate over both the variables:

I f x xy y
c

d

a

b

= ∫∫ ( , )d d
 

(MB1.12)

We (but not everyone) adopt the convention that a and b are 

the limits of the variable x and c and d are the limits for y (as 

depicted by the colours in this instance). This procedure is sim-

ple if the function is a product of functions of each variable and 

of the form f(x,y) = X(x)Y(y). In this case, the double integral is 

just a product of each integral:

I X x Y y x y X x x Y y y
c

d

a

b

a

b

c

d

= =∫∫ ∫ ∫( ) ( ) ( ) ( )d d d d
 

(MB1.13)

Brief illustration MB1.6 A double integral

Double integrals of the form

I x L y L x y
LL

= ∫∫ sin ( / )sin /( )2

0
1

0

2
2

21

π π d d

occur in the discussion of the translational motion of a particle 

in two dimensions, where L1 and L2 are the maximum extents 

of travel along the x- and y-axes, respectively. To evaluate I we 

use MB1.13 and Integral T.2 in the Resource section to write

I x L x y L y

x
x L

L

L L

=

= − +

∫ ∫sin ( / ) sin ( / )

sin( / )

/

2

0
1

2

0
2

1

1

1 2

1

2

2

4

π π

π
π

d d

CC y
y L

L
C

L L

L L⎧
⎨
⎩

⎫
⎬
⎭

− +⎧
⎨
⎩

⎫
⎬
⎭

=
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2

2 0

1 2

1 21
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FOCUS 2  ON  The principles of quantum mechanics

The quantum
mechanics of

motion

Focus 3

Topic  6

Extracting
information from
the wavefunction

Extracting
information from
the wavefunction

Topic  8

The uncertainty
principle

Topic  5

The wavefunction

Topic  4

The emergence
of quantum theory

Topic  7

Predicting the
outcome of
experiments

The Schrödinger

equation

Two cherished concepts in classical physics are the distinction between particles and waves and 
the continuous variation of the energy of bodies. However, experiments conducted towards the 
end of the nineteenth century and early in the twentieth century on light, electrons, atoms, and 
molecules could be explained only if the distinction between waves and particles were discarded 
and energy assumed to be confined to discrete values (Topic 4). These shortcomings required a 
new theory to provide the essential foundation for understanding the properties of atoms and 
molecules. As this theory, which is called ‘quantum mechanics’, was developed, it was found that 
it could be expressed in terms of a small set of basic rules or ‘postulates’, which are collected at the 
end of Topic 7.

First, we need to know that all the information that can be known about a system is carried by its 
wavefunction (Topic 5). Then we need to know how to extract that information. For example, the 
‘Born interpretation’ (Topic 5) shows us how to use the wavefunction to calculate the probability of 
finding a particle in a region of space. The extraction of other kinds of dynamical information is less 
straightforward and depends on being able to construct a mathematical device, an ‘operator’, that 
when applied to the wavefunction produces the value of the observable. We see how to set up and 
use these operators in Topic 6. Of course, we need to know how to find the wavefunction in the first 
place: that is done by setting up a very special version of an operator called the ‘hamiltonian’ and 
then solving the resulting Schrödinger equation (this equation is also introduced in Topic 6).

Unlike in classical mechanics, where precise trajectories can be calculated, in quantum mechan-
ics it is sometimes possible to calculate only average values of observables (Topic 7). In some cases 
the difference is even more pronounced, because it might be the case that if one observable is 
known precisely, then the value of another observable might be wholly indeterminate. This is the 
domain of the famous ‘uncertainty principle’ (Topic 8), which represents one of the most remark-
able departures of quantum mechanics from classical mechanics, and has implications throughout 
chemistry.

These fundamental principles of quantum mechanics are used throughout the text. For exam-
ple, solving the Schrödinger equation is a central feature of the discussion of the three basic types 
of motion of particles, their translation, rotation and vibration (see The quantum mechanics of 

motion).
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What is the impact of this material?

Concepts of quantum theory lie at the heart of what may prove one day to be a revolution in the way 
in which certain calculations are carried out in a new generation of computers. ‘Quantum comput-
ing’ is potentially capable of solving in seconds problems that conventional computing might be 
unable to solve in the lifetime of the universe (Impact 2.1).

To read more about the impact of this material, scan the QR code or go to 
http://bcs.whfreeman.com/webpub/chemistry/qmc2e/impact/qchem_
impact2.html.
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TOPIC 4

The emergence of 

quantum theory

As science developed during the late nineteenth century it was 

thought that the internal structure of atoms and the newly dis-

covered electron could be expressed using classical mechan-

ics, the laws of motion concerning mass, force, speed, and 

acceleration introduced in the seventeenth century by Isaac 

Newton. However, towards the end of the century and early 

in the twentieth century, experimental evidence accumulated 

showing that classical mechanics failed when it was applied to 

particles as small as electrons. In this Topic, we describe several 

crucial experiments that showed that classical mechanics fails 

when applied to transfers of very small energies and to objects 

of very small mass. The observations led to the formulation of 

an entirely new and currently hugely successful theory called 

quantum mechanics, which is developed in Topics 5–30.

4.1 The quantization of energy

According to classical mechanics, the energy of a body can 

be continuously varied: a pendulum, for instance, can pos-

sess any energy by starting it to swing from any angle. In par-

ticular, it was thought that the oscillators responsible for the 

emission and absorption of electromagnetic radiation by a hot 

body could also take on any energy. However, that turned out 

not to be the case: the characteristics of the radiation could be 

explained only if it was assumed that their energy is confined to 

discrete values. In due course, it was established that this ‘quan-

tization’ of energy was a universal phenomenon.

Contents

4.1 The quantization of energy 33

(a) Black-body radiation 34

Brief illustration 4.1: Wien’s displacement law 34

Example 4.1: Using the Planck distribution 35

(b) Spectroscopy 36

Brief illustration 4.2: The Bohr frequency condition 37

4.2 Wave–particle duality 37

(a) The photoelectric effect 37

Example 4.2: Calculating the maximum wavelength  

capable of photoejection 38

Example 4.3: Calculating the number of photons 39

(b) Diffraction 39

Example 4.4: Estimating the de Broglie wavelength 39

4.3 Retrospect and summary 40

Checklist of concepts 40
Checklist of equations  41

 ➤ Why do you need to know this material?
You should know how experimental results motivated 
the development of quantum theory, which underlies 
all descriptions of the structure of atoms and molecules 
and pervades the whole of spectroscopy and chemistry 
in general.

 ➤ What is the key idea?
Experimental evidence accumulated near the end of the 
nineteenth and beginning of the twentieth centuries led to 
the conclusions that energy cannot be continuously varied 
and that the classical concepts of a ‘particle’ and a ‘wave’ 
blend together when applied to light, atoms, and molecules.

 ➤ What do you need to know already?
You should be familiar with the basic principles of classical 
mechanics, which are reviewed in Foundations, Topic 2.
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34 2 The principles of quantum mechanics

(a) Black-body radiation

It is common experience that a heated metal bar glows red 

when heated. At high temperatures, an appreciable proportion 

is in the visible region of the electromagnetic spectrum and, as 

the temperature is increased, more short-wavelength blue light 

is generated. The red-hot iron bar begins to glow ‘white hot’ 

when heated further.

The formal experimental investigation of this type of obser-

vation makes use of an empty container with a pinhole to allow 

radiation to escape and be analysed (Fig. 4.1). When the con-

tainer is heated, radiation is absorbed and re-emitted inside it 

so many times as it is reflected around that it comes to thermal 

equilibrium with the walls before leaking out of the pinhole. 

This system is a good approximation to a black body, an object 

capable of emitting and absorbing all wavelengths of radiation 

uniformly.

Figure 4.2 shows how the energy output of the black-body 

radiation varies with wavelength at different temperatures. 

The energy output is expressed as its spectral density of states 

ρ(λ,T), the energy density of the electromagnetic radiation emit-

ted at wavelengths between λ and λ + dλ at the temperature T. 

The energy density is the energy in the specified range divided by 

the volume enclosed by the black body. The observation that the 

maximum of ρ moves to shorter wavelengths as the temperature 

is raised is summarized by Wien’s displacement law:

λmax constantT =
  Wien’s displacement law  (4.1)

The empirical value of the constant is 2.9 mm K.

One of the most challenging problems at the end of the 

nineteenth century was to explain the behaviour observed in 

Fig. 4.2. Lord Rayleigh, using his expertise in classical physics, 

derived an expression for ρ by imagining the electromagnetic 

field as a collection of oscillators of all possible frequencies 

and using the classical equipartition theorem (Topic 2) for the 

average energy of each oscillator. He regarded the presence of 

radiation of frequency ν (and wavelength λ = c/ν) as signifying 

that the electromagnetic oscillator of that frequency had been 

excited (Fig. 4.3). With minor help from James Jeans, he arrived 

at the Rayleigh–Jeans law:

ρ λ
λ

( , )T
kT= 8
4

π

 
 Rayleigh–Jeans law  (4.2)

where k is Boltzmann’s constant (k  = 1.381 × 10−23 J K−1).

Although the Rayleigh–Jeans law is quite successful at long 

wavelengths (low frequencies), it fails badly at short wave-

lengths (high frequencies), predicting that as λ decreases, ρ 

increases without bound (Fig. 4.4). Therefore, oscillators of 

very short wavelength (corresponding to ultraviolet radiation, 

X-rays, and even γ-rays) are strongly excited even at room tem-

perature. According to this absurd result, which is called the 

ultraviolet catastrophe, even cool objects should radiate in the 

visible and ultraviolet regions.

In 1900, the German physicist Max Planck found that he 

could account for the form of ρ by proposing that the energy 

Brief illustration 4.1 Wien’s displacement law

The peak in the Sun’s emitted energy occurs at about 480 nm. 

The temperature of its surface can be estimated by regard-

ing  the Sun as a black-body emitter and using eqn 4.1:

T = =
×

×
=constant mK

m
K

maxλ
2 9 10

480 10
6000

3

9

. −

−

Self-test 4.1 A metal object is heated to 500 °C. What is the 

wavelength of maximum emission?

Answer: 3.8 μm

Increasing
temperature

Wavelength, λ

Maximum
of ρ

E
n
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g

y 
d

is
tr

ib
u

ti
o

n
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Figure 4.2 The energy distribution in a black-body cavity 
at several temperatures. Note how the spectral density of 
states increases in the region of shorter wavelength as the 
temperature is raised, and how the peak shifts to shorter 
wavelengths.

Detected
radiation

Pinhole

Container
at  a
temperature T

Figure 4.1 An experimental representation of a black body 
is a pinhole in an otherwise closed container. The radiation 
is reflected many times within the container and comes 
to thermal equilibrium with the walls. Radiation leaking 
out through the pinhole is characteristic of the radiation 
within the container.
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4 The emergence of quantum theory  35

of each electromagnetic oscillator is limited to discrete values. 

That suggestion contradicts the viewpoint of classical physics, 

in which all possible energies are allowed. The limitation of 

energies to discrete values is called the quantization of energy. 

In particular, Planck found that he could account for the 

observed distribution of energies if he supposed that the per-

mitted energies of an electromagnetic oscillator of frequency ν 

are integer multiples of hν:

E nh n= =� 0, , , 1  2  …
 

where h is a fundamental constant now known as Planck’s 

constant. On the basis of this supposition, Planck was able to 

derive the Planck distribution:

ρ λ
λ λ( , )

( )/
T

hc
hc kT

=
−

8

15

π
e  

 Planck distribution  (4.3)

This expression fits the experimental curve very well at all wave-

lengths if h, which is an undetermined parameter in the theory, 

has the value 6.626 × 10−34 J s (Fig. 4.5). It is easy to understand 

why Planck's approach avoided the ultraviolet catastrophe. 

According to his hypothesis, oscillators are excited only if they 

can acquire an energy of at least hν. This energy is too large for 

the walls of the black body to supply in the case of the very high 

frequency oscillators, so they remain unexcited.

The Planck distribution reduces to the Rayleigh–Jeans law in 

the limit of long wavelengths, where the classical expression is 

successful at explaining the observed energy distribution of the 

black-body radiator (Fig. 4.4). For long wavelengths, hc/λkT � 1,  

and the denominator in eqn 4.3 can be replaced by:

λ λ
λ

λλ5 5
4

1 1 1( )/ehc kT hc

kT

hc

kT
− = + +⎛

⎝⎜
⎞
⎠⎟

−
⎧
⎨
⎩

⎫
⎬
⎭

≈�
 

where we have used the expansion ex = 1+x + …. The Planck 

 distribution therefore reduces to

ρ λ
λ λ

( , )
( / )

T
hc

hc kT

kT≈ =8 8
4 4

π π

 

which is the Rayleigh–Jeans law (eqn 4.2). However, at short 

wavelengths, the Planck distribution avoids the ultraviolet catas-

trophe of classical physics because ehc kT/λ →∞ faster than λ 5 0→ , 

and therefore ρ→0 as λ→0. In addition, the Planck distribution 

can be used to derive Wien's displacement law and to show that 

the constant in eqn 4.1 is equal to hc/5k (see Problem 4.2).

Example 4.1 Using the Planck distribution

Compare the energy output of a black-body radiator (such as 

an incandescent lamp) at two different wavelengths by calcu-

lating the ratio of the energy output at 450 nm (blue light) to 

that at 700 nm (red light) at 298 K.

(a)

(b)

Figure 4.3 The electromagnetic vacuum can be regarded as 
able to support oscillations of the electromagnetic field. When 
a high-frequency, short-wavelength oscillator (a) is excited, 
radiation of that frequency is present. The presence of low-
frequency, long-wavelength radiation (b) signifies that an 
oscillator of the corresponding frequency has been excited.

Wavelength, λ

Rayleigh–Jeans
law

Experimental
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, ρ

Figure 4.4 The Rayleigh–Jeans law (eqn 4.2) predicts an infinite 
spectral density of states at short wavelengths. This approach 
to infinity is called the ultraviolet catastrophe. 

ρ/
{8

π(
kT

)5 /
(h

c)
4 }

0 0.5 1 1.5 2
λkT/hc

Figure 4.5 The Planck distribution (eqn 4.3) accounts very 
well for the experimentally determined distribution of black-
body radiation. Planck’s quantization hypothesis essentially 
quenches the contributions of high-frequency, short-
wavelength oscillators. The distribution coincides with the 
Rayleigh–Jeans distribution at long wavelengths.
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36 2 The principles of quantum mechanics

(b) Spectroscopy
Compelling additional evidence that energy is quantized 

comes from spectroscopy, the detection and analysis of the 

electromagnetic radiation absorbed, emitted, or scattered by a 

substance. Two typical atomic emission and molecular absorp-

tion spectra are shown in Figs 4.6 and 4.7. The obvious feature 

of both is that radiation is emitted or absorbed at a series of 

discrete wavelengths (or frequencies).

The observation of discrete spectral lines rather than the 

continuum of emission characteristic of a black body suggests 

that some of the oscillators responsible for the emission or 

absorption of radiation are not present in isolated atoms and 

molecules. This conclusion is consistent with the existence of 

photons, which are particles of electromagnetic radiation. As 

will be developed later in this Topic, a photon of radiation of 

frequency ν possesses an energy hν. Therefore, the observation 

of a photon of frequency ν in the radiation emitted by an atom 

indicates that the atom has lost an energy of hν. This conclusion 

is summarized by the Bohr frequency condition

ΔE h= �   Bohr frequency condition  (4.4)

where ΔE is the change in energy of the atom. The observation 

of discrete values of ν then implies that the change in energy of 

the atom can take place only in discrete steps (Fig. 4.8). That in 

turn implies that the atom can possess only discrete energies. 

415 420
Wavelength, λ/nm
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o
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n
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Figure 4.6 A region of the spectrum of radiation emitted by 
excited iron atoms consists of radiation at a series of discrete 
wavelengths (or frequencies).
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transitions

Figure 4.7 When a molecule changes its state, it does so by 
absorbing radiation at definite frequencies. This spectrum is 
part of that due to the electronic, vibrational, and rotational 
excitation of sulfur dioxide (SO2) molecules. This observation 
suggests that molecules can possess only discrete energies, 
not an arbitrary energy. 

hν = E3 – E2

hν = E2 – E1

hν = E3 – E1

E3

E2

E1

E
n

er
g

y,
 E

Figure 4.8 Spectroscopic transitions, such as those shown 
above, can be accounted for if we assume that a molecule 
emits electromagnetic radiation as it changes between 
discrete energy levels. Note that high-frequency radiation is 
emitted when the energy change is large.

Method Use eqn 4.3. At a temperature T, the ratio of the spec-

tral density of states at a wavelength λ1 to that at λ2 is given by

ρ λ
ρ λ

λ
λ

λ

λ
( , )

( , )

( )
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hc kT
= ⎛
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× −
−

e

e

Insert the data and evaluate this ratio.

Answer With λ1 = 450 nm and λ2 = 700 nm,

hc

kTλ1
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and therefore

ρ
ρ
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450 10
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At room temperature, the proportion of short-wavelength 

radiation is insignificant.

Self-test 4.2 Repeat the calculation for a temperature of 13.6 

MK, which is close to the temperature at the core of the Sun.

Answer: 5.85

Atkins09819.indb   36 9/11/2013   10:57:54 AM

www.ebook3000.com

http://www.ebook3000.org


4 The emergence of quantum theory  37

In other words, its energy is quantized and it can exist in only 

certain energy levels. Similar remarks and implications apply 

to the absorption of radiation and to molecules.

The quantized energy levels responsible for spectral lines 

may involve rotational, vibrational, and electronic motion; 

they are considered in detail in Topics 41–45. In general, elec-

tronic energy levels are the most widely spaced, followed by 

vibrational and then rotational levels. Therefore, by the Bohr 

frequency condition, electronic transitions occur at the highest 

frequencies (shortest wavelengths; ultraviolet and visible radia-

tion), vibrational transitions at lower frequencies (longer wave-

lengths; infrared radiation), and rotational transitions at even 

lower frequencies (longest wavelengths; microwave radiation).

4.2 Wave–particle duality

As we have seen, the possession of arbitrary amounts of energy 

assumed by classical mechanics had to be discarded. There was 

more revolution to come. Classical mechanics makes a clear 

distinction between a ‘particle’ and a ‘wave’: electromagnetic 

radiation is treated as a wave and an electron, or any object with 

mass, is treated as a particle. However, this fundamental dis-

tinction between these two concepts had to be discarded when 

more experimental information about the behaviour of elec-

tromagnetic radiation and electrons was accumulated at the 

beginning of the twentieth century.

(a) The photoelectric effect
The photoelectric effect is the ejection of electrons from metals 

when they are exposed to visible or ultraviolet radiation. The 

experimental characteristics of the effect are:

1 No electrons are ejected, regardless of the intensity of the 

radiation, unless the frequency of the radiation exceeds a 

threshold value characteristic of the metal.

2 The kinetic energy of the ejected electrons increases 

linearly with the frequency of the incident radiation but 

is independent of the intensity of the radiation.

3 Even at low light intensities, electrons are ejected if the 

frequency is above the threshold.

Figure 4.9 illustrates the first and second characteristics.

In 1905 Albert Einstein devised an explanation of the photo-

electric effect when he suggested that it depends on the ejection 

of an electron when it is involved in a collision with a suffi-

ciently energetic particle-like projectile. Einstein supposed that 

the projectile is a photon of energy hν, where ν is the frequency 

of the radiation. It then follows from the conservation of energy 

that the kinetic energy of the ejected electron, Ek, should be 

given by

E hk = −� Φ   Photoelectric effect  (4.5)

In this expression, Φ (uppercase phi) is a characteristic of the 

metal called its work function, the minimum energy required 

Brief illustration 4.2  The Bohr frequency condition

Atomic sodium produces a yellow glow (as in some street 

lamps) resulting from the emission of radiation of 590 nm. 

The spectroscopic transition responsible for the emission 

involves electronic energy levels that have a separation given 

by eqn 4.4:

ΔE h
hc= = =

× × ×
×

= ×

− −

−� λ
( . ) ( . )

.

6 626 10 2 998 10

590 10

3 37 10

34 8 1

9

Js ms

m

−−19 J

This energy difference can be expressed in a variety of ways. 

For instance, multiplication by Avogadro’s constant results 

in an energy separation per mole of atoms of 203 kJ mol−1, 

comparable to the energy of a weak chemical bond. A very 

useful conventional unit is the electronvolt (eV), with 1 eV 

corresponding to the kinetic energy gained by an electron 

when it is accelerated through a potential difference of 1 V:  

1 eV = 1.602 × 10−19 J. Therefore the calculated value of ΔE cor-

responds to 2.10 eV. The ionization energies of atoms are typi-

cally several electronvolts.

Self-test 4.3 Neon lamps emit red radiation of wavelength 

736 nm. What is the energy separation of the levels in joules, 

kilojoules per mole, and electronvolts responsible for the 

emission?

Answer: 2 70 1 699 1. , .×10− −J,163 kJ mol eV
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Figure 4.9 In the photoelectric effect, it is found that no 
electrons are ejected when the incident radiation has a 
frequency below a value characteristic of the metal, and that, 
above that value, the kinetic energy of the photoelectrons 
varies linearly with the frequency of the incident radiation.
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38 2 The principles of quantum mechanics

to remove an electron from the metal (Fig. 4.10). The work 

function is the analogue of the ionization energy of an indi-

vidual atom or molecule. Equation 4.5 accounts for the three 

observations given above:

Photoejection cannot occur if hν < Φ because the 

photon brings insufficient energy; this accounts for 

observation (1).

The kinetic energy of the ejected electron increases 

linearly with frequency but does not depend on the 

intensity of the radiation, in agreement with 

observation (2).

When a photon collides with an electron, it gives up 

all its energy, so we should expect electrons to 

appear as soon as the collisions begin, provided the 

photons have sufficient energy; this conclusion 

agrees with observation (3). 

The revolutionary idea stimulated by this interpretation of 

the photoelectric effect is the view that a beam of electromag-

netic radiation is a collection of particles, photons, each with 

energy hν.

A practical application of the photoelectric effect is the pho-

tomultiplier tube, a vacuum tube that is a very sensitive detector 

of ultraviolet and visible radiation. The electrons photoejected 

by incident light strike an electrode in the vacuum tube, result-

ing in the emission of additional electrons. The current pro-

duced by this cascade of electrons can be amplified by a factor 

of 108, yielding a sensitive and efficient way to detect photons in 

a wide variety of applications including spectroscopy, medical 

imaging, and particle physics.

Example 4.2  Calculating the maximum wavelength 
capable of photoejection 

A photon of radiation of wavelength 305 nm ejects an electron 

from a metal with a kinetic energy of 1.77 eV. Calculate the 

maximum wavelength of radiation capable of ejecting an elec-

tron from the metal.

Method Use eqn 4.5 rearranged into Φ  = hν − Ek with ν = c/λ 

to calculate the work function of the metal from the data. The 

threshold for photoejection, the frequency able to remove the 

electron but not give it any excess energy, then corresponds 

to radiation of frequency νmin = Φ/h. Use this value of the 

frequency to calculate the maximum wavelength capable of 

photoejection.

Answer From the expression for the work function Φ = hν − Ek 

the minimum frequency for photoejection is

�
�

�

min
k k= = − = −

=
Φ

λ

λ

h

h E

h

c E

h

c/


The maximum wavelength is therefore

λ λ λmax
min k k/ / / /

= = − = −
c c

c E h E hc�

1

1

Now we substitute the data. The kinetic energy of the 

electron is

E

E

hc

k

k

= × × = …×

=
…×

− − −

−
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1 42 10

34 8 1
6 1

× × ×
= …×− −

−

Js ms
m

Therefore, with

1 1 305 3 27 106 1/ / . ,λ = = …× −nm m

λmax m m
m=

…× − …×
= ×− −

−1

3 27 10 1 42 10
5 40 10

6 1 6 1
7

( . ) ( . )
.

or 540 nm.

Note on good practice To avoid rounding and other numeri-

cal errors, it is best to carry out algebraic calculations first, 

and to substitute numerical values into a single, final formula. 

Moreover, an analytical result may be used for other data 

without having to repeat the entire calculation.

Self-test 4.4 When ultraviolet radiation of wavelength 165 nm 

strikes a certain metal surface, electrons are ejected with a 

speed of 1.24 Mm s−1. Calculate the speed of electrons ejected 

by radiation of wavelength 265 nm.

Answer: 735 km s−1

E
n

er
g

y,
 E

hν hν

mev
2

(a) (b)

Φ Φ

1
2

Figure 4.10 The photoelectric effect can be explained if 
it is supposed that the incident radiation is composed of 
photons that have energy proportional to the frequency of the 
radiation. (a) The energy of the photon is insufficient to drive 
an electron out of the metal. (b) The energy of the photon is 
more than enough to eject an electron, and the excess energy 
is carried away as the kinetic energy of the photoelectron.

P
h
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4 The emergence of quantum theory  39

Another laboratory application of eqn 4.5 is that it pro-

vides a technique for the determination of Planck’s constant, 

for the slopes of the lines in Fig. 4.9 are all equal to h (see 

Problem 4.4).

(b) Diffraction
We have seen that what classically is regarded as a wave is 

also a stream of particles. Could the opposite be true: could 

what is classically regarded as a particle actually be a wave? 

Indeed, experiments carried out in 1925 required considera-

tion of the possibility that electrons, and matter in general, 

possess wave-like properties. The crucial experiment was 

performed by the American physicists Clinton Davisson and 

Lester Germer, who observed the diffraction of electrons by 

a crystal (Fig. 4.11). Diffraction is the interference caused by 

an object in the path of waves (Topic 3). At almost the same 

time, George Thomson, working in Scotland, showed that a 

beam of electrons was diffracted when passed through a thin 

gold foil.

Some progress towards accommodating the wavelike prop-

erties of matter had already been made by the French physicist 

Louis de Broglie when, in 1924, he suggested that any particle, 

not only photons, travelling with a linear momentum p should 

have (in some sense) a wavelength given by the de Broglie 

relation:

λ = h

p  

 de Broglie relation  (4.6)

That is, a particle with a high linear momentum has a short 

wavelength (Fig. 4.12). The joint particle and wave character of 

matter (and of radiation), summarized by the de Broglie rela-

tion, is called wave–particle duality. Duality strikes at the heart 

of classical physics, where particles and waves are treated as 

entirely distinct entities.

Example 4.3 Calculating the number of photons

Calculate the number of photons emitted by a monochromatic 

(single-frequency) 100 W sodium vapour lamp in 1.0 s. Take 

the wavelength as 589 nm and assume 100 per cent efficiency.

Method Each photon has an energy E = hν = hc/λ , so the 

total energy of the photons emitted by the sodium lamp is 

Etot = Nhc/λ , where N is the number of photons. The total 

energy is also the product of the power (P, in watts) and the 

time interval for which the lamp is turned on: Etot = PΔt. It fol-

lows that Etot = Nhc/λ = PΔt and therefore

N
P t

hc
= λ Δ

Answer Substitution of the data into the expression for N gives

N =
× × ×
× × ×

−

− −

( ) ( ) ( . )

( . ) ( . )

589 10 100 1 0

6 626 10 2 998 10

9

34 8 1

m W

Js ms

s
== ×3 0 1020.

This number corresponds to 0.50 mmol photons. To pro-

duce 1 mol photons therefore requires 2000 times as long, or 

2.0 × 103 s (corresponding to 33 min).

Self-test 4.5 How many photons does a monochromatic infra-

red source of power 1 mW and wavelength 1000 nm emit in 

0.1 s?

Answer: 5 × 1014

Electron
beam

Diffracted
electrons

Ni crystal

Figure 4.11 The Davisson–Germer experiment. The scattering 
of an electron beam from a nickel crystal shows a variation of 
intensity characteristic of a diffraction experiment in which 
waves interfere constructively and destructively in different 
directions.

Short wavelength,
high momentum

Long wavelength,
low momentum

Figure 4.12 An illustration of the de Broglie relation between 
momentum and wavelength. The wave is associated with a 
particle. A particle with high momentum corresponds to a 
wave with a short wavelength, and vice versa. 
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40 2 The principles of quantum mechanics

Example 4.4 Estimating the de Broglie wavelength

Estimate the wavelength of electrons that have been acceler-

ated from rest through a potential difference of 40 kV.

Method To use the de Broglie relation, we need to know the 

linear momentum, p, of the electrons. To calculate the linear 

momentum, we note that the energy acquired by an electron 

accelerated through a potential difference Δφ is eΔφ, where 

e is the magnitude of its charge. At the end of the period of 

acceleration, all the acquired energy is in the form of kinetic 

energy, Ek = 1
2 mev2  =  p2/2me, so we can determine p by setting 

p2/2me equal to eΔφ.

Answe r T he ex press ion p2/2m e =  eΔφ  i mpl ies  t hat 

p = (2meeΔφ)1/2; then, from the de Broglie relation λ = h/p,

λ
φ

= h

m e( ) /2 1 2
e Δ

Substitution of the data and the fundamental constants (from 

inside the front cover) gives

λ =
×

× × × × × ×{
−

− −

6 626 10

2 9 109 10 1 602 10 4 0 10

34

31 19 4

.

( . ) ( . ) ( .

Js

kg C V}}
= × −

1 2

1210

/

 6.1 m

or 6.1 pm. We have used 1 V C = 1 J and 1 J = 1 kg m2 s− 2. The 

wavelength of 6.1 pm is shorter than typical bond lengths in 

molecules (about 100 pm). Electrons accelerated in this way 

are used in the technique of electron diffraction for the deter-

mination of molecular structure (Topic 37).

Self-test 4.6 Calculate (a) the wavelength of a neutron with a 

translational kinetic energy equal to kT at 300 K, (b) a tennis 

ball of mass 57 g travelling at 80 km h−1.

Answer: (a) 178 pm, (b) 5.2 × 10−34 m

For microscopic particles, such as electrons and neutrons, 

their de Broglie wavelengths make them ideally suited for use 

in diffraction experiments; for example, neutron diffraction 

is a well-established technique for investigating the structures 

and dynamics of condensed phases (Topic 37) and electron 

diffraction is the basis for special techniques in microscopy. 

On the other hand, macroscopic bodies have such high 

momenta, even when they are moving slowly (because their 

mass is so great), that their wavelengths are undetectably 

small, and the wavelike properties cannot be observed (see 

Self-test 4.6(b)).

4.3 Retrospect and summary

The concepts of wave–particle duality and quantization have 

brought us to the heart of modern physics. We have seen that, 

when examined on an atomic scale, the classical concepts of 

particle and wave melt together, particles taking on the char-

acteristics of waves, and waves the characteristics of particles. 

We have also seen that the energies of electromagnetic radia-

tion and of matter cannot be varied continuously as assumed in 

classical physics, and that for microscopic objects the discrete-

ness of energy is highly significant.

Such total failure of classical physics implied that its basic 

concepts were false. A new mechanics had to be devised to take 

its place. Topic 5 begins our exploration of this new mechanics, 

which became known as ‘quantum mechanics’ and now per-

vades the whole of science.

Checklist of concepts

☐ 1. A black body is an object capable of emitting and 

absorbing all wavelengths of radiation uniformly.

☐ 2. The spectral distribution of the energy output of a 

black-body emitter is explained by assuming that the 

energies of the oscillators giving rise to electromagnetic 

radiation are quantized.

☐ 3. Spectroscopy, the detection and analysis of the electro-

magnetic radiation absorbed, emitted, or scattered by a 

substance, provides evidence for quantization of energy 

in particles.

☐ 4. The photoelectric effect is the ejection of electrons from 

metals when they are exposed to ultraviolet radiation.

☐ 5. A beam of electromagnetic radiation can be treated 

both as a collection of propagating waves and as a col-

lection of particles called photons, each with energy hν.

☐ 6. Diffraction experiments reveal that electrons, and mat-

ter in general, possess wave-like properties.

☐ 7. Wave–particle duality is the joint particle and wave 

character of matter and radiation.
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4 The emergence of quantum theory  41

Checklist of equations 

Property Equation Comment Equation number

Wien’s displacement law λmaxT = constant constant = hc/5k 4.1

Planck distribution ρ(λ,T) = 8πhc/{λ5(ehc/λkT − 1)} 4.3

Bohr frequency condition ΔE = hν 4.4

Photoelectric effect
1

2
2m hev = −� Φ  Φ is the work function 4.5

de Broglie relation λ = h/p 4.6
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TOPIC 5

The wavefunction

There are two approaches to the formal introduction of quan-

tum mechanics. One is to see the theory gradually emerging 

from the work of Planck, Einstein, Heisenberg, Schrödinger, 

and Dirac, in which experiment and intuition together deter-

mined the form of the theory. The other approach is to stand 

at a point in time at which the theory has already been well- 

developed and look at its underlying structure. We adopt the 

latter approach here and see how quantum mechanics can 

be expressed in terms of and developed from a small set of 

underlying principles or postulates. It should never be forgot-

ten, however, that these postulates have been developed on the 

basis of experimental evidence of the type described in Topic 4: 

they are clever statements that, when unwrapped, account for 

observations.

In this Topic we establish the postulates that relate to select-

ing and interpreting the wavefunction; in Topic 6 we describe 

how to extract the information that it contains.

5.1 Postulate I: the wavefunction

Quantum mechanics acknowledges the wave–particle duality 

of matter (Topic 4) by supposing that, rather than travelling 

along a definite path, a particle is distributed through space 

like a wave. The mathematical representation of this wave is 

called a wavefunction, ψ (psi). A principal tenet of quantum 

mechanics is that the wavefunction contains information about 

all the properties of the system that are open to experimental 

determination.

This discussion is summarized by the first postulate of quan-

tum mechanics.

Postulate I. The state of the system is described as fully 

as possible by the wavefunction ψ (r1, r2, …, t), where r1, 

r2, … are the locations of the particles and t is the time.

The wavefunction ψ (r1, r2, …, t) is called the ‘time-dependent 

wavefunction’; if the wavefunction does not depend on time it 

is written ψ (r1, r2, …) and called the ‘time-independent wave-

function’. In most of these introductory Topics we shall be con-

cerned with systems that consist of a single particle and do not 

vary with time, so the wavefunction is denoted ψ (r), where r is 

the location of the particle. In the simplest applications, the sys-

tem is one-dimensional, so the wavefunction is simply a func-

tion of x, and we write it ψ (x). For simplicity, we often denote 

the wavefunction as the plain letter ψ.

Contents

5.1 Postulate I: the wavefunction 42

Brief illustration 5.1: The wavefunction 43

5.2 Postulate II: the Born interpretation 43

(a) Probabilities and probability densities 43

Example 5.1: Interpreting a wavefunction 44

(b) Normalization 44

Example 5.2: Normalizing a wavefunction 45

(c) Constraints on the wavefunction 45

Brief illustration 5.2: A probability calculation 46

Checklist of concepts 46
Checklist of equations 46

 ➤ Why do you need to know this material?
Quantum theory provides the essential foundation for 
understanding the properties of electrons in atoms and 
molecules. Consequently, it underlies the explanation 
of the physical and chemical properties described 
throughout the text.

 ➤ What is the key idea?
All the dynamical properties of a system are contained in 
the wavefunction.

 ➤ What do you need to know already?
You need to be aware of the shortcomings of classical 
physics that drove the development of quantum theory 
(Topic 4).
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5 The wavefunction  43

Don’t be alarmed at the thought of having to manipulate 

complicated wavefunctions: they can be as simple as sin x or 

e−x. Wavefunctions might be complex in the technical sense of 

depending on i = (−1)1/2 (see The chemist’s toolkit 5.1), but even 

then are often simple in the colloquial sense, as in eikx.

5.2 Postulate II: the Born 
interpretation

The interpretation of the wavefunction is based on a suggestion 

made by Max Born in 1926. He made use of an analogy with 

the wave theory of light, in which the square of the amplitude of 

an electromagnetic wave in a region is interpreted as its inten-

sity and therefore (in quantum terms) as a measure of the prob-

ability of finding a photon present in the region.

(a) Probabilities and probability densities
The Born interpretation of the wavefunction focuses on the 

square of the wavefunction if ψ is real or the square modulus, 

|ψ |2 = ψ *ψ, if ψ is complex, where ψ * is the complex conjugate 

of the wavefunction.

Postulate II′ For a system described by the wavefunction 

ψ (r), the probability of finding the particle in the 

volume element dτ at r is proportional to |ψ (r)|2dτ.

Thus, because |ψ  |2 must be multiplied by a volume to obtain 

the probability (just like mass density must be multiplied by the 

volume of a body to get the body’s mass), it is called a probabil-

ity density (Fig. 5.1). In line with this usage, the wavefunction 

ψ itself is called the probability amplitude. The prime on this 

postulate number will be discarded when it is generalized to 

more than one particle at the end of this section.

The wavefunction might be negative in some regions or even 

complex. However, the Born interpretation does away with any 

worry about the significance of such values because |ψ |2 is real and 

never negative. There is no direct significance in the negative (or 

complex) value of a wavefunction: only the square modulus, a pos-

itive quantity, is directly physically significant, and both negative 

and positive regions of a wavefunction may correspond to a high 

probability of finding a particle in a region (Fig. 5.2). However, 

later we shall see that the presence of positive and negative regions 

of a wavefunction is of great indirect significance, because, like 

waves in general, it gives rise to the possibility of constructive and 

destructive interference between different wavefunctions.

When we come to deal with atoms and molecules we need to 

be aware of the interpretation of the wavefunction for a system 

Brief illustration 5.1 The wavefunction

The time-independent wavefunction of an electron in a hydro-

gen atom depends on its position, r, relative to the nucleus, and is 

therefore denoted ψ (r). In its lowest energy state, the wavefunc-

tion depends only on its distance, r, from the nucleus (not on the 

orientation of r), and is proportional to e−r a/ 0, where a0 = 53 pm.

Self-test 5.1 Consider a time-dependent wavefunction describ-

ing the state of the electrons in a helium atom. Identify the var-

iables upon which the electronic wavefunction depends.

Answer: t, r1, and r2 (the positions of electrons 1 and 2 relative to nucleus)

The chemist’s toolkit 5.1 Complex numbers

Complex numbers have the general form z = x + iy where 

i = (−1)1/2. The real numbers x and y are, respectively, the real 

and imaginary parts of z, denoted Re(z) and Im(z). When 

y = 0, z is the real number x; when x = 0, z is the pure imaginary 

number iy. The complex conjugate of z, denoted z*, is formed 

by replacing i by –i: z* = x – iy.

The product of z and z*, denoted |z|2, is called the square 

modulus of z. It is always a real number:

z x y x y x xy xy y x y
2 2 2 2 2i i i i= + = + + = +( )( )− −

because i2 = −1. The absolute value or modulus of z is denoted 

|z| and is given by

z z z x y= ( * ) ( )/ /1 2 2 1 2= +2

A useful relation involving complex numbers is Euler’s 

formula:

e cos i sinix x x= +

A more compete discussion of complex numbers is given in 

Mathematical background 3.

dxdy

dz

z

x y

r

Figure 5.1 The Born interpretation of the wavefunction in 
three-dimensional space implies that the probability of  
finding the particle in the volume element dτ = dxdydz at  
some location r is proportional to the product of dτ and  
the value of |ψ |2 at that location.
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44 2 The principles of quantum mechanics

with more than one particle, such as the two-electron helium 

atom and the 16-electron O2 molecule. In this case, ψ (r1, r2, …) 

is used to calculate the overall probability of finding each par-

ticle in its own specific volume element. The generalization of 

Postulate II′ is then:

Postulate II. For a system described by the wavefunction 

ψ (r1, r2, …), the probability of finding particle 1 in the 

volume element dτ1 at r1, particle 2 in the volume element 

dτ2 at r2 , etc. is proportional to |ψ |2dτ1dτ2.....

(b) Normalization
Postulate II′ refers to a proportionality between probability 

and |ψ |2dτ. To determine the actual value of the probability 

we write ψ ′ = Nψ, where N is a (real) constant selected so that 

|ψ ′ |2dτ is equal to the probability that the particle is in the vol-

ume element dτ. To determine this constant, we note that the 

total probability of finding the particle anywhere in space must 

be 1 (it must be somewhere). If the system is one-dimensional, 

the total probability of finding the particle is the sum (integral) 

of all the infinitesimal contributions |ψ ′ |2dτ, and we can write

( )ψ ψ′ ′* dx =
−∫ 1

∞

∞
 (5.1)

A wavefunction that satisfies condition (5.1) is said to be nor-

malized (strictly, normalized to 1). In terms of the original 

wavefunction this equation becomes

N x2 1ψ ψ* d =
−∫ ∞

∞

It follows that the normalization constant N is given by

N

x

=
⎛
⎝⎜

⎞
⎠⎟−∫

1
1 2

∞

∞
ψ ψ* d

/

 

Definition  Normalization constant  (5.2)

Almost all wavefunctions go to zero at sufficiently great distances 

so there is rarely any difficulty with the evaluation of the integral 

in eqn 5.2. Wavefunctions for which the integral exists (in the 

sense of having a finite value) are said to be ‘square-integrable’.

From now on, unless we state otherwise, we always use wave-

functions that have been normalized to 1. That is, from now on 

we assume that ψ already includes a factor which ensures that 

(in one dimension)

ψ ψ* dx =
−∫ 1

∞

∞

 
One dimension  Normalization condition  (5.3a)

In three dimensions, the wavefunction is normalized if

ψ ψ* d d dx y z =
−−− ∫∫∫ 1

∞

∞

∞

∞

∞

∞

 

Example 5.1 Interpreting a wavefunction

The wavefunction of an electron in the lowest energy state of a 

hydrogen atom is proportional to e−r a/ 0, with a0 a constant and 

r the distance of the electron from the nucleus. Calculate the 

relative probabilities of finding the electron inside a region of 

volume 1.0 pm3, which is small even on the scale of the atom, 

located at (a) the nucleus and at (b) a distance a0 from the 

nucleus.

Method The region of interest is so small on the scale of the 

atom that we can ignore the variation of ψ within it and write 

the probability, P, as proportional to the probability density 

(ψ 2; note that ψ is real so |ψ |2 = ψ 2) evaluated at the point of 

interest multiplied by the volume of interest, δV. That is, P ∝ 

ψ 2δV, with ψ 2 ∝ e−2 0r a/ .

Answer In each case δV = 1.0 pm3. (a) At the nucleus, r = 0, so

P ∝ =e 1  pm 1 1  pm3 30 0 0 0× ×( . ) ( . ) ( . )

(b) At a distance r = a0 in an arbitrary direction,

P ∝ =−e 1  pm 14 1  pm2 3 3× ×( . ) ( . ) ( . )0 0 0

Therefore, the ratio of probabilities is 1.0/0.14 = 7.1. Note that it 

is more probable (by a factor of about 7) that the electron will Three 
dimensions

Normalization 
condition (5.3b)

be found at the nucleus than in a volume element of the same 

size located at a distance a0 from the nucleus. The negatively 

charged electron is attracted to the positively charged nucleus, 

and is likely to be found close to it.

Self-test 5.2 The wavefunction for the electron in its lowest 

energy state in the ion He+ is proportional to e−2 0r a/ . Repeat the 

calculation for this ion. Any comment?

Answer: 55; more compact wavefuncti on

Wavefunction Probability density

Figure 5.2 The sign of a wavefunction has no direct 
physical significance: the positive and negative regions of 
this wavefunction both correspond to the same probability 
distribution (as given by the square modulus of ψ and  
depicted by the density of the shading).
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5 The wavefunction  45

In general, the normalization condition may be written

∫ =ψ ψ τ* d 1
 

General case  Normalization condition  (5.4)

where dτ stands for the volume element in the appropriate 

number of dimensions and the limits of integrations are not 

written explicitly. In all such integrals, the integration is over all 

the space accessible to the particle.

(c) Constraints on the wavefunction
The Born interpretation puts severe restrictions on the accept-

ability of wavefunctions:

ψ must not be infinite over a finite region

ψ must be single-valued

ψ must be continuous

The slope of ψ (that is, dψ /dx) must be continuous.

These restrictions are summarized in Fig. 5.3. If ψ were infi-

nite over a finite region, it would not be square-integrable and 

the Born interpretation would fail. Note the emphasis on a 

finite region: an infinitely sharp spike is acceptable provided it 

has zero width.

The constraint that the wavefunction must be single-valued 

(that is, have a single value at each point of space) is also a con-

sequence of the Born interpretation because it would be absurd 

to have more than one probability that a particle is at the same 

point.

The remaining two constraints, the continuity of the wave-

function and its first derivative, ensure that it can be calculated 

from the second-order differential equation, the Schrödinger 

equation, which we introduce shortly. That equation depends 

on second derivatives of ψ (that is, d2ψ /dx2), which exist only if 

ψ and dψ /dx are continuous.

Once we have obtained the normalized wavefunction, we 

can then proceed to determine the probability of finding the 

system in a given finite region of space by summing (that is, 

integrating) the probability density over the region of space of 

interest. For example, for a one-dimensional real wavefunc-

tion, the probability of finding the particle between x1 and x2 

is given by

P x x
x

x

=∫ ψ ( )2

1

2

d
 

Example 5.2 Normalizing a wavefunction 

Carbon nanotubes are thin hollow cylinders of carbon atoms 

that are excellent electrical conductors and can be used as wires 

in nanodevices (nanowires are discussed in the online Impact 

2.1). The tubes have diameters between 1 and 2 nm and lengths 

of several micrometres. A long carbon nanotube can be mod-

elled as a one-dimensional structure. According to a simple 

model introduced in Topic 9, the lowest-energy electrons of the 

nanotube are described by the wavefunction sin(πx/L), where L is 

the length of the nanotube. Find the normalized wavefunction.

Method We need to carry out the integration specified in eqn 

5.3a where the limits of integration are 0 and L. The wavefunc-

tion is real, so ψ * = ψ . Use Integral T.2 listed in the Resource 

section.

Answer We write the wavefunction as ψ  = N sin(πx/L), where 

N is the normalization factor. It follows that

∫ ∫= = =ψ ψ τ* d sin dN
x

L
x N L

L
2 2 2

0

1

2
1

π
( /2)L� ��� ���

and

N
L

= ⎛
⎝⎜

⎞
⎠⎟

2
1 2/

The normalized wavefunction is then

ψ = ⎛
⎝⎜

⎞
⎠⎟

2
1 2

L

x

L

/

sin
π

Note that because L is a length, the dimensions of ψ  are  

1/length1/2 and therefore those of ψ 2 are 1/length, as is appro-

priate for a probability density.

Self-test 5.3 The wavefunction for the next-higher energy level 

for the electrons in the same tube is sin(2πx/L). Normalize this 

wavefunction.

Answer: N = (2/L)1/2
One-dimensional 
finite region Probability (5.5)

ψ

ψ

(a) (b)

(c) (d)

Figure 5.3 The wavefunction must satisfy stringent 
conditions for it to be acceptable. (a) Unacceptable because 
it is not continuous; (b) unacceptable because its slope is 
discontinuous; (c) unacceptable because it is not single-valued; 
(d) unacceptable because it is infinite over a finite region.
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46 2 The principles of quantum mechanics

Checklist of concepts

☐ 1. The wavefunction contains information about all the 

properties of the system that are open to experimental 

determination.

☐ 2. The Born interpretation gives the probability of find-

ing the particles in a region of space.

☐ 3. Wavefunctions must be single-valued, continuous, not 

infinite over a finite region of space, and have continu-

ous slopes.

Checklist of equations

Brief illustration 5.2 A probability calculation 

According to the simple model explored in Example 5.2, the 

lowest-energy electrons of a carbon nanotube can described 

by the normalized wavefunction (2/L)1/2sin(πx/L), where L is 

the length of the nanotube. The probability of finding the elec-

tron between x = L/4 and x = L/2 is given by eqn 5.5:

P
L

x L x
L

L

= ⎛
⎝⎜

⎞
⎠⎟∫ 2 2

4

2

sin /( )
/

/

π d

The integral is evaluated by using Integral T.2 listed in the 

Resource section.

P
L

x x L

L L

L L L

L

L

= ⎛
⎝⎜

⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

− − +2

2

2

4

2

4 8
0

4
4

2
sin /

/

( )

/

/
π

π ππ
⎛
⎝⎜

⎞
⎠⎟

= 0 409.

 

Self-test 5.4 The next-higher energy wavefunction of the elec-

tron in the nanotube is described by the normalized wave-

function (2/L)1/2sin(2πx/L). What is the probability of finding 

the electron between x = L/4 and x = L/2?

Answer: 0.25

Property Equation Comment Equation number

Normalization constant N x=
⎛

⎝
⎜

⎞

⎠
⎟

−∞

∞

∫1 d/ *

/

ψ ψ
1 2

One dimension 5.2

Normalization condition ∫ =ψ ψ  τ* d 1 General case 5.4

Probability of being present in a finite region P x x
x

x

=∫ ψ ( )2

1

2

d One dimension, real wavefunction 5.5
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TOPIC 6

Extracting information from 

the wavefunction

Topic 5 introduces the concept of the wavefunction in quantum 

mechanics and describes how to use the Born interpretation to 

determine information about the location of particles. In this 

Topic, we begin to see how to deduce the form of the wavefunc-

tion as well as how to extract information from it. In the pro-

cess, we introduce two more postulates.

6.1 Postulate III: quantum mechanical 
operators

In 1926, the Austrian physicist Erwin Schrödinger proposed 

a special second-order differential equation for finding the 

wavefunction of any system. (For an introduction to differen-

tial equations, see Mathematical background 2.) The time-inde-

pendent Schrödinger equation for a particle of mass m moving 

in one dimension with energy E is

− + =2 2

22m x
V E

d

d

ψ ψ ψ

where V is the potential energy of the particle and ħ = h/2π 

(which is read h-cross or h-bar) is a convenient modification 

of Planck’s constant. Extensions of the Schrödinger equation 

to more than one dimension and its time-dependent form are 

shown in Table 6.1. We could regard eqn 6.1 itself as a postu-

late, but it turns out to be far more fruitful to interpret it in a 

special way and to regard it as a consequence of deeper, more 

general postulates.

Equation 6.1 and its multi-dimensional counterparts in 

Table 6.1 may all be written in the succinct form

H E� ψ ψ=  
(6.2a)

Contents

6.1 Postulate III: quantum mechanical operators 47

Brief illustration 6.1: The kinetic energy operator  

in two dimensions  49

6.2 Postulate IV: eigenvalues and eigenfunctions 50

Example 6.1: Identifying an eigenfunction 50

Brief illustration 6.2: The wavefunction as an  

eigenfunction  51

Checklist of concepts 52
Checklist of equations 52

 ➤ Why do you need to know this material?
The wavefunction is the central feature in quantum 
mechanics so you need to know how to extract dynamical 
information from it. The procedures described here 
allow you to predict the results of measurements of 
observables.

 ➤ What is the key idea?
The wavefunction is obtained by solving the Schrödinger 
equation, and the dynamical information it contains is 
extracted by determining the eigenvalues of Hermitian 
operators.

 ➤ What do you need to know already?
You need to know that the state of a system is fully 
described by a wavefunction (Topic 5). You need to 
be familiar with elementary manipulation of complex 
functions and integration by parts.

One dimension, 
time-independent 

Schrödinger 
equation (6.1)
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48 2 The principles of quantum mechanics

where in one dimension

H
m x

V x� = − + ×2 2

22

d

d
( )

For reasons that will shortly become clear, we have noted that 

the potential energy of the particle depends on its position, x, 

and have included the multiplication sign explicitly. The quan-

tity H�   is an operator, something that carries out a mathemati-

cal operation on the function ψ. In this case, the operation is 

to take the second derivative of ψ and (after multiplication by 

−ħ2/2m) to add the result to the outcome of multiplying ψ by 

the value of V at the position x. The operator H� , as well as all 

other operators encountered in quantum mechanics, is linear, 

in the sense that

H H H� � �( )ψ ψ ψ ψ1 2 1 2+ = +
H c c H� �ψ ψ1 1=

for any functions ψ1 and ψ2 and any constant c.

The operator H�  plays a special role in quantum mechanics, 

and is called the hamiltonian operator after the nineteenth 

century mathematician William Hamilton, who developed a 

form of classical mechanics that, it subsequently turned out, is 

well suited to the formulation of quantum mechanics. We can 

infer from the form of eqn 6.2a that the hamiltonian operator 

is the operator corresponding to the total energy of the system, 

the sum of the kinetic and potential energies. It then follows 

that the first term in eqn 6.2b (the term proportional to the sec-

ond derivative) must be the operator for the kinetic energy.

Equation 6.2a is highly suggestive of a more general formula-

tion. First, it suggests that there might be other observables, or 

measurable properties, of a system that can be represented by 

other operators, and that the structure

[ ] [ ]energy operator (hamiltonian) value of energyψ ψ= ×

is a special case of the more general form

[ ]

[ ]

operator for the observable

value of the observable

Ω ψ
Ω= ×× ψ

 

From now on, we represent the operator corresponding to the 

observable Ω (uppercase omega) by Ω�  and the value of the 

One dimension 
Hamiltonian 
operator (6.2b)

Table 6.1  The Schrödinger equation

Expression Equation Comment

Time-independent Schrödinger equation
H E�ψ ψ=

General case

− + =2 2

22m x
V x x E x

d

d

ψ ψ ψ( ) ( ) ( ) One dimension

− +
⎛

⎝⎜
⎞

⎠⎟
+ =2 2

2

2

22m x y
V x y x y E x y

∂
∂

∂
∂

ψ ψ ψ ψ( , ) ( , ) ( , ) Two dimensions

− ∇ + =2
2

2m
V Eψ ψ ψ

Three dimensions

Laplacian operator ∇ = + +2
2

2

2

2

2

2

∂
∂

∂
∂

∂
∂x y z

∇ +

+ +

+

2
2

2 2
2

2

2 2
2

2
2

2
2

1 1

2 1

1 1

= ∂
∂

= ∂
∂

∂
∂

= ∂
∂

∂
∂

r r
r

r

r r r r

r r
r

r r

Λ

Λ

Λ

Cartesian coordinates

Alternative forms in spherical polar coordinates

Legendrian operator Λ
θ φ θ θ θ θ

2
2

2

2

1 1= +
sin sin

sin
∂

∂
∂

∂
∂

∂

Time-dependent Schrödinger equation H i
t

�Ψ Ψ= 
∂
∂
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6 Extracting information from the wavefunction 49

observable Ω by ω (lowercase omega), and write the last equa-

tion as

Ωψ ωψ� =
 

(6.3)

Our immediate problem is to discover how to formulate the 

operator corresponding to an observable. Once again, eqn 6.2 

gives us a clue. In classical mechanics, the total energy of a par-

ticle in one dimension can be expressed in terms of the linear 

momentum p as

E
p

m
V x= +

2

2
( )

 

Comparison of this expression with eqn 6.2b strongly suggests 

that the operator for position, x, is just multiplication by posi-

tion (x ×), because then the potential energy V(x) is represented 

by the multiplicative operation V(x) ×. Further comparison 

with eqn 6.2b suggests that the operator for kinetic energy, 

p2/2m, can be identified with −(ħ2/2m)d2/dx2.

Now we bring these points together by formulating a postu-

late that summarizes them:

Postulate III. For each observable property Ω of a system 

there is a corresponding operator Ω�  built from the 

following position and linear momentum operators:

x x� = ×  Definition  Position operator  (6.4a)

p
xx

� = 
i

d

d  
Definition  Linear momentum operator  (6.4b)

The multiplication sign for multiplicative operators is not nor-

mally written, and from now on we shall omit it. However, it 

must always be remembered that x is the operation that mul-

tiplies any function on its right. When we are discussing 

one-dimensional systems, we discard the index x on p; for 

three-dimensional systems, we use subscripts x, y, and z to 

denote the components of the vector p along each direction, 

with the corresponding operators defined analogously.

With Postulate III established, we can immediately write 

down the operator for the kinetic energy, Ek, of a particle in one 

dimension. Because

E
p

mk =
2

2

it follows that the kinetic energy operator is

E
p

m
� �

k =
2

2

and therefore because

p

m m x x m x x

� 2 2

2

1

2

1

2
= ⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

  
i i i

d

d

d

d

d

d

d

d⎜⎜
⎞
⎠⎟

= − 2 2

22m x

d

d

we can conclude that

E
m x

�
k = − 2 2

22

d

d   
 Kinetic energy operator  (6.5)

In mathematics, the second derivative of a function is a 

measure of its curvature (Mathematical background 1). A large 

second derivative indicates a sharply curved function (Fig. 6.1). 

It follows that a sharply curved wavefunction is associated with 

a high kinetic energy, and one with a low curvature is associ-

ated with a low kinetic energy. This interpretation is consistent 

with the de Broglie relation (eqn 4.6, λ = h/p), which predicts 

a short wavelength (a sharply curved wavefunction) when 

Brief illustration 6.1 The kinetic energy operator  
in two dimensions

The kinetic energy of a particle moving in two dimensions, 

such as a particle moving on a plane, is Ek = +p m p mx y
2 22 2/ / . 

Therefore the kinetic energy operator is E p pm m
x y

� � �
k

/ /= +2 22 2  

or

E
m x y

�
k = − +

⎛
⎝⎜

⎞
⎠⎟

2 2

2

2

22

∂
∂

∂
∂

Self-test 6.1 Construct (a) the operator for kinetic energy of a 

particle moving in three dimensions (such as an electron in an 

atom) and (b) the operator for the potential energy for a har-

monic oscillator, V = 1
2 kfx

2.

Answer: ( ) ( / )( / / / ),( )a b fE m x y z k x�
k

= − + + ×2 2 2 2 2 2 2 22
1

2
∂ ∂ ∂ ∂ ∂ ∂

High curvature,
high kinetic energy

Low curvature,
low kinetic energyW

av
ef

u
n

ct
io

n
, ψ

x

Figure 6.1 Even if the wavefunction does not have the form 
of a periodic wave, it is still possible to infer from it the average 
kinetic energy of a particle by noting its average curvature. This 
figure shows two wavefunctions: the sharply curved function 
corresponds to a higher kinetic energy than the less sharply 
curved function.
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50 2 The principles of quantum mechanics

the linear momentum (and hence the kinetic energy) is high. 

However, it extends the interpretation to wavefunctions that do 

not spread through space and resemble those shown in Fig. 6.1. 

The curvature of a wavefunction in general varies from place to 

place. Wherever a wavefunction is sharply curved, its contri-

bution to the total kinetic energy is large (Fig. 6.2). Wherever 

the wavefunction is not sharply curved, its contribution to the 

overall kinetic energy is low.

A list of the operators more commonly encountered in quan-

tum mechanics is collected in the Resource section at the end of 

the text.

6.2 Postulate IV: eigenvalues and 
eigenfunctions

At this point in the presentation of the postulates of quantum 

mechanics, we know

how to construct operators for observables,

that wavefunctions are solutions of the Schrödinger 

equation,

that the observable Ω of interest has the value ω in the 

expression Ωψ ωψ� = , where Ω�  is the corresponding 

operator.

We need to develop this last point.

First, we note that eqn 6.3, Ωψ ωψ� = , has the form

( )( ) ( )Operator function

eigenfunction e
� �� 	� = numerical factor

iigenvalue eigenfunction
� ���� 	��� � ��� 	��× (same function)

Definition  Eigenvalue equation  (6.6)

An equation of this form is called an eigenvalue equation; the 

numerical factor is called the eigenvalue of the operator and 

the function that occurs on both sides of the equation is called 

the eigenfunction of the operator. Each eigenfunction corre-

sponds to a specific eigenvalue. In terms of this new language, 

by referring to eqn 6.2a ( )H E� ψ ψ=  it follows that another 

way of saying ‘solve the Schrödinger equation’ is to say ‘find 

the eigenvalues and the corresponding eigenfunctions of the 

hamiltonian operator for the system’. The wavefunctions are 

the eigenfunctions of the hamiltonian operator, and the corre-

sponding eigenvalues are the allowed energies. Eigenfunctions 

and eigenvalues of operators play a crucial role in quantum 

mechanics and we encounter them throughout the text.

There are far-reaching consequences that result from the 

interpretation of eqn 6.3 (and the Schrödinger equation, eqn 

6.2) as an eigenvalue equation. First, we need to note that the 

allowed value of an observable Ω (such as the energy E) is the 

eigenvalue in an eigenvalue equation. Therefore, once we have 

found all the permitted eigenvalues of an operator, we shall 

know the permitted values of that observable. Each eigenfunc-

tion corresponds to a particular eigenvalue (specifically, each 

wavefunction corresponds to a particular energy), and we have 

Example 6.1 Identifying an eigenfunction 

Show that eikx is an eigenfunction of the linear momentum 

operator, and find the corresponding eigenvalue. Then show 

that the bell-shaped ‘Gaussian function’ e−ax2

 is not an eigen-

function of this operator.

Method We need to operate on the function with the opera-

tor and check whether the result is a constant factor times the 

original function. In each case we identify the operator with 

the linear momentum operator p x� = ( / ) . i d/d

Answer For ψ = eikx,

p
x

k kkx kx�ψ ψ= = = 


i
e

i
i ei id

d

Therefore eikx is indeed an eigenfunction of p�,  and its eigen-

value is kħ. For ψ = e−ax2

,

p
x

ax a xax ax�ψ ψ= = − = ×− − 


i
e

i
e i

d

d
2 2

2 2( )

We have used −2/i = 2i. This is not an eigenvalue equation even 

though the same function ψ occurs on the right, because ψ is 

now multiplied by a function of x (2iaħx), not a numerical fac-

tor. Alternatively, if the right-hand side is written 2iaħ ( ),x axe− 2

 

we see that it is a constant (2iaħ) times a different function.

Self-test 6.2 Is the function cos ax an eigenfunction of (a) the 

linear momentum operator, (b) the kinetic energy operator? If 

yes, identify the eigenvalue.

Answer: (a) No, (b) yes; (ħ2a2/2m)

W
av

ef
u

n
ct

io
n

, ψ

x

Region contributes
high kinetic energy

Region contributes
low kinetic energy

Figure 6.2 The observed kinetic energy of a particle is an 
average of contributions from the entire space covered by the 
wavefunction. Sharply curved regions contribute a high kinetic 
energy to the average; slightly curved regions contribute only a 
small kinetic energy.
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6 Extracting information from the wavefunction 51

already seen that there are severe restrictions on the acceptabil-

ity of wavefunctions. We can anticipate, therefore, that because 

only certain wavefunctions are acceptable, only certain eigen-

values are allowed. In other words, in general, an observable is 

quantized. We summarize the discussion so far in the language 

introduced in this section with the following postulate:

Postulate IV. If the system is described by a wavefunction 

ψ that is an eigenfunction of Ω�  such that Ω� ψ = ωψ, 

then the outcome of a measurement of Ω will be the 

eigenvalue ω.

Because the value of an observable is a real quantity (real, 

that is, in the mathematical sense of not involving the imagi-

nary number i), Postulate IV implies that the eigenvalues of any 

operator that corresponds to an observable must themselves be 

real. The reality of eigenvalues is guaranteed if the operator has 

the special property of ‘hermiticity’ (named for the nineteenth 

century French mathematician Charles Hermite). A Hermitian 

operator is one for which the following equality is true:

∫ ∫={ }f x g f x
* *

*
Ω Ω� �gd d  Definition  Hermiticity  (6.7)

where f and g are any two wavefunctions. It is easy to confirm 

that the position operator (x ×) is Hermitian because we are 

free to change the order of the factors in the integrand:

f xg x gxf x

g x

* *

**

d d
−∞

∞

−∞

∞

∫ ∫=

=

change order

use **  and *






g g x x= =

** * *

*

f x g xf xd d= ⎧
⎨
⎩

⎫
⎬
⎭−∞

∞

−∞

∞

∫ ∫

The demonstration that the linear momentum operator is 

Hermitian is more involved because we cannot just alter the 

order of functions we differentiate; but it is Hermitian, as we 

show in the following Justification.

A general property of operators is that the product of a 

Hermitian operator with itself is also a Hermitian operator (see 

Problem 6.4). Therefore, p p p� � �2 = ×  is a Hermitian operator and 

it follows that the kinetic energy operator ( )E p mk
� �= 2 2/  is too.

Equation 6.7 might seem to be far removed from being 

equivalent to the statement that the eigenvalues of Hermitian 

operators are real, but in fact the proof is quite straightforward, 

as the following Justification shows.

Brief illustration 6.2 The wavefunction as an 
eigenfunction 

We saw in Example 6.1 that eikx is an eigenfunction of the lin-

ear momentum operator with eigenvalue +kħ. Therefore,

(a) if the wavefunction of an electron accelerated in a 

linear accelerator to a certain energy is eikx, then we 

know from Postulate IV that if we were to measure its 

linear momentum, we would find the value p = +kħ;

(b) if the wavefunction is e−ikx, then, because the 

eigenvalue is now −kħ (note the change in sign), a 

measurement of the linear momentum would give 

the value p = −kħ.

The magnitude of the linear momentum of the electron is the 

same in each case (kħ), but the signs are different: in (a) the 

electron is travelling to the right (positive x) but in (b) the lin-

ear accelerator is pointed in the opposite direction and the 

electron is travelling to the left (negative x).

Self-test 6.3 As a result of its acceleration in a linear accelera-

tor, the wavefunction of a proton became cos kx. What is the 

kinetic energy of the proton?

Answer: Ek = k2ħ2/2mp

Justification 6.1 The hermiticity of the linear  
momentum operator 

Our task is to show that

f g x g f xp*
*

*p� �d d=⎧
⎨
⎩

⎫
⎬
⎭−∞

∞

−∞

∞

∫ ∫
with p�  given in eqn 6.4b. To do so, we use ‘integration by 

parts’, the relation

∫ ∫= −u
x

x u
u

x
x

d

d
d

d

d
d

v
v v

with u = f* and v = g. In the present case we write

f g x f
g

x
x f g g

f

x
xp* *

*
*� d

i i i
= = −

−∞

∞

−∞

∞

−∞

∞

−∞

∞

∫ ∫ ∫  d

d
d

d

d
d

The first term on the right is zero, because all wavefunctions 

are zero at infinity in either direction (or, in special cases, the 

function f (and g) is not zero but is equal at +∞ and −∞), so we 

are left with

f g x g
f

x
x g

f

x
xp*

*
*� d

d

d
d

d

d
d= − = ⎧

⎨
⎩

⎫
⎬
⎭−∞

∞

−∞

∞

−∞

∞

∫ ∫ ∫
=−

 
 
i i

use i i* **

*
*

= ⎧
⎨
⎩

⎫
⎬
⎭−∞

∞

∫ g f xp� d

as we set out to prove.
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Checklist of concepts

☐ 1.  The wavefunction is a solution of the Schrödinger 

equation.

☐ 2. For each observable property Ω of a system there is a 

corresponding operator Ω�  built from the position and 

linear momentum operators.

☐ 3. If the system is described by a wavefunction ψ that is an 

eigenfunction of �Ω  such that �Ω ψ = ωψ, then the out-

come of a measurement of Ω will be the eigenvalue ω.

☐ 4.  The eigenvalues of Hermitian operators are real.

Checklist of equations

Justification 6.2 The reality of eigenvalues of Hermitian 
operators 

For a wavefunction ψ that is normalized to 1 and is an eigen-

function of a Hermitian operator with eigenvalue ω, we can 

write

∫ ∫ ∫= = =
=

ψ Ωψ ψ ψ ψ ψτ ω τ ω τ ω
Ωψ ωψ

* *�
�

d d d



� �� ��
*

1

However, by taking the complex conjugate we can write

ω ψ ψ τ ψ τ ωΩ ψ Ω
ψ

* *
*

*={ } ==∫ ∫
= =

� �d d

eqn 6.7 with f g


The conclusion that ω* = ω confirms that ω is real.

If the wavefunction is an eigenfunction of the operator 

 corresponding to the observable of interest, then Postulate IV 

tells us that the result of a measurement is simply that eigen-

value. But suppose the wavefunction is not an eigenfunction of 

the operator: how do we proceed? One further postulate, which 

is presented Topic 7, provides the answer.

Property Equation Comment Equation number

Schrödinger equation
− + =2 2

22m x
V E

d

d

ψ ψ ψ
One dimension, time-independent 6.1

Hamiltonian operator �H = − + ×2 2

22m x
V x

d

d
( ) One dimension 6.2b

Position operator �x x= × One dimension 6.4a

Linear momentum operator �p
xx = 

i

d

d
One dimension 6.4b

Eigenvalue equation �Ωψ ωψ= 6.6

Hermiticity � �∫ ∫= ⎧
⎨
⎩

⎫
⎬
⎭

f g x g f x* *
*

Ω Ωd d 6.7
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TOPIC 7

Predicting the outcome 

of experiments

Topic 6 (Postulate IV) tells us that if the wavefunction is an 

eigenfunction of the operator corresponding to an observable, 

then it is easy to identify the value of that observable: we just 

pick out the corresponding eigenvalue. Suppose, though, that 

the wavefunction is not an eigenfunction of the operator corre-

sponding to the property of interest: what can we then say? For 

instance, suppose the wavefunction is cos kx. This wavefunc-

tion is an eigenfunction of the kinetic energy operator (with 

eigenvalue k2ħ2/2m) so we know that a measurement of the 

kinetic energy will certainly give that value. However, cos kx 

is not an eigenfunction of the linear momentum operator 

(because d cos kx/dx = –k sin kx), and so in this case we cannot 

use Postulate IV to predict the outcome of a measurement of 

the linear momentum. In this Topic we develop techniques for 

using quantum theory to predict the outcome of observations—

even when the wavefunction of a particle is not an eigenfunc-

tion of the operator associated with the observable.

7.1 Wavefunctions as linear 
combinations

The clue we need in order to make progress in the case of the 

wavefunction cos kx is to note that we can use Euler's formula 

(see The chemist's toolkit 5.1) to write

cos e ei ikx kx kx= + −1

2

1

2

Each exponential function is an eigenfunction of the linear 

momentum operator (see Brief illustration 6.2) with eigenval-

ues +kħ and –kħ, respectively. We say that the actual wavefunc-

tion is a linear combination of two contributing wavefunctions, 

namely eikx and e−ikx. In general, a linear combination of two 

functions f and g is c1  f  + c2 g, where c1 and c2 are numerical coef-

ficients, so a linear combination is a more general term than 

Contents

7.1 Wavefunctions as linear combinations 53

Brief illustration 7.1: The measurement of an  

observable  54

7.2 Mean values as expectation values 54

Example 7.1: Calculating an expectation value  55

7.3 The orthogonality of eigenfunctions 55

7.4 The expectation value of a linear combination 
of eigenfunctions 56

Example 7.2: Verifying orthogonality 55

Brief illustration 7.2: The expectation value for a  

superposition of states 56

Checklist of concepts 57
Checklist of equations 57

 ➤ Why do you need to know this material?
You need to know how to extract dynamical information 
from the wavefunction, even when the wavefunction 
describing the system is not an eigenfunction of the 
operator corresponding to the observable.

 ➤ What is the key idea?
The procedures described here allow you to predict an 
average result from measurements, provided that you are 
given the operator corresponding to the observable and 
the wavefunction describing the state of the system.

 ➤ What do you need to know already?
You need to know how to form operators corresponding 
to observables (Topic 6) and be able to recognize if a 
wavefunction is an eigenfunction of an operator.
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54 2 The principles of quantum mechanics

‘sum’, for which c1 = c2 = 1. Another way to express the fact that the 

wavefunction is a linear combination of individual wavefunctions 

is to say that the state is a superposition of individual states.

At this point we recognize that the wavefunction cos kx can 

be written symbolically as

ψ ψ ψ= +→ ←

Particle  with linear
momentum

Particle  with li 
 + -kh

nnear
momentum

 
− kh-

The interpretation of this composite wavefunction is that if the 

momentum of the particle is repeatedly measured in a long series 

of observations, then its magnitude will found to be kħ in all the 

measurements (because that is the value for each of the eigenfunc-

tions). However, because the two eigenfunctions occur equally in 

the wavefunction (the same numerical coefficient occurs in the 

linear combination), half the measurements will show that the 

particle is moving to the right (p = +kħ) and half the measure-

ments will show that it is moving to the left (p = −kħ). According 

to quantum mechanics, we cannot predict in which direction the 

particle will in fact be found to be travelling; all we can say is that, 

in a long series of observations, if the particle is described by this 

wavefunction, then there are equal probabilities of finding the par-

ticle travelling to the right and to the left. Furthermore, since half 

the measurements yield p = +kħ and half yield p = −kħ, we expect 

the average value of a large number of measurements to be zero.

This discussion motivates the following generalization to the 

case when the system is known to be a linear combination of 

many different eigenfunctions of the operator corresponding to 

the observable of interest and is written as

ψ ψ ψ ψ= =+ + ∑c c c
k

k k1 1 2 2 �
 

 (7.1)

where the ck are numerical (and possibly complex) coefficients 

and the ψk correspond to different eigenfunctions of the opera-

tor, with Ω� ψk = ωkψk. Then:

Postulate V. When the value of an observable Ω is 

measured for a system that is described by a linear 

combination of eigenfunctions of �Ω , with coefficients 

ck, each measurement gives one of the eigenvalues ωk of 

Ω� with a probability proportional to |ck|
2.

If the system is described by a wavefunction that is normalized, 

then the probability of obtaining the eigenvalue ωk is equal to |ck|
2.

7.2 Mean values as expectation 
values

Because in general a series of measurements of a property gives a 

number of different outcomes, it is often important to know the 

average value of these outcomes. The mean (that is,  average) value 

from measurement of the observable Ω is equal to the expecta-

tion value of the operator Ω� ,  denoted 〈Ω〉 and defined as

〈 〉Ω
ψ ψ τ

ψ ψ τ

Ω
= ∫

∫
*

*

d

d

�

 

Definition  Expectation value  (7.2a)

This definition applies whether or not ψ is written as a linear 

combination of eigenfunctions. For a normalized wavefunc-

tion, the denominator in eqn 7.2a is 1 and this expression sim-

plifies to

〈 〉Ω ψ τψ Ω=∫ * d�
 

(7.2b)

If ψ happens to be an eigenfunction of Ω� , then by Postulate IV, 

every measurement of the observable will yield a single eigen-

value, ω, and therefore the average value is also ω. In this case, 

the expectation value of Ω� is simply

〈 〉 =Ω Ωψ τ ωψ τ ω τ ωψ ψ ψ ψ
Ωψ ωψ

= ==∫ ∫∫
=

* * *d d d�
� 
 � �� ��1

If ψ is not an eigenfunction of the observable of interest, 

each measurement of the property gives a different outcome. 

To investigate the relationship between the outcome of a meas-

urement and the expectation value, we need to develop another 

feature of eigenfunctions.

Brief illustration 7.1 The measurement of an observable 

A linear accelerator does not accelerate particles to a precisely 

defined linear momentum, so the wavefunction of the parti-

cles is a linear combination of functions corresponding to the 

range of momenta present in the beam. Suppose that three 

momenta (three values of k) are present in a beam of electrons, 

centred at k1, and that the normalized wavefunction is given by

ψ = + +−( ) +( )( / ) ( / ) ( / )/ / /1 20 9 10 1 201 2 1 2 1 21 1 1e e ei i ik k x k x k k xΔ Δ

where Δk is small. Because eikx is an eigenfunction of the linear 

momentum operator with an eigenvalue +kħ, the wavefunc-

tion of the ‘blurred’ electron beam is a linear combination 

of three eigenfunctions. According to Postulate V, a single 

measurement of the linear momentum will yield one of three 

results +(k1 – Δk)ħ, +k1ħ, or  + (k1 + Δk)ħ with probabilities 

1/20, 9/10, and 1/20, respectively.

Self-test 7.1 What would be the result of measuring the kinetic 

energy of the electrons of this Brief illustration?

Answer: individual measurements: ( ) , / ,k k m k m1
2 2

e 1
2 2

e/2 2−Δ    and 

(k1 + Δk)2ħ2/2me; probabilities 1/20, 9/10, and 1/20, respectively
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7 Predicting the outcome of experiments  55

7.3 The orthogonality of 
eigenfunctions

A very special feature of Hermitian operators is, as we show in 

the Justification below, that eigenfunctions corresponding to dif-

ferent eigenvalues of the same Hermitian operator are orthogonal. 

To say that two different functions ψi and ψj are orthogonal 

means that the integral (over all space) of their product is zero:

ψ ψ τ
i j* d =∫ 0

 
Definition  Orthogonality  (7.3a)

For example, the hamiltonian operator is Hermitian (it cor-

responds to an observable, the energy). Therefore, if ψi corre-

sponds to one energy and ψj corresponds to a different energy, 

then we know at once that the two functions are orthogonal 

and that the integral of their product is zero. Being able to set 

integrals to zero in this way greatly simplifies the calculations 

that we shall do in the following Topics and also provides a 

foundation for the justification of Postulate V, as we shall see.

Functions that are both orthogonal and normalized are said 

to be othornormal:

ψ ψ τ δi j ij* d =∫  
Definition  Orthonormality  (7.3b)

where δij, which is called the Kronecker delta, is 1 when i = j 

and 0 when i ≠ j.

Example 7.1 Calculating an expectation value 

Calculate the average value of the position of an electron in the 

carbon nanotube described in Example 5.2.

Method The average value of the position is the expectation 

value of the operator corresponding to position, which is mul-

tiplication by x. To evaluate 〈x〉, we need to know the normal-

ized wavefunction (from Example 5.2) and then evaluate the 

integral in eqn 7.2b. Use Integral T.11 listed in the Resource 

section.

Answer The average value is given by the expectation value

〈 〉 π
x x x

L

x

L
x x= = ⎛

⎝⎜
⎞
⎠⎟

= ×∫ψ ψ ψ* d and� �with sin
2

1 2/

which evaluates to

x
L

x
x

L
x L

L

L

= =∫2 1

2
2

0

42

sin
π

d

/� ��� ���

This result means that if a very large number of measurements 

of the position of the electron are made, then their mean value 

will be exactly one-half the length of the nanotube. However, 

each different observation will give a different and unpre-

dictable individual result because the wavefunction is not an 

eigenfunction of the operator corresponding to x.

Self-test 7.2 Evaluate the root mean square position, 〈x2〉1/2, 

of the electron using the Integral T.12 listed in the Resource 

section.

Answer: L{1/3−1/(2π2)}1/2

Justification 7.1 The orthogonality of eigenfunctions

Suppose we have two eigenfunctions of Ω� , with unequal 

eigenvalues:

Ω Ωψ ω ψ ψ ω ψ� �
i i i j j j= =and

with ωi not equal to ωj. Multiply the first of these eigenvalue 

equations on both sides by ψ j* and the second by ψ i* and inte-

grate over all space:

∫
∫

∫
∫

=

=

ψ Ω

ψ Ω ψ

ψ τ ω ψ ψ τ

ψ τ ω ψ τ

j i i j i

i j j i j

* *

* *

�

�

d d

d d

Now take the complex conjugate of the first of these two 

expressions (noting that, by the hermiticity of Ω� , the eigen-

values are real):

∫ ∫ ∫{ } = =ψ Ω ψ ψ ψψ τ ω τ ω ψ τj i i j i i i j*
*

* *� d d d

However, by hermiticity, the first term on the left is

ψ Ω ψ Ω ψ ψψ τ ψ τ ω τj i i j j i j*
*

* *� �d d d∫ ∫∫{ } = =

Subtraction of this line from the preceding line then gives

0 = − ∫( ) *ω ω τψ ψi j i j d

But we know that the two eigenvalues are not equal, so the 

integral must be zero, as we set out to prove.

Example 7.2 Verifying orthogonality

Two possible wavefunctions for an electron confined to a 

one-dimensional quantum dot (a collection of atoms with 

dimensions in the range of nanometres and of great interest 

in nanotechnology) are of the form sin x and sin 2x. These 

two wavefunctions are eigenfunctions of the kinetic energy 
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56 2 The principles of quantum mechanics

7.4 The expectation value of a linear 
combination of eigenfunctions

Now consider the case that the wavefunction is a linear com-

bination of eigenfunctions. For simplicity, we suppose the 

(normalized) wavefunction is the sum of two eigenfunctions 

(the general case can easily be developed). Then, from eqn 7.2b,

〈 〉Ω ψ τ

ψ ψ ψ

ψ Ω ψ ψ

ψ Ω Ω

= + +

= + +

∫( )

(

* ( )

( )*

c c c c

c c c c

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2

�

� �

d

22

1 1 2 2 1 1 1 2 2 2

1 1 1 1 1

1

)

( ) ( )*

* *

d

d

d

τ

ω ω τ

ω ψ ψ τ

ψ ψ ψ ψ

∫
∫

∫

= + +

=

c c c c

c c

� �� ��� � �� ��

� �� ��

+c c

c c c c

2 2 2 2 2

1 2 2 1 2 2 1 1 2

1

0

* *

* * * *

ω τ

ω τ ω ψ

ψ ψ

ψ ψ ψ

d

d

∫

∫+ + 11

0

dτ∫
� �� ��

The first two integrals on the right are both equal to 1 because 

the eigenfunctions are individually normalized. Because ψ1 

and ψ2 correspond to different eigenvalues of a Hermitian 

operator, they are orthogonal, so the third and fourth integrals 

on the right are zero. We can conclude that

〈 〉 = +Ω ω ω  1

2

1 2

2

2c c

In the general case

ψ ψ=∑
k

k kc

where ψk is an eigenfunction of Ω�   with eigenvalue ωk, the 

expectation value is given by

〈 〉 =∑Ω ω
k

k kc
2

 

Linear combination  Expectation value  (7.4)

Equation 7.4 shows that the expectation value is a weighted 

average of the eigenvalues of Ω� , with the weighting equal to 

the square modulus of the expansion coefficients ck. This is the 

basis of Postulate V, for it strongly suggests that the measure-

ment of the property Ω gives a series of values ωk, with occur-

rences that are determined by the values of |ck|
2.

Brief illustration 7.2 The expectation value for a 
superposition of states

For the system described in Brief illustration 7.1, the mean 

value of the linear momentum, from eqn 7.4, is

〈 〉 = − + + + =p k k k k k k
1

20

9

10

1

201 1 1 1( ) ( )Δ Δ   

Self-test 7.4 What is the mean value of the kinetic energy of 

the system of this Brief illustration?

Answer: 〈 〉 = +E m k kk
2

e 1
2 2 2 /1( / ){ ( ) } Δ 0

operator, which is Hermitian, and correspond to the eigenval-

ues ħ2/2me and 2ħ2/me, respectively. Verify that the two wave-

functions are mutually orthogonal.

Method To verify the orthogonality of two functions, we 

integrate their product, sin 2x sin x, over all space, which we 

may take to span from x = 0 to x = 2π, because both functions 

repeat themselves outside that range. Hence proving that the 

integral of their product is zero within that range implies that 

the  integral over the whole of space is also zero (Fig. 7.1). Use 

Integral T.5 listed in the Resource section.

Answer It follows that, for a = 2 and b = 1, and given the fact 

that sin 0 = 0, sin 2π = 0, and sin 6π = 0,

sin sin2
2

3

6
0

0

2

0

2

0

2

0 0

x x x
x x

d
sin sin

= − =∫
π ππ

��� �� � �� ��

and the two functions are mutually orthogonal.

Self-test 7.3 When the electron is excited to higher energies, 

its wavefunction may become sin 3x. Confirm that the func-

tions sin x and sin 3x are mutually orthogonal.

Answer: sin sin3 0
0

2

x x xd =∫
π

x

1

0.5

0

0

–0.5

–1
π 2π

sin x sin 2x

f(
x)

Figure 7.1 The integral of the function f(x) = sin 2x sin x 
is equal to the area (tinted) below the blue curve, and is 
zero, as can be inferred by symmetry. The function, and the 
value of the integral, repeats itself for all replications of the 
section between 0 and 2π, so the integral from –∞ to +∞ 
is zero.
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7 Predicting the outcome of experiments  57

Checklist of concepts

☐ 1. A state that is a superposition of individual states is 

described by a wavefunction that is a linear combina-

tion of the corresponding individual wavefunctions.

☐ 2. When the value of an observable Ω is measured for a 

system that is described by a (normalized) linear com-

bination of eigenfunctions of Ω� , with coefficients ck, 

each measurement gives one of the eigenvalues ωk of Ω�  

with a probability equal to |ck|
2.

☐ 3. The expectation value of the operator Ω� , denoted 〈Ω〉, 
is equal to the mean value of a series of measurements.

☐ 4. Eigenfunctions corresponding to different eigenvalues 

of the same Hermitian operator are orthogonal.

☐ 5. The five postulates of quantum mechanics are col-

lected in a summarized form here for convenience:

 I. (Topic 5) The state of the system is described as 

fully as possible by the wavefunction ψ(r1,r2, …,t).

 II. (Topic 5) For a system described by a normalized 

wavefunction, the probability of finding particle 1 

in the volume element dτ1 at r1, particle 2 in the vol-

ume element dτ2 at r2, etc. is equal to |ψ |2dτ1dτ2…

III. (Topic 6) For each observable property Ω of a sys-

tem there is a corresponding Hermitian operator 

Ω�  built from x x� = ×  and p xx� = ( / ) i d/d .

 IV. (Topic 6) If the system is described by a wavefunc-

tion ψ that is an eigenfunction of Ω� with eigen-

value ω, then the outcome of a measurement of the 

observable property Ω will be ω.

   V. (Topic 7) If the system is described by a normal-

ized wavefunction ψ that is a linear combination 

of eigenfunctions of Ω� , then the outcome of the 

determination of the observable Ω will be one of 

the eigenvalues ωk of Ω�  with probability |ck|
2. The 

mean value of the measurements is equal to the 

expectation value 〈Ω〉.

Checklist of equations
Property Equation Comment Equation number

Linear combination ψ ψ=∑
k

k kc Represents a superposition of states 7.1

Expectation value 〈 〉 =∫Ω ψ Ωψ τ* � d Normalized wavefunction 7.2

Orthogonality ψ ψ τi j* d =∫ 0 7.3a

Orthonormality ψ ψ τ δi j ij* d =∫ δij

i j

i j
=

=
≠

⎧
⎨
⎪

⎩⎪

1,

0,
7.3b

Expectation value for superposition of states 〈 〉Ω ω= ∑
k

k kc
2

Normalized wavefunction 7.4
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TOPIC 8

The uncertainty principle

In this Topic, we explore limitations imposed by quantum 

mechanics on the ability to specify the values of two observa-

bles simultaneously and with high precision.

8.1 Complementarity

Some of the profound differences between quantum mechan-

ics and classical mechanics can be appreciated by considering a 

particle travelling in one dimension towards positive x with lin-

ear momentum +kħ. According to classical mechanics, we can 

specify the trajectory of the particle, its location and momen-

tum, at all times. According to quantum mechanics, the state 

of the particle is described by the wavefunction Neikx (Topic 5), 

where N is the (real) normalization factor. Such a wavefunction 

corresponds to a well-defined linear momentum (its eigenvalue 

is kħ), but where is the particle located?

To answer this latter question, we use Postulate II (Topic 5) to 

calculate the probability density:

ψ 2 i i 2 i i 2( e ) e e e= = =−N N N Nkx kx kx kx*( ) ( )( )  (8.1)

This probability density is independent of x; so, wherever we 

look on the x-axis, there is an equal probability of finding the 

particle (Fig. 8.1). In other words, if the wavefunction of the 
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Brief illustration 8.1: Uncertainty in position 

and momentum 1 59

8.2 The Heisenberg uncertainty principle 59

Example 8.1: Calculating the uncertainty in 

linear momentum 60

Brief illustration 8.2: Uncertainty in position and 

momentum 2 60

8.3 Commutation and complementarity 61

Example 8.2: Demonstrating non-commutativity 

and evaluating a commutator 61

Example 8.3: Determining the complementarity 

of two observables 62

Checklist of concepts 62
Checklist of equations 63

 ➤ Why do you need to know this material?
You need to know how the wave properties of small 
particles, such as electrons, affect the quantitative 
treatment of their positions and momenta. Only then will 
you be ready to consider the electronic structure of atoms, 
molecules, and materials.

 ➤ What is the key idea?
The uncertainty principle states that it is not possible to 
specify the values of two observables simultaneously with 
arbitrarily high precision if the observables correspond to 
non-commuting operators.

 ➤ What do you need to know already?
You should know how to construct operators corre-
sponding to observables (Topic 6) and how to extract 
information from the wavefunction using the properties 
of operators (Topics 6 and 7).

W
av

ef
u

n
ct

io
n

, ψ

Im eikx = sin kxRe eikx = cos kx

|ψ |2 = 1

Figure 8.1 The square modulus of a wavefunction 
corresponding to a definite state of linear momentum is a 
constant, so it corresponds to a uniform probability of finding 
the particle anywhere.
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8 The uncertainty principle  59

particle is given by Neikx, then we cannot predict where we will 

find the particle. The extraordinary conclusion is that if we 

know the linear momentum precisely, then we can say nothing 

about the position. This complementarity of certain pairs of 

observables, in this case linear momentum and position, per-

vades the whole of quantum mechanics.

How do we recognize complementary observables and what 

are their consequences? Can we specify the energy of a mole-

cule at the same time, for instance, as its dipole moment or are 

they complementary too? These are some of the questions we 

address in this Topic.

8.2 The Heisenberg uncertainty 
principle

We have seen that if we know the linear momentum of a par-

ticle precisely, then we can say nothing about its location. But 

what of the opposite problem: can we know the linear momen-

tum of a particle if we know its position precisely? That we can-

not can be deduced as follows.

If we know that the particle is at a definite location, its wave-

function must be large there and zero everywhere else (Fig. 8.2). 

Such a wavefunction can be created by superimposing a large 

number of harmonic (sine and cosine) functions, or, equiva-

lently, a number of eikx functions. In other words, we can create 

a sharply localized wavefunction, called a wavepacket, by form-

ing a linear combination of wavefunctions that correspond to 

many different linear momenta. The superposition of a few har-

monic functions gives a wavefunction that spreads over a range 

of locations (Fig. 8.3). However, as the number of wavefunc-

tions in the superposition increases, the wavepacket becomes 

sharper on account of the more complete interference between 

the positive and negative regions of the individual waves. When 

an infinite number of components are used, the wavepacket is 

a sharp, infinitely narrow spike, which corresponds to perfect 

localization of the particle. Now the particle is perfectly local-

ized. However, we have lost all information about its momen-

tum because a measurement of the momentum will give a 

result corresponding to any one of the infinite number of waves 

in the superposition, and which one it will give is unpredictable 

Brief illustration 8.1 Uncertainty in position and 
momentum 1

If the wavefunction of the particle is given by N cos kx, then 

the probability density N2 cos2 kx vanishes at particular loca-

tions (values of x such that kx is an odd multiple of π/2) and, 

although we cannot specify precisely where the particle is 

located we do know locations where it is not located. We also 

know (Topic 7) that measurements of the linear momentum 

will result in +kħ one-half of the time and −kħ the other half 

of the time. Therefore, compared to the wavefunction Neikx, we 

see that by relinquishing the certainty in knowing the linear 

momentum (two values are possible rather than just one) we 

have obtained some certainty in knowing the location of the 

particle.

Self-test 8.1 Repeat the analysis for the wavefunction N cos 2kx.

Answer: For momentum: +2kħ and −2kħ, each half of the time. Though 

there are now twice as many locations where the particle is not located, 

the uncertainty in the position remains the same because the range of 

space is infinite.
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, ψ

Position, x

Location
of particle

Figure 8.2 The wavefunction for a particle at a well-defined 
location is a sharply spiked function which has zero amplitude 
everywhere except at the particle’s position.
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Figure 8.3 The wavefunction for a particle with an ill-defined 
location can be regarded as the linear combination of 
several wavefunctions of definite wavelength that interfere 
constructively in one place but destructively elsewhere. As 
more waves are used in the superposition (as given by the 
numbers attached to the curves), the location becomes 
more precise at the expense of uncertainty in the particle’s 
momentum. An infinite number of waves are needed in the 
superposition to construct the wavefunction of the perfectly 
localized particle.
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60 2 The principles of quantum mechanics

(Postulate V). Hence, if we know the location of the  particle 

precisely (implying that its wavefunction is a superposition 

of an infinite number of momentum eigenfunctions), then its 

momentum is completely unpredictable.

The conclusion that the linear momentum and position of 

a particle cannot be known simultaneously is summarized by 

the Heisenberg uncertainty principle, proposed by Werner 

Heisenberg in 1927:

It is impossible to specify simultaneously, with arbitrary 

precision, both the momentum and the position of a 

particle.

Heisenberg was able to go beyond this qualitative statement 

and give the principle a precise quantitative form:

Δ Δp q≥/2
 

 Heisenberg uncertainty principle  (8.2)

In this expression Δp is the ‘uncertainty’ in the linear momen-

tum parallel to the axis q, and Δq is the uncertainty in position 

along that axis. These ‘uncertainties’ are precisely defined, for 

they are the root mean square deviations of the properties from 

their mean values:

ΔX X X= 〈 〉−〈 〉{ } /2 2 1 2

 
Definition  Uncertainty in X  (8.3)

If there is complete certainty about the position of the particle 

(Δq = 0), then the only way that eqn 8.2 can be satisfied is for 

Δp = ∞, which implies complete uncertainty about the momen-

tum. Conversely, if the momentum parallel to an axis is known 

exactly (Δp = 0), then the position along that axis must be com-

pletely uncertain (Δq = ∞).

The p and q that appear in eqn 8.2 refer to the same direc-

tion in space. Therefore, whereas simultaneous specification of 

the position on the x-axis and momentum parallel to the x-axis 

are restricted by the uncertainty relation, simultaneous loca-

tion of position on x and momentum parallel to y or z are not 

restricted. Table 8.1 summarizes the restrictions that the uncer-

tainty principle implies.

Example 8.1 Calculating the uncertainty in linear 
momentum

Calculate the uncertainty in the linear momentum of an 

electron described by the normalized wavefunction (2/L)1/2 ×  

sin(πx/L) in a region of length L.

Method The uncertainty Δp is given by eqn 8.3. We need to 

compute the expectation values 〈p2〉 and 〈p〉. Use the Integrals 

T.2 and T.7 listed in the Resource section.

Answer The expectation value of the momentum operator, 
p�  = (ħ/i)d/dx, is

〈 〉 π π

π π

p p x
L

x L
x

x L x

L
x L

L

= =

=

∫∫ψ ψ* ( ) ( )
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� d sin
i

d

d
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/ /
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∫
= × =

The expectation value of the momentum squared operator, 
�p2  = −ħ2(d2/dx2), is

〈 〉 π π

π

p p x
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x L x

L L
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2 2
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We have used ħ = h/2π. Therefore the uncertainty in the linear 

momentum is

Δp p p
h

L

h

L L
= −{ } = −

⎧
⎨
⎩

⎫
⎬
⎭

=〈 〉 〈 〉 π2 2
1 2 2

2
2

1 2

4
0

2

/
/

( )or


Self-test 8.2 Calculate the uncertainty in the position of the 

electron in the same system and proceed to confirm that the 

Heisenberg uncertainty principle is satisfied.

Answer: Δ Δ Δx L p x= = × >0 181 1 14 2 2. , .  / /

Brief illustration 8.2 Uncertainty in position and 
momentum 2

Suppose the speed of a projectile of mass 1.0 g is known to 

within 1 μm s−1. We can estimate the uncertainty Δp from 

mΔv, where Δv is the uncertainty in the speed and is taken to 

be 1 μm s−1. The minimum uncertainty in its position can be 

estimated using eqn 8.2:

Table 8.1 Constraints of the uncertainty principle*

Variable 2
Variable 1

x y z px py pz

x

y

z

px

py

pz

* Pairs of observables that cannot be determined simultaneously with arbitrary 

precision are marked with a blue rectangle; all others are unrestricted.
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8 The uncertainty principle  61

8.3 Commutation and 
complementarity

The Heisenberg uncertainty principle is a special case of a very 

general form of an uncertainty principle developed by H.P. 

Robertson in 1929. The latter applies to any pair of observables 

called complementary observables, which are defined in terms 

of the properties of their operators. Specifically, two observa-

bles Ω1 and Ω2 are complementary if

Ω Ω ψ ψΩ Ω� � � �
1 2 2 1≠

 
Definition  Complementary observables  (8.4)

When the effect of two operators depends on their order (as 

this equation implies), we say that they do not commute. The 

different outcomes of the effect of applying Ω� 1  and Ω� 2  in a 

different order is expressed by introducing the commutator of 

the two operators, which is defined as

[ , ]Ω Ω Ω Ω Ω Ω� � � � � �
1 2 1 2 2 1= −

 Definition  Commutator  (8.5)

If the two operators do commute, then their commutator is zero.

We can conclude from the calculation in Example 8.2 that 

the commutator of the operators for position and linear 

momentum parallel to the same axis is

[ , ]x p x� � = i
 

 Commutator of position and linear momentum  (8.6)

with similar expressions for other axes. This commutator is of 

such vital significance in quantum mechanics that it is taken 

as a fundamental distinction between classical mechanics and 

quantum mechanics. In fact, rather than giving the explicit 

forms of the operators for position and linear momentum in 

Topic 6 we could have stated Postulate III as:

For every observable property Ω of a system there is a 

corresponding hermitian operator Ω�  built from 

position and linear momentum operators that satisfy 

the commutation relation in eqn 8.6.

With the concept of the commutator established, the most 

general form of the uncertainty principle can be given. For any 

two pairs of observables, Ω1 and Ω2, the uncertainties (to be 

Example 8.2 Demonstrating non-commutativity and 
evaluating a commutator

Show that the operators for position and momentum do not 

commute and therefore that these observables are comple-

mentary. Find their commutator.

Method Consider the effect of xp��  on a wavefunction ψ (that 

is, the effect of p�  followed by the effect on the outcome of 

Δ Δq
m

=

=
×

× × × ×
= ×

−

− − −
−


2

1 055 10

2 1 0 10 1 10
5 10

34

3 6 1
26

v
.

( . ) ( )

Js

kg ms
m

where we have used 1 J = 1 kg m2 s−2. The uncertainty is com-

pletely negligible for all practical purposes concerning mac-

roscopic objects. However, if the mass is that of an electron, 

then the same uncertainty in speed implies an uncertainty in 

position far larger than the diameter of an atom (the analo-

gous calculation gives Δq = 60 m); so the concept of a trajec-

tory, the simultaneous possession of a precise position and 

momentum, is untenable.

Self-test 8.3 Estimate the minimum uncertainty in the speed 

of an electron in a one-dimensional region of length 2a0 where 

a0 = 53 pm (the Bohr radius).
Answer: 547 km s−1

multiplication by x), then the effect of px� �  on the same func-

tion (that is, the effect of multiplication by x followed by the 

effect of p�  on the outcome). Finally, take the difference of the 

two results.

Answer The effect of xp� �  on ψ is

xp x
x

� �ψ ψ= × 
i

d

d

The effect of ��px  on the same function is

px
x

x x
x

� �ψ ψ ψ ψ= = +⎛
⎝⎜

⎞
⎠⎟

 
i

d

d i

d

d

(For this step we have used the standard rule about differenti-

ating a product of functions.) The second expression is clearly 

different from the first, so the two operators do not commute. 

Their commutator is calculated by subtracting the second of 

these two equations from the first:

( )

/

xp px x
x

x
x

� � � �− = ⎛
⎝⎜

⎞
⎠⎟

− +⎛
⎝⎜

⎞
⎠⎟

=
− =

ψ ψ ψ ψ ψ  



i

d

d i

d

d
i

i1 i

Because this relation is true for any ψ, it follows that [ , ] .x p� � = i
This relation is valid for linear momentum along the x-axis 

(that is, when p�  is actually px� ). The same kind of calculation 

can be used to deduce that [ , ]x p y� � = 0  and [ , .]x pz� � = 0

Self-test 8.4 Do the operators for potential energy and kinetic 

energy commute in general? If not, evaluate their commutator.

Answer: No: [ , ] ( / )( / ( / ) / )V E m V x V x x� �
k d d d d d d= +2 2 22 2
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precise, the root mean square deviations of their values from 

the mean) in simultaneous determinations are related by

Δ ΔΩ Ω Ω Ω1 2 1 2

1

2
≥ 〈[ ,� � ]〉

 

where the ‘modulus’ notation |…| means to take the magnitude 

of the term the bars enclose (see The chemist's toolkit 5.1). The 

modulus ensures that the product of uncertainties has a real, 

non-negative value.

When we identify the observables in eqn 8.7 with x and px and 

use eqn 8.6 for their commutator, we obtain eqn 8.2, the specific 

case of the uncertainty principle for position and momentum.

The realization that some observables are complementary 

allows us to make considerable progress with the calculation of 

atomic and molecular properties; but it does away with some of 

the most cherished concepts of classical physics.

Example 8.3 Determining the complementarity  
of two observables

Can the electric dipole moment and the energy of a molecule 

be specified simultaneously? Take the x-component of the 

electric dipole moment operator to be μ = –ex ×.

Method First, determine if the electric dipole moment and 

the energy are complementary observables by evaluating the 

commutator, eqn 8.5, of the operators corresponding to the 

observables. Then use the general form of the uncertainty 

principle, eqn 8.7, to determine if the observables can be speci-

fied simultaneously. That is, determine whether the product of 

their uncertainties is zero or not.

Answer We need to evaluate

[ , ] [ , ] [ , ] [ , ]x H x E V x E x V� � � � � � � � �= + = +k k

The potential energy operator commutes with x because they 

are both multiplicative, and xV(x) = V(x)x. To decide whether 

the kinetic energy operator commutes with x we need to eval-

uate the following expression:

[ , ]x E
m

x
x x

x
m

x
x x

x� �
k ψ ψ ψ ψ= − −

⎛
⎝⎜

⎞
⎠⎟

= − − 2 2

2

2

2

2 2

2

2

22 2e e

d

d

d

d

d

d

d

d

⎛⎛
⎝⎜

⎞
⎠⎟

To do so, we note that

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

2

2

2

2

x
x

x x
x

x
x

x

x x
x

x

ψ ψ ψ ψ

ψ ψ ψ

= ⎛
⎝⎜

⎞
⎠⎟

= +⎛
⎝⎜

⎞
⎠⎟

= + +
⎛
⎝⎝⎜

⎞
⎠⎟

= +2
2

2

d

d

d

d

ψ ψ
x

x
x

General 
form 

Uncertainty 
principle (8.7)

It then follows that

[ , ]

( / ) /

x E
m x m x m

p

x px

� �
�

k ψ ψ ψ= − × −⎛
⎝⎜

⎞
⎠⎟

= =
=

  
 


2 2

2
2

e e e

i d d

d

d

d

d

i �� xψ

and therefore that for all wavefunctions

[ , ]x E
m

px� ��
k = i

e



Hence,

[ , ]x H
m

px� � �= i

e



Because the electric dipole moment operator does not com-

mute with the hamiltonian, in general the electric dipole 

moment and the energy are complementary observables. 

However, eqn 8.7 tells us that the restriction on their simultane-

ous determination is

Δ Δ Δ Δμ E e x E e x H

e
m

p
e

m
px x

= − ≥ −

≥ − = −

1

2

1

2 2

〈 〉

〈 〉

[ , ]� �

� �i

e e

 

Therefore, provided the electron has no net linear momen-

tum (so 〈 〉px
�  = 0) there will be no restriction on the simul-

taneous determination of the electric dipole moment and 

the energy even though the corresponding operators are 

complementary.

Self-test 8.5 Can the potential and kinetic energies be simul-

taneously specified for an electron undergoing oscillatory 

motion in one dimension x with a potential energy propor-

tional to x2?

Answer: No: [ , ] ( / )( )x E m x pk x� � �2 2= + e i

Checklist of concepts

☐ 1. The Heisenberg uncertainty principle states that it is 

impossible to specify simultaneously, with arbitrary pre-

cision, both the momentum and the position of a particle.

☐ 2. Two observables are complementary if their corre-

sponding operators do not commute.

☐ 3. The general form of the uncertainty principle provides 

a quantitative measure of our ability to specify precisely 

and simultaneously any two observables.
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8 The uncertainty principle  63

Checklist of equations

Property Equation Comment Equation number

Heisenberg uncertainty principle ΔpΔq ≥ ħ/2 p and q parallel 8.2

Uncertainty ΔX = {〈X2〉 − 〈X〉2}1/2 Specifically, the root mean square deviation 8.3

Commutator Ω Ω Ω Ω Ω Ω1 2 1 2 2 1,⎡⎣ ⎤⎦ = −�� � � � �
Definition 8.5

[ , ]x p� � = i p and x parallel 8.6

Uncertainty principle Δ ΔΩ Ω Ω Ω1 2 1 2
1

2
≥ 〈[ ,� � ]〉 General form 8.7

Atkins09819.indb   63 9/11/2013   11:01:13 AM



64 2 The principles of quantum mechanics

Focus 2 on  The principles of quantum mechanics

Topic 4 The emergence of quantum theory

Discussion questions
4.1 Summarize the evidence that led to the introduction of quantum 

mechanics.
4.2 Explain the meaning and consequences of wave–particle duality.

Exercises
4.1(a) Calculate the size of the quantum involved in the excitation of (i) a 

molecular vibration of period 20 fs, (ii) a pendulum of period 2.0 s. Express 

the results in joules and kilojoules per mole.

4.1(b) Calculate the size of the quantum involved in the excitation of (i) a 

molecular vibration of period 3.2 fs, (ii) a balance wheel of period 1.0 ms. 

Express the results in joules and kilojoules per mole.

4.2(a) The work function for metallic caesium is 2.14 eV. Calculate the 

kinetic energy and the speed of the electrons ejected by light of wavelength 

(i) 580 nm, (ii) 250 nm.

4.2(b) The work function for metallic rubidium is 2.09 eV. Calculate the 

kinetic energy and the speed of the electrons ejected by light of wavelength 

(i) 520 nm, (ii) 355 nm.

4.3(a) In an experiment to study the photoelectric effect, a photon of radiation 

of wavelength 465 nm was found to eject an electron from a metal with a 

kinetic energy of 2.11 eV. What is the maximum wavelength capable of 

ejecting an electron from the metal?

4.3(b) When light of wavelength 195 nm strikes a certain metal surface, 

electrons are ejected with a speed of 1.23 × 106 m s−1. Calculate the speed of 

electrons ejected from the metal surface by light of wavelength 255 nm.

4.4(a) In an X-ray photoelectron experiment, a photon of wavelength 150 pm 

ejects an electron from the inner shell of an atom and it emerges with a speed 

of 2.14 × 107 m s−1. Calculate the binding energy of the electron.

4.4(b) In an X-ray photoelectron experiment, a photon of wavelength 121 pm 

ejects an electron from the inner shell of an atom and it emerges with a speed 

of 5.69 × 107 m s−1. Calculate the binding energy of the electron.

4.5(a) Calculate the energy per photon and the energy per mole of photons for 

radiation of wavelength (i) 620 nm (red), (ii) 570 nm (yellow), (iii) 380 nm 

(blue).

4.5(b) Calculate the energy per photon and the energy per mole of photons 

for radiation of wavelength (i) 188 nm (ultraviolet), (ii) 125 pm (X-ray), 

(iii) 1.00 cm (microwave).

4.6(a) A sodium lamp emits yellow light of wavelength 590 nm. How many 

photons does it emit each second if its power is (i) 10 W, (ii) 250 W?

4.6(b) A laser used to read CDs emits red light of wavelength 700 nm. How 

many red photons does it emit each second if its power is (i) 0.25 W, 

(ii) 1.5 mW?

4.7(a) Calculate the de Broglie wavelength of (i) a mass of 2 g travelling at 

1 cm s−1, (ii) the same, travelling at 250 km s−1, (iii) a He atom travelling at 

1000 m s−1 (a typical speed at room temperature).

4.7(b) Calculate the de Broglie wavelength of an electron accelerated from rest 

through a potential difference of (i) 100 V, (ii) 15 kV, (iii) 250 kV.

4.8(a) Electron diffraction makes use of electrons with wavelengths 

comparable to bond lengths. To what speed must an electron be accelerated 

for it to have a wavelength of 100 pm? What accelerating potential difference 

is needed?

4.8(b) Could proton diffraction be an interesting technique for the investigation 

of molecular structure? To what speed must a proton be accelerated for it to 

have a wavelength of 100 pm? What accelerating potential difference is 

needed?

4.9(a) The impact of photons on matter exerts a force that can move it, but the 

effect of a single photon is insignificant except when it strikes an atom or 

subatomic particle. Calculate the speed to which a stationary electron would 

be accelerated if it absorbed a photon of 150 nm radiation.

4.9(b) Similarly, calculate the speed to which a stationary H atom would be 

accelerated if it absorbed a photon of 100 nm radiation.

Problems
4.1 The Planck distribution is given in eqn 4.3. (a) Plot the Planck distribution 

for ρ as a function of wavelength (take T = 298 K). (b) Show mathematically 

that as λ → 0, ρ → 0 and therefore that the ‘ultraviolet catastrophe’ is avoided. 

(c) Show that for long wavelengths (hc/λkT � 1), the Planck distribution 

reduces to the Rayleigh–Jeans law, the classical expression in eqn 4.2.

4.2 (a) Derive Wien’s displacement law (eqn 4.1) and deduce an expression 

for the constant as a multiple of the second radiation constant, c2 = hc/k. 

(b) Values of λmax from a small pinhole in an electrically heated container 

were determined at a series of temperatures, and the results are given below. 

Deduce a value for Planck's constant using the values of c2 and k.

4.3‡ The temperature of the Sun’s surface is approximately 5800 K. On the 

assumption that the human eye evolved to be most sensitive at the wavelength 

of light corresponding to the maximum in the Sun’s radiant energy distribution, 

determine the colour of light to which the eye is the most sensitive.

‡  This problem was supplied by Charles Trapp and Carmen Giunta.

θ/°C 1000 1500 2000 2500 3000 3500

λmax/nm 2181 1600 1240 1035  878  763
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4.4 Calculate the value of Planck’s constant given that the following kinetic 

energies were observed for photoejected electrons irradiated by radiation of 

the wavelengths noted.

Topic 5 The wavefunction

Discussion questions
5.1 Discuss the relationship between probability amplitude and probability 

density.

5.2 Describe the constraints that the Born interpretation puts on acceptable 

wavefunctions.

5.3 What are the advantages of working with normalized wavefunctions?

Exercises
5.1(a) Consider a time-independent wavefunction of a particle moving in 

three-dimensional space. Identify the variables upon which the wavefunction 

depends.

5.1(b) Consider a time-dependent wavefunction of a particle moving in 

two-dimensional space. Identify the variables upon which the wavefunction 

depends.

5.2(a) Consider a time-independent wavefunction of a hydrogen atom. 

Identify the variables upon which the wavefunction depends. Use spherical 

polar coordinates.

5.2(b) Consider a time-dependent wavefunction of a helium atom. Identify the 

variables upon which the wavefunction depends. Use spherical polar 

coordinates.

5.3(a) An unnormalized wavefunction for a light atom rotating around a heavy 

atom to which it is bonded is ψ(φ) = eiφ with 0 ≤ φ ≤ 2π. Normalize this 

wavefunction (to 1).

5.3(b) An unnormalized wavefunction for an electron in a carbon nanotube of 

length L is sin(2π x/L). Normalize this wavefunction (to 1).

5.4(a) For the system described in Exercise 5.3(a), what is the probability of 

finding the light atom in the volume element dφ at φ = π?

5.4(b) For the system described in Exercise 5.3(b), what is the probability of 

finding the electron in the range dx at x = L/2?

5.5(a) For the system described in Exercise 5.3(a), what is the probability of 

finding the light atom between φ = π/2 and φ = 3π/2?

5.5(b) For the system described in Exercise 5.3(b), what is the probability of 

finding the electron between x = L/4 and x = 3L/4?

Problems
5.1 Suppose that the normalized wavefunction for an electron in a carbon 

nanotube of length L = 10.0 nm is: ψ = (2/L)1/2 sin(πx/L). Calculate the 

probability that the electron is (a) between x = 4.95 nm and 5.05 nm, 

(b) between x = 7.95 nm and 9.05 nm, (c) between x = 9.90 nm and 10.00 nm, 

(d) in the left half of the box, (e) in the central third of the box.

5.2 The normalized wavefunction for the electron in a hydrogen atom is 
ψ = −( / ) / /1 0

3 1 2 0πa r ae , where a0 = 53 pm (the Bohr radius). (a) Calculate the 

probability that the electron will be found somewhere within a small sphere of 

radius 1.0 pm centred on the nucleus. (b) Now suppose that the same sphere 

is located at r = a0. What is the probability that the electron is inside it?

5.3 A hydrogen atom attached to a metallic surface is undergoing oscillatory 

motion so that the state of the atom is described by a wavefunction that is 

proportional to the square of the atom’s displacement from the metallic 

surface. Assume that the motion of the H atom is constrained to one 

dimension between x = 0 and x = π and that its state is described by the 

unnormalized wavefunction ψ(x) = x2. If the probability of finding the atom 

between x = 0 and x = a is 1
2

, what is the value of a?

5.4 A particle free to move along one dimension x (with 0 ≤ x < ∞) is described 

by the unnormalized wavefunction ψ(x) = e−ax with a = 2 m−1. What is the 

probability of finding the particle at a distance x ≥1 m?

5.5 The rotation of a light atom around a heavier atom to which it is bonded can 

be described quantum mechanically. The unnormalized wavefunctions for a light 

atom confined to move on a circle (with a heavier atom at the circle’s centre) are 

ψ(φ)= e−imφ, where m = 0, ±1, ±2, ±3,…. and 0 ≤ φ ≤ 2π. Determine 〈φ〉.

5.6 Atoms in a chemical bond vibrate around the equilibrium bond length. An 

atom undergoing vibrational motion is described by the wavefunction 

ψ ( ) /x N x a= −e
2 22 , where a is a constant and −∞ < x < ∞. (a) Normalize this 

function. (b) Calculate the probability of finding the particle in the range 

−a ≤ x ≤ a. Hint: The integral encountered in part (b) is the error function; see 

Integral G.6 of the Resource section. Its numerical values are provided in most 

mathematical software packages.

5.7 Suppose that the state of the vibrating atom in Problem 5.6 is described by 

the wavefunction ψ ( ) /x Nx x a= −e
2 22 . Where is the most probable location of 

the particle?

5.8 Normalize the following wavefunctions: (a) sin(nπx/L) in the range 

0 ≤ x ≤ L, where n = 1, 2, 3, … (this wavefunction can be used to describe 

delocalized electrons in a linear polyene); (b) a constant in the range 

–L ≤ x ≤ L; (c) e−r/a in three-dimensional space (this wavefunction can be used 

to describe the electron in the ion He+); (d) xe−r/2a in three-dimensional space. 

Hint: The volume element in three dimensions is dτ = r2dr sin θ dθ dφ , with 

0 ≤ r < ∞, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π.

λ/nm 320 330 345 360 385

Ek/eV 1.17 1.05 0.885 0.735 0.511
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Topic 6 Extracting information from the wavefunction

Discussion questions
6.1 Suggest how the general shape of a wavefunction can be predicted without 

solving the Schrödinger equation explicitly.

6.2 Describe the relationship between operators and observables in quantum 

mechanics.

Exercises
6.1(a) Construct the potential energy operator of a particle subjected to a 

harmonic oscillator potential (Topic 2).

6.1(b) Construct the potential energy operator of a particle subjected to a 

Coulombic potential.

6.2(a) Complex functions of the form eikx can be used to model the 

wavefunctions of particles in a linear accelerator. Show that any linear 

combination of the complex functions e2ix and e−2ix is an eigenfunction of the 

operator d2/dx2 and identify its eigenvalue.

6.2(b) Functions of the form sin nx can be used to model the wavefunctions of 

electrons in a carbon nanotube. Show that any linear combination of the 

functions sin 3x and cos 3x is an eigenfunction of the operator d2/dx2 and 

identify its eigenvalue.

6.3(a) The momentum operator is proportional to d/dx. Which of the 

following functions are eigenfunctions of d/dx? (i) eikx, (ii) e
2ax , (iii) x, (iv) x2, 

(v) ax + b, (vi) sin (x + 3a). Give the corresponding eigenvalue where 

appropriate.

6.3(b) The kinetic energy operator is proportional to d2/dx2. Which of the 

following functions are eigenfunctions of d2/dx2? (i) eax, (ii) e−ax2

, (iii) k, 

(iv) kx2, (v) ax + b, (vi) cos(kx + 5). Give the corresponding eigenvalue where 

appropriate.

6.4(a) Confirm that the kinetic energy operator, −(ħ2/2m)d2/dx2, is Hermitian.

6.4(b) When we discuss rotational motion, we shall see that the operator 

corresponding to the angular momentum of a particle is (ħ/i)d/dφ, where φ is 

an angle. Is this operator Hermitian?

6.5(a) You might come across an operator of the form � �x apx+ i , where a is a real 

constant, and wonder if it corresponds to an observable. Could it?

6.5(b) Likewise, you might wonder if ��x aE2 −i k , where a is a real constant, 

corresponds to an observable. Could it?

Problems
6.1 Write the time-independent Schrödinger equations for (a) an electron 

moving in one dimension about a stationary proton and subjected to a 

Coulombic potential, (b) a free particle, (c) a particle subjected to a constant, 

uniform force.

6.2 Construct quantum mechanical operators for the following observables: 

(a) kinetic energy in one and in three dimensions, (b) the inverse separation, 

1/x, (c) electric dipole moment in one dimension, (d) the mean square 

deviations of the position and momentum of a particle (in one dimension) 

from the mean values.

6.3 Determine which of the following functions are eigenfunctions of the 

inversion operator i� (which has the effect of making the replacement x → –x): 

(a) x3 – kx, (b) cos kx, (c) x2 + 3x – 1. State the eigenvalue of i� where relevant.

6.4 Show that the product of a Hermitian operator with itself is also a 

Hermitian operator.

Topic 7 Predicting the outcome of experiments

Discussion question
7.1 Describe how a wavefunction determines the dynamical properties of a 

system and how those properties may be predicted.

Exercises
7.1(a) Functions of the form sin(nπ x/L) can be used to model the 

wavefunctions of electrons in a carbon nanotube of length L. Show that the 

wavefunctions sin(nπ x/L) and sin(mπ x/L), where n ≠ m, are orthogonal for a 

particle confined to the region 0 ≤x ≤ L.

7.1(b) Functions of the form cos(nπ x/L) can be used to model the 

wavefunctions of electrons in metals. Show that the wavefunctions cos(nπ x/L) 

and cos(mπ x/L), where n ≠ m, are orthogonal for a particle confined to the 

region 0 ≤ x ≤ L.

7.2(a) A light atom rotating around a heavy atom to which it is bonded is 

described by a wavefunction of the form ψ(φ) = eimφ with 0 ≤ φ ≤ 2 π and m an 

integer. Show that the m = +1 and m = +2 wavefunctions are orthogonal.

7.2(b) Repeat Exercise 7.2(a) for the m = +1 and m = −1 wavefunctions.

7.3(a) An electron in a carbon nanotube of length L is described by the 

wavefunction ψ(x) = sin(2 πx/L). Compute the expectation value of the 

position of the electron.
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7.3(b) An electron in a carbon nanotube of length L is described by the 

wavefunction ψ(x) = (2/L)1/2 sin(π x/L). Compute the expectation value of the 

kinetic energy of the electron.

7.4(a) An electron in a one-dimensional metal of length L is described by the 

wavefunction ψ(x) = sin(π x/L). Compute the expectation value of the 

momentum of the electron.

7.4(b) A light atom rotating around a heavy atom to which it is bonded is 

described by a wavefunction of the form ψ(φ) = eiφ with 0 ≤ φ ≤ 2π. If the 

operator corresponding to angular momentum is given by (ħ/i)d/dφ, compute 

the expectation value of the angular momentum of the light atom.

Problems
7.1 A particle freely moving in one dimension x with 0 ≤ x < ∞ is in a state 

described by the wavefunction ψ(x) = a1/2e−ax/2, where a is a constant. 

Determine the expectation value of the position operator.

7.2 The wavefunction of an electron in a linear accelerator is ψ = (cos χ)eikx +  

(sin χ)e−ikx, where χ (chi) is a parameter. What is the probability that the 

electron will be found with a linear momentum (a) +kħ, (b) –kħ? What form 

would the wavefunction have if it were 90 per cent certain that the electron 

had linear momentum +kħ?

7.3 Evaluate the kinetic energy of the electron with wavefunction given in 

Problem 7.2.

7.4 Calculate the average linear momentum of a particle described by the 

following wavefunctions: (a) eikx, (b) cos kx, (c) e−ax2

, where in each one x 

ranges from –∞ to +∞.

7.5 (a) Two (unnormalized) excited-state wavefunctions of the H atom are 

(i) ψ = − −( / ) /2 0
0r a r ae  and (ii) ψ θ φ= −r r asin cos e /2 0. Normalize both 

functions to 1. (b) Confirm that these two functions are mutually orthogonal.

7.6 Evaluate the expectation values of r and r2 for a hydrogen atom with 

wavefunctions given in Problem 7.5.

7.7 Calculate (a) the mean potential energy and (b) the mean kinetic energy of 

an electron in the hydrogen atom whose state is described by the 

wavefunction given in Problem 5.2.

7.8 Suppose that the wavefunction of an electron in a carbon nanotube is a 

linear combination of cos nx functions. Use mathematical software to 

construct superpositions of cosine functions and determine the probability 

that a given momentum will be observed. If you plot the superposition (which 

you should), set x = 0 at the centre of the screen and build the superposition 

there. Evaluate the root mean square location of the wavepacket, 〈x2〉1/2.

Topic 8 The uncertainty principle

Discussion questions
8.1 Account for the uncertainty relation between position and linear 

momentum in terms of the shape of the wavefunction.

8.2 Describe the properties of wavepackets in terms of the Heisenberg 

uncertainty principle.

Exercises
8.1(a) The speed of a certain proton is 6.1 × 106 m s−1. If the uncertainty in its 

momentum is to be reduced to 0.0100 per cent, what uncertainty in its 

location must be tolerated?

8.1(b) The speed of a certain electron is 1000 km s−1. If the uncertainty in its 

momentum is to be reduced to 0.0010 per cent, what uncertainty in its 

location must be tolerated?

8.2(a) Calculate the minimum uncertainty in the speed of a ball of mass 500 g 

that is known to be within 1.0 μm of a certain point on a bat. What is the 

minimum uncertainty in the position of a bullet of mass 5.0 g that is known to 

have a speed somewhere between 350.000 00 m s−1 and 350.000 01 m s−1?

8.2(b) An electron in a nanoparticle is confined to a region of length 0.10 nm. 

What are the minimum uncertainties in (i) its speed, (ii) its kinetic energy?

8.3(a) Evaluate the commutators (i) [ , ],x y� �
  (ii) [ , ],p p� �

x y  (iii) [ , ],x p� � x
 

(iv)  � �[ , ],x px
2   (v) � �[ , ].x pn

x 

8.3(b) Evaluate the commutators (i) [( / ), ],1 x p� � x
 (ii) [( / ), ],1

2
x p x
� �   

(iii) [ , ],xp y p y p z px z y
� � � � � � � �

y−  −  (iv) [ ].x y x� �2(∂ /∂ ), (∂ /∂ )2 2 y

Problems
8.1 An atom undergoing vibrational motion is described by the wavefunction 

ψ ( ) ( / ) /x a ax= −2 1 4 2π e , where a is a constant and −∞ < x < ∞. Verify that the 

value of the product ΔpΔx is consistent with the predictions from the 

uncertainty principle.

8.2 Confirm the following properties of commutators: (a) [ ] [ ];A B B A� � � �, ,= −   

(b) [ ] [ ] [ ];A B C A B A C� � � � � � �, , ,+ = +  (c) [ ] [ ] [ ]A B A A B A B A� � � � � � � �2
, , , . = +

8.3 Evaluate the commutators (a) [ ]H p� �, x
 and (b) [ ]H x� �,   where 

H p Vx
� � �= / 2m+ x

2
( ).  Choose (i) V(x) = V, a constant, (ii) V k x( ) .x = 1

2
2

f

8.4 Evaluate the limitation on the simultaneous specification of the following 

observables: (a) the position and momentum of a particle in one dimension; 

(b) the three components of linear momentum of a particle; (c) the kinetic 

energy and potential energy of a particle in one dimension; (d) the electric 

dipole moment and the total energy of a one-dimensional system; (e) the 

kinetic energy and the position of a particle in one dimension.
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68 2 The principles of quantum mechanics

Integrated activities

F2.1 Compare the results of experimental measurements of an observable 

when the wavefunction is (a) an eigenfunction of the corresponding operator, 

(b) a superposition of eigenfunctions of that operator.

F2.2 Show that the expectation value of an operator that can be written as the 

square of a Hermitian operator is positive.

F2.3 (a) Given that any operators used to represent observables must satisfy 

the commutation relation in eqn 8.6, what would be the operator for position 

if the choice had been made to represent linear momentum parallel to the 

x-axis by multiplication by the linear momentum? These different choices are 

all valid ‘representations’ of quantum mechanics. (b) With the identification of  

x�  in this representation, what would be the operator for 1/x? Hint: Think of 

1/x as x−1.

F2.4LG Use mathematical software, a spreadsheet, or the Living graphs (labelled 
LG) on the website of this book to construct superpositions of cosine functions 

as

ψ ( )x
N

k x

k

N

=
=

∑1

1

cos( )π

 

where the constant 1/N is introduced to keep the superpositions with the 

same overall magnitude. Explore how the probability density ψ 2(x) changes 

with the value of N.
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Differential equations  69

Mathematical background 2 Differential equations

A differential equation is a relation between a function and its 

derivatives, as in

a
f

x
b

f

x
cf

d

d

d

d

2

2
0+ + =

 
(MB2.1)

where f is a function of the variable x and the factors a, b, c may 

be either constants or functions of x. If the unknown function 

depends on only one variable, as in this example, the equation 

is called an ordinary differential equation; if it depends on 

more than one variable, as in

a
f

x
b

f

y
cf

∂
∂

∂
∂

2

2

2

2
0+ + =

 

(MB2.2)

it is called a partial differential equation. Here, f is a function of 

x and y, and the factors a, b, c may be either constants or func-

tions of both variables. Note the change in symbol from d to ∂ 

to signify a partial derivative (see Mathematical background 1).

MB2.1 The structure of differential equations
The order of the differential equation is the order of the highest 

derivative that occurs in it: both examples above are second-

order equations. Only rarely in science is a differential equation 

of order higher than 2 encountered.

A linear differential equation is one for which, if f is a solu-

tion, then so is constant × f. Both examples above are linear. 

If the 0 on the right were replaced by a different number or a 

function other than f, then they would cease to be linear.

Solving a differential equation means something differ-

ent from solving an algebraic equation. In the latter case, the 

solution is a value of the variable x (as in the solution x = 2 of 

the quadratic equation x2 − 4 = 0). The solution of a differential 

equation is the entire function that satisfies the equation, as in

d

d

2

2
0

f

x
f f x A x B x+ = = +, ( ) sin cos

 
(MB2.3)

with A and B constants. The process of finding a solution of 

a differential equation is called integrating the equation. The 

solution in eqn MB2.3 is an example of a general solution of a 

differential equation; that is, it is the most general solution of 

the equation and is expressed in terms of a number of constants 

(A and B in this case). When the constants are chosen to accord 

with certain specified initial conditions (if one variable is the 

time) or certain boundary conditions (to fulfil certain spatial 

restrictions on the solutions), we obtain the particular solution 

of the equation. The particular solution of a first-order differen-

tial equation requires one such condition; a second-order dif-

ferential equation requires two.

MB2.2 The solution of ordinary 
differential equations

The first-order linear differential equation

d

d

f

x
af+ = 0

 
(MB2.4a)

with a a function of x or a constant can be solved by direct 

integration. To proceed, we use the fact that the quantities df 

and dx (called differentials) can be treated algebraically like any 

quantity and rearrange the equation into

d
d

f

f
a x= −

 
(MB2.4b)

and integrate both sides. For the left-hand side, we use the 

familiar result ∫dy/y = ln y + constant. After pooling all the con-

stants into a single constant C, we obtain:

ln ( )f x a x C= − +∫ d
 

(MB2.4c)

Brief illustration MB2.1 Particular solutions

If we are informed that f(0) = 0, then because from eqn MB2.3 

it follows that f(0) = B, we can conclude that B = 0. That still 

leaves A undetermined. If we are also told that df/dx = 2 at x = 0 

(that is, f ′(0) = 2, where the prime denotes a first derivative), 

then because the general solution (but with B = 0) implies that 

f ′(x) = A cos x, we know that f ′(0) = A, and therefore A = 2. The 

particular solution is therefore f(x) = 2 sin x. Figure MB2.1 

shows a series of particular solutions corresponding to differ-

ent boundary conditions.

1.5

1

0.5

–0.5

–1

–1.5

0

0 2 4 6 8 10
x

f(
x)

A = 1, B = 1

A = 0, B = 1
A = ½, B = 1

Figure MB2.1 The solution of the differential equation 
in Brief illustration MB2.1 with three different boundary 
conditions (as indicated by the resulting values of the 
constants A and B).
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70 Mathematical background 2

Even the solutions of first-order differential equations 

quickly become more complicated. A nonlinear first-order 

equation of the form

d

d

f

x
af b+ =

 
(MB2.5a)

with a and b functions of x (or constants) has a solution of the 

form

f x b x Ca x a x( )e e dd d∫ ∫= +∫  
(MB2.5b)

as may be verified by differentiation. Mathematical software 

packages can often perform the required integrations.

Second-order differential equations are in general much 

more difficult to solve than first-order equations. One powerful 

approach commonly used to lay siege to second-order differen-

tial equations is to express the solution as a power series:

f x c x
n

n
n( )=

=

∞

∑
0  

(MB2.6)

and then to use the differential equation to find a relation 

between the coefficients. This approach results, for instance, in 

the Hermite polynomials that form part of the solution of the 

Schrödinger equation for the harmonic oscillator (Topic 12). 

Many of the second-order differential equations that occur in 

this text are tabulated in compilations of solutions or can be 

solved with mathematical software, and the specialized tech-

niques that are needed to establish the form of the solutions 

may be found in mathematical texts.

MB2.3 The solution of partial 
differential equations

The only partial differential equations that we need to solve are 

those that can be separated into two or more ordinary differ-

ential equations by the technique known as separation of vari-

ables. To discover if the differential equation in eqn MB2.2 can 

be solved by this method we suppose that the full solution can 

be factored into functions that depend only on x or only on y, 

and write f(x,y) = X(x)Y(y). At this stage there is no guarantee 

that the solution can be written in this way. Substituting this 

trial solution into the equation and recognizing that

∂
∂

∂
∂

2

2

2

2

2

2

2

2

XY

x
Y

X

x

XY

y
X

Y

y
= =d

d

d

d
 

we obtain

aY
X

x
bX

Y

y
cXY

d

d

d

d

2

2

2

2
0+ + =

 

We are using d instead of ∂ at this stage to denote differentials 

because each of the functions X and Y depend on one variable, 

x and y, respectively. Division through by XY turns this equa-

tion into

a

X

X

x

b

Y

Y

y
c

d

d

d

d

2

2

2

2
0+ + =

 

Now suppose that a is a function only of x, b a function of y, and 

c a constant. (There are various other possibilities that permit 

the argument to continue.) Then the first term depends only on 

x and the second only on y. If x is varied, only the first term can 

change. But as the other two terms do not change and the sum 

of the three terms is a constant (0), even that first term must 

be a constant. The same is true of the second term. Therefore 

because each term is equal to a constant, we can write

a

X

X

x
c

b

Y

Y

y
c c c c

d

d

d

d
with

2

2 1

2

2 2 1 2= = + = −
 

We now have two ordinary differential equations to solve by 

the techniques described in Section MB2.2. An example of this 

procedure is given in Topic 11, for a particle in a two-dimen-

sional region.

Brief illustration MB2.2 The solution of a first-order 
equation

Suppose that in eqn MB2.4a the factor a = 2x; then the general 

solution, eqn MB2.4c, is

ln ( )f x x x C x C= − + = − +∫2 2d
 

(We have absorbed the constant of integration into the con-

stant C.) Therefore

f x N Nx C( ) ,= =−e e
2

 

If we are told that f(0) = 1, then we can infer that N = 1 and 

therefore that f x x( )= −e
2

.
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One central feature of physical chemistry is its role in building models of atomic and molecular 
behaviour to explain observed phenomena. A prime example of this procedure is the approach 
developed in this group of Topics, where we solve the Schrödinger equations associated with simple 
models for translation, vibration, and rotation of particles. The key result is that only certain wave-
functions and energies are acceptable, and they are labelled by ‘quantum numbers’. Insights derived 
from judicious application of the models developed here inform our understanding of structure (see, 
for example, Atomic structure and spectra and Molecular spectroscopy) and are starting points for the 
discussion of thermodynamics, as we see in Statistical thermodynamics.

Our model of translational motion is the ‘particle in a box’, a particle freely moving in one dimen-
sion between two impenetrable walls (Topic 9). The need for the wavefunction to satisfy certain 
conditions results in the quantization of energy. Quantum mechanics reveals another non-classi-
cal phenomenon: when the potential energy at the walls of the box is finite, the particle can pass 
into or through the walls even if classically it does not have enough energy to pass over the bar-
rier. This behaviour, known as ‘tunnelling’ (Topic 10), explains a wide range of chemical and physical 
processes, such as proton and electron transfer. A natural and useful extension of this material is to 
translation in three dimensions (Topic 11).

A widely adopted model of vibrational motion in molecules is the ‘harmonic oscillator’ (Topic 12), 
in which the particle oscillates around an equilibrium position. The energy levels of a harmonic oscil-
lator are quantized and, once again, we encounter tunnelling into classically forbidden regions.

The ‘particle on a ring’ (Topic 13) and the ‘particle on a sphere’ (Topic 14) are models for rotational 
motion in two and three dimensions, respectively. Here we encounter a new phenomenon: not only 
is the energy quantized but so too is the angular momentum.

FOCUS 3  ON  The quantum mechanics of motion

Translational
motion in

one
dimension

Translational
motion in

several
dimensions

Vibrational
motion

Rotational
motion in

two
dimensions

Rotational
motion in

three
dimensions

Tunnelling
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of quantum
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dynamics
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Molecular
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Reaction
dynamics
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structure
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What is the impact of this material?

Quantum mechanical effects in nanomaterials can render the properties of an assembly dependent 
on its size. In Impact 3.1, we focus on the origins and consequences of these effects in nanocrystals 
and quantum dots.

To read more about the impact of this material, scan the QR code, or go to 
http://bcs.whfreeman.com/webpub/chemistry/qmc2e/impact/qchem_
impact3.html.
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TOPIC 9

Translational motion in 

one dimension

This Topic presents the essential features of the solutions  

of the Schrödinger equation for one of the basic types of mo -

tion, namely translation. We shall see that only certain wave-

functions and their corresponding energies are acceptable; 

hence, quantization emerges as a natural consequence of the 

Schrödinger equation and the conditions imposed on it.

9.1 Free motion

The Schrödinger equation for a particle of mass m moving in 

one dimension is

− + =2 2

22m

x

x
V x x E x

d

d

ψ ψ ψ( )
( ) ( ) ( )

 

For a particle that is moving in the absence of any external 

forces, the potential energy is a constant, which can be chosen 

to be zero. The equation therefore becomes

− =2 2

22m

x

x
E x

d

d

ψ ψ( )
( )

 

The general solutions of this equation are

ψ k
kx kx

k

A B

E
k

m

= +

=

−e ei i

2 2

2


 

(9.3)
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 ➤ Why do you need to know this material?
The application of quantum theory to one of the basic 
types of motion of particles, namely translation, reveals a 
number of non-classical features in a simple manner. These 
features are necessary for understanding a variety of micro-
scopic phenomena, including conduction of electricity and 
properties of nanomaterials. They also reveal the origin 
of quantization, which has consequences throughout 
chemistry.

 ➤ What is the key idea?
The translational energy levels of a particle confined to a 
finite region of space are quantized.

 ➤ What do you need to know already?
You should know that the wavefunction is the solution of 
the Schrödinger equation (Topic 6) and be familiar with 
the techniques of deriving dynamical properties from the 
wavefunction by using operators corresponding to the 
observables (Topics 6 and 7).

One 
dimen-
sion, 
time-
indepen-
dent

Schrödinger 
equation (9.1)

One 

dimension

Schrödinger 
equation for 

free motion
(9.2)
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74 3 The quantum mechanics of motion

with A and B constants, as may be verified by substitution. Note 

that we are now labelling both the wavefunctions and the ener-

gies (that is, the eigenfunctions and eigenvalues of H� ) with the 

index k. The wavefunctions in eqn 9.3 are continuous, have 

continuous slope everywhere, are single-valued, and do not go 

to infinity, and so—in the absence of any other information—

are acceptable for all values of k. Because the energy of the par-

ticle is proportional to k2, all values of the energy are permitted. 

It follows that the translational energy of a free particle is not 

quantized.

The values of the constants A and B depend on how the state 

of motion of the particle is prepared:

If it is shot towards positive x, then its linear momentum 

is +kħ (see Topic 6), and its wavefunction is proportional 

to eikx. In this case B = 0 and A is a normalization factor.

If it is shot in the opposite direction, towards negative x, 

then its linear momentum is –kħ and its wavefunction is 

proportional to e−ikx. In this case, A = 0 and B is the 

normalization factor.

Although the wavefunction for a free particle, e±ikx, is not 

square-integrable in a region of infinite length (ψ *ψ is a con-

stant, and its integral over all space is therefore infinite), we 

can get round this problem by assuming that the particle is in 

a finite region of length L, normalizing the wavefunction, and 

then, at the end of any subsequent calculation using the wave-

function, allowing L to become infinite (see Problem 9.5).

The probability density |ψ |2 is uniform if the particle is in 

either of the pure momentum states eikx or e−ikx. According to 

the Born interpretation (Topic 5), nothing further can be said 

about the location of the particle. That conclusion is consist-

ent with the uncertainty principle, because if the momentum 

is certain, then the position cannot be specified (the operators 

corresponding to x and p do not commute and thus correspond 

to complementary observables, Topic 8).

A final point in this connection is that the wavefunctions 

eikx and e−ikx illustrate a general feature of quantum mechan-

ics: a particle with net motion is described by a complex wave-

function (complex in the sense of depending on i = (−1)1/2 and 

having both real and imaginary parts). A wavefunction that 

is purely real corresponds to zero net motion. For instance, if 

ψ (x) = cos kx, then the expectation value of the linear momen-

tum is zero (〈p〉 = 0, Topic 7).

9.2 Confined motion: the particle  
in a box

In this section, we consider a particle in a box, in which a par-

ticle of mass m is confined to a finite region of space between 

two impenetrable walls. The potential energy is zero inside the 

box but rises abruptly to infinity at the walls at x = 0 and x = L 

(Fig. 9.1). The potential energy of the particle is given by

For and

For

x x L V

x L V

≤ ≥ = ∞
< < =

0

0 0

:

:

When the particle is between the walls, the Schrödinger equa-

tion is the same as for a free particle (eqn 9.2), so the general 

solutions given in eqn 9.3 are also the same. However, it will 

prove convenient to use e±ikx = cos kx ± i sin kx to write

ψ k
kx kxx A B A kx kx B kx kx

A B

( ) ( ) ( )

( )

= + = + + −
= +

−e e cos isin cos i sini i

  cos i sin kx A B kx+ −( )

Brief illustration 9.1 The wavefunction of a  
freely moving particle 

An electron at rest that is shot out of an accelerator towards 

positive x through a potential difference of 1.0 V acquires a 

kinetic energy of 1.0 eV or 1.6 × 10−19 J. The wavefunction for 

such a particle is given by eqn 9.3 with B = 0 and k given by 

rearranging eqn 9.3 into

k
m Ek= ⎛

⎝⎜
⎞
⎠⎟

=
× × × ×

×

− −2 2 9 109 10 1 6 10

1 055 102

1 2 31 19
e



/
( . ) ( . )

( .

kg J
−−

−

⎛
⎝⎜

⎞
⎠⎟

= ×

34 2

1 2

9 15 1 10

J s)

.

/

m

or 5.1 nm−1 (with 1 nm = 10−9 m). Therefore the wavefunction is 

ψ ( ) .. /x A x= e nm5 1i

Self-test 9.1 Write the wavefunction for an electron travelling 

to the left (negative x) after being accelerated through a poten-

tial difference of 10 kV.

Answer: ψ ( ) /x B x= −e 510i nm

Location, x

Po
te

n
ti

al
 e

n
er

g
y,

 V

∞ ∞

0 L

Figure 9.1 A particle in a one-dimensional region with 
impenetrable walls. Its potential energy is zero between x = 0 and 
x = L, and rises abruptly to infinity as soon as it touches the walls.
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9 Translational motion in one dimension  75

If we write C = (A − B)i and D = A + B the general solutions take 

the form

ψ k x C kx D kx( ) sin cos= +
 

 General solution for 0< x < L  (9.4)

At the walls and outside the box the wavefunctions must be zero 

as the particle will not be found in a region where its potential 

energy is infinite:

For andx x L xk≤ ≥ =0 0, ( )ψ  (9.5)

At this point, there are no restrictions on the value of k and all 

solutions appear to be acceptable.

(a) The acceptable solutions
The requirement of the continuity of the wavefunction (Topic 

5) implies that ψ k(x) as given by eqn 9.4 must be zero at the 

walls, for it must match the wavefunction (eqn 9.5) inside the 

material of the walls where the functions meet. That is, the wave-

function must satisfy the following two boundary conditions, 

or constraints on the function at certain locations:

ψ ψk k L( ) ( )0 0 0= =and
 

 Boundary conditions  (9.6)

As we show in the following Justification, the requirement that 

the wavefunction satisfy these boundary conditions implies 

that only certain wavefunctions are acceptable and that the 

only permitted wavefunctions and energies of the particle are

ψ n x C
n x

L
n( ) sin , ,= ⎛

⎝⎜
⎞
⎠⎟

= …π
1 2

 

(9.7a)

E
n h

mL
nn = = …

2 2

28
1 2, ,  (9.7b)

where C is an as yet undetermined constant. Note that the 

wavefunctions and energy are now labelled with the dimen-

sionless integer n instead of the quantity k.

Justification 9.1 The energy levels and wavefunctions 

of a particle in a one-dimensional box

For an informal demonstration of quantization, we consider 

each wavefunction to be a de Broglie wave that fits into the con-

tainer in the sense that an integral number of half-wavelengths 

(one bulge, two bulges, …, Fig. 9.2) is equal to the length of the 

box:

n L n× = =1

2
λ 1 2, ,…

and therefore

λ = = …2
1 2

L

n
nwith , ,

According to the de Broglie relation, these wavelengths cor-

respond to the momenta

p
h nh

L
= =λ 2

The particle has only kinetic energy inside the box (where 

V = 0), so the permitted energies are

E
p

m

n h

mL
n= = = …

2 2 2

22 8
1 2with , ,

as in eqn 9.7b.

A more formal and more widely applicable approach is as 

follows. From the boundary condition ψ k(0) = 0 and the fact 

that, from eqns 9.4 and 9.5, ψk(0) = D (because sin 0 = 0 and cos 

0 = 1), we can conclude that D = 0. It follows that the wavefunc-

tion must be of the form

ψ k x C kx( )= sin 

From the second boundary condition, ψ k(L) = 0, we know that 

ψk(L) = C sin kL = 0. We could take C = 0, but doing so would 

give ψk(x) = 0 for all x, which would conf lict with the Born 

interpretation (the particle must be somewhere). The alterna-

tive is to require that kL be chosen so that sin kL = 0. This con-

dition is satisfied if

kL n n= =π 1 2, ,…

The value n = 0 is ruled out, because it implies k = 0 and 

ψ k(x) = 0 everywhere (because sin 0 = 0), which is unaccep-

table. Negative values of n merely change the sign of sin kL 

(because sin(−x) = −sin x) and do not result in new solutions. 

The wavefunctions are therefore

ψ n x C n x L n( ) ( / ) , ,= =sin 1 2π …

At this stage we have begun to label the solutions with the 

index n instead of k. Because k and Ek are related by eqn 9.3, 

and k and n are related by kL = nπ, it follows that the energy of 

the particle is limited to En = n2h2/8mL2, the values obtained 

by the informal procedure and stated in eqn 9.7.
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Not
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Figure 9.2 An acceptable wavefunction must have a de Broglie 
wavelength such that the wave fits into the box.
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76 3 The quantum mechanics of motion

We conclude that the energy of the particle in a one-dimen-

sional box is quantized and that this quantization arises from the 

boundary conditions that ψ must satisfy. This is a general conclu-

sion: the need to satisfy boundary conditions implies that only cer-

tain wavefunctions are acceptable, and hence restricts observables to 

discrete values. So far, only energy has been quantized; shortly we 

shall see that other physical observables may also be quantized.

We need to determine the constant C in eqn 9.7. To do so, 

we normalize the wavefunction to 1 by using Integral T.2 given 

in the Resource section and used in Example 5.2. Because the 

wavefunction is zero outside the range 0 ≤ x ≤ L, we use

ψ 2 2

0

2

0

2

1 2

2
1

2
d sin d sox C

n x

L
x C

L
C

L

L L

= = × = =⎛
⎝⎜

⎞
⎠⎟∫ ∫ π

L/2� ��� ���

,

/

for all n. Therefore, the complete solution for the particle in a box is

 

ψ n x
L

n x

L
x L( ) sin

/

=⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

≤ ≤2
0

1 2 π
for

 

 ψn(x)=0 for x < 0 and x > L

 
E

n h

mL
nn = = …

2 2

28
1 2, ,

 
One-dimensional box  Energy levels  (9.8b)

As we have seen, the energies and wavefunctions are labelled 

with the quantum number n. A quantum number is an integer 

(in some cases, as we see in Topic 19, a half-integer) that labels 

the state of the system. For a particle in a one-dimensional box 

there are an infinite number of acceptable solutions, and the 

quantum number n specifies the one of interest (Fig. 9.3). As 

well as acting as a label, a quantum number can often be used 

to calculate the energy corresponding to the state and to write 

down the wavefunction explicitly (in the present example, by 

using the relations in eqn 9.8). A list of the quantum numbers 

commonly encountered in quantum mechanics is collected in 

the Resource Section at the end of the text.

(b) The properties of the wavefunctions
Figure 9.4 shows some of the wavefunctions of a particle in a 

one-dimensional box: they are all sine functions with the same 

amplitude but different wavelengths. Shortening the wavelength 

results in a sharper average curvature of the wavefunction and 

therefore an increase in the kinetic energy of the particle (its 

only source of energy because V = 0 inside the box). Note that 

the number of nodes, which are points where the wavefunction 

passes through zero (not merely reaching zero, as at the walls), 

also increases as n increases, and that the wavefunction ψ n has 

n − 1 nodes. Increasing the number of nodes between walls of a 

given separation increases the average curvature of the wave-

function and hence the kinetic energy of the particle.

One-
dimen-
sional box

Wave-
functions

(9.8a)

Brief illustration 9.2 The energy of a particle in a box

A long carbon nanotube can be modelled as a one-dimen-

sional structure and its electrons described by particle-in-

a-box wavefunctions. The lowest energy of an electron in a 

carbon nanotube of length 100 nm is given by eqn 9.8b with 

n = 1:

E1

2 34 2

31 9 2

1 6 626 10

8 9 109 10 100 10
6 0=

× ×
× × × ×

=
−

− −

( ) ( . )

( . ) ( )
.

J s

kg m
22 10 24× − J

and its wavefunction is

ψ1

1 2
2

( )

/

x
L

x

L
= ⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

sin
π

Self-test 9.2 What are the energy and wavefunction for the 

next-higher energy electron of the system described in this 

Brief illustration?

Answer: E2 = 2.41 × 10−23 J, ψ2 (x) = (2/L)1/2 sin(2πx/L)

E
n
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y,
 E

/E
1;

 E
1 
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h

2 /
8m

L2

0 14
9
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25

36
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64

81

100
Classically allowed energies

12
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5
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7

8

9
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n

Figure 9.3 The allowed energy levels for a particle in a box. 
Note that the energy levels increase as n2, and that their 
separation increases as the quantum number increases.

W
av

ef
u

n
ct

io
n

, ψ

x0 L

12345

Figure 9.4 The first five normalized wavefunctions of a particle 
in a box. Each wavefunction is a standing wave, and successive 
functions possess one more half-wave and a correspondingly 
shorter wavelength.
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9 Translational motion in one dimension  77

The probability density for a particle in a one-dimensional 

box is

ψ n x
L

n x

L
2 22
( )= ⎛

⎝⎜
⎞
⎠⎟

sin
π

 
(9.9)

and varies with position. The non-uniformity in the probabil-

ity density is pronounced when n is small (Fig. 9.5). The most 

probable locations of the particle correspond to the maxima in 

the probability density.

The probability density ψ 2(x) becomes more uniform as n 

increases, provided we ignore the fine detail of the increasingly 

rapid oscillations (Fig. 9.6). The probability density at high quan-

tum numbers reflects the classical result that a particle bouncing 

between the walls spends, on the average, equal times at all points. 

That the quantum result corresponds to the classical prediction at 

high quantum numbers is an illustration of the correspondence 

principle, which states that classical mechanics emerges from 

quantum mechanics as high quantum numbers are reached.

(c) The properties of observables

The linear momentum of a particle in a box is not well defined 

because the wavefunction sin kx is not an eigenfunction of the 

linear momentum operator. However, each wavefunction is a 

linear combination of the linear momentum eigenfunctions eikx 

and e−ikx. Then, because sin x = (eix − e−ix)/2i, we can write

Brief illustration 9.3 The nodes in a particle-in-a-box 
wavefunction

The wavefunction for a particle in a one-dimensional box with 

n = 2 has a node where sin(2πx/L) = 0, that is at x = L/2. Its loca-

tion can also be identified by inspection of Fig. 9.4, where we 

see that ψ2(x) passes through zero at the centre of the box.

Self-test 9.3 Locate the nodes for a particle in a one-dimen-

sional box with n = 3.

Answer: x = L/3, 2L/3

Brief illustration 9.4 The most probable locations  
of a particle in a box

A particle in a box with n = 2 has a probability density given by

ψ 2
2 22 2
( )x

L

x

L
= ⎛

⎝⎜
⎞
⎠⎟

sin
π

The most probable locations occur where sin2(2πx/L) = 1, that 

is, at x = L/4 and 3L/4.

Self-test 9.4 Determine the most likely locations of a particle 

in a one-dimensional box with n = 3.

Answer: x = L/6, L/2, 5L/6

Example 9.1 Determining the probability of finding 
the particle in a finite region 

The wavefunctions of an electron in a conjugated polyene can 

be approximated by particle-in-a-box wavefunctions. What is 

the probability, P, of locating the electron between x = 0 (the 

left-hand end of a molecule) and x = 0.2 nm in its lowest energy 

state in a conjugated molecule of length 1.0 nm?

Method According to the Born interpretation, ψ (x)2dx is 

the probability of finding the particle in the small region dx 

located at x; therefore, the total probability of finding the elec-

tron in the specified region is the integral of ψ(x)2dx over that 

region, as given in eqn 5.5. We use the model of a particle in 

a box to describe the electron in the conjugated polyene. The 

wavefunction of the electron is given in eqn 9.8 with n = 1. Use 

Integral T.2 listed in the Resource section.

Answer The probability of finding the particle in a region 

between x = 0 and x = l is

P x
L

n x

L
x

l

L n

nl

Ln

l l

= = ⎛
⎝⎜

⎞
⎠⎟

= − ⎛
⎝⎜

⎞
⎠⎟∫ ∫ψ 2

0

2

0

2 1

2

2
d sin d sin

π
π

π

Now set n = 1, L = 1.0 nm, and l = 0.2 nm, which gives P = 0.05. 

The result corresponds to a chance of 1 in 20 of finding the 

electron in the region. As n becomes infinite, the sine term, 

which is multiplied by 1/n, makes no contribution to P and the 

classical result for a uniformly distributed particle, P = l/L, is 

obtained.

Self-test 9.5 Calculate the probability that an electron in the 

state with n = 1 will be found between x = 0.25L and x = 0.75L 

in a conjugated molecule of length L (with x = 0 at the left-hand 

end of the molecule).

Answer: P = 0.82

n = 2

n = 2

n = 2

n = 1

n = 1

n = 1

(a)

(b)

(c)

Figure 9.5 (a) The first two wavefunctions, (b) the 
corresponding probability densities, and (c) a representation of 
the probability density in terms of the darkness of shading.
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78 3 The quantum mechanics of motion

ψ n
kx kxx

L

n x

L L
k( ) ( )sin

/ /

=⎛
⎝⎜

⎞
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⎛
⎝⎜

⎞
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= ⎛
⎝⎜

⎞
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− −2 1

2

2
1 2 1 2π

i
e ei i == n

L

π

 

(9.10)

It follows (Topic 7) that measurement of the linear momentum 

will give the value +kħ for half the measurements of momentum 

and −kħ for the other half. This detection of opposite directions 

of travel with equal probability is the quantum mechanical ver-

sion of the classical picture that a particle in a one-dimensional 

box rattles from wall to wall and in any given period spends 

half its time travelling to the left and half travelling to the right.

Because n cannot be zero, the lowest energy that the parti-

cle may possess is not zero (as would be allowed by classical 

mechanics, corresponding to a stationary particle) but

E
h

mL1

2

28
=

 
Particle in a box  Zero-point energy  (9.11) 

This lowest, irremovable energy is called the zero-point energy. 

The physical origin of the zero-point energy can be explained 

in two ways:

The Heisenberg uncertainty principle requires a particle 

to possess kinetic energy if it is confined to a finite 

region: the location of the particle is not completely 

indefinite (Δx ≠ ∞), so the uncertainty in its momentum 

cannot be precisely zero (Δp ≠  0). Because 

Δp p p p= − =( ) / /〈 〉 〈 〉 〈 〉2 2 1 2 2 1 2  in this case, Δp ≠  0 implies 

that 〈 p2〉 ≠ 0, which implies that the particle must always 

have nonzero kinetic energy.

If the wavefunction is to be zero at the walls, but smooth, 

continuous, and not zero everywhere, then it must be 

curved, and curvature in a wavefunction implies the 

possession of kinetic energy.

The separation between adjacent energy levels with quantum 

numbers n and n + 1 is

E E
n h

mL

n h

mL
n

h

mLn n+ − = + − = +1

2 2

2

2 2

2

2

2

1

8 8
2 1

8

( )
( )  (9.12)

This separation decreases as the length of the container 

increases, and is very small when the container has macro-

scopic dimensions. The separation of adjacent levels becomes 

zero when the walls are infinitely far apart. Atoms and mole-

cules free to move in normal laboratory-sized vessels may 

therefore be treated as though their translational energy is not 

quantized.
Brief illustration 9.5 The expectation value of 
linear momentum

The measurement of the linear momentum for a particle 

in a box with quantum number n will give +kħ for half the 

measurements and −kħ for the other half (where k = nπ/L). 

Therefore, the expectation value of the linear momentum is 

zero. This result can also be obtained more formally from

〈 〉 π π
p p x

L

n x

L x

n x

L
xn n

L L

= = ⎛
⎝⎜

⎞
⎠⎟

=∫ ∫ψ ψ� d
d

d
d

2
0

0 0

sin
i

sin


where we have used Integral T.7 listed in the Resource section.

Self-test 9.6 What is the expectation value of p2 of a particle in 

a one-dimensional box with quantum number n?

Answer: 〈p2〉 = n2h2/4L2

Example 9.2 Estimating an absorption wavelength

β-Carotene (1) is a linear polyene in which 10 single and 11 

double bonds alternate along a chain of 22 carbon atoms. If 

we take each CeC bond length to be about 140 pm, then the 

length L of the molecular box in β-carotene is L = 2.94 nm. 

Estimate the wavelength of the light absorbed by this molecule 

from its ground state to the next-higher excited state.

1 β-Carotene

Method For reasons that will be familiar from introductory 

chemistry, each C atom contributes one p electron to the 

π-orbitals and each energy level can be occupied by two elec-

trons. Use the particle-in-a-box model to describe the state of 

the electrons in the polyene and calculate the energy separa-

tion between the highest occupied and the lowest unoccupied 

levels. Use eqn 9.12 and then convert that energy to a wave-

length by using the Bohr frequency relation (eqn 4.4).

x/L0 1

|ψ
(x

)|2

Figure 9.6 The probability density ψ 2(x) for large quantum 
number (here n = 50, blue, compared with n = 1, red). Notice that 
for high n the probability density is nearly uniform, provided 
we ignore the fine detail of the increasingly rapid oscillations.
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9 Translational motion in one dimension  79

Checklist of concepts

☐ 1. The translational energy of a free particle is not 

quantized.

☐ 2. A particle with net motion is described by a complex 

wavefunction. A real wavefunction corresponds to zero 

net motion.

☐ 3. The need to satisfy boundary conditions implies that 

only certain wavefunctions are acceptable and there-

fore restricts observables to discrete values.

☐ 4. A quantum number is an integer (in certain cases, a 

half-integer) that labels the state of the system.

☐ 5. Nodes are points where the wavefunction passes 

through zero.

☐ 6. A particle in a box possesses a zero-point energy.

☐ 7. The correspondence principle states that classical 

mechanics emerges from quantum mechanics as high 

quantum numbers are reached.

Checklist of equations

Answer There are 22 C atoms in the conjugated chain; each 

contributes one p electron to the levels, so each level up to 

n = 11 is occupied by two electrons. The separation in energy 

between the ground state and the state in which one electron is 

promoted from n = 11 to n = 12 is

ΔE E E= −

= × +( ) ×
× × ×

−

−

12 11

34 2

31
2 11 1

6 626 10

8 9 109 10 2 94

( . )

( . ) ( .

Js

kg ××
= ×

−

−

10

1 60 10

9 2

19

m)

. J

It follows from the Bohr frequency condition (ΔE = h�) that the 

frequency of radiation required to cause this transition is

� = = ×
×

= ×
−

−
−ΔE

h

1 60 10

6 626 10
2 41 10

19

34
14 1.

.
.

J

Js
s

or 241 THz (1 THz = 1012 Hz), corresponding to a wavelength 

λ = 1240 nm. The experimental value is 603 THz (λ = 497 nm), 

corresponding to radiation in the visible range of the elec-

tromagnetic spectrum. Considering the crudeness of the 

model we have adopted here, we should be encouraged that 

the computed and observed frequencies agree to within a fac-

tor of 2.5.

Self-test 9.7 Estimate a typical nuclear excitation energy in 

electronvolts (1 eV = 1.602 × 10−19 J; 1 GeV = 109 eV) by cal-

culating the first excitation energy of a proton confined to a 

one-dimensional box with a length equal to the diameter of a 

nucleus (approximately 1 × 10−15 m, or 1 fm).

Answer: 0.6 GeV

Property Equation Comment Equation number

Free-particle wavefunction ψ k
kx kxA B= + −e ei i All values of k allowed 9.3

Free-particle energy E k mk = 2 2 2 / All values of k allowed 9.3

Particle-in-a-box wavefunction ψ

ψ

n

n

x L n x L

x L

x x x L

( )

( )

( / ) sin( / )/=
≤ ≤
= < >

2

0

0 0

1 2 π
for

for and

n = 1, 2, … 9.8a

Particle-in-a-box energy E n h mLn = 2 2 28/ n = 1, 2, … 9.8b

Zero-point energy for particle in a box E h mL1
2 28= / 9.11
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TOPIC 10

Tunnelling

Topic 9 presents the solution of the Schrödinger equation for 

a particle confined between two walls with potential energy 

barriers that rise abruptly to infinity and prevent the particle 

from being found outside the walls. However, potential barriers 

do not rise to infinity in real systems and, for potentials such 

as that shown in Fig. 10.1, particles are able to penetrate into 

and through regions where classical physics would forbid them 

to be found. This phenomenon has very important implica-

tions for the electronic properties of materials, for the rates 

of electron transfer reactions (Topic 94), for the properties of 

acids and bases, and for the techniques currently used to study 

surfaces.

10.1 The rectangular potential  
energy barrier

Consider a particle incident from the left on a rectangular 

potential energy barrier, a one-dimensional barrier of con-

stant height and finite width (Fig. 10.2). If the energy of the 

particle, E, is less than the potential barrier height, V, then 

according to classical mechanics the particle will be reflected 

off the potential wall. However, according to quantum theory, 

when the particle is inside the region representing the barrier, 

its wavefunction does not decay abruptly to zero but rather var-

ies smoothly and then, on the far side of the barrier, oscillates 

again. The net result is penetration through the classically for-

bidden region, the phenomenon known as tunnelling.

Contents

10.1 The rectangular potential energy barrier 80

Brief illustration 10.1: Transmission probabilities for a 

rectangular barrier 83

10.2 The Eckart potential energy barrier 83

Brief illustration 10.2: Transmission probabilities  

for an Eckart barrier 84

10.3 The double-well potential 85

Brief illustration 10.3: The inversion frequency in  

the ammonia molecule 86

Checklist of concepts 86
Checklist of equations 86

 ➤ Why do you need to know this material?
The quantum mechanical phenomenon known 
as tunnelling is necessary to explain a wide range of 
chemical and physical processes, including electron and 
proton transfer reactions and conformational changes in 
molecules.

 ➤ What is the key idea?
Tunnelling, the passage of a particle into or through a 
classically forbidden region, can occur when potential 
energy barriers do not rise abruptly to infinity.

 ➤ What do you need to know already?
You need to be familiar with the postulates of quantum 
theory (Topics 5–7) and the solutions of the Schrödinger 
equation for the particle in a box (Topic 9).

Wavefunction

Potential energy

Figure 10.1 Potential energy barriers do not rise abruptly 
to infinity in real systems. In the arrangement shown here, 
a particle placed in the well between the potential barriers 
can penetrate into and through the barriers on either side 
of the well.
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10 Tunnelling  81

The Schrödinger equation is used to calculate the probability 

of tunnelling of a particle of mass m incident from the left on 

a rectangular potential energy that extends from x = 0 to x = L. 

On the left of the barrier (x < 0) the wavefunctions are those of a 

particle with V = 0, so from eqn 9.3 we can write

ψ = + =−A B k mEkx kxe e 2i i 1 2 ( ) /

The Schrödinger equation for the region representing the 

barrier (0 ≤ x ≤ L), where the potential energy is the constant 

V, is

− + =2 2

22m

x

x
V x E x

d

d

ψ ψ ψ( )
( ) ( )

 
(10.2)

We shall consider particles that have E < V (so, according to 

classical physics, the particle has insufficient energy to pass 

through the barrier), and therefore for which V − E > 0. The 

general solutions of this equation are

ψ κκ κ= + = −{ }−C D m V Ex xe e  2
1 2

 ( )
/

as can be verified by differentiating ψ twice with respect to 

x. The important feature to note is that the two exponentials 

in eqn 10.3 are now real functions, as distinct from the com-

plex, oscillating functions for the region where V = 0. To the 

right of the barrier (x > L), where V = 0 again, the wavefunc-

tions are

ψ = =A k mEkx′e 2i 1 2 ( ) /

Note that to the right of the barrier, the particle can only be 

moving to the right and therefore terms of the form e−ikx do not 

contribute to the wavefunction in eqn 10.4.

The complete wavefunction for a particle incident from the 

left consists of (Fig. 10.3):

an incident wave (Aeikx corresponds to positive 

momentum);

a wave reflected from the barrier (Be−ikx 

corresponds to negative momentum, motion to 

the left);

the exponentially changing amplitudes inside the 

barrier (eqn 10.3);

an oscillating wave (eqn 10.4) representing the 

propagation of the particle to the right after tunnelling 

through the barrier successfully.

The probability that a particle is travelling towards positive x 

(to the right) on the left of the barrier (x < 0) is proportional to 

|A|2, and the probability that it is travelling to the right on the 

right of the barrier (x > L) is |A′|2. The ratio of these two prob-

abilities, |A′|2/|A|2, which reflects the probability of the particle 

tunnelling through the barrier, is called the transmission prob-

ability, T.

To determine the relationship between |A′|2 and |A|2, we 

need to investigate the relationships between the coefficients 

A, B, C, D, and A′. Since the acceptable wavefunctions must 

be continuous at the edges of the barrier (at x = 0 and x = L, 

remembering that e0 = 1),

A B C D C D AL L kL+ = + + =−e e eiκ κ ′
 

(10.5a)

Wavefunction 
left of barrier

Particle in a 
rectangular 
barrier

(10.1)

Wave-
function 
inside 
barrier

Particle in a 
rectangular 
barrier

(10.3)

Wavefunction 
right of barrier

Particle in a 
rectangular 
barrier

(10.4)
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Figure 10.2 A rectangular potential energy barrier of constant 
height and finite width. A particle incident on the barrier from 
the left has an oscillating wavefunction, but inside the barrier 
there are no oscillations (for E < V). If the barrier is not too 
thick, the wavefunction is nonzero at its opposite face, and so 
oscillations begin again there. (Only the real component of the 
wavefunction is shown.)
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Figure 10.3 When a particle is incident on a barrier from the 
left, the wavefunction consists of a wave representing linear 
momentum to the right, a reflected component representing 
momentum to the left, a varying but not oscillating component 
inside the barrier, and a (weak) wave representing motion to 
the right on the far side of the barrier.
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82 3 The quantum mechanics of motion

Their slopes (their first derivatives) must also be continuous 

there (Fig. 10.4):

i  i e e =i eikA kB C D C D kAL L kL− = − − −κ κ κ κκ κ ′
 

(10.5b)

After straightforward but lengthy algebraic manipulations of the 

above set of equations 10.5 (see Problem 10.1), it turns out that

T
L L

= +
−

−
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

− −

1
16 1

2
1

( )

( )

e eκ κ

ε ε

where ε = E/V. This function is plotted in Fig. 10.5. The trans-

mission probability for E > V (which you are invited to calculate 

in Problem 10.2) is shown there too. The transmission prob-

ability has the following properties:

T ≈ 0 for E  << V;

T increases as E approaches V: the probability of 

tunnelling increases;

T approaches, but is still less than, 1 for E > V: there 

is still a probability of the particle being reflected 

by the barrier even when classically it can pass 

over it;

T ≈ 1 for E >> V, as expected classically.

For high, wide barriers (in the sense that κL � 1), eqn 10.6 

simplifies to

T L≈ − −16 1 e 2ε ε κ( )  (10.7)

The transmission probability decreases exponentially with 

the thickness of the barrier and with m1/2. It follows that par-

ticles of low mass are more able to tunnel through barriers 

than heavy ones (Fig. 10.6). Tunnelling is very important for 

electrons and muons (mμ ≈ 207me), and moderately impor-

tant for protons (mp ≈ 1840me); for heavier particles it is less 

important.

A number of effects in chemistry (for example, the isotope 

dependence of some reaction rates) depend on the ability of 

the proton to tunnel more readily than the deuteron. The very 

rapid equilibration of proton-transfer reactions is also a mani-

festation of the ability of protons to tunnel through barriers and 

transfer quickly from an acid to a base. Tunnelling of protons 

between acidic and basic groups is also an important feature of 

the mechanism of some enzyme-catalysed reactions.

Rectangular 
potential barrier

Transmission 
probability

(10.6)
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Figure 10.4 The wavefunction and its slope must be 
continuous at the edges of the barrier. The conditions for 
continuity enable us to connect the wavefunctions in the three 
zones and hence to obtain relations between the coefficients 
that appear in the solutions of the Schrödinger equation.
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Figure 10.5 The transmission probabilities for passage 
through a rectangular potential barrier. The horizontal axis 
is the energy of the incident particle expressed as a multiple 
of the barrier height. The curves are labelled with the value 
of L(2mV)1/2/ħ. The graph on the left is for E < V and that on 
the right for E > V. Note that T > 0 for E < V whereas classically 
T would be zero. However, T < 1 for E > V, whereas classically 
T would be 1.

W
av

ef
u

n
ct

io
n

, ψ

x

Heavy particle

Light particle

Figure 10.6 The wavefunction of a heavy particle decays 
more rapidly inside a barrier than that of a light particle. 
Consequently, a light particle has a greater probability of 
tunnelling through the barrier.
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10 Tunnelling  83

10.2 The Eckart potential 
energy barrier

The rectangular potential energy barrier has abrupt changes at 

the walls of the barrier (at x = 0 and L). A smoother, and more 

realistic, potential energy function is the Eckart potential 

barrier:

V x
V ax

ax
( )

( )
=

+
4

1
0

2

e

e  
 Eckart potential barrier  (10.8)

where V0 and a are constants with dimensions of energy and 

inverse length, respectively (Fig. 10.7). This potential func-

tion is often invoked in models of chemical reactivity because 

it bears a resemblance to the shape of the potential energy for 

a reaction as a function of the reaction coordinate (Topic 89), 

with reactants on the left of the barrier (x → −∞) and products 

on the right (x → +∞). The transmission probability for the 

Eckart barrier can provide insight into the nature of a chemical 

reaction that proceeds by tunnelling through a potential energy 

barrier, such as those involving the transfer of electrons or pro-

tons over short distances.

An analytical expression for the transmission probability 

for the Eckart potential function can be found by solving the 

Schrödinger equation, which in this case is

− +
+

=2 2

2

0

22

4

1m x

V
E

ax

ax

d

d

e

e

ψ ψ ψ
( )  

(10.9)

where m is the mass of the particle encountering the barrier. 

For studies of chemical reactivity, m is often identified with 

the reduced mass of the reactants; for example for the reac-

tion of an atom A and a diatomic molecule BC, 1/m = 1/mA+ 
1/(mB+mC).

The transmission probability, obtained from solution of eqn 

10.9,1 is given by:

T
x

x x
=

−
+

cosh

cosh cosh
1

1 2

1

where

x mE a1
1 24 2= π( ) / /

 
(10.10b)

x mV a a2 0
2

1 2
2 8 2= −π ( / )

/
 /

 
(10.10c)

and cosh x is the hyperbolic cosine function (see The chemist’s 

toolkit 10.1).

1  See C. Eckart, Phys. Rev. 35, 1303 (1930). In this case, the solutions of the 

Schrödinger equation are the so-called hypergeometric functions.

Eckart 
barrier

Transmission 
probability (10.10a)

Brief illustration 10.1 Transmission probabilities for a 
rectangular barrier

Suppose that a proton of an acidic hydrogen atom is confined to 

an acid that can be represented by a barrier of height 2.000 eV 

and length 100 pm. The probability that a proton with energy 

1.995 eV (corresponding to 3.195 × 10−19 J) can escape from 

the acid is computed using eqn 10.6, with ε = E/V = 1.995 eV/ 

2.000 eV = 0.9975 and V − E = 0.005 eV (corresponding to 8.0 ×  

10−22 J).

κ =
× × × ×

×
= ×…

− −

−

{ ( . ) ( . )}

.

.

/2 1 67 10 8 0 10

1 055 10

1 55 10

27 22 1 2

34

kg J

Js

110 1m−

We have used 1 J = 1 kg m2 s−2. It follows that

κL = … = …− −( . ) ( ) . .1 55 1 m 1 1 m 1 551 1 12× × ×0 00 00

Equation 10.6 then yields

T = +
−

× × −
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=

… − … −

1
16 0 9975 1 0 9975

1 96

1 55 1 55 2
1

( )

. ( . )

.

. .e e

×× −10 3

This value of T corresponds to a 0.2 per cent transmission 

probability; as indicated in Fig. 10.5, the larger the value of 

L(2mV)1/2/ħ (here, 31) the smaller the value of T for energies 

close to, but below, the barrier height.

Self-test 10.1 Suppose that the junction between two semicon-

ductors can be represented by a barrier of height 2.00 eV and 

length 100 pm. Calculate the probability that an electron of 

energy 1.95 eV can tunnel through the barrier.

Answer: T =  0.881
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Figure 10.7 The Eckart potential barrier, as described in 
the text.
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84 3 The quantum mechanics of motion

Brief illustration 10.2 Transmission probabilities for an Eckart barrier

Suppose that the junction between two semiconductors can be 

represented by an Eckart barrier with V0 = 2.00 eV (correspond-

ing to 3.20 × 10−19 J) and a =  (100 pm)−1. The probability that an 

electron of energy 1.95 eV (corresponding to 3.12 × 10−19 J) can 

tunnel through the barrier is calculated using eqn 10.10:

x
mE
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1 2 31 19
1 2
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x x
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== 0 609.

This value of T is smaller than that of Self-test 10.1 because the 

Eckart potential effectively extends over a longer range than the 

rectangular potential barrier.

Self-test 10.2 Suppose that the removal of a proton which is 

hydrogen-bonded to the oxygen atom of a water molecule 

requires tunnelling through a potential barrier that can be 

represented by an Eckart function with V0 = 0.100 eV and a =  

(200 pm)−1. Calculate the probability that a proton with energy 

0.095 eV can escape from the water molecule.

Answer: T = 0.012

Figure 10.8 shows the variation of the transmission prob-

ability with energy. Its behaviour is similar to that of the 

transmission probability for the rectangular potential bar-

rier shown in Fig. 10.5 and discussed in Section 10.1. The 

primary difference is that there are no oscillations in the 

transmission probability at high energies for the Eckart bar-

rier whereas there may be oscillations for the rectangular 

barrier (depending on the values of L, m, and V and due to 

the discontinuous nature of the potential energy at the bar-

rier walls.)

The chemist’s toolkit 10.1 Hyperbolic functions

The hyperbolic cosine (cosh) and hyperbolic sine (sinh) func-

tions are defined as

cosh e e 2 sinh e e 2x xx x x x= + = −− −( )/ ( )/

These functions, which are illustrated in Sketch 10.1 and avail-

able in most mathematical software packages, are related by

cosh sinh 12 2x x− =

At x = 0, cosh x = 1 and sinh x = 0. The cosh function is even, 

cosh(–x) = cosh x, whereas the sinh function is odd, sinh(–x) =  

−sinh x. In the limits of x  → ±∞,

as x → ∞, cosh x → 1
2
ex and sinh x → 1

2
ex

as x → −∞, cosh x → 1
2
e−x and sinh x → − 1

2
e−x

3

2

2

1

1
0

0

–1

–1

–2

–2

–3

x

sinh x

cosh x

4

–4

Sketch 10.1 The hyperbolic functions cosh x and sinh x.
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10 Tunnelling  85

10.3 The double-well potential

The double-well potential shown in Fig. 10.9 provides a use-

ful model for a variety of processes which can occur as a result 

of tunnelling through a barrier. They include electron or pro-

ton transfer from donor to acceptor, electrical conductivity 

between two nanoparticles, and conformational change of a 

molecule. Here we focus on the last of these processes, and con-

sider conformational changes in a trigonal pyramidal AB3 mol-

ecule (such as NH3). We shall represent the potential energy of 

the conformation AB3 by the left-hand well, and the potential 

energy of the inverted (B3A) molecule by the right-hand well. 

The potential energy when the pyramidal molecule has been 

flattened is represented by the barrier between wells. If the bar-

rier is high, inversion is difficult (as for a well-made umbrella); 

if the barrier is low, inversion by tunnelling readily occurs.

When the potential barrier is infinitely high (in prac-

tice, very high), the two conformations AB3 and B3A cannot 

interconvert. We denote the ground-state wavefunction of 

AB3 by ψL and that of B3A by ψR; the two wavefunctions have 

the same energy. When the barrier is lower, tunnelling 

can occur (recall Fig. 10.2) and the wavefunction ψL seeps 

through the barrier and has nonzero amplitude where ψR 

(which has also seeped through the barrier) is nonzero (Fig. 

10.10a). The conformations AB3 and B3A can now intercon-

vert and we seek a new wavefunction to describe the compos-

ite system; the wavefunction must be delocalized over both of 

the potential energy wells of the double-well potential. One 

such (unnormalized) wavefunction is the linear combination 

ψL+ψR; the coefficients of ψL and ψR in the linear combina-

tion are equal because there is equal probability of finding 

the molecule in either the AB3 or B3A conformation (recall 

Postulate V of Topic 7).

The functions ψL and ψR can also be used to form another 

linear combination capable of describing the composite system, 

namely the (unnormalized) wavefunction ψL − ψR; again, there 

is equal probability of finding the molecule in either potential 

well. The wavefunctions ψL + ψR and ψL − ψR are depicted in 

Fig.  10.10b; they have different probability amplitudes, espe-

cially in the vicinity of the potential barrier (ψL − ψR has a node 

in the middle of the barrier) and as a result these two linear 

combinations have different energies. The state described by 

the linear combination ψL + ψR is lower in energy, its actual 

value depending on the height of the barrier. The occurrence 

of  tunnelling through the finite potential energy barrier has 

resulted in two states delocalized over both of the potential 

energy wells and having different energies, a phenomenon 

known as inversion doubling.
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ψL ψR
ψL+ ψR

ψL– ψR

Figure 10.10 (a) To a first approximation, the molecule 
oscillates like a particle in a box in either of the two potential 
wells: the wavefunctions shown correspond to the ground 
state of the particle in a box with the allowance for seepage 
into the barrier due to tunnelling. (b) When inversion is 
allowed, the wavefunctions of the molecule can be modelled 
as the linear combinations shown. The horizontal lines indicate 
the energies, which differ for the two linear combinations 
shown in (b).
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Figure 10.8 The transmission probability for an Eckart barrier 
and its variation with energy. The curves are labelled with the 
value of (2mV0)1/2/aħ.
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Figure 10.9 The double-well potential, a model of the potential 
energy curve for a molecule that undergoes inversion.
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86 3 The quantum mechanics of motion

Checklist of concepts

☐ 1. Penetration into or through a classically forbidden 

region is called tunnelling.

☐ 2. The probability of tunnelling decreases with an increase 

in the height and width of the potential barrier.

☐ 3. Light particles are more able to tunnel through barriers 

than heavy ones.

☐ 4. The Eckart potential is a useful model to describe 

potential energy barriers in chemical reactions.

☐ 5. Tunnelling through a finite barrier separating two 

potential wells results in states delocalized over both 

wells and having different energies, a phenomenon 

known as inversion doubling.

Checklist of equations

frequency condition (eqn 4.4 of Topic 4), is called the ‘inver-

sion frequency’. The transition in NH3 is the most intense 

microwave transition known for any molecule and is the basis 

of ‘maser action’, the early forerunner of the laser.

Self-test 10.3 The phenomenon of inversion doubling 

observed in NH3 is not likely to be observed in its deuterated 

analogue ND3. Explain why.

Answer: D heavier than H; tunnelling unlikely to occur

Brief illustration 10.3 The inversion frequency in the 
ammonia molecule

In the case of ammonia, the states represented by the wave-

functions ψL + ψR and ψL − ψR differ in energy by 1.6 × 10−23 J. 

The spectroscopic transition between the two states occurs 

in the microwave region of the electromagnetic spectrum 

at 0.79 cm−1, corresponding to a wavelength of 13 mm and a 

frequency of 24 GHz; the frequency, obtained from the Bohr 

Property Equation Comment Equation number

Transmission probability T L L= + − −{ }− −
1 16 12

1
( / ( )e eκ κ ε ε) Rectangular potential barrier 10.6

T = 16ε(1 − ε)e−2κL High, wide rectangular barrier 10.7

Eckart potential barrier V x V ax ax( ) ( )= +4 10
2e e/ 10.8
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TOPIC 11

Translational motion in 

several dimensions

Topic 9 presents translational motion in one dimension. In this 

Topic, we discuss the energies and wavefunctions for parti-

cles free to move in several dimensions. We work our way up 

from one dimension to three in two steps: first, we consider a 

two-dimensional system, and then generalize it to three. The 

technique presented here is also relevant to other three-dimen-

sional systems, such as atoms, and we encounter it again in 

Topic 17. Moreover, in this Topic we also encounter the phe-

nomenon of ‘degeneracy’, in which different wavefunctions 

correspond to the same energy. That is another property that 

plays an important role in the description of the structures of 

atoms and molecules.

11.1 Motion in two dimensions

Consider a rectangular two-dimensional region of a surface 

with length L1 in the x-direction and L2 in the y-direction; the 

potential energy is zero everywhere except at the walls, where 

it is infinite (Fig. 11.1). As a result, the particle is never found 

at the walls and its wavefunction is zero there and every-

where outside the two-dimensional region. Between the walls, 

because the particle has contributions to its kinetic energy from 

its motion in both the x and y directions, the Schrödinger equa-

tion has two kinetic energy terms, one for each axis. For a parti-

cle of mass m the equation is

− ∂
∂

+ ∂
∂

⎛
⎝⎜

⎞
⎠⎟

=2 2

2

2

22m x y
E

ψ ψ ψ
 

(11.1)

This is a partial differential equation (see Mathematical back-

ground 2), a differential equation in more than one variable, 

and the resulting wavefunctions are functions of both x and y, 

denoted ψ(x, y). This dependence means that the wavefunction 

Contents

11.1 Motion in two dimensions 87

(a) Separation of variables 88

Brief illustration 11.1: The zero-point energy  

of a particle in a two-dimensional box 89

Brief illustration 11.2: The distribution of a particle in  

a two-dimensional box 89

(b) Degeneracy 89

Brief illustration 11.3: Degeneracies in a  

two-dimensional box 90

11.2 Motion in three dimensions 90

Example 11.1: Analysing transitions in a cubic box 91

Checklist of concepts 91
Checklist of equations 91

 ➤ Why do you need to know this material?
Because electrons in atoms, molecules, and nanostructures 
move in three-dimensional space, you need to know 
how to use the concepts of quantum theory to treat the 
translation of particles in several dimensions.

 ➤ What is the key idea?
The solutions of the Schrödinger equation for translational 
motion in two and three dimensions are generalizations 
to multiple dimensions of the one-dimensional solution.

 ➤ What do you need to know already?
You should be familiar with the solutions of the Schrödinger 
equation for a particle in a one-dimensional box (Topic 9).
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88 3 The quantum mechanics of motion

and the corresponding probability density depend on the loca-

tion in the plane, with each position specified by the coordi-

nates x and y.

(a) Separation of variables
A partial differential equation of the form of eqn 11.1 can be 

simplified by the separation of variables technique, which 

divides the equation into two or more ordinary differential 

equations, one for each variable. We show in the Justification 

below using this technique that the wavefunction can be writ-

ten as a product of functions, one depending only on x and the 

other only on y:

ψ ( , ) ( ) ( )x y X x Y y=
 

(11.2a) 

and that the total energy is given by

E E EX Y= +
 (11.2b) 

where EX is the energy associated with the motion of the parti-

cle parallel to the x-axis, and likewise for EY and motion parallel 

to the y-axis.

Each of the two ordinary differential equations in eqn 11.3 is the 

same as the one-dimensional particle-in-a-box Schrödinger equa-

tion (Topic 9). The boundary conditions are also the same, apart 

from the detail of requiring X(x) to be zero at x = 0 and L1, and 

Y(y) to be zero at y = 0 and L2. We can therefore adapt the results 

obtained in Topic 9 without further calculation (see eqn 9.8):
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Then, because ψ = XY,
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Next, we divide both sides by XY, and rearrange the resulting 

equation into

1 1 22

2

2

2 2X

X

x Y

Y

y

mEd

d

d

d
+ = −



The first term on the left is independent of y, so if y is varied 

only the second term of the two on the left can change. But the 

sum of these two terms is a constant given by the right-hand 

side of the equation. Therefore, if the second term did change, 

then the right-hand side could not be constant. Consequently, 

even the second term cannot change when y is changed. In 

other words, the second term is a constant, which we write 

−2mEY/ħ2. By a similar argument, the first term is a constant 

when x changes, and we write it −2mEX/ħ2, with E = EX + EY. 

Therefore, we can write

1 2 1 22

2 2

2

2 2X

X

x

mE

Y

Y

y

mEX Yd

d

d

d
= − = −

 

These expressions rearrange into the two ordinary (that is, 

single-variable) differential equations

− =2 2

22m

X

x
E XX

d

d  
(11.3a)

− =2 2

22m

Y

y
E YY

d

d  
(11.3b)

Two-
dimen-
sional 
box 

(11.4a)
Wave- 
func-
tions 

Justification 11.1  The separation of variables 

The first step to confirm that the Schrödinger equation is sepa-

rable and the wavefunction can be factored into the product of 

two functions X and Y is to note that, because X is independ-

ent of y and Y is independent of x, we can write

∂
∂

= ∂
∂

= ∂
∂

= ∂
∂

=
2

2

2

2

2

2

2

2

2

2

2

2

ψ ψ
x

XY

x
Y

X

x y

XY

y
X

Y

y

d d

d d

Note the replacement of the partial derivatives by ordinary 

derivatives in each case. Then eqn 11.1 becomes

V

0

VV

0

∞
∞

∞
∞

x

y

L1

L2

Particle
confined
to surface

Figure 11.1 A two-dimensional square well. The particle 
is confined to the plane bounded by impenetrable walls. 
As soon as it touches the walls, its potential energy rises to 
infinity.
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11 Translational motion in several dimensions 89

Similarly, because E = EX + EY, the energy of the particle is lim-

ited to the values

E
n

L

n

L

h

mn n1 2

1
2

1
2

2
2

2
2

2

8, = +⎛
⎝⎜

⎞
⎠⎟

 

with the two quantum numbers taking the values n1 = 1, 2, … 

and n2 = 1, 2, … independently. The state of lowest energy is 

(n1 = 1, n2 = 1) and E1,1 is the zero-point energy.

Some of the wavefunctions are plotted as contours in 

Fig. 11.2. They are the two-dimensional versions of the wave-

functions shown in Fig. 9.4. Whereas in one dimension the 

wavefunctions resemble states of a vibrating string with ends 

fixed, in two dimensions the wavefunctions correspond to 

vibrations of a rectangular plate with fixed edges.

(b) Degeneracy
A special feature of the solutions arises when the box is not 

merely rectangular but square, with L1 = L2 = L. Then the wave-

functions and their energies are
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Consider the cases n1 = 1, n2 = 2 and n1 = 2, n2 = 1:
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Although the wavefunctions are different, they have the same 

energy. The technical term for different wavefunctions corre-

sponding to the same energy is degeneracy, and in this case we 

say that the state with energy 5h2/8mL2 is ‘doubly degenerate’.

Two-dimen-
sional box Energy levels (11.4b)

Brief illustration 11.1 The zero-point energy of a particle 
in a two-dimensional box 

An electron trapped in a cavity of dimensions L1 = 1.0 nm and 

L2 = 2.0 nm can be described by a particle-in-a-box wavefunc-

tion. The zero-point energy of the electron is given by eqn 

11.4b with n1 = 1 and n2 = 1:

E1 1

2

9 2

2

9 2

341

1 0 10

1

2 0 10

6 626 10
, ( . ) ( . )

( .
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×
− −

−

m m

sJ ))

( . )

.

2

31

20

8 9 109 10

7 5 10

× ×

= ×

−

−

kg
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Self-test 11.1 Calculate the energy separation between the  levels 

n1 = n2 = 2 and n1 = n2 = 1 of an electron trapped in a square cavity 

with sides of length 1.0 nm.

Answer: 3.6 × 10−19 J

Brief illustration 11.2 The distribution of a particle in a 
two-dimensional box 

Consider an electron confined to a square cavity of length L, 

and in the state with quantum numbers n1 =  1, n2 = 2. Because 

the probability density is

ψ1 2
2

2
2 24 2

, ( ), sinx y
L

x

L

y

L
= ⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

π π
sin

the most probable locations correspond to sin2(πx/L) = 1 and 

sin2(2πy/L) = 1, or (x, y) = (L/2,L/4) and (L/2,3L/4). The least 

probable locations (the nodes, where the wavefunction passes 

through zero) correspond to zeroes in the probability density 

within the box, which occur along the line y = L/2.

Self-test 11.2 Determine the most probable locations of an 

electron in a square cavity of length L when it is in the state 

with quantum numbers n1 = 2, n2 = 3.

Answer: points (x = L/4 and 3L/4, y = L/6, L/2 and 5L/6)

Two-
dimen-
sional 
square 
box

Wave-
functions (11.5a)

Two-dimen sional 
square box

Energy levels (11.5b)

+ +

+ +

–

–

–

– +

(a) (b)

(c) (d)

Figure 11.2 The wavefunctions for a particle confined to a 
rectangular surface depicted as contours of equal amplitude. 
(a) n1 = 1, n2 = 1, the state of lowest energy; (b) n1 = 1, n2 = 2; 
(c) n1 = 2, n2 = 1; (d) n1 = 2, n2 = 2.
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90 3 The quantum mechanics of motion

The occurrence of degeneracy is related to the symmetry 

of the system. Figure 11.3 shows contour diagrams of the two 

degenerate functions ψ1,2 and ψ2,1. Because the box is square, 

one wavefunction can be converted into the other simply by 

rotating the plane by 90°. Interconversion by rotation through 

90° is not possible when the plane is not square, and ψ1,2 and 

ψ2,1 are then not degenerate. Other examples of degeneracy 

occur in quantum mechanical systems (for instance, in the 

hydrogen atom, Topic 17), and all of them can be traced to the 

symmetry properties of the system.

11.2 Motion in three dimensions

We are now ready to take the final step, to three dimensions. 

The system consists of a particle of mass m confined to a box 

of length L1 in the x-direction, L2 in the y-direction, and L3 in 

the z-direction. Inside the box, the potential energy is zero and 

inside the walls it is infinite. This system could be a model for a 

quantum mechanical system of a gas in a container of macro-

scopic dimensions or for an electron confined to a small cavity 

in a solid.

The step is easy to take, for it should be obvious (and can be 

proved by the method of separation of variables) that the wave-

function simply has another factor:

ψ n n n x y z

L L L

n x

L

n y

L

n z

1 2 3

8

1 2 3

1 2

1

1

2

2

3

, ,

/

( ), ,

sin sin sin=⎛
⎝⎜

⎞
⎠⎟

π π π
LL

x L y L z L

3

1 2 30 0 0for ≤ ≤ ≤ ≤ ≤ ≤, ,

Outside the box, because the potential is infinite the wavefunc-

tion is zero. Likewise, the energy has a third contribution from 

motion in the z-direction:

E
n

L

n

L

n

L

h

mn n n1 2 3

1
2

1
2

2
2

2
2

3
2

3
2

2

8, , = + +⎛
⎝⎜

⎞
⎠⎟

The quantum numbers n1, n2, and n3 are all positive integers 1, 

2, … that can be varied independently. The system has a zero-

point energy (E1,1,1 = 3h2/8mL2 for a cubic box) and, as for the 

two-dimensional system, there can be both true and accidental 

degeneracies.

Brief illustration 11.3 Degeneracies in a  
two-dimensional box 

The energy of a particle in a two-dimensional square box of 

length L in the state with n1 = 1, n2 = 7 is

E
h

mL

h

mL1 7
2 2

2

2

2

2
1 7

8

50

8, ( )= + =

This state is degenerate with the state with n1 = 7 and n2 = 1. 

Thus, at first sight the energy level 50h2/8mL2 is doubly degen-

erate. However, in certain systems there may be states that 

are not apparently related by symmetry but are ‘accidentally’ 

degenerate. Such is the case here, for the state with n1 = 5 and 

n2 = 5 also has energy 50h2/8mL2 (Fig. 11.4). Accidental degen-

eracy can often be traced to a symmetry that is not immediately 

obvious; it is also encountered in the hydrogen atom (Topic 17).

Self-test 11.3 Find a state (n1, n2) for a particle in a rectangular 

box with sides of length L1 = L and L2 = 2L that is accidentally 

degenerate with the state (4,4).

Answer: (n1 = 2, n2 = 8)

Three-
dimen-
sional 
box 

Wave-
functions 

(11.6a)

Three-dimen-
sional box 

Energy 
levels (11.6b)

+ –

+

–

(a) (b)

Figure 11.3 The wavefunctions for a particle confined to a 
square well. Note that one wavefunction can be converted 
into the other by rotation of the box by 90°. The two functions 
correspond to the same energy. True degeneracy is a 
consequence of symmetry.

(7,1) (1,7) (5,5)

Figure 11.4 Accidental degeneracy is a consequence of hidden 
symmetry. These three states are degenerate but only the first 
two, (7,1) and (1,7), are interrelated by symmetry. The third state, 
(5,5), is not obviously related by any symmetry transformation 
of the square region. Only the location of the nodes is shown in 
each case.
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11 Translational motion in several dimensions 91

Example 11.1 Analysing transitions in a cubic box

Solutions of alkali metals in liquid ammonia are widely used 

as reducing agents in organic synthesis. For example, the addi-

tion of sodium to liquid ammonia generates a solvated electron 

which is effectively trapped in a cavity 0.30 nm in diameter 

formed by ammonia molecules. Suppose the solvated electron 

can be modelled as a particle moving freely inside a cubic box. 

If the length of the box is taken to be 0.30 nm, what energy is 

required for the electron to undergo a transition from its low-

est energy state to the state which is next-higher in energy?

Method The quantized energies are given in eqn 11.6b. The 

lowest energy state has n1 = 1, n2 = 1, and n3 = 1. The elec-

tron makes a transition to the state with n1 = 2, n2 = 1, and 

n3 = 1 which has the next-higher energy. (The same answer 

results if we choose the states (1,2,1) or (1,1,2).) Compute 

ΔE = E2,1,1 − E1,1,1.

Answer Using eqn 11.6b with L1 = L2 = L3 = L = 0.30 × 10−9 m, 

we find

Checklist of concepts

☐ 1. The wavefunction for a particle in a two- or three-

dimensional box is the product of wavefunctions for 

the particle in a one-dimensional box.

☐ 2. The energy of a particle in a two- or three-dimensional 

box is the sum of energies for the particle in two or 

three one-dimensional boxes.

☐ 3. The zero-point energy for a particle in a two-dimen-

sional box corresponds to the state with quantum 

numbers (n1 = 1, n2  = 1); for three dimensions, (n1 = 1, 

n2 = 1, n3 = 1).

☐ 4. Degeneracy occurs when different wavefunctions cor-

respond to the same energy.

☐ 5. The occurrence of degeneracy is a consequence of the 

symmetry of the system.

Checklist of equations

ΔE E E
h
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h
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= − = + + − + +
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2 1 1 1 1 1
2 2 2

2

2
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3 6 626 10

8 9 109 10 0 30 10

2 0 10

34 2

31 9 2

( . )

( . ) ( . )

.

Js

kg m
−−18 J

or 2.0 aJ. If this transition were caused by radiation, it would 

follow from the Bohr frequency condition (eqn 4.4 of Topic 4) 

that the transition frequency would be ν = ΔE/h = 3.0  ×  1015 Hz, 

corresponding to a wavelength of 100 nm.

Self-test 11.4 In dilute solutions of sodium in ammonia, there 

is an absorption of 1.5 μm radiation by the solvated electrons 

which accounts for the blue colour of the solution. In the par-

ticle-in-a-three-dimensional-box model of the solvated elec-

tron, what box length L would account for an absorption of this 

wavelength?

Answer: L = 1.2 nm

Property Equation Comment Equation number

Wavefunction for a particle in a two-dimensional box ψ n n x y

L L n x L n y L

x L

1 2
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1 2
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1 1 2 2
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/ /
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( /( ) )sin( )sin( )

,

/=
≤ ≤
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=
y L

x yn n
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n1, n2 = 1, 2, … 11.4a

Energy for a particle in a two-dimensional box E n L n L h mn n1 2 1
2

1
2

2
2

2
2 2 8, ( / / )= + / n1, n2 = 1, 2, … 11.4b

Wavefunction for a particle in a three-dimensional 
box

ψ n n n x y z L L L
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1 2 3
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Energy for a particle in a three-dimensional box E n L n L n L h mn n n1 2 3 1
2
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3
2 2 8, , ( )= + +/ / / / n1, n2, n3 = 1, 2, … 11.6b
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TOPIC 12

Vibrational motion

Atoms in molecules and solids vibrate around their mean posi-

tions as bonds stretch, compress, and bend. This Topic consid-

ers one particular type of vibrational motion, that of ‘harmonic 

motion’ in one dimension. A particle undergoes harmonic 

motion if it experiences a restoring force proportional to its 

displacement:

F = k x− f  
Harmonic motion  Restoring force  (12.1)

where kf is the force constant: the stiffer the ‘spring’, the greater 

the value of kf. Because force is related to potential energy by 

F = −dV/dx (see Topic 2), the force in eqn 12.1 corresponds to 

the particle having a potential energy

V x k x( )= 1
2

2
f  

 Parabolic potential energy  (12.2)

when it is displaced through a distance x from its equilibrium 

position. This expression, which is the equation of a parabola 

(Fig. 12.1), is the origin of the term ‘parabolic potential energy’ 

for the potential energy characteristic of a harmonic oscillator. 

The Schrödinger equation for the particle of mass m is therefore

− + =2 2

2
1
2

2

2m

x

x
k x x E x

d

d f

ψ ψ ψ( )
( ) ( )
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 ➤ Why do you need to know this material?
The detection and interpretation of vibrational frequencies 
is the basis of infrared spectroscopy (Topic 43), and you 
also need to understand molecular vibration in order 
to interpret thermodynamic properties, such as heat 
capacities (Topic 58). Molecular vibration plays a role in 
the rates of chemical reactions, so you need this material 
to be ready for a discussion of the quantum mechanical 
aspects of chemical kinetics (Topic 89).

 ➤ What is the key idea?

The energy levels of a harmonic oscillator form an evenly 
spaced ladder with the lowest rung corresponding to the 
zero-point energy. The wavefunctions are products of a 
polynomial and a Gaussian (bell-shaped) function.

 ➤ What do you need to know already?
You should know how to formulate the Schrödinger 
equation given a potential energy function (Topic 6). You 
should also be familiar with the concepts of tunnelling 
(Topic 10) and the expectation value of an observable 
(Topic 7). For the closing section, you need to be familiar 
with the concepts of rate constant and activation energy 
(Topic 85).

Har- 
monic 
osci- 
llator

Schrödinger 
equation

(12.3)
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12 Vibrational motion  93

We can anticipate that the energy of an oscillator will be quan-

tized because the wavefunction has to satisfy boundary condi-

tions (as in Topic 9 for a particle in a box): it will not be found 

with very large extensions because its potential energy rises 

to infinity there. That is, when we impose the boundary con-

ditions ψ = 0 at x = ±∞, we can expect to find that only certain 

wavefunctions and their corresponding energies are possible.

12.1 The energy levels

Equation 12.3 is a standard equation in the theory of differen-

tial equations and its solutions are well known to mathemati-

cians.1 The permitted energy levels are

E k mv v

v

= + =
=

( ) ( )

, , ,

/1
2

1 2ω ω f /

0  1  2 …
 

where v is the vibrational quantum number. Note that ω 

(omega) is large when the force constant is large and the mass 

small. It follows that the separation between adjacent levels is

E E+v v1 − =ω
 

(12.5)

which is the same for all v. Therefore, the energy levels form a 

uniform ladder of spacing ħω (Fig. 12.2). The energy separa-

tion ħω is negligibly small for macroscopic objects (with large 

mass) for which classical mechanics is adequate for describing 

vibrational motion; however, the energy separation is of great 

importance for objects with mass similar to that of atoms.

Because the smallest permitted value of v is 0, it follows from 

eqn 12.4 that a harmonic oscillator has a zero-point energy

E0
1
2

= ω
 

Harmonic oscillator  Zero-point energy  (12.6)

The mathematical reason for the zero-point energy is that 

v cannot take negative values, for if it did the wavefunction 

would not obey the boundary conditions. The physical rea-

son is the same as for the particle in a box (Topic 9): the par-

ticle is confined, its position is not completely uncertain, and 

therefore its momentum, and hence its kinetic energy, cannot 

be exactly zero. We can picture this zero-point state as one in 

which the particle fluctuates incessantly around its equilib-

rium position; classical mechanics would allow the particle to 

be perfectly still.

Atoms vibrate relative to one another in molecules, with the 

bond acting like a spring. The question then arises as to what 

mass to use to predict the frequency of the vibration. In general, 

the relevant mass is a complicated combination of the masses 

of all the atoms that move, with each contribution weighted by 

the amplitude of the atom’s motion. That amplitude depends on 

the mode of motion, such as whether the vibration is a bend-

ing motion or a stretching motion, so each mode of vibration 

has a characteristic ‘effective mass’. For a diatomic molecule AB, 

however, for which there is only one mode of vibration, cor-

responding to the stretching and compression of the bond, the 

effective mass, μ, has a very simple form:

μ =
+

m m

m m
A B

A B  
Diatomic molecule  Effective mass  (12.7)

When A is much heavier than B, mB can be neglected in the 

denominator and the effective mass is μ ≈ mB, the mass of the 

lighter atom. This result is plausible, for in the limit of the heavy 

Harmonic 
oscillator 

(12.4)Energy 
levels 

1 For details, see our Molecular quantum mechanics, Oxford University 

Press (2011).
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Figure 12.1 The parabolic potential energy V x= 1
2

2kf  of 
a harmonic oscillator, where x is the displacement from 
equilibrium. The narrowness of the curve depends on the force 
constant kf: the larger the value of kf, the narrower the well.
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Figure 12.2 The energy levels of a harmonic oscillator are 
evenly spaced with separation ħω, with ω = (kf/m)1/2. Even 
in its lowest energy state, an oscillator has an energy greater 
than zero.
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94 3 The quantum mechanics of motion

atom being like a brick wall, only the lighter atom moves and 

hence determines the vibrational frequency.

The result in Brief illustration 12.1 implies that excitation 

requires radiation of frequency ν = ΔE/h = 90 THz and wave-

length λ = c/ν = 3.3 μm. It follows that transitions between adja-

cent vibrational energy levels of molecules are stimulated by or 

emit infrared radiation (Topic 43).

12.2 The wavefunctions

Like the particle in a box (Topic 9), a particle undergoing har-

monic motion is trapped in a symmetrical well in which the 

potential energy rises to large values (and ultimately to infinity) 

for sufficiently large displacements (compare Figs 9.1 and 12.1). 

However, there are two important differences:

Because the potential energy climbs towards infinity only 

as x2 and not abruptly, the wavefunction approaches zero 

more slowly at large displacements than for the particle 

in a box.

As the kinetic energy of the oscillator depends on the 

displacement in a more complex way (on account of the 

variation of the potential energy), the curvature of the 

wavefunction also varies in a more complex way.

The detailed solution of eqn 12.3 confirms these points and 

shows that the wavefunctions for a harmonic oscillator have 

the form

ψ ( ) polynomial in

bell-shaped Gaussian function

x N x=
×

×( )
( )

where N is a normalization constant. A Gaussian function is 

a bell-shaped function of the form e−x2

 (Fig. 12.3). The precise 

form of the wavefunctions is

ψ

α
α

v v v( ) ( ) /

/

x N H y

y
x

mk

y=

= =⎛
⎝⎜

⎞
⎠⎟

e

f

− 2 2

2
1 4



The factor Hv(y) is a Hermite polynomial; their form and some 

of their properties are listed in Table 12.1. Hermite polynomi-

als, which are members of a class of functions called ‘orthog-

onal polynomials’, have a wide range of important properties 

which allow a number of quantum mechanical calculations to 

be done with relative ease. Note that the first few Hermite poly-

nomials are very simple: for instance, H0(y) = 1 and H1(y) = 2y.

Because H0(y) = 1, the wavefunction for the ground state (the 

lowest energy state, with v = 0) of the harmonic oscillator is

ψ
α

0 0
2

0
2

2

2 2

( ) /

/

x N

N

y

x

=
=

−

−

e

e

and the corresponding probability density is

ψ α
0
2

0
2

0
22 2 2

( ) /x N Ny x= =− −e e
 

Brief illustration 12.1 The vibrational energy separation 
in a diatomic molecule

The effective mass of 1H35Cl is

μ = + = ×
+

m m

m m

m m

m m
H Cl

H Cl

u u

u u

( . ) ( . )

( . ) ( . )

1 0078 34 9688

1 0078 34 9688
== 0 9796. mu

 

which is close to the mass of the proton. The force constant of 

the bond is kf = 516.3 N m−1. It follows from eqn 12.4, with μ in 

place of m, that

ω μ= ⎛
⎝⎜

⎞
⎠⎟

=
× ×

⎛
⎝⎜

⎞
⎠⎟

=
−

−
kf

Nm

kg

1 2 1

27

1 2
516 3

0 9796 1 66054 10

/ /
.

. ( . )
55 634 1014 1. × s−

(We have used 1 N = 1 kg m s−2.) Therefore the separation of 

adjacent levels is (eqn 12.5)

E Ev v+
− −= =1

34 14 1 201 05457 10 5 634 10 5 941 10− × × × ×−( . ) ( . ) .Js Js

or 59.41 zJ, about 0.37 eV. This energy separation corresponds 

to 36 kJ mol−1, which is chemically significant. The zero-point 

energy, eqn 12.6, of this molecular oscillator is 29.71 zJ, which 

corresponds to 0.19 eV, or 18 kJ mol−1.

Self-test 12.1 Suppose a hydrogen atom is adsorbed on the 

 surface of a gold nanoparticle by a bond of force constant 

855 N m−1. Calculate its zero-point vibrational energy.

Answer: 37.7 zJ, 22.7 kJ mol−1, 0.24 eV

Harmonic 
oscillator Wavefunctions (12.8)

Harmonic 
oscillator 

Ground-state 
wavefunction 

(12.9a)

Harmonic 
oscillator

Ground-state 
probability 
density 

(12.9b)
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Figure 12.3 The graph of the Gaussian function, f x x( ) .= −e
2

Atkins09819.indb   94 9/11/2013   11:04:57 AM

www.ebook3000.com

http://www.ebook3000.org


12 Vibrational motion  95

The wavefunction and the probability density are shown in 

Fig. 12.4. Both curves have their largest values at zero displace-

ment (at x = 0), so they capture the classical picture of the zero-

point energy as arising from the ceaseless fluctuation of the 

particle about its equilibrium position. The wavefunction for the first excited state of the oscillator, 

the state with v = 1, is

ψ

α
α

1 1
2

1
2

2

2

2

2 2

( ) /

/

x N y

N x

y

x

=

= ⎛
⎝⎜

⎞
⎠⎟

−

e

e

−

This function has a node at zero displacement (x = 0), and the 

probability density has maxima at x = ±α (Fig. 12.5).

The shapes of several wavefunctions are shown in Fig. 12.6 

and the corresponding probability densities are shown in Fig. 

12.7. At high quantum numbers, harmonic oscillator wave-

functions have their largest amplitudes near the turning points 

Harmonic 
oscillator

First excited-
state wave-
function

(12.10)

Example 12.1 Confirming that a wavefunction is a 
solution of the Schrödinger equation

Confirm that the ground-state wavefunction (eqn 12.9a) is a 

solution of the Schrödinger equation 12.3.

Method Substitute the wavefunction given in eqn 12.9a into 

eqn 12.3. Use the definition of α given in eqn 12.8 to deter-

mine the energy on the right-hand side of eqn 12.3 and con-

firm that it matches the zero-point energy given in eqn 12.6.

Answer We need to evaluate the second derivative of the 

ground-state wavefunction:
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Substituting ψ0 into eqn 12.3 and using the definition of α 

(eqn 12.8), we obtain
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The second and third terms on the left-hand side cancel and 

we obtain E m= 1
2

1 2( fk / ) /  in accord with eqn 12.6 for the zero-

point energy.

Self-test 12.2 Confirm that the wavefunction in eqn 12.10 is a 

solution of eqn 12.3.

Answer: E = 3
2

ω
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Figure 12.4 The normalized wavefunction and probability 
density (shown also by shading) for the lowest energy state of a 
harmonic oscillator.
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Figure 12.5 The normalized wavefunction and probability 
density (shown also by shading) for the first excited state of a 
harmonic oscillator.

Table 12.1 The Hermite polynomials Hv(y)

v Hv(y)

0 1

1 2y

2 4y2 − 2

3 8y3 − 12y

4 16y4 − 48y2 + 12

5 32y5 − 160y3 + 120y

6 64y6 − 480y4 + 720y2 − 120

The Hermite polynomials are solutions of the differential equation

H yH Hv v vv″ ′− + =2 2 0

where primes denote differentiation. They satisfy the recursion relation

H yH H
H

y
yHv v v

v
vv v+ − −− + = =1 1 12 2 0 2

d

d

An important integral is

H H yy
v v v

v v

v v v′
′

′
e d

i
−

−∞

∞
=

≠

=

⎧
⎨
⎪

⎩⎪∫ 2
0

21 2

if

fπ / !
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96 3 The quantum mechanics of motion

of the classical motion (the locations at which V = E, so the 

kinetic energy is zero). We see classical properties emerging in 

the correspondence principle limit of high quantum numbers 

(Topic 9), for a classical particle is most likely to be found at the 

turning points (where it travels most slowly) and is least likely 

to be found at zero displacement (where it travels most rapidly).

Note the following features of the wavefunctions:

The Gaussian function goes very strongly to zero as the 

displacement increases (in either direction), so all the 

wavefunctions approach zero at large displacements.

The exponent y2 is proportional to x2 × (mkf)
1/2, so 

the wavefunctions decay more rapidly for large 

masses and stiff springs.

As v increases, the Hermite polynomials become 

larger at large displacements (as xv), so the 

wavefunctions grow large before the Gaussian function 

damps them down to zero: as a result, the wavefunctions 

spread over a wider range as v increases (Fig. 12.7).

Example 12.2 Normalizing a harmonic oscillator 
wavefunction

Find the normalization constant for the harmonic oscillator 

wavefunctions.

Method Normalization is carried out by evaluating the inte-

gral of |ψ |2 over all space and then finding the normalization 

factor from eqn 5.2. The normalized wavefunction is then 

equal to Nψ. In this one-dimensional problem, the volume ele-

ment is dx and the integration is from −∞ to +∞. The wave-

functions are expressed in terms of the dimensionless variable 

y = x/α , so begin by expressing the integral in terms of y by 

using dx = αdy. The integrals required are given in Table 12.1.

Answer The unnormalized wavefunction is

ψ v v( ) ( ) /x H y y= −e
2 2

It follows from the integrals given in Table 12.1 that

ψ ψ α ψ ψ α

α

v v v v v

vv

* *

/

( )

!

d d e dx y H y yy= =

=
−∞

∞

−∞

∞
−

−∞

∞

∫ ∫ ∫ 2

1 2

2

2π

where v! = v(v − 1)(v − 2)...1. Therefore,

Nv vv
= ⎛

⎝⎜
⎞
⎠⎟

1

21 2

1 2

απ /

/

!

Note that, unlike the normalization constant for a particle in a 

box, for a harmonic oscillator Nv is different for each value of v.

Self-test 12.3 Confirm, by explicit evaluation of the integral, 

that ψ0 and ψ1 are orthogonal.

Answer: Evaluate the integral ψ ψ0 1
* dx

−∞

∞

∫  by using the  

information in Table 12.1

Example 12.3 Locating the nodes of a harmonic 
oscillator

Consider the HeCl chemical bond of Brief illustration 12.1. 

If the molecule is undergoing harmonic motion with v = 2, 

determine the HeCl bond distances at which there is zero 

probability density of finding the molecule. The equilibrium 

bond length is 120 pm.

Method The distances at which there is zero probability den-

sity of finding the bond distance are the nodes of the v = 2 har-

monic oscillator wavefunction. Since the Gaussian function 

does not pass through zero, the nodes will be those values of 

x at which the Hermite polynomial passes though zero. Recall 

that x represents the displacement from equilibrium.

Answer Because H2(y) = 4y2 − 2, we need to solve 4y2 − 2 = 0, 

which has solutions at y = ±1 21 2/ / .  The nodes are therefore at 

x = ±α/21/2. Using μ in place of m in eqn 12.8, we find
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Figure 12.6 The normalized wavefunctions for the first five 
states of a harmonic oscillator. Note that the number of nodes 
is equal to v and that alternate wavefunctions are symmetrical 
or asymmetrical about y = 0 (zero displacement).
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Figure 12.7 The probability densities for the first five states 
of a harmonic oscillator and the state with v = 18. Note how 
the regions of highest probability density move towards the 
turning points of the classical motion as v increases.
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12 Vibrational motion  97

12.3 The properties of oscillators

The average value of a property is calculated by evaluating the 

expectation value of the corresponding operator (eqn 7.2a). Now 

that we know the wavefunctions of the harmonic oscillator, we can 

start to explore its properties by evaluating integrals of the type

〈 〉Ω ψ Ω=
−∞

∞

∫ v v
* ψ dx�

 
(12.11)

(Here and henceforth, the wavefunctions are all taken to be 

normalized to 1.) When the explicit wavefunctions are substi-

tuted, the integrals look fearsome, but the Hermite polynomials 

have many simplifying features.

(a) Mean values
We show in the following example that the mean displacement, 

〈x〉, and the mean square displacement, 〈x2〉, of the oscillator 

when it is in the state with quantum number v are

〈 〉x =0
 Harmonic oscillator  Mean displacement  (12.12a)

〈 〉x
mk

2
1 2

1
2

= +( )v


( ) /
f

The result for 〈x〉 shows that the oscillator is equally likely 

to be found on either side of x = 0 (like a classical oscillator). 

The result for 〈x2〉 shows that the mean square displacement 

increases with v. This increase is apparent from the prob-

ability densities in Fig. 12.7, and corresponds to the classical 

amplitude of swing increasing as the oscillator becomes more 

highly excited.
x

k
= ± = ±

⎛
⎝⎜

⎞
⎠⎟

= ±
×

× ×

−

α
μ2 4

1 055 10

4 0 9796 1 661
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2
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/
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( . )

. ( .


f
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×× ×
⎛
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⎞
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= ±

− −10 516 3

7 59

27 1

1 4

kg Nm

pm

) ( . )

.

/

Because x is the displacement from equilibrium, these dis-

placements correspond to HeCl bond distances of 112 pm 

and 128 pm. For higher values of v, it is best and often neces-

sary to use numerical methods (for example, a root-extraction 

procedure of a mathematics package) to locate zeroes.

Self-test 12.4 Suppose the molecule is vibrationally excited to 

the state v = 3. At what bond distances will the molecule not be 

found?

Answer: x  =  0, ±α(3/2)1/2; 120 pm, 107 pm, 133 pm

Harmonic 
oscillator 

Mean square 
displacement (12.12b)

Example 12.4 Calculating properties of a 
harmonic oscillator

Consider the harmonic oscillator motion of the HeCl mole-

cule in Brief illustration 12.1. Calculate the mean displacement 

of the oscillator when it is in a state with quantum number v.

Method Normalized wavefunctions must be used to calcu-

late the expectation value. The operator for position along x is 

multiplication by the value of x (Topic 6). The resulting inte-

gral can be evaluated either

by inspection (the integrand is the product of an odd 

and an even function), or

by explicit evaluation using the formulas in Table 12.1.

The former procedure makes use of the definitions that an 

even function is one for which f(−x) = f(x) and an odd func-

tion is one for which f(–x) = –f(x). Therefore, the product 

of an odd and even function is itself odd, and the integral 

of an odd function over a symmetrical range about x = 0 is 

zero. The latter procedure using explicit integration is illus-

trated here to give practice in the calculation of expectation 

values. We shall need the relation x = αy, which implies that 

dx = αdy.

Answer The integral we require is

〈 〉x x x N H x H x

N H

y y= =

=

−∞

∞
− −

−∞

∞

−

∫ ∫ψ ψ

α

v v v v v

v v

* / /( ) ( )

(

d e e d

e

2 2 2

2 2

2 2

yy y

y

y H y

N H yH y

2 2

2

2 2

2 2

/ /) ( )v

v v v

e d

e d

−

−∞

∞

−

−∞

∞

∫
∫=α

Now use the recursion relation (Table 12.1) to form

yH H Hv v vv= +− +1 1
1
2

which turns the integral into

H yH y H H y H H yy y y
v v v v v vve−

−∞

∞

−
−

−∞

∞

+
−

−∞

∞
= +∫ ∫ ∫2 2 2

1 1
1
2d e d e d

Both integrals are zero (See Table 12.1), so 〈x〉 = 0. The mean 

displacement is zero because the displacement occurs equally 

on either side of the equilibrium position.

Self-test 12.5 Calculate the mean square displacement 〈x2〉 
of the HeCl bond distance from its equilibrium position by 

using the recursion relation in Table 12.1 twice.

Answer: v+( ) ×1
2

2115 pm ;  eqn 12.12b, with μ in place of m
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98 3 The quantum mechanics of motion

The mean potential energy of an oscillator, the expectation 

value of V k x= 1
2

2
f , can now be calculated very easily:

〈 〉 〈 〉 〈 〉V k x k x
k

m
= = = + ⎛

⎝⎜
⎞
⎠⎟

1
2

2 1
2

2

1 2

1
2

1
2f f

f( )

/

v 

or

〈 〉V = +1
2

1
2( )v ω

 

Because the total energy in the state with quantum number v is 

( ) ,v+ 1
2

ω  it follows that

〈 〉V E= 1
2 v  

The total energy is the sum of the potential and kinetic ener-

gies, so it follows at once that the mean kinetic energy of the 

oscillator is (as could also be shown using the kinetic energy 

operator)

〈 〉E Ek = 1
2 v  

The result that the mean potential and kinetic energies of 

a harmonic oscillator are equal (and therefore that both are 

equal to half the total energy) is a special case of the virial 

theorem:

If the potential energy of a particle has the form  

V = axb, then its mean potential and kinetic energies 

are related by

2 k〈 〉 〈 〉E b V=
 

 Virial theorem  (12.14)

For a harmonic oscillator b = 2, so 〈Ek〉 = 〈V〉, as we have found. 

The virial theorem is a shortcut to the establishment of a num-

ber of useful results, and we shall use it again.

(b) Tunnelling
An oscillator may be found at extensions with V > E that are 

forbidden by classical physics, for they correspond to nega-

tive kinetic energy; this is an example of the phenomenon of 

tunnelling (Topic 10). As shown in Example 12.5, for the low-

est energy state of the harmonic oscillator, there is about an 

8 per cent chance of finding the oscillator stretched beyond 

its classical limit and an 8 per cent chance of finding it with 

a classically forbidden compression. These tunnelling prob-

abilities are independent of the force constant and mass of the 

oscillator.

Harmonic 
oscillator

Mean 
potential 
energy

(12.13a)

Harmonic 
oscillator

Mean 
potential 
energy

(12.13b)

Harmonic 
oscillator

Mean kinetic 
energy

(12.13c)

Example 12.5 Calculating the tunnelling probability for 
the harmonic oscillator

Calculate the probability that the ground-state harmonic 

oscillator will be found in a classically forbidden region.

Method Find the expression for the classical turning point, xtp, 

where the kinetic energy vanishes, by equating the potential 

energy to the total energy E of the harmonic oscillator. Proceed 

to calculate the probability of finding the oscillator stretched 

beyond the classical turning point using eqn 5.5 (Topic 5):

P x
x

=
∞

∫ ψ v
2d

tp

The variable of integration is best expressed in terms of y = x/α 

and the integral to be evaluated is a special case of the error 

function, erf z, defined as (see Integral G.6 of the Resource 

section)

erf z yy

z

= − −
∞

∫1
2
1 2

2

π /
e d

and evaluated for some values of z in Table 12.2 (this function 

is commonly available in mathematical software packages). 

By symmetry, the probability of being found stretched into a 

classically forbidden region is the same as that of being found 

compressed into a classically forbidden region.

Answer According to classical mechanics, the turning point, 

xtp, of an oscillator occurs when its kinetic energy is zero, 

which is when its potential energy 1
2
k xf

2  is equal to its total 

energy E. This equality occurs when

x
E

k
x

E

ktp
f

tp
f

or2

1 2
2 2= = ±⎛

⎝⎜
⎞
⎠⎟

/

with E given by eqn 12.4. The probability of finding the oscil-

lator stretched beyond a displacement xtp is the sum of the 

probabilities ψ2dx of finding it in any of the intervals dx lying 

between xtp and infinity:

Table 12.2 The error function

z erf z

0 0

0.01 0.0113

0.05 0.0564

0.10 0.1125

0.50 0.5205

1.00 0.8427

1.50 0.9661

2.00 0.9953
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12 Vibrational motion  99

12.4 Applications of the harmonic 
oscillator model in chemistry

The harmonic oscillator is a powerful model that can help 

chemists understand a number of phenomena. We have seen 

(Section 12.1) that the existence of quantized vibrational 

motion in diatomic molecules—and molecules in general—

can be explained by considering the chemical bond as a har-

monic oscillator. In turn, this insight leads to the interpretation 

of molecular infrared spectra. Topics 43 and 44 explore vibra-

tional spectroscopy in more detail. Here we provide two exam-

ples to illustrate the power of the harmonic oscillator model to 

provide insight into the dynamics of molecules and the mecha-

nisms of chemical reactions.

(a) Molecular dynamics
Molecules are dynamic, in the sense that their atoms move 

in relation to each other. One example of such motion is the 

stretching and compression of a bond. Other forms of motion 

are bond bending, during which a bond angle opens and closes, 

and bond torsion, the internal rotation, or twisting, of one 

bond relative to another. These three modes of motion can be 

regarded as harmonic motion. For example, if the equilibrium 

bond angle is θe, the potential energy is

V kbend f,bend e
2= −1

2
( )θ θ

 
(12.15)

where kf,bend is the bending force constant, a measure of how 

difficult it is to change the bond angle. This equation bears 

a striking resemblance to eqn 12.2, which we have used to 

describe bond stretching.

The tunnelling of the harmonic oscillator has effects on the 

types of processes described in Topic 10. For example, a more 

realistic model of the potential energy describing conforma-

tional changes of the AB3 molecule uses two harmonic oscil-

lator (parabolic) wells separated by a barrier (Fig. 12.8) rather 

than the double-potential well (Topic 10). The tunnelling of the 

v  =  0 wavefunction through the potential barrier is responsible 

for inversion doubling.

The probability of finding the oscillator in classically forbid-

den regions decreases quickly with increasing v, and vanishes 

entirely as v approaches infinity, as we would expect from the 

correspondence principle. Macroscopic oscillators (such as 

pendulums) are in states with very high quantum numbers, so 

the tunnelling probability is wholly negligible. Molecules, how-

ever, are normally in their vibrational ground states, and for 

them the probability is very significant.

Po
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 e

n
er

g
y,

 V

Conformation

Figure 12.8 A model potential energy to describe 
conformational changes of the AB3 molecule. Two harmonic 
oscillator (parabolic) wells are separated by a barrier. 
(Compare Fig. 10.9.)
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The variable of integration is best expressed in terms of y = x/α 

with α = (2/mkf)
1/4, and then the turning point on the right lies at
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For the state of lowest energy (v = 0), ytp = 1 and the probability is

P x N y
x

y= =
∞

−
∞

∫ ∫ψ α0
2

0
2

1

2

d e d
tp

The integral is a special case of the error function, erf z, given 

above. In the present case (see Example 12.1 for N0 and use 

0! = 1)

P = − = − =1
2

1
2

0 0 0( ) ( . ) .1 erf 1 1 843 79

It follows that in 7.9 per cent of a large number of observations, 

any oscillator in the state v = 0 will be found stretched to a clas-

sically forbidden extent. There is the same probability of finding 

the oscillator with a classically forbidden compression. The total 

probability of finding the oscillator tunnelled into a classically 

forbidden region (stretched or compressed) is about 16 per cent.

Self-test 12.6 Calculate the probability that a harmonic oscil-

lator in the state v = 1 will be found at a classically forbidden 

extension. (Follow the argument given in Example 12.5 and 

use the method of integration by parts (see Mathematical 

background 1) to obtain an integral which can be expressed in 

terms of the error function.)

Answer: P = 0.056
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100 3 The quantum mechanics of motion

To explore bond torsion, consider rotation around the CeC 

bond in ethane, which can be described in terms of the angle 

φ shown in (2). For small variations of φ, the torsional motion 

around the CeC bond can be expected to be that of a harmonic 

oscillator, and the energy separation between adjacent energy 

levels of the oscillator is given by ΔE = ω, where ω is the tor-

sional frequency.

2

φ

(b) The kinetic isotope effect
The postulation of a plausible reaction mechanism requires 

careful analysis of many experiments designed to determine 

the fate of atoms during the formation of products. Observation 

of the kinetic isotope effect, a decrease in the rate of a chemi-

cal reaction upon replacement of one atom in a reactant by a 

heavier isotope, facilitates the identification of bond-breaking 

events in the rate-determining step. A primary kinetic isotope 

effect is observed when the rate-determining step requires the 

scission of a bond involving the isotope. A secondary kinetic 

isotope effect is the reduction in reaction rate even though the 

bond involving the isotope is not broken to form product. In 

both cases, the effect arises from the change in activation energy 

(Topic 85) that accompanies the replacement of an atom by a 

heavier isotope on account of changes in the zero-point vibra-

tional energies. We now explore the primary kinetic isotope 

effect in some detail.

Consider a reaction in which a CeH bond is cleaved. If scis-

sion of this bond is the rate-determining step (Topic 86), then 

the reaction coordinate corresponds to the stretching of the 

CeH bond and the potential energy profile is shown in Fig. 

12.9. On deuteration, the dominant change is the reduction of 

the zero-point energy of the bond (because the deuterium atom 

is heavier). The whole reaction profile is not lowered, however, 

because the relevant vibration in the activated complex has a 

very low force constant, so there is little zero-point energy asso-

ciated with the reaction coordinate in either form of the acti-

vated complex. We show in the following Justification that, as 

a consequence of this reduction, the activation energy change 

upon deuteration is

E E Na a( ) ( ) ( )

/

C CH− − − = − −⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
D C H C HA

CD

1
2 1

1 2

ω μ
μ

 

(12.16)

where ω is the relevant vibrational frequency (in radians per 

second), μ is the relevant effective mass, and

kr

r

e with
( )

( )

( )
/

C D

C H

C H CH

CD

−
−

= = − −⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬−

k kT
ζ ζ ω

2
1

1 2μ
μ

⎪⎪

⎭⎪
 (12.17)

Note that ζ > 0 (ζ is zeta) because μCD > μCH and that  

kr(CeD)/kr(CeH) < 1, meaning that, as expected from Fig. 12.9, 

the rate constant decreases upon deuteration. We also conclude 

that kr(CeD)/kr(CeH) decreases with decreasing temperature.

Brief illustration 12.2 The energy of bond angle bending

Theoretical studies have estimated that the lumiflavin isoal-

loazine ring system (1) has an energy minimum at the bending 

angle of 15°, but that it requires only 1.41 × 10−20 J or 8.50 kJ 

mol−1 to increase the angle to 30°. The force constant for lumi-

flavin bending is therefore

k
V

f bend
bend

e

J
J, ( )

( . )

( )
.=

−
=

× ×
°− °

= ×
−

−2 2 1 41 10

30 15
1 3 10

2

20

2
22

θ θ
ddeg−2

corresponding to 75 J deg−2 mol−1.

N

N

NH

N O

O

1 Lumiflavin

Self-test 12.7 It takes 0.90 aJ to bend a CeCeC bond by 2.0° 

from its equilibrium bond angle. What is the force constant 

for this bending motion?

Answer: 4.5 × 10−19 J deg−2, 2.7 × 105 J deg−2 mol−1

C–H
C–D

Ea(C–D)
Ea(C–H)

Reaction coordinate
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 V

Figure 12.9 Changes in the reaction profile when a CeH  
bond undergoing cleavage is deuterated. In this figure the  
CeH and CeD bonds are modelled as harmonic oscillators. 
The only significant change is in the zero-point energy of the 
reactants, which is lower for CeD than for CeH. As a result, the 
activation energy is greater for CeD cleavage than for CeH 
cleavage.
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12 Vibrational motion  101

Justification 12.1 The primary kinetic isotope effect

We assume that, to a good approximation, a change in the 

activation energy arises only from the change in zero-point 

energy of the stretching vibration, so, from Fig. 12.9,

E E N

N

a a A

A

C D C H C H C D

C H

( ) ( ) ( ) ( )

( ) (

− − − − −

− −

− = ⎧
⎨
⎩

⎫
⎬
⎭

=

1

2

1

2

1

2

 



ω ω

ω ω CC D− ){ }

where ω is the relevant vibrational frequency. From eqn 12.4, 

we know that ω(CeD) = (μCH/μCD)1/2 ω(CeH), where μ is the 

relevant effective mass. Making this substitution in the equa-

tion above gives eqn 12.16.

If we assume further that the pre-exponential factor does 

not change upon deuteration, then the rate constants for the 

two species should be in the ratio

k

k
E E RT E Ear

r

C D C H C D C HC D

C H
e e

( )

( )
{ ( ) ( )}/ { ( ) ( )}/−

− = =− − − − − − − −a a a NN kTA

where we have used R = NAk. Equation 12.17 follows after using 

eqn 12.16 for Ea(C–D) − Ea(C–H) in this expression.

ω = × × ×
= ×

− −

−

2 2 998 1 cm s 3 cm

5 65 1 s

1 1 1

14 1

π ( . ) ( )

.

0 000

0

0

The ratio of effective masses is

μ
μ

CH

CD

C H

C H

C D

C D

= +
⎛
⎝⎜

⎞
⎠⎟

× +⎛
⎝⎜

⎞
⎠⎟

= ×
+

m m

m m

m m

m m

12 01 1 0078

12 01 1

. .

. ..

. .

. .
.

0078

12 01 2 0140

12 01 2 0140
0 539

⎛
⎝⎜

⎞
⎠⎟

× +
×

⎛
⎝⎜

⎞
⎠⎟

= …

Now we can use eqn 12.17 to calculate

ζ =
× × ×

× × ×

− −

− −

( . ) ( . )

( . ) (

1 055 10 5 65 10

2 1 381 10 298

34 14 1

23 1

Js s

JK K

…
))

( . )

.

/× −

=

1 0 539

1 92

1 2…

…

and

k

kr

r C( )

( )
..−

− = =−D

C H
e 1 92 0 146…

We conclude that at room temperature CeH cleavage 

should be about 7 times faster than CeD cleavage, other 

conditions being equal. However, experimental values of 

kr(CeD)/kr(CeH) can differ significantly from those pre-

dicted by eqn 12.17 on account of the severity of the assump-

tions in the model.

Self-test 12.8 The bromination of a deuterated hydrocarbon at 

298 K proceeds 6.4 times more slowly than the bromination of 

the undeuterated material. What value of the force constant 

for the cleaved bond can account for this difference?

Answer: kf = 450 N m−1, which is consistent with kf(CeH)

Checklist of concepts

☐ 1. A particle undergoing harmonic motion experiences 

a restoring force proportional to its displacement; its 

potential energy is parabolic.

☐ 2. The energy levels of a harmonic oscillator form an 

evenly spaced ladder.

☐ 3. The wavefunctions of a harmonic oscillator are products 

of a Hermite polynomial and a Gaussian (bell-shaped) 

function.

☐ 4. There is a zero-point vibrational energy, which is con-

sistent with, and can be interpreted in terms of, the 

uncertainty principle.

☐ 5. The probability of finding the harmonic oscillator 

in classically forbidden regions is significant for the 

ground vibrational state (v = 0) but decreases quickly 

with increasing vibrational quantum number v.

☐ 6. The kinetic isotope effect is the decrease in the rate 

constant of a chemical reaction upon replacement of 

one atom in a reactant by a heavier isotope.

Brief illustration 12.3 The primary kinetic isotope effect

From infrared spectra, the fundamental vibrational wave-

number ��  for stretching of a CeH bond is about 3000 cm−1. 

To convert this wavenumber to an angular frequency, ω = 2π ��,  

we use ω =2πc �� , and it follows that
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102 3 The quantum mechanics of motion

Checklist of equations

Property Equation Comment Equation number

Energy of harmonic oscillator Ev = (v + 1
2

)ħω  ω = (kf/m)1/2 v = 1, 2, … 12.4

Zero-point energy of harmonic oscillator E0
1
2

= ω 12.6

Wavefunction of harmonic oscillator ψ

α α

α

v v v

v
vv

( ) ( )

/ ( )

( / !)

/

/

/ /

x N H y

y x mk

N

y=

= =

=

−e

f

2 2

2 1 4

1 2 1 21 2

 /

π

v = 1, 2, … 12.8

Mean displacement of harmonic oscillator 〈x〉 = 0 12.12a

Mean square displacement of harmonic oscillator 〈 〉x m2 1 21

2
= +⎛

⎝⎜
⎞
⎠⎟

v /( ) /kf 12.12b

Virial theorem 2〈Ek〉 = b〈V〉 V = axb 12.14

Primary kinetic isotope effect k k

kT

r r

C H C D

C D C H e

C H

( )/ ( ) ,

( ( )/ ) /
/

e e

e e e

=

= × −( ){ }
−ζ

ζ ω μ μ2 1
1 2

Cleavage of a CeH bond in 
the rate-determining step

12.17
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TOPIC 13

Rotational motion in 

two dimensions

Rotation is an important aspect of motion, and is encoun-

tered in the discussion of the electronic structure of atoms 

and molecules (Topics 17 and 23), the spectroscopy of mol-

ecules (particularly but not only microwave spectroscopy, 

Topic 42), and of various aspects of electrons trapped in 

cavities in solids. This Topic provides an initial introduction 

by focusing on rotation in two dimensions, or rotation in a 

plane; although the applicability of two-dimensional rotation 

as a model for real (three-dimensional) systems is limited, 

many of the characteristics encountered in two dimensions 

apply to the more general case of rotation in three dimen-

sions (Topic 14).

13.1 A particle on a ring

Just as linear momentum is a central concept for the discussion 

of linear motion (Topic 9), angular momentum is central to the 

discussion of rotational motion. For a particle moving on a cir-

cle of radius r in the xy-plane and having a linear momentum 

of magnitude p at some instant, the angular momentum around 

the perpendicular z-axis is

J prz = ±   Particle on a ring,  Angular momentum 
 classical expression (13.1)

A positive sign corresponds to clockwise motion (seen from 

below) and a negative sign corresponds to anticlockwise 

motion (Fig. 13.1). The kinetic energy of a particle of mass m 

and linear momentum p is Ek = p2/2m. Therefore, if the parti-

cle is moving on a circle of radius r with angular momentum 

Jz, its kinetic energy is E J r m J mrz zk
2 2/ /2 /2= =( ) 2 . Because its 

uniform potential energy may be taken to be zero, its total 

energy is

E
J

mr
z=
2

22  

Contents

13.1 A particle on a ring 103

Brief illustration 13.1: The moment of inertia 104

(a) The qualitative origin of quantized rotation 105

Brief illustration 13.2: The rotational energies 106

(b) The solutions of the Schrödinger equation 106

Example 13.1: Using the particle-on-a-ring model 107

13.2 Quantization of angular momentum 108

Brief illustration 13.3: Nodes in the wavefunction 108

Brief illustration 13.4: The vector representation 

of angular momentum 109

Checklist of concepts 110
Checklist of equations 110

 ➤ Why do you need to know this material?
Rotation is one of the modes of internal motion of 
molecules. Investigation of rotational motion introduces 
the concept of angular momentum, which is central to 
the quantum mechanical description of the electronic 
structure of atoms and molecules, and the interpretation 
of details observed in molecular spectra.

 ➤ What is the key idea?
The energy and the angular momentum of a particle 
rotating in two dimensions are quantized.

 ➤ What do you need to know already?
You should know the postulates of quantum mechanics 
(Topics 5–7), and be familiar with the concept of angular 
momentum in classical physics (Foundations, Topic 2). Particle on a ring, 

classical expression
 Energy (13.2a)
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104 3 The quantum mechanics of motion

The moment of inertia, I, of the particle around the centre of 

rotation is mr2, so this energy may also be written as

E
J

I
z=
2

2  

Equation 13.2b applies to any body of moment of inertia 

I rotating in a plane, not just a point mass on a circle. For 

instance, it applies to a circular disc of mass m and radius R, 

with I = 1
2 mR2. It also applies to a diatomic molecule of bond 

length R composed of atoms of masses mA and mB, with the 

moment of inertia, as shown in the following Justification, 

interpreted as

I R
m m

m m
= =

+
μ μ2 with A B

A B  

Brief illustration 13.1 The moment of inertia

For the diatomic molecule 1H35Cl of bond length 127.45 pm,

μ = + = ×
+

m m

m m

m m

m m
H Cl

H Cl

u u

u u

( . ) ( . )

( . ) ( . )

1 0078 34 9688

1 0078 34 9688
== …0 9796. mu

and the moment of inertia is

I = …× × × ×
= ×

− −

−

( . . ) ( . )

.

0 9796 1 66054 10 127 45 10

2 6422 10

27 12 2

47

kg m

kgg m2

Particle on a ring, 
classical expression

Energy (13.2b)

Diatomic 
molecule

 Moment of inertia (13.3)

Justification 13.1 The moment of inertia of a 
diatomic molecule

The moment of inertia about an axis is defined by

I m x

i

i i=∑ 2

where xi is the perpendicular distance of atom i of mass mi from 

the axis (Fig. 13.2). For a diatomic molecule with bond length 

R = xB – xA (taking xB > xA, and the origin at the centre of mass) 

and atoms of masses mA and mB, rotation proceeds around an 

axis passing through the centre of mass of the molecule, which 

is given by the condition (see Fig. 13.3)

m x m x x x R m x m R xB B A A A B B B A Bor because= − = − = −( ) ( )

r
p

Jz > 0

j

Figure 13.1 For a particle moving on a circle of radius r in 
the xy-plane and having a linear momentum of magnitude 
p at some instant, the classical angular momentum around 
the z-axis is Jz = ±pr, where the positive (negative) sign 
corresponds to clockwise (anticlockwise) motion, as seen 
from below.

It follows that mBxB  =  mAR – mAxB and therefore

x
m R

m m
x x R

m R

m mB
A

A B
A B

B

A B

= + = − = − +

The moment of inertia is therefore

I m x m x

m
m R

m m
m

m R

m m

m m m

= +

= +
⎛
⎝⎜

⎞
⎠⎟

+ − +
⎛
⎝⎜

⎞
⎠⎟

= +

B B A A

B
A

A B
A

B

A B

B A

2 2

2 2

2
AA B

B A

A B

B A

A B

B A

m

m m
R

m m m m

m m
R

m m

m m
R R

2

2
2

2
2

2 2

( ) ( )

( )

+
= +

+

= + =

B A

μ

in accord with eqn 13.3.

mA mA
xAxA

xB

xB
xB

mB mB

mB

mC
I = 2mAxA

2 + 3mBxB
2

Figure 13.2 The definition of the moment of inertia about 
a selected axis in terms of the mass of a particle and its 
perpendicular distance from the axis.

mA

xA xB

mB

0

R

Figure 13.3 The moment of inertia of a diatomic molecule AB. 
xA and xB are the perpendicular distances from the atoms to the 
axis passing through the centre of mass of the molecule (taken 
to be the origin) and R = xB – xA.
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13 Rotational motion in two dimensions  105

(a) The qualitative origin of quantized 
rotation
The linear momentum that appears in eqn 13.1 can be expressed 

as a wavelength of the orbiting particle by using the de Broglie 

relation p = h/λ (Topic 4), which gives

J
hr

z = ±
λ

Likewise, the energy in eqn 13.2b becomes

E
h r

I
=

2 2

22 λ
Suppose for the moment that λ can take an arbitrary value. In 

that case, the wavefunction depends on the azimuthal angle 

φ, as shown in Fig. 13.4a. When φ increases beyond 2π, the 

wavefunction continues to change, but for an arbitrary wave-

length it gives rise to a different value at a given point after each 

circuit, which is unacceptable because a wavefunction must 

be single-valued. An acceptable solution is obtained only if 

the wavefunction reproduces itself on successive circuits, as in 

Fig. 13.4b. Because only some wavefunctions have this prop-

erty, it follows that only some angular momenta are acceptable, 

and therefore that only certain rotational energies are allowed. 

That is, the energy of the particle is quantized. Specifically, an 

integer number of wavelengths must fit the circumference of 

the ring (which is 2πr):

n r nλ = =2 1 2π 0, , ,...  (13.4)

The value n = 0 corresponds to λ = ∞; a ‘wave’ of infinite wave-

length has a constant height at all values of φ. The angular 

momentum is therefore limited to the values

J
hr nhr

r

nh
nz = ± = ± = ± =

λ 2 2
0 1 2

π π
, , ,...

The sign of Jz (which indicated the sense of the rotation) can be 

absorbed into the quantum number by replacing n by ml = 0, 

±1, ±2,… where we have allowed ml (the conventional notation 

for this quantum number) to have positive and negative integer 

values. At the same time we recognize the presence of h/2π = ħ 

and obtain

J m mz l l= = ± ± … 0, , ,1 2

Positive values of ml correspond to rotation in a clockwise 

sense around the z-axis (as viewed in the direction of z, Fig. 

13.5) and negative values of ml correspond to anticlockwise 

rotation around z. It then follows from eqns 13.2b and 13.5 that 

the energy is limited to the values

E
m

I
mm

l
ll

= = ± ± …
2 2

2
0 1 2


, , ,

A note on good practice To calculate the moment of inertia 

of a molecule, the actual masses of the atoms must be used. 

It follows that isotopes of the atoms in the molecule must 

be specified.

Self-test 13.1 Repeat the calculation in Brief illustration 13.1 

for 2H35Cl assuming the same bond length.

Answer: μ = 1.9043mu, I = 5.1365 × 10−47 kg m2

Particle 
on a ring

Angular 
momenta (13.5)

Particle 
on a ring

Energy levels (13.6)

0

0

0

2π

2π

2π

π

π

Angle, φ

Angle, φ

W
av

ef
u

n
ct

io
n

, ψ
W

av
ef

u
n

ct
io

n
, ψ

First circuit

Second
circuit

First, second,... circuits

(a)

(b)

φ

Figure 13.4 Two solutions of the Schrödinger equation for 
a particle on a ring. The circumference has been opened out 
into a straight line; the points at φ = 0 and 2π are identical. The 
solution in (a) is unacceptable because it is not single-valued. 
Moreover, on successive circuits it interferes destructively with 
itself, and does not survive. The solution in (b) is acceptable: it is 
single-valued, and on successive circuits it reproduces itself.

ml > 0

ml < 0
(a) (b)

Figure 13.5 The angular momentum of a particle confined to a 
plane can be represented by a vector of length |ml| units along 
the z-axis and with an orientation that indicates the direction of 
motion of the particle. The direction is given by the right-hand 
screw rule, so (a) corresponds to ml > 0, clockwise as seen from 
below, and (b) corresponds to ml < 0, anticlockwise as seen 
from below.
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106 3 The quantum mechanics of motion

We explore this result further by noting that:

The energies, labelled by ml, are quantized because ml 

must be an integer.

The occurrence of ml as its square means that the energy 

of rotation is independent of the sense of rotation 

(the sign of ml), as we expect physically. That is, 

states with a given nonzero value of |ml| are 

doubly degenerate.

The state described by ml = 0 is non-degenerate, 

consistent with the interpretation that, when ml is 

zero, the particle has an infinite wavelength and is 

‘stationary’; the question of the direction of rotation does 

not arise.

There is no zero-point energy in this system: the lowest 

possible energy is E0 = 0.

(b) The solutions of the Schrödinger 
equation

We have arrived at a number of conclusions about rotational 

motion by combining some results from classical mechanics 

with the de Broglie relation. Such a procedure can be very use-

ful for establishing the general form (and, as in this case, the 

exact energies and angular momenta) for a quantum mechani-

cal system. However, to obtain the wavefunctions for the par-

ticle on a ring, to confirm that the correct energies have been 

obtained, and to obtain practice for more complex problems 

where this less formal approach is inadequate, we need to solve 

the Schrödinger equation explicitly. We show in the following 

Justification that the normalized wavefunctions and corre-

sponding energies are given by

ψ φ
φ

m

m

ll

l

m( )
( )

, , ,
/

= = ± ± …ei

2
0 1 2

1 2π  

E
m

Im
l

l
=

2 2

2


 Particle on a ring  Energy levels  (13.7b)

The wavefunction with ml = 0 is ψ0(φ) = 1/(2π)1/2, correspond-

ing to uniform amplitude around the ring. That uniform-

ity implies that the particle has zero kinetic energy. Because 

kinetic energy is the only source of energy, E0 = 0 and there is no 

zero-point energy. This conclusion is consistent with the uncer-

tainty principle, because the angular location of the particle is 

completely unknown, so the angular momentum (and hence 

the energy) can be specified exactly.

Brief illustration 13.2 The rotational energies

So that we can get a sense of the energies involved in rotation, 

suppose that we consider the case of a body with the same 

moment of inertia as an 1H35Cl molecule (see Brief illustration 

13.1) that is confined to rotate in a plane. Then the energy of 

the doubly degenerate states with ml = ±1 is

E
I±

−

−= ± =
×

× ×
= ×1

2 2 34 2

47 2

1

2

1 055 10

2 2 642 10
2 106 10

( ) ( . )

( . )
.

 Js

kg m
−−22 J

Because the lowest rotational state (with ml = 0) has zero 

energy, this value is the minimum energy needed to start the 

body rotating. After multiplication by Avogadro’s constant, it 

corresponds to 0.1268 kJ mol−1.

Self-test 13.2 Repeat the calculations in this Brief illustration 

for a body with the same moment of inertia as 2H35Cl.

Answer: E±
− −= ×1

22 11 083 10 65 22. .J or J mol

Particle 
on a ring

Wave-
functions (13.7a)

P
h

ys
ic

al
 

in
te

rp
re

ta
ti

o
n

Justification 13.2 The solutions of the Schrödinger 
equation for a particle on a ring

The hamiltonian for a particle of mass m travelling on a circle 

in the xy-plane (with V = 0) is the same as that for free motion 

in a plane (eqn 11.1 of Topic 11),

�H
m x y

= − +
⎛
⎝⎜

⎞
⎠⎟

2 2

2

2

22

∂
∂

∂
∂

 
 Hamiltonian  (13.8)

but with the constraint to a path of constant radius r. It is 

always a good idea to use coordinates that reflect the full sym-

metry of the system, so we introduce the coordinates r and φ 

(Fig. 13.6), where x = r cos φ and y = r sin φ. As shown in The 

chemist’s toolkit 13.1, we can write

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

2

2

2

2

2

2 2

2

2

1 1

x y r r r r
+ = + +

φ
 (13.9)

However, because the radius of the path is fixed, the deriva-

tives with respect to r can be discarded. Only the last term in 

eqn 13.9 then survives and the hamiltonian becomes simply

�H
mr

= − 2

2

2

22

d

dφ  
Particle on a ring  Hamiltonian  (13.10a)

x

y

z

r

φ

Figure 13.6 The cylindrical coordinates z, r, and φ for discussing 
systems with axial (cylindrical) symmetry. For a particle 
confined to the xy-plane, only r and φ can change.
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13 Rotational motion in two dimensions  107

The partial derivative has been replaced by a complete deriva-

tive because φ is now the only variable. The moment of inertia, 

I = mr2 has appeared automatically so H�  may be written

�H
I

= − 2 2

22

d

dφ  
Particle on a ring  Hamiltonian  (13.10b)

and the Schrödinger equation is

− =2 2

22I
E

d

d

ψ
φ

ψ

We rewrite this equation as

d

d

2

2 2

2ψ
φ

ψ= − IE



For a given energy, 2IE/ħ2 is a constant, which for convenience 

(and an eye on the future) we write as ml
2. At this stage ml is just 

a dimensionless number with no restrictions. Then the equation 

becomes

d

d

2

2
2ψ

φ
ψ= −ml

 (13.11b)

The (unnormalized) general solutions of this equation are

ψ φ φ
m

m
l

l( )= ei  (13.12)

as can be verified by substitution.

We now select the acceptable solutions from among these 

general solutions by imposing the condition that the wave-

function should be single-valued. That is, the wavefunction 

ψ must satisfy a cyclic boundary condition, and match at 

points separated by a complete revolution: ψ (φ + 2π) = ψ (φ). 

On substituting the general wavefunction into this condition, 

we find

ψ φ ψ φ
ψ φ

φ φ
m

m m m
m

m

m

l

l l l

l

l

l

( ) ( )

( )( )

( )+ = = =
=

+2 2 2 2

2

π π π π

π

e e e e

e

i i i i

i mml

As eiπ = −1 (Euler’s formula, Mathematical background 3), this 

relation is equivalent to

ψ φ ψ φm
m

ml

l

l
( ) ( )( )+ = −2 1 2π

Because cyclic boundary conditions require ( ) ,− =1 1 22m
l

l m  

must be a positive or a negative even integer (including 0), and 

therefore ml must be an integer: ml = 0, ±1, ±2, ….

We now normalize the wavefunction by f inding the 

 normalization constant N given by eqn 5.2 (with dx replaced 

by dφ) :

N

m ml l

=
⎛
⎝⎜

⎞
⎠⎟

=
⎛

⎝

⎜
⎜
⎜

∫ ∫ −

∫

1 1

0

2
1 2

0

2π π

π

ψ ψ φ φφ φ

φ

*

/

d e e di i

0

2

d

� ��� 	��

⎞⎞

⎠

⎟
⎟
⎟

=
1 2 1 2

1

2/ /( )π

  

(13.13)

and the normalized wavefunctions for a particle on a ring are 

those given by eqn 13.7a. The expression for the energies of 

the states (eqn 13.7b) is obtained by rearranging the relation 

m IE E m Il l
2 2 22 2= =/ int o / .

Example 13.1 Using the particle-on-a-ring model

The particle-on-a-ring is a crude but illustrative model of 

cyclic, conjugated molecular systems. Treat the π electrons in 

benzene as particles freely moving over a circular ring of car-

bon atoms and calculate the minimum energy required for the 

excitation of a π electron. The carbon–carbon bond length in 

benzene is 140 pm.

Method For reasons that will be familiar from introductory 

chemistry, each carbon atom contributes one p electron to the π 

orbitals and each energy level can be occupied by two electrons. 

Therefore, six electrons in the conjugated system move along the 

perimeter of the ring, and since each state is occupied by two elec-

trons, only the ml = 0, +1, and −1 states are occupied (with the last 

two being degenerate). The minimum energy required for excita-

tion corresponds to a transition of an electron from the ml = +1 

(or −1) state to the ml = +2 (or −2) state. Use eqn 13.7b, and the 

mass of the electron, to calculate the energies of the states; take 

the radius of the ring to be the carbon–carbon bond length.

The chemist’s toolkit 13.1 Cylindrical coordinates

The natural coordinates to use in a system with cylindrical 

symmetry are cylindrical coordinates, with r the radius, φ the 

azimuth, and z the location along the axis (Sketch 13.1). The 

relation between cylindrical and Cartesian coordinates is

x r y r z= =cos sinφ φ

For a system confined to a plane, z may be set equal to 0. The 

volume element in cylindrical coordinates (see Sketch 13.1) is

d d d dτ φ= r r z

For a two-dimensional system, z is ignored: the ‘volume’ 

element is simply rdrdφ and the first and second derivatives 

with respect to the remaining variable coordinates are

x
y

y
x

x y r r r r

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

− =

+ = + +

φ

φ

2

2

2

2

2

2 2

2

2

1 1

r

dr rdφ

dφ

dz

z

φ

Volume = r dr dφ dz

Sketch 13.1 The cylindrical coordinates used for discussing 
a system with cylindrical symmetry. The volume element is 
also shown.

Particle on a ring (13.11a)Schrödinger 
equation 
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108 3 The quantum mechanics of motion

13.2 Quantization of angular 
momentum

We have seen that the angular momentum around the z-axis 

is quantized and confined to the values given in eqn 13.5 

(Jz = mlħ). The wavefunction for the particle on a ring is given 

by eqn 13.7a:

ψ φ φ φ
φ

m

m

l ll

l

m m( )
( ) ( )

( )
/ /

= = +e
i

i

2

1

21 2 1 2π π
cos sin

Therefore, as |ml| increases, the increasing angular momentum 

is associated with:

an increase in the number of nodes in the real  

(cos mlφ) and imaginary (sin mlφ) parts of the 

wavefunction (the complex function does not 

have nodes but its real and imaginary components 

each do);

a decrease in the wavelength and, by the de Broglie 

relation, an increase in the linear momentum with which 

the particle travels round the ring (Fig. 13.7).

We can come to the same conclusion about quantization 

of the z-component of angular momentum more formally by 

using the argument about the relation between eigenvalues and 

the values of observables established in Topic 6 by Postulate IV.

In classical mechanics the angular momentum lz about the 

z-axis, as shown in the Justification below, is given by

l xp ypz y x= −   z-Component of angular momentum  (13.14)

where px is the component of linear momentum parallel to the 

x-axis and py is the component parallel to the y-axis.

Answer From eqn 13.7b, the energy separation between the 

ml = +1 and the ml = +2 states is

ΔE E E= − = − ×
×

× × × ×+ +

−

−2 1

34

4 1
1 055 10

( )
( . Js)

2 (9.109 10 kg) (1.40 1

2

31 00 m)

J

10 2−

−= ×9 35 10 19.

Therefore the minimum energy required to excite an electron 

is 9.35 × 10−19 J or 563 kJ mol−1. This energy separation corre-

sponds to an absorption frequency of 1.41 PHz (1 PHz = 1015 

Hz) and a wavelength of 213 nm; the experimental value for a 

transition of this kind is 260 nm. That such a primitive model 

gives relatively good agreement is encouraging. In addition, 

even though the model is primitive, it gives insight into the ori-

gin of the quantized π electron energy levels in cyclic conju-

gated systems (Topic 26).

A note on good practice Note that, when quoting the 

value of ml, it is good practice always to give the sign, 

even if ml is positive. Thus, we write ml = +1, not ml = 1.

Self-test 13.3 Using the particle on a ring model, calculate the 

minimum energy required for the excitation of a π electron 

in coronene, C24H12 (1). Assume that the radius of the ring is 

three times the carbon–carbon bond length in benzene and 

that the electrons are confined to the periphery of the mol-

ecule. Ignore the central ‘benzene’ ring and count only 18 π 

electrons.

1 Coronene
(model ring in red)

Answer: For transition from ml = +4 to ml =  +5: ΔE = 3.12 × 10−19 J or 

188 kJ mol−1

Brief illustration 13.3 Nodes in the wavefunction

Whereas the ml = 0 ground-state wavefunction has no nodes, 

the ml = +1 wavefunction

ψ φ φ φ
φ

+ = = +1 1 2 1 22

1

2
( )

( ) ( )
( )

/ /

e
i

i

π π
cos sin

has nodes at φ = π/2 and 3π/2 in its real part and at φ = 0 and 

π in its imaginary part. An increase in the number of nodes 

results in greater curvature of the (real and imaginary parts of 

the) wavefunction, consistent with an increase in kinetic and, 

in this case, total energy.

Self-test 13.4 Determine the number of nodes in the real and 

imaginary parts of the wavefunction for a state of general ml.

Answer: 2ml nodes each in real and imaginary part

|ml| = 2|ml| = 1

ml = 0

Figure 13.7 The real parts of the wavefunctions of a particle on 
a ring. As shorter wavelengths are achieved, the magnitude of 
the angular momentum around the z-axis grows in steps of ħ.
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13 Rotational motion in two dimensions  109

The operators for the linear momentum components px and 

py are given in Topic 6, so the operator for angular momentum 

about the z-axis is

�l x
y

y
xz = −⎛

⎝⎜
⎞
⎠⎟


i

∂
∂

∂
∂  

When expressed in terms of the cylindrical coordinates r and φ 

(The chemist’s toolkit 13.1), this equation becomes

�lz = 
i

∂
∂φ

 (13.15b)

With the angular momentum operator available, we can test 

whether the wavefunction in eqn 13.7a is an eigenfunction. 

Because the wavefunction depends on only the coordinate φ, 

the partial derivative in eqn 13.15b can be replaced by a com-

plete derivative and we find

�l m mz m m

m

l

m

l ml l

l l

l
ψ

φ
ψ

φ
ψ

φ φ

= = = =  


i i

e
i

i

ed

d

d

d

i i

( ) ( )/ /2 21 2 1 2π π  
(13.16)

That is, ψml
 is an eigenfunction of �lz , and corresponds to an 

angular momentum mlħ, in accord with eqn 13.5. When ml is 

positive, the angular momentum is positive (clockwise rota-

tion when seen from below); when ml is negative, the angu-

lar momentum is negative (anticlockwise when seen from 

below).

These features are the origin of the vector representation of 

angular momentum, in which the magnitude is represented by 

the length of a vector and the direction of motion by its orienta-

tion (Fig. 13.9). This vector representation of angular momen-

tum is also useful in classical physics but there is one crucial 

difference: in quantum mechanics the length of the vector is 

restricted to discrete values (corresponding to permitted values 

of ml) whereas in classical physics the length is continuously 

variable.

z-Component of the angular 
momentum operator (13.15a)

Brief illustration 13.4 The vector representation 
of angular momentum

Suppose that the particle on a ring is in a state with ml = +3. The 

magnitude of its angular momentum is 3ħ (or 3.165 × 10−34 J s), 

so the angular momentum itself is represented by a vector of 

length 3 (in units of ħ) pointing along the positive z-axis. The 

wheel (of mass 2 kg and radius 0.3 m) of a bicycle moving for-

ward at 20 km h−1 has an angular momentum of about 3 J s, 

corresponding to |ml| = 3 × 1034. If the z-axis runs from left to 

right through the axle of the wheel, we would write 

ml = +3 × 1034.

Self-test 13.5 Repeat for a particle in a state with ml = −2.

Answer: Vector of length 2 (in units of ħ) pointing along the negative z-axis

Justification 13.3 The angular momentum in 
classical mechanics

In classical mechanics, the angular momentum l of a particle 

with position r and linear momentum p is given by the vector 

product l = r × p (see The chemist’s toolkit 13.2 for a reminder 

about vector products). For motion restricted to two dimen-

sions, with i and j denoting unit vectors (vectors of length 1) 

pointing along the positive directions on the x- and y-axes, 

respectively,

r = + = +x y p px yi j p i j

where px is the component of linear momentum parallel to the 

x-axis and py is the component parallel to the y-axis. Therefore,

l r p i j i j k= × = + × + = −( ) ( ) ( )x y p p xp ypx y y x

where k is the unit vector pointing along the positive z-axis. 

For a particle rotating in the xy-plane, the angular momentum 

vector lies entirely along the z-axis with a magnitude given by 

|xpy − ypx| (Fig. 13.8).

r

p

i
j

k

x

y

z

l

Figure 13.8 The classical angular momentum l of a 
particle with position r and linear momentum p is given 
by the vector product l = r × p. For the motion restricted to 
the xy-plane as depicted here, r = xi + yj, p = pxi + py j, and 
l = (xpy − ypx)k, with i, j, and k denoting unit vectors along the 
positive x-, y-, and z-axes.

The chemist’s toolkit 13.2 Vector products

Given the vectors a and b:

a i j k b i j k= + + = + +a a a b b bx y z x y z

where i, j, and k are the unit vectors along the positive x-, y-, 

and z-axes and (ax,ay,az) and (bx,by,bz) are the components of a 

and b along the axes, the vector product between the two vec-

tors is given by

a b i j k× = − + − + −( ) ( ) ( )a b a b a b a b a b a by z z y z x x z x y y x

This quantity is a vector of magnitude ab sin θ, where θ is the 

angle between the vectors a and b, with magnitudes a and b. 

Furthermore, a  ×  b is a vector which is perpendicular to both 

a and b.
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110 3 The quantum mechanics of motion

When the particle is in a state of precisely known angu-

lar momentum mlħ its location around the ring is completely 

unknown because the probability density is uniform:

ψ ψ
φ φ

φ

m m

m m

m

l l

l l

l

*
( )

*

( )

( )

/ /

/

=⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=
−

e e

e

i i

i

2 2

2

1 2 1 2

1

π π

π 22 1 22

1

2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=eimlφ

( ) /π π

Angular momentum and angular position are a pair of comple-

mentary observables (in the sense defined in Topic 8; see Problem 

13.9), and the inability to specify them simultaneously with arbi-

trary precision is another example of the uncertainty principle.

Checklist of concepts

☐ 1. The energy and angular momentum for a particle 

rotating in two dimensions are quantized; quantization 

results from the requirement that the wavefunction sat-

isfy a cyclic boundary condition.

☐ 2. All energy levels of a particle rotating in two dimen-

sions are doubly degenerate except for the lowest level 

(ml = 0).

☐ 3. There is no zero-point energy for a particle rotating in a 

plane.

☐ 4. In the vector representation of angular momentum, 

the magnitude is represented by the length of a vec-

tor and the direction of motion by its orientation. The 

length of the vector is restricted to discrete values (cor-

responding to permitted values of ml).

☐ 5. It is impossible to specify the angular momentum and 

location of the particle rotating in two dimensions 

simultaneously with arbitrary precision.

☐ 6. The angular momentum and angular position are a 

pair of complementary observables.

Checklist of equations

Property Equation Comment Equation number

z-Component of angular momentum of particle on ring lz = mlħ ml = 0, ± 1, ± 2,… 13.5

Wavefunction of particle on ring ψ φ φ
m

m
l

l( ) ( ) /= ei / 2 1 2π ml = 0, ± 1, ± 2,… 13.7a

Energy of particle on ring E m Im ll
= 2 2 2 / ml = 0, ± 1, ± 2,… 13.7b

Angular momentum operator lz = ( / ) i ∂ ∂/ φ z-component 13.15b

Angular
momentum

Figure 13.9 The basic ideas of the vector representation of 
angular momentum: the magnitude of the angular momentum 
is represented by the length of the vector, and the orientation 
of the motion in space is represented by the orientation of the 
vector (using the right-hand screw rule).
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TOPIC 14

Rotational motion in 

three dimensions

The properties of a body able to rotate in three dimensions 

can be developed like the corresponding problem in two 

dimensions (Topic 13), but with the body able to rotate with 

respect to a third axis. Another way of expressing the transi-

tion from two dimensions to three is that the particle that in 

Topic 13 is confined to moving on a ring in a plane is now 

free to migrate over the surface of a sphere. The ‘particle’ may 

be an electron confined to a spherical surface or it might be a 

point in a solid body, such as a molecule, that represents the 

overall motion of the body about a centre of rotation. Thus, if 

the solutions are expressed in terms of the moment of inertia 

I = mr2, then they can be used to describe the three-dimen-

sional rotation of any body of that moment of inertia, such 

as a solid ball (which, if its mass is M and its radius is R, has 

I MR= 2
5

2) or a molecule, such as CH4 (which, if the CeH bond 

length is R, has I m R= 8
3

2
H ).

14.1 A particle on a sphere

We consider a particle of mass m that is free to move any-

where on the surface of a sphere of radius r. The sphere can 

be thought of as a three-dimensional stack of rings of differ-

ing radii with the freedom for the particle to migrate from 

one ring to another. The cyclic boundary condition for 

the particle on each ring leads to the quantum number ml 

that is encountered for motion on an individual ring. The 

Contents

14.1 A particle on a sphere 111

(a) The wavefunctions 112

Brief illustration 14.1: The angular nodes of the 

spherical harmonics 114

(b) The energies 114

Example 14.1: Using the rotational energy levels 115

14.2 Angular momentum 115

(a) The angular momentum operators 115

(b) Space quantization 116

Brief illustration 14.2: The magnitude of the angular 

momentum 116

Example 14.2: Calculating the angle of orientation 

of the angular momentum vector 116

(c) The vector model 117

Brief illustration 14.3: The vector model of the 

angular momentum 118

Checklist of concepts 118
Checklist of equations 119

 ➤ Why do you need to know this material?

The discussion of rotation in three dimensions introduces 
the concept of orbital angular momentum, which is central 
to the description of the electronic structure of atoms and 
underlies the description of the rotation of molecules and 
molecular spectroscopy.

 ➤ What is the key idea?
The energy and the angular momentum of a particle 
rotating in three dimensions are quantized.

 ➤ What do you need to know already?

You should be familiar with the postulates of quantum 
mechanics (Topics 5–7). This topic extends the description 
of rotational motion in two dimensions (Topic 13).
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112 3 The quantum mechanics of motion

requirement that the wavefunction must match as a path 

is traced over the poles as well as round the equator of the 

sphere surrounding the central point introduces a second 

cyclic boundary condition and therefore a second quantum 

number (Fig. 14.1).

(a) The wavefunctions
The hamiltonian operator for motion in three dimensions 

(Table 6.1) is

  

� 
H

m
V= − ∇ +

2
2

2  
Three dimensions  Hamiltonian operator  (14.1a)

∇ = + +2
2

2

2

2

2

2

∂
∂

∂
∂

∂
∂x y z

 

Three dimensions  Laplacian  (14.1b)

The laplacian, ∇2 (read ‘del squared’), is a convenient abbrevia-

tion for the sum of the three second derivatives. For the particle 

confined to a spherical surface, V = 0 wherever it is free to travel 

and r is a constant. To take advantage of the symmetry of the 

problem and the fact that r is constant for a particle on a sphere, 

we use spherical polar coordinates (The chemist's toolkit 14.1). 

The wavefunction is therefore a function of the colatitude, θ, 

and the azimuth, φ, and we write it ψ(θ,φ). The Schrödinger 

equation is therefore

  
− ∇ =2

2

2m
Eψ ψ

 
Particle on a sphere  Schrödinger equation  (14.2)

The Schrödinger equation in eqn 14.2 is solved by using the 

technique of separation of variables (see Mathematical back-

ground 2), which confirms that, as shown in the following 

Justification, the wavefunction can be written as a product of 

functions

ψ θ φ Θ θ Φ φ( , ) ( ) ( )=  (14.3)

The chemist's toolkit 14.1 Spherical polar coordinates

The natural coordinates to use in a system with spherical 

 symmetry are spherical polar coordinates, with r the radius, 

θ the colatitude, and φ the azimuth (Sketch 14.1). As can be 

inferred from Sketch 14.1, the relation between spherical polar 

and Cartesian coordinates is

x r y r z r= = =sin cos sin sin cosθ φ θ φ θ

The volume element in spherical polar coordinates (Sketch 

14.2) is

d d d dτ θ φ θ= r r2 sin

Similarly, the laplacian in spherical polar coordinates is 

(Table 6.1)

∇ = + +2
2

2 2
22 1∂

∂
∂
∂r r r r

Λ

and the legendrian, Λ2, is

Λ
φ θ θ θ θθ

2
2

2

2

1 1= +
sin sin

∂
∂

∂
∂

∂
∂sin

r

x

y

z

φ
θ

Sketch 14.1 The spherical polar coordinates used for 
discussing a system with spherical symmetry.

r dr
r dφ

dφ

φ

Volume = r2sin θ dr dφ dθ
θ r  sin θ dθ

dθ

Sketch 14.2 The volume element in spherical polar 
coordinates.

φ

θ

Figure 14.1 The wavefunction of a particle on the surface of 
a sphere must satisfy two cyclic boundary conditions. This 
requirement leads to two quantum numbers for its state of 
angular momentum.
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14 Rotational motion in three dimensions 113

where Θ is a function only of θ and Φ is a function only of φ. As 

confirmed in the Justification, the Φ are the solutions for a par-

ticle on a ring (Topic 13) and the overall solutions are specified 

by the orbital angular momentum quantum number l and the 

magnetic quantum number ml. These quantum numbers are 

restricted to the values

l m l l ll= = − −0 1 2 1, , , , , ,… …

The quantum number l is non-negative and, for a given value 

of l, there are 2l + 1 permitted values of ml.

The normalized wavefunctions ψ(θ,φ) for a given l and ml 

are usually denoted Ylml
( , )θ φ  and are called the spherical har-

monics (Table 14.1 and Fig. 14.2). They are as fundamental 

to the description of waves on spherical surfaces as the har-

monic (sine and cosine) functions are to the description of 

waves on lines and planes. These important functions satisfy 

the equation1

notation chosen with an eye to the future), the separated equa-

tions are

1 2

2
2 2 2

Φ
Φ
φ

θ
Φ θ θ Θ

θ ε θd

d

d

d

d

d
sin= − + =m ml l

sin
sin

The first of these two equations is the same as that encountered 

for the particle on a ring (Topic 13) and has the same solutions:

Φ φ= = ± ± …1

2
0 1 2

1 2( )
, , ,

/π
eim

l
l m

(Shortly we shall see that ml is in fact bounded for a three-

dimensional system, unlike the two-dimensional system.) 

The second equation is new, but its solutions are well known 

to mathematicians as ‘associated Legendre functions’. The 

cyclic boundary condition for the matching of the wave-

function at φ = 0 and 2π restricts ml to positive and negative 

integer values (including 0), as for a particle on a ring. The 

additional requirement that the wavefunctions also match on 

a journey over the poles (as in Fig. 14.1) results in the intro-

duction of the second quantum number, l, with non-negative 

integer  values. However, the presence of the quantum num-

ber ml in the second equation implies that the ranges of the 

two quantum numbers are linked, and it turns out that for 

a given value of l, ml ranges in integer steps from −l to +l, as 

quoted in the text.

Justification 14.1 The solutions of the Schrödinger 
equation for a particle on a sphere

Because r is constant, we can discard the part of the laplacian 

that involves differentiation with respect to r, and so write the 

Schrödinger equation as

− =2

2
2

2mr
EΛ ψψ

The moment of inertia, I = mr2, has appeared. This expression 

can be rearranged into

Λ εψ εψ2
2

2= − = IE



To verify that this expression is separable, we try the substitu-

tion ψ = ΘΦ and use the form of the legendrian in The chem-

ist's toolkit 14.1:

Λ ΘΦ ΘΦ
φ θ θ θ ΘΦ

θ εΘΦ
θ

2
2

2

2

1 1= + = −
sin

∂
∂

∂
∂

∂
∂

( )

sin
sin

( )

We now use the fact that Θ and Φ are each functions of 

one variable, so the partial derivatives become complete 

derivatives:

Θ
θ

Φ
φ

Φ
θ θ θ Θ

θ εΘΦ
sin

d

d sin

d

d

d

d2

2

2
+ = −sin

Division through by ΘΦ and multiplication by sin2 θ gives

1 2

2
2

Φ
Φ
φ

θ
Θ θ θ Θ

θ ε θd

d

sin d

d

d

d
sin+ = −sin

and, after minor rearrangement,

1
0

2

2
2

Φ
Φ
φ

θ
Θ θ θ Θ

θ ε θd

d

d

d

d

d
 sin+ + =sin

sin

The first term on the left depends only on φ and the remain-

ing two terms depend only on θ. By the argument presented in 

Mathematical background 2, each term is equal to a constant. 

Thus, if we set the first term equal to the constant −ml
2 (using a 

1 For a full account of the solution, see our Molecular quantum mechan-

ics, Oxford University Press (2011).

φ

θ

0

2π

0

π

Figure 14.2 The surface of a sphere is covered by allowing 
θ to range from 0 to π, and then sweeping that arc around a 
complete circle by allowing φ to range from 0 to 2π.
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114 3 The quantum mechanics of motion

Λ φ φθ θ2 1Y l l Ylm lml l
( ) ( ), ( ) ,= − +

 
(14.4)

Figure 14.3 shows a representation of the spherical har-

monics for l = 0 to 4 and ml = 0; the use of the dark and light 

shading, which correspond to different signs of the wave-

function, emphasizes the location of the angular nodes (the 

 positions at which the wavefunction passes through zero). 

Note that:

There are no angular nodes around the z-axis 

for functions with ml = 0. The spherical 

harmonic with l = 0, ml = 0 has no nodes at all: it is 

a ‘wave’ of constant height at all positions of the 

surface.

The spherical harmonic with l = 1, ml = 0 has a 

single angular node at θ = π/2; therefore, the equatorial 

plane is a nodal plane.

The spherical harmonic with l = 2, ml = 0 has two  

angular nodes.

(b) The energies
In general, the number of angular nodes is equal to l. As the 

number of nodes increases, the wavefunctions become more 

buckled, and with this increasing curvature we can anticipate 

that the kinetic energy of the particle (and therefore its total 

energy, because the potential energy is zero) increases.

It is established in Justification 14.1 that the Schrödinger 

equation for a particle for which only the angular coordinates 

are variable is

− =2

2
2

2mr
EΛ ψψ

 

with mr2 = I. However, we have also seen that the wavefunctions 

ψ, which we now know are the spherical harmonics Y, satisfy 

eqn 14.4. Therefore, this equation becomes
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Brief illustration 14.1 The angular nodes of the 
spherical harmonics

For the spherical harmonic with l = 2, ml = 0, the angular nodes 

correspond to angles where (see Table 14.1) 3 cos2θ − 1 = 0, or 

cos ( ) ./θ = ± 1 3 1 2/  The angular nodes are therefore at 54.7° and 

125.3° (close to the latitudes of Los Angeles and Buenos Aires 

on an actual globe).

Self-test 14.1 Find the angular nodes for the spherical har-

monic l = 3, ml = 0.

Answer: θ = 39.2°, 90°, 140.8°

l = 0, ml = 0 l = 1, ml = 0

l = 2, ml = 0 l = 3, ml = 0 l = 4, ml = 0

Figure 14.3 A representation of the wavefunctions of a particle 
on the surface of a sphere that emphasizes the location of 
angular nodes: grey and blue shading correspond to different 
signs of the wavefunction. Note that the number of nodes 
increases as the value of l increases. All these wavefunctions 
correspond to ml = 0; a path round the vertical z-axis of the 
sphere does not cut through any nodes.

Table 14.1 The spherical harmonics

l ml Ylml
( , )θ φ

0 0 1

4

1 2

π
⎛
⎝⎜

⎞
⎠⎟

/

 

1 0 3

4

1 2

π
⎛
⎝⎜

⎞
⎠⎟

/

cosθ

±1
∓

3

8

1 2

π
⎛
⎝⎜

⎞
⎠⎟

±
/

sinθ φe i

2 0
5

16
3 1

1 2

2

π
⎛
⎝⎜

⎞
⎠⎟

−
/

( )cos θ
 

±1
∓

15

8

1 2

π
⎛
⎝⎜

⎞
⎠⎟

±
/

cos sinθ θ φe i

±2 15

32

1 2

2 2

π
⎛
⎝⎜

⎞
⎠⎟

±
/

sin θ φe i

3 0 7

16
5 3

1 2

3

π
⎛
⎝⎜

⎞
⎠⎟

−
/

( )coscos θ θ

±1
∓

21

64
5 1

1 2

2

π
⎛
⎝⎜

⎞
⎠⎟

− ±
/

( )cos sinθ θ φe i

±2 105

32

1 2

2 2

π
⎛
⎝⎜

⎞
⎠⎟

±
/

cossin θ θ φe i

±3
∓

35

64

1 2

3 3

π
⎛
⎝⎜

⎞
⎠⎟

±
/

sin θ φe i
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14 Rotational motion in three dimensions 115

− = + =
− +
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1

2
1
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I
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l l Y

lm lm lm lml l l l

lml
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Λ ψ

( )

, ( )or

 

where we have allowed for the possibility that the energies 

depend on the two quantum numbers. We can conclude that 

the allowed energies of the particle are

E l l
Ilml

= +( )1
2

2
 

Particle on a sphere  Energy levels  (14.5)

According to this equation

The energies are quantized because l = 0, 1, 2, … .

The energies are independent of the value of ml for a 

given value of l, and henceforth we shall denote them 

simply as El.

Because there are 2l + 1 different wavefunctions 

(one for each value of ml) that correspond to the 

same energy, it follows that a level with quantum 

number l is (2l + 1)-fold degenerate.

There is no zero-point energy, and E0 = 0.

14.2 Angular momentum

Just as important as the quantization of energy is the quantiza-

tion of the particle's angular momentum. In classical mechan-

ics (Justification 13.3 of Topic 13) the angular momentum is 

represented by the vector l = r × p (r and p being the position 

and linear momentum vectors, respectively) with components 

lx, ly, and lz along the x-, y-, and z-axes. In quantum mechan-

ics, the angular momentum is discussed in terms of the corre-

sponding angular momentum operators.

(a) The angular momentum operators
The operator for the z-component of the angular momentum 

is given in Topic 13 as � lz = ∂ ∂ − ∂ ∂( i)( )/ / /y y x  and equivalently 
� lz = ∂ ∂( i)( )/ / φ . Similar expressions hold for the operators for 

the x- and y-components.

� 
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The commutation relations among the three operators, which 

you are invited to derive in Problem 14.9, are

���� � � � � �[ ] [ ] [ ]l l l l l l ll lx y z y z x z x y, , ,= = =i i i    
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The energy separation between the two lowest rotational 

energy levels (J = 0 and 1) is 4.212 × 10−22 J, which corresponds 

to a photon frequency of

� = = ×
×

= × =
−

−
−ΔE

h

4 212 10

6 626 10
6 357 10 635 7

22

34
11 1.

.
. .

J

Js
s GHz

Hz


Radiation with this frequency belongs to the microwave region 

of the electromagnetic spectrum, so microwave spectroscopy 

is used to study molecular rotations (Topic 42). Because the 

transition energies depend on the moment of inertia, micro-

wave spectroscopy is a very accurate technique for the deter-

mination of bond lengths.

Self-test 14.2 What is the frequency of the transition between 

the lowest two rotational levels in 2H35Cl? (Its moment of iner-

tia is 5.1365 × 10−47 kg m2.)

Answer: 327.0 GHz

Angular momentum  
operators

(14.6)

Angular 
momentum 
commutators

(14.7)

Example 14.1 Using the rotational energy levels

Determine the energies and degeneracies of the lowest four 

energy levels of an 1H35Cl molecule freely rotating in three 

dimensions. What is the frequency of the transition between 

the lowest two rotational levels? The moment of inertia of an 
1H35Cl molecule is 2.6422 × 10−47 kg m2.

Method The rotational energies are given in eqn 14.5; but, for 

reasons that are developed in Topic 41, the angular momen-

tum quantum number of rotating molecules is denoted J in 

place of l, and we use that symbol here. The degeneracy of a 

level with quantum number J is 2J + 1, the analogue of 2l + 1. A 

transition between two rotational levels can be brought about 

by the emission or absorption of a photon with a frequency 

given by the Bohr frequency condition (Topic 4, hν = ΔE).

Answer First, note that

2 34 2

47 2
22

2

1 055 10

2 2 6422 10
2 106 10

I
=

×
× ×

= …×
−

−
−( . )

( . )
.

Js
J

kg m

or 0.2106… zJ. We now draw up the following table, where 

the molar energies are obtained by multiplying the individual 

energies by Avogadro's constant:

J E/zJ E/(J mol−1) Degeneracy

0 0 0 1

1 0.4212 253.6 3

2 1.264 760.9 5

3 2.527 1522 7
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116 3 The quantum mechanics of motion

Because these operators do not commute, the observables they 

represent are complementary (Topic 8) and more than one of 

them cannot be specified simultaneously.

The operator corresponding to the magnitude of the angular 

momentum is obtained by noting that

� � � �l l l lx y z
2 2 2 2= + +

 

This operator commutes with all three components (see 

Problem 14.11):

� �[ ]l lq
2 2, = 0

 

Because these operators commute, they do not correspond to 

complementary observables. In other words, if the square of 

the magnitude of the angular momentum is known, and there-

fore the magnitude itself is known, it is possible to specify any 

one of its components (but not more than one, by the conse-

quences of eqn 14.7).

(b) Space quantization
The magnitude of the angular momentum can be determined 

from the properties of the operator in eqn 14.8. However, it is 

much simpler to find the magnitude by noting that the energy 

of the particle is related classically to its angular momentum l by 

E = l2/2I (see Topic 13). Therefore, by comparing this equation 

with eqn 14.5, we can deduce that the square of the magnitude 

of the angular momentum is given by l(l + 1)ħ2 and therefore 

that the magnitude is itself confined to the values

Magnitude of angular momentum

1 1 2= +{ ( )} /l l 
 

l = 0, 1, 2, … (14.10)

Furthermore, as shown in the Justification below by using the 

operator �lz, the angular momentum about the z-axis is also 

quantized and, for a given value of l, it has the values

z

ml

-Component of angular 

momentum = 
 

A note on good practice When quoting the value of ml, always 
give the sign, even if ml is positive. Thus, write ml = +2, not ml = 2.

The result that ml is confined to the values l, l − 1, …, −l for a 

given value of l means that the component of angular momen-

tum about the z-axis—the contribution to the total angular 

momentum of rotation around that axis—may take only 2l + 1 

values. If we represent the angular momentum by a vector of 

length {l(l + 1)}1/2, then it follows that this vector must be ori-

ented so that its projection on the z-axis is ml and that it can have 

only 2l + 1 orientations rather than the continuous range of ori-

entations of a rotating classical body (Fig. 14.4). The remarkable 

implication is that the orientation of a rotating body is quantized.

With this operator available, we can test if the wavefunction 

in eqn 14.3 is an eigenfunction:

� �l l m mz z l l

ml

ψ ΘΦ ΘΦ Θ Φ Θ Φ ψφ φ

Φ

= = = = × = 



 
i i

i

∂
∂

d

d

The partial derivative has been replaced above by a full deriva-

tive because Θ is independent of φ and we have used the result, 

as given in Justification 14.1, that Φ  φ∝ eiml . Therefore, the 

wavefunctions are eigenfunctions of �lz, and correspond to an 

angular momentum around the z-axis of mlħ, in accord with 

eqn 14.11.

Operator for square of magnitude 
of angular momentum

(14.8)

q = x, y, and z

Commutators 
of angular 
momentum 
operators

(14.9)

Justification 14.2 The z-component of angular 
momentum for a particle on a sphere

The operator for the z-component of the angular momentum 

in polar coordinates is given in eqn 14.6:

� 
lz =

i

∂
∂φ

ml = +l, l − 1, … , −l (14.11)

Brief illustration 14.2 The magnitude of the angular 
momentum

The lowest four rotational energy levels of the 1H35Cl molecule 

of Example 14.1 correspond to J = 0, 1, 2, 3. Using eqns 14.10 

and 14.11, we can draw up the following table:

Self-test 14.3 What is the degeneracy and magnitude of the 

angular momentum for J = 5?

Answer: 11, 301/2ħ

J Magnitude 
of angular 
momentum/ħ

Degeneracy z-Component of angular 
momentum/ħ

0 0 1 0

1 21/2 3 +1, 0, −1

2 61/2 5 +2, +1, 0, −1, −2

3 121/2 7 +3, +2, +1, 0, −1, −2, −3

Example 14.2 Calculating the angle of orientation 
of the angular momentum vector

Consider the two lowest energy levels of a 1H35Cl molecule 

freely rotating in three dimensions. What are the angles that 

the angular momentum vectors can make to the z-axis?
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14 Rotational motion in three dimensions 117

The quantum mechanical result that a rotating body may not 

take up an arbitrary orientation with respect to some specified 

axis (for example, an axis defined by the direction of an exter-

nally applied electric or magnetic field) is called space quan-

tization. It was confirmed by an experiment first performed 

by Otto Stern and Walther Gerlach in 1921, who shot a beam 

of silver atoms through an inhomogeneous magnetic field 

(Fig.  14.5). The idea behind the experiment was that a silver 

atom behaves like a magnet and interacts with the applied 

field (a point explored in more detail in the discussion of 

‘spin’ in Topic 19.). According to classical mechanics, because 

the orientation of the angular momentum can take any value, 

the associated magnet can take any orientation. Because the 

direction in which the magnet is driven by the inhomogene-

ous field depends on the magnet's orientation, it follows that 

a broad band of atoms is expected to emerge from the region 

where the magnetic field acts. According to quantum mechan-

ics, however, because the orientation of the angular momentum 

is quantized, the associated magnet lies in a number of discrete 

orientations, so several sharp bands of atoms are expected.

In their first experiment, Stern and Gerlach appeared to 

 confirm the classical prediction. However, the experiment is 

difficult because collisions between the atoms in the beam blur 

the bands. When the experiment was repeated with a beam 

of very low intensity (so that collisions were less frequent), 

they observed discrete bands, and so confirmed the quantum 

prediction.

(c) The vector model
So far, we have discussed the magnitude of the angular momen-

tum and its z-component. In classical physics, we would be able 

to specify the components about the x- and y-axes too and be 

able to represent the angular momentum by a vector with a def-

inite orientation. According to quantum mechanics, we already 

have as complete a description of the angular momentum of a 

rotating object as it is possible to have, and can say nothing fur-

ther about the orientation of the vector.

The reason for this restriction is that, as described above, 

the components of angular momentum are mutually comple-

mentary and therefore if one is specified (the z-component, 

(a)

(b)

(c)

Figure 14.5 (a) The experimental arrangement for the Stern–
Gerlach experiment: the magnet provides an inhomogeneous 
field. (b) The classically expected result. (c) The observed 
outcome using silver atoms.

ml = +2

ml = +1

ml = 0

ml = –1

ml = –2

z

Figure 14.4 The permitted orientations of angular momentum 
when l = 2. We shall see soon that this representation is too 
specific because the azimuthal orientation of the vector (its 
angle around z) is indeterminate.

Method For the two lowest rotational energy levels, identify 

the values of the angular momentum quantum number J and 

its z-component, which is denoted MJ. Use eqns 14.10 and 14.11 

(replacing l and ml by J and MJ) and trigonometry to deduce 

the angle θ that the angular momentum vector makes to the 

z-axis.

Answer The angle that the angular momentum vector makes 

to the z-axis is given by

cos
( ) ( ){ } { }/ /

θ =
+

=
+

M

J J

M

J J
J J

1 11 2 1 2

We draw up the following table:

Self-test 14.4 What angle does the angular momentum vector 

make to the z-axis for a particle described by the wavefunction 

Y2,−1?

Answer: θ = 114.1°

J MJ cos θ θ

0 0 0 90°

1 +1 1
2

1 2( ) /
45°

1 0 0 90°

1 −1 −( )1
2

1 2/
135°
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118 3 The quantum mechanics of motion

Brief illustration 14.3 The vector model of the 
angular momentum

If the wavefunction of a rotating molecule is given by the 

spherical harmonic Y3,+2 then the angular momentum can be 

represented by a cone

with a side of length 121/2 (representing the magnitude 

of 121/2ħ); and

with a projection of +2 on the z-axis (representing the 

z-component of +2ħ).

Additionally, by the equation in Example 14.2, the side of the 

cone makes an angle of 54.7° to the z-axis.

Self-test 14.5 Analyse the vector model of angular momentum 

if the wavefunction is given by the spherical harmonic Y3,−1.

Answer: length is 121/2, projection is −1, angle of 106.8°

typically), then the other two components cannot be specified. 

(The single exception to this statement is the trivial case l = 0, 

for which all three components are zero.) On the other hand, 

the operator for the square of the magnitude of the angular 

momentum commutes with all three components (eqn 14.9). 

Therefore, we may specify precisely and simultaneously the 

magnitude of the angular momentum and any one of the com-

ponents of the angular momentum. It follows that the illus-

tration in Fig. 14.4, which is summarized in Fig.14.6a, gives a 

false impression of the state of the system, because it suggests 

definite values for the x- and y-components. A more accurate 

picture must reflect the impossibility of specifying lx and ly if lz 

is known.

The vector model of angular momentum uses pictures like 

that in Fig. 14.6b. The cones are drawn with sides of length 

{l(l + 1)}1/2, and represent the magnitude of the angular momen-

tum (in units of ħ). Each cone has a definite projection (of ml) 

on the z-axis, representing the system's precise value of lz. The 

lx and ly projections, however, are indefinite. The vector repre-

senting the state of angular momentum can be thought of as 

lying with its tip on any point on the mouth of the cone. At this 

stage it should not be thought of as sweeping round the cone; 

that aspect of the model will be added later when we allow the 

picture to convey more information.

Checklist of concepts

☐ 1. For a particle rotating in three dimensions, the cyclic 

boundary conditions imply that the magnitude and 

z-component of the angular momentum are quantized.

☐ 2. Because the energy of a rotating body is related to the 

magnitude of the angular momentum, the rotational 

energy is quantized.

☐ 3. Because the components of angular momentum do not 

commute, only the magnitude of the angular momen-

tum and one of its components can be specified pre-

cisely and simultaneously.

☐ 4. The wavefunctions for the rotation of a body in three 

dimensions (as represented by a particle moving on the 

surface of a sphere) are the spherical harmonics.

☐ 5. Space quantization refers to the quantum mechanical 

result that a rotating body may not take up an arbitrary 

orientation with respect to some specified axis.

☐ 6. In the vector model of angular momentum, the angu-

lar momentum is represented by a cone with a side of 

length {l(l + 1)}1/2 and a projection of ml on the z-axis. 

The vector can be thought of as lying with its tip on an 

indeterminate point on the mouth of the cone.

(a) (b)

+2

+1

0

–1

–2

ml

z

+1

0

–1

–2

z +2

Figure 14.6 (a) A summary of Fig. 14.4. However, because 
the azimuthal angle of the vector around the z-axis is 
indeterminate, a better representation is as in (b), where each 
vector lies at an unspecified azimuthal angle on its cone.
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14 Rotational motion in three dimensions 119

Checklist of equations

Property Equation Comment Equation number

Energy of particle on sphere El = l(l + 1)ħ2/2I l = 0, 1, 2, … 14.5

Angular momentum commutators � � 
� � 
� � 
� �

�
�

�

[ , ]

[ , ]

[ , ]

[ , ] ,

l l l

l l l

l l l

l l q

x y z

y z

z x

q

x

y

=
=
=

=

i

i

i

2 0 == x y z, , and

Note cyclic symmetry of xyz 14.7
14.9

Magnitude of angular momentum {l(l + 1)}1/2ħ l = 0, 1, 2, … 14.10

z-Component of angular momentum mlħ ml = + l, l  − 1, …, −l 14.11
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120 3 The quantum mechanics of motion

Focus 3  on  The quantum mechanics of motion

Topic 9 Translational motion in one dimension

Discussion question
9.1 Discuss the physical origin of quantization of energy for a particle 

confined to motion inside a one-dimensional box.

Exercises
9.1(a) Determine the linear momentum and kinetic energy of a free electron 

described by the wavefunction eikx with k = 3 m−1.

9.1(b) Determine the linear momentum and kinetic energy of a free proton 

described by the wavefunction e−ikx with k = 5 m−1.

9.2(a) Write the wavefunction for a particle of mass 2.0 g travelling to the left 

with a kinetic energy of 20 J. 

9.2(b) Write the wavefunction for a particle of mass 1.0 g travelling to the right 

at 10 m s−1.

9.3(a) Calculate the energy separations in joules, kilojoules per mole, and 

electronvolts, and as a wavenumber, between the levels (a) n = 2 and n = 1, (b) 

n = 6 and n = 5 of an electron in a one-dimensional nanoparticle modelled by a 

box of length 1.0 nm. 

9.3(b) Calculate the energy separations in joules, kilojoules per mole, and 

electronvolts, and as a wavenumber, between the levels (a) n = 3 and n = 1, (b) 

n = 7 and n = 6 of an electron in a one-dimensional nanoparticle modelled by a 

box of length 1.5 nm.

9.4(a) A conjugated polyene can be modelled by a particle in a one-

dimensional box. Calculate the probability that an electron will be found 

between 0.49L and 0.51L in a box of length L when it has (a) n = 1, (b) n = 2. 

Take the wavefunction to be a constant in this narrow range.

9.4(b) A conjugated polyene can be modelled by a particle in a one-

dimensional box. Calculate the probability that a particle will be found 

between 0.65L and 0.67L in a box of length L when it has (a) n = 1, (b) n = 2. 

Take the wavefunction to be a constant in this narrow range.

9.5(a) Calculate the expectation values of �p  and �p2 for a particle in the state 

n = 1 in a square-well potential used to model a one-dimensional nanoparticle.

9.5(b) Calculate the expectation values of �p  and �p2 for a particle in the state 

n = 2 in a square-well potential used to model a one-dimensional nanoparticle.

9.6(a) An electron is squeezed between two confining walls, one of which can 

be moved inwards. At what separation of the walls will the zero-point energy 

of the electron be equal to its rest mass energy, mec
2? Express your answer in 

terms of the parameter λC = h/mec, the ‘Compton wavelength’ of the electron.

9.6(b) Now replace the electron in Exercise 9.6(a) by a proton. At what 

separation of the walls will the zero-point energy of the proton be equal to its 

rest mass energy, mpc2?

9.7(a) What are the most likely locations of a particle in a box of length L in 

the state n = 5?

9.7(b) What are the most likely locations of a particle in a box of length L in 

the state n = 4?

Problems
9.1 Calculate the separation between the two lowest translational energy levels 

of an O2 molecule in a one-dimensional container of length 5.0 cm. At what 

value of n does the energy of the molecule reach 1
2
kT  at 300 K, and what is 

the separation of this level from the one immediately below?

9.2 Suppose the state of an electron in a certain one-dimensional cavity 

of length 1.0 nm in a semiconductor is described by the normalized 

wavefunction ψ ψ ψ ψ( ) ( ) ( ) ( )
/

x x x x= +( ) ( )1
2 1

1
2 2

1
2

1 2

4i − , where ψn(x) is 

given by eqn 9.8a. When the energy of the electron is measured, what is the 

outcome? What is the expectation value of the energy?

9.3 An electron confined to a metallic nanoparticle is modelled as a particle  

in a one-dimensional box of length L. If the electron is in the state n = 1, 

calculate the probability of finding it in the following regions: (a) 0 ≤ ≤x L1
2

, 

(b) 0 1
4

 ≤ ≤x L , (c) 1
2

1
2

L x x L x− ≤ ≤ + δ δ .

9.4 Repeat Problem 9.3 for a general value of n.

9.5 The wavefunction for a free particle eikx is not square-integrable and 

therefore cannot be normalized in a box of infinite length. However, to 

circumvent this problem, we suppose that the particle is in a region of finite 

length L, normalize the wavefunction, and then allow L to become infinite at 

the end of the calculations that use the wavefunction. Find the normalization 

constant for the wavefunction eikx, assuming that a free particle is in a region 

of length L.

9.6 Consider two different particles moving in one dimension x, one 

(particle 1) described by the (unnormalized) wavefunction ψ1(x) = ei(x/m) 

and the second (particle 2) described by the (unnormalized) wavefunction 

ψ 2
1
2

2 3 2 3( ) ( )( ) ( ) ( ) ( )/ / / /x x x x x= + + +e e e ei m i m i m i m− − . If the positions of the 

particles were measured, which would be found to be more localized in space 

(that is, which has a position known more precisely)? Explain your answer 

with a diagram.

9.7 Show for a particle in a box that Δx approaches its classical value as n → ∞. 

Hint: In the classical case the distribution is uniform across the box, and so in 

effect ψ(x) = 1/L1/2.

9.8 When β-carotene is oxidized in vivo, it forms two molecules of retinal 

(vitamin A), a precursor to the pigment in the retina responsible for vision. 

The conjugated system of retinal consists of 11 C atoms and one O atom. In 

the ground state of retinal, each level up to n = 6 is occupied by two electrons. 

Assuming an average internuclear distance of 140 pm, calculate (a) the 

separation in energy between the ground state and the first excited state in 

which one electron occupies the state with n = 7, and (b) the frequency and 

wavelength of the radiation required to produce a transition between these 
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Exercises and problems 121

two states. (c) Using your results, choose between the words in parentheses in 

the following sentence to generate a rule for the prediction of frequency shifts 

in the absorption spectra of linear polyenes:

The absorption spectrum of a linear polyene shifts to (higher/lower) 

frequency as the number of conjugated atoms (increases/decreases).

Topic 10 Tunnelling

Discussion questions
10.1 Discuss the physical origins of quantum mechanical tunnelling. Identify 

chemical systems where tunnelling might play a role.

10.2 Describe the features that stem from nanometre-scale dimensions that 

are not found in macroscopic objects.

Exercises
10.1(a) Suppose that the junction between two semiconductors can be 

represented by a barrier of height 2.0 eV and length 100 pm. Calculate the 

transmission probability of an electron with energy 1.5 eV.

10.1(b) Suppose that a proton of an acidic hydrogen atom is confined to an acid 

that can be represented by a barrier of height 2.0 eV and length 100 pm. Calculate 

the probability that a proton with energy 1.5 eV can escape from the acid.

Problems
10.1 Derive eqn 10.6, the expression for the transmission probability and show 

that it reduces to eqn 10.7 when κL � 1.

10.2 Repeat the analysis of this Topic to determine the transmission coefficient 

T and the reflection probability, R, the probability that a particle incident on 

the left of the barrier will reflect from the barrier and be found moving to the 

left away from the barrier, for E > V. Suggest a physical reason for the variation 

of T as depicted in Fig. 10.5.

10.3 An electron inside a one-dimensional nanoparticle has a potential 

energy different from its potential energy once it has escaped through the 

confining barrier. Consider a particle moving in one dimension with V = 0 for 

–∞ < x ≤ 0, V = V2 for 0 < x ≤ L, and V = V3 for L ≤ x < ∞ and incident from the 

left. The energy of the particle lies in the range V2 > E > V3. (a) Calculate the 

transmission coefficient, T. (b) Show that the general equation for T reduces 

to eqn 10.6 when V3 = 0.

10.4 The wavefunction inside a long barrier of height V is ψ = Ne−κx. Calculate 

(a) the probability that the particle is inside the barrier and (b) the average 

penetration depth of the particle into the barrier.

10.5 Many biological electron transfer reactions, such as those associated 

with biological energy conversion, may be visualized as arising from electron 

tunnelling between protein-bound cofactors, such as cytochromes, quinones, 

flavins, and chlorophylls. This tunnelling occurs over distances that are 

often greater than 1.0 nm, with sections of protein separating electron donor 

from acceptor. For a specific combination of donor and acceptor, the rate 

of electron tunnelling is proportional to the transmission probability, with 

κ ≈ 7 nm−1 (eqn 10.7). By what factor does the rate of electron tunnelling 

between two cofactors increase as the distance between them changes from 

2.0 nm to 1.0 nm?

10.6 The ability of a proton to tunnel through a barrier contributes to 

the rapidity of proton transfer reactions in solution and therefore to the 

properties of acids and bases. Estimate the relative probabilities that a proton 

and a deuteron (mD = 3.342 × 10−27 kg) can tunnel through the same barrier of 

height 1.0 eV (1.6 × 10−19 J) and length 100 pm when their energy is 0.90 eV. 

Comment on your result.

Topic 11 Translational motion in several dimensions

Discussion questions
11.1 Describe the features of the solution of the particle in a one-dimensional 

box that appear in the solutions of the particle in two- and three-dimensional 

boxes. What concept applies to the latter but not to a one-dimensional box?

11.2 Discuss the occurrence of degeneracy in a rectangular two-dimensional 

box in which one side is three times the length of the second side: consider 

hidden symmetry.

Exercises
11.1(a) Some nanostructures can be modelled as an electron confined to a 

two-dimensional region. Calculate the energy separations in joules,  

kilojoules per mole, and electronvolts between the levels (a) n1 = n2 = 2  

and n1 = n2 = 1, (b) n1 = n2 = 6 and n1 = n2 = 5 of an electron in a square  

box with sides of length 1.0 nm. Go on to express the separations as a 

wavenumber.

11.1(b) Some nanostructures can be modelled as an electron confined to 

a three-dimensional region. Calculate the energy separations in joules, 

kilojoules per mole, and electronvolts between the levels (a) n1 = n2 = n3 = 2 

and n1 = n2 = n3 = 1, (b) n1 = n2 = n3 = 6 and n1 = n2 = n3 = 5 of an electron in a 

cubic box with sides of length 1.0 nm. Go on to express the separations as a 

wavenumber.
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122 3 The quantum mechanics of motion

11.2(a) Nanostructures commonly show physical properties that distinguish 

them from bulk materials. Calculate the wavelength and frequency of the 

radiation required to cause a transition between the levels in Exercise 11.1(a).

11.2(b) Nanostructures commonly show physical properties that distinguish 

them from bulk materials. Calculate the wavelength and frequency of the 

radiation required to cause a transition between the levels in Exercise 11.1(b).

11.3(a) Suppose a nanostructure is modelled by an electron confined to a 

rectangular region with sides of lengths L1 = 1.0 nm and L2 = 2.0 nm and is 

subjected to thermal motion with a typical energy equal to kT, where k is 

Boltzmann’s constant. How low should the temperature be for the thermal 

energy to be comparable to (a) the zero-point energy, (b) the first excitation 

energy of the electron?

11.3(b) Suppose a nanostructure is modelled by an electron confined to a 

three-dimensional region with sides of lengths L1 = 1.0 nm, L2 = 2.0 nm, and 

L3 = 1.5 nm and is subjected to thermal motion with a typical energy equal to 
3
2
kT, where k is Boltzmann’s constant. How low should the temperature be for 

the thermal energy to be comparable to (a) the zero-point energy, (b) the first 

excitation energy of the electron?

11.4(a) For quantum mechanical reasons, particles confined to nanostructures 

are not distributed uniformly through them. Calculate the probability that 

an electron confined to a square region with sides of length L will be found 

in the region 0.49L ≤ x ≤ 0.51L and 0.49L ≤ y ≤ 0.51L when it is in a state with 

(a) n1 = n2 = 1, (b) n1 = n2 = 2. Take the wavefunction to be a constant in this 

narrow range.

11.4(b) For quantum mechanical reasons, particles confined to nanostructures 

are not distributed uniformly through them. Calculate the probability that 

a hydrogen atom in a cubic cavity with sides of length L will be found in the 

region 0.49L ≤ x ≤ 0.51L, 0.49L ≤ y ≤ 0.51L and 0.49L ≤ z ≤ 0.51L when it has 

(a) n1 = n2 = n3 = 1, (b) n1 = n2 = n3 = 2. Take the wavefunction to be a constant 

in this narrow range.

11.5(a) What are the most likely locations of an electron in a nanostructure 

modelled by a particle in a square box with sides of length L when it is in the 

state n1 = 4, n2 = 5?

11.5(b) What are the most likely locations of an electron in a nanostructure 

modelled by a particle in a cubic box with sides of length L when it is in the 

state n1 = 1, n2 = 4, n3 = 5?

11.6(a) Locate the nodes of the wavefunction of an electron in a nanostructure 

modelled by a particle in a square region with sides of length L when it is in 

the state n1 = 2, n2 = 3.

11.6(b) Locate the nodes of the wavefunction of an electron in a nanostructure 

modelled by a particle in a cubic well with sides of length L when it is in the 

state n1 = 3, n2 = 4, n3 = 5.

11.7(a) For quantum mechanical reasons, particles confined to nanostructures 

cannot be perfectly still even at T = 0. Calculate the expectation values of �p  

and �p2  for an electron in the ground state of a nanostructure modelled by a 

square box with sides of length L.

11.7(b) For quantum mechanical reasons, particles confined to nanostructures 

cannot be perfectly still even at T = 0. Calculate the expectation values of �p  

and �p2 for an electron in the ground state of a nanostructure modelled by a 

cubic box with sides of length L.

11.8(a) In Exercise 9.6(a) you were invited to explore whether compression 

could cause the zero-point energy of an electron to rise to equal its rest 

mass, mec
2, in one dimension. Repeat that calculation for a two-dimensional 

container. Express your answer in terms of the parameter λC = h/mec, the 

‘Compton wavelength’ of the electron.

11.8(b) Repeat Exercise 11.8(a) for an electron squeezed inside a cubic box.

11.9(a) For a particle in a rectangular box with sides of length L1 = L and 

L2 = 2L, find a state that is degenerate with the state n1 = n2 = 2. Degeneracy 

is normally associated with symmetry; why, then, are these two states 

degenerate?

11.9(b) For a particle in a rectangular box with sides of length L1 = L and 

L2 = 2L, find a state that is degenerate with the state n1 = 2, n2 = 8. Degeneracy 

is normally associated with symmetry; why, then, are these two states 

degenerate?

11.10(a) Consider a particle in a cubic box. What is the degeneracy of the level 

that has an energy three times that of the lowest level?

11.10(b) Consider a particle in a cubic box. What is the degeneracy of the level 

that has an energy 14
3

 times that of the lowest level?

11.11(a) Calculate the percentage change in a given energy level of a particle in 

a cubic box when the length of the side of the cube is decreased by 10 per cent 

in each direction.

11.11(b) Calculate the percentage change in a given energy level of a particle in 

a square box when the length of the side of the square is decreased by 10 per 

cent in each direction.

11.12(a) Should a gas be treated quantum mechanically? An O2 molecule is 

confined in a cubic box of volume 2.00 m3. Assuming that the molecule has an 

energy equal to 3
2
kT  at T = 300 K, what is the value of n n n n= + +( ) ,/

1
2

2
2

3
2 1 2  for 

this molecule? What is the energy separation between the levels n and n + 1? 

What is its de Broglie wavelength? Would it be appropriate to describe this 

particle as behaving classically?

11.12(b) Should a gas be treated quantum mechanically? An N2 molecule is 

confined in a cubic box of volume 1.00 m3. Assuming that the molecule has an 

energy equal to 3
2
kT  at T = 300 K, what is the value of n n n n= + +( ) /

1
2

2
2

3
2 1 2, for 

this molecule? What is the energy separation between the levels n and n + 1? 

What is its de Broglie wavelength? Would it be appropriate to describe this 

particle as behaving classically?

Problems
11.1 Calculate the separation between the two lowest translational energy 

levels for an O2 molecule in a cubic box with sides of length 5.0 cm. At what 

value of n = n1 = n2 = n3 does the energy of the molecule reach 3
2
kT  at 300 K, 

and what is the separation of this level from one of the degenerate levels 

immediately below?

11.2 The particle in a two-dimensional box is a useful model for the motion 

of electrons around the indole rings (1), the conjugated cyclic compound 

found in the side chain of the amino acid tryptophan.  As a 

first approximation, we can model indole as a rectangle with 

sides of length 280 pm and 450 pm, with 10 electrons in the 

conjugated system (the N atom provides two from its lone 

pair). Assume that in the ground state of the molecule each of 

the lowest available energy levels is occupied  

by two electrons. (a) Calculate the energy of an electron in the highest 

occupied level. (b) Calculate the wavelength of the radiation that can  

induce a transition between the highest occupied and lowest unoccupied 

levels.

11.3 A very crude model of the buckminsterfullerene molecule (C60) is to treat 

it as a collection of electrons in a cube with sides of length equal to the mean 

diameter of the molecule (0.7 nm). Suppose that only the π electrons of the 

carbon atoms contribute, and predict the wavelength of the first excitation of 

C60. (The actual value is 730 nm.)

11.4 Now treat the buckminsterfullerene molecule as a sphere of radius 

a = 0.35 nm, and predict the wavelength of the lowest energy transition of C60 

resulting from excitation into an energy level not completely filled. You need 

to know that the energies are

NH

1
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with the factors F and degeneracies g as follows:

11.5 When alkali metals dissolve in liquid ammonia, their atoms each lose an 

electron and give rise to a deep-blue solution that contains unpaired electrons 

occupying cavities in the solvent. These ‘metal–ammonia solutions’ have a 

maximum absorption at 1500 nm. Supposing that the absorption is due to the 

excitation of an electron in a spherical square well from its ground state to 

the next-higher state (see the preceding problem for information), what is the 

radius of the cavity?

11.6 The detailed distribution of particles within nanostructures is of interest. 

Use mathematical software to draw contour maps of the wavefunctions and 

probability densities of a particle confined to a square surface with n1 = 4 

and n2 = 6 (or other values of your choice). This problem is taken further in 

Problem 11.10. Go on—and this is a real challenge—to devise a way to depict 

the wavefunctions and probability densities of a cubic quantum dot (see 

Impact 3.1) in various states.

11.7 The energy levels of an electron in a nanoparticle and confined to a 

geometrically square region are proportional to n n n2
1
2

2
2= + . This expression 

is an equation for a circle of radius n in (n1,n2)-space (with meaningful values 

in one quadrant). (a) Produce an argument that uses this relation to predict 

the degeneracy of a level with a high value of n. (b) Extend this argument to 

three dimensions.

11.8 Use the separation of variables method to derive the wavefunctions of 

eqn 11.6a.

11.9 Confirm by explicit differentiation that the wavefunction given in eqn 

11.4a is a solution of the Schrödinger equation (eqn 11.1) for a particle in a 

two-dimensional box with energies given by eqn 11.4b.

11.10 In Problem 11.6 you were invited to plot contours showing the 

amplitude of the wavefunction and the probability density for various states 

of a particle confined to a plane. Develop that visualization in relation to the 

porphine ring (2), treating it as a square. Plot contours of the highest occupied 

wavefunction and the corresponding probability density superimposed on a 

drawing of the molecule. Does your map bear any relation to reality?

N HN

NNH

2

11.11 Here we explore further the idea that quantum mechanical effects 

need to be invoked in the description of the electronic properties of metallic 

nanocrystals, here modelled as three-dimensional boxes. (a) Set up the 

Schrödinger equation for a particle of mass m in a three-dimensional 

rectangular box with sides L1, L2, and L3. Show that the Schrödinger equation 

is separable. (b) Show that the wavefunction and the energy are defined 

by three quantum numbers. (c) Specialize the result from part (b) to an 

electron moving in a cubic box of side L = 5 nm and draw an energy diagram 

showing the first 15 energy levels. Note that each energy level may consist 

of degenerate energy states. (d) Compare the energy level diagram from 

part (c) with the energy level diagram for an electron in a one-dimensional 

box of length L = 5 nm. Are the energy levels becoming more or less sparsely 

distributed in the cubic box than in the one-dimensional box?

11.12 Can the location and momentum of an electron confined to 

two-dimensional motion in a nanostructure be determined precisely 

and simultaneously? Determine the values of Δx = (〈x2〉 – 〈x〉2)1/2 and 

Δ 〈 〉 〈 〉p p px x x= −( )2 2 1/2 for a particle in a square box of length L in its lowest 

energy state. Go on to calculate Δ 〈 〉 〈 〉2p p py y y= −( )2 1/2. Discuss these 

quantities with reference to the uncertainty principle.

Topic 12 Vibrational motion

Discussion questions
12.1 Describe the variation of the separation of the vibrational energy levels 

with the mass and force constant of the harmonic oscillator.

12.2 What is the physical reason for the existence of a zero-point vibrational 

energy?

12.3 Describe some applications of the harmonic oscillator model in 

chemistry.

Exercises
12.1(a) Calculate the zero-point energy of a harmonic oscillator consisting of a 

proton attached to a metal surface by a bond of force constant 155 N m−1.

12.1(b) Calculate the zero-point energy of a harmonic oscillator consisting of 

a rigid CO molecule adsorbed to a metal surface by a bond of force constant 

285 N m−1.

12.2(a) For a harmonic oscillator of effective mass 1.33 × 10−25 kg, the 

difference in adjacent energy levels is 4.82 zJ. Calculate the force constant of 

the oscillator.

12.2(b) For a harmonic oscillator of effective mass 2.88 ×10−25 kg, the 

difference in adjacent energy levels is 3.17 zJ. Calculate the force constant of 

the oscillator.

12.3(a) Suppose a hydrogen atom is adsorbed on the surface of a gold 

nanoparticle by a bond of force constant 855 N m−1. Calculate the wavelength 

of a photon needed to excite a transition between its neighbouring vibrational 

energy levels.

12.3(b) Suppose an oxygen atom (m = 15.9949mu) is adsorbed on the surface 

of a nickel nanoparticle by a bond of force constant 544 N m−1. Calculate the 

n,l 1,0 1,1 1,2 2,0 1,3 2,1 1,4 2,2

Fn,l 1 1.430 1.835 2 2.224 2.459 2.605 2.895

gn,l 1 3 5 1 7 3 9 5
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wavelength of a photon needed to excite a transition between its neighbouring 

vibrational energy levels.

12.4(a) Refer to Exercise 12.3(a) and calculate the wavelength that would result 

from replacing hydrogen by deuterium.

12.4(b) Refer to Exercise 12.3(b) and calculate the wavelength that would 

result from replacing the oxygen atom by a rigid dioxygen molecule.

12.5(a) Locate the nodes of the harmonic oscillator wavefunction with v = 4.

12.5(b) Locate the nodes of the harmonic oscillator wavefunction with v = 5.

12.6(a) Calculate the normalization constant for an oscillator with v = 2 and 

confirm that its wavefunction is orthogonal to the wavefunction for the state 

v = 4.

12.6(b) Calculate the normalization constant for an oscillator with v = 3 and 

confirm that its wavefunction is orthogonal to the wavefunction for the state 

v = 1.

12.7(a) Assuming that the vibrations of a 35Cl2 molecule are equivalent to 

those of a harmonic oscillator with a force constant kf = 329 N m−1, what is 

the wavenumber of the radiation needed to excite the molecule vibrationally? 

The mass of a 35Cl atom is 34.9688mu; the mass to use in the expression for the 

vibrational frequency of a diatomic molecule is the ‘effective mass’ μ = mAmB/

(mA + mB), where mA and mB are the masses of the individual atoms.

12.7(b) Assuming that the vibrations of a 14N2 molecule are equivalent to those 

of a harmonic oscillator with a force constant kf = 2293.8 N m−1, what is the 

wavenumber of the radiation needed to excite the molecule vibrationally? The 

mass of a 14N atom is 14.0031mu; see Exercise 12.7(a).

12.8(a) Calculate the probability that an O–H bond treated as a harmonic 

oscillator will be found at a classically forbidden extension when v = 1.

12.8(b) Calculate the probability that an O–H bond treated as a harmonic 

oscillator will be found at a classically forbidden extension when v = 2.

12.9(a) What is the relation between the mean kinetic and potential energies 

for a particle if the potential is proportional to x3?

12.9(b) What is the relation between mean kinetic and potential energies of an 

electron in a hydrogen atom? Hint: The potential is Coulombic.

Problems
12.1 Give the symmetry (in terms of the function being even or odd) of the 

wavefunctions for the first four levels of a harmonic oscillator. How may this 

symmetry be expressed in terms of the quantum number v?

12.2 The mass to use in the expression for the vibrational frequency of a 

diatomic molecule is the effective mass μ = mAmB/(mA + mB), where mA and 

mB are the masses of the individual atoms. The following data on the infrared 

absorption wavenumbers ( / / )�� �= =1 λ c  of molecules is taken from G. 

Herzberg, Spectra of diatomic molecules, van Nostrand (1950):

Calculate the force constants of the bonds and arrange them in order of 

increasing stiffness.

12.3 Confirm that a function of the form e−κ x2

 is a solution of the Schrödinger 

equation for the ground state of a harmonic oscillator and find an expression 

for κ in terms of the mass and force constant of the oscillator.

12.4 Calculate the mean kinetic energy of a harmonic oscillator by using the 

relations in Table 12.1.

12.5 Calculate the values of 〈x3〉 and 〈x4〉 for a harmonic oscillator by using the 

relations in Table 12.1.

12.6 We shall see in Topic 16 that the intensity of spectroscopic transitions 

between the vibrational states of a molecule is proportional to the square of 

the integral ∫ψ ψv v′x x d  over all space. Use the relations between Hermite 

polynomials given in Table 12.1 to show that the only permitted transitions 

are those for which v′ = v ± 1 and evaluate the integral in these cases.

12.7 The potential energy of the rotation of one CH3 group relative to its 

neighbour in ethane can be expressed as V(φ) = V0 cos 3φ,  

where φ is the angle shown in 3. (a) Show that for small 

displacements the motion of the group is harmonic and 

calculate the (molar) energy of excitation from v = 0 

to v = 1. (b) What is the force constant for these small-

amplitude oscillations? (c) The energy of impacts with 

any surrounding molecules is typically kT, where k is 

Boltzmann’s constant. Should you expect the oscillations 

to be excited? (d) What do you expect to happen to the 

energy levels and wavefunctions as the excitation increases?

12.8 Carbon monoxide binds strongly to the Fe2+ ion of the haem group of 

the protein myoglobin. Estimate the vibrational frequency of CO bound to 

myoglobin by using the data in Problem 12.2 and by making the following 

assumptions: the atom that binds to the haem group is immobilized, the 

protein is infinitely more massive than either the C or O atom, the C atom 

binds to the Fe2+ ion, and binding of CO to the protein does not alter the force 

constant of the C≡O bond.

12.9 Of the four assumptions made in Problem 12.8, the last two are 

questionable. Suppose that the first two assumptions are still reasonable and 

that you have at your disposal a supply of myoglobin, a suitable buffer in 

which to suspend the protein, 12C16O, 13C16O, 12C18O, 13C18O, and an infrared 

spectrometer. Assuming that isotopic substitution does not affect the force 

constant of the C≡O bond, describe a set of experiments that (a) proves 

which atom, C or O, binds to the haem group of myoglobin, and (b) allows 

for the determination of the force constant of the C≡O bond for myoglobin-

bound carbon monoxide.

12.10 In the study of macromolecules, such as synthetic polymers, proteins, 

and nucleic acids, one conformation commonly observed is that of a ‘random 

coil’. For a one-dimensional random coil of N units, the restoring force at 

small displacements and at a temperature T is

F
kT

l

N n

N n
= − +

−
⎛
⎝⎜

⎞
⎠⎟2

ln

where l is the length of each monomer unit and nl is the distance between 

the ends of the chain. Show that for small extensions (n � N), the restoring 

force is proportional to n and therefore that the coil undergoes harmonic 

oscillation with force constant kT/Nl2. Suppose that the mass to use for the 

vibrating chain is its total mass Nm, where m is the mass of one monomer 

unit, and deduce the root mean square separation of the ends of the chain due 

to quantum fluctuations in its vibrational ground state.

12.11 The ‘most classical’ linear combinations of harmonic oscillator 

wavefunctions are the so-called ‘coherent states’ which are described by the 

superposition

ψ α ψα ( )
( !)

( )
/

x N x=
=

∞

∑
v

v

vv
0

1 2

H35Cl H81Br HI CO NO

ν/cm–1 2990 2650 2310 2170 1904

φ

3
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where α is a parameter. These states can be used to describe the radiation 

generated by lasers. (a) Show that the normalization constant is N = −e α 2
2/ .  

(b) Show that the wavefunctions ψα and ψβ of two coherent states are 

not in general orthogonal. (c) Go on to show that a coherent state is the 

‘most classical’ in the sense that the uncertainty relation for position and 

momentum for a particle it describes has its minimum value (that is, 

Δ Δx p= 1
2
 ). Hint: Use a recursion relation in Table 12.1.

Topic 13 Rotational motion in two dimensions

Discussion question
13.1 Discuss the physical origin of quantization of energy for a particle 

confined to motion around a ring.

Exercises
13.1(a) Confirm that wavefunctions for a particle on a ring with different 

values of the quantum number ml are mutually orthogonal.

13.1(b) Confirm that the wavefunction for a particle on a ring (eqn 13.7a) is 

normalized.

Problems
13.1 A synchrotron accelerates protons along a circular path of radius r. 

Suppose that the state of the proton is described by the unnormalized 

wavefunction ψ(φ) = ψ−1(φ) + 31/2iψ+1(φ). (a) Normalize this wavefunction. If 

measurements are made to determine (b) the total angular momentum and 

(c) the total energy of the proton, what will be the outcome? (d) What are the 

expectation values of these quantities?

13.2 Can the electronic structures of aromatic molecules be treated as 

electrons on a ring? Use such a model to predict the π electronic structure of 

benzene, allowing two electrons to occupy each state and supposing a radius 

of 133 pm. What is the wavelength of the first absorption band that you would 

predict on the basis of this model? (The actual value is 185 nm.) 

13.3 The rotation of an 1H127I molecule can be pictured as the orbital motion 

of an H atom at a distance 160 pm from a stationary I atom. (This picture 

is quite good; to be precise, both atoms rotate around their common centre 

of mass, which in this case is very close to the I nucleus.) Suppose that the 

molecule rotates only in a plane (a restriction removed in Problem 14.1). 

(a) Calculate the wavelength of electromagnetic radiation needed to excite 

the molecule into rotation. (b) What, apart from 0, is the minimum angular 

momentum of the molecule?

13.4 A diatomic molecule with μ = 2.000 ×10−26 kg and bond length 250.0 pm 

is rotating about its centre of mass in the xy-plane. The state of the molecule 

is described by the normalized wavefunction ψ(φ). When the total angular 

momentum of different molecules is measured, two possible results are 

obtained: a value of 3ħ for 25 per cent of the time and a value of −3ħ for 75 

per cent of the time. However, when the rotational energy of the molecules is 

measured, only a single result is obtained. (a) What is the expectation value 

of the angular momentum? (b) Write down an expression for the normalized 

wavefunction ψ(φ). (c) What is the result of measuring the energy?

13.5 What is the average angular position for a proton accelerated to a well-

defined angular momentum in a synchrotron? Calculate 〈φ〉, the mean value 

of φ, for a particle on a ring described by the wavefunction in eqn 13.7a. 

Explain your answer.

13.6 Evaluate the z-component of the angular momentum and the kinetic 

energy of a proton in a synchrotron of radius r in a state that is described by the 

(unnormalized) wavefunctions (a) eiφ, (b) e−2iφ, (c) cos φ, and (d) (cos χ) eiφ +  

(sin χ) e−iφ with χ an arbitrary real parameter.

13.7 If a proton were accelerated on an elliptical ring rather than a circular 

ring, how would solution of the relevant Schrödinger equation proceed? In 

particular, is the Schrödinger equation for a particle on an elliptical ring of 

semi-major axes a and b separable? Hint: Although r varies with angle φ, the 

two are related by r2 = a2 sin2 φ + b2 cos2 φ.

13.8 The particle on a ring is a useful model for the motion of electrons 

around the porphine ring (2), the conjugated macrocycle that forms the 

structural basis of the haem group and the chlorophylls. The group may be 

treated as a circular ring of radius 440 pm, with 22 electrons in the conjugated 

system moving along the perimeter. Assume that in the ground state of the 

molecule each level is occupied by two electrons. (a) Calculate the energy and 

angular momentum of an electron in the highest occupied level. (b) Calculate 

the frequency of radiation that can induce a transition between the highest 

occupied and lowest unoccupied levels.

13.9 The uncertainty principle takes on a different form for cyclic systems: 

Δ Δ ≥lz sin cos φ φ1
2
| |〈 〉 , where ΔX = {〈X2〉 – 〈X〉2}1/2 in each case. Evaluate 

the quantities that appear in this expression for (a) a particle with angular 

momentum +, (b) a particle with wavefunction proportional to cos φ. Is the 

uncertainty principle satisfied in each case? Is there a difference between the 

two cases; if so, why?
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Topic 14 Rotational motion in three dimensions

Discussion questions
14.1 Describe the features of the solution of the particle on a ring that appear 

in the solution of the particle on a sphere. What concept applies to the latter 

but not to the former?

14.2 Describe the vector model of angular momentum in quantum mechanics. 

What features does it capture? What is its status as a model?

Exercises
14.1(a) The rotation of a molecule can be represented by the motion of a 

point mass moving on the surface of a sphere. Calculate the magnitude 

of its angular momentum when l = 1 and the possible components of the 

angular momentum on an arbitrary axis. Express your results as multiples 

of .

14.1(b) The rotation of a molecule can be represented by the motion of a point 

mass moving on the surface of a sphere with angular momentum quantum 

number l =2. Calculate the magnitude of its angular momentum and the 

possible components of the angular momentum on an arbitrary axis. Express 

your results as multiples of .

14.2(a) Draw scale vector diagrams to represent the states (a) l = 1, ml = +1, 

(b) l = 2, ml = 0. What is the angle that the vector makes to the z-axis?

14.2(b) Draw scale vector diagrams for all the permitted rotational states of a 

body with l = 6. What are the angles that the vectors make to the z-axis?

14.3(a) The number of states corresponding to a given energy plays a crucial 

role in atomic structure and thermodynamic properties. Determine the 

degeneracy of a body rotating with l = 3.

14.3(b) The number of states corresponding to a given energy plays a crucial 

role in atomic structure and thermodynamic properties. Determine the 

degeneracy of a body rotating with l = 4.

Problems
14.1 Modify Problem 13.3 so that the molecule is free to rotate in three 

dimensions, using for its moment of inertia I = μR2, with μ = mHmI/(mH + mI) 

and R = 160 pm. Calculate the energies and degeneracies of the lowest four 

rotational levels, and predict the wavelength of electromagnetic radiation 

emitted in the l = 1 → 0 transition. In which region of the electromagnetic 

spectrum does this wavelength appear?

14.2 The average moment of inertia of a benzene molecule is 1.5 × 10−45 kg m2. 

What energy is needed to excite the molecule from its (three-dimensional) 

rotational ground state to the next-higher rotational level? What is the 

wavelength of electromagnetic radiation that would achieve that excitation? 

Where in the electromagnetic spectrum does that radiation lie?

14.3 A helium atom moving on the surface of a buckminsterfullerene 

molecule before it diffuses into the molecule’s interior can be modelled 

as a free particle on the surface of a sphere of radius 0.35 nm. Suppose 

the state of the atom is described by a wavepacket of composition 

ψ(θ,φ) = 21/2Y2,+1(θ,φ) + 3iY2,+2(θ,φ) + Y1,+1(θ,φ). (a) Normalize this 

wavefunction. If (b) the total angular momentum, (c) the z-component of 

angular momentum, and (d) the total energy of the atom are measured, 

what results will be found? (e) What are the expectation values of these 

observables?

14.4 Use the properties of the spherical harmonics to identify the most 

probable angles a rotating linear molecule will make to an arbitrary axis  

when l = 1, 2, and 3.

14.5 Use mathematical software to construct a wavepacket of the form

Ψ φ φ( , ) /

,

( / )t c E m I

m

m

m
m E t

m l

l

l

l

l m
l

l
= =

=

−∑
0

2 2 2

max

ei  

with coefficients c of your choice (for example, all equal). Explore how the 

wavepacket migrates on the ring but spreads with time.

14.6 Confirm that the spherical harmonics (a) Y0,0, (b) Y2,–1, and (c) Y3,+3 

satisfy the Schrödinger equation for a particle free to rotate in three 

dimensions, and find its energy and angular momentum in each case.

14.7 Confirm by explicit integration that Y1,+1 and Y2,0 are orthogonal. (The 

integration required is over the surface of a sphere.)

14.8 Confirm that Y3,+3 is normalized to 1. (The integration required is over 

the surface of a sphere.)

14.9 Derive (in Cartesian coordinates) the quantum mechanical operators 

for the three components of angular momentum starting from the classical 

definition of angular momentum, l = r × p. Show that any two of the 

components do not mutually commute, and find their commutator.

14.10 Starting from the operator � � � ��l xp ypz y x= − , prove that in spherical polar 

coordinates �lz = − ∂ ∂i / φ .

14.11 Show that the commutator � �[ , ]l lz
2 0= , and then, without further 

calculation, justify the remark that � �[ , ]l lq
2 0=  for all q = x, y, and z.

14.12 A particle confined to within a spherical cavity is a reasonable starting 

point for the discussion of the electronic properties of spherical metal 

nanoparticles (Impact 3.1). Here, you are invited to show in a series of steps 

that the l = 0 energy levels of an electron in a spherical cavity of radius R are 

quantized and given by

E
n h

m R
n =

2 2

28 e

(a) The hamiltonian for a particle free to move inside a sphere of radius a is

�H
m

= − 2
2

2
∇

Show that the Schrödinger equation is separable into radial and angular 

components. That is, begin by writing ψ(r,θ,φ) = R(r)Y(θ,φ), where R(r) 
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depends only on the distance of the particle from the centre of the sphere, 

and Y(θ,φ) is a spherical harmonic. Then show that the Schrödinger equation 

can be separated into two equations, one for R(r), the radial equation, and the 

other for Y(θ,φ), the angular equation.

(b) Consider the case l = 0. Show by differentiation that the solution of the 

radial equation has the form

R a
n r a

r
( ) ( )

sin( / )/r = −2 1 2π π

(c) Now go on to show (by acknowledging the appropriate boundary 

conditions) that the allowed energies are given by En = n2h2/8ma2. With 

substitution of me for m and of R for a, this is the equation given above  

for the energy.

Integrated activities

F3.1 Discuss the correspondence principle and provide two examples.

F3.2 Define, justify, and provide examples of zero-point energy.

F3.3 Explain why the particle in a box and the harmonic oscillator are useful 

models for quantum mechanical systems: what chemically significant systems 

can they be used to represent?

F3.4 Discuss the presence or absence of zero-point energy for translational 

and rotational motions in two and three dimensions.

F3.5 Determine the values of Δx = (〈x2〉 – 〈x〉2)1/2 and Δp = (〈p2〉 – 〈p〉2)1/2 for 

the ground state of (a) a particle in a box of length L and (b) a harmonic 

oscillator. Discuss these quantities with reference to the uncertainty principle.

F3.6 Repeat Problem F3.5 for (a) a particle in a box and (b) a harmonic 

oscillator in a general quantum state (n and v, respectively).

F3.7 Use mathematical software, a spreadsheet, or the Living graphs  

(labelled LG) on the website of this book for the following exercises:

(a) LG Plot the probability density for a particle in a box with n = 1, 2,…5 and 

n = 50. How do your plots illustrate the correspondence principle?

(b) LG Plot the transmission probability T against E/V for passage by (i) a 

hydrogen molecule, (ii) a proton, and (iii) an electron through a barrier of 

height V.

(c) LG To gain some insight into the origins of the nodes in the harmonic 

oscillator wavefunctions, plot the Hermite polynomials Hv(y) for v = 0 

through 5.

(d) Use mathematical software to generate three-dimensional plots of the 

wavefunctions for a particle confined to a rectangular surface with (i) n1 = 1, 

n2 = 1, the state of lowest energy, (ii) n1 = 1, n2 = 2, (iii) n1 = 2, n2 = 1, and (iv) 

n1 = 2, n2 = 2. Deduce a rule for the number of nodal lines in a wavefunction as 

a function of the values of n1 and n2.
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128 Mathematical background 3

Mathematical background 3 Complex numbers

We describe here general properties of complex numbers 

and functions, which are mathematical constructs frequently 

encountered in quantum mechanics.

MB3.1 Definitions
Complex numbers have the general form

z x y= + i
 

 General form of a complex number  (MB3.1)

where i = (–1)1/2. The real numbers x and y are, respectively, the 

real and imaginary parts of z, denoted Re(z) and Im(z). When 

y = 0, z = x is a real number; when x = 0, z = iy is a pure imagi-

nary number. Two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 

are equal when x1 = x2 and y1 = y2. Although the general form 

of the imaginary part of a complex number is written iy, a spe-

cific numerical value is typically written in the reverse order; 

for instance, as 3i.

The complex conjugate of z, denoted z*, is formed by replac-

ing i by –i:

z x y∗ = − i  
 Complex conjugate  (MB3.2)

The product of z* and z is denoted |z|2 and is called the square 

modulus of z. From eqns MB3.1 and MB3.2,

| | ( )( )z x y x y x y2 2 2= + − = +i i
 

 Square modulus  (MB3.3)

since i2 = –1. The square modulus is a real number. The absolute 

value or modulus is itself denoted |z| and is given by:

| | ( ) ( )/ /z z z x y= = +∗ 1 2 2 2 1 2

 
 Absolute value or modulus  (MB3.4)

Since zz* = |z|2 it follows that z × (z*/|z|2) = 1, from which we can 

identify the (multiplicative) inverse of z (which exists for all 

nonzero complex numbers):

z
z

z
− =1

2

∗

| |
 

 Inverse of a complex number  (MB3.5)

MB3.2 Polar representation
The complex number z = x + iy can be represented as a point 

in a plane, the complex plane, with Re(z) along the x-axis and 

Im(z) along the y-axis (Fig. MB3.1). If, as shown in the figure, 

r and φ denote the polar coordinates of the point, then since 

x = r cos φ and y = r sin φ, we can express the complex number 

in polar form as

z r= +( )cos i sinφ φ
 

 Polar form of a complex number  (MB3.6)

The angle φ, called the argument of z, is the angle that z makes 

with the x-axis. Because y/x = tan φ, it follows that the polar 

form can be constructed from

r x y z
y

x
= + = =( ) arctan/2 2 1 2 φ

 
(MB3.7a)

To convert from polar to Cartesian form, use

x r y r z x y= = = +cos  and sin  to form iφ φ
 

(MB3.7b)

One of the most useful relations involving complex numbers 

is Euler’s formula:

ei cos i sinφ φ φ= +   Euler’s formula  (MB3.8a)

The simplest proof of this relation is to expand the exponen-

tial function as a power series and to collect real and imaginary 

terms. It follows that

cos sin ii i i iφ φφ φ φ φ= + = − −− −1
2

1
2( ) ( )e e e e

 
(MB3.8b)

The polar form in eqn MB3.6 then becomes

z r= eiφ
 (MB3.9)

Brief illustration MB3.1 Inverse

Consider the complex number z = 8 – 3i. Its square modulus is

| | ( ) ( )( )z z z2 8 3 8 3 8 3 8 3 64 9 73= = − − = + − = + =∗ ∗( )i i i i
 

The modulus is therefore |z| = 731/2. From eqn MB3.5, the 

inverse of z is

z− = + = +1 8 3

73

8

73

3

73

i
i

y = Im(z)

x = Re(z)

z = x + iy 

r

φ

Figure MB3.1 The representation of a complex number z as a 
point in the complex plane using cartesian coordinates (x,y) or 
polar coordinates (r,φ).
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MB3.3 Operations
The following rules apply for arithmetic operations for the 

complex numbers z1 = x1 + iy1 and z2 = x2 + iy2.

1 Addition  i( ): ( )z z x x y y1 2 1 2 1 2+ = + + +  (MB3.10a)

2 Subtraction i( ): ( )z z x x y y1 2 1 2 1 2− − −= +  (MB3.10b)

3 Multiplication  i  i

i(

: ( )( )

( )

z z x y x y

x x y y x y

1 2 1 1 2 2

1 2 1 2 1 2

= + +
= +− ++ y x1 2 )

 

(MB3.10c)

  4 Division: We interpret z1/z2 as z1z2
−1 and use eqn MB3.5 

for the inverse:

  

z

z
z z

z z

z

1

2
1 2

1 1 2

2

2
= =−

∗

 

(MB3.10d)

The polar form of a complex number is commonly used to 

perform arithmetical operations. For instance the product of 

two complex numbers in polar form is

z z r r r r1 2 1 2 1 2
1 2 1 2= = +

( )( )e e ei i i( )φ φ φ φ

 (MB3.11)

This multiplication is depicted in the complex plane as shown 

in Fig. MB3.2. The nth power and the nth root of a complex 

number are

z r r z r rn n n n n n n n= = = =( ) ( )/ / / /e e e ei i i iφ φ φ φ1 1 1

 
(MB3.12)

The depictions in the complex plane are shown in Fig. MB3.3.

Brief illustration MB3.2 Polar representation

Consider the complex number z = 8 – 3i. From Brief illustration 

MB3.1, r = |z| = 731/2. The argument of z is

θ = −⎛
⎝⎜

⎞
⎠⎟

= − − °arctan . , .
3

8
0 359 20 6 rad or

The polar form of the number is therefore

z = −731 2 0 359/ .e i

Brief illustration MB3.3 Operations with numbers

Consider the complex numbers z1 = 6 + 2i and z2 = –4 – 3i. Then

z z

z z

z z

1 2

1 2

1 2

6 4 2 3 2

10 5

6 4 2 3 6 3

+ = − + − = −
= +
= − − − + −

−
( ) ( )

{ ( ) ( )} { ( )

i i

i

++ − = − −

= + − +⎛
⎝⎜

⎞
⎠⎟

= − +

2 4 18 26

6 2
4 3

25

6

5

2

5
1

2

( )}

( )

i i

z

z
i

i
i

 

Brief illustration MB3.4 Roots

To determine the 5th root of z = 8 − 3i, we note that from 

Brief illustration MB3.2 its polar form is

z = =− −73 8 5441 2 0 359 0 359/ . ..e ei i
 

The 5th root is therefore

z1 5 0 359 1 5 1 5 0 359 5 0 07188 544 8 544 1 536/ . / / . / .( . ) . .= = =− − −e e ei i i
 

It follows that x = 1.536 cos(–0.0718) = 1.532 and y = 1.536  

sin(–0.0718) = –0.110 (note that we work in radians), so

( ) . ./8 3 1 532 0 1101 5− = −i i  

y 
= 

Im
(z

)

x = Re(z)

y 
= 

Im
(z

)

x = Re(z)
φ

φ

φ/2

φ/3

φ/4

φ
φ

φφ

r

r

r2

r1/2

r1/3

r1/4

r3

r4

r5

z

z

z2 z1/2

z1/3

z1/4

z3

z 4

z5

Figure MB3.3 The nth powers (n = 1, 2, 3, 4, 5) and the nth roots 
(n = 1, 2, 3, 4) of a complex number depicted in the complex 
plane.

y = Im(z)

x = Re(z)

z1

z1z2

z2

r1

r2

φ1

φ2

r1r2

φ1 + φ2

Figure MB3.2 The multiplication of two complex numbers 
depicted in the complex plane.
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Exact solutions of the Schrödinger equation can be found for only a small number of problems, 
such as the model systems described in The quantum mechanics of motion. Almost all the problems 
of interest in chemistry do not have exact solutions. To make progress with these problems, which 
include many-electron atoms and molecules, we need to develop techniques of approximation.

There are three major approaches to finding approximate solutions. The first is to try to guess 
the shape and mathematical form of the wavefunction. ‘Variation theory’ provides a criterion of suc-
cess with such an approach and, as it is most commonly encountered in the context of molecular 
orbital theory, we consider it in Molecular structure. The second approach, an iterative method called 
the ‘self-consistent field procedure’ which is often used alongside variation theory, is useful to find 
numerical solutions of the Schrödinger equation for many-electron systems (see Atomic structure 

and spectra and Molecular structure). The third approach takes the hamiltonian operator for the prob-
lem and separates it into a simple model hamiltonian for which the Schrödinger equation can be 
solved and a ‘perturbation’, which is the difference between the true and model hamiltonians. The 
aim of ‘perturbation theory’, which provides the mathematical tools for solving complex problems 
by this approach, is to generate the wavefunction and energy of the perturbed system from knowl-
edge of the model hamiltonian and a systematic procedure for taking into account the presence of 
the perturbation.

Time-independent perturbation theory (Topic 15) begins by identifying a model system that 
resembles the system of interest, and then shows how to distort the wavefunctions and adjust the 
energies to approach those of the actual system in the presence of a time-independent perturba-
tion. This analytical procedure is the basis for the many-body perturbation theory method described 
in Molecular structure and is also useful in the discussion of electric and magnetic properties of mate-
rials (Interactions).

Time-dependent perturbation theory (Topic 16) is the basis of the discussion of transitions 
between states when the system is subjected to a perturbation that varies with time. A very impor-
tant example of such a system is an atom or molecule exposed to an oscillating electromagnetic 
field and is the basis of accounting for the transitions observed in Atomic structure and spectra and 
Molecular spectroscopy.

Time-
independent
perturbation

theory

Transitions

FOCUS 4  ON  Approximation methods

Topic 15 Topic 16

The principles
of quantum
mechanics

Focus 2
The quantum

mechanics
of motion

Focus 3

Atomic
structure and

spectra

Focus 5

Molecular
structure

Focus 6

Interactions

Focus 8

Molecular
spectroscopy

Focus 9
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TOPIC 15

Time-independent perturbation 

theory

Perturbation theory comes in two formulations, depending on 

whether or not the perturbation varies with time. In this Topic, 

we consider only time-independent perturbation theory, 

which is the basis of our discussion of the electric and magnetic 

properties of molecules. In Topic 16, we discuss time-depend-

ent perturbation theory, which is used to discuss the response 

of atoms and molecules to time-dependent electromagnetic 

fields and is central to the discussion of spectroscopy.

15.1 Perturbation expansions

We suppose that the hamiltonian for the problem we are trying 

to solve, H� , can be expressed as a sum of a simple hamiltonian, 

H� ( )0
, which has known eigenvalues, E(0), and eigenfunctions, 

ψ(0), and a contribution, H� ( )1
, which represents the extent to 

which the true hamiltonian differs from the ‘model’ hamiltonian:

H H H� � �= +( ) ( )0 1  

We seek the energies and eigenvalues of H� .  To find them we 

suppose that the true energy of the system, E, differs from the 

energy of the model system, E(0), and that we can write

E E E E= + + +…( ) ( ) ( )0 1 2  

 ➤ Why do you need to know this material?

Perturbation theory is used throughout chemistry 
where exact solutions of the Schrödinger equation 
are impossible to find. It is used to find approximate 
solutions of complicated problems, such as the electric 
and magnetic properties of matter (Topics 34 and 39) 
and the interaction between matter and electromagnetic 
radiation (Topic 16).

 ➤ What is the key idea?
The hamiltonian of the system is expressed as a sum of a 
simple model hamiltonian and a perturbation hamiltonian; 

the latter is then used to develop approximations to the 
energies and wavefunctions of the system.

 ➤ What do you need to know already?
You need to be familiar with the concepts introduced in 
Topics 5–7, particularly the Schrödinger equation, expecta-
tion values, hermiticity, normalization, and orthogonality. 
The calculations in this Topic rely heavily on the description 
of the particle in a one-dimensional box (Topic 9).

Perturbation 
theory 

Partition 
of the 
hamiltonian 

(15.1)

Perturbation 
theory 

Expansion 
of the 
energy 

(15.2)
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15 Time-independent perturbation theory  133

where E(1) is the ‘first-order’ correction to the energy, a contribu-

tion proportional to H� ( ) ,1  and E(2) is the ‘second-order’ correc-

tion to the energy, a contribution proportional to the square of 

H� ( ) ,1  and so on. The true wavefunction, ψ, also differs from the 

‘simple’ wavefunction of the model system, ψ (0), and we write

ψ ψ ψ ψ= + + +…( ) ( ) ( )0 1 2  

where ψ (1) is the ‘first-order’ correction to the wavefunction and 

so on. In practice, time-independent perturbation theory typi-

cally needs only first- and second-order energy corrections to 

provide accurate estimates of energies of the perturbed system 

(as long as the perturbation is weak.) Likewise, it rarely needs 

to proceed beyond first-order corrections to the wavefunction.

This Topic is filled with derivations. If you do not require this 

level of detail and wish to proceed to the key results, they are as 

follows for the ground state of the system.

The first-order correction to the energy is given by

E H0
1

0

0 1
0

0( ) ( ) ( )*= ( )∫ψ ψ τ� d   First-order energy correction  (15.4)

 where ψ 0
0( )  is the ground-state wavefunction for the 

‘model’ system with hamiltonian H� ( ).0

See Example 15.1 for an illustration of how this expression 

is used. The integral is an expectation value (Topic 7); in this 

case, it is the expectation value of the perturbation calculated 

using the unperturbed ground-state wavefunction. We can 

therefore interpret E0
1( )  as the average value of the effect of the 

perturbation. An analogy is the shift in energy of vibration of 

a violin string when small weights are hung along its length. 

The weights hanging close to the nodes have little effect on its 

energy of vibration. Those hanging at the locations of maxi-

mum amplitude, however, have a profound effect (Fig. 15.2a). 

The overall effect is the average of all the weights.

The wavefunction corrected to first order is given by

ψ ψ ψ

ψ ψ τ

0 0
0

0

0

0
0

0
0

1 0

0

= +

=
−

≠
∑

∫

( ) ( )

( )

( )

( ) ( )

( )

*

n

n n

n

n

n

c

c
E E

H� d

 

 where ψ n
( )0  and En

( )0  are the eigenfunctions and 

eigenvalues, respectively, of the model system.

See Example 15.2 for an illustration of how this expression is 

used. In this case, the wavefunction is distorted by the pertur-

bation. In terms of the violin-string analogy, the weights distort 

the shape of the vibrating string.

Perturbation 
theory 

Expansion 
of the  
wavefunction 

(15.3)

First-order  
correction to the  
wavefunction 

(15.5)

Large effect

Small effect

No effect

Perturbed
wavefunction

(a)

(b)

Figure 15.2 (a) The first-order correction to the energy is an 
average of the perturbation (represented by the hanging 
weights) over the unperturbed wavefunction. (b) The second-
order correction is a similar average, but over the distortion 
induced by the perturbation.

Brief illustration 15.1 The corrections to the energy 
and wavefunction

Consider an electron in a one-dimensional metallic nano-

particle of length L. A related simple problem is a particle in 

a one-dimensional box. The model hamiltonian H� ( )0  is there-

fore that of a particle in a one-dimensional box (Topic 9). The 

effect of the varying potential energy of the electron inside 

the nanoparticle can be modelled by supposing that it has the 

form V x x L( ) ( )= −ε sin /π  (Fig. 15.1). The perturbation is there-

fore H x L� ( ) ( ).1 = −ε sin /π  The corrections E(1) and ψ (1) are pro-

portional to ε and E(2) is proportional to ε2.

Self-test 15.1 The vibrational motion of a certain diatomic 

molecule is known to be described by a potential energy of the 

form V = 1
2
kfx

2 + ax3, where kf is the force constant, x is the dis-

placement of the internuclear distance from the equilibrium 

bond length, and a is a constant. Identify the model hamilto-

nian and the perturbation and predict the dependencies of the 

corrections E(1), E(2), and ψ (1) on the constant a.

Answer: H� ( )0  is that of the harmonic oscillator (Topic 12);  

H ax� ( )1 3= ; E(1) and ψ (1) are proportional to a, E(2) to a2

Location, x

Po
te

n
ti

al
 e

n
er

g
y,

 V

∞ ∞

0 Lε

Figure 15.1 A model for the potential energy used to 
illustrate the application of perturbation theory to a simple 
system. The potential energy is infinite at the walls of the box 
and varies as V across the floor of the box.
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134 4 Approximation methods

Example 15.1 Evaluating the first-order correction  
to the energy

Use the model described in Brief illustration 15.1 for the potential 

energy of an electron in a one-dimensional nanoparticle to eval-

uate the first-order correction to the energy of the ground state.

Justification 15.1 The first-order correction to the energy

To develop expressions for the corrections to the ground-state 

wavefunction and energy of a system subjected to a time- 

independent perturbation, we write

ψ ψ λψ λ ψ0 0 0
2

0
0 1 2= + + +( ) ( ) ( ) �

where λ is a dummy variable that will help us keep track of 

the order of the correction. At the end of the calculation, we 

discard it. Likewise we write

H H H� � �= +( ) ( )0 1λ

and 

E E E E0 0
0

0
1 2

0
2= + + +( ) ( ) ( )λ λ �

When these expressions are inserted into the Schrödinger 

equation, H E� ψ ψ= , we obtain

( )( )

(

( ) ( ) ( ) ( ) ( )

( ) ( ) (

H H

E E E

� �0 1
0

0
0
1 2

0
2

0
0

0
1 2

0

+ + + + =
+ +

λ ψ λψ λ ψ
λ λ

�
22

0
0

0
1 2

0
2) ( ) ( ) ( ))( )+ + + +� �ψ λψ λ ψ

which, by collecting powers of λ, we can rewrite as

H H H H H� � � � �( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (( ) (0
0

0 1
0

0 1
0
1 2 0

0
2 1

0ψ λ ψ ψ λ ψ ψ+ + + + 11

0 0
0

0
0

0
1

0
1

0
0 2

0
2

0
00

)

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

)

(( )

+
= + + +

+

�

E E E E

E

ψ λ ψ ψ λ ψ

00
1

0
1

0
0

0
2( ) ( ) ( ) ( ))ψ ψ+ +E �

By comparing powers of λ, we find

Terms in

Terms in

λ ψ ψ

λ ψ

0
0

0
0
0

0
0

1
0

0

0

1 0

:

:

( )

( ) (

( ) ( ) ( )

( )

H

H H

E�

� �

=

+ ))

( ) ( )

( ) ( ) ( ) ( ) ( )

( ):

ψ ψ ψ

λ ψ ψ

0
1

0
0

0
1

0
1

0
0

2
0

2
0

0 1

= +

+

E E

H HTerms in � � (( ) ( ) ( ) ( ) ( ) ( ) ( )1
0
2

0
0

0
1

0
1

0
0

0
2= + +E E Eψ ψ ψ

and so on. At this point, λ has served its purpose, and can now 

be discarded.

The first of the three above equations is the Schrödinger 

equation for the ground state of the unperturbed system, 

which we can assume we can solve. To solve the second of the 

equations (the one in λ1), we suppose that the first-order cor-

rection to the wavefunction can be expressed as a linear com-

bination of the wavefunctions of the unperturbed system, and 

write

ψ ψ0
1 0( ) ( )=∑

n

n nc

with the coefficients cn to be determined. We can isolate the 

term in E0
1( )  by making use of the fact that the ψ n

( )0  form a 

complete orthonormal set (eqn 7.3b of Topic 7) in the sense 

that

ψ ψ τ δ0
0 0

0
( )* ( )

,

n nd∫ =
= ≠1if 0 0if 0n n


where δij, the Kronecker delta (Topic 7), is 1 when i = j and 

0 when i ≠ j. Therefore, when we multiply the equation in λ1 

through by ψ 0
0( )*  and integrate over all space, we get

ψ ψ τ ψ ψ τ0
0

0
0

0
0 01 0( ) ( ) ( ) ( )( ) ( )* *H Hc

n

n n
� �d d∫ ∑ ∫+

=E n0
(0) if 0,0 otheerwise

0

� ���� ����

� ��� ���
= +∑ ∫

n

n nc E E0
0

0
0 0

0
1

0
( ) ( ) ( ) ( )*ψ ψ τ ψ

δ

d

n

(( ) ( )*0
0

0ψ τd∫
1� ��� ���

That is, because the middle two terms are equivalent,

ψ ψ τ0
0

0
0

0
10( ) ( ) ( )( )* H E� d =∫

which is eqn 15.4.

The second-order correction to the energy is given by

E

H

E E
n

n

n

0
2

0

0 1
0

0

2

0
0 0

( )

( ) ( ) ( )

( ) ( )

*

=
−

≠
∑

∫ψ ψ τ� d

 

See Example 15.3 for an illustration of how this expression is 

used. The correction also represents an average of the perturba-

tion similar to that for the first-order energy correction, but now 

it is an average over the perturbed wavefunctions. In terms of the 

violin analogy, the average is now taken over the distorted wave-

form of the vibrating string, in which the locations of minimum 

and maximum amplitudes are slightly shifted (Fig. 15.2b).

15.2 The first-order correction  
to the energy

Although the equations of perturbation theory are applicable 

to any state of the perturbed system, we focus attention on the 

ground state for which the wavefunction of the ‘model’ system 

is ψ 0
0( ) . We show in the following Justification that the first-order 

correction to the energy of the ground state is given by eqn 15.4.

Second-
order energy 
correction 

(15.6)
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15 Time-independent perturbation theory  135

15.3 The first-order correction  
to the wavefunction

We show in the following Justification that the wavefunc-

tion corrected to first order in the perturbation is quoted in 

eqn 15.5. The first-order correction to the wavefunction is a 

linear combination of the unperturbed wavefunctions of the 

system. Equation 15.5 shows that a particular state ψ n
( )0

 makes no contribution to the linear combination 

if ∫ =ψ ψ τn H( ) ( ) ( )*0 1
0

0 0� d

 makes a larger contribution the smaller the energy 

difference | |( ) ( )E En0
0 0−  (absolute values used because 

En
( )0  is greater than the ground-state energy E0

0( )).

Justification 15.2 The first-order correction  
to the wavefunction

To find the first-order correction to the wavefunction, we con-

tinue the work of Justification 15.1 and seek the coefficients cn 

of the first-order correction to the wavefunction:

ψ ψ0
1 0( ) ( )=∑

n

n nc

When we multiply the equation in λ1 (rewritten here)

H H E E� �( ) ( )( ) ( ) ( ) ( ) ( ) ( )1 0
0

0
0
1

0
0

0
1

0
1

0
0ψ ψ ψ ψ+ = +

P
h

ys
ic

al
 

in
te

rp
re

ta
ti

o
n

through by ψ k
( )*0 , where now k ≠0, and integrate over all space, 

we get

ψ ψ τ ψ ψk

n

n k nH Hc( ) ( ) ( ) ( )( ) ( )* *0
0

0 0 01 0� �d d∫ ∑+

=

τ

E n kk
(0) if , 0 otherrwise

(0)

� ��� ���
� ����� �����

∫

∫∑=

c Ek k

k

n

n k nc E0
0 0 0( ) ( ) ( )*ψ ψ τ

δ

d

nn

kc E

� ��� ��� � ��� ���
� ����� �����0

(0)

0

+ ∫E k0
1 0

0
0( ) ( ) ( )*ψ ψ τd

That is,

∫ + =ψ ψ τk k k kH c E c E( ) ( ) ( ) ( )( )*0
0

0 0
0
01� d

which we can rearrange into

c
H

E E
k

k

k

=
−

∫ψ ψ τ( ) ( ) ( )

( ) ( )

*0 1
0

0

0
0 0

� d

Although this expression is for the coefficient ck, it applies to 

all coefficients: to get cn, simply change the index k wherever it 

occurs to n. The result is eqn 15.5.

Method Identify the first-order perturbation hamiltonian and 

evaluate E0
1( )  from eqn 15.4. The ground-state wavefunction of 

the particle in a one-dimensional box is given in Topic 9 (where 

it corresponds to n = 1). Use Integral T.3 listed in the Resource 

section.

Answer The perturbation hamiltonian is H x L� ( ) ( )1 = −ε sin /π  

and the unperturbed ground-state (n = 1) wavefunction of the 

particle in a one-dimensional box is ψ ( ) /( ) ( )0 1 22= / sin /L x Lπ . 

Therefore, the first-order correction to the wavefunction is

E H x
L

x

L
x

L L
( ) ( ) ( ) ( )

/

1 0 1 0

0

3

0

2 8

3
= = − = −∫ ∫ψ ψ ε ε� d sin d

π
π

π4 3L� ��� ���

The energy is lowered by the perturbation, as would be 

expected for the shape shown in Fig. 15.1.

Self-test 15.2 Evaluate the first-order correction to the energy 

of the ground state if, in the same model, V x x L( ) ( ).= −ε sin /2 π  

Use Integral T.4 listed in the Resource section.

Answer: E( )1 3
4

= − ε

Example 15.2 Evaluating the first-order correction 
to the wavefunction

Once again, use the model described in Brief illustration 15.1, 

this time to evaluate the contribution from the state with n = 3 

to the first-order correction to the wavefunction of the ground 

state.

Method The first-order correction to the wavefunction is 

given by the sum in eqn 15.5. The ground state of the particle 

in the box (denoted ψ 0
0( )  in the equation) is ψ1; we seek the 

contribution from ψ3. The wavefunctions and energies of the 

particle in a box are given in Topic 9. All the wavefunctions 

are real, so the * can be ignored. Use Integral T.6 listed in the 

Resource section.

Answer The contribution from the n = 3 state to the first-order 

correction to the wavefunction is given by the coefficient

c
H

E E3

3
1

1

1 3

= −
∫ψ ψ τ� ( ) d

The energies of the particle (an electron) in a box are En =  

n2h2/8meL
2, so the denominator is E E h m L1 3

2 2− = − / e .  The 

numerator is
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15.4 The second-order correction 
to the energy

The second-order correction to the energy (eqn 15.6), which 

is derived in the following Justification, is rather more compli-

cated, but we can note three important features:

Because E En
( ) ( )0

0
0> , all the terms in the denominator are 

negative, and because the numerators are all positive, E0
2( )  

is negative. That is, the second-order energy correction, 

but not necessarily the first-order correction, always 

lowers the energy of the ground state.

The perturbation appears (as its square) in the 

numerator; so, the stronger the perturbation, the 

greater the lowering of the ground-state energy.

If the energy levels of the system are widely 

spaced, all the denominators are large, so the sum is 

likely to be small. In this case, the perturbation has little 

effect on the second-order correction to the energy of the 

system: the system is ‘stiff’, and unresponsive to 

perturbations. The opposite is true when the energy 

levels lie close together.

Justification 15.3 The second-order correction  
to the energy

We continue the work on the previous two Justifications. To 

isolate the second-order energy correction E0
2( )  we multiply 

both sides of the equation (with terms λ2):

H H E E E� �( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1
0

2
0
1

0
2

0
0

0
1

0
1

0
0

0
2ψ ψ ψ ψ ψ+ = + +

by ψ 0
0( )*  and integrate over all space to obtain

ψ ψ τ ψ

ψ ψ τ

0
0 0

0
2

0
0 1( ) ( ) ( ) ( ) (* *H H� �d∫

∫

+

E0
(0)

0
(0)*

0
(2)d

� ���� ����
)) ( )

( ) ( ) ( ) ( ) ( ) ( )

ψ τ

ψ ψ τ ψ ψ τ

0
1

0
2

0
0

0
0

0
1

0
0

0
1

1

d

d d

∫

∫∫= +E E* *

� ��� ���
++ ∫E0

0
0

0
0

2( ) ( ) ( )ψ ψ τ* d

In the first term, we have used the hermiticity (Topic 6) of H� ( ).0  

The first and last terms cancel, and we are left with

E H E0
2

0
0 1

0
1

0
1

0
0

0
1( ) ( ) ( ) ( ) ( ) ( ) ( )* *= −∫ ∫ψ ψ τ ψ ψ τ� d d

We have already found the first-order corrections to the energy 

and wavefunction (eqns 15.4 and 15.5), so this expression 

∫

∫= ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

× −

ψ ψ τ

ε

ψ

3
1

1

0

1 2
2 3

H

L

x

L

x

L

L

� ( )

/

d

sin sin
π π

3� ��� ���
⎛⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

H� (1) 1� ��� ��� � ��� ���
2

1 2

L

x

L

/

sin d
π

ψ

xx

L

x

L

x

L
x

L

L

= − ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= −

∫2 3

2

2

0

ε

ε

sin sin d  
π π

Integral  T.6
 ⎛⎛
⎝⎜

⎞
⎠⎟

× −⎛
⎝⎜

⎞
⎠⎟

− + − −
⎧
⎨
⎩

⎫
⎬
⎭

− −{ }

=

L

2

1

3

1

2 3 2

1

2 3 2
1 1

8

15

3

π

π

( ) ( )
( )

ε

Therefore, the contribution from the n = 3 state is

c
h m L

m L

h3 2 2

2

2

8 15 8

15
=

−
= −ε ε/

/

π
πe

e

and the corrected ground-state wavefunction is 

ψ ε
1

1 2 2

2

1 2
2 8

15

2 3= ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝L

x

L

m L

h L

x

L

/ /

sin sin
π

π
πe

⎜⎜
⎞
⎠⎟

which, as Fig. 15.3 shows, corresponds to a greater accumula-

tion of amplitude in the middle of the well. Notice that there 

are no contributions from even-n states because the integral 

ψ ψ τn H� ( )1
1d∫  vanishes unless n is odd.

Self-test 15.3 Use the same model to evaluate the contribution 

from the n = 5 state to the first-order correction to the wave-

function of the ground state.

Answer: c m L h5
2 28 315= − ε e / π

0
0
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W
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Figure 15.3 The ground-state wavefunction corrected to 
first order as evaluated in Example 15.2 for different values 
of 8εmeL2/15πh2. Notice the progressive accumulation of 
amplitude in the middle of the well as the perturbation 
increases.
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15 Time-independent perturbation theory  137

could be regarded as an explicit expression for the second-

order energy correction. However, we can go one step further 

by substituting ψ ψ0
1 0( ) ( )=∑

n

n nc :

E c H c E

n

n n

n

n n0
2

0
0 1

0
1

0
0 00( ) ( ) ( ) ( ) ( ) ( )( )* *= −∑ ∑∫ ∫ψ ψ τ ψ ψ τ

δ

� d d

0 n� ���� ���
� ���� ����c E0 0

(1)

The final term cancels the n = 0 term in the sum, and we are 

left with

E c H

n

n n0
2

0

0
0 01( ) ( ) ( )( )*=

≠
∑ ∫ψ ψ τ� d

Substitution of the expression for cn (see Justification 15.2) 

produces the final result, eqn 15.6.

Example 15.3 Evaluating the second-order correction 
to the energy

Continue to use the model in previous Examples and evaluate 

the contribution from the state with n = 3 to the second-order 

correction to the energy of the ground state.

Method The second-order correction to the wavefunction is 

given by eqn 15.6. The ground state of the particle in the box 

(denoted ψ 0
0( )  in the equation) is ψ1; we seek the contribu-

tion from ψ3. All the integrals needed have been evaluated in 

Example 15.2.

Answer Using the results in Example 15.2 gives

ψ ψ τ
ε ε

3 1

2

1 3

2

2 2

2 2

2 2

1

8 15 64

225

H

E E h m L

m L

h

� ( )

( )
d

/

/

∫
− =

−
= −π

πe

e

which corresponds to a lowering of the energy due to the per-

turbation. We can now collect the first and second-order cor-

rections to the energy and write the perturbed energy of the 

ground state as

E
h

m L

m L

h0

2

2

2 2

2 28

8

3

64

225
= − −

e

ε ε
π π

e

Self-test 15.4 Evaluate the contribution from the n = 5 state to 

the second-order correction to the energy of the ground state 

in this model.

Answer: −64 330752 2 2 2ε m L he / π

Checklist of concepts

☐ 1. In perturbation theory, the hamiltonian operator for 

the problem is separated into a simple model hamilto-

nian, for which the Schrödinger equation can be solved 

exactly, and a ‘perturbation’, which is the difference 

between the true and model hamiltonians.

☐ 2. In time-independent perturbation theory, the pertur-

bation does not vary with time.

☐ 3. The first-order correction to the energy can be 

interpreted as the average value of the effect of the 

perturbation.

☐ 4. An unperturbed state makes a larger contribution to the 

first-order correction to the ground-state wavefunction 

the smaller its energy difference with the unperturbed 

ground-state energy.

☐ 5. The second-order correction to the energy is an average 

of the perturbation over the perturbed wavefunctions.

☐ 6. The second-order energy correction always lowers the 

energy of the ground state.

☐ 7. The stronger the perturbation and the smaller the spac-

ings of the energy levels in the unperturbed system, the 

greater the lowering of the ground-state energy.
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Checklist of equations

Property Equation Comment Equation number

Division of the hamiltonian H H H� � �= +( ) ( )0 1 H ( )1�  is the perturbation 15.1

Expansion of the energy E E E E= + + +…( ) ( ) ( )0 1 2 E(N) is the Nth-order energy correction 15.2

Expansion of the wavefunction ψ ψ ψ ψ= + + +…( ) ( ) ( )0 1 2 ψ(N) is the Nth-order correction to the 
wavefunction

15.3

First-order energy correction E H0
1

0
0 1

0
0( ) ( ) ( ) ( )*=∫ψ ψ τ� d Ground-state energy 15.4

Wavefunction corrected to first order ψ ψ ψ

ψ ψ τ

0 0
0

0

0

0
0
0

0
01

= +

=
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−

≠
∑

∫

( ) ( )

( ) ( ) ( )( )* /

n

n n

n n

c

c E EH� d nn
( )0( )

Ground state 15.5

Second-order energy correction �E H E E

n

n n0
2

0

0 1
0
0

2

0
0 0( ) ( ) ( ) ( ) ( ) ( )* /= −( )

≠
∑ ∫ψ ψ τd Ground-state energy

15.6
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TOPIC 16

Transitions

When the potential energy that occurs in a hamiltonian is 

independent of time the wavefunctions are solutions of the 

time-independent Schrödinger equation (Topic 6). However, 

that doesn’t mean that they do not vary with time. In fact, if 

the energy corresponding to a wavefunction ψ(r) is E, then the 

time-dependent wavefunction is

ψ ψ( , ) ( ) /r rt Et= −e i    Stationary-state wavefunction  (16.1)

and, because e−iEt/ħ = e−i(E/ħ)t = cos (Et/ħ) − i sin (Et/ħ) (Euler’s 

formula, Mathematical background 3), the time-depend-

ent wavefunction oscillates in time with a frequency E/ħ. 

Although the wavefunction oscillates, the physical observable 

it represents, the probability density, does not, for

Ψ Ψ ψ ψ ψ ψ( )* e e ( )*i ir r r r r r, ( , ) ( ( )* )( ( ) ) ( )./ /t t Et Et= =− 

which is independent of time. It is for this reason that Ψ(r,t) 

describes a stationary state, a state with a probability density 

that persists unchanged in time.

Matters are very different when the potential energy varies 

with time, either because an external influence, a perturbation, 

is switched on or because it is always present but changing with 

time, as is the case when an atom or molecule is exposed to an 

electromagnetic field. The states are no longer stationary, and a 

molecule in one state might be forced into another state. That 

is, transitions, changes of state, occur in the presence of time-

dependent perturbations.

Time-dependent perturbation theory provides a tech-

nique for analysing transitions between states, allowing us to 

identify the conditions under which transitions can occur and 

to develop expressions for their rates. Consequently, our dis-

cussion begins with time-dependent perturbation theory and 

then describes one of its most important applications, an initial 

exploration of the absorption and emission of electromagnetic 

radiation. This material is fundamental to the detailed account 

of atomic and molecular spectra.

Contents

16.1 Time-dependent perturbation theory 140

(a) The general procedure 140

Example 16.1: Using time-dependent perturbation 

theory for a slowly switched perturbation 140

(b) Oscillating perturbations and spectroscopic 
transitions 142

Example 16.2: Analysing spectroscopic transitions  

of a harmonic oscillator 142

(c) The energy of time-varying states 142

Brief illustration 16.1: Energy–time uncertainty 143

16.2 The absorption and emission of radiation 143

Brief illustration 16.2: The Einstein coefficients 144

Checklist of concepts 145
Checklist of equations 145

 ➤ Why do you need to know this material?

One of the most important ways of exploring the 
structure of matter is spectroscopy, in which the radiation 
absorbed, emitted, or scattered by molecules is analysed. 
To understand the processes involved, we need to know 
how wavefunctions change when molecules are exposed 
to perturbations of various kinds, such as an oscillating 
electromagnetic field or the impact of a collision.

 ➤ What is the key idea?
A selection rule results from analysis of the expression for 
the transition rate, which is proportional to the square of 
the strength of the perturbation.

 ➤ What do you need to know already?
You need to be familiar with the general principles of 
quantum mechanics (Topics 5–7) and the Schrödinger 
equation, as well as the basic concepts of perturbation 
theory (Topic 15). An example draws on information about 
the harmonic oscillator (Topic 12).
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140 4 Approximation methods

16.1 Time-dependent perturbation 
theory

To predict the outcome of the presence of a time-dependent 

perturbation we have to solve the time-dependent Schrödinger 

equation:

�H t t
t

t
( ) ( , )

( , )
Ψ

Ψ
r

r
= i

∂
∂  

(a) The general procedure

As in Topic 15 we use a perturbation procedure to find approxi-

mate solutions, and begin by supposing that the hamiltonian 

can be partitioned into a simple, solvable part and a perturba-

tion, which now is taken to be time-dependent:

H H H t= +( ) ( ) ( )0 1� � �
 (16.3a)

For instance, when a molecule is exposed to an electromagnetic 

field of frequency ω and strength E parallel to the z-direction, 

the perturbation is

H tz
� �( ) ( )1 t = −μ ωEcos

 

where �μz
 is the z-component of the dipole moment operator 

�μ  and is proportional to z. The underlying classical idea is that 

for an atom or molecule to be able to interact with the electro-

magnetic field and absorb or create a photon of a specific fre-

quency, it must possess, at least transiently, a dipole oscillating 

at that frequency.

As in the case of time-independent perturbation theory, 

we suppose that the solutions of eqn 16.2 can be expressed as 

linear combinations of the eigenfunctions of the unperturbed 

hamiltonian, the only difference being that the coefficients 

are allowed to vary with time. For instance, although initially 

an electron in a hydrogenic atom might be in a 1s orbital, as 

time goes on the probability increases that it will be found in 

a 2p orbital, so the coefficient of that orbital grows with time 

while the coefficient of the 1s orbital decreases. In general, 

we write

Ψ Ψ ψ( ) e ir r r, ( ) ( , ) ( ) ( )( ) ( ) /( )

t c t t c
n

n n

n

n n
E tn= =∑ ∑ −0 0 0

t 

 

where, as usual, the ψ n
( ) ( )0 r  are the eigenfunctions of H� ( )0  and 

the En
( )0  are their energies.

The challenge is to find explicit expressions for the coef-

ficients. We do not give the details here,1 but it turns out that 

if we confine our attention to the first-order effect of the per-

turbation, then the coefficients of all the wavefunctions other 

than the one occupied initially, which we take to be ψ 0
0( ) ( )r  (for 

instance, the 1s orbital in the previous example), is given by

c t H t tn n
t

t
n( ) ( )( )= ∫1

0
1

0

0

i
e di


ω

 

where

H t Hn n0
1 0 1

0
0( ) ( ) ( )( )( ) ( )*=∫ψ ψ τt d�  (16.4b)

We have supposed that the perturbation is applied at t = 0 and 

have written ωn nE E0
0

0
0= −( )( ) ( ) /. All it is necessary to do, there-

fore, is to introduce the form of the perturbation and evaluate 

these integrals, one over space (in eqn 16.4b) and the other over 

time (after substituting the outcome into eqn 16.4a).

A perturbation that is suddenly applied is like an impact 

and can be expected to knock the system into a variety of 

states; one that is applied slowly and grows to its final value 

produces a less violent effect and, well after it has been 

switched on, gives results equivalent to those obtained from 

time-independent perturbation theory where the pertur-

bation is always present. Even oscillating perturbations are 

often best treated as being switched on slowly, for a sudden 

application will introduce transient responses that are hard 

to treat mathematically.

Oscillating  
electric field

Time-
dependent 
perturbation

(16.3b)

Time-dependent 
Schrödinger equation

(16.2)

First-order 
time-
dependent 
perturbation 
theory

Coefficient 
of initially 
unoccupied 
state n

(16.4a)

Example 16.1 Using time-dependent perturbation 
theory for a slowly switched perturbation

To  e x p l o r e  t h e  s l o w l y  s w i t c h e d  c a s e ,  w r i t e 
� �H t H t( ) ( ) /( ) ( )1 1 1 0= − −e τ  where the time constant τ0 is very long 

(Fig. 16.1). Show that at times t >> τ0 (at which the perturbation 

has reached the constant value �H ( )1 ), the square modulus of 

the coefficient cn(t) is the same as we obtain from time-inde-

pendent perturbation theory (Topic 15).

Method Use eqn 16.4 to evaluate cn(t) and compare its square 

modulus to that of eqn 15.5 from time-independent perturba-

tion theory. We use τ0 for the time constant to avoid confusion 

with the τ in the volume element, dτ.

1 For a full account of the solution, see our Molecular quantum mechan-

ics, Oxford University Press (2011).
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The probability that at time t the perturbation has induced a 

transition from the initial state ψ 0
0( )  to the state ψ n

( )0  is

P t cn n( ) ( )= t
2

  Transition probability  (16.5)

The transition rate, w, is the rate of change of the probability 

of being in the final state ψ n
( )0  due to transitions from the initial 

state ψ 0
0( ) :

w t
P

tn
n( )= d

d
  Transition rate  (16.6)

We can now develop an important relation between the tran-

sition rate and the strength of the perturbation. We consider 

time-dependent perturbations of the form

� �H t H f t( ) ( )( ) ( )1 1=
 

where all time dependence is contained in f(t), as we illus-

trated in a specific case in Example 16.1 and we have also 

seen for the perturbation of eqn 16.3b, H z
( )1 = −μ E� �  and f(t) =  

cos ωt. Because the probability, Pn, is proportional to the square 

modulus of the coefficient, cn, of the state (eqn 16.5) and the 

coefficient is itself proportional to the magnitude of the per-

turbation (eqn 16.4), we conclude that the transition rate, a 

time derivative, is proportional to the square modulus of the 

strength of the perturbation:

w t H Hn n n( ) ( ) ( ) ( )( )*∝ = ∫0
1

2
0 1

0
0

2

ψ ψ τd�
Oscill-
ating 
electric 
field

Transition 
rate

(16.7)

c t Hn

t

n
n

n

( ) ( )= − eiω

ω
0

0
0
1



Now we recognize that ωn nE E0
0

0
0= −( ) ( ) , which gives

c t
H

E E
n

t
n

n

n

( )
( )

( ) ( )
= −

−
eiω 0

0
1

0
0
0

When we form the square modulus of cn, the factor eiωn t0  

disappears (its square modulus is 1) and we obtain a 

result identical to the square modulus of the coefficient in 

eqn 15.5.

Self-test 16.1 What is the form of cn(t) if a system is exposed 

to the osci l lat ing per turbat ion � �H t H t( ) ( )( ) cos1 12= =ω
�H t t( )( )1 e ei iω ω+ − ?

Answer: ( / ) ( ) [ ]

( ) [

{( ) ( )

( )

1 1

1

0
1

0
0

0

i e / i( )

e / i(

i

i

 Hn
t

n

t

n

n

ω ω

ω ω

ω ω
ω

+

−

− +
+ − nn0 −ω)]}

Answer Substitution of � �H t H t( ) ( ) /( ) ( )1 1 1 0= − −e τ  into eqn 16.4b 

gives

H t H

H

n n
t

t
n

0
1 0 1

0
0

0

1

1

0

0

( ) ( ) ( )( )* /

/ ( )*

( ) ( )

( )

= −

= −

∫

∫

−

−

ψ ψ τ

ψ

τ

τ

e d

e

�

(( ) ( )

/ ( )

( )

( )

1
0

0

0
1

0
1

01

ψ τ
τ

d

e

H

t
n

n

H

� ��� ���
�

= − −

Now substitute this expression into eqn 16.4a, recognizing 

that Hn0
1( )  is independent of time:

c t
H

t

H

n
n t t

t

n t

n

n

( ) ( )
( )

( )

/

/

= −

= −

−

−

∫0
1

0

0
1

1

1 0 0

0 0

i
e e d

i
(e e

i

i





τ ω

ω τ −−( )∫ i )dωn t
t

t0

0

Now use

e d
e

i
and e d

ei
i

i
i

ω
ω

τ ω
τ ω

ω
n

n

n

n

t
t

n

t
tt t0

0

0 0

0 01

00

1
1

= − = −∫ − −( )
− −( )

/
/ tt

n

t −
−∫ 1

1 0 00 /τ ωi

At this point, we suppose that the perturbation is switched 

slowly, in the sense that τ0 >> 1/ωn0 so that the (blue) 1/τ0 

in the second denominator can be ignored. Note that the 

assumption τ0 >> 1/ωn0 provides a quantitative criterion of 

‘slow’. We also suppose that we are interested in the coeffi-

cients long after the perturbation has settled down into its 

final value, when t >> τ0, so that the (blue) exponential in the 

second numerator is close to zero and can be ignored. Under 

these conditions,

τ0 short

τ0 long

Time, t

H
(1

) (t
)

H(1)

^
^

Figure 16.1 The time dependence of a slowly switched 
perturbation. A large value of τ0 corresponds to very slow 
switching.
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142 4 Approximation methods

(b) Oscillating perturbations and 
spectroscopic transitions

When the perturbation has the form given in eqn 16.3b, the 

transition rate is of the form

w tn n z( ) ( ) ( )*∝ ∫E 2 0
0

0
2

ψ μ ψ τd�
 

 Transition rate  (16.8a)

which includes a factor of the form

μ ψ μ ψz n n z z,
( ) ( )*

0
0

0
0=∫ d�

 

Such an integral is called a transition dipole moment. It is a 

measure of the electric dipole moment associated with the 

migration of charge from the initial state to the final state. 

The size of the transition dipole can be regarded as a measure 

of the  charge redistribution that accompanies a transition: a 

transition is active (and generates or absorbs photons) only if 

the accompanying charge redistribution is dipolar (Fig. 16.2). 

Clearly, if there is no such dipole moment, then wn = 0 and no 

transition occurs. If the transition dipole moment is not zero, 

then wn ≠ 0 and we infer that a transition to n has occurred. A 

transition is forbidden if the transition dipole moment is zero; 

it is allowed if any one of the components of the transition 

dipole moment (there are, in the most general case, also com-

ponents μx,n0 and μy,n0) is nonzero.

To summarize the discussion so far, we interpret eqn 16.8 as 

follows: the intensity of absorption or emission of radiation in a 

transition, which is proportional to the transition rate, is pro-

portional to the square modulus of the transition dipole moment. 

A detailed study of the transition dipole moment leads to the 

specific selection rules that express the allowed transitions in 

terms of the changes in quantum numbers. A gross selection 

rule specifies the general features a molecule must have if it is 

to have a spectrum of a given kind. Selection rules, and oth-

ers like it for other types of transition, are explained in relevant 

Topics (see, for example, Topics 42–44).

(c) The energy of time-varying states
The energy of a time-varying state (not a stationary state) can-

not be specified exactly. To see why this is so, suppose that the 

wavefunction has the form

Transition dipole moment 
(z-component) 

(16.8b)

Example 16.2 Analysing spectroscopic transitions  
of a harmonic oscillator

Suppose a hydrogen atom adsorbed on the surface of a gold 

nanoparticle undergoes harmonic motion perpendicular to 

the surface. Can the absorption of electromagnetic radiation 

result in a transition from the ground vibrational state of the 

oscillator to the first excited vibrational state?

Method The harmonic oscillator wavefunctions are given in 

Topic 12; they depend on the displacement, z, of the oscillator 

from its equilibrium position. Consider the component of the 

electromagnetic radiation along the axis perpendicular to the 

surface (that is, along z). Proceed to determine if the transition 

dipole moment ∫ψ μ ψ1
0

0
0( )* ( )

z zd  is nonzero; μ z ∝z. Use Integral 

G.3 listed in the Resource section.

Answer The ground-state and first excited-state harmonic 

oscillator wavefunctions are the real functions

ψ ψ α
α α

0
0

0
2

1
0

1
22 2 2 22( ) ( )/ /= = ⎛

⎝⎜
⎞
⎠⎟

− −N N zz ze e

where N0 and N1 are normalization constants and α  =  

(ħ2/μkf)
1/4 with μ and kf the effective mass and force constant, 

respectively, of the oscillator. The transition dipole moment is 

therefore

μ ψ ψ α

α

α
z

z

z

z z
N N

z z

N N
z

,
/( ) ( )

10 1
0

0
0 0 1 2

0 1 2

2

4

2 2

2

∝ =

=

−∞

∞
−

−∞

∞

−

∫ ∫d e d

e // /α α2

0
0 1

2 1 2dz N N
∞

∫ =
Integral G.3


π

Because the integral is not zero, the spectroscopic transition 

is allowed.

Self-test 16.2 Can the absorption of electromagnetic radia-

tion result in a transition from the ground state of the har-

monic oscillator to the second excited vibrational state? (Hint: 

Consider the symmetry of the integrand in the transition 

dipole moment.)

Answer: No; the integrand ψ ψ2
0

0
0( ) ( )z is an odd function of z

(a) (b)

Figure 16.2 (a) When a 1s electron becomes a 2s electron, 
there is a spherical migration of charge. There is no dipole 
moment associated with this migration of charge, so this 
transition is electric-dipole forbidden. (b) In contrast, when a 
1s electron becomes a 2p electron, there is a dipole associated 
with the charge migration; this transition is allowed.
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Ψ ψ τ( , ) ( ) / /r rt Et t= ×− −e ei  2

 

so that it oscillates and decays and the probability density 

decays exponentially with a time constant τ. An exponen-

tial function can be expressed as a superposition of sine and 

cosine functions, and therefore as a superposition of functions 

of the form e−iεt/ℏ with a wide range of values of ε. Therefore, the 

decaying function has the form

Ψ ψ
ε

ε
ε( ) ( ) e ir r, ( ) /t c E t= ∑ − + 

 

The probability that the energy E + ε is measured is propor-

tional to |cε|
2, and it is no longer possible to say with certainty 

that the energy of the decaying state is E. Indeed, the shorter 

the time constant τ, the lifetime of the state, the wider the 

spread of energies that must be included in the sum, as is illus-

trated in Fig. 16.3, where we have shown how a decaying expo-

nential function with various decay rates can be expressed as 

a superposition of cosine functions. The relation between the 

lifetime and the spread of energies ΔE is summarized by the 

expression

ΔE ≈ 
τ   Energy – time uncertainty  (16.9)

This expression is reminiscent of the Heisenberg uncertainty 

principle (Topic 8), and consequently it is often referred to as 

‘the energy–time uncertainty principle’. However, its deriva-

tion is quite different, and a better term is simply energy–time 

uncertainty. We see in Topic 40 that it plays an important role 

in governing the widths of spectral lines.

16.2 The absorption and emission 
of radiation

The rates of transitions between states induced by an elec-

tromagnetic field (or any other kind of perturbation) can be 

calculated from eqns 16.4–16.6 by inserting the appropriate 

perturbation. However, Einstein was able to carry out an anal-

ysis that led to a surprising conclusion: transitions took place 

even in the apparent absence of a perturbation!

His argument went as follows. First, he recognized that the 

transition from a low-energy state to one of higher energy that 

is driven by the electromagnetic field oscillating at the transi-

tion frequency is called stimulated absorption. This transition 

rate is proportional to E2 (eqn 16.8a) and therefore to the inten-

sity of the incident radiation. Therefore, the more intense the 

incident radiation, the stronger is the absorption by the sample 

(Fig. 16.4). Einstein wrote this transition rate as

w Bf i fi← = ρ  Stimulated absorption  Transition rate  (16.10)

The constant Bfi is the Einstein coefficient of stimulated 

absorption and ρdν is the energy density of radiation in the 

frequency range from ν to ν + dν, where ν is the frequency 

of the transition. For instance, when the atom or molecule is 

exposed to black-body radiation from a source of temperature 

T, ρ is given by the Planck distribution (Topic 4):

ρ =
−

8

1

3 3πh c
h kT

�
�

/

e /   Planck distribution  (16.11)

At this stage Bfi as an empirical parameter that characterizes 

the transition: if it is large, then a given intensity of incident 

radiation will induce transitions strongly and the sample will 

be strongly absorbing. The total rate of absorption, Wf←i, is the 

Brief illustration 16.1 Energy–time uncertainty

Consider an excited electronic state which has a lifetime of 

25 ns. The state corresponds to a spread of energies

ΔE ≈ =
×
×

= ×
−

−
−

τ
1 055 10

25 10
4 2 10

34

9
27

.
.

Js

s
J

or, by dividing by hc, to the wavenumber 2.1 × 10−4 cm−1.

Self-test 16.3 Determine the lifetime of a short-lived 

excited state that corresponds to a range of wavenumbers 

1.0 × 10−2 cm−1.

Answer: 530 ps

Time

Pr
o

b
ab

ili
ty

 d
en

si
ty

A
m

p
lit

u
d

e 
o

f 
co

n
tr

ib
u

ti
o

n

Frequency(a) (b)

Figure 16.3 (a) Two wavefunctions that decay at different 
rates; the purple curve has a faster decay rate and shorter 
lifetime than the blue curve. (b) The spread of frequencies (and 
therefore energies) that when superimposed re-creates the 
decaying wavefunctions; the state with the shorter lifetime has 
a wider spread of contributions (purple).
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144 4 Approximation methods

transition rate of a single molecule multiplied by the number of 

molecules Ni in the lower state:

W N w N Bf i i f i i fi← ←= = ρ   Total absorption rate  (16.12)

Einstein considered that the radiation was also able to 

induce the molecule in the upper state to undergo a transition 

to the lower state, and hence to generate a photon of frequency 

ν. Thus, he wrote the rate of this stimulated emission as

w Bf i if→ = ρ  Stimulated emission  Transition rate  (16.13)

where Bif is the Einstein coefficient of stimulated emission. 

This coefficient is in fact equal to the coefficient of stimulated 

absorption, as we shall see below. Moreover, only radiation of 

the same frequency as the transition can stimulate an excited 

state to fall to a lower state. 

At this point, it is tempting to suppose that the total rate 

of emission is this individual rate multiplied by the num-

ber of molecules in the upper state, Nf, and therefore to write 

Wf→i = NfBifρ. But here we encounter a problem: at equilibrium 

(as in a black-body container), the rate of emission is equal to 

the rate of absorption, so NiBfiρ = NfBifρ and therefore, since 

Bif = Bfi, Ni = Nf. The conclusion that the populations must be 

equal at equilibrium is in conflict with another very funda-

mental conclusion, that the ratio of populations is given by the 

Boltzmann distribution (Topics 2 and 51).

Einstein realized that to bring the analysis of transition rates into 

alignment with the Boltzmann distribution there must be another 

route for the upper state to decay into the lower state, and wrote

w A Bf i if→ = + ρ   Emission rate  (16.14)

The constant A is the Einstein coefficient of spontaneous emis-

sion. The total rate of emission, Wf→i, is therefore

W N w N A Bf i f f i f if→ →= = +( )ρ   Total emission rate  (16.15)

At thermal equilibrium, Ni and Nf do not change over time. 

This condition is reached when the total rate of emission and 

absorption are equal:

N B N A Bi fi f ifρ ρ= +( )  Thermal equilibrium (16.16)

and therefore

ρ =
−

=
−

=N A

N B B

A B

N N B B

A B
h

f

i fi f if

fi

i f if fi

fi/

/ /

/

eN

divide by f fiN B

ν //kT B B− if fi/

(16.17)

We have used the Boltzmann expression (Topic 2) for the ratio 

of populations of the upper state (of energy Ef) and lower state 

(of energy Ei):

N

N
E E kTf

i

e f i= − −( )/

h�� �� ��

 

This result has the same form as the Planck distribution (eqn 

16.11), which describes the radiation density at thermal equi-

librium. Indeed when we compare eqns 16.11 and 16.17, we 

can conclude that Bif = Bfi and that

A
h

c
B=⎛

⎝⎜
⎞
⎠⎟

8 3

3

π �

 

(16.18)

The important point about eqn 16.18 is that it shows that 

the relative importance of spontaneous emission increases 

as the cube of the transition frequency and therefore that it 

is therefore potentially of great importance at very high fre-

quencies. Conversely, spontaneous emission can be ignored at 

low transition frequencies, in which case intensities of those 

transitions can be discussed in terms of stimulated emission 

and absorption.

The presence of so-called spontaneous emission, in which, 

contrary to our earlier discussion, a transition occurs in the 

absence of a perturbation, might seem paradoxical. But in 

Brief illustration 16.2 The Einstein coefficients

For a transition in the X-ray region of the electromagnetic 

spectrum (corresponding to an excitation of a core electron in 

a molecule), a typical wavelength is 100 pm, corresponding to a 

frequency of 3.00 × 1018 s−1. The ratio of the Einstein coefficients 

of spontaneous and stimulated emission is

A

B
=

× × × ×
×

=
− −

−

8 6 626 10 3 00 10

2 998 10
1 67

34 18 1 3

8 1 3

π ( . ) ( . )

.
.

( )

Js s

ms
××10 2 1− −kg m s

Self-test 16.4 Calculate the ratio of the Einstein coefficients 

of spontaneous and stimulated emission for a transition in 

the microwave region of the electromagnetic spectrum with 

wavelength 1.0 cm.

Answer: A/B = 1.7 × 10−26 kg m−1 s

E
n

er
g

y

Stimulated
absorption
(B)

Stimulated
emission
(B)

Spontaneous
emission
(A)

Figure 16.4 The transitions analysed by Einstein in his theory 
of stimulated and spontaneous processes.
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16 Transitions  145

fact there is an unseen perturbation at work. The electromag-

netic field can be modelled as a collection of harmonic oscil-

lators, one for each of the infinite range of frequencies that 

can be stimulated. This is the basis of the original derivation 

of Planck’s expression for the density of states. Then, the pres-

ence of radiation is equivalent to the excitation of oscillators of 

the appropriate frequency, and the absence of that frequency in 

the radiation corresponds to the oscillator being in its ground 

state. But an oscillator has a zero-point energy (Topic 12), and 

is never truly still. Therefore, even in the absence of observable 

radiation, the electromagnetic fields are oscillating. It is these 

‘unseen’ zero-point oscillations of the electromagnetic field 

that act as a perturbation and drive the so-called ‘spontaneous’ 

emission of radiation.

Checklist of concepts

☐ 1.  A stationary state corresponds to a wavefunction with a 

probability density that does not change with time.

☐ 2. Transitions are changes in the state of the system; 

they often occur in the presence of time-dependent 

perturbations.

☐ 3. In the classical picture, for an atom or molecule to be 

able to interact with the electromagnetic field and 

absorb or create a photon of a specific frequency, it must 

possess, at least transiently, a dipole oscillating at that 

frequency.

☐ 4. The transition dipole moment is a measure of the elec-

tric dipole moment associated with the migration of 

charge from the initial state to the final state.

☐ 5. A transition is forbidden if the transition dipole 

moment is zero; it is allowed if any one of the compo-

nents of the transition dipole moment is nonzero.

☐ 6. The transition rate is proportional to the square modu-

lus of the strength of the perturbation.

☐ 7. The intensity of absorption or emission of radiation in a 

transition is proportional to the square modulus of the 

transition dipole moment.

☐ 8. A specific selection rule expresses the allowed transi-

tions in terms of the changes in quantum numbers.

☐ 9. A gross selection rule specifies the general features a 

molecule must have if it is to have a spectrum of a given 

kind.

☐ 10. The shorter the lifetime of a state, the wider is the 

spread of energies to which the state corresponds.

☐ 11. A transition from a low-energy state to one of higher 

energy that is driven by an oscillating electromagnetic 

field is called stimulated absorption.

☐ 12. A transition driven from high energy to low energy is 

called stimulated emission.

☐ 13. The relative importance of spontaneous emission 

increases as the cube of the transition frequency.

Checklist of equations

Property Equation Comment Equation number

Time-dependent Schrödinger equation �H t ,t ,t t( ) ( ) /Ψ Ψr r= i∂ ∂( ) 16.2

Perturbation due to oscillating electric field � �H t t( )( )1 = −μ ωzE cos μz
�  is z-component of dipole moment  

operator
16.3b

Coefficient of initially unoccupied state n c t H t t

H t H t

n n
t

t

n n

n( ) ( )

( )

( )

* ( )

( )

( ) ( )( )

=

=

∫
∫

1 0
1

0

0
1 0 1

0

0/ e dii ω

ψ ψ (( )0 dτ�

First-order time-dependent perturbation 
theory

16.4

Transition probability Pn(t) = |cn(t)|2 16.5

Transition rate wn(t) = dPn/dt 16.6

Transition dipole moment μ ψ μ ψz n n z z,
( )* ( )˘

0
0

0
0=∫ d z-component 16.8b

Energy–time uncertainty ΔE ≈ ħ/τ τ is the lifetime of the state 16.9

Planck distribution ρ = (8πhν3/c3)/(ehν/kT−1) 16.11

Ratio of Einstein coefficients of spontaneous  
and stimulated emission

A/B = 8πhν3/c3 Einstein coefficients of stimulated  
emission and absorption are equal

16.18
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146 4 Approximation methods

Focus 4 on Approximation methods

Topic 15 Time-independent perturbation theory

Discussion questions
15.1 Identify the two different forms of perturbation theory and explain why 

they are useful.

15.2 Describe what is meant by ‘first-order’ and ‘second-order’ corrections in 

perturbation theory.

15.3 Provide a physical interpretation for the expression for the first-order 

correction in the wavefunction.

15.4 Provide a physical interpretation for the expression for the second-order 

correction in the energy.

Exercises
15.1(a) Calculate the first-order correction to the energy of an electron in 

a one-dimensional nanoparticle modelled as a particle in a box when the 

perturbation is V(x) = −ε sin(2πx/L) and n = 1.

15.1(b) Calculate the first-order correction to the energy of an electron in 

a one-dimensional nanoparticle modelled as a particle in a box when the 

perturbation is V(x) = −ε sin(3πx/L) and n = 1.

15.2(a) Calculate the first-order correction to the energy of a particle in a box 

when the perturbation is V(x) = −ε cos(2πx/L) and n = 1.

15.2(b) Calculate the first-order correction to the energy of a particle in a box 

when the perturbation is V(x) = −ε cos(3πx/L) and n = 1.

15.3(a) Suppose that the ‘floor’ of a one-dimensional box slopes up from x = 0 

to ε at x = L. Calculate the first-order effect on the energy of the state n = 1.

15.3(b) Suppose that the ‘floor’ of a one-dimensional box slopes up from x = 0 

to ε at x = L. Calculate the first-order effect on the energy of the state n = 2.

15.4(a) Does the vibrational frequency of an O–H bond depend on whether it 

is horizontal or vertical at the surface of the Earth? Suppose that a harmonic 

oscillator of mass m is held vertically, so that it experiences a perturbation 

V(x) = mgx, where g is the acceleration of free fall. Calculate the first-order 

correction to the energy of the ground state.

15.4(b) Repeat the previous exercise to find the change in excitation energy 

from v = 1 to v = 2 in the presence of the perturbation.

15.5(a) Evaluate the second-order correction to the energy of the harmonic 

oscillator for the perturbation described in Exercise 15.4(a). Hint: You will 

find that there is only one term that contributes to the sum in eqn 15.6.

15.5(b) Evaluate the second-order correction to the energy of a particle  

in a one-dimensional square well for the perturbation described in  

Exercise 15.2(a). Hint: The only term that contributes to the sum in  

eqn 15.6 is n = 3.

Problems
15.1 Suppose that the floor of a one-dimensional nanoparticle has an 

imperfection that can be represented by a small step in the potential 

energy, as in Fig. F4.1. (a) Write a general expression for the first-order 

correction to the ground-state energy, E0
1( ).  (b) Evaluate the energy 

correction for a = L/10 (so the blip in the potential occupies the central 

10 per cent of the well), with n = 1.

15.2 We normally think of the one-dimensional well as being horizontal. 

Suppose it is vertical; then the potential energy of the particle depends on 

x because of the presence of the gravitational field. Calculate the first-order 

correction to the zero-point energy, and evaluate it for an electron in a box 

on the surface of the Earth. Account for the result. Hint: The energy of the 

particle depends on its height as mgh, where g = 9.81 m s−2. Because g is so 

small, the energy correction is small; but it would be significant if the box 

were near a very massive star.

15.3 Calculate the second-order correction to the energy for the system 

described in Problem 15.2 and calculate the ground-state wavefunction. 

Account for the shape of the distortion caused by the perturbation. Hint: The 

integrals required are listed in the Resource section.

15.4 The vibrations of molecules are only approximately harmonic because 

the energy of a bond is not exactly parabolic. Calculate the first-order 

correction to the energy of the ground state of a harmonic oscillator  

subjected to an anharmonic potential of the form ax3 + bx4, where a and b 

are small (anharmonicity) constants. Consider the three cases in which the 

anharmonic perturbation is present: (a) during bond expansion (x ≥ 0)  

and compression (x ≤ 0); (b) during expansion only; (c) during  

compression only.Location, x
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Figure F4.1 The definition of the potential energy in 
Problem 15.1. 
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Topic 16 Transitions

Discussion questions
16.1 What are likely to be the differences in outcome of the application of 

sudden and slowly switched perturbations?

16.2 What is the physical interpretation of a selection rule?

16.3 Identify some perturbations that are likely to be encountered in the 

discussion of the properties of molecules.

Exercises
 16.1(a) Calculate the ratio of the Einstein coefficients of spontaneous 

and stimulated emission, A and B, for transitions with the following 

characteristics: (a) 70.8 pm X-rays; (b) 500 nm visible light; (c) 3000 cm−1 

infrared radiation.

 16.1(b) Calculate the ratio of the Einstein coefficients of spontaneous 

and stimulated emission, A and B, for transitions with the following 

characteristics: (a) 500 MHz radiofrequency radiation; (b) 3.0 cm microwave 

radiation.

Problem
 16.1 The motion of a pendulum can be thought of as representing the 

location of a wavepacket that migrates from one turning point to the other 

periodically. Show that whatever superposition of harmonic oscillator states is 

used to construct a wavepacket, it is localized at the same place at the times 0, 

T, 2T, …, where T is the classical period of the oscillator.
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FOCUS 5  ON  Atomic structure and spectra

Hydrogenic
atoms

Hydrogenic
atomic
orbitals

Many-
electron

atoms
Periodicity Atomic

spectroscopy

Topic 17 Topic 18 Topic 19 Topic 20 Topic 21

The principles
of quantum
mechanics

Focus 2
The quantum

mechanics
of motion

Focus 3

Molecular
structure

Focus 6

Approximation
methods

Focus 4

Atoms are the currency of chemistry. They are the building blocks of all the forms of matter that 
chemists consider and it is essential to understand their structure. To do so, we draw on The quantum 

mechanics of motion, especially but not only rotational motion in three dimensions, and apply it to 
progressively more complex atoms.

The simplest atom of all is a hydrogen atom with its single electron, and its generalization to ‘hydro-
genic atoms’ of general atomic number but still only one electron (Topic 17). When the Schrödinger 
equation is solved for hydrogenic atoms we obtain the wavefunctions known as ‘atomic orbitals’ (Topic 
18). These orbitals play a central role in the description of chemical bonding, as is explained in Molecular 

structure, and, in combination with the ‘Pauli exclusion principle’, are the basis of the description of 
the structures of many-electron atoms (Topic 19). With the structures of these atoms understood, the 
structure of the periodic table and the ‘periodicity’ of the properties of the elements fall into place 
(Topic 20).

The experimental investigation of the structure of atoms is largely through ‘atomic spectroscopy’ 
(Topic 21). The origin of the transitions that give rise to spectral lines is time-dependent perturbation 
theory, which is described in Approximation methods. These transitions reveal details about the inter-
actions between electrons and the coupling of the various sources of angular momentum in an atom.

What is the impact of this material?

Atomic spectroscopy is widely used by astronomers to determine the chemical composition of stars 
(Impact 5.1). Stellar material consists of neutral and ionized forms of atoms, such as hydrogen, helium, 
carbon, and iron, and each element, and indeed each isotope of an element, has a characteristic 
spectral signature that is transmitted through space by the star's light.

To read more about the impact of this material, scan the QR code, or go to 
http://bcs.whfreeman.com/webpub/chemistry/qmc2e/impact/qchem_
impact5.html.
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TOPIC 17

Hydrogenic atoms

In this Topic we begin to describe the electronic structure of an 

atom, the distribution of electrons around its nuclei. We need 

to distinguish between two types of atoms. A hydrogenic atom 

is a one-electron atom or ion of general atomic number Z such 

as H, He+, Li2+, O7+, and even U91+. A many-electron atom (or 

polyelectronic atom) is an atom or ion with more than one elec-

tron, such as all neutral atoms other than H. This Topic, which 

focuses exclusively on hydrogenic atoms, provides a set of con-

cepts that are used to describe the structure of many-electron 

atoms (Topic 19).

17.1 The structure of hydrogenic atoms

To describe a hydrogenic atom using quantum theory, 

we need to write and solve the Schrödinger equation. The 

 potential-energy term in the Schrödinger equation arises from 

the Coulomb interaction between the electron and the nucleus 

of charge Ze (see Foundations, Topic 2):

V r
Ze

r
( )= −

2

04πε  Hydrogenic atom  Potential energy  (17.1)

where r is the distance of the electron from the nucleus 

and ε0 is the vacuum permittivity. Because this expression 

 ➤ Why do you need to know this material?
To set the stage for your study of the structure of atoms 
and molecules, you need to know how the Schrödinger 
equation is solved for the hydrogen atom. Moreover, 
the solutions for the hydrogen atom underlie the entire 
discussion of many-electron atoms, periodicity, and the 
formation of chemical bonds.

 ➤ What is the key idea?
Solution of the Schrödinger equation for the hydrogen 
atom subject to the appropriate boundary conditions 
results in one-electron wavefunctions, known as atomic 

orbitals, that are defined by three quantum numbers, n, l, 
and ml, and energies that depend only on n.

 ➤ What do you need to know already?
You should be familiar with the form of the Schrödinger 
equation (Topic 6), its solution by the separation of 
variables technique (Mathematical background 2), and 
the quantum mechanical description of rotation in three 
dimensions (Topic 14).
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Brief illustration 17.1: The angular part of the 
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17 Hydrogenic atoms  151

depends only on the distance from a single point (here, the 

nucleus), it is an example of a central potential. The hamil-

tonian operator for the electron and a nucleus of mass mN is 

therefore

�  
H

m m
= − ∇ − ∇

2
2

2
2

2 2e
e

N
N

electronic
kinetic energy

nuclear
ki� �� �� nnetic energy

potential
energy� �� �� ��� ��

− Ze

r

2

04πε
 

The subscripts on ∇2 indicate differentiation with respect to 

the electronic or nuclear coordinates (Fig. 17.1).

(a) The separation of variables
As shown in the following Justification, the Schrödinger equa-

tion for a hydrogenic atom can be separated into two equations, 

one for the motion of the atom as a whole through space and 

the other for the motion of the electron relative to the nucleus. 

The Schrödinger equation for the internal motion of the elec-

tron relative to the nucleus is

− ∇ − =2
2

2

02 4μ
ψ

ε
ψ ψZe

r
E

π  

μ =
+

m

m m
e

e N

mN
 Hydrogenic atom  Reduced mass  (17.3b)

where differentiation is now with respect to the coordinates 

of the electron relative to the nucleus (Fig. 17.2). The quantity 

μ, which is called the reduced mass, is very similar in value 

to the electron mass because mN, the mass of the nucleus, 

is much larger than the mass of an electron, so μ ≈ me. In 

all except the most precise work, the reduced mass can be 

replaced by me.

Hydro-
genic 
atom 

Hamil-
tonian 
operator 

(17.2)

Justification 17.1 The separation of internal and 
external motion

We consider a one-dimensional system in which the poten-

tial energy depends only on the separation of the two par-

ticles, and then generalize to three dimensions. The total 

classical energy is

E
p

m

p

m
V= + +1

2

1

2
2

22 2

where p m x1 1 1= �  and p m x2 2 2= �  (where the dot indicates differ-

entiation with respect to time) are the linear momenta of the 

two particles. The centre of mass (Fig. 17.3) is located at

X
m

m
x

m

m
x= +1

1
2

2

where m = m1 + m2. Because the separation of the particles is 

x = x1 − x2, it follows that

X
m

m
x

m

m
x x= + −1

1
2

1( )

giving

x X
m

m
x x x x X

m

m
x1

2
2 1

1= + = − = −and

x

y

z

xe
ye

ze

xN

yN

zN r

N

e

Figure 17.1 The coordinate system for describing the positions 
of the electron and nucleus in a hydrogenic atom.

Internal 
motion of 
electron

Schrödinger 
equation (17.3a)

x

y

z

r

φ
θ

Figure 17.2 The coordinate system for describing the position 
of the electron relative to the nucleus. The nucleus is placed 
at the origin, and spherical polar coordinates are used for 
describing the position of the electron relative to the nucleus.

m1

x1x2

m2

X

x

Figure 17.3 The coordinates used for discussing the separation 
of the relative motion of two particles from the motion of the 
centre of mass.
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152 5 Atomic structure and spectra

The centrosymmetric Coulomb potential energy has spheri-

cal symmetry in the sense that at a given distance its value 

is independent of angle. We can therefore suspect that the 

Schrödinger equation will separate into an angular component 

that mirrors the equation for a particle on a sphere treated in 

Topic 14 and, new to this system, an equation for the radial fac-

tor. That is, we can think of the electron as free to move around 

the nucleus on a spherical surface with the additional freedom 

to move between concentric surfaces of different radii. The fol-

lowing Justification confirms that the wavefunction can indeed 

be written as a product of functions

ψ θ φ θ φ( , , ) ( ) ( , )r R r Y=
 

where the Y are the spherical harmonics that occur for a particle 

on a sphere and are labelled with the quantum numbers l and 

ml that specify the angular momentum of the particle. The fac-

tor R, the radial wavefunction, is a solution of the radial wave 

equation

− +⎛
⎝⎜

⎞
⎠⎟

+ − = − +





2
2

2

2

2 2
2

2
2

1

2

μ

μ

R
r

R

r
r

R

r

Vr Er
l l

d

d

d

d

( )

The linear momenta of the particles in terms of the rates of 

change of x and X are

p m x m X
m m

m
x

p m x m X
m m

m
x

1 1 1 1
1 2

2 2 2 2
1 2

= = +

= = −

� � �

� � �

Then it follows that

p

m

p

m m
m X

m m

m
x

m
m X

m m

m
x1

2

1

2
2

2 1
1

1 2

2

2
2

1 2

2 2

1

2

1

2
+ = +⎛

⎝⎜
⎞
⎠⎟

+ −⎛
⎝⎜

⎞� � � �
⎠⎠⎟

= + ⎛
⎝⎜

⎞
⎠⎟

2

2 1 2 21

2

1

2
mX

m m

m
x� �

By writing P mX= �  for the linear momentum of the system 

as a whole and defining p as μ �x , where the reduced mass 

μ = m1m2/m, we find

E
P

m

p
V= + +

2 2

2 2μ

The corresponding hamiltonian is therefore

H
P

m
V

p� � �
= + +

2 2

2 2μ

which, generalized to three dimensions, is

H
m

V�  = − ∇ − ∇ +
2

2
2

2

2 2cm μ

where the first term differentiates with respect to the centre of 

mass coordinates and the second with respect to the relative 

coordinates.

Now we write the overall wavefunction as the product 

ψtotal = ψcmψ, where ψcm is a function of only the centre of mass 

coordinates and ψ is a function of only the relative coordi-

nates. The overall Schrödinger equation, H E� ψ ψtotal total total= , 

then separates by the argument presented in Mathematical 

background 2 with Etotal = Ecm + E.

Hydrogenic 
atom 

Electronic 
wavefunction (17.4)

Hydrogenic 
atom

Radial 
wave 
equation 

(17.5)

Justification 17.2 The solutions of the Schrödinger 
equation for a hydrogenic atom

Substitution of the wavefunction ψ = RY into eqn 17.3 gives

− + +
⎛
⎝⎜

⎞
⎠⎟

∇

2 2

2 2
2

2

2 1

μ Λ∂
∂

∂
∂r r r r

2 in spherical coordinates� ���� �����

RY VRY ERY+ =

Because R depends only on r and Y depends only on the angu-

lar coordinates, this equation becomes

− + +
⎛
⎝⎜

⎞
⎠⎟

+ =2 2

2 2
2

2

2

μ ΛY
R

r

Y

r

R

r

R

r
Y VRY ERY

d

d

d

d

Multiplication through by r2/RY gives

− +
⎛
⎝⎜

⎞
⎠⎟

+ − = 2
2

2

2
2

2
2 2

2
2

2μ μ Λ
R

r
R

r
r

R

r
Vr

Y
Y Er

d

d

d

d

and therefore

− +
⎛
⎝⎜

⎞
⎠⎟

+ −2
2

2

2
2

2
2μR

r
R

r
r

R

r
V E r

d

d

d

d
( )

Depends on aloner� ������� �������� � �� ��

= 2
2

2μ Λ

θ φ

Y
Y

Depends on alone,

At this point we employ the usual argument for the separation 

of variables (Mathematical background 2), that each term on 

either side of the equals sign must be a constant, and conclude 

that the differential equation separates into two equations:

− =

− +
⎛
⎝⎜

⎞
⎠⎟

+ − = −





2
2

2
2

2

2
2

2

2
2

μ Λ

μ

Y
Y

R
r

R

r
r

R

r
V E r

constant

d

d

d

d
con( ) sstant

The first of these two equations is encountered in Topic 14, 

where it is noted that

Λ2 1Y l l Y= − +( )

and that the solutions (subject to cyclic boundary conditions) 

are the spherical harmonics.
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17 Hydrogenic atoms  153

(b) The radial solutions
The appearance of the radial wave equation (eqn 17.5) is sim-

plified by writing R = u/r, with u a function of r, for it then 

becomes (see Problem 17.4)

− + =2 2

22μ
d

d eff

u

r
V u Eu

 

where

V
Ze

r

l l

reff = − + +2

0

2

24

1

2πε μ
( )

 

Equation 17.6 describes the motion of a particle of mass μ in 

a one-dimensional region 0 ≤ r < ∞ where the potential energy 

is Veff.

The first term in eqn 17.6b is the Coulomb potential energy 

of the electron in the field of the nucleus. The second term, 

which depends on the angular momentum of the electron 

around the nucleus, stems from what in classical physics would 

be called the ‘centrifugal effect’. When l = 0, the electron has no 

angular momentum, and the effective potential energy is purely 

Coulombic and attractive at all radii (Fig. 17.4). When l ≠ 0, 

the centrifugal term gives a positive (repulsive) contribution 

to the effective potential energy. When the electron is close to 

the nucleus (r ≈ 0), this repulsive term, which is proportional to 

1/r2, dominates the attractive Coulombic component, which is 

proportional to 1/r, and the net result is an effective repulsion 

of the electron from the nucleus. The two effective potential 

energies, the one for l = 0 and the one for l ≠ 0, are qualitatively 

very different close to the nucleus. However, they are similar 

at large distances because the centrifugal contribution tends to 

zero more rapidly (as 1/r2) than the Coulombic contribution 

(as 1/r). Therefore, we can expect the solutions with l = 0 and 

l ≈ 0 to be quite different near the nucleus but similar far away 

from it.

We show in the following Justification that:

Close to the nucleus the radial wavefunction is 

proportional to rl.

Far from the nucleus all radial wavefunctions approach 

zero exponentially.

It follows that when l ≠ 0 (and rl = 0 when r = 0) there is a zero 

probability density for finding the electron at the nucleus, and 

the higher the orbital angular momentum, the less likely the 

electron is to be found near the nucleus (Fig. 17.5). However, 

when l = 0 (and rl = 1 even when r = 0) there is a nonzero prob-

ability density of finding the electron at the nucleus. The con-

trast in behaviour has profound implications for chemistry, 

for it underlies the structure of the periodic table (Topic 20). 

The exponential decay of wavefunctions has a further impor-

tant implication: it means that atoms can, to a good approxi-

mation, be represented by spheres with reasonably well 

defined radii. This feature is especially important in the dis-

cussion of solids (Topic 37), which are commonly modelled as 

aggregates of spheres representing their atoms and ions.

Hydrogenic 
atom

Radial 
wave 
equation 

(17.6a)

Brief illustration 17.1 The angular part of the hydrogenic 
wavefunction

Consider an electron in a hydrogen atom with the angu-

lar part of its wavefunction given by the spherical harmonic 

Y2,−1(θ,φ). Because l = 2 and ml = −1, the magnitude of the 

angular momentum is 61/2 and the z-component is −; the 

negative sign indicates that, in classical terms, the electron 

is circulating in an anticlockwise sense as seen from below. 

Furthermore, because (Table 14.1) Y2,−1(θ,φ) ∝ cos θ sin θ, 

there are angular nodes at θ = 0, π/2, π: the probability of find-

ing the electron anywhere on the z-axis and in the xy-plane is 

therefore zero.

Self-test 17.1 If the angular part of the electronic wavefunc-

tion is given by Y1,+1(θ ,φ), determine the magnitude and 

z-component of the angular momentum as well as the loca-

tions of any angular nodes.

Answer: 21/2, +, θ = 0, π

Hydrogenic 
atom 

Effective 
potential 
energy 

(17.6b)

l = 0

l ≠ 0
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Figure 17.4 The effective potential energy of an electron in a 
hydrogenic atom. When the electron has zero orbital angular 
momentum, the effective potential energy is the Coulombic 
potential energy. When the electron has nonzero orbital 
angular momentum, the centrifugal effect gives rise to a 
positive contribution which is very large close to the nucleus. 
The l = 0 and l ≠ 0 wavefunctions are therefore very different 
near the nucleus.
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154 5 Atomic structure and spectra

We shall not go through the technical steps of solving the 

radial wave equation (eqn 17.6) for the full range of radii, and 

see how the form rl close to the nucleus blends into the expo-

nentially decaying form at great distances.1 It is sufficient to 

know that:

The two limits can be matched only for integral values of 

a new quantum number n.

The allowed energies corresponding to the allowed 

solutions are

   

E
Z e

n
nnlml

= − = …
2 4

2
0
2 2 232

1 2
μ
επ 

, ,

The allowed energies are independent of the values of l 

and ml; to avoid overburdening the notation, henceforth 

we denote them simply En.

The radial wavefunctions depend on the values of both n 

and l (but not on ml) with l restricted to values 0, 1, …, 

n − 1.

All radial wavefunctions have the form

R r r r rl( ) ( ) ( )= × ×polynomial in decaying exponential in
 

These functions are most simply written in terms of the dimen-

sionless quantity ρ (rho), where

ρ ε
μ

= =2 4 0
2

2

Zr

na
a

e

π 
 (17.8)

Justification 17.3 The radial wavefunctions close to and 
far from the nucleus

When r is very small (close to the nucleus), u = rR ≈ 0, so the 

right-hand side of eqn 17.6a is zero. We can also ignore all but 

the largest terms (those depending on 1/r2) in eqn 17.6b and 

write

− + + ≈d

d

2

2 2

1
0

u

r

l l

r
u

( )

The solution of this equation (for r ≈ 0) is

u Ar
B

r
l

l
≈ ++1

as may be verified by substitution of the solution into the dif-

ferential equation. Because R = u/r, and R cannot be infinite 

anywhere and specifically at r = 0, we must set B = 0. Therefore 

we obtain u ≈ Arl+1 or R ≈ Arl, as we wanted to show.

Far from the nucleus, when r is very large and we can ignore 

all terms in 1/r and 1/r2, eqn 17.6a becomes

− 2 2

22μ
d

d

u

r
Eu�

where � means ‘asymptotically equal to’ (that is, the two sides 

of the expression become equal as r → ∞). Because

d

d

d

d

d

d

d

d

d

d

d

d

2

2

2

2

u

r

rR

r r r
rR

r
r

R

r
R

r

= = = +⎛
⎝⎜

⎞
⎠⎟

=

( )
( )

This factor is
vvery large


�
d

d

d

d

d

d

2

2

2

2
2

R

r

R

r
r

R

r
+

Hydro-
genic 
atom

Energy (17.7)

1 For a full account of the solution, see our Molecular quantum mechan-

ics, Oxford University Press (2011).

this equation has the form

− 2 2

22μ r
R

r
ErR

d

d
�

or, after cancelling the r,

− 2 2

22μ
d

d

R

r
ER�

Because R must be finite and the energy is negative for a 

bound state, a state in which the energy of the electron is lower 

than when the electron is infinitely distant and stationary, the 

acceptable solution for r large is

R E r� e−( | |/ ) /2 2 1 2μ 

as may be verified by substitution. That is, all the bound-

state wavefunctions decay exponentially towards zero as 

r increases.

Radius, r

W
av

ef
u

n
ct

io
n

, ψ

l = 0

1
2

3

Figure 17.5 Close to the nucleus, orbitals with l = 1 are 
proportional to r, orbitals with l = 2 are proportional to r2, 
and orbitals with l = 3 are proportional to r3. Electrons are 
progressively excluded from the neighbourhood of the 
nucleus as l increases. An orbital with l = 0 has a finite, nonzero 
value at the nucleus.
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17 Hydrogenic atoms  155

For simplicity, and introducing negligible error, the μ in eqn 

17.8 is often replaced by me, in which case ρ = 2Zr/na0 and

a
m e0

0
2

2

4= πε 

e
 Definition  Bohr radius  (17.9)

The Bohr radius, a0, has the value 52.9 pm; it is so called 

because the same quantity appeared in Bohr’s early model of 

the hydrogen atom as the radius of the electron orbit of low-

est energy. Specifically, the radial wavefunctions for an electron 

with quantum numbers n and l are the (real) functions

R N Lrnl nl
l

n
l( ) ( ) /= +
+ −ρ ρ ρ
1

2 1 2e
 

where Nnl is a normalization constant (with a value that 

depends on n and l) and L is a polynomial in ρ called an associ-

ated Laguerre polynomial. The polynomial L connects the r ≈ 0 

solutions on its left (corresponding to R ∝ ρl) to the exponen-

tially decaying function on its right. The notation might look 

fearsome, but the polynomials have quite simple forms, such as 

1, ρ, and 2 − ρ (they can be picked out in Table 17.1).

The components of eqn 17.10 can be interpreted as follows:

The exponential factor ensures that the wavefunction 

approaches zero far from the nucleus.

The factor ρl ensures that (provided l > 0) the 

wavefunction vanishes at the nucleus.

The associated Laguerre polynomial is a function 

that oscillates from positive to negative values and 

accounts for the presence of radial nodes.

Expressions for some radial wavefunctions are given in Table 

17.1 and illustrated in Fig. 17.6. Note that because r is never 

negative, the zero in the radial wavefunctions at r = 0 (for 

l > 0) is not a node: the wavefunction does not pass through 

zero there.

17.2 The atomic orbitals and  
their energies

The wavefunctions of hydrogenic atoms are called ‘atomic 

orbitals’. More precisely, an atomic orbital is a one-electron 

wavefunction for an electron in an atom.

(a) The atomic orbitals
Each hydrogenic atomic orbital (eqn 17.4) is defined by three 

quantum numbers, designated n, l, and ml:

ψ θ φ θ φnlm nl lml l
r R Yr( ) ( ), , ( , )=

 

When an electron is described by one of these wavefunc-

tions, we say that it ‘occupies’ that orbital.

The quantum number n is called the principal quantum 

number; it can take the values n = 1, 2, 3, … and determines the 

energy of the electron, as in eqn 17.7. The two other quantum 

numbers, l and ml, come from the angular solutions and spec-

ify the angular momentum of the electron around the nucleus, 

as explained in Topic 14. However, the various boundary 

P
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o
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Hydrogenic 
atom

Radial 
wavefunctions (17.10)

Brief illustration 17.2 The radial nodes of the 
wavefunction

Consider an electron in a hydrogen atom with n = 2, l = 0, 

ml = 0. Because the radial wavefunction R2,0 ∝ (2 − ρ) (see Table 

17.1), the radial node is found at ρ = 2. Using eqns 17.8 and 17.9, 

we find, with Z = 1 and n = 2,

r
na

Z
a= =0

02
2

ρ

Therefore, there is zero probability of finding the electron in a 

small volume element at a distance 105.8 pm from the nucleus 

in the hydrogen atom.

Self-test 17.2 Find the radial nodes for an electron in Li2+ ion 

with n = 3, l = 0, ml = 0.

Answer: (3 ± 31/3)a0/2, 125 and 33.5 pm

Table 17.1 Hydrogenic radial wavefunctions

n l Rnl

1 0

2

3 2

2Z

a

⎛
⎝⎜

⎞
⎠⎟

−
/

/e ρ

2 0
1

8
2

1 2

3 2

2
/

/

/Z

a

⎛
⎝⎜

⎞
⎠⎟

−( ) −ρ ρe

2 1
1

241 2

3 2

2
/

/

/Z

a

⎛
⎝⎜

⎞
⎠⎟

−ρ ρe

 

3 0
1

243
6 6

1 2

3 2

2 2
/

/

/( )
Z

a

⎛
⎝⎜

⎞
⎠⎟

− + −ρ ρ ρe

 

3 1
1

486
4

1 2

3 2

2
/

/

/( )
Z

a

⎛
⎝⎜

⎞
⎠⎟

− −ρ ρ ρe

3 2
1

24301 2

3 2

2 2
/

/

/Z

a

⎛
⎝⎜

⎞
⎠⎟

−ρ ρe

ρ = (2Z/na)r with a = 4πε02/μe2. For an infinitely heavy nucleus (or one that may be 

assumed to be), μ = me and a = a0, the Bohr radius.

Hydrogenic 
atom

Atomic 
orbital

(17.11)
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156 5 Atomic structure and spectra

conditions that the angular and radial wavefunctions must sat-

isfy put additional constraints on their values:

An electron in an orbital with quantum number l has an 

angular momentum of magnitude {l(l + 1)}1/2, with l = 0, 1, 

2, …, n − 1.

An electron in an orbital with quantum number ml has a 

z-component of angular momentum ml , with 

ml = 0, ± 1, ± 2,…, ± l.

Note how the value of the principal quantum number, n, con-

trols the maximum value of l and how, in turn, l restricts the 

range of values of ml. For example, if n = 3, the allowed values of 

l (and corresponding ml) are 0 (0), 1 (0, ±1), and 2 (0, ±1, ±2).

(b) The energy levels

The energy levels predicted by eqn 17.7 are depicted in Fig. 

17.7. The energies, and also the separation of neighbouring lev-

els, are proportional to Z2; therefore, the levels are four times 

as wide apart in He+ (Z = 2) as in H (Z = 1) and the ground state 

(n = 1) is four times deeper in energy. All the energies given by 

eqn 17.7 are negative because they refer to the bound states of 

the atom, in which the energy of the atom is lower than that 

of the infinitely separated, stationary electron and nucleus (the 

n = ∞ limit). There are also solutions of the Schrödinger equa-

tion (eqn 17.3) with positive energies. These solutions corre-

spond to unbound states of the electron, the states to which 

an electron is raised when it is ejected from  the atom by a 

high-energy collision or photon. The energies of the unbound 

electron are not quantized (the boundary condition that the 

wavefunction must vanish at infinity is no longer relevant) and 

form the continuum states of the atom.

For the hydrogen atom, the expression for the energy in eqn 

17.7 can be written in the form

E
hcR

n
nn = − = …

�
H

2
1 2, ,

 

Brief illustration 17.3 The probability density for 

an electron

To calculate the probability density at the nucleus for an elec-

tron occupying the n = 1, l = 0, ml = 0 orbital, we begin by evalu-

ating ψ1,0,0 at r = 0 (see Tables 14.1 and 17.1):

ψ θ φ φθ1 0 0 1 0 0 0
0

3 2 1 2

0 0 2
1

4, , , ,

/ /

( ) ( ) ( ), , ,= = ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

R Y
Z

a π

The probability density is therefore

ψ θ φ1 0 0
2

3

0
3

0, , ( ), , = Z

aπ

which evaluates to 2.15 × 10−6 pm−3 when Z = 1. Therefore, the 

probability of finding the electron inside a region of volume 

1.00 pm3 located at the nucleus, ignoring the variation of ψ 

within the very small region, is 2.15 × 10−6 or about 1 part in 

5 × 105.

Self-test 17.3 Evaluate the probability density at the nucleus 

for an electron occupying the n = 2, l = 0, ml = 0 orbital. What 

is the probability of finding the electron inside a region of vol-

ume 1.00 pm3 located at the nucleus of the H atom?

Answer:  Z a3
0
38/( )π , 2.69 × 10−7

Alternative 
form

Energy, 
hydrogen 
atom 

(17.12a)

n = 1, l = 0
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/a
0)

3/
2

0

0
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(Z

/a
0)

3/
2

0
0
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0.02
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(f)

Figure 17.6 The radial wavefunctions of the first few states of 
hydrogenic atoms of atomic number Z. Note that the orbitals with 
l = 0 have a nonzero and finite value at the nucleus. The horizontal 
scales are different in each case: orbitals with high principal 
quantum numbers are relatively distant from the nucleus.
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17 Hydrogenic atoms  157

where �RH  is the Rydberg constant for hydrogen

�R
e

h cH
H= μ

ε

4

0
2 38

  Rydberg constant for H  (17.12b)

with a value of 109 677 cm−1. The Rydberg constant itself, �R∞ , 

is defined by the same expression as eqn 17.12b except for the 

replacement of μH by the mass of an electron, me, correspond-

ing to a nucleus of infinite mass:

�R
m e

h c∞ = e
4

0
2 38ε  Definition  Rydberg constant  (17.13)

Equation 17.12 is a convenient expression for analyses of the 

emission spectrum of atomic hydrogen, as shown in the follow-

ing Example, and explored in more detail in Topic 21.

Example 17.1 Determining the energy for an electron 
occupying an atomic orbital

The single electron in a certain excited state of a hydrogenic 

He+ ion (Z = 2) is described by the wavefunction R3,2(r) × 

Y2,−1(θ ,φ). What is the energy of its electron?

Method Because the energy of a hydrogenic atom depends on 

n but is independent of the values of l and ml, we need iden-

tify only the quantum number n, which is done by noting the 

form of the wavefunction given in eqn 17.11. Then use eqn 17.7 

to calculate the energy. To a good approximation, the reduced 

mass in eqn 17.7 can be replaced by me and the energy can be 

written in terms of the Rydberg constant of eqn 17.13. (For 

greater accuracy, use the reduced mass of the electron and 

helium nucleus.)

Answer Replacing μ by me and using  = h/2π, we can write 

the expression for the energy (eqn 17.7) as

E
Z m e

h n

Z hcR

nn
e= − = − ∞

2 4

0
2 2 2

2

28ε
�

with

�

� ���� ���� � ���� ��

R∞

− −

=
× × ×9 109 38 10 1 602 176 1031 19 4. ( . )kg C

m ee 4 ���

� ������ 	�����
8 8 854 19 10 6 626 08 1012 1 2 1 2× × × ×− − − −( . ) ( .J C m

ε0
2

334 3

10 1

1

2 997 926 10

109 737

Js

cms

cm

)

.

h

c

3
� ���� 	���

� ���� 	���
× ×

=

−

−

and

hcR�∞
− −

−

= × × ×
×

=

( . ) ( . )

( )

6 626 08 10 2 997 926 10

109 737

34 10 1

1

Js cms

cm

22 179 87 10 18. × − J

Therefore, for n = 3, the energy is

E3

18

19

4

9

2 179 87 10

9 688 31 10

= −
× ×

= − ×

−

−

∞Z hcR

n

2

2




�

� ��� ���
�

.

.

J

J

or −0.968 831 aJ (a, for atto, is the prefix that denotes 10−18). 

In some applications it is useful to express the energy 

in electronvolts (1 eV = 1.602 176 × 10−19 J); in this case, 

E3 = −6.046 97 eV.

Self-test 17.4 What is the energy of the electron in an excited 

state of a Li+2 ion (Z = 3) for which the wavefunction is R4,3(r) × 

Y3,−2(θ,φ)?
Answer: −1.226 18 aJ, −7.653 22 eV

Example 17.2 Calculating the wavenumber of a line in 
the emission spectrum of H

When an electric discharge is passed through gaseous hydro-

gen, the H2 molecules are dissociated and energetically excited 

H atoms are produced. If the electron in an excited H atom 

makes a transition from n = 2 to n = 1, calculate the wavenum-

ber of the corresponding line in the emission spectrum.

Method When an excited electron makes a transition from 

a state with quantum number n2 to a lower energy state with 

quantum number n1, it loses an energy

ΔE E E hcR
n nn n= − = − −⎛

⎝⎜
⎞
⎠⎟2 1

1 1

2
2

1
2

�
H

The frequency of the emitted photon is  ν = ΔE/h; the wave-

number is �� �= =/ /c E hcΔ .

Answer The wavenumber of the photon emitted when an elec-

tron makes a transition from n2 = 2 to n1 = 1 is given by

� �� = − −⎛
⎝⎜

⎞
⎠⎟

= − × −⎛
⎝⎜

⎞
⎠⎟

=

−

R
n nH

1 1

109677
1

2

1

1

82 258

2
2

1
2

1
2 2

( )cm

cm−−1

The emitted photon has a wavelength of 122 nm, correspond-

ing to ultraviolet radiation.
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158 5 Atomic structure and spectra

(c) Ionization energies
The ionization energy, I, of an element is the minimum energy 

required to remove an electron from the ground state, the state 

of lowest energy, of one of its atoms in the gas phase. Because 

the ground state of hydrogen is the state with n = 1, with energy 

E hcR1 = − �
H, and the atom is ionized when the electron has been 

excited to the level corresponding to n = ∞ (see Fig.17.7), the 

energy that must be supplied is

I hcR= �
H  Hydrogen atom  Ionization energy  (17.14)

The value of I is 2.179 aJ, which corresponds to 13.60 eV.

Example 17.3 Measuring an ionization energy 
spectroscopically

The emission spectrum of atomic hydrogen shows a series 

of lines at 82 259, 97 492, 102 824, 105 292, 106 632, and 

107 440 cm−1, which correspond to transitions to the same 

lower state. Determine (a) the ionization energy of the lower 

state, (b) the value of the Rydberg constant.

Method The spectroscopic determination of ionization ener-

gies depends on the determination of the ‘series limit’, the 

wavenumber at which the series terminates and becomes 

a continuum. If the upper state lies at an energy −hcR n�
H / 2, 

Self-test 17.5 Calculate the wavelength and wavenumber of 

the emitted photon if the electron in H makes a transition 

from n = 3 to n = 2.
Answer: 656 nm, 15 233 cm−1, visible

E
n

er
g

y,
 E

0

1

2

3
∞

n
Continuum

Classically
allowed
energies

H+ + e–

~

~

~
–hcRH

–hcRH/4

–hcRH/9

Figure 17.7 The energy levels of a hydrogen atom. The values 
are relative to an infinitely separated, stationary electron and a 
proton.

then when the atom makes a transition to Elower, a photon of 

wavenumber

�
�

� = − −R

n

E

hc
H lower
2

is emitted. However, because I = −Elower, it follows that

�
�

� = −I

hc

R

n
H
2

A plot of the wavenumbers against 1/n2 should give a straight 

line of slope − �RH  and intercept I/hc. Use mathematical soft-

ware to make a least-squares fit of the data to get a result that 

reflects the precision of the data.

Answer The wavenumbers are plotted against 1/n2 in Fig. 17.8. 

The (least-squares) intercept lies at 109 679 cm−1, so the ioni-

zation energy is 2.1788 aJ (1317.1 kJ mol−1). The slope is, in this 

instance, numerically the same, so the experimentally deter-

mined value of the Rydberg constant is 109 679 cm−1, very close 

to the actual value of 109 677 cm−1.

Self-test 17.6 The emission spectrum of atomic deuterium 

shows lines at 15 238, 20 571, 23 039, and 24 380 cm−1, which 

correspond to transitions to the same lower state. Determine 

(a) the ionization energy of the lower state, (b) the ionization 

energy of the ground state, (c) the mass of the deuteron (by 

expressing the Rydberg constant in terms of the reduced mass 

of the electron and the deuteron, and solving for the mass of 

the deuteron).
Answer: (a) 328.1 kJ mol−1, (b) 1317.4 kJ mol−1, (c) 2.8 × 10−27 kg, 

a result very sensitive to RD

0 0.1 0.2
1/n2

80

90

100

110

ν/
(1

03  
cm

–1
)

~

Figure 17.8 The plot of the data in Example 17.3 used to 
determine the ionization energy of an atom (in this case, 
of H).
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17 Hydrogenic atoms  159

Checklist of concepts

☐ 1. A hydrogenic atom is a one-electron atom or ion of 

general atomic number Z. A many-electron atom is an 

atom or ion with more than one electron.

☐ 2. The wavefunction of a hydrogenic atom is the product 

of a radial wavefunction and an angular wavefunction 

(spherical harmonic) and is labelled by the quantum 

numbers n, l, and ml.

☐ 3. An atomic orbital is a one-electron wavefunction for an 

electron in an atom.

☐ 4. The principal quantum number  n  determines 

the energy of an electron in a hydrogenic atom; n = 1, 

2, ….

☐ 5. The quantum numbers l and ml specify the magnitude 

(as {l(l + 1)}1/2) and the z-component (as ml), respec-

tively, of the angular momentum of the electron around 

the nucleus. The allowed values are l = 0, 1, 2, …, n − 1; 

ml = 0, ± 1, ± 2,…, ± l.

☐ 6. The energy of an infinitely separated, stationary electron 

and nucleus is zero. Electron energies which are negative 

correspond to bound states of the atom. Positive energies 

correspond to unbound or continuum states.

☐ 7. The ionization energy of an element is the minimum 

energy required to remove an electron from the ground 

state of one of its atoms in the gas phase.

Checklist of equations

Property Equation Comment Equation number

Coulomb potential energy V(r) = −Ze2/4πε0r 17.1

Reduced mass μ = memN/(me + mN) 17.3b

Radial wave equation −(2/2μ)(d2u/dr2) + Veffu = Eu Hydrogenic atom 17.6a

Effective potential energy Veff = −Ze2/4πε0r + l(l + 1)2/2μr2 Hydrogenic atom 17.6b

Electronic energy E Z e n

n

n = −
= …

2 4 2
0
2 2 232

1 2

μ ε/

, ,

π  Hydrogenic atom 17.7

Bohr radius a0 = 4πε02/mee
2 52.9 pm 17.9

Atomic orbital ψ θ φ θ φnlm nl lml l
r R Yr( ) ( ), , ( , )= 17.11

Rydberg constant for hydrogen �R e h cH H= μ ε4
0
2 38/ 109 677 cm−1 17.12b

Rydberg constant �R m e h c∞ = e
4

0
2 38/ ε 109 737 cm−1 17.13

Ionization energy of hydrogen I hcR= �
H 2.179 aJ, 13.60 eV 17.14
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TOPIC 18

Hydrogenic atomic orbitals

Hydrogenic atomic orbitals, which are the electronic wavefunc-

tions for one-electron atoms with atomic number Z, are defined 

by the three quantum numbers n, l, and ml (Topic 17). They 

have the form ψ nlm nl lml l
R Y=  where the radial wavefunction R is 

given in Table 17.1 and the spherical harmonic Y in Table 14.1. 

The probability densities ψ nlml

2
 result in the shapes of atomic 

orbitals familiar from introductory chemistry courses. Here we 

explore the properties of hydrogenic atomic orbitals because 

they provide the basis for describing the electronic structure 

and periodic properties of many-electron atoms (Topic 19) 

and, by extension, molecules (Topics 22–30).

18.1 Shells and subshells

All atomic orbitals of a given value of n are said to form a single 

shell of the atom; in a hydrogenic atom, all orbitals of given n, 

and therefore belonging to the same shell, have the same energy. 

It is common to refer to successive shells by uppercase letters:

Thus, all the orbitals of the shell with n = 2 form the L shell of 

the atom, and so on. The orbitals with the same value of n but 

different values of l (allowed values are 0, 1, …, n – 1) are said 

to form a subshell of a given shell.The subshells are generally 

referred to by lowercase letters:

l  = 0 1 2 3 4 5 6 …

s p d f g h i …

n = 1 2 3 4 …

K L M N …

Contents

18.1 Shells and subshells 160

Brief illustration 18.1: The number of orbitals  

in a shell 161

(a) s Orbitals 161

Example 18.1: Calculating the mean radius of an  

s orbital 162

(b) p Orbitals 163

Brief illustration 18.2: The 2px orbital 165

(c) d Orbitals 165

Example 18.2: Finding the most probable  

locations of an electron 165

18.2 Radial distribution functions 165

Example 18.3: Identifying the most probable  

radius 166

Checklist of concepts 168
Checklist of equations 168

 ➤ Why do you need to know this material?
The properties of hydrogenic atomic orbitals figure 
prominently in the discussion of electronic structure 
of many-electron atoms and, by extension, molecules.
Therefore, to understand the form of the periodic table, 
molecular structure, and chemical reactivity, you need a 
firm understanding of atomic orbitals.

 ➤ What is the key idea?
Atomic orbitals describe the probability density distribution 
of an electron in an atom.

 ➤ What do you need to know already?
You need to know what is meant by the terms probability 
density (Topic 5), expectation value (Topic 7), and node 

(Topic 9). This Topic draws heavily on the forms of the 
radial wavefunctions given in Table 17.1 of Topic 17 and the 
spherical harmonics given in Table 14.1 of Topic 14. Various 
techniques of integration are used; they are reviewed in 
Mathematical background 1.
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18 Hydrogenic atomic orbitals  161

The letters then run alphabetically omitting j (because some 

languages do not distinguish between i and j). Figure 18.1 

shows the energy levels of the subshells explicitly for a hydro-

genic atom. Because l can range from 0 to n − 1, giving n values 

in all, it follows that there are n subshells of a shell with princi-

pal quantum number n. Thus,

when n = 1, there is only one subshell, the one with l = 0 

(the 1s subshell);

when n = 2, there are two subshells, the 2s subshell (with 

l = 0) and the 2p subshell (with l = 1).

When n = 1 there is only one subshell, that with l = 0, and that 

subshell contains only one orbital, with ml  = 0 (the only value 

of ml permitted). When n = 2, there are four orbitals, one in 

the s subshell with l = 0 and ml = 0, and three in the l = 1 sub-

shell with ml = + 1, 0, −1. In general, the number of orbitals in a 

shell of principal quantum number n is n2, so in a hydrogenic 

atom each energy level is n2-fold degenerate. The organization 

of orbitals in the shells is summarized in Fig. 18.2.

(a) s Orbitals
The orbital occupied in the ground state of a hydrogenic atom 

is the one with n = 1 and therefore with l = 0 and ml = 0. The 

wavefunction ψ1,0,0 is the product of the radial wavefunction 

R1,0 and the spherical harmonic Y0,0, so from Tables 14.1 and 

17.1 it follows that

ψ = Z 3

0
3

1 2

πa
Zr a0

⎛
⎝⎜

⎞
⎠⎟

/

e− /  Hydrogenic atom  1s wavefunction  (18.1)

This wavefunction is independent of the angular location of 

the electron and has the same value at all points of constant 

radius; that is, the 1s orbital is ‘spherically symmetrical’. The 

wavefunction decays exponentially from a maximum value of 

( / ) /Z a3
0
3 1 2π  at the nucleus (at r = 0), and therefore the greatest 

probability density is at the nucleus.

A note on good practice Always keep in mind the distinction 

between the probability density (dimensions: 1/volume) at a 

point, ψ2, and the probability (dimensionless) of the electron 

being in an infinitesimal region dτ at that point, ψ2dτ.

The general form of the ground-state wavefunction can be 

understood by considering the contributions of the potential 

and kinetic energies to the total energy of the atom. The closer 

the electron is to the nucleus, the lower (that is, more negative) 

its potential energy. This dependence suggests that the lowest 

potential energy is obtained with a sharply peaked wavefunc-

tion that has a large amplitude at the nucleus and is very small 

everywhere else (Fig. 18.3a). However, this shape implies a 

high kinetic energy, because such a wavefunction has a very 

high average curvature. The electron would have very low 

kinetic energy if its wavefunction had only a very low average 

curvature. However, such a wavefunction (Fig. 18.3b) spreads 

to great distances from the nucleus and the average potential 

energy of the electron is correspondingly high (that is, less 

negative). The actual ground-state wavefunction is a compro-

mise between these two extremes (Fig. 18.3c): the wavefunc-

tion spreads away from the nucleus (so the expectation value 

of the potential energy is not as low as in the first example, but 

nor is it very high) and has a reasonably low average curvature 

(so the expectation value of the kinetic energy is not very low, 

but nor is it as high as in the first example). The contributions of 

Brief illustration 18.1 The number of orbitals in a shell

When n = 3 there are three subshells, l  = 0 (3s), l  = 1 (3p), and 

l = 2 (3d). Since the s, p, and d subshells contain one, three, 

and five orbitals, respectively, there are a total of 9 = 32 orbitals 

in the M shell.

Self-test 18.1 Identify the orbitals in the N shell.

Answer: one 4s, three 4p, five 4d, seven 4f orbitals; 16 in total

n

1

2

3
4
∞

1s

2s[1] 2p[3]

3s[1] 3p[3] 3d
4s[1] 4p[3] 4d 4f

[1]

[5]
[5] [7]

s p d f
E

n
er

g
y

Figure 18.1  The energy levels of a hydrogenic atom showing 
the subshells and (in square brackets) the numbers of orbitals 
in each subshell. All orbitals of a given shell have the same 
energy.

s p d

Subshells

S
h

el
ls

M shell, n = 3

L shell, n = 2

K shell, n = 1

Orbitals

Figure 18.2  The organization of orbitals (white squares)  
into subshells (characterized by l) and shells (characterized  
by n).

Atkins09819.indb   161 9/11/2013   11:14:04 AM



162 5 Atomic structure and spectra

Justification 18.1 The virial theorem and the energies 
of hydrogenic atomic orbitals

The virial theorem (Topic 12) states that if the potential energy 

of the system is of the form V = axb, where a and b are con-

stants, then the average kinetic and potential energies are 

related by 2〈Ek〉 = 〈V〉. For the Coulomb potential energy 

(V ∝ −1/r), b = −1; therefore

〈 〉 〈 〉E Vk = − 1

2

As the average distance of the electron from the nucleus 

increases, 〈V〉 increases (becomes less negative) so 〈Ek〉 
decreases (becomes less positive), as described in the text.

Example 18.1 Calculating the mean radius of an s orbital

Evaluate the mean radius of a 1s orbital of a hydrogenic atom 

of atomic number Z.

Method The mean radius is the expectation value

〈 〉 ∗r r r=∫ ∫ψ ψ τ ψ τd = d
2

We therefore need to evaluate the integral using the hydro-

genic 1s wavefunction (Tables 14.1 and 17.1); the volume ele-

ment in spherical polar coordinates is dτ = r2dr sin θ dθ dφ (see 

The chemist’s toolkit 14.1). The angular parts of the wavefunc-

tion are normalized in the sense that

Ylml

2

0

2

0

1sin d dθ θ φ =∫∫
ππ

where the limits on the first integral sign refer to θ , and 

those on the second to φ (recall the procedure for multiple 

the kinetic energy and the potential energy to the ground-state 

energy can also be understood by using the virial theorem, as 

shown in the following Justification.

One way of depicting the probability density of the elec-

tron is to represent |ψ|2 by the density of shading (Fig. 18.4). 

A simpler procedure is to show only the boundary surface, the 

surface that captures a high proportion (typically about 90 per 

cent) of the electron probability density. For the 1s orbital, the 

boundary surface is a sphere centred on the nucleus (Fig. 18.5).

All s orbitals are spherically symmetric, but differ in the 

number of radial nodes. For example, the 1s, 2s, and 3s orbitals, 

which are collected in Table 18.1, have 0, 1, and 2 radial nodes, 

respectively (see Fig. 17.6 and note the number of zeroes in the 

radial wavefunction). The radial nodes for the 2s and 3s orbitals 

are calculated in Brief illustration 17.2. In general, an ns orbital 

has n−1 radial nodes.

Radius, r

W
av

ef
u

n
ct

io
n

, ψ
Low potential energy
but
high kinetic energy

Low kinetic energy
but
high potential energy

Lowest total energya

b

c

Figure 18.3  The balance of kinetic and potential energies that 
accounts for the structure of the ground state of hydrogenic 
atoms. (a) The sharply curved but localized orbital has high 
mean kinetic energy, but low mean potential energy; (b) the 
mean kinetic energy is low, but the potential energy is not very 
favourable; (c) the compromise of moderate kinetic energy and 
moderately favourable potential energy.

(a) 1s (b) 2s

x

x

y

y

z z

Figure 18.4  Representations of cross-sections through the (a) 1s 
and (b) 2s hydrogenic atomic orbitals in terms of their electron 
probability densities (as represented by the density of shading).

x

y

z

Figure 18.5  The boundary surface of a 1s orbital, within which 
there is a 90 per cent probability of finding the electron. All s 
orbitals have spherical boundary surfaces.
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18 Hydrogenic atomic orbitals  163

(b) p Orbitals
The three p orbitals are distinguished by the three different 

values that ml can take when l = 1. Because the quantum num-

ber ml tells us the projection of the orbital angular momen-

tum onto a particular axis (by convention, the z-axis), these 

different values of ml denote orbitals in which the electron 

has different orbital angular momenta around an arbitrary 

z-axis. The orbital with ml = 0, for instance, has zero angular 

momentum around the z-axis. Its angular variation is pro-

portional to cos θ (Table 14.1), so the probability density, 

which is proportional to cos2 θ, has its maximum value on 

either side of the nucleus along the z-axis (at θ = 0 and 180°, 

where cos2 θ = 1).

The hydrogenic 2p orbital with ml = 0 is

ψ θ

θ

2 2 1 1 0 1 2
0

5 2

2
0

0
1

4 2p cos e

cos

= = ⎛
⎝⎜

⎞
⎠⎟

=

−R Y
Z

a
r

r f r

Zr a
, , /

/

/

( )

( )

π

 

where f(r) is a function only of r. Because in spherical polar 

coordinates z = r cos θ, this wavefunction may also be written

ψ 2pz
= zf r( )

 
(18.2b)

All p orbitals with ml  = 0 have wavefunctions of this form 

regardless of the value of n (with different forms of f for dif-

ferent values of n). This way of writing the orbital is the ori-

gin of the name ‘pz orbital’. The boundary surface (for n = 2) is 

shown in Fig. 18.6. The wavefunction is zero everywhere in the 

xy-plane, where z = 0, so the xy-plane is a nodal plane of the 

orbital: the wavefunction changes sign on going from one side 

of the nodal plane to the other.

The hydrogenic 2p orbitals with ml  = ± 1 are

ψ

θ φ

2 2 1 1 1

1 2
0

5 2

2

1

1

0
1

8

1

2

p

ie sin e

±
=

= ⎛
⎝⎜

⎞
⎠⎟

=

±

− ±

R Y

Z

a
r Zr a

, ,

/

/

/

/

∓

∓

π

22
r f rsin e iθ φ± ( )

 
(18.3)

with f(r) a function only of r (but not the same function as in 

eqn 18.2). These functions correspond to nonzero angular 

(18.2a)2pz atomic 

orbital 

integration in Mathematical background 1). Use Integral E.1 

listed in the Resource section.

Answer With the wavefunction written in the form 

ψ nlm nl lml l
R Y= , the expectation value 〈r〉 is

〈 〉
ππ∞

r =

=

∫∫∫ rR Y r r

r R

nl lm

nl

l

2
2

0

2

00

2

3

ψ
τ

θ θ φ

2

d� �� �� � ��� ���
d sin d d

22
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3 2
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d sin d d

d

r Y

r R r
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l
×
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∫ ∫∫
∫

∞ ππ

∞

θ θ φ

1� ����� �����

For a 1s orbital (Table 17.1),

R
Z

a
Zr a

1 0
0

3 2

2 0
,

/

/= ⎛
⎝⎜

⎞
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−e

Hence, by using Integral E.1 given in the Resource section with 

n = 3 and a  = 2Z/a0,

〈 〉
∞

r
Z

a
r r

Z

a
Zr a= ⎛

⎝⎜
⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

×−∫4 4
3

20

3

3 2

0

3

0

0e d/ !
Integral E.1


ZZ a

a

Z

/ 0

4

03

2

( )
=

For H, 〈r〉 = 79.4 pm, and for He + , 〈r〉 = 39.7 pm. In general, the 

higher the nuclear charge, the closer the electron is drawn to 

the nucleus.

Self-test 18.2 Evaluate the mean radius of (a) a 3s orbital and 

(b) a 3p orbital for a hydrogenic atom of atomic number Z.

Answer: (a) (27/2)a0/Z; (b) (25/2)a0/Z

+

+
+

–

–
–

x

y

z px pypz θ

φ

θ = 90°

φ = 90° φ = 0

Figure 18.6  The boundary surfaces of 2p orbitals. A nodal 
plane passes through the nucleus and separates the two lobes 
of each orbital. The dark and light areas denote regions of 
opposite sign of the wavefunction. The angles of the spherical 
polar coordinate system are also shown. All p orbitals have 
boundary surfaces like those shown here.
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164 5 Atomic structure and spectra

2px atomic 

orbital 
(18.4a)

(18.4b)
2py atomic 

orbital 

The 2px orbital has the same shape as a 2pz orbital, but it is 

directed along the x-axis (see Fig. 18.6); the 2py orbital is simi-

larly directed along the y-axis. The wavefunction of any p orbital 

of a given shell can be written as a product of x, y, or z and the 

same radial function (which depends on the value of n). The 2p 

hydrogenic wavefunctions presented in eqns 18.2–18.4 are col-

lected in Table 18.1 as well as the 3p hydrogenic wavefunctions. 

All 2p orbitals have no radial nodes; 3p orbitals have one radial 

node, and np orbitals have n – 2 radial nodes. These numbers, 

including that for s orbitals given earlier, are special cases of 

Justification 18.2 The linear combination of degenerate 
wavefunctions

The freedom to take linear combinations of degenerate 

functions rests on the fact that whenever two or more wave-

functions correspond to the same energy (as is the case with 
ψ 2 1p+

 and ψ 2 1p−
), any linear combination of them (such as 

ψ 2px
 or ψ 2py

) is an equally valid solution of the Schrödinger 

equation.

Suppose ψ1 and ψ2 are both solutions of the Schrödinger 

equation with energy E; then we know that �Hψ ψ1 1= E  

and H E� ψ ψ2 2= . Now consider the linear combination 

ψ = c1ψ1 + c2ψ2, where c1 and c2 are arbitrary coefficients. Then it 

follows that

H H c c c H c H

c E c E E c c E

� � � �ψ ψ ψ ψ ψ
ψ ψ ψ ψ

= + = +
= + = + =

( )

( )

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2 ψψ

Hence, the linear combination is also a solution correspond-

ing to the same energy E. The result that any linear combi-

nation of eigenfunctions of an operator all having the same 

eigenvalue is also an eigenfunction of the operator with the 

same eigenvalue applies to all quantum mechanical operators, 

not just the hamiltonian.

momentum about the z-axis: e +iφ corresponds to clockwise 

rotation when viewed from below, and e−iφ corresponds to anti-

clockwise rotation (from the same viewpoint). They have zero 

amplitude where θ = 0 and 180° (along the z-axis) and maxi-

mum amplitude at θ = 90°, which is in the xy-plane.

To draw the functions in eqn 18.3, it is customary to con-

struct two real wavefunctions that are linear combinations 

of the degenerate functions ψ 2 1p±
. We show in the following 

Justification that it is permissible to take linear combinations of 

degenerate orbitals. In particular, we form the real linear com-

binations (using e + iφ = cos φ ± i sin φ)

ψ ψ ψ θ φ2 2 21 2

1

2 1 1p p p sin cos
x

r f r

xf r

= − − =

=
+ −/

( ) ( )

( )

x� �� ��

 

ψ ψ ψ θ φ2 2 21 22 1 1p p p

i
sin sin

y
r f r

yf r

= + =

=
+ −/

( ) ( )

( )

y� �� ��

 

Because the functions in eqn 18.4 are superpositions of states 

with equal and opposite values of ml (namely,  + 1 and −1), the 

linear combinations are standing waves with no net orbital 

angular momentum around the z-axis.

Table 18.1 Hydrogenic atomic orbitals

s orbitals
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Polar form Cartesian form
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18 Hydrogenic atomic orbitals  165

Example 18.2 Finding the most probable locations of 
an electron

Find the most probable location of an electron occupying the 

3dz2 orbital in the hydrogen atom.

Method The 3 2dz  orbital corresponds to n = 3, l = 2, ml = 0. To 

find the most probable location of the electron, construct the 

probability density ψ nlml

2
 by using Table 18.1 and then find 

its maxima by finding where the first derivative of the prob-

ability density vanishes.

Answer The 3 2dz  hydrogen atomic orbital is

 

ψ θ φ3 3 2 2 0
0
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1 2
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Therefore,

ψ θ3
2 2 4 2 3 2 2

2

0 3 1d e cos
z

N r r a= −− / ( )

The probability density, which is independent of φ, has maxima 

at θ = 0, 180° (where cos θ = ± 1, cos2 θ = 1, and 3 cos2 θ−1 = 2), 

so the electron is most likely to be found on either side of the 

z-axis. To find the most probable distance r from the electron 

to the nucleus, we need to find, by differentiation, the maxi-

mum in the function r r a4 2 3 0e− / :

d

d
e e

r
r r

a
rr a r a4 2 3 3 2 3
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0 04
2
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f g f r g
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r ar r a

/
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f g r(d /d )� ��� ���

where we have used the product rule of differentiation 

(dfg = fdg + gdf; Mathematical background 1). This function is 

zero where the term in parenthesis is zero (ignore r = 0 which 

corresponds to a minimum in the function), which is at r = 6a0. 

Therefore the most probable locations of the electron are at a 

distance of 6a0 from the nucleus on either side of the z-axis.

Self-test 18.4 Identify the nodal planes of the 3dxy orbital for 

the hydrogen atom.

Answer: xz- and yz-planes

Brief illustration 18.2 The 2px orbital

The angular variation of the 2px orbital is proportional to 

sin θ cos φ, so the probability density, which is proportional 

to sin2 θ cos2 φ, has its maximum values at θ = 90° (where 

sin2 θ = 1) and φ = 0 and 180° (where cos2 φ = 1). Therefore, the 

electron is most likely to be found on either side of the nucleus 

along the x-axis (Fig. 18.6). In addition, the wavefunction is 

zero (and passes through zero) at θ = 0, 180° and φ = 90°, 270°, 

so the yz-plane is a nodal plane.

Self-test 18.3 Identify the nodal plane of the 2py orbital.

Answer: xz-plane

(c) d Orbitals
When n = 3, l can be 0, 1, or 2. As a result, this shell consists of 

one 3s orbital, three 3p orbitals, and five 3d orbitals. The five d 

orbitals have ml = +2,  +1, 0, −1, −2 and correspond to five differ-

ent components of the angular momenta around the z-axis (but 

the same magnitude of angular momentum, because l = 2 in each 

case). As for the p orbitals, d orbitals with opposite values of ml 

(and hence opposite senses of motion around the z-axis) may be 

combined in pairs to give real standing waves (the d orbital with 

ml = 0 is real and designated dz2). The boundary surfaces of the 

resulting 3d orbitals are shown in Fig. 18.7. The 3d orbitals and 

their real combinations are collected in Table 18.1.

18.2 Radial distribution functions

The wavefunction tells us, through the value of |ψ|2, the prob-

ability of finding an electron in any region in space. Imagine a 

probe with a volume dτ that is sensitive to electrons and can 

move around near the nucleus of a hydrogenic atom. Because 

the general expression that a hydrogenic orbital with quantum 

numbers n and l has n – l –1 radial nodes and l nodal planes.

x

y

z

+

–

+

–

+

dz2 dx2–y2

dxy dyz dzx

+

+

+
+

+

+

+

+

+

+

–

–

–

–

–

–

–
–

–

Figure 18.7  The boundary surfaces of 3d orbitals. Two nodal 
planes in each orbital intersect at the nucleus and separate the 
lobes of each orbital. The dark and light areas denote regions of 
opposite sign of the wavefunction. All d orbitals have boundary 
surfaces like those shown here.
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166 5 Atomic structure and spectra

The radial distribution function, P(r), is a probability den-

sity in the sense that when it is multiplied by dr, it gives the 

probability of finding the electron anywhere between the two 

walls of a spherical shell of thickness dr at the radius r. For a 1s 

orbital, with R1,0 given in Table 17.1,

P r
Z

a
r Zr a( ) /= −4 3

0
3

2 2 0e

We can interpret this expression as follows:

Because r2 = 0 at the nucleus, P(0) = 0. Although the 

probability density itself is a maximum at the nucleus, 

the radial distribution function is zero at r = 0 on 

account of the r2 factor.

As r→∞, P(r)→0 on account of the exponential 

term.

The increase in r2 and the decrease in the 

exponential factor means that P(r) passes through 

a maximum at an intermediate radius (see Fig. 18.9).

The maximum of P(r), which can be found by differentiation, 

marks the most probable distance from the nucleus at which 

the electron will be found.

The radial distribution functions of the hydrogen atom for 

n = 1, 2, 3 are shown in Fig.18.10. Note how the most probable 

distance of the electron from the nucleus increases with n but it 

shifts to lower values as the quantum number l increases within 

a given shell. The small secondary maxima close to the nucleus 

might seem insignificant, but in Topic 20 we see that they have 

great significance for the structure of the periodic table.

the probability density in the ground state of the atom is 

ψ1
2∝s

2 /e 0− Zr a , the reading from the probe decreases exponen-

tially as the probe is moved out along any radius but is constant 

if the probe is moved on a circle of constant radius (Fig. 18.8).

Now consider the probability of finding the ground-state 

electron anywhere between the two walls of a spherical shell 

of thickness dr at a radius r. The sensitive volume of the probe 

is now the volume of the shell (Fig. 18.9), which is 4πr2dr 

(the  product of its surface area, 4πr2, and its thickness, dr). 

The probability that the 1s electron will be found between the 

inner and outer surfaces of this shell is the probability den-

sity at the radius r multiplied by the volume of the probe, or 

|ψ1s|
2 × 4πr2 dr. This expression has the form P(r)dr, where

P r r( )= 4 2 2π ψ 1s

In the following Justification we show that the more general 

expression, which applies to any orbital, is

P r r R r( ) ( )= 2 2

where R(r) is the radial wavefunction for the orbital in question.

Ground-state 
hydrogenic orbital 

Radial 
distribution 
function 

(18.5a)

Definition 
Radial 
distribution 
function 

(18.5b)

Ground-state 
hydrogenic 
orbital

Radial 
distribution 
function

 (18.6)

Justification 18.3 The general form of the radial 
distribution function

The probability of finding an electron in a volume element dτ 

when its wavefunction is ψ = RY is R2|Y|2 dτ with dτ = r2 dr sin θ 

dθ dφ (recall that R is real). The total probability of finding the 

electron at any angle at a constant radius is the integral of this 

probability over the surface of a sphere of radius r, and is writ-

ten P(r)dr; so

P r r R r Y r r

r

( ) ( ) ( ,d d sin d d=

=

∫∫ 2 2

0

2
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2

2
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( ) ( , )

( )

2 2

00

2 2

d sin d d

d

2

θ φ θ θ φ
ππ

∫∫
=

1� ����� �����

The last equality follows from the fact that the spherical har-

monics are normalized to 1 (see Example 18.1). It follows that 

P(r) = r2R(r)2, as stated in the text.

Example 18.3 Identifying the most probable radius

Identify the most probable radius, r*, at which an electron will 

be found when it occupies a 1s orbital of a hydrogenic atom of 

atomic number Z, and tabulate the values for the one-electron 

species from H to Ne9 +.

P
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b
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, ψ
*ψ

d
τ

Radius, r

rrr

Figure 18.8  A constant-volume electron-sensitive detector 
(the small cube) gives its greatest reading at the nucleus, and 
a smaller reading elsewhere. The same reading is obtained 
anywhere on a circle of given radius: the s orbital is spherically 
symmetrical.
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18 Hydrogenic atomic orbitals  167

We have taken only the first steps in our exploration of 

atomic structure. The preceding discussion of hydrogenic 

atomic orbitals provides the basis for understanding the elec-

tronic structure and periodic properties of many-electron 

atoms (Topic 19), as well as aspects of atomic spectroscopy 

(Topic 21). Furthermore, an elaboration of the concept of an 

orbital is used in the description of the electronic structure of 

molecules (Topics 22−30).

0 5 10 15 20
r/a0

P
(r

)a
0

0

0.05

0.1

0.15

0.2

0.25
1s

2s2p

3s3p3d

Figure 18.10  The radial distribution functions of the hydrogen 
atom for n = 1, 2, 3 and the allowed values of l in each case.

Method Find the radius at which the radial distribution func-

tion of the hydrogenic 1s orbital has a maximum value by 

solving dP/dr = 0. You will need to use the rule for differen-

tiating a product of functions (Mathematical background 1:  

d(fg)/dx = f(dg/dx) + g(df/dx)).

Answer The radia l distribution function is given in  

eqn 18.6. It follows (by using the product rule again) that
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This function is zero where the term in parentheses is zero 

(reject r = 0, which corresponds to a minimum in P), which is at

r
a

Z
∗ = 0

That is, the most probable distance of the electron from the 

nucleus in a hydrogen atom (Z = 1) is the Bohr radius itself, 

a0 = 52.9 pm. For other hydrogenic species, the most probable 

radius lies at

Notice how the 1s orbital is drawn towards the nucleus as 

the nuclear charge increases. At uranium the most probable 

radius is only 0.58 pm, almost 100 times closer than for hydro-

gen. (On a scale where r* = 10 cm for H, r* = 1 mm for U91+ .) 

The electron then experiences strong accelerations and rela-

tivistic effects are important.

Self-test 18.5 Find the most probable distance of an electron from 

the nucleus in a hydrogenic atom when it occupies a 2s orbital.

Answer: [(3 + 51/2)a0/Z; for H: 277 pm

He + Li2 + Be3 + B4 + C5 + N6 + O7 + F8 + Ne9 + 

r*/pm 26.5 17.6 18.2 10.6 8.82 7.56 6.61 5.88 5.29
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Figure 18.9 The radial distribution function P is the probability 
density that the electron will be found anywhere in a shell of 
radius r; the probability itself is Pdr, where dr is the thickness of 
the shell. For a 1s electron in hydrogen, P is a maximum when 
r is equal to the Bohr radius a0. The value of Pdr is equivalent 
to the reading that a detector shaped like a spherical shell of 
thickness dr would give as its radius is varied.
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168 5 Atomic structure and spectra

Checklist of equations

Checklist of concepts

☐ 1. A shell of an atom consists of all the orbitals of a given 

value of n: K(n = 1); L (n = 2); M (n = 3); N (n = 4); …

☐ 2. A subshell of a shell of an atom consists of all the orbit-

als with the same value of n but different values of l: 

s (l = 0); p (l = 1); d (l = 2); f (l = 3); g (l = 4); …

☐ 3. Each shell consists of n2 orbitals.

☐ 4. Each subshell consists of 2l + 1 orbitals.

☐ 5. A boundary surface is the surface that captures a high 

proportion (typically about 90 per cent) of the electron 

probability density.

☐ 6. The radial distribution function is the probability 

density of finding the electron anywhere at a distance r 

from the nucleus.

Property Equation Comment Equation number

Ground-state (1s) wavefunction ψ = ( / ) /Z a3
0
3 1 2π e / 0−Zr a Hydrogenic atom 18.1

Radial distribution function P(r) = 4πr2|ψ1s|
2 Ground state of hydrogenic atom 18.5a

Radial distribution function P(r) = r2R(r)2 Definition 18.5b
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TOPIC 19

Many-electron atoms

The Schrödinger equation for a many-electron atom is highly 

complicated because all the electrons interact with one another. 

Even for a helium atom, with its two electrons, no analytical 

expression for the wavefunctions and energies can be given, and 

we are forced to make approximations. We shall adopt a simple 

approach, called the ‘orbital approximation’, based on the struc-

ture of hydrogenic atoms and the energies of orbitals.

19.1 The orbital approximation

The wavefunction of a many-electron atom is a very compli-

cated function of the coordinates of all the electrons, and we 

should write it ψ(r1,r2,…), where ri is the vector from the 

nucleus to electron i. However, in the orbital approximation 

we suppose that a reasonable first approximation to this exact 

wavefunction is obtained by thinking of each electron as occu-

pying its ‘own’ orbital, and write the product

ψ ψ ψ( , , )r r r r1 2 … …= ( ) ( )1 2  
 Orbital approximation  (19.1)

We can think of the individual orbitals as resembling the hydro-

genic orbitals of Topic 18, but corresponding to nuclear charges 

modified by the presence of all the other electrons in the atom. 

This description is only approximate, as explained in  the fol-

lowing Justification, but it is a useful model for discussing the 

chemical properties of atoms, and is the starting point for more 

sophisticated descriptions of atomic structure.

Contents

19.1 The orbital approximation 169

Brief illustration 19.1: Atomic configurations 170

19.2 Factors affecting electronic structure 170

(a) Spin 170

Brief illustration 19.2: Spin 171

(b) The Pauli principle 171

Brief illustration 19.3: The Pauli principle 172

(c) Penetration and shielding 172

Example 19.1: Analysing the extent  

of penetration 173

19.3 Self-consistent field calculations 174

Checklist of concepts 175
Checklist of equations 175

 ➤ Why do you need to know this material?

Atoms are the currency of chemistry, and although 
hydrogenic atoms provide an excellent introduction to 
atomic orbitals, it is essential to see how to adapt those 
concepts to the description of the electronic structure 
of many-electron atoms as a basis for understanding 
chemical periodicity, which is treated in Topic 20.

 ➤ What is the key idea?
Electrons occupy orbitals in such a way as to achieve the 
lowest total energy subject to the requirements of the 
Pauli principle.

 ➤ What do you need to know already?
You need to be familiar with the concept of atomic orbitals 
(Topic 18), which are the basis of the discussion in this 
Topic. The introduction to electron spin makes use of 
some of the conclusions about angular momentum in 
Topic 14.

Justification 19.1 The orbital approximation

The orbital approximation would be exact if there were no 

interactions between electrons. To demonstrate the validity of 

this remark for a two-electron atom, we need to consider a sys-

tem in which the hamiltonian for the energy is the sum of two 

contributions, one for electron 1 and the other for electron 2:

H H H� � �= +1 2
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170 5 Atomic structure and spectra

The orbital approximation allows us to express the electronic 

structure of an atom by reporting its configuration, the list of 

occupied orbitals (usually, but not necessarily, in its ground 

state).

19.2 Factors affecting electronic 
structure

It is tempting to suppose that the electronic configurations of the 

atoms of successive elements with atomic numbers Z = 3, 4, …, 

and therefore with Z electrons, are simply 1sZ. That, however, is 

not the case. The reason lies in two aspects of nature: that elec-

trons possess ‘spin’ and must obey the very fundamental ‘Pauli 

principle’.

(a) Spin
The quantum mechanical property of electron spin, the pos-

session of an intrinsic angular momentum, was identified by 

the experiment performed in 1921 by Otto Stern and Walther 

Gerlach, who shot a beam of silver atoms through an inhomo-

geneous magnetic field (Topic 14). Stern and Gerlach observed 

two bands of Ag atoms in their experiment. This observa-

tion seems to conflict with one of the predictions of quantum 

mechanics, because an angular momentum l gives rise to 2l + 1 

orientations, which is equal to 2 only if l = 1
2
, contrary to the 

conclusion that l must be an integer. The conflict was resolved by 

the suggestion that the angular momentum they were observ-

ing was not due to orbital angular momentum (the motion of an 

electron around the atomic nucleus) but arose instead from an 

intrinsic angular momentum of the electron, which classically 

can be thought of as the rotation of the electron on its own axis. 

This intrinsic angular momentum, or ‘spin’, also emerged when 

Dirac combined quantum mechanics with special relativity and 

established the theory of relativistic quantum mechanics.

The spin of an electron does not have to satisfy the same 

boundary conditions as those for a particle circulating around a 

central point, so the quantum number for spin angular momen-

tum is subject to different restrictions. To distinguish this spin 

angular momentum from orbital angular momentum we use the 

spin quantum number s (in place of the l in Topic 14; like l, s 

is a non-negative number) and ms, the spin magnetic quantum 

number, for the projection on the z–axis. The magnitude of the 

spin angular momentum is {s(s + 1)}1/2ħ and the component msħ 

is restricted to the 2s + 1 values ms = s, s – 1, …, –s. To account for 

Stern and Gerlach’s observation, s = 1
2

 and ms = ± 1
2
.

The picture of spin as an actual spinning motion can be 

very useful when used with care. However, that is a classi-

cal picture of a quantum mechanical property, and it is better 

to regard spin as an intrinsic property of the electron, like its 

rest mass and its charge, with every electron having exactly the 

same unchangeable, characteristic value. On the vector model 

of angular momentum (Topic 14), the spin may lie in two dif-

ferent orientations (Fig. 19.1). One orientation corresponds to 

ms = + 1
2
 (this state is often denoted α or ↑); the other orienta-

tion corresponds to ms = – 1
2
 (this state is denoted β or ↓).

Other elementary particles have characteristic spin. For 

example, protons and neutrons are spin- 1
2
 particles (that is, 

s = 1
2
) and invariably spin with the same angular momentum.

Because the masses of a proton and a neutron are so much 

greater than the mass of an electron, yet they all have the same 

spin angular momentum, the classical picture would be of these 

In an actual atom (such as helium), there is an additional term 

corresponding to the interaction of the two electrons, but we 

are ignoring that term. We now show that if ψ(r1) is an eigen-

function of H1
�  with energy E1, and ψ(r2) is an eigenfunction 

of H2
�  with energy E2, then the product ψ(r1,r2) = ψ(r1)ψ(r2) is 

an eigenfunction of the combined hamiltonian H� . To do so 

we write

� � � � �H H H H Hψ , ψ ψ ψ ψ ψ ψ( 2r r r r r r r r1 1 2 1 2 1 2) ( ) ( ) ( ) ( ) ( ) ( ) ( )= + = +1 2 1 2

== + = +
=

  

 

1 1 2 1 2 2 1 2 1 2

1 2

E E E E

E

ψ ψ ψ ψ ψ ψ
ψ

( ) ( ) ( ) ( ) ( ) ( ) ( )

( , )

r r r r r r
r r

where E = E1 + E2. This is the result we need to prove. However, 

if the electrons interact (as they do in fact), then the proof 

fails; nevertheless, it remains a reasonable and almost uni-

versally used starting point for the discussion of atomic 

structure.

Brief illustration 19.1 Atomic configurations

As the ground state of a hydrogenic atom consists of the single 

electron in a 1s orbital, we report its configuration as 1s1 (read 

‘one s one’). The He atom has two electrons. We can imagine 

forming the atom by adding the electrons in succession to the 

orbitals of the bare nucleus (of charge 2e). The first electron 

occupies a 1s hydrogenic orbital, but because Z = 2 that orbital 

is more compact than in H itself. The second electron joins 

the first in the 1s orbital, so the electron configuration of the 

ground state of He is 1s2 (‘one s two’).

Self-test 19.1 Show that for the actual hamiltonian for a 

helium atom, with electron–electron repulsion included, that 

the proof in Justification 19.1 fails.

Answer: e2/r12 term interferes with the argument

A note on good practice You will sometimes see the quantum 

number s used in place of ms, and written s = ± 1
2

. That is 

wrong: like l, s is never negative and denotes the magnitude 

of the spin angular momentum. For the z-component, use ms.

Atkins09819.indb   170 9/11/2013   11:15:48 AM

www.ebook3000.com

http://www.ebook3000.org


19 Many-electron atoms 171

two particles spinning much more slowly than an electron. 

Some mesons are spin-1 particles (that is, s = 1, as are some 

atomic nuclei), but for our purposes the most important spin-1 

particle is the photon. The importance of photon spin in spec-

troscopy is explained in Topic 40; proton spin is the basis of 

Topic 47 (Magnetic resonance).

Particles with half–integral spin are called fermions and 

those with integral spin (including 0) are called bosons. Thus, 

electrons and protons are fermions and photons are bosons. It 

is a very deep feature of nature that all the elementary  particles 

that constitute matter are fermions whereas the elementary 

particles that are responsible for the forces that bind fermions 

together are all bosons. Photons, for example, transmit the 

electromagnetic force that binds together electrically charged 

particles. Matter, therefore, is an assembly of fermions held 

together by forces conveyed by bosons.

(b) The Pauli principle
The role of spin in determining electronic structure becomes 

apparent as soon as we consider lithium, Z = 3, and its three 

electrons. The first two occupy a 1s orbital drawn even more 

closely than in He around the more highly charged nucleus. 

The third electron, however, does not join the first two in the 

1s orbital because that configuration is forbidden by the Pauli 

exclusion principle:

No more than two electrons may occupy any given 

orbital, and if two do occupy one orbital, then their spins 

must be paired.

Electrons with paired spins, denoted ↑↓, have zero net spin 

angular momentum because the spin of one electron is can-

celled by the spin of the other. Specifically, one electron has 

ms = + 1
2
, the other has ms = – 1

2
, and they are orientated on their 

respective cones so that the resultant spin is zero (Fig. 19.2). 

The exclusion principle is the key to the structure of complex 

atoms, to chemical periodicity, and to molecular structure. It 

was proposed by Wolfgang Pauli in 1924 when he was trying 

to account for the absence of some lines in the spectrum of 

helium. Later he was able to derive a very general form of the 

principle from theoretical considerations.

The Pauli exclusion principle in fact applies to any pair of 

identical fermions. Thus it applies to protons, neutrons, and 13C 

nuclei (all of which have spin 1
2
) and to 35Cl nuclei (which have 

spin 3
2 ). It does not apply to identical bosons, which include 

photons (spin 1) and 12C nuclei (spin 0). Any number of identi-

cal bosons may occupy the same state.

The Pauli exclusion principle is a special case of a general 

statement called the Pauli principle:

When the labels of any two identical fermions are 

exchanged, the total wavefunction changes sign; when the 

labels of any two identical bosons are exchanged, the total 

wavefunction retains the same sign.

By ‘total wavefunction’ is meant the entire wavefunction, 

including the spin of the particles; that is, the total wave-

function must be a function of the positions as well as spins 

of the particles. To see that the Pauli principle implies the 

Pauli exclusion principle, we consider the (total) wavefunc-

tion for two electrons, ψ(1,2). The Pauli principle implies 

that it is a fact of nature (which has its roots in the theory 

of relativity) that the wavefunction must change sign if we 

interchange  the labels 1 and 2 wherever they occur in the 

function:  ψ(2,1) = –ψ(1,2). That the Pauli principle implies 

the Pauli exclusion principle is shown in the following 

Justification.

Brief illustration 19.2 Spin

The magnitude of the spin angular momentum, like any angu-

lar momentum, is {s(s + 1)}1/2ħ. For any spin- 1
2

 particle, not 

only electrons, this angular momentum is (3
4 )1/2ħ = 0.866ħ, or 

9.13 × 10−35 J s. The component on the z-axis is msħ, which for a 

spin- 1
2
 particle is ± 1

2
ħ, or ±5.27 × 10−35 J s.

Self-test 19.2 Evaluate the spin angular momentum of a 

photon.

Answer: 21/2ħ = 1.49 × 10−34 J s

ms = +½

ms = –½

Figure 19.1 The vector representation of the spin of an 
electron. The length of the side of the cone is 31/2/2 units and 
the projections are ± 1

2  units.

ms = +½

ms = –½

Figure 19.2 Electrons with paired spins have zero resultant 
spin angular momentum. They can be represented by two 
vectors that lie at an indeterminate position on the cones 
shown here, but wherever one lies on its cone, the other points 
in the opposite direction; their resultant is zero.
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172 5 Atomic structure and spectra

Now we can return to lithium. In Li (Z = 3), the third elec-

tron cannot enter the 1s orbital because that orbital is already 

full: we say the K shell is complete and that the two electrons 

form a closed shell. Because a similar closed shell is charac-

teristic of the He atom, we denote it [He]. The third electron 

is excluded from the K shell and must occupy the next avail-

able orbital, which is one with n = 2 and hence belonging to 

the L shell. However, we now have to decide whether the next 

available orbital is the 2s orbital or a 2p orbital, and therefore 

whether the lowest energy configuration of the atom is [He]2s1 

or [He]2p1.

(c) Penetration and shielding
In hydrogenic atoms all orbitals of a given shell are degener-

ate. In many-electron atoms, although orbitals of a given sub-

shell remain degenerate, the subshells themselves have different 

energies. The difference can be traced to the fact that an elec-

tron in a many-electron atom experiences a Coulombic repul-

sion from all the other electrons present. If it is at a distance r 

from the nucleus, it experiences an average repulsion that can 

be represented by a point negative charge located at the nucleus 

and equal in magnitude to the total charge of the electrons 

Brief illustration 19.3 The Pauli principle

An excited state of He has the configuration 1s12s1. One accept-

able overall wavefunction that acknowledges that we can-

not know which electron is in which orbital is {ψ1s(1)ψ2s(2) +  

ψ1s(2)ψ2s(1)}σ−(1,2), which is antisymmetric with respect to 

interchange of the two electrons. This wavefunction corre-

sponds to the two electrons being paired and is a so-called 

‘singlet state’ of the atom. The Self-test explores the possibili-

ties of the electrons having parallel spins.

Self-test 19.3 Show that the 1s12s1 configuration may also give 

rise to a ‘triplet’ state in which the spins are parallel.

Answer: ψ1s(1)ψ2s(2) − ψ1s(2)ψ2s(1), which is antisymmetric, also 

acknowledges that we cannot know which electron is in which orbital, 

and it may be combined with α(1)α(2), β(1)β(2), or σ+(1,2)

Justification 19.2 The Pauli exclusion principle

To derive the Pauli exclusion principle from the more funda-

mental Pauli principle we need to infer what spin states are 

allowed when two electrons in an atom occupy the same orbital 

ψ. According to the orbital approximation, the overall spatial 

wavefunction is ψ (1)ψ (2). There are several possibilities for 

two spins: both electrons can be in state α, denoted α(1)α(2); 

both β, denoted β(1)β(2); and one α the other β, denoted either 

α(1)β(2) or α(2)β(1). Because we cannot tell which electron is 

α and which is β, in the last case it is appropriate to express the 

spin states as the (normalized) linear combinations

σ α β β α+ = +( , ) / /1 2 (1 2 ){ (1) (2) (1) (2)}1 2

 (19.2a)

σ α β β α− −( , ) / /1 2 (1 2 ){ (1) (2) (1) (2)}1 2=  (19.2b)

because these combinations allow one spin to be α and the 

other β with equal probability. A stronger justification for tak-

ing these two linear combinations is that they correspond to 

eigenfunctions of the total spin operators S2 and Sz, with S = 1, 

Ms = 0 for σ+ and S = 0, MS = 0 for σ−. A crucial point is that the 

latter combination, with zero net spin angular momentum, 

corresponds to the two electrons being paired (↑↓).

The total wavefunction of the system is the product of the 

orbital part and one of the four spin states:

ψ ψ α α ψ ψ β β
ψ ψ σ ψ ψ σ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( , ) ( ) ( ) (

1 2 1 2 1 2 1 2

1 2 1 2 1 2+ − 11 2, )

The Pauli principle implies that for a total wavefunction to be 

acceptable (for electrons), it must change sign when the elec-

trons are exchanged. In each case, exchanging the labels 1 

and 2 converts the factor ψ(1)ψ(2) into ψ(2)ψ(1), which is the 

same, because the order of multiplying the functions does not 

change the value of the product. The same is true of α(1)α(2) 

and β(1)β(2). Therefore, the first two overall products (of the 

four listed above) are not allowed, because they do not change 

sign. The combination σ+(1,2) changes to

σ α β β α σ+ +( , ) / ( ) ( ) ( , )/2 1 (1 2 ){ (2) (1) + } =1 2= 2 1 1 2

because it is simply the original function written in a different 

order. The third overall product is therefore also disallowed. 

All the terms in grey are therefore disallowed. Finally, con-

sider σ−(1,2):

σ α β β α
α β β

− −
− −

( , ) / ( ) ( )

( / ) (

/

/

2 1 (1 2 ){ (2) (1) }

{ (1) (2)

1 2=
=

2 1

1 2 11 2 )) ( ) ( , )α σ2 1 2} = − −

This combination does change sign (it is ‘antisymmetric’). 

Therefore the (blue) product ψ (1)ψ (2)σ−(1,2) also changes 

sign under particle exchange and is acceptable.

Now we see that only one of the four possible states is 

allowed by the Pauli principle, and the one that survives has 

paired α and β spins. This is the content of the Pauli exclu-

sion principle. The exclusion principle is irrelevant when the 

orbitals occupied by the electrons are different, and both elec-

trons may then have (but need not have) the same spin state. 

Nevertheless, even then the overall wavefunction must still be 

antisymmetric, and must still satisfy the more general Pauli 

principle itself.
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19 Many-electron atoms 173

within a sphere of radius r (Fig. 19.3). The effect of this point 

negative charge, when averaged over all the locations of the 

electron, is to reduce the full charge of the nucleus from Ze to 

Zeff e, the effective nuclear charge. In everyday parlance, Zeff 

itself is commonly referred to as the ‘effective nuclear charge’. 

We say that the electron experiences a shielded nuclear charge, 

and the difference between Z and Zeff is called the shielding 

constant, σ :

Z Zeff = − σ
 

 Effective nuclear charge  (19.3)

The electrons do not actually ‘block’ the full Coulombic attrac-

tion of the nucleus: the shielding constant is simply a way of 

expressing the net outcome of the nuclear attraction and the 

electronic repulsions in terms of a single equivalent charge at 

the centre of the atom.

The shielding constant is different for s and p electrons 

because they have different radial distribution functions (Fig. 

19.4; also see Fig. 18.10). An s electron has a greater penetra-

tion through inner shells than a p electron, in the sense that it 

is more likely to be found close to the nucleus than a p electron 

of the same shell (the wavefunction of a p orbital, remember, is 

zero at the nucleus). Because only electrons inside the sphere 

defined by the location of the electron contribute to shield-

ing, an s electron experiences less shielding than a p electron. 

Consequently, by the combined effects of penetration and 

shielding, an s electron is more tightly bound than a p electron 

of the same shell. Similarly, a d electron penetrates less than a 

p electron of the same shell (recall that the wavefunctions of 

orbitals are proportional to rl close to the nucleus and there-

fore that a d orbital varies as r2 close to the nucleus, whereas a 

p orbital varies as r), and therefore experiences more shielding. 

The consequence of penetration and shielding is that the ener-

gies of subshells of a shell in a many-electron atom in general 

lie in the order s < p < d < f.
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Figure 19.4 An electron in an s orbital (here a 3s orbital) is 
more likely to be found close to the nucleus than an electron 
in a p orbital of the same shell (note the closeness of the 
innermost peak of the 3s orbital to the nucleus at r = 0). Hence 
an s electron experiences less shielding and is more tightly 
bound than a p electron.

No net effect of
these electrons

Net effect equivalent 
to a point charge at
the nucleus

r

Figure 19.3 An electron at a distance r from the nucleus 
experiences a Coulombic repulsion from all the electrons 
within a sphere of radius r and which is equivalent to a point 
negative charge located on the nucleus. The negative charge 
reduces the effective nuclear charge of the nucleus from Ze 
to Zeffe.

Example 19.1 Analysing the extent of penetration

Although hydrogenic orbitals are only approximations to the 

orbitals of many-electron atoms, their properties give some 

insight into the extent of penetration. Explore the probability 

of finding an electron at a distance R from the nucleus for 3s, 

3p, and 3d orbitals.

Method Use the radial distribution function (Topic 18) to 

calculate the total probability of finding the electron within 

a sphere of radius R by integration from r = 0 to R. The radial 

wavefunctions are given in Table 17.1.

Answer The radial distribution function is Pnl(r) = r2Rnl(r)
2, so 

we need to evaluate the total probability, P Rnl ( ), of being in a 

sphere of radius R:

P R r R r rnl nl

R

( ) ( )=∫ 2 2

0

d

for the various radial wavefunctions. For instance, the 3s 

radial wavefunction is

R r
Z

a

Zr

a

Z r

a
Zr a

3 0 1 2
0

3 2

0

2 2

0
2

31

243
6

4 4
0

, /

/

/( )= ⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

− −

9
e

In each case the integral is best evaluated by using mathemati-

cal software, although hand integration is feasible (but tire-

some). The results are plotted in Fig. 19.5. If, arbitrarily, we ask 

for the probability of finding the electron within a sphere of 

radius a0/Z, we find

3s (l = 0) 3p (l = 1) 3d (l = 2)

P a Znl ( / )0 0.0098 0.0013 0.000 006
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174 5 Atomic structure and spectra

Shielding constants for different types of electrons in atoms 

have been calculated from their wavefunctions obtained 

by numerical solution of the Schrödinger equation (Table 

19.1). We see that, in general, valence-shell s electrons do 

experience higher effective nuclear charges than p electrons, 

although there are some discrepancies which are considered 

in Topic 20.

We can now complete the Li story. Because the shell with 

n = 2 consists of two non-degenerate subshells, with the 2s 

orbital lower in energy than the three 2p orbitals, the third 

electron occupies the 2s orbital. This occupation results in the 

ground-state configuration 1s22s1, with the central nucleus sur-

rounded by a complete helium-like shell of two 1s electrons, 

and around that a more diffuse 2s electron. The electrons in 

the outermost shell of an atom in its ground state are called the 

valence electrons because they are largely responsible for the 

chemical bonds that the atom forms. Thus, the valence electron 

in Li is a 2s electron and its other two electrons belong to its 

core, the inner electrons of the atoms.

19.3 Self-consistent field  
calculations

The treatment we have given to the electronic configuration 

of many-electron species is only approximate because it is 

hopeless to expect to find exact solutions of a Schrödinger 

equation that takes into account the interaction of all the elec-

trons with one another. However, computational techniques 

are available that give very detailed and reliable approximate 

solutions for the wavefunctions and energies. The techniques 

were originally introduced by D.R. Hartree (before comput-

ers were available) and then modified by V. Fock to take into 

account the Pauli principle correctly. These techniques are of 

great interest to chemists when applied to molecules, and are 

explained in detail in Topic 27; however, we should be aware 

of the general principles at this stage too. In broad outline, the 

Hartree–Fock self-consistent field (HF-SCF) procedure is as 

follows.

Imagine that we have an approximate idea of the structure 

of the atom. In the Ne atom, for instance, the orbital approxi-

mation suggests the configuration 1s22s22p6 with the orbitals 

approximated by hydrogenic atomic orbitals. Now consider 

one of the 2p electrons. A Schrödinger equation can be writ-

ten for this electron by ascribing to it a potential energy due to 

the nuclear attraction and the repulsion from the other elec-

trons. Although the equation is for the 2p orbital, it depends 

on the wavefunctions of all the other occupied orbitals in the 

atom. To solve the equation, we guess an approximate form of 

the wavefunctions of all the orbitals except 2p and then solve 

the Schrödinger equation for the 2p orbital. The procedure is 

then repeated for the 1s and 2s orbitals. This sequence of cal-

culations gives the form of the 2p, 2s, and 1s orbitals, and in 

general they will differ from the set used initially to start the 

calculation. These improved orbitals can be used in another 

cycle of calculation, and a second improved set of orbitals and 

a better energy are obtained. The recycling continues until 

Table 19.1* Effective nuclear charge, Zeff = Z − σ

Element Z Orbital Zeff

He 2 1s 1.6875

C 6 1s 5.6727

2s 3.2166

2p 3.1358

*More values are given in the Resource section.

These figures show that an electron in a 3s orbital is much 

more likely to be found close to the nucleus than one in a 3p 

orbital, which in turn is much more likely to be found close to 

the nucleus than one in a 3d orbital.

Self-test 19.4 Repeat the analysis for orbitals of the L shell (n = 2).

Answer: P a Z P a Z2 0 2 00 0343 0 0036s p( ) . , ( ) ./ /= =

0.020

0.015

0.010

0.005

0
0 0.5 1 1.5 2

P
3l
(r

)
–

R/Za0

3s

3p

3d

Figure 19.5 The results obtained in Example 19.1. The graphs 
show the total probability of an electron being inside a 
sphere of radius R when it occupies a 3s, 3p, and 3d orbital of 
a hydrogenic atom of atomic number Z.
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19 Many-electron atoms 175

the orbitals and energies obtained are insignificantly differ-

ent from those used at the start of the current cycle. The solu-

tions are then self-consistent and accepted as solutions of the 

problem.

Figure 19.6 shows plots of some of the HF-SCF radial distri-

bution functions for sodium. They show the grouping of elec-

tron density into shells, as was anticipated by the early chemists, 

and the differences of penetration as discussed above. These 

SCF calculations therefore support the qualitative discussions 

that are used to explain chemical periodicity (Topic 20). They 

also considerably extend that discussion by providing detailed 

wavefunctions and precise energies.

Checklist of concepts

☐ 1. In the orbital approximation it is supposed that each 

electron occupies its ‘own’ orbital.

☐ 2. The configuration of an atom is the list of occupied 

orbitals.

☐ 3. The Pauli exclusion principle states that no more than 

two electrons may occupy any given orbital, and if two 

do occupy one orbital, then their spins must be paired.

☐ 4. A fermion is a particle with half-integral spin quantum 

number; a boson is a particle with integral spin quan-

tum number.

☐ 5. An electron is a fermion with s = 1
2
.

☐ 6. The Pauli principle states that when the labels of any 

two identical fermions are exchanged, the total wave-

function changes sign; when the labels of any two iden-

tical bosons are exchanged, the total wavefunction 

retains the same sign.

☐ 7. The effective nuclear charge, Zeffe, is the net charge 

experienced by an electron allowing for electron–elec-

tron repulsions.

☐ 8. Shielding is the effective reduction in charge of a 

nucleus by surrounding electrons.

☐ 9. Penetration is the ability of an electron to be found 

inside inner shells and close to the nucleus.

☐ 10. The outermost electrons of an atom are called its 

valence electrons; its inner electrons form the atom's 

core.

☐ 11. In the Hartree–Fock self-consistent field (HF-SCF) 

procedure the Schrödinger equation is solved numeri-

cally and iteratively until the solutions no longer change 

(to within certain criteria).

Checklist of equations

1s
2p

2s

3s

Radius, r/a0
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Figure 19.6 The radial distribution functions for the orbitals of 
Na based on SCF calculations. Note the shell-like structure, with 
the 3s orbital outside the inner concentric K and L shells.

Property Equation Comment Equation number

Orbital approximation ψ(r1,r2,…) = ψ(r1)ψ(r2)… Valid if electron–electron interactions ignored 19.1

Effective nuclear charge Zeff = Z – σ Charge is actually Zeffe 19.3
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TOPIC 20

Periodicity

Topic 19 introduces the considerations that allow us to predict 

the ground-state electron configurations of atoms. That Topic 

takes the story as far as lithium. This Topic extends the discus-

sion to all the remaining elements. It also shows how certain 

chemically important atomic properties, such as atomic radii 

and ionization energies, reflect the configurations and vary 

periodically with increasing atomic number.

20.1 The building-up principle

The extension of the argument presented for lithium is called 

the building-up principle, or the Aufbau principle, from the 

German word for building up. We presume that it is famil-

iar from introductory courses. In brief, we imagine the bare 

nucleus of atomic number Z, and then feed into the orbitals Z 

electrons in succession. The order of occupation, which reflects 

the consequences of shielding and penetration as explained in 

Topic 19, is

1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s

According to the Pauli exclusion principle (Topic 19), each 

orbital may accommodate up to two electrons.

We can be more precise than merely specifying the subshell: 

we can expect the last two electrons of carbon, as treated in 

Brief illustration 20.1, to occupy different 2p orbitals because 

they will then be further apart on average and repel each other 

less than if they were in the same orbital. Thus, one electron 

can be thought of as occupying the 2px orbital and the other the 

Contents

20.1 The building-up principle 176

Brief illustration 20.1: The building-up principle 176

20.2 The configurations of the elements 177

Brief illustration 20.2: The configurations of ions 178

20.3 The periodicity of atomic properties 178

(a) Atomic radii 178

(b) Ionization energies 179

(c) Electron affinities 180

Checklist of concepts 180

 ➤ Why do you need to know this material?
The periodic table lies at the heart of chemistry, and it is 
essential for a chemist to understand the origins of the 
periodicity of the properties of the elements that the table 
summarizes.

 ➤ What is the key idea?
The periodic repetition of analogous configurations as 
electrons are added to nuclei accounts for the periodicity 
of the properties of the elements and the structure of the 
periodic table.

 ➤ What do you need to know already?
You need to be familiar with the concepts developed 
in Topic 19 concerning the features that govern the 
occupation of atomic orbitals.

Brief illustration 20.1 The building-up principle

Consider the carbon atom, for which Z = 6 and there are six 

electrons to accommodate. Two electrons enter and fill the 1s 

orbital, two enter and fill the 2s orbital, leaving two electrons 

to occupy the orbitals of the 2p subshell. Hence the ground-

state configuration of C is 1s22s22p2, or more succinctly 

[He]2s22p2, with [He] the helium-like 1s2 core.

Self-test 20.1 Identify the ground-state configuration of a sili-

con atom.

Answer: [Ne]3s23p2 with [Ne] = [He]2s22p6 = 1s22s22p6
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20 Periodicity  177

2py orbital (the x, y, z designation is arbitrary, and it would be 

equally valid to use the complex forms of these orbitals), and 

the lowest energy configuration of the atom is [He]2s 2p 2p2
x y
1 1 . 

The same rule applies whenever degenerate orbitals of a sub-

shell are available for occupation. Thus, another rule of the 

building-up principle is:

Electrons occupy different orbitals of a given subshell 

before doubly occupying any one of them.

For instance, nitrogen (Z = 7) has the configuration 

[He]2s 2p 2p p2
x y z
1 1 12 , and only when we get to oxygen (Z = 8) is 

a 2p orbital doubly occupied, giving [He]2s 2p 2p p2
x y z
2 1 12 . When 

electrons occupy orbitals singly we invoke Hund's maximum 

multiplicity rule:

An atom in its ground state adopts a configuration with 

the greatest number of electrons with unpaired spins.

The explanation of Hund's rule is subtle, but it reflects the 

quantum mechanical property of spin correlation, that elec-

trons with parallel spins behave as if they have a tendency to 

stay well apart (see the following Justification), and hence repel 

each other less. In essence, the effect of spin correlation is to 

allow the atom to shrink slightly, so the electron–nucleus inter-

action is improved when the spins are parallel. We can now 

conclude that in the ground state of the carbon atom, the two 

2p electrons have the same spin, that all three 2p electrons in 

the N atom have the same spin, and that the two 2p electrons in 

different orbitals in the O atom have the same spin (the two in 

the 2px orbital are necessarily paired).
20.2 The configurations of the 
elements

Neon, with Z = 10, has the configuration [He]2s22p6, which 

completes the L shell. This closed-shell configuration is 

denoted [Ne], and acts as a core for subsequent elements. The 

next electron must enter the 3s orbital and begin a new shell, 

so an Na atom, with Z = 11, has the configuration [Ne]3s1. Like 

lithium with the configuration [He]2s1, sodium has a single s 

electron outside a complete core. This analysis has brought us 

to the origin of chemical periodicity. The L shell is completed 

by eight electrons, so the element with Z = 3 (Li) should have 

similar properties to the element with Z = 11 (Na). Likewise, Be 

(Z = 4) should be similar to Z = 12 (Mg), and so on, up to the 

noble gases He (Z = 2), Ne (Z = 10), and Ar (Z = 18).

Ten electrons can be accommodated in the five 3d orbitals, 

which accounts for the electron configurations of scandium to 

zinc. Calculations of the type discussed in Topic 27 show that 

for these atoms the energies of the 3d orbitals are always lower 

than the energy of the 4s orbital. However, spectroscopic results 

show that Sc has the ground-state configuration [Ar]3d14s2, 

instead of [Ar]3d3 or [Ar]3d24s1. To understand this observa-

tion, we have to consider the nature of electron–electron repul-

sions in 3d and 4s orbitals, where the effects are particularly 

Justification 20.1 Spin correlation

Suppose electron 1 is described by a spatial wavefunction ψa(r1) 

and electron 2 is described by a wavefunction ψb(r2); then, in 

the orbital approximation, the joint wavefunction of the elec-

trons is the product ψ = ψa(r1)ψb(r2). However, this wavefunc-

tion is not acceptable, because it suggests that we know which 

electron is in which orbital, whereas we cannot keep track 

of electrons. According to quantum mechanics, the correct 

description is either of the two following wavefunctions:

ψ ψ ψ ψ ψ± = ±( / ) { ( ) ( ) ( ) ( )}/1 2 1 2
1 2 1 2a b b ar r r r

According to the Pauli principle, because ψ+ is symmetri-

cal under particle interchange, it must be multiplied by an 

antisymmetric spin function (the one denoted σ− in eqn 

19.2b). That combination corresponds to a spin-paired state. 

Conversely, ψ− is antisymmetric, so it must be multiplied by 

one of the three symmetric spin states(α(1)α(2), β(1)β(2), or 

σ+(1,2)). These three symmetric states correspond to electrons 

with parallel spins (they correspond to eigenfunctions of the 

total spin operator S�2  with S = 1 as mentioned in Topic 19 and 

as more fully discussed in Topic 21).

Now consider the values of the two combinations ψ± when 

one electron approaches another, and eventually r1 = r2. We see 

that ψ− vanishes, which means that there is zero probability of 

finding the two electrons at the same point in space when they 

have parallel spins. The decreasing probability that the elec-

trons approach one another in the state ψ− is called a Fermi 

hole. The other combination does not vanish when the two 

electrons are at the same point in space. Because the two elec-

trons have different relative spatial distributions depending 

on whether their spins are parallel or not, it follows that their 

Coulombic interaction is different, and hence that the two 

states have different energies, with the state corresponding to 

parallel spins being lower in energy.

However, we have to be cautious with this explanation, for 

it supposes that the original wavefunctions are unchanged. 

Detailed numerical calculations have shown that in the spe-

cific case of a helium atom electrons with parallel spins are 

actually closer together than those with antiparallel spins. 

The explanation in this case is that spin correlation between 

electrons with parallel spins allows the entire atom to shrink. 

Therefore, although the average separation is reduced, the 

electrons are found closer to the nucleus, which lowers their 

potential energy.
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178 5 Atomic structure  and spectra

finely balanced because there is only a small difference in 

energy between the orbitals. The most probable distance of a 

3d electron (with no radial nodes) from the nucleus is less than 

that for a 4s electron (with three radial nodes), so two 3d elec-

trons repel each other more strongly than two 4s electrons. As a 

result, Sc has the configuration [Ar]3d14s2 rather than the two 

alternatives, for then the strong electron–electron repulsions in 

the 3d orbitals are minimized. The total energy of the atom is 

least despite the cost of allowing electrons to populate the high 

energy 4s orbital (Fig. 20.1).

The effect just described is generally true for scandium 

through zinc, so their electron configurations are of the form 

[Ar]3dn4s2, where n = 1 for scandium and n = 10 for zinc. Two 

notable exceptions, which are observed experimentally, are Cr, 

with electron configuration [Ar]3d54s1, and Cu, with electron 

configuration [Ar]3d104s1. The theoretical basis of the exceptions 

represented by Cr and Cu is the additional energy lowering char-

acteristic of half-filled and completely filled d subshells.

At gallium, the building-up principle is used in the same way 

as in preceding periods. Now the 4s and 4p subshells consti-

tute the valence shell, and the period terminates with krypton. 

Because 18 electrons have intervened since argon, this period is 

the first ‘long period’ of the periodic table. The existence of the 

d-block elements (the ‘transition metals’) reflects the stepwise 

occupation of the 3d orbitals, and the subtle shades of energy 

differences and effects of electron–electron repulsion along 

this series gives rise to the rich complexity of inorganic d-metal 

chemistry. A similar intrusion of the f orbitals in Periods 6 and 

7 accounts for the existence of the f block of the periodic table 

(the lanthanoids and actinoids).

We derive the configurations of cations of elements in the s, 

p, and d blocks of the periodic table by removing electrons from 

the ground-state configuration of the neutral atom in a spe-

cific order. First, we remove valence p electrons, then valence 

s electrons, and then as many d electrons as are necessary to 

achieve the specified charge. The configurations of anions of 

the p-block elements are derived by continuing the building-up 

procedure and adding electrons to the neutral atom until the 

configuration of the next noble gas has been reached.

20.3 The periodicity of atomic 
properties

Three atomic properties are of considerable importance for 

determining the chemical properties of the elements, namely 

atomic radii, ionization energies, and electron affinities. All 

three show periodic variation with increasing atomic number.

(a) Atomic radii
An atom does not have a precise radius because far from the 

nucleus the electron density falls off only exponentially (but 

sharply). However, we can expect atoms with numerous elec-

trons to be larger, in some sense, than atoms that have only a 

few electrons. The atomic radius of an element is defined as 

half the distance of neighboring atoms in a solid (such as Cu) 

or, for non-metals, in a homonuclear molecule (such as H2 or 

S8). The data in Table 20.1 show that atomic radii increase down 

a group, and that they decrease from left to right across a period. 

These trends are readily interpreted in terms of the electronic 

structure of the atoms. On descending a group, the valence 

electrons are found in orbitals of successively higher principal 

quantum number. The atoms within the group have a greater 

Brief illustration 20.2 The configurations of ions

Because the configuration of V is [Ar]3d34s2, the V2+ cation 

has the configuration [Ar]3d3. It is reasonable that we remove 

the more energetic 4s electrons in order to form the cation, but 

it is not obvious why the [Ar]3d3 configuration is preferred in 

V2+ over the [Ar]3d14s2 configuration, which is found in the 

isoelectronic Sc atom. Calculations show that the energy dif-

ference between [Ar]3d3 and [Ar]3d14s2 depends on Zeff. As 

Zeff increases, transfer of a 4s electron to a 3d orbital becomes 

more favourable because the electron–electron repulsions are 

compensated by attractive interactions between the nucleus 

and the electrons in the spatially compact 3d orbital (see the 

3d radial distribution function in Fig. 18.10). Indeed, calcula-

tions reveal that for a sufficiently large Zeff, [Ar]3d3 is lower in 

energy than [Ar]3d14s2. This conclusion explains why V2+ has 

an [Ar]3d3 configuration and also accounts for the observed 

[Ar]4s03dn configurations of the M2+ cations of Sc through Zn.

Self-test 20.2 Identify the configuration of the O2– ion.

Answer: [He]2s22p6 = [Ne]

E
n

er
g

y

Figure 20.1  Strong electron–electron repulsions in the 3d 
orbitals are minimized in the ground state of Sc if the atom 
has the configuration [Ar]3d14s2 (shown on the left) instead of 
[Ar]3d24s1 (shown on the right). The total energy of the atom is 
lower when it has the [Ar]3d14s2 configuration despite the cost 
of populating the high energy 4s orbital.
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20 Periodicity  179

number of completed shells of electrons in successive periods 

and hence their radii increase down the group. Across a period, 

the valence electrons enter orbitals of the same shell; how-

ever, the increase in effective nuclear charge across the period 

draws in the electrons and results in progressively more com-

pact atoms. The general increase in radius down a group and 

decrease across a period should be remembered as they corre-

late well with trends in many chemical properties.

Period 6 shows an interesting and important modification to 

these otherwise general trends. The metallic radii in the third 

row of the d block are very similar to those in the second row, 

and not significantly larger as might be expected given their 

considerably greater numbers of electrons. For example, the 

atomic radii of Mo (Z = 42) and W (Z = 74) are 140 and 141 pm, 

respectively, despite the latter having many more electrons. 

The reduction of radius below that expected on the basis of a 

simple extrapolation down the group is called the lanthanide 

contraction. The name points to the origin of the effect. The 

elements in the third row of the d block (Period 6) are preceded 

by the elements of the first row of the f block, the lanthanoids, 

in which the 4f orbitals are being occupied. These orbitals have 

poor shielding properties and so the valence electrons expe-

rience more attraction from the nuclear charge than might 

be expected. The repulsions between electrons being added 

on crossing the f block fail to compensate for the increas-

ing nuclear charge, so Zeff increases from left to right across a 

period. The dominating effect of the latter is to draw in all the 

electrons and hence to result in a more compact atom. A simi-

lar contraction is found in the elements that follow the d block 

for the same reasons. For example, although there is a substan-

tial increase in atomic radius between C and Si (77 and 118 pm, 

respectively), the atomic radius of Ge (122 pm) is only slightly 

greater than that of Si.

All monatomic anions are larger than their parent atoms and 

all monatomic cations are smaller than their parent atoms (in 

some cases, markedly so). The increase in radius of an atom on 

anion formation is a result of the greater electron–electron repul-

sions that occur when an additional electron is added to form an 

anion. There is also an associated decrease in the value of Zeff. The 

smaller radius of a cation compared with its parent atom is a con-

sequence not only of the reduction in electron–electron repul-

sions that follows electron loss but also of the fact that cation 

formation typically results in the loss of the valence electrons 

and an increase in Zeff. That loss often leaves behind only the 

much more compact closed shells of electrons. Once these gross 

differences are taken into account, the variation in ionic radii 

through the periodic table mirrors that of the atoms.

(b) Ionization energies
The minimum energy necessary to remove an electron from 

a many-electron atom in the gas phase is the first ionization 

energy, I1, of the element. The second ionization energy, I2, 

is the minimum energy needed to remove a second electron 

(from the singly charged cation). Some numerical values are 

given in Table 20.2.

As will be familiar from introductory chemistry, ioniza-

tion energies show periodicities (Fig. 20.2). Lithium has a low 

first ionization energy because its outermost electron is well 

shielded from the nucleus by the core electrons (Zeff  = 1.3, com-

pared with Z = 3). The ionization energy of beryllium (Z = 4) is 

greater but that of boron is lower because in the latter the out-

ermost electron occupies a 2p orbital and is less strongly bound 

than if it had been a 2s electron.

The ionization energy increases from boron to nitrogen on 

account of the increasing nuclear charge. However, the ioniza-

tion energy of oxygen is less than would be expected by sim-

ple extrapolation. The explanation is that at oxygen a 2p orbital 

must become doubly occupied, and the electron–electron 

Table 20.2* First and second ionization energies

Element I1/(kJ mol−1) I2/(kJ mol−1)

H 1312

He 2372 5250

Mg  738 1451

Na  496 4562

*More values are given in the Resource section.
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Figure 20.2  The first ionization energies of the elements 
plotted against atomic number.

Table 20.1 Atomic radii of main-group elements, r/pm

Li 157 Be 112 B 88 C 77 N 74 O 66 F 64

Na 191 Mg 160 Al 143 Si 118 P 110 S 104 Cl 99

K 235 Ca 197 Ga 153 Ge 122 As 121 Se 117 Br 114

Rb 250 Sr 215 In 167 Sn 158 Sb 141 Te 137 I 133

Cs 272 Ba 224 Tl 171 Pb 175 Bi 182 Po 167
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180 5 Atomic structure  and spectra

repulsions are increased above what would be expected by 

simple extrapolation along the row. In addition, the loss of a 

2p electron results in a configuration with a half-filled sub-

shell (like that of N), which is an arrangement of low energy, so 

the energy of O+ + e− is lower than might be expected, and the 

ionization energy is correspondingly low too. (The kink is less 

pronounced in the next row, between phosphorus and sulfur 

because their orbitals are more diffuse.) The values for oxygen, 

fluorine, and neon fall roughly on the same line, the increase 

of their ionization energies reflecting the increasing attraction 

of the more highly charged nuclei for the outermost electrons.

The outermost electron in sodium is 3s. It is far from the 

nucleus, and the latter's charge is shielded by the compact, 

complete neon-like core. As a result, the ionization energy of 

sodium is substantially lower than that of neon. The periodic 

cycle starts again along this row, and the variation of the ioni-

zation energy can be traced to similar reasons.

(c) Electron affinities
The electron affinity, Eea, is the energy released when an elec-

tron attaches to a gas-phase atom (Table 20.3). In a common, 

logical, but not universal convention (which we adopt), the 

electron affinity is positive if energy is released when the elec-

tron attaches to the atom.

Electron affinities are greatest close to fluorine, for the 

incoming electron enters a vacancy in a compact valence shell 

and can interact strongly with the nucleus. The attachment of 

an electron to an anion (as in the formation of O2– from O−) 

invariably requires the absorption of energy, so Eea is negative. 

The incoming electron is repelled by the charge already present. 

Electron affinities are also small, and may be negative, when an 

electron enters an orbital that is far from the nucleus (as in the 

heavier alkali metal atoms) or is forced by the Pauli principle to 

occupy a new shell (as in the noble gas atoms).

The values of ionization energies and electron affinities can 

help us to understand a great deal of chemistry and, through 

chemistry, biology. We can now begin to see why carbon is 

an essential building block of complex biological structures. 

Among the elements in Period 2, carbon has intermediate val-

ues of the ionization energy and electron affinity, so it can share 

electrons (that is, form covalent bonds) with many other ele-

ments, such as hydrogen, nitrogen, oxygen, sulfur, and, more 

importantly, other carbon atoms. As a consequence, such net-

works as long carbon–carbon chains (as in lipids) and chains of 

peptide links can form readily. Because the ionization energy 

and electron affinity of carbon are neither too high nor too low, 

the bonds in these covalent networks are neither too strong nor 

too weak. As a result, biological molecules are sufficiently stable 

to form viable organisms but are still susceptible to dissociation 

and rearrangement.

Checklist of concepts

☐ 1. The building-up (Aufbau) principle is the procedure 

for filling atomic orbitals that leads to the ground-state 

configuration of an atom.

☐ 2. Hund’s maximum multiplicity rule states that an atom 

in its ground state adopts a configuration with the 

greatest number of electrons with unpaired spins.

☐ 3. Atomic radii typically decrease across a period and 

increase down a group.

☐ 4. The lanthanide contraction is the reduction in atomic 

radius of elements following the lanthanoids.

☐ 5. The ionization energy is the minimum energy nec-

essary to remove an electron from an atom in the gas 

phase.

☐ 6. The electron affinity is the energy released when an 

electron attaches to an atom in the gas phase.

Table 20.3* Electron affinities, Eea/(kJ mol−1)

Cl 349

F 322

H  73

O 141 O− −844

*More values are given in the Resource section.
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TOPIC 21

Atomic spectroscopy

The general idea behind atomic spectroscopy is straightfor-

ward: lines in the spectrum (in either emission or absorption) 

occur when the atom undergoes a transition with a change 

of energy |ΔE|, and emits or absorbs a photon of frequency 

ν = |ΔE|/h and wavenumber �� = ΔE hc/ .  Hence, we can expect 

the spectrum to give information about the energies of elec-

trons in atoms. However, in many-electron atoms the actual 

energy levels are not given solely by the energies of the orbit-

als, because the electrons interact with one another in various 

ways, and it is necessary to consider contributions to the energy 

beyond those of the orbital approximation.

21.1 The spectrum of hydrogen

When an electric discharge is passed through gaseous hydro-

gen, the H2 molecules are dissociated and the energetically 

excited H atoms that are generated emit light of discrete fre-

quencies, producing a spectrum of a series of ‘lines’ (Fig. 21.1).

(a) The spectral series
The Swedish spectroscopist Johannes Rydberg noted (in 1890) 

that all the lines are described by the expression

� � �� = −⎛
⎝⎜

⎞
⎠⎟

= −R
n n

RH H cm
1 1

109 677
1
2

2
2

1

 

 Rydberg expression  (21.1)

with n1 = 1 (the Lyman series), 2 (the Balmer series), 3 (the 

Paschen series), and 4 (the Brackett series), and that in each case 

n2 = n1 + 1, n1 + 2, …. The constant �RH  is now called the Rydberg 

constant for the hydrogen atom (Topic 17).

 ➤ Why do you need to know this material?
Atomic spectroscopy not only inspired the development 
of quantum mechanics but provides detailed information 
about the energies of electrons in atoms. The labels that 
specify atomic states, and their molecular counterparts, 
play a crucial role in spectroscopy, in the discussion 
of magnetic properties, in photochemistry, and in the 
description of the operation of lasers.

 ➤ What is the key idea?
Transitions take place between allowed energy states subject 
to selection rules that stem from the angular momentum of 
the photon and the conservation of angular momentum.
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 ➤ What do you need to know already?

You need to be aware of the discussion of the energy levels 
of hydrogenic atoms (Topic 17) and how that discussion is 
extended to account for the structures of many-electron 
atoms (Topic 19). The discussion of selection rules makes 
use of the discussion of transitions (Topic 16).
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182 5 Atomic structure and spectra

The form of eqn 21.1 strongly suggests that each spectral line 

arises from a transition, a jump from one state to another, each 

with an energy proportional to �R nH / 2 , with the difference in 

energy discarded as electromagnetic radiation of frequency 

(and wavenumber) given by the Bohr frequency condition 

(ΔE = hν). As is shown in Topic 17, this is precisely the form of 

the energy levels of a hydrogen atom, and its explanation was 

an early triumph of quantum mechanics.

(b) Selection rules

Although Topic 17 establishes the allowed energy levels of a 

hydrogenic atom as −Z hcR n2 2�
H / , not all conceivable transi-

tions are allowed. As explained in Topic 16, it is necessary to 

identify and apply the selection rules. For hydrogenic atoms, 

the selection rules are derived by identifying the transitions 

that conserve angular momentum when a photon (a boson of 

spin 1) is emitted or absorbed:

Δ Δl ml= ± = ±1  10,
 

The principal quantum number n can change by any amount 

consistent with the Δl for the transition, because it does not relate 

directly to the angular momentum. The mathematical basis of 

the selection rules is developed in the following Justification.

Example 21.1 Calculating the shortest and longest 
wavelength lines in a series

Determine the shortest and longest wavelength lines in the 

Balmer series.

Method Identify the value of n1 for the Balmer series. The 

shortest-wavelength line corresponds to the largest wave-

number; from eqn 21.1, recognize that this line will arise from 

n2 = ∞. The longest wavelength corresponds to the smallest 

wavenumber, which will arise from n2 = n1 + 1.

Answer The Balmer series corresponds to n1 = 2. The larg-

est wavenumber (use n2 = ∞), calculated from eqn 21.1, is 

27 419 cm−1, which corresponds to a wavelength of 365 nm. The 

smallest wavenumber (use n2 = 3) is 15 233 cm−1, which corre-

sponds to a wavelength of 656 nm.

Self-test 21.1 Calculate the shortest and longest wavelength 

lines in the Paschen series.

Answer: 821 nm, 1876 nm

Hydrogenic 
atoms 

Selection 
rules 

(21.2)

Brief illustration 21.1 Selection rules

To identify the orbitals to which a 4d electron may make radi-

ative transitions, we first identify the value of l and then apply 

the selection rule for this quantum number. Because l = 2, the 

final orbital must have l = 1 or 3. Thus, an electron may make 

a transition from a 4d orbital to any np orbital (subject to 

Δml = 0, ±1) and to any nf orbital (subject to the same rule). 

However, it cannot undergo a transition to any other orbital, 

so a transition to any ns orbital or to another nd orbital is 

forbidden.

Self-test 21.2 To what orbitals may an electron in a 4s orbital 

make electric-dipole allowed radiative transitions?

Answer: to np orbitals only

Justification 21.1 The identification of selection rules

To determine the selection rules for atoms, we need to iden-

tify the conditions for which the transition dipole moment, μfi, 

(Topic 16) connecting the final state ψf and the initial state ψi 

is nonzero:

μ ψ ψ τμq n n q q x y z, * , ,0 0= =∫ � d

where μ�q eq= − . We consider each component in turn. To evalu-

ate the integral, we note from Table 14.1 that z = (4π/3)1/2rY1,0, so

∫ = ⎛
⎝⎜

⎞
⎠⎟
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This multiple integral is the product of three factors, an inte-

gral over r and two integrals over the angles, so the factor on 

the right can be grouped as follows:
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Figure 21.1 The spectrum of atomic hydrogen. Both the 
observed spectrum and its resolution into overlapping series 
are shown. Note that the Balmer series lies in the visible region.
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21 Atomic spectroscopy  183

The selection rules and the atomic energy levels jointly 

account for the structure of a Grotrian diagram (Fig. 21.2), 

which summarizes the energies of the states and the transitions 

between them. In some versions, lines of various thicknesses 

are used to denote their relative intensities in the spectrum 

obtained by evaluating the transition dipole moments.

21.2 Term symbols

The spectra of many-electron atoms are considerably richer 

than those of hydrogenic atoms. Although Topic 19 explains 

how to account for the ground-state configurations of atoms, 

to understand their spectra we need to examine their states 

in more detail, especially their excited states, and to consider 

the transitions between them. A complication we immedi-

ately encounter is that a single configuration of an atom, such 

as the excited configuration of He, 1s12s1 for instance, or the 

ground state of C, [He]2s22p2, can give rise to a number of dif-

ferent individual states with various energies. Our first task is 

to identify these states and find a way to label them with a term 

symbol, a symbol that specifies the state.

The key to identifying the various states that can arise from 

a configuration and attaching a term symbol is the angular 

momentum of the electrons: that includes their orbital angu-

lar momentum, their spin, and their total angular momentum. 

Our first job is to identify the allowed values of these angular 

momenta for atoms with more than one electron.

(a) The total orbital angular momentum
Consider an atom with two electrons outside a closed core, so 

there are two sources of orbital angular momentum. We sup-

pose that the orbital angular momentum quantum numbers 

of the two electrons are l1 and l2. If the electron configuration 

of the atoms we are considering is p2, both electrons are in  

p orbitals and l1 = l2 = 1. The total orbital angular momenta that 

can arise from a configuration depends on the magnitudes 

and the relative orientation of these individual momenta, and 

is described by the total orbital angular momentum quan-

tum number, L, a non-negative integer obtained by using the 

Clebsch–Gordan series:

L l l l l l l= + + − −1 2 1 2 1 21  , , ,…
 

 Clebsch–Gordan series  (21.3)

For instance, if l1 = l2 = 1, then L = 2, 1, and 0. Once we know the 

value of the L we can calculate the magnitude of the total orbital 

angular momentum from {L(L + 1)}1/2ħ. As for any angular 

momentum, the total orbital angular momentum has 2L + 1 

orientations, distinguished by the quantum number ML, which 

can take the values L, L – 1, …, –L.

Just as we use lowercase letters to tell us the value of l, so we 

use an uppercase letter to tell us the value of L. The code for 

converting the value of L into a letter is the same as for the s, p, 

d, f,… designation of orbitals, but uses uppercase letters:

Thus a p2 configuration can give rise to D, P, and S terms. A 

closed shell has zero orbital angular momentum because all the 

individual orbital angular momenta sum to zero. Therefore, 

when working out term symbols, we need consider only the 

electrons of the unfilled shell. In the case of a single electron 

outside a closed shell, the value of L is the same as the value of l; 

so the configuration [Ne]3s1 has only an S term.

We now use the property of spherical harmonics that

Y Y Yl m l m lml l l′′ ′′ ′ ′ =∫∫ ( ) ( ) ( ), , , sin*θ φ θ φ θ φ θ θ φd d 0
0

2

0

ππ

unless l, l ′, and l″ are integers denoting lengths of lines that 

can form the sides of a triangle (such as 1, 2, and 3, or 1, 1, 

and 1, but not 1, 2, and 4) and ml + ml ′ + ml″ = 0. It follows 

that the angular integral (blue) is zero unless lf = li ± 1 and 

ml,f = ml,i + m. Because m = 0 in the present case, the angular 

integral, and hence the z-component of the transition dipole 

moment, is zero unless Δl = ±1 and Δm1 = 0, which is a part of 

the set of selection rules. The same procedure, but considering 

the x- and y-components (Problem 21.7), results in the com-

plete set of rules.

Example 21.2 Deriving the total orbital angular 
momentum of a configuration

Find the terms that can arise from the configurations (a) d2, 

(b) p3.

Paschen

Lyman

Balmer
15 328 (Hα)

102 824

20 571 (Hβ)
23 039 (Hγ)
24 380 (Hδ)

97 492
82 259

s p d

Figure 21.2 A Grotrian diagram that summarizes the 
appearance and analysis of the spectrum of atomic hydrogen. 
The thicker the line, the more intense the transition. The 
wavenumbers of the transitions (in cm−1) are indicated. 

L: 0 1 2 3 4 5 6…

S P D F G H I…
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184 5 Atomic structure and spectra

The terms that arise from a given configuration differ in 

energy due to the Coulombic interaction between the elec-

trons. For example, to achieve a D (L = 2) term from a 2p13p1 

configuration, both electrons need to be circulating in the same 

direction around the nucleus, but to achieve an S (L = 0) term, 

they would need to be circulating in opposite directions. In the 

former arrangement, they do not meet; in the latter they do. 

On the basis of this classical picture, we can suspect that the 

repulsion between them will be higher if they meet, and there-

fore that the S term will lie higher in energy than the D term. 

The quantum mechanical analysis of the problem supports this 

interpretation.

(b) The total spin angular momentum

The energy of a term also depends on the relative orientation of 

the electron spins. Topic 20 provides a hint of this dependence, 

where it explains that spin correlation results in states with par-

allel spins having a lower energy than states with antiparallel 

spins. Parallel (unpaired) and antiparallel (paired) spins differ 

in their overall spin angular momentum. In the paired case, the 

two spin momenta cancel each other, and there is zero net spin 

(as is depicted in Fig. 19.2), and so once again we are brought to 

a correlation between an angular momentum, in this case spin, 

and an energy.

When there are several electrons to be taken into account, 

we must assess their total spin angular momentum quantum 

number, S (a non-negative integer or half integer). To do so, we 

use the Clebsch–Gordan series, this time in the form

S s s s s s s= + + − −1 2 1 2 1 21  , , ,…
 

(21.4)

noting that each electron has s = 1
2 , which gives S = 1, 0 for two 

electrons (Fig. 21.3). If there are three electrons, the total spin 

angular momentum is obtained by coupling the third spin to 

each of the values of S for the first two spins, which results in 

S = 3
2  and S = 1

2 .

The value of S for a term is expressed by giving the multi-

plicity of a term, the value of 2S + 1, as a left-superscript on the 

term symbol. Thus, 1P is a ‘singlet’ term (S = 0, 2S + 1 = 1) and 3P 

is a ‘triplet’ term (S = 1, 2S + 1 = 3). The multiplicity actually tells 

us the number of permitted values of MS = S, S – 1,…, –S for the 

given value of S, and hence the number of orientations in space 

that the total spin can adopt. We shall see the importance of 

this information shortly.

A note on good practice Throughout our discussion of atomic 

spectroscopy, distinguish italic S, the total spin quantum 

number, from Roman S, the term label. Thus, 3S is a triplet 

term with S = 1 (and L = 0). All state symbols are upright; 

all quantum numbers and physical observables are oblique 

(sloping).

Method Use the Clebsch–Gordan series and begin by finding 

the minimum value of L (so that we know where the series ter-

minates). When there are more than two electrons to couple 

together, use two series in succession: first couple two elec-

trons, and then couple the third to each combined state, and 

so on.

Answer (a) The minimum value is |l1 – l2| = |2 – 2| = 0. 

Therefore,

L = + + − =2 2  2 2 1  4  3  2  1  , , , , , , ,… 0 0

corresponding to G, F, D, P, S terms, respectively. (b) Coupling 

two electrons gives a minimum value of |1 – 1| = 0. Therefore,

′ = + + − =L 1 1  1 1 1  2  1  , , , , ,… 0 0

Now couple l3 = 1 with L′ = 2, to give L = 3, 2, 1; with L′ = 1, to 

give L = 2, 1, 0; and with L′ = 0, to give L = 1. The overall result is

L = 3  2  2  1  1  1  , , , , , , 0

giving one F, two D, three P, and one S term.

Self-test 21.3 Repeat the question for the configurations  

(a) f1d1 and (b) d3.

Answer: (a) H, G, F, D, P; (b) I, 2H, 3G, 4F, 5D, 3P, S

MS = +1

MS = 0            MS = –1            

(a) S = 0 (b) S = 1

Figure 21.3 (a) Electrons with paired spins have zero resultant 
spin angular momentum (S = 0). They can be represented 
by two vectors that lie at an indeterminate position on the 
cones shown here, but wherever one lies on its cone, the 
other points in the opposite direction; their resultant is zero. 
(b) When two electrons have parallel spins, they have a 
nonzero total spin angular momentum (S = 1). There are three 
ways of achieving this resultant, which are shown by these 
vector representations. Note that, whereas two paired spins 
are precisely antiparallel, two ‘parallel’ spins are not strictly 
parallel.
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21 Atomic spectroscopy  185

It is explained in Topic 20 that the energies of two states, 

one with paired spins and one with unpaired spins, differ on 

account of the different effects of spin correlation. The fact that 

the parallel arrangement of spins, as in the 1s12s1 configura-

tion of the He atom, lies lower in energy than the antiparallel 

arrangement can now be expressed by saying that the triplet 

state of the 1s12s1 configuration of He lies lower in energy 

than the singlet state. This is a general conclusion that applies 

to other atoms (and molecules), and for states arising from the 

same configuration, the triplet state generally lies lower in energy 

than the singlet state. The latter is an example of Hund’s rule of 

maximum multiplicity (Topic 20) which can be restated as:

For a given conf iguration, the term of greatest 

multiplicity lies lowest in energy.

Because the Coulombic interaction between electrons in an 

atom is strong, the difference in energies between singlet and 

triplet states of the same configuration can be large. The triplet 

and singlet terms of He1s12s1, for instance, differ by 6421 cm−1 

(corresponding to 0.80 eV).

Hund’s rule of maximum multiplicity is the first of three 

rules devised by Friedrich Hund to identify the lowest energy 

term of a configuration with the minimum of calculation. The 

second rule is

For a given multiplicity, the term with the highest value 

of L lies lowest in energy.

Therefore, as discussed above, a D term is expected to lie lower 

in energy than an S term of the same multiplicity. The third rule 

is introduced below after a discussion of spin–orbit coupling. 

The three rules are reliable only for the ground-state configura-

tion of an atom.

(c) The total angular momentum
When there is a net orbital angular momentum and a net spin 

angular momentum in an atom, we can expect to be able to 

combine these angular momenta into a total angular momen-

tum and—perhaps—for the energy of the atom to depend on 

its value. The total angular momentum quantum number, J  

(a non-negative integer or half integer), takes the values

J L S L S L S= + + − −, , ,1  …
 

 Total angular momentum  (21.5)

and, as usual, we can calculate the magnitude of the total angu-

lar momentum from {J(J + 1)}1/2ħ. The specific value of J is given 

as a right-subscript on the term symbol; for example, a 3P term 

with J = 2 is fully dressed as 3P2.

If S ≤ L, there are 2S + 1 values of J for a given L, so the num-

ber of values of J is the same as the multiplicity of the term. 

Each possible value of J designates a level of a term, so provided 

S ≤ L, the multiplicity tells us the number of levels. For example, 

the [Ne]3p1 configuration of sodium (an excited state) has L = 1 

and S = 1
2  and a multiplicity of 2; the two levels are J = 3

2  and 1
2  

and the 2P term therefore has two levels, 2P3/2 and 2P1/2.

Before moving on, we should note that there is a hidden 

assumption in eqn 21.5. We have assumed that the orbital angular 

momenta of the electrons all combine to give a total orbital angu-

lar momentum, that their spins all combine to give a total spin, 

and that only then do these two totals combine to give the overall 

total angular momentum of the atom. This procedure is called 

Russell–Saunders coupling. An alternative is that the orbital and 

spin angular momenta of each electron combine separately into a 

resultant for each one (with quantum number j), and then those 

resultants combine to give an overall total. We shall not deal with 

this so-called jj-coupling case: Russell–Saunders coupling turns 

out to be reasonably accurate for light atoms.

Brief illustration 21.2 The multiplicities of terms

When S = 0 (as for a closed shell, like 1s2), MS = 0, the electron 

spins are all paired, and there is no net spin: this arrange-

ment gives a singlet term, 1S. A single electron has S = s = 1
2  

(MS = ms = ± 1
2 ), so a configuration such as [Ne]3s1 can give rise 

to a doublet term, 2S. Likewise, the configuration [Ne]3p1 is a 

doublet, 2P. When there are two electrons with unpaired spins, 

S = 1 (MS = ±1, 0), so 2S + 1 = 3, giving a triplet term, such as 3D.

Self-test 21.4 What terms can arise from scandium in the 

excited configuration [Ar]3s23p14p1?

Answer: 1,3D,1,3P,1,3S

Example 21.3 Deriving term symbols

Write the term symbols arising from the ground-state config-

urations of (a) Na and (b) F, and (c) the excited-state configu-

ration 1s22s22p13p1 of C.

Method Begin by writing the configurations, but ignore inner 

closed shells. Then couple the orbital momenta to find L and the 

spins to find S. Next, couple L and S to find J. Finally, express 

the term as 2S+1{L}J, where {L} is the appropriate letter. For F, for 

which the valence configuration is 2p5, treat the single gap in 

the closed-shell 2p6 configuration as a single particle.

Answer (a) For Na, the configuration is [Ne]3s1, and we con-

sider the single 3s electron. Because L = l = 0 and S = s = 1
2 , it is 

possible for J = j = s = 1
2  only. Hence the term symbol is 2S1/2. (b) 

For F, the configuration is [He]2s22p5, which we can treat as 

[Ne]2p−1 (where the notation 2p−1 signifies the absence of a 

2p electron). Hence L = 1, and S = s = 1
2 . Two values of J = j are 

allowed: J = 3
2 , 1

2 . Hence, the term symbols for the two levels 
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186 5 Atomic structure and spectra

(d) Spin–orbit coupling

The different levels of a term, such as 2P1/2 and 2P3/2, have dif-

ferent energies due to spin–orbit coupling, a magnetic inter-

action between angular momenta. To see the origin of this 

coupling, we need to note that a circulating current gives rise to 

a magnetic moment (Fig. 21.4). The spin of an electron is one 

source of magnetic moment and its orbital angular momentum 

is another. Two magnetic dipole moments close to each other 

interact to an extent that depends on their relative orientation. 

However, the relative orientation of the two momenta also 

determines the electron’s total angular momentum, so there is 

a correlation between the energy of interaction and the value 

of J. Magnetic dipole moments that are antiparallel (that is, lie 

in opposite directions) are lower in energy than when they are 

parallel; therefore, a lower energy is achieved when the orbital 

and spin angular momenta are antiparallel, corresponding to a 

lower value of J. In the case of the 2P term, we predict that the 
2P1/2 level is lower in energy than the 2P3/2 level. For a system 

with many electrons, a detailed analysis yields the following 

general statement, which is the third of Hund's rules:

For a quantitative treatment of spin–orbit coupling, we 

need to include in the hamiltonian a term that depends on the 

relative orientation of the vectors that represent the spin and 

orbital angular momenta. The simplest procedure is to write 

the contribution as

H hcA�
so /= =λ λL S⋅ � 2

  Spin–orbit coupling  (21.6)

where λ is a measure of the strength of the coupling, and for 

practical purposes best expressed as a wavenumber by intro-

ducing the parameter �A. The quantity L⋅S is the scalar product 

of the vectors L and S (as we see in Mathematical background 4, 

L⋅S is proportional to cos θ, where θ is the angle between the 

two vectors, so the expression models the fact that the energy of 

interaction depends on the relative orientation of the two mag-

netic moments). To use this expression, we note that the total 

angular momentum is J = L + S, so

J J L S L S L S⋅ ⋅ ⋅= + + = + +( ) ( ) L S2 2 2

and therefore (because J⋅J = J2)

λ λL S⋅ = − − 2 2 21
2

( )J L S

We now treat the J2, L2, and S2 as operators with eigenvalues 

J(J + 1)ħ2, L(L + 1)ħ2, and S(S + 1)ħ2, respectively. It then follows 

that the eigenvalues of H� so  are

E hcA J J L L S Sso 1 1 1= + − + − +{ }1
2

� ( ) ( ) ( )
 

are 2P3/2, 2P1/2. (c) We are treating an excited configuration of 

carbon because, in the ground configuration, 2p2, the Pauli 

principle (Topic 19) forbids some terms, and deciding which 

survive (1D, 3P, 1S, in fact) is quite complicated.1 That is, there 

is a distinction between ‘equivalent electrons’, which are elec-

trons that occupy the same orbitals, and ‘inequivalent elec-

trons’, which are electrons that occupy different orbitals; we 

consider only the latter here. The excited configuration of C 

under consideration is effectively 2p13p1. This is a two-electron 

problem, and l1 = l2 = 1, s1 = s2 = 1
2 . It follows that L = 2, 1, 0 and 

S = 1, 0. The terms are therefore 3D and 1D, 3P and 1P, and 3S 

and 1S. For 3D, L = 2 and S = 1; hence J = 3, 2, 1 and the levels are 
3D3, 3D2, and 3D1. For 1D, L = 2 and S = 0, so the single level is 
1D2. The triplet of levels of 3P is 3P2, 3P1, and 3P0, and the singlet 

is 1P1. For the 3S term there is only one level, 3S1 (because J = 1 

only), and the singlet term is 1S0.

Self-test 21.5 Write down the terms arising from the configu-

rations (a) 2s12p1, (b) 2p13d1.

Answer: (a) 3P2, 3P1, 
3P0, 1P1;

(b) 3F4, 3F3, 
3F2, 1F3, 

3D3, 
3D2, 3D1, 

1D2, 3P2, 3P1, 
3P0, 1P1

1 For details, see our Inorganic chemistry, Oxford University Press and 

W. H. Freeman & Co. (2014).

Spin–orbit 
coupling 
energy 

(21.7)

l

s

High j

l

s

Low j

(a) (b)
High 
energy

Low 
energy

Figure 21.4 Spin–orbit coupling is a magnetic interaction 
between spin and orbital magnetic moments. When the 
angular momenta are parallel, as in (a), the magnetic moments 
are aligned unfavourably; when they are opposed, as in (b), the 
interaction is favourable. This magnetic coupling is the cause of 
the splitting of a configuration into levels.

Type of configuration Order of levels

Less than half-full shell Lowest value of J lies lowest in energy

More than half-full shell Highest value of J lies lowest in energy
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The strength of the spin–orbit coupling as measured by �A 

depends on the nuclear charge. To understand why this is so, 

imagine riding on the orbiting electron and seeing a charged 

nucleus apparently orbiting around us (like the Sun rising and set-

ting). As a result, we find ourselves at the centre of a ring of cur-

rent. The greater the nuclear charge, the greater this current, and 

therefore the stronger the magnetic field we detect. Because the 

spin magnetic moment of the electron interacts with this orbital 

magnetic field, it follows that the greater the nuclear charge, the 

stronger the spin–orbit interaction. The coupling increases sharply 

with atomic number (as Z4 in hydrogenic atoms). Whereas it is 

only small in H (giving rise to shifts of energy levels of no more 

than about 0.4 cm−1), in heavy atoms like Pb it is very large (giving 

shifts of the order of thousands of reciprocal centimetres).

Two spectral lines are observed when the p electron of an 

electronically excited alkali metal atom undergoes a transition 

and falls into a lower s orbital. The higher-frequency line is due 

to a transition starting in a 2P3/2 level and the other line is due to 

a transition starting in the 2P1/2 level of the same configuration. 

The presence of these two lines is an example of fine structure, 

the structure in a spectrum due to spin–orbit coupling.

21.3 Selection rules of many-electron 
atoms

Any state of the atom, and any spectral transition, can be speci-

fied by using term symbols. For example, the transitions giving 

rise to the yellow sodium doublet (which were shown in Fig. 

21.5) are 

3p  P 3s  S 3p  P 3s  S1 2
3 2

1 2
1 2

1
1 2

1 2
1 2/ / / /→ →2

 

By convention, the upper term precedes the lower. The corre-

sponding absorptions are therefore denoted 2P3/2 ← 2S1/2 and 
2P1/2 ← 2S1/2 (the configurations have been omitted).

We have seen (in Justification 21.1) that selection rules arise 

from the conservation of angular momentum during a transi-

tion and from the fact that a photon has a spin of 1. They can 

therefore be expressed in terms of the term symbols, because 

the latter carry information about angular momentum. A 

detailed analysis leads to the following rules:

Δ Δ Δ
Δ

S L l

J J

= = ± = ±
= ± = ← →

0 0

0 0 0

,

, ,

1 1

1  but  =J
 

where the symbol ←|→ denotes a forbidden transition. The 

rule about ΔS (no change of overall spin) stems from the fact 

that the light does not affect the spin directly. The rules about 

ΔL and Δl express the fact that the orbital angular momentum 

of an individual electron must change (so Δl  =  ±1), but whether 

or not this results in an overall change of orbital momentum 

depends on the coupling.

Brief illustration 21.3 Spin–orbit coupling energy

When L = 1 and S =  1
2 , as in a 2P term,

E hcA J J hcA J Jso 1 2 1= + − −{ }= + −{ }1
2

3
4

1
2

11
4

� �( ) ( )

Therefore, for a level with J = 3
2 , E hcAso = 1

2
� , and for a level with 

J = 1
2  from the same configuration, E hcAso = − � . The separation 

of the two levels is therefore ΔE hcAso = 3
2

� .

Self-test 21.6 Confirm that the spin–orbit interaction leaves 

the mean energy of the 2P term unchanged. Hint: Take account 

of the degeneracies of the two levels.

Answer: 4 2 01
2

( ) ( )hcA hcA� �+ − =

Brief illustration 21.4 Fine structure

Fine structure can be seen in the emission spectrum from 

sodium vapour excited by an electric discharge (for exam-

ple, in one kind of street lighting). The yellow line at 589 nm 

(close to 17 000 cm−1) is actually a doublet composed of one 

line at 589.76 nm (16 956.2 cm−1) and another at 589.16 nm 

(16 973.4 cm−1); the components of this doublet are the ‘D lines’ 

of the spectrum (Fig. 21.5). Therefore, in Na, the spin–orbit 

coupling affects the energies by about 17 cm−1.

Self-test 21.7 In the emission spectrum of potassium lines are 

observed at 766.70 nm and 770.11 nm. What is the spin–orbit 

coupling constant of potassium?

Answer: 57.75 cm−1

Many-
electron 
atoms

Selection 
rules (21.8)
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Figure 21.5 The energy–level diagram for the formation of the 
sodium D lines. The splitting of the spectral lines (by 17 cm−1) 
reflects the splitting of the levels of the 2P term.
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188 5 Atomic structure and spectra

The selection rules given above apply when Russell–Saunders 

coupling is valid (in light atoms). If we insist on labelling the 

terms of heavy atoms with symbols like 3D, then we shall find 

that the selection rules progressively fail as the atomic number 

increases because the quantum numbers S and L become ill 

defined as jj-coupling becomes more appropriate. As explained 

above, Russell–Saunders term symbols are only a convenient 

way of labelling the terms of heavy atoms: they do not bear any 

direct relation to the actual angular momenta of the electrons 

in a heavy atom. For this reason, transitions between singlet 

and triplet states (for which ΔS  =  ±1), while forbidden in light 

atoms, are allowed in heavy atoms.

Checklist of concepts

☐ 1. The Lyman, Balmer, and Paschen series in the spec-

trum of atomic hydrogen arise, respectively, from the 

transitions n → 1, n → 2, and n → 3.

☐ 2. The wavenumbers of all the spectral lines of a hydrogen 

atom can be expressed in terms of transitions between 

allowed energy levels.

☐ 3. A Grotrian diagram summarizes the energies of the 

states and the transitions between them.

☐ 4. A level is a group of states with a common value of J.

☐ 5. The multiplicity of a term is the value of 2S + 1; pro-

vided L ≥ S, the multiplicity is the number of levels of 

the term.

☐ 6. A term symbol is a symbolic specification of the state of 

an atom, 2S+1{L}J.

☐ 7. Hund’s rules, which allow the identification of the low-

est energy term of a configuration, can be expressed as:

 The term with the maximum multiplicity lies lowest 

in energy.

 For a given multiplicity, the term with the highest 

value of L lies lowest in energy.

 For atoms with less than half-filled shells, the level 

with the lowest value of J lies lowest in energy; for 

more than half-filled shells, the highest value of J.

☐ 8. The allowed values of the total orbital angular momen-

tum L of a configuration are obtained by using the 

Clebsch–Gordan series L = l1 + l2, l1 + l2 –1, ..., |l1 – l2|.

☐ 9. The allowed values of the total spin angular momen-

tum S are obtained by using the Clebsch–Gordan series 

S = s1 + s2, s1 + s2 –1, ..., |s1 – s2|.

☐ 10.  Spin–orbit coupling is the interaction of the spin mag-

netic moment with the magnetic field arising from the 

orbital angular momentum.

☐ 11.  Russell–Saunders coupling is a coupling scheme based 

on the view that if spin–orbit coupling is weak, then it is 

effective only when all the orbital momenta are operat-

ing cooperatively.

☐ 12. The total angular momentum J, in the Russell–

Saunders coupling scheme, has possible values J = L + S, 

L + S –1, ..., |L – S|.

☐ 13. Fine structure is the structure in a spectrum due to 

spin–orbit coupling.

☐ 14. The selection rules for spectroscopic transitions in 

polyelectronic atoms are set out in the Checklist of 

equations below. They apply when Russell–Saunders 

coupling is valid.

Brief illustration 21.5 Selection rules

If we were presented with the following possible transitions 

in the emission spectrum of a many-electron atom, namely 
3D2→ 3P1, 

3P2 → 1S0, and 3F4 → 3D3 we could decide which are 

allowed by constructing the following table and referring to 

the rules in eqn 21.8. Forbidden values are in red.

Self-test 21.8 Which of the transitions (a) 2P3/2 → 2S1/2,  

(b) 3P0 → 3S1, (c) 3D3 → 1P1 are allowed?

Answer: (a), (b)

ΔS ΔL ΔJ

3D2→ 3P1 0 –1 –1 Allowed

3P2 → 1S0 –1 –1 –2 Forbidden

3F4 → 3D3 0 –1 –1 Allowed
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21 Atomic spectroscopy  189

Checklist of equations

Property Equation Comment Equation number

Rydberg formula � �� = −R n nH / /( )1 11
2

2
2 n2 = n1 + 1, n1 + 2, … 21.1

Selection rules Δl = ±1, Δml = 0, ±1 Hydrogenic atoms 21.2

Clebsch–Gordan series J = j1 + j2, j1 + j2 – 1, …, |j1 – j2| j an angular momentum quantum number 21.3

Spin–orbit coupling energy E hcA J J L L S Sso = + − + − +1
2

1 1 1� { ( ) ( ) ( )} Russell–Saunders coupling 21.7

Selection rules ΔS = 0 , ΔL = 0, ±1, Δl = ±1, ΔJ = 0, ±1, but 
J = 0 ←|→ J = 0

Many-electron atoms and Russell–Saunders 
coupling

21.8
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190 5 Atomic structure and spectra

Focus 5  on  Atomic structure and spectra

Topic 17 Hydrogenic atoms

Discussion questions
17.1 Discuss the separation of variables procedure as it is applied to simplify 

the description of a hydrogenic atom free to move through space.

17.2 List and discuss the significance of the quantum numbers needed to 

specify the internal state of a hydrogenic atom.

Exercises
17.1(a) Compute the ionization energy of the He+ ion.

17.1(b) Compute the ionization energy of the Li2+ ion.

17.2(a) When ultraviolet radiation of wavelength 58.4 nm from a helium lamp 

is directed on to a sample of krypton, electrons are ejected with a speed of 

1.59 × 106 m s−1. Calculate the ionization energy of krypton.

17.2(b) When ultraviolet radiation of wavelength 58.4 nm from a helium lamp 

is directed on to a sample of xenon, electrons are ejected with a speed of 

1.79 × 106 m s−1. Calculate the ionization energy of xenon.

17.3(a) The wavefunction for the ground state of a hydrogen atom is N r ae− / .0  

Determine the normalization constant N.

17.3(b) The wavefunction for the 2s orbital of a hydrogen atom is 

N r a r a( ) ./2 0
2 0− −/ e  Determine the normalization constant N.

17.4(a) By differentiation of the 2s radial wavefunction, show that it has two 

extrema in its amplitude and locate them.

17.4(b) By differentiation of the 3s radial wavefunction, show that it has three 

extrema in its amplitude and locate them.

17.5(a) Locate the radial nodes in the 3p orbital of an H atom.

17.5(b) Locate the radial nodes in the 3d orbital of an H atom.

Problems
17.1 The Humphreys series is a group of lines in the spectrum of atomic 

hydrogen. It begins at 12 368 nm and has been traced to 3281.4 nm. What 

are the transitions involved? What are the wavelengths of the intermediate 

transitions?

17.2 A series of lines in the spectrum of atomic hydrogen lies at 656.46 nm, 

486.27 nm, 434.17 nm, and 410.29 nm. What is the wavelength of the next line 

in the series? What is the ionization energy of the atom when it is in the lower 

state of the transitions?

17.3 Atomic units of length and energy may be based on the properties of a 

particular atom. The usual choice is that of a hydrogen atom, with the unit of 

length being the Bohr radius, a0, and the unit of energy being the (negative 

of the) energy of the 1s orbital. If the positronium atom (e+,e−) were used 

instead, with analogous definitions of units of length and energy, what would 

be the relation between these two sets of atomic units?

17.4 Show that the radial wave equation (eqn 17.5) can be written in the form 

of eqn 17.6 by introducing the function u = rR.

17.5 Hydrogen is the most abundant element in all stars. However, neither 

absorption nor emission lines due to neutral hydrogen are found in the 

spectra of stars with effective temperatures higher than 25 000 K. Account for 

this observation.

17.6 The initial value of the principal quantum number n was not specified in 

Example 17.3. Show that the correct value of n can be determined by making 

several choices and selecting the one that leads to a straight line.

Topic 18 Hydrogenic atomic orbitals

Discussion questions
18.1 Describe how the presence of orbital angular momentum affects the 

shape of the atomic orbital.

18.2 Discuss the significance of (a) a boundary surface and (b) the radial 

distribution function for hydrogenic orbitals.

Exercises
18.1(a) What is the orbital angular momentum of an electron in the  orbitals 

(a) 2s, (b) 3p, (c) 5f? Give the numbers of angular and radial nodes in each case.

18.1(b) What is the orbital angular momentum of an electron in the orbitals 

(a) 3d, (b) 4f, (c) 3s? Give the numbers of angular and radial nodes in each case.
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18.2(a) What is the degeneracy of an energy level in the L shell of a hydrogenic 

atom?

18.2(b) What is the degeneracy of an energy level in the N shell of a 

hydrogenic atom?

18.3(a) State the orbital degeneracy of the levels in a hydrogen atom that have 

energy: (a) −hcR̃ H; (b) − 1
4

hcR�H ;  (c) − 1
16

hcR�H.

18.3(b) State the orbital degeneracy of the levels in a hydrogenic atom (Z 

in parentheses) that have energy: (a) –hcR̃ atom (2); (b) − 1
4

hcR�atom 4( );  

(c)  − 25
16

hcR�atom 5( ).

18.4(a) Calculate the average kinetic and potential energies of an electron in 

the ground state of a He+ ion.

18.4(b) Calculate the average kinetic and potential energies of a 3s electron in 

an H atom.

18.5(a) Compute the mean radius and the most probable radius for a 2s 

electron in a hydrogenic atom of atomic number Z.

18.5(b) Compute the mean radius and the most probable radius for a 2p 

electron in a hydrogenic atom of atomic number Z.

18.6(a) Write down the expression for the radial distribution function of a 3s 

electron in a hydrogenic atom and determine the radius at which the electron 

is most likely to be found.

18.6(b) Write down the expression for the radial distribution function of a 3p 

electron in a hydrogenic atom and determine the radius at which the electron 

is most likely to be found.

18.7(a) Locate the angular nodes and nodal planes of each of the 2p orbitals of 

a hydrogenic atom of atomic number Z. To locate the angular nodes, give the 

angle that the plane makes with the z-axis.

18.7(b) Locate the angular nodes and nodal planes of each of the 3d orbitals of 

a hydrogenic atom of atomic number Z. To locate the angular nodes, give the 

angle that the plane makes with the z-axis.

Problems
18.1 In 1976 it was mistakenly believed that the first of the ‘superheavy’ 

elements had been discovered in a sample of mica. Its atomic number was 

believed to be 126. What is the most probable distance of the innermost 

electrons from the nucleus of an atom of this element? (In such elements, 

relativistic effects are very important, but ignore them here.)

18.2 (a) Calculate the probability of the electron being found anywhere within 

a sphere of radius 53 pm for a hydrogenic atom. (b) If the radius of the atom 

is defined as the radius of the sphere inside which there is a 90 per cent 

probability of finding the electron, what is the atom's radius?

18.3 At what point in the hydrogen atom is there maximum probability of 

finding a (a) 2pz electron, (b) 3pz electron? How do these most probable 

points compare to the most probable radii for the locations of 2pz and 3pz 

electrons?

18.4 Show by explicit integration that hydrogenic (a) 1s and 2s orbitals are 

mutually orthogonal, (b) 2px and 2pz orbitals are mutually orthogonal.

18.5‡ Explicit expressions for hydrogenic orbitals are given in Table 18.1. 

(a) Verify that the 3px orbital is normalized and that 3px and 3dxy are 

mutually orthogonal. (b) Determine the positions of both the radial nodes 

and nodal planes of the 3s, 3px, and 3dxy orbitals. (c) Determine the mean 

radius of the 3s orbital. (d) Draw a graph of the radial distribution function 

for the three orbitals (of part (b)) and discuss the significance of the graphs 

for interpreting the properties of many-electron atoms. (e) Create both xy-

plane polar plots and boundary-surface plots for these orbitals. Construct 

the boundary plots so that the distance from the origin to the surface is 

the absolute value of the angular part of the wavefunction. Compare the 

s, p, and d boundary surface plots with that of an f orbital; for example, 

ψ θ θ φf sin cos cos ∝ − ∝ −x z r( ) ( ) .5 5 12 2 2

18.6 Show that d orbitals with opposite values of ml may be combined in pairs 

to give real standing waves with boundary surfaces, as shown in Fig. 18.7, and 

with forms that are given in Table 18.1.

18.7 As in Problem 18.2, the ‘size’ of an atom is sometimes considered to be 

measured by the radius of a sphere that contains 90 per cent of the probability 

density of the electrons in the outermost occupied orbital. Explore how the 

‘size’ of a ground-state hydrogenic atom varies as the definition is changed to 

other percentages, and plot your conclusion.

18.8 A quantity important in some branches of spectroscopy is the probability 

density of an electron being found at the same location as the nucleus. 

Evaluate this probability density for an electron in the 1s, 2s, and 3s orbitals of 

a hydrogenic atom. What happens to the probability density when an orbital 

other than s is considered?

18.9 Some atomic properties depend on the average value of 1/r rather than 

the average value of r itself. Evaluate the expectation value of 1/r for (a) a 

hydrogen 1s orbital, (b) a hydrogenic 2s orbital, (c) a hydrogenic 2p orbital.

Topic 19 Many-electron atoms

Discussion questions
19.1 Distinguish between a fermion and a boson. Provide examples of each 

type of particle.

19.2 Describe the orbital approximation for the wavefunction of a  

many-electron atom. What are the limitations of the approximation?

19.3 Compare and contrast the properties of spin angular momentum and the 

properties of angular momentum arising from rotational motion in two and 

three dimensions.

‡ These problems were supplied by Charles Trapp and Carmen Giunta.
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192 5 Atomic structure and spectra

Exercises
19.1(a) The classical picture of an electron is that of a sphere of radius re = 2.82 

fm. On the basis of this model, how fast is a point on the equator of the 

electron moving? Is this answer plausible?

19.1(b) A proton has a spin angular momentum with I = 1
2

. Suppose it is a 

sphere of radius 1 fm. On the basis of this model, how fast is a point on the 

equator of the proton moving?

Problems
19.1 Derive an expression in terms of l and ml for the half-angle of the apex 

of the cone used to represent an angular momentum according to the vector 

model. Evaluate the expression for an α spin. Show that the minimum 

possible angle approaches 0 as l → ∞.

19.2‡ Stern–Gerlach splittings of atomic beams are small and require either 

large magnetic field gradients or long magnets for their observation. For a 

beam of atoms with zero orbital angular momentum, such as H or Ag, the 

deflection is given by x = ±(μBL2/4Ek)dB/dz, where μB = e/2me = 9.274 × 10−24 J 

T−1 is known as the Bohr magneton (see inside front cover), L is the length of 

the magnet, Ek is the average kinetic energy of the atoms in the beam, and  

dB/dz is the magnetic field gradient across the beam. (a) Given that the 

average translational kinetic energy of the atoms emerging as a beam from 

a pinhole in an oven at temperature T is ½kT, calculate the magnetic field 

gradient required to produce a splitting of 2.00 mm in a beam of Ag atoms 

from an oven at 1200 K with a magnet of length 80 cm.

Topic 20 Periodicity

Discussion questions
20.1 Discuss the relationship between the location of a many-electron atom in 

the periodic table and its electron configuration.

20.2 Describe and account for the variation of first ionization energies 

along Period 2 of the periodic table. Would you expect the same variation in 

Period 3?

Exercises
20.1(a) What are the values of the quantum numbers n, l, ml, s, and ms for each 

of the valence electrons in the ground state of a carbon atom?

20.1(b) What are the values of the quantum numbers n, l, ml, s, and ms for each 

of the valence electrons in the ground state of a nitrogen atom?

20.2(a) Write the ground-state electron configurations of the d metals from 

scandium to zinc.

20.2(b) Write the ground-state electron configurations of the d metals from 

yttrium to cadmium.

Problems
20.1 The d metals iron, copper, and manganese form cations with different 

oxidation states. For this reason, they are found in many oxidoreductases and 

in several proteins of oxidative phosphorylation and photosynthesis. Explain 

why many d metals form cations with different oxidation states.

20.2 Thallium, a neurotoxin, is the heaviest member of Group 13 of 

the periodic table and is found most usually in the +1 oxidation state. 

Aluminium, which causes anaemia and dementia, is also a member of the 

group but its chemical properties are dominated by the +3 oxidation state. 

Examine this issue by plotting the first, second, and third ionization energies 

for the Group 13 elements against atomic number. Explain the trends you 

observe. Hint: The third ionization energy, I3, is the minimum energy needed 

to remove an electron from the doubly charged cation: E2+(g) → E3+(g) + e−(g), 

I3 = E(E3+) − E(E2+). Consult the printed or online literature for sources of data.

Topic 21 Atomic spectroscopy

Discussion questions
21.1 Discuss the origin of the series of lines in the emission spectra of 

hydrogen. What region of the electromagnetic spectrum is associated with 

each of the series shown in Fig. 21.1?

21.2 Specify and account for the selection rules for transitions in hydrogenic 

atoms. Are they strictly valid?

21.3 Explain the origin of spin–orbit coupling and how it affects the 

appearance of a spectrum.
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Exercises
21.1(a) Determine the shortest-and longest-wavelength lines in the Lyman 

series.

21.1(b) The Pfund series has n1 = 5. Determine the shortest-and longest-

wavelength lines in the Pfund series.

21.2(a) Compute the wavelength, frequency, and wavenumber of the 

n = 2 → n = 1 transition in He+.

21.2(b) Compute the wavelength, frequency, and wavenumber of the 

n = 5 → n = 4 transition in Li+2.

21.3(a) Which of the following transitions are allowed in the normal electronic 

emission spectrum of an atom: (a) 3s → 1s, (b) 3p → 2s, (c) 5d → 2p?

21.3(b) Which of the following transitions are allowed in the normal electronic 

emission spectrum of an atom: (a) 5d → 3s, (b) 5s → 3p, (c) 6f → 4p?

21.4(a) (i) Write the electron configuration of the Pd2+ ion. (ii) What are the 

possible values of the total spin quantum numbers S and MS for this ion?

21.4(b) (i) Write the electron configuration of the Nb2+ ion. (ii) What are the 

possible values of the total spin quantum numbers S and MS for this ion?

21.5(a) Calculate the permitted values of j for (a) a d electron, (b) an f electron.

21.5(b) Calculate the permitted values of j for (a) a p electron, (b) an h electron.

21.6(a) An electron in two different states of an atom is known to have j = 5
2

 

and 1
2

.  What is its orbital angular momentum quantum number in each 

case?

21.6(b) An electron in two different states of an atom is known to have j = 7
2

 

and 3
2

.  What is its orbital angular momentum quantum number in each case?

21.7(a) What are the allowed total angular momentum quantum numbers of a 

composite system in which j1 = 1 and j2 = 2?

21.7(b) What are the allowed total angular momentum quantum numbers of a 

composite system in which j1 = 4 and j2 = 2?

21.8(a) What information does the term symbol 3P2 provide about the angular 

momentum of an atom?

21.8(b) What information does the term symbol 2D3/2 provide about the 

angular momentum of an atom?

21.9(a) Suppose that an atom has (a) 2, (b) 3 electrons in different orbitals. 

What are the possible values of the total spin quantum number S? What is the 

multiplicity in each case?

21.9(b) Suppose that an atom has (a) 4, (b) 5, electrons in different orbitals. 

What are the possible values of the total spin quantum number S? What is the 

multiplicity in each case?

21.10(a) What atomic terms are possible for the electron configuration ns1nd1? 

Which term is likely to lie lowest in energy?

21.10(b) What atomic terms are possible for the electron configuration np1nd1? 

Which term is likely to lie lowest in energy?

21.11(a) What values of J may occur in the terms (a) 3S, (b) 2D, (c) 1P? How 

many states (distinguished by the quantum number MJ) belong to each level?

21.11(b) What values of J may occur in the terms (a) 3F, (b) 4G, (c) 2P? How 

many states (distinguished by the quantum number MJ) belong to each level?

21.12(a) Give the possible term symbols for (a) Na [Ne]3s1, (b) K [Ar]3d1.

21.12(b) Give the possible term symbols for (a) Y [Kr]4d15s2,  

(b) I [Kr]4d105s25p5.

Problems
21.1 The Li2+ ion is hydrogenic and has a Lyman series at 740 747 cm−1, 

877 924 cm−1, 925 933 cm−1, and beyond. Show that the energy levels are of 

the form –hcR̃ /n2 and find the value of R̃ for this ion. Go on to predict the 

wavenumbers of the two longest-wavelength transitions of the Balmer series 

of the ion and find the ionization energy of the ion.

21.2 A series of lines in the spectrum of neutral Li atoms rise from 

combinations of 1s22p1 2P with 1s2nd1 2D and occur at 610.36 nm, 460.29 nm, 

and 413.23 nm. The d orbitals are hydrogenic. It is known that the 2P term 

lies at 670.78 nm above the ground state, which is 1s22s1 2S. Calculate the 

ionization energy of the ground-state atom.

21.3‡ Wijesundera, et al. (Phys. Rev. A 51, 278 (1995)) attempted to determine 

the electron configuration of the ground state of lawrencium, element 103. 

The two contending configurations are [Rn]5f147s27p1 and [Rn]5f146d17s2. 

Write down the term symbols for each of these configurations, and identify 

the lowest level within each configuration. Which level would be lowest 

according to a simple estimate of spin–orbit coupling?

21.4 The characteristic emission from K atoms when heated is purple and lies 

at 770 nm. On close inspection, the line is found to have two closely spaced 

components, one at 766.70 nm and the other at 770.11 nm. Account for this 

observation, and deduce what information you can.

21.5 Calculate the mass of the deuteron given that the first line in the Lyman 

series of H lies at 82 259.098 cm−1 whereas that of D lies at 82 281.476 cm−1. 

Calculate the ratio of the ionization energies of H and D.

21.6 Positronium consists of an electron and a positron (same mass, opposite 

charge) orbiting round their common centre of mass. The broad features 

of the spectrum are therefore expected to be hydrogen-like, the differences 

arising largely from the mass differences. Predict the wavenumbers of the first 

three lines of the Balmer series of positronium. What is the binding energy of 

the ground state of positronium?

21.7 Some of the selection rules for hydrogenic atoms were derived in 

Justification 21.1. Complete the derivation by considering the x- and y-

components of the electric dipole moment operator.

21.8 The distribution of isotopes of an element may yield clues about the 

nuclear reactions that occur in the interior of a star. Show that it is possible 

to use spectroscopy to confirm the presence of both 4He+ and 3He+ in a star 

by calculating the wavenumbers of the n = 3 → n = 2 and of the n = 2 → n = 1 

transitions for each isotope.

Integrated activities

F5.1 The Zeeman effect is the modification of an atomic spectrum by the 

application of a strong magnetic field. It arises from the interaction between 

applied magnetic fields and the magnetic moments due to orbital and spin 

angular momenta (recall the evidence provided for electron spin by the 
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194 5 Atomic structure and spectra

Stern–Gerlach experiment). To gain some appreciation for the so-called 

normal Zeeman effect, which is observed in transitions involving singlet states, 

consider a p electron, with l = 1 and ml = 0, ±1. In the absence of a magnetic 

field, these three states are degenerate. When a field of magnitude B is present, 

the degeneracy is removed and it is observed that the state with ml = +1 

moves up in energy by μBB, the state with ml = 0 is unchanged, and the state 

with ml = –1 moves down in energy by μBB, where μB = e/2me = 9.274 × 10−24 

J T−1 is known as the Bohr magneton. Therefore, a transition between a 
1S0 term and a 1P1 term consists of three spectral lines in the presence of a 

magnetic field where, in the absence of the magnetic field, there is only one. 

(a) Calculate the splitting in reciprocal centimetres between the three spectral 

lines of a transition between a 1S0 term and a 1P1 term in the presence of a 

magnetic field of 2 T (where 1 T = 1 kg s−2 A−1). (b) Compare the value you 

calculated in (a) with typical optical transition wavenumbers, such as those 

for the Balmer series of the H atom. Is the line splitting caused by the normal 

Zeeman effect relatively small or relatively large?

F5.2 An electron in the ground-state He+ ion undergoes a transition to a state 

described by the wavefunction R4,1(r)Y1,1(θ,ϕ)(a) Describe the transition using 

term symbols. (b) Compute the wavelength, frequency, and wavenumber of 

the transition. (c) By how much does the mean radius of the electron change 

due to the transition?

F5.3 The electron in a Li2+ ion is prepared in a state that is the following 

superposition of hydrogenic atomic orbitals:

ψ θ φ θ φ θ φ( , , ) ( ) ( ) ( , ) ( ) ( , ) (/
, , , ,r R r Y R r Y= − + −−

1
3

2
3

2
9

1 2
4 2 2 1 3 2 2 1i )) ( ) ( , )/

, ,
1 2

1R r Y0 0 0 θ φ
 

(a) If the total energy of different Li2+ ions in this state is measured, what 

values will be found? If more than one value is found, what is the probability 

of obtaining each result and what is the average value?

(b) After the energy is measured, the electron is in a state described by 

an eigenfunction of the hamiltonian. Are transitions to the ground state 

of Li2+ allowed and, if so, what are the frequency and wavenumber of the 

transition(s)?

F5.4‡ Highly excited atoms have electrons with large principal quantum 

numbers. Such Rydberg atoms have unique properties and are of interest 

to astrophysicists. Derive a relation for the separation of energy levels for 

hydrogen atoms with large n. Calculate this separation for n = 100; also 

calculate the average radius, the geometric cross-section, and the ionization 

energy. Could a thermal collision with another hydrogen atom ionize this 

Rydberg atom? What minimum velocity of the second atom is required? 

Could a normal sized neutral H atom simply pass through the Rydberg atom 

leaving it undisturbed? What might the radial wavefunction for a 100s orbital 

be like?

F5.5 Use mathematical software, a spreadsheet, or the Living graphs (labelled 
LG) on the website of this book for the following exercises:

(a)LG Plot the effective potential energy of an electron in the hydrogen atom 

against r for several nonzero values of the orbital angular momentum l. How 

does the location of the minimum in the effective potential energy vary 

with l?

(b) Find the locations of the radial nodes in hydrogenic wavefunctions with n 

up to 3.

(c) Plot the boundary surfaces of the real parts of the spherical harmonics 

Yl ml, ( , )θ φ  for l = 1. The resulting plots are not strictly the p orbital boundary 

surfaces, but sufficiently close to be reasonable representations of the shapes 

of hydrogenic orbitals.

(d) To gain insight into the shapes of the f orbitals, plot the boundary surfaces 

of the real parts of the spherical harmonics Yl ml, ( , )θ φ  for l = 3.

(e) Calculate and plot the radial distribution functions for the hydrogenic 4s, 

4p, 4d, and 4f orbitals. How does the degree of shielding experienced by an 

electron vary with l?
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Vectors  195

Mathematical background 4 Vectors

A scalar physical property (such as temperature) in general 

varies through space and is represented by a single value at 

each point of space. A vector physical property (such as the 

electric field strength) also varies through space, but in general 

has a different direction as well as a different magnitude at each 

point.

MB4.1 Definitions
A vector v has the general form (in three dimensions):

v = + +v v vx y zi j k
 

(MB4.1)

where i, j, and k are unit vectors, vectors of magnitude 1, point-

ing along the positive directions on the x, y, and z axes and vx, 

vy , and vz are the components of the vector on each axis (Fig. 

MB4.1). The magnitude of the vector is denoted v or |v| and is 

given by

v v v v= + +( ) /
x y z
2 2 2 1 2

 
 Magnitude  (MB4.2)

The vector makes an angle θ with the z–axis and an angle φ to 

the x-axis in the xy-plane. It follows that

v v v v

v v
x y

z

= =
=

 sin  cos  sin  sin 

 cos 

θ θ
θ

φ φ

 

 Orientation  (MB4.3a)

and therefore that

θ = =arccos arctan( ) ( )/ /v v v vz y xφ
 

(MB4.3b)

MB4.2 Operations

Consider the two vectors

u i j k i j k= + + = + +u u ux y z x y zv v v v
 

The operations of addition, subtraction, and multiplication are 

as follows:

1. Addition:

v+ = + + + + +u i j k( ) ( ) ( )v v vx x y y z zu u u
 

(MB4.4a)

2. Subtraction:

v- - - -u i j k= + +( ) ( ) ( )v v vx x y y z zu u u
 

(MB4.4b)

3. Multiplication:

(a)  The scalar product, or dot product, of the two vectors 

u and v is

u ⋅ v = + +u u ux x y y z zv v v
 

 Scalar product  (MB4.4c)

Brief illustration MB4.1 Vector orientation

The vector v = 2i + 3j – k has magnitude

v = + + = ={ } ./2 3 1 14 3 742 2 2 1 2( )- ½

Its direction is given by

θ φ= = = =arccos( ) arctan( )-1 14 105 5 3 2 56 31 2/ . / ./ ° °

Brief illustration MB4.2 Addition and subtraction

Consider the vectors u = i – 4j + k (of magnitude 4.24) and 

v = –4i + 2j + 3k (of magnitude 5.39). Their sum is

u i j k i j k+ = + + + + = +v ( ) ( ) ( )1 4 4 2 1 3 3 2 4− − − −

The magnitude of the resultant vector is 291/2 = 5.39. The differ-

ence of the two vectors is

u i j k i j k− − − − − −v = + + + =( ) ( ) ( )1 4 4 2 1 3 5 6 2

The magnitude of this resultant is 8.06. Note that in this case 

the difference is longer than either individual vector.

x

y

z

vz

vyvx

v

vθ

φ

i
j

k

Figure MB4.1 The vector v has components vx, vy, and vz on 
the x, y, and z axes, respectively. It has a magnitude v and makes 
an angle θ with the z-axis and an angle φ to the x-axis in the 
 xy-plane.
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196 Mathematical background 4

and is itself a scalar quantity. We can always choose a new 

coordinate system—we shall write it X, Y, Z—in which 

the Z-axis lies parallel to u, so u = uK, where K is the unit 

vector parallel to u. It then follows from eqn MB4.4c that 

u⋅v = uvZ. Then, with vZ = v cos θ, where θ is the angle 

between u and v, we find

u ⋅ v = uv cos θ
 

 Scalar product  (MB4.4d)

(b) The vector product, or cross product, of two vectors is

u
i j k

i j

× =

=
+

v u u u

u u u u

u u

x y z

x y z

y z z y x z z x

x y y x

v v v

v v v v

v v

 ( ) ( )

( )

− − −
− kk

 

(Determinants are discussed in Mathematical background 5.) 

Once again, choosing the coordinate system so that u = uK 

leads to the simple expression

u l× =v ( )uv sin θ
  Vector product  (MB4.4f)

where θ is the angle between the two vectors and l is a unit vec-

tor perpendicular to both u and v, with a direction determined 

by the ‘right-hand rule’ as in Fig. MB4.2. A special case is when 

each vector is a unit vector, for then

i j k j k i k i j× = × = × =
 

(MB4.5)

It is important to note that the order of vector multiplication is 

important and that u × v = –v × u.

MB4.3 The graphical representation of vector 
operations
Consider two vectors v and u making an angle θ (Fig. MB4.3). 

The first step in the addition of u to v consists of joining the 

tip (the ‘head’) of u to the starting point (the ‘tail’) of v. In the 

second step, we draw a vector vres, the resultant vector, origi-

nating from the tail of u to the head of v. Reversing the order of 

addition leads to the same result; that is, we obtain the same vres 

whether we add u to v or v to u. To calculate the magnitude of 

vres, we note that

v v vres  cos 2 2 22 2= + + = + + = + +( ) ( )u u u u uv v v v v⋅ ⋅ ⋅ ⋅ u u θ

where θ is the angle between u and v. In terms of the angle 

θ ′ = π – θ shown in the figure, and cos (π – θ) = –cosθ, we obtain 

the law of cosines:

v v vres  cos 2 2 2 2= +u u− ′θ   Law of cosines  (MB4.6)

for the relation between the lengths of the sides of a triangle.

Subtraction of v from u amounts to addition of –v to u. It fol-

lows that in the first step of subtraction we draw –v by reversing 

Brief illustration MB4.3 Scalar and vector products

The scalar and vector products of the two vectors in Brief 

illustration MB4.2, u = i – 4j + k (of magnitude 4.24) and 

v = –4i + 2j + 3k (of magnitude 5.39) are

u

u
i j k

⋅ − − −v

v

= × + × + × =

× = −
−

= − −

 { } {( ) } { }( )

{( )( ) (

1 4 4 2 1 3 9

1 4 1

4 2 3

4 3 1))( )} {( )( ) ( )( )}

{( )( ) ( )( )}

2 1 3 1 4

1 2 4 4

14 7 14

i j
k

i j k

− − −
+ − − −

= − − −

The vector product is a vector of magnitude 21.00 pointing in 

a direction perpendicular to the plane defined by the two indi-

vidual vectors.

Vector 
product  (MB4.4e)

u

v

u × v

θ

Figure MB4.2 A depiction of the ‘right-hand rule’. When the 
fingers of the right hand rotate u into v, the thumb points in the 
direction of u × v.

v

u

θ

u + v

v

u

θ v

u

θ

π − θ

(a) (b) (c)

Figure MB4.3 (a) The vectors v and u make an angle θ. (b) To 
add u to v, we first join the head of u to the tail of v, making 
sure that the angle θ between the vectors remains unchanged. 
(c) To finish the process, we draw the resultant vector by joining 
the tail of u to the head of v.
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Vectors  197

the direction of v (Fig. MB4.4). Then, the second step consists 

of adding –v to u by using the strategy shown in the figure: we 

draw a resultant vector vres originating from the tail of u to the 

head of –v.

Vector multiplication is represented graphically by drawing 

a vector (using the right-hand rule) perpendicular to the plane 

defined by the vectors u and v, as shown in Fig. MB4.5. Its 

length is equal to uv sin θ, where θ is the angle between u and v.

MB4.4 Vector differentiation
The derivative dv/dt, where the components vx, vy, and vz are 

themselves functions of t, is

d

d

d

d

d

d

d

d

v
t t t t

x y z=⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

+⎛
⎝⎜

⎞
⎠⎟

v v vi j k
 

 Derivative  (MB4.7)

The derivatives of scalar and vector products are obtained using 

the rules of differentiating a product:

d

d

d

d

d

d

u u u
⋅

⋅ ⋅
v

v
v

t t t
=⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

 

(MB4.8a)

d

d

d

d

d

d

u u u× =⎛
⎝⎜

⎞
⎠⎟

× + ×⎛
⎝⎜

⎞
⎠⎟

v
v

v
t t t  

(MB4.8b)

In the latter, note the importance of preserving the order of 

vectors.

The gradient of a scalar function f(x,y,z), denoted grad f or 

∇f, is

∇ =⎛
⎝⎜

⎞
⎠⎟

+⎛
⎝⎜

⎞
⎠⎟

+⎛
⎝⎜

⎞
⎠⎟

f
f

x

f

y

f

z

∂
∂

∂
∂

∂
∂

i j k
 

 Gradient  (MB4.9)

where partial derivatives are mentioned in Mathematical back-

ground 1 and are treated at length in Mathematical background 

8. Note that the gradient of a scalar function is a vector. We can 

treat ∇ as a vector operator (in the sense that it operates on a 

function and results in a vector), and write

∇ = + +i j k∂
∂

∂
∂

∂
∂x y z

 
(MB4.10)

The scalar product of ∇ and ∇f, using eqns MB4.9 and MB4.10, 

is

∇ ∇ = + +⎛
⎝⎜

⎞
⎠⎟

+ +⎛
⎝⎜

⎞
⎠⎟

= +

⋅ ∂
∂

∂
∂

∂
∂

⋅ ∂
∂

∂
∂

∂
∂

∂
∂

∂

f
x y z x y z

f

f

x

f

i j k i j k

2

2

2

∂∂
∂
∂y

f

z2

2

2
+

Equation MB4.11 defines the laplacian (∇2 = ∇ ⋅ ∇) of a function.

Laplacian

 (MB4.11)

–v –v
u

θ

u − v

u

(a) (b)

Figure MB4.4 The graphical method for subtraction of the 
vector v from the vector u (shown in Fig. MB4.3a) consists 
of two steps: (a) reversing the direction of v to form –v, and 
(b) adding –v to u.

x

y

z

v

u

θ
u × v

uv sin θ

x

y

z

v

u

θ

v × u
uv sin θ

(a) (b)

Figure MB4.5 The direction of the cross products of two 
vectors u and v with an angle θ between them: (a) u × v and 
(b) v × u. Note that the cross product, and the unit vector l of 
eqn MB4.4f, are perpendicular to both u and v but the direction 
depends on the order in which the product is taken. The 
magnitude of the cross product, in either case, is uv sin θ.
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Molecular structure lies at the heart of chemistry and is a hugely important aspect of the subject, as 
it underlies the discussion of the properties of materials and the reactions they undergo. Primitive 
versions of bonding theories emerged at the beginning of the twentieth century when G.N. Lewis 
identified the crucial role of the electron pair. That role was clarified by the quantum mechanical 
descriptions of bonding that are now pervasive in chemistry. All the descriptions can be regarded as 
extensions of the quantum mechanical discussion of Atomic structure and spectra.

One of the earliest applications of The principles of quantum mechanics to the description of the 
chemical bond was ‘valence-bond theory’ (Topic 22). It focused on the role of the electron pair and 
introduced many widely used concepts into chemistry, such as hybridization.

At about the same time, ‘molecular orbital theory’ was introduced (Topic 23), and has become the 
description of choice for quantitative computation. Molecular orbital theory extends the concept 
of atomic orbital to wavefunctions that are delocalized over the entire molecule. It introduces the 
concepts of bonding and antibonding orbital. We introduce the concepts of molecular orbital theory 
with the simplest of all molecules, H2, and then progressively extend the discussion to homonuclear 
diatomic molecules (Topic 24), heteronuclear diatomic molecules (Topic 25), and—the ultimate tar-
get of this group of Topics—polyatomic molecules (Topic 26).

All those Topics are essentially qualitative. In the remaining Topics of this group we show how 
molecular orbital theory is used in computational chemistry, the computation of electron wave-
functions and their energies. All spring from the numerical procedure called the ‘self-consistent 
field’ method (Topic 27). Three versions of this method are commonly encountered. In one, the 
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‘semi-empirical method’, the integrals that appear in the calculation are replaced by parameters that 
lead to good agreement with certain experimentally determined properties (Topic 28). In another, 
the ‘ab initio method’, attempts are made to evaluate the integrals from first principles (Topic 29); 
one ab initio method has its foundations in perturbation theory described in Approximation methods. 
A third and currently very popular procedure, ‘density functional theory’, takes a different route: it 
seeks to calculate the electron density itself rather than the wavefunction (Topic 30).
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TOPIC 22

Valence-bond theory

Here we summarize essential topics of valence-bond theory 

(VB theory) that should be familiar from introductory chem-

istry and set the stage for the development of molecular orbital 

theory (Topic 23). However, there is an important preliminary 

point. All theories of molecular structure make the same sim-

plification at the outset. Whereas the Schrödinger equation 

for a hydrogen atom can be solved exactly, an exact solution 

is not possible for any molecule because even the simplest 

molecule consists of three particles (two nuclei and one elec-

tron). We therefore adopt the Born–Oppenheimer approxi-

mation in which it is supposed that the nuclei, being so much 

heavier than an electron, move relatively slowly and may be 

treated as  stationary while the electrons move in their field. 

That is, we  think of the nuclei as fixed at arbitrary locations, 

and then solve the Schrödinger equation for the wavefunction 

of the electrons alone. The approximation is quite good for 

ground-state molecules, for calculations suggest that the nuclei 

in H2 move through only about 1 pm while the electron speeds 

through 1000 pm.

The Born–Oppenheimer approximation allows us to select 

an internuclear separation in a diatomic molecule and then to 

solve the Schrödinger equation for the electrons at that nuclear 

separation. Then we choose a different separation and repeat 

the calculation, and so on. In this way we can explore how the 

energy of the molecule varies with bond length and obtain a 

molecular potential energy curve (Fig. 22.1). It is called a 

potential energy curve because the kinetic energy of the sta-

tionary nuclei is zero. Once the curve has been calculated or 

determined experimentally (by using the spectroscopic tech-

niques described in Topics 40 − 46), we can identify the equi-

librium bond length, Re, the internuclear separation at the 

minimum of the curve, and the bond dissociation energy, D0, 

which is closely related to the depth, De, of the minimum below 

the energy of the infinitely widely separated and stationary 

atoms. When more than one molecular parameter is changed 

in a polyatomic molecule, such as its various bond lengths and 

angles, we obtain a potential energy surface; the overall equi-

librium shape of the molecule corresponds to the global mini-

mum of the surface.

Contents

22.1 Diatomic molecules 202

(a) The basic formalism 202

Brief illustration 22.1: A valence-bond  

wavefunction 202

(b) Resonance 203

Brief illustration 22.2: Resonance hybrids 204

22.2 Polyatomic molecules 204

Brief illustration 22.3: A polyatomic molecule 204

(a) Promotion 205

Brief illustration 22.4: Promotion 205

(b) Hybridization 205

Brief illustration 22.5: Hybrid structures 207

Checklist of concepts 208
Checklist of equations 208

 ➤ Why do you need to know this material?
Valence-bond theory was the first quantum mechanical 
theory of bonding to be developed. The language it 
introduced, which includes concepts such as spin pairing, σ 
and π bonds, and hybridization, is widely used throughout 
chemistry, especially in the description of the properties 
and reactions of organic compounds.

 ➤ What is the key idea?
A bond forms when an electron in an atomic orbital on 
one atom pairs its spin with that of an electron in an 
atomic orbital on another atom.

 ➤ What do you need to know already?
You need to know about atomic orbitals (Topic 18) and the con- 
cepts of normalization (Topic 5) and orthogonality (Topic 7). 
This Topic also makes use of the Pauli principle (Topic 19).
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202 6 Molecular structure 

22.1 Diatomic molecules

We begin the account of VB theory by considering the simplest 

possible chemical bond, the one in molecular hydrogen, H2.

(a) The basic formalism
The spatial wavefunction for an electron on each of two widely 

separated H atoms is

ψ χ χ= H s H sA B1 1 1 2( ) ( )r r
 

(22.1)

if electron 1 is on atom A and electron 2 is on atom B; in this 

Topic, and as is common in the chemical literature, we use χ 

(chi) to denote atomic orbitals. For simplicity, we shall write 

this wavefunction as ψ  = A(1)B(2). When the atoms are close, 

it is not possible to know whether it is electron 1 or elec-

tron 2 that is on A. An equally valid description is therefore 

ψ  = A(2)B(1), in which electron 2 is on A and electron 1 is on B. 

When two outcomes are equally probable, quantum mechanics 

instructs us to describe the true state of the system as a super-

position of the wavefunctions for each possibility (Topic 7), 

so a better description of the molecule than either wavefunc-

tion alone is one of the (unnormalized) linear combinations 

ψ  = A(1)B(2) ± A(2)B(1). The combination with lower energy is 

the one with a + sign, so the valence-bond wavefunction of the 

electrons in an H2 molecule is

ψ = +A B A B( ) ( ) ( ) ( )1 2 2 1
 

 A valence-bond wavefunction  (22.2)

The reason why this linear combination has a lower energy 

than either the separate atoms or the linear combination 

with a negative sign can be traced to the constructive inter-

ference between the wave patterns represented by the terms 

A(1)B(2) and A(2)B(1), and the resulting enhancement of 

the probability density of the electrons in the internuclear 

region (Fig. 22.2).

The electron distribution described by the wavefunction in 

eqn 22.2 is called a σ bond. A σ bond has cylindrical symme-

try around the internuclear axis, and is so called because, when 

viewed along the internuclear axis, it resembles a pair of elec-

trons in an s orbital (and σ is the Greek equivalent of s).

A chemist’s picture of a covalent bond is one in which the 

spins of two electrons pair as the atomic orbitals overlap. The ori-

gin of the role of spin, as we show in the following Justification, 

Brief illustration 22.1 A valence-bond wavefunction

The wavefunction in eqn 22.2 might look abstract, but in fact 

it can be expressed in terms of simple exponential functions. 

Thus, if we use the wavefunction for an H1s orbital (Z = 1) 

given in Topic 18, then, with the radii measured from their 

respective nuclei,

ψ = ×− −1 1

0
3 1 2

0
3 1 2

1 0 2 0

( ) ( )/
/

/
/

π πa a
r a r ae eA B

A B(1) (2)� ��� ��� � ��� ���� � ��� ���

�

+

×

−

−

1

1

0
3 1 2

0
3 1 2

2 0

1 0
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/
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/

π
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a
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e

e
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B
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B

(2)

(1)���� ���

= +− + − +1

0
3

1 2 0 2 1 0

πa
r r a r r a{ }( )/ ( )/e eA B A B

Self-test 22.1 Express this wavefunction in terms of the 

Cartesian coordinates of each electron given that the internu-

clear separation (along the z-axis) is R.

Answer: r x y z r x y z Ri i i i i i iA B = + + = + + −( ) , ( ( ) )/ /2 2 2 1 2 2 2 2 1 2
i

A(1)B(2)

A(1)B(2) + A(2)B(1)

A(2)B(1)

Enhanced
electron density

Figure 22.2 It is very difficult to represent valence-
bond wavefunctions because they refer to two electrons 
simultaneously. However, this illustration is an attempt. The 
atomic orbital for electron 1 is represented by the purple 
shading, and that of electron 2 is represented by the green 
shading. The left illustration represents A(1)B(2), and the right 
illustration represents the contribution A(2)B(1). When the 
two contributions are superimposed, there is interference 
between the purple contributions and between the green 
contributions, resulting in an enhanced (two-electron) density 
in the internuclear region.

E
n

er
g

y

Re

–De

0
Internuclear
separation, R

Figure 22.1 A molecular potential energy curve. The 
equilibrium bond length corresponds to the energy minimum.
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22 Valence-bond theory  203

is that the wavefunction in eqn 22.2 can be formed only by a pair 

of spin-paired electrons. Spin pairing is not an end in itself: it is a 

means of achieving a wavefunction and the probability distribu-

tion it implies that corresponds to a low energy.

The VB description of H2 can be applied to other homonu-

clear diatomic molecules. For N2, for instance, we consider 

the valence electron configuration of each atom, which is 

2 2 2 22 1 1 1s p p px y z . It is conventional to take the z-axis to be the 

internuclear axis, so we can imagine each atom as having a 2pz 

orbital pointing towards a 2pz orbital on the other atom (Fig. 

22.3), with the 2px and 2py orbitals perpendicular to the axis. 

A σ bond is then formed by spin pairing between the two elec-

trons in the two 2pz orbitals. Its spatial wavefunction is given by 

eqn 22.2, but now A and B stand for the two 2pz orbitals.

The remaining N2p orbitals cannot merge to give σ bonds 

as they do not have cylindrical symmetry around the inter-

nuclear axis. Instead, they merge to form two π bonds. A π 

bond arises from the spin pairing of electrons in two p orbitals 

that approach side-by-side (Fig. 22.4). It is so called because, 

viewed along the internuclear axis, a π bond resembles a pair 

of electrons in a p orbital (and π is the Greek equivalent of p).

There are two π bonds in N2, one formed by spin pairing 

in two neighbouring 2px orbitals and the other by spin pairing 

in two neighbouring 2py orbitals. The overall bonding pattern 

in N2 is therefore a σ bond plus two π bonds (Fig. 22.5), which 

is consistent with the Lewis structure :N ≡ N: for nitrogen.

(b) Resonance
Another term introduced into chemistry by VB theory is reso-

nance, the superposition of the wavefunctions representing 

different electron distributions in the same nuclear framework. 

To understand what this means, consider the VB description 

of a purely covalently bonded HCl molecule, which could be 

written as ψ  = A(1)B(2) + A(2)B(1), with A now a H1s orbital 

Justification 22.1 Electron pairing in VB theory

The Pauli principle requires the overall wavefunction of two 

electrons, the wavefunction including spin, to change sign 

when the labels of the electrons are interchanged (Topic 19). 

The overall VB wavefunction for two electrons is

ψ σ( , ) { ( ) ( ) ( ) ( )} ( , )1 2 1 2 2 1 1 2= +A B A B

where σ represents the spin component of the wavefunction. 

When the labels 1 and 2 are interchanged, this wavefunction 

becomes

ψ σ
σ

( , ) { ( ) ( ) ( ) ( )} ( , )

{ ( ) ( ) ( ) ( )} ( , )

2 1 2 1 1 2 2 1

1 2 2 1 2 1

= +
= +

A B A B

A B A B

The Pauli principle requires that ψ(2,1) = −ψ(1,2), which is sat-

isfied only if σ(2,1) = −σ(1,2). The combination of two spins 

that has this property is

σ α β β α− = −( , ) ( / ){ ( ) ( ) ( ) ( )}/1 2 1 2 1 2 1 21 2

which corresponds to paired electron spins (Topic 19). 

Therefore, we conclude that the state of lower energy (and 

hence the formation of a chemical bond) is achieved if the 

electron spins are paired.

Figure 22.3 The orbital overlap and spin pairing between 
electrons in two collinear p orbitals that results in the formation 
of a σ bond.

–

–

Nodal plane
+

+
Internuclear axis

Figure 22.4 A π bond results from orbital overlap and 
spin pairing between electrons in p orbitals with their axes 
perpendicular to the internuclear axis. The bond has two lobes 
of electron density separated by a nodal plane.

–

–

– –

–

–

+

+ ++

+

Figure 22.5 The structure of bonds in a nitrogen molecule, 
with one σ bond and two π bonds.
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204 6 Molecular structure 

and B a Cl2p orbital. However, there is something wrong 

with this description: it allows electron 1 to be on the H atom 

when electron 2 is on the Cl atom, and vice versa, but it does 

not allow for the possibility that both electrons are on the Cl 

atom (ψ = B(1)B(2), representing H+Cl−) or even on the H 

atom (ψ = A(1)A(2), representing the much less likely H−Cl+). 

A better description of the wavefunction for the molecule is as 

a superposition of the covalent and ionic descriptions, and we 

write (with a slightly simplified notation, and ignoring the less 

likely H− Cl+ possibility) ψ ψ λψHCl H Cl H Cl= +− + −  with λ (lambda) 

some numerical coefficient. In general, we write

ψ ψ λψ= +covalent ionic  
(22.3)

where ψcovalent is the wavefunction for the purely covalent form 

of the bond and ψionic is the wavefunction for the ionic form of 

the bond. The approach summarized by eqn 22.3 is an example 

of resonance. In this case, where one structure is pure covalent 

and the other pure ionic, it is called ionic–covalent resonance. 

The interpretation of the wavefunction, which is called a reso-

nance hybrid, is that if we were to inspect the molecule, then 

the probability that it would be found with an ionic structure is 

proportional to λ2. If λ2 is very small, the covalent description 

is dominant. If λ2 is very large, the ionic description is domi-

nant. Resonance is not a flickering between the contributing 

states: it is a blending of their characteristics, much as a mule is 

a blend of a horse and a donkey. It is only a mathematical device 

for achieving a closer approximation to the true wavefunction 

of the molecule than that represented by any single contribut-

ing structure alone.

A systematic way of calculating the value of λ is provided by 

the variation principle which is proved in Topic 25:

If an arbitrary wavefunction is used to calculate 

the energy, then the value calculated is never less 

than the true energy.

The arbitrary wavefunction is called the trial wavefunction. 

The principle implies that, if we vary the parameter λ in the 

trial wavefunction until the lowest energy is achieved (by eval-

uating the expectation value of the hamiltonian for the wave-

function), then that value of λ will be the best and through λ2 

represents the appropriate contribution of the ionic wavefunc-

tion to the resonance hybrid.

22.2 Polyatomic molecules

Each σ bond in a polyatomic molecule is formed by the spin 

pairing of electrons in atomic orbitals with cylindrical symme-

try around the relevant internuclear axis. Likewise, π bonds are 

formed by pairing electrons that occupy atomic orbitals of the 

appropriate symmetry.

Resonance plays an important role in the valence-bond 

description of polyatomic molecules. One of the most famous 

Variation 
principle

Brief illustration 22.2 Resonance hybrids

Consider a bond described by eqn 22.3. We might find that the 

lowest energy is reached when λ = 0.1, so the best description 

of the bond in the molecule is a resonance structure described 

by the wavefunction ψ = ψcovalent + 0.1ψ ionic. This wavefunc-

tion implies that the probabilities of finding the molecule in 

its covalent and ionic forms are in the ratio 100:1 (because 

0.12 = 0.01).

Self-test 22.2 If a normalized wavefunction has the form ψ = 

0.889ψcovalent + 0.458ψionic, what is the percentage probability 

of finding both electrons of the bond on one atom?

Answer: 21.0 per cent

Brief illustration 22.3 A polyatomic molecule

The VB description of H2O will make this approach clear. The 

valence-electron configuration of an O atom is 2 2 2 22 2 1 1s p p px y z . 

The two unpaired electrons in the O2p orbitals can each pair 

with an electron in an H1s orbital, and each combination 

results in the formation of a σ bond (each bond has cylindri-

cal symmetry about the respective OeH internuclear axis). 

Because the 2py and 2pz orbitals lie at 90° to each other, the two 

σ bonds also lie at 90° to each other (Fig. 22.6). We predict, 

therefore, that H2O should be an angular molecule, which it is. 

However, the theory predicts a bond angle of 90°, whereas the 

actual bond angle is 104.5°.

Self-test 22.3 Use VB theory to suggest a shape for the ammo-

nia molecule, NH3.

Answer: Trigonal pyramidal with HNH bond angle 90°;  

experimental: 107°

H1s

H1s

O2pz

O2py

Figure 22.6 In a primitive view of the structure of an H2O 
molecule, each bond is formed by the overlap and spin 
pairing of an H1s electron and an O2p electron.
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22 Valence-bond theory  205

examples of resonance is in the VB description of benzene, 

where the wavefunction of the molecule is written as a super-

position of the wavefunctions of the two covalent Kekulé 

structures:

ψ  = ψ ( ) + ψ ( ) (22.4)

The two contributing structures have identical energies, so 

they contribute equally to the superposition. The effect of 

resonance (which is represented by a double-headed arrow, 

) in this case is to distribute double-bond charac-

ter around the ring and to make the lengths and strengths 

of all the carbon–carbon bonds identical. The wavefunc-

tion is improved by allo wing resonance because it allows for 

a more accurate description of the location of the electrons, 

and in particular the distribution can adjust into a state of 

lower energy. This lowering is called the resonance stabi-

lization of the molecule and, in the context of VB theory, is 

largely responsible for the unusual stability of aromatic rings. 

Resonance always lowers the energy, and the lowering is 

greatest when the contributing structures have similar ener-

gies. The wavefunction of benzene is improved still further, 

and the calculated energy of the molecule is lowered further 

still, if we allow ionic–covalent resonance too, by allowing a 

small admixture of structures such as 
+

–
.

(a) Promotion
Another deficiency of this initial formulation of VB theory is its 

inability to account for carbon’s tetravalence (its ability to form 

four bonds). The ground-state configuration of C is 2 2 22 1 1s p px y , 

which suggests that a carbon atom should be capable of form-

ing only two bonds, not four.

This deficiency is overcome by allowing for promotion, the 

excitation of an electron to an orbital of higher energy. In car-

bon, for example, the promotion of a 2s electron to a 2p orbital 

can be thought of as leading to the configuration 2 2 2 21 1 1 1s p p px y z , 

with four unpaired electrons in separate orbitals. These elec-

trons may pair with four electrons in orbitals provided by four 

other atoms (such as four H1s orbitals if the molecule is CH4), 

and hence form four σ bonds. Although energy was required 

to promote the electron, it is more than recovered by the pro-

moted atom’s ability to form four bonds in place of the two 

bonds of the unpromoted atom.

Promotion, and the formation of four bonds, is a character-

istic feature of carbon because the promotion energy is quite 

small: the promoted electron leaves a doubly occupied 2s 

orbital and enters a vacant 2p orbital, hence significantly reliev-

ing the electron–electron repulsion it experiences in the for-

mer. However, it is important to remember that promotion is 

not a ‘real’ process in which an atom somehow becomes excited 

and then forms bonds: it is a notional contribution to the over-

all energy change that occurs when bonds form.

(b) Hybridization
The description of the bonding in CH4 (and other alkanes) 

is still incomplete because it implies the presence of three σ 

bonds of one type (formed from H1s and C2p orbitals) and a 

fourth σ bond of a distinctly different character (formed from 

H1s and C2s). This problem is overcome by realizing that the 

electron density distribution in the promoted atom is equiva-

lent to the electron density in which each electron occupies a 

hybrid orbital formed by interference between the C2s and 

C2p orbitals of the same atom. The origin of the hybridiza-

tion can be appreciated by thinking of the four atomic orbitals 

centred on a nucleus as waves that interfere destructively and 

constructively in different regions, and give rise to four new 

shapes.

As we show in the following Justification, the specific linear 

combinations that give rise to four equivalent hybrid orbitals 

are

h h

h h

x y z x y z

x y z x y z

1 2

3 4

= + + + = − − +
= − + − = + − −

s p p p s p p p

s p p p s p p p
 

As a result of the interference between the component orbit-

als, each hybrid orbital consists of a large lobe pointing in the 

direction of one corner of a regular tetrahedron (Fig. 22.7). The 

angle between the axes of the hybrid orbitals is the tetrahe-

dral angle, arccos( ) . .− =1
3

109 47°  Because each hybrid is built 

from one s orbital and three p orbitals, it is called an sp3 hybrid 

orbital.

Brief illustration 22.4 Promotion

Sulfur can form six bonds (an ‘expanded octet’), as in the mol-

ecule SF6. Because the ground-state electron configuration of 

sulfur is [Ne]3s23p4, this bonding pattern requires the pro-

motion of a 3s electron and a 3p electron to two different 3d 

orbitals, which are nearby in energy, to produce the notional 

configuration [Ne]3s13p33d2 with all six of the valence elec-

trons in different orbitals and capable of bond formation with 

six electrons provided by six F atoms.

Self-test 22.4 Account for the ability of phosphorus to form 

five bonds, as in PF5.

Answer: Promotion of a 3s electron from [Ne]3s23p3 to  

[Ne]3s13p33d1

sp3 hybrid 
orbitals  (22.5)
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206 6 Molecular structure 

It is now easy to see how the valence-bond description of the 

CH4 molecule leads to a tetrahedral molecule containing four 

equivalent CeH bonds. Each hybrid orbital of the promoted C 

atom contains a single unpaired electron; an H1s electron can 

pair with each one, giving rise to a σ bond pointing in a tetra-

hedral direction (Fig. 22.8). For example, the (unnormalized) 

wavefunction for the bond formed by the hybrid orbital h1 and 

the 1sA orbital (with wavefunction that we shall denote A) is

ψ = +h A h A1 11 2 2 1( ) ( ) ( ) ( )
 

(22.6)

As for H2, to achieve this wavefunction, the two electrons it 

describes must be paired. Because each sp3 hybrid orbital has 

the same composition, all four σ bonds are identical apart from 

their orientation in space.

A hybrid orbital has enhanced amplitude in the internu-

clear region, which arises from the constructive interference 

between the s orbital and the positive lobes of the p orbitals. 

As a result, the bond strength is greater than for a bond formed 

from an s or p orbital alone. This increased bond strength is 

another factor that helps to repay the promotion energy.

Hybridization is used to describe the structure of an ethene 

molecule, H2C=CH2, and the torsional rigidity of double bonds. 

An ethene molecule is planar, with HCH and HCC bond angles 

close to 120°. To reproduce the σ bonding structure, each 

C atom is regarded as promoted to a 2s12p3 configuration. 

However, instead of using all four orbitals to form hybrids, we 

form sp2 hybrid orbitals:

h

h

h

y

x y

x

1
1 2

2
3
2

1 2 1
2

1 2

3
3
2

1 2 1
2

1 2

2= +
= + −
= − −

s p

s p p

s p p

/

/ /

/ /

( ) ( )

( ) ( ) yy  

 sp2 hybrid orbitals  (22.7)

These hybrids lie in a plane and point towards the corners of an 

equilateral triangle at 120° to each other (Fig. 22.9 and Problem 

22.2). The third 2p orbital (2pz) is not included in the hybridiza-

tion; its axis is perpendicular to the plane in which the hybrids 

lie. The different signs of the coefficients, as well as ensuring 

that the hybrids are mutually orthogonal, also ensure that con-

structive interference takes place in different regions of space, 

Justification 22.2 Determining the form of tetrahedral 
hybrid orbitals

We begin by supposing that each hybrid can be written in 

the form h = as + bxpx + bypy + bzpz. The hybrid h1 that points 

to the (1,1,1) corner of a cube must have equal contributions 

from all three p orbitals, so we can set the three b coefficients 

equal to each other and write h1 = as + b(px + py + pz). The other 

three hybrids have the same composition (they are equivalent, 

apart from their direction in space), but are orthogonal to h1. 

This orthogonality is achieved by choosing different signs for 

the p orbitals but the same overall composition. For instance, 

we might choose h2 = as + b(−px − py + pz), in which case the 

orthogonality condition is

∫ ∫

∫

= + + + + − − +

= −

h h a b a b

a b

x y z x y z1 2

2 2

1

d p p p p p p d

s d

τ τ

τ

{ }{ }( ) ( )s s

���
22 2

2 2 2 2

1 0

0

p d sp d

p p d

x x

x y

ab

b a b b

τ τ

τ

∫

∫

∫− − −

− + = − −

���
�

��� ��
�

� �� ��
� ++ = − =b a b2 2 2 0

We conclude that a solution is a = b (the alternative solu-

tion, a = −b, simply corresponds to choosing different abso-

lute phases for the p orbitals) and the two hybrid orbitals 

are the h1 and h2 in eqn 22.5. A similar argument but with 

h3 = as + b(−px + py − pz) or h4 = as + b(px − py − pz) leads to the 

other two hybrids in eqn 22.5.

C

H

Figure 22.8 Each sp3 hybrid orbital forms a σ bond by overlap 
with an H1s orbital located at the corner of the tetrahedron. 
This model accounts for the equivalence of the four bonds 
in CH4.

109.47°

Figure 22.7 An sp3 hybrid orbital formed from the 
superposition of s and p orbitals on the same atom. There 
are four such hybrids: each one points towards the corner of 
a regular tetrahedron. The overall electron density remains 
spherically symmetrical.
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22 Valence-bond theory  207

so giving the patterns in the illustration. The sp2-hybridized 

C atoms each form three σ bonds by spin pairing with either 

the h1 hybrid of the other C atom or with H1s orbitals. The σ 

framework therefore consists of CeH and CeC σ bonds at 

120° to each other. When the two CH2 groups lie in the same 

plane, the two electrons in the unhybridized p orbitals can pair 

and form a π bond (Fig. 22.10). The formation of this π bond 

locks the framework into the planar arrangement, for any rota-

tion of one CH2 group relative to the other leads to a weakening 

of the π bond (and consequently an increase in energy of the 

molecule).

A similar description applies to ethyne, HC ≡ CH, a linear 

molecule. Now the C atoms are sp hybridized, and the σ bonds 

are formed using hybrid atomic orbitals of the form

h hz z1 2= + = −s p s p
 

 sp hybrid orbitals  (22.8)

These two hybrids lie along the internuclear axis. The elec-

trons in them pair either with an electron in the corresponding 

hybrid orbital on the other C atom or with an electron in one of 

the H1s orbitals. Electrons in the two remaining p orbitals on 

each atom, which are perpendicular to the molecular axis, pair 

to form two perpendicular π bonds (Fig. 22.11).

Other hybridization schemes, particularly those involving d 

orbitals, are often invoked in elementary descriptions of molec-

ular structure to be consistent with other molecular geometries 

(Table 22.1). The hybridization of N atomic orbitals always 

results in the formation of N hybrid orbitals, which may either 

form bonds or contain lone pairs of electrons.

Brief illustration 22.5 Hybrid structures

For example, sp3d2 hybridization results in six equivalent 

hybrid orbitals pointing towards the corners of a regular octa-

hedron; it is sometimes invoked to account for the structure 

of octahedral molecules, such as SF6 (recall the promotion of 

sulfur’s electrons in Brief illustration 22.4). Hybrid orbitals 

do not always form bonds: they may also contain lone pairs 

of electrons. For example, in the hydrogen peroxide molecule, 

H2O2, each O atom can be regarded as sp3 hybridized. Two 

of the hybrid orbitals form bonds, one OeO bond and one 

OeH bond at approximately 109° (the experimental value is 

much less, at 94.8°). The remaining two hybrids on each atom 

accommodate lone pairs of electrons. Rotation around the 

OeO bond is possible, so the molecule is conformationally 

mobile.

Self-test 22.5 Account for the structure of methylamine, 

CH3NH2.

Answer: C, N both sp3 hybridized; a lone pair on N

120°

(a) (b)

Figure 22.9 (a) An s orbital and two p orbitals can be 
hybridized to form three equivalent orbitals that point towards 
the corners of an equilateral triangle. (b) The remaining, 
unhybridized p orbital is perpendicular to the plane.

Figure 22.10 A representation of the structure of the double 
bond in ethene; only the π bond is shown explicitly.

Figure 22.11 A representation of the structure of the triple 
bond in ethyne; only the π bonds are shown explicitly.

Table 22.1 Some hybridization schemes

Coordination number Arrangement Composition

2 Linear
Angular

sp, pd, sd
sd

3 Trigonal planar
Trigonal pyramidal

sp2, p2d
pd2

4 Tetrahedral
Square planar

sp3, sd3

p2d2, sp2d

5 Trigonal bipyramidal
Pentagonal planar

sp3d, spd3

p2d3

6 Octahedral sp3d2
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208 6 Molecular structure 

Checklist of concepts

☐ 1. The Born–Oppenheimer approximation treats the 

nuclei as stationary while the electrons move in their 

field.

☐ 2. A molecular potential energy curve depicts the varia-

tion of the energy of the molecule as a function of bond 

length.

☐ 3. The equilibrium bond length is the internuclear sepa-

ration at the minimum of the curve.

☐ 4. The bond dissociation energy is the minimum energy 

needed to separate the two atoms of a molecule.

☐ 5. A bond forms when an electron in an atomic orbital on 

one atom pairs its spin with that of an electron in an 

atomic orbital on another atom.

☐ 6. Resonance refers to the superposition of the wavefunc-

tions representing different electron distributions in the 

same nuclear framework. The wavefunction resulting 

from the superposition is called a resonance hybrid.

☐ 7. To accommodate the shapes of polyatomic molecules, 

VB theory introduces the concepts of promotion and 

hybridization.

☐ 8. A σ bond has cylindrical symmetry around the inter-

nuclear axis.

☐ 9. A π bond has symmetry like that of a p orbital perpen-

dicular to the internuclear axis.

Checklist of equations

Property Equation Comment Equation number

Valence-bond wavefunction ψ = A(1)B(2) + A(2)B(1) A,B are atomic orbitals 22.2

Hybridization
h ci i

i

=∑ χ
All atomic orbitals on the same atom; specific forms 
in the text

22.5 (sp3)
22.7 (sp2)
22.8 (sp)

Atkins09819.indb   208 9/11/2013   11:18:36 AM

www.ebook3000.com

http://www.ebook3000.org


TOPIC 23

The principles of molecular 

orbital theory

In  molecular orbital theory (MO theory), electrons do not 

belong to particular bonds but spread throughout the entire 

molecule. This theory has been more fully developed than VB 

theory (Topic 22) and provides the language that is widely used 

in modern discussions of bonding. To introduce it, we fol-

low the same strategy as in Topic 19, where the one-electron 

H atom was taken as the fundamental species for discuss-

ing atomic structure and then developed into a description of 

many-electron atoms. In this Topic we use the simplest molec-

ular species of all, the hydrogen molecule-ion, H2
+, to introduce 

the essential features of bonding and then use it to describe the 

structures of more complex systems.

23.1 Linear combinations of 
atomic orbitals

The hamiltonian for the single electron in H2
+  is

�H
m

V V
e

r r R
= − ∇ + = − + −⎛

⎝⎜
⎞
⎠⎟

2

1
2

2

0 1 12 4

1 1 1

e A Bπε
 

(23.1)

where rA1 and rB1 are the distances of the electron from the two 

nuclei A and B (1) and R is the distance between the two nuclei.

In the expression for V, the 

first two terms in parentheses 

are the attractive contribution 

from the interaction between 

the electron and the nuclei; the 

remaining term is the repulsive 

interaction between the nuclei. 

The collection of fundamental constants e2/4πε0 occurs widely 

throughout these Topics, and we shall denote it j0. The one-

electron wavefunctions obtained by solving the Schrödinger 

Contents
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Example 23.1: Normalizing a molecular orbital 210

Brief illustration 23.1: A molecular orbital 210

(b) Bonding orbitals 211

Brief illustration 23.2: Molecular integrals 212

(c) Antibonding orbitals 213

Brief illustration 23.3: Antibonding energies 214

23.2 Orbital notation 214

Brief illustration 23.4: Inversion symmetry 214

Checklist of concepts 214
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 ➤ Why do you need to know this material?

Molecular orbital theory is the basis of almost all 
descriptions of chemical bonding, including that in 
individual molecules and of solids. It is the foundation of 
most computational techniques for the prediction and 
analysis of the properties of molecules.

 ➤ What is the key idea?
Molecular orbitals are wavefunctions that spread over all 
the atoms in a molecule.

 ➤ What do you need to know already?
You need to be familiar with the shapes of atomic orbitals 
(Topic 18) and how an energy and probability density 
are calculated from a wavefunction (Topics 5 and 7). The 
entire discussion is within the framework of the Born–
Oppenheimer approximation (Topic 22).
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B
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rB1

R

e

1
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210 6 Molecular structure

equation �Hψ Εψ=  with this hamiltonian and its analogues for 

other molecules are called molecular orbitals (MOs). A molec-

ular orbital is like an atomic orbital, but spreads throughout the 

molecule. It gives, through the value of |ψ|2, the probability dis-

tribution of the electron in the molecule.

(a) The construction of linear combinations
The Schrödinger equation can be solved analytically for H2

+ 

(within the Born–Oppenheimer approximation, Topic 22), 

but the wavefunctions are very complicated functions; more-

over, the solution cannot be extended to polyatomic systems. 

Therefore, we adopt a simpler procedure that, while more 

approximate, can be extended readily to other molecules.

If an electron can be found in an atomic orbital belonging to 

atom A and also in an atomic orbital belonging to atom B, then 

the overall wavefunction is a superposition of the two atomic 

orbitals:

ψ ± = ±N A B( )    Linear combination of atomic orbitals  (23.2)

where, for H2
+, A denotes an H1s atomic orbital on atom A, 

which we denote (as in Topic 22) χH sA1 , B likewise denotes 
χH sB1 , and N is a normalization factor. The technical term for 

the superposition in eqn 23.2 is a linear combination of atomic 

orbitals (LCAO). An approximate molecular orbital formed 

from a linear combination of atomic orbitals is called an 

LCAO-MO. A molecular orbital that has cylindrical symmetry 

around the internuclear axis, such as the one we are discuss-

ing, is called a σ orbital because it resembles an s orbital when 

viewed along the axis and, more precisely, because it has zero 

orbital angular momentum around the internuclear axis.

Figure 23.1 shows the contours of constant amplitude for 

the molecular orbital ψ+ in eqn 23.2. Plots like these are readily 

obtained using commercially available software. The calcula-

tion is quite straightforward, because all we need do is feed in 

the mathematical forms of the two atomic orbitals and then let 

the program do the rest.

Example 23.1 Normalizing a molecular orbital

Normalize the molecular orbital ψ+ in eqn 23.2.

Method We need to find the factor N such that ∫ψ*ψdτ = 1. To 

proceed, substitute the LCAO into this integral, and make use 

of the fact that the atomic orbitals are individually normalized.

Answer Substitution of the wavefunction gives

 

∫ ∫ ∫ ∫= = ++ +
⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

ψ ψ τ τ τ τ* ( )d d d dN A B AB S

S

2 2 2

1 1

2 2 1

��� ��� ��� ��
NN 2

where S = ∫ABdτ and has a value that depends on the nuclear 

separation (this ‘overlap integral’ will play a significant role 

later). For the integral to be equal to 1, we require

N
S

=
+{ }
1

2 1
1 2

( )
/

In H ,2
+  S ≈ 0.59, so N = 0.56.

Self-test 23.1 Normalize the orbital ψ− in eqn 23.2.

Answer: N = 1/{2(1 − S)}1/2; if S ≈ 0.59, then N = 1.10

(b)(a)

Figure 23.1 (a) The amplitude of the bonding molecular orbital 
in a hydrogen molecule-ion in a plane containing the two 
nuclei and (b) a contour representation of the amplitude.

Brief illustration 23.1 A molecular orbital

We can use the following two H1s orbitals

A
a

B
a

r a r a= =− −1 1

0
3 1 2

0
3 1 2

1 0 1 0

( ) ( )/
/

/
/

π π
e eA B

Note that rA1 and rB1 are not independent, but when expressed 

in Cartesian coordinates based on atom A (2) are related by 

rA1 = {x2 + y2 + z2}1/2 and rB1 = {x2 + y2 + (z − R)2}1/2, where R is the 

bond length. 

A

B

2

rA1
rB1

R
z x

y

e

R – z

The resulting surfaces of constant amplitude are shown in 

Fig. 23.2.
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23 The principles of molecular orbital theory  211

(b) Bonding orbitals
According to the Born interpretation, the probability density of 

the electron at each point in H2
+  is proportional to the square 

modulus of its wavefunction at that point. The probability den-

sity corresponding to the (real) wavefunction ψ+ in eqn 23.2 is

ψ + = + +2 N A B AB2 2 2 2( )    Bonding probability density  (23.3)

This probability density is plotted in Fig. 23.4. An important 

feature becomes apparent when we examine the internuclear 

region, where both atomic orbitals have similar amplitudes. 

According to eqn 23.3, the total probability density is propor-

tional to the sum of

A2, the probability density if the electron were 

confined to the atomic orbital A;

B2, the probability density if the electron were 

confined to the atomic orbital B;

2AB, an extra contribution to the density from 

both atomic orbitals.

The last contribution, the overlap density, is crucial, because 

it represents an enhancement of the probability of finding the 

electron in the internuclear region. The enhancement can be 

traced to the constructive interference of the two atomic orbit-

als: each has a positive amplitude in the internuclear region, 

so the total amplitude is greater there than if the electron were 

confined to a single atomic orbital.

We shall frequently make use of the observation that bonds 

form when electrons accumulate in regions where atomic orbitals 

overlap and interfere constructively. The conventional explana-

tion of this observation is based on the notion that accumula-

tion of electron density between the nuclei puts the electron in 

a position where it interacts strongly with both nuclei. Hence, 

the energy of the molecule is lower than that of the separate 

atoms, where each electron can interact strongly with only 

one nucleus. This conventional explanation, however, has 

been called into question, because shifting an electron away 

from a nucleus into the internuclear region raises its poten-

tial energy. The modern (and still controversial) explanation 

does not emerge from the simple LCAO treatment given here. 

It seems that, at the same time as the electron shifts into the 

internuclear region, the atomic orbitals shrink. This orbital 

shrinkage improves the electron–nucleus attraction more than 

it is decreased by the migration to the internuclear region, so 

there is a net lowering of potential energy. The kinetic energy 

of the electron is also modified because the curvature of the 

wavefunction is changed, but the change in kinetic energy is 

dominated by the change in potential energy. Throughout the 

following discussion we ascribe the strength of chemical bonds 

to the accumulation of electron density in the internuclear 

region. We leave open the question whether in molecules more 

complicated than H2
+  the true source of energy lowering is that 

accumulation itself or some indirect but related effect.

The σ orbital we have described is an example of a bond-

ing orbital, an orbital which, if occupied, helps to bind two 

atoms together by lowering its energy below that of the separate 

atoms. Specifically, we label it 1σ as it is the σ orbital of lowest 

P
h

ys
ic

al
 

in
te

rp
re

ta
ti

o
n

Figure 23.4 The electron density calculated by forming the 
square of the wavefunction used to construct Fig. 23.1. Note 
the accumulation of electron density in the internuclear 
region.

Self-test 23.2 Repeat the analysis for ψ−.

Answer:

Figure 23.3 Surfaces of constant amplitude of the 
wavefunction ψ− of the hydrogen molecule-ion.

Figure 23.2 Surfaces of constant amplitude of the 
wavefunction ψ+ of the hydrogen molecule-ion.
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212 6 Molecular structure

energy. An electron that occupies a σ orbital is called a σ elec-

tron, and if that is the only electron present in the molecule (as 

in the ground state of H2
+), then we report the configuration of 

the molecule as 1σ1.

The energy E1σ of the 1σ orbital is (see Problem 23.3)

E E
j

R

j k

S1 1
0

1σ = + − +
+H s    Energy of bonding orbital  (23.4)

where EH1s is the energy of a H1s orbital, j0/R is the potential 

energy of repulsion between the two nuclei (remember that j0 is 

shorthand for e2/4πε0), and

S AB
R

a

R

a
R a= = + + ⎛

⎝⎜
⎞
⎠⎟

⎧
⎨
⎪
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⎪

⎭⎪
∫ −d eτ 1

1

30 0

2

0/  (23.5a)
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⎠⎟

⎧
⎨
⎩

⎫
⎬
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0
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d eτ /  (23.5b)

k j
AB

r

j

a

R

a
R a= = +⎛

⎝⎜
⎞
⎠⎟∫ −

0
0

0 0

1 0

B

d eτ /  (23.5c)

The integrals are plotted in Fig. 23.5. We can interpret them as 

follows:

All three integrals are positive and decline 

towards zero at large internuclear separations 

(S and k on account of the exponential term, j on 

account of the factor 1/R). The integral S is 

discussed in more detail in Topic 24.

The integral j is a measure of the interaction 

between a nucleus and electron density centred on 

the other nucleus.

The integral k is a measure of the interaction between a 

nucleus and the excess electron density in the 

internuclear region arising from overlap.

Figure 23.6 shows a plot of E1σ against R relative to the energy 

of the separated atoms. The energy of the 1σ orbital decreases as 

the internuclear separation decreases from large values because 

electron density accumulates in the internuclear region as the 

constructive interference between the atomic orbitals increases 

(Fig. 23.7). However, at small separations there is too little space 
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Brief illustration 23.2 Molecular integrals

It turns out (see below) that the minimum value of E1σ occurs 

at R = 2.45a0. At this separation

S

j
j a
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To express j0/a0 = e2/4πε0a0 in electronvolts, divide it by e, and 

then find

j

ea

e

a

e m e

h

m e

h
0

0 0 0 0

2

0
2

3

0
2 24 4 4

27 211= = × = = …π π
π

ε ε ε ε
e e V.

(The value should be recognized as 2 /hcR e�
∞ ,  Topic 17.) 

Therefore, j = 11 eV and k = 8.2 eV.

Self-test 23.3 Evaluate the integrals when the internuclear 

separation is twice its value at the minimum.

Answer: 0.10, 5.5 eV, 1.2 eV
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Internuclear distance, R/a0
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2σ (1σu)
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Figure 23.6 The calculated molecular potential energy curves 
for a hydrogen molecule-ion showing the variation of the 
energies of the bonding and antibonding orbitals as the bond 
length is changed. The alternative notation of the orbitals is 
explained later.
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Figure 23.5 The integrals (a) S and (b) j and k calculated for H2
+  

as a function of internuclear distance.
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23 The principles of molecular orbital theory  213

between the nuclei for significant accumulation of electron 

density there. In addition, the nucleus–nucleus repulsion (which 

is proportional to 1/R) becomes large. As a result, the energy of 

the molecule rises at short distances, and there is a minimum in 

the potential energy curve. Calculations on H2
+  give Re = 130 pm 

and De = 1.76 eV (171 kJ mol−1); the experimental values are 

106 pm and 2.6 eV, so this simple LCAO-MO description of the 

molecule, while inaccurate, is not absurdly wrong.

(c) Antibonding orbitals
The linear combination ψ− in eqn 23.2 corresponds to a higher 

energy than that of ψ+. Because it is also a σ orbital we label it 

2σ. This orbital has an internuclear nodal plane where A and 

B cancel exactly (Figs 23.8 and 23.9; compare Fig. 23.1). The 

probability density is

ψ − = + −2 N A B AB2 2 2 2( )  Antibonding probability density  (23.6)

There is a reduction in probability density between the nuclei 

due to the −2AB term (Fig. 23.10); in physical terms, there is 

destructive interference where the two atomic orbitals over-

lap. The 2σ orbital is an example of an antibonding orbital, an 

orbital that, if occupied, contributes to a reduction in the cohe-

sion between two atoms and helps to raise the energy of the 

molecule relative to that of the separated atoms.

The energy E2σ of the 2σ antibonding orbital is given by (see 

Problem 23.3)

E E
j

R

j k

S2 1
0

1σ = + − −
−H s  (23.7)

where the integrals S, j, and k are the same as before (eqn 23.5). 

The variation of E2σ with R is shown in Fig. 23.6, where we see the 

destabilizing effect of an antibonding electron. The effect is partly 

due to the fact that an antibonding electron is excluded from the 

internuclear region and hence is distributed largely outside the 

bonding region. In effect, whereas a bonding electron pulls two 

nuclei together, an antibonding electron pulls the nuclei apart 

(Fig. 23.11). Figure 23.6 also shows another feature that we draw 

on later: |E− – EH1s| > |E+ – EH1s|, which indicates that the antibond-

ing orbital is more antibonding than the bonding orbital is bond-

ing. This important conclusion stems in part from the presence 

of the nucleus–nucleus repulsion (j0/R): this contribution raises 

the energy of both molecular orbitals. Antibonding orbitals are 

often labelled with an asterisk (*), so the 2σ orbital could also be 

denoted 2σ * (and read ‘2 sigma star’).

Region of
constructive
interference

Figure 23.7 A representation of the constructive interference 
that occurs when two H1s orbitals overlap and form a bonding 
σ orbital.

Region of
destructive
interference

Figure 23.8 A representation of the destructive interference 
that occurs when two H1s orbitals overlap and form an 
antibonding 2σ orbital. 

(a) (b)

Figure 23.9 (a) The amplitude of the antibonding molecular 
orbital in a hydrogen molecule-ion in a plane containing the 
two nuclei and (b) a contour representation of the amplitude. 
Note the internuclear node.

Figure 23.10 The electron density calculated by forming the 
square of the wavefunction used to construct Fig. 23.9. Note 
the reduction of electron density in the internuclear region.
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214 6 Molecular structure

23.2 Orbital notation

For homonuclear diatomic molecules and ions such as H2
+  and 

analogous many-electron species it proves helpful (for exam-

ple, in electronic spectroscopy, Topic 45) to label a molecular 

orbital according to its inversion symmetry, the behaviour of 

the wavefunction when it is inverted through the centre (more 

formally, the centre of inversion) of the molecule. Thus, if we 

consider any point on the bonding σ orbital, and then project 

it through the centre of the molecule and out an equal dis-

tance on the other side, we arrive at an identical value of the 

wavefunction (Fig. 23.12). This so-called gerade symmetry 

(from the German word for ‘even’) is denoted by a subscript 

g, as in σg. The same procedure applied to the antibonding 2σ 

orbital results in the same amplitude but opposite sign of the 

wavefunction. This ungerade symmetry (‘odd symmetry’) is 

denoted by a subscript u, as in σu.

When using the g,u notation, each set of orbitals of the same 

inversion symmetry are labelled separately so, whereas 1σ 

becomes 1σg, its antibonding partner, which so far we have called 

2σ, is the first orbital of a different symmetry, and is denoted 1σu. 

The general rule is that each set of orbitals of the same symmetry 

designation is labelled separately. This point is developed in Topic 

24. The inversion symmetry classification is not applicable to 

the discussion of heteronuclear diatomic molecules in Topic 25 

because these molecules do not have a centre of inversion.

Checklist of concepts

☐ 1.  A molecular orbital is constructed as a linear combi-

nation of atomic orbitals.

☐ 2. A bonding orbital arises from the constructive overlap 

of neighbouring atomic orbitals.

Brief illustration 23.3 Antibonding energies

At the minimum of the bonding orbital energy we have seen 

that R = 2.45a0, and from Brief illustration 23.2 we know that 

S = 0.47, j = 11 eV, and k = 8.2 eV. It follows that at that separa-

tion, the energy of the antibonding orbital relative to that of a 

hydrogen atom 1s orbital is

( )/
.

.

.
E2 1

27 2

2 45

11 8 2

1σ − = − −
− =EH s eV

0.47
5.8

That is, the antibonding orbital lies above the bonding orbital 

at this internuclear separation.

Self-test 23.4 What is the separation of the antibonding and 

bonding orbital energies at twice that internuclear distance?

Answer: 1.4 eV

Brief illustration 23.4 Inversion symmetry

Consider the 1σ orbital given in eqn 23.2 by N(A + B) 

where the atomic orbitals A and B are specified in Brief 

illustration 23.1. At the location of nucleus A, rA1 = 0 

and rB1 = R. The wavefunction at that point has the value 

N R N a a( ( )) ( ) ( )./ /χ χH s H sA B
( ) / e1 1 0

3 1 20 1 1+ = + −π R  Upon inversion 

through the centre of the molecule, which takes that point to 

rA1 = R and rB1 = 0, the wavefunction has the value correspond-

ing to a point on nucleus B, namely, N a R a( / ) ( )./ /1 10
3 1 2 0π e− +  The 

wavefunction has the same value and the σ orbital is gerade.

Self-test 23.5 Consider the antibonding 2σ orbital and show 

in a similar way that it has ungerade symmetry.

Answer: 1 10 0− → −− −e eR a R a/ /

+

+

+

–

σg σu

Centre of
inversion

Figure 23.12 The parity of an orbital is even (g) if its 
wavefunction is unchanged under inversion through the centre 
of symmetry of the molecule, but odd (u) if the wavefunction 
changes sign. Heteronuclear diatomic molecules do not 
have a centre of inversion, so for them the g,u classification is 
irrelevant.

(a)

(b)

Figure 23.11 A partial explanation of the origin of bonding 
and antibonding effects. (a) In a bonding orbital, the nuclei 
are attracted to the accumulation of electron density in the 
internuclear region. (b) In an antibonding orbital, the nuclei are 
attracted to an accumulation of electron density outside the 
internuclear region.
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23 The principles of molecular orbital theory  215

☐ 3. An antibonding orbital arises from the destructive 

overlap of neighbouring atomic orbitals.

☐ 4. σ Orbitals have cylindrical symmetry and zero orbital 

angular momentum around the internuclear axis.

☐ 5. A molecular orbital in a homonuclear diatomic mol-

ecule is labelled ‘gerade’ or ‘ungerade’ according to its 

behaviour under inversion symmetry.

Checklist of equations

Property Equation Comment Equation number

Linear combination of atomic orbitals ψ ± = ±N A B( ) Homonuclear diatomic molecule 23.2

Energies of σ orbitals E E j R j k S1 H1s 0 1σ = + − + +/ /( )( ) S AB

j j A r

k j AB r

=

=

=

∫
∫
∫

d

d

d

0 B

0 B

τ

τ

τ

,

( )

( )

2 /

/

23.4

E E j R j k S2 H1s 0 1σ = + − − −/ /( )( ) 23.7
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TOPIC 24

Homonuclear diatomic molecules

In Topic 19 the hydrogenic atomic orbitals and the building-

up principle are used as a basis for the discussion and predic-

tion of the ground electronic configurations of many-electron 

atoms. We now do the same for many-electron diatomic mol-

ecules by using the H2
+  molecular orbitals as a basis for their 

discussion.

24.1 Electron configurations

The starting point of the building-up principle for diatomic 

molecules is the construction of molecular orbitals by combin-

ing the available atomic orbitals. Once they are available, we 

adopt the following procedure, which is essentially the same as 

the building-up principle for atoms (Topic 19):

The electrons supplied by the atoms are accommodated in 

the orbitals so as to achieve the lowest overall energy 

subject to the constraint of the Pauli exclusion principle, 

that no more than two electrons may occupy a 

single orbital (and then must be paired).

If several degenerate molecular orbitals are 

available, electrons are added singly to each 

individual orbital before doubly occupying any 

one orbital (because that minimizes electron–

electron repulsions).

According to Hund's maximum multiplicity rule (Topics 

20 and 21), if two electrons do occupy different degenerate 

orbitals, then a lower energy is obtained if they do so with 

parallel spins.

(a) σ Orbitals and π orbitals
Consider H2, the simplest many-electron diatomic molecule. 

Each H atom contributes a 1s orbital (as in H2
+ ), so we can form 

the 1σg and 1σu orbitals from them, as explained in Topic 23. 

At the experimental internuclear separation these orbitals will 

have the energies shown in Fig. 24.1, which is called a molecu-

lar orbital energy level diagram. Note that from two atomic 

Contents

24.1 Electron configurations 216

(a) σ Orbitals and π orbitals 216

Brief illustration 24.1: Ground-state configurations 218

(b) The overlap integral 218

Brief illustration 24.2: Overlap integrals 219

(c) Period 2 diatomic molecules 219

Brief illustration 24.3: Bond order 220

Example 24.1: Judging the relative bond strengths 

of molecules and ions 221

24.2 Photoelectron spectroscopy 221

Brief illustration 24.4: A photoelectron spectrum 222

Checklist of concepts 223
Checklist of equations 223

 ➤ Why do you need to know this material?
Although the hydrogen molecule-ion establishes the basic 
approach to the construction of molecular orbitals, almost 
all chemically significant molecules have more than one 
electron, and we need to see how to construct their 
electron configurations. Homonuclear diatomic molecules 
are a good starting point, not only because they are simple 
to describe but because they include such important 
species as H2, N2, O2, and the dihalogens.

 ➤ What is the key idea?
Each molecular orbital can accommodate up to two 
electrons.

 ➤ What do you need to know already?
You need to be familiar with the discussion of the bonding 
and antibonding linear combinations of atomic orbitals 
in Topic 23 and the building-up principle for atoms 
(Topic 19).
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24 Homonuclear diatomic molecules  217

orbitals we can build two molecular orbitals. In general, from N 

atomic orbitals we can build N molecular orbitals.

There are two electrons to accommodate, and both can enter 

1σg by pairing their spins, as required by the Pauli principle 

(just as for atoms, Topic 19). The ground-state configuration is 

therefore 1σg
2  and the atoms are joined by a bond consisting 

of an electron pair in a bonding σ orbital. This approach shows 

that an electron pair, which was the focus of Lewis's account 

of chemical bonding, represents the maximum number of elec-

trons that can enter a bonding molecular orbital.

The same argument explains why He does not form diatomic 

molecules. Each He atom contributes a 1s orbital, so 1σg and 

1σu molecular orbitals can be constructed. Although these 

orbitals differ in detail from those in H2, their general shapes 

are the same and we can use the same qualitative energy level 

diagram in the discussion. There are four electrons to accom-

modate. Two can enter the 1σg orbital, but then it is full, and 

the next two must enter the 1σu orbital (Fig. 24.2). The ground 

electronic configuration of He2 is therefore 1 1σ σg u
2 2 . We see 

that there is one bond and one antibond. Because 1σu is raised 

in energy relative to the separate atoms more than 1σg is low-

ered, an He2 molecule has a higher energy than the separated 

atoms, so it is unstable relative to them.

We shall now see how the concepts we have introduced apply 

to homonuclear diatomic molecules in general. In elementary 

treatments, only the orbitals of the valence shell are used to 

form molecular orbitals so, for molecules formed with atoms 

from Period 2 elements, only the 2s and 2p atomic orbitals are 

considered. We shall make that approximation here too.

A general principle of molecular orbital theory is that all 

orbitals of the appropriate symmetry contribute to a molecular 

orbital. Thus, to build σ orbitals, we form linear combinations 

of all atomic orbitals that have cylindrical symmetry about the 

internuclear axis. These orbitals include the 2s orbitals on each 

atom and the 2pz orbitals on the two atoms (Fig. 24.3). The gen-

eral form of the σ orbitals that may be formed is therefore

ψ χ χ χ χ= + + +c c c c
z z z zA2s A2s B2s B2s A2p A2p B2p B2p  

(24.1)

From these four atomic orbitals we can form four molecular 

orbitals of σ symmetry by an appropriate choice of the coef-

ficients c.

The procedure for calculating the coefficients is described 

in Topic 25. Here we adopt a simpler route, and suppose that, 

because the 2s and 2pz orbitals have distinctly different ener-

gies, they may be treated separately. That is, the four σ orbitals 

fall approximately into two sets, one consisting of two molecu-

lar orbitals of the form

ψ χ χ=c cA2s A2s B2s B2s+  (24.2a)

and another consisting of two orbitals of the form

ψ χ χ= +c c
z z z zA2p A2p B2p B2p (24.2b)

Because atoms A and B are identical, the energies of their 2s 

orbitals are the same, so the coefficients are equal (apart from a 

possible difference in sign); the same is true of the 2pz orbitals. 

Therefore, the two sets of orbitals have the form χA2s ± χB2s and 
χA2pz ± χB2pz.

The 2s orbitals on the two atoms overlap to give a bonding 

and an antibonding σ orbital (1σg and 1σu, respectively) in 

exactly the same way as we have already seen for 1s orbitals. 

The two 2pz orbitals directed along the internuclear axis overlap 

strongly. They may interfere either constructively or destruc-

tively, and give a bonding or antibonding σ orbital (Fig. 24.4). 

2s 2s
2pz 2pz

A B

Figure 24.3 According to molecular orbital theory, σ orbitals 
are built from all orbitals that have the appropriate symmetry. 
In homonuclear diatomic molecules of Period 2, that means 
that two 2s and two 2pz orbitals should be used. From these 
four orbitals, four molecular orbitals can be built.

H1s H1s

1σg

1σu

Figure 24.1 A molecular orbital energy level diagram for 
orbitals constructed from the overlap of H1s orbitals; the 
separation of the levels corresponds to that found at the 
equilibrium bond length. The ground electronic configuration 
of H2 is obtained by accommodating the two electrons in the 
lowest available orbital (the bonding orbital).

He1s He1s

1σg

1σu

Figure 24.2 The ground electronic configuration of the 
hypothetical four-electron molecule He2 has two bonding 
electrons and two antibonding electrons. It has a higher 
energy than the separated atoms, and so is unstable.
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218 6 Molecular structure

These two σ orbitals are labelled 2σg and 2σu, respectively. In 

general, note how the numbering follows the order of increas-

ing energy. We number only the molecular orbitals formed 

from atomic orbitals in the valence shell.

Now consider the 2px and 2py orbitals of each atom. 

These orbitals are perpendicular to the internuclear axis and 

may overlap broadside-on. This overlap may be construc-

tive or destructive and results in a bonding or an antibond-

ing π orbital (Fig. 24.5). The notation π is the analogue of p 

in atoms, for when viewed along the axis of the molecule, a π 

orbital looks like a p orbital and has one unit of orbital angular 

momentum around the internuclear axis. More formally, the 

orbital has a single nodal plane that includes the internuclear 

axis. The two neighbouring 2px orbitals overlap to give a bond-

ing and an antibonding πx orbital, and the two 2py orbitals 

overlap to give two πy orbitals. The πx and πy bonding orbit-

als are degenerate; so too are their antibonding partners. We 

also see from Fig. 24.5 that a bonding π orbital has odd parity 

and is denoted πu and an antibonding π orbital has even parity, 

denoted πg.

(b) The overlap integral
The extent to which two atomic orbitals on different atoms 

overlap is measured by the overlap integral, S:

S=∫ χ χ τA B
* d

 
Definition  Overlap integral  (24.3)

This integral also appears in Example 23.1 of Topic 23 and eqn 

23.5a. If the atomic orbital χA on A is small wherever the orbital 

χB on B is large, or vice versa, then the product of their ampli-

tudes is everywhere small and the integral—the sum of these 

products—is small (Fig. 24.6). If χA and χB are both large in 

some region of space, then S may be large. If the two normal-

ized atomic orbitals are identical (for instance, 1s orbitals on 

the same nucleus), then S = 1. In some cases, simple formulas 

can be given for overlap integrals. For instance, the variation 

of S with internuclear separation for hydrogenic 1s orbitals on 

atoms of atomic number Z is given by

S
ZR

a

ZR

a
ZR a( , ) /1 1 1
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⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
−

 

 (1s,1s)-overlap integral  (24.4)

and is plotted in Fig. 24.7 (eqn 24.4 is a generalization of eqn 

23.5a, which is for H1s orbitals).

Brief illustration 24.1 Ground-state configurations

The valence configuration of a sodium atom is [Ne]3s1, so 3s 

and 3p orbitals are used to construct molecular orbitals. At 

this level of approximation, we consider (3s,3s) and (3p,3p) 

overlap separately. In fact, because there are only two electrons 

to accommodate (one from each 3s orbital), we need consider 

only the former. That overlap results in 1σg and 1σu molecular 

orbitals. The only two valence electrons occupy the former, so 

the ground-state configuration of Na2 is 1σg
2 .

Self-test 24.1 Identify the ground-state configuration of Be2.

Answer: 1 1σ σg u
2 2  built from Be2s orbitals

2σu

2σg

+ +–

+ +– –

–

Figure 24.4 A representation of the composition of bonding 
and antibonding σ orbitals built from the overlap of p orbitals. 
These illustrations are schematic.

πuπg

+
+

+

+ –– –

–

Centre of inversion

Figure 24.5 A schematic representation of the structure of π 
bonding and antibonding molecular orbitals. The figure also 
shows that the bonding π orbital has odd parity, whereas the 
antibonding π orbital has even parity.

–++ –++

(a) (b)

Figure 24.6 (a) When two orbitals are on atoms that are far apart, 
the wavefunctions are small where they overlap, so S is small. 
(b) When the atoms are closer, both orbitals have significant 
amplitudes where they overlap, and S may approach 1. Note that 
S will decrease again as the two atoms approach more closely 
than shown here, because the region of negative amplitude 
of the p orbital starts to overlap the positive amplitude of the 
s orbital. When the centres of the atoms coincide, S = 0.
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24 Homonuclear diatomic molecules  219

Now consider the arrangement in which an s orbital is super-

imposed on a px orbital of a different atom (Fig. 24.9). The inte-

gral over the region where the product of orbitals is positive 

exactly cancels the integral over the region where the product 

of orbitals is negative, so overall S = 0 exactly. Therefore, there is 

no net overlap between the s and p orbitals in this arrangement.

(c) Period 2 diatomic molecules
To construct the molecular orbital energy level diagram for 

Period 2 homonuclear diatomic molecules, we form eight 

molecular orbitals from the eight valence shell orbitals (four 

from each atom). In some cases, π orbitals are less strongly 

bonding than σ orbitals because their maximum overlap occurs 

off-axis. This relative weakness suggests that the molecular 

orbital energy level diagram ought to be as shown in Fig. 24.10. 

However, we must remember that we have assumed that 2s and 

2pz orbitals contribute to different sets of molecular orbitals 

whereas in fact all four atomic orbitals have the same symme-

try around the internuclear axis and contribute jointly to the 

four σ orbitals. Hence, there is no guarantee that this order 

of energies should prevail, and it is found experimentally (by 

–

+
+

Constructive 

Destructive

Figure 24.9 A p orbital in the orientation shown here has 
zero net overlap (S = 0) with the s orbital at all internuclear 
separations.

Atom AtomMolecule

2s

2p

2s

2p

2σu

2σg

1σu

1σg

1πu

1πg

Figure 24.10 The molecular orbital energy level diagram for 
homonuclear diatomic molecules. The lines in the middle are an 
indication of the energies of the molecular orbitals that can be 
formed by overlap of atomic orbitals. As remarked in the text, this 
diagram should be used for O2 (the configuration shown) and F2.

Brief illustration 24.2 Overlap integrals

Familiarity with the magnitudes of overlap integrals is useful 

when considering bonding abilities of atoms, and hydrogenic 

orbitals give an indication of their values. The overlap integral 

between two hydrogenic 2s orbitals (see Problem 24.5) is

S
ZR

a

ZR

a

ZR

a
( , )2 2 1

2

1

12

1

2400 0

2

0

4
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⎪
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⎫
⎬
⎪

⎭⎪
−−ZR a/2 0

This expression is plotted in Fig. 24.8. For an internuclear 

 distance of 8a0/Z, S(2s,2s) = 0.50.

Self-test 24.2 The side-by-side overlap of two 2p orbitals of 

atoms of atomic number Z is

S
ZR

a

ZR

a

ZR

a
( , )2 2 1

2
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1

1200 0

2

0
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⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
−−ZR a/2 0

Evaluate this overlap integral for R = 8a0/Z.

Answer: See Fig. 24.8; 0.29

0.2

0.4

0.6

0.8

1

0
0 5 10 15 20

S

ZR/a0

(2s,2s)

(2p,2p)

Figure 24.8 The overlap integral, S, between two 
hydrogenic 2s orbitals and between two side-by-side 2p 
orbitals as a function of their separation R.
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l, 
S

Internuclear separation, R/a0

Figure 24.7 The overlap integral, S, between two H1s orbitals 
as a function of their separation R.
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220 6 Molecular structure

spectroscopy) and by detailed calculation that the order varies 

along Period 2 (Fig. 24.11). The order shown in Fig. 24.12 is 

appropriate as far as N2, and Fig. 24.10 is appropriate for O2 and 

F2. The relative order is controlled by the separation of the 2s 

and 2p orbitals in the atoms, which increases across the group: 

as the atomic number increases, the 2s electrons are pulled 

closer to the nucleus and thus increasingly shield the 2p elec-

trons. The consequent switch in order occurs at about N2.

With the molecular orbital energy level diagram established, 

we can deduce the probable ground-state configurations of the 

molecules by adding the appropriate number of electrons to 

the orbitals and following the building-up rules. Anionic species 

(such as the peroxide ion, O2
2−) need more electrons than the par-

ent neutral molecules; cationic species (such as O2
+ ) need fewer.

Consider N2, which has 10 valence electrons. Two electrons 

pair, occupy, and fill the 1σg orbital; the next two occupy and fill 

the 1σu orbital. Six electrons remain. There are two 1πu orbitals, 

so four electrons can be accommodated in them. The last two 

enter the 2σg orbital. Therefore, the ground-state configuration 

of N2 is 1 1 1 2u u gσ σ σg
2 2 4 2π . It is sometimes helpful to include an 

asterisk to denote an antibonding orbital, in which case this 

configuration would be denoted 1 1 1 2σ σ π σg u u g
2 2 4 2* .

A measure of the net bonding in a diatomic molecule is its 

bond order, b:

b N N= −1
2
( *)

 
Definition  Bond order  (24.5)

where N is the number of electrons in bonding orbitals and 

N* is the number of electrons in antibonding orbitals.

The ground-state electron configuration of O2, with 12 valence 

electrons, is based on Fig. 24.10, and is 1 1 2 1 1σ σ σg u g u g
2 2 2 4 2π π  (or 

1 1 2 1 1u g u gσ σ σg
2 2 2 4 2* *π π ). Its bond order is 2. According to the 

building-up principle, however, the two 1πg electrons occupy 

different orbitals: one will enter 1πg,x and the other will enter 

1πg,y . Because the electrons are in different orbitals, they will 

have parallel spins. Therefore, we can predict that an O2 mol-

ecule will have a net spin angular momentum S = 1 and, in the 

language introduced in Topic 21, be in a triplet state. As electron 

spin is the source of a magnetic moment, we can go on to pre-

dict that oxygen should be paramagnetic, a substance that tends 

to move into a magnetic field (see Topic 39). This prediction, 

which VB theory does not make, is confirmed by experiment.

An F2 molecule has two more electrons than an O2 mol-

ecule. Its configuration is therefore 1 1 2 1 1g uσ σ σg u g
2 2 2 4 4* *π π  and 

b = 1. We conclude that F2 is a singly bonded molecule, in 

agreement with its Lewis structure. The hypothetical molecule 

dineon, Ne2, has two additional electrons: its configuration is 

1 1 2 1 1 2g u g uσ σ σ σ2 2 2 4 4 2* * *π πg u  and b = 0. The zero bond order is con-

sistent with the monatomic nature of Ne.

The bond order is a useful parameter for discussing the charac-

teristics of bonds, because it correlates with bond length and bond 

strength. For bonds between atoms of a given pair of elements:

The greater the bond order, the shorter the bond.

The greater the bond order, the greater the bond strength.

Table 24.1 lists some typical bond lengths in diatomic and 

polyatomic molecules. The strength of a bond is measured 

by its bond dissociation energy, hcD� 0, the energy required to 

Brief illustration 24.3 Bond order

Each electron pair in a bonding orbital increases the bond 

order by 1 and each pair in an antibonding orbital decreases 

b by 1. For H2, b = 1, corresponding to a single bond, H–H, 

between the two atoms. In He2, b = 0, and there is no bond. 

In N2, b = − =1
2

( )8 2 3. This bond order accords with the Lewis 

structure of the molecule (:N≡N:).

Self-test 24.3 Evaluate the bond orders of O2, O2
+ , and O2

−.

Answer: 2, 5
2

3
2

,

2σu

2σg

1σu

1σg

1πu

1πg 2σu

2σg

1σu

1σg

1πu

1πg

Li2 Be2 B2 C2 N2 O2 F2

E
n

er
g

y

Figure 24.11 The variation of the orbital energies of Period 2 
homonuclear diatomics.

Atom AtomMolecule

2s

2p

2s

2p

2σu

2σg

1σu

1σg

1πu

1πg

Figure 24.12 An alternative molecular orbital energy level 
diagram for homonuclear diatomic molecules. As remarked in 
the text, this diagram should be used for diatomics up to and 
including N2 (the configuration shown).
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24 Homonuclear diatomic molecules  221

separate the atoms to infinity or by the well depth, hcD� e, with 

hcD hcD� � 0
1
2

= −e ω . Table 24.2 lists some experimental values 

of hcD� 0 .

24.2 Photoelectron spectroscopy

So far we have treated molecular orbitals as purely theoretical 

constructs, but is there experimental evidence for their exist-

ence? Photoelectron spectroscopy (PES) measures the ioni-

zation energies of molecules when electrons are ejected from 

different orbitals by absorption of a photon of known energy, 

and uses the information to infer the energies of molecular 

orbitals. The technique is also used to study solids, and in Topic 

95 we see the important information that it gives about species 

at or on surfaces.

Because energy is conserved when a photon ionizes a sam-

ple, the sum of the ionization energy, I, of the sample and 

the kinetic energy of the photoelectron, the ejected elec-

tron, must be equal to the energy of the incident photon h�  

(Fig. 24.13):

h m I�= +1
2 e

2v  (24.6)

This equation (which is like the one used for the photoelec-

tric effect, eqn 4.5 written as h m�= +1
2 e

2v Φ ) can be refined 

in two ways. First, photoelectrons may originate from one of 

a number of different orbitals, and each one has a different 

ionization energy. Hence, a series of different kinetic ener-

gies of the photoelectrons will be obtained, each one satisfying 

h m Ii� = 1
2 e

2v + , where Ii is the ionization energy for ejection 

of an electron from an orbital i. Therefore, by measuring 

the kinetic energies of the photoelectrons, and knowing �, 

these ionization energies can be determined. Photoelectron 

spectra are interpreted in terms of an approximation called 

Koopmans’ theorem, which states that the ionization energy Ii 

is equal to the orbital energy of the ejected electron (formally, 

Ii = –εi). That is, we can identify the ionization energy with the 

energy of the orbital from which it is ejected. The theorem 

is only an approximation because it ignores the fact that the 

remaining electrons adjust their distributions when ionization 

occurs.

Example 24.1 Judging the relative bond strengths 
of molecules and ions

Predict whether N2
+  is likely to have a larger or smaller bond 

dissociation energy than N2.

Method Because the molecule with the higher bond order is 

likely to have the higher dissociation energy, compare their 

electronic configurations and assess their bond orders.

Answer From Fig. 24.12, the electron configurations and bond 
orders are

N

N

2 g
2

u
*2

u
4

g
2

2 g
2

u
*2

u
4

g
1

1 1 1 2 3

1 1 1 2 2 1
2

σ σ π σ
σ σ π σ

b

b

=
=+

Because the cation has the smaller bond order, we expect it to 

have the smaller bond dissociation energy. The experimental 

dissociation energies are 942 kJ mol−1 for N2 and 842 kJ mol−1 

for N2
+ .

Self-test 24.4 Which can be expected to have the higher dis-

sociation energy, F2 or F2
+?

Answer: F2
+

Table 24.1*  Bond lengths

Bond Order Re/pm

HH 1  74.14

NN 3 109.76

HCl 1 127.45

CH 1 114

CC 1 154

CC 2 134

CC 3 120

*More values are given in the Resource section. Numbers in italics are mean values for 

polyatomic molecules.

Table 24.2* Bond dissociation energies

Bond Order hcD� 0 ( )kJ mol 1 −

HH 1 432.1

NN 3 941.7

HCl 1 427.7

CH 1 435

CC 1 368

CC 2 720

CC 3 962

*More values are given in the Resource section. Numbers in italics are mean values for 

polyatomic molecules.

Orbital i

hν
Ii

hν – Ii

X

X+ + e–(stationary)

X+ + e–(moving, Ek)

Figure 24.13 An incoming photon carries an energy h�; an 
energy Ii is needed to remove an electron from an orbital i, and 
the difference appears as the kinetic energy of the electron.
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222 6 Molecular structure

The ionization energies of molecules are several electron-

volts even for valence electrons, so it is essential to work in 

at least the ultraviolet region of the spectrum and with wave-

lengths of less than about 200 nm. Much work has been done 

with radiation generated by a discharge through helium: the 

He(I) line (1s12p1 → 1s2) lies at 58.43 nm, corresponding to a 

photon energy of 21.22 eV. Its use gives rise to the technique 

of ultraviolet photoelectron spectroscopy (UPS). When core 

electrons are being studied, photons of even higher energy are 

needed to expel them: X-rays are used, and the technique is 

denoted XPS.

The kinetic energies of the photoelectrons are measured 

using an electrostatic deflector that produces different deflec-

tions in the paths of the photoelectrons as they pass between 

charged plates (Fig. 24.14). As the field strength is increased, 

electrons of different speeds, and therefore kinetic energies, 

reach the detector. The electron flux can be recorded and 

plotted against kinetic energy to obtain the photoelectron 

spectrum.

It is often observed that photoejection results in cations that 

are excited vibrationally. Because different energies are needed 

to excite different vibrational states of the ion, the photoelec-

trons appear with different kinetic energies. The result is vibra-

tional fine structure, a progression of lines with a frequency 

spacing that corresponds to the vibrational frequency of the 

molecule. Figure 24.16 shows an example of vibrational fine 

structure in the photoelectron spectrum of HBr.

Sample

Lamp

Detector
Electrostatic 
analyser

+

–

Figure 24.14 A photoelectron spectrometer consists of a 
source of ionizing radiation (such as a helium discharge lamp 
for UPS and an X-ray source for XPS), an electrostatic analyser, 
and an electron detector. The deflection of the electron path 
caused by the analyser depends on the speed of the electrons.

Ionization energy, I/eV

S
ig

n
al

10.5 11.0

10 15

2Π3/2
2Π1/2

Figure 24.16 The photoelectron spectrum of HBr.

Brief illustration 24.4 A photoelectron spectrum

Photoelectrons ejected from N2 with He(I) radiation have 

kinetic energies of 5.63 eV (1 eV = 8065.5 cm−1, Fig. 24.15). 

Helium(I) radiation of wavelength 58.43 nm has wave-

number 1.711 × 105 cm−1 and therefore corresponds to an 

energy of 21.22 eV. Then, from eqn 24.6, 21.22 eV = 5.63 eV + Ii, 

so Ii = 15.59 eV. This ionization energy is the energy needed 

16 17 18 20
Ionization energy, I/eV

19

S
ig

n
al

Figure 24.15 The photoelectron spectrum of N2.

to remove an electron from the occupied molecular orbital 

with the highest energy of the N2 molecule, the 2σg bonding 

orbital.

Self-test 24.5 Under the same circumstances, photoelectrons 

are also detected at 4.53 eV. To what ionization energy does 

that correspond? Suggest an origin.

Answer: 16.7 eV, 1πu
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24 Homonuclear diatomic molecules  223

Checklist of concepts

☐ 1. Electrons are added to available molecular orbitals in a 

manner that achieves the lowest overall energy.

☐ 2. As a first approximation, σ orbitals are constructed 

separately from valence s and p orbitals.

☐ 3. σ Orbitals have cylindrical symmetry and zero orbital 

angular momentum around the internuclear axis.

☐ 4. π Orbitals are constructed from the side-by-side  

overlap of orbitals of the appropriate symmetry; 

they have a nodal plane that includes the internuclear 

axis.

☐ 5. An overlap integral is a measure of the extent of orbital 

overlap.

☐ 6. Photoelectron spectroscopy is a technique for deter-

mining the energies of electrons in molecular orbitals.

☐ 7. The greater the bond order of a molecule, the shorter 

and stronger the bond.

Checklist of equations

Property Equation Comment Equation number

Overlap integral S = ∫ χ χ τA
*

B d 24.3

Bond order b N N= 1
2

( *)− 24.5

Photoelectron spectroscopy h m Ii� = 1
2 e

2v + Ii is the ionization energy from orbital i 24.6
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TOPIC 25

Heteronuclear diatomic 

molecules

The electron distribution in a covalent bond in a heteronuclear 

diatomic molecule is not shared equally by the atoms because 

it is energetically favourable for the electron pair to be found 

closer to one atom than the other. This imbalance results in a 

polar bond, a covalent bond in which the electron pair is shared 

unequally by the two atoms. The bond in HF, for instance, is 

polar, with the electron pair closer to the F atom. The accumu-

lation of the electron pair near the F atom results in that atom 

having a net negative charge, which is called a partial negative 

charge and denoted δ−. There is a matching partial positive 

charge, δ+, on the H atom (Fig. 25.1).

 ➤ Why do you need to know this material?
Most molecules are heteronuclear, so you need to 
appreciate the differences in their electronic structure 
from homonuclear species, and how to treat those 
differences quantitatively.

 ➤ What is the key idea?
The bonding molecular orbital of a heteronuclear diatomic 
molecule is composed mostly of the atomic orbital of the 
more electronegative atom; the opposite is true of the 
antibonding orbital.

Contents

25.1 Polar bonds 225

(a) The molecular orbital formulation 225

Brief illustration 25.1: Heteronuclear diatomic  

molecules 1 225

(b) Electronegativity 225

Brief illustration 25.2 Electronegativity 226

25.2 The variation principle 226

(a) The procedure 227

Brief illustration 25.3: Heteronuclear diatomic  

molecules 2 228

(b) The features of the solutions 228

Brief illustration 25.4: Heteronuclear diatomic  

molecules 3 229

Checklist of concepts 230
Checklist of equations 230

 ➤ What do you need to know already?
You need to know about the molecular orbitals of homo-
nuclear diatomic molecules (Topic 24) and the concepts 
of normalization and orthogonality (Topics 5 and 7). This 
Topic makes use of determinants (Mathematical back-

ground 5) and rules about differentiation (Mathematical 

background 1).

H Fδ+ δ–

Figure 25.1 The electron density of the molecule HF, 
computed with one of the methods described in Topic 
29. Different colours show the distribution of electrostatic 
potential and hence net charge, with blue representing the 
region with largest partial positive charge, and red the region 
with largest partial negative charge.
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25 Heteronuclear diatomic molecules  225

25.1 Polar bonds

The description of polar bonds in terms of molecular orbital theory 

is a straightforward extension of that for homonuclear diatomic 

molecules, the central difference being that the atomic orbitals on 

the two atoms have different energies and spatial extensions.

(a) The molecular orbital formulation
A polar bond consists of two electrons in a bonding molecular 

orbital of the form

ψ = +c A c BA B  
 Wavefunction of a polar bond  (25.1)

with unequal coefficients. The proportion of the atomic orbital 

A in the bond is |cA|2 and that of B is |cB|2. A nonpolar bond 

has |cA|2 = |cB|2 and a pure ionic bond has one coefficient zero 

(so the species A+B− would have cA = 0 and cB = 1). The atomic 

orbital with the lower energy makes the larger contribution 

to the bonding molecular orbital. The opposite is true of the 

antibonding orbital, for which the dominant component comes 

from the atomic orbital with higher energy.

Deciding what values to use for the energies of the atomic 

orbitals in eqn 25.1 presents a dilemma because they are known 

only after a complicated calculation of the kind described in 

Topic 29 has been performed. An alternative, one that gives 

some insight into the origin of the energies, is to estimate 

them from ionization energies and electron affinities. Thus, the 

extreme cases of an atom X in a molecule are X+ if it has lost 

control of the electron it supplied, X if it is sharing the electron 

pair equally with its bonded partner, and X− if it has gained 

control of both electrons in the bond. If X+ is taken as defining 

the energy 0, then X lies at −I(X) and X− lies at −{I(X) + Eea(X)}, 

where I is the ionization energy and Eea the electron affinity (Fig. 

25.2). The actual energy of the orbital lies at an intermediate 

value, and in the absence of further information, we shall esti-

mate it as halfway down to the lowest of these values, namely 

− 1
2
{ ( ) ( )}I EX Xea+ . Then, to establish the MO composition and 

energies, we form linear combinations of atomic orbitals with 

these values of the energy and anticipate that the atom with 

the more negative value of − +1
2
{ ( ) ( )}I EX Xea  contributes the 

greater amount to the bonding orbital. As we shall see shortly, 

the quantity 1
2
{ ( ) ( )}I EX Xea+  also has a further significance.

(b) Electronegativity

The charge distribution in bonds is commonly discussed in 

terms of the electronegativity, χ (chi), of the elements involved 

(there should be little danger of confusing this use of χ with 

its use to denote an atomic orbital, which is another common 

convention). The electronegativity is a parameter introduced 

by Linus Pauling as a measure of the power of an atom to attract 

electrons to itself when it is part of a compound. Pauling used 

valence-bond arguments to suggest that an appropriate numer-

ical scale of electronegativities could be defined in terms of 

bond dissociation energies, D0, and proposed that the differ-

ence in electronegativities could be expressed as

| |

{ ( ) [ ( ) ( )]} /

χ χA B

1 2AB AA BB

−
−= +D D D0

1
2 0 0

where D0(AA) and D0(BB) are the dissociation energies of A–A 

and B–B bonds and D0(AB) is the dissociation energy of an 

A–B bond, all in electronvolts. (In later work Pauling used the 

geometrical mean of dissociation energies in place of the arith-

metic mean.) This expression gives differences of electronega-

tivities; to establish an absolute scale Pauling chose individual 

values that gave the best match to the values obtained from 

eqn 25.2. Electronegativities based on this definition are called 

E
n

er
g

y

X+ + e–0

X

X––I(X) – Eea(X)

–½{I(X) + Eea(X)}

Eea(X)
–I(X)

I(X)

Figure 25.2 The procedure for estimating the energy of an 
atomic orbital in a molecule.

Brief illustration 25.1 Heteronuclear diatomic molecules 1

These points can be illustrated by considering HF. The general 

form of the molecular orbital is ψ = cHχH+cFχF, where χH is an 

H1s orbital and χF is an F2pz orbital (with z along the internu-

clear axis, the convention for linear molecules). The relevant 

data are as follows:

We see that the electron distribution in HF is likely to be pre-

dominantly on the F atom. We take the calculation further 

below (in Brief illustrations 25.3 and 25.4).

Self-test 25.1 Which atomic orbital, H1s or N2pz makes the 

dominant contribution to the bonding σ orbital in the HN 

molecular radical? For data, see Tables 20.2 and 20.3.

Answer: N2pz

I/eV Eea/eV 1
2

{ }/I E+ ea eV

H 13.6 0.75 7.2

F 17.4 3.34 10.4

Pauling 
electro-
negativity

(25.2)Definition
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226 6 Molecular structure

Pauling electronegativities (Table 25.1). The most electronega-

tive elements are those close to F (excluding the noble gases); 

the least are those close to Cs. It is found that the greater the 

difference in electronegativities, the greater the polar character 

of the bond. The difference for HF, for instance, is 1.78; a C–H 

bond, which is commonly regarded as almost nonpolar, has an 

electronegativity difference of 0.35.

The spectroscopist Robert Mulliken proposed an alterna-

tive definition of electronegativity. He argued that an element 

is likely to be highly electronegative if it has a high ionization 

energy (so it will not release electrons readily) and a high elec-

tron affinity (so it is energetically favourable to acquire elec-

trons). The Mulliken electronegativity scale is therefore based 

on the definition

χ = +1
2
( )I Eea  

Definition  Mulliken electronegativity  (25.3)

where I is the ionization energy of the element and Eea is its elec-

tron affinity (both in electronvolts). It will be recognized that 

this combination of energies is precisely the one we have used 

to estimate the energy of an atomic orbital in a molecule, and 

we can therefore see that the greater the value of the Mulliken 

electronegativity the greater is the contribution of that atom to 

the electron distribution in the bond. There is one word of cau-

tion: the values of I and Eea in eqn 25.3 are strictly those for a 

special ‘valence state’ of the atom, not a true spectroscopic state. 

We ignore that complication here. The Mulliken and Pauling 

scales are approximately in line with each other. A reasonably 

reliable conversion relation between the two is

χ χPauling Mulliken= −1 35 1 371 2. ./

 
(25.4)

25.2 The variation principle

A more systematic way of discussing bond polarity and finding 

the coefficients in the linear combinations used to build molec-

ular orbitals is provided by the variation principle, which is 

proved in the following Justification:

If an arbitrary wavefunction is used to calculate 

the energy, the value calculated is never less than 

the true energy.

This principle, which is also described briefly in Topic 22, is the 

basis of all modern molecular structure calculations (Topics 

27−30). The arbitrary wavefunction is called the trial wave-

function. The principle implies that, if we vary the coefficients 

in the trial wavefunction until the lowest energy is achieved 

(by evaluating the expectation value of the hamiltonian for 

each wavefunction), then those coefficients will be the best. We 

might get a lower energy if we use a more complicated wave-

function (for example, by taking a linear combination of several 

atomic orbitals on each atom), but we shall have the optimum 

(minimum energy) molecular orbital that can be built from the 

chosen basis set, the given set of atomic orbitals.

Brief illustration 25.2 Electronegativity

The bond dissociation energies of hydrogen, chlorine, and 

hydrogen chloride are 4.52 eV, 2.51 eV, and 4.47 eV, respec-

tively. From eqn 25.2 we find

| ( ) ( )| { . . . } . ./χ χPauling Pauling
1 2H Cl 4 47 (4 52 2 51) 98 1− − ≈= + =1

2
0 00

 

Self-test 25.2 Repeat the analysis for HBr. Use data from Table 

24.2.

Answer: |χPauling(H) – χPauling(Br)| = 0.73

Variation 
principle

Justification 25.1 The variation principle

To justify the variation principle, consider a trial (normalized) 

wavefunction written as a linear combination ψ ψtrial =∑n n nc  

of the true (but unknown), normalized, and orthogonal eigen-

functions of the hamiltonian �H . The energy associated with 

this trial function is the expectation value

E =∫ψ ψ τΗtrial triald
* �

The true lowest energy of the system is E0, the eigenvalue cor-

responding to ψ0. Consider the following difference:

�E E EH− = −

=

∫∫0 0ψ ψ τ ψ ψ τ

ψ

trial trial trial trial

tria

d d* *

(1)� ��� ���

ll trial trial trial

trial trial

d d

d

* *

* ( )

H

H

E

E

ψ τ ψ ψ τ

τψ ψ

−

= −

=

∫∫
∫

0

0

�

�

nn

n n

n

n

n n

n nn

c cH

H

E

c c

∑ ∑∫
∑

⎛

⎝
⎜

⎞

⎠
⎟ −

⎛

⎝
⎜

⎞

⎠
⎟

= −

′ ′

′

* *

,

* *

( )

(

ψ ψ τ

ψ

0

′

′

n d�

EE n0)ψ τ′∫ d�

Table 25.1*  Pauling electronegativities

Element XPauling

H 2.2

C 2.6

N 3.0

O 3.4

F 4.0

Cl 3.2

Cs 0.79

* More values are given in the Resource section.
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25 Heteronuclear diatomic molecules  227

(a) The procedure

The method can be illustrated by the trial wavefunction in 

eqn 25.1. We show in the following Justification that the 

coefficients are given by the solutions of the two secular 

equations1

( ) ( )α βA A B− −E c ES c+ =0
 

(25.5a)

( ) ( )β α− −ES c E cA B B+ =0
 

(25.5b)

where

� �α τ α τA B= =∫ ∫AHA BHBd d
 

 Coulomb integrals  (25.5c)

� �β τ τ= =∫ ∫AHB BHAd d
 

 Resonance integral  (25.5d)

The parameter α is called a Coulomb integral. It is negative 

and can be interpreted as the energy of the electron when it 

occupies A (for αA) or B (for αB). In a homonuclear diatomic 

molecule, αA = αB. The parameter β is called a resonance inte-

gral (for classical reasons). It vanishes when the orbitals do 

not overlap, and at equilibrium bond lengths it is normally 

negative.

B ecause ψ ψ τ ψ ψ τn n n n nH E* *
′ ′ ′=∫ ∫d d�  and ψ ψ τn nE*

0 ′∫ =d

E n n0 ψ ψ τ*∫ ′d , we write

�ψ ψ τ ψ ψ τn n n n nH E E E* *( ) ( )− = −∫ ∫0 0′ ′ ′d d

and

E E c c E E
n n

n n n n n− = ∑ − ∫
=

0 0
,

* *( )
′

′ ′ ′

′

ψ ψ τd

  0 unless n n� �� ��

The eigenfunctions are orthogonal, so only n′ = n contributes 

to this sum, and as each eigenfunction is normalized, each 

integral is 1. Consequently

E E c c E En n n− = ∑ − ≥
≥ ≥

0 0 0
n

* ( )

0 0
��� ��

That is, E ≥ E0, as we set out to prove.

1 The name ‘secular’ is derived from the Latin word for age or generation. 

The term comes from astronomy, where the same equations appear in con-

nection with slowly accumulating modifications of planetary orbits.

Justification 25.2 The variation principle applied  
to a heteronuclear diatomic molecule

The trial wavefunction in eqn 25.1 is real but not normalized 

because at this stage the coefficients can take arbitrary val-

ues. Therefore, we can write ψ* = ψ but we do not assume that 

∫ =ψ τ2 1d . When a wavefunction is not normalized, we write 

the expression for the energy (Topic 7) as

� �
E = ⎯ →⎯⎯∫

∫
∫
∫

ψ ψ τ

ψ ψ τ

ψ ψ τ

ψ τ

Η Η
ψ

*

*

d

d

d

d

real

2

  

 Energy  (25.6)

We now search for values of the coefficients in the trial func-

tion that minimize the value of E. This is a standard problem 

in calculus, and is solved by finding the coefficients for which

∂
∂ = ∂

∂ =E

c

E

cA B

0 0

The first step is to express the two integrals in eqn 25.6 in 

terms of the coefficients. The denominator is

ψ τ τ

τ τ τ

2 2

2 2 2 2 2

d d

d d c d

A B

A B A B

= +

= + +

∫ ∫

∫ ∫ ∫

( )c A c B

c A c B c AB

1 1��� ���� S��� ��
= + +c c c SA B A Bc2 2 2

because the individual atomic orbitals are normalized and the 

third integral is the overlap integral S (eqn 24.3). The numerator is

� �

�

ψ ψ τ τ

τ τ

α

H d d

d d

A B A B

A B

= + +

= +

∫ ∫

∫

( ) ( )c A c B H c A c B

c AHA c BHB2 2

A� �� ��

∫∫ ∫ ∫+ +

α β β

τ τ

B� �� �� � �� �� � �� ��
c AHB c BHAA B A Bc d c d� � �

 

With the integrals written as shown (the two β integrals are 

equal by hermiticity, Topic 6), the numerator is

�ψ ψ τ α α βH c c cd cA A B B A B= + +∫ 2 2 2

At this point we can write the complete expression for E as

E
c c c

c c c S
=

+ +
+ +

A A B B A B

A B A B

c

c

2 2

2 2

2

2

α α β

Its minimum is found by differentiation with respect to the 

two coefficients and setting the results equal to 0. After some 

straightforward work we obtain

∂
∂ =

− + −
+ +

∂
∂ = − +

E

c

E c SE c

c c c S

E

c

E c
A

A A B

A B A B

B

B B

c

2

2

2

2 2

{( ) ( ) }

{( ) (

α β

α ββ −
+ +

SE c

c c c S

) }A

A B A Bc2 2 2
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228 6 Molecular structure

To solve the secular equations for the coefficients we need to 

know the energy E of the orbital. As for any set of simultaneous 

equations (Mathematical background 5), the secular equations 

have a solution if the secular determinant, the determinant of 

the coefficients, is zero; that is, if

α β
β α

α α β

β α α

A

B
A B

2 2
A B(1 ) 2

− −
− −

= − − − −

= + +

E SE

SE E
E E SE

S E S

( )( ) ( )

{ (

2

− − ))}

( )

E

+
=

α α βA B
2−

0  

(25.7)

This quadratic equation has two roots that give the energies of 

the bonding and antibonding molecular orbitals formed from 

the atomic orbitals:

E
S S S

S± =
+ − ± + − − −

−
α α β α α β α βαA B A B A B2 2 4 1

2 1

2 2 2 1 2

2

{( ) ( )( )}

( )

/−

 (25.8a)

This expression becomes more transparent in two cases. For a 

homonuclear diatomic molecule we can set αA =  αB = α and obtain

E

S S S

±

−

=

− ± − − −
⎧
⎨2 2 2 2 4 12 2 2 2α β α β α β

β α

( ) ( )( )−
(2 2 )2S� ������ ������⎪⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
−

= − ± −
+ −

=

+ −

1 2

22 1

1 1

/

)(

( )

( )

( )( )

(

S

S S

S S

(1 1 )S S

��� 	�

α β β α αα β±
+ −

)( )

( )( )

1

1 1

∓S

S S

and therefore

E
S

E
S+ −=

+
+

= −
−

α β α β
1 1

 

For β < 0, E+ is the lower-energy solution. For heteronuclear 

diatomic molecules we can make the approximation that S = 0 

(simply to get a more transparent expression), and find

E± = +

± − +
−

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1
2

1
2

2
1 2

1
2

( )

( )

/

α α

α α β
α α

A B

A B
A B

 

(b) The features of the solutions

An important feature of eqn 25.8c is that as the energy dif-

ference |αA − αB| between the interacting atomic orbitals 

increases, the bonding and antibonding effects decrease (Fig. 

25.4). Thus, when |αA − αB| � 2|β| we can make the approxima-

tion ( ) /1 11 2+ +x x≈ 1
2

 and obtain from eqn 25.8c

E E+ −≈ +
−

≈ −
−

α β
α α

α β
α αA

A B
B

A B

2 2

 
(25.9)

As these expressions show, and as can be seen from the graph, 

when the energy difference is very large, the energies of the 

resulting molecular orbitals differ only slightly from those of 

the atomic orbitals, which implies in turn that the bonding and 

antibonding effects are small. That is:

The strongest bonding and antibonding effects 

are obtained when the two contributing 

orbitals have closely similar energies.

For the derivatives to be equal to 0, the numerators of these 

expressions must vanish. That is, we must find values of cA and 

cB that satisfy the conditions

( ) ( )

( ) ( )

α β
α β

A A B

B B A

− + − =
− + − =

E c SE c

E c SE c

0

0

which are the secular equations (eqn 25.5).

Homonuclear 
diatomic 
molecules

(25.8b)

Zero overlap 
approxi mation 

(25.8c) Orbital 
contribution 
criterion

Brief illustration 25.3 Heteronuclear diatomic molecules 2

In Brief illustration 25.1 we estimated the H1s and F2p orbital 

energies in HF as −7.2 eV and −10.4 eV, respectively. Therefore 

we set αH = −7.2 eV and αF = −10.4 eV. We take β = −1.0 eV as a 

typical value and S = 0. Substituting these values into eqn 25.8c 

gives

E± = − − ± − + + −
− +

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

/ ( . . ) ( . . )
.

. .
eV 1

2
1
2

2

7 2 10 4 7 2 10 4 1
2 0

7 2 10 4⎩⎩⎪

⎫
⎬
⎪

⎭⎪
= − ± = − −

1 2

8 8 1 9 10 7 6 9

/

. . . . and 
 

These values, representing a bonding orbital at −10.7 eV and 

an antibonding orbital at −6.9 eV, are shown in Fig. 25.3.

Self-test 25.3 Use S = 0.20 (a typical value), to find the two 

energies.

Answer: E+ = −10.8 eV, E− = −7.1 eV

7.
2 

eV

6.
9 

eV

10
.7

 e
V

10
.4

 e
V

Ionization limit

H1s

F2p
0.28χH + 0.96χF

0.96χH – 0.28χF

Figure 25.3 The estimated energies of the atomic orbitals 
in HF and the molecular orbitals they form.
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25 Heteronuclear diatomic molecules  229

The difference in energy between core and valence orbitals is 

the justification for neglecting the contribution of core orbitals 

to bonding. The core orbitals of one atom have a similar energy 

to the core orbitals of the other atom; but core–core interaction 

is largely negligible because the overlap between them (and 

hence the value of β) is so small.

The values of the coefficients in the linear combination in 

eqn 25.5 are obtained by solving the secular equations using the 

two energies obtained from the secular determinant. The lower 

energy, E+, gives the coefficients for the bonding molecular 

orbital, and the upper energy, E−, the coefficients for the anti-

bonding molecular orbital. The secular equations give expres-

sions for the ratio of the coefficients. Thus, the first of the two 

secular equations in eqn 25.5a, (αA – E)cA+(β – ES)cB = 0, gives

c
E

ES
cB

A
A=− −

−
⎛
⎝⎜

⎞
⎠⎟

α
β

 

(25.10)

The wavefunction should also be normalized. This condition 

means that the term c c c SA B A B
2 2 2+ + c  established in Justification 

25.2 must satisfy

c c c c SA B A B
2 2 2 1+ + =

 
(25.11)

When the preceding relation is substituted into this expression, 

we find

c

E

ES
S

E

ES

A

A A

=

+ −
−

⎛
⎝⎜

⎞
⎠⎟

− −
−

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1

1 2

2
1 2

α
β

α
β

/

 

(25.12)

which, together with eqn 25.10, gives explicit expressions for 

the coefficients once we substitute the appropriate values of 

E = E± given in eqn 25.8a. As before, this expression becomes 

more transparent in two cases. First, for a homonuclear dia-

tomic molecule, with αA = αB = α and E± given in eqn 25.8b we 

find

E
S

c
S

c c+ =
+
+

=
+

=
α β
1

1

2 1 1 2A B A{ ( )} /

 

E
S

c
S

c c− = −
−

=
−

= −α β
1

1

2 1 1 2A B A{ ( )} /

 

For a heteronuclear diatomic molecule with S = 0, the coeffi-

cients for the orbital with energy E+ are given by

c

E

c

E

A

A

B

A

=

+ −⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

=

+
−

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬+

+

1

1

1

1

2
1 2

2α
β

β
α

/

⎪⎪

⎭⎪

1 2/

 

  Zero overlap approximation  (25.14a)

and those for the energy E− are

c

E

c

E

A

A

B

A

=

+ −⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

= −
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−

⎛
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⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
−

−

1

1

1

1

2
1 2

2α
β

β
α

/

⎬⎬
⎪

⎭⎪

1 2/

 

  Zero overlap approximation  (25.14b)

with the values of E± taken from eqn 25.8c.

Homonuclear 
diatomic 
molecules

(25.13a)

(25.13b)

0

0 2

2

4

4

6

6

8 10

–2
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|αA – αB|/|αA + αB|

E
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A
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 α
B
| –

 1
/2
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E–

Figure 25.4 The variation of the energies of the molecular 
orbitals as the energy difference of the contributing atomic 
orbitals is changed. The plots are for β = −1; the blue lines are 
for the energies in the absence of mixing (that is, β = 0).

Brief illustration 25.4 Heteronuclear diatomic molecules 3

Here we continue Brief illustration 25.3 using HF. With 

αH = −7.2 eV, αF = −10.4 eV, β = −1.0 eV, and S = 0 the two orbital 

energies were found to be E+ = −10.7 eV and E− = −6.9 eV. When 

these values are substituted into eqn 25.14 we find the follow-

ing coefficients:

E+ = −10.7 eV   ψ+ = 0.28χH + 0.96χF

E− = −6.9 eV     ψ− = 0.96χH − 0.28χF

Notice that the lower-energy orbital (the one with energy  

−10.7 eV) has a composition that is more F2p orbital than H1s, 

and that the opposite is true of the higher-energy, antibonding 

orbital.

Self-test 25.4 Find the energies and forms of the σ orbitals in 

the HCl molecule using β = −1.0 eV and S = 0. Use data from 

Tables 20.2 and 20.3.

Answer: E+ = −8.9 eV, E− = −6.6 eV; ψ− = 0.86χH − 0.51χCl; 

ψ+ = 0.51χH+0.86χCl

Atkins09819.indb   229 9/11/2013   11:33:54 AM



230 6 Molecular structure

Checklist of concepts

☐ 1. A polar bond can be regarded as arising from a molec-

ular orbital that is concentrated more on one atom than 

on its partner.

☐ 2. The electronegativity of an element is a measure of the 

power of an atom to attract electrons to itself when it is 

part of a compound.

☐ 3. The variation principle provides a criterion of accept-

ability of an approximate wavefunction.

☐ 4. A basis set refers to the given set of atomic orbitals from 

which the molecular orbitals are constructed.

☐ 5. The bonding and antibonding effects are strong-

est when contributing atomic orbitals have similar 

energies.

Checklist of equations

Property Equation Comment Equation number

Molecular orbital ψ = cAA+cBB 25.1

Pauling electronegativity | | { ( ) [ ( ) ( )]} /χ χA B
1 2AB AA BB− −= +D D D0

1
2 0 0

25.2

Mulliken electronegativity χ = +1
2

( )I Eea 25.3

Coulomb integral α τA =∫ AHA d� 25.5c

Resonance integral
β τ τ= =∫ ∫AHB BHAd d� � 25.5d

Energy �E H=∫ ∫ψ ψ τ ψ τd d2 Unnormalized real wavefunction 25.6
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TOPIC 26

Polyatomic molecules

The molecular orbitals of polyatomic molecules are built in the 

same way as in diatomic molecules (Topics 24 and 25), the only 

difference being that more atomic orbitals are used to construct 

them. As for diatomic molecules, polyatomic molecular orbit-

als spread over the entire molecule. A molecular orbital has the 

general form

ψ χ=∑
o

o oc

 

 General form of LCAO  (26.1)

where χo is an atomic orbital and the sum extends over all the 

valence orbitals of all the atoms in the molecule. To find the 

coefficients, we set up the secular equations and the secular 

determinant, just as for diatomic molecules, solve the latter for 

the energies, and then use these energies in the secular equa-

tions to find the coefficients of the atomic orbitals for each 

molecular orbital.

The principal difference between diatomic and polyatomic 

molecules lies in the greater range of shapes that are possi-

ble: a diatomic molecule is necessarily linear, but a triatomic 

molecule, for instance, may be either linear or angular (bent) 

with a characteristic bond angle. The shape of a polyatomic 

molecule—the specification of its bond lengths and its bond 

angles—can be predicted by calculating the total energy of 

the molecule for a variety of nuclear positions, and then 

identifying the conformation that corresponds to the low-

est energy. Such calculations are best done using the latest 

software, but a more primitive approach gives useful insight 

for conjugated polyenes, in which there is an alternation of 

single and double bonds along a chain of carbon atoms and 

on which we focus here, and sets the scene for more sophisti-

cated approaches.

The planarity of conjugated polyenes is an aspect of their 

symmetry, and considerations of molecular symmetry play a 

vital role in setting up molecular orbitals. In the present case, 

planarity provides a distinction between the σ and π orbitals of 

the molecule, and in elementary approaches such molecules are 

commonly discussed in terms of the characteristics of their π 

orbitals, with the σ bonds providing an unchanging underlying 

scaffolding, which forms a rigid framework that determines the 

general shape of the molecule.

Contents

26.1 The Hückel approximation 232

(a) An introduction to the method 232

Brief illustration 26.1: Ethene 232

(b) The matrix formulation of the method 232

Example 26.1: Finding molecular orbitals by matrix 

diagonalization 233

26.2 Applications 234

(a) Butadiene and π-electron binding energy 234

Example 26.2: Estimating the delocalization  

energy 235

(b) Benzene and aromatic stability 235

Example 26.3: Judging the aromatic character  

of a molecule 236

Checklist of concepts 237
Checklist of equations 237

 ➤ Why do you need to know this material?

Most molecules of interest in chemistry are polyatomic, so it 
is important to be able to discuss their electronic structure. 
Although sophisticated computational procedures are 
now widely available, to understand them it is helpful to 
see how they emerged from the more primitive approach 
described here.

 ➤ What is the key idea?
Molecular orbitals can be expressed as linear combinations 
of all the atomic orbitals of the appropriate symmetry.

 ➤ What do you need to know already?
This Topic extends the approach used for heteronuclear 
diatomic molecules in Topic 25, particularly the concepts 
of secular determinants and secular equations. The 
principal mathematical technique used is matrix algebra 
(Mathematical background 5); you should be, or become, 
familiar with the use of mathematical software to 
manipulate matrices numerically.
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232 6 Molecular structure

26.1 The Hückel approximation

The π molecular orbital energy level diagrams of conjugated 

molecules can be constructed using a set of approxima-

tions suggested by Erich Hückel in 1931. All the C atoms are 

treated identically, so all the Coulomb integrals α (eqn 25.5c, 

α τA =∫ AHAd� ) for the atomic orbitals that contribute to the 

π orbitals are set equal. For example, in ethene, which we use 

to introduce the method, we take the σ bonds as fixed, and 

concentrate on finding the energies of the single π bond and its 

companion antibond.

(a) An introduction to the method
We express the π orbitals as LCAOs of the C2p orbitals that lie 

perpendicular to the molecular plane. In ethene, for instance, 

we would write

ψ = +c A c BA B  (26.2)

where the A is a C2p orbital on atom A, and so on. Next, the 

optimum coefficients and energies are found by the variation 

principle as explained in Topic 25. That is, we solve the secu-

lar determinant, which in the case of ethene is eqn 25.7 with 

αA = αB = α:

α β
β α

− −
− −

=
E ES

ES E
0

 

(26.3)

and where β is the resonance integral (eqn 25.5d, β τ=∫ AHBd� )  

and S is the overlap integral (eqn 24.3, S AB=∫ dτ ). In a mod-

ern computation all the resonance integrals and overlap inte-

grals would be included, but an indication of the molecular 

orbital energy level diagram can be obtained very readily if we 

make the following additional Hückel approximations:

All overlap integrals are set equal to zero.

All resonance integrals between non-neighbours 

are set equal to zero.

All remaining resonance integrals are set equal 

(to β).

These approximations are obviously very severe, but they let 

us calculate at least a general picture of the molecular orbital 

energy levels with very little work. The assumptions result in 

the following structure of the secular determinant:

All diagonal elements: α – E.

Off-diagonal elements between neighbouring atoms: β.

All other elements: 0.

These approximations convert eqn 26.3 to

α β
β α

α β α β α β
−

−
= − − = − + − − =

E

E
E E E( ) ( )( )2 2 0

 

 (26.4)

The roots of the equation are E± = α ± β. The + sign corresponds 

to the bonding combination (β is negative) and the – sign cor-

responds to the antibonding combination (Fig. 26.1).

The building-up principle leads to the configuration 1π2, 

because each carbon atom supplies one electron to the π system. 

The highest occupied molecular orbital in ethene, its HOMO, 

is the 1π orbital; the lowest unoccupied molecular orbital, its 

LUMO, is the 2π orbital (or, as it is sometimes denoted, the 2π* 

orbital). These two orbitals jointly form the frontier orbitals of 

the molecule. The frontier orbitals are important because they 

are largely responsible for many of the chemical and spectro-

scopic properties of the molecule.

(b) The matrix formulation of the method
In preparation for making Hückel theory more sophisticated 

and readily applicable to bigger molecules, we need to reformu-

late it in terms of matrices and vectors (see Mathematical back-

ground 5). Our starting point is the pair of secular equations 

developed for a heteronuclear diatomic molecule in Topic 25:

( ) ( )

( ) ( )

α β
β α

A A B

A B B

− + − =
− + − =

E c ES c

ES c E c

0

0  

H
ü

ck
e

l 
ap

p
ro

xi
m

at
io

n

Brief illustration 26.1 Ethene

We can estimate that the π* ← π excitation energy of ethene is 

2|β|, the energy required to excite an electron from the 1π to 

the 2π orbital. This transition occurs at close to 40 000 cm−1, 

corresponding to 4.8 eV. It follows that a plausible value of β is 

about –2.4 eV (–230 kJ mol−1).

Self-test 26.1 The ionization energy of ethane is 10.5 eV. 

Estimate α.

Answer: –8.1 eV

C2p C2p

1π

2π

α + β

α – β

Figure 26.1  The Hückel molecular orbital energy levels of 
ethene. Two electrons occupy the lower π orbital.
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26 Polyatomic molecules  233

To prepare to generalize this expression we write αJ = HJJ 

(with J = A or B), β = HAB, and label the overlap integrals with 

their respective atoms, so S becomes SAB. We can introduce 

more symmetry into the equations by replacing the E in αJ – E 

by ESJJ, with SJJ = 1. There is one further notational change. The 

coefficients cJ in the secular equations depend on the value of E, 

so we need to distinguish the two sets corresponding to the two 

energies, which we denote E1 and E2. We therefore write them 

as ci,J, with i = 1 (for energy E1) or 2 (for energy E2). With these 

notational changes, the two equations become

( ) ( ), ,H E S c H E S ci i i iAA AA A AB AB B− + − =0
 

(26.5a)

( ) ( ), ,H E S c H E S ci i i iBA BA A BB BB B− + − =0
 

(26.5b)

with i = 1 and 2, giving four equations in all. Each pair of equa-

tions can be written in matrix form as

H E S H E S

H E S H E S

c

c

i i

i i

i

i

AA AB

BA BB

A

B

− −
− −

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝⎜
⎞

⎠⎟
=AA AB

BA BB

,

,

0

 

because multiplying out the matrices gives eqn 26.5. If we 

introduce the following matrices and column vectors

H S c=
⎛

⎝⎜
⎞

⎠⎟
=

⎛

⎝⎜
⎞

⎠⎟
=

⎛

⎝⎜
⎞

⎠⎟
H H

H H

S S

S S

c

ci

i

i

AA AB

BA BB

AA AB

BA BB

A

B

,

,  

(26.6)

so that

H S− =
− −
− −

⎛

⎝⎜
⎞

⎠⎟
E

H E S H E S

H E S H E Si

i i

i i

AA AB

BA BB

AA AB

BA BB

then each pair of equations may be written more succinctly as

( )H S Hc Sc− E c Ei i i i i= =0  or  
 

(26.7)

As shown in the following Justification, the two sets of equa-

tions like these (with i = 1 and 2) can be combined into a single 

matrix equation by introducing the matrices

c c c E= =
⎛

⎝⎜
⎞

⎠⎟
=

⎛

⎝⎜
⎞

⎠⎟
( )

, ,

, ,
1 2

1 2

1 2

1

2

0

0

c c

c c

E

E

A A

B B
 

(26.8)

for then all four equations in eqn 26.7 are summarized by the 

single expression

Hc ScE=  (26.9)

In the Hückel approximation, HAA = HBB = α, HAB = HBA = β, 

and we neglect overlap, setting S = 1, the unit matrix (with 1 on 

the diagonal and 0 elsewhere). Then

Hc cE=

At this point, we multiply from the left by the inverse matrix 

c−1, use c−1c = 1, and find

c Hc E−1 =  (26.10)

In other words, to find the eigenvalues Ei, we have to find a 

transformation of H that makes it diagonal. This procedure is 

called matrix diagonalization. The diagonal elements then cor-

respond to the eigenvalues Ei and the columns of the matrix c 

that brings about this diagonalization are the coefficients of the 

members of the basis set, the set of atomic orbitals used in the 

calculation, and hence give us the composition of the molecu-

lar orbitals.

Justification 26.1 The matrix formulation

Substitution of the matrices into eqn 26.9 gives

H H

H H

c c

c c

S S

S S

AA AB

BA BB

A A

B B

AA AB

BA BB

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝⎜
⎞

⎠⎟
=

⎛

⎝⎜
⎞

⎠
1 2

1 2

, ,

, ,
⎟⎟

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝⎜
⎞

⎠⎟
c c

c c

E

E

1 2

1 2

1

2

0

0

, ,

, ,

A A

B B  

Example 26.1 Finding molecular orbitals by matrix 
diagonalization

Set up and solve the matrix equations within the Hückel 

approximation for the π orbitals of butadiene (1).

1 Butadiene

Method The matrices will be four-dimensional for this four-

atom system. Ignore overlap, and construct the matrix H by 

using the Hückel approximation and the parameters α and 

β. Find the matrix c that diagonalizes H: for this step, use 

The product on the left is

H H

H H

c c

c c

HH c H c

AA AB

BA BB

A A

B B

AAA A AB B

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝⎜
⎞

⎠⎟
=

+

1 2

1 2

1 1

, ,

, ,

, , AA A AB B

BA A BB B BA A BB B

c H c

H c H c H c H c

2 2

1 1 2 2

, ,

, , , ,

+
+ +

⎛

⎝⎜
⎞

⎠⎟

The product on the right is

S S

S S

c c

c c

E

E

S SAA AB

BA BB

A A

B B

AA A⎛

⎝⎜
⎞

⎠⎟
⎛

⎝⎜
⎞

⎠⎟
⎛

⎝⎜
⎞

⎠⎟
=1 2

1 2

1

2

0

0

, ,

, ,

BB

BA BB

A A

B B

AA A

S S

c E c E

c E c E

E S c E S

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝⎜
⎞

⎠⎟

=
+

1 1 2 2

1 1 2 2

1 1 1

, ,

, ,

, AAB B AA A AB B

BA A BB B BA A

c E S c E S c

E S c E S c E S c E S

1 2 2 2 2

1 1 1 1 2 2 2

, , ,

, , ,

+
+ + BBB Bc2,

⎛

⎝⎜
⎞

⎠⎟

Comparison of matching terms (such as those in blue) re-

creates the four secular equations (two for each value of i).
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234 6 Molecular structure

26.2 Applications

Although the Hückel method is very primitive, it can be 

used to account for some of the properties of conjugated 

polyenes.

(a) Butadiene and π-electron binding energy
As we saw in Example 26.1, the energies of the four LCAO-

MOs for butadiene are

E = ± ±α β α β1 62 62. , .0
 

(26.11)

These orbitals and their energies are drawn in Fig. 26.2. Note 

that the greater the number of internuclear nodes, the higher 

the energy of the orbital. There are four electrons to accommo-

date, so the ground-state configuration is 1π22π2. The frontier 

orbitals of butadiene are the 2π orbital (the HOMO, which is 

largely bonding) and the 3π orbital (the LUMO, which is largely 

antibonding). ‘Largely’ bonding means that an orbital has both 

bonding and antibonding interactions between various neigh-

bours, but the bonding effects dominate. ‘Largely antibonding’ 

indicates that the antibonding effects dominate.

An important point emerges when we calculate the total 

π-electron binding energy, Eπ, the sum of the energies of each 

π electron, and compare it with what we find in ethene. In 

ethene the total energy is

Eπ = + = +2 2 2( )α β α β
 

C2p

α + 1.62β

α + 0.62β

α – 1.62β

α – 0.62β

1π

2π

3π

4π

+

+

+

+ +

+

+

+ + +

–

––

– –

–

Figure 26.2 The Hückel molecular orbital energy levels of 
butadiene and the top view of the corresponding π orbitals. 
The four p electrons (one supplied by each C) occupy the two 
lower π orbitals. Note that the orbitals are delocalized.

mathematical software. Full details are given in Mathematical 

background 5.

Answer

H =

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

H H

H H

H H

H H

H H

H H

H H

H H

11 12

21 22

13 14

23 24

31 32

41 42

33 34

43 44

⎟⎟
⎟
⎟
⎟

⎯ →⎯⎯⎯⎯

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟

Huckel

approximation

��
α β
β α β

β α β
β α

0 0

0

0

0 0

⎟⎟
⎟

We write this matrix as

H = +

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

α β1

0 1

1 0

0 0

1 0

0 1

0 0

0 1

1 0

because most mathematical software can deal only with 

numerical matrices. The diagonalized form of the second 

matrix is

+
+

−
−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1 62

0 62

1 62

0 0 0

0 0 0

0 0 0

0 0 0

.

.

.

0.62

 so we can infer that the diagonalized hamiltonian matrix is

E =

+
+

−
−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

α β
α β

α β
α β

1 62 0 0 0

0 0 62 0 0

0 0 0 62 0

0 0 0 1 62

.

.

.

.

The matrix that achieves the diagonalization is

c =

−
−

− −

0 372 0 602 0 602 0 372

0 602 0 372 0 372 0 602

0 602 0 372 0

. . . .

. . . .

. . .3372 0 602

0 372 0 602 0 602 0 372

−
−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

.

. . . .

with each column giving the coefficients of the atomic orbitals 

for the corresponding molecular orbital. We can conclude that 

the energies and molecular orbitals are

E

E

1 1 A B C D

2 2

1 62 372 6 2 6 2 372

62

= + = + + +
= + =

α β ψ χ χ χ χ
α β ψ

. . . . .

.

0 0 0 0 0 0

0 0.. . . .

. . .

6 2 372 372 6 2

62 6 2 372

A B C D

3 3 A

0 0 0 0 0

0 0 0 0

χ χ χ χ
α β ψ χ χ

+ − −
= − = −E BB C D

4 4 A B C

372 6 2

1 62 372 6 2 6 2

− +
= − = − + − +

0 0 0

0 0 0 0 0 0

. .

. . . . .

χ χ
α β ψ χ χ χE 3372 Dχ

where the C2p atomic orbitals are denoted by χA, …, χD. Note 

that the molecular orbitals are mutually orthogonal and, with 

overlap neglected, normalized.

Self-test 26.2 Repeat the exercise for the allyl radical, 

⋅CH2eCHaCH2.

Answer: E = α + 1.41β, α , α – 1.41β; ψ1  =  0.500χA + 0.707χB  +  0.500χC, 

ψ2  =  0.707χA  −  0.707χC, ψ3  =  0.500χA − 0.707χB  +  0.500χC
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26 Polyatomic molecules  235

In butadiene it is

Eπ = + + + = +2 1 62 2 62 4 4 48( . ) ( . ) .α β α β α β0

Therefore, the energy of the butadiene molecule lies lower 

by 0.48β (about 110 kJ mol−1) than the sum of two individual  

π bonds. This extra stabilization of a conjugated system com-

pared with a set of localized π bonds is called the delocaliza-

tion energy of the molecule.

A closely related quantity is the π-bond formation energy, 

Ebf, the energy released when a π bond is formed. Because the 

contribution of α is the same in the molecule as in the atoms, 

we can find the π-bond formation energy from the π-electron 

binding energy by writing

E E Nbf C= −π α
 

Definition  π-bond formation energy  (26.12)

where NC is the number of carbon atoms in the molecule. The 

π-bond formation energy in butadiene, for instance, is 4.48β.

(b) Benzene and aromatic stability

The most notable example of delocalization conferring extra 

stability is benzene and the aromatic molecules based on its 

structure. In elementary accounts, benzene and other aromatic 

compounds are often described in a mixture of valence-bond 

and molecular orbital terms, with typically valence-bond lan-

guage used for its σ framework and molecular orbital language 

used to describe its π electrons.

First, consider the valence-bond component. The six C atoms 

are regarded as sp2 hybridized, with a single unhybridized per-

pendicular 2p orbital. One H atom is bonded by (Csp2,H1s) 

overlap to each C carbon, and the remaining hybrids overlap 

to give a regular hexagon of atoms (Fig. 26.3). The internal 

angle of a regular hexagon is 120°, so sp2 hybridization is ideally 

suited for forming σ bonds. We see that the hexagonal shape of 

benzene permits strain-free σ bonding.

Now consider the molecular orbital component of the 

description. The six C2p orbitals overlap to give six π orbitals 

that spread all round the ring. Their energies are calculated 

within the Hückel approximation by diagonalizing the hamil-

tonian matrix

H =

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

α β
β α β

β α

β

β
β

β

α β
β α β

β α

α

0

0

0 0

0 0 0

0 0

0 0

0 0 0

0 0

0

0

11

0 1 0

1 0 1

0 1 0

0 0 1

0 0 0

1 0 0

0 0 1

0 0 0

1 0 0

0 1 0

1 0 1

0 1 0

+

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

β DDiagonalize⎯ →⎯⎯⎯

⎛

⎝

2 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 2

−
−

−

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

The MO energies, the eigenvalues of this matrix, are simply

E = ± ± ±α β α β α β2 , ,
 

(26.13)

Example 26.2 Estimating the delocalization energy

Use the Hückel approximation to find the energies of the π 

orbitals of cyclobutadiene (2), and estimate the delocalization 

energy.

2 Cyclobutadiene

Method Set up the secular determinant using the same basis 

as for butadiene, but note that atoms A and D are also now 

neighbours. Then solve for the roots of the secular equation 

and assess the total π-bond energy. For the delocalization 

energy, subtract from the total π-bond energy the energy of 

two π bonds.

Answer The hamiltonian matrix is

H =

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= +

⎛

⎝

⎜
⎜
⎜
⎜

⎞α β
β α

β
β

β
β

α β
β α

α β

0

0

0

0

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0

1

⎠⎠

⎟
⎟
⎟
⎟

⎯ →⎯⎯⎯

−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Diagonalize

2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 2

Diagonalization gives the energies of the orbitals as

E = + −α β α α α β2 2, , ,

Four electrons must be accommodated. Two occupy the lowest 

orbital (of energy α + 2β), and two occupy the doubly degener-

ate orbitals (of energy α). The total energy is therefore 4α + 4β. 

Two isolated π bonds would have an energy 4α + 4β; therefore, 

in this case, the delocalization energy is zero and there is no 

extra stability arising from delocalization.

Self-test 26.3 Repeat the calculation for benzene (use 

software!).

Answer: See next subsection
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236 6 Molecular structure

as shown in Fig. 26.4. The orbitals there have been given sym-

metry labels that are explained in Topic 32. Note that the low-

est energy orbital is bonding between all neighbouring atoms, 

the highest energy orbital is antibonding between each pair 

of neighbours, and the intermediate orbitals are a mixture of 

bonding, nonbonding, and antibonding character between 

adjacent atoms.

The simple form of the eigenvalues in eqn 26.13 suggests that 

there is a more direct way of determining them than by using 

mathematical software. That is in fact the case, for symmetry 

arguments of the kind described in Topic 32 show that the 6 × 6 

matrix can be factorized into two 1 × 1 matrices and two 2 × 2 

matrices, which are very easy to deal with.

We now apply the building-up principle to the π system. 

There are six electrons to accommodate (one from each C 

atom), so the three lowest orbitals (a2u and the doubly degen-

erate pair e1g) are fully occupied, giving the ground-state con-

figuration a eu g2
2

1
4 . A significant point is that the only molecular 

orbitals occupied are those with net bonding character.

The π-electron energy of benzene is

E = + + + = +2 2 4 6 8( ) ( )α β α β α β

If we ignored delocalization and thought of the molecule as 

having three isolated π bonds, it would be ascribed a π-electron 

energy of only 3(2α + 2β) = 6α + 6β. The delocalization energy, 

the difference between the π-electron energy and the energy 

of the same molecule with localized π bonds, is therefore 

2β ≈ –460 kJ mol−1, which is considerably more than for butadi-

ene. The π-bond formation energy in benzene is 8β.

This discussion suggests that aromatic stability can be traced 

to two main contributions. First, the shape of the regular hexa-

gon is ideal for the formation of strong σ bonds: the σ frame-

work is relaxed and without strain. Second, the π orbitals are 

such as to be able to accommodate all the electrons in bonding 

orbitals, and the delocalization energy is large.

Example 26.3 Judging the aromatic character  
of a molecule

Decide whether the molecules C4H4 and the molecular ion 

C H4 4
2+ are aromatic when planar.

Method Follow the procedure for benzene. Set up and solve the 

secular equations within the Hückel approximation, assum-

ing a planar σ framework, and then decide whether the ion has 

nonzero delocalization energy. Use mathematical software to 

diagonalize the hamiltonian (in Topic 32 it is shown how to use 

symmetry to arrive at the eigenvalues more simply.)

Answer It follows from Example 26.2 that the energy lev-

els of the two species are E = α ± 2β, α , α . Because there are 

four π electrons to accommodate in C4H4, its total π-bonding 

energy is 2(α + 2β) + 2α = 4(α + β). The energy of two localized 

π bonds is also 4(α + β). Therefore, the delocalization energy 

is zero and the molecule is not aromatic. There are only two 

π electrons to accommodate in C H4 4
2+ , so the total π-bonding 

energy is 2(α + 2β) = 2α + 4β. The energy of a single localized 

π bond is 2(α + β), so the delocalization energy is 2β and the 

molecular ion is aromatic.

Self-test 26.4 What is the total π-bonding energy of C H3 3
− ?

Answer: [4α + 2β]

C

H

Figure 26.3 The σ framework of benzene is formed by 
the overlap of Csp2 hybrids, which fit without strain into a 
hexagonal arrangement.

b2g

e2u

e1g

a2u

+

+
+

+

+ +
+ + +

+

+
+

++ +

+

+

+

–
–

–

–

–

–

––
–

– –

–

–

–

Figure 26.4 The Hückel orbitals of benzene and the 
corresponding energy levels. The symmetry labels are 
explained in Topic 32. The bonding and antibonding character 
of the delocalized orbitals reflects the numbers of nodes 
between the atoms. In the ground state, only the net bonding 
orbitals are occupied.
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26 Polyatomic molecules  237

Checklist of concepts

☐ 1. The Hückel method neglects overlap and interactions 

between atoms that are not neighbours.

☐ 2. The Hückel method may be expressed in a compact 

manner by introducing matrices.

☐ 3. The π-bond formation energy is the energy released 

when a π bond is formed.

☐ 4. The π-electron binding energy is the sum of the ener-

gies of each π electron.

☐ 5. The delocalization energy is the difference between the 

π-electron energy and the energy of the same molecule 

with localized π bonds.

☐ 6. The highest occupied molecular orbital (HOMO) and 

the lowest unoccupied molecular orbital (LUMO) form 

the frontier orbitals of a molecule.

☐ 7. The stability of benzene arises from the geometry of the 

ring and the high delocalization energy.

Checklist of equations

Property Equation Comment Equation number

Linear combination of atomic orbitals (LCAO)
ψ χ=∑

o

o oc
χo are atomic orbitals 26.1

Hückel equations Hc = ScE Hückel approximation: S = 1 26.9

Diagonalization c−1Hc = E Hückel approximation: S = 1 26.10

π-Bond formation energy Ebf = Eπ – NCα Hückel approximation: S = 1 26.12
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TOPIC 27

Self-consistent fields

The field of computational chemistry, the use of computers 

to predict molecular structure and reactivity, has grown in the 

past few decades due to the tremendous advances in computer 

hardware and to the development of efficient software pack-

ages. The latter are now applied routinely to compute molecular 

properties in a wide variety of chemical applications, includ-

ing pharmaceuticals and drug design, atmospheric and envi-

ronmental chemistry, nanotechnology, and materials science. 

Many software packages have sophisticated graphical interfaces 

that permit the visualization of results. The maturation of the 

field of computational chemistry was recognized by the award-

ing of the 1998 Nobel Prize in Chemistry to J.A. Pople and 

W. Kohn for their contributions to the development of compu-

tational techniques for the elucidation of molecular structure 

and reactivity.

27.1 The central challenge

The goal of electronic structure calculations in computational 

chemistry is the solution of the electronic Schrödinger equa-

tion, �HΨ = ΕΨ , where E is the electronic energy and Ψ is the 

many-electron wavefunction, a function of the coordinates of all 

the electrons and the nuclei. To make progress, we invoke at the 

outset the Born–Oppenheimer approximation and the separa-

tion of electronic and nuclear motion (Topic 22). The electronic 

hamiltonian is

H
m

i

N

i

i

N

I

N

� =− ∇ −
= = =

∑ ∑
� �� ��

2

1

2

1 1
2 e

e e

Kinetic energy
of electrons

nn e

∑ +
≠

Z e

r
I

Ii i j

N
2

04

1

2πε

Their attraction
to all the nuclei� ��� ���

∑∑ e

rij

2

04πε

Their mutual
repulsion� ��� ���

where rIi is the distance from electron i to nucleus I of charge 

Ze and rij is the electron–electron separation. The factor of 1
2

 in 

the final sum ensures that each repulsion is counted only once. 

The combination e2/4πε0 occurs throughout computational 

Contents

27.1 The central challenge 238

Brief illustration 27.1: The hamiltonian 239

27.2 The Hartree–Fock formalism 239

Brief illustration 27.2: A many-electron  

wavefunction 240

Brief illustration 27.3: The Hartree–Fock equations 241

27.3 The Roothaan equations 242

Example 27.1: Setting up the Roothaan equations 242

Example 27.2: Finding the energy levels 243

Example 27.3: Establishing the integrals 244

Brief illustration 27.4: The integral notation 245

27.4 Basis sets 245

Brief illustration 27.5: Minimal basis sets 245

Checklist of concepts 247
Checklist of equations 247

 ➤ Why do you need to know this material?
Modern computational procedures for predicting molecular 
structure and reactivity are now widely available and used 
throughout chemistry. Like any tool, it is important to know 
its foundations.

 ➤ What is the key idea?
Numerical procedures in computational chemistry typically 
proceed by solving equations until they converge, that is, 
do not change on successive iterations.

 ➤ What do you need to know already?
This Topic develops the approach introduced in Topic 
26 and makes extensive use of matrix manipulations 
(Mathematical background 5). It is based on the variation 
principle (Topic 25).

The 
hamil-
tonian 

(27.1)
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27 Self-consistent fields  239

chemistry, and we shall denote it j0. Then the hamiltonian 

becomes

H
m

j
Z

r
j

ri

i

N

i

N

I

IiI

N

i j

N

ij

� = − ∇ − +
= = = ≠

∑ ∑ ∑ ∑2
2

1

0

1 1

02

1

2

1

e

e e n e

We shall use the following labels:

Another general point is that the theme we develop in the 

sequence of Brief illustrations and Examples in this and related 

Topics is aimed at showing explicitly how to use the equations 

that are presented and thereby give them a sense of reality. To 

do so, we shall take the simplest possible many-electron mole-

cule, dihydrogen (H2). Some of the techniques we introduce do 

not need to be applied to this simple molecule, but they serve 

to illustrate them in a simple manner and introduce problems 

that successive sections show how to solve. One consequence 

of choosing to develop a story in relation to H2, we have to 

confess, is that not all the illustrations are actually as brief as 

we would wish; but we decided that it was more important to 

show the details of each little calculation than to adhere strictly 

to our normal use of the term ‘brief ’. It is worthwhile to note 

however that, although we restrict our examples to H2, calcula-

tions on larger molecules using computational software based 

on methods described here and in related Topics may take only 

a few seconds.

It is hopeless to expect to find analytical solutions with a 

hamiltonian of the complexity of that shown in eqn 27.1, even 

for H2 with only a single electron–electron repulsion term, and 

the whole thrust of computational chemistry is to formulate 

and implement numerical procedures that give ever more reli-

able results.

27.2 The Hartree–Fock formalism

The electronic wavefunction of a many-electron molecule is a 

function of the positions of all the electrons, Ψ(r1,r2,…). To 

formulate one very widely used approximation, we build on 

the material in Topic 24, where in the MO description of H2 

it is supposed that each electron occupies an orbital and that 

the overall wavefunction can be written ψ(r1)ψ(r2)…. Note 

that this orbital approximation is quite severe and loses many 

of the details of the dependence of the wavefunction on the 

relative locations of the electrons. We do the same here, with 

two small changes of notation. To simplify the appearance of 

the expressions we write ψ(r1)ψ(r2)… as ψ(1)ψ(2)…. Next, we 

suppose that electron 1 occupies a molecular orbital ψa with 

spin α, electron 2 occupies the same orbital with spin β, and so 

on, and hence write the many-electron wavefunction Ψ as the 

product Ψ ψ ψ= a a
α β(1) 2( )....  The combination of a molecular 

Brief illustration 27.1 The hamiltonian

The notation we use for the description of H2 is shown in Fig. 
27.1. For this two-electron (Ne = 2), two-nucleus (Nn = 2) molecule 
the hamiltonian is

�H
m

j
r r r r

j

r
= − ∇ +∇ − + + +⎛

⎝⎜
⎞
⎠⎟

+2

1
2

2
2

0
1 2 1 2

0

122

1 1 1 1

e A A B B

( )

To keep the notation simple, we introduce the one-electron 

operator

�h
m

j
r ri i

i i

= − ∇ − +⎛
⎝⎜

⎞
⎠⎟

2
2

02

1 1

e A B

Species Label Number used

Electrons i and j = 1, 2, … Ne

Nuclei I = A, B, … Nn

Molecular orbitals, ψ m = a, b, … Nm*

Atomic orbitals used to 
construct the molecular 
orbitals (the ‘basis’), χ

o = 1, 2, … Nb

* The number occupied in the ground state

which should be recognized as the hamiltonian for electron i 

in an H2
+  molecule-ion. Then

� � �H h h
j

r
= + +1 2

0

12

We see that the hamiltonian for H2 is essentially that of each 

electron in an H2
+-like molecule-ion but with the addition of 

the electron–electron repulsion term.

Self-test 27.1 What additional terms are needed for the 

description of H3
−?

Answer: �h j r j r3 0 13 0 23+ +/ /

Electron 1

Electron 2

Nucleus A Nucleus B
RAB

r12

rA1

rA2

rB2

rB1

Figure 27.1 The notation used for the description of 
molecular hydrogen, introduced in Brief illustration 27.1 and 
used throughout the text.
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240 6 Molecular structure

orbital and a spin function, such as ψ a
α ( ),1  is called a spinor-

bital. For example, the spinorbital ψ a
α  should be interpreted as 

the product of the spatial wavefunction ψa and the spin state 

α, so

ψ ψa a
α ( ) ( ) ( )1 1 1

spinorbital
spatial
factor

spin
factor
 



= α

and likewise for the other spinorbitals. We shall consider only 

closed-shell molecules but the techniques we describe can be 

extended to open-shell molecules.

A simple product wavefunction does not satisfy the Pauli 

principle and change sign under the interchange of any pair of 

electrons (Topic 19). To ensure that the wavefunction does sat-

isfy the principle, we modify it to a sum of all possible permuta-

tions, using plus and minus signs appropriately:

Ψ ψ ψ ψ ψ ψ ψ= − +a a z a a zN Nα β β α β β( ) ( )e e1 2 2 1( ) ( ) ( ) ( )� � �

There are Ne! terms in this sum, and the entire sum can be rep-

resented by a determinant called a Slater determinant, for its 

expansion (see Mathematical background 5) generates the same 

alternating sum of terms:

Ψ
ψ ψ ψ
ψ ψ ψ

ψ

= 1
1 1 1

2 2 2
1 2( )

( ) ( ) ( )

( ) ( ) ( )

( )

! /N

N

a a z

a a z

a

e

e

α β β

α β β

α

�
�

� �
ψψ ψa zN Nβ β( ) ( )e e

�
�

�

 

The factor 1/(Ne!)
1/2 ensures that the wavefunction is normal-

ized if the component molecular orbitals ψm are normalized. 

To save the tedium of writing out large determinants, the 

wavefunction is normally written by using only its principal 

diagonal:

Ψ ψ ψ ψ= ( !) ( ) ( ) ( )/1 1 21 2/ e eN Na a z
α β β�

 
(27.2b)

According to the variation principle (Topic 25) the best form 

of Ψ is the one that corresponds to the lowest achievable energy 

as the ψ are varied; that is, we need the wavefunctions ψ that 

will minimize the expectation value ∫Ψ Ψ τΗ* d� . Because the 

electrons interact with one another, a variation in the form of 

ψa, for instance, will affect what will be the best form of all the 

other ψs, so finding the best form of the ψs is a far from trivial 

problem. However, D.R. Hartree and V. Fock showed that the 

optimum ψs each satisfy what is at first sight a very simple set 

of equations:

�f a a a1ψ ε ψ(1) 1= ( )
  Hartree–Fock equations  (27.3)

where �f1
 is called the Fock operator. This is the equation to 

solve to find ψa; there are analogous equations for all the other 

orbitals. This Schrödinger-like equation has the form we should 

expect (but its formal derivation is quite involved). Thus, �f1 has 

the following structure:

� �f h1 1=
+

 core hamiltonian for electron 1 

average Coulomb

( )

  repulsion from 

electrons 2 3  ( ) average 

corr
Coulomb, ,... V +

eection due to spin correlation ( )exchange

Coulomb

V

h V V�= + +1 eexchange  

By the core hamiltonian we mean the one-electron hamilto-

nian �h1  defined in Brief illustration 27.1 and representing the 

energy of electron 1 in the field of the nuclei. The Coulomb 

repulsion from all the other electrons contributes a term that 

acts as follows (Fig. 27.2):

�J j
rm a a m m( ) *1 1 1
1

2 20
12

2ψ ψ ψ ψ τ( ) ( ) ( ) ( )d= ∫
 

This integral represents the repulsion experienced by electron 

1 in orbital ψa from electron 2 in orbital ψm, where it is distrib-

uted with probability density ψm*ψm. There are two electrons in 

each orbital, so we can expect a total contribution of the form

V Ja

m

m aCoulomb

occ

ψ ψ( ) ( ) ( )
,

1 2 1 1= ∑ �

 

(27.5)

Slater 
determinant

(27.2a)

We should recognize the spin factor as that corresponding 

to a singlet state (eqn 19.2b, σ− = (1/21/2){αβ − βα}), so Ψ cor-

responds to two spin-paired electrons in ψa. Note that inter-

change of the electrons labelled 1 and 2 changes the sign of Ψ 

as required by the Pauli principle.

Self-test 27.2 Confirm that if any two rows of a Slater deter-

minant are interchanged, then the determinant changes sign.

Answer: Review properties of determinants, 

Mathematical background 5

P
h

ys
ic

al
 in

te
rp

re
ta

ti
o

n

Coulomb 
operator (27.4)

Brief illustration 27.2 A many-electron wavefunction

The Slater determinant for the ground state of H2 (Ne = 2) is

Ψ
ψ ψ
ψ ψ

= 1

2

1 1

2 21 2/

( ) ( )

( ) ( )

a a

a a

α β

α β

where both electrons occupy the molecular wavefunction ψa. 

Expansion of the determinant gives

Ψ ψ ψ ψ ψ

ψ ψ α β

= −{ }
=

1

2
1 2 2 1

1

2
1 2 1 2

1 2

1 2

/

/
( ) ( )

a a a a

a a

α β α β( ) ( ) ( ) ( )

( ) ( )−−{ }β α( ) ( )1 2
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27 Self-consistent fields  241

where the sum is over all the occupied orbitals, including orbital 

a. You should be alert to the fact that counting 2 for the orbital 

with m = a is incorrect, because electron 1 interacts only with 

the second electron in the orbital, not with itself. This error will 

be corrected in a moment. The spin correlation term takes into 

account the fact that electrons of the same spin tend to avoid 

each other (Topic 20) which reduces the net Coulomb interac-

tion between them. This contribution has the following form:

�K j
rm a m m a( ) ( ) ( ) ( ) ( )*1 1 1
1

2 20
12

2ψ ψ ψ ψ τ= ∫ d
 

For a given electron 1 there is only one electron of the same 

spin in all the occupied orbitals of the closed-shell species we 

are considering, so we can expect a total contribution of the 

form

V Ka

m

m aexchange

occ

ψ ψ( ) ( ) ( )
,

1 1 1= −∑ �

 

(27.7)

The negative sign reminds us that spin correlation keeps elec-

trons apart, and so reduces their classical, Coulombic repul-

sion. By collecting terms, we arrive at a specific expression for 

the effect of the Fock operator:

� � � �f h J Ka a

m

m m a1 11 1 2 1 1 1ψ ψ ψ( ) ( ) ( ) ( )( )
,

= + −{ }∑
occ  

(27.8)

This expression applies to all the molecular orbitals, but the 

sum extends over only the Nm occupied orbitals. Note that 
� �K Ja a a a( ) ( ) ( ) ( ),1 1  1 1ψ ψ=  so the term in the sum with m = a 

loses one of its �2Ja , which is the correction that avoids the elec-

tron repelling itself, which we referred to above.

Equation 27.8 reveals a second principal approximation of 

the Hartree–Fock formalism (the first being its dependence 

on the orbital approximation). Instead of electron 1 (or any 

other electron) responding to the instantaneous positions of 

the other electrons in the molecule through terms of the form 

1/r1j, it responds to an averaged location of the other electrons 

through integrals of the kind that appear in eqn 27.8. We say 

that the Hartree–Fock method ignores electron correlation, 

the instantaneous tendency of electrons to avoid one another to 

minimize repulsions. This failure to take into account electron 

correlation is a principal reason for inaccuracies in the calcula-

tions and leads to calculated energies that are higher than the 

‘true’ (that is, experimental) values.

Although eqn 27.8 is the equation we have to solve to find 

ψa, it implies that it is necessary to know all the other occu-

pied wavefunctions in order to set up the operators �J  and �K  

and hence to find ψa. To make progress with this difficulty, we 

can guess the initial form of all the one-electron wavefunc-

tions, use them in the definition of the Coulomb and exchange 

operators, and solve the Hartree–Fock equations. That process 

is then continued using the newly found wavefunctions until 

each cycle of calculation leaves the energies εm and wavefunc-

tions ψm unchanged to within a chosen criterion. This is the 

origin of the term self-consistent field (SCF) for this type of 

procedure in general and of Hartree–Fock self-consistent field 

(HF-SCF) for the approach based on the orbital approximation. 

(A brief description of the HF-SCF method as applied to many-

electron atoms is provided in Topic 19.)

Exchange 
operator

(27.6)
Brief illustration 27.3 The Hartree–Fock equations

We continue with the H2 example. According to eqn 27.8, the 

Hartree–Fock equation for ψa is �f a a a1 1ψ ε ψ(1)= ( ) with

�� � �f h J Ka a a a a a1 11 1 2 1 1 1 1ψ ψ ψ ψ( ) ( ) ( ) ( ) ( )( )= + −

where

��J K j
ra a a a a a a( ) ( ) ( ) ( ) ( ) ( ) ( )*1 1 1 1 1
1

2 20
12

2ψ ψ ψ ψ ψ τ= = ∫ d

Note that there is only one occupied orbital in this case so the 

summation in eqn 27.8 is a single term. The equation to solve 

is therefore

− ∇ − +⎛
⎝⎜

⎞
⎠⎟

+ ∫

2

1
2

0
1 1

0
12

2
1

1 1
1

1
1

2

m
j

r r

j
r

a a

a a a

e A B

ψ ψ

ψ ψ ψ

( ) ( )

( ) ( )* (( ) ( )2 12dτ ε ψ= a a

This equation for ψa must be solved self-consistently (and 

numerically) because the integral that governs the form of ψa 

requires us to know ψa already. In the following examples we 

shall illustrate some of the procedures that have been adopted.

Self-test 27.3 Identify the additional terms that would arise in 

a closed-shell four-electron homonuclear diatomic molecule 

in which two electrons also occupy a molecular orbital b.

Answer: � �+ −2 1 11 1J Kb a b a( ) ( ) ( )( )ψ ψ

ψa

ψm r12

Figure 27.2 A schematic interpretation of the Coulomb 
repulsion term, eqn 27.4. An electron in orbital ψa experiences 
repulsion from an electron in orbital ψm where it has 
probability density |ψm|2.
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242 6 Molecular structure

Once the Hartree–Fock equations have been solved for the 

spatial wavefunctions ψ, the ground-state wavefunction Ψ 

(eqn 27.2) can be constructed and the SCF energy computed 

from the expectation value ∫Ψ Ψ τ*H d� . The final, complicated, 

expression is a sum over all the electrons in the molecule, of 

integrals involving the wavefunctions ψ.1

27.3 The Roothaan equations

The difficulty with the HF-SCF procedure lies in the numeri-

cal solution of the Hartree–Fock equations, an onerous task 

even for powerful computers. As a result, a modification of the 

technique was needed before the procedure could be of use to 

chemists. Topic 23 explains how molecular orbitals are con-

structed as linear combinations of atomic orbitals. This simple 

approach was adopted in 1951 by C.C.J. Roothaan and G.G. 

Hall independently, who found a way to convert the Hartree–

Fock equations for the molecular orbitals into equations for 

the coefficients that appear in the LCAO used to simulate the 

molecular orbital. Thus, they wrote

ψ χm

o

N

omc=
=

∑
1

b

o

 

 A general LCAO  (27.9)

where com are unknown coefficients and the χo are the (known) 

atomic orbitals (which we take to be real). This LCAO approxi-

mation is in addition to the approximations underlying the 

Hartree–Fock equations because the basis is finite and so can-

not reproduce the molecular orbital exactly. The size of the 

basis set (Nb) is not necessarily the same as the number of 

atomic nuclei in the molecule (Nn), because we might use sev-

eral atomic orbitals on each nucleus (such as the four 2s and 2p 

orbitals of a carbon atom). From Nb basis functions, we obtain 

Nb linearly independent molecular orbitals ψm, some (Nm) of 

which will be occupied. The remaining, unoccupied linear 

combinations are called virtual orbitals.

We show in the following Justification that the use of a linear 

combination like eqn 27.9 leads to a set of simultaneous equa-

tions for the coefficients called the Roothaan equations. These 

equations are best summarized in matrix form by writing

Fc Sc= ε   Roothaan equations  (27.10)

where F is the Nb × Nb matrix with elements

F fo o′ ′= ∫ χ χ τo o ( )d( )1 11 1
�

 
 Fock matrix elements  (27.11a)

S is the Nb × Nb matrix of overlap integrals:

So o′ ′= ∫ χ χ τo o( ) ( )d1 1 1
 

 Overlap matrix elements  (27.11b)

c is an Nb × Nb matrix of all the coefficients we have to find:

c =

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

c c c

c c c

c c c

a b N

a b N

N a N b N N

1 1 1

2 2 2

�
�

� � � �
�

b

b

b b b b  

 Matrix of coefficients  (27.11c)

and ε is an Nb × Nb diagonal matrix with the values ε ε ε1 2, , ,… Nb
 

along the diagonal; of these eigenvalues, the first Nm refer to the 

occupied orbitals.

1 For details, see our Molecular quantum mechanics, Oxford University 

Press (2011).

Justification 27.1 The Roothaan equations

To construct the Roothaan equations we substitute the linear 
combination of eqn 27.9 with m = a into both sides of eqn 27.3, 
which gives

��f f c ca oa

o

N

a oa

o

N

1 1

1 1

1 1 1ψ χ ε χ( ) ( ) ( )= =
= =

∑ ∑
b b

o o

Now multiply from the left by χ ′o ( )1  and integrate over the 

coordinates of electron 1:

c cfoa

o

N

a oa

o

N

=
′

=
′∑ ∑∫ ∫

′

=
1

1 1

1

1 1 1
b b

o o o( ) ( ) ( )d �χ χ τ ε χ χ

Fo o� ��� ���

oo( )d1 1τ

So o′� ��� ���

That is,

F c S co o oa

o

N

o o oa

o

N

a′
=

′
=

∑ ∑
′ ′

=
1 1

b b

( ) ( )Fc Sco a o a� �� �� � �� ��

ε

This expression has the form of the matrix equation in eqn 

27.10.

Example 27.1 Setting up the Roothaan equations

Set up the Roothaan equations for H2.

Method Adopt a basis set of real, normalized functions χA and 

χB, centred on nuclei A and B, respectively. We can think of 

these functions as H1s orbitals on each nucleus, but they could 

be more general than that, and in a later Example we shall 

make a computationally more friendly choice. Then establish 

the c, S, and F matrices.
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27 Self-consistent fields  243

The Roothaan equations, eqn 27.10, are simply a collection 

of Nb simultaneous equations for the Nb coefficients com. We 

can use the properties of matrices and determinants as shown 

in the following Justification to show that the energies are the 

solutions of the secular equation

| |F S− =ε 0
 (27.12)

In principle, we can find the orbital energies ε by looking 

for the roots of this equation and then using those energies to 

find the coefficients that make up the matrix c by solving the 

Roothaan equations. There is a catch, though: the elements of F 

depend on the coefficients (through the presence of �J  and �K  in 

the expression for �f1). Therefore, we have to proceed iteratively: 

we guess an initial set of values for c, solve the secular equation 

for the orbital energies, use them to solve the Roothaan equations 

for c, and compare the resulting values with the ones we started 

with. In general they will be different, so we use those new values 

in another cycle of calculation, and continue until convergence 

has been achieved (Fig. 27.3). For small, closed-shell molecules, 

the convergence is often achieved within a few cycles.

Answer The two possible linear combinations corresponding 

to eqn 27.9 are ψ χ χm m mc c= +A A B B , with m = a (occupied) and 

b (virtual), so the matrix c is

c =
⎛

⎝⎜
⎞

⎠⎟
c c

c c

a b

a b

A A

B B

and the overlap matrix S of the individually normalized 

atomic orbitals is

S=
⎛

⎝⎜
⎞

⎠⎟
= ∫

1

1

S

S
S χ χ τA Bd

The Fock matrix is

F =
⎛

⎝⎜
⎞

⎠⎟
= ∫

F F

F F
F f

AA AB

BA BB
XY X Ydχ χ τ1

�

We explore the explicit form of the elements of F in a later 

Example; for now, just regard them as variable quantities. The 

Roothaan equations are therefore

F F

F F

c c

c c

S

S

c c

c c

a b

a b

a b

a

AA AB

BA BB

A A

B B

A A

B B

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝⎜
⎞

⎠⎟
=

⎛

⎝⎜
⎞

⎠⎟
1

1 bb

a

b

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝⎜
⎞

⎠⎟
ε

ε
0

0

After multiplying out these matrices and matching the ele-

ments corresponding to the occupied orbital a, we obtain

F c F c c Sc

F c F c c Sc

a a a a a a

a a a a a a

AA A AB B A B

BA A BB B B A

+ = +
+ = +

ε ε
ε ε

Thus, to find the coefficients for the molecular orbital ψa we 

need to solve this pair of simultaneous equations.

Self-test 27.4 Write the additional two equations for the vir-

tual orbital b constructed from the same basis.

Answer: FAAcAb + FABcBb = εbcAb + εbScBb, FBAcAb + FBBcBb = εbcBb + εbScAb

Justification 27.2 The secular determinant

To determine the form of the secular determinant arising 

from the Roothaan equations, we begin by multiplying both 

sides of eqn 27.10 by S−1, the matrix inverse of S, and, in the 

resulting expression S−1Fc = cε, denote the matrix product 

S−1F by M. The equation then becomes Mc = cε. The matrix c 

of coefficients is given by eqn 27.11c and can be written in the 

form

c c c c= …( , , )( ) ( ) ( )a b Nb

where c(m) is the column vector composed of the coefficients 

com for the molecular orbital ψm of energy εm:

c( )m

m

m

N m

c

c

c

=

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1

2

�

b

In terms of these column vectors, the equation Mc = cε con-

sists of the set of equations of the form Mc(m) = εmc(m), or 

(M − εm1)c(m) = 0. As explained in Mathematical background 5, 

this set of equations has nontrivial solutions (c(m) ≠ 0) only if

M S F− = − =−ε εm m1 11  or 0 0,

The roots of this secular equation are the energies εm, m = 1,  

2, … Nb (the elements of the diagonal matrix ε). Multiplication 

of both sides by the determinant |S| and using the property of 

determinants that |AB| = |A| × |B| results in

| |F S−εm =0

The set of equations Mc(m) = εmc(m) holds for all m = 1, 2, …, Nb 

and solution of the secular equation results in all (Nb) energies 

ε, so we can drop the subscript m and thereby obtain eqn 27.12.

Example 27.2 Finding the energy levels

Solve the secular equations for the H2 molecule established in 

Example 27.1.

Method Set up the secular determinant for the orbitals using 

the notation in Example 27.1, expand it, and find the roots of 

the resulting quadratic equation.
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244 6 Molecular structure

The principal outstanding problem is the form of the ele-

ments of the Fock matrix F and its dependence on the LCAO 

coefficients. The explicit form of Foo′  is

F

j
r

hoo o o

m

o o m m

′ ′

′

=

+

∫
∑∫

χ χ τ

χ χ ψ ψ τ τ

1

0
12

1 22 1 1
1

2 2

d

d d
occ

�

,

( ) ( ) ( ) ( )

−− ∑∫ ′j
r

m

o m m o0
12

1 21 1
1

2 2
,

( ) ( ) ( ) ( )
occ

d dχ ψ ψ χ τ τ
 

(27.13)

where the sums are over the occupied molecular orbitals. The 

dependence of F on the coefficients can now be seen to arise 

from the presence of the ψm in the two integrals, for these 

molecular orbitals depend on the coefficients in their LCAOs.

The integrals that appear in expressions like those developed 

in this Example are becoming seriously cumbersome to write. 

From now on we shall use the notation

( ) ( ) ( ) ( ) ( )AB|CD d dA B C D= ∫j
r0
12

1 21 1
1

2 2χ χ χ χ τ τ
 

(27.14)

Integrals like this are fixed throughout the calculation (for a 

particular nuclear geometry) because they depend only on the 

Answer The secular determinant for the H2 molecule is

F F S

F S F

AA AB

BA BB

− −
− −

=
ε ε

ε ε
0

The determinant expands to give the following equation:

( )( ) ( )( )F F F S F SAA BB AB BA− − − − − =ε ε ε ε 0

On collecting terms, we arrive at

(1 )  ( )2 2
AA BB AB BA AA BB AB BA− − + − − + − =S F F SF SF F F F Fε ε( ) 0

This is a quadratic equation for the orbital energies εa and εb, 

and may be solved by using the quadratic formula. Thus, if we 

summarize the equation as aε2 + bε + c = 0, then

a S

b b ac

a
b F F SF SF

c F F F

= −

= − ± − = − + − −

= −

1

4

2

2

2 1 2

ε ( )
( )

/

AA BB AB BA

AA BB ABFFBA

With these energies established, and the lower value accepted 

for εa, we can construct the coefficients by substituting into

c
F S

F
ca

a

a
aA

AB

AA
B= − −

−
ε
ε

in conju nc t ion w it h t he norma l i zat ion cond it ion 

c c c c SAa Ba a a
2 2+ + = 2 1A B .  (For this homonuclear diatomic mol-

ecule, there is, of course, a much simpler method of arriving at 

cAa = cBa for the lower of the two energies.)

Self-test 27.5 Use the orbital energy εb to write the expressions 

relating cAb and cBb.

Answer: c
F

F S
c c c c c Sb

b

b
b b b b bA

BB
B A B A B= − −

− + + =ε
εBA

 , 2 2 2 1

Example 27.3 Establishing the integrals

Expand the matrix element FAA developed in Example 27.2 in 

terms of molecular integrals.

Method Implement eqn 27.13.

Answer Only one molecular orbital is occupied, so eqn 27.13 

becomes

�F j
r

j

h a aAA A A A A

A

d d d= +

−

∫ ∫
∫

χ χ τ χ χ ψ ψ τ τ

χ

1 0
12

1 2

0

2 1 1
1

2 2

1

( ) ( ) ( ) ( )

( )ψψ a ar
( ) ( ) ( )1

1
2 2

12
1 2ψ χ τ τA d d

With ψa = cAaχA + cBaχB, the second integral on the right is

∫
∫= +

χ χ ψ ψ τ τ

χ χ χ

A A

A A BA A

d d

( ) ( ) ( )

( ) ( ) ( ) ( )1 1
1

2 2

1 1
1

2

12
1 2

12

r

r
cc

a a

a aa

aa

a a

c

c c

c

r

χ

χ τ τ

χ χ

χ

χ

B

B B

A A

A A

A A

( )

( )

( ) ( )

( ) d d

2

2

1 1
1

2 1 2

12

{ }
+{ }

= ∫
×

AA A( ) ( )d d2 2 1 2χ τ τ +�

with four such terms. At this point we can see explicitly that 

the matrix elements of F depend on the coefficients that we are 

trying to find.

Self-test 27.6 Write the integral that is a factor of the term  

cAa cBa.

Answer: χ χ χ χ τ τA A A B( ) ( ) ( ) (2)d d∫ 1 1
1

2
12

1 2r

Choose set of
basis functions, χo

Formulate set of trial
coefficients com and
therefore wavefunctions ψm

Overlap matrix,
S, eqn 27.11b Done

YesNo

Energies, εm

coefficients, com ;
eqn 27.12

Fock matrix,
F, eqn 27.11a

Convergence?

Figure 27.3 The iteration procedure for a Hartree–Fock self-
consistent field calculation.
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27 Self-consistent fields  245

choice of basis, so they can be tabulated once and for all and 

then used whenever required. How they are estimated or calcu-

lated is explained in Topics 28–30. For the time being, we can 

treat them as constants.

27.4 Basis sets

One of the problems with molecular structure calculations 

now becomes apparent. The basis functions appearing in eqn 

27.14 may in general be centred on different atomic nuclei so 

(AB|CD) is in general a so-called ‘four-centre, two-electron 

integral’. If there are several dozen basis functions used to build 

the one-electron wavefunctions, there will be tens of thousands 

of integrals of this form to evaluate (the number of integrals 

increases as Nb
4).The efficient calculation of such integrals poses 

the greatest challenge in an HF-SCF calculation but can be alle-

viated by a clever choice of basis functions.

The simplest approach is to use a minimal basis set, in which 

one basis function is used to represent each of the orbitals in an 

elementary valence theory treatment of the molecule. Minimal 

basis set calculations, however, frequently yield results that are 

far from agreement with experiment and the development of 

basis sets that go beyond the minimal basis is an active area of 

research within computational chemistry.

One of the earliest choices for basis-set functions was that of 

Slater-type orbitals (STO) centred on each of the atomic nuclei 

in the molecule and of the form

χ θ φ= −Nr Ya br
lml

e ( , )
 

 Slater-type orbitals  (27.15)

N is a normalization constant, a and b are (non-negative) 

parameters, Ylml
 is a spherical harmonic (Table 14.1), and (r, 

θ, φ) are the spherical polar coordinates describing the loca-

tion of the electron relative to the atomic nucleus. Several such 

basis functions are typically centred on each atom, with each 

basis function characterized by a unique set of values of a, b, l, 

and ml. The values of a and b generally vary with the element 

and there are several rules for assigning reasonable values. For 

molecules containing hydrogen, there is an STO centred on 

each proton with a = 0 and b = 1/a0, which simulates the correct 

behaviour of the 1s orbital at the nucleus. However, using the 

STO basis set in HF-SCF calculations on molecules with three 

or more atoms requires the evaluation of so many two-electron 

integrals (AB|CD) that the procedure becomes computation-

ally impractical.

The introduction of Gaussian-type orbitals (GTO) by S.F. 

Boys largely overcame the problem. Cartesian Gaussian func-

tions centred on atomic nuclei have the form

χ α= −Nx y zi j k re
2

  Gaussian-type orbitals  (27.16)

where (x, y, z) are the Cartesian coordinates of the electron at 

a distance r from the nucleus, (i, j, k) are a set of non-negative 

Brief illustration 27.5 Minimal basis sets

The following choices for constituent atoms correspond to 

minimal basis sets:

Thus, a minimal basis set for CH4 consists of nine functions: 

four basis functions to represent the four H1s orbitals, and one 

basis function each for the 1s, 2s, 2px, 2py, and 2pz orbitals of 

carbon.

Self-test 27.8 How many orbitals would constitute a minimal 

basis set for PF5 (discounting d orbitals)?
Answer: 34

H, He Li to Ne Na to Ar

1 (1s) 5 (1s, 2s, 2p) 9 (1s, 2s, 2p, 3s, 3p)

Brief illustration 27.4 The integral notation

In the notation of eqn 27.14, the integral written explicitly in 

Example 27.3 becomes

j
r

c c c

a a

a a a

0
12

1 2

2

1 1
1

2 2

2

∫
= +

χ χ ψ ψ τ τA A

A A B

d d

AA|AA AA|B

( ) ( ) ( ) ( )

( ) ( AA AA|BBB) ( )+ c a
2

(We have used (AA|BA) = (AA|AB).) There is a similar term for 

the third integral in the expression for FAA developed there, 

and overall

F E c c c

c

a a a

a

AA A A A B

B

AA|AA AA|BA

AA|BB AB|BA

= + +
+ −

2

2

2

2

( ) ( )

{ }( ) ( )

where

E hA A Ad=∫ χ χ τ�
1

is the energy of an electron in orbital χA based on nucleus A, 

taking into account its interaction with both nuclei. Similar 

expressions may be derived for the other three matrix ele-

ments of F. The crucial point, though, is that we now see how F 

depends on the coefficients that we are trying to find.

Self-test 27.7 Construct the element FAB using the same basis.

Answer: �F h c

c c

c

a

a a

a

AB A B A

A B

B

d BA|AA

BA|AB AA|BB

B

= +

+ −

+

∫ χ χ τ1
2

2

3

( )

{ }

(

( ) ( )

AA|BB)
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246 6 Molecular structure

integers, and α is a positive constant. An s-type Gaussian has 

i = j = k = 0; a p-type Gaussian has i + j + k = 1; a d-type Gaussian 

has i + j + k = 2, and so on. Figure 27.4 shows contour plots for 

various Gaussian-type orbitals. The advantage of GTOs is 

that, as we show in the following Justification, the product of 

two Gaussian functions on different centres is equivalent to a 

single Gaussian function located at a point between the two 

centres (Fig. 27.5). Therefore, two-electron integrals on three 

and four different atomic centres can be reduced to integrals 

over two different centres, which are much easier to evaluate 

numerically. This advantage generally outweighs the disad-

vantage of using Gaussian functions, namely that, on account 

of the e−αr2

 term, GTOs do not simulate the correct behaviour 

of the 1s orbital at the nucleus, and as a result more Gaussian 

functions are needed than for a calculation using STOs.

Justification 27.3 Gaussian-type orbitals

There are no four-centre integrals in H2, but we can illustrate 

the principle by considering one of the two-centre integrals that 

appear in the Fock matrix, and, to be definite, we consider

( )AB|AB d d( ) ( ) ( ) ( )A B A B= ∫j
r0
12

1 21 1
1

2 2χ χ χ χ τ τ

We choose an s-type Gaussian basis and write

χ χα α
A Be eA( ) ( )1 11

2

1

2

= =− − − −N Nr R r RB

where r1 is the location of electron 1 and RI is that of nucleus I. 

The product of these two Gaussians is

χ χ α α
A B( ) e A1 1 2 1

2

1

2

( )= − − − −N r R r RB

By using the relation

r R r R r R r R r R− = − ⋅ − = + − ⋅2 2 2
 ( )     2( )

we can confirm that

r R r R r R1

2

1

2 1
2

2
1

2
2− + − = + −A CB R

where R R RC A B= +1
2

( ) is the midpoint of the molecule and 

R = |RA − RB| is the bond length. Hence

χ χ α α

χ

A B e e( ) ( ) /1 1
2

1

2
2 2 2= − − −R N r RC

C (1)� ��� ���

The product χA(2)χB(2) is the same, except for the index 2 in 

place of 1 on r. Therefore, the two-centre, two-electron integral 

(AB|AB) reduces to

( ) ( )AB|AB e d d( )C C= − ∫j
r

R
0

12
1 2

2

1
1

2α χ χ τ τ

This is a single-centre, two-electron integral, with both expo-

nential functions spherically symmetrical Gaussians centred on 

the midpoint of the bond, and much faster to evaluate than the 

original two-centre integral.

(a) (b) (c)

+ +
+

+
–

–

–

Figure 27.4 Contour plots for Gaussian-type orbitals: (a) s-type 
Gaussian, e ;2−r  (b) p-type Gaussian, x re ;2−  (c) d-type Gaussian, 
xy re 2− .

G1 G1G2

G2G
(x

)

x

(magnified)

Figure 27.5 The product of two Gaussian functions on 
different centres is itself a Gaussian function located at a 
point between the two contributing Gaussians. The scale 
of the product has been increased relative to that of its two 
components.
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27 Self-consistent fields  247

Checklist of concepts

☐ 1. A spinorbital is the product of a molecular orbital and a 

spin function.

☐ 2. A Slater determinant expresses the fact that the inter-

change of any pair of electrons changes the sign of the 

wavefunction.

☐ 3. The Hartree–Fock (HF) method uses a single Slater 

determinant, built from molecular orbitals that satisfy 

the HF equations, to represent the ground-state elec-

tronic wavefunction.

☐ 4. In the self-consistent field (SCF) method, equations are 

solved iteratively until each cycle of calculation leaves 

the energies and wavefunctions unchanged to within a 

chosen criterion.

☐ 5. The Hartree–Fock equations involve the Fock operator, 

which consists of the core hamiltonian and terms rep-

resenting the average Coulomb repulsion (J) and aver-

age correction due to spin correlation (K).

☐ 6. The Hartree–Fock method neglects electron correla-

tion, the tendency of electrons to avoid one another to 

minimize repulsion.

☐ 7. The Roothaan equations are a set of simultaneous 

equations, written in matrix form, that result from 

using a basis set of functions to expand the molecular 

orbitals.

☐ 8. In a minimal basis set, one basis set function represents 

each of the valence orbitals of the molecule.

☐ 9. Slater-type orbitals (STO) and Gaussian-type orbitals 

(GTO) centred on each of the atomic nuclei are com-

monly used as basis set functions.

☐ 10. The product of two Gaussian-type orbitals on different 

centres is a single Gaussian function located between 

the centres.

Checklist of equations

Property Equation Comment Equation number

Many-electron wavefunction Ψ ψ ψ ψ= ( !) ( ) ( )/1 1 21 2/ ( )e eN Na a z
α β β� Closed-shell species 27.2

Hartee–Fock equations �f m m m1ψ ε ψ(1) = 1( ) m labels an occupied molecular 
orbital

27.3

Coulomb operator
�J j rm a a m m( ) ( ) ( )( ) ( )/ ( )*1 1 1 21 20 12 2ψ ψ ψ ψ τ= ∫ d j0 = e2/4πε0 27.4

Exchange operator
�K j rm a m m a( ) ( ) ( )( ) ( )( )*1 1 1 1 2 20 12 2ψ ψ ψ ψ τ= ∫ / d 27.6

Effect of Fock operator
� � � �f h J Ka a

m

m m a1 11 1 2 1 1 1ψ ψ ψ( ) ( ) ( ) ( )( )= + −∑{ } Sum over occupied orbitals 27.8

Roothaan equations Fc = Scε 27.10

Fock matrix elements F fo o′ ′=∫ χ χ τo o(1)d( )1 1 1
� χo are atomic basis functions 27.11

Four-centre integral ( ) ( ) ( )( ) ( ) ( )AB|CD / d dA B C D= ∫j r0 12 1 21 1 1 2 2χ χ χ χ τ τ
 

Notation 27.14

Slater-type orbital χ θ φ= −Nr Ya br
lml

e ( , ) STO 27.15

Gaussian-type orbital χ α= −Nx y zi j k re
2

GTO 27.16
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TOPIC 28

Semi-empirical methods

In semi-empirical methods, many of the integrals that occur 

in an electronic structure calculation are estimated by appeal-

ing to spectroscopic data or physical properties such as ioniza-

tion energies, or by using a series of rules to set certain integrals 

equal to zero. These methods are applied routinely to molecules 

containing large numbers of atoms because of their computa-

tional speed but there is often a sacrifice in the accuracy of the 

results.

28.1 The Hückel approximation 
revisited

Semi-empirical methods were first developed for conjugated 

π systems, the most famous version being Hückel molecular 

orbital theory (HMO theory, Topic 26).

The initial assumption of HMO theory is the separate treat-

ment of π and σ electrons, which is justified by the different 

energies and symmetries of the orbitals. As explained in Topic 

26, the π-orbital energies and wavefunctions are obtained by 

solution of eqn 26.9 of that Topic (Hc = ScE); the latter equation 

is composed of sets of matrix equations of the form of eqn 26.7, 

(H – EiS)ci = 0, where Ei is an element of the diagonal matrix E. 

This equation implies (see Mathematical background 5) that we 

need to find solutions of the secular determinant |H – EiS| = 0 

with, in HMO theory, the overlap integrals set to 0 or 1, the 

diagonal hamiltonian matrix elements set to a parameter α, 

and off-diagonal elements set either to 0 or to the parameter β. 

If instead we start from eqn 27.12 of Topic 27 (|F – εS| = 0), then 

we can generate HMO theory by making similar choices for the 

integrals. The HMO approach is useful for qualitative, rather 

than quantitative, discussions of conjugated π systems because 

it treats repulsions between electrons very poorly.

Contents

28.1 The Hückel approximation revisited 248

Brief illustration 28.1: The Hückel method 248

28.2 Differential overlap 249

Brief illustration 28.2: Neglect of differential  

overlap 249

Checklist of concepts 250
Checklist of equations 250

 ➤ Why do you need to know this material?
Modern computational procedures include semi-empirical 
methods, and it is important to know their approximations. 
These methods are useful because they can be applied 
with computational efficiency to complex systems.

 ➤ What is the key idea?
Semi-empirical procedures typically identify integrals 
that may either be neglected or replaced by empirical 
parameters.

 ➤ What do you need to know already?
You should review the Hartree–Fock and Roothaan 
procedures introduced in Topic 27 and should be familiar 
with the Hückel approximation (Topic 26).

Brief illustration 28.1 The Hückel method

Here we return to Example 27.2 of Topic 27 and set S = 0. The 

diagonal Fock matrix elements are set equal to α (that is, we 

set FAA = FBB = α), and the off-diagonal elements are set equal 

to β (that is, we set FAB = FBA = β). Note that the dependence of 

these integrals on the coefficients is swept aside, so we do not 

have to work towards self-consistency. The quadratic equation 

for the energies

( ) ( ) ( )1 02 2− − + − − + − =S F F SF SF F F F Fε εAA BB AB BA AA BB AB BA
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28 Semi-empirical methods  249

28.2 Differential overlap

In the second most primitive and severe approach, called com-

plete neglect of differential overlap (CNDO), all two-electron 

integrals of the form (AB|CD) introduced in Topic 27,

( ) ( ) ( ) ( ) ( )AB|CD d dA B C D= ∫j
r0
12

1 21 1
1

2 2χ χ χ χ τ τ
 

(28.1)

are set to zero unless χA and χB are the same, and likewise for χC 

and χD. That is, only integrals of the form

( ) ( ) ( )AA|CC d dA C= ∫j
r0

2

12

2
1 21 2

1χ χ τ τ
 

(28.2)

survive and they are often taken to be parameters with values 

adjusted until the calculated energies are in agreement with 

experiment. The origin of the term ‘differential overlap’ is that 

what we normally take to be a measure of ‘overlap’ is the inte-

gral ∫χAχBdτ. The differential of an integral of a function is the 

function itself, so in this sense the ‘differential’ overlap is the 

product χAχB. The implication is that we then simply compare 

orbitals: if they are the same, the integral is retained; if different, 

it is discarded.

More recent semi-empirical methods make less draconian 

decisions about which integrals are to be ignored, but they 

are all descendants of the early CNDO technique. Whereas 

CNDO sets integrals of the form (AB|AB) to zero for all dif-

ferent χA and χB, intermediate neglect of differential over-

lap (INDO) does not neglect the (AB|AB) for which different 

basis functions χA and χB are centred on the same nucleus. 

Because these integrals are important for explaining energy 

differences between terms corresponding to the same elec-

tronic configuration, INDO is much preferred over CNDO 

for spectroscopic investigations. A still less severe approxima-

tion is neglect of diatomic differential overlap (NDDO) in 

which (AB|CD) is neglected only when χA and χB are centred 

on different nuclei or when χC and χD are centred on different 

nuclei.

There are other semi-empirical methods, with names such 

as modified intermediate neglect of differential overlap 

(MINDO), modified neglect of differential overlap (MNDO), 

Austin model 1 (AM1), PM3, and pairwise distance directed 

Gaussian (PDDG). In each case, the values of integrals are 

either set to zero or set to parameters with values that have been 

determined by attempting to optimize agreement with experi-

ment, such as measured values of enthalpies of formation, 

dipole moments, and ionization energies. MINDO is useful for 

the study of hydrocarbons; it tends to give more accurate com-

puted results than MNDO but it gives poor results for systems 

with hydrogen bonds. AM1, PM3, and PDDG are improved 

versions of MNDO.

Brief illustration 28.2 Neglect of differential overlap

The expression for FAA derived in Brief illustration 27.4 of 

Topic 27 is

F E c c c

c

a a a

a

AA A A A B

B

AA|AA AA|BA

AA|BB AB|BA

= + +
+ −

2

2

2

2

( ) ( )

{ }( ) ( )

The final (blue) integral has the form

( ) ( ) ( ) ( ) ( )AB|BA d dA B B A= ∫j
r0
12

1 21 1 2 2
1χ χ χ χ τ τ

becomes simply

ε αε α β2 2 22 0− + − =

and the roots are ε = α ± β, exactly as we found in Topic 25.

Self-test 28.1 What would the energies be if overlap were not 

neglected?

Answer: (α + β)/(1 + S) and (α – β)/(1 – S)

The ‘differential overlap’ term χA(1)χB(1) is set equal to zero, 

so in the CNDO approximation the integral is set equal to 

zero. The same is true of the integral (AA|BA). It follows that 

we write

F E c ca aAA A A BAA|AA AA|BB= + +2 22( ) ( )

and identify the surviving two two-electron integrals as 

empirical parameters.

Self-test 28.2 Apply the CNDO approximation to FAB for the 

same system.

Answer: F h c ca aAB A B A Bd AA|BB= −∫ χ τχ1 ( )�
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250 6 Molecular structure

Checklist of concepts

☐ 1. In semi-empirical methods, the two-electron integrals 

are set to zero or to empirical parameters with values 

that optimize agreement with a variety of experimental 

quantities.

☐ 2. The Hückel method is a simple semi-empirical method 

for conjugated π systems.

☐ 3. In the complete neglect of differential overlap (CNDO) 

approximation, two-electron integrals are set to zero 

unless the two basis set functions for electron 1 are the 

same and the two basis functions for electron 2 are the 

same.

Checklist of equations

Property Equation Comment Equation number

Molecular integrals (AB|CD d dA B C D) /( ) ( )( ) ( ) ( )= ∫j r0 12 1 21 1 2 21χ χ χ χ τ τ Parameterized in a variety of ways 28.1
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TOPIC 29

Ab initio methods

In ab initio methods, the two-electron integrals (AB|CD) intro-

duced in Topic 27 are evaluated numerically. However, even for 

small molecules, Hartree–Fock calculations with large basis 

sets and efficient and accurate calculation of two-electron inte-

grals can give very poor results because they are rooted in the 

orbital approximation and the average effect of the other elec-

trons on the electron of interest. Thus, the true wavefunction 

for H2 is a function of the form Ψ(r1,r2), with a complicated 

behaviour as r1 and r2 vary and perhaps approach one another. 

This complexity is lost when the wavefunction is written as 

ψ(r1)ψ(r2) and each electron is treated as moving in the average 

field of the other electrons. That is, the approximations of the 

Hartree–Fock method imply that no attempt is made to take 

into account electron correlation, the tendency of electrons to 

stay apart in order to minimize their mutual repulsion.

Most modern work in electronic structure, such as the approach-

es discussed here as well as more sophisticated approaches that 

are beyond the scope of this text, tries to take electron correla-

tion into account. Here we give an introduction to just two of the 

procedures. Topic 30 (density functional theory) presents another 

way to take electron correlation into account.

29.1 Configuration interaction

A basis set of Nb orbitals can be used to generate Nb molecular 

orbitals. However, if there are Ne electrons to accommodate, in 

the ground state only Nm = 1
2
Ne of these Nb orbitals are occu-

pied, leaving Nb − 1
2 Ne so-called virtual orbitals unoccupied. 

For example, in the H2 model calculation used in Topics 27 and 

28 the two atomic orbitals give rise to a bonding and an anti-

bonding molecular orbital, but only the former is occupied; the 

latter is present but ‘virtual’.

The ground state of an Ne-electron closed-shell species is

Ψ ψ ψ ψ ψ ψ0
1 2= ( !) ( ) ( ) ( )/1/ (1) (2) 3 4e eN Na a b b u

α β α β β�

where ψu is the highest occupied molecular orbital (the 

HOMO). We can envisage transferring an electron from an 

occupied orbital to a virtual orbital ψv, and forming the cor-

responding singly excited determinant, such as

Ψ ψ ψ ψ ψ ψ1 e
1 2

e1/ (1) (2) (3) (4)= ( !) ( )/N Na a b u
α β α β β

v �

Here a β electron, ‘electron 4’, has been promoted from ψb into 

ψv, but there are many other possible choices. We can also 

Contents

29.1 Configuration interaction 251

Brief illustration 29.1: Configuration interaction 252

Example 29.1: Finding the energy lowering  

due to CI 252

29.2 Many-body perturbation theory 253

Example 29.2: Setting up Møller–Plesset  

perturbation theory 254

Checklist of concepts 254
Checklist of equations 255

 ➤ Why do you need to know this material?
Modern computational procedures focus on the formu-
lation of reliable ab initio methods. To use commercially 
available software sensibly and to understand the 
underlying problems it is important to know how they are 
being overcome.

 ➤ What is the key idea?
Ab initio procedures typically seek to compute molecular 
structures and properties from first principles without 
introducing empirical constants.

 ➤ What do you need to know already?
You should review the Hartree–Fock and Roothaan 
procedures introduced in Topic 27 and be familiar with 
Slater determinants (Topic 27) and time-independent 
perturbation theory (Topic 15).
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252 6 Molecular structure

envisage doubly excited determinants, and so on. Each of the 

Slater determinants constructed in this way is called a configu-

ration state function (CSF).

In 1959, P.-O. Löwdin proved that the exact wavefunc-

tion (within the Born–Oppenheimer approximation) can be 

expressed as a linear combination of CSFs found from the exact 

solution of the Hartree–Fock equations:

Ψ = C0Ψ0( ) + C1Ψ1( ) + C2Ψ2( ) + . . .
 

  (29.1)

The inclusion of CSFs to improve the wavefunction in this way 

is called configuration interaction (CI). Configuration inter-

action can, at least in principle, yield the exact ground-state 

wavefunction and energy and thus accounts for the electron 

correlation neglected in Hartree–Fock methods. However, the 

wavefunction and energy are exact only if an infinite number of 

CSFs (composed using an infinite number of basis-set orbitals) 

are used in the expansion in eqn 29.1; in practice, we have to be 

resigned to using a finite number of CSFs (composed from a 

finite basis set). One simplification, however, is that there might 

be symmetry arguments that eliminate the need to include cer-

tain contributions.

Brief illustration 29.1 shows that even a limited amount of 

CI can introduce some electron correlation; full CI—using 

orbitals built from a finite basis and allowing for all possible 

excitations—will take electron correlation into account more 

fully. The optimum procedure, using orbitals that form an 

infinite basis and allowing all excitations, is computationally 

impractical.

The optimum expansion coefficients in eqn 29.1 are found 

by using the variation principle. As in Justification 27.1 for the 

Hartree–Fock method, application of the variation principle 

for CI results in a set of simultaneous equations for the expan-

sion coefficients.

Brief illustration 29.1 Configuration interaction

We can begin to appreciate why CI improves the wavefunc-

tion of a molecule by considering H2. The ground state (after 

expanding the Slater determinant) is Ψ0 = ψa(1)ψa(2)σ−(1,2) 

where σ−(1,2) is the singlet spin state wavefunction. We also 

know that if we use a minimal basis set and ignore overlap, we 

can write ψ χ χa = +1/2 A B
1 2/ { }. Therefore

Ψ χ χ χ χ σ
χχ χ

0
1
2

1
2

= + +
= +

{ }{ } ( , )

{

A B A B

AA A

(1) (1) (2) (2) 1 2

(1)(1) (2)

−

χχ χ χ
σχ χ

B B A

B B

(2) (1) (2)

1 2(1) (2)

+
+ } ( , )−

We can see a deficiency in this wavefunction: there are equal 

probabilities of finding both electrons on A or on B (the blue 

terms) as there are for finding one electron on A and the other 

on B (the remaining two terms). That is, electron correlation 

has not been taken into account and we can expect the calcu-

lated energy to be too high.

Self-test 29.1 Show that the superposit ion of a dou-

bly excited determinant Ψ2 based on the virtual orbital 

ψ χ − χb =1 21 2/ A B
/ { }  reduces the probability that both elec-

trons will be found on the same atom.

Answer: Ψ Ψ Ψ χ χ χ χ
χ χ χ χ

= + = +
+ +

C C A B

B A

0 0
1
22 2 A A A B

B A B

(1) (2) (1) (2)

(1) (2) (1)

{

BB

2 2

(2)

1 2

}
×σ − = + < = −( , ), A C C B C C0 0

Configuration 
interaction 

Example 29.1 Finding the energy lowering due to CI

Set up the equations that must be solved in order to find the 

optimum values of the expansion coefficients for a CI treat-

ment of H2.

Method Use the Ψ = C0Ψ0 + C2Ψ2 superposition from Brief 

illustration 29.1. We do not need to consider the singly excited 

determinant because it is of opposite symmetry to the ground 

state (which is g, Topic 23) of dihydrogen. Set up the secular 

equation |H – ES| = 0 and express the integrals in terms of the 

(AB|CD) notation introduced in Topic 27 (eqn 27.14):

( ) ( ) ( ) ( ) ( )AB|CD dA B C D= ∫j
r0
12

1 1
1

2 2χ χ χ χ τ

The hamiltonian is H h h j r� � �= + +1 2 0 12/ .  For integrals of the 

form ∫�dτ  over the wavefunctions Ψ, which involve spin as 

well as space variables, interpret the integration as over both 

sets of variables, with the spin integration over the normalized 

spin state σ_(1,2) interpreted as

σ τ− =∫ ( , )1 2 12 d

Answer The 2 × 2 H and S matrices are

H

S

=
⎛

⎝⎜
⎞

⎠⎟
=

=
⎛

⎝⎜
⎞

⎠⎟
=

∫
H H

H H
H

S S

S S
S

H
00 02

20 22

00 02

20 22

MN M N

MN

dΨ Ψ τ

Ψ

�

MM NdΨ τ∫
Note that the overlap integral is between the two-electron 

wavefunctions, not the overlap of individual atomic orbitals. 

The secular equation to solve to find E is

H ES H ES

H ES H ES

00 00 02 02

20 20 22 22

0
− −
− −

=

(Note that S02 = S20 and H02 = H20 due to hermiticity.)
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29 Ab initio methods  253

29.2 Many-body perturbation theory

The application of perturbation theory to a molecular system 

of interacting electrons and nuclei is called many-body pertur-

bation theory. According to the presentation of perturbation 

theory in Topic 15 (see eqn 15.1, H H H� � �= +( ) ( )
),

0 1
 the hamil-

tonian is expressed as a sum of a simple, ‘model’ hamiltonian, 

H� ( )0
 , and a perturbation, H� ( )

.
1

 Because we wish to find the cor-

relation energy, a natural choice for the model hamiltonian is 

the sum of Fock operators of the HF-SCF method,

f h J i K i
i i m m

m

� � � �= + −∑{ ( )}( )2

 

(29.2)

and for the perturbation it is the difference between this sum 

and the true many-electron hamiltonian. That is,

H H H H f
i

i

N

� � � � �= + =
=

∑( ) ( ) ( )0 1 0

1

with
e

 

(29.3a)

with

H
m

j
Z

ri
I

IiI

N

i

N

i

N

hi

i

N

�

�

= − ∇ −
===

∑∑∑
=

∑


� ������ ����

2
2

0

111
2

1

e

nee

e

���

+
≠
∑1

2

1
0j riji j

Ne

 

(29.3b)

Because the core hamiltonian (the sum of the hi
�  in the Fock 

operator in eqn 29.2) cancels the one-electron terms in the full 

hamiltonian, the perturbation is the difference between the 

instantaneous interaction between the electrons (the blue term 

in eqn 29.3) and the average interaction (as represented by the 

operators J and K in the Fock operator). Thus, for electron 1,

H
j

r
J K

ii

m m

m

� 1 0

1

1 2 1 1
( ) = − −∑ ∑( ) { ( ) ( )}

 

(29.4)

where the first sum (the true interaction) is over all the elec-

trons other than electron 1 itself and the second sum (the aver-

age interaction) is over all the occupied orbitals. This choice 

was first made by C. Møller and M.S. Plesset in 1934 and the 

method is called Møller–Plesset perturbation theory (MPPT). 

Applications of MPPT to molecular systems were not under-

taken until the 1970s and the rise of sufficient computing 

power.

As usual in perturbation theory, the true wavefunction is 

written as a sum of the eigenfunction of the model hamiltonian 

and higher-order correction terms. The correlation energy, the 

difference between the true energy and the HF energy, is given 

by energy corrections that are second-order and higher. If we 

suppose that the true wavefunction of the system is given by a 

sum of CSFs like that in eqn 29.1, then

The molecular orbitals ψa and ψb are orthogonal, so

Ψ Ψ0 0 1 2 1 2 1 2 1 2dτ ψ ψ σ ψ ψ σ
ψ ψ

∫ ∫= − −a a a a( ) ( ) ( , ) ( ) ( ) ( , )

0 0� ���� ���� � ����� ����

� �� �� � �� �� � ��

d

d d d

τ

ψ τ ψ τ σ σ=∫ ∫ ∫ −a a( ) ( ) ( , )1 2 1 22
1

2
2

2

1 1 1�� ���

� ���� ����

=

=∫ ∫ − −

1

1 2 1 2 1 2 12 0Ψ Ψ τ ψ ψ σ ψ ψ σ
ψ

d b b a a( ) ( ) ( , ) ( ) ( ) (

2

,, )

( ) ( ) ( ) ( )

2

1 1 2 21 2

ψ

τ

ψ ψ τ ψ ψ τ

0

0 0

� ���� ����

� ��� ��� � �
∫

∫ ∫=

d

d db a b a

��� ��� � ��� ���
σ σ−∫ =( , )1 2 02 d

1

and likewise for S02 and S22. That is, S = 1. The secular determi-

nant is now easily rearranged into a quadratic equation for E 

with solutions

E H H H H H H H

H H

= +( )± + − −{ }
= +

1
2 00 22

1
2 00 22

2
00 22 02

2
1 2

1
2 00 22

4( ) ( )

( )

/

±± − +{ }1
2 00 22

2
02
2

1 2
4( )

/
H H H

As usual, the problem boils down to an evaluation of various 

integrals that appear in the matrix elements.

To evaluate the H00 hamiltonian matrix elements, we note 

that

H h h
j

r00 0 1 2
0

12
0= + +

⎛

⎝⎜
⎞

⎠⎟∫Ψ Ψ τ� � d

The first term in this integral (noting that the spin integration, 

as previously, gives 1) is:

Ψ Ψ τ ψ ψ ψ ψ τ τ

ψ ψ τ

0 1 0 1 1 2

1 1

1 2 1 2

1 1

h h

h

a a a a

a a

� �

�

d d d

d

∫ ∫=

=

( ) ( ) ( ) ( )

( ) ( )∫∫ ∫ =

Ea� ���� ���� � ��� ���
ψ ψ τa a aE( ) ( )2 2 2d

1

The integral with h� 2  in place of h�1  has the same value. For the 

electron–electron repulsion term,

j
r

j
ra a a a0 0

12
0 0

12
1 2

1
4

1
1 2

1
1 2∫ ∫=

= +

Ψ Ψ τ ψ ψ ψ ψ τ τd d d

AA|AA

( ) ( ) ( ) ( )

( ) (( ) ( )AA|AB BB|BB+{ }�

Expressions of a similar kind can be developed for the other 

three elements of H, so the optimum energy can be found by 

substituting these matrix elements of H into the solutions E. 

The coefficients in the CI expression for Ψ can then be found 

in the normal way by using the lower value of E and solving 

the secular equations.

Self-test 29.2 Establish the expression for H02.

Answer: H02
1
4

= − +{ }( ) ( ) ( )AA|AA AA|AB BB|BB�
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254 6 Molecular structure

E
E E

H

MM

0
2

1
0

2

0
0 0

0

( )

( )

( ) ( )
=

−
∫∑

≠

Ψ Ψ τM
� d

 

According to Brillouin’s theorem, only doubly excited Slater 

determinants have nonzero H� ( )1
 matrix elements and hence 

only they make a contribution to E0
2( ).1 The identification of the 

second-order energy correction with the correlation energy is 

the basis of the MPPT method denoted MP2. The extension of 

MPPT to include third- and fourth-order energy corrections 

are denoted MP3 and MP4, respectively.

Møller–Plesset 
perturbation 
theory 

 (29.5)

1 For details, see our Molecular quantum mechanics, Oxford University Press (2011).

Checklist of concepts

☐ 1. Electron correlation is the tendency of electrons to stay 

apart in order to minimize their mutual repulsion.

☐ 2. Virtual orbitals are molecular orbitals that are unoc-

cupied in the HF ground-state electronic wavefunction.

☐ 3. A singly excited determinant is formed by transferring 

an electron from an occupied orbital to a virtual orbital, 

a doubly excited determinant by transferring two elec-

trons, and so on.

☐ 4. Each of the Slater determinants (including the HF 

wavefunction) is a configuration state function (CSF).

☐ 5. Configuration interaction (CI) expresses the exact 

electronic wavefunction as a linear combination of con-

figuration state functions.

☐ 6. Configuration interaction and Møller–Plesset pertur-

bation theory are two popular ab initio methods that 

accommodate electron correlation.

☐ 7. Full CI uses molecular orbitals built from a finite basis 

set and allows for all possible excited determinants.

☐ 8. The correlation energy is the difference between the 

true energy and the energy calculated by the Hartree–

Fock procedure.

☐ 9. Many-body perturbation theory is the application of 

perturbation theory to a molecular system of interact-

ing electrons and nuclei.

☐ 10. Møller–Plesset perturbation theory (MPPT) uses the 

sum of the Fock operators from the HF method as the 

simple, model hamiltonian.

☐ 11. According to Brillouin’s theorem, only doubly excited 

determinants contribute to the second-order energy 

correction.

Example 29.2 Setting up Møller–Plesset perturbation 
theory

Use the MP2 procedure to set up an expression for the correla-

tion energy in the model of H2 that we have been developing.

Method According to Brillouin’s theorem, and for our simple 

model of H2 built from two basis orbitals, we write Ψ = C0Ψ0 + C2Ψ2 

with, as before, Ψ0 = ψa(1)ψa(2)σ−(1,2) and Ψ2 = ψb(1)ψb(2)σ−(1,2). 

Formulate the integrals that appear in eqn 29.5.

Answer The only matrix element we need for the sum in eqn 

29.5 is

Ψ Ψ τ ψ ψ ψ ψ τ τ2

1

0 0
12

1 21 2
1

1 2H j
rb b a a

� ( )
( ) ( ) ( ) ( )d d d∫ ∫=

(As before, integration of spin states has given 1.) All the 

integrals over terms based on J and K are zero because these 

are one-electron operators and so either ψa(1) or ψa(2) is left 

unchanged and its orthogonality to ψb ensures that the inte-

gral vanishes. We now expand each molecular orbital in terms 

of the basis functions χA and χB, and obtain

Ψ Ψ τ2

1

0

1

2
H� ( )

( ) ( ) ( )d AA|AA BA|AA BB|BB∫ = − + +{ }�

On using sy mmetr ies l ike (A A|AB) =  (A A|BA) and 

(AA|AB) = (BB|BA), this expression simplifies to

Ψ Ψ τ2
1

0

1

2
H� ( )

( ) ( )d AA|AA AA|BB∫ = −{ }

It follows that the second-order estimate of the correlation 

energy is

E
E EM

0
2

1
4

2

0
0 0

2

8
( )

( ) ( )

( ) ( ) ( ) ( )

(
=

−{ }
−

=
−{ }AA|AA AA|BB AA|AA AA|BB

εε εa b− )

The term (AA|AA)–(AA|BB) is the difference in repulsion 

energy between both electrons being confined to one atom 

and each being on a different atom.

Self-test 29.3 Demonstrate the validity of the last remark.
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Checklist of equations

Property Equation Comment Equation number

Configuration interaction Ψ = C0Ψ0( ) + C1Ψ1( ) + C2Ψ2( ) + . . . 29.1

Møller–Plesset perturbation theory �H j r J K

i

i

m

m m
( )( ) / ( ) .( )1

0 11 2 1 1= − −{ }∑ ∑ 29.4

Correlation energy in MPPT E E EH

M

M0
2

0

1
0

2

0
0 0( ) ( ) ( ) ( ) .= −( )

≠
∑ ∫Ψ Ψ τM d� MP2 29.5
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TOPIC 30

Density functional theory

A technique that has gained considerable ground in recent 

years to become one of the most widely used procedures for 

the calculation of molecular structure is density functional 

theory (DFT). Its advantages include less demanding com-

putational effort, less computer time, and—in some cases, 

particularly for d-metal complexes—better agreement with 

experimental values than is obtained from Hartree–Fock 

based methods.

30.1 The Kohn–Sham equations

The central focus of DFT is the electron probability density, 

ρ. The ‘functional’ part of the name comes from the fact that 

the energy of the molecule is a function of the electron density 

and the electron density is itself a function of the positions of 

the electrons, ρ(r). In mathematics a function of a function is 

called a functional, and in this specific case we write the energy 

as the functional E[ρ]. We have encountered a functional else-

where but did not use this terminology: the expectation value 

of the hamiltonian is the energy expressed as a functional of the 

wavefunction, for a single value of the energy, E[ψ], is associ-

ated with each function ψ. An important point to note is that 

because E[ψ] is an integral of ψ �Hψ over all space, it has contri-

butions from the whole range of values of ψ.

Simply from the structure of the hamiltonian in Topic 27 

(eqn 27.1),

�H
m

Z e
i

i

N

I= − ∇ −
=

∑
� ��� ���

2
2

1

2

02 4e

e

Kinetic energy
of electrons

πε rr

e

IiI

N

i

N

==
∑∑

11

1
2

2

4

ne

Their attraction
to all thenuclei� ��� ���

+
ππε0riji j

N

≠
∑

e

Their mutual
repulsion� �� ��

 

we can suspect that the energy of a molecule can be expressed 

as contributions from the kinetic energy, the electron–nuclear 

interaction, and the electron–electron interaction. The first two 

contributions depend on the electron density distribution. The 

electron–electron interaction is likely to depend on the same 

quantity, but we have to be prepared for there to be a modi-

fication of the classical electron–electron interaction due to 

electron exchange (the contribution which in Hartree–Fock 

theory is expressed by K). That the exchange contribution can 

be expressed in terms of the electron density is not at all obvi-

ous, but in 1964 P. Hohenberg and W. Kohn were able to prove 

 ➤ Why do you need to know this material?
Density functional theory is currently a highly popular 
method for the calculation of electronic structure, and 
it is important to know the general features of the 
procedure.

 ➤ What is the key idea?
The energy of a molecule can be calculated from the 
electron density.

 ➤ What do you need to know already?
You need to be aware of the structure of the hamiltonian 
for a polyatomic molecule (Topic 27).

Contents

30.1 The Kohn–Sham equations 256

30.2 The exchange–correlation energy 257

(a) The exchange–correlation potential 257

Example 30.1: Deriving an exchange–correlation 

potential 257

(b) Solution of the equations 258

Example 30.2: Applying the DFT method 258

Checklist of concepts 259
Checklist of equations 259
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30 Density functional theory  257

that the exact ground-state energy of an Ne-electron molecule 

is uniquely determined by the electron probability density. 

They showed that it is possible to write

E E E[ ] [ ] [ ]ρ ρ ρ= +classical XC  
 Energy functional  (30.2)

where Eclassical[ρ] is the sum of the contributions of kinetic energy, 

electron–nucleus interactions, and the classical electron–elec-

tron potential energy, and EXC[ρ] is the exchange–correlation 

energy. This term takes into account all the non-classical elec-

tron–electron effects due to spin and applies small corrections to 

the kinetic energy part of Eclassical that arise from electron–elec-

tron interactions. The Hohenberg–Kohn theorem guarantees 

the existence of EXC[ρ] but—like so many existence theorems in 

mathematics—gives no clue about how it should be calculated.

The first step in the implementation of this approach is to 

calculate the electron density. The relevant equations were 

deduced by W. Kohn and L.J. Sham in 1965, who showed that 

ρ can be expressed as a contribution from each electron present 

in the molecule, and written

ρ ψ( ) ( )r r= | |
e

i

i

N

2

1=
∑

 
 Electron density  (30.3)

The function ψi is called a Kohn–Sham orbital and is a solution 

of the Kohn–Sham equation, which closely resembles the form 

of the Schrödinger equation (on which it is based). For a two-

electron system,

�h j
r

Vi i i

i i

1 0
12

21
2

1 1 1

1

ψ ρ τ ψ ψ

ε ψ

( )
( )

( ) ( ) ( )

( )

+ +

=
∫ d XC

 

The first term is the usual core term, the second term is the 

classical interaction between electron 1 and electron 2, and 

the third term takes exchange effects into account and is 

called the exchange–correlation potential. The εi are the 

Kohn–Sham orbital energies.

30.2 The exchange–correlation 
energy

The exchange–correlation potential plays a central role in DFT 

and can be calculated once we know the exchange–correlation 

energy EXC[ρ] by forming the following ‘functional derivative’:

V
E

XC
XC( )

[ ]r = δ
δ

ρ
ρ  

 Exchange–correlation potential  (30.5)

A functional derivative is defined like an ordinary deriva-

tive, but we have to remember that EXC[ρ] is a quantity that 

gets its value from the entire range of values of ρ(r), not just 

from a single point. Thus, when r undergoes a small change, 

dr, the density changes by δρ to ρ(r + dr) at each point and 

EXC[ρ] undergoes a change that is the sum (integral) of all such 

changes:

δ δ
δ δ δE

E
VXC

XC
XCd ( ) d[ ]

[ ]ρ ρ
ρ ρ ρ= =∫ ∫r r r

 

(30.6)

Note that VXC is an ordinary function of r, not a functional: it 

is the local contribution to the integral that defines the global 

dependence of EXC[ρ] on δρ throughout the range of integra-

tion. This procedure is clarified and illustrated in Example 30.1.

(a) The exchange–correlation potential
The greatest challenge in density functional theory is to find an 

accurate expression for the exchange–correlation energy. One 

widely used but approximate form for EXC[ρ] is based on the 

model of a uniform electron gas, a hypothetical electrically 

neutral system in which electrons move in a space of continu-

ous and uniform distribution of positive charge. For a uniform 

electron gas, the exchange–correlation energy can be written as 

the sum of an exchange contribution and a correlation contri-

bution. The latter is a complicated functional that is beyond the 

scope of this Topic; we ignore it here. The following example 

shows how to infer the exchange–correlation potential for the 

exchange contribution.

Kohn– 
Sham 
equation

(30.4)
Example 30.1 Deriving an exchange–correlation 
potential

The exchange–correlation energy for a uniform electron gas 

is1

E A AXC

/

0d[ ] /ρ ρ= = − π∫ ⎛
⎝⎜

⎞
⎠⎟

4 3 9
8

1 2
3r j

with, as usual, j0 = e2/4πε0. Deduce the corresponding 

exchange–correlation potential.

Method Identify how the functional EXC[ρ] changes when the 

density changes from ρ(r) to ρ(r)  +  δρ(r) at each point (Fig. 

30.1), and then use a Taylor series (Mathematical background 

1) to expand the integrand. Compare the result with eqn 30.6 

to identify VXC(r).

Answer When the density changes from ρ(r) to ρ(r)  +  δρ(r) 

the functional changes from EXC[ρ] to EXC[ρ + δρ]:

E AXC d[ ] ( ) /ρ ρ ρ ρ+ δ = + δ∫ 4 3 r

1 For the origin of this term, see our Molecular quantum mechanics, 

Oxford University Press (2011).
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258 6 Molecular structure

(b) Solution of the equations

The Kohn–Sham equations must be solved iteratively and 

self-consistently (Fig. 30.2). First, we guess the electron 

density; it is common to use a superposition of atomic elec-

tron probability densities. Second, the exchange–correlation 

potential is calculated by assuming an approximate form 

of the dependence of the exchange–correlation energy on 

the electron density and evaluating the functional deriva-

tive. Next, the Kohn–Sham equations are solved to obtain 

an  initial set of Kohn–Sham orbitals. This set of orbitals is 

used to obtain a better approximation to the electron prob-

ability density (from eqn 30.3) and the process is repeated 

until the density remains constant to within some specified 

tolerance. The electronic energy is then computed by using 

eqn 30.2.

As is the case for the Hartree–Fock one-electron wavefunc-

tions, the Kohn–Sham orbitals can be expanded using a set 

of Nb basis functions; solving eqn 30.4 then amounts to find-

ing the coefficients in the expansion. Various basis functions, 

including Slater-type orbitals (STO) and Gaussian-type orbitals 

(GTO), can be used (Topic 27). Whereas Hartree–Fock meth-

ods have computational times that scale as Nb
4, DFT methods 

scale as Nb
3 . Therefore, DFT methods are computationally 

more efficient, though not necessary more accurate, than HF 

methods.

Example 30.2 Applying the DFT method

Demonstrate how to apply DFT to molecular hydrogen.

Method Begin by assuming that the electron density is a sum 

of atomic electron densities arising from the presence of elec-

trons in the atomic orbitals χA and χB (which may be STOs or 

GTOs), and write ρ(r) = |χA|2 + |χB|2 for each electron. For the 

exchange–correlation energy, EXC, use the form appropriate to a 

uniform electron gas and the corresponding exchange–correla-

tion potential derived in Example 30.1.

Formulate form for the
exchange–correlation
energy, EXC[ρ]

Formulate trial
density, ρ

Evaluate the
exchange–correlation
potential, VXC, eqn 30.5

Kohn–Sham
equations, eqn 30.4

Kohn–Sham
orbitals, ψ

Electronic
energy, E,
eqn 30.2YesNo

Convergence?

Electron density,
 ρ, eqn 30.3

Figure 30.2 The iteration procedure for solving the Kohn–
Sham equations in density functional theory.

Expand the integrand in a Taylor series in the vicinity of ρ:

( )ρ ρ ρ
ρ ρ

ρ ρ

ρ
ρ

ρ

+ δ =
δ

δ
δ =

4 3 4 3
4 3

0

/ /
/d( )

d
+

+⎛
⎝⎜

⎞
⎠⎟

+

=

4
3

1/3

� ���� ����

�

44 3 4
3

1 3/ /+ +ρ ρδ �

We discard terms of order δρ2 and higher, and so obtain

E A

E A

XC
/ /

XC

d

d

[ ] ( )

[ ] /

ρ ρ ρ ρ ρ

ρ ρρ

+ δ = + δ

= δ

∫
∫+

4 3 4
3

1 3

4
3

1 3

r

r

Therefore, the differential δEXC of the functional (the differ-

ence EXC[ρ + δρ] – EXC[ρ] that depends linearly on δρ) is

δ = δ

δ

E AXC d[ ] /ρ ρ ρ

ρ

4
3

1 3∫
∫

r

VXC ( ) dr r
� ��� ���

and therefore

V A jXC ( ) ( )/
/

/r r= π
4
3

3
2

31 3
1 2

0
1 3ρ ρ= − ⎛

⎝⎜
⎞
⎠⎟

 

(30.7)

Self-test 30.1 Find the exchange–correlation potential if the 

exchange–correlation energy is given by E BXC d[ ] ( ) .ρ ρ= ∫ r r2

Answer: VXC(r) = 2Bρ(r)

Location

C
o

n
tr

ib
u

ti
o

n
 t

o
 e

n
er

g
y

E[ρ]

E[ρ + δρ]

ρ(r) ρ(r) + δρ(r)

Figure 30.1 The change in the exchange–correlation energy 
functional from EXC[ρ] to EXC[ρ + δρ] (the area under each 
curve) as the density changes from ρ to ρ + δρ at each point r.
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30 Density functional theory  259

Checklist of concepts

☐ 1. In density functional theory (DFT), the electronic 

energy is written as a functional of the electron prob-

ability density.

☐ 2.  The Hohenberg–Kohn theorem guarantees that the 

exact ground-state energy of a molecule is uniquely 

determined by the electron probability density.

☐ 3. The exchange–correlation energy takes into account 

non-classical electron–electron effects.

☐ 4. The electron density is computed from the Kohn–Sham 

orbitals, the solutions to the Kohn–Sham equations. 

The latter equations are solved self-consistently.

☐ 5. The exchange–correlation potential is the functional 

derivative of the exchange–correlation energy.

☐ 6. One commonly used but approximate form for the 

exchange–correlation energy is based on the model of 

an electron gas.

Checklist of equations

Answer The Kohn–Sham orbital for the molecule is a solution of

�h j
r

Aa a a a a1 0
12

2
4
3

1 31
2

1 1 1 1ψ ρ τ ψ ρ ψ ε ψ( )
( )

( ) ( ) ( ) ( )+ =∫ +d /

Now insert the ρ(r1) and ρ(r2) we have assumed, ρ(r) = |χA|2 +  

|χB|2, and solve this equation numerically for ψa. Once we have 

that orbital, we replace our original guess at the electron density 

by ρ(r) = |ψa(r)|2. This density is then substituted back into the 

Kohn–Sham equation to obtain an improved function ψa(r) and 

the process repeated until the density and exchange–correlation 

energy are unchanged to within a specified tolerance on succes-

sive iterations.

When convergence of the iterations has been achieved, the 

electronic energy (eqn 30.2) is calculated from

�E h j
ra a[ ]

( ) ( )
( ) ( )

/

ρ ψ ψ ρ ρ= +

π

2

9

8

3

1 0
1 2

12
1 2

1

∫ ∫
− ⎛

⎝⎜
⎞
⎠⎟

r r r r r r rd d d

22

0
4 3j ∫ρ( )r r/ d

where the first term is the sum of the energies of the two electrons 

in the field of the two nuclei, the second term is the electron–

electron repulsion, and the final term includes the correction 

due to non-classical electron–electron effects.

Self-test 30.2 What would the final term be if the exchange–

correlation potential were that deduced in Self-test 30.1?

Answer: B ∫ ρ( )r r2 d

Property Equation Comment Equation number

Energy E[ρ] = Eclassical[ρ] + EXC[ρ] 30.2

Electron density ρ ψ( ) ( )r r=
i

N

i

=
∑

1

2

e

| | Definition 30.3

Kohn–Sham equations �h j r Vi i i i i1 0 12 21 2 1 1 1 1ψ ρ τ ψ ψ ε ψ( ) ( ) ( ) ( ) ( )( )+ ∫( )d XC/ + = Solve numerically and iteratively 30.4

Exchange–correlation 
potential

V EXC XC( ) [ ]/r = δ δρ ρ Definition; a functional derivative 30.5

V jXC /( ) ( ) ( )/ /r r= − π3
2

1 2
0

1 33 ρ Electron-gas model 30.7
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260 6 Molecular structure

Focus 6 on Molecular structure

Topic 22 Valence-bond theory

Discussion questions
22.1 Discuss the role of the Born–Oppenheimer approximation in the 

calculation of a molecular potential energy curve or surface.

22.2 Why are promotion and hybridization invoked in valence-bond theory?

22.3 Describe the various types of hybrid orbitals and how they are used 

to describe the bonding in alkanes, alkenes, and alkynes. How does 

hybridization explain that in allene, CH2 = C = CH2, the two CH2 groups lie in 

perpendicular planes?

22.4 Why is spin pairing so common a feature of bond formation (in the 

context of valence-bond theory)?

22.5 What are the consequences of resonance?

22.6 Write the Lewis structure of the peroxynitrite ion, ONOO−. Label each 

atom with its state of hybridization and specify the composition of each of the 

different types of bond.

Exercises
22.1(a) Write the valence-bond wavefunction for the single bond in HF.

22.1(b) Write the valence-bond wavefunction for the triple bond in N2.

22.2(a) Write the valence-bond wavefunction for the resonance hybrid 

HF ↔ H+F− ↔ H−F+ (allow for different contributions of each structure).

22.2(b) Write the valence-bond wavefunction for the resonance hybrid 

N2 ↔ N+N− ↔ N2–N2+ ↔ structures of similar energy.

22.3(a) Describe the structure of a P2 molecule in valence-bond terms. Why is 

P4 a more stable form of molecular phosphorus?

22.3(b) Describe the structures of SO2 and SO3 in terms of valence-bond 

theory.

22.4(a) Describe the bonding in 1,3-butadiene using hybrid orbitals.

22.4(b) Describe the bonding in 1,3-pentadiene using hybrid orbitals.

22.5(a) Show that the linear combinations h1 = s + px + py + pz and 

h2 = s − px − py + pz are mutually orthogonal.

22.5(b) Show that the linear combinations h1 = (sin χ)s + (cos χ)p and 

h2 = (cos χ)s – (sin χ)p are mutually orthogonal for all values of the angle χ.

22.6(a) Normalize the sp2 hybrid orbital h = s + 21/2p given that the s and 

p orbitals are each normalized to 1.

22.6(b) Normalize the linear combinations in Exercise 22.5(b) given that the 

s and p orbitals are each normalized to 1.

Problems
22.1 An sp2 hybrid orbital that lies in the xy plane and makes an angle of 120° 

to the x-axis has the form

ψ = − +
⎛

⎝⎜
⎞

⎠⎟
1

3

1

2

3

21 2 1 2

1 2

1 2/ /

/

/
s p px y

 

Use hydrogenic atomic orbitals to write the explicit form of the hybrid orbital. 

Show that it has its maximum amplitude in the direction specified.

22.2 Confirm that the hybrid orbitals in eqn 22.7 make angles of 120° to each 

other.

22.3 Show that if two equivalent hybrid orbitals of the form spλ make an angle 

θ to each other, then λ = –1/cos θ. Plot a graph of λ against θ and confirm that 

θ = 180° when λ = 1 and θ = 120° when λ = 2.

Topic 23 The principles of molecular orbital theory

Discussion questions
23.1 What feature of molecular orbital theory is responsible for bond 

formation?

23.2 Why is spin pairing so common a feature of bond formation (in the 

context of molecular orbital theory)?
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Exercises and problems  261

Exercises
23.1(a) Normalize the molecular orbital ψ = ψA + λψB in terms of the 

parameter λ and the overlap integral S.

23.1(b) A better description of the molecule in Exercise 23.1(a) might be 

obtained by including more orbitals on each atom in the linear combination. 

Normalize the molecular orbital ψ ψ λψ λ ψ= + + ′ ′A B B  in terms of the 

parameters λ and λ′ and the appropriate overlap integrals S, where ψB and ′ψ B 

are mutually orthogonal orbitals on atom B.

23.2(a) Suppose that a molecular orbital has the (unnormalized) form 

0.145A + 0.844B. Find a linear combination of the orbitals A and B that is 

orthogonal to this combination and determine the normalization constants of 

both combinations using S = 0.250.

23.2(b) Suppose that a molecular orbital has the (unnormalized) form 

0.727A + 0.144B. Find a linear combination of the orbitals A and B that is 

orthogonal to this combination and determine the normalization constants of 

both combinations using S = 0.117.

23.3(a) The energy of H2
+  with internuclear separation R is given by eqn 23.4. 

The values of the contributions are given below. Plot the molecular potential 

energy curve and find the bond dissociation energy (in electronvolts) and the 

equilibrium bond length.

where Eh = 27.2 eV, a0 = 52.9 pm, and E EH1s h= − 1
2

.

23.3(b) The same data as in Exercise 23.3(a) may be used to calculate the 

molecular potential energy curve for the antibonding orbital, which is given 

by eqn 23.7. Plot the curve.

23.4(a) Identify the g or u character of bonding and antibonding π orbitals 

formed by side-by-side overlap of p atomic orbitals.

23.4(b) Identify the g or u character of bonding and antibonding δ orbitals 

formed by face-to-face overlap of d atomic orbitals.

Problems
23.1 Calculate the (molar) energy of electrostatic repulsion between two 

hydrogen nuclei at the separation in H2 (74.1 pm). The result is the energy 

that must be overcome by the attraction from the electrons that form the 

bond. Does the gravitational attraction between them play any significant 

role? Hint: The gravitational potential energy of two masses is equal to 

–Gm1m2/r.

23.2 Imagine a small electron-sensitive probe of volume 1.00 pm3 inserted into 

an H2
+ molecule ion in its ground state. Calculate the probability that it will 

register the presence of an electron at the following positions: (a) at nucleus A, 

(b) at nucleus B, (c) halfway between A and B, (c) at a point 20 pm along the 

bond from A and 10 pm perpendicularly. Do the same for the molecule ion the 

instant after the electron has been excited into the antibonding LCAO-MO.

23.3 Derive eqns 23.4 and 23.7 by working with the normalized LCAO-MOs 

for the H2
+  molecule-ion. Proceed by evaluating the expectation value of the 

hamiltonian for the ion. Make use of the fact that A and B each individually 

satisfy the Schrödinger equation for an isolated H atom.

23.4 Examine whether occupation of the bonding orbital with one electron 

(as calculated in the preceding problem) has a greater or lesser bonding effect 

than occupation of the antibonding orbital with one electron. Is that true at all 

internuclear separations?

23.5 ‡ The LCAO-MO approach described in the text can be used to introduce 

numerical methods needed in quantum chemistry. In this problem we 

evaluate the overlap, Coulomb, and resonance integrals numerically and 

compare the results with the analytical equations (eqns 23.5). (a) Use the 

LCAO-MO wavefunction and the H2
+  hamiltonian to derive equations 

for the relevant integrals, and use mathematical software or an electronic 

spreadsheet to evaluate the overlap, Coulomb, and resonance integrals 

numerically, and the total energy for the 1sσg MO in the range a0 < R < 4a0. 

Compare the results obtained by numerical integration with results obtained 

analytically. (b) Use the results of the numerical integrations to draw a graph 

of the total energy, E(R), and determine the minimum of total energy, the 

equilibrium internuclear distance, and the dissociation energy (De).

23.6(a) Calculate the total amplitude of the normalized bonding and 

antibonding LCAO-MOs that may be formed from two H1s orbitals at a 

separation of 2a0 = 106 pm. Plot the two amplitudes for positions along the 

molecular axis both inside and outside the internuclear region. (b) Plot the 

probability densities of the two orbitals. Then form the difference density, the 

difference between ψ 2 and 1
2

2 2( ).ψ ψA B+

Topic 24 Homonuclear diatomic molecules

Discussion questions
24.1 Draw diagrams to show the various orientations in which a p orbital and 

a d orbital on adjacent atoms may form bonding and antibonding molecular 

orbitals.

24.2 Outline the rules of the building-up principle for homonuclear diatomic 

molecules. 

24.3 What is the role of the Born–Oppenheimer approximation in molecular 

orbital theory?

24.4 What is the justification for treating s and p atomic-orbital contributions 

to molecular orbitals separately?

24.5 To what extent can orbital overlap be related to bond strength?

R/a0 0 1 2 3 4

j/Eh 1.000 0.729 0.472 0.330 0.250

k/Eh 1.000 0.736 0.406 0.199 0.092

S 1.000 0.858 0.587 0.349 0.189

‡ These problems were supplied by Charles Trapp and Carmen Giunta.

Atkins09819.indb   261 9/11/2013   11:37:49 AM



262 6 Molecular structure

Exercises
24.1(a) Give the ground-state electron configurations and bond orders of 

(a) Li2, (b) Be2, and (c) C2.

24.1(b) Give the ground-state electron configurations of (a) F2
− ,  (b) N2,  

and (c) O2
2− .

24.2(a) From the ground-state electron configurations of B2 and C2, predict 

which molecule should have the greater bond dissociation energy.

24.2(b) From the ground-state electron configurations of Li2 and Be2, predict 

which molecule should have the greater bond dissociation energy.

24.3(a) Which has the higher dissociation energy, F2 or F2
+ ?

24.3(b) Arrange the species O2
+ ,  O2, O2

− , O2
2−  in order of increasing bond 

length.

24.4(a) Evaluate the bond order of each Period 2 homonuclear diatomic.

24.4(b) Evaluate the bond order of each Period 2 homonuclear diatomic 

cation, X2
+ ,  and anion, X2

− .

24.5(a) For each of the species in Exercise 24.3(b), specify which molecular 

orbital is the HOMO.

24.5(b) For each of the species in Exercise 24.3(b), specify which molecular 

orbital is the LUMO.

24.6(a) What is the speed of a photoelectron ejected from an orbital of 

ionization energy 12.0 eV by a photon of radiation of wavelength 100 nm?

24.6(b) What is the speed of a photoelectron ejected from a molecule with 

radiation of energy 21 eV and known to come from an orbital of ionization 

energy 12 eV?

24.7(a) The overlap integral between two hydrogenic 1s orbitals on nuclei 

separated by a distance R is given by eqn 24.4. At what separation is S = 0.20 

for (i) H2, (ii) He2?

24.7(b) The overlap integral between two hydrogenic 2s orbitals on nuclei 

separated by a distance R is given by the expression in Brief illustration 24.2. 

At what separation is S = 0.20 for (i) H2, (ii) He2?

Problems
24.1 Sketch how the overlap between a 1s orbital and a 2p orbital directed 

towards it can be expected to depend on their separation. The overlap integral 

between an H1s orbital and an H2p orbital directed towards it on nuclei 

separated by a distance R is S R a R a R a R ao= + + −( ){ ( ) ( ) } .// 1 / / 2
0 0

1
3 0 e  

Plot this function, and find the separation for which the overlap is a 

maximum.

 24.2‡ Use the 2px and 2pz hydrogenic atomic orbitals to construct simple 

LCAO descriptions of 2pσ and 2pπ molecular orbitals. (a) Make a 

probability density plot, and both surface and contour plots of the xz-plane 

amplitudes of the 2pzσ and 2pzσ* molecular orbitals. (b) Make surface and 

contour plots of the xz-plane amplitudes of the 2pxπ and 2pxπ* molecular 

orbitals. Include plots for both an internuclear distance, R, of 10a0 and 3a0, 

where a0 = 52.9 pm. Interpret the graphs, and explain why this graphical 

information is useful.

24.3 Show, if overlap is ignored, (a) that any molecular orbital expressed as 

a linear combination of two atomic orbitals may be written in the form 

ψ = ψA cos θ + ψB sin θ, where θ is a parameter that varies between 0 and 1
2

π, 
and (b) that if ψA and ψB are orthogonal and normalized to 1, then ψ is also 

normalized to 1. (c) To what values of θ do the bonding and antibonding 

orbitals in a homonuclear diatomic molecule correspond?

24.4 In a particular photoelectron spectrum using 21.21 eV photons, electrons 

were ejected with kinetic energies of 11.01 eV, 8.23 eV, and 5.22 eV. Sketch the 

molecular orbital energy level diagram for the species, showing the ionization 

energies of the three identifiable orbitals.

24.5 Show that overlap integral between two hydrogenic 2s orbitals is given by

S
ZR

a

ZR

a

ZR

a
( , )2 2 1

2

1
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Topic 25 Heteronuclear diatomic molecules

Discussion questions
25.1 Describe the Pauling and Mulliken electronegativity scales. Why should 

they be approximately in step?

25.2 Why do both ionization energy and electron affinity play a role in 

estimating the energy of an atomic orbital to use in a molecular structure 

calculation?

25.3 Discuss the steps involved in the calculation of the energy of a system by 

using the variation principle. Are any assumptions involved?

25.4 What is the physical significance of the Coulomb and resonance integrals?

25.5 Discuss how the properties of carbon explain the bonding features that 

make it an ideal biological building block.

Exercises
25.1(a) Give the ground-state electron configurations of (a) CO, (b) NO, and 

(c) CN−.

25.1(b) Give the ground-state electron configurations of (a) XeF, (b) PN, and 

(c) SO−.

25.2(a) Sketch the molecular orbital energy level diagram for XeF and deduce 

its ground-state electron configuration. Is XeF likely to have a shorter bond 

length than XeF+?

25.2(b) Sketch the molecular orbital energy level diagram for IF and deduce its 

ground-state electron configuration. Is IF likely to have a shorter bond length 

than IF− or IF+?

25.3(a) Use the electron configurations of NO− and NO+ to predict which is 

likely to have the shorter bond length.

25.3(b) Use the electron configurations of SO− and SO+ to predict which is 

likely to have the shorter bond length.
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25.4(a) A reasonably reliable conversion between the Mulliken and Pauling 

electronegativity scales is given by eqn 25.4. Use Table 25.1 to assess how good 

the conversion formula is for Period 2 elements.

25.4(b) A reasonably reliable conversion between the Mulliken and Pauling 

electronegativity scales is given by eqn 25.4. Use Table 25.1 to assess how good 

the conversion formula is for Period 3 elements.

25.5(a) Estimate the orbital energies to use in a calculation of the molecular 

orbitals of HCl. For data, see Tables 20.2 and 20.3.

25.5(b) Estimate the orbital energies to use in a calculation of the molecular 

orbitals of HBr. For data, see Tables 20.2 and 20.3.

25.6(a) Use the values derived in Exercise 25.5(a) to estimate the molecular 

orbital energies in HCl; use S = 0.

25.6(b) Use the values derived in Exercise 25.5(b) to estimate the molecular 

orbital energies in HBr; use S = 0.

25.7(a) Now repeat Exercise 25.6(a), but with S = 0.20.

25.7(b) Now repeat Exercise 25.6(b), but with S = 0.20.

Problems
25.1 Equation 25.8c follows from eqn 25.8a by making the approximation  

|αB – αA| >>  2|β| and setting S = 0. Explore the consequences of not setting 

S = 0.

25.2 Suppose that a molecular orbital of a heteronuclear diatomic molecule is 

built from the orbital basis A, B, and C, where B and C are both on one atom 

(they can be envisaged as F2s and F2p in HF, for instance). Set up the secular 

equations for the optimum values of the coefficients and the corresponding 

secular determinant.

25.3 Continue the preceding problem by setting αA = –7.2 eV, αB = –10.4 eV, 

αC = –8.4 eV, βAB = –1.0 eV, βAC = –0.8 eV, and calculate the orbital energies 

and coefficients with (i) both S = 0, (ii) both S = 0.2.

25.4 As a variation of the preceding problem explore the consequences of 

increasing the energy separation of the B and C orbitals (use S = 0 for this 

stage of the calculation). Are you justified in ignoring orbital C at any stage?

Topic 26 Polyatomic molecules

Discussion questions
26.1 Discuss the scope, consequences, and limitations of the approximations 

on which the Hückel method is based.

26.2 Distinguish between delocalization energy, π-electron binding energy, 

and π-bond formation energy. Explain how each concept is employed.

Exercises
26.1(a) Write down the secular determinants for (a) linear H3, (b) cyclic H3 

within the Hückel approximation.

26.1(b) Write down the secular determinants for (a) linear H4, (b) cyclic H4 

within the Hückel approximation.

26.2(a) Predict the electron configurations of (a) the benzene anion, (b) the 

benzene cation. Estimate the π-electron binding energy in each case.

26.2(b) Predict the electron configurations of (a) the allyl radical, (b) the 

cyclobutadiene cation. Estimate the π-electron binding energy in  

each case.

26.3(a) Compute the delocalization energy and π-bond formation energy of 

(a) the benzene anion, (b) the benzene cation.

26.3(b) Compute the delocalization energy and π-bond formation energy of 

(a) the allyl radical, (b) the cyclobutadiene cation.

26.4(a) Write down the secular determinants for (a) anthracene (1), (b) 

phenanthrene (2) within the Hückel approximation and using the C2p 

orbitals as the basis set.

1 Anthracene    2 Phenanthrene

26.4(b) Write down the secular determinants for (a) azulene (3), 

(b) acenaphthalene (4) within the Hückel approximation and using the C2p 

orbitals as the basis set.

3 Azulene  4 Acenaphthalene

26.5(a) Use mathematical software to estimate the π-electron binding energy 

of (a) anthracene (1), (b) phenanthrene (2) within the Hückel approximation.

26.5(b) Use mathematical software to estimate the π-electron binding energy 

of (a) azulene (3), (b) acenaphthalene (4) within the Hückel approximation.
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Problems
26.1 Set up and solve the Hückel secular equations for the π electrons of 

CO3
2− .  Express the energies in terms of the Coulomb integrals αO and αC and 

the resonance integral β. Determine the delocalization energy of the ion.

26.2 For a linear conjugated polyene with each of N carbon atoms contributing 

an electron in a 2p orbital, the energies Ek of the resulting π molecular orbitals 

are given by

E
k

N
k Nk = + + = …α β2

1
1 2 3cos , , ,

π

(a) Use this expression to determine a reasonable empirical estimate of the 

resonance integral β for the homologous series consisting of ethene, butadiene, 

hexatriene, and octatetraene, given that π* ← π ultraviolet absorptions from 

the HOMO to the LUMO occur at 61 500, 46 080, 39 750, and 32 900 cm−1, 

respectively. (b) Calculate the π-electron delocalization energy, Edeloc = Eπ − 
n(α + β), of octatetraene, where Eπ is the total π-electron binding energy and n 

is the total number of π electrons. (c) In the context of this Hückel model, the π 

molecular orbitals are written as linear combinations of the carbon 2p orbitals. 

The coefficient of the jth atomic orbital in the kth molecular orbital is given by

c
N

jk

N
j Nkj = +

⎛
⎝⎜

⎞
⎠⎟ + = …2

1 1
1 2 3

1 2/

, , , ,sin
π

 

Determine the values of the coefficients of each of the six 2p orbitals in each 

of the six π molecular orbitals of hexatriene. Match each set of coefficients 

(that is, each molecular orbital) with a value of the energy calculated with the 

expression given in part (a) of the molecular orbital. Comment on trends that 

relate the energy of a molecular orbital with its ‘shape’, which can be inferred 

from the magnitudes and signs of the coefficients in the linear combination 

that describes the molecular orbital.

26.3 For monocyclic conjugated polyenes (such as cyclobutadiene and 

benzene) with each of N carbon atoms contributing an electron in a 2p 

orbital, simple Hückel theory gives the following expression for the energies 

Ek of the resulting π molecular orbitals:

E
k

N
k N N

k N N

k = + = ± …±

= ± …±

α β2
2

0 1 2

0 1 1 2

cos , ,

, , ( )/

π
/ for even

for odd−
 

(a) Calculate the energies of the π molecular orbitals of benzene and 

cyclooctatetraene (5). Comment on the presence or absence of degenerate 

energy levels. (b) Calculate and compare the delocalization energies of 

benzene (using the expression above) and hexatriene. What do you conclude 

from your results? (c) Calculate and compare the delocalization energies 

of cyclooctatetraene and octatetraene. Are your conclusions for this pair of 

molecules the same as for the pair of molecules investigated in part (b)?

5 Cyclooctatetraene

26.4 Set up the secular determinants for the homologous series consisting of 

ethene, butadiene, hexatriene, and octatetraene and diagonalize them by using 

mathematical software. Use your results to show that the π molecular orbitals 

of linear polyenes obey the following rules:

The π molecular orbital with lowest energy is delocalized over all carbon 

atoms in the chain.

The number of nodal planes between C2p orbitals increases with the energy 

of the π molecular orbital.

26.5 Set up the secular determinants for cyclobutadiene, benzene, and 

cyclooctatetraene and diagonalize them by using mathematical software. Use 

your results to show that the π molecular orbitals of monocyclic polyenes with 

an even number of carbon atoms follow a pattern in which:

The π molecular orbitals of lowest and highest energy are non-degenerate.

The remaining π molecular orbitals exist as degenerate pairs.

26.6 Electronic excitation of a molecule may weaken or strengthen some 

bonds because bonding and antibonding characteristics differ between the 

HOMO and the LUMO. For example, a carbon–carbon bond in a linear 

polyene may have bonding character in the HOMO and antibonding 

character in the LUMO. Therefore, promotion of an electron from the HOMO 

to the LUMO weakens this carbon–carbon bond in the excited electronic 

state, relative to the ground electronic state. Consult Figs 26.2 and 26.4 and 

discuss in detail any changes in bond order that accompany the π* ← π 

ultraviolet absorptions in butadiene and benzene.

26.7‡ Prove that for an open chain of N conjugated carbons the characteristic 

polynomial of the secular determinant (the polynomial obtained by 

expanding the determinant), PN(x), where x = (α – β)/β, obeys the recurrence 

relation PN = xPN – 1 – PN – 2, with P1 = x and P0 = 1.

26.8 The standard potential of an electrode is a measure of the thermodynamic 

tendency of an atom, ion, or molecule to accept an electron (Topic 77). 

Studies indicate that there is a correlation between the LUMO energy and 

the standard potential of aromatic hydrocarbons. Do you expect the standard 

potential to increase or decrease as the LUMO energy decreases? Explain your 

answer.

26.9‡ In Exercise 26.1(a) you are invited to set up the Hückel secular 

determinant for linear and cyclic H3. The same secular determinant applies 

to the molecular ions H3
+  and D3

+ .  The molecular ion H3
+  was discovered 

as long ago as 1912 by J.J. Thomson but its equilateral triangular structure 

was confirmed by M.J. Gaillard, et al. much more recently (Phys. Rev. A17, 

1797 (1978)). The molecular ion H3
+  is the simplest polyatomic hydrogen 

species with a confirmed existence and plays an important role in chemical 

reactions occurring in interstellar clouds that may lead to the formation of 

water, carbon monoxide, and ethanol. The H3
+  ion has also been found in 

the atmospheres of Jupiter, Saturn, and Uranus. (a) Solve the Hückel secular 

equations for the energies of the H3 system in terms of the parameters α and 

β, draw an energy level diagram for the orbitals, and determine the binding 

energies of H3
+ ,  H3, and H3

− .  (b) Accurate quantum mechanical calculations 

by G.D. Carney and R.N. Porter (J. Chem. Phys. 65, 3547 (1976)) give the 

dissociation energy for the process H H H H3
+ +→ + +  as 849 kJ mol−1. From 

this information and data in Table 24.2, calculate the enthalpy of the reaction 

H g H g H g2
+ ++ →( ) ( ) ( )3 . (c) From your equations and the information given, 

calculate a value for the resonance integral β in H3
+ .  Then go on to calculate 

the binding energies of the other H3 species in (a).

26.10‡ There is some indication that other hydrogen ring compounds and 

ions in addition to H3 and D3 species may play a role in interstellar chemistry. 

According to J.S. Wright and G.A. DiLabio (J. Phys. Chem. 96, 10793 (1992)), 

H5
− ,  H6, and H7

+  are particularly stable whereas H4 and H5
+  are not. Confirm 

these statements using Hückel calculations.
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Topic 27 Self-consistent fields

Discussion questions
27.1 Describe the physical significance of each of the terms that appears in the 

Fock operator.

27.2 Outline the computational steps used in the Hartree–Fock self-consistent 

field approach to electronic structure calculations.

27.3 Explain how the Roothaan equations arise in the Hartree–Fock method. 

What additional approximations do they represent?

27.4 Explain why the use of Gaussian-type orbitals is generally preferred over 

the use of Slater-type orbitals in basis sets.

27.5 Describe why the Slater determinant provides a useful representation of 

electron configurations of many-electron atoms. Why is it an approximation 

to the true wavefunction?

27.6 Discuss the role of basis-set functions in electronic structure calculations. 

What are some commonly used basis sets?

Exercises
27.1(a) Write the expression for the potential energy contribution to the 

electronic hamiltonian for LiH.

27.1(b) Write the expression for the potential energy contribution to the 

electronic hamiltonian for BeH2.

27.2(a) Write the electronic hamiltonian for HeH+.

27.2(b) Write the electronic hamiltonian for LiH2+.

27.3(a) Write the Slater determinant for the ground state of HeH+.

27.3(b) Write the Slater determinant for the ground state of LiH2+.

27.4(a) Write the Hartree–Fock equation for HeH+.

27.4(b) Write the Hartree–Fock equation for LiH2+.

27.5(a) Set up the Roothaan equations for HeH+ and establish the 

simultaneous equations corresponding to the Roothaan equations. Adopt a 

basis set of two real normalized functions, one centred on H and one on He; 

denote the molecular orbitals by ψa and ψb.

27.5(b) Set up the Roothaan equations for LiH2+ and establish the 

simultaneous equations corresponding to the Roothaan equations. Adopt a 

basis set of two real normalized functions, one centred on H and one on Li; 

denote the molecular orbitals by ψa and ψb.

27.6(a) Construct the elements FAA and FAB for the species HeH+ and express 

them in terms of the notation in eqn 27.14.

27.6(b) Construct the elements FAA and FAB for the species LiH2+ and express 

them in terms of the notation in eqn 27.14.

27.7(a) Identify all of the four-centre, two-electron integrals that are equal to 

(AA|AB).

27.7(b) Identify all of the four-centre, two-electron integrals that are equal to 

(BB|BA).

27.8(a) How many basis functions are needed in an electronic structure 

calculation on CH3Cl using a minimal basis set?

27.8(b) How many basis functions are needed in an electronic structure 

calculation on CH2Cl2 using a minimal basis set?

27.9(a) What is the general mathematical form of a p-type Gaussian?

27.9(b) What is the general mathematical form of a d-type Gaussian?

27.10(a) A one-dimensional Gaussian (in x) has the form e or e− −α αx n xx
2 2

;  

one-dimensional Gaussians in y and z have similar forms. Show that the 

s-type Gaussian (see eqn 27.16) can be written as a product of three one-

dimensional Gaussians.

27.10(b) A one-dimensional Gaussian (in x) has the form e or e− −α αx xx
2 2n ;  

one-dimensional Gaussians in y and z have similar forms. Show that a p-type 

Gaussian (see eqn 27.16) can be written as a product of three one-dimensional 

Gaussians.

27.11(a) Show that the product of s-type Gaussians on He and H in HeH+ is a 

Gaussian at an intermediate position. Note that the Gaussians have different 

exponents.

27.11(b) Show that the product of s-type Gaussians on Li and H in LiH2+ is a 

Gaussian at an intermediate position. Note that the Gaussians have different 

exponents.

Problems
One of the following problems requires the use of commercially available 

software. Use versions that are available with this text or the software 

recommended by your instructor.

27.1 Using appropriate electronic structure software and basis sets of your 

or your instructor’s choosing, perform Hartree–Fock self-consistent field 

calculations for the ground electronic states of H2 and F2. Determine ground-

state energies and equilibrium geometries. Compare computed equilibrium 

bond lengths to experimental values.

27.2 A useful property of determinants is that interchanging any two rows or 

columns changes their sign and therefore that if any two rows or columns are 

identical, then the determinant vanishes. Use this property to show that (a) 

the wavefunction (expressed as a Slater determinant) is antisymmetric under 

particle exchange, (b) no two electrons can occupy the same orbital with the 

same spin.

27.3 Show that the Slater determinant in eqn 27.2a is normalized assuming 

that the spinorbitals from which it is constructed are orthogonal and 

normalized.

27.4 It is often necessary during the course of an electronic structure 

calculation to take derivatives of the basis functions with respect to nuclear 

coordinates. Show that the derivative of an s-type Gaussian with respect 

to x yields a p-type Gaussian and that the derivative of a p-type Gaussian 

(of the form x re−α 2

) yields a sum of s- and d-type Gaussians (which are 

proportional to functions such as e−αr2

 and xy re−α 2

 and its analogues, 

respectively).

27.5 Consider a four-centre integral in an electronic structure calculation on 

NH3 involving s-type Gaussian functions centred on each atomic nucleus. 

Show that the four-centre, two-electron integral reduces to an integral over 

two different centres.
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27.6 (a) In a continuation of Exercise 27.5(a) for HeH+, proceed to determine 

the energies of the two molecular orbitals as well as the relation between the 

two coefficients for ψa and the relation between the two coefficients for ψb.. 

(b) Repeat for LiH2+ (in a continuation of Exercise 27.5(b)).

27.7 (a) Continuing the Hartree–Fock calculation on HeH+ in Problem 

27.6(a), give the expressions for all four of the elements of the Fock matrix 

in terms of four-centre, two-electron integrals; the latter are defined in eqn 

27.14. (b) Repeat for LiH2+ (in a continuation of Problem 27.6(b).)

Topic 28 Semi-empirical methods

Discussion questions
28.1 Why is Hückel molecular orbital theory considered a semi-empirical 

method?

28.2 Describe some of the common semi-empirical methods.

Exercises
28.1(a) Identify the quadratic equation for the coefficient of the basis function 

centred on H in HeH+ starting from the Fock matrix and making the Hückel 

approximations.

28.1(b) Identify the quadratic equation for the coefficient of the basis function 

centred on H in LiH2+ starting from the Fock matrix and making the Hückel 

approximations.

28.2(a) Identify the two-electron integrals that are set to zero in the semi-

empirical method known as (a) CNDO, (b) INDO.

28.2(b) Identify the two-electron integrals that are set to zero in in the semi-

empirical method known as NDDO.

Problems
Some of the following problems require the use of commercially available 

software. Use versions that are available with this text or the software 

recommended by your instructor.

28.1 Use an appropriate semi-empirical method to compute the equilibrium 

bond lengths and standard enthalpies of formation of (a) ethanol, C2H5OH, 

(b) 1,4-dichlorobenzene, C6H4Cl2. Compare to experimental values and 

suggest reasons for any discrepancies.

28.2 Molecular electronic structure methods may be used to estimate the 

standard enthalpy of formation of molecules in the gas phase. (a) Use a 

semi-empirical method of your choice to calculate the standard enthalpies of 

formation of ethene, butadiene, hexatriene, and octatetraene in the gas phase. 

(b) Consult a database of thermochemical data, and, for each molecule in 

part (a), calculate the difference between the calculated and experimental 

values of the standard enthalpy of formation. (c) A good thermochemical 

database will also report the uncertainty in the experimental value of the 

standard enthalpy of formation. Compare experimental uncertainties 

with the relative errors calculated in part (b) and discuss the reliability of 

your chosen semi-empirical method for the estimation of thermochemical 

properties of linear polyenes.

28.3 (a) Using the expressions for the four elements of the Fock matrix for 

HeH+ determined in Problem 27.7(a), show how these expressions simplify if 

the CNDO semi-empirical method is used. (b) Repeat for LiH2+, beginning 

with the expressions determined in Problem 27.7(b).

28.4 (a) In a continuation of Problem 27.6(a), use Hückel molecular orbital 

theory to express the energies of the molecular orbitals in terms of α and β. 

(b) Repeat for LiH2+ (in a continuation of Problem 27.6(b)).

Topic 29 Ab initio methods

Discussion questions
29.1 Discuss what is meant by a virtual orbital, a singly excited determinant, 

and a doubly excited determinant.

29.2 Describe some computational limitations of the configuration interaction 

method.

29.3 Describe the choice of the hamiltonians H� ( )0
 and H� ( )1  in MPPT.

29.4 Discuss the importance of Brillouin's theorem in electronic structure 

calculations.
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Exercises
29.1(a) In a Hartree–Fock calculation on the silicon atom using 20 basis-set 

functions, how many of the molecular orbitals generated would be unoccupied 

and could be used as virtual orbitals in a configuration interaction calculation?

29.1(b) In a Hartree–Fock calculation on the sulfur atom using 20 basis-set 

functions, how many of the molecular orbitals generated would be unoccupied 

and could be used as virtual orbitals in a configuration interaction calculation?

29.2(a) Give an example of a singly excited determinant in a CI calculation of H2.

29.2(b) Give an example of a doubly excited determinant in a CI calculation of H2.

29.3(a) Use eqn 29.1 to write the expression for the ground-state wavefunction 

in a CI calculation on HeH+ involving the ground-state determinant and a 

singly excited determinant.

29.3(b) Use eqn 29.1 to write the expression for the ground-state wavefunction 

in a CI calculation on LiH2+ involving the ground-state and a doubly excited 

determinant.

29.4(a) The second-order energy correction (eqn 29.5) in MPPT arises from 

the doubly excited determinant (the M = 2 term). Derive an expression for the 

integral that appears in the numerator of eqn 29.5 in terms of the integrals 

(AB|CD) for HeH+.

29.4(b) The second-order energy correction (eqn 29.5) in MPPT arises from 

the doubly excited determinant (the M = 2 term). Derive an expression for the 

integral that appears in the numerator of eqn 29.5 in terms of the integrals 

(AB|CD) for LiH2+.

Problems
29.1‡ Luo, et al. (J. Chem. Phys. 98, 3564 (1993)) reported experimental 

observation of He2, a species that had escaped detection for a long time. The 

observation required temperatures in the neighbourhood of 1 mK. Perform 

configuration interaction and MPPT electronic structure calculations and 

compute the equilibrium bond length Re of the dimer as well as the energy 

of the dimer at Re relative to the separated He + He atomic limit. (High-level, 

accurate computational studies suggest that the well depth for He2 is about 

0.0151 zJ at a distance Re of about 297 pm.)

29.2 In a configuration interaction calculation on the excited 3
uΣ+  electronic 

state of H2, which of the following Slater determinants can contribute to the 

excited-state wavefunction?

29.3 Use MPPT to obtain an expression for the ground-state wavefunction 

corrected to first order in the perturbation.

29.4 (a) Show why configuration interaction gives an improved ground-

state wavefunction for HeH+ compared to the Hartree–Fock ground-state 

wavefunction. Use a minimal basis set and ignore overlap. Follow along 

the lines of the argument presented in Brief illustration 29.1 but recognize 

the complication introduced by the fact that HeH+ does not have inversion 

symmetry. (b) Repeat for LiH2+.

29.5 In Example 29.1, the secular equation for a CI calculation on molecular 

hydrogen using the ground-state Slater determinant and the doubly 

excited determinant was presented as well as the expression for one of the 

hamiltonian matrix elements. Develop similar expressions for the remaining 

hamiltonian matrix elements.

29.6 Show that in MPPT first-order energy corrections do not contribute to 

the correlation energy.

29.7 Prove Brillouin’s theorem, which states that the hamiltonian matrix 

elements between the ground-state Hartree–Fock Slater determinant and 

singly excited determinants are zero.

29.8 Derive an expression for the second-order estimate of the correlation 

energy for H2 if, in a CI calculation using a minimal basis set, the overlap 

between the two basis-set functions is not ignored but set equal to a constant S.

Topic 30 Density functional theory

Discussion questions
30.1 Describe some of the advantages of density functional theory compared 

to other Hartree–Fock based methods.

30.2 Discuss what is meant by a ‘functional’.

30.3 Describe the contributions to the energy functional E[ρ].

30.4 Discuss what is meant by a uniform electron gas and how it is used 

in DFT.

Exercises
30.1(a) Which of the following are functionals? (a) d(x3)/dx; (b) d(x3)/dx 

evaluated at x =1; (c) ∫ x x3d ;  (d) ∫1

3
3x dx?

30.1(b) Which of the following are functionals? (a) d(3x2)/dx; (b) d(3x2)/dx 

evaluated at x = 4; (c) ∫3x2dx; (d) ∫1

3
23x xd ?

30.2(a) Using eqn 30.3, write the expression for the electron density in terms of 

the Kohn–Sham orbitals in a DFT calculation on LiH.

30.2(b) Using eqn 30.3, write the expression for the electron density in terms 

of the Kohn–Sham orbitals in a DFT calculation on BeH2.

30.3(a) Write the two Kohn–Sham equations for the Kohn–Sham orbitals in a 

DFT calculation on HeH+. Use the exchange–correlation potential of eqn 30.7.

30.3(b) Write the two Kohn–Sham equations for the Kohn–Sham orbitals in a 

DFT calculation on LiH2+. Use the exchange–correlation potential of eqn 30.7.

(a) 1 1g uσ σα α  (b) 1 1g uσ α απ

(c) |1 1u gσ α βπ | (d) 1 2g uσ σβ β

(e) 1 1u gπ πα α (f) 1π πβ β
u u2
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Problem
30.1 Find the DFT exchange–correlation potential if the exchange–correlation 

energy is given by ∫C rρ5/ 3d .

Integrated activities

F6.1 State and compare the approximations on which the valence-bond and 

molecular orbital theories are based.

F6.2 Use concepts of molecular orbital theory to describe the chemical 

reactivity of O2, N2, and NO.

F6.3 Explain why the Hartree–Fock formalism does not account for electron 

correlation but the methods of configuration interaction and many-body 

perturbation theory do.

F6.4 Distinguish between semi-empirical, ab initio, and density functional 

theory methods of electronic structure determination.

F6.5 Is DFT a semi-empirical method? Justify your answer.

F6.6 Which of the molecules N2, NO, O2, C2, F2, and CN would you expect to 

be stabilized by (a) the addition of an electron to form AB−, (b) the removal of 

an electron to form AB+?

F6.7 State the parities of the six π orbitals of benzene.

F6.8 The languages of valence-bond theory and molecular orbital theory are 

commonly combined when discussing unsaturated organic compounds. 

Construct the molecular orbital energy level diagram of ethene on the basis 

that the molecule is formed from the appropriately hybridized CH2 or CH 

fragments. Repeat for ethyne (acetylene).

F6.9 Molecular orbital calculations based on semi-empirical, ab initio, and 

DFT methods describe the spectroscopic properties of conjugated molecules 

better than simple Hückel theory. (a) Use the computational method of 

your choice (semi-empirical, ab initio, or density functional) to calculate the 

energy separation between the HOMO and LUMO of ethene, butadiene, 

hexatriene, and octatetraene. (b) Plot the HOMO–LUMO energy separations 

against the experimental frequencies for π* ← π ultraviolet absorptions for 

these molecules (61 500, 46 080, 39 750, and 32 900 cm−1, respectively). Use 

mathematical software to find the polynomial equation that best fits the data. 

(b) Use your polynomial fit from part (b) to estimate the wavenumber and 

wavelength of the π* ← π ultraviolet absorption of decapentaene from the 

calculated HOMO–LUMO energy separation. (c) Discuss why the calibration 

procedure of part (b) is necessary.

F6.10 Here we develop a molecular orbital theory treatment of the peptide 

group (6), which links amino acids in proteins, and establish the features that 

stabilize its planar conformation.

C N

O
C

H

6 Peptide group

(a) It will be familiar from introductory chemistry that valence-bond theory 

explains the planar conformation by invoking delocalization of the π bond 

over the oxygen, carbon, and nitrogen atoms by resonance:

C N

O
C

H
C N

O
C

H

+

–

It follows that we can model the peptide group using molecular orbital theory 

by making LCAO-MOs from 2p orbitals perpendicular to the plane defined 

by the O, C, and N atoms. The three combinations have the form

ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ1 O C 2 O 3 C N= + + = − = − +a b c d e f g hN N O

where the coefficients a to h are all positive. Sketch the orbitals ψ1, ψ2, and ψ3 and 

characterize them as bonding, nonbonding, or antibonding molecular orbitals. In 

a nonbonding molecular orbital, a pair of electrons resides in an orbital confined 

largely to one atom and not appreciably involved in bond formation. (b) Show that 

this treatment is consistent only with a planar conformation of the peptide link. 

(c) Draw a diagram showing the relative energies of these molecular orbitals and 

determine the occupancy of the orbitals. Hint: Convince yourself that there are 

four electrons to be distributed among the molecular orbitals. (d) Now consider a 

non-planar conformation of the peptide link, in which the O2p and C2p orbitals 

are perpendicular to the plane defined by the O, C, and N atoms, but the N2p 

orbital lies on that plane. The LCAO-MOs are given by 

ψ ψ ψ ψ ψ ψ ψ ψ4 O C 5 N 6 O C= + = = −a b e f g

Just as before, sketch these molecular orbitals and characterize them as bonding, 

nonbonding, or antibonding. Also, draw an energy level diagram and determine 

the occupancy of the orbitals. (e) Why is this arrangement of atomic orbitals 

consistent with a non-planar conformation for the peptide link? (f) Does the 

bonding MO associated with the planar conformation have the same energy as 

the bonding MO associated with the non-planar conformation? If not, which 

bonding MO is lower in energy? Repeat the analysis for the nonbonding and 

antibonding molecular orbitals. (g) Use your results from parts (a)–(f) to 

construct arguments that support the planar model for the peptide link.

F6.11 Molecular orbital calculations may be used to predict trends in the 

standard potentials of conjugated molecules, such as the quinones and flavins 

that are involved in biological electron transfer reactions. It is commonly 

assumed that decreasing the energy of the LUMO enhances the ability of a 

molecule to accept an electron into the LUMO, with an accompanying increase 

in the value of the molecule's standard potential. Furthermore, a number of 

studies indicate that there is a linear correlation between the LUMO energy 

and the reduction potential of aromatic hydrocarbons. (a) The standard 

potentials at pH = 7 for the one-electron reduction of methyl-substituted 

1,4-benzoquinones (7) to their respective semiquinone radical anions are:

O

O

R6

R5

R2

R3

7

R2 R3 R5 R6 E</V

H H H H 0.078

CH3 H H H 0.023

CH3 H CH3 H −0.067

CH3 CH3 CH3 H −0.165

CH3 CH3 CH3 CH3 −0.260
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(a) Using the computational method of your choice (semi-empirical, ab 

initio, or density functional theory), calculate ELUMO, the energy of the 

LUMO of each substituted 1,4-benzoquinone, and plot ELUMO against E<. Do 

your calculations support a linear relation between ELUMO and E<? (b) The 

1,4-benzoquinone for which R2 = R3 = CH3 and R5 = R6 = OCH3 is a suitable 

model of ubiquinone, a component of the respiratory electron-transport 

chain. Determine ELUMO of this quinone and then use your results from 

part (a) to estimate its standard potential. (c) The 1,4-benzoquinone for 

which R2 = R3 = R5 = CH3 and R6 = H is a suitable model of plastoquinone, a 

component of the photosynthetic electron-transport chain. Determine ELUMO 

of this quinone and then use your results from part (a) to estimate its standard 

potential. Is plastoquinone expected to be a better or worse oxidizing agent 

than ubiquinone?

F6.12 Use appropriate electronic structure software and basis sets of your or 

your instructor’s choosing to perform electronic structure calculations for the 

ground electronic states of H2 and F2 using (a) MP2; (b) DFT; (c) CI including 

ground-state, singly excited, and doubly excited Slater determinants. 

Determine ground-state energies and equilibrium geometries. Compare 

computed equilibrium bond lengths to experimental values.

F6.13 The variation principle can be used to formulate the wavefunctions 

of electrons in atoms as well as molecules. Suppose that the function 

ψ α α
trial e= −N r( )

2

, with N(α) the normalization constant and α an adjustable 

parameter, is used as a trial wavefunction for the 1s orbital of the hydrogen 

atom. Show that

E e( )

/

α α
μ

α= − ⎛
⎝⎜

⎞
⎠⎟

3

2
2

22
2

1 2


π

where e is the fundamental charge and μ is the reduced mass for the H atom. 

What is the minimum energy associated with this trial wavefunction?

F6.14 In ‘free electron molecular orbital’ (FEMO) theory, the electrons in a 

conjugated molecule are treated as independent particles in a box of length 

L. Sketch the form of the two occupied orbitals in butadiene predicted by 

this model and predict the minimum excitation energy of the molecule. 

The conjugated tetraene CH2 = CHCH = CHCH = CHCH = CH2 can be 

treated as a box of length 8R, where R ≈ 140 pm (as in this case, an extra 

half bond-length is often added at each end of the box). Calculate the 

minimum excitation energy of the molecule and sketch the HOMO and 

LUMO. Estimate the colour a sample of the compound is likely to appear in 

white light.

F6.15 An important quantity in nuclear magnetic resonance spectroscopy 

(Topics 47 − 49) and which should be familiar from 13C-NMR spectra of 

organic molecules, is the chemical shift; this experimentally determined 

quantity is influenced by the details of the electronic structure near the 13C 

nucleus of interest. Consider the following series of molecules: benzene, 

methylbenzene, trifluoromethylbenzene, benzonitrile, and nitrobenzene in 

which the substituents para to the C atom of interest are H, CH3, CF3, CN, 

and NO2, respectively. (a) Use the computational method of your choice 

to calculate the net charge at the C atom para to these substituents in the 

series of organic molecules given above. (b) It is found empirically that the 
13C chemical shift of the para C atom increases in the order: methylbenzene, 

benzene, trifluoromethylbenzene, benzonitrile, nitrobenzene. Is there 

a correlation between the behaviour of the 13C chemical shift and the 

computed net charge on the 13C atom? (This problem is revisited in Focus 10, 

Problem F10.1.)

F6.16 Use mathematical software, a spreadsheet, or the Living graphs (labelled 
LG) on the website of this book for the following exercises:

(a) Plot the amplitude of the bonding molecular orbital in a hydrogen molecule-

ion in a plane containing the two nuclei for different values of the internuclear 

distance. Point to the features of the 1σ orbital that lead to bonding.

(b) Plot the amplitude of the antibonding molecular orbital in a hydrogen 

molecule-ion in a plane containing the two nuclei for different values of 

the internuclear distance. Point to the features of the 2σ orbital that lead to 

antibonding.
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Mathematical background 5 Matrices

A matrix is an array of numbers that are generalizations of 

ordinary numbers. We shall consider only square matrices, 

which have the numbers arranged in the same number of rows 

and columns. By using matrices, we can manipulate large num-

bers of ordinary numbers simultaneously. A determinant is a 

particular combination of the numbers that appear in a matrix 

and is used to manipulate the matrix.

Matrices may be combined together by addition or multi-

plication according to generalizations of the rules for ordinary 

numbers. Although we describe below the key algebraic pro-

cedures involving matrices, it is important to note that most 

numerical matrix manipulations are now carried out with 

mathematical software. You are encouraged to use such soft-

ware, if it is available to you.

MB5.1 Definitions
Consider a square matrix M of n2 numbers arranged in n col-

umns and n rows. These n2 numbers are the elements of the 

matrix, and may be specified by stating the row, r, and column, 

c, at which they occur. Each element is therefore denoted Mrc. 

A diagonal matrix is a matrix in which the only nonzero ele-

ments lie on the major diagonal (the diagonal from M11 to 

Mnn). Thus, the matrix

D=
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1 0 0

0 2 0

0 0 1
 

is a 3 × 3 diagonal square matrix. The condition may be written

M mrc r rc= δ
 

(MB5.1)

where δrc is the Kronecker delta, which is equal to 1 for r = c 

and to 0 for r ≠ c. In the above example, m1 = 1, m2 = 2, and 

m3 = 1. The unit matrix, 1 (and occasionally I), is a special case 

of a diagonal matrix in which all nonzero elements are 1.

The transpose of a matrix M is denoted MT and is defined by

M Mmn
T

nm=  
 Transpose  (MB5.2)

That is, the element in row n, column m of the original matrix 

becomes the element in row m, column n of the transpose (in 

effect, the elements are reflected across the diagonal). The deter-

minant, |M|, of the matrix M is a number arising from a specific 

procedure for taking sums and differences of products of matrix 

elements. For example, a 2 × 2 determinant is evaluated as

a b

c d
ad bc= −

 

 2 × 2 Determinant  (MB5.3a)

and a 3 × 3 determinant is evaluated by expanding it as a sum of 

2 × 2 determinants:

a b c

d e f

g h i

a
e f

h i
b

d f

g i
c

d e

g h

a ei fh b di fg c dh eg

= − +

= − − − + −( ) ( ) ( )
 

Note the sign change in alternate columns (b occurs with a 

negative sign in the expansion). An important property of 

a determinant is that if any two rows or any two columns are 

interchanged, then the determinant changes sign.

MB5.2 Matrix addition and multiplication

Two matrices M and N may be added to give the sum S = M + 

N, according to the rule

S M Nrc rc rc= +
  Matrix addition  (MB5.4)

That is, corresponding elements are added. Two matrices may also 

be multiplied to give the product P = MN according to the rule

P M Nrc

n

rn nc=∑
 

 Matrix multiplication  (MB5.5)

These procedures are illustrated in Fig. MB5.1. It should be 

noticed that in general MN ≠ NM, and matrix multiplication is 

in general non-commutative (that is, it depends on the order of 

multiplication).

3 × 3 
Deter-
minant

 (MB5.3b)

Brief illustration MB5.2 Matrix addition and 
multiplication

Consider the matrices

M N=
⎛

⎝⎜
⎞

⎠⎟
=

⎛

⎝⎜
⎞

⎠⎟
1 2

3 4

5 6

7 8
and

Brief illustration MB5.1 Matrix manipulations

The following grid illustrates the features so far:

Matrix Transpose Determinant

M MT |M|

1 2

3 4

⎛

⎝⎜
⎞

⎠⎟
1 3

2 4

⎛

⎝⎜
⎞

⎠⎟
1 2

3 4
1 4 2 3 2= × − × = −
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Matrices  271

The inverse of a matrix M is denoted M−1, and is defined so 

that

MM M M− −= =1 1 1   Inverse  (MB5.6)

The inverse of a matrix is best constructed by using mathe-

matical software, and the tedious analytical approach is rarely 

necessary.

MB5.3 Eigenvalue equations
An eigenvalue equation is an equation of the form

Mx x= λ   Eigenvalue equation  (MB5.7a)

where M is a square matrix with n rows and n columns, λ is 

a constant, the eigenvalue, and x is the eigenvector, an n × 1 

(column) matrix that satisfies the conditions of the eigenvalue 

equation and has the form:

x =

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

x

x

xn

1

2

�

 

In general, there are n eigenvalues λ(i), i = 1, 2, …, n, and n cor-

responding eigenvectors x(i). We write eqn MB5.7a as (noting 

that 1x = x)

( )M x− =λ1 0  (MB5.7b)

Equation MB5.7b has a solution only if the determinant |M – 

λ1| of the coefficients of the matrix M – λ1 is zero. It follows 

that the n eigenvalues may be found from the solution of the 

secular equation:

M− =λ1 0
 

(MB5.8)

If the inverse of the matrix M – λ1 exists, then, from eqn 

MB5.7b, (M – λ1)−1(M – λ1)x = x = 0, a trivial solution. For a 

nontrivial solution, (M – λ1)−1 must not exist, which is the case 

if eqn MB5.8 holds.

Their sum is

S=
⎛

⎝⎜
⎞

⎠⎟
+

⎛

⎝⎜
⎞

⎠⎟
=

⎛

⎝⎜
⎞

⎠⎟
1 2

3 4

5 6

7 8

6 8

10 12
 

and their product is

P =
⎛

⎝⎜
⎞

⎠⎟
⎛

⎝⎜
⎞

⎠⎟
=

× + × × + ×
× + × × + ×

⎛

⎝⎜
⎞

⎠⎟
=

1 2

3 4

5 6

7 8

1 5 2 7 1 6 2 8

3 5 4 7 3 6 4 8

119 22

43 50

⎛

⎝⎜
⎞

⎠⎟
 

+
+

+ +

+

+ ++

+ +

+ + +

=

=
×
××

× ×

×

...

...
+ ...

...

+ ...

...

...

......

(a)

(b)

Figure MB5.1 A diagrammatic representation of (a) matrix 
addition, (b) matrix multiplication.

Brief illustration MB5.3 Inversion

Mathematical software gives the following inversion of M:

Matrix Inverse

M M−1

1 2

3 4

⎛

⎝⎜
⎞

⎠⎟
−

−

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2 1

3

2

1

2

Brief illustration MB5.4 Simultaneous equations

Once again we use the matrix M in Brief illustration MB5.1, 

and write eqn MB5.7 as

1 2

3 4

1 2

3 4

1

2

1

2

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝⎜
⎞

⎠⎟
=

⎛

⎝⎜
⎞

⎠⎟
−

−
⎛

⎝⎜
⎞x

x

x

x
λ

λ
λ

rearranged into
⎠⎠⎟

⎛

⎝⎜
⎞

⎠⎟
=

x

x

1

2

0

 

From the rules of matrix multiplication, the latter form 

expands into

( )

( )

1 2

3 4
0

1 2

1 2

− +
+ −

⎛

⎝⎜
⎞

⎠⎟
=

λ
λ

x x

x x

which is simply a statement of the two simultaneous equations

( ) ( )1 2 0 3 4 01 2 1 2− + = + − =λ λx x x xand
 

The condition for these two equations to have solutions is

M− =
−

−
= − − − =λ

λ
λ

λ λ1
1 2

3 4
1 4 6 0( )( )

 

This condition corresponds to the quadratic equation

λ λ−2 5 2 0− =  

with solutions λ = +5.372 and λ = –0.372, the two eigenvalues 

of the original equation.
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The n eigenvalues found by solving the secular equations are 

used to find the corresponding eigenvectors. To do so, we begin 

by considering an n × n matrix X which will be formed from the 

eigenvectors corresponding to all the eigenvalues. Thus, if the 

eigenvalues are λ1, λ2, … and the corresponding eigenvectors 

are

x x( )

( )

( )

( )

( )

( )

( )

( )

1

1
1

2
1

1

2

1
2

2
2

2

=

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

⎛

⎝

⎜
⎜

x

x

x

x

x

xn n

� �⎜⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

�
�

x( )

( )

( )

( )

n

n

n

n

x

x

xn

1

2

 (MB5.9a)

the matrix X is

X x x x= =( )( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

1 2

1
1

1
2

1

2
1

2
2

2

1

�

�

�
� � �

n

n

n

n

x x x

x x x

x xx xn n
n( ) ( )2 �

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 (MB5.9b)

Similarly, we form an n × n matrix Λ with the eigenvalues λ 

along the diagonal and zeroes elsewhere:

Λ

λ
λ

λ

=

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1

2

0 0

0 0

0 0

�
�

� � �
� n  (MB5.10)

Now all the eigenvalue equations Mx(i) = λix
(i) may be combined 

into the single matrix equation

MX X= Λ  (MB5.11)

Finally, we form X−1 from X and multiply eqn MB5.11 by it 

from the left:

X MX X X− −1 1= =Λ Λ  (MB5.12)

A structure of the form X−1MX is called a similarity trans-

formation. In this case the similarity transformation X−1MX 

makes M diagonal (because Λ is diagonal). It follows that if 

the matrix X that causes X−1MX to be diagonal is known, then 

the problem is solved: the diagonal matrix so produced has the 

eigenvalues as its only nonzero elements, and the matrix X used 

to bring about the transformation has the corresponding eigen-

vectors as its columns. As will be appreciated once again, the 

solutions of eigenvalue equations are best found by using math-

ematical software.

Brief illustration MB5.6 Similarity transformation

To apply the similarity transformation, eqn MB5.12, to the 

matrix 
1 2

3 4

⎛

⎝⎜
⎞

⎠⎟
 from Brief illustration MB5.1 it is best to use 

mathematical software to find the form of X. The result is

X X=
−

⎛

⎝⎜
⎞

⎠⎟
=

−
⎛

⎝⎜
⎞

−
0 416 0 825

0 909 0 566

0 574 0 837

0 922 0 422
1

. .

. .

. .

. . ⎠⎠⎟

This result can be verified by carrying out the multiplication

X MX− =
−

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝⎜
⎞

⎠⎟
1

0 574 0 837

0 922 0 422

1 2

3 4

0 416 0 825

0 909

. .

. .

. .

. −−
⎛

⎝⎜
⎞

⎠⎟

=
−

⎛

⎝⎜
⎞

⎠⎟

0 566

5 372 0

0 0 372

.

.

.

The result is indeed the diagonal matrix Λ calculated in Brief 

illustration MB5.4. It follows that the eigenvectors x(1) and x(2) 

are

x x( ) ( )
.

.

.

.
1 2

0 416

0 909

0 825

0 566
=

⎛

⎝⎜
⎞

⎠⎟
=

−
⎛

⎝⎜
⎞

⎠⎟

Brief illustration MB5.5 Eigenvalue equations

In Brief illustration MB5.4 we established that if M =
⎛

⎝⎜
⎞

⎠⎟
1 2

3 4
 

then λ1 = +5.372 and λ2 = –0.372, with eigenvectors x( )

( )

( )
1 1

1

2
1

=
⎛

⎝
⎜

⎞

⎠
⎟

x

x
 

and x( )

( )

( )
2 1

2

2
2

=
⎛

⎝
⎜

⎞

⎠
⎟

x

x
. We form

X =
⎛

⎝
⎜

⎞

⎠
⎟ =

−
⎛

⎝⎜
⎞

⎠⎟
x x

x x

1
1

1
2

2
1

2
2

5 372 0

0 0 372

( ) ( )

( ) ( )

.

.
Λ

The expression MX = XΛ becomes

1 2

3 4

1
1

1
2

2
1

2
2

1
1

1
2

2
1

2
2

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟ =

⎛x x

x x

x x

x x

( ) ( )

( ) ( )

( ) ( )

( ) ( )⎝⎝
⎜

⎞

⎠
⎟ −

⎛

⎝⎜
⎞

⎠⎟
5 372 0

0 0 372

.

.

which expands to

x x x x

x x x x

1
1

2
1

1
2

2
2

1
1

2
1

1
2

2
2

2 2

3 4 3 4

5( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

+ +
+ +

⎛

⎝
⎜

⎞

⎠
⎟ =

.. .

. .

( ) ( )

( ) ( )

372 0 372

5 372 0 372

1
1

1
2

2
1

2
2

x x

x x

−
−

⎛

⎝
⎜

⎞

⎠
⎟

This is a compact way of writing the four equations

x x x x x x

x x

1
1

2
1

1
1

1
2

2
2

1
2

1
1

2

2 5 372 2 0 372

3 4

( ) ( ) ( ) ( ) ( ) ( )

( ) (

. .+ = + = −
+ 11

2
1

1
2

2
2

2
25 372 3 4 0 372) ( ) ( ) ( ) ( ). .= + = −x x x x

corresponding to the two original simultaneous equations 

and their two roots.
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Many conclusions can be drawn without doing any calculation by taking note of the symmetry of 
a molecule. Calculations too can be simplified by seeing that the symmetry of a molecule implies 
that certain terms are necessarily zero. Symmetry arguments are used throughout the discussion of 
Molecular structure and Molecular spectroscopy. They are also used in the description of the structures 
of solids, but here we focus on individual molecules.

The first task is to identify the symmetries of a molecule (Topic 31). To do so, we introduce the 
concepts of ‘symmetry operation’ and ‘symmetry element’. On doing so, we find that molecules can 
be classified according to the symmetries they possess and put into one of a number of symmetry 
groups. This classification is the first step in the application of symmetry arguments to molecules. We 
show that some conclusions about molecular properties (such as the existence of polarity and chiral-
ity) can be drawn directly from the group to which the molecule belongs.

The next stage is to realize that the symmetry operations obey the same relations that mathemati-
cians use to define a ‘group’, and thus the study of symmetry is seen to be a part of ‘group theory’ 
(Topic 32). The recognition that symmetry is a part of group theory takes on great power when we 
show that symmetry operations can be represented by numbers (more specifically, matrices, arrays 
of numbers), for then the study of symmetry becomes quantitative. For most purposes in chemistry, 
the ‘character table’ is the most useful, and the concept is introduced in this Topic.

The calculation of molecular properties often depends on the existence of certain integrals: group 
theory provides powerful ways to conclude when these integrals necessarily vanish (Topic 33). It also 
provides ways to decide which atomic orbitals can contribute to the molecular orbitals discussed in 
the topics covered in Molecular structure.

Topic 32

FOCUS 7  ON  Molecular symmetry

Topic 31

The analysis
of molecular

 shape

Group
theory

Applications
of

symmetry

Topic 33
Molecular
structure

Focus 6

Molecular
spectroscopy

Focus 9
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TOPIC 31

The analysis of molecular shape

Some objects are ‘more symmetrical’ than others. A sphere is 

more symmetrical than a cube because it looks the same after it 

has been rotated through any angle about any diameter. A cube 

looks the same only if it is rotated through certain angles about 

specific axes, such as 90°, 180°, or 270° about an axis passing 

through the centres of any of its opposite faces (Fig. 31.1), or by 

120° or 240° about an axis passing through any of its opposite 

corners. Similarly, an NH3 molecule is ‘more symmetrical’ than 

an H2O molecule because NH3 looks the same after rotations 

of 120° or 240° about the axis shown in Fig. 31.2, whereas H2O 

looks the same only after a rotation of 180°.

This Topic puts these intuitive notions on a more for-

mal foundation. In it, we see that molecules can be grouped 

together according to their symmetry, with the tetrahedral 

species CH4 and SO4
2−  in one group and the pyramidal species 

Contents

31.1 Symmetry operations and symmetry elements 275

Brief illustration 31.1: Symmetry elements 276

31.2 The symmetry classification of molecules 276

Brief illustration 31.2: Symmetry classification 277

(a) The groups C1, Ci, and Cs 278

Brief illustration 31.3: C1, Ci, and Cs 278

(b) The groups Cn, Cnv, and Cnh 278

Brief illustration 31.4: Cn, Cnv, and Cnh 278

(c) The groups Dn, Dnh, and Dnd 279

Brief illustration 31.5: Dn, Dnh, and Dnd 279

(d) The group Sn 279
Brief illustration 31.6: Sn 280

(e) The cubic groups 280

Brief illustration 31.7: The cubic groups 280

(f ) The full rotation group 281

31.3 Some immediate consequences of symmetry 281

(a) Polarity 281

Brief illustration 31.8: Polar molecules 281

(b) Chirality 281

Brief illustration 31.9: Chiral molecules 282

Checklist of concepts 282

 ➤ Why do you need to know this material?
Symmetry arguments can be used to make immediate 
assessments of the properties of molecules, and when 
expressed quantitatively (Topic 32) can be used to save a 
great deal of calculation.

 ➤ What is the key idea?
Molecules can be classified into groups according to their 
symmetry elements.

 ➤ What do you need to know already?
This Topic does not draw on others directly, but it will be 
useful to be aware of the shapes of a variety of simple 
molecules and ions encountered in introductory chemistry 
courses.

C2 C3

C4

Figure 31.1 Some of the symmetry elements of a cube. The 
twofold, threefold, and fourfold axes are labelled with the 
conventional symbols. 

(a) (b)

C3 C2

Figure 31.2 (a) An NH3 molecule has a threefold (C3) axis and 
(b) an H2O molecule has a twofold (C2) axis. Both have other 
symmetry elements too.

Atkins09819.indb   274 9/11/2013   11:39:26 AM

www.ebook3000.com

http://www.ebook3000.org


31 The analysis of molecular shape  275

NH3 and SO3
2−  in another. It turns out that molecules in the 

same group share certain physical properties, so powerful pre-

dictions can be made about whole series of molecules once we 

know the group to which they belong.

We have slipped in the term ‘group’ in its conventional sense. 

In fact, a group in mathematics has a precise formal signifi-

cance and considerable power and gives rise to the name ‘group 

theory’ for the quantitative study of symmetry. This power is 

revealed in Topics 32 and 33.

31.1 Symmetry operations and 
symmetry elements

An action that leaves an object looking the same after it has 

been carried out is called a symmetry operation. Typical sym-

metry operations include rotations, reflections, and inversions. 

There is a corresponding symmetry element for each symme-

try operation, which is the point, line, or plane with respect to 

which the symmetry operation is performed. For instance, a 

rotation (a symmetry operation) is carried out around an axis 

(the corresponding symmetry element). We shall see that we 

can classify molecules by identifying all their symmetry ele-

ments and grouping together molecules that possess the same 

set of symmetry elements. This procedure, for example, puts 

the trigonal pyramidal species NH3 and SO3
2−  into one group 

and the angular species H2O and SO2 into another group.

In the following paragraphs we describe the operations and 

the corresponding elements; for convenience, they are col-

lected in Table 31.1.

An n-fold rotation (the operation) about an n-fold axis 

of symmetry, Cn (the corresponding element), is a rotation 

through 360°/n. An H2O molecule has one twofold axis, C2. 

An NH3 molecule has one threefold axis, C3, with which is 

associated two symmetry operations, one being 120° rotation 

in a clockwise sense and the other 120° rotation in an anti-

clockwise sense. There is only one twofold rotation associated 

with a C2 axis because clockwise and anticlockwise 180° rota-

tions are identical. A pentagon has a C5 axis, with two rotations 

(one clockwise, the other anticlockwise) through 72° associ-

ated with it. It also has an axis denoted C5
2, corresponding to 

two successive C5 rotations; there are two such operations, one 

through144° in a clockwise sense and the other through 144° in 

an anticlockwise sense. A cube has three C4 axes, four C3 axes, 

and six C2 axes. However, even this high symmetry is exceeded 

by a sphere, which possesses an infinite number of symmetry 

axes (along any diameter) of all possible integral values of n. 

If a molecule possesses several rotation axes, then the one (or 

more) with the greatest value of n is called the principal axis. 

The principal axis of a benzene molecule is the sixfold axis per-

pendicular to the hexagonal ring (1).

C6

1 Benzene, C6H6

A reflection (the operation) in a mirror plane, σ (the ele-

ment), may contain the principal axis of a molecule or be 

perpendicular to it. If the plane contains the principal axis, it 

is called ‘vertical’ and denoted σv. An H2O molecule has two 

vertical planes of symmetry (Fig. 31.3) and an NH3 molecule 

has three. A vertical mirror plane that bisects the angle between 

two C2 axes is called a ‘dihedral plane’ and is denoted σd (Fig. 

31.4). When the plane of symmetry is perpendicular to the 

principal axis it is called ‘horizontal’ and denoted σh. A C6H6 

molecule has a C6 principal axis and a horizontal mirror plane 

(as well as several other symmetry elements).

Table 31.1  Symmetry operations and symmetry elements

Symmetry operation Symbol Symmetry element

n-fold rotation Cn n-fold axis of rotation

Reflection σ Mirror plane

Inversion i Centre of symmetry

n-fold improper rotation Sn n-fold improper rotation axis

Identity E Entire object

σv

σv′

Figure 31.3 An H2O molecule has two mirror planes. They are 
both vertical (that is, contain the principal axis), so are denoted 
σv and ′σ v.

σd σd σd

Figure 31.4 Dihedral mirror planes (σd) bisect the C2 axes 
perpendicular to the principal axis. 
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276 7 Molecular symmetry

In an inversion (the operation) through a centre of sym-

metry, i (the element), we imagine taking each point in a mol-

ecule, moving it to the centre of the molecule, and then moving 

it out the same distance on the other side; that is, the point (x, y, 

z) is taken into the point (−x, −y, −z). Neither an H2O molecule 

nor an NH3 molecule has a centre of inversion, but a sphere 

and a cube do have one. A C6H6 molecule does have a centre of 

inversion, and so does a regular octahedron (Fig. 31.5); a regu-

lar tetrahedron and a CH4 molecule do not.

An n-fold improper rotation (the operation) about an  

n-fold axis of improper rotation or an n-fold improper rota-

tion axis, Sn (the symmetry element), is composed of two 

successive transformations. The first component is a rotation 

through 360°/n, and the second is a reflection through a plane 

perpendicular to the axis of that rotation. A CH4 molecule has 

three S4 axes (Fig. 31.6).

The identity, E, consists of doing nothing; the corresponding 

symmetry element is the entire object. Because every molecule 

is indistinguishable from itself if nothing is done to it, every 

object possesses at least the identity element. One reason for 

including the identity is that some molecules have only this 

symmetry element (2).

I

F

C

Br

Cl

2 CBrClFI

31.2 The symmetry classification 
of molecules

The classification of objects according to symmetry elements 

corresponding to operations that leave at least one common 

point unchanged gives rise to the point groups. There are five 

kinds of symmetry operation (and five kinds of symmetry ele-

ment) of this kind (see Table 31.1). When we consider crys-

tals (Topic 37), we meet symmetries arising from translation 

Brief illustration 31.1 Symmetry elements

To identify the symmetry elements of a naphthalene molecule 

(3) we first note that, like all molecules, it has the identity ele-

ment, E. There is one twofold axis of rotation, C2, perpendicu-

lar to the plane and two others, ′C2, lying in the plane. There is 

a mirror plane in the plane of the molecule, σh, and two per-

pendicular planes, σv, containing the C2 rotation axis. There is 

also a centre of inversion, i, at the midpoint of the molecule. 

Note that some of these elements are implied by others: the 

centre of inversion, for instance, is implied by the joint pres-

ence of a σv plane and a ′C2  axis.

3  Naphthalene, C10H8

C2

C2’

C2’

σh

σv

σv

i

Self-test 31.1 Identify the symmetry elements of an SF6 

molecule.

Answer: E, 3S4, 3C4, 6C2, 4S6, 4C3, 3σh, 6σd, i

Centre of
inversion, i

Figure 31.5 A regular octahedron has a centre of  
inversion (i).

S4

σh

C4
C6

S6

(a) (b)

σh

Figure 31.6 (a) A CH4 molecule has a fourfold improper 
rotation axis (S4): the molecule is indistinguishable after a 90° 
rotation followed by a reflection across the horizontal plane, 
but neither operation alone is a symmetry operation. (b) The 
staggered form of ethane has an S6 axis composed of a 60° 
rotation followed by a reflection.
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31 The analysis of molecular shape  277

through space. These more extensive groups are called space 

groups.

To classify molecules according to their symmetries, we list 

their symmetry elements and collect together molecules with 

the same list of elements. The name of the group to which a 

molecule belongs is determined by the symmetry elements it 

possesses. There are two systems of notation (Table 31.2). The 

Schoenflies system (in which a name looks like C4v) is more 

common for the discussion of individual molecules, and the 

Hermann–Mauguin system or International system (in which 

a name looks like 4mm) is used almost exclusively in the dis-

cussion of crystal symmetry. The identification of a molecule’s 

point group according to the Schoenflies system is simplified 

by referring to the flow diagram in Fig. 31.7 and the shapes 

shown in Fig. 31.8.

Brief illustration 31.2 Symmetry classification

To identify the point group to which a ruthenocene molecule 

(4) belongs we use the flow diagram in Fig. 31.7. The path to 

trace is shown by a blue line; it ends at Dnh. Because the mol-

ecule has a fivefold axis, it belongs to the group D5h. If the rings 

were staggered, as they are in an excited state of ferrocene 

that lies 4 kJ mol−1 above the ground state (5), the horizontal 

Molecule

Linear?
Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

N

N

NN

N

N N

N

N

N

N

N

N

Ni?

i?

Two or 
more
Cn, n > 2?

C5?

Cn?

Select Cn with the highest n;
then, are there nC2 

perpendicular to Cn?

σh?

σh?

nσd?

nσv?

S2n?S2n

D∞h
C∞v

Ih
Oh

Td

Dnh

Dnd Dn

Cs

C1Ci

σ?

i?

Cnh

Cnv

Cn

Figure 31.7 A flow diagram for determining the point group of 
a molecule. Start at the top and answer the question posed in 
each diamond (Y = yes, N = no).

Table 31.2  The notation for point groups

Ci 1

Cs m

C1 1 C2 2 C3 3 C4 4 C6 6

C2v 2mm C3v 3m C4v 4mm C6v 6mm

C2h 2/m C3h 6 C4h 4/m C6h 6/m

D2 222 D3 32 D4 422 D6 622

D2h mmm D3h 62m
 

D4h 4/mmm D6h 6/mmm

D2d 42m D3d 3m S4 4/m S6 3

T 23 Td 43m Th m3

O 432 Oh m3m

In the International system (or Hermann–Mauguin system) for point groups, a 

number n denotes the presence of an n-fold axis and m denotes a mirror plane. A 

slash (/) indicates that the mirror plane is perpendicular to the symmetry axis. It is 

important to distinguish symmetry elements of the same type but of different 

classes, as in 4/mmm, in which there are three classes of mirror plane. A bar over a 

number indicates that the element is combined with an inversion. The only groups 

listed here are the so-called ‘crystallographic point groups’.

S2n

Dnh

Dnd

Cnh

Cnv

Cn

n = 2 3 4 5 6 ∞

ConePyramid

Plane or bipyramid

Figure 31.8 A summary of the shapes corresponding to 
different point groups. The group to which a molecule belongs 
can often be identified from this diagram without going 
through the formal procedure in Fig. 31.7.
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278 7 Molecular symmetry

(a) The groups C1, Ci, and Cs

A molecule belongs to the group C1 if it has 

no element other than the identity. It belongs 

to Ci if it has the identity and the inversion 

alone, and to Cs if it has the identity and a 

mirror plane alone.

(b) The groups Cn, Cnv, and Cnh

A molecule belongs to the group Cn if it possesses an n-fold axis. 

Note that symbol Cn is now playing a triple role: as the label of 

a symmetry element, a symmetry operation, and a group. If in 

addition to the identity and a Cn axis a molecule has n verti-

cal mirror planes σv, then it belongs to the group Cnv. Objects 

that in addition to the identity and an n-fold principal axis also 

have a horizontal mirror plane σh belong to the group Cnh. The 

presence of certain symmetry elements 

may be implied by the presence of oth-

ers: thus, in C2h the elements C2 and σh 

jointly imply the presence of a centre of 

inversion (Fig. 31.9).

Brief illustration 31.3 C1, Ci, and Cs

The CBrClFI molecule (2) has only the identity element, and so 

belongs to the group C1. meso-Tartaric acid (6) has the identity 

and inversion elements, and so belongs to the group Ci. Quinoline 

(7) has the elements (E, σ), and so belongs to the group Cs.

OH

OHO

H

H

COOCOOHH

OCOOH

Centre of
inversion

6 Meso-tartaric acid,
   HOOCCH(OH)CH(OH)COOH  

N

7 Quinoline, C9H7N

Self-test 31.3 Identify the group to which the molecule (8) belongs.

8

Answer: C2v

reflection plane would be absent, but dihedral planes would 

be present.

Ru

= Cp = C5H5

4 Ruthenocene, Ru(Cp)2   

Cp = C5HH5

Fe

5 Ferrocene, Fe(Cp)2
(excited state)  

Self-test 31.2 Classify the pentagonal antiprismatic excited 

state of ferrocene (5).

Answer: D5d

Brief illustration 31.4 Cn, Cnv, and Cnh

An H2O2 molecule (9) has the symmetry elements E and C2, so 

it belongs to the group C2. An H2O molecule has the symme-

try elements E, C2, and 2σv, so it belongs to the group C2v. An 

NH3 molecule has the elements E, C3, and 3σv, so it belongs to 

the group C3v. A heteronuclear diatomic molecule such as HCl 

belongs to the group C∞v because rotations around the axis by 

any angle and reflections in all the infinite number of planes 

that contain the axis are symmetry operations. Other mem-

bers of the group C∞v include the linear OCS molecule and a 

cone. The molecule trans-CHClaCHCl (10) has the elements 

E, C2, and σh, so belongs to the group C2h.

O

H

C2CC

9 Hydrogen peroxide, H2O2  

C2CC

Cl

Cl

σhhσσ

10 trans-CHCl=CHCl

Name Elements

C1 E

Ci E, i

Cs E, σ

Name Elements

Cn E, Cn

Cnv E, Cn, nσv

Cnh E, Cn, σh

σh

i

C2

Figure 31.9 The presence of a twofold axis and a horizontal 
mirror plane jointly imply the presence of a centre of inversion 
in the molecule.
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31 The analysis of molecular shape  279

(c) The groups Dn, Dnh, and Dnd

We see from Fig. 31.7 that a molecule that has an n-fold prin-

cipal axis and n twofold axes perpendicular to Cn belongs to 

the group Dn. A molecule belongs to Dnh if it also possesses a 

horizontal mirror plane. D∞h is also 

the group of the linear OCO and 

HCCH molecules and of a uniform 

cylinder. A molecule belongs to the 

group Dnd if in addition to the ele-

ments of Dn it possesses n dihedral 

mirror planes σd.

(d) The group Sn

Molecules that have not been classified into one of the  

groups mentioned so far, but which possess one Sn axis, belong 

to the group Sn. Note that 

the group S2 is the same as 

Ci, so such a molecule will 

already have been classified 

as Ci.

Self-test 31.4 Identify the group to which the molecule B(OH)3 

in the conformation shown in (11) belongs.

.

C3CC
B

OH

σhσσ

11 B(OH)3

Answer: C3h

Brief illustration 31.5 Dn, Dnh, and Dnd

The planar trigonal BF3 molecule has the elements E, C3, 3C2, 

and σh (with one C2 axis along each B–F bond), so it belongs to 

D3h (12). The C6H6 molecule has the elements E, C6, 3C2, 3 2′C ,  

and σh together with some others that these elements imply, 

so it belongs to D6h. Three of the C2 axes bisect C–C bonds and 

the other three pass through vertices of the hexagon formed by 

the carbon framework of the molecule, and the prime on 3 2′C  

indicates that the three C2 axes are different from the other 

three C2 axes. All homonuclear diatomic molecules, such as 

N2, belong to the group D∞h because all rotations around the 

axis are symmetry operations, as are end-to-end rotation and 

end-to-end ref lection. Another example of a Dnh species is 

(13). The twisted, 90° allene (14) belongs to D2d.

B

F

12 Boron trifluoride, BF3  

P

Cl

C33CC

C2CC
C2CC

C2CC
σσhσσ

13 Phosphorus pentachloride, PCl5 (D3hDD ) 

C2CC , S4S

C2CC ’C2CC ’

14 Allene, C3H4 (D2dDD )

Self-test 31. 5 Ident i f y t he groups to which (a) t he 

tetrachloridoaurate(III) ion (15) and (b) the staggered confor-

mation of ethane (16) belong.

Cl

Au

C4C

C2CC

C2CC
C2CC

–

15 TetracTT hloridoaurate(III) ion,
      [AuCl4]

–

σhσσ

 

C3CC ,S6S

C2CC

σσdσ

16 Ethane, C2H6

Answer: (a) D4h, (b) D3d

Name Elements

Dn E C nCn, , ′2

Dnh E C nCn, , ,′2 σ h

Dnd E C nC nn, , ,′2 σ d

Name Elements

Sn E, Sn, and groups 
not previously 
classified
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280 7 Molecular symmetry

(e) The cubic groups
A number of very important molecules possess more than one 

principal axis. Most belong to the cubic groups and in particu-

lar to the tetrahedral groups T, Td, and Th (Fig. 31.10a) or to 

the octahedral groups O and Oh (Fig. 31.10b). A few icosahe-

dral (20-faced) molecules belonging to the icosahedral group, 

I (Fig. 31.10c), are also known. The groups Td and Oh are the 

groups of the regular tetrahedron and the regular octahedron, 

respectively. If the 

object possesses the 

rotational symmetry 

of the tetrahedron 

or the octahedron, 

but none of their 

planes of reflection, 

then it belongs to 

the simpler groups 

T or O (Fig. 31.11). 

The group Th is based on T but also contains a centre of inver-

sion (Fig. 31.12).
Brief illustration 31.6 Sn

Tetraphenylmethane belongs to the point group S4 (17). 

Molecules belonging to Sn with n > 4 are rare.

S4S

Ph

Ph

Ph
Ph

17 TetraphenTT ylmethane, C(C6H5)4 (S4S )

Self-test 31.6 Identify the group to which the ion in (18) 

belongs.

+
SS4S

18  N(CH2CH(CH3)CH(CH3)CH2)2
+

Answer: S4

Brief illustration 31.7 The cubic groups

The molecules CH4 and SF6 belong, respectively, to the groups 

Td and Oh. Molecules belonging to the icosahedral group I 

include some of the boranes and buckminsterfullerene, C60 

(19). The shapes shown in Fig. 31.11 belong to the groups T and 

O, respectively.

(a) (b) (c)

Figure 31.10 (a) Tetrahedral, (b) octahedral, and (c) icosahedral 
molecules are drawn in a way that shows their relation 
to a cube: they belong to the cubic groups Td, Oh, and Ih, 
respectively.

(a) (b)

Figure 31.11 Shapes corresponding to the point groups (a) 
T and (b) O. The presence of the decorated slabs reduces the 
symmetry of the object from Td and Oh, respectively.

Figure 31.12 The shape of an object belonging to the group Th.

Name Elements

T E, 4C3, 3C2

Td E, 3C2, 4C3, 3S4, 6σd

Th E, 3C2, 4C3, i, 4S6, 3σh

O E, 3C4, 4C3, 6C2

Oh E, 3S4, 3C4, 6C2, 4S6, 4C3, 3σh, 6σd, i

I E, 6C5, 10C3, 15C2

Ih E, 6S10, 10S6, 6C5, 10C3, 15C2, 15σ, i
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31 The analysis of molecular shape  281

(f) The full rotation group
The full rotation group, R3 (the 3 refers to rotation in three 

dimensions), consists of an infinite number of rotation axes 

with all possible values of n. A sphere and an atom belong to 

R3, but no molecule does. Exploring the consequences of R3 is a 

very important way of applying sym-

metry arguments to atoms, and is an 

alternative approach to the theory of 

orbital angular momentum.

31.3 Some immediate consequences 
of symmetry

Some statements about the properties of a molecule can be 

made as soon as its point group has been identified.

(a) Polarity
A polar molecule is one with a permanent electric dipole 

moment (HCl, O3, and NH3 are examples). If the molecule 

belongs to the group Cn with n > 1, it cannot possess a charge 

distribution with a dipole moment perpendicular to the sym-

metry axis because the symmetry of the molecule implies that 

any dipole that exists in one direction perpendicular to the axis 

is cancelled by an opposing dipole (Fig. 31.13a). For example, 

the perpendicular component of the dipole associated with one 

O–H bond in H2O is cancelled by an equal but opposite com-

ponent of the dipole of the second O–H bond, so any dipole 

that the molecule has must be parallel to the twofold symmetry 

axis. However, as the group makes no reference to operations 

relating the two ends of the molecule, a charge distribution may 

exist that results in a dipole along the axis (Fig. 31.13b), and 

H2O has a dipole moment parallel to its twofold symmetry axis.

The same remarks apply generally to the group Cnv, so mol-

ecules belonging to any of the Cnv groups may be polar. In 

all the other groups, such as C3h, D, etc., there are symmetry 

operations that take one end of the molecule into the other. 

Therefore, as well as having no dipole perpendicular to the axis, 

such molecules can have none along the axis, for otherwise 

these additional operations would not be symmetry operations. 

We can conclude that only molecules belonging to the groups Cn, 

Cnv, and Cs may have a permanent electric dipole moment. For 

Cn and Cnv, that dipole moment must lie along the symmetry 

axis.

(b) Chirality

A chiral molecule (from the Greek word for ‘hand’) is a mol-

ecule that cannot be superimposed on its mirror image. An 

achiral molecule is a molecule that can be superimposed on its 

mirror image. Chiral molecules are optically active in the sense 

that they rotate the plane of polarized light. A chiral molecule 

19 Buckminsterfullerene, C60 (I)

Self-test 31.7 Identify the group to which the object shown in 

20 belongs.

20

Answer: Th

Brief illustration 31.8 Polar molecules

Ozone, O3, which is angular and belongs to the group C2v, may 

be polar (and is), but carbon dioxide, CO2, which is linear and 

belongs to the group D∞h, is not.

Self-test 31.8 Is tetraphenylmethane polar?

Answer: No (S4)

Name Elements

R3 E, ∞C2, ∞C3, …

(a) (b)

Figure 31.13 (a) A molecule with a Cn axis cannot have a dipole 
perpendicular to the axis, but (b) it may have one parallel to 
the axis. The arrows represent local contributions to the overall 
electric dipole, such as may arise from bonds between pairs of 
neighbouring atoms with different electronegativities.
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282 7 Molecular symmetry

and its mirror-image partner constitute an enantiomeric pair 

of isomers and rotate the plane of polarization in equal but 

opposite directions.

A molecule may be chiral, and therefore optically active, only if 

it does not possess an axis of improper rotation, Sn. We need to be 

aware that an Sn improper rotation axis may be present under a 

different name, and be implied by other symmetry elements that 

are present. For example, molecules belonging to the groups Cnh 

possess an Sn axis implicitly because they possess both Cn and 

σh, which are the two components of an improper rotation axis. 

Any molecule containing a centre of inversion, i, also possesses 

an S2 axis, because i is equivalent to C2 in conjunction with σh, 

and that combination of elements is S2 (Fig. 31.14). It follows 

that all molecules with centres of inversion are achiral and 

hence optically inactive. Similarly, because S1 = σ, it follows that 

any molecule with a mirror plane is achiral.

Checklist of concepts

☐  1. A symmetry operation is an action that leaves an object 

looking the same after it has been carried out; see Table 

31.1.

☐ 2. A symmetry element is a point, line, or plane with 

respect to which a symmetry operation is performed; 

see Table 31.1.

☐ 3. The notation for point groups commonly used for mol-

ecules and solids is summarized in Table 31.2.

☐ 4. To be polar, a molecule must belong to Cn, Cnv, or Cs 

(and have no higher symmetry).

☐ 5. A molecule may be chiral only if it does not possess an 

axis of improper rotation, Sn.

Brief illustration 31.9 Chiral molecules

A molecule may be chiral if it does not have a centre of inver-

sion or a mirror plane, which is the case with the amino acid 

alanine (21), but not with glycine (22). However, a molecule 

may be achiral even though it does not have a centre of inver-

sion. For example, the S4 species (18) is achiral and optically 

inactive: though it lacks i (that is, S2) it does have an S4 axis.

COOH

CH3

H

NH22

21 L-Alanine, NH2CH(CH3)COOH 

22 Glycine, NH2CH2COOH

OHCOO

HH

H NHN 2

Self-test 31.9 Is tetraphenylmethane chiral?

Answer: No (S4)

i

S2

Figure 31.14 Some symmetry elements are implied by the 
other symmetry elements in a group. Any molecule containing 
an inversion also possesses at least an S2 element because i and 
S2 are equivalent.
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TOPIC 32

Group theory

The systematic discussion of symmetry is called group theory. 

Much of group theory is a summary of common sense about the 

symmetries of objects. However, because group theory is sys-

tematic, its rules can be applied in a straightforward, mechanical 

way. In most cases the theory gives a simple, direct method for 

arriving at useful conclusions with the minimum of calculation, 

and this is the aspect we stress here. In some cases, though, they 

lead to unexpected results.

32.1 The elements of group theory

A group in mathematics is a collection of transformations that 

satisfy four criteria. Thus, if we write the transformations as 

R, R′, … (which we can think of as reflections, rotations, and 

so on, of the kind introduced in Topic 31), then they form a 

group if:

1. One of the transformations is the identity (that is: ‘do 

nothing’).

2. For every transformation R, the inverse transformation 

R−1 is included in the collection so that the combination 

RR−1 (the transformation R−1 followed by R) is equivalent 

to the identity.

3. The combination RR′ (the transformation R′ followed by 

R) is equivalent to a single member of the collection of 

transformations.

4. The combination R(R′R″), the transformation (R′R″) 

followed by R, is equivalent to (RR′)R″, the 

transformation R″ followed by (RR′).

There is one potentially very confusing point that needs to be 

clarified at the outset. The entities that make up a group are 

its ‘elements’. In chemistry, these elements are almost always 

 ➤ Why do you need to know this material?
Group theory puts qualitative ideas about symmetry on to 
a systematic basis that can be applied to a wide variety of 
calculations; it is used to draw conclusions that might not 
be immediately obvious and as a result can greatly simplify 
calculations. It is also the basis of the labelling of atomic 
and molecular orbitals that is used throughout chemistry.

 ➤ What is the key idea?
Symmetry operations may be represented by the effect of 
matrices acting on a basis.

Contents

32.1 The elements of group theory 283

Example 32.1: Showing that symmetry operations  

form a group 284

Brief illustration 32.1: Classes 284

32.2 Matrix representations 285

(a) Representatives of operations 285

Brief illustration 32.2: Representatives 285

(b) The representation of a group 285

Brief illustration 32.3: Matrix representations 285

(c) Irreducible representations 286

Example 32.2: Reducing a representation 286

(d) Characters and symmetry species 286

Brief illustration 32.4: Symmetry species 287

32.3 Character tables 287

(a) Character tables and orbital degeneracy 287

Example 32.3: Using a character table to  

judge degeneracy 288

(b) The symmetry species of atomic orbitals 288

Brief illustration 32.5: Symmetry species of  

atomic orbitals 288

(c) The symmetry species of linear combinations 
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 ➤ What do you need to know already?

You need to know about the types of symmetry operation 
and element introduced in Topic 31. This discussion draws 
heavily on matrix algebra, especially matrix multiplication, 
as set out in Mathematical background 5.
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284 7 Molecular symmetry

Brief illustration 32.1 Classes

To show that C3
+  and C3

−  belong to the same class in C3v 

(which intuitively we know to be the case), take S = σv. The 

reciprocal of a reflection is the reflection itself, so σ σv v
− =1 .  

It follows that

σ σ σ σ σ σv
1

3 v v 3 v v v 3
− −′C C C+ += = =

Therefore, C3
+  and C3

−  are related by an equation of the form 

of eqn 32.1 and hence belong to the same class.

Self-test 32.2 Show that the two reflections of the group C2v 

fall into different classes.

symmetry operations. However, as explained in Topic 31, we 

distinguish ‘symmetry operations’ from ‘symmetry elements’, 

the axes, planes, and so on with respect to which the operation 

is carried out. Finally, there is a third use of the word ‘element’, 

to denote the number lying in a particular location in a matrix. 

Be very careful to distinguish element (of a group), symmetry 

element, and matrix element.

Symmetry operations fall into the same class if they are of 

the same type (for example, rotations) and can be transformed 

into one another by a symmetry operation of the group. The 

two threefold rotations in C3v (namely C3
+  and C3

−) belong to 

the same class because one can be converted into the other by a 

reflection (see Fig. 32.2); the three reflections all belong to the 

same class because each can be rotated into another by a three-

fold rotation. The formal definition of a class is that two opera-

tions R and R′ belong to the same class if there is a member S of 

the group such that

R S RS′ −= 1   Membership of a class  (32.1)

where S−1 is the inverse of S.

Example 32.1 Showing that symmetry operations form 
a group

Show that the symmetry operations of the group C2v fulfil the 

criteria for being a group in the mathematical sense.

Method We need to show that combinations of the operations 

match the criteria set out above. The operations are set out in 

Topic 31.

Answer Criterion 1 is fulfilled because the collection of sym-

metry operations includes the identity E. Criterion 2 is fulfilled 

because in each case the inverse of an operation is the opera-

tion itself. Thus two twofold rotations are equivalent to the 

identity: C2C2 = E and likewise for the two reflections and the 

identity itself. Criterion 3 is fulfilled, because in each case one 

operation followed by another is the same as one of the four 

symmetry operations. For instance, a twofold rotation C2 fol-

lowed by the reflection ′σ v  is the same as the single reflection 

σv (Fig. 32.1). Thus: ′ =σ σv 2 vC .  The following group multipli-

cation table for the point group can be constructed similarly, 

where the entries are the product symmetry operations RR′:

R↓ R′ → E C2 σv σ′v

E E C2 σv σ′v

C2 C2 E σ′v σv

σv σv σ′v E C2

σ′v σ′v σv C2 E

σv′

C2

σv

Figure 32.1 A twofold rotation C2 followed by the reflection 
σv′ is the same as the single reflection σv.

Criterion 4 is fulfilled, as it is immaterial how the operations 

are grouped together.

Self-test 32.1 Confirm that the operations of the group C3v, 

which are illustrated in Fig. 32.2, form a group.

C3
+ C3

–

σv

σv′ σv″

Figure 32.2 The symmetry operations of the group C3v.

Answer: Criteria are fulfilled
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32 Group theory 285

32.2 Matrix representations

Group theory takes on great power when the notional ideas 

presented so far are expressed in terms of collections of num-

bers in the form of matrices.

(a) Representatives of operations
Consider the set of three p orbitals shown on the C2v SO2 mol-

ecule in Fig. 32.3. Under the reflection operation σv, the change 

(pS,pB,pA) ← (pS,pA,pB) takes place. We can express this trans-

formation by using matrix multiplication (Mathematical back-

ground 5):

( , , ) ( , , ) ( ,

( )

p  p  p p p p p pS B A S A B S

v

= =
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1 0 0

0 0 1

0 1 0

D σ� �� ��

AA B vp, ) ( )D σ

 

(32.2)

The matrix D(σv) is called a representative of the operation σv. 

Representatives take different forms according to the basis, the 

set of orbitals that has been adopted. In this case, the basis is 

(pS,pA,pB).

(b) The representation of a group
The set of matrices that represents all the operations of 

the group is called a matrix representation, Γ (uppercase 

gamma), of the group for the basis that has been chosen. 

The dimensionality of a representation is the number of 

rows (or columns) of each of its matrix representatives. An 

n-dimensional representation is denoted Γ(n); The matrices 

of a representation multiply together in the same way as the 

operations they represent. Thus, if for any two operations R 

and R′ we know that RR′ = R″, then D(R)D(R′) = D(R″) for a 

given basis.

The discovery of a matrix representation of the group means 

that we have found a link between symbolic manipulations of 

operations and algebraic manipulations of numbers.

Brief illustration 32.2 Representatives

We use the same technique to find matrices that reproduce 

the other symmetry operations. For instance, C2 has the effect  

(–pS,–pB,–pA) ← (pS,pA,pB), and its representative is

D( )C2 =
−

−
−

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1 0 0

0 0 1

0 1 0

The effect of ′σ v  is (–pS,–pA,–pB) ← (pS,pA,pB), and its repre-

sentative is

D ′( )
−

−
−

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=σ v

1 0 0

0 1 0

0 0 1

The identity operation has no effect on the basis, so its repre-

sentative is the 3 × 3 unit matrix:

D( )E =
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1 0 0

0 1 0

0 0 1

Self-test 32.3 Find the representative of the C2 operation of an 

H2O molecule for the basis (H1sA,H1sB).

Answer: D( )C2 =
⎛

⎝⎜
⎞

⎠⎟
0 1

1 0

Brief illustration 32.3 Matrix representations

In the group C2v, a twofold rotation followed by a reflection in 

a mirror plane is equivalent to a reflection in the second mir-

ror plane: specifically, ′ =σ σv 2 vC .  When we use the represent-

atives specified in Brief illustration 32.2, we find

D D′( ) ( )=
−

−
−

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

−
−

−

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=

σ v C2

1 0 0

0 1 0

0 0 1

1 0 0

0 0 1

0 1 0

1 00 0

0 0 1

0 1 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=D( )σ v

This multiplication reproduces the group multiplication. The 

same is true of all pairs of representative multiplications, so 

the four matrices form a representation of the group.

Self-test 32.4 Confirm the result that σ σv v 2′ =C  by using the 

matrix representatives developed here.

–

–

–

–
––––

+

+

+

S

A
B

Figure 32.3 The three px orbitals that are used to illustrate 
the construction of a matrix representation in a C2v 
molecule (SO2).
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286 7 Molecular symmetry

(c) Irreducible representations

Inspection of the representatives of the group C2v shows that 

they are all of block-diagonal form:

D=
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

■

■ ■

■ ■
 

 Block-diagonal form  (32.3)

The block-diagonal form of the representatives shows us that 

the symmetry operations of C2v never mix pS with the other two 

functions. Consequently, the basis can be cut into two parts, 

one consisting of pS alone and the other of (pA,pB). It is readily 

verified that the pS orbital itself is a basis for the one-dimen-

sional representation

D D D D( ) ( ) ( ) ( )E C= = − = ′ =1 1 1 12 v vσ σ −

which we shall call Γ(1). The remaining two basis functions are a 

basis for the two-dimensional representation Γ(2):

D D

D D

( ) ( )

( ) ( )

E C= =

= ′ =

⎛

⎝⎜
⎞

⎠⎟
−

−
⎛

⎝⎜
⎞

⎠⎟

⎛

⎝⎜
⎞

⎠⎟
−

1 0

0 1

0 1

1 0

0 1

1 0

1

2

v vσ σ
00

0 1−
⎛

⎝⎜
⎞

⎠⎟

These matrices are the same as those of the original three-

dimensional representation, except for the loss of the first row 

and column. We say that the original three-dimensional repre-

sentation has been reduced to the ‘direct sum’ of a one-dimen-

sional representation ‘spanned’ by pS, and a two-dimensional 

representation spanned by (pA,pB). This reduction is consist-

ent with the common-sense view that the central orbital plays 

a role different from the other two. We denote the reduction 

symbolically by writing

Γ Γ Γ( ) ( ) ( )3 = +1 2
  Direct sum  (32.4)

The one-dimensional representation Γ(1) cannot be reduced 

any further, and is called an irreducible representation of the 

group (an ‘irrep’).

(d) Characters and symmetry species

The character, χ (chi), of an operation in a particular matrix 

representation is the sum of the diagonal elements of the rep-

resentative of that operation. Thus, in the original basis we are 

using, the characters of the representatives are

Example 32.2 Reducing a representation

Demonstrate that the two-dimensional representation Γ (2) 

is reducible for the basis (pA,pB) in the group C2v by switching 

attention to the linear combinations p1 = pA + pB and p2 = pA – pB. 

These combinations are sketched in Fig. 32.4.

Method The representatives in the new basis can be con-

structed from the old by noting, for example, that under σv, 

(pB,pA) ← (pA,pB).

–

–

+

+A

B

–
+

+
A

B

–

Figure 32.4 Two linear combinations of the basis orbitals 
shown in Fig. 32.3. The two combinations each span a one-
dimensional irreducible representation and their symmetry 
species are different.

Answer Under σv, pB + pA ← pA + pB and pB – pA ← pA – pB; 

therefore, under σv, (p1, − p2) ← (p1,p2). Similar analysis for the 

other symmetry operations results in the following represent-

atives in the new basis (p1,p2):

D D

D D

( ) ( )

( ) ( )

E C= =

= ′ =

⎛

⎝⎜
⎞

⎠⎟
−⎛

⎝⎜
⎞

⎠⎟

−
⎛

⎝⎜
⎞

⎠⎟
−

1 0

0 1

1 0

0 1

1 0

0 1

1

2

v vσ σ
00

0 1−
⎛

⎝⎜
⎞

⎠⎟

The new representatives are all in block-diagonal form, and the 

two combinations are not mixed with each other by any opera-

tion of the group. The reduction of Γ(2) has been reduced to the 

sum of two one-dimensional representations. Thus, p1 spans

D D D D( ) ( ) ( ) ( )E C= = − = ′ = −1 1 1 12 v vσ σ

which is the same one-dimensional representation as that 

spanned by pS, and p2 spans

D D D D( ) ( ) ( ) ( )E C=1 1 1 12 v v= = − ′ = −σ σ

which is a different one-dimensional representation; we 

denote these two representations Γ (1) and Γ (1) ′, respectively. 

At this stage we have reduced the original representation as 

follows:

Γ Γ Γ Γ( ) ( ) ( ) ( )3 = + +1 1 1 ′

Self-test 32.5 Consider the H2O molecule and focus on the 

two H1s orbitals. Is the two-dimensional representation on 

the basis (H1sA,H1sB) reducible?

Answer: Yes; adopt H1sA + H1sB, H1sA – H1sB.
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32 Group theory 287

The characters of one-dimensional representatives are just the 

representatives themselves. The sum of the characters of the 

reduced representation is unchanged by the reduction:

At this point we have found two irreducible representations 

of the group C2v. Although the notation Γ(n) can be used for 

general representations, it is common in chemical applications 

of group theory to use the labels A, B, E, and T to denote the 

symmetry species of the representation:

 A:  one-dimensional representation, character +1 under 

the principal rotation

 B:  one-dimensional representation, character –1 under 

the principal rotation

 E:  two-dimensional irreducible representation

 T:  three-dimensional irreducible representation

Subscripts are used to distinguish the irreducible representa-

tions if there is more than one of the same type: A1 is reserved 

for the representation with character +1 for all operations. All 

the irreducible representations of C2v are one-dimensional, and 

the table above is labelled as follows:

Are these the only irreducible representations of the group C2v? 

There is in fact only one more species of irreducible representa-

tions of this group, for a surprising theorem of group theory 

states that

Number of symmetry species

number of classes=
 

 Number of species  (32.5)

In C2v, for instance, there are four classes (four columns in 

the table of characters), so there are only four species of 

irreducible representation. The character table in Table 32.1 

therefore shows the characters of all the irreducible repre-

sentations of this group. Another powerful result relates the 

sum of the dimensions, di, of all the symmetry species Γ(i) to 

the order of the group, the total number of symmetry opera-

tions, h:

Species i

id h∑ =2

 
 Dimensionality and order  (32.6)

32.3 Character tables

The tables we have been constructing are called character 

tables and from now on move to the centre of the discussion. 

The columns of a character table are labelled with the symmetry 

operations of the group. For instance, for the group C3v the col-

umns are headed E, C3, and σv (Table 32.2). The numbers mul-

tiplying each operation are the numbers of members of each 

class. The rows under the labels for the operations summarize 

the symmetry properties of the orbitals. They are labelled with 

the symmetry species.

Brief illustration 32.4 Symmetry species

There are three classes of operation in the group C3v (E,C3,σv: 

we don’t need to know the number in each class), so there are 

three symmetry species (they turn out to be A1, A2, and E). 

The order of the group is 6 (we now need to know that the 

elements of the group (that is, the symmetry operations) are 

(E,2C3,3σv), for h = 6), so if we already knew that two of the 

symmetry species are one-dimensional, we could infer that 

the remaining irreducible representation is two-dimensional 

(E) from 12 + 12 + d2 = 6.

Self-test 32.6 How many symmetry species are there for the 

group Td, with elements (E,8C3,3C2,6σd,6S4)? Can you infer 

their dimensionalities?

Answer: five species; 2A + E + 2T, 2 × (1)2 + 1 × (2)2 + 2 × (3)2 = 24 = h

R E C2 σv σ′v

D(R)
1 0 0

0 1 0

0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

−
−

−

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1 0 0

0 0 1

0 1 0

1 0 0

0 0 1

0 1 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

−
−

−

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1 0 0

0 1 0

0 0 1

χ(R) 3 −1 1 −3

R E C2 σv σ′v

χ(R) for Γ (1) 1 −1 1 −1

χ(R) for Γ (1) 1 −1 1 −1

χ(R) for Γ (1)′ 1 1 −1 −1

Sum: 3 −1 1 −3

Symmetry species E C2 σv σ′v

B1 1 –1 1 –1

B1 1 –1 1 –1

A2 1 1 –1 –1 Table 32.1*  The C2v character table

C2v, 2mm E C2 σv σ′v h = 4

A1 1 1 1 1 z z2, y2, x2

A2 1 1 –1 –1 xy

B1 1 –1 1 –1 x zx

B2 1 –1 –1 1 y yz

* More character tables are given in the Resource section.
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288 7 Molecular symmetry

(a) Character tables and orbital degeneracy
The character of the identity operation E tells us the degen-

eracy of the orbitals. Thus, in a C3v molecule, any orbital with 

a symmetry label A1 or A2 is non-degenerate. Any doubly 

degenerate pair of orbitals in C3v must be labelled E because, 

in this group, only E symmetry species have characters 

greater than 1. (Take care to distinguish the identity opera-

tion E (italic, a column heading) from the symmetry label E 

(roman, a row label).)

Because there are no characters greater than 2 in the column 

headed E in C3v, we know that there can be no triply degenerate 

orbitals in a C3v molecule. This last point is a powerful result of 

group theory, for it means that with a glance at the character 

table of a molecule, we can state the maximum possible degen-

eracy of its orbitals.

(b) The symmetry species of  
atomic orbitals
The characters in the rows labelled A and B and in the col-

umns headed by symmetry operations other than the identity 

E indicate the behaviour of an orbital under the corresponding 

operations: a +1 indicates that an orbital is unchanged, and a –1 

indicates that it changes sign. It follows that we can identify the 

symmetry label of the orbital by comparing the changes that 

occur to an orbital under each operation, and then comparing 

the resulting +1 or –1 with the entries in a row of the character 

table for the point group concerned. By convention, irreduc-

ible representations are labelled with uppercase Roman let-

ters (such as A1 and E) and the orbitals to which they apply are 

labelled with the lowercase equivalents (so an orbital of sym-

metry species A1 is called an a1 orbital). Examples of each type 

of orbital are shown in Fig. 32.5.

Table 32.2*  The C3v character table

C3v, 3m E 2C3 3σv h = 6

A1 1 1 1 z z2, x2 + y2

A2 1 1 –1

E 2 –1 0 (x, y) (xy, x2 – y2), (yz, zx)

* More character tables are given in the Resource section.

Example 32.3 Using a character table to judge 
degeneracy

Can a trigonal planar molecule such as BF3 have triply 

degenerate orbitals? What is the minimum number of atoms 

from which a molecule can be built that does display triple 

degeneracy?

Method First identify the point group, and then refer to the 

corresponding character table in the Resource section. The 

maximum number in the column headed by the identity E 

is the maximum orbital degeneracy possible in a molecule 

of that point group. For the second part, consider the shapes 

that can be built from two, three, etc. atoms, and decide which 

number can be used to form a molecule that can have orbitals 

of symmetry species T.

Answer Trigonal planar molecules belong to the point group 

D3h. Reference to the character table for this group shows that 

the maximum degeneracy is 2, as no character exceeds 2 in 

the column headed E. Therefore, the orbitals cannot be triply 

degenerate. A tetrahedral molecule (symmetry group T) has 

an irreducible representation with a T symmetry species. The 

minimum number of atoms needed to build such a molecule is 

four (as in P4, for instance).

Self-test 32.7 A buckminsterfullerene molecule, C60 (19 of 

Topic 31), belongs to the icosahedral point group. What is the 

maximum possible degree of degeneracy of its orbitals?

Answer: 5

sN

a1 a2

e 

Figure 32.5 Typical linear combinations of orbitals in a C3v 
molecule.

Brief illustration 32.5 Symmetry species of atomic orbitals

Consider the O2px orbital in H2O (the x-axis is perpendicular to 

the molecular plane; the y-axis is parallel to the H–H direction; 

the z-axis bisects the HOH angle). Because H2O belongs to the 

point group C2v, we know by referring to the C2v character table 

(Table 32.1) that the labels available for the orbitals are a1, a2, b1, 

and b2. We can decide the appropriate label for O2px by noting 

that under a 180° rotation (C2) the orbital changes sign (Fig. 

32.6), so it must be either B1 or B2, as only these two symmetry 
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32 Group theory 289

For the rows labelled E or T (which refer to the behaviour 

of sets of doubly and triply degenerate orbitals, respectively), 

the characters in a row of the table are the sums of the charac-

ters summarizing the behaviour of the individual orbitals in the 

basis. Thus, if one member of a doubly degenerate pair remains 

unchanged under a symmetry operation but the other changes 

sign (Fig. 32.7), then the entry is reported as χ = 1 – 1 = 0. Care 

must be exercised with these characters because the transfor-

mations of orbitals can be quite complicated; nevertheless, the 

sums of the individual characters are integers.

The behaviour of s, p, and d orbitals on a central atom under 

the symmetry operations of the molecule is so important that 

the symmetry species of these orbitals are generally indicated 

in a character table. To make these allocations, we look at the 

symmetry species of x, y, and z, which appear on the right-hand 

side of the character table. Thus, the position of z in Table 32.2 

shows that pz (which is proportional to zf(r)) has symmetry 

species A1 in C3v, whereas px and py (which are proportional to 

xf(r) and yf(r), respectively) are jointly of E symmetry. In tech-

nical terms, we say that px and py jointly span an irreducible 

representation of symmetry species E. An s orbital on the cen-

tral atom always spans the fully symmetrical irreducible repre-

sentation (typically labelled A1 but sometimes ′A1 ) of a group 

as it is unchanged under all symmetry operations.

The five d orbitals of a shell are represented by xy for dxy, etc., 

and are also listed on the right of the character table. We can see 

at a glance that in C3v, dxy and dx y2 2−  on a central atom jointly 

belong to E and hence form a doubly degenerate pair.

(c) The symmetry species of linear 
combinations of orbitals
So far, we have dealt with the symmetry classification of indi-

vidual orbitals. The same technique may be applied to linear 

combinations of orbitals on atoms that are related by sym-

metry transformations of the molecule, such as the linear 

combinations p1 and p2 of Example 32.2 and the combination 

ψ1 = ψA + ψB + ψC of the three H1s orbitals in the C3v molecule 

NH3 (Fig. 32.8). This latter combination remains unchanged 

under a C3 rotation and under any of the three vertical reflec-

tions of the group, so its characters are

χ χ χ σ( ) ( ) ( )E C= = =1 1 13 v

Comparison with the C3v character table shows that ψ1 is of 

symmetry species A1, and therefore that it contributes to a1 

molecular orbitals in NH3.

+

+

–

–
+1–1

Figure 32.7 The two orbitals shown here have different 
properties under reflection through the mirror plane: one 
changes sign (character –1), the other does not (character +1).

sA

sBsC

Figure 32.8 The three H1s orbitals used to construct linear 
combinations in a C3v molecule such as NH3.

types have character –1 under C2. The O2px orbital also changes 

sign under the reflection ′σ v ;  which identifies it as B1. As we 

shall see, any molecular orbital built from this atomic orbital will 

also be a b1 orbital. Similarly, O2py changes sign under C2 but 

not under ′σ v ;  therefore, it can contribute to b2 orbitals.

Self-test 32.8 Identify the symmetry species of d orbitals on 

the central atom of a square-planar (D4h) complex.

Answer: A1g + B1g + B2g + Eg

C2

σv

σv′

+

–

Figure 32.6 A px orbital on the central atom of a C2v 
molecule and the symmetry elements of the group.
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290 7 Molecular symmetry

Checklist of concepts

☐ 1. A group in mathematics is a collection of transforma-

tions that satisfy the four criteria set out at the start of 

the Topic.

☐ 2. A matrix representative is a matrix that represents the 

effect of an operation on a basis.

☐ 3. The character is the sum of the diagonal elements of a 

matrix representative of an operation.

☐ 4. A matrix representation is the collection of matrix rep-

resentatives for the operations in the group.

☐ 5. A character table consists of entries showing the char-

acters of all the irreducible representations of a group.

☐ 6. A symmetry species is a label for an irreducible repre-

sentation of a group.

☐ 7. The character of the identity operation E is the degen-

eracy of the orbitals that form a basis for an irreducible 

representation of a group.

Checklist of equations

Property Equation Comment Equation number

Class membership R′ = S−1RS All elements members of the group;  
R and R′ in same class

32.1

Number of species rule Number of symmetry species = number of classes 32.5

Character and order

Species i

id h∑ =2
h is the order of the group 32.6

Example 32.4 Identifying the symmetry species 
of orbitals

Identify the symmetry species of the orbital ψ = ψA – ψB in a 

C2v NO2 molecule, where ψA is an O2px orbital on one O atom 

and ψB that on the other O atom.

Method The negative sign in ψ indicates that the sign of ψB is 

opposite to that of ψA. We need to consider how the combina-

tion changes under each operation of the group, and then write 

the character as +1, –1, or 0 as specified above. Then we compare 

the resulting characters with each row in the character table for 

the point group, and hence identify the symmetry species.

Answer The combination is shown in Fig. 32.9. Under C2, 

ψ changes into itself, implying a character of +1. Under the 

reflection σv, both orbitals change sign, so ψ → –ψ, implying 

a character of –1. Under ′σ v , ψ → –ψ, so the character for this 

operation is also –1. The characters are therefore

χ χ χ σ χ σ( ) ( ) ( ) ( )E C= = − ′ = −1 =1 1 12 v v

These values match the characters of the A2 symmetry species, 

so ψ can contribute to an a2 orbital.

Self-test 32.9 Consider PtCl4
− ,  in which the Cl ligands form a 

square planar array of point group D4h (1). Identify the sym-

metry type of the combination ψA – ψB + ψC – ψD.

A B

CD

1

Answer: B2g

–
+

+
N 

O

O
–

Figure 32.9 One linear combination of O2px orbitals in the 
C2v NO2 molecule.
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TOPIC 33

Applications of symmetry

Group theory shows its power when brought to bear on a vari-

ety of problems in chemistry, among them the construction of 

molecular orbitals and the formulation of spectroscopic selec-

tion rules. This Topic describes these two applications after 

establishing a general result relating to integrals. In Topics 6 

and 7 it is explained how integrals (‘matrix elements’) are cen-

tral to the formulation of quantum mechanics, and knowing 

with very little calculation that various integrals are necessarily 

zero can save a great deal of calculational effort as well as add-

ing to insight about the origin of properties.

33.1 Vanishing integrals

An integral, which we shall denote I, in one dimension is equal 

to the area beneath the curve. In higher dimensions, it is equal 

to volume and various generalizations of volume. The key point 

is that the value of the area, volume, etc., is independent of the 

orientation of the axes used to express the function being inte-

grated, the ‘integrand’ (Fig. 33.1). In group theory we express 

this point by saying that I is invariant under any symmetry 

operation, and that each symmetry operation brings about the 

trivial transformation I → I.

Contents

33.1 Vanishing integrals 291

(a) Integrals over the product of two functions 292

Example 33.1: Deciding if an integral must be zero 1 292

(b) Decomposition of a direct product 293

Brief illustration 33.1: Decomposition of a  

direct product 293

(c) Integrals over products of three functions 293

Example 33.2: Deciding if an integral must be zero 2 293

33.2 Applications to orbitals 294

(a) Orbital overlap 294

Example 33.3: Determining which orbitals can  

contribute to bonding 294

(b) Symmetry-adapted linear combinations 294

Example 33.4: Constructing symmetry- 

adapted orbitals 295

33.3 Selection rules 295

Example 33.5: Deducing a selection rule 295

Checklist of concepts 296

Checklist of equations 296

 ➤ Why do you need to know this material?
This Topic explains how the concepts introduced in Topics 
31 and 32 are put to use. The arguments here are essential 
for understanding how molecular orbitals are constructed 
and underlie the whole of spectroscopy.

 ➤ What is the key idea?
An integral is invariant under symmetry transformations 
of a molecule.

 ➤ What do you need to know already?
This Topic develops the material that began in Topic 
31, where the symmetry classification of molecules is 
introduced on the basis of their symmetry elements, 
and draws heavily on the properties of characters and 
character tables described in Topic 32.

x

y

x

y

(a) (b)

Figure 33.1 The value of an integral I (for example, an area) is 
independent of the coordinate system used to evaluate it: the 
dark shaded regions have the same area in (a) and (b). That is, 
I is a basis of a representation of symmetry species A1 (or its 
equivalent).
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292 7 Molecular symmetry

(a) Integrals over the product of two functions

Suppose we had to evaluate the integral

I f f=∫ 1 2dτ  (33.1)

where f1 and f2 are functions and the integration is over all space. 

For example, f1 might be an atomic orbital A on one atom and f2 

an atomic orbital B on another atom, in which case I would be 

their overlap integral (denoted S). If we knew that the integral 

is zero, we could say at once that a molecular orbital does not 

result from (A,B) overlap in that molecule. We shall now see 

that the character tables introduced in Topic 32 provide a quick 

way of judging whether an integral is necessarily zero.

The volume element dτ is invariant under any symmetry 

operation. It follows that the integral is nonzero only if the inte-

grand itself, the product f1  f2, is unchanged by any symmetry 

operation of the molecular point group. If the integrand changed 

sign under a symmetry operation, the integral would be the sum 

of equal and opposite contributions, and hence would be zero. It 

follows that the only contribution to a nonzero integral comes 

from functions for which under any symmetry operation of the 

molecular point group f1  f2→ f1  f2, and hence for which the char-

acters of the operations are all equal to +1. Therefore, for I not to 

be zero, the integrand f1  f2 must have symmetry species A1 (or its 

equivalent in the specific molecular point group).

The following procedure is used to deduce the symmetry 

species spanned by the product f1  f2 and hence to see whether it 

does indeed span A1:

Identify the symmetry species of the individual 

functions f1 and f2 by reference to the character table for 

the molecular point group in question and write their 

characters in two rows in the same order as in the table.

Multiply the two numbers in each column, writing the 

results in the same order.

Inspect the row so produced, and see if it can be expressed 

as a sum of characters from each column of the group. 

The integral must be zero if this sum does not use A1.

A shortcut that works when f1 and f2 are bases for irreducible 

representations of a group is to note their symmetry species; 

if they are different (B1 and A2, for instance), then the integral 

of their product must vanish; if they are the same (both B1, for 

instance), then the integral may be nonzero.

It is important to note that group theory is specific about 

when an integral must be zero, but integrals that it allows to 

be nonzero may be zero for reasons unrelated to symmetry. 

For example, the NeH distance in ammonia may be so great 

that the (s1,sN) overlap integral, where s1 is the combination 

sA + sB + sC of the three H1s atomic orbitals, is zero simply 

because the orbitals are so far apart.

Example 33.1 Deciding if an integral must be zero 1

May the integral of the function f = xy be nonzero when evalu-

ated over a region the shape of an equilateral triangle centred 

on the origin (Fig. 33.2)?

Method First, note that an integral over a single function f is 

included in the previous discussion if we take f1 = f and f2 = 1 in 

eqn 33.1. Therefore, we need to judge whether f alone belongs 

to the symmetry species A1 (or its equivalent) in the point 

group of the system. To decide, we identify the point group 

and then examine the character table to see whether f belongs 

to A1 (or its equivalent).

Answer An equilateral triangle has the point-group symme-

try D3h. If we refer to the character table of the group, we see 

that xy is a member of a basis that spans the irreducible repre-

sentation E′. Therefore, its integral must be zero, because the 

integrand has no component that spans A1′.

Self-test 33.1 Can the function x2 + y2 have a nonzero integral 

when integrated over a regular pentagon centred on the origin?

Answer: Yes (Fig. 33.3) 

+

+ –

–

y
x

Figure 33.2 The integral of the function f = xy over the 
tinted region is zero. In this case, the result is obvious by 
inspection, but group theory can be used to establish 
similar results in less obvious cases. The insert shows the 
shape of the function in three dimensions.

y
x

Figure 33.3 The integration of a function over a pentagonal 
region. The insert shows the shape of the function in three 
dimensions.
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33 Applications of symmetry  293

(b) Decomposition of a direct product

In many cases, the product of functions f1 and f2 spans a sum 

of irreducible representations. For instance, in C2v we may find 

the characters 2,0,0,−2 when we multiply the characters of f1 

and f2 together. In this case, we note that these characters are 

the sum of the characters for A2 and B1:

To summarize this result we write the symbolic expression 

A2 × B1 = A2 + B1, which is called the decomposition of a direct 

product. This expression is symbolic. The × and + signs in 

this expression are not ordinary multiplication and addition 

signs: formally, they denote technical procedures with matri-

ces called a ‘direct product’ and a ‘direct sum’. Because the sum 

on the right does not include a component that is a basis for 

an irreducible representation of symmetry species A1, we can 

conclude that the integral of f1  f2 over all space is zero in a C2v 

molecule.

Whereas the decomposition of the characters 2,0,0,−2 can be 

done by inspection in this simple case, in other cases and more 

complex groups the decomposition is often far from obvious. 

For example, if we found the characters 8,−2,−6,4, it might not 

be obvious that the sum contains A1. Group theory, however, 

provides a systematic way of using the characters of the repre-

sentation spanned by a product to find the symmetry species of 

the irreducible representations. The formal recipe is

n
h

R R
R

( ) ( )( )( )Γ χ χΓ= ∑1
  Decomposition of direct product  (33.2)

We implement this expression as follows:

Write down a table with columns headed by the 

symmetry operations, R, of the group. Include a column 

for every operation, not just the classes.

In the first row write down the characters of the 

representation we want to analyse; these are the χ(R).

In the second row, write down the characters of the 

irreducible representation Γ we are interested in; these 

are the χ(Γ)(R).

Multiply the two rows together, add the products 

together, and divide by the order of the group, h.

The resulting number, n(Γ), is the number of times Γ occurs in 

the decomposition.

(c) Integrals over products of three functions
Integrals of the form

I f f f=∫ 1 2 3dτ  (33.3)

are also common in quantum mechanics for they include 

matrix elements of operators (Topic 7), and it is important to 

know when they are necessarily zero. As for integrals over two 

functions, for I to be nonzero, the product f1   f2   f3 must span A1 

(or its equivalent) or contain a component that spans A1. To test 

whether this is so, the characters of all three functions are multi-

plied together in the same way as in the rules set out above.

E C2v σv σ v
′

A2 1  1 −1 −1

B1 1 −1  1 −1

A2 + B1 2  0  0 −2

Brief illustration 33.1 Decomposition of a direct product

To find whether A1 does indeed occur in the product with 

characters 8, −2, −6,4 in C2v, we draw up the following table:

The sum of the numbers in the last line is 4; when that 

number is divided by the order of the group, we get 1, so A1 

occurs once in the decomposition. When the procedure is 

repeated for all four symmetry species, we find that f1 f2 spans 

A1 + 2A2 + 5B2.

Self-test 33.2 Does A2 occur among the symmetry species 

of the irreducible representations spanned by a product with 

characters 7,−3,−1,5 in the group C2v?

Answer: No

E C2v σv σ v
′ h = 4 (the order of the group)

f1f2 8 −2 −6 4 (the characters of the product)

A1 1  1  1 1 (the symmetry species we are interested in)

8 −2 −6 4 (the product of the two sets of characters)

Example 33.2 Deciding if an integral must be zero 2

Does the integral ∫( ) ( )3 32d d dz xyx τ  vanish in a C2v molecule?

Method We must refer to the C2v character table (Table 32.1) 

and the characters of the irreducible representations spanned by  

3z2 – r2 (the form of the dz2 orbital), x, and xy; then we can use the 

procedure set out above (with one more row of multiplication).

Answer We draw up the following table:

E C2 σv σ v
′

f3 = dxy 1 1 −1 −1 A2

f2 = x 1 −1 1 −1 B1

f z1 2=d 1 1 1 1 A1

f1   f2   f3 1 −1 −1 1
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294 7 Molecular symmetry

33.2 Applications to orbitals

The rules we have outlined let us decide which atomic orbitals 

may have nonzero overlap in a molecule. It is also very useful 

to have a set of procedures to construct linear combinations of 

atomic orbitals to have a certain symmetry, and thus to know 

in advance whether or not they will have nonzero overlap with 

other orbitals.

(a) Orbital overlap
An overlap integral, S, between two sets of atomic orbitals ψ1 

and ψ2 is

S d=∫ψ ψ τ2 1
*   Overlap integral  (33.4)

and clearly has the same form as eqn 33.1. It follows from that 

discussion that only orbitals of the same symmetry species may 

have nonzero overlap (S ≠ 0), so only orbitals of the same sym-

metry species form bonding and antibonding combinations. It 

is explained in Topic 23 that the selection of atomic orbitals that 

had mutual nonzero overlap is the central and initial step in the 

construction of molecular orbitals by the LCAO procedure. We 

are therefore at the point of contact between group theory and 

the material introduced in that Topic.

(b) Symmetry-adapted linear combinations
In the discussion of the molecular orbitals of NH3 

(Topic 32) we encounter molecular orbitals of the form 

ψ = c1sN + c2(sA + sB + sC), where sN is an N2s atomic orbital 

and sA, sB, and sC are H1s orbitals. The sN orbital has nonzero 

overlap with the combination of H1s orbitals as the latter has 

matching symmetry. The combination of H1s orbitals is an 

example of a symmetry-adapted linear combination (SALC), 

which are orbitals constructed from equivalent atoms and 

having a specified symmetry. Group theory also provides 

machinery that takes an arbitrary basis, or set of atomic orbit-

als (sA, etc.), as input and generates combinations of the speci-

fied symmetry. As illustrated by the example of NH3, SALCs 

are the building blocks of LCAO molecular orbitals and their 

construction is the first step in any molecular orbital treat-

ment of molecules.

The technique for building SALCs is derived by using the 

full power of group theory and involves the use of a projection 

operator, P(Γ), an operator that takes one of the basis orbitals and 

generates from it—projects from it—a SALC of the symmetry 

species Γ:

P
h

R R
R

( ) ( ) ( )Γ Γχ= ∑1
  Projection operator  (33.5)

To implement this rule, do the following:

Write each basis orbital at the head of a column  

and in successive rows show the effect of each  

operation R on each orbital. Treat each operation 

individually.

Multiply each member of the column by the character, 

χ(Γ)(R), of the corresponding operation.

Add together all the orbitals in each column with the 

factors as determined in the second step.

Divide the sum by the order of the group, h.

Example 33.3 Determining which orbitals can 
contribute to bonding

The four H1s orbitals of methane span A1 + T2. With which 

of the C atomic orbitals can they overlap? What bond-

ing pattern would be possible if the C atom had d orbitals 

available?

Method Refer to the Td character table (in the Resource sec-

tion) and look for s, p, and d orbitals spanning A1 or T2.

Answer An s orbital spans A1, so it may have nonzero over-

lap with the A1 combination of H1s orbitals. The C2p orbit-

als span T2, so they may have nonzero overlap with the T2 

combination. The dxy, dyz, and dzx orbitals span T2, so they 

may overlap the same combination. Neither of the other two 

d orbitals span A1 (they span E), so they remain nonbonding 

The characters are those of B2. Therefore, the integral is neces-

sarily zero.

Self-test 33.3 Does the integral ∫( )( )( )2p 2p 2p dx y z τ  necessar-

ily vanish in an octahedral environment?

Answer: No

orbitals. It follows that in methane there are (C2s,H1s)-

overlap a1 orbitals and (C2p,H1s)-overlap t2 orbitals. The 

C3d orbitals might contribute to the latter. The lowest energy 

configuration is probably a t1
2

2
6 , with all bonding orbitals 

occupied.

Self-test 33.4 Consider the octahedral SF6 molecule, with the 

bonding arising from overlap of S orbitals and a 2p orbital on 

each F directed towards the central S atom. The latter spans 

A1g + Eg + T1u. What s orbitals have nonzero overlap? Suggest 

what the ground-state configuration is likely to be.

Answer: 3s(A1g), 3p(T1u), 3d(Eg); a t e1g u g
2

1
6 4
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33 Applications of symmetry  295

We now form the overall molecular orbital by forming a linear 

combination of all the SALCs of the specified symmetry species. 

In this case, therefore, the a1 molecular orbital is ψ = cNsN + c1s1, 

as specified above. This is as far as group theory can take us. The 

coefficients are found by solving the Schrödinger equation; they 

do not come directly from the symmetry of the system.

We run into a problem when we try to generate an SALC of 

symmetry species E, because, for representations of dimension 

2 or more, the rules generate sums of SALCs. This problem can 

be illustrated as follows. In C3v, the E characters are 2, −1, −1, 0, 

0, 0, so the column under sN gives

ψ = − − + + + =1
6

0 0 0 0( )2s s sN N N  

The other columns give

However, any one of these three expressions can be expressed as 

a sum of the other two (they are not ‘linearly independent’). The 

difference of the second and third gives 1
2
( )s sB C− , and this com-

bination and the first, 1
6
( )2s s sA B C− −  are the two (now linearly 

independent) SALCs we have used in the discussion of e orbitals.

33.3 Selection rules

It is explained in Topic 16 and developed further in Topic 45 that 

the intensity of a spectral line arising from a molecular transi-

tion between some initial state with wavefunction ψi and a final 

state with wavefunction ψf depends on the (electric) transition 

dipole moment, μfi. The z-component of this vector is defined 

through

μ ψ ψ τz e z,
*

fi f id=− ∫   Transition dipole moment  (33.6)

where −e is the charge of the electron. The transition moment 

has the form of the integral in eqn 33.3; so, once we know the 

symmetry species of the states, we can use group theory to for-

mulate the selection rules for the transitions.

1
6
( )2s s sA B C− − 1

6
( )2s s sB A C− − 1

6
( )2s s sC B A− −

Example 33.5 Deducing a selection rule

Is px → py an allowed transition in a tetrahedral environment?

Method We must decide whether the product pyqpx, with 

q = x, y, or z, spans A1 by using the Td character table.

Answer The procedure works out as follows:

We now use the decomposition procedure summarized by eqn 

33.2 to deduce that A1 occurs (once) in this set of characters, so 

px → py is allowed. A more detailed analysis (using the matrix 

representatives rather than the characters) shows that only q = z 

gives an integral that may be nonzero, so the transition is z-polar-

ized. That is, the electromagnetic radiation involved in the tran-

sition has a component of its electric vector in the z-direction.

Self-test 33.6 What are the allowed transitions, and their 

polarizations, of an electron in a b1 orbital in a C4v molecule?

Answer: b1 → b1(z); b1 → e(x,y)

E 8C3 3C2 6σd 6S4

f3(py) 3 0 −1 1 −1 T2

f2(q) 3 0 −1 1 −1 T2

f1(px) 3 0 −1 1 −1 T2

f1f2f3 27 0 −1 1 −1

Example 33.4 Constructing symmetry-adapted orbitals

Construct symmetry-adapted linear combinations of H1s 

orbitals for NH3.

Method Identify the point group of the molecule and have 

available its character table. Then apply the projection-oper-

ator technique.

Answer From the (sN,sA,sB,sC) basis in NH3 we form the fol-

lowing table, with each row showing the effect of the operator 

shown on the left:

To generate the A1 combination, we take the characters 

for A1 (1,1,1,1,1,1); then the second and third rules lead to 

ψ ∝ sN + sN + …= 6sN. The order of the group (the number of 

elements) is 6, so the combination of A1 symmetry that can be 

generated from sN is sN itself. Applying the same technique to 

the column under sA gives

ψ = + + + + + = + +1
6

1
3

( ) ( )s s s s s s s s sA B C A B C A B C

The same combination is built from the other two columns, 

so they give no further information. The combination we have 

just formed is the one we see above and denote s1 (apart from 

the numerical factor).

Self-test 33.5 Generate the symmetry-adapted linear combi-

nations of the H1s orbitals in H2O.

Answer: H1sA + H1sB, H1sA – H1sB

sN sA sB sC

E sN sA sB sC

C3
+ sN sB sC sA

C3
− sN sC sA sB

σv sN sA sC sB

′σ v sN sB sA sC

′′σ v sN sC sB sA

Atkins09819.indb   295 9/11/2013   11:42:11 AM



296 7 Molecular symmetry

Checklist of concepts

☐ 1. For an integral not to be zero, the integrand must have 

symmetry species A1 (or its equivalent in the specific 

molecular point group).

☐ 2. Only orbitals of the same symmetry species may have 

nonzero overlap (S ≠ 0).

☐ 3. A symmetry-adapted linear combination (SALC) is a 

linear combination of atomic orbitals constructed from 

equivalent atoms and having a specified symmetry.

Checklist of equations

Property Equation Comment Equation number

Decomposition of direct product n h R R

R

( ) ( / ) ( ) ( )( )Γ χ χΓ= ∑1 Real characters* 33.2

Overlap integral S d= ∫ψ ψ τ2 1
* Definition 33.4

Projection operator P h R R

R

( ) ( )( / ) ( )Γ Γχ= ∑1 33.5

Transition dipole moment μ ψ ψ τz e z,
*

fi f id= − ∫ z-component 33.6

* In general, characters may have complex values; throughout this text we encounter only real values.
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Exercises and problems  297

Focus 7 on Molecular symmetry

Topic 31 The analysis of molecular shape

Discussion questions
31.1 Explain how a molecule is assigned to a point group.

31.2 List the symmetry operations and the corresponding symmetry elements 

of the point groups.

31.3 State and explain the symmetry criteria that allow a molecule to be polar.

31.4 State the symmetry criteria that allow a molecule to be optically active.

Exercises
31.1(a) The CH3Cl molecule belongs to the point group C3v. List the symmetry 

elements of the group and locate them in a drawing of the molecule.

31.1(b) The CCl4 molecule belongs to the point group Td. List the symmetry 

elements of the group and locate them in a drawing of the molecule.

31.2(a) Identify the group to which the naphthalene molecule belongs and 

locate the symmetry elements in a drawing of the molecule.

31.2(b) Identify the group to which the anthracene molecule belongs and 

locate the symmetry elements in a drawing of the molecule.

31.3(a) Identify the point groups to which the following objects belong: 

(a) a sphere, (b) an isosceles triangle, (c) an equilateral triangle, (d) an 

unsharpened cylindrical pencil.

31.3(b) Identify the point groups to which the following objects belong: (a) a 

sharpened cylindrical pencil, (b) a three-bladed propeller, (c) a four-legged 

table, (d) yourself (approximately).

31.4(a) List the symmetry elements of the following molecules and name 

the point groups to which they belong: (a) NO2, (b) N2O, (c) CHCl3, 

(d) CH2 = CH2.

31.4(b) List the symmetry elements of the following molecules and name 

the point groups to which they belong: (a) furan (1), (b) γ-pyran (2), 

(c) 1,2,5-trichlorobenzene.

O

1 Furan   

O

2 γ-Pyran 

31.5(a) Assign (a) cis-dichloroethene and (b) trans-dichloroethene to point 

groups.

31.5(b) Assign the following molecules to point groups: (a) HF, (b) IF7 

(pentagonal bipyramid), (c) XeO2F2 (see-saw), (d) Fe2(CO)9 (3), (e) cubane, 

C8H8, (f) tetrafluorocubane, C8H4F4 (4).

CO

CO

Fe

3

COFe

3    

F

H

4

FF

H

31.6(a) Which of the following molecules may be polar? (a) pyridine, 

(b) nitroethane, (c) gas-phase HgBr2, (d) B3N3H6.

31.6(b) Which of the following molecules may be polar? (a) CH3Cl, 

(b) HW2(CO)10, D4h (c) SnCl4.

31.7(a) Identify the point groups to which all isomers of dichloronaphthalene 

belong.

31.7(b) Identify the point groups to which all isomers of dichloroanthracene 

belong.

31.8(a) Can molecules belonging to the point groups D2h or C3h be chiral? 

Explain your answer.

31.8(b) Can molecules belonging to the point groups Th or Td be chiral? 

Explain your answer.

Problems
31.1 List the symmetry elements of the following molecules and name the 

point groups to which they belong: (a) staggered CH3CH3, (b) chair and 

boat cyclohexane, (c) B2H6, (d) [Co(en)3]
3+, where en is ethylenediamine 

(1,2-diaminoethane; ignore its detailed structure), (e) crown-shaped S8. 

Which of these molecules can be (i) polar, (ii) chiral?

31.2a‡ In the square-planar complex anion [trans-Ag(CF3)2(CN)2]
−, the Ag–

CN groups are collinear. (a) Assume free rotation of the CF3 groups (that is, 

disregarding the AgCF and AgCH angles) and name the point group of this 

complex ion. (b) Now suppose the CF3 groups cannot rotate freely (because 

the ion was in a solid, for example). Structure (5) shows a plane which bisects 

the NC–Ag–CN axis and is perpendicular to it. Name the point group of the 

complex if each CF3 group has a CF bond in that plane (so the CF3 groups 

do not point to either CN group preferentially) and the CF3 groups are 

(i) staggered, (ii) eclipsed.

CNCN

CF3

CF3

Ag

5  
‡ These problems were supplied by Charles Trapp and Carmen Giunta.

Atkins09819.indb   297 9/11/2013   11:42:23 AM



298 7 Molecular symmetry

31.3‡ B.A. Bovenzi and G.A. Pearse, Jr. (J. Chem. Soc. Dalton Trans., 2763 

(1997)) synthesized coordination compounds of the tridentate ligand 

pyridine-2,6-diamidoxime (C7H9N5O2, 6). Reaction with NiSO4 produced 

a complex in which two of the essentially planar ligands are bonded at 

right angles to a single Ni atom. Name the point group and the symmetry 

operations of the resulting [Ni(C7H9N5O2)2]
2+ complex cation.

N
NH2

N

H2N

N
OHHO

6

Topic 32 Group theory

Discussion questions
32.1 Explain what is meant by a ‘group’.

32.2 Explain what is meant by (a) a representative and (b) a representation in 

the context of group theory.

32.3 Explain the construction and content of a character table.

32.4 Explain what is meant by the reduction of a representation to a direct 

sum of representations.

32.5 Discuss the significance of the letters and subscripts used to denote the 

symmetry species of a representation.

Exercises
32.1(a) Use as a basis the valence pz orbitals on each atom in BF3 to find the 

representative of the operation σh. Take z as perpendicular to the molecular 

plane.

32.1(b) Use as a basis the valence pz orbitals on each atom in BF3 to find the 

representative of the operation C3. Take z as perpendicular to the molecular 

plane.

32.2(a) Use the matrix representatives of the operations σh and C3 in a basis 

of valence pz orbitals on each atom in BF3 to find the operation and its 

representative resulting from σhC3. Take z as perpendicular to the molecular 

plane.

32.2(b) Use the matrix representatives of the operations σh and C3 in a basis 

of valence pz orbitals on each atom in BF3 to find the operation and its 

representative resulting from C3σh. Take z as perpendicular to the molecular 

plane.

32.3(a) Show that all three C2 operations in the group D3h belong to the same 

class.

32.3(b) Show that all three σv operations in the group D3h belong to the same 

class.

32.4(a) What is the maximum degeneracy of a particle confined to the interior 

of an octahedral hole in a crystal?

32.4(b) What is the maximum degeneracy of a particle confined to the interior 

of an icosahedral nanoparticle?

32.5(a) What is the maximum possible degree of degeneracy of the orbitals in 

benzene?

32.5(b) What is the maximum possible degree of degeneracy of the orbitals in 

1,4-dichlorobenzene?

Problems
32.1 The group C2 h consists of the elements E, C2, σh, i. Construct the group 

multiplication table and find an example of a molecule that belongs to the 

group.

32.2 The group D2h has a C2 axis perpendicular to the principal axis and a 

horizontal mirror plane. Show that the group must therefore have a centre of 

inversion.

32.3 Consider the H2O molecule, which belongs to the group C2v. Take as a 

basis the two H1s orbitals and the four valence orbitals of the O atom and set 

up the 6 × 6 matrices that represent the group in this basis. Confirm by explicit 

matrix multiplication that the group multiplications (a) C2 v vσ σ= ′  and 

(b) σ σv v 2′ =C .  Confirm, by calculating the traces of the matrices, (a) that 

symmetry elements in the same class have the same character,  

(b) that the representation is reducible, and (c) that the basis spans 

3A1 + B1 + 2B2.

32.4 Confirm that the z-component of orbital angular momentum is a basis 

for an irreducible representation of A2 symmetry in C3v.

32.5 Find the representatives of the operations of the group Td in a basis of 

four H1s orbitals, one at each apex of a regular tetrahedron (as in CH4).

32.6 Confirm that the representatives constructed in Problem 32.5 reproduce 

the group multiplications C C E S C S3 3 4 3 4
+ = = ′− , , and S4C3 = σd.

32.7 The (one-dimensional) matrices D(C3) = 1 and D(C2) = 1, and D(C3) = 1 

and D(C2) = –1 both represent the group multiplication C3C2 = C6 in the group 

C6v with D(C6) = +1 and –1, respectively. Use the character table to confirm 

these remarks. What are the representatives of σv and σd in each case?

32.8 Construct the multiplication table of the Pauli spin matrices, σ, and the 

2 × 2 unit matrix:

σ σ σ σx y z=
⎛

⎝⎜
⎞

⎠⎟
=

−⎛

⎝⎜
⎞

⎠⎟
=

−
⎛

⎝⎜
⎞

⎠⎟
=

⎛

⎝⎜
⎞

⎠⎟
0 1

1 0

0

0

1 0

0 1

1 0

0 10

i

i

Do the four matrices form a group under multiplication?

32.9 The algebraic forms of the f orbitals are a radial function multiplied by 

one of the factors (a) z(5z2 – 3r2), (b) y(5y2 – 3r2), (c) x(5x2 – 3r2), (d) z(x2 – 

y2), (e) y(x2 – z2), (f) x(z2 – y2), (g) xyz. Identify the irreducible representations 

spanned by these orbitals in (a) C2v, (b) C3v, (c) Td, (d) Oh. Consider a 
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Exercises and problems  299

lanthanoid ion at the centre of (a) a tetrahedral complex, (b) an octahedral 

complex. What sets of orbitals do the seven f orbitals split into?

32.10‡ A computational study by C.J. Marsden (Chem. Phys. Lett. 245, 475 

(1995)) of AMx compounds, where A is in Group 14 of the periodic table 

and M is an alkali metal, shows several deviations from the most symmetric 

structures for each formula. For example, most of the AM4 structures were not 

tetrahedral but had two distinct values for MAM bond angles. They could be 

derived from a tetrahedron by a distortion shown in (7). (a) What is the point 

group of the distorted tetrahedron? (b) What is the symmetry species of the 

distortion considered as a vibration in the new, less symmetric group? Some 

AM6 structures are not octahedral, but could be derived from an octahedron 

by translating a C–M–C axis as in (8). (c) What is the point group of the 

distorted octahedron? (d) What is the symmetry species of the distortion 

considered as a vibration in the new, less symmetric group?

7    8  

32.11‡ The H3
+  molecular ion, which plays an important role in chemical 

reactions occurring in interstellar clouds, is known to be equilateral 

triangular. (a) Identify the symmetry elements and determine the point group 

of this molecule. (b) Take as a basis for a representation of this molecule the 

three H1s orbitals and set up the matrices for this basis. (c) Obtain the group 

multiplication table by explicit multiplication of the matrices. (d) Determine 

if the representation is reducible and, if so, give the irreducible representations 

obtained.

Topic 33 Applications of symmetry

Discussion question
33.1 Identify and list four applications of character tables.

Exercises
33.1(a) Use symmetry properties to determine whether or not the integral 

∫pxzpzdτ is necessarily zero in a molecule with symmetry C2v.

33.1(b) Use symmetry properties to determine whether or not the integral 

∫pxzpzdτ is necessarily zero in a molecule with symmetry D3h.

33.2(a) Is the transition A1 → A2 forbidden for electric dipole transitions in a 

C3v molecule?

33.2(b) Is the transition A1g → E2u forbidden for electric dipole transitions in a 

D6h molecule?

33.3(a) Show that the function xy has symmetry species B2 in the group C4v.

33.3(b) Show that the function xyz has symmetry species A1 in the group D2.

33.4(a) Consider the C2v molecule NO2. The combination px(A) − px(B) of the 

two O atoms (with x perpendicular to the plane) spans A2. Is there any orbital 

of the central N atom that can have a nonzero overlap with that combination 

of O orbitals? What would be the case in SO2, where 3d orbitals might be 

available?

33.4(b) Consider the D3h ion NO3
−. Is there any orbital of the central N atom 

that can have a nonzero overlap with the combination 2pz(A) – pz(B) – pz(C) 

of the three O atoms (with z perpendicular to the plane)? What would be the 

case in SO3, where 3d orbitals might be available?

33.5(a) The ground state of NO2 is A1 in the group C2v. To what excited states 

may it be excited by electric dipole transitions, and what polarization of light 

is it necessary to use?

33.5(b) The ClO2 molecule (which belongs to the group C2v) was trapped in a 

solid. Its ground state is known to be B1. Light polarized parallel to the y-axis 

(parallel to the OO separation) excited the molecule to an upper state. What is 

the symmetry species of that state?

33.6(a) A set of basis functions is found to span a reducible representation 

of the group C4v with characters 4,1,1,3,1 (in the order of operations in the 

character table in the Resource section). What irreducible representations does 

it span?

33.6(b) A set of basis functions is found to span a reducible representation 

of the group D2 with characters 6,–2,0,0 (in the order of operations in the 

character table in the Resource section). What irreducible representations does 

it span?

33.7(a) What states of (a) benzene, (b) naphthalene may be reached by electric 

dipole transitions from their (totally symmetrical) ground states?

33.7(b) What states of (a) anthracene, (b) coronene (9) may be reached by 

electric dipole transitions from their (totally symmetrical) ground states?

9 Coronene

33.8(a) Write f1 = sin θ and f2 = cos θ, and show by symmetry arguments using 

the group Cs that the integral of their product over a symmetrical range 

around θ = 0 is zero.

33.8(b) Write f1 = x and f2 = 3x2 – 1, and show by symmetry arguments using 

the group Cs that the integral of their product over a symmetrical range 

around x = 0 is zero.
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300 7 Molecular symmetry

Problems
33.1 What irreducible representations do the four H1s orbitals of CH4 span? 

Are there s and p orbitals of the central C atom that may form molecular 

orbitals with them? Could d orbitals, even if they were present on the C atom, 

play a role in orbital formation in CH4?

33.2 Suppose that a methane molecule became distorted to (a) C3v symmetry 

by the lengthening of one bond, (b) C2v symmetry by a kind of scissors action 

in which one bond angle opened and another closed slightly. Would more d 

orbitals become available for bonding?

33.3 Does the product 3x2 – 1 necessarily vanish when integrated over (a) a 

cube, (b) a tetrahedron, (c) a hexagonal prism, each centred on the origin?

33.4‡ In a spectroscopic study of C60, Negri, et al. (J. Phys. Chem. 100, 10849 

(1996)) assigned peaks in the fluorescence spectrum. The molecule has 

icosahedral symmetry (Ih). The ground electronic state is A1g, and the lowest-

lying excited states are T1 g and Gg. (a) Are photon-induced transitions allowed 

from the ground state to either of these excited states? Explain your answer. 

(b) What if the molecule is distorted slightly so as to remove its centre of 

inversion?

33.5 In the square planar XeF4 molecule, consider the symmetry-adapted 

linear combination p1= pA − pB + pC − pD where pA, pB, pC, and pD are 2pz 

atomic orbitals on the fluorine atoms (clockwise labelling of the F atoms). 

Using the reduced point group D4 rather than the full symmetry point group 

of the molecule, determine which of the various s, p, and d atomic orbitals on 

the central Xe atom can form molecular orbitals with p1.

33.6 The chlorophylls that participate in photosynthesis and the haem groups 

of cytochromes are derived from the porphine dianion group (10), which 

belongs to the D4h point group. The ground electronic state is A1g and the 

lowest-lying excited state is Eu. Is a photon-induced transition allowed from 

the ground state to the excited state? Explain your answer.

N

N–

N

N–

10

33.7 The NO2 molecule belongs to the group C2v, with the C2 axis bisecting 

the ONO angle. Taking as a basis the N2s, N2p, and O2p orbitals, identify the 

irreducible representations they span, and construct the symmetry-adapted 

linear combinations.

33.8 Construct the symmetry-adapted linear combinations of C2pz orbitals 

for benzene, and use them to calculate the Hückel secular determinant. This 

procedure leads to equations that are much easier to solve than using the 

original orbitals, and show that the Hückel orbitals are those specified in 

Topic 26.

33.9 The phenanthrene molecule (11) belongs to the group C2v with  

the C2 axis in the plane of the molecule. (a) Classify the irreducible 

representations spanned by the carbon 2pz orbitals and find their symmetry-

adapted linear combinations. (b) Use your results from part (a) to calculate 

the Hückel secular determinant. (c) What states of phenanthrene may be 

reached by electric dipole transitions from its (totally symmetrical)  

ground state?

11 Phenanthrene

33.10 Some linear polyenes, of which β-carotene is an example, are important 

biological cofactors that participate in processes as diverse as the absorption 

of solar energy in photosynthesis and protection against harmful biological 

oxidations. Use as a model of β-carotene a linear polyene containing 22 

conjugated C atoms. (a) To what point group does this model of β-carotene 

belong? (b) Classify the irreducible representations spanned by the carbon 2pz 

orbitals and find their symmetry-adapted linear combinations. (c) Use your 

results from part (b) to calculate the Hückel secular determinant. (d) What 

states of this model of β-carotene may be reached by electric dipole transitions 

from its (totally symmetrical) ground state?
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From a knowledge of electrostatics (Foundations, Topic 2) and Molecular structure it is possible to con-
struct models for the interactions between atoms or molecules. The result is a better understanding 
of the factors that govern the properties of gases at high pressure and the structures and properties 
of liquids and solids.

We begin with an account of the electric properties of molecules, such as ‘electric dipole moments’ 
and ‘polarizabilities’ (Topic 34). All these properties reflect the degree to which the nuclei of atoms 
exert control over the electrons in a molecule. The description of the basic theory of interactions 
then focuses on ‘van der Waals interactions’ between closed-shell molecules and ‘hydrogen bond-
ing’ (Topic 35). All liquids and solids are bound together by one or more of these cohesive interac-
tions. Deviations from perfect gas behaviour and the thermodynamic properties of ‘real gases’ are 
also explained in terms of these interactions (Topic 36).

The solid state includes most of the materials that make modern technology possible. To under-
stand solids, it is necessary to understand the regular arrangement of atoms in crystals and the sym-
metry of their arrangement. The basic principles of ‘X-ray diffraction’ are central to the determination 
of structures and we explain how the diffraction pattern obtained in this technique is interpreted in 
terms of the distribution of electron density in a ‘unit cell’ (Topic 37). X-ray diffraction studies lead to 
important information about the structures of metallic, ionic, and molecular solids (Topic 38). The 
energetics of ionic solids can be understood using concepts introduced in The First Law of thermody-

namics. Equipped with a knowledge of structural features, and aided by the principles of Molecular 

spectroscopy, we show how the electrical, optical, and magnetic properties of solids stem from the 
arrangement and properties of the constituent atoms (Topic 39).

What is the impact of this material?

Interactions between atoms or molecules play important roles in biochemistry, biomedicine, and 
technology. Biological polymers can be studied by X-ray diffraction (Impact 8.1), which reveals the 
importance of molecular interactions in establishing the three-dimensional structures and biochem-
ical functions of proteins and nucleic acids (Impact 8.2), and the ways in which drugs bind to receptor 
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sites in biopolymers, leading to the inhibition of the progress of disease (Impact 8.3). The manipu-
lation of molecular interactions could have significant technological consequences. One example 
is the design of assemblies that can store and deliver hydrogen gas efficiently, thereby making it a 
viable fuel for commercial development of a host of devices (Impact 8.4). Another is the synthesis of 
‘nanowires’, nanometre-sized atomic assemblies that conduct electricity, which is a major step in the 
fabrication of a new generation of electronic devices (Impact 8.5).

To read more about the impact of this material, scan the QR code or go to 
http://bcs.whfreeman.com/webpub/chemistry/qmc2e/impact/qchem_
impact8.html.
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TOPIC 34

Electric properties of molecules

The electric properties of molecules are responsible for many 

of the properties of bulk matter. The small imbalances of 

charge distributions in molecules allow them to interact with 

one another and with externally applied fields. One result 

of this interaction is the weak cohesion of molecules to form 

the bulk phases of matter. Molecular interactions are also 

responsible for the shapes adopted by biological and synthetic 

macromolecules.

34.1 Electric dipole moments

An electric dipole consists of two electric charges +Q and −Q 

with a separation R. A point electric dipole is an electric dipole 

in which R is very small compared with its distance from the 

observer. The electric dipole moment is a vector μ (1) that 

points from the negative charge to the positive charge and has a 

magnitude given by

μ =QR  Definition  Magnitude of the electric dipole moment  (34.1)

R

–Q +Qμ

1 Electric dipole

Although the SI unit of dipole moment is coulomb metre (C m), 

it is still commonly reported in the non-SI unit debye, D, named 

after Peter Debye, a pioneer in the study of dipole moments of 

molecules:

1 3 335 64 10 30D Cm= × −.
 

(34.2)

The magnitude of the dipole moment of a pair of charges +e 

and −e separated by 100 pm is 1.6 × 10−29 C m, corresponding 

to 4.8 D. The magnitudes of dipole moments of small molecules 

are typically about 1 D.1

A polar molecule is a molecule with a permanent electric 

dipole moment. The permanent dipole moment stems from 

 ➤ Why do you need to know this material?
Because the molecular interactions responsible for the 
formation of condensed phases and large molecular 
assemblies (and which are treated in Topic 35) arise from 
the electric properties of molecules, you need to know 
how the electronic structures of molecules lead to these 
properties.

 ➤ What is the key idea?
The nuclei of atoms exert control over the electrons in 
a molecule and can cause electrons to accumulate in 
particular regions, or permit them to respond more or less 
strongly to the effects of external fields.

 ➤ What do you need to know already?
You need to be familiar with the Coulomb law (Founda-

tions, Topic 2), molecular geometry (from introductory 
chemistry), and molecular orbital theory, especially the 
relevance of the energy gap between a HOMO and LUMO 
(Topic 26).

Contents

34.1 Electric dipole moments 303

Brief illustration 34.1: Symmetry and the polarity  

of molecules 304

Brief illustration 34.2: Molecular dipole moments 304

Example 34.1: Calculating a molecular dipole  

moment 305

34.2 Polarizabilities 306

Brief illustration 34.3: The induced dipole moment 306

Checklist of concepts 307

Checklist of equations 308

1 The conversion factor in eqn 34.2 stems from the original definition of 

the debye in terms of c.g.s. units: 1 D is the dipole moment of two equal and 

opposite charges of magnitude 1 e.s.u. separated by 1 Å.
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the partial charges on the atoms in the molecule that arise from 

differences in electronegativity or other features of bonding 

(Topics 25 and 26). Nonpolar molecules acquire an induced 

dipole moment in an electric field on account of the distortion 

the field causes in their electronic distributions and nuclear 

positions; however, this induced moment is only temporary, 

and disappears as soon as the perturbing field is removed. Polar 

molecules also have their existing dipole moments temporarily 

modified by an applied field.

All heteronuclear diatomic molecules are polar, and typical 

values of μ include 1.08 D for HCl and 0.42 D for HI (Table 

34.1). Molecular symmetry is of the greatest importance in 

deciding whether a polyatomic molecule is polar or not (see 

also Topics 31 and 32). Indeed, molecular symmetry is more 

important than the question of whether or not the atoms in the 

molecule belong to the same element. For this reason, and as 

we see in Brief illustration 34.1, homonuclear polyatomic mol-

ecules may be polar if they have low symmetry and the atoms 

are in non-equivalent positions.

To a good first approximation, the dipole moment of a polya-

tomic molecule can be resolved into contributions from vari-

ous groups of atoms in the molecule and their relative locations 

(Fig. 34.1). Thus, 1,4-dichlorobenzene is nonpolar by symmetry 

on account of the cancellation of two equal but opposing C − Cl 

moments (exactly as in carbon dioxide). 1,2-Dichlorobenzene, 

however, has a dipole moment which is approximately the 

resultant of two chlorobenzene dipole moments arranged at 60° 

to each other. This technique of ‘vector addition’ can be applied 

with fair success to other series of related molecules, and the 

magnitude of the resultant, μres, of two dipole moments, μ1 and 

μ2, that make an angle θ to each other (4) is approximately (see 

Mathematical background 4)

μ μ μ μ θμres ≈ + +( cos ) /
1
2

2
2

2
1 2

12
 

(34.3a)

μμ1

μ2

θ

4  Addition of dipole moments

When the two dipole moments have the same magnitude (as in 

the dichlorobenzenes), this equation simplifies to

μ μ θ μ θ
θ θ

res ≈ + =
+ =

{ ( cos )} cos/

cos cos

2 1 21
2 1 2

1
1
2

1 2 2 1
2


 
(34.3b)

A more reliable approach to the calculation of dipole 

moments is to take into account the locations and magnitudes 

of the partial charges on all the atoms. These partial charges are 

included in the output of many molecular structure software 

packages. To calculate the x-component, for instance, we need 

to know the partial charge on each atom and the atom’s x-coor-

dinate relative to a point in the molecule and form the sum

μx Q x=∑
J

J J

 

(34.4a)

Here QJ is the partial charge of atom J, xJ is the x-coordinate 

of atom J, and the sum is over all the atoms in the molecule. 

Analogous expressions are used for the y- and z-components. 

Brief illustration 34.1 Symmetry and the polarity 
of molecules

The angular molecule ozone (2) is homonuclear. However, it 

is polar because the central O atom is different from the outer 

two (it is bonded to two atoms, which are each bonded only 

to one). Moreover, the dipole moments associated with each 

bond make an angle to each other and do not cancel. The 

heteronuclear linear triatomic molecule CO2 (3) is nonpolar 

because, although there are partial charges on all three atoms, 

the dipole moment associated with the OC bond points in the 

opposite direction to the dipole moment associated with the 

CO bond, and the two cancel.

  

μ

δ– δ–
δ+ δ+

2 Ozone, O3

 

δ– δ–δ+ δ+

3 Carbon dioxide, CO2

Self-test 34.1 Is SO2 polar?

Answer: Yes

Brief illustration 34.2 Molecular dipole moments

Consider ortho (1,2-) and meta (1,3-) disubstituted benzenes, 

for which θortho = 60° and θmeta = 120°. It follows from eqn 34.3 

that the ratio of the magnitudes of the electric dipole moments 

is

μ
μ

θ
θ

res

res

,

,

cos

cos

cos

cos

ortho

meta

ortho

meta

= =
× °( )1

2
1
2

1
2

1
2

60

×× °( ) = = ≈
120

3 2

1 2
3 1 7

1 2
1 2( )

( ) .
/

//

/
 

Self-test 34.2 Calculate the resultant magnitude of two dipole 

moments of magnitude 1.5 D and 0.80 D that make an angle of 

109.5° to each other.

Answer: 1.4 D

Atkins09819.indb   304 9/11/2013   11:43:06 AM

www.ebook3000.com

http://www.ebook3000.org


34 Electric properties of molecules  305

For an electrically neutral molecule, the origin of the coor-

dinates is arbitrary, so it is best chosen to simplify the meas-

urements. In common with all vectors, the magnitude of μ is 

related to the three components μx, μy, and μz by

μ μ μ μ= + +( ) /
x y z
2 2 2 1 2

 (34.4b)

Molecules may have higher multipoles, or arrays of point 

charges (Fig. 34.2). Specifically, an n-pole is an array of point 

charges with an n-pole moment but no lower moment. Thus, a 

monopole (n = 1) is a point charge, and the monopole moment 

is what we normally call the overall charge. A dipole (n = 2), 

as we have seen, is an array of charges that has no monopole 

moment (no net charge). A quadrupole (n = 3) consists of an 

array of point charges that has neither net charge nor dipole 

moment (as for CO2 molecules, 3). An octupole (n = 4) consists 

Example 34.1 Calculating a molecular dipole moment

Estimate the electric dipole moment of the amide group 

shown in (5) by using the partial charges (as multiples of 

e) and the locations of the atoms shown, with distances in 

picometres.

H

N C

O

(182,–87,0)

(132,0,0) (0,0,0)

(–62,107,0)

5 Amide (peptide) link

+0.18

–0.36

–0.38

+0.45

Method We use eqn 34.4a to calculate each of the components 

of the dipole moment and then eqn 34.4b to assemble the 

three components into the magnitude of the dipole moment. 

Note that the partial charges are multiples of the fundamental 

charge, e = 1.609 × 10−19 C.

Answer The expression for μx is

μx e e e

e

= − × + × + ×
+ −
( . ) ( ) ( . ) ( ) ( . ) ( )

( . )

0 36 132 0 45 0 0 18 182

0 38

pm pm pm

×× −
=
= × × × = ×− − −

( . )

.

. ( . ) ( ) .

62 0

8 8

8 8 1 602 10 10 1 4 1019 12 30

pm

pm

C m C m

e

corresponding to μx = +0.42 D. The expression for μy is

μy e e e

e

= − × + × + × −
+ − ×
( . ) ( ) ( . ) ( ) ( . ) ( )

( . ) (

0 36 0 0 45 0 0 18 87

0 38

pm pm pm

1107

56

19 0 10 30

pm

pm

C m

)

.

= −
= − × −

e

It follows that μy= –2.7 D. The amide group is planar, so μz = 0 

and

μ = + − ={( . ) ( . ) } ./0 42 2 7 2 72 2 1 2D D D

We can find the orientation of the dipole moment by arrang-

ing an arrow of length 2.7 units of length to have x, y, and z 

components of 0.42, –2.7, and 0 units, respectively; the orien-

tation is superimposed on 5.

Self-test 34.3 Calculate the electric dipole moment of formal-

dehyde by using the information in 6.

+0.18+0.18

–0.38

+0.45

6

(0,118,0)

(0,0,0)

(–94,–61,0) (94,–61,0)

Answer: 2.3 D

C2v

C2v C2v

D2h

(a) μobs = 1.57 D (b) μobs = 0,  μcalc = 0

(c) μobs = 2.25 D, μcalc = 2.7 D (d) μobs = 1.48 D, μcalc = 1.6 D

Figure 34.1 The resultant dipole moments (red) of 
the dichlorobenzene isomers (b to d) can be obtained 
approximately by vectorial addition of two chlorobenzene 
dipole moments (with magnitude 1.57 D). (The point groups 
of the molecules are also indicated.)

Monopole

Dipole

Quadrupole

Quadrupole

Octupole

Octupole

Figure 34.2 Typical charge arrays corresponding to electric 
multipoles. The field arising from an arbitrary finite charge 
distribution can be expressed as the superposition of the fields 
arising from a superposition of multipoles.
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metre (C2 J−1 m−1), it follows that α ′ has the dimensions of 

volume (hence its name). Polarizability volumes are similar in 

magnitude to actual molecular volumes (of the order of 10−30 

m3, 10−3 nm3, 1 Å3).

The experimental polarizability volumes of some mol-

ecules are given in Table 34.1. As shown in the follow-

ing Justification, polarizability volumes correlate with the 

HOMO–LUMO separations in atoms and molecules (Topic 

26). The electron distribution can be distorted readily if the 

LUMO lies close to the HOMO in energy, so the polarizabil-

ity is then large. If the LUMO lies high above the HOMO, 

an applied field cannot perturb the electron distribution 

significantly, and the polarizability is low. Molecules with 

small HOMO–LUMO gaps are typically large, with numer-

ous electrons.

Brief illustration 34.3 The induced dipole moment

The polarizability volume of H2O is 1.48 × 10−30 m3. It follows 

from eqns 34.5a and 34.6 that μ* = 4πε0α ′E and the dipole 

moment of the molecule (in addition to the permanent dipole 

moment) induced by an applied electric field of strength 

1.0 × 105 V m−1 is

μ* ( . ) ( . )

( .

= × × × ×
× ×

− − − −

− −
4 8 854 1 J C m 1 48 1 m

1 1 JC m

12 1 2 1 3 3

5 1 1

π 0 0

0 0

0

))

. . .= × = × =− −31 6 1 C m 4 9 1 D 4 9 D35 60 0 μ

where we have used 1 V = 1 J C−1.

Self-test 34.4 What strength of electric field is required to 

induce an electric dipole moment of magnitude 1.0 μD in a 

molecule of polarizability volume 2.6 × 10−30 m3 (like CO2)?

Answer: 11 kV m−1

of an array of point charges that sum to zero and which has nei-

ther a dipole moment nor a quadrupole moment (as for CH4 

molecules, 7).

δ+

δ+

δ+

δ+

δ–

δ–

δ–

δ–

7 Methane, CH4

34.2 Polarizabilities

The failure of nuclear charges to control the surrounding elec-

trons totally means that those electrons can respond to external 

fields. Therefore, an applied electric field can distort a molecule 

as well as align its permanent electric dipole moment. When 

the applied field is weak, the magnitude of the induced dipole 

moment, μ*, is proportional to the field strength, E, and we write

μ α* = E
 Definition  Polarizability  (34.5a)

The constant of proportionality α is the polarizability of 

the molecule. The greater the polarizability, the larger is the 

induced dipole moment for a given applied field. In a formal 

treatment, we should use vector quantities and allow for the 

possibility that the induced dipole moment might not lie paral-

lel to the applied field, but for simplicity we discuss polarizabili-

ties in terms of (scalar) magnitudes.

When the applied field is very strong (as in tightly focused 

laser beams), the induced dipole moment is not strictly linear 

in the strength of the field, and we write

μ α β* = + +E E1
2

2 …
 

Definition  Hyperpolarizability  (34.5b)

The coefficient β is called the hyperpolarizability of the 

molecule.

Polarizability has the units (coulomb metre)2 per joule 

(C2 m2 J−1). That collection of units is awkward, so α is often 

expressed as a polarizability volume, α ′, by using the relation

′ =α α
ε4 0π  

Definition  Polarizability volume  (34.6)

where ε0 is the vacuum permittivity (Foundations, Topic 2). 

Because the units of 4πε0 are coulomb-squared per joule per 

Table 34.1*  Magnitudes of dipole moments (μ) and 
polarizability volumes (α')

μ/D α′/(10−30 m3)

CCl4 0 10.3

H2 0 0.819

H2O 1.85 1.48

HCl 1.08 2.63

HI 0.42 5.45

* More values are given in the Resource section.
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34 Electric properties of molecules  307

Justification 34.1 Polarizabilities and molecular 
structures

The energy E of a molecule in an electric field of magnitude E 

is related to the molecular dipole moment by

E = −μE

It follows that when the electric field is increased by dE, the 

energy changes by −μdE and, if the molecule is polarizable, 

we interpret μ as the induced dipole moment μ* (eqn 34.5). 

Therefore, the change in energy when the field is increased 

from 0 to E is

ΔE = − = − = −∫ ∫μ α α*d dE E E E
E E

0

2

0

1

2

The contribution to the hamiltonian when a dipole moment is 

exposed to an electric field E in the z-direction is

� �H z
( )1 = −μ E

Comparison of these two expressions suggests that we should 

use second-order perturbation theory to calculate the energy 

of the system in the presence of the field, because then we shall 

obtain an expression proportional to E2. According to eqn 

15.6 of Topic 15, the second-order contribution to the ground-

state energy is

�
E

E E E

H

n

n

n n

n z( )

* ( )

( ) ( )

*

( )
2

0

1
0

2

0
0 0

2

0

0

2

0
0

=
−

=
∫

−
≠ ≠

∑ ∫ ∑
ψ ψ ψ μ ψτ τd d

E
EE

E E

n

n

z n

n

( )

,

( ) ( )

0

2

0

0

2

0
0 0

�

=
−

≠
∑E

μ

where μ ψ μ ψ τz n n z,
*

0 0=∫ d�  is the transition electric dipole 

moment in the z-direction. Transition dipole moments are 

introduced in Topic 16 and discussed further in Topic 45: 

for our purposes here they can be interpreted as the electric 

dipole moment associated with the migration of electron 

density from the distribution ψ0 to the distribution ψn and ψi, 

and Ei
(0) are the wavefunctions and energies, respectively, in 

the absence of the electric field. By comparing the two expres-

sions for the energy, we conclude that the polarizability of the 

molecule in the z-direction is

α
μ

=
−

≠
∑2

0

0

2

0
0
0

n

z n

nE E

,

( ) ( )  (34.7)

The content of eqn 34.7 can be appreciated by approximat-

ing the excitation energies by a mean value ΔE (an indication 

of the HOMO–LUMO separation) and supposing that the 

most important transition dipole moment is approximately 

equal to the charge of an electron multiplied by the molecular 

radius, R, of the molecule. then

α ≈ 2 2 2e R

EΔ

This expression shows that α increases with the size of the 

molecule and with the ease with which it can be excited (the 

smaller the value of ΔE).

If the excitation energy is approximated by the energy 

needed to remove an electron to infinity from a distance R 

from a single positive charge, we can write ΔE ≈ e2/(4πε0R). 

When this expression is substituted into the equation above, 

both sides are divided by 4πε0, and the factor of 2 is ignored 

in this approximation, we obtain α ′ ≈ R3, which is of the same 

order of magnitude as the molecular volume.

For most molecules, the polarizability is anisotropic, by 

which is meant that its value depends on the orientation of 

the molecule relative to the field. The polarizability volume of 

benzene when the field is applied perpendicular to the ring is 

0.0067 nm3 and it is 0.0123 nm3 when the field is applied in the 

plane of the ring.

Checklist of concepts

☐ 1. An electric dipole consists of two electric charges +Q 

and –Q separated by a distance R.

☐ 2. The electric dipole moment μ is a vector that points from 

the negative charge to the positive charge of a dipole.

☐ 3. A polar molecule is a molecule with a permanent elec-

tric dipole moment.

☐ 4. Molecules may have higher electric multipoles: an 

n-pole is an array of point charges with an n-pole 

moment but no lower moment.

☐ 5. The polarizability is a measure of the ability of an elec-

tric field to induce a dipole moment in a molecule.

☐ 6. Polarizabilities (and polarizability volumes) correlate 

with the HOMO–LUMO separations in atoms and 

molecules.

☐ 7. For most molecules, the polarizability is anisotropic.
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308 8 Interactions

Checklist of equations

Property Equation Comment Equation number

Magnitude of the electric dipole moment μ = QR Definition 34.1

Magnitude of the resultant of two dipole 
moments

μ μ μ μ θμres ≈ + +( cos ) /
1
2

2
2

1 2
1 22 34.3a

Magnitude of the induced dipole 
moment

μ* = αE Linear approximation; α is the 
polarizability

34.5a

μ α β* = +E E1
2

2 Quadratic approximation; β is the 
hyperpolarizability

34.5b

Polarizability volume α ′ = α/4πε0 Definition 34.6
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TOPIC 35

Interactions between molecules

We begin by examining the interactions between the partial 

charges of polar molecules. Then we discuss van der Waals 

interactions: attractive interactions between closed-shell mol-

ecules that depend on the separation of the molecules as the 

inverse sixth power (V ∝ 1/r6), although this precise criterion 

is often relaxed to include all nonbonding interactions. Finally, 

we see that repulsive interactions arise from Coulomb forces 

and, indirectly, from the Pauli principle (Topic 19) and the 

exclusion of electrons from regions of space where the orbitals 

of neighbouring species overlap.

35.1 Interactions between partial 
charges

In general, atoms in molecules have partial charges arising from 

the spatial variation in electron density in the ground state. If 

these charges were separated by a vacuum, they would attract 

or repel each other in accord with Coulomb’s law (Foundations, 

Topic 2), and we would write

V
Q Q

r
= 1 2

04πε  
Vacuum  Coulomb potential energy  (35.1a)

 ➤ Why do you need to know this material?

You need to understand the many types of molecular 
interactions responsible for the formation of condensed 
phases and large molecular assemblies. The molecular 
interactions described here are of prime importance for 
solving one of the great problems of molecular biology: 
how complex molecules, like proteins and nucleic acids, 
fold into their three-dimensional structures.

Contents

35.1 Interactions between partial charges 309

Brief illustration 35.1: The interaction energy  

of two partial charges 310

35.2 The interactions of dipoles 310

(a) Charge–dipole interactions 310

Brief illustration 35.2: The energy of interaction  

of a point charge and a point dipole 311

(b) Dipole–dipole interactions 311

Brief illustration 35.3: The dipolar interaction 312

Brief illustration 35.4: The Keesom interaction 313

(c) Dipole–induced dipole interactions 314

Brief illustration 35.5: The dipole–induced dipole 

interaction 314

(d) Induced dipole–induced dipole interactions 315

Brief illustration 35.6: The London interaction 315

35.3 Hydrogen bonding 315

Brief illustration 35.7: The hydrogen bond 316

35.4 The total interaction 317

Example 35.1: Calculating an intermolecular  

force from the Lennard-Jones potential energy 318

Checklist of concepts 319

Checklist of equations 319

 ➤ What is the key idea?

Attractive interactions result in cohesion but repulsive 
interactions prevent the complete collapse of matter to 
nuclear densities.

 ➤ What do you need to know already?
You need to be familiar with electrostatics, specifically 
the Coulomb interaction (Foundations, Topic 2), and with 
the relationships between the structure and electric 
properties of a molecule, specifically its dipole moment 
and polarizability (Topic 34).
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310 8 Interactions

where Q1 and Q2 are the partial charges, r is their separation, 

and ε0 is the vacuum permittivity. However, we should take into 

account the possibility that other parts of the molecule, or other 

molecules, lie between the charges and decrease the strength of 

the interaction. We therefore write

V
Q Q

r
= 1 2

4πε  
Any medium  Coulomb potential energy  (35.1b)

where ε is the permittivity of the medium lying between the 

charges. The permittivity is usually expressed as a multiple of 

the vacuum permittivity by writing ε = εrε0, where εr is the rela-

tive permittivity (formerly known as the dielectric constant). 

The effect of the medium can be very large: for water εr = 78, 

so the potential energy of two charges separated by bulk water 

is reduced by nearly two orders of magnitude compared to the 

value it would have if the charges were separated by a vacuum 

(Fig. 35.1).

35.2 The interactions of dipoles

Most of the discussion in this and the following sections is based 

on the Coulombic potential energy of interaction between two 

charges (eqn 35.1a). This expression can be adapted to find the 

potential energy of a point charge and a dipole and extend it to 

the interaction between two dipoles.

(a) Charge–dipole interactions
A point dipole is a dipole in which the separation l between the 

charges is much smaller than the distance r at which the dipole 

is being observed (l << r). We show in the following Justification 

that the potential energy of interaction between a point dipole 

with a dipole moment of magnitude μ1 = Q1l and the point 

charge Q2 in the arrangement shown in 1 is

V
Q

r
= − μ

ε
1 2

0
24π

 

l+Q1 Q2–Q1

r

1

μ1

With μ in coulomb metres, Q2 in coulombs, and r in metres,  

V is obtained in joules. The potential energy rises towards zero 

(the value at infinite separation of the charge and the dipole) 

more rapidly (as 1/r2) than that between two point charges 

(which varies as 1/r) because, from the viewpoint of the point 

charge, the partial charges of the dipole seem to merge and can-

cel as the distance r increases (Fig. 35.2).

Brief illustration 35.1 The interaction energy of two 
partial charges

The energy of interaction between a partial charge of –0.36 

(that is, Q1 = −0.36e) on the N atom of an amide group and the 

partial charge of +0.45 (Q2 = +0.45e) on the carbonyl C atom 

at a distance of 3.0 nm, on the assumption that the medium 

between them is a vacuum, is

V
e e

=

=

−

−
−

( . ) ( . )

. )

. . ( . )

(

0 36 0 45

4 3 0

0 36 0 45 1 602 10

4

0

19 2

×
π ×

× × ×
ε nm

C

ππ × × × ×
×

( . ) ( . )

.

8 854 10 3 0 10

1 2 10

2 1 2 1 9

20

− − − − −

−−
J C m m

J=
 

This energy (after multiplication by Avogadro’s constant) cor-

responds to −7.5 kJ mol−1. However, if the medium has a ‘typi-

cal’ relative permittivity of 3.5, then the interaction energy is 

reduced by that factor to −2.1 kJ mol−1.

Self-test 35.1 Repeat the calculation for bulk water as the 

medium.

Answer: −0.96 kJ mol−1

Justification 35.1 The interaction between a point 
charge and a point dipole

The sum of the potential energies of repulsion between like 

charges and attraction between opposite charges in the orien-

tation shown in 1 is

0

–2

–4

 –6

–8

–10
0 1 2 3

1
3

Po
te

n
ti

al
 e

n
er

g
y,

 V
/(

Q
1Q

2/
4π

ε 0r
0)

Distance, r/r0

Figure 35.1 The Coulomb potential for two (opposite) charges 
and its dependence on their separation. The two curves 
correspond to different relative permittivities (εr = 1 for a 
vacuum, εr = 3 for a fluid; r0 is a scaling factor).

Energy of interaction between a 
point dipole and a point charge (35.2)
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35 Interactions between molecules  311

(b) Dipole–dipole interactions
We show in the following Justification that the preceding dis-

cussion can be extended to the interaction of two dipoles 

arranged as in 2. The result is

V
r

= − μ μ
ε
1 2

0
32π

l+Q1 –Q1 l+Q2 –Q2

r

2

μ1 μ2

This interaction energy approaches zero more rapidly (as 1/r3) 

than for the previous case: now both interacting entities appear 

neutral to each other at large separations.

V
Q Q

r l

Q Q

r l

Q Q

r x x
= −

−
+

+

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

= − − + +
⎛1

4 1

2

1

2

4

1

1

1

10

1 2 1 2 1 2

0π πε ε ⎝⎝⎜
⎞
⎠⎟

where x = l/2r. Because l << r for a point dipole, this expres-

sion can be simplified by expanding the terms in x by using 

(Mathematical background 1)

1

1
1

1

1
12 2

+ = − + − − = + + +
x

x x
x

x x� �

and retaining only the leading surviving term:

V
xQ Q

r

Q Q l

r
= − = −2

4

2

4
1 2

0

1 2

0
2π πε ε

With μ1 = Q1l, this expression becomes eqn 35.2. The equation 

should be multiplied by cos θ when the point charge lies at an 

angle θ to the axis of the dipole.

Brief illustration 35.2 The energy of interaction of a 
point charge and a point dipole

Consider a Li+ and a water molecule (μ = 1.85 D) separated by 

1.0 nm, with the point charge on the ion and the dipole of the 

molecule arranged as in 1. The energy of interaction is given 

by eqn 35.2 as

V

Q

= −
× × × ×− −

+

( . ) ( . . )1 602 10 1 85 3 336 1019 30

2

C C m

Li H O� ��� ��� � ���� μ�� �����

� ����� 	����
4 8 854 10 1 0 1012 1 1 1 9

0

π × × × ×− − − − −( . ) ( . )J C m m

ε r

�� ��� 	��
−

−= − ×

2

218 9 10. J

This energy corresponds to −5.4 kJ mol−1.

Arrangement 
as in 2

Energy of interaction 
between two dipoles

(35.3)

Self-test 35.2 Consider the arrangement in 1 and calculate the 

molar energy required to reverse the direction of the water 

molecule when it is at 300 pm from the Li+ ion.

Answer: 119 kJ mol−1

Justification 35.2 The interaction energy of two dipoles

To calculate the potential energy of interaction of two dipoles 

separated by r in the arrangement shown in 2 we proceed 

in exactly the same way as in Justification 35.1, but now the 

total interaction energy is the sum of four pairwise terms, two 

attractions between opposite charges, which contribute nega-

tive terms to the potential energy, and two repulsions between 

like charges, which contribute positive terms.

The sum of the four contributions is

V
Q Q

r l

Q Q

r

Q Q

r

Q Q

r l

Q Q

r x

= − + + + − −
⎛
⎝⎜

⎞
⎠⎟

= − + −

1

4

4

1

1
2

0

1 2 1 2 1 2 1 2

1 2

0

π

π

ε

ε ++ −
⎛
⎝⎜

⎞
⎠⎟

1

1 x
 

with x = l/r. As before, provided l � r we can expand the two 

terms in x and retain only the first surviving term, which is 

equal to 2x2. This step results in the expression

V
x Q Q

r
= − 2

4

2
1 2

0πε
 

Therefore, because μ1 = Q1l and μ2 = Q2l, the potential energy of 

interaction in the alignment shown in 2 is given by eqn 35.3.

Figure 35.2 There are two contributions to the diminishing 
field of an electric dipole with distance (here seen from the 
side). The potentials of the charges decrease (shown here by a 
fading intensity) and the two charges appear to merge, so their 
combined effect approaches zero more rapidly than by the 
distance effect alone.
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Energy of 
interaction 
between two 
fixed parallel 
dipoles

(35.4)

Brief illustration 35.3 The dipolar interaction

We can use eqn 35.4 to calculate the molar potential energy of 

the dipolar interaction between two amide groups. Supposing 

that the groups are separated by 3.0 nm with θ = 180° (so that 

cos θ = −1 and 1 − 3 cos2 θ = −2), we take μ1 = μ2 = 2.7 D, corre-

sponding to 9.1 × 10−30 C m, and find

V =
× × −

× ×

−

− −

−

( . ( )

( .

9 1 10 2

4 8 854 10

30

12

1 31 2 2

C m)

J

2

cosμ μ θ� ��� ��� 


π 11 2 1 9 3

30 2

0
3

3 0 10

9 1 10

C m m− −

−

× ×

=
× ×

) ( . )

( . ) (

ε
� ����� 	���� � ��� 	��

r

−−
× × × ×

= − ×

− − − −

−

2

4 8 854 10 3 0 10

5 5 10

12 9 3

2 2

1 2 1 3

23

)

( . ) ( . )

.

π
C m

J C m m

J

where we have used 1 V C = 1 J. This value corresponds to 

−33 J mol−1. Note that this energy is considerably less than that 

between two partial charges at the same separation (see Brief 

illustration 35.1).

Self-test 35.3 Repeat the calculation for an amide group and a 

water molecule separated by 3.5 nm with θ = 90°, in a medium 

with relative permittivity of 3.5.

Answer: −2.1 J mol−1

Justification 35.2 represents only one possible orientation of 

two dipoles. More generally, the potential energy of interac-

tion between two polar molecules is a complicated function of 

their relative orientation. When the two dipoles are parallel and 

arranged as in 3, the potential energy is simply

V
f

r
f= = −μ μ θ

ε
θ θ1 2

0
3

2

4
1 3

( )
( )

π
cos

3

μ2

l

+Q1 –Q1

l+Q2 –Q2

r

μ1

θ

Equation 35.4 applies to polar molecules in a fixed, parallel 

orientation in a solid. In a fluid of freely rotating molecules, 

the interaction between dipoles averages to zero because f(θ) 

changes sign as the orientation changes, and its average value 

is zero. Physically, the like partial charges of two freely rotating 

molecules are as close together as the two opposite charges, and 

the repulsion of the former is cancelled by the attraction of the 

latter. Mathematically, this result arises from the fact that, as we 

show in the following Justification, the average (or mean value) 

of the function 1 – 3 cos2 θ is zero.

Justification 35.3 The dipolar interaction between two 
freely rotating molecules

Consider the unit sphere shown in Fig. 35.3. The average value 

(or mean value) of f(θ) = 1 − 3 cos2 θ is the sum of its values in 

each of the infinitesimal regions on the surface of the sphere 

(that is, the integral of the function over the surface) divided 

by the surface area of the sphere (which is equal to 4π). With 

the area element in spherical polar coordinates as sin θ dθ dφ, 

θ ranging from 0 to π, and φ ranging from 0 to 2π, the average 

value 〈f(θ)〉 of f(θ) is

〈 〉f ( ) ( )sin

( )sin

θ θ θ θ φ

φ θ θ θ

= −

= −

∫∫1

4
1 3

1

4
1 3

2

00

2

2

0

π

π

ππ
cos d d

d cos d
πππ

π

∫∫
∫= −

0

2

2

0

1

2
1 3( )sincos dθ θ θ

The integral is calculated as follows:

( )sin sin sin

cos

1 3 32

0 0

2

0

− = −

=

∫ ∫ ∫
−

cos d d cos d

d

I

θ θ θ θ θ θ θ θ
θ

π π π ��� ��

nntegrals T  and T

cos

. .

cos

cos

1 10

2

0

3

0

0

3
1

3



− − −

⎛

⎝
⎜

⎞

⎠
⎟

= −

+

θ θ

θ

π
π

π
���� �� ���

+ =

−

cos3

0

2

0θ
π

where we have used the standard forms listed in the Resource 

section. It follows that 〈  f(θ)〉 = 0, and, from eqn 35.4, that the 

dipolar interaction between two freely rotating molecules 

vanishes.

x

y

z

dφ
sin θ dθ

  

θ

Figure 35.3 A unit sphere showing the area element  
sin θ dθ dφ.
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35 Interactions between molecules  313

The interaction energy of two freely rotating dipoles is zero. 

However, because their mutual potential energy depends on 

their relative orientation, the molecules do not in fact rotate 

completely freely, even in a gas. In fact, the lower-energy ori-

entations are marginally favoured, so there is a nonzero average 

interaction between polar molecules. We show in the following 

Justification that the average potential energy of two rotating 

molecules that are separated by a distance r is

〈 〉V
C

r
C

kT
= − =

6

1
2

1
2

0
2

2

3 4

μ μ
ε( )π

 

This expression describes the Keesom interaction, and is the 

first of the contributions to the van der Waals interaction (when 

that is taken to be a 1/r6 interaction).

The important features of eqn 35.5 are:

The negative sign shows that the average interaction is 

attractive.

The dependence of the average interaction energy on the 

inverse sixth power of the separation identifies it as a 

van der Waals interaction.

The inverse dependence on the temperature reflects 

the way that the greater thermal motion overcomes 

the mutual orientating effects of the dipoles at higher 

temperatures.

The inverse sixth power arises from the inverse third 

power of the interaction potential energy that is 

weighted by the energy in the Boltzmann term, which is 

also proportional to the inverse third power of the 

separation.

Justification 35.4 The Keesom interaction

The detailed calculation of the Keesom interaction energy 

is quite complicated, but the form of the final answer can be 

constructed quite simply. First, we note that the average inter-

action energy of two polar molecules rotating at a fixed sepa-

ration r is given by

〈 〉 〈 〉
V

f

r
= μ μ θ

ε
1 2

0
3

( )

4π  

where 〈f(θ)〉 now includes a weighting factor in the averaging 

that is equal to the probability that a particular orientation 

will be adopted. This probability is given by the Boltzmann 

distribution, p ∝ e−E/kT, with E interpreted as the potential 

energy of interaction of the two dipoles in that orientation. 

That is,

p V
f

r
V kT∝ =−e / ( )μ μ θ

ε
1 2

0
34π  

When the potential energy of interaction of the two dipoles 

is very small compared with the energy of thermal motion, 

we can use V << kT, expand the exponential function in p, and 

retain only the first two terms:

p V kT∝1− +/ �
 

We now write the weighted average of f(θ) as

〈 〉f
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It follows that
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where 〈�〉0 denotes an unweighted spherical average. The 

spherical average of f(θ) is zero (as in Justification 35.3), so 

the first term in the expression for 〈  f(θ)〉 vanishes. However, 

the average value of f(θ)2 is nonzero because f(θ)2 is positive at 

all orientations, so we can write

〈 〉 〈 〉
V

f

kTr
= −

( )
μ μ θ

ε
1
2

1
2 2

0

0

2 64

( )

π
 

The average value 〈 f(θ)2〉0 turns out to be 2/3 when the calcula-

tion is carried through in detail. The final result is that quoted 

in eqn 35.5.
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Brief illustration 35.4 The Keesom interaction

Suppose a water molecule (μ1 = 1.85 D) can rotate 1.0 nm from 

an amide group (μ2 = 2.7 D). The average energy of their inter-

action at 25 °C (298 K) is

Average potential 
energy of two 
rotating polar 
molecules

(35.5)
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314 8 Interactions

Table 35.1 summarizes the various expressions for the 

interaction of charges and dipoles. It is quite easy to extend 

the formulas given there to obtain expressions for the energy 

of interaction of higher multipoles (electric multipoles are 

described in Topic 34). The feature to remember is that the 

interaction energy falls off more rapidly the higher the order of 

the multipole. For the interaction of an n-pole with an m-pole, 

the potential energy varies with distance as

V
rn m

∝ 1
1+ +

 
 Energy of interaction between multipoles  (35.6)

The reason for the even steeper decrease with distance is the same 

as before: the array of charges appears to blend together into neu-

trality more rapidly with distance the higher the number of indi-

vidual charges that contribute to the multipole. Note that a given 

molecule may have a charge distribution that corresponds to a 

superposition of several different multipoles, and in such cases 

the energy of interaction is the sum of terms given by eqn 35.6.

(c) Dipole–induced dipole interactions
A polar molecule with dipole moment μ1 can induce a dipole in 

a neighbouring polarizable molecule (Fig. 35.4). The induced 

dipole interacts with the permanent dipole of the first mole-

cule, and the two are attracted together. The average interaction 

energy when the separation of the molecules is r is

V
C

r
C= − =

6

1
2

0

2

4

μ
ε

α ′
π  

where α ′2 is the polarizability volume (Topic 34) of molecule 

2 and μ1 is the magnitude of the permanent dipole moment of 

molecule 1. Note that the C in this expression is different from 

the C in eqn 35.5 and other expressions below: we are using the 

same symbol in C/r6 to emphasize the similarity of form of each 

expression.

The dipole–induced dipole interaction energy is independ-

ent of the temperature because thermal motion has no effect 

on the averaging process. Moreover, like the dipole–dipole 

interaction, the potential energy depends on 1/r6: this dis-

tance dependence stems from the 1/r3 dependence of the field 

(and hence the magnitude of the induced dipole) and the 1/r3 

dependence of the potential energy of interaction between the 

permanent and induced dipoles.

Brief illustration 35.5 The dipole–induced dipole 
interaction

For a molecule with μ = 1.0 D (3.3 × 10−30 C m, such as HCl) 

separated by 0.30 nm from a molecule of polarizability volume 

α ′ = 10 × 10−30 m3 (such as benzene, Table 34.1), the average 

interaction energy is

V = −
× × ×

× × ×

− −

− − −

( . ) ( )

( . ) ( .

3 3 10 10 10

4 8 854 10 3

30 2 30 3

12 1 2 1

C m m

J C mπ 00 10

1 4 10

10 6

21

×
= − ×

−

−

m

J

)

.

which, upon multiplication by Avogadro’s constant, corre-

sponds to –0.83 kJ mol−1.

Self-test 35.5 Calculate the average interaction energy, in 

units of joules per mole (J mol−1), between a water molecule 

and a benzene molecule separated by 1.0 nm.

Answer: −2.1 J mol−1

〈 〉V = −
× × × × × ×− −2 1 85 3 336 10 2 7 3 336 1030 2 30

1

( . . ) ( . .C m

μ� ����� �����
CC m

J C m K

μ

ε

2

0
2

2

43 1 2 2 1

4

3 1 710 10

� ���� ����

� ������ 	

)

( .

( )

× × − − − − −

π k

������ � � �� 	�
) ( ) ( . )× × × −298 1 0 10 9 6K m

T r

This interaction energy corresponds (after multiplication by 

Avogadro’s constant) to −24 J mol−1, and it is much smaller 

than the energies involved in the making and breaking of 

chemical bonds.

A note on good practice Note how the units are included 

in the calculation and cancel to give the result in joules. 

It is far better to include the units at each stage of the 

calculation and treat them as algebraic quantities that 

can be multiplied and cancelled than to guess the units 

at the end of the calculation.

Self-test 35.4 Calculate the average interaction energy for 

pairs of molecules in the gas phase with μ = 1 D when the sepa-

ration is 0.5 nm at 298 K. Compare this energy with the aver-

age molar kinetic energy of the molecules.

Answer: 〈 〉 − − −V RT= << =0 0 3 73
2

. .7 kJ mol   kJ mol1 1

Table 35.1  Interaction potential energies

Interaction 
type

Distance 
dependence of 
potential energy

Typical 
energy 
(kJ mol−1)

Comment

Ion–ion 1/r 250 Only between ions

Hydrogen 
bond

20 Occurs in X–H�Y, 
where X, Y = N, 
O, or F

Ion–dipole 1/r2 15  

Dipole–dipole 1/r3 2 Between stationary 
polar molecules

1/r6 0.3 Between rotating 
polar molecules

London 
(dispersion)

1/r6 2 Between all types 
of molecules 
and ions

Potential energy of 
a polar molecule 
and a polarizable 
molecule

(35.7)
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35 Interactions between molecules  315

(d) Induced dipole–induced dipole 
interactions
Nonpolar molecules (including closed-shell atoms, such as Ar) 

attract one another even though neither has a permanent dipole 

moment. The abundant evidence for the existence of interac-

tions between them is the formation of condensed phases of 

nonpolar substances, such as the condensation of hydrogen or 

argon to a liquid at low temperatures and the fact that benzene 

is a liquid at normal temperatures.

The interaction between nonpolar molecules arises from the 

transient dipoles that all molecules possess as a result of fluc-

tuations in the instantaneous positions of electrons. To appreci-

ate the origin of the interaction, suppose that the electrons in 

one molecule flicker into an arrangement that gives the mol-

ecule an instantaneous dipole moment of magnitude μ1
* . This 

dipole generates an electric field that polarizes the other mol-

ecule, and induces in that molecule an instantaneous dipole 

moment of magnitude μ2. The two dipoles attract each other 

and the potential energy of the pair is lowered. Although the 

first molecule will go on to change the size and direction of its 

instantaneous dipole, the electron distribution of the second 

molecule will follow; that is, the two dipoles are correlated in 

direction (Fig. 35.5). Because of this correlation, the attraction 

between the two instantaneous dipoles does not average to zero, 

and gives rise to an induced dipole–induced dipole interaction. 

This interaction is called either the dispersion interaction or the 

London interaction (for Fritz London, who first described it).

The strength of the dispersion interaction depends on the 

polarizability of the first molecule because the instantaneous 

dipole moment of magnitude μ1
*  depends on the looseness 

of the control that the nuclear charge exercises over the outer 

electrons. The strength of the interaction also depends on the 

polarizability of the second molecule, for that polarizability 

determines how readily a dipole can be induced by another 

molecule. The actual calculation of the dispersion interaction is 

quite involved, but a reasonable approximation to the interac-

tion energy is given by the London formula:

V
C

r
C

I I

I I
= − =

+6 2 2
1 2

1 2

3

2
α α′ ′

 
 London formula  (35.8)

where I1 and I2 are the ionization energies of the two molecules. 

This interaction energy is also proportional to the inverse sixth 

power of the separation of the molecules, which identifies it 

as a third contribution to the van der Waals interaction. The 

dispersion interaction generally dominates all the interactions 

between molecules other than hydrogen bonds.

35.3 Hydrogen bonding

The interactions described so far are universal in the sense that 

they are possessed by all molecules independent of their spe-

cific identity. However, there is a type of interaction possessed 

by molecules that have a particular constitution. A hydrogen 

bond is an attractive interaction between two species that arises 

from a link of the form A–H…B, where A and B are highly elec-

tronegative elements and B possesses a lone pair of electrons. 

Hydrogen bonding is conventionally regarded as being limited 

Brief illustration 35.6 The London interaction

For two CH4 molecules separated by 0.30 nm, we can use eqn 

35.8 with α ′ = 2.6 × 10−30 m3 and I ≈ 700 kJ mol−1 and obtain

V = −
× × ×

×
× ×
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kJmol

A very approximate check on this figure is the enthalpy of 

vaporization of methane, which is 8.2 kJ mol−1. However, this 

comparison is insecure, partly because the enthalpy of vapori-

zation is a many-body quantity and partly because the long-

distance assumption breaks down.

Self-test 35.6 Estimate the energy of the London interaction 

for two He atoms separated by 1.0 nm.

Answer: −0.071 J mol−1

(a) (b)

Figure 35.4 (a) A polar molecule (dark arrow) can induce 
a dipole (light arrow) in a nonpolar molecule, and (b) the 
orientation of the latter follows that of the former, so the 
interaction does not average to zero.

(a) (b)

Figure 35.5 (a) In the dispersion interaction, an instantaneous 
dipole on one molecule induces a dipole on another molecule, 
and the two dipoles then interact to lower the energy. (b) 
The two instantaneous dipoles are correlated, and although 
they occur in different orientations at different instants, the 
interaction does not average to zero.
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316 8 Interactions

to N, O, and F but, if B is an anionic species (such as Cl−), it may 

also participate in hydrogen bonding. There is no strict cut-off 

for an ability to participate in hydrogen bonding, but N, O, and 

F participate most effectively.

The formation of a hydrogen bond can be regarded either 

as the approach between a partial positive charge of H and a 

partial negative charge of B or as a particular example of delo-

calized molecular orbital formation in which A, H, and B each 

supply one atomic orbital from which three molecular orbit-

als are constructed (Fig. 35.6). Experimental evidence and 

theoretical arguments have been presented in favour of both 

views and the matter has not yet been resolved. The electro-

static interaction model can be understood readily in terms of 

the discussion in Section 35.1. Here we develop the molecular 

orbital model.

Thus, if the A−H bond is regarded as formed from the over-

lap of an orbital on A, χA, and a hydrogen 1s orbital, χH, and 

the lone pair on B occupies an orbital on B, χB, then, when the 

two molecules are close together, we can build three molecular 

orbitals from the three basis orbitals:

ψ χ χ χ= + +c c c B1 2 3A H  

One of the molecular orbitals is bonding, one almost non-

bonding, and the third antibonding. These three orbitals need 

to accommodate four electrons (two from the original A−H 

bond and two from the lone pair of B), so two enter the bond-

ing orbital and two enter the nonbonding orbital. Because the 

antibonding orbital remains empty, the net effect—depending 

on the precise energy of the almost nonbonding orbital—may 

be a lowering of energy.

In practice, the strength of the bond is found to be about 

20 kJ mol−1. Because the bonding depends on orbital overlap, 

it is virtually a contact-like interaction that is turned on when 

AH touches B and is zero as soon as the contact is broken. If 

hydrogen bonding is present, it dominates the other intermo-

lecular interactions. The properties of liquid and solid water, 

for example, are dominated by the hydrogen bonding between 

H2O molecules. The structure of DNA and hence the trans-

mission of genetic information is crucially dependent on the 

strength of hydrogen bonds between base pairs. The struc-

tural evidence for hydrogen bonding comes from noting that 

the internuclear distance between formally nonbonded atoms 

is less than expected on the basis of their van der Waals radii, 

which suggests that a dominating attractive interaction is pre-

sent. For example, the O−O distance in O−H…O is expected to 

be 280 pm on the basis of van der Waals radii, but is found to be 

270 pm in typical compounds. Moreover, the H…O distance is 

expected to be 260 pm but is found to be only 170 pm.

Hydrogen bonds may be either symmetric or unsymmet-

ric. In a symmetric hydrogen bond, the H atom lies midway 

between the two other atoms. This arrangement is rare, but 

occurs in F–H…F−, where both bond lengths are 120 pm. More 

common is the unsymmetrical arrangement, where the A−H 

bond is shorter than the H…B bond. Simple electrostatic argu-

ments, treating A−H…B as an array of point charges (partial 

negative charges on A and B, partial positive on H) suggest that 

the lowest energy is achieved when the bond is linear, because 

then the two partial negative charges are furthest apart. The 

experimental evidence from structural studies supports a linear 

or near-linear arrangement.

E
n

er
g

y

A H B

Figure 35.6 The molecular orbital interpretation of the 
formation of an A–H�B hydrogen bond. From the three A, H, 
and B orbitals, three molecular orbitals can be formed (their 
relative contributions are represented by the sizes of the 
spheres). Only the two lower-energy orbitals are occupied (four 
electrons total, two from the original A–H bond and two from 
the B lone pair), and there may therefore be a net lowering of 
energy compared with the separate AH and B species.

Brief illustration 35.7 The hydrogen bond

A common hydrogen bond is that formed between OKH 

groups and O atoms, as in liquid water and ice. In Problem 

35.4, you are invited to use the electrostatic model to calcu-

late the dependence of the potential energy of interaction on 

the OOH angle, denoted θ in 4, and the results are plotted 

in Fig. 35.7. We see that at θ = 0 when the OHO atoms lie in a 

straight line; the molar potential energy is −19 kJ mol−1.

r

4

θ

R

O

O

H

Self-test 35.7 Use Fig. 35.7 to explore the dependence of the 

interaction energy on angle: at what angle does the interaction 

energy become negative?
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35 Interactions between molecules  317

35.4 The total interaction

Here we consider molecules that are unable to participate in 

hydrogen bond formation. The total attractive interaction 

energy between rotating molecules is then the sum of the 

dipole−dipole, dipole−induced dipole, and dispersion interac-

tions. Only the dispersion interaction contributes if both mol-

ecules are nonpolar. In a fluid phase, all three contributions to 

the potential energy vary as the inverse sixth power of the sepa-

ration of the molecules, so we may write

V
C

r
= − 6

6
 

(35.9)

where C6 is a coefficient that depends on the identity of the 

molecules.

Although attractive interactions between molecules are often 

expressed as in eqn 35.9, we must remember that this equation 

has only limited validity. First, we have taken into account only 

dipolar interactions of various kinds, for they have the longest 

range and are dominant if the average separation of the mole-

cules is large. However, in a complete treatment we should also 

consider quadrupolar and higher-order multipole interactions, 

particularly if the molecules do not have permanent dipole 

moments. Secondly, the expressions have been derived by 

assuming that the molecules can rotate reasonably freely. That 

is not the case in most solids, and in rigid media the dipole–

dipole interaction is proportional to 1/r3 (as in Justification 

35.2) because the Boltzmann averaging procedure is irrelevant 

when the molecules are trapped into a fixed orientation.

A different kind of limitation is that eqn 35.9 relates to the 

interactions of pairs of molecules. There is no reason to suppose 

that the energy of interaction of three (or more) molecules is 

the sum of the pairwise interaction energies alone. The total 

dispersion energy of three closed-shell atoms, for instance, is 

given approximately by the Axilrod–Teller formula:

V
C

r

C

r

C

r

C

r r r
= − − − +6

6

6

6

6

6 3
AB BC CA AB BC CA

′
( )

 

where

C a′ = +( cos cos cos )3 1θ θ θA B C  
(35.10b)

The parameter a is approximately equal to 3
4 6α ′C ; the angles θ 

are the internal angles of the triangle formed by the three atoms 

(5). The term in C′ (which represents the non-additivity of the 

pairwise interactions) is negative for a linear arrangement of 

atoms (so that arrangement is stabilized) and positive for an 

equilateral triangular cluster (so that arrangement is destabi-

lized). It is found that the three-body term contributes about 

10 per cent of the total interaction energy in liquid argon.

5

A

B

C

θA

θB

θC

rAB

rBC

rCA

When molecules are squeezed together, the nuclear and elec-

tronic repulsions begin to dominate the attractive forces. The 

repulsions increase steeply with decreasing separation in a way 

that can be deduced only by very extensive, complicated molec-

ular structure calculations of the kind described in Topics 

28–30 (Fig. 35.8).

Axilrod−Teller 
formula

(35.10a)

Answer: Only ±12°, so that the energy is negative (and the interaction is 

attractive) only when the atoms are close to a linear arrangement.
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Figure 35.7 The variation of the energy of interaction 
(according to the electrostatic model) of a hydrogen bond 
as the angle between the O–H and :O groups is changed.
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Total
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Separation, r

Figure 35.8 The general form of an intermolecular potential 
energy curve (the graph of the potential energy of two closed-
shell species as the distance between them is changed). The 
attractive (negative) contribution has a long range, but the 
repulsive (positive) interaction increases more sharply once the 
molecules come into contact.
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In many cases, however, progress can be made by using a 

greatly simplified representation of the potential energy, where 

the details are ignored and the general features expressed by 

a few adjustable parameters. One such approximation is the 

hard-sphere potential energy, in which it is assumed that the 

potential energy rises abruptly to infinity as soon as the parti-

cles come within a separation d:

V r d V r d= = >∞ ≤ for         0 for  

This very simple expression for the potential energy is sur-

prisingly useful for assessing a number of properties. Another 

widely used approximation is the Mie potential energy:

V
C

r

C

r
n

n

m

m
= −

 
 Mie potential energy  (35.12)

with n > m. The first term represents repulsions and the sec-

ond term attractions. The Lennard-Jones potential energy is 

a special case of the Mie potential energy with n = 12 and m = 6 

(Fig. 35.9); it is often written in the form

V
r

r

r
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ε

The two parameters are ε, the depth of the well (not to be con-

fused with the symbol of the permittivity of a medium), and r0, 

the separation at which V = 0 (Table 35.2).

Although the Lennard-Jones potential energy has been used in 

many calculations, there is plenty of evidence to show that 1/r12 is 

a very poor representation of the repulsive potential energy, and 

that an exponential form, e-r r/ 0, is greatly superior. An exponen-

tial function is more faithful to the exponential decay of atomic 

wavefunctions at large distances, and hence to the overlap that is 

responsible for repulsion. The potential energy with an exponen-

tial repulsive term and a 1/r6 attractive term is known as an exp-6 

potential energy. These expressions for the potential energy can 

be used to calculate the virial coefficients of gases, as explained in 

Topic 36, and through them various properties of real gases, such 

as the Joule–Thomson coefficient (Topic 56). They are also used 

to model the structures of condensed fluids.

With the advent of atomic force microscopy (AFM), in 

which the force between a molecular sized probe and a surface 

is monitored (Topic 95), it has become possible to measure 

directly the forces acting between molecules. The force, F, is the 

negative slope of the potential energy, so for the Lennard-Jones 

potential energy between individual molecules we write

F
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(35.14)

Example 35.1 Calculating an intermolecular force from 
the Lennard-Jones potential energy

Use the expression for the Lennard-Jones potential energy 

to estimate the greatest net attractive force between two N2 

molecules.

Method The magnitude of the force is greatest at the distance 

r at which dF/dr = 0. Therefore differentiate eqn 35.14 with 

respect to r, set the resulting expression to zero, and solve for 

r. Finally, use the value of r in eqn 35.14 to calculate the cor-

responding value of F.

Answer Because dxn = nxn−1, the derivative of F with respect 

to r is

d
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(35.13)Lennard-Jones potential energy
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Figure 35.9 The Lennard-Jones potential energy is another 
approximation to the true intermolecular potential energy 
curves. It models the attractive component by a contribution 
that is proportional to 1/r6 and the repulsive component by 
a contribution that is proportional to 1/r12. Specifically, these 
choices result in the Lennard-Jones (12,6) potential. Although 
there are good theoretical reasons for the former, there 
is plenty of evidence to show that 1/r12 is only a very poor 
approximation to the repulsive part of the curve.

Table 35.2*  Lennard-Jones parameters for the (12,6) potential

ε/(kJ mol−1) r0/pm

Ar 128 362

Br2 536 427

C6H6 454 6177

Cl2 368 448.5

H2 34 297

He 11 258

Xe 236 426

* More values are given in the Resource section.

Hard-sphere 
potential energy

(35.11)
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35 Interactions between molecules  319

Checklist of concepts

☐ 1. A van der Waals interaction between closed-shell mol-

ecules is inversely proportional to the sixth power of 

their separation.

☐ 2. The following molecular interactions are important: 

charge–charge, charge–dipole, dipole–dipole, dipole–

induced dipole, dispersion (London), hydrogen bonding.

☐ 3. A hydrogen bond is an interaction of the form X–H�Y, 

where X and Y are typically N, O, or F.

☐ 4. The Lennard-Jones potential energy function is a 

model of the total intermolecular potential energy.

Checklist of equations

It follows that dF/dr = 0 when

7 26
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. .
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From Table 35.2, ε = 1.268 × 10−21 J and r0 = 3.919 × 10−10 m. It 

follows that

F = −
× ×

×
= − ×

−

−
−2 396 1 268 10

3 919 10
7 752 10

21

10
12

. ( . )

.
.

J

m
N

where we have used 1 N = 1 J m−1. That is, the magnitude of the 

force is about 8 pN.

Self-test 35.8 At what separation re does the minimum of the 

potential energy curve occur for a Lennard-Jones potential?

Answer: re = 21/6r0

Property Equation Comment Equation number

Potential energy of interaction between 
two point charges in a medium

V = Q1Q2/4πεr The relative permittivity of 
the medium is εr = ε/ε0

35.1b

Energy of interaction between a point 
dipole and a point charge

V = −μ1Q2/4πε0r
2 35.2

Energy of interaction between two fixed 
dipoles

V = μ1μ2f(θ)/4πε0r
3, f(θ) = 1−3cos2 θ Parallel dipoles 35.4

Energy of interaction between two 
rotating dipoles

V kTr= −2 3 4 2 6μ μ ε1
2

2
2

0/ ( )π 35.5

Energy of interaction between a polar 
molecule and a polarizable molecule

V r= −μ α ε1
2

2 0
′ /4 6π

 
35.7

London formula V I I I I r= − +3
2 1 2 1 2 1 2

6α α′ ′ [ /( )]/ 35.8

Axilrod–Teller formula V C r C r C r C r r r= − − − +6 AB 6 BC 6 CA AB BC CA
3/ / / /( )6 6 6 ′ Applies to closed-shell 

atoms
35.10

Lennard-Jones potential energy V = 4ε{(r0/r)12 − (r0/r)6} 35.13
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TOPIC 36

Real gases

The state of a pure gas is specified by giving its volume, amount 

of substance, pressure, and temperature. However, it has 

been established experimentally that it is sufficient to specify 

only three of these variables, for then the fourth variable is 

fixed. That is, it is an experimental fact that each substance is 

described by an equation of state, an equation that expresses 

any one of these four variables in terms of the other three. Thus, 

the general form of an equation of state is

p f T V n= ( , , )   Equation of state  (36.1)

where p is the pressure, V the volume, n the amount of mol-

ecules, and T the (absolute) temperature. This equation tells us 

that if we know the values of n, T, and V for a particular sub-

stance, then the pressure has a fixed value.

Each substance is described by its own equation of state, but 

the explicit form of the equation is known in only a few special 

cases. As discussed in Topics 1 and 66, the equation of state of 

a perfect gas, which is the limiting form of the equation of state 

for any gas as p → 0, is

pV nRT=   Perfect gas law  (36.2)

where R is a universal constant, the same for all gases 

(Foundations, Topic 1). It is established in Foundations, Topic 

2, that R = NAk, where NA is Avogadro’s constant and k is 

Boltzmann’s constant. Our task is to discover how this equation 

is modified when intermolecular interactions are important.

Contents

36.1 Molecular interactions in gases 321

Brief illustration 36.1: Interactions in gases 321

36.2 The virial equation of state 321

Brief illustration 36.2: The virial equation of state 322

36.3 The van der Waals equation 323

(a) The development of the equation 323

Example 36.1: Using the van der Waals equation  

to estimate a molar volume 324

(b) The reliability of the equation 325

Brief illustration 36.3: Criteria for perfect  

gas behaviour 325

(c) Critical behaviour 326

Brief illustration 36.4: The critical temperature 326

36.4 Thermodynamic considerations 327

(a) The internal pressure 327

Example 36.2: Writing an expression for the  

internal pressure of a real gas 327

(b) The statistical origins of equations of state 328

Brief illustration 36.5: The configuration integral 328

Checklist of concepts 329

Checklist of equations 329

 ➤ Why do you need to know this material?
To understand the atmospheres of this and other planets, 
you need to understand gases. Also, many industrial 
processes involve gases, and both the outcome of the 
reaction and the design of the reaction vessels depend on 
a knowledge of their properties.

 ➤ What is the key idea?
In a real gas weak attractions and repulsions can cause 
deviations from the perfect gas law.

 ➤ What do you need to know already?

For the first three sections you need to be familiar with 
the perfect gas law (Foundations, Topic 1) and the origin 
of the attractive and repulsive molecular interactions, as 
expressed by the Lennard-Jones potential energy function 
(Topic 35). You should be familiar with the qualitative 
features of the kinetic theory of gases (which is treated in 
depth in Topic 78). For the more advanced final section, you 
need to be aware of the concept of internal pressure (Topic 
58) and the development of thermodynamic equations of 
state (Topic 66).
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36 Real gases  321

At the microscopic level, a perfect gas is characterized by 

the lack of intermolecular interactions and a completely ran-

dom distribution of molecules in ceaseless motion (Topic 78). 

However, in a real gas there are weak attractions and repul-

sions which have minimal effect on the relative locations of 

the molecules but which cause deviations from the perfect gas 

law. Deviations from the law are particularly important at high 

pressures and low temperatures, especially when a gas is on the 

point of condensing to liquid at low temperatures. At that point, 

the molecules of a gas have insufficient kinetic energy to escape 

from each other’s attraction and they stick together. Although 

molecules attract each other when they are a few diameters 

apart, they repel each other as soon as they come into contact. 

This repulsion is responsible for the fact that liquids and solids 

have a definite bulk and do not collapse to an infinitesimal point.

36.1 Molecular interactions in gases

Repulsive forces between molecules assist expansion and attrac-

tive forces assist compression. Repulsive forces are significant 

only when molecules are almost in contact: they are short-range 

interactions, even on a scale measured in molecular diameters 

(Fig. 36.1). Because they are short-range interactions, repulsions 

can be expected to be important only when the average separa-

tion of the molecules is small. This is the case at high pressure, 

when many molecules occupy a small volume. On the other 

hand, attractive intermolecular forces have a relatively long range 

and are effective over several molecular diameters. They are 

important when the molecules are close together but not nec-

essarily touching (at the intermediate separations in Fig. 36.1, 

within a few molecular diameters of one another). Attractive 

forces are ineffective when the molecules are far apart (well to the 

right in Fig. 36.1). Intermolecular forces are also important when 

the temperature is so low that the molecules travel with such low 

mean speeds that they can be captured by one another.

36.2 The virial equation of state

The general form of the equation of state of a real gas can be 

inferred from measurements of the pressure for various val-

ues of the temperature, volume, and amount of molecules in a 

sample. To do so, it is convenient to begin by defining the com-

pression factor, Z, of a gas as the ratio of its measured molar 

volume, Vm = V/n, to the molar volume of a perfect gas, Vm° , at 

the same pressure and temperature:

Z
V

V
= m

m°
  Compression factor of a gas  (36.3a)

For a perfect gas V Vm m= ° , so Z = 1 under all conditions; there-

fore, deviation of Z from 1 is a measure of departure from per-

fect behaviour. Furthermore, because Vm°  can be replaced by 

RT/p, an alternative version of eqn 36.3a is

Z
pV

RT
pV ZRT= =m

m, implying  for all gases  (36.3b)

Some experimental values of Z are plotted in Fig. 36.2. At very 

low pressures, all the gases shown have Z ≈ 1 and behave nearly 

Brief illustration 36.1 Interactions in gases

To gain some insight into distances that can make interac-

tions between particles in the gas phase important, consider 

two Ar atoms. A model of the intermolecular potential energy 

of two atoms is the Lennard-Jones potential energy intro-

duced in Topic 35, V = 4ε{(r0/r)12 – (r0/r)6}, which is a mini-

mum (most negative) at r = 21/6r0 and passes through zero at 

r = r0. Because r0 = 362 pm for argon atoms (Table 35.2), the 

potential energy of interaction between two Ar atoms passes 

through zero at r = 362 pm. This is the distance below which 

repulsions become dominant. Because the diameter of an Ar 

atom is 142 pm, this distance corresponds to about 2.5 atomic 

diameters. The potential energy of interaction between two Ar 

atoms is a minimum (that is, their mutual attraction is great-

est) at r = 21/6 × 362 pm = 406 pm, which corresponds to 2.9 

atomic diameters.

Self-test 36.1 Estimate the molar energy of the dispersion 

interaction (use the London formula, eqn 35.8) for two Ar 

atoms separated by (i) 407 pm (about 3 atomic diameters) and 

(ii) 1.0 nm (about 7 atomic diameters).

Answer: (i) −691 J mol−1; (ii) −3.1 J mol−1
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Figure 36.1 The variation of the potential energy of two 
molecules (at very small separations) indicates that the 
interactions between them are strongly repulsive at these 
distances. At intermediate separations, where the potential 
energy is negative, the attractive interactions dominate. At 
large separations (on the right) the potential energy is zero and 
there is no interaction between the molecules.
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322 8 Interactions

perfectly. At high pressures, all the gases have Z > 1, signify-

ing that they have a larger molar volume than a perfect gas at 

the same temperature. Repulsive forces are now dominant. At 

intermediate pressures, most gases have Z < 1, indicating that 

the attractive forces are reducing the molar volume relative to 

that of a perfect gas.

Figure 36.3 shows the experimental isotherms, plots of data 

(in this case pressure and volume data) obtained at constant 

temperature, for carbon dioxide. At large molar volumes and 

high temperatures the real-gas isotherms do not differ greatly 

from perfect-gas isotherms. The small differences suggest that 

the perfect gas law is in fact the first term in an expression of 

the form

pV RT B p C pm
21= + + +( )′ ′ …   Virial equation of state  (36.4a)

This expression is an example of a common procedure in physi-

cal chemistry, in which a simple law that is known to be a good 

first approximation (in this case pVm = RT) is treated as the first 

term in a series in powers of a variable (in this case p). A more 

convenient expansion for many applications is

pV RT
B

V

C

Vm
m m

= + + +…⎛
⎝⎜

⎞
⎠⎟

1
2

  Virial equation of state  (36.4b)

These two expressions are two versions of the virial equation of 

state (the name virial comes from the Latin word for force). By 

comparing the expression with eqn 36.3 we see that the term in 

parentheses can be identified with the compression factor, Z:

Z
B

V

C

V
= +1

2
m

+ +…
m

 (36.5)

The coefficients B, C, … (which are sometimes denoted B2,  

B3, …) depend on the temperature and are the second, third, 

… virial coefficients (Table 36.1); the first virial coefficient is 1. 

The third virial coefficient, C, is usually less important than the 

second coefficient, B, in the sense that at typical molar volumes 

C V B V/ /m m
2 << .

Compression factor in terms of 
the virial coefficients 

Brief illustration 36.2 The virial equation of state

To use eqn 36.4b (up to the B term), to calculate the pressure 

exerted at 100 K by 0.104 mol O2(g) in a vessel of volume 0.225 

dm3, we begin by calculating the molar volume:

V
V

nm
CO

 dm

 mol
 dm mol m mol = = = = ×− − −

2

0 225

0 104
2 16 2 16 10

3
3 1 3 3.

.
. . 11

 

Then, by using the value of B found in Table 36.1 of the 

Resource section,

p
RT

V

B

V
= +⎛

⎝⎜
⎞
⎠⎟

=
×

×

− −

− −

m m

J mol K K

m mol

1

8 3145 100

2 16 10

1 1

3 3 1

( . ) ( )

.
11

1 975 10

2 16 10

3 50 10

4 3 1

3 3 1

5

−
×
×

⎛
⎝⎜

⎞
⎠⎟

= ×

− −

− −

.

.

. ,

m mol

m mol

Pa  or 335 kPa0

where we have used 1 Pa = 1 J m−3. The perfect gas equation of 

state, eqn 36.1, would give the calculated pressure as 385 kPa, 
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Figure 36.2 The variation of the compression factor, Z, with 
pressure for several gases at 0 °C. A perfect gas has Z = 1 at all 
pressures. Notice that although the curves approach 1 as p → 0, 
they do so with different slopes.
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Figure 36.3 Experimental isotherms of carbon dioxide at 
several temperatures. The ‘critical isotherm’, the isotherm at the 
critical temperature, is at 30.04 °C.

Table 36.1* Second virial coefficients, B/(cm3 mol−1)

Temperature

273 K 600 K

Ar −21.7 11.9

CO2 −142 −12.4

N2 −10.5 21.7

Xe −153.7 −19.6

*More values are given in the Resource section.
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36 Real gases  323

The virial equation can be used to demonstrate the impor-

tant point that although the equation of state of a real gas may 

coincide with the perfect gas law as p → 0, not all its proper-

ties necessarily coincide with those of a perfect gas in that limit. 

Consider, for example, the value of dZ/dp, the slope of the 

graph of compression factor against pressure. For a perfect gas 

dZ/dp = 0 (because Z = 1 at all pressures), but for a real gas from 

eqn 36.3 and 36.4a we obtain

d

d
 as 

Z

p
B pC B p= + + → →′ ′ … ′2 0  (36.6a)

However, B′ is not necessarily zero, so the slope of Z with 

respect to p does not necessarily approach 0 as p → 0, as can be 

seen in Fig. 36.2. By a similar argument,

d

d( )
as corresponding to

m
m

Z

V
B V p

1
0

/
,→ → →∞  (36.6b)

Because the virial coefficients depend on the tempera-

ture, there may be a temperature at which Z → 1 with zero 

slope at low pressure or high molar volume (Fig. 36.4). At 

this temperature, which is called the Boyle temperature, TB, 

the properties of the real gas do coincide with those of a per-

fect gas as p → 0. According to eqn 36.6b, Z has zero slope as 

p → 0 if B = 0, so we can conclude that B = 0 at the Boyle tem-

perature. It then follows from eqn 36.4 that pVm ≈ RTB over a 

more extended range of pressures than at other temperatures 

because the first term after 1 (that is, B/Vm) in the virial equa-

tion is zero and C V/ m
2  and higher terms are negligibly small. 

For helium TB = 22.64 K; for air TB = 346.8 K; more values are 

given in Table 36.2.

36.3 The van der Waals equation

Conclusions from the virial equations of state can be drawn 

only by inserting specific values of the coefficients. It is often 

useful to have a broader, if less precise, view of all gases. 

Therefore, we introduce the approximate equation of state 

suggested by J.D. van der Waals in 1873. This equation is an 

excellent example of an expression that can be obtained by 

thinking scientifically about a mathematically complicated 

but physically simple problem; that is, it is a good example of 

‘model building’.

(a) The development of the equation
The van der Waals equation is

p
nRT

V nb
a

n

V
=

−
− ⎛

⎝⎜
⎞
⎠⎟

2

  van der Waals equation  (36.7a)

and a derivation is given in the following Justification. The 

equation is often written in terms of the molar volume 

Vm = V/n as

p
RT

V b

a

V
=

−
−

m m
2  Alternative form  van der Waals equation  (36.7b)

The (positive) constants a and b are called the van der Waals 

parameters. They are characteristic of each gas but independ-

ent of the temperature (Table 36.3).

or 10 per cent higher than the value calculated by using the 

virial equation of state. The deviation is significant because 

under these conditions |B/Vm| ≈ 0.1, which is not negligible 

relative to 1.

Self-test 36.2 What pressure would 4.56 g of nitrogen gas in a 

vessel of volume 2.25 dm3 exert at 273 K if it obeyed the virial 

equation of state?

Answer: 104 kPa
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Figure 36.4 The compression factor, Z, approaches 1 at low 
pressures, but does so with different slopes. For a perfect gas, the 
slope is zero, but real gases may have either positive or negative 
slopes, and the slope may vary with temperature. At the Boyle 
temperature, the slope is zero and the gas behaves perfectly over 
a wider range of conditions than at other temperatures.

Table 36.2* Boyle temperatures of gases

TB/K

Ar 411.5

CO2 714.8

He 22.64

O2 405.9

* More values are given in the Resource section.
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It is too optimistic to expect a single, simple expression to be 

the true equation of state of all substances, and accurate work 

on gases must resort to the virial equation, use tabulated val-

ues of the coefficients at various temperatures, and analyse the 

systems numerically. The advantage of the van der Waals equa-

tion, however, is that it is analytical (that is, expressed symboli-

cally) and allows us to draw some general conclusions about 

real gases. When the equation fails we must use one of the other 

equations of state that have been proposed (some are listed in 

Table 36.4), invent a new one, or go back to the virial equation.

Justification 36.1 The van der Waals equation of state

The repulsive interactions between molecules are taken into 

account by supposing that they cause the molecules to behave 

as small but impenetrable spheres. The nonzero volume of the 

molecules implies that instead of moving in a volume V they 

are restricted to a smaller volume V – nb, where nb is approxi-

mately the total volume taken up by the molecules themselves. 

This argument suggests that the perfect gas law p = nRT/V 

should be replaced by

p
nRT

V nb
= −  

when repulsions are significant. The closest distance of two 

hard-sphere molecules of radius r, and volume V rmolecule = 4
3

3π ,  

is 2r, so the volume excluded is 4
3

3π( 2r) , or 8Vmolecule. The 

volume excluded per molecule is one-half this volume, or 

4Vmolecule, so b ≈ 4VmoleculeNA.

The pressure depends on both the frequency of collisions 

with the walls and the force of each collision. Both the fre-

quency of the collisions and their force are reduced by the 

attractive forces, which act with a strength proportional to 

the molar concentration, n/V, of molecules in the sample. 

Therefore, because both the frequency and the force of the 

collisions are reduced by the attractive forces, the pressure is 

reduced in proportion to the square of this concentration. If 

the reduction of pressure is written as −a(n/V)2, where a is a 

positive constant characteristic of each gas, the combined 

effect of the repulsive and attractive forces is the van der Waals 

equation of state as expressed in eqn 36.7.

In this Justification we have built the van der Waals equation 

using plausible arguments about the volumes of molecules 

and the effects of forces. The equation can be derived in other 

ways, but the present method has the advantage that it shows 

how to derive the form of an equation out of general ideas. The 

derivation also has the advantage of keeping imprecise the 

significance of the parameters a and b: they are much better 

regarded as empirical parameters than as precisely defined 

molecular properties (but see eqn 36.11 below and Topic 66 for 

a precise thermodynamic interpretation of a).

Example 36.1 Using the van der Waals equation to 
estimate a molar volume

Estimate the molar volume of CO2 at 500 K and 100 atm by 

treating it as a van der Waals gas.

Method To express eqn 36.7b as an equation for the molar vol-

ume, we multiply both sides by ( )V b Vm m− 2 , to obtain

( ) ( )V b V p RTV V b am m− = − −m m
2 2

and, after division by p, collect powers of Vm to obtain

V b
RT

p
V

a

p
V

ab

pm m m
3 2 0− +⎛

⎝⎜
⎞
⎠⎟

+⎛
⎝⎜

⎞
⎠⎟

− =

Although closed expressions for the roots of a cubic equa-

tion can be given, they are very complicated. Unless analyti-

cal solutions are essential, it is usually more expedient to solve 

such equations by using mathematical software.

Answer According to Table 36.3, a = 3.610 dm6 atm mol−2 

and b = 4.29 × 10−2 dm3 mol−1. Under the stated conditions, 

RT/p = 0.410 dm3 mol−1. The coefficients in the equation for Vm 

are therefore

b RT p

a p

ab p

+ =
=
=

−

− −

−

/ .

/ . ( )

/ .

0

0

0

453 dm mol

3 61 1 dm mol

1 55 1

3 1

2 3 1 2×
× 33 3 1 3dm mol( )−

Therefore, on writing x = Vm/(dm3 mol−1), the equation to solve 

is

x x x3 2 2 30.453 (3.61 10 ) (1.55 10 ) 0− + × − × =− −

The acceptable root is x = 0.366, which implies that Vm = 0.366 

dm3 mol−1. The molar volume of a perfect gas under these con-

ditions is 0.410 dm3 mol−1.

Self-test 36.3 Calculate the molar volume of argon at 100 °C 

and 100 atm on the assumption that it is a van der Waals gas.

Answer: 0.298 dm3 mol−1

Table 36.3* van der Waals parameters

a/(atm dm6 
mol−2)

a/(Pa m6 
mol–2)

b/(10−2 dm3 
mol−1)

Ar 1.337 0.1355 3.20

CO2 3.610 0.3658 4.29

He 0.0341 0.00346 2.38

Xe 4.137 0.4192 5.16

* More values are given in the Resource section.
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(b) The reliability of the equation

We can begin to judge reliability of the equation by compar-

ing the isotherms it predicts with the experimental isotherms 

in Fig. 36.3. Some calculated isotherms are shown in Fig. 36.5 

and Fig. 36.6. Apart from the oscillations they do resemble 

experimental isotherms quite well. The oscillations, the van der 

Waals’ loops, are unrealistic because they suggest that under 

some conditions an increase of pressure results in an increase of 

volume. Therefore they are replaced by horizontal lines drawn 

so the loops define equal areas above and below the lines: this 

procedure is called the Maxwell construction (1). The van der 

Waals parameters, such as those in Table 36.3, are found by fit-

ting the calculated curves to the experimental curves.

Equal areas

1

An important feature of the van der Waals equation is that 

perfect gas isotherms are obtained at high temperatures and large 

molar volumes. When the temperature is high, RT may be so 

large that the first term in eqn 36.7b greatly exceeds the second. 

Furthermore, if the molar volume is large, in the sense Vm � b, 

then the denominator Vm − b ≈ Vm. Under these conditions, the 

equation reduces to p = RT/Vm, the perfect gas equation.

Brief illustration 36.3 Criteria for perfect gas behaviour

For benzene a = 18.57 atm dm6 mol−2 (1.882 Pa m6 mol−2) 

and b = 0.1193 dm3 mol−1 (1.193 × 10−4 m3 mol−1); its normal 

boiling point is 353 K. Treated as a perfect gas at T = 400 K 

and p = 1.0 atm, benzene vapour has a molar volume of 

Vm = RT/p = 33 dm3 mol−1, so the criterion Vm ≫ b for perfect 

gas behaviour is satisfied. It follows that a/Vm
2 ≈ 0.017 atm, 

which is 1.7 per cent of 1.0 atm. Therefore, we can expect ben-

zene vapour to deviate only slightly from perfect gas behav-

iour at this temperature and pressure.

Self-test 36.4 Can argon gas be treated as a perfect gas at 400 K 

and 3.0 atm?

Answer: Yes
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Figure 36.5 The surface of possible states allowed by the van 
der Waals equation. The curves are labelled with the ‘reduced 
temperature’, Tr = T/Tc.

1

0.5

0

R
ed

u
ce

d
 p

re
ss

u
re

, p
/p

c

0.8

1

1.5

Reduced volume, Vm/Vc

0.1 1 10

1.5

Figure 36.6 Isotherms calculated by using the van der Waals 
equation of state. The axes are labelled with the ‘reduced 
pressure’, p/pc, and ‘reduced volume’, Vm/Vc, where pc = a/27b2 
and Vc = 3b. The individual isotherms are labelled with the 
‘reduced temperature’, T/Tc, where Tc = 8a/27Rb. The van der 
Waals’ loops are normally replaced by horizontal straight lines.

Table 36.4 Selected equations of state

Equation Critical constants
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=
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326 8 Interactions

(c) Critical behaviour

Consider what happens when we compress (reduce the volume 

of) a sample of gas initially in the state marked A in Fig. 36.3 at 

constant temperature by pushing in a piston. Near A, the pres-

sure of the gas rises in approximate agreement with the perfect 

gas law. Serious deviations from that law begin to appear when 

the volume has been reduced to B.

At C (which corresponds to about 60 atm for carbon diox-

ide), all similarity to perfect behaviour is lost, for suddenly the 

piston slides in without any further rise in pressure: this stage 

is represented by the horizontal line CDE. Examination of the 

contents of the vessel shows that just to the left of C a liquid 

appears, and there are two phases separated by a sharply defined 

surface. As the volume is decreased from C through D to E, the 

amount of liquid increases. There is no additional resistance 

to the piston because the gas can respond by condensing. The 

pressure corresponding to the line CDE, when both liquid and 

vapour are present in equilibrium, is called the vapour pres-

sure of the liquid at the temperature of the experiment.

At E, the sample is entirely liquid and the piston rests on its 

surface. Any further reduction of volume requires the exertion 

of considerable pressure, as is indicated by the sharply rising 

line to the left of E. Even a small reduction of volume from E to 

F requires a great increase in pressure.

The isotherm at the temperature Tc (304.19 K, or 31.04 °C 

for CO2) plays a special role in the theory of the states of mat-

ter. An isotherm slightly below Tc behaves as we have already 

described: at a certain pressure, a liquid condenses from the gas 

and is distinguishable from it by the presence of a visible sur-

face. If, however, the compression takes place at Tc itself, then a 

surface separating two phases does not appear and the volumes 

at each end of the horizontal part of the isotherm have merged 

to a single point, the critical point of the gas. The tempera-

ture, pressure, and molar volume at the critical point are called 

the critical temperature, Tc, critical pressure, pc, and critical 

molar volume, Vc, of the substance. Collectively, pc, Vc, and Tc 

are the critical constants of a substance (Table 36.5).

At and above Tc, the sample has a single phase which occupies 

the entire volume of the container. Such a phase is, by definition, 

a gas. Hence, the liquid phase of a substance does not form above 

the critical temperature. The single phase that fills the entire vol-

ume when T > Tc may be much denser that we normally consider 

typical of gases, and the name supercritical fluid is preferred.

We show in the following Justification that the critical con-

stants are related to the van der Waals parameters as follows:

V b T
a

Rb
p

a

bc c c= = =3
8

27 27 2
 (36.8)

The first of these relations shows that the critical volume is 

about three times the volume occupied by the molecules them-

selves. Table 36.4 shows expressions for the critical constants 

derived from several equations of state.

Brief illustration 36.4 The critical temperature

The critical temperature of oxygen signifies that it is impos-

sible to produce liquid oxygen by compression alone if its tem-

perature is greater than 155 K. To liquefy oxygen—to obtain a 

fluid phase that does not occupy the entire volume—the tem-

perature must first be lowered to below 155 K, and then the gas 

compressed isothermally.

Self-test 36.5 Under which conditions can liquid nitrogen be 

formed by the application of pressure?

Answer: At T < 126 K

Critical constants 
in terms of van der 
Waals parameters 

Justification 36.2 Relating the critical constants to the 
van der Waals parameters

We see from Fig. 36.6 that, for T < Tc, the calculated isotherms 

oscillate, and each one passes through a minimum followed by 

a maximum. These extrema converge as T → Tc and coincide 

at T = Tc; at the critical point the curve has a flat inflexion (2).

2

From the properties of curves, we know that an inflexion of 

this type occurs when both the first and second derivatives are 

zero. Hence, we can find the critical temperature by calculat-

ing these derivatives and setting them equal to zero. It follows 

from eqn 36.7b that the first and second derivatives of p with 

respect to Vm are, respectively,

d

d

d

d

m m m

m m m

p

V

RT

V b

a

V

p

V

RT

V b

a

V

= −
−

+

=
−

−

( )

( )

2 3

2

2 3 4

2

2 6

Table 36.5* Critical constants of gases

pc/atm Vc/(cm3 mol–1) Tc/K

Ar 48.0 75.3 150.7

CO2 72.9 94.0 304.2

He 2.26 57.8 5.2

O2 50.14 78.0 154.8

* More values are given in the Resource section.
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36 Real gases  327

36.4 Thermodynamic considerations

The empirical results discussed above can be understood in terms 

of the principles of chemical and statistical thermodynamics 

developed throughout the text, and especially in Topics 58 and 66. 

The result is deeper insight into the properties of real gases.

(a) The internal pressure
The virial equation and the van der Waals equation are special 

cases of the thermodynamic equation of state introduced in 

Topic 66:

πT

V

T
p

T
p= ⎛

⎝⎜
⎞
⎠⎟

−∂
∂

  Thermodynamic equation of state  (36.9)

where πT is the internal pressure, the dependence of the inter-

nal energy on the volume at constant temperature:

πT

T

U

V
=⎛

⎝⎜
⎞
⎠⎟

∂
∂

  Internal pressure  (36.10)

with  πT = 0 for a perfect gas, because in the absence of molecu-

lar interactions, a change in volume—that is, a change in aver-

age intermolecular separation—has no effect on the internal 

energy of a perfect gas at constant temperature. For a van der 

Waals gas,

∂
∂
p

T

nR

V nb
V

⎛
⎝⎜

⎞
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−

and it follows from eqn 36.9 that

πT

nRT

V nb

nRT

V nb
a

n

V

a
n

V

=
−

−
−

−⎧
⎨
⎩

⎫
⎬
⎭

=

2

2

2

2

 (36.11)

We now have another way of interpreting the role of the van der 

Waals parameter a: it gives the contribution of molecular inter-

actions to the internal energy of the gas. Moreover, because the 

internal energy is positive for a van der Waals gas, we can infer 

that the internal energy increases as the gas expands at constant 

temperature. That is plausible: the molecules become further 

apart on average and thus interact favourably less strongly.

At the critical point T = Tc, Vm = Vc, and both derivatives are 

equal to zero:

−
−

+ =

−
− =

RT

V b

a

V

RT

V b
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V

c

c

c

c

( )
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3 4

2
0

2 6
0

c

c

Solving this pair of equations gives (as you should verify) the 

expressions for Vc and Tc in eqn 36.8. When they are inserted 

in the van der Waals equation itself, we find the expression for 

pc given there too.

Internal 
pressure 

van der 
Waals gas

Example 36.2 Writing an expression for the internal 
pressure of a real gas

Write an expression for the internal pressure of a gas that 

obeys the virial equation of state.

Method Begin by rearranging eqn 36.4b to

p
RT

V

B

V
= + +…⎛

⎝⎜
⎞
⎠⎟m m

1

and then use eqn 36.9, noting that the virial coefficients 

depend on temperature.

Answer Because the virial coefficients depend on tempera-

ture, we write
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After evaluating the derivatives and using eqn 36.4b again to 

simplify the resulting expression, we obtain
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It follows from eqn 36.9 that
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328 8 Interactions

(b) The statistical origins of equations 
of state

To establish contact between the empirical equations of state 

and the statistical thermodynamic discussion in Topics 51–54, 

we need to use the canonical partition function Q to calculate 

the internal pressure because only that formulation allows 

us to include the effects of intermolecular interactions. From 

the  expression for U in terms of Q (〈E〉 = −(∂ ln Q/∂β)V and 

U = U(0) + 〈E〉), we can write

π
βT

V T
V

= − ⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
∂

∂
∂

∂
lnQ

  (36.12)

where β  = 1/kT. To develop this expression, we need to find 

a way to build an intermolecular potential energy into the 

expression for Q. The total kinetic energy of a gas is the sum 

of the kinetic energies of the individual molecules. Therefore, 

even in a real gas the canonical partition function factorizes 

into a part arising from the kinetic energy and a factor called 

the configuration integral, Z, which depends on the contribu-

tions to the intermolecular potential energy. We write

Q
Z=

Λ3N
 Q  in terms of the configuration integral (36.13)

where Λ is the thermal wavelength (see eqn 52.7b), Λ = h/

(2πmkT)1/2. It then follows that
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 (36.14)

In the second line, although the derivative of Λ with respect to 

temperature and hence β is nonzero, Λ is independent of vol-

ume, so the derivative with respect to volume is zero.

For a real gas of atoms (for which the intermolecular interac-

tions are isotropic), Z is related to the total potential energy Ep 

of interaction of all the particles by

Z = …∫ −1
1 2N

E
N!

e d d dpβ τ τ τ  (36.15)

where dτi is the volume element for atom i. The physical ori-

gin of this term is that the probability of occurrence of each 

arrangement of molecules possible in the sample is given by a 

Boltzmann distribution in which the exponent is given by the 

potential energy corresponding to that arrangement.

When the potential energy function has the form of a 

central hard sphere surrounded by a shallow attractive well 

(Fig. 36.7), then detailed calculation, which is too involved 

to reproduce here, leads to πT = an2/V2, where a is a constant 

that is proportional to the area under the attractive part of 

Real 
gas of 
atoms

Configuration 
integral

Brief illustration 36.5 The configuration integral

Equation 36.15 is very difficult to manipulate in practice, even 

for quite simple intermolecular potential energy functions. 

However, the case of a perfect gas is manageable because when 

the molecules do not interact with one another, Ep = 0 and 

hence e−βΕ p =1.  Then

Z = … = … =∫ ∫ ∫ ∫−1 1
1

1 2 1 2N N
E

N N

V V V

V N

! !
e d d d d d dpβ τ τ τ τ τ τ



�� �

� ���� ����
VV

N

N

!

where ∫ dτi = V, with V as the volume of the container.

Self-test 36.7 Use the result from Brief illustration 36.5 and 

eqn 36.12 to calculate the internal pressure of a perfect gas.

Answer: πT = 0; the same result is obtained in Topics 58 and 66

Self-test 36.6 Estimate πT for argon at 275 K given that 

B(250 K) = −28.0 cm3 mol−1 and B(300 K) = −15.6 cm3 mol−1 at 

1.0 atm. Hints: (a) Rewrite the expression for πT from Example 

36.2 in terms of the ratio of differences ΔB/ΔT, and then take 

T as the mean value of the two given temperature values; 

(b) because deviation from perfect gas behaviour is expected 

to be small, use the perfect gas law to estimate Vm.

Answer: 0.30 kPa

Internal pressure 
in terms of Q
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Determines b

Determines a

Figure 36.7 The van der Waals equation of state can be 
derived on the basis that the intermolecular potential 
energy has a hard core surrounded by a long-range, shallow 
attractive well.
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36 Real gases  329

the potential. Of course, this is also eqn 36.11 for the inter-

nal pressure of a van der Waals gas. At this point we can 

conclude that if there are attractive interactions between mol-

ecules in a gas, then its internal energy increases as it expands 

isothermally (because πT > 0, and the slope of U with respect 

to V is positive). The energy rises because, at greater average 

separations, the molecules spend less time in regions where 

they interact favourably.

Checklist of concepts

☐ 1. In real gases, molecular interactions affect the equation 

of state.

☐ 2. The true equation of state of a gas is expressed in terms 

of virial coefficients.

☐ 3. The van der Waals equation of state is an approxima-

tion to the true equation of state in which attractions 

are represented by a parameter a and repulsions are 

represented by a parameter b.

☐ 4. At or above the critical temperature a single form of 

matter, a supercritical fluid, fills a container at every 

value of the pressure, and there is no separation of a liq-

uid from the gas.

☐ 5. The internal pressure of a perfect gas is zero; the internal 

pressure of a real gas can be written in terms of experimen-

tal parameters (such as the virial coefficients or the van der 

Waals parameters) or the canonical partition function.

Checklist of equations

Property Equation Comment Equation number

Compression factor Z V V= m m/ ° Definition 36.3a

Virial equation of state pV RT B V C Vm m m= + + +…( / / )1 2  36.4b

van der Waals equation p RT V b a V= − −/( ) /m m
2 a: effect of attractions; b: effect of repulsions 36.7b

Critical constants in terms of the van 
der Waals parameters

Vc = 3b
 Tc = 8a/27Rb
   pc = a/27b2

36.8

Internal pressure πT = −an2/V2 van der Waals gas 36.11

πT = (∂(∂ ln Q/∂β)V/ ∂V)T,
  Q  = Z/Λ3N

Q is the canonical partition function; Z is the 
configuration integral; β = 1/kT

36.12–36.13
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TOPIC 37

Crystal structure

A crucial aspect of the link between the structure and proper-

ties of a solid is the pattern in which the atoms (and molecules) 

are stacked together, so here we examine how the structures 

of solids are described and determined. First, we see how to 

describe the regular arrangement of atoms in solids. Then we 

consider the basic principles of X-ray diffraction and see how 

the diffraction pattern can be interpreted in terms of the distri-

bution of electron density in a crystal.

37.1 Periodic crystal lattices

A periodic crystal is built up from regularly repeating ‘struc-

tural motifs’, which may be atoms, molecules, or groups 

of atoms, molecules, or ions. A space lattice is the pattern 

formed by points representing the locations of these motifs 

(Fig. 37.1). The space lattice is, in effect, an abstract scaffold-

ing for the crystal structure. More formally, a space lattice is 

a three- dimensional, infinite array of points, each of which is 

surrounded in an identical way by its neighbours, and which 

defines the basic structure of the crystal. In some cases there 

may be a structural motif centred on each lattice point, but 

that is not necessary. The crystal structure itself is obtained by 

associating with each lattice point an identical structural motif. 

 ➤ Why do you need to know this material?
It is necessary to understand the details of the structures of 
metallic, ionic, and molecular solids if you want to account 
for their properties. To be prepared for the study of the 
mechanical, electrical, optical, and magnetic properties 
of solids that can form the basis of new materials and 
technologies you need to know how the crystal structures 
of solids are determined.

Contents

37.1 Periodic crystal lattices 330

Brief illustration 37.1: Bravais lattices 333

37.2 The identification of lattice planes 333

(a) The Miller indices 333

Brief illustration 37.2: Miller indices 334

(b) The separation of planes 334

Example 37.1: Using the Miller indices 334

37.3 X-ray crystallography 335

(a) Bragg’s law 336

Brief illustration 37.3: Bragg’s law 1 336

Brief illustration 37.4: Bragg’s law 2 336

(b) The electron density 337

Example 37.2: Calculating a structure factor 338

Example 37.3: Calculating an electron density  

by Fourier synthesis 339

(c) Determination of the structure 339

Brief illustration 37.5: The Patterson synthesis 340

37.4 Neutron and electron diffraction 340

Example 37.4: Calculating the typical wavelength  

of thermal neutrons 341

Checklist of concepts 342

Checklist of equations 342

 ➤ What is the key idea?
The details of the regular arrangement of atoms in periodic 
crystals can be determined by X-ray diffraction techniques.

 ➤ What do you need to know already?
You need to be familiar with the wave description of 
electromagnetic radiation (Foundations, Topic 3) and 
the significance of Fourier transforms (Mathematical 

background 6). Light use is made of the de Broglie relation 
(Topic 4) and the equipartition theorem (Foundations, 
Topic 2).
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37 Crystal structure  331

The solids known as quasicrystals are ‘aperiodic’, in the sense 

that the space lattice, though still filling space, does not have 

translational symmetry. Our discussion will focus on periodic 

crystals only and, to simplify the language, we refer to these 

structures simply as ‘crystals’.

The unit cell is an imaginary parallelepiped (parallel-sided 

figure) that contains one unit of the translationally repeating 

pattern (Fig. 37.2). A unit cell can be thought of as the funda-

mental region from which the entire crystal may be constructed 

by purely translational displacements (like bricks in a wall). A 

unit cell is commonly formed by joining neighbouring lattice 

points by straight lines (Fig. 37.3). Such unit cells are called 

primitive. It is sometimes more convenient to draw larger non-

primitive unit cells that also have lattice points at their centres 

or on pairs of opposite faces. An infinite number of different 

unit cells can describe the same lattice, but the one with sides 

that have the shortest lengths and that are most nearly per-

pendicular to one another is normally chosen. The lengths of 

the sides of a unit cell are denoted a, b, and c, and the angles 

between them are denoted α, β, and γ  (Fig. 37.4).

Unit cells are classified into seven crystal systems by noting 

the rotational symmetry elements they possess. A symmetry 

operation is an action (such as a rotation, reflection, or inver-

sion) that leaves an object looking the same after it has been 

carried out. There is a corresponding symmetry element for 

each symmetry operation, which is the point, line, or plane 

with respect to which the symmetry operation is performed. 

For instance, an n-fold rotation (the symmetry operation) 

about an n-fold axis of symmetry (the corresponding symme-

try element) is a rotation through 360°/n. (See Topics 31–33 for 

a more detailed discussion of symmetry.)

The following are examples of unit cells:

A cubic unit cell has four threefold axes in a tetrahedral 

array (Fig. 37.5).

A monoclinic unit cell has one twofold axis; the unique 

axis is by convention the b axis (Fig. 37.6).

A triclinic unit cell has no rotational symmetry, and 

typically all three sides and angles are different (Fig. 37.7).

Table 37.1 lists the essential symmetries, the elements that 

must be present for the unit cell to belong to a particular crystal 

system.

Figure 37.2 A unit cell is a parallel-sided (but not necessarily 
rectangular) figure from which the entire periodic crystal 
structure can be constructed by using only translations 
(not reflections, rotations, or inversions).

Lattice point

Structural motif

Figure 37.1 Each lattice point specifies the location of a 
structural motif (for example, a molecule or a group of 
molecules). The crystal lattice is the array of lattice points; the 
crystal structure is the collection of structural motifs arranged 
according to the lattice.

Figure 37.3 A unit cell can be chosen in a variety of ways, as 
shown here. It is conventional to choose the cell that represents 
the full symmetry of the lattice. In this rectangular lattice, the 
rectangular unit cell would normally be adopted.

α
β

γ

a
b c

α
b

c γ

a
b

β

a
c

Figure 37.4 The notation for the sides and angles of a unit cell. 
Note that the angle α lies in the plane (b,c) and perpendicular 
to the axis a.
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There are only 14 distinct space lattices in three dimensions. 

These Bravais lattices are illustrated in Fig. 37.8. It is conven-

tional to portray these lattices by primitive unit cells in some 

cases and by non-primitive unit cells in others. The following 

notation is used:

A primitive unit cell (with lattice points only at the 

corners) is denoted P.

A body-centred unit cell (I) also has a lattice point at its 

centre.

A face-centred unit cell (F) has lattice points at its 

corners and also at the centres of its six faces.

A side-centred unit cell (A, B, or C) has lattice points at 

its corners and at the centres of two opposite faces.

For simple structures, it is often convenient to choose an atom 

belonging to the structural motif, or the centre of a molecule, as 

the location of a lattice point or the vertex of a unit cell, but that 

is not a necessary requirement. Equivalent lattice points within 

the unit cell of a Bravais lattice have identical surroundings.

C3

C3

C3

C3

Figure 37.5 A unit cell belonging to the cubic system has four 
threefold axes, denoted C3, arranged tetrahedrally. The insert 
shows the threefold symmetry.

C2

Figure 37.6 A unit cell belonging to the monoclinic system has 
a twofold axis (denoted C2 and shown in more detail  
in the insert).

Figure 37.7 A triclinic unit cell has no axes of rotational 
symmetry.

a

a a

Cubic P Cubic I Cubic F

aa

c

Tetragonal P Tetragonal I

Orthorhombic P Orthorhombic C Orthorhombic I Orthorhombic F

a b

c

Monoclinic P Monoclinic C

a
b

c
β

Triclinic

a
b

c α β

γ

a a

c
120° a

a a

120°

Hexagonal Trigonal R

Figure 37.8 The 14 Bravais lattices. The points are lattice 
points, and are not necessarily occupied by atoms. P denotes 
a primitive unit cell (R is used for a trigonal lattice), I a body-
centred unit cell, F a face-centred unit cell, and C (or A or B) a 
cell with lattice points on two opposite faces. Trigonal lattices 
may belong to the rhombohedral or hexagonal systems 
(Table  37.1).

Table 37.1 The seven crystal systems

System Essential symmetries

Triclinic None

Monoclinic One C2 axis

Orthorhombic Three perpendicular C2 axes

Rhombohedral One C3 axis

Tetragonal One C4 axis

Hexagonal One C6 axis

Cubic Four C3 axes in a tetrahedral arrangement
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37 Crystal structure  333

37.2 The identification of lattice 
planes

There are many different sets of lattice planes in a crystal 

(Fig. 37.10), and we need to be able to identify them. Two-

dimensional lattices are easier to visualize than three-dimen-

sional lattices, so we shall introduce the concepts involved by 

referring to two dimensions initially, and then extend the con-

clusions by analogy to three dimensions.

(a) The Miller indices
Consider a two-dimensional rectangular lattice formed from a 

unit cell of sides a, b (as in Fig. 37.10). Each plane in the illus-

tration (except the plane passing through the origin) can be 

distinguished by the distances at which it intersects the a and b 

axes. One way to label a plane would therefore be to quote the 

smallest intersection distances. For example, we could denote a 

representative plane of each type in Fig. 37.10 as (a) (1a,1b), (b) 

( , ),1
2

1
3

a b  (c) (−1a,1b), and (d) (∞a,1b), where ∞ is used to show 

that the planes intersect an axis at infinity. However, if we agree 

to quote distances along the axes as multiples of the lengths of 

the unit cell, then we can label the planes more simply as (1,1), 

( , ),1
2

1
3  (−1,1), and (∞,1), respectively. If the lattice in Fig. 37.10 

is the top view of a three-dimensional orthorhombic lattice in 

which the unit cell has a length c in the z-direction, all four sets 

of planes intersect the z-axis at infinity. Therefore, the full labels 

are (1,1,∞), ( , , ),1
2

1
3

∞  (−1,1,∞), and (∞,1,∞).

The presence of fractions and infinity in the labels is incon-

venient. They can be eliminated by taking the reciprocals of the 

labels. As we shall see, taking reciprocals turns out to have fur-

ther advantages. The Miller indices, (hkl), are the reciprocals of 

intersection distances. To simplify the notation while providing 

a great deal of information, the following rules apply:

Negative indices are written with a bar over the number, 

as in ( )110 .

If taking the reciprocal results in a fraction, then the 

fraction can be cleared by multiplying through by an 

appropriate factor.

For example, a ( , , )1
3

1
2

0  plane is denoted (2,3,0) after multipli-

cation of all three indices by 6.

The notation (hkl) denotes an individual plane. To 

specify a set of parallel planes we use the notation {hkl}.

Thus, we speak of the (110) plane in a lattice, and the set of all 

{110} planes that lie parallel to the (110) plane.

A helpful feature to remember is that the smaller the abso-

lute value of h in {hkl}, the more nearly parallel the set of planes 

is to the a axis (the {h00} planes are an exception). The same 

is true of k and the b axis and l and the c axis. When h = 0, the 

planes intersect the a axis at infinity, so the {0kl} planes are par-

allel to the a axis. Similarly, the {h0l} planes are parallel to b and 

the {hk0} planes are parallel to c.

(a) (b)

(c) (d)

a

b

Figure 37.10 Some of the planes that can be drawn 
through the points of a rectangular space lattice and their 
corresponding Miller indices (hkl): (a) {110}, (b) {230}, (c) { 110}, 
and (d) {010}.

Brief illustration 37.1 Bravais lattices

Consider a body-centred cubic unit cell of sides a and one of its 

corners with coordinates x = 0, y = 0, z = 0 (Fig. 37.9). Starting 

from this corner, the centre of the edge that runs along the 

y-axis has coordinates x = 0, y a= 1
2

, z = 0. It follows that the 

centres of each edge are equivalent to this point with coordi-

nates x = 0, y a= 1
2

, z = 0.

Self-test 37.1 What points within a face-centred cubic unit cell 

are equivalent to the point x a y z a= = =1
2

1
2

0, , ?

Answer: The centres of each face

x

y

z

a

a

a/2 a
0

Figure 37.9 The body-centred cubic unit cell used in Brief 

illustration 37.1. The arrows show some of the ways in which 
the initial (black) point is related by symmetry operations to 
the remaining points halfway along each edge.
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(b) The separation of planes
The Miller indices are very useful for expressing the separation 

of planes. It is shown in the following Justification that the sepa-

ration of the {hk0} planes in the square lattice in Fig. 37.12 is 

given by

1

0
2

2 2

2

0 2 2 1 2

d

h k

a

d
a

h k

hk

hk

=
+

=
+

or

/( )   

Square lattice  Separation of planes  (37.1a)

By extension to three dimensions, the separation of the {hkl} 

planes of a cubic lattice is given by

1
2

2 2 2

2

2 2 2 1 2

d

h k l

a

d
a

h k l

hkl

hkl

=
+ +

=
+ +

or

/( )
 

The corresponding expression for a general orthorhombic lat-

tice (one in which the axes are mutually perpendicular) is the 

generalization of this expression:

1
2

2

2

2

2

2

2d

h

a

k

b

l

chkl

= + +
 

Cubic lattice Separation 
of planes

 (37.1b)

Example 37.1 Using the Miller indices

Calculate the separation of (a) the {123} planes and (b) the 

{246} planes of an orthorhombic unit cell with a = 0.82 nm, 

b = 0.94 nm, and c = 0.75 nm.

Justification 37.1 The separation of lattice planes

Consider the {hk0} planes of a square lattice built from a unit 

cell with sides of length a (Fig. 37.12).

We can write the following trigonometric expressions for the 

angle φ shown in the illustration:

sin
( / )

cos
( / )

φ φ= = =d

a h

hd

a

d

a k

kd

a
hk hk= 0 0

Because the lattice planes intersect the horizontal axis h times 

and the vertical axis k times, the length of each hypotenuse 

is calculated by dividing a by h and a by k. Then, because  

sin2 φ + cos2 φ = 1, it follows that

hd

a

kd

a
hk hk0

2

0

2

1
⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

=

which we can rearrange by dividing both sides by dhk0
2  into

1

0
2

2

2

2

2

2 2

2d

h

a

k

a

h k

ahk

= + = +

which is eqn 37.1a.

a

a

a/k

a/h

dhkl

(hkl)

φ

φ

Figure 37.12 The dimensions of a unit cell and their relation 
to the plane passing through the lattice points.

Brief illustration 37.2 Miller indices

The {1,1,∞} planes in Fig. 37.10a are the {110} planes in the 

Miller notation. Similarly, the { , , }1
2

1
3

∞ planes are denoted 

{230}. Figure 37.10c shows the { }110  planes. The Miller indi-

ces for the four types of plane in Fig. 37.10 are therefore {110}, 

{230}, { }110 , and {010}. Figure 37.11 shows a three-dimensional 

representation of a selection of planes, including one in a lat-

tice with non-orthogonal axes.

Self-test 37.2 Find the Miller indices of the planes that inter-

sect the crystallographic axes at the distances (3a, 2b, c) and 

(2a, ∞b, ∞c)

Answer: {236} and {100}

a

b

c

(110)

(100)

(111)

(111)

a

b

c

Figure 37.11 Some representative planes in three 
dimensions and their Miller indices. Note that a 0 indicates 
that a plane is parallel to the corresponding axis, and that 
the indexing may also be used for unit cells with non-
orthogonal axes.

Orthorhombic 
lattice 

Separation 
of planes

 (37.1c)
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37.3 X-ray crystallography

A characteristic property of waves is that when they are present 

in the same region of space they interfere with one another, 

giving a greater displacement where peaks or troughs coincide 

and a smaller displacement where peaks coincide with troughs 

(Fig. 37.14). According to classical electromagnetic theory, the 

intensity of electromagnetic radiation is proportional to the 

square of the amplitude of the waves. Therefore, the regions of 

constructive or destructive interference show up as regions of 

enhanced or diminished intensities. The phenomenon of dif-

fraction is the interference caused by an object in the path of 

waves, and the pattern of varying intensity that results is called 

the diffraction pattern. Diffraction occurs when the dimen-

sions of the diffracting object are comparable to the wavelength 

of the radiation.

X-rays are electromagnetic radiation with wavelengths of the 

order of 10−10 m, which is comparable to the separation of lat-

tice planes in a crystal. Consequently, X-ray diffraction is the 

basis of X-ray crystallography, a technique of extraordinary 

power for the determination of crystal structures. The method 

developed by the Braggs (William and his son Lawrence, who 

later jointly won the Nobel Prize) is the foundation of almost 

all modern work in X-ray crystallography. They used a single 

crystal and a monochromatic beam of X-rays, and rotated the 

crystal until a reflection was detected. There are many different 

sets of planes in a crystal, so there are many angles at which a 

reflection occurs. The raw data consist of the angles at which 

reflections are observed and their intensities.

Single-crystal diffraction patterns are measured by using 

a four-circle diffractometer (Fig. 37.15). An integrated com-

puter identifies the angular settings of the diffractometer’s four 

circles that are needed to observe any particular intensity peak 

Method For the first part, simply substitute the information 

into eqn 37.1c. For the second part, instead of repeating the 

calculation, note that if all three Miller indices are multiplied 

by n, then their separation is reduced by that factor (Fig. 37.13):

1
2

2

2

2

2

2

2
2

2

2

2

2

2

2d

nh

a

nk

b

nl

c
n

h

a

k

b

l

cnh nk nl, ,

( ) ( ) ( )= + + = + +
⎛
⎝⎜

⎞
⎠⎟

== n

dhkl

2

2

which implies that

d
d

nnh nk nl
hkl

, , =

Answer Substituting the indices into eqn 37.1c gives

1 1

0 82

2

0 94

3

0 75
22

123
2

2

2

2

2

2

2
2

d
= + + = −

( . ) ( . ) ( . )nm nm nm
nm

Hence, d123 = 0.22 nm. It then follows immediately that d246 is 

one-half this value, or 0.11 nm.

A note on good practice It is always sensible to look 

for analytical relations between quantities rather than 

to evaluate expressions numerically each time, for that 

emphasizes the relations between quantities (and avoids 

unnecessary work).

Self-test 37.3 Calculate the separation of (a) the {133} planes 

and (b) the {399} planes in the same lattice.

Answer: (a) 0.19 nm, (b) 0.063 nm

{220}{110}

Figure 37.13 The separation of the {220} planes is half that 
of the {110} planes. In general, the separation of the planes 
{nh,nk,nl} is n times smaller than the separation of the {hkl} 
planes.

(a) (b)

Figure 37.14 When two waves are in the same region of space 
they interfere. Depending on their relative phase, they may 
interfere (a) constructively, to give an enhanced amplitude, or 
(b) destructively, to give a smaller amplitude. The component 
waves are shown in blue and purple and the resultant in black.

φ

χ

Ω

2θ

Sample

X-ray
beam

To
detector

Figure 37.15 A four-circle diffractometer. The settings of the 
orientations (φ, χ, θ, and Ω) of the components are controlled 
by computer; each (hkl) reflection is monitored in turn, and 
their intensities are recorded.
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in the diffraction pattern. At each setting, the diffraction inten-

sity is measured, and background intensities are assessed by 

making measurements at slightly different settings. Computing 

techniques are now available that lead not only to automatic 

indexing but also to the automated determination of the shape, 

symmetry, and size of the unit cell. Moreover, several tech-

niques are now available for sampling large amounts of data, 

including area detectors and image plates, which sample whole 

regions of diffraction patterns simultaneously.

(a) Bragg’s law
An early approach to the analysis of diffraction patterns pro-

duced by crystals was to regard a lattice plane as a semi-trans-

parent mirror and to model a crystal as a stack of reflecting 

lattice planes of separation d (Fig. 37.16). The model makes it 

easy to calculate the angle the crystal must make to the incom-

ing beam of X-rays for constructive interference to occur. It 

has also given rise to the name reflection to denote an intense 

beam arising from constructive interference.

Consider the reflection of two parallel rays of the same 

wavelength by two adjacent planes of a lattice, as shown in Fig. 

37.16. One ray strikes point D on the upper plane but the other 

ray must travel an additional distance AB before striking the 

plane immediately below. Similarly, the reflected rays will differ 

in path length by a distance BC. The net path-length difference 

of the two rays is then

AB BC 2 sin+ = d θ

where 2θ is the glancing angle (2θ is the angle through which 

the beam is deflected when it makes an angle θ to the lattice 

plane). For many glancing angles the path-length differ-

ence is not an integer number of wavelengths, and the waves 

interfere largely destructively. However, when the path-length 

difference is an integer number of wavelengths (AB + BC = nλ), 

the reflected waves are in phase and interfere constructively. It 

follows that a reflection should be observed when the glancing 

angle satisfies Bragg’s law:

n dλ θ= 2 sin
 

 Bragg’s law  (37.2a)

Reflections with n = 2, 3, … are called second-order, third-order, 

and so on; they correspond to path-length differences of 2, 3, … 

wavelengths. In modern work it is normal to absorb the n into 

d, to write Bragg’s law as

λ θ= 2 sind
 

Alternative form  Bragg’s law  (37.2b)

and to regard the nth-order reflection as arising from the 

{nh,nk,nl} planes (see Example 37.1).

The primary use of Bragg’s law is in the determination of the 

spacing between the layers in the lattice, for once the angle θ 

corresponding to a reflection has been determined, d may read-

ily be calculated.

Brief illustration 37.3 Bragg’s law 1

A first-order reflection from the {111} planes of a cubic crystal 

was observed at θ  = 11.2° when X-rays of wavelength 154 pm 

were used. According to eqn 37.2, the {111} planes responsible 

for the diffraction have separation d111 = λ/(2 sin θ). The sepa-

ration of the {111} planes of a cubic lattice of side a is given by 

eqn 37.1 as d111 = a/31/2. Therefore,

a = =3

2

3 154

2 11 2
687

1 2 1 2/ / pm
pm

λ
θsin

( )

sin .

×
=

°

Self-test 37.4 Calculate the angle θ at which the same crystal 

will give a reflection from the {123} planes.

Answer: 24.8°

A

B

CD

d

θ θ

θ

θ

Figure 37.16 The conventional derivation of Bragg’s law treats 
each lattice plane as a plane reflecting the incident radiation. 
The path lengths differ by AB + BC, which depends on the 
glancing angle, 2θ. Constructive interference (a ‘reflection’) 
occurs when AB + BC is equal to an integer number of 
wavelengths.

Brief illustration 37.4 Bragg’s law 2

Some types of unit cell give characteristic and easily recogniz-

able patterns of lines. In a cubic lattice of unit cell dimension 

a the spacing is given by eqn 37.2, so the angles at which the 

{hkl} planes give first-order reflections are given by

sin /θ λ=( )h k l
a

2 2 2 1 2

2
+ +

The reflections are then predicted by substituting the values of 

h, k, and l:

{hkl} {100} {110} {111} {200} {210} {211} {220} {300} {221} {310}…

h2 + k2 + l2 1 2 3 4 5 6 8 9 9 10…
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(b) The electron density
To prepare the way to discussing methods of structural analy-

sis we need to note that the scattering of X-rays is caused by 

the oscillations an incoming electromagnetic wave generates in 

the electrons of atoms. Heavy, electron-rich atoms give rise to 

stronger scattering than light atoms. This dependence on the 

number of electrons is expressed in terms of the scattering fac-

tor, f, of the element. If the scattering factor is large, then the 

atoms scatter X-rays strongly. An analysis that we do not repeat 

here concludes that the scattering factor of an atom is related 

to the electron density distribution in the atom, ρ(r), and the 

angle 2θ through which the beam is scattered, by

f r
kr

kr
r r k=

∞

∫4
42

0
π = πρ

λ
θ( )

sin
sind

 

The value of f is greatest in the forward direction (θ = 0, Fig. 

37.17). The detailed analysis of the intensities of reflections 

must take this dependence on direction into account. We show 

in the following Justification that, in the forward direction, f is 

equal to the total number of electrons in the atom.

If a unit cell contains several atoms with scattering factors 

fj and coordinates (xja, yjb, zjc), then we show in the following 

Justification that the overall amplitude of a wave diffracted by 

the {hkl} planes is given by

F fhkl

j

j
hkl= ∑ eiφ ( )j

 

 Structure factor  (37.4)

where φhkl(j) = 2π(hxj + kyj + lzj). The sum is over all the atoms 

in the unit cell. The quantity Fhkl is called the structure factor.

Justification 37.3 The structure factor

We begin by showing that if in the unit cell there is an A atom 

at the origin and a B atom at the coordinates (xa,yb,zc), where 

x, y, and z lie in the range 0 to 1, then the phase difference, φhkl, 

between the (hkl) reflections of the A and B atoms is equal to 

2π(hx + ky + lz).

Consider the crystal shown schematically in Fig. 37.18. The 

reflection corresponds to two waves from adjacent A planes; 

for the wavelength and angle of incidence shown, there is con-

structive interference and hence a strong reflection when the 

phase difference of the waves is 2π. If there is a B atom at a 

fraction x of the distance between the two A planes, then it 

gives rise to a wave with a phase difference 2πx relative to an A 

reflection. To see this conclusion, note that if x = 0, there is no 

phase difference; if x = 1
2  the phase difference is π; if x = 1, the 

B atom lies where the lower A atom is and the phase difference 

Justification 37.2 The forward scattering factor

As θ → 0, so k ∝ sin θ → 0. Because sin ,x x x= − +1
6

3 �

lim
sin

lim
( )

lim( ( ) )
k k k

kr

kr

kr kr

kr
kr

→
=

−
− =

0 0

1
6

3

0

1
6

21
→ →

+
= +

�
� 1

The factor (sin kr)/kr is therefore equal to 1 for forward scatter-

ing. It follows that in the forward direction

f r r r= π4 2

0

ρ( ) d
∞

∫
The integral over the electron density ρ (the number of elec-

trons in an infinitesimal region divided by the volume of the 

region) multiplied by the volume element 4πr2dr, the volume 

of a spherical shell of radius r and thickness dr, is the total 

number of electrons, Ne, in the atom. Hence, in the forward 

direction, f = Ne. For example, the scattering factors of Na+, K+, 

and Cl− are 10, 18, and 18, respectively.

Notice that 7 (and 15, …) is missing because the sum of the 

squares of three integers cannot equal 7 (or 15, …). Such 

absences from the pattern are characteristic of the cubic P 

lattice.

Self-test 37.5 Normally, experimental procedures measure the 

glancing angle 2θ rather than θ itself. A diffraction examina-

tion of the element polonium gave lines at the following values 

of 2θ (in degrees) when 71.0 pm X-rays were used: 12.1, 17.1, 

21.0, 24.3, 27.2, 29.9, 34.7, 36.9, 38.9, 40.9, 42.8. Identify the 

unit cell and determine its dimensions.

Answer: cubic P; a = 337 pm

Scattering 
factor  (37.3)

S
ca

tt
er

in
g

 f
ac

to
r,

 f

40

30

20

10

0
0 0.2 0.4 0.6 0.8 1 1.2

(sin θ)/λ

H
C

O

Cl–

Ca2+

Fe2+

Br–

Figure 37.17 The variation of the scattering factor of atoms 
and ions with atomic number and angle. The scattering factor 
in the forward direction (at θ  = 0, and hence at (sin θ)/λ = 0) is 
equal to the number of electrons present in the species.
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The intensity of the (hkl) reflection is proportional to |Fhkl|
2, 

so in principle we can determine the structure factors experi-

mentally by taking the square root of the corresponding inten-

sities (but see below). Then, once we know all the structure 

is 2π. Now consider a (200) reflection. There is now a 2 × 2π 

difference between the waves from the two A layers, and if B 

were to lie at x = 0.5 it would give rise to a wave that differed in 

phase by 2π from the wave from the upper A layer.

Thus, for a general fractional position x, the phase difference 

for a (200) reflection is 2 × 2πx. For a general (h00) reflection, 

the phase difference is therefore h × 2πx. For three dimensions, 

this result generalizes to eqn 37.4.

Phase
difference = 2πx  

Phase
difference = 2 × 2πx  

Phase
difference = 2π 

Phase
difference = 2 × 2π 

xa xa
a a

A

B

A

A

B

A

(a) (b)

Figure 37.18 Diffraction from a crystal containing two 
kinds of atoms. (a) For a (100) reflection from the A planes, 
there is a phase difference of 2π between waves reflected 
by neighbouring planes. (b) For a (200) reflection, the phase 
difference is 4π. The reflection from a B plane at a fractional 
distance xa from an A plane has a phase that is x times these 
phase differences.

Method The structure factor is defined by eqn 37.4. To use this 

equation, consider the ions at the locations specified in Fig. 

37.19. Write f + for the Na+ scattering factor and f − for the Cl− 

scattering factor. Note that ions in the body of the cell contrib-

ute to the scattering with a strength f. However, ions on faces 

are shared between two cells (use 1
2

f ), those on edges by four 

cells (use 1
4

f ), and those at corners by eight cells (use 1
8

f ). Two 

useful relations are (Mathematical background 3)

e 1 cos e ei i iπ = − = +φ φ φ1
2

( )−

Answer From eqn 37.4, and summing over the coordinates of 

all 27 atoms in the illustration:

F fhkl
l h k l

h k

= + ++ π π + +

π

( )

(

( )

(

1
8

1
8

1
2

1
2

1
2

1
2

1
2

1
2

e e

e

2 i 2 i

2 i

+

+ − + +

…

f ll h h l) ( ) ( ))+ π π +1
4

1
4

1
2

1
2e e2 i 2 i+ +…

 

To simplify this 27-term expression, we use e2πih = e2πik = e2πil = 1 

because h, k, and l are all integers:

F f h k h l k l

f

hkl

h k l

= + + π + π + π
+

+{ }

{( )

1 cos( ) cos( ) cos( )

 1 cos

+ +
+ −− + + kk l hπ+ π+ πcos cos }

 

Then, because cos hπ = (−1)h,

F f

f

hkl
h k h l l k

h k l h

= − − + −
+ − + − + −

+ + + +

− + +

{ ( ) ( ) ( ) }

{( ) ( ) ( )

1 1 1 1

1 1 1

+ +
kk l+ −( ) }1

 

Now note that:

 if h, k, and l are all even, Fhkl = f +{1 + 1 + 1 + 1}  

  + f −{1 +1 + 1 + 1} = 4(f + + f −)

 if h, k, and l are all odd, Fhkl = 4(f + − f −)

 if one index is odd and two are even, or vice versa,  

  Fhkl = 0.

The hkl all-odd ref lections are less intense than the hkl all-

even. For f + = f −, which is the case for identical atoms in a cubic 

P arrangement, the hkl all-odd have zero intensity, corre-

sponding to the absences that are characteristic of cubic P unit 

cells (see Brief illustration 37.4).

Self-test 37.6 Which reflections cannot be observed for a cubic 

I lattice?

Answer: for h + k + l odd, Fhkl = 0

Example 37.2 Calculating a structure factor

Calculate the structure factors for the unit cell in Fig. 37.19.

Na+

Cl–

(1,0,1)

(0,0,0)
(½,0,0)

(1,1,1)

(½,½,0)
(1,1,0)(1,0,0)

Figure 37.19 The location of the atoms for the structure 
factor calculation in Example 37.2. The red spheres are Na+, 
the green spheres are Cl−.
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37 Crystal structure  339

factors Fhkl, we can calculate the electron density distribution, 

ρ(r), in the unit cell by using the expression

ρ( ) ( )r = ∑ − + +1 2

V
F

hkl

hkl
hx ky lze πi

 

where V is the volume of the unit cell. Equation 37.5 is called 

a Fourier synthesis of the electron density. Fourier transforms 

occur throughout chemistry in a variety of guises, and are 

described in more detail in Mathematical background 6.

(c) Determination of the structure
A problem with the procedure outlined above is that the 

observed intensity Ihkl is proportional to the square modulus 

|Fhkl|
2, so we do not know whether to use +|Fhkl| or −|Fhkl| in the 

sum in eqn 37.5. In fact, the difficulty is more severe for non-

centrosymmetric unit cells, because if we write Fhkl as the com-

plex number |Fhkl|e
iα, where α is the phase of Fhkl and |Fhkl| is its 

magnitude, then the intensity lets us determine |Fhkl| but tells 

us nothing of its phase, which may lie anywhere from 0 to 2π. 

This ambiguity is called the phase problem; its consequences 

are illustrated by comparing the two plots in Fig. 37.20. Some 

way must be found to assign phases to the structure factors, for 

otherwise the sum for ρ cannot be evaluated and the method 

would be useless.

The phase problem can be overcome to some extent by a 

variety of methods. One procedure that is widely used for inor-

ganic materials with a reasonably small number of atoms in 

a unit cell and for organic molecules with a small number of 

heavy atoms is the Patterson synthesis. Instead of the structure 

factors Fhkl, the values of |Fhkl|
2, which can be obtained without 

ambiguity from the intensities, are used in an expression that 

resembles eqn 37.5:

P
V

F
hkl

hkl
hx ky lz( ) ( )r = ∑ − + +1 2 2| | e iπ

 

 Patterson synthesis  (37.6)

where the values r correspond to the vector separations 

between the atoms in the unit cell, that is, the distances and 

directions between atoms. Whereas the electron density func-

tion ρ(r) is the probability density of the positions of atoms, the 

function P(r) is a map of the probability density of the separa-

tions between atoms: a peak in P at a vector separation r arises 

from pairs of atoms that are separated by the same separation r. 

Thus, if atom A is at the coordinates (xA,yA,zA) and atom B is at 

(xB,yB,zB), then there will be a peak at (xA − xB, yA− yB, zA − zB) in 

the Patterson map. There will also be a peak at the negative of 

these coordinates, because there is a separation vector from B 

to A as well as a separation vector from A to B. The height of the 

Fourier synthesis 
of the electron 
density distribution

 (37.5)

Example 37.3 Calculating an electron density  
by Fourier synthesis

Consider the {h00} planes of a crystal extending indefinitely in 

the x-direction. In an X-ray analysis the structure factors were 

found as follows:

(and F−h = Fh). Construct a plot of the electron density pro-

jected on to the x-axis of the unit cell.

Method Because F−h = Fh, it follows from eqn 37.5 that

V x F F F F

F

h

h
hx

h

h
hx

h
hx

h

ρ ( ) ( )= = + +
=−∞

∞
−

=

∞
−

−

=

∑ ∑e e e2
0

1

2 2

0

1

π π π

= +

i i i

∞∞
−

=

∞( )=

∑ ∑+ +=
−

F Fh
hx hx

h

hxhx hx

( )e e
e e cos

2 2
0

1

21
2

2 2

2π π
+ ππ π

i i

i i


 FF hxh cos2π

and we evaluate the sum (truncated at h = 15) for points 

0 ≤ x ≤ 1 by using mathematical software.

Answer The results are plotted in Fig. 37.20 (green line). The 

positions of three atoms can be discerned very readily. The 

h: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fh 16 −10 2 −1 7 −10 8 −3 2 −3 6 −5 3 −2 2 −3

E
le

ct
ro

n
 d

en
si

ty
, ρ

(x
)

0

0 0.5 1
x

Figure 37.20 The plot of the electron density calculated in 
Example 37.3 (green) and Self-test 37.7 (purple).

more terms there are included, the more accurate the den-

sity plot. Terms corresponding to high values of h (short-

wavelength cosine terms in the sum) account for the finer 

details of the electron density; low values of h account for 

the broad features.

Self-test 37.7 Use mathematical software to experiment with 

different structure factors (including changing signs as well as 

amplitudes). For example, use the same values of Fh as above, 

but with positive signs for h ≥ 6.

Answer: Fig. 37.20 (purple line)
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340 8 Interactions

peak in the map is proportional to the product of the atomic 

numbers of the two atoms, ZAZB.

Heavy atoms dominate the scattering because their scatter-

ing factors are large, of the order of their atomic numbers, and 

their locations may be deduced quite readily. The sign of Fhkl 

can now be calculated from the locations of the heavy atoms 

in the unit cell, and to a high probability the phase calculated 

for them will be the same as the phase for the entire unit cell. 

To see why this is so, we have to note that a structure factor of a 

centrosymmetric cell has the form

F f f f= ± ± + ± +( ) heavy light light+( ) ( ) …
 

(37.7)

where fheavy is the scattering factor of the heavy atom and flight 

the scattering factors of the light atoms. The flight are all much 

smaller than fheavy, and their phases are more or less random if 

the atoms are distributed throughout the unit cell. Therefore, 

the net effect of the flight is to change F only slightly from fheavy, 

and we can be reasonably confident that F will have the same 

sign as that calculated from the location of the heavy atom. This 

phase can then be combined with the observed |F| (from the 

reflection intensity) to perform a Fourier synthesis of the full 

electron density in the unit cell, and hence to locate the light 

atoms as well as the heavy atoms.

Modern structural analyses make extensive use of direct 

methods. Direct methods are based on the possibility of treating 

the atoms in a unit cell as being virtually randomly distributed 

(from the radiation’s point of view), and then to use statistical 

techniques to compute the probabilities that the phases have a 

particular value. It is possible to deduce relations between some 

structure factors and sums (and sums of squares) of others, 

which have the effect of constraining the phases to particular 

values (with high probability, so long as the structure factors are 

large). For example, the Sayre probability relation has the form

sign of is probably equal

to (sign of ) sign of

F

F

h h k k l l

hkl

+ ′ + ′ + ′, ,

(× FFh k l′ ′ ′ )  

For example, if F122 and F232 are both large and negative, then 

it is highly likely that F354, provided it is large, will be positive.

In the final stages of the determination of a crystal structure, 

the parameters describing the structure (atom positions, for 

instance) are adjusted systematically to give the best fit between 

the observed intensities and those calculated from the model of 

the structure deduced from the diffraction pattern. This process 

is called structure refinement. Not only does the procedure give 

accurate positions for all the atoms in the unit cell, but it also 

gives an estimate of the errors in those positions and in the bond 

lengths and angles derived from them. The procedure also pro-

vides information on the vibrational amplitudes of the atoms.

37.4 Neutron and electron diffraction

According to the de Broglie relation (Topic 4, λ = h/p), parti-

cles have wavelengths and may therefore undergo diffraction. 

Sayre probability 
relation

 (37.8)

Brief illustration 37.5 The Patterson synthesis

If the unit cell has the structure shown in Fig. 37.21a, the 

Patterson synthesis would be the map shown in Fig. 37.21b, 

where the location of each spot relative to the origin gives the 

separation and relative orientation of each pair of atoms in the 

original structure.

Self-test 37.8 Consider the data in Example 37.3. Show that 

VP x F F hxh h( ) cos= + =
∞| | | |0

2
1

22 2Σ π  and plot the Patterson 

synthesis.

Answer:

R1

R1

R2

R2

R3

R3

(a) (b)

Figure 37.21 The Patterson synthesis corresponding 
to the pattern in (a) is the pattern in (b). The distance 
and orientation of each spot from the origin gives the 
orientation and separation of one atom–atom separation 
in (a). Some of the typical distances and their contribution 
to (b) are shown as R1, etc.

V
P

(x
)

0

0 0.5 1
x

Figure 37.22 Patterson synthesis of the data from 
Example 37.3.
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37 Crystal structure  341

Neutrons generated in a nuclear reactor and then slowed to 

thermal velocities have wavelengths similar to those of X-rays 

and may also be used for diffraction studies. For instance, a 

neutron generated in a reactor and slowed to thermal veloci-

ties by repeated collisions with a moderator (such as graphite) 

until it is travelling at about 4 km s−1 has a wavelength of about 

100 pm. In practice, a range of wavelengths occurs in a neutron 

beam, but a monochromatic beam can be selected by diffrac-

tion from a crystal, such as a single crystal of germanium.

Neutron diffraction differs from X-ray diffraction in two 

main respects. First, the scattering of neutrons is a nuclear phe-

nomenon. Neutrons pass through the extra-nuclear electrons 

of atoms and interact with the nuclei through the ‘strong force’ 

that is responsible for binding nucleons together. As a result, 

the intensity with which neutrons are scattered is independ-

ent of the number of electrons and neighbouring elements in 

the periodic table may scatter neutrons with markedly differ-

ent intensities. Neutron diffraction can be used to distinguish 

atoms of elements such as Ni and Co that are present in the 

same compound and to study order–disorder phase transitions 

in FeCo. A second difference is that neutrons possess a mag-

netic moment due to their spin. This magnetic moment can 

couple to the magnetic fields of atoms or ions in a crystal (if the 

ions have unpaired electrons) and modify the diffraction pat-

tern. One consequence is that neutron diffraction is well suited 

to the investigation of magnetically ordered lattices in which 

neighbouring atoms may be of the same element but have dif-

ferent orientations of their electronic spin (Fig. 37.23).

Electrons accelerated through a potential difference of 40 kV 

have wavelengths of about 6 pm, and so are also suitable for dif-

fraction studies of molecules. Consider the scattering of elec-

trons (or neutrons) from a pair of nuclei separated by a distance 

Rij and orientated at a definite angle to an incident beam of elec-

trons (or neutrons). When the molecule consists of a number of 

atoms, the scattering intensity can be calculated by summing 

over the contribution from all pairs. The total intensity I of the 

beam scattered through an angle 2θ to the incident direction is 

given by the Wierl equation:

I f f
sR

sR
i j

i j

ij

ij

= =∑
,

sin
sins

4π
λ

θ
 

 Wierl equation  (37.9)

where λ is the wavelength of the electrons in the beam, and f is 

the electron scattering factor, a measure of the electron scat-

tering power of the atom. The main application of electron dif-

fraction techniques is to the study of surfaces (Topic 95), and 

you are invited to explore the Wierl equation in Problem 37.17.

Example 37.4 Calculating the typical wavelength 
of thermal neutrons

Calculate the typical wavelength of neutrons after reach-

ing thermal equilibrium with their surroundings at 373 K. 

For simplicity, assume that the particles are travelling in one 

dimension.

Method We need to relate the wavelength to the tempera-

ture. There are two linking steps. First, the de Broglie relation 

expresses the wavelength in terms of the linear momentum. 

Then the linear momentum can be expressed in terms of the 

kinetic energy, the mean value of which is given in terms of 

the temperature by the equipartition theorem (Topic 2).

Answer From the equipartition principle, we know that the 

mean translational kinetic energy of a neutron at a tempera-

ture T travelling in the x-direction is E kTk = 1
2

. The kinetic 

energy is also equal to p2/2m, where p is the momentum of the 

neutron and m is its mass. Hence, p = (mkT)1/2. It follows from 

the de Broglie relation λ = h/p that the neutron’s wavelength is

λ = h

mkT( )1 2/

Therefore, at 373 K,

λ =
×

× × ×
6 626 10

1 675 10 1 381 10 373

34

27 23 1 1

.

{( . ) ( . ) ( )}

−

− − − ×
J s

kg J K K //

/

.

( . . ) (

2

34

27 23 1 2

2 1

2

6 626 10

1 675 10 1 381 10 373
= ×

× × ×

−

− −

−

×
kg m s

kg mm s

m pm

2 2 1 2

102 26 10 226

−

−=
)

.

/

× =

where we have used 1 J = 1 kg m2 s−2.

Self-test 37.9 Calculate the temperature needed for the aver-

age wavelength of the neutrons to be 100 pm.

Answer: 1.90 × 103 K

Figure 37.23 If the spins of atoms at lattice points are orderly, 
as in this material, where the spins of one set of atoms 
are aligned antiparallel to those of the other set, neutron 
diffraction detects two interpenetrating simple cubic lattices 
on account of the magnetic interaction of the neutron with the 
atoms, but X-ray diffraction would see only a single bcc lattice.
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Checklist of concepts

☐ 1. A space lattice is the pattern formed by points repre-

senting the locations of structural motifs (atoms, mol-

ecules, or groups of atoms, molecules, or ions).

☐ 2. The Bravais lattices are the 14 distinct space lattices in 

three dimensions (Fig. 37.8).

☐ 3. A unit cell is an imaginary parallelepiped that contains 

one unit of a translationally repeating pattern.

☐ 4. Unit cells are classified into seven crystal systems 

according to their rotational symmetries.

☐ 5. Crystal planes are specified by a set of Miller indices 

(hkl).

☐ 6. The scattering factor is a measure of the ability of an 

atom to diffract radiation.

☐ 7. The structure factor is the overall amplitude of a wave 

diffracted by the {hkl} planes.

☐ 8. Fourier synthesis is the construction of the electron 

density distribution from structure factors.

☐ 9. A Patterson synthesis is a map of interatomic vectors 

obtained by Fourier analysis of diffraction intensities.

☐ 10. Structure refinement is the adjustment of structural 

parameters to give the best fit between the observed 

intensities and those calculated from the model of the 

structure deduced from the diffraction pattern.

Checklist of equations

Property Equation Comment Equation number

Separation of planes in an 
orthorhombic lattice

1/dhkl
2   = h2/a2 + k2/b2 + l2/c2 h, k, and l are Miller indices 37.1c

Bragg’s law λ = 2d sin θ d is the lattice spacing 37.2b

Scattering factor f r kr kr r r k= =
∞

∫4 42

0

π π[{ ( )sin } ] , ( ) sinρ λ θ/ d / Spherically symmetrical atom 37.3

Structure factor F f j hx ky lzhkl

j

j
j

hkl j j j
hkl= = + +∑ eiφ φ( ), ( )( ) 2π Definition 37.4

Fourier synthesis ρ( ) ( ) ( )r = ∑ − + +1 2/ e iV F

hkl

hkl
hx ky lzπ V is the volume of the unit cell 37.5

Patterson synthesis P V F

hkl

hkl
hx ky lz( ) ( ) ( )r = ∑ − + +1 2 2/ | | e iπ 37.6

Wierl equation I f f sR sR s

i j

i j ij ij( ) (sin ), ( ) sin

,

θ λ θ= =∑ / /4π 37.9
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TOPIC 38

Bonding in solids

The bonding within a solid may be of various kinds. Simplest 

of all are metals, where electrons are delocalized over arrays of 

identical cations and bind the whole together into a rigid but 

ductile and malleable structure. Ionic solids consist of cations 

and anions packed together in a crystal by electrostatic inter-

actions (Foundations, Topic 2). In covalent solids, covalent 

bonds in a definite spatial orientation link the atoms in a net-

work extending through a crystal. Molecular solids are bonded 

together by van der Waals interactions (Topic 35).

38.1 Metallic solids

The crystalline forms of metallic elements can be discussed by 

representing their atoms as identical hard spheres. Most metal-

lic elements crystallize in one of three simple forms, two of 

which can be explained in terms of the hard spheres packing 

together in the closest possible arrangement. In this section we 

consider not only the geometrical arrangement of the atoms in 

the crystal, but also the distribution of electrons over the atoms.

(a) Close packing
Figure 38.1 shows a close-packed layer of identical spheres, 

one with maximum utilization of space. A close-packed three-

dimensional structure is obtained by stacking such close-

packed layers on top of one another. However, this stacking can 

be done in different ways, which result in close-packed poly-

types, or structures that are identical in two dimensions (the 

close-packed layers) but differ in the third dimension.

In all polytypes, the spheres of the second close-packed layer 

lie in the depressions of the first layer (Fig. 38.2). The third 

layer may be added in either of two ways. In one, the spheres 

are placed so that they reproduce the first layer (Fig. 38.3a), to 

give an ABA pattern of layers. Alternatively, the spheres may be 

placed over the gaps in the first layer (Fig. 38.3b), so giving an 

ABC pattern. Two polytypes are formed if the two stacking pat-

terns are repeated in the vertical direction. If the ABA pattern is 

Contents

38.1 Metallic solids 343

(a) Close packing 343

Example 38.1: Calculating a packing fraction 344

(b) Electronic structure of metals 345

Brief illustration 38.1: Energy levels in a band 346

38.2 Ionic solids 347

(a) Structure 347

Brief illustration 38.2: The radius ratio 348

(b) Energetics 348

Brief illustration 38.3: The Born–Mayer equation 350

Example 38.2: Using the Born–Haber cycle 350

38.3 Molecular solids and covalent networks 351

Brief illustration 38.4: Diamond and graphite 351

Checklist of concepts 352

Checklist of equations 352

 ➤ Why do you need to know this material?
To be prepared for the study of the mechanical, electrical, 
optical, and magnetic properties of materials that can 
form the basis of new technologies, you need to know 
how atoms and molecules interact to form metallic, ionic, 
and molecular solids.

 ➤ What is the key idea?
Four characteristic types of bonding in solids are found in 
metals, ionic solids, covalent solids, and molecular solids.

 ➤ What do you need to know already?
You need to be familiar with molecular interactions 
(Topic 35), the features of crystal structure (Topic 37), the 
principles of Hückel molecular orbital theory (Topic 26), 
and the calculation of reaction enthalpies (Topic 57).
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repeated, to give the sequence of layers ABABAB…, the spheres 

are hexagonally close-packed (hcp). Alternatively, if the ABC 

pattern is repeated, to give the sequence ABCABC…, the 

spheres are cubic close-packed (ccp). We can see the origins 

of these names by referring to Fig. 38.4. The ccp structure gives 

rise to a face-centred unit cell, so may also be denoted cubic F 

(or fcc, for face-centred cubic). It is also possible to have ran-

dom sequences of layers; however, the hcp and ccp polytypes 

are the most important. Table 38.1 lists some elements possess-

ing these structures.

The compactness of close-packed structures is indicated by 

their coordination number, the number of spheres immedi-

ately surrounding any selected sphere, which is 12 in all cases. 

Another measure of their compactness is the packing fraction, 

the fraction of space occupied by the spheres, which is 0.740 

(see Example 38.1). That is, in a close-packed solid of identical 

hard spheres, only 26.0 per cent of the volume is empty space. 

The fact that many metals are close-packed accounts for their 

high mass densities.

Example 38.1 Calculating a packing fraction

Calculate the packing fraction of a ccp structure with spheres 

of radius R.

Method Refer to Fig. 38.5. First calculate the volume of a unit 

cell, and then calculate the total volume of the spheres that 

occupy it fully or partially. The first part of the calculation is 

an exercise in geometry. The second part involves counting 

the fraction of spheres that occupy the cell.

Answer We see in Fig. 38.5 that a diagonal of any face passes 

completely through one sphere and halfway through two other 

spheres. Therefore, the length of a diagonal is 4R. The length of 

a side is therefore 81/2R and the volume of the unit cell is 83/2R3. 

As Fig 38.5 shows, each of the eight vertices of the cube contains 

the equivalent of 1
8  of a sphere. Also, each of the six remaining 

Figure 38.1 The first layer of close-packed spheres used to 
build a three-dimensional close-packed structure.

Figure 38.2 The second layer of close-packed spheres 
occupies the dips of the first layer. The two layers are the AB 
component of the close-packed structure.

(a) (b)

Figure 38.3 (a) The third layer of close-packed spheres might 
occupy the dips lying directly above the spheres in the first 
layer, resulting in an ABA structure, which corresponds to 
hexagonal close-packing. (b) Alternatively, the third layer 
might lie in the dips that are not above the spheres in the first 
layer, resulting in an ABC structure, which corresponds to cubic 
close-packing.

(a) (b)

Figure 38.4 A fragment of the structure shown in Fig. 38.3 
revealing the (a) hexagonal, (b) cubic symmetry. The tints on 
the spheres are the same as for the layers in Fig. 38.3.

Table 38.1 The crystal structures of some elements*

Structure Element

hcp‡ Be, Cd, Co, He, Mg, Sc, Ti, Zn

fcc‡ (ccp, cubic F) Ag, Al, Ar, Au, Ca, Cu, Kr, Ne, Ni, Pd, Pb, Pt, Rh, 
Rn, Sr, Xe

bcc (cubic I) Ba, Cs, Cr, Fe, K, Li, Mn, Mo, Rb, Na, Ta, W, V

cubic P Po

*The notation used to describe primitive unit cells is introduced in Topic 37.
‡ Close-packed structures.
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38 Bonding in solids  345

As shown in Table 38.1, a number of common metals adopt 

structures that are less than close-packed. The departure from 

close packing suggests that factors such as specific covalent 

bonding between neighbouring atoms are beginning to influ-

ence the structure and impose a specific geometrical arrange-

ment. One such arrangement results in a cubic I (bcc, for 

body-centred cubic) structure, with one sphere at the centre of 

a cube formed by eight others. The coordination number of a 

bcc structure is only 8, but there are six more atoms not much 

further away than the eight nearest neighbours. The packing 

fraction of 0.68 (Self-test 38.1) is not much smaller than the 

value for a close-packed structure (0.74), and shows that about 

two-thirds of the available space is actually occupied.

(b) Electronic structure of metals
The central aspect of solids that determines their electri-

cal properties (Topic 39) is the distribution of their elec-

trons. There are two models of this distribution. In one, the 

nearly free-electron approximation, the valence electrons are 

assumed to be trapped in a box with a periodic potential, with 

low energy at the locations of cations. In the tight-binding 

approximation, the valence electrons are assumed to occupy 

molecular orbitals delocalized throughout the solid. The latter 

model is more in accord with our discussion of electrical prop-

erties of solids (Topic 39), so we confine our attention to it.

Consider a one-dimensional solid, which consists of a sin-

gle, infinitely long line of atoms. At first sight, this model may 

seem too restrictive and unrealistic. However, not only does it 

give us the concepts we need to understand the structure and 

electrical properties of three-dimensional, macroscopic sam-

ples of metals and semiconductors, it is also the starting point 

for the description of long and thin structures, such as carbon 

nanotubes.

Suppose that each atom has one s orbital available for form-

ing molecular orbitals. We can construct the LCAO-MOs of 

the solid by adding N atoms in succession to a line, and then 

infer the electronic structure by using the building-up prin-

ciple. One atom contributes one s orbital at a certain energy 

(Fig. 38.6). When a second atom is brought up it overlaps 

the first and forms bonding and antibonding orbitals. The 

third atom overlaps its nearest neighbour (and only slightly 

the next-nearest), and from these three atomic orbitals, three 

molecular orbitals are formed: one is fully bonding, one fully 

antibonding, and the intermediate orbital is nonbonding 

between neighbours. The fourth atom leads to the formation 

of a fourth molecular orbital. At this stage, we can begin to 

see that the general effect of bringing up successive atoms 

is to spread the range of energies covered by the molecular 

orbitals, and also to fill in the range of energies with more and 

more orbitals (one more for each atom). When N atoms have 

been added to the line, there are N molecular orbitals cover-

ing a band of energies of finite width, and the Hückel secular 

determinant (Topic 26) is

α β
β α β

β α β
β α β

β α

−
−

−
−

−

E

E

E

E

E

0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0

0 0 0 0 0

…
…
…
…
…
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… αα −

=

E

0

where α is the Coulomb integral and β is the (s,s) resonance 

integral. The theory of determinants applied to such a symmet-

rical example as this (technically a ‘tridiagonal determinant’) 

leads to the following expression for the roots:

E
k

N
k Nk = +

+
= …α β2

1
1 2cos , , ,

π
 

spheres contributes 1
2

 of its volume to the cell. Therefore, each 

cell contains the equivalent of 6 8 41
2

1
8

× ×+ =  spheres. Because 

the volume of each sphere is 4
3

3πR , the total occupied volume is 
16
3

3πR . The fraction of space occupied is therefore

16
3

3

3 2 3 3 28

16

3 8
0 740

π πR

R/ /
.=

×
=

Because an hcp structure has the same coordination number, 

its packing fraction is the same.

Self-test 38.1 The packing fractions of structures that are not 

close-packed are calculated similarly. Calculate the packing 

fraction of a structure with one sphere at the centre of a cube 

formed by eight others: this is a cubic I (bcc) structure.

Answer: 0.68

81/2R

81/2RR

4R

Figure 38.5 The calculation of the packing fraction of a ccp 
unit cell.

Linear 
array of s 
orbitals

Energy 
levels

(38.1)
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We show in the following Justification that when N is infi-

nitely large, Ek + 1 − Ek is infinitely small, but the band still has 

finite width overall (Fig. 38.6):

E E NN − → − →∞1 4 asβ
 

(Note that because β < 0, − 4β > 0.) We can think of this band as 

consisting of N different molecular orbitals, the lowest energy 

orbital (k = 1) being fully bonding, and the highest energy 

orbital (k = N) being fully antibonding between adjacent atoms 

(Fig. 38.7). The molecular orbitals of intermediate energy have 

k − 1 nodes distributed along the chain of atoms. Similar bands 

form in three-dimensional solids.

Linear array 
of s orbitals

Band 
width

(38.2)

Justification 38.1 The properties of a band

From eqn 38.1 we see that the energy separation between 

neighbouring energy levels k and k + 1 is

E E
k

N

k

N

k

k k+ − = + +
+

⎛
⎝⎜

⎞
⎠⎟

− + +
⎛
⎝⎜

⎞
⎠⎟

= +

1 2
1

1
2

1

2

α β α β

β

cos
( )

cos

cos
(

π π

11

1 1

)
cos

π π
N

k

N+ − +
⎛
⎝⎜

⎞
⎠⎟

 

(38.3)

By using the trigonometric identity cos(A + B) = cos A cos B – 

sin A sin B, the first term in parentheses is

cos
( )

cos cos sin sin
k

N

k

N N

k

N N

N

+
+ = + + − + +

→ →∞

1

1 1 1 1 1

1

π π π π π
 as � �� �� →→ →∞0 as N��� ��

Therefore, as N→∞,

E E
k

N

k

Nk k+ − → + − +
⎛
⎝⎜

⎞
⎠⎟

=1 2
1 1

0β cos cos
π π

It follows that when N is infinitely large, the difference between 

neighbouring energy levels is infinitely small.

To assess the effect of N on the width EN − E1 of a band, we 

proceed as follows. The energy of the level with k = 1 is

E
N1 2

1
= + +α β cos

π

We already saw that as N → ∞, cos 0 → 1. Therefore, in this limit

E1 2= +α β

When k has its maximum value of N,

E
N

NN = + +α β2
1

cos
π

As N approaches infinity, we can ignore the 1 in the denomi-

nator, and the cosine term becomes cos π = −1. Therefore, in 

this limit EN = α − 2β, and EN − E1 → −4β, as in eqn 38.2.

Brief illustration 38.1 Energy levels in a band

To illustrate the dependence of Ek+1 − Ek on N, we use eqn 38.3 

to calculate

N E E

N E E

= − = −⎛
⎝⎜

⎞
⎠⎟

≈ −

= − =

3 2
2

4 4
1 414

300 2
2

3

2 1

2 1

: cos cos .

: cos

β β

β

π π

π
001 301

3 628 10 4−⎛
⎝⎜

⎞
⎠⎟

≈ − × −cos .
π β

 

We see that the energy difference decreases with increasing N.

Self-test 38.2 For N = 300, at which value of k would Ek + 1 − Ek 

have its maximum value? Hint: Use mathematical software.

Answer: k = 150

N = 1

N = 2

N = 3

N = 4

N = ∞

(a)

(b)

(c)

(d)

(e)

Figure 38.6 The formation of a band of N molecular  
orbitals by successive addition of N atoms to a line. Note  
that the band remains of finite width as N becomes infinite  
and, although it looks continuous, it consists of N different 
orbitals.

Highest level of p band

Lowest level of s band

Lowest level of p band

Highest level of s band

Fully bonding

Fully bonding

Fully antibonding

Fully antibonding

p Band

s Band

Band
gap

s

p

Figure 38.7 The overlap of s orbitals gives rise to an s band and 
the overlap of p orbitals gives rise to a p band. In this case, the s 
and p orbitals of the atoms are so widely spaced in energy that 
there is a band gap. In many cases the separation is less and the 
bands overlap.
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38 Bonding in solids  347

The band formed from overlap of s orbitals is called the 

s band. If the atoms have p orbitals available, the same proce-

dure leads to a p band (as shown in the upper half of Fig. 38.7). 

If the atomic p orbitals lie higher in energy than the s orbitals, 

then the p band lies higher than the s band, and there may be a 

band gap, a range of energies to which no orbital corresponds. 

However, the s and p bands may also be contiguous or even 

overlap (as is the case for the 3s and 3p bands in magnesium).

Now consider the electronic structure of a solid formed 

from atoms each able to contribute one electron (for example, 

the alkali metals). There are N atomic orbitals and therefore N 

molecular orbitals packed into an apparently continuous band. 

There are N electrons to accommodate. At T = 0, only the lowest 
1
2

N  molecular orbitals are occupied (Fig. 38.8), and the HOMO 

is called the Fermi level. However, unlike in molecules, there 

are empty orbitals very close in energy to the Fermi level, so it 

requires hardly any energy to excite the uppermost electrons. 

Some of the electrons are therefore very mobile and give rise to 

electrical conductivity (Topic 39).

38.2 Ionic solids

Two questions arise when we consider ionic solids: the relative 

locations adopted by the ions and the energetics of the resulting 

structure.

(a) Structure
When crystals of compounds of monatomic ions (such as NaCl 

and MgO) are modelled by stacks of hard spheres it is necessary 

to allow for the different ionic radii (typically with the cations 

smaller than the anions) and different electrical charges. The 

coordination number of an ion is the number of nearest neigh-

bours of opposite charge; the structure itself is characterized 

as having (N+,N−) coordination, where N+ is the coordination 

number of the cation and N− that of the anion.

Even if, by chance, the ions have the same size, the problems 

of ensuring that the unit cells are electrically neutral make it 

impossible to achieve 12-coordinate close-packed ionic struc-

tures. As a result, ionic solids are generally less dense than 

metals. The best packing that can be achieved is the (8,8)-coor-

dinate caesium chloride structure in which each cation is sur-

rounded by eight anions and each anion is surrounded by eight 

cations (Fig. 38.9). In this structure, an ion of one charge occu-

pies the centre of a cubic unit cell with eight counter-ions at its 

corners. The structure is adopted by CsCl itself and also by CaS.

When the radii of the ions differ more than in CsCl, even 

eight-coordinate packing cannot be achieved. One common 

structure adopted is the (6,6)-coordinate rock salt structure 

typified by NaCl (Fig. 38.10). In this structure, each cation is 

surrounded by six anions and each anion is surrounded by six 

cations. The rock salt structure can be pictured as consisting 

of two interpenetrating, slightly expanded cubic F (fcc) arrays, 

one composed of cations and the other of anions. This structure 

is adopted by NaCl itself and also by several other MX com-

pounds, including KBr, AgCl, MgO, and ScN.

The switch from the caesium chloride structure to the rock 

salt structure is related to the value of the radius ratio, γ :

γ = r

r
smaller

larger  

Definition  Radius ratio  (38.4)

The two radii are those of the larger and smaller ions in the 

crystal. The radius-ratio rule, which is derived by considering 

E
n

er
g

y

Occupied levels

Unoccupied levels

Fermi level

Figure 38.8 When N electrons occupy a band of N orbitals, it is 
only half full at T = 0 and the electrons near the Fermi level (the 
top of the filled levels) are mobile.

Cs+

Cl–

Figure 38.9 The caesium chloride structure consists of two 
interpenetrating simple cubic arrays of ions, one of cations and 
the other of anions, so that each cube of ions of one kind has a 
counter-ion at its centre.

Na+

Cl–

Figure 38.10 The rock salt (NaCl) structure consists of 
two mutually interpenetrating, slightly expanded face-centred 
cubic arrays of ions. The entire assembly shown here is the  
unit cell.
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the geometrical problem of packing the maximum number of 

hard spheres of one radius around a hard sphere of a different 

radius, can be summarized as follows:

The deviation of a structure from that expected on the basis 

of this rule is often taken to be an indication of a shift from 

ionic towards covalent bonding. A major source of unreliabil-

ity, though, is the arbitrariness of ionic radii and their variation 

with coordination number.

Ionic radii are derived from the distance between centres of 

adjacent ions in a crystal. However, we need to apportion the 

total distance between the two ions by defining the radius of 

one ion and then inferring the radius of the other ion. One 

scale that is widely used is based on the value 140 pm for the 

radius of the O2− ion (Table 38.2). Other scales are also available 

(such as one based on F− for discussing halides), and it is essen-

tial not to mix values from different scales. Because ionic radii 

are so arbitrary, predictions based on them must be viewed 

cautiously.

(b) Energetics

The lattice energy of a solid is the difference in Coulombic 

potential energy of the ions packed together in a solid and 

widely separated as a gas. The lattice energy is always positive; a 

high lattice energy indicates that the ions interact strongly with 

one another to give a tightly bonded solid. The lattice enthalpy, 

ΔHL, is the change in standard molar enthalpy for the process

MX s M g X g( ) ( ) ( )→ ++ −
 

and its equivalent for other charge types and stoichiometries. 

The lattice enthalpy is equal to the lattice energy at T = 0; at nor-

mal temperatures they differ by only a few kilojoules per mole, 

and the difference is normally neglected.

Each ion in a solid experiences electrostatic attractions from 

all the other oppositely charged ions and repulsions from all the 

other like-charged ions. The total Coulombic potential energy 

is the sum of all the electrostatic contributions. Each cation is 

surrounded by anions, and there is a large negative contribu-

tion from the attraction of the opposite charges. Beyond those 

nearest neighbours, there are cations that contribute a positive 

term to the total potential energy of the central cation. There is 

also a negative contribution from the anions beyond those cati-

ons, a positive contribution from the cations beyond them, and 

so on to the edge of the solid. These repulsions and attractions 

become progressively weaker as the distance from the central 

ion increases, but the net outcome of all these contributions is a 

lowering of energy.

First, consider a simple one-dimensional model of a solid 

consisting of a long line of uniformly spaced alternating cati-

ons and anions, with d the distance between their centres, the 

sum of the ionic radii (Fig. 38.12). If the charge numbers of the 

ions have the same absolute value (+1 and −1, or +2 and −2, 

for instance), then z1 =  + z, z2 = −z, and z1z2 = −z2. The potential 

Brief illustration 38.2 The radius ratio

Using values of ionic radii from the Table 38.2, the radius ratio 

for MgO is

γ = =

+

−

72

140
0 51

2

2

pm

pm

radius of Mg

radius of O




��	
.

which is consistent with the observed rock salt structure of 

MgO crystals.

Self-test 38.3 Predict the crystal structure of TlCl.

Answer: γ  = 0.88; caesium chloride structure

Radius ratio Structural type

γ  < 21/2 − 1 = 0.414 Sphalerite (or zinc blende, Fig. 38.11)

21/2 − 1 = 0.414 < γ < 0.732 Rock salt

γ > 31/2 − 1 = 0.732 Caesium chloride

Zn2+

S2–

Figure 38.11 The structure of the sphalerite form of ZnS 
showing the location of the Zn atoms in the tetrahedral holes 
formed by the array of S atoms. (There is an S atom at the 
centre of the cube inside the tetrahedron of Zn atoms.)

Table 38.2* Ionic radii, r/pm

Na+ 102 (6‡), 116 (8)

K+ 138 (6), 151 (8)

F− 128 (2), 131 (4)

Cl− 181 (close packing)

* More values are given in the Resource section. This scale is based on a value 140 pm 

for the radius of the O2− ion.

‡ Coordination number.
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38 Bonding in solids  349

energy of the central ion is calculated by summing all the terms, 

with negative terms representing attractions to the other oppo-

sitely charged ions and positive terms representing repulsions 

from like-charged ions. For the interaction with ions extending 

in a line to the right of the central ion, the lattice energy is

E
z e

d

z e

d

z e

d

z e

d

z e

d

p = × − + − + −…⎛
⎝⎜

⎞
⎠⎟

= × − +

1

4 2 3 4

4
1

0

2 2 2 2 2 2 2 2

2 2

0

π

π

ε

ε
11

2

1

3

1

4

4
2

2 2

0

− + −…⎛
⎝⎜

⎞
⎠⎟

= − ×z e

dπε
ln

We have used the relation 1 21
2

1
3

1
4

− + − + =… ln . Finally, we mul-

tiply EP by 2 to obtain the total energy arising from interactions 

on each side of the ion and then multiply by Avogadro’s con-

stant, NA, to obtain an expression for the lattice energy per mole 

of ions. The outcome is

E
z N e

dP
A= − ×2 2

4

2 2

0

ln
πε

with d = rcation + ranion. This energy is negative, corresponding 

to a net attraction. This calculation can be extended to three-

dimensional arrays of ions with different charges:

E A
z z N e

dp

A B A= − ×
2

04πε  
(38.5)

The factor A is a positive numerical constant called the 

Madelung constant; its value depends on how the ions are 

arranged about one another. For ions arranged in the same way 

as in sodium chloride, A = 1.748. Table 38.3 lists Madelung con-

stants for other common structures.

There are also repulsions arising from the overlap of the 

filled atomic orbitals of the ions and, consequently, the role of 

the Pauli principle. These repulsions are taken into account by 

supposing that, because wavefunctions decay exponentially 

with distance at large distances from the nucleus, and repulsive 

interactions depend on the overlap of orbitals, the repulsive 

contribution to the potential energy has the form

E N C d d
p A e* / *= ′ −

 (38.6)

with C ′ and d* constants; the value of C ′ is not needed (it can-

cels) and that of d* is commonly taken to be 34.5 pm. The total 

potential energy is the sum of EP and Ep
* , and passes through a 

minimum when d( + )/dp pE E d =* 0 (Fig. 38.13). A short calcula-

tion leads to the following expression for the minimum total 

potential energy (see Problem 38.8):

E
N z z e

d

d

d
Ap min

A A B

,

*

= − −⎛
⎝⎜

⎞
⎠⎟

2

04
1

πε
 

 Born–Mayer equation  (38.7)

This expression is called the Born–Mayer equation. Provided 

we ignore zero-point contributions to the energy, the negative 

of this potential energy can be identified with the lattice energy. 

The important features of this equation are:

Because Ep,min∝|zAzB|, the potential energy 

becomes more negative with increasing charge 

number of the ions.

Because Ep,min∝1/d, the potential energy becomes 

more negative with decreasing ionic radius.

The second conclusion follows from the fact that the smaller 

the ionic radii, the smaller the value of d. We see that large lat-

tice energies are expected when the ions are highly charged (so 

|zAzB| is large) and small (so d is small).

P
h
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o
n

Table 38.3 Madelung constants

Structural type A

Caesium chloride 1.763

Fluorite 2.519

Rock salt 1.748

Rutile 2.408

Sphalerite 1.638

Wurtzite 1.641

Po
te

n
ti

al
 e

n
er

g
y,

 V

0

Repulsion

Attraction

Total

Lattice parameter, d

Figure 38.13 The contributions to the total potential energy of 
an ionic crystal.

+z +z +z–z –z –z

d

Figure 38.12 A line of alternating cations and ions used in the 
calculation of the Madelung constant in one dimension.
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Experimental values of the lattice enthalpy (the enthalpy, 

rather than the energy) are obtained by using a Born–Haber 

cycle, a closed path of transformations starting and ending at 

the same point, one step of which is the formation of the solid 

compound from a gas of widely separated ions.

Some lattice enthalpies obtained by the Born–Haber cycle 

are listed in Table 38.4. As can be seen from the data, the trends 

in values are in general accord with the predictions of the Born–

Mayer equation. Agreement is typically taken to imply that the 

ionic model of bonding is valid for the substance; disagreement 

implies that there is a covalent contribution to the bonding. It 

is important, though, to be cautious, because numerical agree-

ment might be coincidental.

Brief illustration 38.3 The Born–Mayer equation

To estimate Ep,min for MgO, which has a rock salt structure 

(A = 1.748), we use d = r(Mg2+) + r(O2–) = 72 + 140 pm = 212 pm. 

We also use

N eA
mol C1.6022

0

23 1 19 2

4

6 022 14 10 176 10

4 8 854 19π πε =
× × ×
×

− −( . ) ( )

( . ××
= ×

− − −

− −

10

10

12 1 2 1

4 1

J C m

Jmmol1.3895

)

and obtain

E

z z

d

p min

Mg O

m
Jmmol 1.3895, .
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×

× ×
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−
− −4
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� ��� ���

× −
⎛
⎝⎜

⎞
⎠⎟

×

−

..748 103 1

A

= − × −3.84 kJmol

Self-test 38.4 Which can be expected to have the greater lat-

tice energy, magnesium oxide or strontium oxide?

Answer: MgO

Example 38.2 Using the Born–Haber cycle

Use the Born–Haber cycle to calculate the lattice enthalpy of 

KCl.

Method The Born–Haber cycle for KCl is shown in Fig 38.14. 

It consists of the following steps (for convenience, starting at 

the elements):

Because this is a closed cycle, the sum of these enthalpy 

changes is equal to zero, and the lattice enthalpy can be 

inferred from the resulting equation.

ΔH/(kJ mol−1)

1. Sublimation of K(s) +89 [dissociation enthalpy of 
K(s)]

2. Dissociation of 1
2

Cl2(g) +122 [ 1
2

 × dissociation enthalpy 
of Cl2(g)]

3. Ionization of K(g) +418 [ionization enthalpy of K(g)]

4. Electron attachment to 
Cl(g)

−349 [electron gain enthalpy of 
Cl(g)]

5. Formation of solid from 
gaseous ions

−ΔHL/(kJ mol−1)

6. Decomposition of 
compound

+437 [negative of enthalpy of 
formation of KCl(s)]

Answer The equation associated with the cycle is

89 122 418 349 437 01+ + − − + =−ΔHL / kJmol( )

It follows that ΔHL = +717 kJ mol−1.

Self-test 38.5 Calculate the lattice enthalpy of CaO from the 

following data:

Answer: +3500 kJ mol−1

K+(g) + e–(g) + Cl(g)

K+(g) + Cl–(g) 

KCl(s)

K(s) + ½Cl2(g)

K(g) + ½Cl2(g)

K(g) + Cl(g)

+437

+89

+122

+418
–349

–ΔHL

Figure 38.14 The Born–Haber cycle for KCl at 298 K. 
Enthalpy changes are in kilojoules per mole.

ΔH/(kJ mol−1)

Sublimation of Ca(s) +178

Ionization of Ca(g) to Ca2+(g) +1735

Dissociation of O2(g) +249

Electron attachment to O(g) −141

Electron attachment to O−(g) +844

Formation of CaO(s) from Ca(s) and O2(g) −635

Table 38.4* Lattice enthalpies at 298 K, ΔHL/(kJ mol−1)

NaCl 787

NaBr 752

MgO 3850

MgS 3406

* More values are given in the Resource section.
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38 Bonding in solids  351

38.3 Molecular solids and covalent 
networks

X-ray diffraction studies of solids reveal a huge amount of 

information, including interatomic distances, bond angles, 

stereochemistry, and vibrational parameters. In this section 

we can do no more than hint at the diversity of types of solids 

found when molecules pack together or atoms link together in 

extended networks.

In covalent network solids, covalent bonds in a definite 

spatial orientation link the atoms in a network extending 

through the crystal. The demands of directional bonding, 

which have only a small effect on the structures of many met-

als, now override the geometrical problem of packing spheres 

together, and elaborate and extensive structures may be 

formed.

Molecular solids, which are the subject of the overwhelming 

majority of modern structural determinations, are held together 

by van der Waals interactions (Topic 35). The observed crys-

tal structure is nature’s solution to the problem of condensing 

objects of various shapes into an aggregate of minimum energy 

(actually, for T > 0, of minimum Gibbs energy). The prediction 

of the structure is difficult, but software specifically designed to 

explore interaction energies can now make reasonably reliable 

predictions. The problem is made more complicated by the role 

of hydrogen bonds, which in some cases dominate the crystal 

structure, as in ice (Fig. 38.17), but in others (for example, in 

phenol) distort a structure that is determined largely by the van 

der Waals interactions.

Figure 38.17 A fragment of the crystal structure of ice (ice-I). 
Each O atom is at the centre of a tetrahedron of four O atoms at a 
distance of 276 pm. The central O atom is attached by two short 
O–H bonds to two H atoms and by two long hydrogen bonds 
to the H atoms of two of the neighbouring molecules. Both 
alternative H atoms locations are shown for each O–O separation. 
Overall, the structure consists of planes of hexagonal puckered 
rings of H2O molecules (like the chair form of cyclohexane).

Brief illustration 38.4 Diamond and graphite

Diamond and graphite are two allotropes of carbon. In dia-

mond each sp3-hybridized carbon is bonded tetrahedrally to 

its four neighbours (Fig. 38.15). The network of strong C–C 

bonds is repeated throughout the crystal and, as a result, dia-

mond is very hard (in fact, the hardest known substance). In 

graphite, σ bonds between sp2-hybridized carbon atoms form 

hexagonal rings which, when repeated throughout a plane, 

give rise to ‘graphene’ sheets (Fig. 38.16). Because the sheets 

can slide against each other when impurities are present, 

graphite is used widely as a lubricant.

Self-test 38.6 Identify the solids that form covalent networks: 

silicon, boron nitride, red phosphorus, and calcium carbonate.

Answer: Silicon, boron nitride, and red phosphorus are covalent net-

works; calcium carbonate is an ionic solid

Figure 38.15 A fragment of the structure of diamond. Each 
C atom is tetrahedrally bonded to four neighbours. This 
framework-like structure results in a rigid crystal.

(a) (b)

Figure 38.16 Graphite consists of flat planes of hexagons of 
carbon atoms lying above one another. (a) The arrangement 
of carbon atoms in a ‘graphene’ sheet; (b) the relative 
arrangement of neighbouring sheets. When impurities are 
present, the planes can slide over one another easily.
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Checklist of concepts

☐ 1. The coordination number of an atom in a metal is the 

number of its nearest neighbours.

☐ 2. Many elemental metals have close-packed structures 

with coordination number 12.

☐ 3. Close-packed structures may be either cubic (ccp) or 

hexagonal (hcp).

☐ 4. The packing fraction is the fraction of space occupied 

by spheres in a crystal.

☐ 5. Electrons in metals occupy molecular orbitals formed 

from the overlap of atomic orbitals.

☐ 6. The Fermi level is the highest occupied molecular 

orbital at T = 0.

☐ 7. Representative ionic structures include the caesium 

chloride, rock salt, and zinc blende structures.

☐ 8. The coordination number of an ionic lattice is denoted 

(N+,N−), with N+ the number of nearest-neighbour 

anions around a cation and N− the number of nearest-

neighbour cations around an anion.

☐ 9. The radius ratio (see below) is a guide to the likely lat-

tice type.

☐ 10. The lattice enthalpy is the change in enthalpy (per mole 

of formula units) accompanying the complete separa-

tion of the components of the solid.

☐ 11. A Born–Haber cycle is a closed path of transforma-

tions starting and ending at the same point, one step of 

which is the formation of the solid compound from a 

gas of widely separated ions.

☐ 12. A covalent network solid is a solid in which covalent 

bonds in a definite spatial orientation link the atoms in 

a network extending through the crystal.

☐ 13. A molecular solid is a solid consisting of discrete mol-

ecules held together by van der Waals interactions.

Checklist of equations

Property Equation Comment Equation number

Energy levels in a linear array of orbitals E k N k Nk = + + = …α β2 1 1 2cos( /( )), , , ,π Linear array of s orbitals 38.1

Radius ratio γ = r rsmaller larger/ For criteria, see Section 38.2 38.4

Born–Mayer equation E N z z e d d d Ap min A A B / /,
*( )= −{ } −2

04 1πε A is the Madelung constant 38.7

Atkins09819.indb   352 9/11/2013   11:49:48 AM

www.ebook3000.com

http://www.ebook3000.org


TOPIC 39

Electrical, optical, and magnetic 

properties of solids

Here we consider how the bulk properties of solids, particularly 

their electrical, optical, and magnetic properties, stem from the 

properties of their constituent atoms.

39.1 Electrical properties

We confine our attention to electronic conductivity, but note 

that some ionic solids display ionic conductivity in which com-

plete ions migrate through the lattice. Two types of solid are 

distinguished by the temperature dependence of their electrical 

conductivity (Fig. 39.1):

A metallic conductor is a substance with a conductivity 

that decreases as the temperature is raised.

A semiconductor is a substance with a conductivity that 

increases as the temperature is raised.

A semiconductor generally has a lower conductivity than that 

typical of metals, but the magnitude of the conductivity is not 

the criterion of the distinction. It is conventional to classify 

semiconductors with very low electrical conductivities, such as 

most synthetic polymers, as insulators. We shall use this term, 

but it should be appreciated that it is one of convenience rather 

than one of fundamental significance. A superconductor is a 

solid that conducts electricity without resistance.

Contents

39.1 Electrical properties 353
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Brief illustration 39.1: The Fermi–Dirac distribution  
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Brief illustration 39.2: The effect of doping on 

semiconductivity 356

39.2 Optical properties 356

Brief illustration 39.3: Optical properties of a  

semiconductor 357
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(b) Permanent and induced magnetic moments 358

Example 39.1: Calculating a molar magnetic  
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39.4 Superconductivity 359

Example 39.2: Calculating the temperature  

at which a material becomes superconducting 360

Checklist of concepts 361

Checklist of equations 361

 ➤ Why do you need to know this material?

Careful consideration and manipulation of the electrical, 
optical, and magnetic properties of solids are needed 
for the development of modern materials and an 
understanding of their properties.

 ➤ What is the key idea?
The electrical, optical, and magnetic properties of solids 
stem from relative energies and occupation of the available 
orbitals in the material.

 ➤ What do you need to know already?
You need to be familiar with electromagnetic fields (Topic 
3), atomic structure (Topic 19), bonding arrangements 
in solids (Topic 38), and the factors that determine the 
absorption of light by atoms and molecules (Topics 40, 
45, and 46). The Topic draws a little on the properties 
of the Boltzmann distribution (Foundations, Topic 2 and 
Topic 51).
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354 8 Interactions

(a) Conductors
To understand the origins of electronic conductivity in conduc-

tors and semiconductors, we need to explore the consequences 

of the formation of bands in different materials (Topic 38). 

Our starting point is Fig 38.8, which is repeated here for con-

venience (Fig. 39.2). It shows the electronic structure of a solid 

formed from atoms each able to contribute one electron (such 

as the alkali metals). At T = 0, only the lowest 1
2

N  molecular 

orbitals are occupied, up to the Fermi level.

At temperatures above absolute zero, electrons are excited 

by the thermal motion of the atoms. The electrical conductiv-

ity of a metallic conductor decreases with increasing tempera-

ture even though more electrons are excited into empty orbitals. 

This apparent paradox is resolved by noting that the increase in 

temperature causes more vigorous thermal motion of the atoms, 

so collisions between the moving electrons and an atom are 

more likely. That is, the electrons are scattered out of their paths 

through the solid, and are less efficient at transporting charge.

A more quantitative treatment of conductivity in metals 

requires an expression for the variation with temperature of the 

distribution of electrons over the available energy states. We 

begin by considering the density of states, ρ(E), at the energy E: 

the number of states between E and E + dE divided by dE. Note 

that the ‘state’ of an electron includes its spin, so each spatial 

orbital counts as two states. Then it follows that ρ(E)dE is the 

number of states between E and E + dE. To obtain the number 

of electrons dN(E) that occupy states between E and E + dE, we 

multiply ρ(E)dE by the probability f(E) of occupation of the 

state with energy E. That is,

d ( )dN E E f E( ) ( )= ×ρ E

Number of
states

between
 and d

Probab

E E��� ��

iility of
occupation of

a state with
energy E


 

(39.1)

The function f(E) is the Fermi–Dirac distribution, a version 

of the Boltzmann distribution that takes into account the Pauli 

exclusion principle that each orbital can be occupied by no 

more than two electrons (Fig. 39.3):

f E
E kT

( )
( )/

=
+−

1

1e μ  
 Fermi–Dirac distribution  (39.2a)

where μ is a temperature-dependent parameter known as 

the ‘chemical potential’ (it has a subtle relation to the familiar 

chemical potential of thermodynamics), and provided T > 0 is 

the energy of the state for which f = 1
2
. At T = 0, only states up 

to a certain energy known as the Fermi energy, EF , are occu-

pied (Fig. 39.2). Provided the temperature is not so high that 

E
n

er
g

y

Occupied levels

Unoccupied levels

Fermi level

Figure 39.2 When N electrons occupy a band of N orbitals, it is 
only half full at T = 0 and the electrons near the Fermi level (the 
top of the filled levels) are mobile. (This is also Fig. 38.8.)
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Figure 39.1 The variation of the electrical conductivity of a 
substance with temperature is the basis of its classification as 
a metallic conductor, a semiconductor, or a superconductor. 
Conductivity is expressed in siemens per metre (S m−1 or, as here, 
S cm−1), where 1 S = 1 Ω−1 (the resistance is expressed in ohms, Ω).
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Figure 39.3 The Fermi–Dirac distribution, which gives the 
probability of occupation of the state at a temperature T. The 
high-energy tail decays exponentially towards zero. The curves 
are labelled with the value of μ/kT. The tinted region shows the 
occupation of levels at T = 0.
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39 Electrical, optical, and magnetic properties of solids 355

many electrons are excited to states above the Fermi energy, the 

chemical potential can be identified with EF , in which case the 

Fermi–Dirac distribution becomes

f E
E E kT

( )
( )/

=
+−

1

1e F

 
 Fermi–Dirac distribution  (39.2b)

Moreover, for energies well above EF , the exponential term in 

the denominator is so large that the 1 in the denominator can 

be neglected, and then

f E E E kT( )≈ − −e F( )/

The function now resembles a Boltzmann distribution, decay-

ing exponentially with increasing energy; the higher the tem-

perature, the longer the exponential tail.

(b) Insulators and semiconductors

Now consider a one-dimensional solid in which each atom 

provides two electrons: the 2N electrons fill the N orbitals of 

the band. The Fermi level now lies at the top of the band (at 

T = 0), and there is a gap before the next band begins (Fig. 

39.4). As the temperature is increased, the tail of the Fermi–

Dirac distribution extends across the gap, and electrons leave 

the lower band, which is called the valence band, and populate 

the empty orbitals of the upper band, which is called the con-

duction band. As a consequence of electron promotion, posi-

tively charged ‘holes’ are left in in the valence band. The holes 

and promoted electrons are now mobile, and the material is 

now a conductor. In fact, we call it a semiconductor, because 

the electrical conductivity depends on the number of electrons 

that are promoted across the gap, and that number increases 

as the temperature is raised. If the gap is large, though, very 

few electrons are promoted at ordinary temperatures and the 

conductivity remains close to zero, resulting in an insulator. 

Thus, the conventional distinction between an insulator and a 

semiconductor is related to the size of the band gap and is not 

an absolute distinction like that between a metal (incomplete 

bands at T = 0) and a semiconductor (full bands at T = 0).

Figure 39.4 depicts conduction in an intrinsic semiconduc-

tor, in which semiconduction is a property of the band struc-

ture of the pure material. Examples of intrinsic semiconductors 

include silicon and germanium. A compound semiconductor 

is an intrinsic semiconductor that is a combination of differ-

ent elements, such as GaN, CdS, and many d-metal oxides. An 

extrinsic semiconductor is one in which charge carriers are 

present as a result of the replacement of some atoms (to the 

extent of about 1 in 109) by dopant atoms, the atoms of another 

element. If the dopants can trap electrons, they withdraw 

electrons from the filled band, leaving holes which allow the 

remaining electrons to move (Fig. 39.5a). This procedure gives 

rise to p-type semiconductivity, the p indicating that the holes 

are positive relative to the electrons in the band. An example 

is silicon doped with indium. We can picture the semiconduc-

tion as arising from the transfer of an electron from a Si atom 

to a neighbouring In atom. The electrons at the top of the sili-

con valence band are now mobile, and carry current through 

the solid. Alternatively, a dopant might carry excess electrons 

(for example, phosphorus atoms introduced into germanium), 

and these additional electrons occupy otherwise empty bands, 

giving n-type semiconductivity, where n denotes the negative 

charge of the carriers (Fig. 39.5b).

Approximate 
form for E > EF 

Fermi–Dirac 
distribution 

(39.2c)

Brief illustration 39.1 The Fermi–Dirac distribution at T = 0

Consider cases in which E < EF. Then, as T → 0 we write

lim{ }/
T

E E kT
→

− = −∞
0

F

because EF > 0 and E − EF < 0. It follows that

lim ( ) lim
( )/T T E E kT

f E
→ → −=

+
=

0 0

1

1
1

e F

We conclude that as T → 0, f(E) → 1, and all the energy levels 

below E = EF are populated. A similar calculation for E > EF 

(Self-test 39.1) shows that f(E) → 0 as T → 0. The Fermi–Dirac 

distribution function confirms that only the levels below EF 

are populated as T → 0.

Self-test 39.1 Repeat the calculation for E > EF.

Answer: f(E) → 0 as T → 0

E
n

er
g

y

Conduction
band

Valence
band

Band
gap, Eg

Thermal
excitation

(a) T = 0 (b) T > 0

Figure 39.4  (a) When 2N electrons are present, the band is 
full and the material is an insulator at T = 0. (b) At temperatures 
above T = 0, electrons populate the levels of the upper 
conduction band and the solid is a semiconductor.
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Now consider the properties of a p–n junction, the inter-

face of a p-type and n-type semiconductor. When a ‘reverse 

bias’ is applied to the junction, in the sense that a negative 

electrode is attached to the p-type semiconductor and a posi-

tive electrode is attached to the n-type semiconductor, the 

positively charged holes in the p-type semiconductor are 

attracted to the negative electrode and the negatively charged 

electrons in the n-type semiconductor are attracted to the 

positive electrode (Fig. 39.6a). As a consequence, charge does 

not flow across the junction. Now consider the application 

of a ‘forward bias’ to the junction, in the sense that the posi-

tive electrode is attached to the p-type semiconductor and 

the negative electrode is attached to the n-type semiconduc-

tor (Fig. 39.6b). Now charge flows across the junction, with 

electrons in the n-type semiconductor moving toward the 

positive electrode and holes moving in the opposite direction. 

It follows that a p–n junction affords a great deal of control 

over the magnitude and direction of current through a mate-

rial. This control is essential for the operation of transistors 

and diodes, which are key components of modern electronic 

devices.

As electrons and holes move across a p–n junction under 

forward bias, they recombine and release energy. However, as 

long as the forward bias continues to be applied, the flow of 

charge from the electrodes to the semiconductors replenishes 

them with electrons and holes, so the junction sustains a cur-

rent. In some solids, the energy of electron–hole recombination 

is released as heat and the device becomes warm. The reason 

lies in the fact that the return of the electron to a hole involves 

a change in the electron’s linear momentum. The atoms of the 

lattice must absorb the difference, and therefore electron–hole 

recombination stimulates lattice vibrations. This is the case for 

silicon semiconductors, and is one reason why computers need 

efficient cooling systems.

39.2 Optical properties

Consider again Fig. 39.2, which shows bands in an idealized 

metallic conductor. The absorption of a photon can excite elec-

trons from the occupied levels to the unoccupied levels. There is 

a near continuum of unoccupied energy levels above the Fermi 

level, so we expect to observe absorption over a wide range 

of frequencies. In metals, the bands are sufficiently wide that 

radiation from radiofrequencies to the middle of the ultraviolet 

region of the electromagnetic spectrum is absorbed. Metals are 

transparent to very high-frequency radiation, such as X-rays 

and γ-rays. Because this range of absorbed frequencies includes 

the entire visible spectrum, we might therefore expect all met-

als to appear black. However, we know that metals are lustrous 

(that is, they reflect light) and some are coloured (that is, they 

absorb light of only certain wavelengths), so we need to extend 

our model.

Brief illustration 39.2 The effect of doping on 
semiconductivity

Consider the doping of pure silicon (a Group 14 element) by 

arsenic (a Group 15 element). Because each Si atom has four 

valence electrons and each As atom has five valence electrons, 

the addition of arsenic increases the number of electrons 

in the solid. These electrons populate the empty conduc-

tion band of silicon, and the doped material is an n-type 

semiconductor.

Self-test 39.2 Is gallium-doped germanium a p-type or n-type 

semiconductor?

Answer: p-type semiconductor

+ +– –

Electron

Hole

(a) (b)

n p

Figure 39.6 A p–n junction under (a) reverse bias,  
(b) forward bias. 

E
n

er
g

y Acceptor
band Donor

band

(a) (b)

Figure 39.5 (a) A dopant with fewer electrons than its host can 
form a narrow band that accepts electrons from the valence 
band. The holes in the band are mobile and the substance is a 
p-type semiconductor. (b) A dopant with more electrons than 
its host forms a narrow band that can supply electrons to the 
conduction band. The electrons it supplies are mobile and the 
substance is an n-type semiconductor.
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39 Electrical, optical, and magnetic properties of solids 357

To explain the lustrous appearance of a smooth metal sur-

face, we need to realize that the absorbed energy can be re-

emitted very efficiently as light, with only a small fraction of 

the energy being released to the surroundings as heat. Because 

the atoms near the surface of the material absorb most of the 

radiation, emission also occurs primarily from the surface. In 

essence, if the sample is excited with visible light, then visible 

light will be reflected from the surface, accounting for the lustre 

of the material.

The perceived colour of a metal depends on the frequency 

range of reflected light which, in turn, depends on the frequency 

range of light that can be absorbed and, by extension, on the 

band structure. Silver reflects light with nearly equal efficiency 

across the visible spectrum because its band structure has many 

unoccupied energy levels that can be populated by absorption 

of, and depopulated by emission of, visible light. On the other 

hand, copper has its characteristic colour because it has relatively 

fewer unoccupied energy levels that can be excited with violet, 

blue, and green light. The material reflects at all wavelengths, but 

more light is emitted at lower frequencies (corresponding to yel-

low, orange, and red). Similar arguments account for the colours 

of other metals, such as the yellow of gold.

Now consider semiconductors. We have already seen that 

promotion of electrons from the valence band to the conduc-

tion band of a semiconductor can be the result of thermal exci-

tation, if the band gap Eg is comparable to the energy that can 

be supplied by heating. In some materials, the band gap is very 

large and electron promotion can occur only by excitation with 

electromagnetic radiation. However, we see from Fig. 39.4 that 

there is a frequency νmin = Eg/h below which light absorption 

cannot occur. Above this frequency threshold, a wide range of 

frequencies can be absorbed by the material, as in a metal.

39.3 Magnetic properties

The magnetic properties of metallic solids and semiconductors 

depend strongly on the band structures of the material. Here 

we confine our attention largely to magnetic properties that 

stem from collections of individual molecules or ions such as 

d-metal complexes. Much of the discussion applies to liquid- 

and gas-phase samples as well as to solids.

(a) Magnetic susceptibility
The magnetic and electric properties of molecules and sol-

ids are analogous. For instance, some molecules possess per-

manent magnetic dipole moments, and an applied magnetic 

field can induce a magnetic moment, with the result that the 

entire solid sample becomes magnetized. The magnetization, 

M, is the magnitude of the average molecular magnetic dipole 

moment multiplied by the number density of molecules in the 

sample. The magnetization induced by a field of strength H is 

proportional to H, and we write

M H= χ
 

 Magnetization  (39.3)

where χ is the dimensionless volume magnetic susceptibility. 

A closely related quantity is the molar magnetic susceptibility, 

χm:

χ χm m= V
  Molar magnetic susceptibility  (39.4)

where Vm is the molar volume of the substance.

We can think of the magnetization as contributing to the 

density of lines of force in the material (Fig. 39.7). Materials for 

which χ > 0 are called paramagnetic; they tend to move into a 

magnetic field and the density of lines of force within them is 

greater than in a vacuum. Those for which χ < 0 are called dia-

magnetic and tend to move out of a magnetic field; the den-

sity of lines of force within them is lower than in a vacuum. 

Brief illustration 39.3 Optical properties of a 
semiconductor

The semiconductor cadmium sulfide (CdS) has a band gap 

energy of 2.4 eV (equivalent to 3.8 × 10−19 J). It follows that the 

minimum electronic absorption frequency is

�min

J

Js
s=

×
×

= ×
−

−
−3 8 10

6 626 10
5 8 10

19

34
14 1

.

.
.

This frequency, 5.8 × 1014 Hz, corresponds to a wavelength of 

520 nm (green light). Lower frequencies, corresponding to 

yellow, orange, and red, are not absorbed and consequently 

CdS appears yellow-orange.

Self-test 39.3 Predict the colours of the following materi-

als, given their band-gap energies (in parentheses): GaAs 

(1.43 eV), HgS (2.1 eV), and ZnS (3.6 eV).

Answer: Black, red, and colourless

(a) (b) (c)

Figure 39.7 (a) In a vacuum, the strength of a magnetic field 
can be represented by the density of lines of force; (b) in a 
diamagnetic material, the lines of force are reduced; (c) in a 
paramagnetic material, the lines of force are increased.
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A paramagnetic material consists of ions or molecules with 

unpaired electrons, such as radicals and many d-metal com-

plexes; a diamagnetic substance (a far more common property) 

is one with no unpaired electrons.

The magnetic susceptibility is traditionally measured with a 

Gouy balance. This instrument consists of a sensitive balance 

from which the sample hangs in the form of a narrow cylinder 

and lies between the poles of a magnet. If the sample is para-

magnetic, it is drawn into the field, and its apparent weight 

is greater than when the field is off. A diamagnetic sample 

tends to be expelled from the field and appears to weigh less 

when the field is turned on. The balance is normally calibrated 

against a sample of known susceptibility. The modern version 

of the determination makes use of a superconducting quan-

tum interference device (SQUID, Fig. 39.8). A SQUID takes 

advantage of the property of current loops in superconductors 

that, as part of the circuit, include a weakly conducting link 

through which electrons must tunnel: the current that flows in 

the loop in a magnetic field depends on the value of the mag-

netic flux, and a SQUID can be exploited as a very sensitive 

magnetometer.

Table 39.1 lists some experimental values. A typical para-

magnetic volume susceptibility is about 10−3, and a typical dia-

magnetic volume susceptibility is about (−)10−5.

(b) Permanent and induced magnetic 
moments
The permanent magnetic moment of a molecule arises from any 

unpaired electron spins in the molecule. In practice, a contri-

bution to the paramagnetism also arises from the orbital angu-

lar momenta of electrons, but here we discuss the spin-only 

contribution.

The magnitude of the magnetic moment of an electron is 

proportional to the magnitude of the spin angular momen-

tum, { ( )} :/s s +1 1 2 

m g s s
e

m
= +( ){ } =e

1 2

B B
e

1
/

μ μ 
2

where ge = 2.0023 and μB = 9.274 × 10−24 J T−1. If there are several 

electron spins in each molecule, they combine to a total spin S, 

and then s(s + 1) should be replaced by S(S + 1).

The magnetization and consequently the magnetic suscep-

tibility depend on the temperature because the orientations 

of the electron spins fluctuate, whether the molecules are in 

fluid phases or trapped in solids: some orientations have lower 

energy than others, and the magnetization depends on the 

randomizing influence of thermal motion. Thermal averag-

ing of the permanent magnetic moments in the presence of an 

applied magnetic field contributes to the magnetic susceptibil-

ity an amount proportional to m2/3kT.1 It follows that the spin 

contribution to the molar magnetic susceptibility is

χ μ μ
m

A e B= +N g S S

kT

2
0

2 1

3

( )

1 See our other Physical chemistry (2014) for the derivation of this 

contribution.

Brief illustration 39.4 The magnetic character  
of metallic solids and molecules

Solid magnesium is a metal in which the two valence electrons 

of each Mg atom are donated to a band of orbitals constructed 

from 3s orbitals. From N atomic orbitals we can construct N 

molecular orbitals spreading through the metal. Each atom 

supplies two electrons, so there are 2N electrons to accom-

modate. These occupy and fill the N molecular orbitals. There 

are no unpaired electrons, so the metal is diamagnetic. An O2 

molecule has the electronic structure described in Topic 24, 

where we see that two electrons occupy separate antibonding 

π orbitals with parallel spins. We conclude that O2 is a para-

magnetic gas.

Self-test 39.4 Repeat the analysis for Zn(s) and NO(g).

Answer: Zn diamagnetic, NO paramagnetic

Spin 
contribution

Molar magnetic 
susceptibility 

(39.6)
SQUID

Superconducting
wire SampleCurrent

Magnetic
field

Figure 39.8  The arrangement used to measure magnetic 
susceptibility with a SQUID. The sample is moved upwards in 
small increments and the potential difference across the SQUID 
is measured.

Table 39.1* Magnetic susceptibilities at 298 K

χ/10−6 χm/(10−10 m3 mol−1)

H2O(l) −9.02 −1.63

NaCl(s) −16 −3.8

Cu(s) −9.7 −0.69

CuSO4⋅5H2O(s) +167 +183

* More values are given in the Resource section.

Magnitude
Magnetic 
moment (39.5)
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39 Electrical, optical, and magnetic properties of solids 359

This expression shows that the susceptibility is positive, so the 

spin magnetic moments contribute to the paramagnetic suscep-

tibilities of materials. The contribution decreases with increas-

ing temperature because the thermal motion randomizes the 

spin orientations.

At low temperatures, some paramagnetic solids make a phase 

transition to a state in which large domains of spins align with 

parallel orientations. This cooperative alignment gives rise to a 

very strong magnetization and is called ferromagnetism (Fig. 

39.9). In other cases, exchange interactions lead to alternating 

spin orientations: the spins are locked into a low-magnetization 

arrangement to give an antiferromagnetic phase. The ferro-

magnetic phase has a nonzero magnetization in the absence 

of an applied field, but the antiferromagnetic phase has a zero 

magnetization because the spin magnetic moments cancel. The 

ferromagnetic transition occurs at the Curie temperature, and 

the antiferromagnetic transition occurs at the Néel tempera-

ture. Which type of cooperative behaviour occurs depends on 

the details of the band structure of the solid.

Magnetic moments can also be induced in molecules. To see 

how this effect arises, we need to note that the circulation of 

electronic currents induced by an applied field gives rise to a 

magnetic field which usually opposes the applied field, so the 

substance is diamagnetic. In a few cases the induced field aug-

ments the applied field, and the substance is then paramagnetic.

The great majority of molecules with no unpaired electron 

spins are diamagnetic. In these cases, the induced electron 

currents occur within the orbitals of the molecule that are 

occupied in its ground state. In the few cases in which mole-

cules are paramagnetic despite having no unpaired electrons, 

the induced electron currents flow in the opposite direction 

because they can make use of unoccupied orbitals that lie close 

to the HOMO in energy. This orbital paramagnetism can be 

distinguished from spin paramagnetism by the fact that it is 

temperature-independent: this is why it is called temperature-

independent paramagnetism (TIP).

We can summarize these remarks as follows. All molecules 

have a diamagnetic component to their susceptibility, but it 

is dominated by spin paramagnetism if the molecules have 

unpaired electrons. In a few cases (where there are low-lying 

excited states) TIP is strong enough to make the molecules para-

magnetic even though their electrons are paired.

39.4 Superconductivity

The resistance to flow of electrical current of a normal metal-

lic conductor decreases smoothly with temperature but never 

vanishes. However, certain solids known as superconduc-

tors conduct electricity without resistance below a critical 

Example 39.1 Calculating a molar magnetic 
susceptibility

Consider a complex salt with three unpaired electrons per 

complex cation at 298 K, and molar volume 61.7 cm3 mol−1. 

Calculate the molar magnetic susceptibility and the volume 

magnetic susceptibility of the complex.

Method Use the data and eqn 39.6 to calculate the molar mag-

netic susceptibility. Then use the values of χm and Vm, and eqn 

39.4, to calculate the volume magnetic susceptibility.

Answer First note that the constants can be collected into the 
term

N g

k
A e B m K mol

2
0

2
6 3 1 1

3
6 3001 10

μ μ = × − − −.

Consequently eqn 39.6 becomes

χm /K
m mol= × × +− −6 3001 10

16 3 1.
( )S S

T

Substitution of the data with S = 3
2  gives

χm m mol m mol= × ×
+

= ×− − − −6 3001 10
1

298
7 93 106

3
2

3
2 3 1 8 3 1.

( )
.

It follows from eqn 39.4 that, to obtain the volume magnetic 

susceptibility, the molar susceptibility is divided by the molar 

volume Vm = 61.7 cm3 mol−1 = 6.17 × 10−5 m3 mol−1 and

χ χ= =
×
×

= ×
− −

− −
−m

m

m mol

m molV

7 93 10

6 17 10
1 29 10

8 3 1

5 3 1
3

.

.
.

Self-test 39.5 Repeat the calculation for a complex with five 

unpaired electrons, molar mass 322.4 g mol−1, and a mass den-

sity of 2.87 g cm−3 at 273 K.

Answer: χm = 2.02 × 10−7 m3 mol−1; χ = 1.79 × 10−3

(a)

(b)

(c)

Figure 39.9  (a) In a paramagnetic material, the electron spins 
are aligned at random in the absence of an applied magnetic 
field. (b) In a ferromagnetic material, the electron spins are 
locked into a parallel alignment over large domains. (c) In an 
antiferromagnetic material, the electron spins are locked into 
an antiparallel arrangement. The latter two arrangements 
survive even in the absence of an applied field.
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temperature, Tc. Following the discovery in 1911 that mercury 

is a superconductor below 4.2 K, the normal boiling point of 

liquid helium, physicists and chemists made slow but steady 

progress in the discovery of superconductors with higher val-

ues of Tc. Metals, such as tungsten, mercury, and lead, tend to 

have Tc values below about 10 K. Intermetallic compounds, 

such as Nb3X (X = Sn, Al, or Ge), and alloys, such as Nb/Ti and 

Nb/Zr, have intermediate Tc values ranging between 10 K and 

23 K. In 1986, high-temperature superconductors (HTSC) 

were discovered. Several ceramics, inorganic powders that have 

been fused and hardened by heating to a high temperature, 

containing oxocuprate motifs, CumOn, are now known with 

Tc values well above 77 K, the boiling point of the inexpensive 

refrigerant liquid nitrogen. For example, HgBa2Ca2Cu2O8 has 

Tc = 153 K.

Superconductors have unique magnetic properties. Some 

superconductors, classed as Type I, show abrupt loss of super-

conductivity when an applied magnetic field exceeds a critical 

value Hc characteristic of the material. It is observed that the 

value of Hc depends on temperature and Tc as

H Hc c
c

( ) ( )T
T

T
= −⎛

⎝⎜
⎞
⎠⎟

0 1
2

2

where Hc(0) is the value of Hc as T → 0.

Type I superconductors are also completely diamagnetic 

below Hc, meaning that the magnetic field does not penetrate 

into the material. This complete exclusion of a magnetic field 

from a material is known as the Meissner effect, which can 

be demonstrated by the levitation of a superconductor above 

a magnet. Type II superconductors, which include the HTSCs, 

show a gradual loss of superconductivity and diamagnetism 

with increasing magnetic field.

There is a degree of periodicity in the elements that exhibit 

superconductivity. The metals iron, cobalt, nickel, copper, sil-

ver, and gold do not display superconductivity, nor do the alkali 

metals. It is observed that, for simple metals, ferromagnetism 

and superconductivity never coexist, but in some of the oxocu-

prate superconductors ferromagnetism and superconductivity 

can coexist. One of the most widely studied oxocuprate super-

conductors, YBa2Cu3O7 (informally known as ‘123’ on account 

of the proportions of the metal atoms in the compound), has 

the structure shown in Fig. 39.10. The square pyramidal CuO5 

units arranged as two-dimensional layers and the square planar 

CuO4 units arranged in sheets are common structural features 

of oxocuprate HTSCs.

The mechanism of superconduction is well understood for 

low-temperature materials, and is based on the existence of a 

Cooper pair, a pair of electrons that exists on account of the 

indirect electron–electron interactions fostered by the nuclei 

of the atoms in the lattice. Thus, if one electron is in a par-

ticular region of a solid, the nuclei there move toward it to 

give a distorted local structure (Fig. 39.11). Because that local 

distortion is rich in positive charge, it is favourable for a sec-

ond electron to join the first. Hence, there is a virtual attrac-

tion between the two electrons, and they move together as a 

pair. The local distortion can be easily disrupted by thermal 

motion of the ions in the solid, so the virtual attraction occurs 

only at very low temperatures. A Cooper pair undergoes less 

Example 39.2 Calculating the temperature at which a 
material becomes superconducting

Lead has Tc = 7.19 K and Hc(0) = 63.9 kA m−1. At what tempera-

ture does lead become superconducting in a magnetic field of 

20 kA m−1?

Method Rearrange eqn 39.7 and use the data to calculate the 

temperature at which the substance becomes superconducting.

Answer Rearrangement of eqn 39.7 gives

T T
T= −⎛

⎝⎜
⎞
⎠⎟c

c

c

1
0

1 2
H
H

( )

( )

/

and substitution of the data gives

T = ( ) × −
⎛
⎝⎜

⎞
⎠⎟

=
−

−7 19 1
20

63 9
6 0

1

1

1 2

.
.

.

/

K
kAm

kAm
K

That is, lead becomes superconducting at temperatures below 

6.0 K.

Self-test 39.6 Tin has Tc = 3.72 K and Hc(0) = 25 kA m−1. At 

what temperature does tin become superconducting in a mag-

netic field of 15 kA m−1?

Answer: 2.4 K

(39.7)Dependence of Hc on Tc

Cu

Y

Ba

O

(a) (b)

Figure 39.10  Structure of the YBa2Cu3O7 superconductor. 
(a) Metal atom positions. (b) The polyhedra show the positions 
of oxygen atoms and indicate that the metal ions are in square-
planar and square pyramidal coordination environments.
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39 Electrical, optical, and magnetic properties of solids 361

scattering than an individual electron as it travels through the 

solid because the distortion caused by one electron can attract 

back the other electron should it be scattered out of its path in 

a collision. Because the Cooper pair is stable against scattering, 

it can carry charge freely through the solid, and hence give rise 

to superconduction.

The Cooper pairs responsible for low-temperature supercon-

ductivity are likely to be important in HTSCs, but the mecha-

nism for pairing is hotly debated. There is evidence implicating 

the arrangement of CuO5 layers and CuO4 sheets in the mecha-

nism of high-temperature superconduction. It is believed that 

movement of electrons along the linked CuO4 units accounts 

for superconductivity, whereas the linked CuO5 units act as 

‘charge reservoirs’ that maintain an appropriate number of 

electrons in the superconducting layers.

Checklist of concepts

☐ 1. Electronic conductors are classified as metallic conduc-

tors or semiconductors according to the temperature 

dependence of their conductivities.

☐ 2. An insulator is a semiconductor with a very low electri-

cal conductivity.

☐ 3. The spectroscopic properties of metallic conductors 

and semiconductors can be understood in terms of the 

photon-induced promotion of electrons from valence 

bands to conduction bands.

☐ 4. A material is diamagnetic and moves out of a magnetic 

field; it has a negative volume magnetic susceptibility.

☐ 5. A material is paramagnetic and moves into a magnetic 

field; it has a positive volume magnetic susceptibility.

☐ 6. Ferromagnetism is the cooperative alignment of 

electron spins in a material and gives rise to strong 

magnetization.

☐ 7. Antiferromagnetism results from alternating spin ori-

entations in a material and leads to weak magnetization.

☐ 8. Temperature-independent paramagnetism arises 

from induced electron currents within the orbitals of a 

molecule that are occupied in its ground state.

☐ 9. Superconductors conduct electricity without resistance 

below a critical temperature Tc.

Checklist of equations

e–

Figure 39.11  The formation of a Cooper pair. One electron 
distorts the crystal lattice and the second electron has a 
lower energy if it goes to that region. These electron–lattice 
interactions effectively bind the two electrons into a pair.

Property Equation Comment Equation number

Fermi–Dirac distribution f(E) = 1/(e(E−μ)/kT + 1) μ is the chemical potential 39.2a

Magnetization M = χH 39.3

Molar magnetic susceptibility χm = χVm Definition 39.4

Magnitude of the magnetic moment m = ge{s(s + 1)}1/2μB μB e= e m/2 39.5

Molar magnetic susceptibility χ μ μm A e B= +N g S S kT2
0

2 1 3( )/ Spin contribution 39.6

Dependence of Hc on Tc H Hc c c( ) ( )( / )T T T= −0 1 2 2 39.7
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Focus 8 on Interactions

Topic 34 Electric properties of molecules

Discussion questions
34.1 Explain how the permanent dipole moment and the polarizability of a 

molecule arise.

34.2 Distinguish between an electric monopole, dipole, quadrupole, and 

octupole. Explain the distance dependence of the fields to which they 

give rise.

Exercises
34.1(a) Which of the following molecules may be polar: CIF3, O3, H2O2?

34.1(b) Which of the following molecules may be polar: SO3, XeF4, SF4?

34.2(a) Calculate the resultant of two dipole moments of magnitude 1.0 D and 

2.0 D that make an angle of 45° to each other.

34.2(b) Calculate the resultant of two dipole moments of magnitude 2.5 D and 

0.50 D that make an angle of 120° to each other.

34.3(a) Calculate the magnitude and direction of the dipole moment of the 

following arrangement of charges in the xy-plane: (i) 3e at (0,0), (ii)  − e at 

(0.32 nm, 0), and (iii) −2e at an angle of 20° from the x-axis and a distance of 

0.23 nm from the origin.

34.3(b) Calculate the magnitude and direction of the dipole moment of the 

following arrangement of charges in the xy-plane: (i) 4e at (0, 0), (ii) −2e at 

(162 pm, 0), and (iii) −2e at an angle of 300° from the x-axis and a distance of 

143 pm from the origin.

34.4(a) The polarizability volume of HCl is 2.63 × 10−30 m3; calculate the 

magnitude of the dipole moment of the molecule (in addition to the 

permanent dipole moment) induced by an applied electric field of strength 

7.5 kV m−1.

34.4(b) The polarizability volume of NH3 is 2.22 × 10−30 m3; calculate the 

magnitude of the dipole moment of the molecule (in addition to the permanent 

dipole moment) induced by an applied electric field of strength 15.0 kV m−1.

Problems
34.1 The electric dipole moment of toluene (methylbenzene) has a magnitude 

of 0.4 D. Estimate the magnitudes of the dipole moment of the three xylenes 

(dimethylbenzene). Which answer can you be sure about?

34.2 Plot the magnitude of the electric dipole moment of hydrogen peroxide 

as the H–O–O–H (azimuthal) angle φ changes from 0 to 2π. Use the 

dimensions shown in 1.

149 pm

97 pm

H

O

φ

1

34.3 Acetic acid vapour contains a proportion of planar, hydrogen-bonded 

dimers (2). The apparent dipole moment of molecules in pure gaseous acetic 

acid has a magnitude that increases with increasing temperature. Suggest an 

interpretation of this observation.

HO

2

34.4 The magnitude of the electric field at a distance r from a point charge 

Q is equal to Q/4πε0r
2. How close to a water molecule (of polarizability 

volume 1.48 × 10−30 m3) must a proton approach before the dipole moment it 

induces has a magnitude equal to that of the permanent dipole moment of the 

molecule (1.85 D)?

34.5‡ Nelson, et al. (Science 238, 1670 (1987)) examined several weakly bound 

gas-phase complexes of ammonia in search of examples in which the H atoms 

in NH3 formed hydrogen bonds, but found none. For example, they found 

that the complex of NH3 and CO2 has the carbon atom nearest the nitrogen 

(299 pm away): the CO2 molecule is at right angles to the C–N ‘bond’, and 

the H atoms of NH3 are pointing away from the CO2. The magnitude of the 

permanent dipole moment of this complex is reported as 1.77 D. If the N 

and C atoms are the centres of the negative and positive charge distributions, 

respectively, what is the magnitude of those partial charges (as multiples of e)?

34.6 An H2O molecule is aligned by an external electric field of strength 

1.0 kV m−1 and an Ar atom (α′ = 1.66 × 10−30 m3) is brought up slowly from one 

side. At what separation is it energetically favourable for the H2O molecule to 

flip over and point towards the approaching Ar atom?

34.7 The relative permittivity of a substance is large if its molecules are 

polar or highly polarizable. The quantitative relation between the relative 

permittivity, the polarizability, and the permanent dipole moment of the 

molecule is expressed by the Debye equation,

ε
ε

ρ
ε α μr

r

A− = +1

2 3 30

2

+
⎛

⎝⎜
⎞

⎠⎟
N

M kT
 

where ρ is the mass density of the sample and M is the molar mass of the 

molecules. The relative permittivity of camphor (3) was measured at a series 

of temperatures with the results given below. Determine the magnitude of the 

dipole moment and the polarizability volume of the molecule. Hint: Plot the data 

in such a way that a fit to a straight line yields the magnitude of the permanent 

dipole moment and polarizability from the slope and y-intercept, respectively.
‡ These problems were supplied by Charles Trapp and Carmen Giunta.
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O

3 Camphor

Topic 35 Interactions between molecules

Discussion questions
35.1 Identify the terms in and limit the generality of the following expressions: 

(a) V = −Q2μ1/4πε0r
2, (b) V = −Q2μ1cos θ/4πε0r

2, and (c) V = μ2μ1(1 − 3 cos2 θ)/ 

4πε0r
3.

35.2 Account for the theoretical conclusion that many attractive interactions 

between molecules vary with their separation as 1/r6.

35.3 Describe the formation of a hydrogen bond in terms of (a) electrostatic 

interactions and (b) molecular orbitals. How would you identify the better model?

35.4 Some polymers have unusual properties. For example, Kevlar (4) is 

strong enough to be the material of choice for bulletproof vests and is stable 

at temperatures up to 600 K. What molecular interactions contribute to the 

formation and thermal stability of this polymer?

N
H

NH

O

O

O H

H

n
4 Kevlar

Exercises
35.1(a) Calculate the molar energy required to reverse the direction of an H2O 

molecule located 100 pm from a Li+ ion. Take the magnitude of the dipole 

moment of water as 1.85 D.

35.2(b) Calculate the molar energy required to reverse the direction of an HCl 

molecule located 300 pm from a Mg2+ ion. Take the magnitude of the dipole 

moment of HCl as 1.08 D.

35.2(a) Calculate the potential energy of the interaction between two linear 

quadrupoles when they are collinear and their centres are separated by a 

distance r.

35.2(b) Calculate the potential energy of the interaction between two linear 

quadrupoles when they are parallel and separated by a distance r.

35.3(a) How much energy (in kJ mol−1) is required to break the hydrogen bond 

in a vacuum (εr = 1)? (Use the electrostatic model of the hydrogen bond.)

35.3(b) How much energy (in kJ mol−1) is required to break the hydrogen bond 

in water (εr ≈ 80.0)? Use the electrostatic model of the hydrogen bond.

Problems
35.1 Phenylalanine (Phe, 5) is a naturally occurring amino acid. What is 

the energy of interaction between its phenyl group and the electric dipole 

moment of a neighbouring peptide group? Take the distance between the 

groups as 4.0 nm and treat the phenyl group as a benzene molecule. The 

magnitude of the dipole moment of the peptide group is μ = 1.3 D and the 

polarizability volume of benzene is α ′ = 1.04 × 10−29 m3.

O

OHH2N

5  Phenylalanine

35.2 Now consider the London interaction between the phenyl groups of 

two Phe residues (see Problem 35.1). (a) Estimate the potential energy of 

interaction between two such rings (treated as benzene molecules) separated 

by 4.0 nm. For the ionization energy, use I = 5.0 eV. (b) Given that force is the 

negative slope of the potential, calculate the distance dependence of the force 

acting between two nonbonded groups of atoms, such as the phenyl groups 

of Phe, in a polypeptide chain that can have a London dispersion interaction 

with each other. What is the separation at which the force between the phenyl 

groups (treated as benzene molecules) of two Phe residues is zero? (Hint: 

Calculate the slope by considering the potential energy at r and r + δr, with  

δr <<  r, and evaluating {V(r + δr) − V(r)}/δr. At the end of the calculation, let 

δr become vanishingly small).

35.3 Given that F = −dV/dr, calculate the distance dependence of the force 

acting between two nonbonded groups of atoms in a polymer chain that have 

a London dispersion interaction with each other.

35.4 Consider the arrangement shown in 6 for a system consisting of an O–H 

group and an O atom, and then use the electrostatic model of the hydrogen 

bond to calculate the dependence of the molar potential energy of interaction 

on the angle θ.

θ/°C 0 20 40 60 80 100 120 140 160 200

ρ/(g cm−3) 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.96 0.95 0.91

εr 12.5 11.4 10.8 10.0 9.50 8.90 8.10 7.60 7.11 6.21
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H

O

6

θ
200 pm

95.7 pm

–0.83e

–0.83e
+0.45e

35.5 The cohesive energy density, U, is defined as U/V, where U is the mean 

potential energy of attraction within the sample and V its volume. Show 

that U N= 1
2

∫V R( )dτ ,  where N is the number density of the molecules and 

V(R) is their attractive potential energy and where the integration ranges 

from d to infinity and over all angles. Go on to show that the cohesive energy 

density of a uniform distribution of molecules that interact by a van der 

Waals attraction of the form −C6/R
6 is equal to ( )( ) ,2 3 2 3 2 2

6π/ /N M CA d ρ  

where ρ is the mass density of the solid sample and M is the molar mass 

of the molecules.

35.6 Suppose you distrusted the Lennard-Jones (12,6) potential for assessing 

a particular polypeptide conformation, and replaced the repulsive term by an 

exponential function of the form e /−r r0 .  (a) Sketch the form of the potential 

energy and locate the distance at which it is a minimum. (b) Identify the 

distance at which the exponential-6 potential is a minimum.

Topic 36 Real Gases

Discussion questions
36.1 Explain how the compression factor of a real gas varies with pressure and 

temperature, and describe how it reveals information about intermolecular 

interactions in real gases.

36.2 Describe and criticize the formulation of the van der Waals equation.

Exercises
36.1(a) What pressure would 3.15 g of nitrogen gas in a vessel of volume 

2.05 dm3 exert at 273 K if it obeyed the virial equation of state? What would be 

the pressure if it were a perfect gas?

36.1(b) What pressure would 4.56 g of carbon dioxide gas in a vessel of volume 

2.25 dm3 exert at 273 K if it obeyed the virial equation of state? What would be 

the pressure if it were a perfect gas?

36.2(a) What pressure would 4.56 g of carbon dioxide gas in a vessel of volume 

2.25 dm3 exert at its Boyle temperature?

36.2(b) What pressure would 3.01 g of oxygen gas in a vessel of volume 

2.20 dm3 exert at its Boyle temperature?

36.3(a) (i) What pressure would 131 g of xenon gas in a vessel of volume 

1.0 dm3 exert at 25 °C if it behaved as a perfect gas? (ii) What pressure would it 

exert if it behaved as a van der Waals gas?

36.3(b) (i) What pressure would 25 g of argon gas in a vessel of volume 1.5 dm3 

exert at 30 °C if it behaved as a perfect gas? (ii) What pressure would it exert if 

it behaved as a van der Waals gas?

36.4(a) Express the van der Waals parameters a = 0.751 atm dm6 mol−2 and 

b = 0.0226 dm3 mol−1 in SI base units.

36.4(b) Express the van der Waals parameters a = 1.32 atm dm6 mol−2 and 

b = 0.0436 dm3 mol−1 in SI base units.

36.5(a) A gas at 250 K and 12 atm has a molar volume 8.0 per cent smaller 

than that calculated from the perfect gas law. Calculate (a) the compression 

factor under these conditions and (b) the molar volume of the gas. Which are 

dominating in the sample, the attractive or the repulsive forces?

36.5(b) A gas at 350 K and 15 atm has a molar volume 15 per cent larger than 

that calculated from the perfect gas law. Calculate (a) the compression factor 

under these conditions and (b) the molar volume of the gas. Which are 

dominating in the sample, the attractive or the repulsive forces?

36.6(a) In an industrial process, nitrogen is heated to 500 K at a constant 

volume of 1.000 m3. The gas enters the container at 300 K and 100 atm. The 

mass of the gas is 92.4 kg. Use the van der Waals equation to determine the 

approximate pressure of the gas at its working temperature of 500 K. For 

nitrogen, a = 1.39 dm6 atm mol−2, b = 0.0391 dm3 mol−1.

36.6(b) Cylinders of compressed gas are typically filled to a pressure of 200 bar. 

For oxygen, what would be the molar volume at this pressure and 25 °C based 

on (a) the perfect gas equation, (b) the van der Waals equation? For oxygen, 

a = 1.360 dm6 atm mol−2, b = 3.183 × 10−2 dm3 mol−1.

36.7(a) Use the van der Waals parameters for chlorine to estimate its Boyle 

temperature.

36.7(b) Use the van der Waals parameters for hydrogen sulfide to estimate its 

Boyle temperature.

36.8(a) Use the van der Waals parameters for chlorine to estimate the radius of 

a Cl2 molecule regarded as a sphere.

36.8(b) Use the van der Waals parameters for hydrogen sulfide to estimate the 

radius of an H2S molecule regarded as a sphere.

36.9(a) A certain gas obeys the van der Waals equation with 

a = 0.50 m6 Pa mol−2. Its volume is found to be 5.00 × 10−4 m3 mol−1 at 273 K and 

3.0 MPa. From this information calculate the van der Waals constant b.

36.9(b) A certain gas obeys the van der Waals equation with 

a = 0.76 m6 Pa mol−2. Its volume is found to be 4.00 × 10−4 m3 mol−1 at 288 K  

and 4.0 MPa. From this information calculate the van der Waals  

constant b.

36.10(a) What is the compression factor for the gas described in Exercise 

36.9(a) at the prevailing temperature and pressure?

36.10(b) What is the compression factor for the gas described in Exercise 

36.9(b) at the prevailing temperature and pressure?
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Problems
36.1 Derive an expression for the compression factor of a gas that obeys the 

equation of state p(V – nb) = nRT, where b and R are constants. If the pressure 

and temperature are such that Vm = 10b, what is the numerical value of the 

compression factor?

36.2 The second virial coefficient B′ can be obtained from measurements 

of the density ρ of a gas at a series of pressures. Show that the graph of p/ρ 

against p should be a straight line with slope proportional to B′.

36.3 At 300 K and 20 atm, the compression factor of a gas is 0.86. Calculate  

(a) the volume occupied by 8.2 mmol of the gas under these conditions and 

(b) an approximate value of the second virial coefficient B at 300 K.

36.4 At 273 K measurements on argon gave B = –21.7 cm3 mol−1 and 

C = 1200 cm6 mol−2, where B and C are the second and third virial coefficients 

in the expansion of Z in powers of 1/Vm. Assuming that the perfect gas law 

holds sufficiently well for the estimation of the second and third terms of the 

expansion, calculate the compression factor of argon at 100 atm and 273 K. 

From your result, estimate the molar volume of argon under these  

conditions.

36.5‡ The second virial coefficient of methane can be approximated by 

the empirical equation ′ +B T a b c T( ) ,= −e / 2

 where a = –0.1993 bar−1, 

b = 0.2002 bar−1, and c = 1131 K2 with 300 K < T < 600 K. What is the Boyle 

temperature of methane according to this model?

36.6‡ A substance as elementary and well known as argon still receives 

research attention. A review of thermodynamic properties of argon has been 

published (R.B. Stewart and R.T. Jacobsen, J. Phys. Chem. Ref. Data 18, 639 

(1989)) which included the following 300 K isotherm:

(a) Compute the second virial coefficient, B, at this temperature. (b) Use 

nonlinear curve-fitting software to compute the third virial coefficient, C, at 

this temperature.

36.7 Calculate the molar volume of chlorine gas on the basis of the van der 

Waals equation of state at 250 K and 150 kPa and calculate the percentage 

difference from the value predicted by the perfect gas equation.

36.8 Suppose that 10.0 mol C2H6(g) is confined to 4.860 dm3 at 27 °C. Use the 

perfect gas and van der Waals equations of state to calculate the compression 

factor based on these calculations. For ethane, a = 5.489 dm6 atm mol−2, 

b = 0.06380 dm3 mol−1.

36.9 Show that the van der Waals equation leads to values of Z < 1 and Z > 1, 

and identify the conditions for which these values are obtained.

36.10 Express the van der Waals equation of state as a virial expansion 

in powers of 1/Vm and obtain expressions for B and C in terms of the 

parameters a and b. The expansion you will need is (1 – x)−1 = 1 + x + x2 + …. 

Measurements on argon gave B = –21.7 cm3 mol−1 and C = 1200 cm6 mol−2 

for the virial coefficients at 273 K. What are the values of a and b in the 

corresponding van der Waals equation of state?

Topic 37 Crystal structure

Discussion questions
37.1 Describe the relationship between the space lattice and unit cell.

37.2 Explain how planes of lattice points are labelled.

37.3 Describe the procedure for identifying the type and size of a cubic 

unit cell.

37.4 Discuss what is meant by ‘scattering factor’. How is it related to the 

number of electrons in the atoms scattering X-rays?

37.5 Describe the consequences of the phase problem in determining 

structure factors, and how the problem is overcome.

Exercises
37.1(a) The orthorhombic unit cell of NiSO4 has the dimensions a = 634 pm, 

b = 784 pm, and c = 516 pm, and the density of the solid is estimated as 

3.9 g cm−3. Determine the number of formula units per unit cell and calculate 

a more precise value of the density.

37.1(b) An orthorhombic unit cell of a compound of molar mass 

135.01 g mol−1 has the dimensions a = 589 pm, b = 822 pm, and c = 798 pm. 

The density of the solid is estimated as 2.9 g cm−3. Determine the number of 

formula units per unit cell and calculate a more precise value of the density.

37.2(a) Find the Miller indices of the planes that intersect the crystallographic 

axes at the distances (2a, 3b, 2c) and (2a, 2b, ∞c).

37.2(b) Find the Miller indices of the planes that intersect the crystallographic 

axes at the distances (–a, 2b, –c) and (a, 4b, –4c).

37.3(a) Calculate the separations of the planes {112}, {110}, and {224} in a 

crystal in which the cubic unit cell has side 562 pm.

37.3(b) Calculate the separations of the planes {123}, {222}, and {246} in a 

crystal in which the cubic unit cell has side 712 pm.

37.4(a) The unit cells of SbCl3 are orthorhombic with dimensions 

a = 812 pm, b = 947 pm, and c = 637 pm. Calculate the spacing, d, of the 

{321} planes.

37.4(b) An orthorhombic unit cell has dimensions a = 769 pm, b = 891 pm, and 

c = 690 pm. Calculate the spacing, d, of the {312} planes.

37.5(a) What are the values of the angle θ of the first three diffraction lines of 

bcc iron (atomic radius 126 pm) when the X-ray wavelength is 72 pm?

37.5(b) What are the values of the angle θ of the first three diffraction lines of 

fcc gold (atomic radius 144 pm) when the X-ray wavelength is 129 pm?

37.6(a) Potassium nitrate crystals have orthorhombic unit cells of dimensions 

a = 542 pm, b = 917 pm, and c = 645 pm. Calculate the values of θ for the (100), 

(010), and (111) reflections using radiation of wavelength 154 pm.

37.6(b) Calcium carbonate crystals in the form of aragonite have orthorhombic 

unit cells of dimensions a = 574.1 pm, b = 796.8 pm, and c = 495.9 pm. Calculate 

the values of θ for the (100), (010), and (111) reflections using radiation of 

wavelength 83.42 pm.

p/MPa 0.4000 0.5000 0.6000 0.8000 1.000

Vm/(dm3 mol−1) 6.2208 4.9736 4.1423 3.1031 2.4795

p/MPa 1.500 2.000 2.500 3.000 4.000

Vm/(dm3 mol−1) 1.6483 1.2328 0.98357 0.81746 0.60998
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37.7(a) Radiation from an X-ray source consists of two components of 

wavelengths 154.433 pm and 154.051 pm. Calculate the difference in glancing 

angles (2θ) of the diffraction lines arising from the two components in a 

diffraction pattern from planes of separation 77.8 pm.

37.7(b) Consider a source that emits X-radiation at a range of wavelengths, 

with two components of wavelengths 93.222 and 95.123 pm. Calculate the 

separation of the glancing angles (2θ) arising from the two components in a 

diffraction pattern from planes of separation 82.3 pm.

37.8(a) What is the value of the scattering factor in the forward direction for 

Br−?

37.8(b) What is the value of the scattering factor in the forward direction for 

Mg2+?

37.9(a) The coordinates, in units of a, of the atoms in a primitive cubic unit cell 

are (0,0,0), (0,1,0), (0,0,1), (0,1,1), (1,0,0), (1,1,0), (1,0,1), and (1,1,1).Calculate 

the structure factors Fhkl when all the atoms are identical.

37.9(b) The coordinates, in units of a, of the atoms in a body-centred cubic 

unit cell are (0,0,0), (0,1,0), (0,0,1), (0,1,1), (1,0,0), (1,1,0), (1,0,1), (1,1,1), and 
1
2

1
2

1
2

, , .( )  Calculate the structure factors Fhkl when all the atoms are identical.

37.10(a) Calculate the structure factors for a face-centred cubic structure (C) 

in which the scattering factors of the ions on the two faces are twice that of the 

ions at the corners of the cube.

37.10(b) Calculate the structure factors for a body-centred cubic structure in 

which the scattering factor of the central ion is twice that of the ions at the 

corners of the cube.

37.11(a) In an X-ray investigation, the following structure factors were 

determined (with F−h00 = Fh00):

Construct the electron density along the corresponding direction.

37.11(b) In an X-ray investigation, the following structure factors were 

determined (with F−h00 = Fh00):

Construct the electron density along the corresponding direction.

37.12(a) Construct the Patterson synthesis from the information in Exercise 

37.11(a).

37.12(b) Construct the Patterson synthesis from the information in Exercise 

37.11(b).

37.13(a) In a Patterson synthesis, the spots correspond to the lengths and 

directions of the vectors joining the atoms in a unit cell. Sketch the pattern 

that would be obtained for a planar, triangular isolated BF3 molecule.

37.13(b) In a Patterson synthesis, the spots correspond to the lengths and 

directions of the vectors joining the atoms in a unit cell. Sketch the pattern 

that would be obtained from the C atoms in an isolated benzene molecule.

37.14(a) What speed should neutrons have if they are to have wavelength 

65 pm?

37.14(b) What speed should electrons have if they are to have wavelength 

105 pm?

37.15(a) Calculate the wavelength of neutrons that have reached thermal 

equilibrium by collision with a moderator at 350 K.

37.15(b) Calculate the wavelength of electrons that have reached thermal 

equilibrium by collision with a moderator at 380 K.

Problems
37.1 Although the crystallization of large biological molecules may not be as 

readily accomplished as that of small molecules, their crystal lattices are no 

different. Tobacco seed globulin forms face-centred cubic crystals with unit 

cell dimension of 12.3 nm and a density of 1.287 g cm−3. Determine its molar 

mass.

37.2 Show that the volume of a monoclinic unit cell is V = abc sin β.

37.3 Derive an expression for the volume of a hexagonal unit cell.

37.4 Show that the volume of a triclinic unit cell of sides a, b, and c and angles 

α, β, and γ  is

V abc= +( )1  cos  cos  cos 2 cos cos cos2 2 2− − −α β γ α β γ ½

Use this expression to derive expressions for monoclinic and orthorhombic 

unit cells. For the derivation, it may be helpful to use the result from vector 

analysis that V = a ⋅ b × c and to calculate V2 initially. The compound Rb3TlF6 

has a tetragonal unit cell with dimensions a = 651 pm and c = 934 pm. Calculate 

the volume of the unit cell.

37.5 The volume of a monoclinic unit cell is abc sin β (see Problem 37.2). 

Naphthalene has a monoclinic unit cell with two molecules per cell and sides 

in the ratio 1.377:1:1.436. The angle β is 122.82° and the density of the solid is 

1.152 g cm−3. Calculate the dimensions of the cell.

37.6 Fully crystalline polyethylene has its chains aligned in an orthorhombic 

unit cell of dimensions 740 pm × 493 pm × 253 pm. There are two repeating 

CH2CH2 units per unit cell. Calculate the theoretical mass density of fully 

crystalline polyethylene. The actual density ranges from 0.92 to 0.95 g cm−3.

37.7‡ B.A. Bovenzi and G.A. Pearse, Jr. (J. Chem. Soc. Dalton Trans., 2793 

(1997)) synthesized coordination compounds of the tridentate ligand 

pyridine-2,6-diamidoxime (7, C7H9N5O2). The compound which they 

isolated from the reaction of the ligand with CuSO4(aq) did not contain a 

[Cu(C7H9N5O2)2]
2+ complex cation as expected. Instead, X-ray diffraction 

analysis revealed a linear polymer of formula [Cu(C7H9N5O2)(SO4)·2H2O]n, 

which features bridging sulfate groups. The unit cell was primitive monoclinic 

with a = 1.0427 nm, b = 0.8876 nm, c = 1.3777 nm, and β = 93.254°. The mass 

density of the crystals is 2.024 g cm−3. How many monomer units are there in 

the unit cell?

N
N

OH
N

HO
NH2NH2

7  Pyridine-2,6-diamidoxime

37.8‡ D. Sellmann, et al. (Inorg. Chem. 36, 1397 (1997)) describe the synthesis 

and reactivity of the ruthenium nitrido compound [N(C4H9)4][Ru(N)

(S2C6H4)2]. The ruthenium complex anion has the two 1,2-benzenedithiolate 

ligands (8) at the base of a rectangular pyramid and the nitrido ligand at the 

apex. Compute the mass density of the compound given that it crystallizes 

into an orthorhombic unit cell with a = 3.6881 nm, b = 0.9402 nm, and 

c = 1.7652 nm and eight formula units per cell. Replacing the ruthenium with 

osmium results in a compound with the same crystal structure and a unit cell 

with a volume less than 1 per cent larger. Estimate the mass density of the 

osmium analogue.

h 0 1 2 3 4 5 6 7 8 9

Fh00 10 –10 8 –8 6 –6 4 –4 2 –2

h 0 1 2 3 4 5 6 7 8 9

Fh00 10 10 4 4 6 6 8 8 10 10
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S–

S–

8 1,2-Benzenedithiolate ion

37.9 Show that the separation of the {hkl} planes in an orthorhombic crystal 

with sides a, b, and c is given by eqn 37.1c.

37.10 In the early days of X-ray crystallography there was an urgent need to 

know the wavelengths of X-rays. One technique was to measure the diffraction 

angle from a mechanically ruled grating. Another method was to estimate the 

separation of lattice planes from the measured density of a crystal. The density 

of NaCl is 2.17 g cm−3 and the (100) reflection using radiation of a certain 

wavelength occurred at 6.0°. Calculate the wavelength of the X-rays.

37.11 The element polonium crystallizes in a cubic system. Bragg reflections, 

with X-rays of wavelength 154 pm, occur at sin θ = 0.225, 0.316, and 0.388 

from the {100}, {110}, and {111} sets of planes. The separation between the 

sixth and seventh lines observed in the diffraction pattern is larger than 

between the fifth and sixth lines. Is the unit cell simple, body centred, or face 

centred? Calculate the unit cell dimension.

37.12 Elemental silver reflects X-rays of wavelength 154.18 pm at angles of 

19.076°, 22.171°, and 32.256°. However, there are no other reflections at angles 

of less than 33°. Assuming a cubic unit cell, determine its type and dimension. 

Calculate the mass density of silver.

37.13 In their book X-rays and crystal structures (which begins ‘It is now two 

years since Dr. Laue conceived the idea...’) the Braggs give a number of simple 

examples of X-ray analysis. For instance, they report that the reflection from 

{100} planes in KCl occurs at 5° 23', but for NaCl it occurs at 6° 0' for X-rays 

of the same wavelength. If the side of the NaCl unit cell is 564 pm, what is the 

side of the KCl unit cell? The densities of KCl and NaCl are 1.99 g cm−3 and 

2.17 g cm−3, respectively. Do these values support the X-ray analysis?

37.14 Use mathematical software to draw a graph of the scattering factor f 

against (sin θ)/λ for an atom of atomic number Z for which ρ(r) = 3Z/4πR3 for 

0 ≤ r ≤ R and ρ(r) = 0 for r > R, with R a parameter that represents the radius of 

the atom. Explore how f varies with Z and R.

37.15 The coordinates of the four I atoms in the unit cell of KIO4 are 

( , , ), , , , , , , , , .0 0 0 0 01
2

1
2

1
2

1
2

1
2

1
2

3
4( ) ( ) ( )  By calculating the phase of the I 

reflection in the structure factor, show that the I atoms contribute no net 

intensity to the (114) reflection.

37.16 The coordinates, in units of a, of the A atoms, with scattering factor fA, 

in a cubic lattice are (0,0,0), (0,1,0), (0,0,1), (0,1,1), (1,0,0), (1,1,0), (1,0,1), and 

(1,1,1). There is also a B atom, with scattering factor fB, at 1
2

1
2

1
2

, , .( )  Calculate 

the structure factors Fhkl and predict the form of the diffraction pattern when 

(a) fA = f,  fB = 0, (b) f fB A= 1
2

, and (c) fA = fB = f.

37.17 Here we explore electron diffraction patterns. (a) Predict from the Wierl 

equation, eqn 37.9, the positions of the first maximum and first minimum 

in the neutron and electron diffraction patterns of a Br2 molecule obtained 

with neutrons of wavelength 78 pm wavelength and electrons of wavelength 

4.0 pm. (b) Use the Wierl equation to predict the appearance of the electron 

diffraction pattern of CCl4 with an (as yet) undetermined C–Cl bond length 

but of known tetrahedral symmetry. Take fCl = 17f and fC = 6f and note that 

R(Cl,Cl) = (8/3)1/2R(C,Cl). Plot I/f 2 against positions of the maxima, which 

occurring at 3.17°, 5.37°, and 7.90° and minima, which occurring at 1.77°, 

4.10°, 6.67°, and 9.17°. What is the C–Cl bond length in CCl4?

Topic 38 Bonding in solids

Discussion questions
38.1 To what extent is the hard-sphere model of metallic solids deficient? 38.2 Describe the caesium chloride and rock salt structures in terms of the 

occupation of holes in expanded close-packed lattices.

Exercises
38.1(a) Calculate the packing fraction for close-packed cylinders. (For a 

generalization of this Exercise, see Problem 38.2.)

38.1(b) Calculate the packing fraction for equilateral triangular rods stacked as 

shown in 9.

9

38.2(a) Calculate the packing fractions of (i) a primitive cubic unit cell, (ii) a 

bcc unit cell, (iii) an fcc unit cell composed of identical hard spheres.

38.2(b) Calculate the atomic packing factor for a side-centred (C) cubic 

unit cell.

38.3(a) From the data in Table 38.2 determine the radius of the smallest 

cation that can have (i) sixfold and (ii) eightfold coordination with  

the Cl− ion.

38.3(b) From the data in Table 38.2 determine the radius of the smallest 

cation that can have (i) sixfold and (ii) eightfold coordination with the  

Rb+ ion.

38.4(a) Does titanium expand or contract as it transforms from hcp to body-

centred cubic? The atomic radius of titanium is 145.8 pm in hcp but 142.5 pm 

in bcc.

38.4(b) Does iron expand or contract as it transforms from hcp to bcc? The 

atomic radius of iron is 126 in hcp but 122 pm in bcc.
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38.5(a) Calculate the lattice enthalpy of CaCl2 from the following data: 38.5(b) Calculate the lattice enthalpy of MgBr2 from the following data:

Problems
38.1 Calculate the atomic packing factor for diamond.

38.2 Rods of elliptical cross-section with semi-minor and major axes a and b 

are close-packed, as shown in 10. What is the packing fraction? Draw a graph 

of the packing fraction against the eccentricity ε of the ellipse. For an ellipse 

with semi-major axis a and semi-minor axis b, ε = (1 – b2/a2)1/2.

10

a
b

38.3 The carbon–carbon bond length in diamond is 154.45 pm. If diamond 

were considered to be a close-packed structure of hard spheres with radii 

equal to half the bond length, what would be its expected density? The 

diamond lattice is face-centred cubic and its actual density is 3.516 g cm−3. 

Can you explain the discrepancy?

38.4 When energy levels in a band form a continuum, the density of states 

ρ(E), the number of levels in an energy range divided by the width of the 

range, may be written as ρ(E) = dk/dE, where dk is the change in the quantum 

number k and dE is the energy change. (a) Use eqn 38.1 to show that

ρ β

α
β

( )
( )

E
N

E

= − +

− −⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1 2

1
2

2
1 2

/
/

π

where k, N, α, and β have the meanings described in Topic 38. (b) Use this 

expression to show that ρ(E) becomes infinite as E approaches α ± 2β. That is, 

show that the density of states increases towards the edges of the bands in a 

one-dimensional metallic conductor.

38.5 The treatment in Problem 38.4 applies only to one-dimensional solids. 

In three dimensions, the variation of density of states is more like that shown 

in (11). Account for the fact that in a three-dimensional solid the greatest 

density of states is near the centre of the band and the lowest density is at the 

edges.

s Band

p Band

Density of states, ρ

E
n

er
g

y

11

38.6 The energy levels of N atoms in the tight-binding Hückel approximation 

are the roots of a tridiagonal determinant (eqn 38.1):

E
k

N
k Nk = + + = …α β2

1
1 2cos , , ,

π

 

If the atoms are arranged in a ring, the solutions are the roots of a ‘cyclic’ 

determinant:

E
k

N
k Nk = +α β2

2
0 1 2 1

2
cos , , , ,

π = ± ± … ±
 

(for N even). Discuss the consequences, if any, of joining the ends of an 

initially straight length of material.

38.7 Use the Born–Mayer equation for the lattice enthalpy and a Born–

Haber cycle to show that formation of CaCl is an exothermic process (the 

sublimation enthalpy of Ca(s) is 176 kJ mol−1). Show that an explanation 

for the nonexistence of CaCl can be found in the reaction enthalpy for the 

reaction 2 CaCl(s) → Ca(s) + CaCl2.

38.8 Derive the Born–Mayer equation (eqn 38.7) by calculating the energy at 

which d(EP + EP*)/dd = 0, with EP and EP* given by eqns 38.5 and 38.6, respectively.

38.9 Suppose that ions are arranged in a (somewhat artificial) two-

dimensional lattice like the fragment shown in (12). Calculate the Madelung 

constant for this array.

etc.

+
–

12

ΔH/(kJ mol−1)

Sublimation of Ca(s) +178

Ionization of Ca(g) to Ca2+(g) +1735

Dissociation of Cl2(g) +244

Electron attachment to Cl(g) −349

Formation of CaCl2(s) from Ca(s) and Cl2(g) −796

ΔH/(kJ mol−1)

Sublimation of Mg(s) +148

Ionization of Mg(g) to Mg2+(g) +2187

Vaporization of Br2(l) +31

Dissociation of Br2(g) +193

Electron attachment to Br(g) −331

Formation of MgBr2(s) from Mg(s) and Br2(l) −524

Atkins09819.indb   368 9/11/2013   11:51:05 AM

www.ebook3000.com

http://www.ebook3000.org


Exercises and problems  369

Topic 39 Electrical, optical, and magnetic properties of solids

Discussion questions
39.1 Describe the characteristics of the Fermi–Dirac distribution. 39.2 Is arsenic-doped germanium a p-type or n-type semiconductor?

Exercises
39.1(a) The promotion of an electron from the valence band into the 

conduction band in pure TIO2 by light absorption requires a wavelength 

of less than 350 nm. Calculate the energy gap in electronvolts between the 

valence and conduction bands.

39.1(b) The band gap in silicon is 1.12 eV. Calculate the maximum wavelength 

of electromagnetic radiation that results in promotion of electrons from the 

valence to the conduction band.

39.2(a) The magnitude of the magnetic moment of CrCl3 is 3.81μB. How many 

unpaired electrons does the Cr possess?

39.2(b) The magnitude of the magnetic moment of Mn2+ in its complexes is 

typically 5.3μB. How many unpaired electrons does the ion possess?

39.3(a) Calculate the molar susceptibility of benzene given that its volume 

susceptibility is −7.2 × 10−7 and its density 0.879 g cm−3 at 25 °C.

39.3(b) Calculate the molar susceptibility of cyclohexane given that its volume 

susceptibility is −7.9 × 10−7 and its density 811 kg m−3 at 25 °C.

39.4(a) Data on a single crystal of MnF2 give χm = 0.1463 cm3 mol−1 at 294.53 K. 

Determine the effective number of unpaired electrons in this compound and 

compare your result with the theoretical value.

39.4(b) Data on a single crystal of NiSO4 · 7H2O give χm = 6.00 × 10−8 m3 mol−1 

at 298 K. Determine the effective number of unpaired electrons in this 

compound and compare your result with the theoretical value.

39.5(a) Estimate the spin-only molar susceptibility of CuSO4·5H2O at 25 °C.

39.5(b) Estimate the spin-only molar susceptibility of MnSO4·4H2O at 298 K.

Problems
39.1 Refer to eqn 39.2 and express f(E) as a function of the variables (E − μ)/μ 

and μ/kT. Then, using mathematical software, display the set of curves shown 

in Fig. 39.3 as a single surface.

39.2 In this and the following problem we explore further some of the 

properties of the Fermi–Dirac distribution, eqn 39.2. For a three-dimensional 

solid of volume V, it turns out that ρ(E) = CE1/2, with C = 4πV(2me/h
2)3/2. Show 

that, at T = 0,

f E E f E E( ) ( )= < = >1 for forμ μ0

and deduce that μ(0) = (3N /8π)2/3(h2/2me), where N  = N/V, the number 

density of electrons in the solid. Evaluate μ(0) for sodium (where each atom 

contributes one electron).

39.3 By inspection of eqn 39.2 and the expression for dN in eqn 39.1 (and 

without attempting to evaluate integrals explicitly), show that in order for N 

to remain constant as the temperature is raised, the chemical potential must 

decrease in value from μ(0).

39.4 In an intrinsic semiconductor, the band gap is so small that the Fermi–

Dirac distribution results in some electrons populating the conduction 

band. It follows from the exponential form of the Fermi–Dirac distribution 

that the conductance G, the inverse of the resistance (with units of siemens, 

1 S  =  1 Ω−1), of an intrinsic semiconductor should have an Arrhenius-

like temperature dependence, shown in practice to have the form 

G G E kT= −
0

2e g / ,  where Eg is the band gap. The conductance of a sample of 

germanium varied with temperature as indicated below. Estimate the value 

of Eg.

39.5 A transistor is a semiconducting device that is commonly used either 

as a switch or as an amplifier of electrical signals. Prepare a brief report on 

the design of a nanometre-sized transistor that uses a carbon nanotube as a 

component. A useful starting point is the work summarized by Tans, et al. 

(Nature 393, 49 (1998)).

39.6‡ J.J. Dannenberg, et al. (J. Phys. Chem. 100, 9631 (1996)) carried out 

theoretical studies of organic molecules consisting of chains of unsaturated 

four-membered rings. The calculations suggest that such compounds have 

large numbers of unpaired spins, and that they should therefore have unusual 

magnetic properties. For example, the lowest energy state of the compound 

shown as 13 is computed to have S = 3, but the energies of S = 2 and S = 4 

structures are each predicted to be 50 kJ mol−1 higher in energy. Compute the 

molar magnetic susceptibility of these three low-lying levels at 298 K. Estimate 

the molar susceptibility at 298 K if each level is present in proportion to its 

Boltzmann factor (effectively assuming that the degeneracy is the same for all 

three of these levels).

13

39.7 An NO molecule has thermally accessible electronically excited states. It 

also has an unpaired electron, and so may be expected to be paramagnetic. 

However, its ground state is not paramagnetic because the magnetic moment 

of the orbital motion of the unpaired electron almost exactly cancels the 

spin magnetic moment. The first excited state (at 121 cm−1) is paramagnetic 

because the orbital magnetic moment adds to, rather than cancels, the spin 

magnetic moment. The upper state has a magnetic moment of magnitude 

2μB. Because the upper state is thermally accessible, the paramagnetic 

susceptibility of NO shows a pronounced temperature dependence even near 

room temperature. Calculate the molar paramagnetic susceptibility of NO and 

plot it as a function of temperature.

39.8‡ P.G. Radaelli, et al. (Science 265, 380 (1994)) reported the synthesis and 

structure of a material that becomes superconducting at temperatures below 

45 K. The compound is based on a layered compound, Hg2Ba2YCu2O8-δ, which 

has a tetragonal unit cell with a = 0.38606 nm and c = 2.8915 nm; each unit 

T/K 312 354 420

G/S 0.0847 0.429 2.86
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cell contains two formula units. The compound is made superconducting by 

partially replacing Y by Ca, accompanied by a change in unit cell volume by 

less than 1 per cent. Estimate the Ca content x in superconducting Hg2Ba2Y1 – x 

CaxCu2O7.55 given that the mass density of the compound is 7.651 g cm−3.

Integrated activities

F8.1 The tip of a scanning tunnelling microscope can be used to move atoms 

on a surface. The movement of atoms and ions depends on their ability to 

leave one position and stick to another, and therefore on the energy changes 

that occur. As an illustration, consider a two-dimensional square lattice of 

univalent positive and negative ions separated by 200 pm, and consider a 

cation on top of this array. Calculate, by direct summation, its Coulombic 

interaction when it is in an empty lattice point directly above an anion.

F8.2 Molecular orbital calculations may be used to predict the dipole moments 

of molecules. (a) Using molecular modelling software and the computational 

method of your choice, calculate the dipole moment of the peptide link, 

modelled as a trans-N-methylacetamide (14). Plot the energy of interaction 

between these dipoles against the angle θ for r = 3.0 nm. (b) Compare the 

maximum value of the dipole–dipole interaction energy from part (a) to 

20 kJ mol−1, a typical value for the energy of a hydrogen bonding interaction in 

biological systems.

N
H

CH3

O

14 trans-N-methylacetamide

F8.3 Use eqn 34.7 to calculate the polarizability of a one-dimensional 

harmonic oscillator in its ground state when the field is applied (a) 

perpendicular to, (b) parallel to the oscillator. You will need the result:

μ μ ωz z e
m, ,01 10

1 2

2
= = ⎛

⎝⎜
⎞
⎠⎟


/

F8.4 Use eqn 34.7 to compute the polarizability of a hydrogen atom. For 

simplicity, confine the sum in eqn 34.7 to the npz orbitals and use the 

following matrix element between the npz and 1s orbitals:

μ μz n z n

n

n
ea

n n

n
, ,

( )

( )
0 0 0

8 7 2 5

2 5

1 2
2 1

3 1
= = − −

+
⎛

⎝⎜
⎞

⎠⎟
−

+

/

F8.5 Show that the mean interaction energy of N atoms of diameter d 

interacting with a potential energy of the form C6/R
6 is given by U = 

−2N2C6/3Vd 3, where V is the volume in which the molecules are confined and 

all effects of clustering are ignored. Hence, find a connection between the van 

der Waals parameter a and C6, from n2a/V2  =  (∂U/∂V)T.

F8.6 Molecular orbital calculations may be used to predict structures of 

intermolecular complexes. Hydrogen bonds between purine and pyrimidine 

bases are responsible for the double helix structure of DNA. Consider 

methyladenine (15, with R = CH3) and methylthymine (16, with R = CH3) 

as models of two bases that can form hydrogen bonds in DNA. (a) Using 

molecular modelling software and the computational method of your choice, 

calculate the atomic charges of all atoms in methyladenine and methylthymine. 

(b) Based on your tabulation of atomic charges, identify the atoms in 

methyladenine and methylthymine that are likely to participate in hydrogen 

bonds. (c) Draw all possible adenine−thymine pairs that can be linked by 

hydrogen bonds, keeping in mind that linear arrangements of the A–H�B 

fragments are preferred in DNA. For this step, you may want to use your 

molecular modelling software to align the molecules properly. (d) Which of the 

pairs that you drew in part (c) occur naturally in DNA molecules? (e) Repeat 

parts (a)–(d) for cytosine and guanine, which also form base pairs in DNA.

N

NN

N

NH2

R
15    

HN

O

O

CH3

R

16

F8.7 Calculate the thermal expansion coefficient, α = (∂V/∂T)p/V, of diamond 

given that the (111) reflection shifts from 22.0403° to 21.9664° on heating a 

crystal from 100 K to 300 K and 154.0562 pm X-rays are used.

F8.8 Calculate the scattering factor for a hydrogenic atom of atomic number Z 

in which the single electron occupies (a) the 1s orbital, (b) the 2s orbital. Plot 

f as a function of (sin θ)/λ. Hint: Interpret 4πρ(r)r2 as the radial distribution 

function P(r).

F8.9 Explore how the scattering factor of Problem F8.8 changes when the actual 

1s wavefunction of a hydrogenic atom is replaced by a Gaussian function.

F8.10 The magnetizability, ξ, and the volume and molar magnetic 

susceptibilities can be calculated from the wavefunctions of molecules. For 

instance, the magnetizability of a hydrogenic atom is given by the expression 

ξ = −(e2/6me)〈r2〉, where 〈r2〉 is the (expectation) mean value of r2 in the atom. 

Calculate ξ and χm for the ground state of a hydrogenic atom. Use χ = μ0Nξ.
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Fourier series and Fourier transforms  371

Mathematical background 6 Fourier series and Fourier transforms

Some of the most versatile mathematical functions are the 

trigonometric functions sine and cosine. As a result, it is often 

very helpful to express a general function as a linear combina-

tion of these functions and then to carry out manipulations on 

the resulting series. Because sines and cosines have the form 

of waves, the linear combinations often have a straightforward 

physical interpretation. Throughout this discussion, the func-

tion f(x) is real.

MB6.1 Fourier series
A Fourier series is a linear combination of sines and cosines that 

replicates a periodic function:

f x a a
n x

L
b

n x

L
n

n n( ) cos sin= + +⎧
⎨
⎩

⎫
⎬
⎭=

∞

∑1

2 0

1

π π

 

(MB6.1)

A periodic function is one that repeats periodically, such that 

f(x + 2L) = f(x) where 2L is the period. Although it is perhaps not 

surprising that sines and cosines can be used to replicate contin-

uous functions, it turns out that—with certain limitations—they 

can also be used to replicate discontinuous functions. The coef-

ficients in eqn MB6.1 are found by making use of the orthogo-

nality of the sine and cosine functions

sin cos
−∫ =

L

L m x

L

m x

L
x

π π
d 0

 
(MB6.2a)

and the integrals

sin sin cos cos
− −∫ ∫= =

L

L

L

L

mn

m x

L

n x

L
x

m x

L

n x

L
x L

π π π π
d d δ

 

(MB6.2b)

where δmn = 1 if m = n and 0 if m ≠ n. Thus, multiplication of 

both sides of eqn MB6.1 by cos(kπx/L) and integration from –L 

to L gives an expression for the coefficient ak, and multiplica-

tion by sin (kπx/L) and integration likewise gives an expression 

for bk:
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x k
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 d
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π
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,, ,2 …

 
(MB6.3)

Brief illustration MB6.1 A square wave

Figure MB6.1 shows a graph of a square wave of amplitude A 

that is periodic between –L and L. The mathematical form of 

the wave is

f x
A L x

A x L
( )=

− − ≤ <
+ ≤ <

⎧
⎨
⎪

⎩⎪

0

0

The coefficients a are all zero because f(x) is antisymmetric 

( f(–x) = –f(x)) whereas all the cosine functions are symmetric 

(cos(–x) = cos(x)) and so cosine waves make no contribution to 

the sum. The coefficients b are obtained from

b
L

f x
k x

L
x

L
A

k x

L
x

L
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L
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The final expression has been formulated to acknowledge that 

the two integrals cancel when k is even but add together when 

k is odd. Therefore,

f x
A

k

k x

L

A

n

n x

L
k

N k

n

N

( )
( )

sin sin
( )= − − = −

−
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∑ ∑2 1 1 4 1

2 1

2 1

1 1
π

π
π

π

 

with N → ∞. The sum over n is the same as the sum over k; in 

the latter, terms with k even are all zero. This function is plot-

ted in Fig. MB6.1 for two values of N to show how the series 

becomes more faithful to the original function as N increases.

0

1

0 1–1

–1

f(
x)

/A

x/L

N = 100

N = 5

Figure MB6.1 A square wave and two successive 
approximations by Fourier series (N = 5 and N = 100). The 
inset shows a magnification of the N = 100 approximation.
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372 Mathematical background 6

MB6.2 Fourier transforms
The Fourier series in eqn MB6.1 can be expressed in a more 

succinct manner if we allow the coefficients to be complex 

numbers and make use of de Moivre's relation

e isinin x L n x

L

n x

L
π / cos= ⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

π π

 

(MB6.4)

for then we may write

f x c c
L

f x
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n x L

n
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−∑ ∫e e di iπ π1

2
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(MB6.5)

This complex formalism is well suited to the extension of 

this discussion to functions with periods that become infi-

nite. If a period is infinite, then we are effectively dealing 

with a non-periodic function, such as the decaying expo-

nential function e−x.

We write δk = π/L and consider the limit as L → ∞ and there-

fore δk → 0: that is, eqn MB6.5 becomes
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(MB6.6)

In the last line we have anticipated that the limits of the inte-

gral will become infinite. At this point we should recognize that 

a formal definition of an integral is the sum of the value of a 

function at a series of infinitesimally spaced points multiplied 

by the separation of each point (Fig. MB6.2; see Mathematical 

background 1):

F k k F n k k
a

b

k
n

( ) lim ( )∫ ∑=
→

=−∞

∞

d
δ

δ δ
0

 

(MB6.7)

Exactly this form appears on the right-hand side of eqn MB6.6, 

so we can write that equation as

f x f k k f k f x xkx kx( ) ( ) ( ) ( )= =
−∞

∞

−∞

∞
−∫ ∫1

2π
� �e d where e di i′ ′′

 

(MB6.8)

At this stage we can drop the prime on x for �f k( ). We call the 

function �f k( ) the Fourier transform of f(x); the original func-

tion f(x) is the inverse Fourier transform of �f k( ) .

k

δk

f(
k)

a a 
+ 

δk
a 

+ 
2δ

k
a 

+ 
3δ

k

Figure MB6.2 The formal definition of an integral as the sum 
of the value of a function at a series of infinitesimally spaced 
points multiplied by the separation of each point.

Brief illustration MB6.2 A Fourier transform

The Fourier transform of the symmetrical exponential func-

tion f(x) = e−a|x| is

�f k f x x x

x

kx a x kx

ax kx ax k

( ) ( )= =

= +

−∞

∞
− − −

−∞

∞

−

−∞

− −

∫ ∫
∫

e d e d

e d e

i i

i i
0

xx x

a k a k

a

a k

0

2 2

1 1 2

∞

∫
= − + + =

+

d

i i

The original function and its Fourier transform are drawn in 

Fig. MB6.3.

0 1 2 3–1–2

0

0

1

1
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x

k

(a)

(b)

1

3

1

3

–3

f(
x)

f(
k)

~

Figure MB6.3 (a) The symmetrical exponential function 
f(x) = e−a|x| and (b) its Fourier transform for two values of 
the decay constant a. Note how the function with the 
more rapid decay has a Fourier transform richer in short-
wavelength (high k) components.
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Fourier series and Fourier transforms  373

The physical interpretation of eqn MB6.8 is that f(x) is 

expressed as a superposition of harmonic (sine and cosine) 

functions of wavelength λ = 2π/k, and that the weight of each 

constituent function is given by the Fourier transform at the 

corresponding value of k. This interpretation is consistent 

with the calculation in Brief illustration MB6.2. As we see from 

Fig. MB6.3, when the exponential function falls away rapidly 

with time, the Fourier transform is extended to high values 

of k, corresponding to a significant contribution from short-

wavelength waves. When the exponential function decays only 

slowly, the most significant contributions to the superposition 

come from low-frequency components, which is reflected in 

the Fourier transform, with its predominance of small-k contri-

butions in this case. In general, a slowly varying function has a 

Fourier transform with significant contributions from small-k 

components.

MB6.3 The convolution theorem
A final point concerning the properties of Fourier transforms is 

the convolution theorem, which states that if a function is the 

‘convolution’ of two other functions, that is, if

F x f x f x x x( ) ( ) ( )= −
−∞

∞

∫ 1 2′ ′ ′d
 

(MB6.9a)

then the Fourier transform of F(x) is the product of the Fourier 

transforms of its component functions:

� � �F k f k f k( ) ( ) ( )= 1 2  
(MB6.9b)

Brief illustration MB6.3 Convolutions

Suppose that F(x) is the convolution of two Gaussian 

functions:
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∞
− −∫ e e d
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The Fourier transform of a Gaussian function is itself a 

Gaussian function:
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The origin of spectral lines in molecular spectroscopy is the absorption, emission, or scattering of 
a photon when the energy of a molecule changes. The difference from atomic spectroscopy is that 
the energy of a molecule can change not only as a result of electronic transitions but also because 
it can undergo changes of rotational and vibrational state. Molecular spectra are therefore more 
complex than atomic spectra. However, they also contain information relating to more properties, 
and their analysis leads to values of bond strengths, lengths, and angles. They also provide a way 
of determining a variety of molecular properties, such as dipole moments. The general strategy we 
adopt in this cluster of topics is to set up expressions for the energy levels of molecules and then 
infer the form of molecular spectra observed from the microwave to the ultraviolet regions of the 
electromagnetic spectrum. Throughout our exploration we use ‘time-dependent perturbation the-
ory’ (Approximation methods) to develop a quantum mechanical treatment of ‘selection rules’ for the 
observation of spectroscopic transitions.

Topic 40 begins with a discussion of the features of instrumentation used to monitor the absorp-
tion, emission, and scattering of radiation spanning a wide range of frequencies. Then we describe 
the theory of absorption and emission of radiation, leading to the factors that determine the intensi-
ties and widths of spectral lines.

In Topic 41 we use knowledge of The quantum mechanics of motion to derive expressions for the 
rotational energy levels of diatomic and polyatomic molecules. The most direct procedure, which 
we adopt, is to identify the expressions for the energy and angular momentum obtained in classical 
physics, and then to transform these expressions into their quantum mechanical counterparts. The 
stage is then set for the study of pure rotational and rotational Raman spectra, in which only the rota-
tional state of a molecule changes (Topic 42).

Topic 43 considers the vibrational energy levels of diatomic molecules and shows that we can 
use the properties of ‘harmonic oscillators’ (The quantum mechanics of motion). It also shows that it 
is important to take into account deviations from harmonic oscillation. We see that vibrational spec-
tra of gaseous samples show features that arise from the rotational transitions that accompany the 
excitation of vibrations. Our discussion of the vibrational spectra of polyatomic molecules is based 
on the approach employed for diatomic molecules (Topic 44). We also see that Molecular symmetry is 
helpful for deciding which modes of vibration can be studied spectroscopically.

FOCUS 9  ON  Molecular spectroscopy
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Unlike for rotational and vibrational modes, simple analytical expressions for the electronic 
energy levels of molecules cannot be given. Therefore, we concentrate on the qualitative features 
of electronic transitions that arise from a knowledge of Atomic structure and spectra and Molecular 

structure. A common theme is that electronic transitions occur within a stationary nuclear frame-
work. Topic 45 begins with a discussion of the electronic spectra of diatomic molecules, and we see 
that in the gas phase it is possible to observe simultaneous vibrational and rotational transitions that 
accompany the electronic transition. Then we describe features of the electronic spectra of poly-
atomic molecules. In Topic 46 we discuss spontaneous emission by molecules, including the phe-
nomena of ‘fluor escence’ and ‘phosphorescence’. Then we see how nonradiative decay of excited 
states can result in transfer of energy as heat to the surroundings or result in molecular dissociation. 
A very important example of stimulated radiative decay is that responsible for the action of ‘lasers’.

What is the impact of this material?

Molecular spectroscopy is useful to astrophysicists and environmental scientists. In Impact 9.1 we 
see how the identities of molecules found in interstellar space can be inferred from their rotational 
and vibrational spectra. In Impact 9.2 we turn our attention back towards the Earth and see how the 
vibrational properties of its atmospheric constituents can affect its climate. Absorption and emission 
spectroscopy is also useful to biochemists. In Impact 9.3 we describe how the absorption of visible 
radiation by special molecules in the eye initiates the process of vision. In Impact 9.4 we see how 
fluorescence techniques can be used to make very small samples visible, ranging from specialized 
compartments inside biological cells to single molecules.

To read more about the impact of this material, scan the QR code or go to http://
bcs.whfreeman.com/webpub/chemistry/qmc2e/impact/qchem_impact9.
html.
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TOPIC 40

General features

In emission spectroscopy, a molecule undergoes a transition 

from a state of high energy E1 to a state of lower energy E2 and 

emits the excess energy as a photon. In absorption spectros-

copy, the net absorption of incident radiation is monitored as 

its frequency is varied. We say net absorption, because, when 

a sample is irradiated, both absorption and emission at a given 

frequency are stimulated (Topic 16), and the detector measures 

the difference, the net absorption. In Raman spectroscopy, 

changes in molecular state are explored by examining the fre-

quencies present in the radiation scattered by molecules.

The energy, hν, of the photon emitted or absorbed, and there-

fore the frequency ν of the radiation emitted or absorbed, is given 

by the Bohr frequency condition (Topic 4, hν = E1 – E2). Emission 

and absorption spectroscopy give the same information about 

electronic, vibrational, or rotational energy level separations, but 

practical considerations generally determine which technique is 

employed. In Raman spectroscopy the difference between the 

frequencies of the scattered and incident radiation is determined 

by the transitions that take place within the molecule; this tech-

nique is used to study molecular vibrations and rotations.

Atomic spectroscopy is discussed in Topic 21. Here we set 

the stage for detailed discussion of rotational (Topics 41 and 

42), vibrational (Topics 43 and 44), and electronic (Topics 45 

and 46) transitions in molecules. Techniques that probe transi-

tions between spin states of electrons and nuclei are also use-

ful. They rely on special experimental approaches described in 

Topics 47–50.

Contents

40.1 Spectrometers 378

(a) Sources of radiation 378

(b) Spectral analysis 378

Example 40.1: Calculating a Fourier transform 379

(c) Detectors 380

40.2 Absorption spectroscopy 381

(a) The Beer–Lambert law 381

Example 40.2: Determining a molar absorption  

coefficient 382

(b) Special techniques 382

40.3 Emission spectroscopy 383

40.4 Raman spectroscopy 383

Brief illustration 40.1: Resonance Raman  

spectroscopy 384

40.5 Spectral linewidths 385

(a) Doppler broadening 385

Brief illustration 40.2: Doppler broadening 386

(b) Lifetime broadening 386

Brief illustration 40.3: Lifetime broadening 386

Checklist of concepts 387

Checklist of equations 387

 ➤ Why do you need to know this material?

To interpret data from the wide range of varieties of 
molecular spectroscopy, you need to understand the 
experimental and theoretical features that all types of 
spectra have in common. This Topic lays the foundation 
for the following ten.

 ➤ What is the key idea?
Different arrangements of light sources, wavelength 
analysers, and detectors make possible the study of 

absorption, emission, and scattering of electromagnetic 
radiation by molecules in gaseous, liquid, and solid samples.

 ➤ What do you need to know already?
You need to be familiar with quantization of energy 
in molecules (Topics 9–14), and the general principles 
governing the intensities of spectroscopic transitions 
(Topic 16).
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378 9 Molecular spectroscopy

40.1 Spectrometers

Common to all spectroscopic techniques is a spectrometer, an 

instrument that detects the characteristics of radiation scat-

tered, emitted, or absorbed by atoms and molecules. As an 

example, Fig. 40.1 shows the general layout of an absorption 

spectrometer. Radiation from an appropriate source is directed 

toward a sample and the radiation transmitted strikes a device 

that separates it into different frequencies. The intensity of radi-

ation at each frequency is then analysed by a suitable detector.

(a) Sources of radiation
Sources of radiation are either monochromatic, those spanning 

a very narrow range of frequencies around a central value, or 

polychromatic, those spanning a wide range of frequencies. 

Monochromatic sources that can be tuned over a range of fre-

quencies include the klystron and the Gunn diode, which oper-

ate in the microwave range, and lasers (Topic 46).

Polychromatic sources that take advantage of black-body 

radiation from hot materials (Topic 4) can be used from the 

infrared to the ultraviolet regions of the electromagnetic spec-

trum. Examples include mercury arcs inside a quartz enve-

lope (35 cm−1 < ��  < 200 cm−1), Nernst filaments and globars 

(4000 cm−1 < ��  < 31 000 cm−1), and quartz–tungsten–halogen 

lamps (320 nm < λ < 2500 nm).

A gas discharge lamp is a common source of ultraviolet and vis-

ible radiation. In a xenon discharge lamp, an electrical discharge 

excites xenon atoms to excited states, which then emit ultraviolet 

radiation. In a deuterium lamp, excited D2 molecules dissociate 

into electronically excited D atoms, which emit intense radiation 

in the range 200–400 nm (25 000 cm−1 < ��  < 40 000 cm−1).

For certain applications, synchrotron radiation is generated 

in a synchrotron storage ring, which consists of an electron beam 

travelling in a circular path with a circumference of up to several 

hundred metres. As electrons travelling in a circle are constantly 

accelerated by the forces that constrain them to their path, they 

generate radiation (Fig. 40.2). Synchrotron radiation spans a 

wide range of frequencies, including the infrared and X-rays. 

Except in the microwave region, synchrotron radiation is much 

more intense than can be obtained by most conventional sources.

(b) Spectral analysis
A common device for the analysis of the wavelengths (or wave-

numbers) in a beam of radiation is a diffraction grating, which 

consists of a glass or ceramic plate into which fine grooves have 

been cut and covered with a reflective aluminium coating. For 

work in the visible region of the spectrum, the grooves are cut 

about 1000 nm apart (a spacing comparable to the wavelength 

of visible light). The grating causes interference between waves 

reflected from its surface, and constructive interference occurs 

at specific angles that depend on the frequency of the radiation 

being used. Thus, each wavelength of light is directed into a spe-

cific direction (Fig. 40.3). In a monochromator, a narrow exit slit 

allows only a narrow range of wavelengths to reach the detector. 

Turning the grating around an axis perpendicular to the inci-

dent and diffracted beams allows different wavelengths to be 

analysed; in this way, the absorption spectrum is built up one 

narrow wavelength range at a time. In a polychromator, there is 

no slit and a broad range of wavelengths can be analysed simul-

taneously by array detectors, such as those discussed below.

Many spectrometers, particularly those operating in the infra-

red and near-infrared, now almost always use Fourier transform 

techniques of spectral detection and analysis. The heart of a 

Fourier transform spectrometer is a Michelson interferometer, a 

device for analysing the frequencies present in a composite sig-

nal. The total signal from a sample is like a chord played on a 

piano, and the Fourier transform of the signal is equivalent to the 

separation of the chord into its individual notes, its spectrum.

The Michelson interferometer works by splitting the beam 

from the sample into two and introducing a varying path 

Sample

Reference

Source

Beam
combiner

Detector

Figure 40.1 The layout of a typical absorption spectrometer, in 
which the exciting beams of radiation pass alternately through 
a sample and a reference cell, and the detector is synchronized 
with them so that the relative absorption can be determined.

Linear
accelerator

Booster
synchrotron

Electron
beam

Radiation

Experimental
stations

30 m

10 m

Figure 40.2 A synchrotron storage ring. The electrons 
injected into the ring from the linear accelerator and booster 
synchrotron are accelerated to high speed in the main ring. An 
electron in a curved path is subject to constant acceleration, 
and an accelerated charge radiates electromagnetic energy.
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40  General features  379

difference, p, into one of them (Fig. 40.4). When the two 

components recombine, there is a phase difference between 

them, and they interfere either constructively or destructively 

depending on the difference in path lengths. The detected sig-

nal oscillates as the two components alternately come into and 

out of phase as the path difference is changed (Fig. 40.5). If the 

radiation has wavenumber ��, the intensity of the detected sig-

nal due to radiation in the range of wavenumbers ��  to � �� �+d ,  

which we denote I p( , ) ,� �� �d  varies with p as

I p I p( , ) ( )( cos )� � � � �� � � � �d d= +1 2π  (40.1)

Hence, the interferometer converts the presence of a particular 

wavenumber component in the signal into a variation in inten-

sity of the radiation reaching the detector. An actual signal con-

sists of radiation spanning a large number of wavenumbers, and 

the total intensity at the detector, which we write I(p), is the sum 

of contributions from all the wavenumbers present in the signal:

I p I p I p( ) ( , ) ( )( cos )= = +
∞ ∞

∫ ∫� � � � �� � � � �d d
0 0

1 2π  (40.2)

The problem is to find I( ),��  the variation of intensity with wave-

number, which is the spectrum we require, from the record of 

values of I(p). This step is a standard technique of mathematics, 

and is the ‘Fourier transformation’ step from which this form of 

spectroscopy takes its name (see Mathematical background 6). 

Specifically,

I I p I p p( ) ( ) ( ) cos� �� �= −{ }
∞

∫4 0 21
2

0
π d

 
(40.3)

where I(0) is given by eqn 40.2 with p = 0. This integration is car-

ried out numerically in a computer connected to the spectrometer, 

and the output, I( ),��  is the transmission spectrum of the sample.

Fourier 
transformation

Diffraction grating

Slit

To detector

Incident
beam λ1 λ2

λ3

Figure 40.3 A polychromatic beam is dispersed by a 
diffraction grating into three component wavelengths λ1, 
λ2, and λ3. In the configuration shown, only radiation with λ2 
passes through a narrow slit and reaches the detector. Rotating 
the diffraction grating (as shown by the arrows on the dotted 
circle) allows λ1 or λ3 to reach the detector.

Movable mirror, M1

Mirror, M2

Beam
splitter

Compensator

Figure 40.4 A Michelson interferometer. The beam-splitting 
element divides the incident beam into two beams with a path 
difference that depends on the location of the mirror M1. The 
compensator ensures that both beams pass through the same 
thickness of material.
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Figure 40.5 An interferogram produced as the path length p is 
changed in the interferometer shown in Fig. 40.4. Only a single 
frequency component is present in the signal, so the graph 
is a plot of the function I p I p( ) ( ),= +0 1 cos2��  where I0 is the 
intensity of the radiation.

Example 40.1 Calculating a Fourier transform

Consider a signal consisting of three monochromatic beams 

with the following characteristics:

where the intensities are relative to the intensity I1 of the beam 

with ��1
1150= −cm . Plot the interferogram associated with this 

signal. Then calculate and plot the Fourier transform of the 

interferogram.

Method For a signal consisting of only a few monochromatic 

beams, the integrals in eqns 40.2 and 40.3 can be replaced by 

a sum over the finite number of wavenumbers. It follows that 

the interferogram is

I p I p

i

i i( ) ( ( cos ))= +∑ � �n 1 2π�  (40.4)

��i /cm−1 150 250 450

Ii 1 3 6
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(c) Detectors
A detector is a device that converts radiation into an electric 

current or potential difference for appropriate signal process-

ing and display. Detectors may consist of a single radiation 

sensing element or of several small elements arranged in one or 

two-dimensional arrays.

A microwave detector is typically a crystal diode consisting 

of a tungsten tip in contact with a semiconductor. The most 

common detectors found in commercial infrared spectrom-

eters are sensitive in the mid-infrared region. In a photovol-

taic device the potential difference changes upon exposure to 

infrared radiation. In a pyroelectric device the capacitance is 

sensitive to temperature and hence the presence of infrared 

radiation.

A common detector for work in the ultraviolet and visible 

ranges is the photomultiplier tube (PMT), in which the photo-

electric effect (Topic 4) is used to generate an electrical signal 

proportional to the intensity of light that strikes the detec-

tor. A common, but less sensitive, alternative to the PMT is 

the photodiode, a solid-state device that conducts electricity 

when struck by photons because light-induced electron trans-

fer reactions in the detector material create mobile charge 

carriers (negatively charged electrons and positively charged 

‘holes’).

The charge-coupled device (CCD) is a two-dimensional array 

of several million small photodiode detectors. A CCD detects 

simultaneously a wide range of wavelengths that emerge from 

a polychromator, thus eliminating the need to measure light 

intensity one narrow wavelength range at a time. CCD detec-

tors are the imaging devices in digital cameras, but are also 

used widely in spectroscopy to measure absorption, emission, 

and Raman scattering.

where the path difference p does not vary continuously: it 

increases from zero by an increment determined by details 

of the design of the interferometer. It also follows that the 

Fourier transform is

I I p I p

j

j j( ) ( ) ( ) cos� �� �= −{ }∑4 0 21
2

π  (40.5)

Answer From the data and eqn 40.4, the interferogram is

I p p p pj( ) ( cos ) ( cos ) ( cos )

cos

= + + × + + × +
= +

1 2 3 1 2 6 1 2

10

1 2 3π π π� � �� � �

22 3 2 6 21 2 3π π π� � �� � �p p p+ + cos  cos
 

where intensities are relative to I1. This function is plotted in 

Fig. 40.6. The calculation of the Fourier transform from eqn 

40.5, with I(0) = 20, is made easier by the use of mathematical 

software. The result is shown in Fig. 40.7.

Self-test 40.1 Explore the effect of varying the wavenumbers 

of the three components of the radiation on the shape of the 

interferogram by changing the value of ��3  to 550 cm−1.
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Figure 40.6 The interferogram calculated from data in 
Example 40.1.
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Figure 40.7 The Fourier transform of the interferogram 
shown in Fig. 40.6.

Answer: See Fig. 40.8
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Figure 40.8 The interferogram calculated from data in 
Self-test 40.1.
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40.2 Absorption spectroscopy

With a proper choice of spectrometer, absorption spectroscopy 

can probe electronic, vibrational, and rotational transitions in 

molecules. While radiation sources and detection schemes vary 

with specific applications of the technique, the quantitative 

interpretation of the intensity of transmitted radiation uses a 

simple, common approach.

(a) The Beer–Lambert law
It is found empirically that the transmitted intensity I varies with 

the length, L, of the sample and the molar concentration, [J], of 

the absorbing species J in accord with the Beer–Lambert law:

I I L= − ⎡⎣ ⎤⎦
0 01 Jε   Beer–Lambert law  (40.6)

where I0 is the incident intensity. The quantity ε (epsilon) is 

called the molar absorption coefficient (formerly, and still 

widely, the ‘extinction coefficient’). The molar absorption coef-

ficient depends on the frequency of the incident radiation and 

is greatest where the absorption is most intense. Its dimensions 

are 1/(concentration × length), and it is normally convenient 

to express it in cubic decimetres per mole per centimetre (dm3 

mol−1 cm−1); in SI base units it is expressed in metres-squared 

per mole (m2 mol−1). The latter units imply that ε may be 

regarded as a (molar) cross-section for absorption and that the 

greater the cross-sectional area of the molecule for absorption, 

the greater is its ability to block the passage of the incident radi-

ation at a given frequency. The Beer–Lambert law is an empiri-

cal result. However, it is simple to account for its form, as we 

show in the following Justification.

The spectral characteristics of a sample are commonly reported 

as the transmittance, T, of the sample at a given frequency:

T
I

I
=

0

  Definition  Transmittance  (40.7)

and the absorbance, A, of the sample:

A
I

I
= log 0   Definition  Absorbance  (40.8)

Justification 40.1 The Beer–Lambert law

We think of the sample as consisting of a stack of infinitesimal 

slices, like sliced bread (Fig. 40.9). The thickness of each layer 

is dx. The change in intensity, dI, that occurs when electro-

magnetic radiation passes through one particular slice is pro-

portional to the thickness of the slice, the concentration of the 

absorber J, and the intensity of the incident radiation at that 

slice of the sample, so dI ∝ [J]Idx. Because dI is negative (the 

intensity is reduced by absorption), we can write

d d[J]I I x= −κ
 

where κ (kappa) is the proportionality coefficient. Division of 

both sides by I gives

d
[J]d

I

I
x= −κ

 

This expression applies to each successive slice.

To obtain the intensity that emerges from a sample of thick-

ness L when the intensity incident on one face of the sample 

is I0, we sum all the successive changes. Because a sum over 

infinitesimally small increments is an integral, we write

d
J d

I

I
x

I

I L

0 0∫ ∫ ∫= − = −
⎡⎣ ⎤⎦

ln( / )(Integral A.2)
J uniform

0I I




κ κ[ ] [JJ d] x
L

0∫
L(Integral A.1)


 

In the second step we have supposed that the concentration is 

uniform, so [J] is independent of x and can be taken outside 

the integral. Therefore

ln [J]
I

I
L

0

= −κ
 

Because ln x = (ln 10)log x, we can write ε = κ/ln 10 and obtain

log [J]
I

I
L

0

= −ε
 

which, on taking (common) antilogarithms, is the Beer–

Lambert law (eqn 40.6).

x x + dx

Intensity, I

Intensity, I – dI

Length, L

Figure 40.9 To establish the Beer–Lambert law, the 
sample is supposed to be sliced into a large number of 
planes. The reduction in intensity caused by one plane is 
proportional to the intensity incident on it (after passing 
through the preceding planes), the thickness of the plane, 
and the concentration of absorbing species.
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382 9 Molecular spectroscopy

The two quantities are related by A = –log T (note the common 

logarithm) and the Beer–Lambert law becomes

A J L=ε[ ]  (40.9)

The product ε[J]L was known formerly as the optical density of 

the sample.

The maximum value of the molar absorption coefficient, 

εmax, is an indication of the intensity of a transition. However, 

as absorption bands generally spread over a range of wavenum-

bers, quoting the absorption coefficient at a single wavenumber 

might not give a true indication of the intensity of a transition. 

The integrated absorption coefficient, A, is the sum of the 

absorption coefficients over the entire band (Fig. 40.10), and 

corresponds to the area under the plot of the molar absorption 

coefficient against wavenumber:

A = ∫ ε( )� �� �d

band

  (40.10)

For lines of similar widths, the integrated absorption coeffi-

cients are proportional to the heights of the lines.

(b) Special techniques
The separation of rotational energy levels (ΔE ≈ 1 zJ, corre-

sponding to about 1 kJ mol−1) is smaller than that of vibrational 

energy levels (ΔE ≈ 10 zJ, corresponding to 10 kJ mol−1), which 

itself is smaller than that of electronic energy levels (ΔE ≈ 1 aJ, 

corresponding to about 103 kJ mol−1) (Foundations, Topic 2). 

From ν = ΔE/h, it follows that rotational, vibrational, and elec-

tronic transitions result from the absorption or emission of 

microwave, infrared, and ultraviolet to far-infrared radiation, 

respectively (see Topics 42–45).

In Section 40.1, we discussed options for the construction 

of spectrometers that monitor different regions of the electro-

magnetic spectrum. Often it is necessary to modify the gen-

eral design of Fig. 40.1 in order to detect weak signals. For 

instance, to detect rotational transitions with a microwave 

spectrometer it is often useful to modulate the transmit-

ted intensity by varying the energy levels with an oscillating 

electric field. In this Stark modulation, an electric field of 

about 105 V m−1 and a frequency of between 10 and 100 kHz 

is applied to the sample.

Example 40.2 Determining a molar absorption 
coefficient

Radiation of wavelength 280 nm was passed through 1.0 mm 

of a solution that contained an aqueous solution of the amino 

acid tryptophan at a concentration of 0.50 mmol dm−3. The 

light intensity is reduced to 54 per cent of its initial value (so 

T = 0.54). Calculate the absorbance and the molar absorption 

coefficient of tryptophan at 280 nm. What would be the trans-

mittance through a cell of thickness 2.0 mm?

Method From A = –log T = ε[J]L, it follows that ε = −log T/[J]L. 

For the transmittance through the thicker cell, we use T = 10−A 

and the value of ε calculated here.

Answer The molar absorption coefficient is

ε = −
× ×

= ×

− −

− −

log .

( . ) ( . )

.

0 54

5 0 10 1 0

5 4 10

4 3

2 3 1 1

mol dm mm

dm mol mm  

These units are convenient for the rest of the calculation (but 

the outcome could be reported as 5.4 × 103 dm3 mol−1 cm−1 if 

desired). The absorbance is

A = − =log 54 270 0. .
 

The absorbance of a sample of length 2.0 mm is

A = × × ×
× =

− − − −( . ) ( . )

( . ) .

5 4 1 dm mol mm 5 1 mol dm

2  mm 54

2 3 1 4 30 0 0

0 0

1

 

It follows that the transmittance is now

T A= = =− −1 1 290 0 00 54. .
 

That is, the emergent light is reduced to 29 per cent of its inci-

dent intensity.

Self-test 40.2 The transmittance of an aqueous solution that 

contained the amino acid tyrosine at a molar concentration 

of 0.10 mmol dm−3 was measured as 0.14 at 240 nm in a cell 

of length 5.0 mm. Calculate the molar absorption coefficient 

of tyrosine at that wavelength and the absorbance of the 

solution. What would be the transmittance through a cell of 

length 1.0 mm?

Answer: 1.7 × 103 dm3 mol−1 mm−1, A = 0.85, T = 0.68

Definition
Integrated absorption 
coefficient
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Figure 40.10 The integrated absorption coefficient of a 
transition is the area under a plot of the molar absorption 
coefficient against the wavenumber of the incident radiation.
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Virtually every commercial spectrometer operating in the 

infrared region and designed for the study of vibrational tran-

sitions uses the Fourier transform techniques described in 

Section 40.1b. A major advantage of the Fourier transform pro-

cedure is that all the radiation emitted by the source is moni-

tored continuously, in contrast to a spectrometer in which a 

monochromator discards most of the generated radiation. As a 

result, Fourier transform spectrometers have a higher sensitiv-

ity than conventional spectrometers.

The ability of lasers to produce pulses of very short duration 

(Topic 46) is particularly useful in chemistry when we want 

to monitor processes in time. In time-resolved spectroscopy, 

laser pulses are used to obtain the spectrum of reactants, inter-

mediates, products, and even transition states of reactions. The 

arrangement shown in Fig. 40.11 is often used to study ultrafast 

chemical reactions that can be initiated by light and monitored 

by electronic spectroscopy (Topic 45). A strong and short laser 

pulse, the pump, promotes a molecule A to an excited electronic 

state A* that can either emit a photon or react with another spe-

cies B to yield a product C:

Here [AB] denotes either an intermediate or an activated com-

plex, a high-energy cluster of atoms. The rates of appearance 

and disappearance of the various species are determined by 

observing time-dependent changes in the electronic absorp-

tion spectrum of the sample during the course of the reaction. 

This monitoring is done by passing a weak pulse of white light, 

the probe, through the sample at different times after the laser 

pulse. Pulsed ‘white’ light can be generated directly from the 

laser pulse by the phenomenon of continuum generation, in 

which focusing a short laser pulse on a vessel containing water, 

carbon tetrachloride, or sapphire results in an outgoing beam 

with a wide distribution of frequencies. A time delay between 

the strong laser pulse and the ‘white’ light pulse can be intro-

duced by allowing one of the beams to travel a longer distance 

before reaching the sample. For example, a difference in travel 

distance of Δd = 3 mm corresponds to a time delay Δt = Δd/c ≈ 
10 ps between two beams, where c is the speed of light. The rela-

tive distances travelled by the two beams in Fig 40.11 are con-

trolled by directing the ‘white’ light beam to a motorized stage 

carrying a pair of mirrors.

40.3 Emission spectroscopy

Rotational, vibrational, and electronic transitions can be studied 

by monitoring the spectrum of radiation emitted by a sample. 

Studies of spontaneous emission by electronic excited states of 

molecules are particularly useful in chemistry and biochemistry, 

and in Topic 46 we discuss the origins of two processes, namely 

fluorescence, which ceases within a few nanoseconds of the excit-

ing radiation being extinguished, and phosphorescence, which 

may persist for long periods. We confine our short remarks at 

this stage to fluorescence because it is the basis of a number of 

sensitive techniques for chemical and biochemical analysis.

In a conventional fluorescence experiment, the source is 

tuned, often with the use of a monochromator, to a wavelength 

that causes electronic excitation of the molecule. Typically, the 

emitted radiation is detected perpendicular to the direction 

of the exciting beam of radiation, and analysed with a second 

monochromator (Fig. 40.12).

40.4 Raman spectroscopy

In a typical Raman spectroscopy experiment, a monochro-

matic incident laser beam is passed through the sample and the 

radiation scattered from the front face of the sample is moni-

tored (Fig. 40.13). Lasers (Topic 46) are used as the source of Detector

Laser

Monochromator

Beam splitter

Sample
cell

Continuum
generation

LensLens

Prisms on
motorized stage

Figure 40.11 A configuration used for time-resolved 
absorption spectroscopy, in which the same pulsed laser is 
used to generate a monochromatic pump pulse and, after 
continuum generation in a suitable liquid, a ‘white’ light probe 
pulse. The time delay between the pump and probe pulses 
may be varied.

Sample

Source

Detector

Fluorescence

Incident
radiation

Monochromator

Figure 40.12 A simple emission spectrometer for monitoring 
fluorescence, where light emitted by the sample is detected 
at right angles to the direction of propagation of an incident 
beam of radiation.

A + hν → A* (absorption)

A* → A (emission)

A* + B → [AB] → C (reaction)
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384 9 Molecular spectroscopy

the incident radiation because an intense beam increases the 

intensity of scattered radiation. The monochromaticity of laser 

radiation makes possible the observation of frequencies of 

scattered light that differs only slightly from that of the inci-

dent radiation. Such high resolution is particularly useful for 

observing rotational transitions by Raman spectroscopy. The 

monochromaticity of laser radiation also allows observations 

to be made very close to absorption frequencies. Fourier trans-

form instruments are common, as are spectrometers using 

polychromators connected to CCD detectors.

In Raman spectroscopy, about 1 in 107 of the incident pho-

tons collide with the molecules, give up some of their energy, 

and emerge with a lower energy. These scattered photons con-

stitute the lower-frequency Stokes radiation from the sam-

ple (Fig. 40.14). Other incident photons may collect energy 

from the molecules (if they are already excited), and emerge 

as higher-frequency anti-Stokes radiation. The component 

of radiation scattered without change of frequency is called 

Rayleigh radiation.

Raman spectroscopy can be used to study rotational and 

vibrational transitions in molecules. Most commercial instru-

ments are designed for vibrational studies, which lead to appli-

cations in biochemistry, art restoration, and monitoring of 

industrial processes. Raman spectrometers can also be coupled 

to microscopes, resulting in spectra of very small regions of a 

sample.

Many special techniques are based on the arrangement just 

discussed. By far the most common variation uses incident 

radiation that nearly coincides with the frequency of an elec-

tronic transition of the sample (Fig. 40.15). The technique is 

then called resonance Raman spectroscopy. It is character-

ized by a much greater intensity in the scattered radiation. 

Furthermore, because it is often the case that only a few vibra-

tional modes contribute to the more intense scattering, the 

spectrum is greatly simplified.

Brief illustration 40.1 Resonance Raman spectroscopy

Figure 40.16 shows the resonance Raman spectra of a pro-

tein that binds β-carotene and chlorophyll and captures solar 

energy during plant photosynthesis. Only vibrational transi-

tions from the few pigment molecules are observed because 

water (the solvent), amino acid residues, and the peptide 

group do not have electronic transitions at the laser wave-

lengths used in the experiment. Comparison of the spectra 

in Figs 40.16a and 40.16b also shows that, with proper choice 

of excitation wavelength, it is possible to examine individual 

classes of pigments bound to the same protein: excitation at 

488 nm, where β-carotene absorbs strongly, shows vibrational 

bands from β-carotene only, whereas excitation at 407 nm, 

Incident
radiation

Scattered
resonance
radiationE

n
er

g
y

Figure 40.15 In the resonance Raman effect the incident 
radiation has a frequency close to an actual electronic 
excitation of the molecule. A photon is emitted when the 
excited state returns to a state close to the ground state.

Sample

Source

Detector

Monochromator
or interferometer

Figure 40.13 A common arrangement adopted in Raman 
spectroscopy. A laser beam first passes through a lens and 
then through a small hole in a mirror with a curved reflecting 
surface. The focused beam strikes the sample and scattered 
light is both deflected and focused by the mirror. The spectrum 
is analysed by a monochromator or an interferometer.

Incident
radiationE
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Stokes

Anti-Stokes

Rayleigh

Figure 40.14 In Raman spectroscopy, an incident photon is 
scattered from a molecule with either an increase in frequency 
(if the radiation collects energy from the molecule) or with a 
lower frequency (if it loses energy to the molecule) to give the 
anti-Stokes and Stokes lines, respectively. Scattering without a 
change of frequency results in the Rayleigh lines. The process 
can be regarded as taking place by an excitation of the molecule 
to a wide range of states (represented by the shaded band), and 
the subsequent return of the molecule to a lower state; the net 
energy change is then carried away by the photon.
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40.5 Spectral linewidths

A number of effects contribute to the widths of spectroscopic 

lines. Some contributions to linewidths can be modified by 

changing the conditions, and to achieve high resolutions we 

need to know how to minimize these contributions. Other con-

tributions cannot be changed, and represent an inherent limita-

tion on resolution.

(a) Doppler broadening
One important broadening process in gaseous samples is the 

Doppler effect, in which radiation is shifted in frequency 

when the source is moving towards or away from the observer. 

When a source emitting electromagnetic radiation of frequency ν 

moves with a speed s relative to an observer, the observer detects 

 radiation of frequency

� � � �receding approaching

/

/

/

/
= −

+
⎛
⎝⎜

⎞
⎠⎟

= +
−

⎛
⎝⎜

⎞1

1

1

1

1 2
s c

s c

s c

s c

/

⎠⎠⎟
1 2/

 
 (40.11a)

where c is the speed of light. For nonrelativistic speeds (s � c), 

these expressions simplify to

�
�

�
�

receding approaching/ /
≈

+
≈

−1 1s c s c
 (40.11b)

Atoms and molecules reach high speeds in all directions 

in a gas, and a stationary observer detects the corresponding 

Doppler-shifted range of frequencies. Some molecules approach 

the observer, some move away; some move quickly, others slowly. 

The detected spectral ‘line’ is the absorption or emission profile 

arising from all the resulting Doppler shifts. As shown in the fol-

lowing Justification, the profile reflects the distribution of veloci-

ties parallel to the line of sight, which is a bell-shaped Gaussian 

curve. The Doppler line shape is therefore also a Gaussian (Fig. 

40.17), and we show in the Justification that, when the tempera-

ture is T and the mass of the atom or molecule is m, then the 

observed width of the line at half-height (in terms of frequency 

or wavelength) is

δ

δ

�
�

obs

obs

= ⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

2 2 2

2 2 2

1 2

1 2

c

kT

m

c

kT

m

ln

ln

/

/

λ λ

 

(40.12)

Doppler broadening increases with temperature because the mol-

ecules acquire a wider range of speeds. Therefore, to obtain spec-

tra of maximum sharpness, it is best to work with cool samples.

Doppler 
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Doppler 
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T/3

3T

Figure 40.17 The Gaussian shape of a Doppler-broadened 
spectral line reflects the Maxwell distribution of speeds in the 
sample at the temperature of the experiment. Notice that the 
line broadens as the temperature is increased.

where chlorophyll a and β-carotene absorb, reveals features 

from both types of pigments.

Self-test 40.3 What process might contribute to signals where 

resonance Raman scattering is expected?

Answer: Spontaneous emission (such as fluorescence), which also  

originates from excitation of an electronic transition

Li
g

h
t 

in
te

n
si

ty

1800 1500 1300
Raman shift, Δν/cm–1~

(a)

(b)

Figure 40.16 The resonance Raman spectra of a protein 
complex that is responsible for some of the initial 
electron transfer events in plant photosynthesis. (a) 
Laser excitation of the sample at 407 nm shows Raman 
bands due to both chlorophyll a and β-carotene bound 
to the protein because both pigments absorb light at 
this wavelength. (b) Laser excitation at 488 nm shows 
Raman bands from β-carotene only because chlorophyll 
a does not absorb light very strongly at this wavelength. 
(Adapted from D.F. Ghanotakis, et al., Biochim. Biophys. 

Acta 974, 44 (1989).)
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(b) Lifetime broadening
It is found that spectroscopic lines from gas-phase samples 

are not infinitely sharp even when Doppler broadening has 

been largely eliminated by working at low temperatures. This 

residual broadening is due to quantum mechanical effects. 

Specifically, when the Schrödinger equation is solved for a sys-

tem that is changing with time, it is found that it is impossible 

to specify the energy levels exactly (Topic 16). If on average a 

system survives in a state for a time τ, the lifetime of the state, 

then its energy levels are blurred to an extent of order δE ≈ /τ 

(eqn 16.9). With the energy spread expressed as a wavenum-

ber through δ δE hc= ��, and the values of the fundamental con-

stants introduced, this relation becomes

δ �� ≈
−5 3 1. cm

/psτ
  Lifetime broadening  (40.14)

and gives an indication of lifetime broadening of spectral lines. 

No excited state has an infinite lifetime; therefore, all states are 

subject to some lifetime broadening and the shorter the life-

times of the states involved in a transition the broader the cor-

responding spectral lines.

Two processes are responsible for the finite lifetimes of 

excited states. The dominant one for low-frequency transi-

tions is collisional deactivation, which arises from collisions 

between atoms or with the walls of the container. If the col-

lisional lifetime, the mean time between collisions, is τcol, the 

resulting collisional linewidth is δEcol ≈ ħ/τcol. Because τcol = 1/z, 

where z is the collision frequency, and the kinetic model of 

gases (Topic 78) implies that z is proportional to the pressure, 

we conclude that the collisional linewidth is proportional to the 

pressure. The collisional linewidth can therefore be minimized 

by working at low pressures.

The rate of spontaneous emission cannot be changed (Topic 

16). Hence it is a natural limit to the lifetime of an excited state, 

and the resulting lifetime broadening is the natural linewidth 

of the transition, which cannot be changed by modifying the 

conditions. Because the rate of spontaneous emission increases 

as ν3 (Topic 16), the lifetime of the excited state decreases as 

ν3, and the natural linewidth increases with the transition 

frequency. Thus, rotational (microwave) transitions occur at 

Justification 40.2 Doppler broadening

It follows from the Boltzmann distribution (Foundations 

Topic 2, and Topic 51) that the probability that an atom or 

molecule of mass m and speed s in a gas-phase sample at a 

temperature T has kinetic energy E msk = 1
2

2  is proportional to 

e−ms kT2 2/ .  The observed frequencies, νobs, emitted or absorbed 

by the molecule are related to its speed by eqn 40.11a. When 

s � c, the Doppler shift in the frequency is

� � �obs /− ≈ ± s c
 

More specifically, the intensity I of a transition at νobs is pro-

portional to the probability of there being an atom that emits 

or absorbs at νobs, so it follows from the Boltzmann distri-

bution and the expression for the Doppler shift, in the form 

s = ± (νobs − ν )c/ν, that 

I mc kT( )� � � �
obs

/e obs∝ − −( )2 2 22

 (40.13)

which has the form of a Gaussian function. Because the width 

at half-height of a Gaussian function a x be− −( ) /2 22σ  (where a, b, 

and σ are constants) is δx = 2σ(2 ln 2)1/2, δνobs can be inferred 

directly from the exponent of eqn 40.13 to give eqn 40.12.

Brief illustration 40.3 Lifetime broadening

A typical electronic excited-state lifetime is about τ  =  

10−8 s = 1.0 × 104 ps, corresponding to a linewidth of

δ �� ≈
×

= ×
−

− −5 3

1 0 10
5 3 10

1

4
4 1

.

.
.

cm
cm

which corresponds to 16 MHz.

Self-test 40.5 A typical lifetime of a molecular rotation is 

about 103 s. What is the linewidth of the spectral line?

Answer: 5 × 10−15 cm−1 (of the order of 10−4 Hz)

Brief illustration 40.2 Doppler broadening

For N2 of mass 28.02mu at T = 300 K,

δ�

�
obs

N

k

ms

=
⎛
⎝⎜

⎞
⎠⎟

=
×

×

× ×

−

−

2 2 2

2

2 998 10

2 1 380 10

2

1 2

8 1

23

c

kT

m

ln

.

.

/

J

gg m s

K K

kg

2 2

1

26

300 2

4 653 10

−

−

−

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

× ×

×

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟



( ) ln

.
⎟⎟
⎟
⎟

= × −

1 2

62 34 10

/

.

For a transition wavenumber of 2331 cm−1 (from the Raman 

spectrum of N2), corresponding to a frequency of 69.9 THz 

(1 THz = 1012 Hz), the linewidth is 164 MHz.

Self-test 40.4 What is the Doppler-broadened linewidth of the 

821 nm transition in atomic hydrogen at 300 K?

Answer: 4.38 GHz
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40  General features  387

much lower frequencies than vibrational (infrared) transi-

tions and consequently have much longer lifetimes and hence 

much smaller natural linewidths: at low pressures rotational 

linewidths are due principally to Doppler broadening.

Checklist of concepts

☐ 1. In emission spectroscopy, a molecule undergoes a 

transition from a state of high energy to a state of lower 

energy, and emits the excess energy as a photon.

☐ 2. In absorption spectroscopy, the net absorption of inci-

dent radiation is monitored as its frequency is varied.

☐ 3. A spectrometer is an instrument that detects the char-

acteristics of radiation scattered, emitted, or absorbed 

by atoms and molecules.

☐ 4. In Raman spectroscopy, changes in molecular state are 

explored by examining the frequencies present in the 

radiation scattered by molecules.

☐ 5. Stokes radiation is the result of Raman scattering of 

photons that give up some of their energy during (and 

emerge with lower frequency after) collisions with 

molecules.

☐ 6. Anti-Stokes radiation is the result of Raman scattering 

of photons that collect some energy during (and emerge 

with higher frequency after) collisions with molecules.

☐ 7. The component of radiation scattered without change 

of frequency is called Rayleigh radiation.

☐ 8. Doppler broadening of a spectral line is caused by 

the distribution of molecular and atomic speeds in a 

sample.

☐ 9. Lifetime broadening arises from the finite lifetime of an 

excited state and a consequent blurring of energy levels.

☐ 10. Collisions between atoms can affect excited-state life-

times and spectral linewidths.

☐ 11. The natural linewidth of a transition is an intrinsic 

property that depends on the rate of spontaneous emis-

sion at the transition frequency.

Checklist of equations

Property Equation Comment Equation number

Fourier transformation I I p I p p( ) ( ) ( ) cos� �� �= −{ }
∞

∫4 0 21
2

0

π d Spectral data collected with a Michelson 
interferometer

40.3

Beer–Lambert law I = I010−ε[J]L Uniform medium 40.6

Absorbance A I I T= = −log( ) log0 / Definitions 40.8

Integrated absorption coefficient A = ∫ ε( )� �� �d

band

Definition 40.10

Doppler broadening δ

δ

� �obs

obs

/ /

/

=

=

2 2 2

2 2 2

1 2

1 2

c kT m

c kT m

( ln )

( ln / )

/

/λ λ

40.12

Lifetime broadening δ�� ≈ −( . )/( )5 3 1cm /psτ 40.14
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TOPIC 41

Molecular rotation

Topics 13 and 14 explore the rotational states of diatomic mol-

ecules by using the particle on a ring and particle on a sphere, 

respectively, as models. Here we use a more sophisticated model 

that can be applied to the rotation of polyatomic molecules.

41.1 Moments of inertia

The key molecular parameter we shall need for the description 

of molecular rotation is the moment of inertia, I, of the mol-

ecule (see Topic 13). The moment of inertia of a molecule is 

defined as the mass of each atom multiplied by the square of its 

distance from the rotational axis passing through the centre of 

mass of the molecule (Fig. 41.1):

I m x
i

i i=∑ 2  Definition  Moment of inertia  (41.1)

where xi is the perpendicular distance of the atom i from the 

axis of rotation. The moment of inertia depends on the masses 

of the atoms present and the molecular geometry, so we can 

xD

xA

mD

mA

mB

mC

I = 3mAxA
2 + 3mDxD

2

Figure 41.1 The definition of moment of inertia. In this 
molecule there are three identical atoms attached to the B 
atom and three different but mutually identical atoms attached 
to the C atom. In this example, the centre of mass lies on an 
axis passing through the B and C atoms, and the perpendicular 
distances are measured from this axis.

Contents

41.1 Moments of inertia 388

Example 41.1: Calculating the moment  

of inertia of a molecule 390

41.2 The rotational energy levels 391

(a) Spherical rotors 391

Brief illustration 41.1: Spherical rotors 392

(b) Symmetric rotors 392

Example 41.2: Calculating the rotational  

energy levels of a symmetric rotor 393

(c) Linear rotors 393

Brief illustration 41.2: Linear rotors 394

(d) Centrifugal distortion 394

Brief illustration 41.3: The effect of centrifugal  

distortion 394

Checklist of concepts 394

Checklist of equations 395

 ➤ Why do you need to know this material?
To understand the origin of microwave spectra and to 
derive useful information, such as bond lengths, about 
molecules from them, you need to understand the 
quantum mechanical treatment of rotation of polyatomic 
molecules.

 ➤ What is the key idea?
The energy levels of a molecule modelled as a rigid rotor 
may be expressed in terms of quantum numbers and 
parameters related to its moments of inertia.

 ➤ What do you need to know already?
You need to be familiar with the classical description of 
rotational motion (Foundations, Topic 2). You also need 
to be familiar with the particle on a ring (Topic 13) and 
particle on a sphere (Topic 14) as quantum mechanical 
models of rotational motion.
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41 Molecular rotation  389

suspect (and see explicitly in Topic 42) that microwave spectros-

copy will give information about bond lengths and bond angles.

In general, the rotational properties of any molecule can 

be expressed in terms of the moments of inertia about three 

perpendicular axes set in the molecule (Fig. 41.2). The con-

vention is to label the moments of inertia Ia, Ib, and Ic, with 

the axes chosen so that Ic ≥ Ib ≥ Ia. For linear molecules, 

the moment of inertia around the internuclear axis is zero 

(because xi = 0 for all the atoms). The explicit expressions for 

the moments of inertia of some symmetrical molecules are 

given in Table 41.1.

Ia

Ib

Ic

Figure 41.2 An asymmetric rotor has three different moments 
of inertia; all three rotation axes coincide at the centre of mass 
of the molecule.

Table 41.1 Moments of inertia*

1. Diatomic molecules

mA mB

R
I R

m m

m
= =μ μ2 A B

2. Triatomic linear rotors

mB

mA mC

R´R
I m R m R

m R m R

m
= A C

A C2 2

2

+ ′ −
− ′( )

mB

mA mA

R R I = 2mAR2

3. Symmetric rotors

mB

mC

mA mA

mA

R´

R

θ

I m R� = 2 1 2
A( cos )− θ

 

I m R
m

m
m m R

m

m
m m R m R

⊥ + +

+ ′

= − +

+ +

A
A

B A

C
A B A

( cos ) ( )( cos )

( )

1 1 2

3 6

2 2

1

3

θ θ

(( cos )

/

1 2

1 2

+ θ⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
′R

mB

mA

mA

mA

R

θ

I m R� = 2 1 2
A( cos )− θ

 

I m R
m m

m
R⊥ = − + +A

A B( cos ) ( cos )1 1 22 2θ θ

mB

mC

mC

mA

mA mA

mA

R´

R´

R

I m R� = 4 2
A  

I m R m R⊥ = + ′2 22 2
A C
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390 9 Molecular spectroscopy

We shall suppose initially that molecules are rigid rotors, bod-

ies that do not distort under the stress of rotation. Rigid rotors 

can be classified into four types (Fig. 41.3):

Spherical rotors have three equal moments of inertia 

(examples: CH4, SiH4, and SF6).

Symmetric rotors have two equal moments of inertia and a 

third that is nonzero (examples: NH3, CH3Cl, and 

CH3CN).

Linear rotors have two equal moments of inertia and a third 

that is zero (examples: CO2, HCl, OCS, and HC^CH).

Asymmetric rotors have three different and nonzero 

moments of inertia (examples: H2O, H2CO, and CH3OH).

Example 41.1 Calculating the moment of inertia 
of a molecule

Calculate the moment of inertia of an H2O molecule around 

the axis defined by the bisector of the HOH angle (1). The 

HOH bond angle is 104.5° and the bond length is 95.7 pm.

φ/2
xH

1

Method According to eqn 41.1, the moment of inertia is the 

sum of the masses multiplied by the squares of their distances 

from the axis of rotation. The latter can be expressed by using 

trigonometry and the bond angle and bond length.

A note on good practice The mass to use in the calculation 

of the moment of inertia is the actual atomic mass, not the 

element’s molar mass; don’t forget to convert from relative 

masses to actual masses by using the atomic mass constant mu.

Answer From eqn 41.1,

I m x m x m x m x

i

i i= =∑ + + =2 2 2 20 2H H H H H H

If the bond half-angle of the molecule is denoted φ and the bond 

length is R, trigonometry gives x RH sin= 1
2
φ.  It follows that

I m R= 2 sinH
2 2 1

2
φ

Substitution of the data gives

I = × × × × × ×
×

2 1 67 1 kg 9 57 1 m sin 1 4 5

1 91 1

27 11 2 2( . ) ( . ) ( . )

.

0 0 0

0

1
2

− −

−

°
= 447 2kg m  

Note that the mass of the O atom makes no contribution to the 

moment of inertia for this mode of rotation as the O atom is 

immobile while the H atoms circulate around it.

Self-test 41.1 Calculate the moment of inertia of a CH35Cl3 

molecule around a rotational axis that contains the CeH 

bond. The CeCl bond length is 177 pm and the HCCl angle is 

107°; m(35Cl) = 34.97mu.

Answer: 4.99 × 10−45 kg m2

4. Spherical rotors

mB

mA

mA mA

mA

R

I m R= 8
3

2
A

mB
mA

mA

mA

mA

mA

mA

R

I = 4mAR2

* In each case, m is the total mass of the molecule.
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41 Molecular rotation  391

Spherical, symmetric, and asymmetric rotors are also called 

spherical tops, symmetric tops, and asymmetric tops.

41.2 The rotational energy levels

The rotational energy levels of a rigid rotor may be obtained 

by solving the appropriate Schrödinger equation. Fortunately, 

however, there is a much less onerous shortcut to the exact 

expressions that depends on noting the classical expres-

sion for the energy of a rotating body, expressing it in terms 

of the angular momentum, and then importing the quan-

tum mechanical properties of angular momentum into the 

equations.

The classical expression for the energy of a body rotating 

about an axis a is

E Ia a a= 1
2

2ω  (41.2)

where ωa is the angular velocity (in rad s−1) about that axis and 

Ia is the corresponding moment of inertia. A body free to rotate 

about three axes has an energy

E I I Ia a b b c c= +1
2

2 1
2

2 1
2

2ω ω ω+  (41.3)

Because the classical angular momentum about the axis a is 

Ja = Iaωa, with similar expressions for the other axes, it follows that

E
J

I

J

I

J

I
a

a

b

b

c

c

= + +
2 2 2

2 2 2
 Classical expression  Rotational energy  (41.4)

This is the key equation, which can be used in conjunction with 

the quantum mechanical properties of angular momentum 

developed in Topic 14.

(a) Spherical rotors
When all three moments of inertia are equal to some value I, as 

in CH4 and SF6, the classical expression for the energy is

E
J J J

I I
a b c= =
2 2 2 2

2 2

+ + J

 
(41.5)

where J 2 2 2 2= +J J Ja b c+  is the square of the magnitude of the 

angular momentum. We can immediately find the quantum 

expression by making the replacement

J J J J2 1 1 2→ =( ) , , ,+  …2 0  

where J is the angular momentum quantum number. Therefore, 

the energy of a spherical rotor is confined to the values

E J J
I

JJ = + =( ) , , ,1
2

0 1 2
2

…
 

The resulting ladder of energy levels is illustrated in Fig. 41.4. 

Spherical 
rotor

(41.6)Rotational 
energy levels

I

I

I

I||

I

I

I⊥I⊥

Ia
Ib

Ic

Linear
rotor

Spherical
rotor

Symmetric
rotor

Asymmetric
rotor

0

Figure 41.3 A schematic illustration of the classification 
of rigid rotors.
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Figure 41.4 The rotational energy levels of a linear or spherical 
rotor. Note that the energy separation between neighbouring 
levels increases as J increases.
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392 9 Molecular spectroscopy

The energy is normally expressed in terms of the rotational 

constant, �B, of the molecule, where

hcB
I

B
cI

� � =
2

2 4
so =

π  

It follows that �B  is a wavenumber. The expression for the energy 

is then

E hc J J JBJ = =� …( ) , , ,+1 0 1 2
 

It is also common to define the rotational constant as a fre-

quency and to denote it simply as B. Then B = ħ/4πI and the 

energy is E = hBJ(J + 1). The two quantities are related by 

B cB= � .

The energy of a rotational state is normally reported as the 

rotational term, �F J( ),  a wavenumber, by division of both sides 

of eqn 41.8 by hc:

� �F J BJ J( ) ( )= +1  Spherical rotor  Rotational terms  (41.9)

To express the rotational term as a frequency, we use F cF= �.  

The separation of adjacent levels is

� � � � �F J F J B J J BJ J B J( ) ( ) ( )( ) ( ) ( )+ + + + +1 1 2 1 2 1− = − =  (41.10)

Because the rotational constant is inversely proportional 

to I, large molecules have closely spaced rotational energy 

levels.

(b) Symmetric rotors

In symmetric rotors, all three moments of inertia are nonzero 

but two are the same and different from the third (as in CH3Cl, 

NH3, and C6H6); the unique axis of the molecule is its princi-

pal axis (or figure axis). We shall write the unique moment of 

inertia (that about the principal axis) as I|| and the other two 

as I⊥. If I|| > I⊥, the rotor is classified as oblate (like a pancake, 

and C6H6); if I|| < I⊥ it is classified as prolate (like a cigar, and 

CH3Cl). The classical expression for the energy, eqn 41.4, 

becomes

E
J J

I

J

I
b c a=
2 2 2

2 2

+ +
⊥ �  

(41.11)

Again, this expression can be written in terms of J 2 2 2 2= J J Ja b c+ + :

E
J

I

J

I I I I
Ja a

a= −J J2 2 2 2
2

2 2 2

1

2

1

2⊥ ⊥ ⊥
+ = + −

⎛
⎝⎜

⎞
⎠⎟� �  

(41.12)

Now we generate the quantum expression by replacing J2 by 

J(J + 1)ħ2. We also know from the quantum theory of angular 

momentum (Topic 14) that the component of angular momen-

tum about any axis is restricted to the values Kħ, with K = 0,  

±1, …, ± J. (K is the quantum number used to signify a com-

ponent on the principal axis; MJ is reserved for a component 

on an externally defined axis.) Therefore, we also replace Ja
2  by 

K2ħ2. It follows that the rotational terms are

� � � �

…
F J K BJ J A B K

J J

( , ) ( ) ( )

, , , , , ,

= + −
= = ± ±

+
…

1

0 0

2

1 2 1K
 

with

� � 
�

A
cI

B
cI

= =
⊥4 4π π

 
(41.14)

Equation 41.13 matches what we should expect for the depend-

ence of the energy levels on the two distinct moments of inertia 

of the molecule:

When K = 0, there is no component of angular 

momentum about the principal axis, and the energy 

levels depend only on I⊥ (Fig. 41.5).

When K = ± J, almost all the angular momentum 

arises from rotation around the principal axis, and 

the energy levels are determined largely by I||.

The sign of K does not affect the energy because 

opposite values of K correspond to opposite senses of 

rotation, and the energy does not depend on the sense of 

rotation.

Brief illustration 41.1 Spherical rotors

Consider 12C35Cl4: from Table 41.1, the CKCl bond length  

(RCKCl = 177 pm) and the mass of the 35Cl nuclide (m(35Cl) =  

34.97mu), we find

I m R= = −

−

8

3

8

3
5 807 1035 2 26

34 97 1 66054 10 27

( ) ( . )

. ( .

Cl kgC Cl

kg

e × ×

× × ))

( . )

.

� ���� ����
× ×

×

1 77 10

4 85 10

10 2

45 2

−

−=

m

kg m
 

and, from eqn 41.7,

�



B =
π

1 054 57 10

4 2 998 10 4 85 10

34

8 1 45

2 2

.

( . ) .

×
× × × ×

−

− −

−

J s

m s kg m

kg m s

22

1 15 77 0 0577= =. .m cm− −

It follows from eqn 41.10 that the energy separation between 

the J = 0 and J = 1 levels is � � �F F B( ) ( ) . .1 0 2 0 1154 1− = −= cm

Self-test 41.2 Calculate � �F F( ) ( )2 0−  for 12C35Cl4.

Answer: 6 0 3462 1�B = . .cm−

Symmetric 
rotor 

Rota-
tional 
terms

 (41.13)

Spherical 
rotor

(41.7)Rotational 
constant

Spherical 
rotor

(41.8)Energy 
levels
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41 Molecular rotation  393

The energy of a symmetric rotor depends on J and K, and 

each level except those with K = 0 is doubly degenerate: the 

states with K and –K have the same energy. However, we must 

not forget that the angular momentum of the molecule has a 

component on an external, laboratory-fixed axis. This compo-

nent is quantized, and its permitted values are MJħ, with MJ = 0, 

±1, …, ±J, giving 2J + 1 values in all (Fig. 41.6). The quantum 

number MJ does not appear in the expression for the energy, 

but it is necessary for a complete specification of the state of 

the rotor. Consequently, all 2J + 1 orientations of the rotating 

molecule have the same energy. It follows that a symmetric 

rotor level is 2(2J + 1)-fold degenerate for K ≠ 0 and (2J + 1)-fold 

degenerate for K = 0. A linear rotor has K fixed at 0, but the 

angular momentum may still have 2J + 1 components on the 

laboratory axis, so its degeneracy is 2J + 1.

A spherical rotor can be regarded as a version of a sym-

metric rotor in which � �A B= .  The quantum number K may still 

take any one of 2J + 1 values, but the energy is independent of 

which value it takes. Therefore, as well as having a (2J + 1)-fold 

degeneracy arising from its orientation in space, the rotor also 

has a (2J + 1)-fold degeneracy arising from its orientation with 

respect to an arbitrary axis in the molecule. The overall degen-

eracy of a symmetric rotor with quantum number J is therefore 

(2J + 1)2. This degeneracy increases very rapidly: when J = 10, 

for instance, there are 441 states of the same energy.

(c) Linear rotors
For a linear rotor (such as CO2, HCl, and C2H2), in which the 

nuclei are regarded as mass points, the rotation occurs only 

about an axis perpendicular to the line of atoms and there is 

zero angular momentum around the line. Therefore, the com-

ponent of angular momentum around the figure axis of a linear 

Example 41.2 Calculating the rotational energy levels 
of a symmetric rotor

A 14NH3 molecule is a symmetric rotor with bond length 

101.2 pm and HNH bond angle 106.7°. Calculate its rotational 

terms.

A note on good practice To calculate moments of inertia 

precisely, it is necessary to specify the nuclide.

Method Begin by calculating the rotational constants � �A Band  

by using the expressions for moments of inertia given in Table 

41.1 and eqn 41.14. Then use eqn 41.13 to find the rotational 

terms.

Answer Substitution of mA = 1.0078mu, mB = 14.0031mu, 

R = 101.2 pm, and θ = 106.7° into the second of the symmetric 

rotor expressions in Table 41.1 gives I|| = 4.4128 × 10−47 kg m2 and 

I⊥ = 2.8059 × 10−47 kg m2. Hence, by the same kind of cal-

culations as in Brief illustration 41.1, �A = 6 344 cm 1. −  and 
�B = 9 977 cm 1. .−  It follows from eqn 41.13 that

�F J K J J K( , ) . ( ) ./cm− = × +1 29 977 1 3 933−

Multiplication by c converts �F J K( , ) to a frequency, denoted 

F(J,K):

F J K J J K( , ) . ( ) ./GHz = +299 1 1 108 9 2× −

For J = 1, the energy needed for the molecule to rotate mainly 

about its figure axis (K = ±J) is equivalent to 16.32 cm−1 

(489.3 GHz), but end-over-end rotation (K = 0) corresponds to 

19.95 cm−1 (598.1 GHz).

Self-test 41.3 A CH3
35Cl molecule has a C–Cl bond length of 

178 pm, a C–H bond length of 111 pm, and an HCH angle of 

110.5°. Calculate its rotational energy terms.

Answer: �F J K J J K( ), . ( ) . ;/cm 444 1 4 581 2− = + +0   

also F(J,K)/GHz = 13.3J(J + 1) + 137K2

J

J

K ≈ J K = 0
(a) (b)

Figure 41.5 The significance of the quantum number K. (a) 
When |K| is close to its maximum value, J, most of the molecular 
rotation is around the figure axis. (b) When K = 0 the molecule 
has no angular momentum about its principal axis: it is 
undergoing end-over-end rotation.

(b)(a) (c)

J
MJ

z

MJ = 0

Figure 41.6 The significance of the quantum number MJ. (a) 
When MJ is close to its maximum value, J, most of the molecular 
rotation is around the laboratory z-axis. (b) An intermediate 
value of MJ. (c) When MJ = 0 the molecule has no angular 
momentum about the z-axis. All three diagrams correspond 
to a state with K = 0; there are corresponding diagrams for 
different values of K, in which the angular momentum makes a 
different angle to the molecule’s principal axis.
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394 9 Molecular spectroscopy

rotor is identically zero, and K ≡ 0 in eqn 41.13. The rotational 

terms of a linear molecule are therefore

� � …F J BJ J J( ) ( ) , , ,= =+1 0 1 2
 

This expression is the same as eqn 41.9 but we have arrived at 

it in a significantly different way: here K ≡ 0 but for a spheri-

cal rotor � �A B= . Note that it is important to set K identically 

equal to 0 in eqn 41.13 so that the second term vanishes identi-

cally; there is then no need to worry about the consequences of 
�A I∝1/ || approaching infinity as I|| approaches 0.

(d) Centrifugal distortion
We have treated molecules as rigid rotors. However, the atoms 

of rotating molecules are subject to centrifugal forces that tend 

to distort the molecular geometry and change the moments 

of inertia (Fig. 41.7). The effect of centrifugal distortion on a 

di atomic molecule is to stretch the bond and hence to increase 

the moment of inertia. As a result, centrifugal distortion 

reduces the rotational constant and consequently the energy 

levels are slightly closer than the rigid-rotor expressions pre-

dict. The effect is usually taken into account largely empirically 

by subtracting a term from the energy and writing

� � �F J BJ J D J JJ( ) ( ) ( )= + − +1 12 2

 

The parameter �DJ  is the centrifugal distortion constant. It is 

large when the bond is easily stretched. The centrifugal distor-

tion constant of a diatomic molecule is related to the vibra-

tional wavenumber of the bond, ��  (which, as we see in Topic 43, 

is a measure of its stiffness), through the approximate relation 

(see Problem F9.2)

�
�

�
D

B
J = 4 3

2�  
 Centrifugal distortion constant  (41.17)

Hence the observation of the convergence of the rotational lev-

els as J increases can be interpreted in terms of the rigidity of 

the bond.

Checklist of concepts

☐ 1. A rigid rotor is a body that does not distort under the 

stress of rotation.

☐ 2. Rigid rotors are classified as spherical, symmetric, lin-

ear, or asymmetric by noting the number of equal prin-

cipal moments of inertia.

☐ 3. Symmetric rotors are classified as prolate or oblate.

☐ 4. A linear rotor rotates only about an axis perpendicular 

to the line of atoms.

☐ 5. The degeneracies of spherical, symmetric (K ≠ 0), 

and linear rotors are (2J + 1)2, 2(2J + 1), and 2J + 1, 

respectively.

☐ 6. Centrifugal distortion arises from forces that change 

the geometry of a molecule.

Linear 
rotor 

Rotational 
terms  (41.15)

Brief illustration 41.2 Linear rotors

Equation 41.10 for the energy separation of adjacent levels 

of a spherical rotor also applies to linear rotors. For 1H35Cl, 
� �F F( ) ( ) . ,3 2− = −63 56 cm 1  and it follows that 6 �B = −63 56 cm 1.  

and �B = −1 59 cm 10. .

Self-test 41.4 For 1H81Br, � �F F( ) ( ) . .1 0− = −16 93 cm 1  Determine 

the value of �B.

Answer: 8.465 cm−1

Rotational 
terms affected 
by centrifugal 
distortion

 (41.16)

Brief illustration 41.3 The effect of centrifugal distortion

For 12C16O, �B =1 931 cm 1. −  and �� = 217 cm 10 − .  It follows that

�DJ =
×

= ×
4 1 931

2170
6 116 10

1 3

1 2
6 1

( . )

( )
.

cm

cm
cm

−

−
− −

and that, because � �D BJ � ,  centrifugal distortion has a very 

small effect on the energy levels.

Self-test 41.5 Does centrifugal distortion increase or decrease 

the separation between adjacent energy levels?

Answer: decreases

Centrifugal
force

Figure 41.7 The effect of rotation on a molecule. The 
centrifugal force arising from rotation distorts the molecule, 
opening out bond angles and stretching bonds slightly. The 
effect is to increase the moment of inertia of the molecule and 
hence to decrease its rotational constant.
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Checklist of equations

Property Equation Comment Equation number

Moment of inertia I m x

i

i i=∑ 2 xi is perpendicular distance of atom 
i from the axis of rotation

41.1

Rotational terms of a spherical or linear rotor � �F J BJ J( ) = +( 1) J = 0, 1, 2, …,
� B cI= π/4

41.9, 41.15

Rotational terms of a symmetric rotor � � � �F J K BJ J A B K( , ) ( ) ( )= + −+1 2 J = 0, 1, 2, … 41.13, 41.14

K = 0, ±1, …, ±J
�  �A cI= π/4

� B cI= π/4 ⊥

Rotational terms of a spherical or linear rotor 
affected by centrifugal distortion

� � �F J BJ J D J JJ( ) ( +1) ( +1)2 2= − � � �D BJ = 4 3/ �2 41.16, 41.17
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TOPIC 42

Rotational spectroscopy

Pure rotational spectra, in which only the rotational state of a 

molecule changes, can be observed only in the gas phase (Topic 

40). In spite of this limitation, rotational spectroscopy can pro-

vide a wealth of information about molecules, including pre-

cise bond lengths and dipole moments. Our approach to the 

description of rotational spectra consists of developing the gross 

and specific selection rules for rotational transitions, examining 

the appearance of rotational spectra, and exploring the informa-

tion that can be obtained from the spectra. This material also 

informs the discussion of the fine details observed in infrared 

spectra (Topics 43–44) and electronic spectra (Topics 45–46).

42.1 Microwave spectroscopy

Typical values of the rotational constant �B  for small mole-

cules are in the region of 0.1–10 cm−1 (Topic 41); for example, 

0.356 cm−1 for NF3 and 10.59 cm−1 for HCl. It follows that rota-

tional transitions can be studied with microwave spectroscopy, 

a technique that monitors the absorption or emission of radia-

tion in the microwave region of the spectrum.

(a) Selection rules
We show in the following Justification that the gross selection 

rule for the observation of a pure rotational transition in a micro-

wave spectrum is that a molecule must have a permanent electric 

dipole moment. That is, to absorb or emit microwave radiation 

and undergo a pure rotational transition, a molecule must be polar. 

The classical basis of this rule is that a polar molecule appears to 

possess a fluctuating dipole when rotating but a nonpolar mol-

ecule does not (Fig. 42.1). The permanent dipole can be regarded 

as a handle with which the molecule stirs the electromagnetic 

field into oscillation (and vice versa for absorption).

The specific rotational selection rules are found by evaluat-

ing the transition dipole moment (Topic 16) between rotational 

states. We show in the following Justification that, for a linear 

molecule, the transition moment vanishes unless the following 

conditions are fulfilled:

 ➤ Why do you need to know this material?
You need to be familiar with rotational spectroscopy 
because it is well suited for the study of molecules and 
reactions in gas-phase systems, such as the atmosphere, 
and also provides highly precise data on bond lengths and 
bond angles of molecules.

 ➤ What is the key idea?
The frequencies of rotational transitions depend on the 
moments of inertia of molecules and their intensities 
depend on the magnitudes of permanent molecular dipole 
moments.

 ➤ What do you need to know already?
You should be familiar with the general principles of 
molecular spectroscopy (Topic 40) and the quantum 
mechanical treatment of molecular rotation (Topic 41). 
The derivation of selection rules draws on the concepts 
of time-dependent perturbation theory introduced in 
Topic 16.
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42 Rotational spectroscopy  397

Δ ΔJ MJ= ± = ±1 0 1,

The transition ΔJ = +1 corresponds to absorption and the tran-

sition ΔJ = –1 corresponds to emission. The allowed change in 

J in each case arises from the conservation of angular momen-

tum when a photon, a spin-1 particle, is emitted or absorbed 

(Fig. 42.2).

Brief illustration 42.1 Gross selection rules for 
microwave spectroscopy

Homonuclear diatomic molecules and nonpolar polyatomic 

molecules such as CO2, CH2aCH2, and C6H6, are rotation-

ally inactive. On the other hand, OCS and H2O are polar, and 

have microwave spectra. Spherical rotors cannot have electric 

dipole moments unless they become distorted by rotation, so 

they are rotationally inactive except in special cases. An exam-

ple of a spherical rotor that does become sufficiently distorted 

for it to acquire a dipole moment is SiH4, which has a dipole 

moment with a magnitude of about 8.3 μD by virtue of its rota-

tion when J ≈ 10 (for comparison, HCl has a permanent dipole 

moment of magnitude 1.1 D; molecular dipole moments and 

their units are discussed in Topic 34).

Self-test 42.1 Which of the molecules H2, NO, N2O, CH4 can 

have a pure rotational spectrum?

Answer: NO, N2O

Justification 42.1 Selection rules: microwave spectra

The starting point for any discussion about selection rules is 

the total wavefunction for a molecule, which can be written 

as ψtotal = ψcmψ, where ψcm describes the motion of the centre 

of mass and ψ describes the internal motion of the molecule. 

The Born–Oppenheimer approximation (Topic 22) allows us to 

write ψ as the product of an electronic part, ψε, a vibrational 

part, ψv, and a rotational part, which for a diatomic molecule 

can be represented by the spherical harmonics YJ MJ, ( , )θ φ  

(Topic 14). The transition dipole moment for the spectroscopic 

transition i → f can now be written as

μ μfi * * *
i i

d=∫ψ ψ ψ ψ τε εf f f f i iv vY YJ M J MJ J, ,, ,

�  (42.2)

and our task is to explore conditions under which this integral 

vanishes or has a nonzero value.

For a pure rotational transition the initial and final elec-

tronic and vibrational states are the same, and we identify 

μ μi * * d= ∫ψ ψ ψ ψ τε εi i i iv v
�  with the permanent electric dipole 

moment of the molecule in the state i. Equation 42.2 then 

becomes

μ μfi if f i i
* d=∫ Y YJ M J MJ J, ,, ,

τ  (42.3)

The remaining integration is over the angles representing 

the orientation of the molecule. We see immediately that the 

molecule must have a permanent dipole moment in order to 

have a microwave spectrum. This is the gross selection rule for 

microwave spectroscopy.

From this point on, the deduction of the specific selection 

rules proceeds as in the case of atomic transitions (Topic 21), 

and makes use of the fact that the three components of the 

dipole moment (Fig. 42.3) are

μ μ θ φ μ μ θ φ μ μ θi i i, , ,sin cos sin sin cosx y z= = =0 0 0  (42.4)

and can be expressed in terms of the spherical harmonics Yj,m, 

with j = 1 and m = 0, ±1 (see Justification 21.1). Then, the condition 

for the non-vanishing of the integral over the product of three 

spherical harmonics, which is described in Topic 33, implies that

∫ =Y Y YJ M j m J MJ Jf f i i
* d angles, , ,, ,

τ 0  (42.5)

Linear 
rotors

Rotational 
selection 
rules

(42.1)

μ μ

Figure 42.1 To a stationary observer, a rotating polar 
molecule looks like an oscillating dipole which can stir the 
electromagnetic field into oscillation (and vice versa for 
absorption). This picture is the classical origin of the gross 
selection rule for rotational transitions.

Photon

Figure 42.2 When a photon is absorbed by a molecule, the 
angular momentum of the combined system is conserved. If 
the molecule is rotating in the same sense as the spin of the 
incoming photon, then J increases by 1.

μz

μ0

μx
μy

θ

φ

Figure 42.3 The axis system used in the calculation of the 
transition dipole moment.
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398 9 Molecular spectroscopy

In Topic 16 it is shown that the intensity of a spectral line 

is proportional to the square modulus of the transition dipole 

moment. When the transition moment is evaluated for all pos-

sible relative orientations of the molecule to the line of flight of 

the photon, it is found that the total J + 1 ↔ J transition inten-

sity is proportional to

μ μJ J

J

J+ = +
+

⎛
⎝⎜

⎞
⎠⎟1

2

0
21

2 1,  
(42.6)

where μ0 is the magnitude of the permanent electric dipole 

moment of the molecule. The intensity is proportional to the 

square of the magnitude of the permanent electric dipole 

moment, so strongly polar molecules give rise to much more 

intense rotational lines than less polar molecules.

For symmetric rotors, an additional selection rule states that 

ΔK = 0. To understand this rule, consider the symmetric rotor 

NH3, where the electric dipole moment lies parallel to the figure 

axis. Such a molecule cannot be accelerated into different states 

of rotation around the figure axis by the absorption of radiation, 

so ΔK = 0. Therefore, for symmetric rotors the selection rules are

Δ Δ ΔJ M KJ= ± = ± =1 0 1 0,
 

The degeneracy associated with the quantum number MJ (the 

orientation of the rotation in space) is partly removed when an 

electric field is applied to a polar molecule (for example, HCl 

or NH3), as illustrated in Fig. 42.4. The splitting of states by an 

electric field is called the Stark effect (Topic 40). The energy shift 

depends on the permanent electric dipole moment, μ0, so the 

observation of the Stark effect can be used to measure the magni-

tudes (not the sign) of electric dipole moments with a rotational 

spectrum.

(b) The appearance of microwave spectra
When the selection rules are applied to the expressions for the 

energy levels of a rigid spherical or linear rotor, it follows that 

the wavenumbers of the allowed J + 1 ← J absorptions are

� � �

�
�( ) ( ) ( )

( )

, , ,

J J F J F J

B J

J

+ ← = + −
= +
= …

1 1

2 1

0 1 2

where the terms � �F J BJ J( ) ( )= +1  are introduced in Topic 41. 

When centrifugal distortion (Topic 41) is taken into account, 

the corresponding expression obtained from eqn 41.16, 
� � �F J BJ J D J JJ( ) ( ) ( )= + − +1 12 2, is

� � �� J J B J D JJ+ ←( )= +( )− +1 2 1 4 1 3( )  (42.8b)

However, because the second term is typically very small com-

pared with the first (see Brief illustration 41.3), the appearance 

of the spectrum closely resembles that predicted from eqn 

42.8a.

Symmetric 
rotors 

Rotational 
selection 
rules

(42.7)

Linear 
and 
spherical 
rotors

Wavenumbers 
of rotational 
transitions 

(42.8a)

unless MJ,f = MJ,i + m and lines of length Jf, Ji, and j can form a 

triangle (such as 1, 2, and 3, or 1, 1, and 1, but not 1, 2, and 4). 

By exactly the same argument as presented in Justification 21.1 

(and developed in Problem 21.7), we conclude that Jf – Ji = ±1 

and MJ,f – MJ,i = 0 or ±1.

0
±1
±2
±3

±4

±5

±6

±7

MJ
Field on

Field off

Figure 42.4 The effect of an electric field on the energy levels 
of a polar linear rotor. All levels are doubly degenerate except 
that with MJ = 0.

Example 42.1 Predicting the appearance of a rotational 
spectrum

Predict the form of the rotational spectrum of 14NH3.

Method The energy levels are calculated in Example 41.2. The 
14NH3 molecule is a polar symmetric rotor, so the rotational 

terms are given by eqn 41.13 ( ( , ) ( ) ( ) )� � � �F J K BJ J A B K= + + −1 2 . 

Because ΔJ = ±1 and ΔK = 0, the expression for the wavenum-

bers of the rotational transitions is identical to eqn 42.8a and 

depends only on �B. For absorption, ΔJ = +1.

Answer Because �B = 9 977.  cm 1− , we can draw up the follow-

ing table for the J +1 ← J transitions:

The line spacing is 19.95 cm−1 (598.1 GHz).

Self-test 42.2 Repeat the problem for CH3
35Cl (see Self-test 

41.3 for details).

Answer: Lines of separation 0.888 cm−1 (26.6 GHz)

J 0 1 2 3 …

��/cm−1 19.95 39.91 59.86 79.82 …

ν/GHz 598.1 1197 1795 2393 …
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42 Rotational spectroscopy  399

The form of the spectrum predicted by eqn 42.8 is shown 

in Fig. 42.5. The most significant feature is that it consists of 

a series of lines with wavenumbers 2 �B , 4 �B , 6 �B , …, and of 

separation 2 �B. The measurement of the line spacing gives �B, 

and hence the moment of inertia perpendicular to the princi-

pal axis of the molecule. Because the masses of the atoms are 

known, it is a simple matter to deduce the bond length of a dia-

tomic molecule. However, in the case of a polyatomic molecule 

such as OCS or NH3, the analysis gives only a single quantity, 

I⊥, and it is not possible to infer both bond lengths (in OCS) or 

the bond length and bond angle (in NH3). This difficulty can 

be overcome by using isotopically substituted molecules, such 

as ABC and A′BC; then, by assuming that R(A–B) = R(A′–B), 

both A–B and B–C bond lengths can be extracted from the 

two moments of inertia. A famous example of this proce-

dure is the study of OCS; the actual calculation is worked 

through in Problem 42.5. The assumption that bond lengths 

are unchanged by isotopic substitution is only an approxima-

tion, but it is a good approximation in most cases. Nuclear 

spin (Topic 47), which differs from one isotope to another, also 

affects the appearance of high-resolution rotational spectra 

because spin is a source of angular momentum and can cou-

ple with the rotation of the molecule itself and hence affect the 

rotational energy levels.

The intensities of spectral lines increase with increasing J 

and pass through a maximum before tailing off as J becomes 

large. The most important reason for the maximum in inten-

sity is the existence of a maximum in the population of rota-

tional levels. The Boltzmann distribution (Foundations, Topic 

2, and Topic 51) implies that the population of each state 

decays exponentially with increasing J, but the degeneracy of 

the levels increases, and these two opposite trends result in the 

population of the energy levels (as distinct from the individual 

states) passing through a maximum. Specifically, the popula-

tion of a rotational energy level J is given by the Boltzmann 

expression

N NgJ J
E kTJ∝ −e /

 

where N is the total number of molecules and gJ is the degen-

eracy of the level J. The value of J corresponding to a maximum 

of this expression is found by treating J as a continuous vari-

able, differentiating with respect to J, and then setting the result 

equal to zero. The result is (see Problem 42.9)

J
kT

hcB
max ≈⎛

⎝⎜
⎞
⎠⎟

−
2

1 2

1
2�

/

 

For a typical molecule (for example, OCS, with �B = 0 2. cm 1− )  

at room temperature, kT hcB≈1000 � , so Jmax ≈ 30. However, 

it must be recalled that the intensity of each transition also 

depends on the value of J (eqn 42.6) and on the population 

difference between the two states involved in the transition. 

Hence the value of J corresponding to the most intense line is 

not quite the same as the value of J for the most highly popu-

lated level.

42.2 Rotational Raman spectroscopy

Raman scattering (Topic 40) can also lead to rotational transi-

tions. The gross selection rule for rotational Raman transitions 

is that the polarizability of the molecule must be anisotropic. The 

distortion of a molecule in an electric field is determined by 

its polarizability, α (Topic 34). More precisely, if the strength 

of the field is E, then the molecule acquires an induced dipole 

moment of magnitude

μ α= E  (42.10)

in addition to any permanent dipole moment it may have. 

An atom is isotropically polarizable. That is, the same distor-

tion is induced whatever the direction of the applied field. The 

polarizability of a spherical rotor is also isotropic. However, 

non-spherical rotors have polarizabilities that do depend on 

the direction of the field relative to the molecule, so these mol-

ecules are anisotropically polarizable (Fig. 42.6). The electron 

distribution in H2, for example, is more distorted when the field 

is applied parallel to the bond than when it is applied perpen-

dicular to it, and we write α|| > α⊥.

All linear molecules and diatomics (whether homonuclear 

or heteronuclear) have anisotropic polarizabilities, and so are 

rotationally Raman active. This activity is one reason for the 

Linear 
rotors

Rotational state 
with largest 
population

(42.9)

E
n

er
g

y
Tr

an
sm

itt
an

ce

Frequency

Figure 42.5 The rotational energy levels of a linear rotor, 
the transitions allowed by the selection rule ΔJ = +1, and a 
typical pure rotational absorption spectrum (displayed here 
in terms of the radiation transmitted through the sample). The 
intensities reflect the populations of the initial level in each 
case and the strengths of the transition dipole moments.
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400 9 Molecular spectroscopy

importance of rotational Raman spectroscopy, for the tech-

nique can be used to study many of the molecules that are 

inaccessible to microwave spectroscopy. Spherical rotors such 

as CH4 and SF6, however, are rotationally Raman inactive as 

well as microwave inactive. This inactivity does not mean that 

such molecules are never found in rotationally excited states. 

Molecular collisions do not have to obey such restrictive selec-

tion rules, and hence collisions between molecules can result in 

the population of any rotational state.

The specific rotational Raman selection rules are

Linear rotors

Symmetric rotors

: ,

: , ,

Δ
Δ
Δ

J

J

K

= ±
= ± ±
=

0 2

0 1 2

0

The ΔJ = 0 transitions do not lead to a shift in frequency of 

the scattered photon in pure rotational Raman spectroscopy, 

and contribute to the unshifted radiation (the Rayleigh radia-

tion, Topic 40). The specific selection rule for linear rotors is 

explored in the following Justification.

Rotational Raman 
selection rules

(42.11)

1 See our Molecular quantum mechanics, Oxford University Press (2011) 

for the quantum mechanical calculation of the selection rules for rotational 

Raman spectroscopy.

Distortion

E

E

(a) (b)

Figure 42.6 An electric field applied to a molecule results in its 
distortion, and the distorted molecule acquires a contribution 
to its dipole moment (even if it is nonpolar initially). The 
polarizability may be different when the field is applied (a) 
parallel or (b) perpendicular to the molecular axis (or, in general, 
in different directions relative to the molecule); if that is so, then 
the molecule has an anisotropic polarizability.

Justification 42.2 Selection rules: rotational Raman spectra

We can understand the origin of the gross and specific selec-

tion rules for rotational Raman spectroscopy by using a dia-

tomic molecule as an example. The incident electric field of 

magnitude E of a wave of electromagnetic radiation of fre-

quency ωi induces a molecular dipole moment with a magni-

tude given by

μ α α ωind i= =E E(t) cos t
 (42.12)

If the molecule is rotating at a circular frequency ωR, to an 

external observer its polarizability is also time-dependent (if 

it is anisotropic), and we can write

α α α ω= +0 Δ  cos 2 Rt  (42.13)

where Δα = α|| – α⊥ and α ranges from α0 + Δα to α0 – Δα as 

the molecule rotates. The 2 appears because the polarizabil-

ity returns to its initial value twice each revolution (Fig. 42.7). 

Substituting this expression into the expression for the magni-

tude of the induced dipole moment gives

μ ω ω
ω ω

α α
α α

ind R i

i R

=
= +

 ( +  2 ) ( cos )

cos cos  co

0

0 2

Δ
Δ

×cos t t

t t

E
E E ss 

     

 (

ω
ω ω ω

ω ω
α α

i

i

i R

i R

t

t

t

= +
+ −

+0
1
2

2

2

E Ecos

cos

{cos( )

) }

Δ t

 (42.14)

where we have used the trigonometric identity cos cos x y =
1
2

{cos ( ) cos }x y x y+ + −( ) . This calculation shows that the 

induced dipole has a component oscillating at the incident 

frequency (which generates Rayleigh radiation), and that it 

also has two components at ωi ± 2ωR, which give rise to the 

shifted Raman lines. These lines appear only if Δα ≠ 0; hence 

the polarizability must be anisotropic for there to be Raman 

lines. This is the gross selection rule for rotational Raman 

spectroscopy.

We also see that the distortion induced in the molecule by 

the incident electric field returns to its initial value after a rota-

tion of 180° (that is, twice a revolution). This is the classical 

origin of the specific selection rule ΔJ = ±2.1

0

π/23π/2

π

E

E

E

E

α||

α||

α⊥

α⊥

Figure 42.7 The distortion induced in a molecule by an 
applied electric field returns the polarizability to its initial 
value after a rotation of only 180° (that is, twice a revolution). 
This doubling of the apparent rate of rotation is the origin of 
the ΔJ = ±2 selection rule in rotational Raman spectroscopy.
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42 Rotational spectroscopy  401

We can predict the form of the Raman spectrum of a linear 

rotor by applying the selection rule ΔJ = ±2 to the rotational 

energy levels (Fig. 42.8). When the molecule makes a transition 

with ΔJ = +2, the scattered radiation leaves the molecule in a 

higher rotational state, so the wavenumber of the incident radi-

ation, initially ��i , is decreased. These transitions account for 

the Stokes lines (the lines at lower than the incident frequency, 

Topic 40) in the spectrum:

� �

�

� �

�
� �

�

( ) { ( ) ( )}

( )

J J F J F J

B J

+ ← = − + −
= − +

2 2

2 2 3

i

i  

The Stokes lines appear at lower frequencies than the incident 

radiation and at displacements 6 �B , 10 �B, 14 �B, … from ��i  

for J = 0, 1, 2, …. When the molecule makes a transition with 

ΔJ = –2, the scattered photon emerges with increased energy. 

These transitions account for the anti-Stokes lines (the lines at 

higher than the incident frequency, Topic 40) of the spectrum:

�

�

�

� �

�

�

�

�

( )

{ ( ) ( )}

( )

J J

F J F J

B J

− ←
= + − −
= + −

2

2

2 2 1

i

i

The anti-Stokes lines occur at displacements of 6 �B , 10 �B , 14 �B , …  

(for J = 2, 3, 4, …; J = 2 is the lowest state that can contribute 

under the selection rule ΔJ = –2) at higher frequencies than 

the incident radiation. The separation of adjacent lines in both 

the Stokes and the anti-Stokes regions is 4 �B, so from its meas-

urement I⊥ can be determined and then used to find the bond 

lengths, exactly as in the case of microwave spectroscopy.

42.3 Nuclear statistics and  
rotational states

If eqn 42.15 is used in conjunction with the rotational Raman 

spectrum of CO2, the rotational constant is inconsistent with 

other measurements of CKO bond lengths. The results are con-

sistent only if it is supposed that the molecule can exist in states 

with even values of J, so the Stokes lines are 2 ← 0, 4 ← 2, … and 

not 5 ← 3, 3 ← 1, ….

The explanation of the missing lines is the Pauli principle 

(Topic 19) and the fact that 16O nuclei are spin-0 bosons (Topic 

47): just as the Pauli principle excludes certain electronic states, 

so too does it exclude certain molecular rotational states. The 

form of the Pauli principle given in Topic 19 states that, when 

two identical bosons are exchanged, the overall wavefunction 

must remain unchanged in every respect, including sign. When 

Linear 
rotors 

Wave-
numbers 
of Stokes 
lines 

(42.15a)

Linear 
rotors

Wavenumbers 
of anti-Stokes 
lines

(42.15b)

Example 42.2 Predicting the form of a Raman spectrum

Predict the form of the rotational Raman spectrum of 14N2, for 

which �B =1 99. ,cm−1  when it is exposed to 336.732 nm laser 

radiation.

Method The molecule is rotationally Raman active because 

end-over-end rotation modulates its polarizability as viewed 

by a stationary observer. The Stokes and anti-Stokes lines are 

given by eqn 42.15.

A n s w e r  B e c au s e  λ i  =  33 6 .732  n m  c or re s p ond s  t o 
��i = 29 697.2cm−1, eqns 42.15a and 42.15b give the following 

line positions:

There will be a strong central line at 336.732 nm accompanied 

on either side by lines of increasing and then decreasing inten-

sity (as a result of transition moment and population effects). 

The spread of the entire spectrum is very small, so the incident 

light must be highly monochromatic.

Self-test 42.3 Repeat the calculation for the rotational Raman 

spectrum of a molecule with �B = 9 977. cm−1.

Answer: Stokes lines at 29 637.3, 29 597.4, 29 557.5, 29 517.6 cm−1,  

anti-Stokes lines at 29 757.1, 29 797.0 cm−1

J 0 1 2 3

Stokes lines

��/cm−1 29 685.3 29 677.3 29 669.3 29 661.4

λ/nm 336.867 336.958 337.048 337.139

Anti-Stokes lines

��/cm−1 29 709.1 29 717.1

λ/nm 336.597 336.507

E
n

er
g

y
S

ig
n

al

Frequency

Stokes
lines

Anti-Stokes
lines

R
ay

le
ig

h
 li

n
e

Figure 42.8 The rotational energy levels of a linear rotor 
and the transitions allowed by the ΔJ = ±2 Raman selection 
rules. The form of a typical rotational Raman spectrum is also 
shown. The Rayleigh line is much stronger than depicted in 
the figure; it is shown as a weaker line to improve visualization 
of the Raman lines.
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402 9 Molecular spectroscopy

a CO2 molecule rotates through 180°, two identical O nuclei 

are interchanged, so the overall wavefunction of the molecule 

must remain unchanged. However, inspection of the form of 

the rotational wavefunctions (which have the same form as the 

s, p, etc. orbitals of atoms) shows that they change sign by (–1)J 

under such a rotation (Fig. 42.9). Therefore, only even values 

of J are permissible for CO2, and hence the Raman spectrum 

shows only alternate lines.

The selective occupation of rotational states that stems from 

the Pauli principle is termed nuclear statistics. Nuclear sta-

tistics must be taken into account whenever a rotation inter-

changes equivalent nuclei. However, the consequences are not 

always as simple as for CO2 because there are complicating fea-

tures when the nuclei have nonzero spin: there may be several 

different relative nuclear spin orientations consistent with even 

values of J and a different number of spin orientations consist-

ent with odd values of J. For molecular hydrogen and fluorine, 

for instance, with their two identical spin- 1
2

 nuclei, we show in 

the following Justification that there are three times as many 

ways of achieving a state with odd J as with even J, and there is 

a corresponding 3:1 alternation in intensity in their rotational 

Raman spectra (Fig. 42.10). In general, for a homonuclear dia-

tomic molecule with nuclei of spin I, the numbers of ways of 

achieving states of odd and even J are in the ratio

Number of ways of achieving odd

Number of ways of achieving even

J

J

I
=

( ++
+

1

1

)/

/( )

I

I I

for half -integral spin nuclei

for integral spin nucleei

⎧
⎨
⎪

⎩⎪

For hydrogen, I = 1
2
, and the ratio is 3:1. For N2, with I = 1, the 

ratio is 1:2.

Homonuclear 
diatomic 
molecules

Nuclear 
statistics (42.16)

Frequency

Figure 42.10 The rotational Raman spectrum of a diatomic 
molecule with two identical spin- 1

2
 nuclei shows an alternation 

in intensity as a result of nuclear statistics. The Rayleigh line 
is much stronger than depicted in the figure; it is shown as a 
weaker line to improve visualization of the Raman lines.

J = 2J = 1J = 0

+
++

+

–
– –

Figure 42.9 The symmetries of rotational wavefunctions 
(shown here, for simplicity as a two-dimensional rotor) under 
a rotation through 180°. Wavefunctions with J even do not 
change sign; those with J odd do change sign.

Justification 42.3 The effect of nuclear statistics 
on rotational spectra

Hydrogen nuclei are fermions, so the Pauli principle requires 

the overall wavefunction to change sign under particle inter-

change. However, the rotation of an H2 molecule through 

180° has a more complicated effect than merely relabelling 

the nuclei, because it also interchanges their spin states if the 

nuclear spins are paired (↑↓ ; Itotal = 0) but not if they are paral-

lel (↑↑, Itotal = 1).

First, consider the case when the spins are parallel and 

their state is α(A)α(B), α(A)β(B) + α(B)β(A), or β(A)β(B). 

The α(A)α(B) and β(A)β(B) combinations are unchanged 

when the molecule rotates through 180° so the rotational 

wavefunction must change sign to achieve an overall change 

of sign. Hence, only odd values of J are allowed. Although 

at first sight the spins must be interchanged in the combi-

nation α(A)β(B) + α(B)β(A) so as to achieve a simple A ↔ B 

interchange of labels (Fig. 42.11), β(A)α(B) + β(B)α(A) is 

the same as α(A)β(B) + α(B)β(A) apart from the order of 

terms, so only odd values of J are allowed for it too. In con-

trast, if the nuclear spins are paired, their wavefunction is 

α(A)β(B) – α(B)β(A). This combination changes sign when 

α and β are exchanged (in order to achieve a simple A ↔ B 

interchange overall). Therefore, for the overall wavefunc-

tion to change sign in this case requires the rotational wave-

function not to change sign. Hence, only even values of J are 

allowed if the nuclear spins are paired. In accord with the 

prediction of eqn 42.16, there are three ways of achieving 

odd J but only one way of achieving even J.
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42 Rotational spectroscopy  403

Checklist of concepts

☐ 1. Pure rotational transitions can be studied with 

microwave spectroscopy and rotational Raman 

spectroscopy.

☐ 2. For a molecule to give a pure rotational spectrum, it 

must be polar.

☐ 3. The specific selection rules for microwave spectroscopy 

are ΔJ = ±1; ΔMJ = 0, ±1; ΔK = 0.

☐ 4. Bond lengths and dipole moments may be obtained 

from analysis of rotational spectra.

☐ 5. A molecule must be anisotropically polarizable for it to 

be rotationally Raman active.

☐ 6. The specific selection rules for rotational Raman spec-

troscopy are: (i) linear rotors, ΔJ = 0, ±2; (ii) symmetric 

rotors, ΔJ = 0, ±1, ±2; ΔK = 0.

☐ 7. The appearance of rotational spectra is affected by 

nuclear statistics, the selective occupation of rotational 

states that stems from the Pauli principle.

Checklist of equations

Brief illustration 42.2 Ortho- and para-hydrogen

Different relative nuclear spin orientations change into one 

another only very slowly, so an H2 molecule with parallel 

nuclear spins remains distinct from one with paired nuclear 

spins for long periods. The form with parallel nuclear spins 

is called ortho-hydrogen and the form with paired nuclear 

spins is called para-hydrogen. Because ortho-hydrogen can-

not exist in a state with J = 0, it continues to rotate at very 

low temperatures and has an effective rotational zero-point 

energy (Fig. 42.12).

Self-test 42.4 Does BeF2 exist in ortho and para forms? Hints: 

(a) Determine the geometry of BeF2, then (b) decide whether 

fluorine nuclei are fermions or bosons.

Answer: Yes

J = 1

J = 0

Lowest rotational state
of ortho-hydrogen

Lowest rotational state
of para-hydrogen

Thermal
relaxation

Figure 42.12 When hydrogen is cooled, the molecules with 
parallel nuclear spins accumulate in their lowest available 
rotational state, the one with J = 1. They can enter the lowest 
rotational state (J = 0) only if the spins change their relative 
orientation and become antiparallel. This is a slow process 
under normal circumstances, so energy is slowly released.

A AB B

AB

(–1)J

Change
sign if antiparallel

Change sign

Rotate
by 180°

Figure 42.11 The interchange of two identical fermion 
nuclei results in the change in sign of the overall 
wavefunction. The relabelling can be thought of as 
occurring in two steps: the first is a rotation of the molecule; 
the second is the interchange of unlike spins (represented 
by the different colours of the nuclei). The wavefunction 
changes sign in the second step if the nuclei have 
antiparallel spins.

Property Equation Comment Equation number

Wavenumbers of rotational transitions � ��J J B J+ ← = +1 ) 12 ( ) J = 0, 1, 2, …; spherical and linear 
rotors (ignoring centrifugal 
distortion)

42.8a

Rotational state with largest population J kT hcBmax
1/2 1

2
2≈ −( )/ � Linear rotors 42.9
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404 9 Molecular spectroscopy

Property Equation Comment Equation number

Wavenumbers of (i) Stokes and  
(ii) anti-Stokes lines in the rotational  
Raman spectrum of linear rotors

(i) � � �� �( ) ( )J J B J+ ← = − +2 2 2 3i

(ii) � � �� �( ) ( )J J B J− ← = + −2 2 2 1i

J = 0, 1, 2, … (ignoring centrifugal 
distortion)

42.15

Nuclear statistics Number of ways of achieving odd

Number of ways of achieving even

J

J

I
=

( ++
+

1

1

)/

/( )

I

I I

for half -integral spin nuclei

for integral spin nucleei

⎧
⎨
⎪

⎩⎪

Homonuclear diatomic molecules 42.16
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TOPIC 43

Vibrational spectroscopy: 

diatomic molecules

Here we explore the vibrational energy levels of diatomic mol-

ecules and establish the selection rules for spectroscopic transi-

tions between these levels. We also see how the simultaneous 

excitation of rotation modifies the appearance of a vibrational 

spectrum and is used to obtain information about the lengths 

of bonds as well as their stiffness. This material sets the stage 

for the discussion of vibrations of polyatomic molecules in 

Topic 44.

43.1 Vibrational motion of diatomic 
molecules

We base our discussion on Fig. 43.1, which shows a typical 

potential energy curve (as in Fig. 22.1) of a diatomic mol-

ecule. In regions close to Re (at the minimum of the curve) 

the potential energy can be approximated by a parabola, so 

we can write

V k x x R R= = −1
2

2
f e  

 Parabolic potential energy  (43.1)

Contents

43.1 Vibrational motion of diatomic molecules 405

Brief illustration 43.1: The vibrational frequency  

of a diatomic molecule 407

43.2 Infrared spectroscopy 407

Brief illustration 43.2: The gross selection rule  

for infrared spectroscopy 407

43.3 Anharmonicity 408

Example 43.1: Estimating an anharmonicity constant 409

43.4 Vibration–rotation spectra 410

(a) Spectral branches 410

Brief illustration 43.3: The wavenumber of an  

R branch transition 411

(b) Combination differences 411

Brief illustration 43.4: Combination differences 412

43.5 Vibrational Raman spectra  
of diatomic molecules 412

Brief illustration 43.5: The gross selection rule  

for vibrational Raman spectra 412

Checklist of concepts 413

Checklist of equations 413

 ➤ Why do you need to know this material?
The observation of the frequencies of vibrational transitions 
gives very valuable information about the identity of 
molecules and provides quantitative information about 
the flexibility of their bonds.

 ➤ What is the key idea?
The vibrational spectrum of a diatomic molecule can be 
interpreted by using the harmonic oscillator model, with 

suitable modifications to account for bond dissociation 
and the coupling of rotational and vibrational motion.

 ➤ What do you need to know already?
You need to be familiar with the harmonic oscillator (Topic 
12) and rigid rotor (Topic 41) models of molecular motion, 
general principles of spectroscopy (Topic 40), and the 
interpretation of pure rotational spectra (Topic 42). The 
derivation of selection rules draws from the discussion of 
transitions in Topic 16.
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406 9 Molecular spectroscopy

where kf is the force constant of the bond. The steeper the walls 

of the potential (the stiffer the bond), the greater the force 

constant.

To see the connection between the shape of the molecular 

potential energy curve and the value of kf, note that we can 

expand the potential energy around its minimum by using a 

series (Mathematical background 1), which is a common way of 

expressing how a function varies near a selected point (in this 

case, the minimum of the curve at x = 0):

V x V
V

x
x

V

x
x( ) ( )= +⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

+…0
1

2
0

2

2

0

2d

d

d

d
 

(43.2)

The notation (…)0 means that the derivatives are first evaluated 

and then x is set equal to 0. The term V(0) can be set arbitrar-

ily to zero. The first derivative of V is zero at the minimum. 

Therefore, the first surviving term is proportional to the square 

of the displacement. For small displacements we can ignore all 

the higher terms, and so write

V x
V

x
x( )≈ ⎛

⎝⎜
⎞
⎠⎟

1

2

2

2

0

2d

d
 

(43.3)

Therefore, the first approximation to a molecular potential 

energy curve is a parabolic potential, and we can identify the 

force constant as

k
V

xf

d

d
=⎛

⎝⎜
⎞
⎠⎟

2

2

0  

Formal definition  Force constant  (43.4)

We see that if the potential energy curve is sharply curved 

close to its minimum, then kf will be large and the bond stiff. 

Conversely, if the potential energy curve is wide and shallow, 

then kf will be small and the bond easily stretched or com-

pressed (Fig. 43.2).

The Schrödinger equation for the relative motion of two 

atoms of masses m1 and m2 with a parabolic potential energy is

− + =2 2

2
1
2

2

2m x
k x E

eff
f

d

d

ψ ψ ψ
 

(43.5)

where meff is the effective mass:

m
m m

m meff =
+
1 2

1 2  
Definition  Effective mass  (43.6)

These equations are derived in the same way as in Topic 11, but 

here the separation of variables procedure is used to separate 

the relative motion of the atoms from the motion of the mol-

ecule as a whole.

A note on good practice Distinguish effective mass from 

reduced mass. The former is a measure of the mass that is 

moved during a vibration. The latter is the quantity that 

emerges from the separation of relative internal and overall 

translational motion. For a diatomic molecule the two are the 

same, but that is not true in general for vibrations of poly-

atomic molecules. Many, however, do not make this useful 

distinction and refer to both quantities as the ‘reduced mass’.

The Schrödinger equation in eqn 43.5 is the same as eqn 

12.3 for a particle of mass m undergoing harmonic motion. 

Therefore, we can use the results of Topic 12 to write down the 

permitted vibrational energy levels:

E
k

mv v

v

= +⎛
⎝⎜

⎞
⎠⎟

=⎛
⎝⎜

⎞
⎠⎟

= …

1

2

0 1 2

1 2

ω ω f

eff

/

, , ,  

Diatomic 
molecule 

Vibrational 
energy 
levels

 (43.7)
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y Parabola

Internuclear separation, R

Re

Figure 43.1 A molecular potential energy curve can be 
approximated by a parabola near the bottom of the well. The 
parabolic potential leads to harmonic oscillations. At high 
excitation energies the parabolic approximation is poor (the 
true potential is less confining), and is totally wrong near the 
dissociation limit.

Po
te

n
ti

al
 e

n
er

g
y,

 V

Displacement, x

Increasing
kf

0

Figure 43.2 The force constant is a measure of the curvature 
of the potential energy close to the equilibrium extension of 
the bond. A strongly confining well (one with steep sides, a stiff 
bond) corresponds to high values of kf.
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43 Vibrational spectroscopy: diatomic molecules  407

The vibrational terms of a molecule, the energies of its vibra-

tional states expressed as wavenumbers, are denoted �G( ),v  with 

E hcGv v= �( ), so

� � �G
c

k

m
( )

/

v v= +⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

1

2

1

2

1 2

� �
π

f

eff

 

The vibrational wavefunctions are the same as those discussed 

in Topic 12 for a harmonic oscillator.

It is important to note that the vibrational terms depend on 

the effective mass of the molecule, not directly on its total mass. 

This dependence is physically reasonable, for if atom 1 were as 

heavy as a brick wall, then we would find meff ≈ m2, the mass 

of the lighter atom. The vibration would then be that of a light 

atom relative to that of a stationary wall (this is approximately 

the case in HI, for example, where the I atom barely moves and 

meff ≈ mH). For a homonuclear diatomic molecule, m1 = m2, and 

the effective mass is half the total mass: m meff = 1
2

.

43.2 Infrared spectroscopy

The gross selection rule for a change in vibrational state brought 

about by absorption or emission of radiation is that the electric 

dipole moment of the molecule must change when the atoms are 

displaced relative to one another. Such vibrations are said to be 

infrared active. The classical basis of this rule is that the mol-

ecule can shake the electromagnetic field into oscillation if its 

dipole moment changes as it vibrates, and vice versa (Fig. 43.3); 

its formal basis is given in the following Justification. Note 

that the molecule need not have a permanent dipole moment: 

the rule requires only a change in dipole moment, possibly 

from zero. Some vibrations do not affect the molecule’s dipole 

moment (for instance, the stretching motion of a homonuclear 

diatomic molecule), so they neither absorb nor generate radia-

tion: such vibrations are said to be infrared inactive.

The specific selection rule, which is obtained from an analy-

sis of the expression for the transition moment and the prop-

erties of integrals over harmonic oscillator wavefunctions (as 

shown in the following Justification), is

Δv= ±1  Infrared spectroscopy  Specific selection rule  (43.9)

Diatomic 
molecule 

Vibra-
tional 
terms 

 (43.8)

Brief illustration 43.1 The vibrational frequency  
of a diatomic molecule

The force constant of the bond in HCl is 516 N m−1, a reasona-

bly typical value for a single bond. The effective mass of 1H35Cl 

is 1.63 × 10−27 kg (note that this mass is very close to the mass of 

the hydrogen atom, 1.67 × 10−27 kg, so the Cl atom is acting like 

a brick wall). These values imply

ω =
×

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

= ×

−

−

−
−516

1 63 10
5 63 10

2

1

27

1 2

14 1N m

kg
s

kg m s


.
.

/

or ν = ω/2π = 89.5 THz (1 THz = 1012 Hz).

Self-test 43.1 The vibrational frequency ν of 35Cl2 is 16.94 THz. 

What is the force constant of the bond?

Answer: 327.8 N m−1

Brief illustration 43.2 The gross selection rule for 
infrared spectroscopy

Homonuclear diatomic molecules are infrared inactive 

because their dipole moments remain zero however long the 

bond; heteronuclear diatomic molecules are infrared active. 

Weak infrared transitions can be observed from homonuclear 

diatomic molecules trapped within various nanomaterials. 

For instance, when incorporated into solid C60, H2 molecules 

interact through van der Waals forces with the surrounding 

C60 molecules and acquire dipole moments, with the result 

that they have observable infrared spectra.

Self-test 43.2 Identify the infrared active molecules in the 

group: N2, NO, and CO.

Answer: NO and CO

Justification 43.1 Gross and specific selection rules  
for infrared spectra

The gross selection rule for infrared spectroscopy is 

based on an analysis of the transition dipole moment 

μ μfi f i
d= ∫ψ ψ τv v

* �  (Topic 42), which arises from eqn 42.2 

( )μ μfi f f f f i i i i
d= ∫ψ ψ ψ ψ τεε

* *
,

*
,, ,v vY YJ M J MJ J

�  when the molecule 

does not change electronic or rotational states. For simplicity, 

we consider a one-dimensional oscillator (like a diatomic mol-

ecule). The electric dipole moment depends on the location of 

Figure 43.3 The oscillation of a molecule, even if it is nonpolar, 
may result in an oscillating dipole that can interact with the 
electromagnetic field.
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408 9 Molecular spectroscopy

Transitions for which Δv = +1 correspond to absorption and 

those with Δv = −1 correspond to emission. It follows that the 

wavenumbers of allowed vibrational transitions, which are 

denoted Δ �Gv+ 1
2
 for the transition v + 1 ← v, are

Δ � � � �G G Gv v v+ = + − =1
2

1( ) ( ) �
 

(43.13)

The wavenumbers of vibrational transitions correspond to 

those of radiation in the infrared region of the electromagnetic 

spectrum, so vibrational transitions absorb and generate infra-

red radiation.

At room temperature kT/hc ≈ 200 cm−1, and most vibrational 

wavenumbers are significantly greater than 200 cm−1. It follows 

from the Boltzmann distribution (Foundations, Topic 2, and 

Topic 51) that at room temperature almost all the molecules are 

in their vibrational ground states. Hence, the dominant spec-

tral transition will be the fundamental transition, 1 ← 0. As a 

result, the spectrum is expected to consist of a single absorption 

line. If the molecules are formed in a vibrationally excited state, 

such as when vibrationally excited HF molecules are formed in 

the reaction H2 + F2 → 2 HF*, where the star indicates a vibra-

tionally ‘hot’ molecule, the transitions 5 → 4, 4 → 3, … may also 

appear (in emission). In the harmonic approximation, all these 

lines lie at the same frequency, and the spectrum is also a sin-

gle line. However, as we shall now show, the breakdown of the 

harmonic approximation causes the transitions to lie at slightly 

different frequencies, so several lines are observed.

43.3 Anharmonicity

The vibrational terms in eqn 43.8 are only approximate 

because they are based on a parabolic approximation to the 

actual potential energy curve. A parabola cannot be correct at 

all extensions because it does not allow a bond to dissociate. 

At high vibrational excitations the swing of the atoms (more 

To evaluate the integral we use the ‘recursion’ relation

yH H Hv v vv= +− +1 1
1
2

which leads to

ψ ψ

α υ

υ υ

υ υ υ υ υ υ

f i

f i f i f i

d

e d e di

*∫
∫= +−

−

−∞

∞

+
−

−

x x

N N H H y H H yy y2
1

1
2 1

2 2

∞∞

∞

∫⎧
⎨
⎩

⎫
⎬
⎭  

(43.12)

The first integral is zero unless v f = v i − 1, and the second is 

zero unless vf = vi + 1 (Table 12.1). It follows that the transition 

dipole moment is zero unless Δv = ±1.

all the electrons and all the nuclei in the molecule, so it varies as 

the internuclear separation changes (Fig. 43.4). We can write its 

variation with displacement from the equilibrium separation, 

x, as

μ μ μ= +⎛
⎝⎜

⎞
⎠⎟

+…0

0

d

dx
x

 

(43.10)

where μ0 is the electric dipole moment when the nuclei have 

their equilibrium separation. It then follows that, with f ≠ i and 

keeping only the term linear in the small displacement x,

μ μ ψ ψ μ ψ ψfi f i f i
d

d

d
d= +⎛

⎝⎜
⎞
⎠⎟∫ ∫0

0

0

v v v v
* *x

x
x

� �� ��
x

The term multiplying μ0 is zero because the states with differ-

ent values of v are orthogonal (Topic 12). It follows that the 

transition dipole moment is

μ μ ψ ψfi

d

d
d

f i
= ⎛

⎝⎜
⎞
⎠⎟ ∫x

x x
0

v v
*

 

(43.11)

We see that the right-hand side is zero unless the dipole 

moment varies with displacement. This is the gross selection 

rule for infrared spectroscopy.

The specific selection rule is determined by considering 

the value of ψ ψv vf i
d* .∫ x x  We need to write out the wavefunc-

tions in terms of the Hermite polynomials given in Topic 12 

and then to use their properties. We note that x = αy with 

α = (ℏ2/meffkf)
1/4 (eqn 12.8 of Topic 12). Then we write

ψ ψ

α

v v v v v v

v v v

f i f i f i

f f i

d e d

e d

*∫ ∫=

=

−

−∞

∞

−

−∞

x x N N H xH x

N N H yH y

y

i
y

2

22
∞∞

∫

Linear approximation

Actual

x

D
ip

o
le

 m
o

m
et

n
, μ

0 ExtensionContraction

μ0

Figure 43.4 The magnitude of the electric dipole moment 
of a heteronuclear diatomic molecule varies as shown by 
the purple curve. For small displacements the change in 
the magnitude of the dipole moment is proportional to the 
displacement.
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43 Vibrational spectroscopy: diatomic molecules  409

precisely, the spread of the vibrational wavefunction) allows 

the molecule to explore regions of the potential energy curve 

where the parabolic approximation is poor and additional 

terms in the Taylor expansion of V (eqn 43.2) must be retained. 

The motion then becomes anharmonic, in the sense that the 

restoring force is no longer proportional to the displacement. 

Because the actual curve is less confining than a parabola, 

we can anticipate that the energy levels become more closely 

spaced at high excitations.

One approach to the calculation of the energy levels in the 

presence of anharmonicity is to use a function that resembles the 

true potential energy more closely. The Morse potential energy is

V hcD a
m

hcD
a R R= − =

⎛
⎝⎜

⎞
⎠⎟

− −�
�e

eff

e

e e{ }( )

/

1
2

2
2

1 2

ω

 

where �De  is the depth of the potential minimum (Fig. 43.5). 

Near the well minimum the variation of V with displace-

ment resembles a parabola (as can be checked by expanding 

the exponential as far as the first term) but, unlike a parabola, 

eqn 43.14 allows for dissociation at large displacements. The 

Schrödinger equation can be solved for the Morse potential and 

the permitted energy levels are

�


�

� �

�
G x

x
a

m D

( )v v v= +( ) − +( )
= =

1
2

1
2

2

2

2 4

� �

�

e

e
eff e

ω

The dimensionless parameter xe is called the anharmonicity 

constant. The number of vibrational levels of a Morse oscilla-

tor is finite, and v = 0, 1, 2, …, vmax, as shown in Fig. 43.6 (see 

also Problem 43.5). The second term in the expression for �G  

subtracts from the first with increasing effect as v increases, and 

hence gives rise to the convergence of the levels at high quan-

tum numbers.

Morse 
potential 
energy

(43.14) 

Example 43.1 Estimating an anharmonicity constant

Estimate the anharmonicity constant xe for 1H19F from the 

data in Table 43.1.

Method The anharmonicity constant is evaluated from ��,  �De 

and eqn 43.15. However, note that Table 43.1 lists values of 
� � �D D0

1
2

= −e �  (Fig. 43.5), so calculate �De  first before using eqn 

43.15. A useful conversion factor is 1 kJ mol−1 = 83.593 cm−1.

Answer The depth of the potential minimum is

� � �D De

kJ mol
cm

kJ mol

cm= + = × −

×−
−

−

0
4 1

564 4
83 593

1

1

2
4 718 10

1
1

� ( . )

.
.

11

1

2
4138 32

4 718 10
1

2
4138 32

1

4

� ���� ����
+ ×

= × + ×⎛
⎝⎜

⎞
⎠⎟

−

−

( . )

. .

cm

cm 11

It follows from eqn 43.15 that the anharmonicity constant is

xe

cm

cm
=

× × + ×
= ×

−

−
−4138 32

4 4 718 10 4138 32
2 101 10

1

4 1
2

1
2

.

{( . . ) }
.

Self-test 43.3 Estimate the anharmonicity constant for 1H81Br.

Answer: 2.093 × 10−2
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Figure 43.6 The Morse potential energy curve reproduces 
the general shape of a molecular potential energy curve. The 
corresponding Schrödinger equation can be solved, and the 
values of the energies obtained. The number of bound levels is 
finite.
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Figure 43.5 The dissociation energy of a molecule, hcD
~

0, 
differs from the depth of the potential well, hcD

~
e, on account of 

the zero-point energy of the vibrations of the bond.

Morse 
potential 
energy

Vibrational 
terms

(43.15)

Table 43.1* Properties of diatomic molecules

��/cm 1− Re/pm �B/cm 1− kf/(N m−1) hcD
~

o/(kJ mol−1)

1H2 4400 74 60.86 575 432

1H35Cl 2991 127 10.59 516 428

1H127I 2308 161 6.51 314 295

35Cl2 560 199 0.244 323 239

* More values are given in the Resource section.
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410 9 Molecular spectroscopy

Although the Morse oscillator is quite useful theoretically, in 

practice the more general expression

� � � �G x y( )v v v= +⎛
⎝⎜

⎞
⎠⎟

− +⎛
⎝⎜

⎞
⎠⎟

+ +⎛
⎝⎜

⎞
⎠⎟

+…1

2

1

2

1

2

2 3

� � �υ e e

 

(43.16)

where xe, ye, … are empirical dimensionless constants character-

istic of the molecule, is used to fit the experimental data and to 

find the dissociation energy of the molecule. When anharmonic-

ities are present, the wavenumbers of transitions with Δv = +1 are

Δ � � � � �G G Gv v v v+ = + − = − + +…1
2

1 2 1( ) ( ) e� �( )x
 

(43.17)

Equation 43.17 shows that, when xe > 0, the transitions move to 

lower wavenumbers as v increases.

Anharmonicity also accounts for the appearance of addi-

tional weak absorption lines corresponding to the transitions 

2 ← 0, 3 ← 0, …, even though these first, second, … overtones 

are forbidden by the selection rule Δv = ±1. The first overtone, 

for example, gives rise to an absorption at

� � � �G G x( ) ( ) ( )v v v+ − = − + +…2 2 2 2 3� �e  (43.18)

The reason for the appearance of overtones is that the selection 

rule is derived from the properties of harmonic oscillator wave-

functions, which are only approximately valid when anharmo-

nicity is present. Therefore, the selection rule is also only an 

approximation. For an anharmonic oscillator, all values of Δv 

are allowed, but transitions with Δv > 1 are allowed only weakly 

if the anharmonicity is slight.

43.4 Vibration–rotation spectra

Each line of the high-resolution vibrational spectrum of a gas-

phase heteronuclear diatomic molecule is found to consist of a 

large number of closely spaced components (Fig. 43.7). Hence, 

molecular spectra are often called band spectra. The separation 

between the components is less than 10 cm−1, which suggests 

that the structure is due to rotational transitions accompany-

ing the vibrational transition. A rotational change should be 

expected because classically we can think of the vibrational 

transition as leading to a sudden increase or decrease in the 

instantaneous bond length. Just as ice-skaters rotate more rap-

idly when they bring their arms in, and more slowly when they 

throw them out, so the molecular rotation is either accelerated 

or retarded by a vibrational transition.

(a) Spectral branches
A detailed analysis of the quantum mechanics of simultaneous 

vibrational and rotational changes shows that the rotational 

quantum number J changes by ±1 during the vibrational tran-

sition of a diatomic molecule. If the molecule also possesses 

angular momentum about its axis, as in the case of the elec-

tronic orbital angular momentum of the paramagnetic mole-

cule NO, then the selection rules also allow ΔJ = 0.

The appearance of the vibration–rotation spectrum of a 

diatomic molecule can be discussed in terms of the combined 

vibration–rotation terms, �S :

� � �S J G F J( , ) ( ) ( )v v= +  (43.19)

If we ignore anharmonicity and centrifugal distortion we can 

use eqn 43.8 for the first term on the right and eqn 41.15 for the 

second, and obtain

� � �S J BJ J( , ) ( )v v= +⎛
⎝⎜

⎞
⎠⎟

+ +1

2
1�

 
(43.20)

In a more detailed treatment, �B is allowed to depend on the 

vibrational state because, as v increases, the molecule swells 

slightly and the moment of inertia changes. We shall continue 

with the simple expression initially.

When the vibrational transition v + 1 ← v occurs, J changes 

by ±1 and in some cases by 0 (when ΔJ = 0 is allowed). The 

absorptions then fall into three groups called branches of the 

spectrum. The P branch consists of all transitions with ΔJ = −1:

� � �� �� �P ( ) ( , ) ( , )J S J S J BJ= + − − = −v v1 1 2
 

This branch consists of lines at � ��−2B,  � ��−4B,  … with an 

intensity distribution reflecting both the populations of the 

rotational levels and the magnitude of the J − 1 ← J transition 

moment (Fig. 43.8). The Q branch consists of all lines with 

ΔJ = 0, and its wavenumbers are

� � � �� �Q ( ) ( , ) ( , )J S J S J= + − =v v1
 

 Q branch transitions  (43.21b)

P branch 
transitions  (43.21a)

A
b
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, A

28003000
Wavenumber, ν/cm–1˜

3050 2950 2900 2850 2750 2700

P branch

Q
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R branch

1H35Cl

1H37Cl

Figure 43.7 A high-resolution vibration–rotation spectrum 
of HCl. The lines appear in pairs because H35Cl and H37Cl both 
contribute (their abundance ratio is 3:1). There is no Q branch, 
because ΔJ = 0 is forbidden for this molecule.
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43 Vibrational spectroscopy: diatomic molecules  411

for all values of J. This branch, when it is allowed (as in NO), 

appears at the vibrational transition wavenumber. In Fig. 43.7 

there is a gap at the expected location of the Q branch because it 

is forbidden in HCl. The R branch consists of lines with ΔJ = +1:

� � �

� �
�

�

R ( ) ( , ) ( , )

( )

J S J S J

B J

= + + −
= + +

v v1 1

2 1  

 R branch transitions  (43.21c)

This branch consists of lines displaced from ��  to high wave-

number by 2 �B, 4 �B, ….

The separation between the lines in the P and R branches of a 

vibrational transition gives the value of �B. Therefore, the bond 

length can be deduced without needing to take a pure rota-

tional microwave spectrum. However, the latter is more precise 

because microwave frequencies can be measured with greater 

precision than infrared frequencies.

(b) Combination differences

The rotational constant of the vibrationally excited state, �B1 (in 

general, �Bv), is different from that of the ground vibrational state, 
�B0. One contribution to the difference is the anharmonicity of the 

vibration, which results in a slightly extended bond in the upper 

state. However, even in the absence of anharmonicity, the aver-

age value of 1/R2 (〈1/R2〉) varies with the vibrational state (see 

Problems 43.10 and 43.11). As a result, the Q branch (if it exists) 

consists of a series of closely spaced lines. The lines of the R branch 

converge slightly as J increases; and those of the P branch diverge:

� � � � � �

� � � �

�

� �

� �

P

Q

( )

( )

( ) ( )

( ) ( )

J B B J B B J

J B B J J

= − + + −
= + − +

1 0 1 0
2

1 0 1

�� �R ( ) ( )( ) ( )( )J B B J B B J= + + + + − +� � � � �
1 0 1 0

21 1
 

(43.22)

To determine the two rotational constants individually, we use 

the method of combination differences. This procedure is used 

widely in spectroscopy to extract information about a particu-

lar state. It involves setting up expressions for the difference in 

the wavenumbers of transitions to a common state; the resulting 

expression then depends solely on properties of the other state.

As can be seen from Fig. 43.9, the transitions ��R ( )J −1  and 
��P ( )J +1  have a common upper state, and hence can be antici-

pated to depend on �B0. Indeed, from eqn 43.22 it follows that

� � �� �R P( ) ( ) ( )J J B J− − + = +1 1 4 0
1
2  

(43.23a)

Therefore, a plot of the combination difference against J + 1
2  

should be a straight line of slope 4 0
�B , so the rotational constant 

of the molecule in the state v = 0 can be determined. (Any devi-

ation from a straight line is a consequence of centrifugal distor-

tion, so that effect can be investigated too.) Similarly, ��R ( )J  and 
��P ( )J  have a common lower state, and hence their combination 

difference gives information about the upper state:

� � �� �R P( ) ( ) ( )J J B J− = +4 1
1
2  

(43.23b)Brief illustration 43.3 The wavenumber of an R branch 
transition

Infrared absorption by 1H81Br gives rise to an R branch from 

v = 0. It follows from eqn 43.21c and the data in Table 43.1 that 

the wavenumber of the line originating from the rotational 

state with J = 2 is

� � �� �R cm cm

cm

( ) ( . ) ( . )

.

2 6 2648 98 6 8 465

2699 77

1 1

1

= + = + ×
=

− −

−

B

Self-test 43.4 Infrared absorption by 1H127I gives rise to an R 

branch from v = 0. What is the wavenumber of the line origi-

nating from the rotational state with J = 2?

Answer: 2347.16 cm−1

8
7
6

4

2

0

0

5

3

89
7
6

4

2

9

5

3

1

1

P Q R

v 
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0
v 

= 
1
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Figure 43.8 The formation of P, Q, and R branches in a 
vibration–rotation spectrum. The intensities reflect the 
populations of the initial rotational levels and the magnitudes  
of the transition moments.
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Figure 43.9 The method of combination differences makes 
use of the fact that some transitions share a common level.
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412 9 Molecular spectroscopy

43.5 Vibrational Raman spectra  
of diatomic molecules

The gross selection rule for vibrational Raman transitions (see the 

following Justification) is that the polarizability should change as 

the molecule vibrates. The polarizability plays a role in vibrational 

Raman spectroscopy because the molecule must be squeezed and 

stretched by the incident radiation in order that a vibrational exci-

tation may occur during the photon–molecule collision.

The specific selection rule for vibrational Raman transitions 

in the harmonic approximation is Δv = ±1. The formal basis for 

the gross and specific selection rules is given in the following 

Justification.

The lines to high frequency of the incident radiation, in the 

language introduced in Topic 40, the ‘anti-Stokes lines’, are 

those for which Δv = −1. The lines to low frequency, the ‘Stokes 

lines’, correspond to Δv = +1. The intensities of the anti-Stokes 

and Stokes lines are governed largely by the Boltzmann popula-

tions of the vibrational states involved in the transition. It fol-

lows that anti-Stokes lines are usually weak because very few 

molecules are in an excited vibrational state initially.

In gas-phase spectra, the Stokes and anti-Stokes lines have a 

branch structure arising from the simultaneous rotational tran-

sitions that accompany the vibrational excitation (Fig. 43.10). 

The selection rules are ΔJ = 0, ±2 (as in pure rotational Raman 

spectroscopy), and give rise to the O branch (ΔJ = −2), the 

Q branch (ΔJ = 0), and the S branch (ΔJ = +2):

� � � � �

� � �

� � � � �

� � �

� � �

� � �

O i

Q i

S i

( )

( )

( )

J B BJ

J

J B BJ

= − − +
= −
= − − −

2 4

6 4
 

where ��i is the wavenumber of the incident radiation. Note that, 

unlike in infrared spectroscopy, a Q branch is obtained for all lin-

ear molecules. The spectrum of CO, for instance, is shown in Fig. 

43.11: the structure of the Q branch arises from the differences 

in rotational constants of the upper and lower vibrational states.

The information available from vibrational Raman spectra 

adds to that from infrared spectroscopy because homonuclear 

diatomics can also be studied. The spectra can be interpreted 

in terms of the force constants, dissociation energies, and bond 

lengths, and some of the information obtained is included in 

Table 43.1.

Brief illustration 43.4 Combination differences

To develop a sense of the relative values of the rotational con-

stants, we can estimate the rotational constants of �B0  and �B1 

from a quick calculation involving only a few transitions. For 
1H35Cl, � �� �R P cm( ) ( ) ,.0 2 62 6 1− = −  and it follows from eqn 43.23a, 

with J = 1, that �B0
1
2

1 162 6 4 1 10 4= × + =− −. ( ) . ./{ }cm cm  Similarly, 

� �� �R P cm( ) ( ) ,.1 1 60 8 1− = −  and it follows from eqn 43.23b, again 

with J = 1, that �B1
1
2

1 160 8 4 1 10 1= × + =− −. ( ) ./{ }cm cm . The lin-

ear least-squares procedure applied to a larger data set gives 
�B0

110 440= −. cm  and �B1
110 136= −. .cm

Self-test 43.5 For 12C16O, ��R cm( ) ,.0 2147 084 1= −
 

��R cm( ) .1 2150 858 1= − , ��P cm( ) ,.1 2139 427 1= −  and 
��P cm( ) .2 2135 548 1= − . Estimate the values of �B0 and �B1.

Answer: �B0
11 923= −. ,cm  �B1

11 905= −. cm

Brief illustration 43.5 The gross selection rule for 
vibrational Raman spectra

Both homonuclear and heteronuclear diatomic molecules 

swell and contract during a vibration, the control of the nuclei 

over the electrons varies, and hence the molecular polariz-

ability changes. Both types of diatomic molecule are therefore 

vibrationally Raman active.

Self-test 43.6 Can a linear, nonpolar molecule like CO2 have a 

Raman spectrum?

Answer: Yes

Justification 43.2 Gross and specific selection rules for 
vibrational Raman spectra

For simplicity, we consider a one-dimensional harmonic oscil-

lator (like a diatomic molecule). First, we note that the oscil-

lating electric field, E( ),t  of the incident electromagnetic 

radiation can induce a dipole moment that is proportional to 

the strength of the field. We write μ α= ( ) ( ),x tE  where α(x) is 

the polarizability of the molecule, a measure of its responsive-

ness to the field. The transition dipole moment is then

μ ψ ψ ψ α ψfi f i f i
( ) d ( ) d= =∫ ∫v v v v

* *( ) ( )α x t x t x xE E
 

(43.24)

(where the polarizability operator is represented by multipli-

cation by α(x) because it depends only on coordinates). The 

polarizability varies with the length of the bond because the 

control of the nuclei over the electrons varies as their position 

changes, so α(x) = α0 + (dα/dx)0x + …. Now the calculation 

proceeds as in Justification 43.1, but (dμ/dx)0 is replaced by 

E( )t (dα/dx)0 in eqn 43.11. For f ≠ i,

μ α ψ ψfi

d

d
d

f i
= ⎛

⎝⎜
⎞
⎠⎟ ∫E( ) *t

x
x x

0

v v

 

(43.25)

Therefore, the vibration is Raman active only if (dα/dx)0 ≠ 0 

(that is, the polarizability varies with displacement) and, as we 

saw in Justification 43.1, if vf − vi = ±1.

O branch transitions

Q branch transitions 

S branch transitions

 (43.26)
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43 Vibrational spectroscopy: diatomic molecules  413

Checklist of concepts

☐ 1. The vibrational energy levels of a diatomic molecule 

modelled as a harmonic oscillator depend on a force 

constant kf (a measure of the bond’s stiffness) and the 

effective mass of the vibration.

☐ 2. The gross selection rule for infrared spectra is that the 

electric dipole moment of the molecule must change 

when the atoms are displaced relative to one another.

☐ 3. The specific selection rule for infrared spectra (within 

the harmonic approximation) is Δv = ±1.

☐ 4. The Morse potential energy function can be used to 

describe anharmonic motion.

☐ 5. The strongest infrared transitions are the fundamental 

transitions (v = 1 ← v = 0).

☐ 6. Anharmonicity gives rise to weaker overtone transi-

tions (v = 2 ← v = 0, v = 3 ← v = 0, etc.).

☐ 7. In the gas phase, vibrational transitions have a P, Q, 

R branch structure due to simultaneous rotational 

transitions.

☐ 8. For a vibration to be Raman active, the polarizability 

must change as the molecule vibrates.

☐ 9. The specific selection rule for vibrational Raman spec-

tra (within the harmonic approximation) is Δv = ±1.

☐ 10.  In gas-phase spectra, the Stokes and anti-Stokes lines 

in a Raman spectrum have an O, Q, S branch structure.

Checklist of equations

2000 2100Δν/cm–1~

O Q S

Figure 43.11 The structure of a vibrational line in the 
vibrational Raman spectrum of carbon monoxide, showing 
the O, Q, and S branches. The horizontal axis represents the 
wavenumber difference between the incident and scattered 
radiation.
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0
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Raman shift frequency
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Net change

Figure 43.10 The formation of O, Q, and S branches in a 
vibration–rotation Raman spectrum of a linear rotor. Note that 
the frequency scale runs in the opposite direction to that in 
Fig. 43.8, because the higher-energy transitions (on the right) 
extract more energy from the incident beam and leave it at 
lower frequency.

Property Equation Comment Equation number

Vibrational terms (diatomic 
molecules)

� �

�

G( ) ,

( )( ) /

v v= +( )
=

1
2

1 21 2

�

� / /πc k mf eff

Simple harmonic oscillator 43.8

Infrared spectra (vibrational) Δ � �Gv+ =1
2

�
Simple harmonic oscillator 43.13
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Property Equation Comment Equation number

Morse potential energy V hcD

a m hcD

m m m m m

a R R= −{ }
=
= +

− −�

�
e

eff e

eff

e

/

/

e1

2

2

2 1 2

1 2 1

( )

/

,

( )

(

,ω

22)

43.14

Vibrational terms (Morse potential 
energy)

� � �

� �

G x

x D

( )

/

v v v= +⎛
⎝⎜

⎞
⎠⎟

− +⎛
⎝⎜

⎞
⎠⎟

=

1

2

1

2

4

2

� �

�

e

e e

, 43.15

Infrared spectra (vibration) Δ � � �Gv v+ = − + +…1
2

2 1� �( )xe
Anharmonic oscillator 43.17

�

� �

�G G

x

( ) ( )

( )

v v

v

+ −
= − + +…

2

2 2 2 3� �e

Overtones 43.18

Infrared spectra (vibration–
rotation)

� � �S J BJ J( )v v, ( )= +( ) + +1
2

1� Rotation coupled to vibration 43.20

� � �

� �
�

�

P( ) ( , ) ( , )J S J S J

BJ

= + − −

= −

v v1 1

2

P branch (ΔJ = −1) 43.21a

� � � �� �Q( ) ( , ) ( , )J S J S J= + − =v v1 Q branch (ΔJ = 0) 43.21b

� � � � �� �R ( ) ( , ) ( , ) ( )J S J S J B J= + + − = + +v v1 1 2 1 R branch (ΔJ = +1) 43.21c

� � �

� � �

� �

� �

R P

R P

( ) ( )

( ) ( )

J J B J

J J B J

− − + = +

− = +

( )
( )

1 1 4

4

0
1
2

1
1
2

Combination differences 43.23a,b

Raman spectra (vibration–rotation) � � � � �� � �O i( )J B BJ= − − +2 4 O branch (ΔJ = −2) 43.26

� � �� � �Q i( )J = − Q branch (ΔJ = 0)

� � � � �� � �S i( )J B BJ= − − −6 4 S branch (ΔJ = +2)
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TOPIC 44

Vibrational spectroscopy: 

polyatomic molecules

There is only one mode of vibration for a diatomic molecule: bond 

stretch. In polyatomic molecules there are several modes, some-

times hundreds of modes, of vibration because all the bond lengths 

and angles may change and the vibrational spectra are very com-

plex. Nonetheless, infrared and Raman spectroscopy can be used 

to obtain information about the structure of systems as large as 

animal and plant tissues. Raman spectroscopy is particularly use-

ful for characterizing nanomaterials, especially carbon nanotubes.

44.1 Normal modes

We begin by calculating the total number of vibrational modes 

of a polyatomic molecule. We then see that we can choose com-

binations of these atomic displacements that give the simplest 

description of the vibrations.

As shown in the following Justification, the number of inde-

pendent modes of motion of an N-atom molecule depends on 

whether it is linear or nonlinear:

Contents

44.1 Normal modes 415

Brief illustration 44.1: The numbers of  

normal modes 416

44.2 Infrared absorption spectra of polyatomic  
molecules 417

Example 44.1: Using the gross selection rule  

for infrared spectroscopy 417

Example 44.2: Interpreting an infrared  

spectrum 418

44.3 Vibrational Raman spectra of polyatomic 
molecules 419

Brief illustration 44.2: Raman active modes of  

polyatomic molecules 419

44.4 Symmetry aspects of molecular vibrations 419
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 ➤ Why do you need to know this material?
The analysis of vibrational spectra provides information 
about the identity, conformation, and rigidity of polyatomic 
molecules in the gas and condensed phases. Even complex 
systems, such as synthetic materials and biological cells, 
can be studied.

 ➤ What is the key idea?
The vibrational spectrum of a polyatomic molecule can be 
interpreted in terms of the coupled harmonic motion of atoms.

 ➤ What do you need to know already?
You need to be familiar with the harmonic oscillator model 
(Topic 12) of molecular motion, general principles of 
spectroscopy (Topic 40), and the selection rules for infrared 
and Raman spectroscopy (Topic 43). The treatment of the 
symmetry aspects of infrared and Raman active vibrations 
requires concepts from Topics 31–33.

Linear molecule: 3N − 5

Nonlinear molecule: 3N − 6
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416 9 Molecular spectroscopy

The next step is to find the best description of the modes. 

One choice for the four modes of CO2, for example, might 

be the ones in Fig. 44.2a and 44.2c. This illustration shows 

the stretching of one bond (the mode νL), the stretching of the 

other (νR), and the two perpendicular bending modes (ν3). The 

description, while permissible, has a disadvantage: when one 

CO bond vibration is excited, the motion of the C atom sets the 

other CO bond in motion, so energy flows backwards and for-

wards between νL and νR. Moreover, the position of the centre 

of mass of the molecule varies in the course of either vibration.

The description of the vibrational motion is much simpler 

if linear combinations of νL and νR are taken. For example, one 

combination is ν1 in Fig. 44.2b: this mode is the symmetric 

stretch. In this mode, the C atom is buffeted simultaneously 

from each side and the motion continues indefinitely. Another 

mode is ν2, the antisymmetric stretch, in which the two O 

atoms always move in the same direction as each other and 

opposite to that of the C atom. Both modes are independent in 

the sense that, if one is excited, then it does not excite the other. 

They are two of the ‘normal modes’ of the molecule, its inde-

pendent, collective vibrational displacements. The two other 

normal modes (Fig. 44.2c) are the bending modes ν3. In gen-

eral, a normal mode is an independent, synchronous motion of 

atoms or groups of atoms that may be excited without leading 

to the excitation of any other normal mode and without involv-

ing translation or rotation of the molecule as a whole.

The four normal modes of CO2, and the Nvib normal modes 

of polyatomics in general, are the key to the description of 

molecular vibrations. Each normal mode, q, behaves like 

an independent harmonic oscillator (if anharmonicities are 

neglected), so each has a series of terms
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mq q q
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q
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Brief illustration 44.1 The numbers of normal modes

Water, H2O, is a nonlinear triatomic molecule, N = 3, and has 

3N − 6 = 3 modes of vibration (and three modes of rotation); 

CO2 is a linear triatomic molecule, and has 3N − 5 = 4 modes of 

vibration (and only two modes of rotation). A biological mac-

romolecule with N ≈ 500 atoms can vibrate in nearly 1500 dif-

ferent independent ways.

Self-test 44.1 How many normal modes does naphthalene 

(C10H8) have?

Answer: 48

Vibrational 
terms of 
normal 
modes

νL
ν1 (1388 cm–1)

ν2 (2349 cm–1)

ν3 (667 cm–1) ν3 (667 cm–1)

νR

(a) (b)

(c)

Figure 44.2 Alternative descriptions of the vibrations of CO2. 
(a) The stretching modes are not independent, and if one 
C–O group is excited the other begins to vibrate. They are not 
normal modes of vibration of the molecule. (b) The symmetric 
and antisymmetric stretches are independent, and one can be 
excited without affecting the other: they are normal modes. (c) 
The two perpendicular bending motions are also normal modes.

θ

φ
ψ

(a)

(b)

Figure 44.1 (a) The orientation of a linear molecule requires 
the specification of two angles. (b) The orientation of a 
nonlinear molecule requires the specification of three angles.

Justification 44.1 The number of vibrational modes

The location of one atom is specified by its three coordinates. 

The total number of coordinates needed to specify the locations 

of N atoms is 3N. Each atom may change its location by vary-

ing one of its three coordinates (x, y, and z), so the total num-

ber of displacements available is 3N. These displacements can 

be grouped together in a physically sensible way. For example, 

three coordinates are needed to specify the location of the cen-

tre of mass of the molecule, so three of the 3N displacements 

correspond to the translational motion of the molecule as a 

whole. The remaining 3N − 3 are non-translational ‘internal’ 

modes of the molecule that leave its centre of mass unchanged.

Two angles are needed to specify the orientation of a linear 

molecule in space: in effect, we need to give only the latitude 

and longitude of the direction in which the molecular axis is 

pointing (Fig. 44.1a). However, three angles are needed for a 

nonlinear molecule because we also need to specify the orien-

tation of the molecule around the direction defined by the lati-

tude and longitude (Fig. 44.1b). Therefore, two (linear) or three 

(nonlinear) of the 3N − 3 internal displacements are rotational. 

This leaves 3N − 5 (linear) or 3N − 6 (nonlinear) displacements 

of the atoms relative to one another: these are the vibrational 

modes. It follows that the number of modes of vibration Nvib is 

3N − 5 for linear molecules and 3N − 6 for nonlinear molecules.
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44 Vibrational spectroscopy: polyatomic molecules  417

where ��q  is the wavenumber of mode q and depends on the 

force constant kf,q for the mode and on the effective mass mq of 

the mode. The effective mass of the mode is a measure of the 

mass that is swung about by the vibration and in general is a 

complicated function of the masses of the atoms. For example, 

in the symmetric stretch of CO2, the C atom is stationary, and 

the effective mass depends on the masses of only the O atoms. 

In the antisymmetric stretch and in the bends, all three atoms 

move, so all contribute to the effective mass. The three normal 

modes of H2O are shown in Fig. 44.3: note that the predomi-

nantly bending mode (ν2) has a lower frequency than the oth-

ers, which are predominantly stretching modes. It is generally 

the case that the frequencies of bending motions are lower than 

those of stretching modes. One point that must be appreciated 

is that only in special cases (such as the CO2 molecule) are the 

normal modes purely stretches or purely bends. In general, a 

normal mode is a composite motion of simultaneous stretch-

ing and bending of bonds. Another point in this connection is 

that heavy atoms generally move less than light atoms in nor-

mal modes.

The vibrational state of a polyatomic molecule is specified 

by the vibrational quantum number v for each of the normal 

modes. For example, for the water molecule with three normal 

modes, the vibrational state is designated as (v1,v2,v3), where 

vi is the number of vibrational quanta in normal mode i. The 

vibrational ground state of an H2O molecule is therefore (0,0,0).

44.2 Infrared absorption spectra of 
polyatomic molecules

The gross selection rule for infrared activity is that the motion 

corresponding to a normal mode should be accompanied by a 

change of dipole moment. Simple inspection of atomic motions 

is sometimes all that is needed in order to assess whether a nor-

mal mode is infrared active. For example, the symmetric stretch 

of CO2 leaves the dipole moment unchanged (at zero, see Fig. 

44.2), so this mode is infrared inactive. The antisymmetric 

stretch, however, changes the dipole moment because the mole-

cule becomes unsymmetrical as it vibrates, so this mode is infra-

red active. Because the dipole moment change is parallel to the 

principal axis, the transitions arising from this mode are classi-

fied as parallel bands in the spectrum. Both bending modes are 

infrared active: they are accompanied by a changing dipole per-

pendicular to the principal axis, so transitions involving them 

lead to a perpendicular band in the spectrum.
ν1 (3652 cm–1) ν2 (1595 cm–1) ν3 (3756 cm–1)

Figure 44.3 The three normal modes of H2O. The mode ν2 is 
predominantly bending, and occurs at lower wavenumber than 
the other two.

Example 44.1 Using the gross selection rule  
for infrared spectroscopy

State which of the following molecules are infrared active: 

N2O, OCS, H2O, CH2]CH2.

Method Molecules that are infrared active have dipole 

moments that change during the course of a vibration. 

Therefore, judge whether a distortion of the molecule can 

change its dipole moment (including changing it from zero).

Answer All the molecules possess at least one normal mode 

that results in a change of dipole moment, so all are infra-

red active. Again note that not all the modes of complicated 

 molecules are infrared active. For example, a vibration of 

CH2]CH2 in which the C]C bond stretches and contracts 

(while the CeH bonds either do not vibrate or stretch and con-

tract synchronously) is inactive because it leaves the dipole 

moment unchanged (at zero) (Fig. 44.4).

Self-test 44.2 Identify a normal mode of C6H6 that is not 

infrared active.

Answer: A ‘breathing’ mode in which all the carbon–carbon bonds 

contract and stretch synchronously, while the CeH bonds either do not 

vibrate or stretch and contract synchronously (see Fig. 44.5)

Figure 44.4 A normal mode of CH2]CH2 (ethene) that is 
not infrared active.

Figure 44.5 A normal mode of C6H6 (benzene) that is 
not infrared active.

Atkins09819.indb   417 9/11/2013   12:00:34 PM



418 9 Molecular spectroscopy

The active modes are subject to the specific selection rule 

Δvq = ±1 in the harmonic approximation, so the wavenumber of 

the fundamental transition (the ‘first harmonic’) of each active 

mode is ��q . A polyatomic molecule has several fundamental 

transitions. For example, the spectrum of a molecule with three 

infrared active normal modes features three fundamental tran-

sitions: (1,0,0) ← (0,0,0), (0,1,0) ← (0,0,0), and (0,0,1) ← (0,0,0). 

Also possible are combination bands corresponding to the 

excitation of more than one normal mode in the transition, 

as in (1,1,0) ← (0,0,0). Moreover, overtone transitions, such as 

(2,0,0) ← (0,0,0), can appear in the spectrum when anharmo-

nicity is important (Topic 43).

From the analysis of the spectrum, a picture may be con-

structed of the stiffness of various parts of the molecule; that is, 

we can establish its force field, the set of force constants corre-

sponding to all the displacements of the atoms. The force field 

may also be estimated by using the semi-empirical, ab initio, and 

density functional theory computational techniques described in 

Topics 28–30. Superimposed on the simple force field scheme are 

the complications arising from anharmonicities and the effects 

of molecular rotation. In the gas phase, rotational transitions 

affect the spectrum in a way similar to their effect on diatomic 

molecules (Topic 43), but as polyatomic molecules are typically 

asymmetric rotors, the resulting band structure is very complex.

In a liquid or a solid, the molecules are unable to rotate freely. 

In a liquid, for example, a molecule may be able to rotate through 

only a few degrees before it is struck by another, so it changes its 

rotational state frequently. This random changing of orientation is 

called tumbling. As a result of this intermolecular buffeting, the 

lifetimes of rotational states in liquids are very short, so in most 

cases the rotational energies are ill-defined. Collisions occur at a 

rate of about 1013 s−1 and, even allowing for only a 10 per cent suc-

cess rate in knocking the molecule into another rotational state, a 

lifetime broadening (eqn 40.14, in the form δ ≈ π�� 1/2 cτ ) of more 

than 1 cm−1 can easily result. The rotational structure of the vibra-

tional spectrum is blurred by this effect, so the infrared spectra 

of molecules in condensed phases usually consist of broad lines 

spanning the entire range of the resolved gas-phase spectrum, 

and showing no branch structure.

One very important application of infrared spectroscopy to 

condensed-phase samples, and for which the blurring of the 

rotational structure by random collisions is a welcome simplifi-

cation, is to chemical analysis. The vibrational spectra of different 

groups in a molecule give rise to absorptions at characteristic fre-

quencies because a normal mode of even a very large molecule 

is often dominated by the motion of a small group of atoms. The 

intensities of the vibrational bands that can be identified with the 

motions of small groups are also transferable between molecules. 

Consequently, the molecules in a sample can often be identified 

by examining its infrared spectrum and referring to a table of 

characteristic frequencies and intensities (Table 44.1).

Table 44.1* Typical vibrational wavenumbers

Vibration type ��/cm 1−

CeH stretch 2850–2960

CeH bend 1340–1465

CeC stretch, bend 700–1250

C]C stretch 1620–1680

* More values are given in the Resource section.

Example 44.2 Interpreting an infrared spectrum

The infrared spectrum of an organic compound is shown in 

Fig. 44.6. Suggest an identification.

Method Some of the features at wavenumbers above 1500 cm−1 

can be identified by comparison with the data in Table 44.1.

Answer (a) CeH stretch of a benzene ring, indicating a sub-

stituted benzene; (b) carboxylic acid OeH stretch, indicating 

a carboxylic acid; (c) the strong absorption of a conjugated 

C^C group, indicating a substituted alkyne; (d) this strong 

absorption is also characteristic of a carboxylic acid that is 

conjugated to a carbon–carbon multiple bond; (e) a charac-

teristic vibration of a benzene ring, confirming the deduc-

tion drawn from (a); (f) a characteristic absorption of a nitro 

group (–NO2) connected to a multiply bonded carbon–carbon 

system, suggesting a nitro-substituted benzene. The molecule 

contains as components a benzene ring, an aromatic carbon–

carbon bond, a –COOH group, and a –NO2 group. The mol-

ecule is in fact O2NeC6H4eCbCeCOOH. A more detailed 

analysis and comparison of the fingerprint region shows it to 

be the 1,4-isomer.
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Figure 44.6 A typical infrared absorption spectrum taken 
by forming a sample into a disk with potassium bromide. As 
explained in the example, the substance can be identified 
as O2NC6H4eCbCeCOOH.
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44 Vibrational spectroscopy: polyatomic molecules  419

44.3 Vibrational Raman spectra of 
polyatomic molecules

The normal modes of vibration of molecules are Raman active 

if they are accompanied by a changing polarizability. A closer 

analysis of infrared and Raman activity of normal modes based 

on considerations of symmetry leads to the exclusion rule:

If the molecule has a centre of symmetry 

then no modes can be both infrared and Raman active.

(A mode may be inactive in both.) Because it is often possible 

to judge intuitively if a mode changes the molecular dipole 

moment, we can use this rule to identify modes that are not 

Raman active.

The assignment of Raman lines to particular vibrational 

modes is aided by noting the state of polarization of the scat-

tered light. The depolarization ratio, ρ, of a line is the ratio of 

the intensities, I, of the scattered light with polarizations per-

pendicular and parallel to the plane of polarization of the inci-

dent radiation:

ρ = I

I
⊥

�
 Definition  Depolarization ratio  (44.2)

To determine ρ, the intensity of a Raman line is measured 

with a polarizing filter (a ‘half-wave plate’) first parallel and 

then perpendicular to the polarization of the incident beam. 

If the emergent light is not polarized, then both intensities 

are the same and ρ is close to 1; if the light retains its ini-

tial polarization, then I⊥ = 0, so ρ = 0 (Fig. 44.8). A line is 

classified as depolarized if it has ρ close to or greater than 

0.75 and as  polarized if ρ < 0.75. Only totally symmetrical 

vibrations give rise to polarized lines in which the incident 

polarization is largely preserved. Vibrations that are not 

totally  symmetrical give rise to depolarized lines because the 

in cident  radiation can give rise to radiation in the perpen-

dicular direction too.

44.4 Symmetry aspects of molecular 
vibrations

One of the most powerful ways of dealing with normal modes, 

especially of complex molecules, is to classify them according 

to their symmetries. Each normal mode must belong to one 

of the symmetry species of the molecular point group, as dis-

cussed in Topics 31–33.

Brief illustration 44.2 Raman active modes of 
polyatomic molecules

The symmetric stretch of CO2 alternately swells and con-

tracts the molecule: this motion changes the polarizability 

of the molecule, so the mode is Raman active. The other 

modes of CO2 leave the polarizability unchanged, so they 

are Raman inactive. Furthermore, the exclusion rule applies 

to CO2 because it has a centre of symmetry.

Self-test 44.4 Does the exclusion rule apply to H2O or CH4?

Answer: No; neither molecule has a centre of symmetry

Self-test 44.3 Suggest an identification of the organic com-

pound responsible for the spectrum shown in Fig. 44.7. Hint: 

The molecular formula of the compound is C3H5ClO.

Answer: CH2 = CClCH2OH
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Figure 44.7 The spectrum considered in Self-test 44.3.

Exclusion rule

Incident
radiation

Scattered
radiation

I||

I⊥

Figure 44.8 The definition of the planes used for the 
specification of the depolarization ratio, ρ, in Raman 
scattering.
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420 9 Molecular spectroscopy

(a) Infrared activity of normal modes
It is best to use group theory to judge the activities of more 

complex modes of vibration. This is easily done by checking the 

character table of the molecular point group for the symmetry 

species of the irreducible representations spanned by x, y, and 

z, for their species are also the symmetry species of the compo-

nents of the electric dipole moment. Then apply the following 

rule, which is developed in the following Justification:

If the symmetry species of a normal 

mode is the same as any of the symmetry 

species of x, y, or z, then the mode is 

infrared active.

Brief illustration 44.3 Infrared activity of modes

To decide which modes of CH4 are IR active, we note that we 

found in Example 44.3 that the symmetry species of the nor-

mal modes are A1 + E + 2T2. Therefore, because x, y, and z span 

T2 in the group Td, only the T2 modes are infrared active. The 

distortions accompanying these modes lead to a changing 

dipole moment. The A1 mode, which is inactive, is the sym-

metrical ‘breathing’ mode of the molecule.

Self-test 44.6 Which of the normal modes of H2O are infrared 

active?

Answer: All three

Justification 44.2 The infrared activity of normal modes

The rule hinges on the form of the transition dipole moment 

(Topic 16): μ ψ ψfi f i
d,

*
x x x∝∫ v v in the x-direction, with similar 

expressions for the two other components of the transition 

Self-test 44.5 Establish the symmetry species of the normal 

modes of H2O.

Answer: 2A1 + B2

ν1(A1) ν3(T2) ν4(T2)ν2(E)

Figure 44.10 Typical normal modes of vibration of a 
tetrahedral molecule. There are in fact two modes of 
symmetry species E and three modes of each T2 symmetry 
species.

Example 44.3 Identifying the symmetry species of a 
normal mode

Establish the symmetry species of the normal mode vibrations 

of CH4, which belongs to the group Td.

Method The first step in the procedure is to identify the 

symmetry species of the irreducible representations spanned 

by all the 3N displacements of the atoms, using the charac-

ters of the molecular point group. Find these characters by 

counting 1 if the displacement is unchanged under a symme-

try operation, –1 if it changes sign, and 0 if it is changed into 

some other displacement. Next, subtract the symmetry spe-

cies of the translations. Translational displacements span the 

same symmetry species as x, y, and z, so they can be obtained 

from the right-most column of the character table. Finally, 

subtract the symmetry species of the rotations, which are 

also given in the character table (and denoted there by Rx, 

Ry, or Rz).

Answer There are 3 × 5 = 15 degrees of freedom, of which 

(3 × 5) − 6 = 9 are vibrations. Refer to Fig. 44.9. Under E, no 

displacement coordinates are changed, so the character is 15. 

Under C3, no displacements are left unchanged, so the char-

acter is 0. Under the C2 indicated, the z-displacement of the 

central atom is left unchanged, whereas its x- and y-com-

ponents both change sign. Therefore χ(C2) = 1 − 1 − 1 + 0 + 0 

+ …= –1. Under the S4 indicated, the z-displacement of the 

central atom is reversed, so χ(S4) = –1. Under σ d, the x- and 

z-displacements of C, H3, and H4 are left unchanged and the 

y-displacements are reversed; hence χ(σd) = 3 +3 − 3 = 3. The 

characters are therefore 15, 0, –1, –1, 3. By decomposing the 

direct product (Topic 33), we find that this representation 

spans A1 + E + T1 + 3T2. The translations span T2; the rotations 

span T1. Hence, the nine vibrations span A1 + E + 2T2. The 

modes are shown in Fig. 44.10. We shall see in the next sub-

section that symmetry analysis gives a quick way of deciding 

which modes are active.

1

2

3

4

C3

C2,S4

x

y

z σd

Figure 44.9 The atomic displacements of CH4 and the 
symmetry elements used to calculate the characters.

Symmetry test for 
IR activity
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44 Vibrational spectroscopy: polyatomic molecules  421

(b) Raman activity of normal modes
Group theory provides an explicit recipe for judging the Raman 

activity of a normal mode. First, we need to know that the polariz-

ability transforms in the same way as the quadratic forms (x2, xy, 

etc.) listed in character tables. The justification of this observation 

is that the polarizability α of a molecule is calculated from second-

order perturbation theory (Topic 15), with the perturbation –μ.E. 

Products of integrals of the form ∫ ∫ψ ψ τ  ψ ψ τ0 0
* *μ μn nd and d  

occur in the numerator of the expression for α, and hence terms 

proportional to components of rr, such as x2 and xy then occur. 

Then we use the following rule:

If the symmetry species of a normal 

mode is the same as the symmetry 

species of a quadratic form, then the 

mode is Raman active.

Brief illustration 44.4 Raman activity of modes

To decide which of the vibrations of CH4 are Raman active, 

refer to the Td character table. It was established in Example 

44.3 that the symmetry species of the normal modes are 

A1 + E + 2T2. Because the quadratic forms span A1 + E + T2, 

all the normal modes are Raman active. By combining this 

information with that in Brief illustration 44.3, we see how the 

infrared and Raman spectra of CH4 are assigned. The assign-

ment of spectral features to the T2 modes is straightforward 

because these are the only modes that are both infrared and 

Raman active. This leaves the A1 and E modes to be assigned 

in the Raman spectrum. Measurement of the depolariza-

tion ratio distinguishes between these modes because the A1 

mode, being totally symmetric, is polarized and the E mode is 

depolarized.

Self-test 44.7 Which of the vibrational modes of H2O are 

Raman active?

Answer: All three

moment. Consider a harmonic oscillator in the x-direction 

undergoing a transition from the ground vibrational state 

(vi = 0) to the first excited state (vf = 1). Because ψ 0

2∝e−x  and 

ψ1

2∝ x xe−  (Topic 12), the components of the transition dipole 

moment take the following forms:

x x x x xx x x

x

e e d e d

form of form of form of

−

−∞

+∞
− −

−∞

+∞

∫ 2 2 2

1 0

2 2

ψ μ ψ
 
 

=∫∫  in the x-direction. 

As can be verified by direct calculation, this integral does 

not vanish.

xy xxe d−

−∞

+∞

∫ 2 2

 and xz xxe d−

−∞

+∞

∫ 2 2

 in the y- and z-directions, 

respectively. A direct calculation shows that both integrals 

vanish.

Consequently, the excited state wavefunction must have the 

same symmetry as the displacement x.

Symmetry test for 
Raman activity

Checklist of concepts

☐ 1. A normal mode is an independent, synchronous 

motion of atoms or groups of atoms that may be excited 

without leading to the excitation of any other normal 

mode.

☐ 2. The number of normal modes is 3N − 6 (for nonlinear 

molecules) or 3N − 5 (linear molecules).

☐ 3. A normal mode is infrared active if it is accompanied 

by a change of dipole moment. The specific selection 

rule is Δvq = ±1.

☐ 4. The exclusion rule states that, if the molecule has a cen-

tre of symmetry, then no modes can be both infrared 

and Raman active.

☐ 5. Totally symmetrical vibrations give rise to polarized 

lines.

☐ 6. A normal mode is infrared active if its symmetry species 

is the same as any of the symmetry species of x, y, or z.

☐ 7. A normal mode is Raman active if its symmetry species 

is the same as the symmetry species of a quadratic form.

Checklist of equations

Property Equation Comment Equation number

Vibrational terms of normal modes � � �G c k mq q q q q( ) , ( )( ),v v= ( ) =+ 1
2

1 21 2� � / /f
/π 44.1

Depolarization ratio ρ = I⊥/Is Depolarized lines: ρ close to or greater 
than 0.75 

Polarized lines: ρ < 0.75

44.2
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TOPIC 45

Electronic spectroscopy

Unlike for the rotational and vibrational modes of motion 

treated in Topics 41–44, simple analytical expressions for the 

electronic energy levels of molecules cannot be given. There-

fore we concentrate on the qualitative features of electronic 

transitions.

To set the scene, consider a molecule in the lowest vibra-

tional state of its ground electronic state. The nuclei are (in a 

classical sense) at their equilibrium locations and experience 

no net force from the electrons and other nuclei in the mole-

cule. The electron distribution is changed when an electronic 

transition occurs and the nuclei become subjected to differ-

ent forces. In response, they start to vibrate around their new 

equilibrium locations. The resulting vibrational transitions that 

accompany the electronic transition give rise to the vibrational 

structure of the electronic transition. This structure can be 

resolved for gaseous samples, but in a liquid or solid the lines 

usually merge together and result in a broad, almost featureless 

band (Fig. 45.1).

The energies needed to change the electron distributions 

of molecules are of the order of several electronvolts (1 eV is 

equivalent to about 8000 cm−1 or 100 kJ mol−1). Consequently, 

the photons emitted or absorbed when such changes occur lie 

in the visible and ultraviolet regions of the spectrum (Table 

45.1). What follows is a discussion of absorption processes. 

Emission processes are discussed in Topic 46.
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 ➤ Why do you need to know this material?
Many of the colours of the objects in the world around us 
stem from transitions in which an electron is promoted 
from one orbital of a molecule or ion into another. In some 
cases the relocation of an electron may be so extensive 
that it results in the breaking of a bond and the initiation 
of a chemical reaction. To understand these physical and 
chemical phenomena, you need to explore the origins of 
electronic transitions in molecules.

 ➤ What is the key idea?
Electronic transitions occur within a stationary nuclear 
framework.

 ➤ What do you need to know already?
You need to be familiar with the general features of 
spectroscopy (Topic 40), the quantum mechanical origins 
of selection rules (Topic 16), and vibration–rotation spectra 
(Topic 43); it would be helpful to be aware of atomic term 
symbols (Topic 21).
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45 Electronic spectroscopy  423

45.1 The electronic spectra  
of diatomic molecules

Topic 21 explains how the states of atoms are expressed by using 

term symbols and how the selection rules for electronic transi-

tions can be expressed in terms of these term symbols. Much 

the same is true of diatomic molecules, one principal difference 

being the replacement of full spherical symmetry of atoms by 

the cylindrical symmetry defined by the axis of the molecule. 

The second principal difference is the fact that a diatomic mol-

ecule can vibrate and rotate.

(a) Term symbols
The term symbols of linear molecules (the analogues of the 

symbols 2P, etc. for atoms) are constructed in a similar way 

to those for atoms, with the Roman uppercase letter (the P in 

this instance) representing the total orbital angular momen-

tum of the electrons around the nucleus. In a linear molecule, 

and specifically a diatomic molecule, a Greek uppercase letter 

represents the total orbital angular momentum of the elec-

trons around the internuclear axis. If this component of orbital 

angular momentum is Λ with Λ = 0, ±1, ±2, …, we use the fol-

lowing designation:

These labels are the analogues of S, P, D, … for atoms for 

states with L = 0, 1, 2, …. To decide on the value of L for 

atoms we have to use the Clebsch–Gordan series (Topic 21) 

to couple the individual angular momenta. The procedure to 

determine Λ is much simpler in a diatomic molecule because 

we simply add the values of the individual components of 

each electron, λ:

Λ λ λ= + +1 2 … (45.1)

We note the following:

A single electron in a σ orbital has λ = 0.

The orbital is cylindrically symmetrical and has no angular 

nodes when viewed along the internuclear axis. Therefore, if 

that is the only type of electron present, Λ = 0. The term symbol 

for the ground state of H2
+ with electron configuration 1 gσ2  is 

therefore Σ.

A π electron in a diatomic molecule has one unit of 

orbital angular momentum about the internuclear axis 

(λ = ±1).

If it is the only electron outside a closed shell, it gives rise to a 

Π term. If there are two π electrons (as in the ground state of  

O2, with configuration [closed shell]1 gπ2 ), there are two possible 

outcomes. If the electrons are travelling in opposite directions, 

then λ1 = +1 and λ2 = –1 (or vice versa) and Λ = 0, corresponding 

to a Σ term. Alternatively, the electrons might occupy the same 

π orbital and λ1 = λ2 = +1 (or –1), and Λ = ±2, corresponding to 

a Δ term. In O2 it is energetically favourable for the electrons to 

occupy different orbitals, so the ground term is Σ.

As in atoms, we use a left superscript with the value of 2S + 1 

to denote the multiplicity of the term, where S is the total spin 

quantum number of the electrons.

Brief illustration 45.1 Multiplicity of a term

It follows from the procedure for assigning multiplicity of 

terms that for H2
+ ,  because there is only one electron, S s= = 1

2
 

and the term symbol is 2Σ, a doublet term. In O2, because in 

the ground state the two π electrons occupy different orbitals 

(as we saw above), they may have either parallel or antiparallel 

spins; the lower energy is obtained (as in atoms) if the spins are 

parallel, so S = 1 and the ground state is 3Σ.

Self-test 45.1 What are S and the term for H2?

Answer: S = 0, 1Σ

A
b

so
rb

an
ce

, A

400 500 600 700
Wavelength, λ/nm

Figure 45.1 The absorption spectrum of chlorophyll in the 
visible region. Note that it absorbs in the red and blue regions, 
and that green light is not absorbed.

|Λ| 0 1 2 …

Σ Π Δ …

Table 45.1* Colour, wavelength, frequency, and energy of light

Colour λ/nm �/(1014 Hz) E/(kJ mol−1)

Infrared >1000 <3.0 <120

Red 700 4.3 170

Yellow 580 5.2 210

Blue 470 6.4 250

Ultraviolet <400 >7.5 >300

* More values are given in the Resource section.
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424 9 Molecular spectroscopy

The overall parity of the state (its symmetry under inversion 

through the centre of the molecule, if it has one) is added as a 

right subscript to the term symbol. For H2
+ in its ground state, 

the parity of the only occupied orbital (1σg) is g (gerade, even), 

so the term itself is also g, and in full dress is 2Σg. If there are 

several electrons, the overall parity is calculated by noting the 

parity of each occupied orbital and using

g g g u u=g u g=u× = × ×  (45.2)

These rules are generated by interpreting g as +1 and u as −1. As 

a consequence:

The term symbol for the ground state of any closed-shell 

homonuclear diatomic molecule is 1Σg because the spin is 

zero (a singlet term in which all electrons paired), there is 

no orbital angular momentum from a closed shell, and 

the overall parity is g.

If the molecule is heteronuclear, parity is irrelevant 

and the ground state of a closed-shell species, such as 

CO, is 1Σ.

It is shown in Topic 21 that electronic angular momentum is 

an aspect of the symmetry of states. That remains true for linear 

molecules provided we confine our attention to motion around 

the internuclear axis, and the term symbols denote various 

aspects of the rotational symmetry of the electronic wavefunc-

tion of the molecule. With that in mind, there is an additional 

symmetry operation that distinguishes different types of Σ 

term: reflection in a plane containing the internuclear axis. 

A + superscript on Σ is used to denote a wavefunction that does 

not change sign under this reflection and a – sign is used if the 

wavefunction changes sign (Fig. 45.2).

As for atoms, sometimes it is necessary to denote the total 

angular momentum. In atoms we use the quantum number J, 

which appears as a right subscript in the term symbol, as in 
2P1/2, with different values of J corresponding to different levels 

of a term. In a linear molecule, only the angular momentum 

about the internuclear axis is well defined, and has the value 

Ω. For light molecules, where the spin–orbit coupling is weak, 

Ω is obtained by adding together the components of orbital 

angular momentum around the axis (the value of Λ) and the 

component of the electron spin on that axis (Fig. 45.3). The lat-

ter is denoted Σ, where Σ = S, S − 1, S − 2, …, −S. (It is important 

to distinguish between the upright term symbol Σ and the slop-

ing quantum number Σ.) Then

Ω Λ Σ= +  (45.3)

The value of |Ω| may then be attached to the term symbol as a 

right subscript (just like J is used in atoms) to denote the differ-

ent levels. These levels differ in energy, as in atoms, as a result of 

spin–orbit coupling.

Brief illustration 45.2 Term symbol of O2 1

The parity of the ground state of O2, with configuration 

[closed shell]1 2πg , is g × g = g, so it is denoted 3Σg. An excited 

configuration of O2 is [closed shell]1 2πg , with both π electrons 

in the same orbital. As we have seen, |Λ| = 2, represented by 

Δ. The two electrons must be paired if they occupy the same 

orbital, so S = 0. The overall parity is g × g = g. Therefore, the 

term symbol is 1Δg.

Self-test 45.2 The term symbol for one of the excited states of 

H2 is 3Πu. To which excited-state configuration does this term 

symbol correspond?

Answer: 1 11 1σ πg u

Brief illustration 45.3 Term symbol of O2 2

If we think of O2 in its ground state as having one electron in 

1πg,x, which changes sign under reflection in the yz-plane, and 

the other electron in 1πg,y, which does not change sign under 

reflection in the same plane, then the overall reflection sym-

metry is (closed shell) × (+) × (−) = (−), and the full term symbol 

of the ground electronic state of O2 is 3 Σg
− .

Self-test 45.3 What is the full term symbol of the ground elec-

tronic state of Li2
+?

Answer: 2 Σg
+

+
+

+

+

–

–

–– +

Figure 45.2 The + or − on a term symbol refers to the overall 
symmetry of a configuration under reflection in a plane 
containing the two nuclei.

L

S

Λ Σ

Ω

Figure 45.3 The coupling of spin and orbital angular  
momenta in a linear molecule: only the components along  
the internuclear axis are conserved.
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45 Electronic spectroscopy  425

(b) Selection rules
A number of selection rules govern which transitions will be 

observed in the electronic spectrum of a molecule. The selec-

tion rules concerned with changes in angular momentum are

Δ Δ
Δ Δ

Λ
Σ Ω

= ± =
= = ±

0 1 0

0 0 1

,

,

S
 (45.4)

As in atoms (Topic 21), the origins of these rules are conserva-

tion of angular momentum during a transition and the fact that 

a photon has a spin of 1.

There are two selection rules concerned with changes in 

symmetry. First, as we show in the following Justification,

For Σ terms, only Σ + ↔ Σ + and Σ − ↔ Σ − are allowed.

Second, the Laporte selection rule for centrosymmetric mol-

ecules (those with a centre of inversion) states that the only 

allowed transitions are transitions that are accompanied by a 

change of parity. That is,

For centrosymmetric molecules, only 

u → g and g → u are allowed.

A forbidden g → g transition can become allowed if the cen-

tre of symmetry is eliminated by an asymmetrical vibration, 

such as the one shown in Fig. 45.4. When the centre of symme-

try is lost, g → g and u → u transitions are no longer parity-for-

bidden and become weakly allowed. A transition that derives 

its intensity from an asymmetrical vibration of a molecule is 

called a vibronic transition.

Brief illustration 45.4 Term symbol of NO

The ground state configuration of NO is … πg
1 ,  so it is a 2Π 

term with Λ ∑= ± = ±1 1
2

and .  Therefore, there are two levels 

of the term, one with Ω = ± 1
2

 and the other with ± 3
2

, denoted 
2Π1/2 and 2Π3/2, respectively. Each level is doubly degenerate 

(corresponding to the opposite signs of Ω). In NO, 2Π1/2 lies 

slightly lower than 2Π3/2.

Self-test 45.4 What are the levels of the term for the ground 

electronic state of O2
−?

Answer: 2Π1/2, 2Π3/2

Linear 
molecules

Selection rules 
for electronic 
spectra

Laporte 
selection rule

Justification 45.1 Symmetry-based selection rules

The last two selection rules result from the fact that the 

electric-dipole transition moment introduced in Topic 16, 

μ μfi f d= ∫ψ ψ τ* ,i  vanishes unless the integrand is invariant 

under all symmetry operations of the molecule.

The z-component of the dipole moment operator is the com-

ponent of μ responsible for Σ ↔ Σ transitions (the other compo-

nents have Π symmetry and cannot make a contribution). The 

z-component of μ has (+) symmetry with respect to reflection in 

a plane containing the internuclear axis. Therefore, for a (+) ↔ (−) 

transition, the overall symmetry of the transition dipole moment 

is (+) × (+) × (−) = (−), so it must be zero and hence Σ+ ↔ Σ− 

transitions are not allowed. The integrals for Σ+ ↔ Σ+ and 

Σ− ↔ Σ− transform as (+) × (+) × (+) = (+) and (−) × (+) × (−) = (+), 

respectively, and so both transitions are allowed.

The three components of μ transform like x, y, and z, and 

in a centrosymmetric molecule are all u (ungerade, odd). 

Therefore, for a g → g transition, the overall parity of the transi-

tion dipole moment is g × u × g = u, so it must be zero. Likewise, 

for a u → u transition, the overall parity is u × u × u = u, so the 

transition dipole moment must also vanish. Hence, transitions 

without a change of parity are forbidden. For a g ↔ u transi-

tion the integral transforms as g × u × u = g, and is allowed.

Figure 45.4 A d–d transition is parity-forbidden because it 
corresponds to a g–g transition. However, a vibration of the 
molecule can destroy the inversion symmetry of the molecule 
and the g,u classification no longer applies. The removal of the 
centre of symmetry gives rise to a vibronically allowed transition.

Brief illustration 45.5 Allowed transitions of O2

If we were presented with the following possible tran-

sit ions i n t he elec t ronic spec t r u m of O2,  na mely 
3 3 3 1 3 3Σ Σ Σ Δ Σ Σg u g g g u

− − − − +← ← ←, , , we could decide which are 

allowed by constructing the following table and referring to 

the rules. Forbidden values are in red.

Self-test 45.5 Which of the following electronic transitions 

are allowed in O2: 3
g gΣ Σ− +↔ 1  and 3

g uΣ Δ− ↔3 ?

Answer: None

ΔS ΔΛ Σ± ← Σ± Change 
of parity

3 3Σ Σg u
− −← 0 0 Σ− ← Σ− g ← u Allowed

3 1Σ Δg g
− ← +1 −2 Not applicable g ← g Forbidden

3 3Σ Σg u
− +← 0 0 Σ− ← Σ+ g ← u Forbidden
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426 9 Molecular spectroscopy

The large number of photons in an incident beam generated 

by a laser gives rise to a qualitatively different branch of spec-

troscopy, for the photon density is so great that more than one 

photon may be absorbed by a single molecule and give rise to 

multiphoton processes. One application of multiphoton pro-

cesses is that states inaccessible by conventional one-photon 

spectroscopy become observable because the overall transition 

occurs with no change of parity. For example, in one-photon 

spectroscopy, only g ↔ u transitions are observable; in two- 

photon spectroscopy, however, the overall outcome of absorb-

ing two photons is a g ← g or a u ← u transition.

(c) Vibrational structure
To account for the vibrational structure in electronic spectra of 

molecules (Fig. 45.5), we apply the Franck–Condon principle:

Because the nuclei are so much more 

massive than the electrons, an electronic 

transition takes place very much faster than 

the nuclei can respond.

As a result of the transition, electron density is rapidly built up 

in new regions of the molecule and removed from others. In 

classical terms, the initially stationary nuclei suddenly expe-

rience a new force field, to which they respond by beginning 

to vibrate and (in classical terms) swing backwards and for-

wards from their original separation (which was maintained 

during the rapid electronic excitation). The stationary equi-

librium separation of the nuclei in the initial electronic state 

therefore becomes a turning point in the final electronic state 

(Fig. 45.6). We can imagine the transition as taking place up 

the vertical line in Fig. 45.6. This interpretation is the origin of 

the expression vertical transition, which denotes an electronic 

transition that occurs without change of nuclear geometry.

The vibrational structure of the spectrum depends on the 

relative horizontal position of the two potential energy curves, 

and a long vibrational progression, a lot of vibrational struc-

ture, is stimulated if the upper potential energy curve is appre-

ciably displaced horizontally from the lower. The upper curve is 

usually displaced to greater equilibrium bond lengths because 

electronically excited states usually have more antibonding 

character than electronic ground states. The separation of the 

vibrational lines depends on the vibrational energies of the 

upper electronic state.

The quantum mechanical version of the Franck–Condon 

principle refines this picture. Instead of saying that the nuclei 

stay at the same locations and are stationary during the tran-

sition, we say that they retain their initial dynamical state. In 

quantum mechanics, the dynamical state is expressed by the 

wavefunction, so an equivalent statement is that the nuclear 

wavefunction does not change during the electronic transi-

tion. Initially the molecule is in the lowest vibrational state of 

its ground electronic state with a bell-shaped wavefunction 

centred on the equilibrium bond length (Fig. 45.7). To find the 

nuclear state to which the transition takes place, we look for the 

vibrational wavefunction that most closely resembles this ini-

tial wavefunction, for that corresponds to the nuclear dynami-

cal state that is least changed in the transition. Intuitively, 

we can see that the final wavefunction is the one with a large 

peak close to the position of the initial bell-shaped function. 

As explained in Topic 12, provided the vibrational quantum 

number is not zero, the biggest peaks of vibrational wavefunc-

tions occur close to the edges of the confining potential, so we 

400
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Figure 45.5 The electronic spectra of some molecules show 
significant vibrational structure. Shown here is the ultraviolet 
spectrum of gaseous SO2 at 298 K. As explained in the text, 
the sharp lines in this spectrum are due to transitions from a 
lower electronic state to different vibrational levels of a higher 
electronic state. Vibrational structure due to transitions to two 
different excited electronic states is apparent.

Turning points
(stationary nuclei)
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Figure 45.6 According to the Franck–Condon principle, the 
most intense vibronic transition is from the ground vibrational 
state to the vibrational state lying vertically above it. As a result 
of the vertical transition, the nuclei suddenly experience a new 
force field, to which they respond through their vibrational 
motion. The equilibrium separation of the nuclei in the initial 
electronic state therefore becomes a turning point in the final 
electronic state. Transitions to other vibrational levels also 
occur, but with lower intensity.

Franck–Condon 
principle
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45 Electronic spectroscopy  427

can expect the transition to occur to those vibrational states, in 

accord with the classical description. However, several vibra-

tional states have their major peaks in similar positions, so we 

should expect transitions to occur to a range of vibrational 

states, as is observed.

The quantitative form of the Franck–Condon principle and 

the justification of the preceding description is derived from the 

expression for the transition dipole moment (as in Justification 

45.1). The dipole moment (and the corresponding operator) is 

a sum over all nuclei and electrons in the molecule:

μ = − +∑ ∑e e Zi

i

I I

I

r R  (45.5)

where the vectors are the distances from the centre of charge 

of the molecule. The intensity of the transition is proportional 

to the square modulus, |μfi|2, of the magnitude of the transition 

dipole moment, and we show in the following Justification that 

this intensity is proportional to the square modulus of the over-

lap integral, S(vf,vi), between the vibrational states of the initial 

and final electronic states. This overlap integral is a measure of 

the match between the vibrational wavefunctions in the upper 

and lower electronic states: S = 1 for a perfect match and S = 0 

when there is no similarity.

Because the transition intensity is proportional to the square 

of the magnitude of the transition dipole moment, the intensity 

of an absorption is proportional to |S(vf,vi)|2, which is known as 

the Franck–Condon factor for the transition:

S( , ) ,
*

,v v v vf i f nd
2

2

=( )∫ψ ψ τi   Franck–Condon factor  (45.6)

It follows that the greater the overlap of the vibrational state 

wavefunction in the upper electronic state with the vibrational 

wavefunction in the lower electronic state, the greater the 

absorption intensity of that particular simultaneous electronic 

and vibrational transition.

Justification 45.2 The Franck–Condon approximation

The overall state of the molecule consists of an electronic 

part, labelled with ε, and a vibrational part, labelled with v. 

Therefore, within the Born–Oppenheimer approximation, the 

transition dipole moment factorizes as follows:

μfi f f i i
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The term in blue is zero, because two different electronic states 

are orthogonal. Therefore,

μfi f i e f nd d

fi f i

= − ∫∑ ∫e i

i

S

ψ ψ τ ψ ψ τε ε ,

με

,
*

,
*

,
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r
� ���� ����

v v

v v

i

�� ��� ���
= με , ( , )fi f iS v v

The quantity με,fi is the electric-dipole transition moment aris-

ing from the redistribution of electrons (and a measure of the 

‘kick’ this redistribution gives to the electromagnetic field, 

and vice versa for absorption). The factor S(vf,vi), is the overlap 

integral between the vibrational state with quantum number 

vi in the initial electronic state of the molecule, and the vibra-

tional state with quantum number v f in the final electronic 

state of the molecule.
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Figure 45.7 In the quantum mechanical version of the Franck–
Condon principle, the molecule undergoes a transition to 
the upper vibrational state that most closely resembles the 
vibrational wavefunction of the vibrational ground state of 
the lower electronic state. The two wavefunctions shown here 
have the greatest overlap integral of all the vibrational states of 
the upper electronic state and hence are most closely similar.

Example 45.1 Calculating a Franck–Condon factor

Consider the transition from one electronic state to another, 

their bond lengths being Re and ′Re  and their force constants 

equal. Calculate the Franck–Condon factor for the 0–0 tran-

sition and show that the transition is most intense when the 

bond lengths are equal.

Method We need to calculate S(0,0), the overlap integral of the 

two ground-state vibrational wavefunctions, and then take its 

square. The difference between harmonic and anharmonic 

vibrational wavefunctions is negligible for v = 0, so harmonic 

oscillator wavefunctions can be used (Table 12.1).
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(d) Rotational structure
Just as in vibrational spectroscopy, where a vibrational tran-

sition is accompanied by rotational excitation, so rotational 

transitions accompany the excitation of the vibrational excita-

tion that accompanies electronic excitation. We therefore see 

P, Q, and R branches for each vibrational transition, and the 

electronic transition has a very rich structure. However, the 

principal difference is that electronic excitation can result in 

much larger changes in bond length than vibrational excitation 

causes alone, and the rotational branches have a more complex 

structure than in vibration–rotation spectra.

We suppose that the rotational constants of the electronic 

ground and excited states are �B  and ′�B ,  respectively. The rota-

tional energy levels of the initial and final states are

E J hcBJ J E J hcB J J( )= + ′ = ′ ′ ′+� �( ) ( ) ( )1 1  (45.7)

When a transition occurs with ΔJ = −1 the wavenumber of the 

vibrational component of the electronic transition is shifted 

from ��  to

� �� � � � � �� �+ ′ − − + = − ′+ + ′−B J J BJ J B B J B B J( ) ( ) ( ) ( )1 1 2

This transition is a contribution to the P branch (just as in 

Topic 43). There are corresponding transitions for the Q and R 

branches with wavenumbers that may be calculated in a similar 

way. All three branches are:

P branch( )

P

ΔJ

J B B J B B J

= −
= − ′+ + ′−

1

2

:

( ) ( )( )� � � � � �� �
  Branch structure  (45.8a)

Q branch( )

Q

ΔJ

J B B J J

=
= + ′− +

0

1

:

( ) ( )( )� � � �� �  (45.8b)

R branch  

R

ΔJ

J B B J B B J

= +( )
= + ′+ + + ′− +

1

1 1 2

:

( )( ) ( )( )( )� � � � � �� �
 

(45.8c)

These expressions are the analogues of eqn 43.21.

Answer We use the (real) wavefunctions

ψ
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α α
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where x = R − Re and ′ = − ′x R Re  with α = (2/mkf)
1/4 (Topic 12). 

The overlap integral is

S R xx x0 0
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We now write αz R R R= − + ′1
2

( )e e
 and manipulate this expres-

sion into

S zR R z( , )
/

( ) /

( . )/

0 0
1
1 2
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1

2 2 2

1 2

= − − ′ −

−∞

∞

∫π
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e e de e

Integral G

α
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= − − ′e e e( ) /R R 2 24α

and the Franck–Condon factor is

S R R( , ) ( ) /0 0 2 22 2= − − ′e e e α

This factor is equal to 1 when ′ =R Re e  and decreases as the 

equilibrium bond lengths diverge from each other (Fig. 45.8).

For Br2, Re = 228 pm and there is an upper state with 

′ =Re  pm.266  Taking the vibrational wavenumber as 250 cm−1 

gives S(0,0)2 = 5.1 × 10−10, so the intensity of the 0–0 transi-

tion is only 5.1 × 10−10 what it would have been if the potential 

curves had been directly above each other.

Self-test 45.6 Suppose the vibrational wavefunctions can be 

approximated by rectangular functions of width W and W′, 
centred on the equilibrium bond lengths (Fig. 45.9). Find the 

corresponding Franck–Condon factors when the centres are 

coincident and W′ < W.

1

0.5

0
0 2 4

S
(0

,0
)2

(Re – Re´)/2
1/2α

Figure 45.8 The Franck–Condon factor for the arrangement 
discussed in Example 45.1.

Answer: S2 = W′/W

W
av

ef
u

n
ct
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n

, ψ

Displacement, x

W´

W

Figure 45.9 The model wavefunctions used in  
Self-test 45.6.
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45 Electronic spectroscopy  429

Suppose that the bond length in the electronically excited 

state is greater than that in the ground state; then � �′<B B and 
� �′ −B B  is negative. In this case the lines of the R branch converge 

with increasing J and when J is such that � � � �′ − + > ′+B B J B B( )1  

the lines start to appear at successively decreasing wavenum-

bers. That is, the R branch has a band head (Fig. 45.10a). When 

the bond is shorter in the excited state than in the ground state, 
� �′ >B B and � �′ −B B is positive. In this case, the lines of the P 

branch begin to converge and go through a head when J is such 

that � � � �′ − > ′+B B J B B (Fig. 45.10b).

45.2 The electronic spectra of 
polyatomic molecules

The absorption of a photon can often be traced to the excita-

tion of specific types of electrons or to electrons that belong to 

a small group of atoms in a polyatomic molecule. For example, 

when a carbonyl group (>C a O) is present, an absorption at 

about 290 nm is normally observed, although its precise loca-

tion depends on the nature of the rest of the molecule. Groups 

with characteristic optical absorptions are called chromo-

phores (from the Greek for ‘colour bringer’), and their presence 

often accounts for the colours of substances (Table 45.2).

(a) d-Metal complexes
In a free atom, all five d orbitals of a given shell are degenerate. 

In a d-metal complex, where the immediate environment of the 

atom is no longer spherical, the d orbitals are not all degenerate, 

and electrons can absorb energy by making transitions between 

them.

Example 45.2 Estimating rotational constants  
from electronic spectra

The following rotational transitions were observed in the 

0−0 band of the 1Σ+ ← 1Σ+ electronic transition of 63Cu2H: 
��R cm( ) . ,3 23347 69 1= −  ��P cm( ) . ,3 23298 85 1= −   and ��P( )5 =  

23275 77 1. .cm− Estimate the values of � ′B  and �B. 

Method Use the method of combination differences intro-

duced in Topic 43: form the differences � �� �R P( ) ( )J J−  and 

� �� �R P( ) ( )J J− − +1 1  from eqns 45.8a and 45.8b, then use the 

resulting expressions to calculate the rotational constants � ′B  and 
�B  from the wavenumbers provided.

Answer From eqns 45.8a and 45.8b it follows that

� �

� � � � � � �

� �R P( ) ( )

( )( ) ( )( )

J J

B B J B B J B B J B

−

= ′ + + + ′ − + − − ′ +( ) + ′ −1 1 2 ��

�

� � � �

� �

B J

B J J J

B B J B B J

( ){ }
= ′ +( ) − − +

= ′ +( ) + ′ −( )

2

1
2

2

4 1 1� �R P( ) ( )

−− − ′ + + + ′ − +{ }
= +( )

( )( ) ( )( )� � � �

�
B B J B B J

B J

1 1

4

2

1
2

(These equations are analogous to eqns 43.23a and 43.23b.) 

After using the data provided, we obtain

For cm

F

R P

  

J B= − = = ′
−

−3 3 3 48 84 14

23347 69 23298 85

1: .( ) ( )

. .

� � �



� �

oor cmR P

  

J B= − = =
−

−4 3 5 71 92 18

23347 69 23275 77

1: ( ) .( )

. .

� � �



� �

and calculate � ′ = −B 3 489 1. cm  and �B = −3 996 1. .cm

Self-test 45.7 The following rotational transitions were observed 

in the 1Σ+ ← 1Σ+ electronic transition of RhN: ��R(5) = 22 387.06 

cm–1, ��P cm( ) . ,5 22 376 87 1= −  and ��P(7)= 22 373.95 cm–1. 

Estimate the values of � ′B  and �B.

Answer: � �′ = =− −B B0 4632 0 50421 1. , .cm cm

P P RR

(a) B´ < B (b) B´ > B
~ ~ ~ ~

Figure 45.10 When the rotational constants of a diatomic 
molecule differ significantly in the initial and final states of an 
electronic transition, the P and R branches show a head. (a) 
The formation of a head in the R branch when � �′B B< ;  (b) the 
formation of a head in the P branch when � �′ >B B.

Table 45.2* Absorption characteristics of some groups  
and molecules

Group ��/cm 1-- λmax/nm ε/(dm3 
mol−1 cm−1)

C=C (π* ← π) 61 000 163 15 000

C=O (π* ← n) 35 000–37 000 270–290 10–20

H2O (π* ← n) 60 000 167 7000

* More values are given in the Resource section.
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430 9 Molecular spectroscopy

To see the origin of this splitting in an octahedral complex 

such as [Ti(OH2)6]
3+ (1), we regard the six ligands as point neg-

ative charges that repel the d electrons of the central ion (Fig. 

45.11). As a result, the orbitals fall into two groups, with dx y2 2−  

and dz2  pointing directly towards the ligand positions, and 

dxy, dyz, and dzx pointing between them. An electron occupying 

an orbital of the former group has a less favourable potential 

energy than when it occupies any of the three orbitals of the 

other group, and so the d orbitals split into the two sets shown 

in (2) with an energy difference ΔO: a triply degenerate set com-

prising the dxy, dyz, and dzx orbitals and labelled t2g, and a dou-

bly degenerate set comprising the dx y2 2−  and dz2  orbitals and 

labelled eg. The three t2g orbitals lie below the two eg orbitals 

in energy; the difference in energy ΔO is called the ligand-field 

splitting parameter (the O denoting octahedral symmetry). 

The ligand-field splitting is typically about 10 per cent of the 

overall energy of interaction between the ligands and the cen-

tral metal atom, which is largely responsible for the existence 

of the complex. The d orbitals also divide into two sets in a tet-

rahedral complex, but in this case the e orbitals lie below the t2 

orbitals (the g,u classification is no longer relevant as a tetrahe-

dral complex has no centre of inversion) and their separation is 

written ΔT.

Ti
H2O

3+

1  [Ti(OH2)6]
3+

  

eg

t2g

ΔΟ

3
5 ΔΟ

d

2

2
5 ΔΟ

Neither ΔO nor ΔT is large, so transitions between the two 

sets of orbitals typically occur in the visible region of the spec-

trum. The transitions are responsible for many of the colours 

that are so characteristic of d-metal complexes.

According to the Laporte rule (Section 45.1b), d–d transi-

tions are parity-forbidden in octahedral complexes because 

they are g → g transitions (more specifically eg ← t2 g transi-

tions). However, d–d transitions become weakly allowed as 

vibronic transitions, joint vibrational and electronic transi-

tions, as a result of coupling to asymmetrical vibrations such as 

that shown in Fig. 45.4.

A d-metal complex may also absorb radiation as a result of 

the transfer of an electron from the ligands into the d orbitals 

of the central atom, or vice versa. In such charge-transfer tran-

sitions the electron moves through a considerable distance, 

which means that the transition dipole moment may be large 

and the absorption correspondingly intense. In the permanga-

nate ion, MnO4
− , the charge redistribution that accompanies 

the migration of an electron from the O atoms to the central 

Mn atom results in strong transition in the range 420–700 nm 

that accounts for the intense purple colour of the ion. Such an 

dz2 dx2–y2

dxy dyz dzx

+

+
+

+

+
+

+

+

+

+

–

–

–

–

–

–

–

–

–

eg

t2g

Figure 45.11 The classification of d orbitals in an octahedral 
environment. The open circles represent the positions of the six 
(point-charge) ligands. The classification as eg or t2g arises from 
considerations of their symmetry characteristics (Topic 33).

Brief illustration 45.6 The electronic spectrum  
of a d-metal complex

The spectrum of [Ti(OH2)6]
3+ (1) near 20 000 cm−1 (500 nm) 

is shown in Fig. 45.12, and can be ascribed to the promo-

tion of its single d electron from a t2g orbital to an eg orbital. 

The wavenumber of the absorption maximum suggests that 

ΔO ≈ 20 000 cm−1 for this complex, which corresponds to 

about 2.5 eV.

Self-test 45.8 Can a complex of the Zn2+ ion have a d–d elec-

tronic transition? Explain your answer.

Answer: No; all five d orbitals are fully occupied

A
b

so
rb

an
ce

10 20 30
ν/(103 cm–1)~

Figure 45.12 The electronic absorption spectrum of 
[Ti(OH2)6]3+ in aqueous solution.
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45 Electronic spectroscopy  431

electronic migration from the ligands to the metal corresponds 

to a ligand-to-metal charge-transfer transition (LMCT). The 

reverse migration, a metal-to-ligand charge-transfer transi-

tion (MLCT), can also occur. An example is the migration of a 

d electron into the antibonding π orbitals of an aromatic ligand. 

The resulting excited state may have a very long lifetime if the 

electron is extensively delocalized over several aromatic rings.

In common with other transitions, the intensities of charge-

transfer transitions are proportional to the square of the transi-

tion dipole moment. We can think of the transition moment 

as a measure of the distance moved by the electron as it 

migrates from metal to ligand or vice versa, with a large dis-

tance of migration corresponding to a large transition dipole 

moment and therefore a high intensity of absorption. However, 

because the integrand in the transition dipole is proportional 

to the product of the initial and final wavefunctions, it is zero 

unless the two wavefunctions have nonzero values in the same 

region of space. Therefore, although large distances of migra-

tion favour high intensities, the diminished overlap of the ini-

tial and final wavefunctions for large separations of metal and 

ligands favours low intensities (see Problem 45.9).

(b) π* ← π and π* ← n transitions
Absorption by a C = C double bond results in the excitation of 

a π electron into an antibonding π * orbital (Fig. 45.13). The 

chromophore activity is therefore due to a π* ← π transition 

(which is normally read ‘π to π-star transition’). Its energy is 

about 7 eV for an unconjugated double bond, which corre-

sponds to an absorption at 180 nm (in the ultraviolet). When 

the double bond is part of a conjugated chain, the energies of 

the molecular orbitals lie closer together and the π * ← π transi-

tion moves to longer wavelength; it may even lie in the visible 

region if the conjugated system is long enough.

One of the transitions responsible for absorption in car-

bonyl compounds can be traced to the lone pairs of electrons 

on the O atom. The Lewis concept of a ‘lone pair’ of electrons 

is represented in molecular orbital theory by a pair of electrons 

in an orbital confined largely to one atom and not appreci-

ably involved in bond formation. One of these electrons may 

be excited into an empty π* orbital of the carbonyl group 

(Fig. 45.14), which gives rise to an π* ← n transition (an ‘n to 

π-star transition’). Typical absorption energies are about 4 eV 

(290 nm). Because π* ← n transitions in carbonyls are symme-

try forbidden, the absorptions are weak.

Checklist of concepts

☐ 1. The term symbols of diatomic molecules express the 

components of electronic angular momentum around 

the internuclear axis.

☐ 2. Selection rules for electronic transitions are based  

on considerat ions of angular momentum and 

symmetry.

Brief illustration 45.7 π* ← π and π* ← n transitions

The compound CH3CH = CHCHO has a strong absorption 

in the ultraviolet at 46 950 cm−1 (213 nm) and a weak absorp-

tion at 30 000 cm−1 (330 nm). The former is a π* ← π transi-

tion associated with the delocalized π system C = CeC = O. 

Delocalization extends the range of the C = O π* ← π transi-

tion to lower wavenumbers (longer wavelengths). The lat-

ter is an π* ← n transition associated with the carbonyl 

chromophore.

Self-test 45.9 Account for the observation that propanone 

(acetone, (CH3)2CO) has a strong absorption at 189 nm and a 

weaker absorption at 280 nm.

Answer: Both transitions are associated with the C = O chromophore, 

with the weaker being an π* ← n transition and the stronger a π* ← π 

transition.

π* n

+

+

+
– –

–

Figure 45.14 A carbonyl group (C = O) acts as a chromophore 
partly on account of the excitation of a nonbonding O  
lone-pair electron to an antibonding CO π orbital.

π* π

+

+

++

–
–

–

–

Figure 45.13 A C = C double bond acts as a chromophore. One 
of its important transitions is the π* ← π transition illustrated 
here, in which an electron is promoted from a π orbital to the 
corresponding antibonding orbital.
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☐ 3. The Laporte selection rule states that, for centrosym-

metric molecules, only u → g and g → u transitions are 

allowed.

☐ 4. The Franck–Condon principle provides a basis for 

explaining the vibrational structure of electronic 

transitions.

☐ 5. In gas-phase samples, rotational structure is present 

too, and can give rise to band heads.

☐ 6. Chromophores are groups with characteristic optical 

absorptions.

☐ 7. In d-metal complexes, the presence of ligands removes 

the degeneracy of d orbitals and vibrationally allowed 

d–d transitions can occur between them.

☐ 8. Charge-transfer transitions typically involve the 

migration of electrons between the ligands and the cen-

tral metal atom.

☐ 9. Other chromophores include double bonds (π* ← π 

transitions) and carbonyl groups (π* ← n transitions).

Checklist of equations 

Property Equation Comment Equation number

Selection rules (angular momentum) ΔΛ = 0, ±1; ΔS = 0; ΔΣ = 0; ΔΩ = 0, ±1 Linear molecules 45.4

Franck–Condon factor | ( , )| *
,

S v v v, vf i f i nd
2

2
=( )∫ψ ψ τ 45.6

Rotational structure of electronic spectra 
(diatomic molecules)

� � � � � �� �P( ) ( ) ( )J B B J B B J= − ′+ + ′− 2 P branch (ΔJ = −1) 45.8a

� � � �� �Q( ) ( ) ( )J B B J J= + ′− +1 Q branch (ΔJ = 0) 45.8b

� � � �

� �
� �R ( ) ( )( )

( )( )

J B B J

B B J

= + ′+ +

+ ′− +

1

1 2

R branch (ΔJ = +1) 45.8c
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TOPIC 46

Decay of excited states

A radiative decay process is a process in which a molecule dis-

cards its excitation energy as a photon, as discussed in Topic 

40. In this Topic we pay particular attention to spontaneous 

radiative decay processes, which include fluorescence and 

phosphorescence. A very important example of stimulated 

radiative decay is that responsible for the action of lasers, and 

we see how this stimulated emission may be achieved and 

employed.

A more common fate of an electronically excited molecule is 

nonradiative decay, in which the excess energy is transferred 

into the vibration, rotation, and translation of the surround-

ing molecules. This thermal degradation converts the excita-

tion energy into thermal motion of the environment (that is, 

to ‘heat’). An excited molecule may also take part in a chemical 

reaction, as we discuss in Topic 93.

46.1 Fluorescence and 
phosphorescence

In fluorescence, spontaneous emission of radiation occurs 

while the sample is being irradiated and ceases within milli-

seconds to nanoseconds of the exciting radiation being extin-

guished (Fig. 46.1). In phosphorescence, the spontaneous 

emission may persist for long periods (even hours, but charac-

teristically seconds or fractions of seconds). The difference sug-

gests that fluorescence is a fast conversion of absorbed radiation 

into re-emitted energy, and that phosphorescence involves the 

storage of energy in a reservoir from which it slowly leaks.

Figure 46.2 shows the sequence of steps involved in fluo-

rescence. The initial stimulated absorption takes the molecule 

to an excited electronic state, and if the absorption spec-

trum were monitored it would look like the one shown in 

 ➤ Why do you need to know this material?
Considerable information can be obtained from the 
photons emitted when excited electronic states decay 
radiatively back to the ground state. The process also has 
great technological importance: for instance, lasers have 
brought unprecedented precision to spectroscopy and are 
used in medicine and telecommunications.

 ➤ What is the key idea?
Molecules in excited electronic states decay by emission of 
electromagnetic radiation or by energy transfer as heat to 
surrounding molecules.

 ➤ What do you need to know already?
You need to be familiar with electronic absorption 
processes in molecules (Topic 45), the difference between 
spontaneous and stimulated emission of radiation (Topic 

Contents

46.1 Fluorescence and phosphorescence 433

Brief illustration 46.1: Fluorescence and  

phosphorescence of organic molecules 435

46.2 Dissociation and predissociation 436

Brief illustration 46.2: The effect of  

predissociation on an electronic spectrum 436

46.3 Laser action 436

(a) Population inversion 437

Brief illustration 46.3: Simple lasers 438

(b) Cavity and mode characteristics 438

Brief illustration 46.4: Resonant modes 438

Brief illustration 46.5: Coherence length 439

(c) Pulsed lasers 439

Example 46.1: Relating the power and energy  

of a laser 439

Checklist of concepts 441
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16), and the general features of spectroscopy (Topic 40). 
You need to be aware of the difference between singlet 
and triplet states (Topic 21) and of the Franck–Condon 
principle (Topic 45).
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434 9 Molecular spectroscopy

Fig. 46.3a. The excited molecule is subjected to collisions with 

the surrounding molecules, and as it gives up energy nonra-

diatively it steps down the ladder of vibrational levels to the 

lowest vibrational level of the electronically excited molecu-

lar state. The surrounding molecules, however, might now be 

unable to accept the larger energy difference needed to lower 

the molecule to the ground electronic state. It might therefore 

survive long enough to undergo spontaneous emission and 

emit the remaining excess energy as radiation. The downward 

electronic transition is vertical, in accord with the Franck–

Condon principle (Topic 45), and the fluorescence spectrum 

has a vibrational structure characteristic of the lower elec-

tronic state (Fig. 46.3b).

Provided they can be seen, the 0–0 absorption and fluores-

cence transitions can be expected to be coincident. The absorp-

tion spectrum arises from 1 ← 0, 2 ← 0, … transitions that 

occur at progressively higher wavenumber and with intensities 

governed by the Franck–Condon principle. The fluorescence 

spectrum arises from 0 → 0, 0 → 1, … downward transitions 

that occur with decreasing wavenumbers. The 0–0 absorption 

and fluorescence peaks are not always exactly coincident, how-

ever, because the solvent may interact differently with the sol-

ute in the ground and excited states (for instance, the hydrogen 

bonding pattern might differ). Because the solvent molecules 

do not have time to rearrange during the transition, the absorp-

tion occurs in an environment characteristic of the solvated 

ground state; however, the fluorescence occurs in an environ-

ment characteristic of the solvated excited state (Fig. 46.4).

Fluorescence occurs at lower frequencies (longer wave-

lengths) than the incident radiation because the emissive 

transition occurs after some vibrational energy has been dis-

carded into the surroundings. The vivid oranges and greens of 

fluorescent dyes are an everyday manifestation of this effect: 

Phosphorescence

Fluorescence

Time, t

E
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o
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n
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, I

Figure 46.1 The empirical (observation-based) distinction 
between fluorescence and phosphorescence is that the 
former is extinguished very quickly after the exciting source is 
removed, whereas the latter continues with relatively slowly 
diminishing intensity.

Internuclear separation, R
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Radiationless
decay

Absorption

Emission
(fluorescence)

Figure 46.2 The sequence of steps leading to fluorescence. 
After the initial absorption, the upper vibrational states 
undergo radiationless decay by giving up energy to the 
surroundings. A radiative transition then occurs from the 
vibrational ground state of the upper electronic state.

Wavelength, λ

In
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n
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ty
, I

Absorption Fluorescence

(0,0)(a)
(b)

Figure 46.3 An absorption spectrum (a) shows a vibrational 
structure characteristic of the upper state. A fluorescence 
spectrum (b) shows a structure characteristic of the lower state; 
it is also displaced to lower frequencies (but the 0–0 transitions 
are coincident) and resembles a mirror image of the absorption.

Absorption Fluorescence

R
el

ax
at

io
n

Figure 46.4 The solvent can shift the fluorescence spectrum 
relative to the absorption spectrum. On the left we see that 
the absorption occurs with the solvent the (ellipses) in the 
arrangement characteristic of the ground electronic state 
of the molecule (the sphere). However, before fluorescence 
occurs, the solvent molecules relax into a new arrangement, 
and that arrangement is preserved during the subsequent 
radiative transition.
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46 Decay of excited states  435

they absorb in the ultraviolet and blue, and fluoresce in the 

visible. The mechanism also suggests that the intensity of the 

fluorescence ought to depend on the ability of the solvent 

molecules to accept the electronic and vibrational quanta. It 

is indeed found that a solvent composed of molecules with 

widely spaced vibrational levels (such as water) can in some 

cases accept the large quantum of electronic energy and so 

extinguish, or ‘quench’, the fluorescence. The rate at which flu-

orescence is quenched by other molecules also gives valuable 

kinetic information (Topic 93).

Figure 46.5 shows the sequence of events leading to phos-

phorescence for a molecule with a singlet ground state. The first 

steps are the same as in fluorescence, but the presence of a tri-

plet excited state at an energy close to that of the singlet excited 

state plays a decisive role. The singlet and triplet excited states 

share a common geometry at the point where their potential 

energy curves intersect. Hence, if there is a mechanism for 

unpairing two electron spins (and achieving the conversion of 

↑↓ to ↑↑), the molecule may undergo intersystem crossing, a 

nonradiative transition between states of different multiplicity, 

and become a triplet state. As in the discussion of atomic spec-

tra (Topic 21), singlet–triplet transitions may occur in the pres-

ence of spin–orbit coupling. Intersystem crossing is expected 

to be important when a molecule contains a moderately heavy 

atom (such as sulfur), because then the spin–orbit coupling is 

large.

If an excited molecule crosses into a triplet state, it contin-

ues to discard energy into the surroundings. However, it is now 

stepping down the triplet’s vibrational ladder, and at the lowest 

energy level it is trapped because the triplet state is at a lower 

energy than the corresponding singlet (Hund’s rule, Topic 19). 

The solvent cannot absorb the final, large quantum of electronic 

excitation energy, and the molecule cannot radiate its energy 

because return to the ground state is spin-forbidden. The 

radiative transition, however, is not totally forbidden because 

the spin–orbit coupling that was responsible for the intersys-

tem crossing also breaks the selection rule. The molecules are 

therefore able to emit weakly, and the emission may continue 

long after the original excited state was formed.

The mechanism accounts for the observation that the exci-

tation energy seems to get trapped in a slowly leaking reser-

voir. It also suggests (as is confirmed experimentally) that 

phosphorescence should be most intense from solid samples: 

energy transfer is then less efficient and intersystem crossing 

has time to occur as the singlet excited state steps slowly past 

the intersection point. The mechanism also suggests that the 

phosphorescence efficiency should depend on the presence of 

a moderately heavy atom (with strong spin–orbit coupling), 

which is in fact the case.

The various types of nonradiative and radiative transitions 

that can occur in molecules are often represented on a sche-

matic Jablonski diagram of the type shown in Fig. 46.6.

Brief illustration 46.1 Fluorescence and phosphorescence 
of organic molecules

Fluorescence efficiency decreases, and the phosphores-

cence efficiency increases, in the series of compounds: 

naphthalene, 1-chloronaphthalene, 1-bromonaphthalene, 

1-iodonaphthalene. The replacement of an H atom by suc-

cessively heavier atoms enhances both intersystem crossing 

from the first excited singlet state to the first excited triplet 

state (thereby decreasing the efficiency of fluorescence) and 

the radiative transition from the first excited triplet state to 
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Figure 46.5 The sequence of steps leading to phosphorescence. 
The important step is the intersystem crossing (ISC), the switch 
from a singlet state to a triplet state brought about by spin–orbit 
coupling. The triplet state acts as a slowly radiating reservoir 
because the return to the ground state is spin-forbidden.
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Figure 46.6 A Jablonski diagram (here, for naphthalene) is a 
simplified portrayal of the relative positions of the electronic 
energy levels of a molecule. Vibrational levels of states of a 
given electronic state lie above each other, but the relative 
horizontal locations of the columns bear no relation to the 
nuclear separations in the states. The ground vibrational 
states of each electronic state are correctly located vertically 
but the other vibrational states are shown only schematically. 
(IC: internal conversion; ISC: intersystem crossing.)
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46.2 Dissociation and predissociation

Another fate for an electronically excited molecule is dissocia-

tion, the breaking of bonds (Fig. 46.7). The onset of dissociation 

can be detected in an absorption spectrum by seeing that the 

vibrational structure of a band terminates at a certain energy. 

Absorption occurs in a continuous band above this dissocia-

tion limit because the final state is an unquantized translational 

motion of the fragments. Locating the dissociation limit is a 

valuable way of determining the bond dissociation energy.

In some cases, the vibrational structure disappears but 

resumes at higher photon energies. This effect provides evi-

dence of predissociation, which can be interpreted in terms 

of the molecular potential energy curves shown in Fig. 46.8. 

When a molecule is excited to a vibrational level, its electrons 

may undergo a redistribution that results in it undergoing an 

internal conversion, a radiationless conversion to another 

state of the same multiplicity. An internal conversion occurs 

most readily at the point of intersection of the two molecu-

lar potential energy curves, because there the nuclear geom-

etries of the two states are the same. The state into which the 

molecule converts may be dissociative, so the states near the 

intersection have a finite lifetime and hence their energies 

are imprecisely defined (lifetime broadening, Topic 40). As 

a result, the absorption spectrum is blurred in the vicinity of 

the intersection. When the incoming photon brings enough 

energy to excite the molecule to a vibrational level high above 

the intersection, the internal conversion does not occur (the 

nuclei are unlikely to have the same geometry). Consequently, 

the levels resume their well-defined, vibrational character with 

correspondingly well-defined energies, and the line structure 

resumes on the high-frequency side of the blurred region.

46.3 Laser action

The word ‘laser’ is an acronym formed from light amplification 

by stimulated emission of radiation. In stimulated emission 

(Topic 16), an excited state is stimulated to emit a photon by 

the ground singlet state (thereby increasing the efficiency of 

phosphorescence).

Self-test 46.1 Consider an aqueous solution of a chromophore 

that f luoresces strongly. Is the addition of iodide ion to the 

solution likely to increase or decrease the efficiency of phos-

phorescence of the chromophore?

Answer: Increase

Brief illustration 46.2 The effect of predissociation on an 
electronic spectrum

The O2 molecule absorbs ultraviolet radiation in a transition 

from its 3 gΣ−  ground electronic state to a 3 Σu
− excited state that 

is energetically close to a dissociative 3Πu state. In this case, the 

effect of predissociation is more subtle than the abrupt loss of 

vibrational–rotational structure in the spectrum; instead, the 

absorption band has a relatively large experimental linewidth. 

As before, spectral broadening is explained by short lifetimes 

of the excited vibrational states near the intersection of the 

curves describing the bound and dissociative excited elec-

tronic states.

Self-test 46.2 What can be estimated from the wavenumber of 

onset of predissociation?

Answer: See Fig. 46.8; an upper limit on the dissociation  

energy of the ground electronic state
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Figure 46.8 When a dissociative state crosses a bound state, 
as in the upper part of the illustration, molecules excited to 
levels near the crossing may dissociate. This process is called 
predissociation, and is detected in the spectrum as a loss of 
vibrational structure that resumes at higher frequencies.
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Figure 46.7 When absorption occurs to unbound states of 
the upper electronic state, the molecule dissociates and the 
absorption is a continuum. Below the dissociation limit the 
electronic spectrum shows a normal vibrational structure.

Atkins09819.indb   436 9/11/2013   12:03:37 PM

www.ebook3000.com

http://www.ebook3000.org
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radiation of the same frequency: the more photons that are pre-

sent, the greater the probability of the emission. The essential 

feature of laser action is positive feedback: the more photons 

present of the appropriate frequency, the more photons of that 

frequency that will be stimulated to form.

Laser radiation has a number of striking characteristics 

(Table 46.1). Each of them (sometimes in combination with the 

others) opens up interesting opportunities in physical chem-

istry. Raman spectroscopy has flourished on account of the 

high-intensity monochromatic radiation available from lasers 

(Topics 40 and 42 − 44), and the ultrashort pulses that lasers can 

generate make possible the study of light-initiated reactions on 

timescales of femtoseconds and even attoseconds.

(a) Population inversion
One requirement of laser action is the existence of a metasta-

ble excited state, an excited state with a long enough lifetime 

for it to participate in stimulated emission. Another require-

ment is the existence of a greater population in the metastable 

state than in the lower state where the transition terminates, for 

then there will be a net emission of radiation. Because at ther-

mal equilibrium the opposite is true, it is necessary to achieve a 

population inversion in which there are more molecules in the 

upper state than in the lower.

One way of achieving population inversion is illustrated 

in Fig. 46.9. The molecule is excited to an intermediate state I, 

which then gives up some of its energy nonradiatively and 

changes into a lower state A; the laser transition is the return 

of A to the ground state X. Because three energy levels are 

involved overall, this arrangement leads to a three-level laser. 

In practice, I consists of many states, all of which can convert 

to the upper of the two laser states A. The I ← X transition is 

stimulated with an intense flash of light in the process called 

pumping. The pumping is often achieved with an electric dis-

charge through xenon or with the light of another laser. The 

conversion of I to A should be rapid, and the laser transitions 

from A to X should be relatively slow.

The disadvantage of the three-level arrangement is that it 

is difficult to achieve population inversion, because so many 

ground-state molecules must be converted to the excited state 

by the pumping action. The arrangement adopted in a four-

level laser simplifies this task by having the laser transition 

terminate in a state A′ other than the ground state (Fig. 46.10). 

Because A′ is unpopulated initially, any population in A cor-

responds to a population inversion and we can expect laser 

action if A is sufficiently metastable. Moreover, this popula-

tion inversion can be maintained if the A′ → X transitions are 

rapid, for these transitions will deplete any population in A′ 
that stems from the laser transition, and keep the state A′ rela-

tively empty.

Table 46.1 Characteristics of laser radiation and their chemical 
applications

Characteristic Advantage Application

High power Multiphoton process Spectroscopy

Low detector noise Improved sensitivity

High scattering intensity Raman spectroscopy 
(Topics 40, 42 − 44)

Monochromatic High resolution Spectroscopy

State selection Photochemical studies 
(Topic 93)

Collimated beam Long path lengths Improved sensitivity

Forward scattering 
observable

Raman spectroscopy 
(Topics 40, 42 − 44)

Coherent Interference between 
separate beams

Coherent anti-Stokes 
Raman spectroscopy*

Pulsed Precise timing of 
excitation

Fast reactions (Topic 93)

Relaxation (Topic 84)

Energy transfer (Topic 93)

*See our other Physical chemistry (2014).
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Figure 46.9 The transitions involved in one kind of three-level 
laser. The pumping pulse populates the intermediate state I, 
which in turn populates the laser state A. The laser transition is 
the stimulated emission A → X.
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Figure 46.10 The transitions involved in a four-level laser. 
Because the laser transition terminates in an excited state (A′), 
the population inversion between A and A′ is much easier to 
achieve.
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438 9 Molecular spectroscopy

(b) Cavity and mode characteristics
The laser medium is confined to a cavity that ensures that only 

certain photons of a particular frequency, direction of travel, 

and state of polarization are generated abundantly. The cavity is 

essentially a region between two mirrors, which reflect the light 

back and forth. This arrangement can be regarded as a version 

of the particle in a box, with the particle now being a photon. 

As in the treatment of a particle in a box (Topic 9), the only 

wavelengths that can be sustained satisfy

n L× 1
2
λ =   Resonant modes  (46.1)

where n is an integer and L is the length of the cavity. That is, 

only an integral number of half-wavelengths fit into the cavity; 

all other waves undergo destructive interference with them-

selves. In addition, not all wavelengths that can be sustained by 

the cavity are amplified by the laser medium (many fall outside 

the range of frequencies of the laser transitions), so only a few 

contribute to the laser radiation. These wavelengths are the res-

onant modes of the laser.

Photons with the correct wavelength for the resonant modes 

of the cavity and the correct frequency to stimulate the laser 

transition are highly amplified. One photon might be generated 

spontaneously and travel through the medium. It stimulates 

the emission of another photon, which in turn stimulates more 

(Fig. 46.13). The cascade of energy builds up rapidly, and soon 

the cavity is an intense reservoir of radiation at all the resonant 

modes it can sustain. Some of this radiation can be withdrawn 

if one of the mirrors is partially transmitting.

The resonant modes of the cavity have various natural char-

acteristics, and to some extent may be selected. Only pho-

tons that are travelling strictly parallel to the axis of the cavity 

undergo more than a couple of reflections, so only they are 

amplified, all others simply vanishing into the surround-

ings. Hence, laser light generally forms a beam with very low 

divergence. It may also be polarized, with its electric vector in 

a particular plane (or in some other state of polarization), by 

Brief illustration 46.4 Resonant modes

It follows from eqn 46.1 that the frequencies of the resonant 

modes are �= = ×c c L n/ ( / ) .λ 2  For a laser cavity of length 

30.0 cm, the allowed frequencies are

�=
×

× × = × ×

=

−
−2 998 10

2 0 300
5 00 10

8 1
8 1

.

( . )
( . )

ms

m
s

c

L

n n

� ��� ���

� �� 	�

(( )500MHz ×n

with n = 1, 2, …, and therefore ν = 500 MHz, 1000 MHz, ….

Self-test 46.4 Consider a laser cavity of length 1.0 m. What is 

the frequency difference between successive resonant modes?

Answer: 150 MHz

Brief illustration 46.3 Simple lasers

The ruby laser is an example of a three-level laser (Fig. 46.11). 

Ruby is Al2O3 containing a small proportion of Cr3+ ions. The 

lower level of the laser transition is the 4A2 ground state of the 

Cr3+ ion. The process of pumping a majority of the Cr3+ ions 

into the 4T2 and 4T1 excited states is followed by a radiation-

less transition to the 2E excited state. The laser transition is 
2E → 4A2, and gives rise to red 694 nm radiation.

The neodymium laser is an example of a four–level laser 

(Fig. 46.12). In one form it consists of Nd3+ ions at low con-

centration in yttrium aluminium garnet (YAG, specifically 

Y3Al5O12), and is then known as a Nd:YAG laser. A neodym-

ium laser operates at a number of wavelengths in the infrared, 

the band at 1064 nm being most common.

Self-test 46.3 In the arrangement discussed above, does a ruby 

laser more easily generate pulses of light or a continuous beam 

of light?

Answer: Pulses of light
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Figure 46.11 The transitions involved in a ruby laser.

4F

4I

Pump

La
se

r 
ac

ti
o

n

1.06 μm

Thermal
decay

Figure 46.12 The transitions involved in a neodymium laser.
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46 Decay of excited states  439

including a polarizing filter into the cavity or by making use of 

polarized transitions in a solid medium.

Laser radiation is coherent in the sense that the electromag-

netic waves are all in step. In spatial coherence the waves are 

in step across the cross-section of the beam emerging from 

the cavity. In temporal coherence the waves remain in step 

along the beam. The former is normally expressed in terms of a 

coherence length, lC, the distance over which the waves remain 

coherent, and is related to the range of wavelengths, Δλ, present 

in the beam:

lC = λ
λ

2

2Δ  
 Coherence length  (46.2)

When many wavelengths are present, and Δλ is large, the waves 

get out of step in a short distance and the coherence length is 

small.

(c) Pulsed lasers
A laser can generate radiation for as long as the population 

inversion is maintained. A laser can operate continuously 

when heat is easily dissipated, for then the population of the 

upper level can be replenished by pumping. When overheating 

is a problem, the laser can be operated only in pulses, perhaps 

of microsecond or millisecond duration, so that the medium 

has a chance to cool or the lower state discard its population. 

However, it is sometimes desirable to have pulses of radiation 

rather than a continuous output, with a lot of power concen-

trated into a brief pulse. One way of achieving pulses is by  

Q-switching, the modification of the resonance characteristics 

of the laser cavity. The name comes from the ‘Q-factor’ used 

as a measure of the quality of a resonance cavity in microwave 

engineering.

Brief illustration 46.5 Coherence length

A typical light bulb gives out light with a coherence length of 

only about 400 nm. By contrast, a He–Ne laser with λ = 633 nm 

and Δλ = 2.0 pm has a coherence length of

lC

nm

nm
nm m cm= × = × = =

( )

( . )
. .

633

2 0 0020
1 0 10 0 10 10

2
8

2λ

λ

� �� ��

� �� 	�
Δ  

Self-test 46.5 What is the condition that would lead to an infi-

nite coherence length?

Answer: A perfectly monochromatic beam, or Δλ = 0

Example 46.1 Relating the power and energy of a laser

A laser rated at 0.10 J can generate radiation in 3.0 ns pulses at 

a pulse repetition rate of 10 Hz. Assuming that the pulses are 

rectangular, calculate the peak power output and the average 

power output of this laser.

Method The power output is the energy released in an inter-

val divided by the duration of the interval, and is expressed 

in watts (1 W = 1 J s−1). To calculate the peak power output, 

Ppeak, we divide the energy released during the pulse by the 

duration of the pulse. The average power output, Paverage, is the 

total energy released by a large number of pulses divided by 

the duration of the time interval over which the total energy 

was measured. So, the average power is simply the energy 

released by one pulse multiplied by the pulse repetition rate.

Answer From the data, 

Ppeak

J

s
J s MJ s MW=

×
= × = =−

− −0 10

3 0 10
3 3 10 33 33

9
7 1 1

.

.
.

 

The pulse repetition rate is 10 Hz, so ten pulses are emitted by 

the laser in every second of operation. It follows that the aver-

age power output is

Paverage
1 11 J 1 s 1 J s 1 W= = =− −0 0 0 0 0. . .×

 

The peak power is much higher than the average power 

because this laser emits light for only 30 ns during each second 

of operation.

Self-test 46.6 Calculate the peak power and average power 

output of a laser with a pulse energy of 2.0 mJ, a pulse duration 

of 30 ps, and a pulse repetition rate of 38 MHz.

Answer: Ppeak = 67 MW, Paverage = 76 kW

Pump

Thermal
equilibrium 

Population
inversion

Laser
action

(a)

(b)

(c)

Figure 46.13 A schematic illustration of the steps leading to 
laser action. (a) The Boltzmann population of states, with more 
atoms in the ground state. (b) When the initial state absorbs, 
the populations are inverted (the atoms are pumped to the 
excited state). (c) A cascade of radiation then occurs, as one 
emitted photon stimulates another atom to emit, and so on. 
The radiation is coherent (phases in step).
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440 9 Molecular spectroscopy

The aim of Q-switching is to achieve a healthy population 

inversion in the absence of the resonant cavity, then to plunge 

the population-inverted medium into a cavity and hence to 

obtain a sudden pulse of radiation. The switching may be 

achieved by impairing the resonance characteristics of the cav-

ity in some way while the pumping pulse is active and then 

suddenly improving them (Fig. 46.14). One technique is to use 

the ability of some crystals, such as those of potassium dihy-

drogenphosphate (KH2PO4), to change their optical properties 

when an electrical potential difference is applied. Switching the 

potential on and off can store and then release energy in a laser 

cavity, resulting in an intense pulse of stimulated emission.

The technique of mode locking can produce pulses of pico-

second duration and less. A laser radiates at a number of dif-

ferent frequencies, depending on the precise details of the 

resonance characteristics of the cavity and in particular on the 

number of half-wavelengths of radiation that can be trapped 

between the mirrors (the cavity modes). The resonant modes 

differ in frequency by multiples of c/2L (Brief illustration 46.4). 

Normally, these modes have random phases relative to each 

other. However, it is possible to lock their phases together. As 

we show in the following Justification, interference then occurs 

to give a series of sharp peaks, and the energy of the laser is 

obtained in short bursts (Fig. 46.15). More specifically, the 

intensity, I, of the radiation varies with time as

I t
N ct L

ct L
( )

( / )

( / )
∝E0

2
2

2

2

2

sin

sin

π
π  

 Mode-locked laser output  (46.3)

where E0 is the amplitude of the electromagnetic wave describ-

ing the laser beam and N is the number of locked modes. This 

function is shown in Fig. 46.16. We see that it is a series of peaks 

with maxima separated by t = 2L/c, the round-trip transit time 

of the light in the cavity, and that the peaks become sharper as 

N is increased. In a laser with a cavity of length 30 cm, the peaks 

are separated by 2 ns. If 1000 modes contribute, the width of the 

pulses is 4 ps.

Justification 46.1 The origin of mode locking
The general expression for a (complex) wave of amplitude E0 

and frequency ω is E0eiωt . Therefore, each wave that can be 

supported by a cavity of length L has the form

E En
nc L tt( ) ( / )= +

0
2 2e iπ �

where ν is the lowest frequency. A wave formed by superim-

posing N modes with n = 0, 1, …, N – 1 has the form

E E E( ) ( ) /t t

n

N

n

n

N

nct L= =
=
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0

1

0
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The sum simplifies to:
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Figure 46.16 The structure of the pulses generated by a mode-
locked laser for N = 5 and 10. Note that the peaks become 
sharper as N increases. In each case the pulses have been 
adjusted to have the same maximum amplitude.

1 ns
1 ps

Time, t

Figure 46.15 The output of a mode-locked laser consists of a 
stream of very narrow pulses (here 1 ps in duration) separated 
by an interval equal to the time it takes for light to make a 
round trip inside the cavity (here 1 ns).

Pump

Cavity nonresonant

Cavity resonant

Switch

Pulse

(a)

(b)

Figure 46.14 The principle of Q-switching. (a) The excited 
state is populated while the cavity is nonresonant. (b) Then 
the resonance characteristics are suddenly restored, and the 
stimulated emission emerges in a giant pulse.
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Mode locking is achieved by varying the Q-factor of the cavity 

periodically at the frequency c/2L. The modulation can be pic-

tured as the opening of a shutter in synchrony with the round-

trip travel time of the photons in the cavity, so only photons 

making the journey in that time are amplified. The modulation 

can be achieved by linking a prism in the cavity to a transducer 

driven by a radiofrequency source at a frequency c/2L. The 

transducer sets up standing-wave vibrations in the prism and 

modulates the loss it introduces into the cavity.

Another mechanism for mode-locking lasers is based on 

the optical Kerr effect, which arises from a change in refrac-

tive index of a well-chosen medium, the Kerr medium, 

when it is exposed to intense laser pulses. Because a beam of 

light changes direction when it passes from a region of one 

refractive index to a region with a different refractive index, 

changes in refractive index result in the self-focusing of an 

intense laser pulse as it travels through the Kerr medium 

(Fig. 46.17).

To bring about mode locking, a Kerr medium is included in 

the laser cavity and next to it is a small aperture. The procedure 

makes use of the fact that the gain, the growth in intensity, of a 

frequency component of the radiation in the cavity is very sen-

sitive to amplification, and once a particular frequency begins 

to grow, it can quickly dominate. When the power inside the 

cavity is low, a portion of the photons will be blocked by the 

aperture, creating a significant loss. A spontaneous fluctuation 

in intensity—a bunching of photons—may begin to turn on the 

optical Kerr effect and the changes in the refractive index of the 

Kerr medium will result in a Kerr lens, which is the self-focus-

ing of the laser beam. The bunch of photons can pass through 

and travel to the far end of the cavity, amplifying as it goes. 

The Kerr lens immediately disappears (if the medium is well 

chosen), but is re-created when the intense pulse returns from 

the mirror at the far end. In this way, that particular bunch of 

photons may grow to considerable intensity because it alone is 

stimulating emission in the cavity. Sapphire is an example of a 

Kerr medium that facilitates the mode locking of titanium sap-

phire lasers, resulting in very short laser pulses of duration in 

the femtosecond range.

At this point we recognize that the sum is a geometrical series:

1
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The term on the right can be written
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Finally, we use the relation sin ( / )( )x x x= − −1 2i e ei i  to conclude 

that
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The intensity, I(t), of the radiation is proportional to the square 

modulus of the total amplitude, so
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which is eqn 46.3.

Checklist of concepts

☐ 1. Fluorescence is radiative decay between states of the 

same multiplicity; it ceases as soon as the exciting 

source is removed.

☐ 2. Phosphorescence is radiative decay between states of 

different multiplicity; it persists after the exciting radia-

tion is removed.

☐ 3. Intersystem crossing is the nonradiative conversion to 

a state of different multiplicity.

☐ 4. A Jablonski diagram is a schematic diagram of the 

types of nonradiative and radiative transitions that can 

occur in molecules.

☐ 5. An additional fate of an electronically excited species is 

dissociation.

☐ 6. Internal conversion is a nonradiative conversion to a 

state of the same multiplicity.

Aperture

Laser
beam

Kerr medium

Figure 46.17 An illustration of the optical Kerr effect. An 
intense laser beam is focused inside a Kerr medium and passes 
through a small aperture in the laser cavity. This effect may be 
used to mode-lock a laser, as explained in the text.
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☐ 7. Predissociation is the observation of the effects of dis-

sociation before the dissociation limit is reached.

☐ 8. Laser action is the stimulated emission of coher-

ent radiation between states related by a population 

inversion.

☐ 9. A population inversion is a condition in which the 

population of an upper state is greater than that of a rel-

evant lower state.

☐ 10. The resonant modes of a laser are the wavelengths of 

radiation sustained inside a laser cavity.

☐ 11. Laser pulses are generated by the techniques of 

Q-switching and mode locking.

Checklist of equations

Property Equation Comment Equation number

Resonant modes n L× 1
2

λ = Laser cavity of length L 46.1

Coherence length lC = λ λ2 2/ Δ 46.2

Mode-locked laser output I t N ct L ct L( ) { ( / )/ ( / )}∝E0
2 2 22 2sin sinπ π N locked modes 46.3

Atkins09819.indb   442 9/11/2013   12:04:19 PM

www.ebook3000.com

http://www.ebook3000.org


Exercises and problems  443

Focus 9 on Molecular spectroscopy
Note: The masses of nuclides are listed in Table 0.2 of the Resource section.

Topic 40 General features

Discussion questions
40.1 Distinguish between the basic experimental arrangements commonly 

used for absorption, emission, and Raman spectroscopy.

40.2 Describe the physical origins of linewidths in absorption and emission 

spectra. Do you expect the same contributions for species in condensed and 

gas phases?

Exercises
40.1(a) The molar absorption coefficient of a substance dissolved in hexane 

is known to be 723 dm3 mol−1 cm−1 at 260 nm. Calculate the percentage 

reduction in intensity when light of that wavelength passes through 2.50 mm 

of a solution of concentration 4.25 mmol dm−3.

40.1(b) The molar absorption coefficient of a substance dissolved in hexane 

is known to be 227 dm3 mol−1 cm−1 at 290 nm. Calculate the percentage 

reduction in intensity when light of that wavelength passes through 2.00 mm 

of a solution of concentration 2.52 mmol dm−3.

40.2(a) A solution of an unknown component of a biological sample when 

placed in an absorption cell of path length 1.00 cm transmits 18.1 per cent 

of light of 320 nm incident upon it. If the concentration of the component is 

0.139 mmol dm−3, what is the molar absorption coefficient?

40.2(b) When light of wavelength 400 nm passes through 2.5 mm of a  

solution of an absorbing substance at a concentration 0.717 mmol dm−3,  

the transmission is 61.5 per cent. Calculate the molar absorption  

coefficient of the solute at this wavelength and express the answer in  

cm2 mol−1.

40.3(a) The molar absorption coefficient of a solute at 540 nm is 

386 dm3 mol−1 cm−1. When light of that wavelength passes through a 5.00 mm 

cell containing a solution of the solute, 38.5 per cent of the light was absorbed. 

What is the concentration of the solution?

40.3(b) The molar absorption coefficient of a solute at 440 nm is 

423 dm3 mol−1 cm−1. When light of that wavelength passes through a 6.50 mm 

cell containing a solution of the solute, 48.3 per cent of the light was absorbed. 

What is the concentration of the solution?

40.4(a) The absorption associated with a particular transition begins at 

220 nm, peaks sharply at 270 nm, and ends at 300 nm. The maximum value 

of the molar absorption coefficient is 2.21 × 104 dm3 mol−1 cm−1. Estimate 

the integrated absorption coefficient of the transition assuming a triangular 

lineshape.

40.4(b) The absorption associated with a certain transition begins at 156 nm, 

peaks sharply at 210 nm, and ends at 275 nm. The maximum value of the 

molar absorption coefficient is 3.35 × 104 dm3 mol−1 cm−1. Estimate the 

integrated absorption coefficient of the transition assuming an inverted 

parabolic lineshape (Fig. F9.1).

40.5(a) The following data were obtained for the absorption by Br2 in carbon 

tetrachloride using a 2.0 mm cell. Calculate the molar absorption coefficient of 

bromine at the wavelength employed:

40.5(b) The following data were obtained for the absorption by a dye dissolved 

in methylbenzene using a 2.50 mm cell. Calculate the molar absorption 

coefficient of the dye at the wavelength employed:

40.6(a) A 2.0 mm cell was filled with a solution of benzene in a non-absorbing 

solvent. The concentration of the benzene was 0.010 mol dm−3 and the 

wavelength of the radiation was 256 nm (where there is a maximum in 

the absorption). Calculate the molar absorption coefficient of benzene at 

this wavelength given that the transmission was 48 per cent. What will the 

transmittance be in a 4.0 mm cell at the same wavelength?

40.6(b) A 5.00 mm cell was filled with a solution of a dye. The concentration of 

the dye was 18.5 mmol dm−3. Calculate the molar absorption coefficient of the 

dye at this wavelength given that the transmission was 29 per cent. What will 

the transmittance be in a 2.50 mm cell at the same wavelength?

40.7(a) A swimmer enters a gloomier world (in one sense) on diving to greater 

depths. Given that the mean molar absorption coefficient of seawater in the 

visible region is 6.2 × 10−3 dm3 mol−1 cm−1, calculate the depth at which a diver will 

experience (a) half the surface intensity of light, (b) one-tenth the surface intensity.
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Figure F9.1 A model parabolic absorption lineshape.

[Br2]/(mol dm−3) 0.0010 0.0050 0.0100 0.0500

T/(%) 81.4 35.6 12.7 3.0 × 10−3

[dye]/(mol dm−3) 0.0010 0.0050 0.0100 0.0500

T/(%) 68 18 3.7 1.03 × 10−5
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40.7(b) Given that the maximum molar absorption coefficient of a molecule 

containing a carbonyl group is 30 dm3 mol−1 cm−1 near 280 nm, calculate 

the thickness of a sample that will result in (a) half the initial intensity of 

radiation, (b) one-tenth the initial intensity.

40.8(a) What is the Doppler-shifted wavelength of a red (680 nm) traffic light 

approached at 60 km h−1?

40.8(b) At what speed of approach would a red (680 nm) traffic light appear 

green (530 nm)?

40.9(a) Estimate the lifetime of a state that gives rise to a line of width (a) 

0.20 cm−1, (b) 2.0 cm−1.

40.9(b) Estimate the lifetime of a state that gives rise to a line of width 

(a) 200 MHz, (b) 2.45 cm−1.

40.10(a) A molecule in a liquid undergoes about 1.0 × 1013 collisions in 

each second. Suppose that (i) every collision is effective in deactivating the 

molecule vibrationally and (ii) that one collision in 100 is effective. Calculate 

the width (in cm−1) of vibrational transitions in the molecule.

40.10(b) A molecule in a gas undergoes about 1.0 × 109 collisions in each 

second. Suppose that (i) every collision is effective in deactivating the 

molecule rotationally and (ii) that one collision in 10 is effective. Calculate the 

width (in hertz) of rotational transitions in the molecule.

Problems
40.1 Refer to Fig. 40.4 describing a Michelson interferometer. The mirror M1 

moves in finite distance increments, so the path difference p is also incremented 

in finite steps. Explore the effect of increasing the step size on the shape of the 

interferogram for a monochromatic beam of wavenumber ��  and intensity I0. 

That is, draw plots of I(p)/I0 against ��p  each with a different number of data 

points spanning the same total distance path taken by the movable mirror M1.

40.2 Using mathematical software, elaborate on the results of Example 40.1 

by (a) exploring the effect of varying the wavenumbers and intensities of the 

three components of the radiation on the shape of the interferogram, and (b) 

calculating the Fourier transforms of the functions you generated in part (a).

40.3 The flux of visible photons reaching Earth from the North Star is about 

4 × 103 mm−2 s−1. Of these photons, 30 per cent are absorbed or scattered 

by the atmosphere and 25 per cent of the surviving photons are scattered 

by the surface of the cornea of the eye. A further 9 per cent are absorbed 

inside the cornea. The area of the pupil at night is about 40 mm2 and the 

response time of the eye is about 0.1 s. Of the photons passing through the 

pupil, about 43 per cent are absorbed in the ocular medium. How many 

photons from the North Star are focused onto the retina in 0.1 s? For a 

continuation of this story, see R.W. Rodieck, The first steps in seeing, Sinauer 

(1998).

40.4 A Dubosq colorimeter consists of a cell of fixed path length and a 

cell of variable path length. By adjusting the length of the latter until the 

transmission through the two cells is the same, the concentration of the 

second solution can be inferred from that of the former. Suppose that a plant 

dye of concentration 25 μg dm−3 is added to the fixed cell, the length of which 

is 1.55 cm. Then a solution of the same dye, but of unknown concentration, is 

added to the second cell. It is found that the same transmittance is obtained 

when the length of the second cell is adjusted to 1.18 cm. What is the 

concentration of the second solution?

40.5 The Beer–Lambert law is derived on the basis that the concentration of 

absorbing species is uniform. Suppose, instead, that the concentration falls 

exponentially as [J] = [J]0e
−x/λ. Derive an expression for the variation of I with 

sample length; suppose that L ≫ λ.

40.6 It is common to make measurements of absorbance at two wavelengths 

and use them to find the individual concentrations of two components A and 

B in a mixture. Show that the molar concentrations of A and B are
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where A1 and A2 are absorbances of the mixture at wavelengths λ1 and λ2, and 

the molar extinction coefficients of A (and B) at these wavelengths are εA1 and 

εA2 (and εB1 and εB2).

40.7 When pyridine is added to a solution of iodine in carbon tetrachloride 

the 520 nm band of absorption shifts toward 450 nm. However, the absorbance 

of the solution at 490 nm remains constant: this feature is called an isosbestic 

point. Show that an isosbestic point should occur when two absorbing species 

are in equilibrium.

40.8‡ Ozone absorbs ultraviolet radiation in a part of the electromagnetic 

spectrum energetic enough to disrupt DNA in biological organisms and 

that is absorbed by no other abundant atmospheric constituent. This 

spectral range, denoted UV-B, spans the wavelengths of about 290 nm to 

320 nm. The molar extinction coefficient of ozone over this range is given in 

the table below (DeMore, et al., Chemical kinetics and photochemical data for 

use in stratospheric modeling: Evaluation Number 11, JPL Publication 94–26 

(1994)).

Compute the integrated absorption coefficient of ozone over the wavelength 

range 290–320 nm. (Hint: ε( )��  can be fitted to an exponential function quite 

well.)

40.9 In many cases it is possible to assume that an absorption band has a 

Gaussian lineshape (one proportional to e−x2
) centred on the band maximum. 

Assume such a lineshape, and show that A = ≈∫ ε ε( ) . ,max /� � �� � �d 1 0645 1 2Δ  

where Δ��1 2/  is the width at half-height. The absorption spectrum of azoethane 

(CH3CH2N2) between 24 000 cm−1 and 34 000 cm−1 is shown in Fig. F9.2. 

First, estimate A for the band by assuming that it is Gaussian. Then use 

mathematical software to fit a polynomial to the absorption band (or a 

Gaussian), and integrate the result analytically.

40.10‡ Wachewsky, et al. (J. Phys. Chem. 100, 11559 (1996)) examined 

the UV absorption spectrum of CH3I, a species of interest in connection 

with stratospheric ozone chemistry. They found the integrated absorption 

coefficient to be dependent on temperature and pressure to an extent 

inconsistent with internal structural changes in isolated CH3I molecules; 
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Figure F9.2 The absorption spectrum of azoethane.

‡ These problems were supplied by Charles Trapp and Carmen Giunta.

λ/nm 292.0 296.3 300.8 305.4 310.1 315.0 320.0

ε/(dm3 mol−1 cm−1) 1512 865 477 257 135.9 69.5 34.5
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they explained the changes as due to dimerization of a substantial fraction 

of the CH3I, a process which would naturally be pressure- and temperature- 

dependent. (a) Compute the integrated absorption coefficient over a 

triangular lineshape in the range 31 250 to 34 483 cm−1 and a maximal molar 

absorption coefficient of 150 dm3 mol−1 cm−1 at 31 250 cm−1. (b) Suppose 

1 per cent of the CH3I units in a sample at 2.4 Torr and 373 K exist as dimers. 

Compute the absorbance expected at 31 250 cm−1 in a sample cell of length 

12.0 cm. (c) Suppose 18 per cent of the CH3I units in a sample at 100 Torr and 

373 K exists as dimers. Compute the absorbance expected at 31 250 cm−1 in a 

sample cell of length 12.0 cm; compute the molar absorption coefficient which 

would be inferred from this absorbance if dimerization was not considered.

40.11 Laser light scattering is a technique that uses the fact that the intensity 

of light scattered—by Rayleigh scattering—by a particle is proportional to 

the molar mass of the particle and to λ−4, so shorter-wavelength radiation is 

scattered more intensely than longer wavelengths. Consider the experimental 

arrangement shown in Fig. F9.3 for the measurement of light scattering 

from solutions of macromolecules. Typically, the sample is irradiated with 

monochromatic light from a laser. The intensity of scattered light is then 

measured as a function of the angle θ that the line of propagation of the 

laser beam makes with a line from the sample to the detector. For dilute 

solutions of a spherical macromolecule with a diameter much smaller than 

the wavelength of incident radiation, the intensity, Iθ, of light scattered by a 

sample of mass concentration cM (units: kg m−3) is given by

I
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R I
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2 2
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where I0 is the intensity of the incident laser radiation, M is the molar mass, R is 

the radius of the particle, and K is a parameter that depends on the refractive 

index of the solution, the incident wavelength, and the distance between 

the detector and the sample, which is held constant during the experiment. 

It follows that structural properties, such as size and the molar mass of a 

macromolecule, can be obtained from measurements of light scattering by a 

sample at several angles θ relative to the direction of propagation of an incident 

beam. The following data for an aqueous solution of a macromolecule with cM  =  

2.0 kg m−3 were obtained at 20 °C with laser light at λ = 532 nm. In a separate 

experiment, it was determined that K = 2.40 × 10−2 mol m3 kg−2. From this 

information, calculate R and M for the macromolecule.

40.12 The collision frequency z of a molecule of mass m in a gas at a pressure 

p is z = 4σ(kT/πm)1/2p/kT, where σ is the collision cross-section. Find an 

expression for the collision-limited lifetime of an excited state assuming that 

every collision is effective. Estimate the width of rotational transition in HCl 

(σ = 0.30 nm2) at 25  °C and 1.0 atm. To what value must the pressure of the gas 

be reduced in order to ensure that collision broadening is less important than 

Doppler broadening?

40.13 The spectrum of a star is used to measure its radial velocity with respect 

to the Sun, the component of the star’s velocity vector that is parallel to a 

vector connecting the star’s centre to the centre of the Sun. The measurement 

relies on the Doppler effect. When a star emitting electromagnetic radiation of 

frequency ν moves with a speed s relative to an observer, the observer detects 

radiation of frequency νreceding = νf or νapproaching = ν/f, where f = {(1 − s/c)/

(1 + s/c)}1/2 and c is the speed of light. (a) Three Fe I lines of the star HDE 

271 182, which belongs to the Large Magellanic Cloud, occur at 438.882 nm, 

441.000 nm, and 442.020 nm. The same lines occur at 438.392 nm, 

440.510 nm, and 441.510 nm in the spectrum of an Earth-bound iron arc. 

Determine whether HDE 271 182 is receding from or approaching the 

Earth and estimate the star’s radial speed with respect to the Earth. (b) What 

additional information would you need to calculate the radial velocity of HDE 

271 182 with respect to the Sun?

40.14 In Problem 40.13, we saw that Doppler shifts of atomic spectral lines 

are used to estimate the speed of recession or approach of a star. A spectral 

line of 48Ti8+ (of mass 47.95mu) in a distant star was found to be shifted from 

654.2 nm to 706.5 nm and to be broadened to 61.8 pm. What are the speed of 

recession and the surface temperature of the star?

40.15 The Gaussian shape of a Doppler-broadened spectral line reflects 

the Maxwell distribution of speeds in the sample at the temperature of the 

experiment. In a spectrometer that makes use of phase-sensitive detection 

the output signal is proportional to the first derivative of the signal intensity, 

dI/dν. Plot the resulting lineshape for various temperatures. How is the 

separation of the peaks related to the temperature?

Topic 41 Molecular rotation

Discussion questions
41.1 Account for the rotational degeneracy of the various types of rigid rotor. 

Would their lack of rigidity affect your conclusions?

41.2 Discuss the differences between an oblate and a prolate symmetric rotor 

and give several examples of each.

Exercises
41.1(a) Calculate the moment of inertia around the C2 axis (the bisector of the 

OOO angle) and the corresponding rotational constant of an 16O3 molecule 

(bond angle 117°; OO bond length 128 pm).

41.1(b) Calculate the moment of inertia around the C3 axis (the threefold 

symmetry axis) and the corresponding rotational constant of a 31P1H3 

molecule (bond angle 93.5°; PH bond length 142 pm).

θ/o 15.0 45.0 70.0 85.0 90.0

102 × I0/Iθ 4.20 4.37 4.63 4.83 4.90

Scattering intensity, I

Detector

Monochromatic
source

Incident
ray

Sample

θ

Figure F9.3 A typical experimental arrangement of a laser light scattering 
measurement.
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41.2(a) Plot the expressions for the two moments of inertia of a symmetric-top 

version of an AB4 molecule (Table 41.1) with equal bond lengths but with the 

angle θ increasing from 90° to the tetrahedral angle.

41.2(b) Plot the expressions for the two moments of inertia of a symmetric-

top version of an AB4 molecule (Table 41.1) with θ equal to the tetrahedral 

angle but with one A–B bond varying. Hint: Write ρ = ′R RAB AB/ , and  

allow ρ to vary from 2 to 1.

41.3(a) Classify the following rotors: (a) O3, (b) CH3CH3, (c) XeO4, (d) FeCp2 

(Cp denotes the cyclopentadienyl group, C5H5).

41.3(b) Classify the following rotors: (a) CH2 = CH2, (b) SO3, (c) ClF3,  

(d) N2O.

41.4(a) Determine the HC and CN bond lengths in HCN from the rotational 

constants B(1H12C14N) = 44.316 GHz and B(2H12C14N) = 36.208 GHz.

41.4(b) Determine the CO and CS bond lengths in OCS from the rotational 

constants B(16O12C32S) = 6081.5 MHz, B(16O12C34S) = 5932.8 MHz.

Problems
41.1 Show that the moment of inertia of a diatomic molecule composed 

of atoms of masses mA and mB and bond length R is equal to meffR2, where 

meff = mAmB/(mA + mB).

41.2 Confirm the expression given in Table 41.1 for the moment of inertia of a 

linear ABC molecule. Hint: Begin by locating the centre of mass.

Topic 42 Rotational spectroscopy

Discussion questions
42.1 Account for the existence of a rotational zero-point energy in molecular 

hydrogen.

42.2 Discuss the physical origins of the gross selection rules for microwave 

spectroscopy.

42.3 Discuss the physical origins of the gross selection rules for rotational 

Raman spectroscopy.

42.4 Discuss the role of nuclear statistics in the occupation of energy levels in 
1H12C ≡ 12C1H, 1H13C ≡ 13C1H, and 2H12C ≡ 12C2H. For nuclear spin data, see 

Table 47.2.

Exercises
42.1(a) Which of the following molecules may show a pure rotational 

microwave absorption spectrum: (a) H2, (b) HCl, (c) CH4, (d) CH3Cl, (e) 

CH2Cl2?

42.1(b) Which of the following molecules may show a pure rotational 

microwave absorption spectrum: (a) H2O, (b) H2O2, (c) NH3, (d) N2O?

42.2(a) Calculate the frequency and wavenumber of the J = 3 ← 2 transition in 

the pure rotational spectrum of 14N16O. The equilibrium bond length is 115 pm. 

Does the frequency increase or decrease if centrifugal distortion is considered?

42.2(b) Calculate the frequency and wavenumber of the J = 2 ← 1 transition in the 

pure rotational spectrum of 12C16O. The equilibrium bond length is 112.81 pm. 

Does the frequency increase or decrease if centrifugal distortion is considered?

42.3(a) The wavenumber of the J = 3 ← 2 rotational transition of 1H35Cl 

considered as a rigid rotor is 63.56 cm−1; what is the HeCl bond length?

42.3(b) The wavenumber of the J = 1 ← 0 rotational transition of 1H81Br 

considered as a rigid rotor is 16.93 cm−1; what is the HeBr bond length?

42.4(a) The spacing of lines in the microwave spectrum of 27Al1H is 

12.604 cm−1; calculate the moment of inertia and bond length of the molecule.

42.4(b) The spacing of lines in the microwave spectrum of 35Cl19F is 

1.033 cm−1; calculate the moment of inertia and bond length of the molecule.

42.5(a) Which of the following molecules may show a pure rotational Raman 

spectrum: (a) H2, (b) HCl, (c) CH4, (d) CH3Cl?

42.5(b) Which of the following molecules may show a pure rotational Raman 

spectrum: (a) CH2Cl2, (b) CH3CH3, (c) SF6, (d) N2O?

42.6(a) The wavenumber of the incident radiation in a Raman spectrometer is 

20 487 cm−1. What is the wavenumber of the scattered Stokes radiation for the 

J = 2 ← 0 transition of 14N2?

42.6(b) The wavenumber of the incident radiation in a Raman spectrometer is 

20 623 cm−1. What is the wavenumber of the scattered Stokes radiation for the 

J = 4 ← 2 transition of 16O2?

42.7(a) The rotational Raman spectrum of 35Cl2 shows a series of Stokes lines 

separated by 0.9752 cm−1 and a similar series of anti-Stokes lines. Calculate 

the bond length of the molecule.

42.7(b) The rotational Raman spectrum of 19F2 shows a series of Stokes lines 

separated by 3.5312 cm−1 and a similar series of anti-Stokes lines. Calculate 

the bond length of the molecule.

42.8(a) What is the ratio of weights of populations due to the effects of nuclear 

statistics for 35Cl2?

42.8(b) What is the ratio of weights of populations due to the effects of nuclear 

statistics for 12C32S2? What effect would be observed when 12C is replaced by 
13C? For nuclear spin data, see Table 47.2.

Problems
42.1 The rotational constant of NH3 is 298 GHz. Compute the separation of 

the pure rotational spectrum lines as a frequency in GHz, a wavenumber in 

cm−1, and a wavelength in mm, and show that the value of B is consistent with 

an N–H bond length of 101.4 pm and a bond angle of 106.78°.
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42.2 Rotational absorption lines from 1H35Cl gas were found at the following 

wavenumbers (R.L. Hausler and R.A. Oetjen, J. Chem. Phys. 21, 1340 (1953)): 

83.32, 104.13, 124.73, 145.37, 165.89, 186.23, 206.60, 226.86 cm−1. Calculate 

the moment of inertia and the bond length of the molecule. Predict the 

positions of the corresponding lines in 2H35Cl.

42.3 Is the bond length in HCl the same as that in DCl? The wavenumbers 

of the J = 1 ← 0 rotational transitions for H35Cl and 2H35Cl are 20.8784 and 

10.7840 cm−1, respectively. Accurate atomic masses are 1.007 825mu and 

2.0140mu for 1H and 2H, respectively. The mass of 35Cl is 34.968 85mu. Based 

on this information alone, can you conclude that the bond lengths are the 

same or different in the two molecules?

42.4 Thermodynamic considerations suggest that the copper monohalides CuX 

should exist mainly as polymers in the gas phase, and indeed it proved difficult 

to obtain the monomers in sufficient abundance to detect spectroscopically. This 

problem was overcome by flowing the halogen gas over copper heated to 1100 K 

(Manson, et al. J. Chem. Phys. 63, 2724 (1975)). For CuBr the J = 13–14, 14–15, 

and 15–16 transitions occurred at 84 421.34, 90 449.25, and 96 476.72 MHz, 

respectively. Calculate the rotational constant and bond length of CuBr.

42.5 The microwave spectrum of 16O12CS gave absorption lines (in GHz) as 

follows:

Using the expressions for moments of inertia in Table 41.1 and assuming that 

the bond lengths are unchanged by substitution, calculate the CO and CS 

bond lengths in OCS.

42.6 Equation 42.8b may be rearranged into

� � ��( )/ ( ) ( )J J J B D JJ+ ← + = − +1 2 1 2 1 2

 

which is the equation of a straight line when the left-hand side is plotted 

against (J + 1)2. The following wavenumbers of transitions (in cm−1) were 

observed for 12C16O:

Determine � �B DJ, ,  and the equilibrium bond length of CO.

42.7‡ In a study of the rotational spectrum of the linear FeCO radical,  

Tanaka, et al. (J. Chem. Phys. 106, 6820 (1997)) reported the following  

J + 1 ← J transitions:

Evaluate the rotational constant of the molecule. Also, estimate the value of J 

for the most highly populated rotational energy level at 298 K and at 100 K.

42.8 The rotational terms of a symmetric top, allowing for centrifugal 

distortion, are commonly written

� � � � � � �F J K BJ J A B K D J J D J J K D KJ JK K( , ) ( ) ( ) ( )( )= + + − − + − + −1 1 12 2 2 2 4

 

Derive an expression for the wavenumbers of the allowed rotational 

transitions. The following transition frequencies (in gigahertz, GHz) were 

observed for CH3F:

Determine the values of as many constants in the expression for the rotational 

terms as these values permit.

42.9 Derive an expression for the value of J corresponding to the most 

highly populated rotational energy level of a diatomic rotor at a temperature 

T, remembering that the degeneracy of each level is 2J + 1. Evaluate the 

expression for ICl (for which �B = 0 1142. cm 1− ) at 25 °C. Repeat the problem 

for the most highly populated level of a spherical rotor, taking note of the fact 

that each level is (2J + 1)2-fold degenerate. Evaluate the expression for CH4 (for 

which �B = 5 24. cm 1− ) at 25 °C.

42.10 A. Dalgarno, in Chemistry in the interstellar medium, Frontiers of 

Astrophysics, ed. E.H. Avrett, Harvard University Press, Cambridge (1976), 

notes that although both CH and CN spectra show up strongly in the 

interstellar medium in the constellation Ophiuchus, the CN spectrum has 

become the standard for the determination of the temperature of the cosmic 

microwave background radiation. Demonstrate through a calculation why 

CH would not be as useful for this purpose as CN. The rotational constant �B0  

for CH is 14.190 cm−1.

42.11 The space immediately surrounding stars, the circumstellar space, is 

significantly warmer because stars are very intense black-body emitters with 

temperatures of several thousand kelvin. Discuss how such factors as cloud 

temperature, particle density, and particle velocity may affect the rotational 

spectrum of CO in an interstellar cloud. What new features in the spectrum 

of CO can be observed in gas ejected from and still near a star with 

temperatures of about 1000 K, relative to gas in a cloud with temperature 

of about 10 K? Explain how these features may be used to distinguish 

between circumstellar and interstellar material on the basis of the rotational 

spectrum of CO.

42.12 Pure rotational Raman spectra of gaseous C6H6 and C6D6 

yield the following rotational constants: �B( ) . ,C H cm6 6 0 189 60= −1  
�B( ) . .C D cm6 6 0 156 81= −1  The moments of inertia of the molecules about 

any axis perpendicular to the C6 axis were calculated from these data as 

I(C6H6) = 1.4759 × 10−45 kg m2, I(C6D6) = 1.7845 × 10−45 kg m2. Calculate the 

CC, CH, and CD bond lengths.

Topic 43 Vibrational spectroscopy: diatomic molecules

Discussion questions
43.1 Discuss the strengths and limitations of the parabolic and Morse 

functions as descriptors of the potential energy curve of a diatomic molecule.

43.2 Discuss the effect of vibrational excitation on the rotational constant of a 

diatomic molecule.

43.3 How is the method of combination differences used in rotation–vibration 

spectroscopy to determine rotational constants?

J 1 2 3 4

32S 24.325 92 36.488 82 48.651 64 60.814 08

34S 23.732 33 47.462 40

J: 0 1 2 3 4

3.845 033 7.689 919 11.534 510 15.378 662 19.222 223

J 24 25 26 27 28 29

��/m−1 214 777.7 223 379.0 231 981.2 240 584.4 249 188.5 257 793.5

51.0718 102.1426 102.1408 153.2103 153.2076
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Exercises
43.1(a) An object of mass 100 g suspended from the end of a rubber band has a 

vibrational frequency of 2.0 Hz. Calculate the force constant of the rubber band.

43.1(b) An object of mass 1.0 g suspended from the end of a spring has a 

vibrational frequency of 10.0 Hz. Calculate the force constant of the spring.

43.2(a) Calculate the percentage difference in the fundamental vibrational 

wavenumbers of 23Na35Cl and 23Na37Cl on the assumption that their force 

constants are the same.

43.2(b) Calculate the percentage difference in the fundamental vibrational 

wavenumbers of 1H35Cl and 2H37Cl on the assumption that their force 

constants are the same.

43.3(a) The wavenumber of the fundamental vibrational transition of 35Cl2 is 

564.9 cm−1. Calculate the force constant of the bond.

43.3(b) The wavenumber of the fundamental vibrational transition of 79Br81Br 

is 323.2 cm−1. Calculate the force constant of the bond.

43.4(a) The hydrogen halides have the following fundamental vibrational 

wavenumbers: 4141.3 cm−1 (HF); 2988.9 cm−1 (H35Cl); 2649.7 cm−1 (H81Br); 

2309.5 cm−1 (H127I). Calculate the force constants of the hydrogen–halogen 

bonds.

43.4(b) From the data in Exercise 43.4(a), predict the fundamental vibrational 

wavenumbers of the deuterium halides.

43.5(a) For 16O2, Δ �G  values for the transitions v = 1 ← 0, 2 ← 0, and 3 ← 0 are, 

respectively, 1556.22, 3088.28, and 4596.21 cm−1. Calculate ��  and xe. Assume 

ye to be zero.

43.5(b) For 14N2, Δ �G  values for the transitions � = 1 ← 0, 2 ← 0, and 3 ← 0 are, 

respectively, 2329.91, 4631.20, and 6903.69 cm−1. Calculate ��  and xe. Assume 

ye to be zero.

43.6(a) Which of the following molecules may show infrared absorption 

spectra: (a) H2, (b) HCl, (c) CO2, (d) H2O?

43.6(b) Which of the following molecules may show infrared absorption 

spectra: (a) CH3CH3, (b) CH4, (c) CH3Cl, (d) N2?

Problems
43.1 The vibrational levels of NaI lie at the wavenumbers 142.81, 

427.31, 710.31, and 991.81 cm−1. Show that they fit the expression 

( ) ( ) ,v+ v1
2

1
2

2� �� �− + xe  and deduce the force constant, zero-point energy, and 

dissociation energy of the molecule.

43.2 The HCl molecule is quite well described by the Morse potential with 

De = 5.33 eV, �� = 2989 7 1. ,cm−  and xe cm�� = 52 05 1. .−  Assuming that the 

potential is unchanged on deuteration, predict the dissociation energies (D0) 

of (a) HCl, (b) DCl.

43.3 The Morse potential (eqn 43.14) is very useful as a simple representation 

of the actual molecular potential energy. When RbH was studied, it was found 

that �� = 936 8 1. cm−  and xe cm�� =14 15 1. .−  Plot the potential energy curve 

from 50 pm to 800 pm around Re = 236.7 pm. Then go on to explore how the 

rotation of a molecule may weaken its bond by allowing for the kinetic energy 

of rotation of a molecule and plotting V V hc BJ J* ( )= + +� 1 , with � B c R= / .4 2π μ  

Plot these curves on the same diagram for J = 40, 80, and 100, and observe how 

the dissociation energy is affected by the rotation. (Taking �B = 3 020 1. cm−  at the 

equilibrium bond length will greatly simplify the calculation.)

43.4‡ Luo, et al. (J. Chem. Phys. 98, 3564 (1993)) reported experimental 

observation of the He2 complex, a species which had escaped detection 

for a long time. The fact that the observation required temperatures in the 

neighbourhood of 1 mK is consistent with computational studies which 

suggest that hcD
~

e for He2 is about 1.51 × 10−23 J, hcD� 0
262 10≈ −× J,  and Re 

about 297 pm. (See Problem 29.1.) (a) Estimate the fundamental vibrational 

wavenumber, force constant, moment of inertia, and rotational constant 

based on the harmonic-oscillator and rigid-rotor approximations. (b) Such 

a weakly bound complex is hardly likely to be rigid. Estimate the vibrational 

wavenumber and anharmonicity constant based on the Morse potential.

43.5 Confirm that a Morse oscillator has a finite number of bound states, the 

states with V hcD< �
e .  Determine the value of vmax for the highest bound state.

43.6 Provided higher-order terms are neglected, eqn 43.17 for the vibrational 

wavenumbers of an anharmonic oscillator, Δ � � �G xv v+ = − + +…( / ) ( ) ,1 2 2 1� �e  is 

the equation of a straight line when the left-hand side is plotted against v + 1. 

Use the following data on CO to determine the values of ��  and xe ��  for CO:

43.7 The rotational constant for CO is 1.9314 cm−1 and 1.6116 cm−1 in the 

ground and first excited vibrational states, respectively. By how much does the 

internuclear distance change as a result of this transition?

43.8 The average spacing between the rotational lines of the P and R branches 

of 12C2
1H2 and 12C2

2H2 is 2.352 cm−1 and 1.696 cm−1, respectively. Estimate the 

CC and CH bond lengths.

43.9 Absorptions in the v = 1 ← 0 vibration–rotation spectrum of 1H35Cl were 

observed at the following wavenumbers (in cm−1):

Assign the rotational quantum numbers and use the method of combination 

differences to determine the rotational constants of the two vibrational levels.

43.10 Suppose that the internuclear distance may be written R = Re + x where 

Re is the equilibrium bond length. Also suppose that the potential well is 

symmetrical and confines the oscillator to small displacements. Deduce 

expressions for 1/〈R〉2, 1/〈R2〉, and 〈1/R2〉 to the lowest nonzero power of 

〈 〉 /x2 2Re  and confirm that the values are not the same.

43.11 Continue the development of Problem 43.10 by using the virial 

expression to relate 〈x2〉 to the vibrational quantum number. Does your result 

imply that the rotational constant increases or decreases as the oscillator 

becomes excited to higher quantum states? What would be the effect of 

anharmonicity?

43.12 The rotational constant for a diatomic molecule in the vibrational 

state v typically fits the expression � �B B av v= − +e ( ).1
2

 For the interhalogen 

molecule IF it is found that �Be cm= 0 279 71 1. −  and a = 0.187 m−1 (note the 

change of units). Calculate �B0  and �B1  and use these values to calculate the 

wavenumbers of the J′ → 3 transitions of the P and R branches. You will need 

the following additional information: �� = 610 258 1. cm−  and xe cm�� = 3 141 1. .−  

Estimate the dissociation energy of the IF molecule.

43.13 At low resolution, the strongest absorption band in the infrared absorption 

spectrum of 12C16O is centred at 2150 cm−1. Upon closer examination at higher 

resolution, this band is observed to be split into two sets of closely spaced peaks, 

one on each side of the centre of the spectrum at 2143.26 cm−1. The separation 

between the peaks immediately to the right and left of the centre is 7.655 cm−1. 

Make the harmonic oscillator and rigid rotor approximations and calculate from 

v 0 1 2 3 4

Δ �Gv+
−

1
2

1/cm 2143.1 2116.1 2088.9 2061.3 2033.5

2998.05 2981.05 2963.35 2944.99 2925.92

2906.25 2865.14 2843.63 2821.59 2799.00
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these data: (a) the vibrational wavenumber of a CO molecule, (b) its molar zero-

point vibrational energy, (c) the force constant of the CO bond, (d) the rotational 

constant �B,  and (e) the bond length of CO.

43.14 The analysis of combination differences summarized in Section 43.4b 

considered the R and P branches. Extend the analysis to the O and S branches 

of a Raman spectrum.

Topic 44 Vibrational spectroscopy: polyatomic molecules

Discussion questions
44.1 Discuss the physical origins of the gross selection rules for infrared 

spectroscopy.

44.2 Discuss the physical origins of the gross selection rules for vibrational 

Raman spectroscopy.

44.3 Suppose that you wish to characterize the normal modes of benzene in 

the gas phase. Why is it important to obtain both infrared absorption and 

Raman spectra of your sample?

Exercises
44.1(a) Which of the following molecules may show infrared absorption 

spectra: (a) H2, (b) HCl, (c) CO2, (d) H2O?

44.1(b) Which of the following molecules may show infrared absorption 

spectra: (a) CH3CH3, (b) CH4, (c) CH3Cl, (d) N2?

44.2(a) How many normal modes of vibration are there for the following 

molecules? (a) H2O, (b) H2O2, (c) C2H4.

44.2(b) How many normal modes of vibration are there for the following 

molecules? (a) C6H6, (b) C6H5CH3, (c) HC≡C–C≡C–H.

44.3(a) How many vibrational modes are there for the molecule  

NC–(C≡C–C≡C–)10CN detected in an interstellar cloud?

44.3(b) How many vibrational modes are there for the molecule  

NC–(C≡C–C≡C–)8CN detected in an interstellar cloud?

44.4(a) Write an expression for the vibrational term for the ground vibrational 

state of H2O in terms of the wavenumbers of the normal modes. Neglect 

anharmonicities as in eqn 44.1.

44.4(b) Write an expression for the vibrational term for the ground vibrational 

state of SO2 in terms of the wavenumbers of the normal modes. Neglect 

anharmonicities as in eqn 44.1.

44.5(a) Which of the three vibrations of an AB2 molecule are infrared or 

Raman active when it is (a) angular, (b) linear?

44.5(b) Which of the vibrations of an AB3 molecule are infrared or Raman 

active when it is (a) trigonal planar, (b) trigonal pyramidal?

44.6(a) Consider the vibrational mode that corresponds to the uniform 

expansion of the benzene ring. Is it (a) Raman, (b) infrared active?

44.6(b) Consider the vibrational mode that corresponds to the boat-like 

bending of a benzene ring. Is it (a) Raman, (b) infrared active?

44.7(a) The molecule CH2Cl2 belongs to the point group C2v. The 

displacements of the atoms span 5A1 + 2A2 + 4B1 + 4B2. What are the 

symmetries of the normal modes of vibration?

44.7(b) A carbon disulfide molecule belongs to the point group D∞h. The nine 

displacements of the three atoms span A1g + 2A1u + 2E1u + E1g. What are the 

symmetries of the normal modes of vibration?

44.8(a) Which of the normal modes of CH2Cl2 (Exercise 44.7(a)) are infrared 

active? Which are Raman active?

44.8(b) Which of the normal modes of carbon disulfide (Exercise 44.7(b)) are 

infrared active? Which are Raman active?

Problems
44.1 Suppose that the out-of-plane distortion of a planar molecule could be 

described by a potential energy V V bh= − −
0 1

4

( ),e  where h is the distance by 

which the central atom is displaced. Sketch this potential energy as a function 

of h (allow h to be both negative and positive). What could be said about (a) 

the force constant, (b) the vibrations? Sketch the form of the ground-state 

wavefunction.

44.2 Predict the shape of the nitronium ion, NO2
+ , from its Lewis structure and 

the VSEPR model. It has one Raman active vibrational mode at 1400 cm−1, 

two strong IR active modes at 2360 and 540 cm−1, and one weak IR mode at 

3735 cm−1. Are these data consistent with the predicted shape of the molecule? 

Assign the vibrational wavenumbers to the modes from which they arise.

44.3 Consider the molecule CH3Cl. (a) To what point group does the molecule 

belong? (b) How many normal modes of vibration does the molecule have? 

(c) What are the symmetries of the normal modes of vibration for this 

molecule? (d) Which of the vibrational modes of this molecule are infrared 

active? (e) Which of the vibrational modes of this molecule are Raman active?

44.4 Suppose that three conformations are proposed for the nonlinear molecule 

H2O2 (1, 2, and 3). The infrared absorption spectrum of gaseous H2O2 has 

bands at 870, 1370, 2869, and 3417 cm−1. The Raman spectrum of the same 

sample has bands at 877, 1408, 1435, and 3407 cm−1. All bands correspond to 

fundamental vibrational wavenumbers and you may assume that (a) the 870 

and 877 cm−1 bands arise from the same normal mode, and (b) the 3417 and 

3407 cm−1 bands arise from the same normal mode. (i) If H2O2 were linear, 

how many normal modes of vibration would it have? (ii) Give the symmetry 

point group of each of the three proposed conformations of nonlinear H2O2. 

(iii) Determine which of the proposed conformations is inconsistent with the 

spectroscopic data. Explain your reasoning.

11   2   3
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Topic 45 Electronic spectroscopy

Discussion questions
45.1 Explain the origin of the term symbol 3 Σg

− for the ground state of 

dioxygen.

45.2 Explain the basis of the Franck–Condon principle and how it leads to the 

formation of a vibrational progression.

45.3 How do the band heads in P and R branches arise? Could the Q branch 

show a head?

45.4 Explain how colour can arise from molecules.

45.5 Suppose that you are a colour chemist and have been asked to intensify 

the colour of a dye without changing the type of compound, and that the dye 

in question was a polyene. (a) Would you choose to lengthen or to shorten the 

chain? (b) Would the modification to the length shift the apparent colour of 

the dye towards the red or the blue?

Exercises
45.1(a) One of the excited states of the C2 molecule has the valence electron 

configuration 1 1 1 1g u u gσ σ2 2 3 1π π .  Give the multiplicity and parity of the term.

45.1(b) One of the excited states of the C2 molecule has the valence electron 

configuration 1 1 1 1g u u gσ σ2 2 2 2π π .  Give the multiplicity and parity of the term.

45.2(a) Which of the following transitions are electric-dipole allowed? 

(a) 2Π ↔ 2Π, (b) 1Σ ↔ 1Σ, (c) Σ ↔ Δ, (d) Σ+ ↔ Σ−, (e) Σ+ ↔ Σ+.

45.2(b) Which of the following transitions are electric-dipole allowed? 

(a) 1 g
1

uΣ Σ+ +↔ ,  (b) 3 g
3

uΣ Σ+ +↔ ,  (c) π* ↔ n.

45.3(a) The ground-state wavefunction of a certain molecule is described by 

the vibrational wavefunction ψ 0 0
2= −N axe . Calculate the Franck–Condon 

factor for a transition to a vibrational state described by the wavefunction 

ψ v v= − −N b x xe ( )0
2

 with b = a/2.

45.3(b) The ground-state wavefunction of a certain molecule is described by 

the vibrational wavefunction ψ 0 0
2= −N axe . Calculate the Franck–Condon 

factor for a transition to a vibrational state described by the wavefunction 

ψ v v= − −N x b x xe ( ) ,0
2

 with b = a/2.

45.4(a) Suppose that the ground vibrational state of a molecule is modelled by 

using the particle-in-a-box wavefunction, ψ0 = (2/L)1/2 sin(πx/L) for 0 ≤ x ≤ L 

and 0 elsewhere. Calculate the Franck–Condon factor for a transition to a 

vibrational state described by the wavefunction ψv = (2/L)1/2sin{π(x −L/2)/L} 

for L/4 ≤ x ≤ 5L/4 and 0 elsewhere.

45.4(b) Suppose that the ground vibrational state of a molecule is modelled by 

using the particle-in-a-box wavefunction ψ0 = (2/L)1/2 sin(πx/L) for 0 ≤ x ≤ L 

and 0 elsewhere. Calculate the Franck–Condon factor for a transition to a 

vibrational state described by the wavefunction ψv = (2/L)1/2 sin{π(x −L/4)/L} 

for L/2 ≤ x ≤ 3L/2 and 0 elsewhere.

45.5(a) Use eqn 45.8a to infer the value of J corresponding to the location of 

the band head of the P branch of a transition.

45.5(b) Use eqn 45.8c to infer the value of J corresponding to the location of 

the band head of the R branch of a transition.

45.6(a) The following parameters describe the electronic ground state and an 

excited electronic state of SnO: �B = 0 3540 1. ,cm−  � ′ =B 0 3101 1. .cm−  Which 

branch of the transition between them shows a head? At what value of J will 

it occur?

45.6(b) The following parameters describe the electronic ground state and an 

excited electronic state of BeH: �B =10 308 1. ,cm−  � ′ =B 10 470 1. .cm−  Which 

branch of the transition between them shows a head? At what value of J will 

it occur?

45.7(a) The R branch of the 1 u
1

gΠ Σ← +  transition of H2 shows a band head 

at the very low value of J = 1. The rotational constant of the ground state is 

60.80 cm−1. What is the rotational constant of the upper state? Has the bond 

length increased or decreased in the transition?

45.7(b) The P branch of the 2 2Π Σ← +  transition of CdH shows a band head 

at J = 25. The rotational constant of the ground state is 5.437 cm−1. What is 

the rotational constant of the upper state? Has the bond length increased or 

decreased in the transition?

45.8(a) The complex ion [Fe(OH2)6]
3+ has an electronic absorption spectrum 

with a maximum at 700 nm. Estimate a value of ΔO for the complex.

45.8(b) The complex ion [Fe(CN)6]
3− has an electronic absorption spectrum 

with a maximum at 305 nm. Estimate a value of ΔO for the complex.

45.9(a) Suppose that we can model a charge-transfer transition in a one-

dimensional system as a process in which a rectangular wavefunction that 

is nonzero in the range 0 ≤ x ≤ a makes a transition to another rectangular 

wavefunction that is nonzero in the range 1
2

a x b≤ ≤ . Evaluate the transition 

moment ∫ψ ψf i dx x. (Assume a < b.)

45.9(b) Suppose that we can model a charge-transfer transition in a one-

dimensional system as a process in which an electron described by a 

rectangular wavefunction that is nonzero in the range 0 ≤ x ≤ a makes a 

transition to another rectangular wavefunction that is nonzero in the range 

ca ≤ x ≤ a where 0 ≤ c ≤ 1. Evaluate the transition moment ∫ψ ψf i dx x  and 

explore its dependence on c.

45.10(a) Suppose that we can model a charge-transfer transition in a one-

dimensional system as a process in which a Gaussian wavefunction centred on 

x = 0 and width a makes a transition to another Gaussian wavefunction of the 

same width centred on x a= 1
2

. Evaluate the transition moment ∫ψ ψf i dx x.

45.10(b) Suppose that we can model a charge-transfer transition in a one-

dimensional system as a process in which an electron described by a Gaussian 

wavefunction centred on x = 0 and width a makes a transition to another 

Gaussian wavefunction of width a/2 and centred on x = 0. Evaluate the 

transition moment ∫ψ ψf i dx x .

45.11(a) The two compounds 2,3-dimethyl-2-butene (4) and 2,5-dimethyl-

2,4-hexadiene (5) are to be distinguished by their ultraviolet absorption 

spectra. The maximum absorption in one compound occurs at 192 nm and 

in the other at 243 nm. Match the maxima to the compounds and justify the 

assignment.

4 2,3-Dimethyl-2-butene  5 2,5-Dimethyl-2,4-hexadiene

45.11(b) 3-Buten-2-one (6) has a strong absorption at 213 nm and a weaker 

absorption at 320 nm. Justify these features and assign the ultraviolet 

absorption transitions.

O

6 3-Butene-2-one
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Problems
45.1 The term symbol for the first excited state of N2

+  is 2Πg. Use the building-

up principle to find the excited-state configuration to which this term symbol 

corresponds.

45.2‡ Dojahn, et al. (J. Phys. Chem. 100, 9649 (1996)) characterized the 

potential energy curves of the ground and electronic states of homonuclear 

diatomic halogen anions. These anions have a 2 uΣ+  ground state and 2Πg, 
2Πu, and 2

gΣ+  excited states. To which of the excited states are electric-dipole 

transitions allowed? Explain your conclusion.

45.3 The vibrational wavenumber of the oxygen molecule in its electronic 

ground state is 1580 cm−1, whereas that in the excited state (B 3
uΣ− ), to which 

there is an allowed electronic transition, is 700 cm−1. Given that the separation 

in energy between the minima in their respective potential energy curves 

of these two electronic states is 6.175 eV, what is the wavenumber of the 

lowest energy transition in the band of transitions originating from the v = 0 

vibrational state of the electronic ground state to this excited state? Ignore any 

rotational structure or anharmonicity.

45.4 We are now ready to understand more deeply the features of 

photoelectron spectra (Topic 24). Figure F9.4 shows the photoelectron 

spectrum of HBr. Disregarding for now the fine structure, the HBr lines fall 

into two main groups. The least tightly bound electrons (with the lowest 

ionization energies and hence highest kinetic energies when ejected) are those 

in the lone pairs of the Br atom. The next ionization energy lies at 15.2 eV, 

and corresponds to the removal of an electron from the HBr σ bond. (a) The 

spectrum shows that ejection of a σ electron is accompanied by a considerable 

amount of vibrational excitation. Use the Franck–Condon principle to 

account for this observation. (b) Go on to explain why the lack of much 

vibrational structure in the other band is consistent with the nonbonding role 

of the Br4px and Br4py lone-pair electrons.

45.5 The highest kinetic energy electrons in the photoelectron spectrum of H2O 

using 21.22 eV radiation are at about 9 eV and show a large vibrational spacing 

of 0.41 eV. The symmetric stretching mode of the neutral H2O molecule lies at 

3652 cm−1. (a) What conclusions can be drawn from the nature of the orbital 

from which the electron is ejected? (b) In the same spectrum of H2O, the band 

near 7.0 eV shows a long vibrational series with spacing 0.125 eV. The bending 

mode of H2O lies at 1596 cm−1. What conclusions can you draw about the 

characteristics of the orbital occupied by the photoelectron?

45.6 A lot of information about the energy levels and wavefunctions of 

small inorganic molecules can be obtained from their ultraviolet spectra. 

An example of a spectrum with considerable vibrational structure, that of 

gaseous SO2 at 25 °C, is shown in Fig. 45.5. Estimate the integrated absorption 

coefficient for the transition. What electronic states are accessible from the A1 

ground state of this C2v molecule by electric dipole transitions?

45.7 Assume that the electronic states of the π electrons of a conjugated 

molecule can be approximated by the wavefunctions of a particle in a 

one-dimensional box, and that the magnitude of the dipole moment can 

be related to the displacement along this length by μ = −ex. Show that the 

transition probability for the transition n = 1 → n = 2 is nonzero, whereas 

that for n = 1 → n = 3 is zero. Hints: (a) The following relation will be useful: 

sin sin cos( ) cos( ).x y x y x y= − − +1
2

1
2

 (b) Relevant integrals are found in the 

Resource section.

45.8 1,3,5-Hexatriene (a kind of ‘linear’ benzene) was converted into benzene 

itself. On the basis of a free-electron molecular orbital model (in which 

hexatriene is treated as a linear box and benzene as a ring), would you expect 

the lowest-energy absorption to rise or fall in energy?

45.9 Estimate the magnitude of the transition dipole moment of a charge-

transfer transition modelled as the migration of an electron from an H1s 

orbital on one atom to another H1s orbital on an atom a distance R away. 

Approximate the transition moment by −eRS, where S is the overlap integral 

of the two orbitals. Sketch the transition moment as a function of R using 

the curve for S given in Fig. 24.7. Why does the intensity of a charge-transfer 

transition fall to zero as R approaches zero and infinity?

45.10 Figure F9.5 shows the UV–visible absorption spectra of a selection of 

amino acids. Suggest reasons for their different appearances in terms of the 

structures of the molecules.

Topic 46 Decay of excited states

Discussion questions
46.1 Describe the mechanism of fluorescence. In what respects is a 

fluorescence spectrum not the exact mirror image of the corresponding 

absorption spectrum?

46.2 What is the evidence for the correctness of the mechanism of 

fluorescence?

46.3 Describe the principles of (a) continuous-wave and (b) pulsed laser 

action.

46.4 How might you use a Q-switched or mode-locked laser in the study of a 

very fast chemical reaction that can be initiated by absorption of light?
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Figure F9.4 The photoelectron spectrum of HBr.
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Figure F9.5 Electronic absorption spectra of selected amino acids.
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Exercises
46.1(a) The line marked A in Fig. F9.6 is the fluorescence spectrum of 

benzophenone in solid solution in ethanol at low temperatures observed 

when the sample is illuminated with 360 nm light. What can be said about 

the vibrational energy levels of the carbonyl group in (a) its ground electronic 

state and (b) its excited electronic state?

46.1(b) When naphthalene is illuminated with 360 nm light it does not absorb, 

but the line marked B in Fig F9.6 is the phosphorescence spectrum of a solid 

solution of a mixture of naphthalene and benzophenone in ethanol. Now a 

component of fluorescence from naphthalene can be detected. Account for 

this observation.

46.2(a) The oxygen molecule absorbs ultraviolet radiation in a transition 

from its 3
gΣ−  ground electronic state to an excited state that is energetically 

close to a dissociative 5Πu state. The absorption band has a relatively large 

experimental linewidth. Account for this observation.

46.2(b) The hydrogen molecule absorbs ultraviolet radiation in a 

transition from its 1
gΣ+  ground electronic state to an excited state that 

is  energetically close to a dissociative 1
uΣ+  state. The absorption band 

has a relatively large experimental linewidth. Account for this  

observation.

46.3(a) A pulsed laser rated at 0.10 mJ can generate radiation with peak power 

output of 5.0 MW and average power output of 7.0 kW. What are the pulse 

duration and repetition rate?

46.3(b) A pulsed laser rated at 20.0 μJ can generate radiation with peak power 

output of 100 kW and average power output of 0.40 mW. What are the pulse 

duration and repetition rate?

Problems
46.1 The fluorescence spectrum of anthracene vapour shows a series of peaks 

of increasing intensity with individual maxima at 440 nm, 410 nm, 390 nm, 

and 370 nm followed by a sharp cut-off at shorter wavelengths. The absorption 

spectrum rises sharply from zero to a maximum at 360 nm with a trail of 

peaks of lessening intensity at 345 nm, 330 nm, and 305 nm. Account for these 

observations.

46.2 Use mathematical software or an electronic spreadsheet to simulate the 

output of a mode-locked laser (that is, plots such as that shown in Fig. 46.16) 

for L = 30 cm and N = 100 and 1000.

46.3 Matrix-assisted laser desorption/ionization (MALDI) is a type of mass 

spectrometry, a technique in which the sample is first ionized in the gas phase 

and then the mass-to-charge number ratios (m/z) of all ions are measured. 

MALDI-TOF mass spectrometry, so called because the MALDI technique 

is coupled to a time-of-flight (TOF) ion detector, is used widely in the 

determination of the molar masses of macromolecules. In a MALDI-TOF 

mass spectrometer, the macromolecule is first embedded in a solid matrix that 

often consists of an organic acid such as 2,5-dihydroxybenzoic acid, nicotinic 

acid, or α-cyanocarboxylic acid. This sample is then irradiated with a laser 

pulse. The pulse of electromagnetic energy ejects matrix ions, cations, and 

neutral macromolecules, thus creating a dense gas plume above the sample 

surface. The macromolecule is ionized by collisions and complexation with 

H+ cations, resulting in molecular ions of varying charges. The spectrum of a 

mixture of polymers consists of multiple peaks arising from molecules with 

different molar masses. A MALDI-TOF mass spectrum consists of two intense 

features at m/z = 9912 and 4554 g mol−1. Does the sample contain one or two 

distinct biopolymers? Explain your answer.

46.4 A certain molecule fluoresces at a wavelength of 400 nm with a half-life 

of 1.0 ns. It phosphoresces at 500 nm. If the ratio of the transition probabilities 

for stimulated emission for the S* → S to the T → S transitions is 1.0 × 105, 

what is the half-life of the phosphorescent state?

Integrated activities

F9.1 In the group theoretical language developed in Topics 31–33, a spherical 

rotor is a molecule that belongs to a cubic or icosahedral point group, a 

symmetric rotor is a molecule with at least a threefold axis of symmetry, 

and an asymmetric rotor is a molecule without a threefold (or higher) axis. 

Linear molecules are linear rotors. Classify each of the following molecules as 

a spherical, symmetric, linear, or asymmetric rotor and justify your answers 

with group theoretical arguments: (a) CH4, (b) CH3CN, (c) CO2, (d) CH3OH, 

(e) benzene, (f) pyridine.

F9.2 Derive eqn 41.17 ( )� � �D BJ = 4 3 2/�  for the centrifugal distortion constant 

D
~

J of a diatomic molecule of effective mass meff. Treat the bond as an elastic 

spring with force constant kf and equilibrium length re that is subjected to a 

centrifugal distortion to a new length rc. Begin the derivation by letting the 

particles experience a restoring force of magnitude kf(rc − re) that is countered 

perfectly by a centrifugal force meffω2rc, where ω is the angular velocity of the 

rotating molecule. Then introduce quantum mechanical effects by writing 

the angular momentum as {J(J + 1)}1/2 ħ. Finally, write an expression for the 

energy of the rotating molecule, compare it with eqn 41.16, and infer an 

expression for �DJ .

F9.3‡ The H3
+  ion has recently been found in the interstellar medium and 

in the atmospheres of Jupiter, Saturn, and Uranus. The rotational energy 

levels of H3
+ , an oblate symmetric rotor, are given by eqn 41.13, with 

�C  replacing �A,  when centrifugal distortion and other complications are 

ignored. Experimental values for vibrational–rotational constants are 
��( ,′E )=2521.6 cm−1  �B = 43 55 1. ,cm−  and �C = 20 71 1. .cm−  (a) Show that, for a 

nonlinear planar molecule (such as H3
+ ), IC = 2IB. The rather large discrepancy 

with the experimental values is due to factors ignored in eqn 41.13. (b) 

Calculate an approximate value of the HeH bond length in H3
+ .   

(c) The value of Re obtained from the best quantum mechanical calculations 

by J.B. Anderson (J. Chem. Phys. 96, 3702 (1991)) is 87.32 pm. Use this result 

to calculate the values of the rotational constants �B  and �C.  (d) Assuming 

that the geometry and force constants are the same in D3
+  and H3

+ ,  calculate 

the spectroscopic constants of D3
+ . The molecular ion D3

+  was first produced 

by Shy, et al. (Phys. Rev. Lett. 45, 535 (1980)), who observed the ν2(E′) band in 

the infrared.

F9.4 Use molecular modelling software and the computational method 

of your choice (semi-empirical, ab initio, or DFT method) to construct 

15 20 25
ν/(1000 cm–1)~
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Figure F9.6 The fluorescence and phosphorescence spectra of two 
solutions.
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Exercises and problems  453

molecular potential energy curves like the one shown in Fig. 43.1. Consider 

the hydrogen halides (HF, HCl, HBr, and HI): (a) plot the calculated energy 

of each molecule against the bond length, and (b) identify the order of force 

constants of the H–Hal bonds.

F9.5 The semi-empirical, ab initio, and DFT methods discussed in Topics 

28–30 can be used to simulate the vibrational spectrum of a molecule, and 

it is then possible to determine the correspondence between a vibrational 

frequency and the atomic displacements that give rise to a normal mode. 

(a) Using molecular modelling software and the computational method of your 

choice (semi-empirical, ab initio, or DFT method), calculate the fundamental 

vibrational wavenumbers and visualize the vibrational normal modes of SO2 

in the gas phase. (b) The experimental values of the fundamental vibrational 

wavenumbers of SO2 in the gas phase are 525 cm−1, 1151 cm−1, and 1336 cm−1. 

Compare the calculated and experimental values. Even if agreement is poor, 

is it possible to establish a correlation between an experimental value of the 

vibrational wavenumber with a specific vibrational normal mode?

F9.6 Use appropriate electronic structure software to perform calculations 

on H2O and CO2 using basis sets of your or your instructor’s choosing. 

(a) Compute ground-state energies, equilibrium geometries, and vibrational 

frequencies for each molecule. (b) Compute the magnitude of the dipole 

moment of H2O; the experimental value is 1.854 D. (c) Compare computed 

values to experiment and suggest reasons for any discrepancies.

F9.7 The protein haemerythrin is responsible for binding and carrying O2 

in some invertebrates. Each protein molecule has two Fe2+ ions that are in 

very close proximity and work together to bind one molecule of O2. The 

Fe2O2 group of oxygenated haemerythrin is coloured and has an electronic 

absorption band at 500 nm. The resonance Raman spectrum of oxygenated 

haemerythrin obtained with laser excitation at 500 nm has a band at 844 cm−1 

that has been attributed to the O–O stretching mode of bound 16O2. (a) Why 

is resonance Raman spectroscopy and not infrared spectroscopy the method 

of choice for the study of the binding of O2 to haemerythrin? (b) Proof 

that the 844 cm−1 band arises from a bound O2 species may be obtained by 

conducting experiments on samples of haemerythrin that have been mixed 

with 18O2, instead of 16O2. Predict the fundamental vibrational wavenumber 

of the 18O–18O stretching mode in a sample of haemerythrin that has been 

treated with 18O2. (c) The fundamental vibrational wavenumbers for the O–O 

stretching modes of O2, O2
−  (superoxide anion), and O2

2−  (peroxide anion) 

are 1555, 1107, and 878 cm−1, respectively. Explain this trend in terms of the 

electronic structures of O2, O2
− ,  and O2

2− . Hint: Review Topic 24. What are the 

bond orders of O2, O2
− ,  and O2

2−? (d) Based on the data given above, which 

of the following species best describes the Fe2O2 group of haemerythrin: 

Fe O2
2

2
+ , Fe Fe O2 3

2
+ + − ,  or Fe O2

3
2
2+ −? Explain your reasoning. (e) The resonance 

Raman spectrum of haemerythrin mixed with 16O18O has two bands that 

can be attributed to the O–O stretching mode of bound oxygen. Discuss how 

this observation may be used to exclude one or more of the four proposed 

schemes (7–10) for binding of O2 to the Fe2 site of haemerythrin.

7  8

9

10

F9.8‡ There is a gaseous interstellar cloud in the constellation Ophiuchus 

which is illuminated from behind by the star ζ-Ophiuci. Analysis of the 

electronic–vibrational–rotational absorption lines shows the presence 

of CN molecules in the interstellar medium. A strong absorption line in 

the ultraviolet region at λ = 387.5 nm was observed, corresponding to the 

transition J = 0–1. Unexpectedly, a second strong absorption line with 25 

per cent of the intensity of the first was found at a slightly longer wavelength 

(Δλ = 0.061 nm), corresponding to the transition J = 1–1 (here allowed). 

Calculate the temperature of the CN molecules. Gerhard Herzberg, who 

was later to receive the Nobel Prize for his contributions to spectroscopy, 

calculated the temperature as 2.3 K. Although puzzled by this result, he did 

not realize its full significance. If he had, his prize might have been for the 

discovery of the cosmic microwave background radiation.

F9.9‡ One of the principal methods for obtaining the electronic spectra of 

unstable radicals is to study the spectra of comets, which are almost entirely 

due to radicals. Many radical spectra have been found in comets, including 

that due to CN. These radicals are produced in comets by the absorption 

of far-ultraviolet solar radiation by their parent compounds. Subsequently, 

their fluorescence is excited by sunlight of longer wavelength. The spectra of 

comet Hale–Bopp (C/1995 O1) have been the subject of many recent studies. 

One such study is that of the fluorescence spectrum of CN in the comet at 

large heliocentric distances by R.M. Wagner and D.G. Schleicher (Science 

275, 1918 (1997)), in which the authors determine the spatial distribution 

and rate of production of CN in the coma. The (0–0) vibrational band is 

centred on 387.6 nm and the weaker (1–1) band with relative intensity 0.1 is 

centred on 386.4 nm. The band heads for (0–0) and (0–1) are known to be 

388.3 and 421.6 nm, respectively. From these data, calculate the energy of the 

excited S1 state relative to the ground S0 state, the vibrational wavenumbers 

and the difference in the vibrational wavenumbers of the two states, and the 

relative populations of the v = 0 and v = 1 vibrational levels of the S1 state. 

Also estimate the effective temperature of the molecule in the excited S1 state. 

Only eight rotational levels of the S1 state are thought to be populated. Is that 

observation consistent with the effective temperature of the S1 state?

F9.10 The moments of inertia of the linear mercury(II) halides are very 

large, so the O and S branches of their vibrational Raman spectra show 

little rotational structure. Nevertheless, the peaks of both branches can be 

identified and have been used to measure the rotational constants of the 

molecules (R.J.H. Clark and D.M. Rippon, J. Chem. Soc. Faraday Soc. II 69, 

1496 (1973)). Show, from a knowledge of the value of J corresponding to the 

intensity maximum, that the separation of the peaks of the O and S branches 

is given by the Placzek–Teller relation, δ = ( ) ./32 1 2�BkT hc/  The following widths 

were obtained at the temperatures stated:

Calculate the bond lengths in the three molecules.

F9.11‡ A mixture of carbon dioxide (2.1 per cent) and helium, at 1.00 bar and 

298 K in a gas cell of length 10 cm, has an infrared absorption band centred at 

2349 cm−1 with absorbances, A( ),��  described by

A
a

a a

a

a a
( )

( ) ( )
�

� �
�

� �
=

+ −
+

+ −
1

2 3
2

4

5 6
21 1  

where the coefficients are a1 = 0.932, a2 = 0.005050 cm2, a3 = 2333 cm−1, 

a4 = 1.504, a5 =0.01521 cm2, a6 = 2362 cm−1. (a) Draw graphs of A( )��  and 

HgCl2 HgBr2 HgI2

θ/ °C 282 292 292

δ/cm−1 23.8 15.2 11.4
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454 9 Molecular spectroscopy

ε( )�� . What is the origin of both the band and the bandwidth? What are the 

allowed and forbidden transitions of this band? (b) Calculate the transition 

wavenumbers and absorbances of the band with a simple harmonic 

oscillator–rigid rotor model and compare the result with the experimental 

spectra. The CO bond length is 116.2 pm. (c) Within what height, h, is 

basically all the infrared emission from the Earth in this band absorbed by 

atmospheric carbon dioxide? The mole fraction of CO2 in the atmosphere is 

3.3 ×10−4 and T/K = 288 – 0.0065(h/m) below 10 km. Draw a surface plot of 

the atmospheric transmittance of the band as a function of both height and 

wavenumber.

F9.12 Use a group theoretical arguments to decide which of the following 

transitions are electric-dipole allowed: (a) the π* ← π transition in ethene, 

(b)  the π* ← n transition in a carbonyl group in a C2v environment.

F9.13 Use molecule (11) as a model of the trans conformation of the 

chromophore found in rhodopsin. In this model, the methyl group bound 

to the nitrogen atom of the protonated Schiff ’s base replaces the protein. 

(a) Using molecular modelling software and the computational method 

of your instructor’s choice, calculate the energy separation between the 

HOMO and LUMO of (11). (b) Repeat the calculation for the 11-cis form 

of (11). (c) Based on your results from parts (a) and (b), do you expect the 

experimental frequency for the π* ← π visible absorption of the trans form 

of (11) to be higher or lower than that for the 11-cis form of (11)?

N
H

+
C11

11

F9.14 Aromatic hydrocarbons and I2 form complexes from which charge-

transfer electronic transitions are observed. The hydrocarbon acts as an 

electron donor and I2 as an electron acceptor. The energies hνmax of the charge 

transfer transitions for a number of hydrocarbon–I2 complexes are given 

below:

Investigate the hypothesis that there is a correlation between the energy of the 

HOMO of the hydrocarbon (from which the electron comes in the charge-

transfer transition) and hνmax. Use one of the molecular electronic structure 

methods discussed in Topics 28–30 to determine the energy of the HOMO of 

each hydrocarbon in the data set.

F9.15 Spin angular momentum is conserved when a molecule dissociates 

into atoms. What atom multiplicities are permitted when (a) an O2 molecule, 

(b) an N2 molecule dissociates into atoms?

Hydrocarbon Benzene Biphenyl Naphthalene Phenanthrene Pyrene Anthracene

hνmax/eV 4.184 3.654 3.452 3.288 2.989 2.890
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In Atomic structure and spectra we see that electrons possess a property called ‘spin’. The techniques 
of ‘magnetic resonance’ which are treated in this set of Topics probe transitions between spin states 
of electrons and nuclei in molecules. ‘Nuclear magnetic resonance’ (NMR) spectroscopy, the main 
focus of this group of Topics, is one of the most widely used techniques in chemistry for the explo-
ration of structural and dynamical properties of molecules as large as biopolymers. In Topic 47 we 
begin our discussion of magnetic resonance with an account of the principles that govern spectro-
scopic transitions between spin states of nuclei and electrons in molecules.

Topic 48 is a discussion of conventional NMR, showing how the properties of a magnetic nucleus 
are affected by its electronic environment and the presence of magnetic nuclei in its vicinity. These 
concepts lead to understanding of how molecular structure governs the appearance of NMR spec-
tra. Modern versions of NMR are based on the use of pulses of electromagnetic radiation and the 
processing of the resulting signal by ‘Fourier transform’ techniques (Topic 49); they also utilize con-
cepts introduced in Interactions and The quantum mechanics of motion. It is through the application 
of these pulse techniques that NMR spectroscopy can probe a vast array of small and large molecules 
in a variety of environments.

The experimental techniques for electron paramagnetic resonance (EPR) resemble those used in 
the early days of NMR. The information obtained is used to investigate species with unpaired elec-
trons, using concepts from Atomic structure and spectra. Topic 50 is a brief survey of the applications 
of EPR to the study of organic radicals and d-metal complexes.

What is the impact of this material?

One of the most striking applications of nuclear magnetic resonance is in medicine. ‘Magnetic reso-
nance imaging’ (MRI) is a portrayal of the concentrations of protons in a solid object (Impact 10.1). The 
technique is particularly useful for diagnosing disease. In Impact 10.2 we highlight an application of 
electron paramagnetic resonance in materials science and biochemistry: the use of a ‘spin probe’, a 
radical that interacts with a biopolymer or a nanostructure and has an EPR spectrum that reveals its 
structural and dynamical properties.
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TOPIC 47

General principles

When two pendulums share a slightly flexible support and 

one is set in motion, the other is forced into oscillation by 

the motion of the common axle. As a result, energy flows 

between the two pendulums. The energy transfer occurs 

most efficiently when the frequencies of the two pendulums 

are identical. The condition of strong effective coupling 

when the frequencies of two oscillators are identical is called 

resonance. Resonance is the basis of a number of everyday 

phenomena, including the response of radios to the weak 

oscillations of the electromagnetic field generated by a distant 

transmitter. Historically, spectroscopic techniques that meas-

ure transitions between nuclear and electron spin states have 

carried the term ‘resonance’ in their names because they have 

depended on matching a set of energy levels to a source of 

monochromatic radiation and observing the strong absorp-

tion that occurs at resonance. In fact, all spectroscopy is a 

form of resonant coupling between the electromagnetic field 

and the molecules; what distinguishes magnetic resonance is 

that the energy levels themselves are modified by the applica-

tion of a magnetic field.

The Stern–Gerlach experiment (Topic 19) provided evidence 

for electron spin. It turns out that many nuclei also possess spin 

angular momentum. Orbital and spin angular momenta give 

rise to magnetic moments, and to say that electrons and nuclei 

have magnetic moments means that, to some extent, they 

behave like small bar magnets with energies that depend on 

their orientation in an applied magnetic field. Here we estab-

lish how the energies of electrons and nuclei depend on the 

applied field. This material sets the stage for the exploration of 

the structure and dynamics of complex molecules by magnetic 

resonance spectroscopy (Topics 48–50).

47.1 Nuclear magnetic resonance

The application of resonance that we describe here depends 

on the fact that many nuclei possess spin angular momentum 

characterized by a nuclear spin quantum number I (the ana-

logue of s for electrons). To understand the nuclear magnetic 

resonance (NMR) experiment we must describe the behaviour 

of nuclei in magnetic fields, and then the basic techniques for 

detecting spectroscopic transitions.

Contents

47.1 Nuclear magnetic resonance 457

(a) The energies of nuclei in magnetic fields 458

Brief illustration 47.1: The resonance condition  

in NMR 459

(b) The NMR spectrometer 459

Brief illustration 47.2: Nuclear spin populations 460

47.2 Electron paramagnetic resonance 461

(a) The energies of electrons in magnetic fields 461

Brief illustration 47.3: The resonance condition  

in EPR 461

(b) The EPR spectrometer 462

Brief illustration 47.4: Electron spin populations 462

Checklist of concepts 463

Checklist of equations 463

 ➤ Why do you need to know this material?

Nuclear magnetic resonance spectroscopy is used widely 
in chemistry and medicine. To understand the power 
of magnetic resonance, you need to understand the 
principles that govern spectroscopic transitions between 
spin states of electrons and nuclei in molecules.

 ➤ What is the key idea?
Resonant absorption occurs when the separation between 
the energy levels of spins in a magnetic field matches the 
energy of incident photons.

 ➤ What do you need to know already?
You need to be familiar with the quantum mechanical 
concept of spin (Topic 19) and the Boltzmann distribution 
(Foundations, Topic 2, and Topic 51).
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458 10 Magnetic resonance

(a) The energies of nuclei in magnetic fields

The nuclear spin quantum number, I, is a fixed characteristic 

property of a nucleus and, depending on the nuclide, is either 

an integer or a half-integer (Table 47.1). A nucleus with spin 

quantum number I has the following properties:

An angular momentum of magnitude {I(I + 1)}1/2ħ.

A component of angular momentum mIħ on a 

specified axis (‘the z-axis’), where mI = I, I – 1, …, –I.

If I > 0, a magnetic moment with a constant 

magnitude and an orientation that is determined by 

the value of mI.

According to the second property, the spin, and hence the mag-

netic moment, of the nucleus may lie in 2I + 1 different orienta-

tions relative to an axis. A proton has I = 1
2

 and its spin may 

adopt either of two orientations; a 14N nucleus has I = 1 and its 

spin may adopt any of three orientations; both 12C and 16O have 

I = 0 and hence zero magnetic moment.

Classically, the energy of a magnetic moment μ in a mag-

netic field B is equal to the scalar product (Mathematical back-

ground 4)

E = −μ⋅B  (47.1)

More formally, B is the magnetic induction and is measured 

in tesla, T; 1 T = 1 kg s−2 A−1. The (non-SI) unit gauss, G, is also 

occasionally used: 1 T = 104 G. Quantum mechanically, we write 

the hamiltonian as

� �H = ⋅−μ B  (47.2)

To write an expression for μ�  we use the fact that, just as for 

electrons (Topic 21), the magnetic moment of a nucleus is pro-

portional to its angular momentum. The operators in eqn 47.2 

are then

� � � �μ = = −γ γ ⋅N NandI IH B
 

(47.3a)

where γN is the nuclear magnetogyric ratio of the specified 

nucleus, an empirically determined characteristic arising from its 

internal structure (Table 47.2). For a magnetic field of magnitude 

B0 along the z-direction, the hamiltonian in eqn 47.3a becomes

� �H Iz= −γ NB0  
(47.3b)

Because the eigenvalues of the operator �Iz  are mIħ, the eigen-

values of this hamiltonian are

E mm II
= −γ NB0

The expression for the energy is often written in terms of the 

nuclear magneton, μN,

μN
p

= e

m


2  

 Nuclear magneton   (47.4b)

where mp is the mass of the proton and μN  = 5.051 × 10−2 J T−1, 

and in terms of an empirical constant called the nuclear  

g-factor, gI, when eqn 47.4a becomes

E g m gm I I II
= − =μ γ

μN
N

N

B0



Nuclear g-factors are experimentally determined dimen-

sionless quantities with values typically between –6 and +6 

(Table 47.2). Positive values of gI and γN denote a magnetic 

Energies of a nuclear 
spin in a magnetic field (47.4a)

Energies of a nuclear 
spin in a magnetic field (47.4c)

P
h
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o
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Table 47.2* Nuclear spin properties

Nuclide Natural abundance/% Spin I g-factor, gI Magnetogyric ratio,  
γN/(107 T−1 s−1)

NMR frequency 
at 1 T, ν/MHz

1n 1
2

–3.826 –18.32 29.164

1H 99.98 1
2

5.586 26.75 42.576

2H 0.02 1 0.857 4.11 6.536

13C 1.11 1
2

1.405 6.73 10.708

14N 99.64 1 0.404 1.93 3.078

* More values are given in the Resource section.

Table 47.1 Nuclear constitution and the nuclear spin quantum 
number*

Number of protons Number of neutrons I

Even Even 0

Odd Odd Integer (1, 2, 3, …)

Even Odd Half-integer 1
2

3
2

5
2

, , ,…( )
Odd Even Half-integer 1

2
3
2

5
2

, , ,…( )
* The spin of a nucleus may be different if it is in an excited state; throughout this 

Topic we deal only with the ground state of nuclei.
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47 General principles  459

moment that lies in the same direction as the spin angular 

momentum vector; negative values indicate that the mag-

netic moment and spin lie in opposite directions. A nuclear 

magnet is about 2000 times weaker than the magnet associ-

ated with electron spin.

For the remainder of our discussion of nuclear magnetic 

resonance we assume that γN is positive, as is the case for the 

majority of nuclei. In such cases, it follows from eqn 47.4 that 

states with mI < 0 lie above states with mI > 0. It follows that 

the energy separation between the lower mI = + 1
2  (α) and 

upper mI = − 1
2
 (β) states of a spin- 1

2  nucleus, a nucleus with 

I = 1
2
, is

ΔE E E= − = − −⎛
⎝⎜

⎞
⎠⎟

=− +1 2 1 2 0 0 0

1

2

1

2/ / γ γ γN N N  B B B
 

(47.5)

and resonant absorption occurs when the resonance condition 

(Fig. 47.1)

h� �= =γ γ
N

NorB
B

0
0

2π

is fulfilled. At resonance there is strong coupling between the 

spins and the radiation, and absorption occurs as the spins 

flip from the lower energy state to the upper state. The electro-

magnetic field also stimulates the spins to flip from the upper 

state to the lower state, with the emission of radiation. The net 

absorption is the difference of these two processes, as we dis-

cuss in more detail shortly.

It is sometimes useful to compare the quantum mechani-

cal and classical pictures of magnetic nuclei pictured as tiny 

bar magnets. A bar magnet in an externally applied magnetic 

field undergoes the motion called precession as it twists round 

the direction of the field (Fig. 47.2). The rate of precession νL is 

called the Larmor precession frequency:

�L
N= γ B0

2π  
 Definition  Larmor frequency of a nucleus  (47.7)

It follows that resonance absorption by spin- 1
2  nuclei occurs 

when the Larmor precession frequency is the same as the 

frequency of the applied electromagnetic field.

(b) The NMR spectrometer

In its simplest form, NMR is the study of the properties of 

molecules containing magnetic nuclei by applying a magnetic 

field and observing the frequency of the resonant electromag-

netic field. Larmor frequencies of nuclei at the fields normally 

employed (about 12 T) typically lie in the radiofrequency region 

of the electromagnetic spectrum (close to 500 MHz), so NMR 

is a radiofrequency technique. For much of our discussion we 

consider spin- 1
2  nuclei, but NMR is applicable to nuclei with any 

nonzero spin. As well as protons, which are the most common 

nuclei studied by NMR, spin- 1
2  nuclei include 13C, 19F, and 31P.

An NMR spectrometer consists of an appropriate source of 

radiofrequency radiation and a magnet that can produce a uni-

form, intense field. Most modern instruments use a supercon-

ducting magnet capable of producing fields of the order of 10 T 

and more (Fig. 47.3). The sample is rotated rapidly to average 

out magnetic inhomogeneities; however, although sample spin-

ning is essential for the investigation of small molecules, for 

large molecules it can lead to irreproducible results and is often 

Brief illustration 47.1 The resonance condition in NMR

To calculate the frequency at which radiation comes into reso-

nance with proton ( )s = 1
2

 spins in a 12.0 T magnetic field we 

use eqn 47.6 as follows:

� =
× ×

= ×
− −( . ) ( . )

.
2 6752 10 12 0

2
5 11 10

8 1 1
8

0

T s T
s

Nγ� ���� ���� ��� ��B

π
−− =1 511MHz

Self-test 47.1 Determine the resonance frequency for 31P 

nuclei, for which γ N = 1.0841 × 108 T−1 s−1, under the same 

conditions.

Answer: 207 MHz

(47.6)Spin-1/2 nuclei
Resonance 
condition

Magnetic
field off

Magnetic
field on

α,

β,

mI = +½

mI = –½

γNhB0

Figure 47.1 The nuclear spin energy levels of a spin- 12  nucleus 
with positive magnetogyric ratio (for example, 1H or 13C) in a 
magnetic field. Resonance occurs when the energy separation 
of the levels matches the energy of the photons in the 
electromagnetic field.

z

mI = +½

mI = –½

Figure 47.2 The interactions between the mI states of a spin- 1
2  

nucleus and an external magnetic field may be visualized as the 
precession of the vectors representing the angular momentum.
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460 10 Magnetic resonance

avoided. Although a superconducting magnet (Topic 39) oper-

ates at the temperature of liquid helium (4 K), the sample itself is 

normally at room temperature or held in a variable-temperature 

enclosure between, typically, –150 and +100 °C.

Modern NMR spectroscopy uses pulses of radiofrequency 

radiation. These techniques of Fourier-transform (FT) NMR 

make possible the determination of structures of very large 

molecules in solution and in solids (Topic 49).

The intensity of an NMR transition depends on a number of 

factors. We show in the following Justification that

Intensity ∝( )N Nα β− B0  
(47.8a)

where

N N
N

kTα β− ≈ γ NB0

2  
 Nuclei  Population difference  (47.8b)

with N the total number of spins (N = Nα + Nβ). It follows that 

decreasing the temperature increases the intensity by increas-

ing the population difference.

By combining eqns 47.8a and 47.8b we see that the intensity 

is proportional to B0
2 , so NMR transitions can be enhanced 

significantly by increasing the strength of the applied mag-

netic field. The use of high magnetic fields also simplifies 

the appearance of spectra (Topic 48) and so allows them 

to be interpreted more readily. We can also conclude that 

absorptions of nuclei with large magnetogyric ratios (1H, for 

instance) are more intense than those with small magneto-

gyric ratios (13C, for instance).

Brief illustration 47.2 Nuclear spin populations

For protons γ N = 2.675 × 108 T−1 s−1. Therefore, for 1 000 000 

protons in a field of 10 T at 20 °C

N N

N

α β− ≈
× × × ×− −1000000 2 675 10 1 055 108 1 1
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KK)
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��	

≈35

Even in such a strong field there is only a tiny imbalance of 

population of about 35 in a million.

Self-test 47.2 For 13C nuclei, γ N = 6.7283 × 107 T−1 s−1. Determine 

the magnetic field necessary to induce the same imbalance in 

the distribution of 13C spins at 20 °C.

Answer: 40 T, an unrealistically high field for an NMR spectrometer

Justification 47.1 Intensities in NMR spectra

As indicated in the text, at resonance both absorption and 

emission are stimulated. From the general considerations 

of transition intensities in Topic 16, we know that the rate of 

absorption of electromagnetic radiation is proportional to 

the population of the lower-energy state (Nα in the case of a 

proton NMR transition) and the rate of stimulated emission is 

proportional to the population of the upper state (Nβ). At the 

low frequencies typical of magnetic resonance, spontaneous 

emission can be neglected as it is very slow. Therefore, the net 

rate of absorption is proportional to the difference in popula-

tions, and we can write

Rate of absorption ∝ α βN N−

The intensity of absorption, the rate at which energy is 

absorbed, is proportional to the product of the rate of absorp-

tion (the rate at which photons are absorbed) and the energy 

of each photon, and the latter is proportional to the frequency 

ν of the incident radiation (through E = hν). At resonance, 

this frequency is proportional to the applied magnetic field 

(through ν = νL = γ NB0/2π), so we can write

Rate of absorption ∝ α β( )N N− B0

as in eqn 47.8a. To write an expression for the population dif-

ference, we use the Boltzmann distribution (Foundations, 

Topic 2, and Topic 51) to write the ratio of populations as

N

N kT

E
x

kT

x

β

α
= ≈ −−

= − +…−

e N

e

Nγ γ
��� 
 B B

0

1

01

Δ

/

The expansion of the exponential term is appropriate for 

ΔE kT=γ N �B0 ,  a condition usually met for nuclear spins. 

It follows that
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/
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2
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which is eqn 47.8b.

Superconducting
magnet

Probe
Computer

Preamplifier Receiver Detector Transmitter

Figure 47.3 The layout of a typical NMR spectrometer. The link 
from the transmitter to the detector indicates that the high 
frequency of the transmitter is subtracted from the high-frequency 
received signal to give a low-frequency signal for processing.
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47.2 Electron paramagnetic resonance

Electron paramagnetic resonance (EPR), or electron spin 

resonance (ESR), is the study of molecules and ions contain-

ing unpaired electrons by observing the magnetic field at which 

they come into resonance with radiation of known frequency. 

As we have done for NMR, we write expressions for the reso-

nance condition in EPR and then describe the general features 

of EPR spectrometers.

(a) The energies of electrons in magnetic fields
The spin magnetic moment of an electron, which has a spin 

quantum number s = 1
2
 (Topic 19), is proportional to its spin 

angular momentum. The spin magnetic moment and hamilto-

nian operators are, respectively,

� � � �μ = = −γ γ ⋅ee ands sH B
 

(47.9a)

where �s  is the spin angular momentum operator, and γe is the 

magnetogyric ratio of the electron:

γ e
e

e

= − g e

m2  
 Electrons  Magnetogyric ratio  (47.9b)

with ge = 2.002 319… as the g-value of the electron. Dirac’s 

relativistic theory (his modification of the Schrödinger equa-

tion to make it consistent with Einstein’s special relativity) 

gives ge = 2; the additional 0.002 319… arises from interactions 

of the electron with the electromagnetic fluctuations of the 

vacuum that surrounds the electron. The negative sign of γe 

(arising from the sign of the electron’s charge) shows that the 

orbital moment is opposite in direction to the orbital angular 

momentum vector.

For a magnetic field of magnitude B0 in the z-direction,

� �H sz= −γ eB0  
(47.10)

Because the eigenvalues of the operator �sz  are msħ with 

ms = + 1
2

 (α) and ms = − 1
2

 (β), it follows that the energies of an 

electron spin in a magnetic field are

E mm ss
= −γ eB0

and can also be expressed in terms of the Bohr magneton, μB, as

E g m
e

mm ss
= =e B B

e

μ μB0 2



where me is the mass of the electron and μB = 9.274 × 10−24JT−1. 

The Bohr magneton, a positive quantity, is often regarded as the 

fundamental quantum of magnetic moment.

In the absence of a magnetic field, the states with differ-

ent values of ms are degenerate. When a field is present, the 

degeneracy is removed: the state with ms = + 1
2
 moves up in 

energy by 1
2 0ge μBB . and the state with ms = − 1

2
 moves down by 

1
2 0ge μBB  From eqn 47.11b, the separation between the (upper) 

ms = + 1
2

 and (lower) ms = − 1
2

 levels of an electron spin in a 

magnetic field of magnitude B0 in the z-direction is

ΔE E E g g g= − = − −⎛
⎝⎜

⎞
⎠⎟

=+ −1 2 1 2 0 0 0

1

2

1

2/ / e B e B e Bμ μ μB B B
 

(47.12a)

If the sample is exposed to radiation of frequency ν, the energy 

separations come into resonance with the radiation when the 

frequency satisfies the resonance condition (Fig. 47.4)

h g� = e Bμ B0  
 Electrons  Resonance condition  (47.12b)

At resonance there is strong coupling between the electron 

spins and the radiation, and strong absorption occurs as the 

spins make the transition α ← β. As for NMR, at resonance the 

opposite transition also occurs, and the detected signal is the net 

 outcome taking into account the relative populations of the levels, 

as we explore in more detail shortly.

Energies of an electron 
spin in a magnetic field (47.11a)

Energies of an electron 
spin in a magnetic field (47.11b)

Brief illustration 47.3 The resonance condition in EPR

Magnetic fields of about 0.30 T (the value used in most com-

mercial EPR spectrometers) correspond to resonance at

� =
× × ×− −( . ) ( . ) ( . )2 0023 9 274 10 0 3024 1

0g e B

JT T
��� �� � ���� ���� ��μ B�� ��

� ��� 	��
6 626 10

8 4 10 8 4

34

9 1

.

. .

×

= × =

−

−

Js

s GHz

h

which corresponds to a wavelength of 3.6 cm.

Self-test 47.3 Determine the magnetic field for EPR transi-

tions occurring at λ = 0.88 cm.

Answer: 1.2 T

Magnetic
field off

Magnetic
field on

α,

β,

ms = +½

ms = –½

geμBB0

Figure 47.4 Electron spin levels in a magnetic field. Note that 
the β state is lower in energy than the α state (because the 
magnetogyric ratio of an electron is negative). Resonance is 
achieved when the frequency of the incident radiation matches 
the frequency corresponding to the energy separation.
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(b) The EPR spectrometer

It follows from Brief illustration 47.3 that most commercial EPR 

spectrometers operate at wavelengths of approximately 3 cm. 

Because 3 cm radiation falls in the microwave region of the 

electromagnetic spectrum, EPR is a microwave technique.

Both Fourier-transform (FT) and continuous wave (CW) 

EPR spectrometers are available. The FT-EPR instrument is 

based on the concepts developed in Topic 49 for NMR spec-

troscopy, except that pulses of microwaves are used to excite 

electron spins in the sample. The layout of the more common 

CW-EPR spectrometer is shown in Fig. 47.5. It consists of a 

microwave source (a klystron or a Gunn oscillator), a cavity in 

which the sample is inserted in a glass or quartz container, a 

microwave detector, and an electromagnet with a field that can 

be varied in the region of 0.3 T. The EPR spectrum is obtained 

by monitoring the microwave absorption as the field is changed, 

and a typical spectrum (of the benzene radical anion, C H6 6
−) is 

shown in Fig. 47.6. The peculiar appearance of the spectrum, 

which is in fact the first derivative of the absorption, arises 

from the detection technique, which is sensitive to the slope of 

the absorption curve (Fig. 47.7).

As we have indicated, the intensities of spectral lines depend 

on the difference in populations between the ground and 

excited states. For an electron, the β state lies below the α state 

in energy and, by a similar argument to that for nuclei,

N N
Ng

kTβ α− ≈ e Bμ B0

2  
 Electrons  Population difference  (47.13)

where N is the total number of spins.

Brief illustration 47.4 Electron spin populations

When 1000 electron spins are exposed to a 1.0 T magnetic field 

at 20 °C (293 K),

N N
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≈

− −

k T

There is an imbalance of populations of only about two elec-

trons in a thousand. However the imbalance is much larger for 

electron spins than for nuclear spins (Brief illustration 47.2) 

because the energy separation between the spin states of elec-

trons is larger than that for nuclear spins, even at the lower 

magnetic field strengths normally employed.

Self-test 47.4 It is common to conduct EPR experiments at very 

low temperatures. At what temperature would the imbalance 

in spin populations be 5 electrons in 100, with B0 = 0.30 T?

Answer: 4 K

Microwave
source

Detector

Sample
cavity

Electromagnet

Modulation
unit

Phase-
sensitive
detector

Figure 47.5 The layout of a continuous-wave EPR 
spectrometer. A typical magnetic field is 0.3 T, which requires 
9 GHz (3 cm) microwaves for resonance.

Field strength

Figure 47.6 The EPR spectrum of the benzene radical anion, 
C H6 6

− , in fluid solution.

Absorption, A

Slope

Slope

Field, B
Derivative
of absorption, dA/dB 

S
ig

n
al

Figure 47.7 When phase-sensitive detection is used, the signal 
is the first derivative of the absorption intensity. Note that the 
peak of the absorption corresponds to the point where the 
derivative passes through zero.
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Checklist of concepts

☐ 1. The nuclear spin quantum number, I, of a nucleus is a 

non-negative integer or half-integer.

☐ 2. Nuclei with different values of mI have different ener-

gies in the presence of a magnetic field.

☐ 3. Nuclear magnetic resonance (NMR) is the observation 

of the resonant absorption of electromagnetic radiation 

by nuclei in a magnetic field.

☐ 4. NMR spectrometers consist of a source of radiofre-

quency radiation and a magnet that provides a strong, 

uniform field.

☐ 5. The resonance absorption intensity increases with the 

strength of the applied magnetic field (as B0
2 ).

☐ 6. Electrons with different values of ms have different 

energies in the presence of a magnetic field.

☐ 7. Electron paramagnetic resonance (EPR) is the observa-

tion of the resonant absorption of electromagnetic radi-

ation by unpaired electrons in a magnetic field.

☐ 8. EPR spectrometers consist of a microwave source, a 

cavity in which the sample is inserted, a microwave 

detector, and an electromagnet.

Checklist of equations

Property Equation Comment Equation number

Nuclear magneton μN p= e m/2 47.4b

Energies of a nuclear spin in a magnetic field E m

g m

m I

I I

I
= −
= −

γ
μ

N

N

B

B
0

0

47.4c

Resonance condition (spin- 1
2

 nuclei) h� =γ NB0 γN > 0 47.6

Larmor frequency �L N /=γ B0 2π γN > 0 47.7

Population difference (nuclei) N N N kTα β− ≈ γ N /B0 2 47.8b

Magnetogyric ratio (electron) γ e e e/= −g e m2 ge = 2.002 319 47.9b

Energies of an electron spin in a magnetic field E m

g m

m s

s

s
= −
=

γ
μ
e

e B

B

B
0

0

47.11a

Bohr magneton μB e/= e m 2 47.11b

Resonance condition (electrons) h g� = e Bμ B0 47.12

Population difference (electrons) N N Ng kTβ α− ≈ e B /μ B0 2 47.13
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TOPIC 48

Features of NMR spectra

Nuclear magnetic moments interact with the local magnetic 

field. The local field may differ from the applied field because 

the latter induces electronic orbital angular momentum (that 

is, the circulation of electronic currents) which gives rise to a 

small additional magnetic field δB at the nuclei. This additional 

field is proportional to the applied field, and it is conventional 

to write

δB B= −σ 0  Definition  Shielding constant  (48.1)

where the dimensionless quantity σ is called the shielding con-

stant of the nucleus (σ is usually positive but may be negative). 

The ability of the applied field to induce an electronic current 

in the molecule, and hence affect the strength of the resulting 

local magnetic field experienced by the nucleus, depends on the 

details of the electronic structure near the magnetic nucleus 

of interest, so nuclei in different chemical groups have differ-

ent shielding constants. The calculation of reliable values of the 

shielding constant is very difficult, but trends in it are quite well 

understood and we concentrate on them.

48.1 The chemical shift

Because the total local field Bloc is

B B B Bloc 1= + = −0 0δ ( )σ
 

(48.2)

 ➤ Why do you need to know this material?
To make progress with the analysis of NMR spectra and 
extract the wealth of information they contain you need to 
understand how the appearance of a spectrum correlates 
with molecular structure.

Contents

48.1 The chemical shift 464

Brief illustration 48.1: The δ scale 465

Example 48.1: Interpreting the NMR spectrum 

of ethanol 465

48.2 The origin of shielding constants 466

(a) The local contribution 466

Example 48.2: Using the Lamb formula 467

(b) Neighbouring group contributions 467

Brief illustration 48.2: Ring currents 468

(c) The solvent contribution 469

Brief illustration 48.3: The effect of aromatic  

solvents 469

48.3 The fine structure 469

(a) The appearance of the spectrum 469

Example 48.3: Accounting for the fine structure  

in a spectrum 471

(b) The magnitudes of coupling constants 472

Brief illustration 48.4: The Karplus equation 472

(c) The origin of spin–spin coupling 472

Brief illustration 48.5: Magnetic fields from nuclei 472

48.4 Conformational conversion and exchange 
processes 474

Brief illustration 48.6: The effect of chemical  

exchange on NMR spectra 474

Checklist of concepts 475

Checklist of equations 475

 ➤ What is the key idea?
The resonance frequency of a magnetic nucleus is 
affected by its electronic environment and the presence 
of magnetic nuclei in its vicinity.

 ➤ What do you need to know already?
You need to be familiar with the general principles of 
magnetic resonance (Topic 47).
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the nuclear Larmor frequency is

�L
N loc N= = −γ γ σB B
2 2

10

π π
( )

 
(48.3)

This frequency is different for nuclei in different environments. 

Hence, different nuclei, even of the same element, come into 

resonance at different frequencies if they are in different molec-

ular environments.

The chemical shift of a nucleus is the difference between 

its resonance frequency and that of a reference standard. The 

standard for protons is the proton resonance in tetramethylsi-

lane, Si(CH3)4, commonly referred to as TMS, which bristles 

with protons and dissolves without reaction in many solutions. 

For 13C, the reference frequency is the 13C resonance in TMS, 

and for 31P it is the 31P resonance in 85 per cent H3PO4(aq). 

Other references are used for other nuclei. The separation of 

the resonance of a particular group of nuclei from the stand-

ard increases with the strength of the applied magnetic field 

because the induced field is proportional to the applied field, 

and the stronger the latter, the greater the shift.

Chemical shifts are reported on the δ scale, which is 

defined as

δ = − ×°
°

� �

�
106

 
Definition  δ scale  (48.4)

where ν° is the resonance frequency of the standard. The advan-

tage of the δ scale is that shifts reported on it are independent of 

the applied field (because both numerator and denominator are 

proportional to the applied field). The resonance frequencies 

themselves, however, do depend on the applied field through

� � �= +° ° 1 6( / )0 δ  (48.5)

The relation between δ and σ is obtained by substituting eqn 

48.3 into eqn 48.4:

δ σ σ
σ

σ σ
σ

σ σ

= − − −
−

×

= −
−

× ≈ − ×

°
°

°
°

°

( ) ( )

( )

( )

1 1

1
10

1
10 10

0 0

0

6

6 6

B B
B

The last line follows from σ ° � 1. As the shielding σ gets 

smaller, δ increases. Therefore, we speak of nuclei with large 

chemical shifts as being strongly deshielded. Some typical 

chemical shifts are given in Fig. 48.1. As can be seen from the 

illustration, the nuclei of different elements have very differ-

ent ranges of chemical shifts. The ranges exhibit the variety of 

electronic environments of the nuclei in molecules: the higher 

the atomic number of the element, the greater the number of 

electrons around the nucleus and hence the greater the range of 

the extent of shielding. By convention, NMR spectra are plotted 

with δ increasing from right to left.

Brief illustration 48.1 The δ scale

A nucleus with δ = 1.00 in a spectrometer where ν° = 500 MHz 

(a ‘500 MHz NMR spectrometer’) will have a shift relative to 

the reference equal to

� �− = × = × =° (5 MHz 1 ) 1 (5 Hz) 1 5 Hz600 0 00 00 00 00/ . .

because 1 MHz = 106 Hz. In a spectrometer operating at 

ν° = 100 MHz, the shift relative to the reference would be only 

100 Hz.

A note on good practice In much of the literature, chemi-

cal shifts are reported in parts per million, ppm, in 

recognition of the factor of 106 in the definition; this is 

unnecessary. If you see ‘δ = 10 ppm’, interpret it, and use it 

in eqn 48.5, as δ  = 10.

Self-test 48.1 What is the shift of the resonance from TMS of 

a group of nuclei with δ = 3.50 and an operating frequency of 

350 MHz?

Answer: 1.23 kHz

Relation between 
δ and σ  (48.6)

Example 48.1 Interpreting the NMR spectrum 
of ethanol

Figure 48.2 shows the NMR spectrum of ethanol. Account for 

the observed chemical shifts.

RCH3 –CH2–R–NH2–CH–RC–CH3 ArC–CH3–CO–CH3
ROH–C=CH–

ArOH
Ar–H–CHO–COOH

024681012

R3C
–

R3C
+

R–C–H
>C=C<X

–C=C– –C=C<
C–X in ArX
R–C=N–

R–COOHR–CHO
R2C=O

R=C=R

300 200 100 0

δ

δ

(a)

(b)

Figure 48.1 The range of typical chemical shifts for (a) 1H 
resonances and (b) 13C resonances.
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466 10 Magnetic resonance

48.2 The origin of shielding constants

The calculation of shielding constants is difficult, even for 

small molecules, for it requires detailed information (using the 

techniques outlined in Topics 28–30) about the distribution of 

electron density in the ground and excited states and the exci-

tation energies of the molecule. Nevertheless, considerable 

success has been achieved with small molecules such as H2O 

and CH4 and even large molecules, such as proteins, are within 

the scope of some types of calculation. However, it is easier to 

understand the different contributions to chemical shifts by 

studying the large body of empirical information now available.

The empirical approach supposes that the observed shielding 

constant is the sum of three contributions:

σ σ σ σ= + +(local) (neighbour) (solvent)
 (48.7)

The local contribution, σ(local), is essentially the contribution 

of the electrons of the atom that contains the nucleus in ques-

tion. The neighbouring group contribution, σ(neighbour), is 

the contribution from the groups of atoms that form the rest of 

the molecule. The solvent contribution, σ(solvent), is the con-

tribution from the solvent molecules.

(a) The local contribution
It is convenient to regard the local contribution to the shielding 

constant as the sum of a diamagnetic contribution, σd, and a 

paramagnetic contribution, σp:

σ σ σ(local) d p= +
 

A diamagnetic contribution to σ(local) opposes the applied 

magnetic field and shields the nucleus in question. A paramag-

netic contribution to σ(local) reinforces the applied magnetic 

field and deshields the nucleus in question. Therefore, σd > 0 

and σp < 0. The total local contribution is positive if the diamag-

netic contribution dominates, and is negative if the paramag-

netic contribution dominates.

The diamagnetic contribution arises from the ability of the 

applied field to generate a circulation of charge in the ground-

state electron distribution of the atom. The circulation gener-

ates a magnetic field that opposes the applied field and hence 

shields the nucleus. The magnitude of σd depends on the elec-

tron density close to the nucleus and can be calculated from the 

Lamb formula:1

σ μ
d

e

= e

m r

2
0

12
1

π
〈 〉

 
 Lamb formula  (48.9)

where μ0 is the vacuum permeability (a fundamental con-

stant, see inside the front cover) and r is the electron–nucleus 

distance.

1 For a derivation, see our Molecular quantum mechanics, Oxford Univer-

sity Press, Oxford (2011).

Method Consider the effect of an electron-withdrawing atom: 

it deshields strongly those protons to which it is bound, and 

has a smaller effect on distant protons.

Answer The spectrum is consistent with the following 

assignments:

The CH3 protons form one group of nuclei with δ = 1.2.

The two CH2 protons are in a different part of the 

molecule, experience a different local magnetic field, 

and resonate at δ = 3.6.

The OH proton is in another environment, and has a 

chemical shift of δ = 4.0.

The increasing value of δ (that is, the decrease in shielding) 

is consistent with the electron-withdrawing power of the O 

atom: it reduces the electron density of the OH proton most, 

and that proton is strongly deshielded. It reduces the electron 

density of the distant methyl protons least, and those nuclei 

are least deshielded.

The relative intensities of the signals are commonly repre-

sented as the height of step-like curves superimposed on the 

spectrum, as in Fig. 48.2. In ethanol the group intensities are 

in the ratio 3:2:1 because there are three CH3 protons, two CH2 

protons, and one OH proton in each molecule.

Self-test 48.2 The NMR spectrum of acetaldehyde (ethanal) has 

lines at δ = 2.20 and δ = 9.80. Which feature can be assigned to 

the CHO proton?

Answer: δ = 9.80

1.23.64.0 δ

CH3CH2OHCH3CH2OHCH3CH2OH 

Figure 48.2 The 1H-NMR spectrum of ethanol. The bold 
letters denote the protons giving rise to the resonance peak, 
and the step-like curve is the integrated signal.

Local contribution 
to the shielding 
constant

 (48.8)
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The diamagnetic contribution is the only contribution in 

closed-shell free atoms. It is also the only contribution to the 

local shielding for electron distributions that have spherical 

or cylindrical symmetry. Thus, it is the only contribution to 

the local shielding from inner cores of atoms, for cores remain 

nearly spherical even though the atom may be a component of a 

molecule and its valence electron distribution highly distorted. 

The diamagnetic contribution is broadly proportional to the 

electron density of the atom containing the nucleus of interest. 

It follows that the shielding is decreased if the electron density 

on the atom is reduced by the influence of an electronegative 

atom nearby. That reduction in shielding as the electronegativ-

ity of a neighbouring atom increases translates into an increase 

in the chemical shift δ (Fig. 48.3).

The local paramagnetic contribution, σp, arises from the abil-

ity of the applied field to force electrons to circulate through 

the molecule by making use of orbitals that are unoccupied in 

the ground state. It is zero in free atoms and around the axes of 

linear molecules (such as ethyne, HCbCH) where the electrons 

can circulate freely and a field applied along the internuclear 

axis is unable to force them into other orbitals. We can expect 

large paramagnetic contributions from small atoms (because 

the induced currents are then close to the nucleus) in molecules 

with low-lying excited states (because an applied field can then 

induce significant currents). In fact, the paramagnetic contri-

bution is the dominant local contribution for atoms other than 

hydrogen.

(b) Neighbouring group contributions
The neighbouring group contribution arises from the currents 

induced in nearby groups of atoms. Consider the influence 

of the neighbouring group X on the proton H in a molecule 

such as HeX. The applied field generates currents in the elec-

tron distribution of X and gives rise to an induced magnetic 

moment proportional to the applied field; the constant of pro-

portionality is the magnetic susceptibility, χ (chi), of the group 

X: μinduced = χB0 (Topic 39). The susceptibility is negative for a 

diamagnetic group because the induced moment is opposite to 

the direction of the applied field. The induced moment gives 

rise to a magnetic field with a component parallel to the applied 

field and at a distance r and angle θ (1) that has the form (The 

chemist’s toolkit 48.1)

Blocal
induced  cos∝ μ θ
r3

21 3( )−
 

 Local dipolar field  (48.10a)

Example 48.2 Using the Lamb formula

Calculate the shielding constant for the proton in a free 

H atom.

Method To calculate σd from the Lamb formula, calcu-

late the expectation value of 1/r for a hydrogen 1s orbital. 

Wavefunctions are given in Table 18.1.

Answer The wavefunction for a hydrogen 1s orbital is

ψ = ⎛
⎝⎜

⎞
⎠⎟

−1

0
3

1 2

0

πa
r a

/
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so, because dτ = r2dr sinθ dθdφ, the expectation value of 1/r is 

written as
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where we used the integral listed in the Resource section. 

Therefore,
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Self-test 48.3 Derive a general expression for σd that applies to 

all hydrogenic atoms.

Answer: Ze2μ0/12πmea0

2 2.5 3 3.5 4
Electronegativity of halogen, χ

I Br Cl F
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 δ

CH3CH2X

CH3CH2X

Figure 48.3 The variation of chemical shielding with 
electronegativity. The shifts for the methyl protons agree with 
the trend expected with increasing electronegativity. However, 
to emphasize that chemical shifts are subtle phenomena, 
notice that the trend for the methylene protons is opposite 
to that expected. For these protons another contribution (the 
magnetic anisotropy of CeH and CeX bonds) is dominant.
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468 10 Magnetic resonance

We see that the strength of the additional magnetic field expe-

rienced by the proton is inversely proportional to the cube of 

the distance r between H and X. If the magnetic susceptibility is 

independent of the orientation of the molecule (is ‘isotropic’), 

because 1 − 3 cos2 θ is zero when averaged over a sphere (see 

Problem 48.6) the local field averages to zero. To a good 

approximation, the shielding constant σ(neighbour) depends 

on the distance r as

σ ∝ χ χ
θ

(neighbour) ( )� −
−⎛

⎝⎜
⎞
⎠⎟⊥

1 3 2

3

cos

r
 

where χ� and χ⊥ are, respectively, the parallel and perpendicu-

lar components of the magnetic susceptibility, and θ is the angle 

between the XeH axis and the symmetry axis of the neigh-

bouring group (2). Equation 48.10 shows that the neighbour-

ing group contribution may be positive or negative according 

to the relative magnitudes of the two magnetic susceptibilities 

and the relative orientation of the nucleus with respect to X. If 

54.7° < θ < 125.3°, then 1 − 3 cos2 θ is positive, but it is negative 

otherwise (Figs 48.4 and 48.5).

θ
r

1

μinduced

 

θ
r

χ||

χ⊥

2

C

H

Neigh-
bouring 
group 
contribution

 (48.10b)

The chemist’s toolkit 48.1 Dipolar fields

Standard electromagnetic theory gives the magnetic field at a 

point r from a point magnetic dipole μ as

B = − ⋅⎛
⎝⎜

⎞
⎠⎟

μ0
3 24

3

πr r
μ μ( )r r

where μ0 is the vacuum permeability (a fundamental constant 

with the defined value 4π × 10−7 T2 J−1 m3). The electric field due 

to a point electric dipole is given by a similar expression:

E = − ⋅⎛
⎝⎜

⎞
⎠⎟

1

4

3

0
3 2πε r r

μ μ( )r r

where ε0 is the vacuum permittivity, which is related to μ0 by 

ε0 = 1/μ0c
2. The component of magnetic field in the z-direction is

Bz r

z

r
= − ⋅⎛

⎝⎜
⎞
⎠⎟

μ0
3 24

3

π
μz

r( )μ

with z = r cos θ, the z-component of the distance vector r. If the 

magnetic dipole is also parallel to the z-direction, it follows 

that

Bz
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r r
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Brief illustration 48.2 Ring currents

A special case of a neighbouring group effect is found in aro-

matic compounds. The strong anisotropy of the magnetic sus-

ceptibility of the benzene ring is ascribed to the ability of the 

field to induce a ring current, a circulation of electrons around 

the ring, when it is applied perpendicular to the molecular 

plane. Protons in the plane are deshielded (Fig. 48.6), but any 

–

–

+ +μ

Figure 48.4 A depiction of the field arising from a point 
magnetic dipole. The three shades of colour represent the 
strength of field declining with distance (as 1/r3), and each 
surface shows the angle dependence of the z-component of 
the field for each distance.

1 
– 

3 
co

s2  
θ

1

0

–2
0 ½π π

θ

Figure 48.5 The variation of the function 1 − 3 cos2 θ with the 
angle θ.
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(c) The solvent contribution

A solvent can influence the local magnetic field experienced by 

a nucleus in a variety of ways. Some of these effects arise from 

specific interactions between the solute and the solvent (such as 

hydrogen-bond formation and other forms of Lewis acid–base 

complex formation). The anisotropy of the magnetic suscepti-

bility of the solvent molecules, especially if they are aromatic, 

can also be the source of a local magnetic field. Moreover, if 

there are steric interactions that result in a loose but specific 

interaction between a solute molecule and a solvent molecule, 

then protons in the solute molecule may experience shielding 

or deshielding effects according to their location relative to the 

solvent molecule.

48.3 The fine structure

The splitting of resonances into individual lines by spin–spin 

coupling in Fig. 48.2 is called the fine structure of the spec-

trum. It arises because each magnetic nucleus may contribute 

to the local field experienced by the other nuclei and so modify 

their resonance frequencies. The strength of the interaction 

is expressed in terms of the scalar coupling constant, J, and 

reported in hertz (Hz). The scalar coupling constant is so called 

because the energy of interaction it describes is proportional 

to the scalar product of the two interacting spins: E ∝ I1⋅I2. 

As explained in Mathematical background 4, a scalar product 

depends on the angle between the two vectors, so writing the 

energy in this way is simply a way of saying that the energy of 

interaction between two spins depends on their relative ori-

entation. The constant of proportionality in this expression is 

written hJ/2 (so E = (hJ/2)I1⋅I2); because each spin angular 

momentum is proportional to , E is then proportional to hJ 

and J is a frequency (with units hertz). For nuclei that are con-

strained to align with the applied field in the z-direction, the 

only contribution to I1⋅I2 is I1zI2z, with eigenvalues m1m22, so 

in that case the energy due to spin–spin coupling is

E hJm mm m1 2 1 2=
 

 Spin–spin coupling energy  (48.11)

(a) The appearance of the spectrum

In NMR, letters far apart in the alphabet (typically A and X) 

are used to indicate nuclei with very different chemical shifts; 

letters close together (such as A and B) are used for nuclei with 

that happen to lie above or below the plane (as members of 

substituents of the ring) are shielded.

Self-test 48.4 Consider ethyne, HCb CH. Are its protons 

shielded or deshielded by currents induced by the triple bond?

Answer: Shielded

B
Ring
current

Magnetic
field

Figure 48.6 The shielding and deshielding effects of the 
ring current induced in the benzene ring by the applied 
field. Protons attached to the ring are deshielded but a 
proton attached to a substituent that projects above the 
ring is shielded.

Answer: Proton on the solute molecule coplanar  

with the benzene ring

B

Figure 48.7 An aromatic solvent (benzene here) can give 
rise to local currents that shield or deshield a proton in a 
solute molecule. In this relative orientation of the solvent 
and solute, the proton on the solute molecule is shielded.

Brief illustration 48.3 The effect of aromatic solvents

An aromatic solvent like benzene can give rise to local cur-

rents that shield or deshield a proton in a solute molecule. The 

arrangement shown in Fig. 48.7 leads to shielding of a proton 

on the solute molecule.

Self-test 48.5 Refer to Fig. 48.7 and suggest an arrangement 

that leads to deshielding of a proton on the solute molecule.
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470 10 Magnetic resonance

similar chemical shifts. We shall consider first an AX system, a 

molecule that contains two spin- 1
2
 nuclei A and X with very dif-

ferent chemical shifts in the sense that the difference in chemi-

cal shift corresponds to a frequency that is large compared to J.

For a spin- 1
2

 AX system there are four spin states: αAαX, 

αAβX, βAαX, βAβX. The energy depends on the orientation of 

the spins in the external magnetic field, and if spin–spin cou-

pling is neglected

E m m

h m h m

m mA X N A A N X X

A A X X

= − − − −
= − −

γ σ γ σ ( ) ( )1 10 0B B
� �  

(48.12a)

where νA and νX are the Larmor frequencies of A and X and mA 

and mX are their quantum numbers ( , )m mA X= ± = ±1
2

1
2

. This 

expression gives the four lines on the left of Fig. 48.8. When 

spin–spin coupling is included (by using eqn 48.11), the energy 

levels are

E h m h m hJm mm mA X A A X X A X= − − +� �
 

(48.12b)

If J > 0, a lower energy is obtained when mAmX < 0, which is 

the case if one spin is α and the other is β. A higher energy 

is obtained if both spins are α or both spins are β. The oppo-

site is true if J < 0. The resulting energy level diagram (for J > 0) 

is shown on the right of Fig. 48.8. We see that the αα and ββ 

states are both raised by 1
4

hJ  and that the αβ and βα states are 

both lowered by 1
4

hJ .

When a transition of nucleus A occurs, nucleus X remains 

unchanged. Therefore, the A resonance is a transition for which 

ΔmA = +1 and ΔmX = 0. There are two such transitions, one in 

which βA ← αA occurs when the X nucleus is α, and the other 

in which βA ← αA occurs when the X nucleus is β. They are 

shown in Fig. 48.8 and in a slightly different form in Fig. 48.9. 

The energies of the transitions are

ΔE h hJ= ±�A
1
2  

(48.13a)

Therefore, the A resonance consists of a doublet of separation J 

centred on the chemical shift of A (Fig. 48.10). Similar remarks 

apply to the X resonance, which consists of two transitions 

according to whether the A nucleus is α or β (as shown in Fig. 

48.9). The transition energies are

ΔE h hJ= ±�X
1
2  

(48.13b)

It follows that the X resonance also consists of two lines of the 

same separation J, but they are centred on the chemical shift of 

X (as shown in Fig. 48.10).

A
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X
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n
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JJ

δA δX

Figure 48.10 The effect of spin–spin coupling on an AX 
spectrum. Each resonance is split into two lines separated by J. 
The pairs of resonances are centred on the chemical shifts of 
the protons in the absence of spin–spin coupling.

No spin–spin
coupling

With
spin–spin
coupling

βAβXβAβX

βAαX
βAαX

αAαX

αAαX

αAβX
αAβX

¼hJ

¼hJ

¼hJ

¼hJ

½hνA + ½hνX 

–½hνA + ½hνX  

–½hνA – ½hνX  

½hνA – ½hνX  

E
n

er
g

y

Figure 48.8 The energy levels of an AX system. The four 
levels on the left are those of the two spins in the absence of 
spin–spin coupling. The four levels on the right show how a 
positive spin–spin coupling constant affects the energies. The 
transitions shown are for β ← α of A or X, the other nucleus (X 
or A, respectively) remaining unchanged. We have exaggerated 
the effect for clarity. In practice, the splitting caused by spin–
spin coupling is much smaller than that caused by the applied 
field.

βAαX

αAαX

αAβX

βAβX

Figure 48.9 An alternative depiction of the energy levels 
and transitions shown in Fig. 48.8. Once again, we have 
exaggerated the effect of spin–spin coupling.
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48 Features of NMR spectra  471

If there is another X nucleus in the molecule with the same 

chemical shift as the first X (giving an AX2 species), the X reso-

nance of the AX2 species is split into a doublet by A, as in the 

AX case discussed above (Fig. 48.11). The resonance of A is 

split into a doublet by one X, and each line of the doublet is 

split again by the same amount by the second X (Fig. 48.12). 

This splitting results in three lines in the intensity ratio 1:2:1 

(because the central frequency can be obtained in two ways).

3

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

Three equivalent X nuclei (an AX3 species) split the reso-

nance of A into four lines of intensity ratio 1:3:3:1 (Fig. 48.13). 

The X resonance remains a doublet as a result of the splitting 

caused by A. In general, N equivalent spin- 1
2
 nuclei split the 

resonance of a nearby spin or group of equivalent spins into 

N + 1 lines with an intensity distribution given by Pascal’s tri-

angle (3). Successive rows of this triangle are formed by adding 

together the two adjacent numbers in the line above.

Example 48.3 Accounting for the fine structure  
in a spectrum

Account for the fine structure in the NMR spectrum of the 

CeH protons of ethanol.

Method Consider how each group of equivalent protons (for 

instance, three methyl protons) split the resonances of the 

other groups of protons. There is no splitting within groups of 

equivalent protons. Each splitting pattern can be decided by 

referring to Pascal’s triangle.

Answer The three protons of the CH3 group split the reso-

nance of the CH2 protons into a 1:3:3:1 quartet with a split-

ting J. Likewise, the two protons of the CH2 group split the 

resonance of the CH3 protons into a 1:2:1 triplet with the same 

splitting J. The OH resonance is not split because the OH pro-

tons migrate rapidly from molecule to molecule (including 

molecules of impurities in the sample) and their effect aver-

ages to zero. In gaseous ethanol, where this migration does not 

occur, the OH resonance appears as a triplet, showing that the 

CH2 protons interact with the OH proton.

Self-test 48.6 What fine structure can be expected for the pro-

tons in 14
4NH+? The spin quantum number of nitrogen-14 is 1.

Answer: 1:1:1 triplet from N

δA

Figure 48.13 The origin of the 1:3:3:1 quartet in the A 
resonance of an AX3 species. The third X nucleus splits each of 
the lines shown in Fig. 48.12 for an AX2 species into a doublet, 
and the intensity distribution reflects the number of transitions 
that have the same energy.

J

δX

X resonance
in AX

X resonance
in AX2

Figure 48.11 The X resonance of an AX2 species is also a 
doublet, because the two equivalent X nuclei behave like a 
single nucleus; however, the overall absorption is twice as 
intense as that of an AX species.

δA

Figure 48.12 The origin of the 1:2:1 triplet in the A resonance of 
an AX2 species. The resonance of A is split into two by coupling 
with one X nucleus (as shown in the inset), and then each of 
those two lines is split into two by coupling to the second X 
nucleus. Because each X nucleus causes the same splitting, 
the two central transitions are coincident and give rise to an 
absorption line of double the intensity of the outer lines.
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472 10 Magnetic resonance

(b) The magnitudes of coupling constants

The scalar coupling constant of two nuclei separated by N bonds 

is denoted NJ, with subscripts for the types of nuclei involved. 

Thus, 1JCH is the coupling constant for a proton joined directly 

to a 13C atom, and 2JCH is the coupling constant when the same 

two nuclei are separated by two bonds (as in 13CeCeH). A typi-

cal value of 1JCH is in the range 120 to 250 Hz; 2JCH is between 10 

and 20 Hz. Both 3J and 4J can give detectable effects in a spec-

trum, but couplings over larger numbers of bonds can generally 

be ignored. One of the longest-range couplings that has been 

detected is 9JHH = 0.4 Hz between the CH3 and CH2 protons in 

CH3CbCeCbCeCbCeCH2OH.

As remarked (in the discussion following eqn 48.12b), the 

sign of JXY indicates whether the energy of two spins is lower 

when they are parallel (J < 0) or when they are antiparallel 

(J > 0). It is found that 1JCH is often positive, 2JHH is often nega-

tive, 3JHH is often positive, and so on. An additional point is that 

J varies with the angle between the bonds (Fig. 48.14). Thus, a 
3JHH coupling constant is often found to depend on the dihedral 

angle φ (4) according to the Karplus equation:

3
HH cos 2J A B C= + +cosφ φ

 
 Karplus equation  (48.14)

φH
H

4

with A, B, and C empirical constants with values close to +7 Hz, 

−1 Hz, and +5 Hz, respectively, for an HCCH fragment. It fol-

lows that the measurement of 3JHH in a series of related com-

pounds can be used to determine their conformations. The 

coupling constant 1JCH also depends on the hybridization of 

the C atom, as the following values indicate:

(c) The origin of spin–spin coupling
Spin–spin coupling is a very subtle phenomenon and it is better 

to treat J as an empirical parameter than to use calculated val-

ues. However, we can get some insight into its origins, if not its 

precise magnitude—or always reliably its sign—by considering 

the magnetic interactions within molecules.

A nucleus with spin projection mI gives rise to a magnetic 

field with z-component Bnuc at a distance R, where, to a good 

approximation,

Bnuc
N= − −γ μ θ 0

3
2

4
1 3

πR
mI( cos )

 
(48.15)

The angle θ is defined in 1; we saw a version of this expression 

in eqn 48.10a.

Brief illustration 48.4 The Karplus equation

The investigation of HeNeCeH couplings in polypeptides 

can help reveal their conformation. For 3JHH coupling in such 

a group, A = +5.1 Hz, B = −1.4 Hz, and C = +3.2 Hz. For a helical 

polymer, φ is close to 120°, which would give 3JHH≈ 4 Hz. For 

the sheet-like conformation, φ is close to 180°, which would 

give 3JHH ≈ 10 Hz.

Self-test 48.7 NMR experiments reveal that for HeCeCeH 

coupling in polypeptides, A = +3.5 Hz, B = −1.6 Hz, and 

Brief illustration 48.5 Magnetic fields from nuclei

The z-component of the magnetic field arising from a proton 

(mI = 1
2
) at R = 0.30 nm, with its magnetic moment parallel to 

the z-axis (θ = 0) is

Bnuc

JT T J m

N

= −
× × ×− − − −( ). ( )2 821 10 4 1026 1 7 2 1 3

0γ μ� ���� ���� � ���
π

�� ����

� �� 	�




4
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4
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Figure 48.14 The variation of the spin–spin coupling constant 
with angle predicted by the Karplus equation for an HCCH 
group and an HNCH group.

C = +4.3 Hz. In an investigation of the polypeptide flavodoxin, 

the 3JHH coupling constant for such a grouping was deter-

mined to be 2.1 Hz. Is this value consistent with a helical or 

sheet conformation?

Answer: Helical conformation
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Spin–spin coupling in molecules in solution can be explained 

in terms of the polarization mechanism, in which the inter-

action is transmitted through the bonds. The simplest case to 

consider is that of 1JXY, where X and Y are spin- 1
2
 nuclei joined 

by an electron-pair bond. The coupling mechanism depends on 

the fact that the energy depends on the relative orientation of 

the bonding electron and nuclear spins. This electron–nucleus 

coupling is magnetic in origin, and may be either a dipolar 

interaction or a Fermi contact interaction. A pictorial descrip-

tion of the latter is as follows. First, we regard the magnetic 

moment of the nucleus as arising from the circulation of a cur-

rent in a tiny loop with a radius similar to that of the nucleus 

(Fig. 48.15). Far from the nucleus the field generated by this 

loop is indistinguishable from the field generated by a point 

magnetic dipole. Close to the loop, however, the field differs 

from that of a point dipole. The magnetic interaction between 

this non-dipolar field and the electron’s magnetic moment is 

the contact interaction. The contact interaction—essentially 

the failure of the point-dipole approximation—depends on the 

very close approach of an electron to the nucleus and hence can 

occur only if the electron occupies an s orbital (which is the 

reason why 1JCH depends on the hybridization ratio). We shall 

suppose that it is energetically favourable for an electron spin 

and a nuclear spin to be antiparallel (as is the case for a proton 

and an electron in a hydrogen atom).

If the X nucleus is α, a β electron of the bonding pair will 

tend to be found nearby, because that is an energetically favour-

able arrangement (Fig. 48.16). The second electron in the bond, 

which must have α spin if the other is β (by the Pauli princi-

ple, Topic 19), will be found mainly at the far end of the bond 

because electrons tend to stay apart to reduce their mutual 

repulsion. Because it is energetically favourable for the spin 

of Y to be antiparallel to an electron spin, a Y nucleus with β 

spin has a lower energy than when it has α spin. The opposite is 

true when X is β, for now the α spin of Y has the lower energy. 

In other words, the antiparallel arrangement of nuclear spins 

lies lower in energy than the parallel arrangement as a result of 

A field of this magnitude can give rise to the splitting of 

resonance signals in solid samples. In a liquid, the angle θ 

sweeps over all values as the molecule tumbles, and the factor 

1 − 3 cos2θ averages to zero. Hence the direct dipolar interac-

tion between spins cannot account for the fine structure of the 

spectra of rapidly tumbling molecules.

Self-test 48.8 In gypsum the splitting in the H2O resonance 

can be interpreted in terms of a magnetic field of 0.715 mT 

generated by one proton and experienced by the other. 

With θ = 0, what is the separation of the protons in the H2O 

molecule?

Answer: 158 pm

FermiFermi

Pauli Pauli

X
Y

Hund

C

Figure 48.17 The polarization mechanism for 2JHH spin–spin 
coupling. The spin information is transmitted from one bond 
to the next by a version of the mechanism that accounts for the 
lower energy of electrons with parallel spins in different atomic 
orbitals (Hund’s rule of maximum multiplicity). In this case, J < 0, 
corresponding to a lower energy when the nuclear spins are 
parallel.

Figure 48.15 The origin of the Fermi contact interaction. 
From far away, the magnetic field pattern arising from a ring 
of current (representing the rotating charge of the nucleus, 
the pale grey sphere) is that of a point dipole. However, if an 
electron can sample the field close to the region indicated by 
the sphere, the field distribution differs significantly from that 
of a point dipole. For example, if the electron can penetrate the 
sphere, then the spherical average of the field it experiences is 
not zero.

Fermi Pauli Fermi

X

X

Y

Y

Figure 48.16 The polarization mechanism for spin–spin 
coupling (1JHH). The two arrangements have slightly different 
energies. In this case, J is positive, corresponding to a lower 
energy when the nuclear spins are antiparallel.
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their magnetic coupling with the bond electrons. That is, 1JCH is 

positive.

To account for the value of 2JXY, as in HeCeH, we need a 

mechanism that can transmit the spin alignments through 

the central C atom (which may be 12C, with no nuclear spin 

of its own). In this case (Fig. 48.17), an X nucleus with α spin 

polarizes the electrons in its bond, and the α electron is likely 

to be found closer to the C nucleus. The more favourable 

arrangement of two electrons on the same atom is with their 

spins parallel (Hund’s rule, Topic 19), so the more favourable 

arrangement is for the α electron of the neighbouring bond 

to be close to the C nucleus. Consequently, the β electron of 

that bond is more likely to be found close to the Y nucleus, and 

therefore that nucleus will have a lower energy if it is α. Hence, 

according to this mechanism, the lower energy will be obtained 

if the Y spin is parallel to that of X. That is, 2JHH is negative.

The coupling of nuclear spin to electron spin by the Fermi 

contact interaction is most important for proton spins, but it is 

not necessarily the most important mechanism for other nuclei. 

These nuclei may also interact by a dipolar mechanism with the 

electron magnetic moments and with their orbital motion, and 

there is no simple way of specifying whether J will be positive 

or negative.

48.4 Conformational conversion and 
exchange processes

The appearance of an NMR spectrum is changed if magnetic 

nuclei can jump rapidly between different environments. 

Consider a molecule, such as N,N-dimethylformamide, that 

can jump between conformations; in this case, the methyl shifts 

depend on whether they are cis or trans to the carbonyl group 

(Fig. 48.18). When the jumping rate is low, the spectrum shows 

two sets of lines, one each from molecules in each conforma-

tion. When the interconversion is fast, the spectrum shows 

a single line at the mean of the two chemical shifts. At inter-

mediate inversion rates, the line is very broad. This maximum 

broadening occurs when the lifetime, τ, of a conformation 

gives rise to a linewidth that is comparable to the difference 

of resonance frequencies, δν, and both broadened lines blend 

together into a very broad line. Coalescence of the two lines 

occurs when

τ = 21 2/

πδ�   
 (48.16)

A similar explanation accounts for the loss of fine struc-

ture in solvents able to exchange protons with the sample. For 

example, hydroxyl protons are able to exchange with water pro-

tons. When this chemical exchange occurs, a molecule ROH 

with an α-spin proton (we write this ROHα) rapidly converts 

to ROHβ and then perhaps to ROHα again because the protons 

provided by the solvent molecules in successive exchanges have 

random spin orientations. Therefore, instead of seeing a spec-

trum composed of contributions from both ROHα and ROHβ 

molecules (that is, a spectrum showing a doublet structure due 

to the OH proton), we see a spectrum that shows no splitting 

caused by coupling of the OH proton (as in Fig. 48.2 and as dis-

cussed in Example 48.3). The effect is observed when the life-

time of a molecule due to this chemical exchange is so short 

that the lifetime broadening is greater than the doublet split-

ting. Because this splitting is often very small (a few hertz), a 

Brief illustration 48.6 The effect of chemical exchange 
on NMR spectra

The NO group in N,N-dimethylnitrosamine, (CH3)2NeNO 

(5), rotates about the NeN bond and, as a result, the magnetic 

environments of the two CH3 groups are interchanged. The 

two CH3 resonances are separated by 390 Hz in a 600 MHz 

spectrometer. According to eqn 48.16,

τ =
×

=−
2

390
1 2

1 2

1

/

( )
.

π s
ms

It follows that the signal will collapse to a single line when the 

interconversion rate exceeds about 1/τ = 830 s−1.

5 N,N-Dimethylnitrosamine

Self-test 48.9 What would you deduce from the observa-

tion of a single line from the same molecule in a 300 MHz 

spectrometer?

Answer: Conformation lifetime less than 2.3 ms

Condition for coalescence 
of two NMR lines

H
C

N

O

Figure 48.18 When a molecule changes from one 
conformation to another, the positions of its protons are 
interchanged and the protons jump between magnetically 
distinct environments.
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48 Features of NMR spectra  475

proton must remain attached to the same molecule for longer 

than about 0.1 s for the splitting to be observable. In water, 

the exchange rate is much faster than that, so alcohols show 

no splitting from the OH protons. In dry dimethylsulfoxide 

(DMSO), the exchange rate may be slow enough for the split-

ting to be detected.

Checklist of concepts

☐ 1. The chemical shift of a nucleus is the difference 

between its resonance frequency and that of a reference 

standard.

☐ 2. The shielding constant is the sum of a local contribu-

tion, a neighbouring group contribution, and a solvent 

contribution.

☐ 3. The local contribution is the sum of a diamagnetic 

 contribution and a paramagnetic contribution.

☐ 4. The neighbouring group contribution arises from the 

currents induced in nearby groups of atoms.

☐ 5. The solvent contribution can arise from specific molec-

ular interactions between the solute and the solvent.

☐ 6. Fine structure is the splitting of resonances into indi-

vidual lines by spin–spin coupling.

☐ 7. Spin–spin coupling is expressed in terms of the spin–

spin coupling constant J and depends on the relative 

orientation of two nuclear spins.

☐ 8. The coupling constant decreases as the number of 

bonds separating two nuclei increases.

☐ 9. Spin–spin coupling can be explained in terms of the 

polarization mechanism and the Fermi contact 

interaction.

☐ 10. Coalescence of two NMR lines occurs when a confor-

mational interchange or chemical exchange of nuclei 

is fast.

Checklist of equations

Property Equation Comment Equation 
number

δ-Scale of chemical shifts δ  = {(ν − ν°)/ν°} × 106 48.4

Relation between chemical shift and shielding 
constant

δ  ≈ (σ° − σ) × 106 48.6

Local contribution to the shielding constant σ(local) = σd + σp 48.8

Lamb formula σd = (e2μ0/12πme)〈 〉1/r 48.9

Neighbouring group contribution to the 
shielding constant

σ(neighbour) ∝(χ� − χ⊥)(1 − 3 cos2 θ)/r3 The angle θ is defined in 1 48.10b

Karplus equation 3JHH = A + B cos φ + C cos 2φ A, B, and C are empirical constants 48.14

Condition for coalescence of two NMR lines τ = 21 2/ /πδ�
Conformational conversions and 

exchange processes
48.16

Atkins09819.indb   475 9/11/2013   12:10:01 PM



TOPIC 49

Pulse techniques in NMR

The common method of detecting the energy separation 

between nuclear spin states is more sophisticated than simply 

looking for the frequency at which resonance occurs. One of 

the best analogies that has been suggested to illustrate the pre-

ferred way of observing an NMR spectrum is that of detecting 

the spectrum of vibrations of a bell. We could stimulate the bell 

with a gentle vibration at a gradually increasing frequency, and 

note the frequencies at which it resonated with the stimula-

tion. A lot of time would be spent getting zero response when 

the stimulating frequency was between the bell’s vibrational 

modes. However, if we were simply to hit the bell with a ham-

mer, we would immediately obtain a clang composed of all the 

frequencies that the bell can produce. The equivalent in NMR 

is to monitor the radiation nuclear spins emit as they return 

to equilibrium after the appropriate stimulation. The result-

ing Fourier-transform NMR (FT-NMR) spectroscopy gives 

greatly increased sensitivity, so opening up much of the peri-

odic table to the technique. Moreover, multiple-pulse FT-NMR 

gives chemists unparalleled control over the information con-

tent and display of spectra.

49.1 The magnetization vector

Consider a sample composed of many identical spin- 1
2

 nuclei. 

By analogy with the discussion of angular momenta in Topic 

14, a nuclear spin can be represented by a vector of length {I(I+ 

1)}1/2 units with a component of length mI units along the z-axis. 

As the uncertainty principle does not allow us to specify the x- 

and y-components of the angular momentum, all we know is 
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 ➤ Why do you need to know this material?
To understand how nuclear magnetic resonance spectro-
s copy is used to study large molecules and even diagnose 
disease, you need to understand how spectral information 
is obtained by analysing the response of nuclei to the 
application of strong pulses of radiofrequency radiation.

 ➤ What is the key idea?
Fourier-transform NMR spectroscopy is the analysis of 
the radiation emitted by nuclear spins as they return to 
equilibrium after stimulation by one or more pulses of 
radiofrequency radiation.

 ➤ What do you need to know already?
You need to be familiar with the general principles of 
magnetic resonance (Topic 47), the features of NMR spectra 

(Topics 48), the vector model of angular momentum 
(Topic 14), the magnetic properties of molecules (Topic 
39), and Fourier transforms (Topic 40 and Mathematical 

background 6).
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49 Pulse techniques in NMR  477

that the vector lies somewhere on a cone around the z-axis. For 

I = 1
2
, the length of the vector is 1

2
1 23 /  and it makes an angle of 

55° to the z-axis (Fig. 49.1).

In the absence of a magnetic field, the sample consists of 

equal numbers of α and β nuclear spins with their vectors lying 

at random angles on the cones. These angles are unpredict-

able, and at this stage we picture the spin vectors as stationary. 

The magnetization, M, of the sample, its net nuclear magnetic 

moment, is zero (Fig. 49.2a).

Two changes occur in the magnetization when a mag-

netic field of magnitude B0 is present and aligned in the 

z-direction:

The energies of the two orientations change, the α spins 

moving to low energy and the β spins to high energy 

(provided γ N > 0).

At 10 T, the Larmor frequency for protons is 427 MHz, and in 

the vector model the individual vectors are pictured as precess-

ing at this rate (Topic 48). This motion is a pictorial representa-

tion of the difference in energy of the spin states (it is not an 

actual representation of reality but is inspired by the motion 

of a classical bar magnet in a magnetic field). As the field is 

increased, the Larmor frequency increases and the precession 

becomes faster.

The populations of the two spin states (the numbers of α 

and β spins) at thermal equilibrium change, with slightly 

more α spins than β spins (see Topic 47).

Despite its smallness, this imbalance means that there is a net 

magnetization that we can represent by a vector M pointing in 

the z-direction and with a length proportional to the popula-

tion difference (Fig. 49.2b).

(a) The effect of the radiofrequency field
Now consider the effect of a radiofrequency field circularly 

polarized in the xy-plane, so that the magnetic component of 

the electromagnetic field (the only component we need to con-

sider) is rotating around the z-direction in the same sense as 

the Larmor precession of the nuclei. The strength of the rotat-

ing magnetic field is B1.

To interpret the effects of radiofrequency pulses on the 

magnetization, it is useful to imagine stepping on to a plat-

form, a so-called rotating frame, that rotates around the direc-

tion of the applied field. Suppose we choose the frequency of 

the radiofrequency field to be equal to the Larmor frequency 

of the spins, νL = γNB0/2π; this choice is equivalent to selecting 

the resonance condition in the conventional experiment. The 

rotating magnetic field is in step with the precessing spins, and 

the nuclei experience a steady B1 field and precess about it at a 

frequency γNB1/2π (Fig. 49.3). Now suppose that the B1 field 

is applied in a pulse of duration Δτ γ= ×1
4 12π / NB . The mag-

netization tips through an angle of 1
4

2× =π π/2  (90°) in the 

(a) (b)

M
M

B1
B1

νL

ν = νL

Figure 49.3 (a) In a resonance experiment, a circularly 
polarized radiofrequency magnetic field B1 is applied in the 
xy-plane (the magnetization vector lies along the z-axis). (b) If 
we step into a frame rotating at the radiofrequency, B1 appears 
to be stationary, as does the magnetization M if the Larmor 
frequency is equal to the radiofrequency. When the two 
frequencies coincide, the magnetization vector of the sample 
rotates around the direction of the B1 field.

z

½√3
½

Figure 49.1 The vector model of angular momentum for 
a single spin- 1

2
 nucleus. The angle around the z–axis is 

indeterminate.

α

β

(a) (b)

M

Figure 49.2 The magnetization of a sample of spin- 1
2

 nuclei is 
the resultant of all their magnetic moments. (a) In the absence 
of an externally applied field, there are equal numbers of 
α and β spins at random angles around the z-axis (the field 
direction) and the magnetization is zero. (b) In the presence 
of a field, the spins precess around their cones (that is, there 
is an energy difference between the α and β states) and there 
are slightly more α spins than β spins. As a result, there is a net 
magnetization along the z-axis.
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478 10 Magnetic resonance

rotating frame and we say that we have applied a 90° pulse, or 

a ‘π/2 pulse’ (Fig. 49.4a).

Now imagine stepping out of the rotating frame. To a 

fixed external observer (the role played by a radiofrequency 

coil), the magnetization vector is rotating at the Larmor fre-

quency in the xy-plane (Fig. 49.4b). The rotating magnetiza-

tion induces in the coil a signal that oscillates at the Larmor 

frequency and that can be amplified and processed. In prac-

tice, the processing takes place after subtraction of a constant 

high-frequency component (the radiofrequency used for B1), 

so that all the signal manipulation takes place at frequencies 

of a few kilohertz.

As time passes, the individual spins move out of step (partly 

because they are precessing at slightly different rates, as we 

explain later), so the magnetization vector shrinks exponen-

tially with a time constant T2 and induces an ever weaker signal 

in the detector coil. The form of the signal that we can expect is 

therefore the oscillating-decaying free-induction decay (FID) 

shown in Fig. 49.5. The y-component of the magnetization 

 varies as

M M tty
t T( ) cos( ) /= −

0 2 2π�L e   Free-induction decay  (49.1)

We have considered the effect of a pulse applied at exactly the 

Larmor frequency. However, virtually the same effect is obtained 

off resonance, provided that the pulse is applied close to νL. If the 

difference in frequency is small compared to the inverse of the 

duration of the 90° pulse, the magnetization will end up in the xy-

plane. Note that we do not need to know the Larmor frequency 

beforehand: the short pulse is the analogue of the hammer blow 

on the bell, exciting a range of frequencies. The detected signal 

shows that a particular resonant frequency is present.

(b) Time- and frequency-domain signals
We can think of the magnetization vector of a homonuclear AX 

spin system with spin–spin coupling constant J = 0 as consisting 

of two parts, one formed by the A spins and the other by the X 

spins. When the 90° pulse is applied, both magnetization vec-

tors are rotated into the xy-plane. However, because the A and 

X nuclei precess at different frequencies, they induce two sig-

nals in the detector coils, and the overall FID curve may resem-

ble that in Fig. 49.6a. The composite FID curve is the analogue 

of the struck bell emitting a rich tone composed of all the fre-

quencies (in this case, just the two resonance frequencies of the 

uncoupled A and X nuclei) at which it can vibrate.

Brief illustration 49.1 Radiofrequency pulses

The duration of a radiofrequency pulse depends on the 

strength of the B1 field. If a 90° pulse requires 10 μs, then for 

protons

B1 8 1 1 52 2 675 10 1 0 10
5 9=

× × × ×
=− − − −

π
( . ) ( .

.
T s s)

Nγ τ
� ���� 	��� � �� 	�

�

×× −10 4 T

Self-test 49.1 How long would a 180° pulse require for protons?

Answer: 20 μs

M

M

B0

B1

Detecting
coil

νL

90° pulse

(a) (b)

Figure 49.4 (a) If the radiofrequency field is applied for a 
certain time, the magnetization vector is rotated into the 
xy-plane. (b) To an external stationary observer (the coil), the 
magnetization vector is rotating at the Larmor frequency, and 
can induce a signal in the coil.

S
ig

n
al

Time, t

Figure 49.5 A simple free-induction decay of a sample of spins 
with a single resonance frequency.

S
ig

n
al

Time, t

Frequency, ν

(a)

(b)

Figure 49.6 (a) A free-induction decay signal of a sample of AX 
species and (b) analysis into its frequency components.
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The problem we must address is how to recover the reso-

nance frequencies present in a free-induction decay. We know 

that the FID curve is a sum of decaying oscillating functions, 

so the problem is to analyse it into its components by carrying 

out a Fourier transformation (see the following Justification). 

When the signal in Fig. 49.6a is transformed in this way, we get 

the frequency-domain spectrum shown in Fig. 49.6b. One line 

represents the Larmor frequency of the A nuclei and the other 

that of the X nuclei.

The FID curve in Fig. 49.7 is obtained from a sample of 

ethanol. The frequency-domain spectrum obtained from it by 

Fourier transformation is the one discussed in Topic 48 (see 

Fig. 48.2). We can now see why the FID curve in Fig. 49.7 is so 

complex: it arises from the precession of a magnetization vector 

that is composed of eight components, each with a characteris-

tic frequency.

49.2 Spin relaxation

There are two reasons why the component of the magnetiza-

tion vector in the xy-plane shrinks. Both reflect the fact that 

the nuclear spins are not in thermal equilibrium with their 

surroundings (for then M lies parallel to z). At thermal equi-

librium the spins have a Boltzmann distribution, with more α 

spins than β spins, and lie at random orientations on their pre-

cessional cones. The return to equilibrium is the process called 

spin relaxation.

Consider the effect of a 180° pulse, which may be visualized in 

the rotating frame as a flip of the net magnetization vector from 

one direction along the z-axis (with more α spins than β spins) 

to the opposite direction (with more β spins than α spins). After 

the pulse, the populations revert to their thermal equilibrium 

values exponentially. As they do so, the z-component of mag-

netization reverts to its equilibrium value M0 with a time con-

stant called the longitudinal relaxation time, T1 (Fig. 49.8):

M Mtz
t T( ) /− ∝ −

0
1e  

Brief illustration 49.2 Fourier analysis

Fourier analysis is a common feature of most mathemati-

cal software packages, but one simple example is the Fourier 

transform of the function

S t S t t T( ) ( )cos( ) /= −0 2 2π�L e

which describes the behaviour of the FID signal in eqn 49.1. 

The result is (Problem 49.4)

I
S T

T
( )

( )

( )
�

� �
=

+ −( )
0

1 2

2
2

2
2

L π

which has the so-called ‘Lorentzian’ shape, with a maximum 

intensity at I(�L) = S(0)T2.

Self-test 49.2 What is the width at half-height, Δν1/2, of the 

Lorentzian function above?

Answer: Δν1/2= 1/πT2

Justification 49.1 Fourier transformation of the 
FID curve

The analysis of the FID curve is achieved by the standard 

mathematical technique of Fourier transformation, which is 

explained more fully in Mathematical background 6. We start 

by noting that the signal S(t) in the time domain, the total FID 

curve, is the sum (more precisely, the integral) over all the 

contributing frequencies:

S I t( ) ( )t = −

−∞

∞

∫ � ��e di2π  (49.2)

Because e2πi�t = cos(2π�t) + i sin(2π�t), this expression is a 

sum over harmonically oscillating functions, with each one 

weighted by the intensity I(�).

We need I(�), the spectrum in the frequency domain; it is 

obtained by evaluating the integral

I S t tt( ) ( )� �=
∞

∫2 2

0

Re e diπ  (49.3) Definition
Longitudinal 
relaxation 
time

(49.4)

where ‘Re’ means take the real part of the following expres-

sion. This integral gives a nonzero value if S(t) contains a 

component that matches the oscillating function e2iπ�t. The 

integration is carried out at a series of frequencies � on a com-

puter that is built into the spectrometer.

TimeS
ig

n
al

Figure 49.7 A free-induction decay signal of a sample of 
ethanol. Its Fourier transform is the frequency-domain 
spectrum shown in Fig. 48.2. The total length of the image 
corresponds to about 1 s.
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480 10 Magnetic resonance

Because this relaxation process involves giving up energy to 

the surroundings (the ‘lattice’) as β spins revert to α spins, the 

time constant T1 is also called the spin–lattice relaxation time. 

Spin–lattice relaxation is caused by local magnetic fields that 

fluctuate at a frequency close to the resonance frequency of 

the β → α transition. Such fields can arise from the tumbling 

motion of molecules in a fluid sample. If molecular tumbling 

is too slow or too fast compared to the resonance frequency, it 

will give rise to a fluctuating magnetic field with a frequency 

that is either too low or too high to stimulate a spin change 

from β to α, so T1 will be long. Only if the molecule tumbles 

at about the resonance frequency will the fluctuating magnetic 

field be able to induce spin changes effectively, and only then 

will T1 be short. The rate of molecular tumbling increases with 

temperature and with decreasing viscosity of the solvent, so 

we can expect a dependence like that shown in Fig. 49.9. The 

quantitative treatment of relaxation times depends on setting 

up models of molecular motion and using, for instance, the dif-

fusion equation (Topic 81) adapted for rotational motion.

Now consider the events following a 90° pulse. The mag-

netization vector in the xy-plane is large when the spins are 

bunched together immediately after the pulse. However, this 

orderly bunching of spins is not at equilibrium and, even if 

there were no spin–lattice relaxation, we would expect the indi-

vidual spins to spread out until they were uniformly distrib-

uted with all possible angles around the z-axis (Fig. 49.10). At 

that stage, the component of magnetization vector in the plane 

would be zero. The randomization of the spin directions occurs 

exponentially with a time constant called the transverse relaxa-

tion time, T2:

M y
t T( ) /t ∝ −e 2

 

Because the relaxation involves the relative orientation of the 

spins around their respective cones, T2 is also known as the 

spin–spin relaxation time. Any relaxation process that changes 

the balance between α and β spins will also contribute to this 

randomization, so the time constant T2 is almost always less 

than or equal to T1.

Local magnetic fields also affect spin–spin relaxation. When 

the fluctuations are slow, each molecule lingers in its local 

Definition
Transverse 
relaxation 
time

(49.5)

α

β

α

β

t t + T1

Figure 49.8 In longitudinal relaxation the spins relax back 
towards their thermal equilibrium populations. On the left 
we see the precessional cones representing spin- 1

2
 angular 

momenta, and they do not have their thermal equilibrium 
populations (there are more β spins than α spins). On the 
right, which represents the sample a long time after a time 
T1 has elapsed, the populations are those characteristic of a 
Boltzmann distribution. In actuality, T1 is the time constant for 
relaxation to the arrangement on the right and T1 ln 2 is the 
half-life of the arrangement on the left.

T1

T2

Rate of motion

R
el

ax
at

io
n

 t
im

e

Low 

temperature,

high viscosity

High 

temperature,

low viscosity

Figure 49.9 The variation of the two relaxation times with 
the rate at which the molecules move (either by tumbling or 
migrating through the solution). The horizontal axis can be 
interpreted as representing temperature or viscosity. Note that 
at rapid rates of motion, the two relaxation times coincide.

α

β

α

β

t t +T2

Figure 49.10 The transverse relaxation time, T2, is the time 
constant for the phases of the spins to become randomized 
(another condition for equilibrium) and to change from the 
orderly arrangement shown on the left to the disorderly 
arrangement on the right (long after a time T2 has elapsed). 
Note that the populations of the states remain the same; only 
the relative phase of the spins relaxes. In actuality, T2 is the time 
constant for relaxation to the arrangement on the right and T2 
ln 2 is the half-life of the arrangement on the left.
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49 Pulse techniques in NMR  481

magnetic environment and the spin orientations randomize 

quickly around their cones. If the molecules move rapidly from 

one magnetic environment to another, the effects of differences 

in local magnetic field average to zero: individual spins do not 

precess at very different rates, they can remain bunched for 

longer, and spin–spin relaxation does not take place as quickly. 

In other words, slow molecular motion corresponds to short T2 

and fast motion corresponds to long T2 (as shown in Fig. 49.9). 

Calculations show that, when the motion is fast, the main rand-

omizing effect arises from β → α transitions rather than differ-

ent precession rates on the cones, and then T2 ≈ T1.

If the y-component of magnetization decays with a time 

constant T2, the spectral line is broadened (Fig. 49.11), and its 

width at half-height becomes (see Self-test 49.2)

Δ�1 2
2

1
/ =

πT
  Width at half-height of an NMR line  (49.6)

Typical values of T2 in proton NMR are of the order of seconds, 

so linewidths of around 0.1 Hz can be anticipated, in broad 

agreement with observation.

So far, we have assumed that the equipment, and in particu-

lar the magnet, is perfect, and that the differences in Larmor 

frequencies arise solely from interactions within the sample. In 

practice, the magnet is not perfect, and the field is different at 

different locations in the sample. The inhomogeneity broadens 

the resonance, and in most cases this inhomogeneous broad-

ening dominates the broadening we have discussed so far. It 

is common to express the extent of inhomogeneous broaden-

ing in terms of an effective transverse relaxation time, T2
∗ , by 

using a relation like eqn 49.6, but writing

T2
1 2

1∗ =
πΔ� /

  Effective transverse relaxation time  (49.7)

where Δ�1/2 is the observed width at half-height of a line with a 

Lorentzian shape of the form I ∝ 1/(1+ �2).

49.3 The nuclear Overhauser effect

One advantage of protons in NMR is their high magnetogyric 

ratio, which results in relatively large Boltzmann population 

differences and strong coupling to the radiofrequency field, 

and hence greater resonance intensities than for most other 

nuclei. In the steady-state nuclear Overhauser effect (NOE), 

spin relaxation processes involving internuclear dipole–dipole 

interactions are used to transfer this population advantage to 

another nucleus (such as 13C or another proton), so that the 

latter’s resonances are modified. In a dipole–dipole interaction 

between two nuclei, one nucleus influences the behaviour of 

another nucleus in much the same way that the orientation of a 

bar magnet is influenced by the presence of another bar magnet 

nearby.

To understand the effect, consider the populations of the 

four levels of a homonuclear (for instance, proton) AX system; 

these levels were shown in Fig. 48.8. At thermal equilibrium, 

the population of the αAαX level is the greatest and that of 

the βAβX level is the least; the other two levels have the same 

energy and an intermediate population. The thermal equilib-

rium absorption intensities reflect these populations, as shown 

in Fig. 49.12. Now consider the combined effect of spin relaxa-

tion and keeping the X spins saturated. When we saturate 

the X transition, the populations of the X levels are equalized 

( )N Nα β=
x x

 and all transitions involving αX ↔ βX spin flips are 

no longer observed. At this stage there is no change in the pop-

ulations of the A levels. If that were all there were to happen, 

all we would see would be the loss of the X resonance and no 

effect on the A resonance.

Now consider the effect of spin relaxation. Relaxation 

can occur in a variety of ways if there is a dipolar interaction 

between the A and X spins. One possibility is for the magnetic 

field acting between the two spins to cause them both to flip 

Brief illustration 49.3 Inhomogeneous broadening

Consider a line in a spectrum with a width of 10 Hz. It follows 

from eqn 49.7 that the effective transverse relaxation time is

T2 1

1

10
32∗ =

×
=−π ( )s

ms

Self-test 49.3 Name two processes that could contribute to 

further broadening of the NMR line.
Answer: Conformational conversion or  

chemical exchange (see Topic 48)

Δν1/2 = 1/πT2

0
Frequency offset, ν – ν0

0

0.2

0.4

0.6

0.8

1
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n
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ei

g
h

t

Figure 49.11 A Lorentzian absorption line. The width at half-
height is inversely proportional to the parameter T2 and the 
longer the transverse relaxation time, the narrower the line.
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482 10 Magnetic resonance

simultaneously from β to α, so the αAαX and βAβX states regain 

their thermal equilibrium populations. However, the popu-

lations of the αAβX and βAαX levels remain unchanged at the 

values characteristic of saturation. As we see from Fig. 49.13, 

the population difference between the states joined by transi-

tions of A is now greater than at equilibrium, so the resonance 

absorption is enhanced. Another possibility is for the dipolar 

interaction between the two spins to cause αA to flip to βA and 

simultaneously βX to flip to αX (or vice versa). This transition 

equilibrates the populations of αAβX and βAαX but leaves the 

αAαX and βAβX populations unchanged. Now we see from 

the illustration that the population differences in the states 

involved in the A transitions are decreased, so the resonance 

absorption is diminished.

Which effect wins? Does the NOE enhance the A absorp-

tion or does it diminish it? As in the discussion of relaxation 

times in Section 49.2, the efficiency of the intensity-enhancing 

βAβX ↔ αAαX relaxation is high if the dipole field oscillates at a 

frequency close to the transition frequency, which in this case 

is about 2�; likewise, the efficiency of the intensity-diminishing 

αAβX ↔ βAαX relaxation is high if the dipole field is stationary 

(as there is no frequency difference between the initial and final 

states). A large molecule rotates so slowly that there is very little 

motion at 2�, so we expect an intensity decrease (Fig. 49.14). A 

small molecule rotating rapidly can be expected to have substan-

tial motion at 2�, and a consequent enhancement of the signal. 

In practice, the enhancement lies somewhere between the two 

extremes and is reported in terms of the parameter η (eta), where

η = −I I

I
A A

A

°

°   NOE enhancement parameter  (49.8)

Here IA
°  and IA are the intensities of the NMR signals due to 

nucleus A before and after application of the long (> T1) radio-

frequency pulse that saturates transitions due to the X nucleus. 

When A and X are nuclei of the same species, such as pro-

tons, η lies between –1 (diminution) and + 1
2  (enhancement). 

However, η also depends on the values of the magnetogyric 

A X
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E
n

er
g

y

αAαX

βAαX

βAβX

αAβX

Figure 49.12 The energy levels of an AX system and an 
indication of their relative populations. Each green square 
above the line represents an excess population and each white 
square below the line represents a population deficit. The 
transitions of A and X are marked.
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Figure 49.13 (a) When the X transition is saturated, the 
populations of its two states are equalized and the population 
excess and deficit become as shown (using the same symbols 
as in Fig. 49.12). (b) Dipole − dipole relaxation relaxes the 
populations of the highest and lowest states, and they regain 
their original populations. (c) The A transitions reflect the 
difference in populations resulting from the preceding changes, 
and are enhanced compared with those shown in Fig. 49.12.
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Figure 49.14 (a) When the X transition is saturated, just as 
in Fig. 49.13 the populations of its two states are equalized 
and the population excess and deficit become as shown. 
(b) Dipole–dipole relaxation relaxes the populations of the two 
intermediate states, and they regain their original populations. 
(c) The A transitions reflect the difference in populations 
resulting from the preceding changes, and are diminished 
compared with those shown in Fig. 49.12.
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ratios of A and X. In the case of maximal enhancement it is pos-

sible to show that

η γ
γ

= X

A2
 (49.9)

where γA and γX are the magnetogyric ratios of nuclei A and X, 

respectively.

The NOE is also used to determine interproton distances. 

The Overhauser enhancement of a proton A generated by satu-

rating a spin X depends on the fraction of A’s spin–lattice relax-

ation that is caused by its dipolar interaction with X. Because 

the dipolar field is proportional to r −3, where r is the internu-

clear distance, and the relaxation effect is proportional to the 

square of the field, and therefore to r −6, the NOE may be used to 

determine the geometries of molecules in solution. The deter-

mination of the structure of a small protein in solution involves 

the use of several hundred NOE measurements, effectively cast-

ing a net over the protons present. The enormous importance 

of this procedure is that we can determine the conformation of 

biological macromolecules in an aqueous environment and do 

not need to try to make the single crystals that are essential for 

an X-ray diffraction investigation (Topic 37).

49.4 Two-dimensional NMR

An NMR spectrum contains a great deal of information and, if 

many protons are present, is very complex when the fine struc-

tures of different groups of lines overlap. The complexity would 

be reduced if we could use two axes to display the data, with 

resonances belonging to different groups lying at different loca-

tions on the second axis. This separation is essentially what is 

achieved in two-dimensional NMR.

Much modern NMR work makes use of correlation spec-

troscopy (COSY), in which a clever choice of pulses and Fourier 

transformation techniques makes it possible to determine all 

spin–spin couplings in a molecule. A typical outcome for an AX 

system is shown in Fig. 49.15. The diagram shows contours of 

equal signal intensity on a plot of intensity against the frequency 

coordinates �1 and �2. The diagonal peaks are signals centred on 

(δA,δA) and (δX,δX) and lie along the diagonal where �1 = �2. That 

is, the spectrum along the diagonal is equivalent to the one-

dimensional spectrum obtained with the conventional NMR 

technique (as in Fig. 48.10). The cross-peaks (or off-diagonal 

peaks) are signals centred on (δA,δX) and (δX,δA) and owe their 

existence to the coupling between the A and X nuclei.

Although information from two-dimensional NMR spec-

troscopy is trivial in an AX system, it can be of enormous help 

in the interpretation of more complex spectra, leading to a map 

of the couplings between spins and to the determination of the 

bonding network in complex molecules. Indeed, the spectrum 

of a synthetic or biological polymer that would be impossible 

to interpret in one-dimensional NMR can often be interpreted 

reasonably rapidly by two-dimensional NMR.

Brief illustration 49.4 NOE enhancement

From eqn 49.9 and the data in Table 47.2, the NOE enhance-

ment parameter for 13C close to a saturated proton is

η

γ

γ

=
×

× ×

− −

− −

2 675 10

2 6 73 10

8 1 1

7 1 1

1

13

.

( . )

T s

T s

H

C

� ��� ���

� ���� 	���
==1 99.

which shows that an enhancement of about a factor of 2 can 

be achieved.

Self-test 49.4 Interpret the following features of the NMR 

spectra of a protein: (a) saturation of a proton resonance 

assigned to the side chain of a methionine residue changes the 

intensities of proton resonances assigned to the side chains of 

a tryptophan and a tyrosine residue; (b) saturation of proton 

resonances assigned to the tryptophan residue did not affect 

the spectrum of the tyrosine residue.

Answer: The tryptophan and tyrosine residues are close  

to the methionine residue, but are far from each other

δ

δ

Figure 49.15 An idealization of the COSY spectrum of an AX 
spin system.

Example 49.1 Interpreting a two-dimensional NMR 
spectrum

Figure 49.16 is a portion of the COSY spectrum of the amino 

acid isoleucine (1), showing the resonances associated with the 

protons bound to the carbon atoms.

O

OH

NH2

ab

c

d

e
1  Isoleucine
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We have seen that the nuclear Overhauser effect can pro-

vide information about internuclear distances through analy-

sis of enhancement patterns in the NMR spectrum before and 

after saturation of selected resonances. In nuclear Overhauser 

effect spectroscopy (NOESY) a map of all possible NOE inter-

actions is obtained by again using a proper choice of radio-

frequency pulses and Fourier transformation techniques. Like 

a COSY spectrum, a NOESY spectrum consists of a series of 

diagonal peaks that correspond to the one-dimensional NMR 

spectrum of the sample. The off-diagonal peaks indicate which 

nuclei are close enough to each other to give rise to a nuclear 

Overhauser effect. NOESY data reveal internuclear distances 

up to about 0.5 nm.

49.5 Solid-state NMR

The principal difficulty with the application of NMR to sol-

ids is the low resolution characteristic of solid samples. 

Nevertheless, there are good reasons for seeking to overcome 

these difficulties. They include the possibility that a com-

pound of interest is unstable in solution or that it is insolu-

ble, so conventional solution NMR cannot be employed. 

Moreover, many species, such as polymers and nanomateri-

als, are intrinsically interesting as solids, and it is important to 

determine their structures and dynamics when X-ray diffrac-

tion techniques fail.

There are three principal contributions to the linewidths of 

solids. One is the direct magnetic dipolar interaction between 

nuclear spins. As we saw in the discussion of spin–spin cou-

pling, a nuclear magnetic moment will give rise to a local 

magnetic field, which points in different directions at different 

locations around the nucleus. If we are interested only in the 

component parallel to the direction of the applied magnetic 

field (because only this component has a significant effect), 

then, provided certain subtle effects arising from transforma-

tion from the static to the rotating frame are neglected, we can 

use a classical expression in The chemist's toolkit 48.1 to write 

the magnitude of the local magnetic field as

Bloc
N= − −γ μ θ 0

3
2

4
1 3

m

R
I

π
( cos )  (49.10)

Unlike in solution, in a solid this field is not motionally aver-

aged to zero. Many nuclei may contribute to the total local field 

experienced by a nucleus of interest, and different nuclei in a 

sample may experience a wide range of fields. Typical dipole 

fields are of the order of 1 mT, which corresponds to splittings 

and linewidths of the order of 10 kHz.

Method From the molecular structure, we expect that: (i) the 

CaeH proton is coupled only to the Cb eH proton; (ii) the 

CbeH protons are coupled to the CaeH, CceH, and CdeH 

protons; and (iii) the inequivalent CdeH protons are coupled to 

the CbeH and CeeH protons.

Answer We note that:

The resonance with δ  = 3.6 shares a cross-peak with 

only one other resonance at δ  = 1.9, which in turn 

shares cross-peaks with resonances at δ  = 1.4, 1.2, and 

0.9. We conclude that the resonances at δ  = 3.6 and 1.9 

correspond to the CaeH and CbeH protons, 

respectively.

The proton with resonance at δ  = 0.8 is not coupled to 

the CbeH protons, so we assign the resonance at 

δ  = 0.8 to the CeeH protons.

The resonances at δ  = 1.4 and 1.2 do not share  

cross-peaks with the resonance at δ =0.9.

In the light of the expected couplings, we assign the 

resonance at δ  = 0.9 to the CceH protons and the 

resonances at δ  = 1.4 and 1.2 to the inequivalent CdeH 

protons.

Self-test 49.5 The proton chemical shifts for the NH, CαH, 

and CβH groups of alanine (H2NCH(CH3)COOH) are 8.25, 

4.35, and 1.39, respectively. Describe the COSY spectrum of 

alanine between δ  = 1.00 and 8.50.

Answer: Only the NH and CαH protons and the CαH and CβH protons 

are expected to show coupling, so the spectrum has only two off-diagonal 

peaks, one at (8.25, 4.35) and the other at (4.35, 1.39)

4
4

3

3

2

2

1

1

δ

δ

Figure 49.16 Proton COSY spectrum of isoleucine. (Example 
49.1 and the corresponding spectrum are adapted from K.E. 
van Holde, et al., Principles of physical biochemistry, Prentice 
Hall (1998).)
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A second source of linewidth is the anisotropy of the chemi-

cal shift. Chemical shifts arise from the ability of the applied 

field to generate electron currents in molecules. In general, this 

ability depends on the orientation of the molecule relative to 

the applied field. In solution, when the molecule is tumbling 

rapidly, only the average value of the chemical shift is relevant. 

However, the anisotropy is not averaged to zero for stationary 

molecules in a solid, and molecules in different orientations 

have resonances at different frequencies. The chemical-shift 

anisotropy also varies with the angle between the applied field 

and the principal axis of the molecule, as 1 – 3 cos2 θ.

The third contribution is the electric quadrupole interaction. 

Nuclei with I > 1
2

 have a distribution of charge that gives rise to 

an electric quadrupole moment, a measure of the non-spherical 

distribution of charge over the nucleus (for instance, the posi-

tive charge may be concentrated around the equator or at the 

poles). An electric quadrupole interacts with an electric field 

gradient, such as may arise from a non-spherical distribution 

of charge around the nucleus. This interaction also varies as  

1 – 3 cos2 θ.

Fortunately, there are techniques available for reducing the 

linewidths of solid samples. One technique, magic-angle spin-

ning (MAS), takes note of the 1 – 3 cos2θ dependence of the 

dipole–dipole interaction, the chemical shift anisotropy, and 

the electric quadrupole interaction. The ‘magic angle’ is the 

angle at which 1 – 3 cos2θ  =  0, and corresponds to 54.74°. In 

the technique, the sample is spun at high speed at the magic 

angle to the applied field (Fig. 49.17). All the dipolar interac-

tions and the anisotropies average to the value they would have 

at the magic angle, but at that angle they are zero. The difficulty 

with MAS is that the spinning frequency must not be less than 

the width of the spectrum, which is of the order of kilohertz. 

However, gas-driven sample spinners that can be rotated at 

25 kHz or higher frequencies are now routinely available, and a 

considerable body of work has been done.

Pulsed techniques similar to those described in the previous 

section may also be used to reduce linewidths. Elaborate pulse 

sequences have also been devised that reduce linewidths by 

averaging procedures that make use of twisting the magnetiza-

tion vector through a series of angles.

Brief illustration 49.5 Dipolar fields in solids

When the angle θ can vary only between 0 and θmax, eqn 49.10 

becomes

Bloc
N

max max= +γ μ θθ 0
3

2

4

m

R
I

π
(cos cos )

When θmax = 30° and R = 160 pm, the local field generated by a 

proton is
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Self-test 49.6 Calculate the distance at which the local field 

from a 13C nucleus is 0.50 mT, with θmax = 40°.

Answer: R = 99 pm

Checklist of concepts

☐ 1. Free-induction decay (FID) is the decay of the magnet-

ization after the application of a radiofrequency pulse.

☐ 2. Fourier transformation of the FID curve gives the NMR 

spectrum.

☐ 3. During longitudinal (or spin–lattice) relaxation, β 

spins revert to α spins.

☐ 4. Transverse (or spin–spin) relaxation is the randomiza-

tion of spin directions around the z-axis.

Magnetic field

54.74°

Figure 49.17 In magic-angle spinning, the sample spins at 
54.74° (that is, arccos 1/31/2) to the applied magnetic field. Rapid 
motion at this angle averages dipole − dipole interactions and 
chemical-shift anisotropies to zero.
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☐ 5. The nuclear Overhauser effect is the modification 

of the intensity of one resonance by the saturation of 

another.

☐ 6. In two-dimensional NMR, spectra are displayed in 

two axes, with resonances belonging to different groups 

lying at different locations on the second axis.

☐ 7. Magic-angle spinning (MAS) is technique in which the 

NMR linewidths in a solid sample are reduced by spin-

ning at an angle of 54.74° to the applied magnetic field.

Checklist of equations
Property Equation Comment Equation number

Free-induction decay M M tty
t T( ) cos( ) /= −

0 2 2π�L e T2 is the transverse relaxation time 49.1

Longitudinal relaxation M Mtz
t T( ) /− ∝ −

0
1e T1 is the spin–lattice relaxation time 49.4

Transverse relaxation M y
t T( ) /t ∝ −e 2 49.5

Width at half-height of an NMR line Δ�1/2 = 1/πT2 Inhomogeneous broadening is treated by using T2
∗ 49.6

NOE enhancement parameter η = −( )/AI I IA A
° ° Definition 49.8
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TOPIC 50

Electron paramagnetic resonance

Electron paramagnetic resonance (EPR), which is also known 

as electron spin resonance (ESR), is used to study radicals 

formed during chemical reactions or by radiation, radicals that 

act as probes of biological structure, many d-metal complexes, 

and molecules in triplet states (such as those involved in phos-

phorescence, Topic 46). The sample may be a gas, a liquid, or a 

solid, but the free rotation of molecules in the gas phase gives 

rise to complications.

50.1 The g-value

The resonance frequency for a transition between the ms = − 1
2
 

and the ms = + 1
2  levels of an electron is

h g� = e Bμ B0  Free electron  Resonance condition  (50.1)

where ge ≈ 2.0023 (Topic 47). The magnetic moment of an 

unpaired electron in a radical also interacts with an external 

field, but the field it experiences differs from the applied field 

due to the presence of local magnetic fields arising from elec-

tron currents induced in the molecular framework. This differ-

ence is taken into account by replacing ge by g and expressing 

the resonance condition as

h g� = μBB0    EPR resonance condition  (50.2)

where g is the g-value of the radical.

Contents

50.1 The g-value 487

Brief illustration 50.1: The g-value of a radical 487

50.2 Hyperfine structure 488

(a) The effects of nuclear spin 488

Example 50.1: Predicting the hyperfine structure 

of an EPR spectrum 489

(b) The McConnell equation 490

Brief illustration 50.2: The McConnell equation 490

(c) The origin of the hyperfine interaction 490

Brief illustration 50.3: The composition of a  

molecular orbital from analysis of the hyperfine 

structure 491

Checklist of concepts 491

Checklist of equations 491

 ➤ Why do you need to know this material?
Some chemical reactions generate intermediates or 
products containing unpaired electrons, and you need to 
know how to characterize the structures of such species 
with special spectroscopic techniques.

 ➤ What is the key idea?
The electron paramagnetic resonance spectrum of a 
radical arises from the ability of the applied magnetic 
field to induce local electron currents and the magnetic 
interaction between the unpaired electron and nuclei 
with spin.

 ➤ What do you need to know already?
You need to be familiar with the concepts of electron spin 
(Topic 19), the general principles of magnetic resonance 
(Topic 47), and the magnetic properties of molecules 
(Topic 39). The discussion refers to spin–orbit coupling 
in atoms (Topic 21) and the Fermi contact interaction in 
molecules (Topic 48).

Brief illustration 50.1 The g-value of a radical

The centre of the EPR spectrum of the methyl radical occurred 

at 329.40 mT in a spectrometer operating at 9.2330 GHz (radia-

tion belonging to the X band of the microwave region). Its 

g-value is therefore

g

h

=
× × ×− −( . ) ( . )

( .
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9 27

34 9 1Js s
� ���� ���� � ��� ����

440 10 0 329 40
2 0027

24 1

0

× ×
=− −JT T

B

) ( . )
.

μ
� ���� 	��� � �� 	�

B

Atkins09819.indb   487 9/11/2013   12:37:02 PM



488 10 Magnetic resonance

The g-value is related to the ease with which the applied field 

can stir up currents through the molecular framework, and the 

strength of the magnetic field the currents generate. Therefore, 

the g-value gives some information about electronic structure 

and plays a similar role in EPR to that played by shielding con-

stants in NMR.

Two factors are responsible for the difference of the g-value 

from ge. Electrons migrate through the molecular framework 

by making use of excited states (Fig. 50.1). This circulation gives 

rise to a local magnetic field that adds to the applied field. The 

extent to which these currents are induced is inversely propor-

tional to the separation of energy levels, ΔE, in the radical or 

complex. Secondly, the strength of the field experienced by the 

electron spin as a result of these electronic currents is propor-

tional to the spin–orbit coupling constant, ξ (Topic 21). We can 

conclude that the g-value differs from ge by an amount that is 

proportional to ξ/ΔE. This proportionality is widely observed. 

Many organic radicals, for which ΔE is large and ξ (for carbon) 

is small, have g-values close to 2.0027, not far removed from 

ge itself. Inorganic radicals, which commonly are built from 

heavier atoms and therefore have larger spin–orbit coupling 

constants, have g-values typically in the range 1.9 to 2.1. The 

g-values of paramagnetic d-metal complexes often differ con-

siderably from ge, varying from 0 to 6, because in them ΔE is 

small on account of the small splitting of d orbitals brought 

about by interactions with ligands (Topic 45).

The g-value is anisotropic: that is, its magnitude depends on 

the orientation of the radical with respect to the applied field. 

The anisotropy arises from the fact that the extent to which an 

applied field induces currents in the molecule, and therefore the 

magnitude of the local field, depends on the relative orientation 

of the molecules and the field. In solution, when the molecule 

is tumbling rapidly, only the average value of the g-value is 

observed. Therefore, anisotropy of the g-value is observed only 

for radicals trapped in solids.

50.2 Hyperfine structure

The most important feature of an EPR spectrum is its hyper-

fine structure, the splitting of individual resonance lines into 

components. In general in spectroscopy, the term ‘hyperfine 

structure’ means the structure of a spectrum that can be traced 

to interactions of the electrons with nuclei other than as a result 

of the latter’s point electric charge. The source of the hyperfine 

structure in EPR is the magnetic interaction between the elec-

tron spin and the magnetic dipole moments of the nuclei pre-

sent in the radical which give rise to local magnetic fields.

(a) The effects of nuclear spin
Consider the effect on the EPR spectrum of a single H nucleus 

located somewhere in a radical. The proton spin is a source of 

magnetic field and, depending on the orientation of the nuclear 

spin, the field it generates adds to or subtracts from the applied 

field. The total local field is therefore

B Bloc = 0
1
2

+ = ±am mI I  
(50.3)

where a is the hyperfine coupling constant. Half the radicals in 

a sample have mI = + 1
2

, so half resonate when the applied field 

satisfies the condition

h g a
h

g
a�

�= +( ) = −μ
μB

B

or  B B0
1
2 0

1
2

,

 

(50.4a)

The other half (which have mI = − 1
2
) resonate when

h g a
h

g
a�

�= −( ) = +μ
μB

B

or B B0
1
2 0

1
2

,

 

(50.4b)

Therefore, instead of a single line, the spectrum shows two lines 

of half the original intensity separated by a and centred on the 

field determined by g (Fig. 50.2).

If the radical contains an 14N atom (I = 1), its EPR spectrum 

consists of three lines of equal intensity, because the 14N nucleus 

has three possible spin orientations, and each spin orientation 

is possessed by one-third of all the radicals in the sample. In 

general, a spin-I nucleus splits the spectrum into 2I +1 hyper-

fine lines of equal intensity.

When there are several magnetic nuclei present in the radi-

cal, each one contributes to the hyperfine structure. In the case 

of equivalent protons (for example, the two CH2 protons in the 

Self-test 50.1 At what magnetic field would the methyl radi-

cal come into resonance in a spectrometer operating at 

34.000 GHz (radiation belonging to the Q band of the micro-

wave region)?

Answer: 1.213 T

Figure 50.1 An applied magnetic field can induce circulation 
of electrons that makes use of excited-state orbitals (shown 
with a white line).
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50 Electron paramagnetic resonance  489

radical CH3CH2) some of the hyperfine lines are coincident. If 

the radical contains N equivalent protons, then there are N + 1 

hyperfine lines with an intensity distribution given by Pascal’s 

triangle (Topic 48, reproduced here as 1). The spectrum of the 

benzene radical anion in Fig. 50.3, which has seven lines with 

intensity ratio 1:6:15:20:15:6:1, is consistent with a radical con-

taining six equivalent protons. More generally, if the radical 

contains N equivalent nuclei with spin quantum number I, then 

there are 2NI + 1 hyperfine lines with an intensity distribution 

based on a modified version of Pascal’s triangle, as shown in 

Example 50.1.

1

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

β
α

No hyperfine splitting
Hyperfine splitting
due to one proton

αN

αN

βN

βN

hν

hν

Figure 50.2 The hyperfine interaction between an electron 
and a spin- 1

2
 nucleus results in four energy levels in place of the 

original two. As a result, the spectrum consists of two lines (of 
equal intensity) instead of one. The intensity distribution can 
be summarized by a simple stick diagram. The diagonal lines 
show the energies of the states as the applied field is increased, 
and resonance occurs when the separation of states matches 
the fixed energy of the microwave photon.

Field strength

a

Figure 50.3 The EPR spectrum of the benzene radical anion, 
C H6 6

− , in fluid solution, with a the hyperfine splitting of the 
spectrum. The centre of the spectrum is determined by the 
g-value of the radical.

Example 50.1 Predicting the hyperfine structure 
of an EPR spectrum

A radical contains one 14N nucleus (I = 1) with hyperfine con-

stant 1.61 mT and two equivalent protons ( )I = 1
2

 with hyper-

fine constant 0.35 mT. Predict the form of the EPR spectrum.

Method Consider the hyperfine structure that arises from 

each type of nucleus or group of equivalent nuclei in succes-

sion. So, split a line with one nucleus, then each of those lines 

is split by a second nucleus (or group of nuclei), and so on. 

It is best to start with the nucleus with the largest hyperfine 

splitting; however, any choice could be made, and the order 

in which nuclei are considered does not affect the conclusion.

Answer The 14N nucleus gives three hyperfine lines of equal 

intensity separated by 1.61 mT. Each line is split into doublets 

of spacing 0.35 mT by the first proton, and each line of these 

doublets is split into doublets with the same 0.35 mT splitting 

(Fig. 50.4). The central lines of each split doublet coincide, so 

the proton splitting gives 1:2:1 triplets of internal splitting 

0.35 mT. Therefore, the spectrum consists of three equivalent 

1:2:1 triplets.

Self-test 50.2 Predict the form of the EPR spectrum of a radi-

cal containing three equivalent 14N nuclei.

Answer: See Fig. 50.5

1.61 mT
0.35 mT

1 : 2 : 1 1 : 2 : 1

Figure 50.4 The analysis of the hyperfine structure 
of radicals containing one 14N nucleus (I = 1) and two 
equivalent protons.

1 3 6 7 6 3 1

Figure 50.5 The analysis of the hyperfine structure of radicals 
containing three equivalent 14N nuclei.
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(b) The McConnell equation

The hyperfine structure of an EPR spectrum is a kind of fin-

gerprint that helps to identify the radicals present in a sample. 

Moreover, because the magnitude of the splitting depends on 

the distribution of the unpaired electron in the vicinity of the 

magnetic nuclei, the spectrum can be used to map the molecu-

lar orbital occupied by the unpaired electron. For example, 

because the hyperfine splitting in C H6 6
−  is 0.375 mT, and one 

proton is close to a C atom that has one-sixth the unpaired 

electron spin density (because the electron is spread uniformly 

around the ring), the hyperfine splitting caused by a proton in 

the electron spin entirely confined to a single adjacent C atom 

should be 6 × 0.375 mT = 2.25 mT. If in another aromatic radical 

we find a hyperfine splitting constant a, then the spin density, 

ρ, the probability that an unpaired electron is on the atom, can 

be calculated from the McConnell equation:

a Q= ρ
   McConnell equation  (50.5)

with Q = 2.25 mT. In this equation, ρ is the spin density on a C 

atom and a is the hyperfine splitting observed for the H atom to 

which it is attached.

(c) The origin of the hyperfine interaction

The hyperfine interaction is an interaction between the mag-

netic moments of the unpaired electron and the nuclei. There 

are two contributions to the interaction.

An electron in a p orbital centred on a nucleus does not 

approach the nucleus very closely, so it experiences a field that 

appears to arise from a point magnetic dipole. The resulting 

interaction is called the dipole–dipole interaction. The contri-

bution of a magnetic nucleus to the local field experienced by 

the unpaired electron is given by an expression like that in eqn 

48.10 (a dependence proportional to (1 – 3 cos2θ)/r3). A char-

acteristic of this type of interaction is that it is anisotropic and 

averages to zero when the radical is free to tumble. Therefore, 

hyperfine structure due to the dipole–dipole interaction is 

observed only for radicals trapped in solids.

An s electron is spherically distributed around a nucleus and 

so has zero average dipole–dipole interaction with the nucleus 

even in a solid sample. However, because it has a nonzero prob-

ability of being at the nucleus (Topic 17), it is incorrect to treat 

the interaction as one between two point dipoles. As explained 

in Topic 48, an s electron has a Fermi contact interaction with 

the nucleus, a magnetic interaction that occurs when the point 

dipole approximation fails. The contact interaction is isotropic 

(that is, independent of the radical’s orientation), and conse-

quently is shown even by rapidly tumbling molecules in fluids 

(provided the spin density has some s character).

The dipole–dipole interactions of p electrons and the Fermi 

contact interaction of s electrons can be quite large. For exam-

ple, a 2p electron in a nitrogen atom experiences an average 

field of about 3.4 mT from the 14N nucleus. A 1s electron in a 

hydrogen atom experiences a field of about 50 mT as a result 

of its Fermi contact interaction with the central proton. More 

values are listed in Table 50.1. The magnitudes of the contact 

interactions in radicals can be interpreted in terms of the s 

orbital character of the molecular orbital occupied by the 

unpaired electron, and the dipole–dipole interaction can be 

interpreted in terms of the p character. The analysis of hyper-

fine structure therefore gives information about the compo-

sition of the orbital, and especially the hybridization of the 

atomic orbitals.

Brief illustration 50.2 The McConnell equation

The hyperfine structure of the EPR spectrum of the radical anion 

C H10 8
−, the naphthalene radical anion, can be interpreted as aris-

ing from two groups of four equivalent protons. Those at the 1, 4, 

5, and 8 positions in the ring have a = 0.490 mT and those in the 

2, 3, 6, and 7 positions have a = 0.183 mT. The densities obtained 

by using the McConnell equation are, respectively (2),

ρ ρ= = = =
0 490

2 25
0 218

0 183

2 25
0 0813

.

.
.

.

.
.

mT

mT
and

mT

mT

a� �� ��

��� 	�
Q

0.08
0.22 –

2

Self-test 50.3 The spin density in C H14 10
− ,  the anthracene radi-

cal anion, is shown in 3. Predict the form of its EPR spectrum.

0.048

0.097 0.193
–

3

Answer: A 1:2:1 triplet of splitting 0.43 mT split into a 1:4:6:4:1  

quintet of splitting 0.22 mT, split into a 1:4:6:4:1 quintet  

of splitting 0.11 mT, 3 × 5 × 5 = 75 lines in all

Table 50.1* Hyperfine coupling constants for atoms, a/mT

Nuclide Isotropic coupling Anisotropic coupling

1H 50.8 (1s)

2H 7.8 (1s)

14N 55.2 (2s)    4.8 (2p)

19F 1720 (2s) 108.4 (2p)

*More values are given in the Resource section.
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We still have to explain the source of the hyperfine struc-

ture of the C H6 6
− anion and other aromatic radical anions. The 

sample is fluid, and as the radicals are tumbling the hyper-

fine structure cannot be due to the dipole–dipole interaction. 

Moreover, the protons lie in the nodal plane of the π orbital 

occupied by the unpaired electron, so the structure cannot be 

due to a Fermi contact interaction. The explanation lies in a 

polarization mechanism similar to the one responsible for 

spin–spin coupling in NMR. There is a magnetic interaction 

between a proton and the α electrons ( )ms = + 1
2

 which results 

in one of the electrons tending to be found with a greater prob-

ability nearby (Fig. 50.6). The electron with opposite spin is 

therefore more likely to be close to the C atom at the other end 

of the bond. The unpaired electron on the C atom has a lower 

energy if it is parallel to that electron (Hund’s rule favours 

parallel electrons on atoms), so the unpaired electron can 

detect the spin of the proton indirectly. Calculation using this 

model leads to a hyperfine interaction in agreement with the 

observed value of 2.25 mT.

Checklist of concepts

☐ 1. The EPR resonance condition is written in terms of the 

g-value of the radical.

☐ 2. The value of g depends on the ability of the applied field 

to induce local electron currents in the radical.

☐ 3. The hyperfine structure of an EPR spectrum is its split-

ting of individual resonance lines into components 

by the magnetic interaction between the electron and 

nuclei with spin.

☐ 4. If a radical contains N equivalent nuclei with spin 

quantum number I, then there are 2NI + 1 hyperfine 

lines, with an intensity distribution given by a modified 

version of Pascal’s triangle.

☐ 5. Hyperfine structure can be explained by dipole–dipole 

interactions, Fermi contact interactions, and the 

polarization mechanism.

☐ 6. The spin density is the probability that an unpaired 

electron is on the atom.

Checklist of equations

Brief illustration 50.3 The composition of a molecular 
orbital from analysis of the hyperfine structure

From Table 50.1, the hyperfine interaction between a 2s elec-

tron and the nucleus of a nitrogen atom is 55.2 mT. The EPR 

spectrum of NO2 shows an isotropic hyperfine interaction of 

5.7 mT. The s character of the molecular orbital occupied by 

the unpaired electron is the ratio 5.7/55.2 = 0.10. For a continu-

ation of this story, see Problem 50.6.

Self-test 50.4 In NO2 the anisotropic part of the hyperfine 

coupling is 1.3 mT. What is the p character of the molecular 

orbital occupied by the unpaired electron?

Answer: 0.38

Hund
Pauli Fermi

High energyLow energy

C H

(a) (b)

Figure 50.6 The polarization mechanism for the hyperfine 
interaction in π-electron radicals. The arrangement in (a) is 
lower in energy than that in (b), so there is an effective coupling 
between the unpaired electron and the proton.

Property Equation Comment Equation number

EPR resonance condition h g� = μBB0 No hyperfine interaction 50.2

h g a� = ±μB( )B0
1
2

Hyperfine interaction between an electron and a proton 50.4

McConnell equation a = Qρ Q = 2.25 mT 50.5
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Focus 10 on Magnetic resonance

Topic 47 General principles

Discussion questions
47.1 To determine the structures of macromolecules by NMR spectroscopy, 

chemists use spectrometers that operate at the highest available fields and 

frequencies. Justify this choice.

47.2 Compare the effects of magnetic fields on the energies of nuclei and the 

energies of electrons.

47.3 What is the Larmor frequency?

Exercises
47.1(a) Given that g is a dimensionless number, what are the units of γN 

expressed in tesla and hertz?

47.1(b) Given that g is a dimensionless number, what are the units of γN 

expressed in SI base units?

47.2(a) For a proton, what are the magnitude of the spin angular momentum 

and its allowed components along the z-axis? What are the possible 

orientations of the angular momentum in terms of the angle it makes with the 

z-axis?

47.2(b) For a 14N nucleus, what are the magnitude of the spin angular 

momentum and its allowed components along the z-axis? What are the 

possible orientations of the angular momentum in terms of the angle it makes 

with the z-axis?

47.3(a) What is the resonance frequency of a proton in a magnetic field of 

13.5 T?

47.3(b) What is the resonance frequency of a 19F nucleus in a magnetic field 

of 17.1 T?

47.4(a) 33S has a nuclear spin of 3
2

 and a nuclear g-factor of 0.4289. Calculate 

the energies of the nuclear spin states in a magnetic field of 6.800 T.

47.4(b) 14N has a nuclear spin of 1 and a nuclear g-factor of 0.404. Calculate 

the energies of the nuclear spin states in a magnetic field of 10.50 T.

47.5(a) Calculate the frequency separation of the nuclear spin levels of a 13C 

nucleus in a magnetic field of 15.4 T given that the magnetogyric ratio is 

6.73 × 10−7 T−1 s−1.

47.5(b) Calculate the frequency separation of the nuclear spin levels of a 14N 

nucleus in a magnetic field of 14.4 T given that the magnetogyric ratio is 

1.93 × 10−7 T−1 s−1.

47.6(a) In which of the following systems is the energy level separation larger? 

(a) A proton in a 600 MHz NMR spectrometer, (b) a deuteron in the same 

spectrometer.

47.6(b) In which of the following systems is the energy level separation larger? 

(a) A 14N nucleus in (for protons) a 600 MHz NMR spectrometer, (b) an 

electron in a radical in a field of 0.300 T.

47.7(a) Calculate the magnetic field needed to satisfy the resonance condition 

for unshielded 14N nuclei in a 50.0 MHz radiofrequency field.

47.7(b) Calculate the magnetic field needed to satisfy the resonance condition 

for unshielded protons in a 400.0 MHz radiofrequency field.

47.8(a) Use the information in Table 47.2 to predict the magnetic fields 

at which (a) 1H, (b) 2H, (c) 13C come into resonance at (i) 500 MHz,  

(ii) 800 MHz.

47.8(b) Use the information in Table 47.2 to predict the magnetic fields at 

which (a) 14N, (b) 19F, and (c) 31P come into resonance at (i) 400 MHz,  

(ii) 750 MHz.

47.9(a) Calculate the relative population differences (δN/N, where δN denotes 

a small difference Nα − Nβ) for protons in fields of (a) 0.30 T, (b) 1.5 T, and 

(c) 10 T at 25 °C.

47.9(b) Calculate the relative population differences (δN/N, where δN denotes 

a small difference Nα − Nβ) for 13C nuclei in fields of (a) 0.50 T, (b) 2.5 T, and 

(c) 15.5 T at 25 °C.

47.10(a) The first generally available NMR spectrometers operated at a 

frequency of 60 MHz; today it is not uncommon to use a spectrometer that 

operates at 800 MHz. What are the relative population differences of 13C spin 

states in these two spectrometers at 25 °C?

47.10(b) What are the relative population differences of 19F spin states in 

spectrometers operating at 60 MHz and 450 MHz at 25 °C?

47.11(a) What magnetic field would be required in order to use an EPR  

X-band spectrometer (9 GHz) to observe 1H-NMR and a 300 MHz 

spectrometer to observe EPR?

47.11(b) Some commercial EPR spectrometers use 8 mm microwave radiation 

(the Q band). What magnetic field is needed to satisfy the resonance 

condition?

Problems
47.1‡ The relative sensitivity of NMR lines for equal numbers of different 

nuclei at constant temperature for a given frequency is Rν ∝ (I + 1)μ3, whereas 

for a given field it is RB ∝ {(I + 1)/I2}μ3. (a) From the data in Table 47.2, 

calculate these sensitivities for the deuteron, 13C, 14N, 19F, and 31P relative to 

the proton. (b) Derive the equation for RB from the equation for Rν.

47.2 With special techniques, known collectively as magnetic resonance 

imaging (MRI), it is possible to obtain NMR spectra of entire organisms.  

A key to MRI is the application of a magnetic field that varies linearly 

‡ These problems were supplied by Charles Trapp and Carmen Giunta.
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across the specimen. Consider a flask of water held in a field that varies in 

the z-direction according to B0 + Gzz, where Gz is the field gradient  

along the z-direction. Then the water protons will be resonant at the 

frequencies

�L
N( ) ( )z zz= +γ

2 0π B G
 

(Similar equations may be written for gradients along the x- and y-directions.) 

Application of a 90° radiofrequency pulse with ν = νL(z) will result in a signal 

with an intensity that is proportional to the number of protons at the position 

z. Now suppose a uniform disk-shaped organ is in a linear field gradient, 

and that the MRI signal is proportional to the number of protons in a slice of 

width δz at each horizontal distance z from the centre of the disk. Sketch the 

shape of the absorption intensity for the MRI image of the disk before any 

computer manipulation has been carried out.

Topic 48 Features of NMR spectra

Discussion questions
48.1 Discuss in detail the origins of the local, neighbouring group, and solvent 

contributions to the shielding constant.

48.2 Discuss how the Fermi contact interaction and the polarization 

mechanism contribute to spin–spin couplings in NMR.

Exercises
48.1(a) What are the relative values of the chemical shifts observed for nuclei 

in the spectrometers mentioned in Exercise 47.10(a) in terms of (a) δ values, 

(b) frequencies?

48.1(b) What are the relative values of the chemical shifts observed for nuclei 

in the spectrometers mentioned in Exercise 47.10(b) in terms of (a) δ values, 

(b) frequencies?

48.2(a) The chemical shift of the CH3 protons in acetaldehyde (ethanal) is 

δ = 2.20 and that of the CHO proton is 9.80. What is the difference in local 

magnetic field between the two regions of the molecule when the applied field 

is (a) 1.5 T, (b) 15 T?

48.2(b) The chemical shift of the CH3 protons in diethyl ether is δ = 1.16 and 

that of the CH2 protons is 3.36. What is the difference in local magnetic field 

between the two regions of the molecule when the applied field is (a) 1.9 T, 

(b) 16.5 T?

48.3(a) Sketch the appearance of the 1H-NMR spectrum of acetaldehyde 

(ethanal) using J = 2.90 Hz and the data in Exercise 48.2a in a spectrometer 

operating at (a) 250 MHz, (b) 800 MHz.

48.3(b) Sketch the appearance of the 1H-NMR spectrum of diethyl ether using 

J = 6.97 Hz and the data in Exercise 48.2b in a spectrometer operating at 

(a) 400 MHz, (b) 650 MHz.

48.4(a) Sketch the form of the 19F-NMR spectra of a natural sample of 10 BF4
−  

and 11BF4
− .

48.4(b) Sketch the form of the 31P-NMR spectra of a sample of 31PF6
− .

48.5(a) From the data in Table 47.2, predict the frequency needed for 19F-NMR 

in an NMR spectrometer designed to observe proton resonance at 800 MHz. 

Sketch the proton and 19F resonances in the NMR spectrum of FH2
+.

48.5(b) From the data in Table 47.2, predict the frequency needed for 31P-NMR 

in an NMR spectrometer designed to observe proton resonance at 500 MHz. 

Sketch the proton and 31P resonances in the NMR spectrum of PH4
+ .

48.6(a) Sketch the form of an A3M2X4 spectrum, where A, M, and X are 

protons with distinctly different chemical shifts and JAM > JAX > JMX.

48.6(b) Sketch the form of an A2M2X5 spectrum, where A, M, and X are 

protons with distinctly different chemical shifts and JAM > JAX > JMX.

48.7(a) A proton jumps between two sites with δ = 2.7 and δ = 4.8. At what 

rate of interconversion will the two signals collapse to a single line in a 

spectrometer operating at 550 MHz?

48.7(b) A proton jumps between two sites with δ = 4.2 and δ = 5.5. At what 

rate of interconversion will the two signals collapse to a single line in a 

spectrometer operating at 350 MHz?

Problems
48.1 You are designing an MRI spectrometer (see Problem 47.2). What field 

gradient (in microtesla per metre, μT m−1) is required to produce a separation 

of 100 Hz between two protons separated by the long diameter of a human 

kidney (taken as 8 cm), given that they are in environments with δ = 3.4? The 

radiofrequency field of the spectrometer is at 400 MHz and the applied field 

is 9.4 T.

48.2LG Refer to Fig. 48.14 and use mathematical software, a spreadsheet, 

or the Living graphs (labelled LG) on the website of this book to draw a 

family of curves showing the variation of 3JHH with φ for which A = +7.0 Hz, 

B = −1.0 Hz, and C varies slightly from a typical value of +5.0 Hz. What is the 

effect of changing the value of the parameter C on the shape of the curve? In 

a similar fashion, explore the effect of the values of A and B on the shape of 

the curve.

48.3‡ Various versions of the Karplus equation (eqn 48.14) have been used 

to correlate data on vicinal proton coupling constants in systems of the type 

R1R2CHCHR3R4. The original version (M. Karplus, J. Am. Chem. Soc. 85, 

2870 (1963)) is 3JHH = A cos2 φHH + B. When R3 = R4 = H, 3JHH = 7.3 Hz; when 

R3 = CH3 and R4 = H, 3JHH  =  8.0 Hz; when R3 = R4  =  CH3, 
3JHH = 11.2 Hz. 

Assume that only staggered conformations are important and determine 

which version of the Karplus equation fits the data better.

48.4‡ It might be unexpected that the Karplus equation, which was first derived 

for 3JHH coupling constants, should also apply to vicinal coupling between the 

nuclei of metals such as tin. T.N. Mitchell and B. Kowall (Magn. Reson. Chem. 

33, 325 (1995)) studied the relation between 3JHH and 3JSnSn in compounds of 

the type Me3SnCH2CHRSnMe3 and found that 3JSnSn = 78.86 3JHH  +  27.84 Hz. 

(a) Does this result support a Karplus-type equation for tin? Explain your 
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reasoning. (b) Obtain the Karplus equation for 3JSnSn and plot it as a function of 

the dihedral angle. (c) Draw the preferred conformation.

48.5 Show that the coupling constant as expressed by the Karplus equation 

passes through a minimum when cos φ = B/4C.

48.6 In a liquid, the dipolar magnetic field averages to zero. Show this result by 

evaluating the average of the field given in eqn 48.15. Hint: The surface area 

element is sin θ dθdφ in polar coordinates.

Topic 49 Pulse techniques in NMR

Discussion questions
49.1 Discuss in detail the effects of a 90° pulse and of a 180° pulse on a system 

of spin- 1
2

 nuclei in a static magnetic field.

49.2 Suggest a reason why the relaxation times of 13C nuclei are typically much 

longer than those of 1H nuclei.

49.3 Suggest a reason why the spin–lattice relaxation time of a small molecule 

(like benzene) in a mobile, deuterated hydrocarbon solvent increases, whereas 

that of a large molecule (like a polymer) decreases.

49.4 Discuss the origin of the nuclear Overhauser effect and how it can be 

used to measure distances between protons in a biopolymer.

49.5 Discuss the origins of diagonal and cross-peaks in the COSY spectrum of 

an AX system.

Exercises
49.1(a) The duration of a 90° or 180° pulse depends on the strength of the B1 

field. If a 180° pulse requires 12.5 μs, what is the strength of the B1 field? How 

long would the corresponding 90° pulse require?

49.1(b) The duration of a 90° or 180° pulse depends on the strength of the B1 

field. If a 90° pulse requires 5 μs, what is the strength of the B1 field? How long 

would the corresponding 180° pulse require?

49.2(a) Figure F10.1 shows the proton COSY spectrum of 1-nitropropane. 

Account for the appearance of off-diagonal peaks in the spectrum.

49.2(b) Account for the observation that the COSY spectrum of alanine has 

only two off-diagonal peaks between Δ = 1.00 and 8.50.

Problems
49.1‡ Suppose that the FID in Fig. 49.5 was recorded in a 400 MHz 

spectrometer, and that the interval between maxima in the oscillations in the 

FID is 0.12 s. What is the Larmor frequency of the nuclei and the spin–spin 

relaxation time?

49.2 To gain some appreciation for the numerical work done by computers 

interfaced to NMR spectrometers, perform the following calculations. 

(a) The total FID F(t) of a signal containing many frequencies, each 

corresponding to a different nucleus, is given by

F t S t

j

j j
t T j( ) cos( ) /=∑ −

0 2 2π�L e

where, for each nucleus j, S0j is the maximum intensity of the signal, νLj is the 

Larmor frequency, and T2j is the spin–spin relaxation time. Plot the FID for 

the case

(b) Explore how the shape of the FID curve changes with changes in the 

Larmor frequency and the spin–spin relaxation time. (c) Use mathematical 

software to calculate and plot the Fourier transforms of the FID curves you 

calculated in parts (a) and (b). How do spectral linewidths vary with the value 

of T2? Hint: This operation can be performed with the ‘fast Fourier transform’ 

routine available in most mathematical software packages. Please consult the 

package's user manual for details.

49.3 (a) In many instances it is possible to approximate the NMR lineshape by 

using a Lorentzian function of the form

I
S T

T
Lorenztian( )

( )
ω

ω ω
=

+ −
0 2

2
2

0
21

where I(ω) is the intensity as a function of the angular frequency ω = 2πν, ω0 is 

the resonance frequency, S0 is a constant, and T2 is the spin–spin relaxation time. 

Confirm that for this lineshape the width at half-height is 1/πT2. (b) Under certain 

circumstances, NMR lines are Gaussian functions of the frequency, given by

I S T T
Gaussian e( ) ( )ω ω ω= − −

0 2
2
2

0
2
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NO2CH2CH2CH3

NO2CH2CH2CH3

NO2CH2CH2CH3

δ

δ

Figure F10.1 The COSY spectrum of 1-nitropropane (NO2CH2CH2CH3). The 
circles show enhanced views of the spectral features. (Spectrum provided 
by Prof. G. Morris.)

S01 = 1.0 νL1 = 50 MHz T21 = 0.50 μs

S02 = 3.0 νL2 = 10 MHz T22 = 1.0 μs
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Confirm that for the Gaussian lineshape the width at half-height is equal to 

2(ln 2)1/2/T2. (c) Compare and contrast the shapes of Lorentzian and Gaussian 

lines by plotting two lines with the same values of S0, T2, and ω0.

49.4 The shape of a spectral line, I(ω), is related to the free-induction decay 

signal G(t) by

I a G t tt( ) ( )ω ω=
∞

∫Re e di

0  

where a is a constant and ‘Re’ means take the real part of what follows. 

Calculate the lineshape corresponding to an oscillating, decaying function 

G(t) = cos ωt e−t/τ.

49.5 In the language of Problem 49.4, show that, if G(t) = (a cos ωt + b cos ωt)e−t/τ, 

then the spectrum consists of two lines with intensities proportional to a and b 

and located at ω = ω1 and ω2, respectively.

49.6 The z-component of the magnetic field at a distance R from a magnetic 

moment parallel to the z-axis is given by eqn 49.10. In a solid, a proton at a 

distance R from another can experience such a field and the measurement of 

the splitting it causes in the spectrum can be used to calculate R. In gypsum, 

for instance, the splitting in the H2O resonance can be interpreted in terms 

of a magnetic field of 0.715 mT generated by one proton and experienced by 

the other. What is the separation of the protons in the H2O molecule?

49.7 In a liquid crystal a molecule might not rotate freely in all directions 

and the dipolar interaction might not average to zero. Suppose a molecule 

is trapped so that, although the vector separating two protons may rotate 

freely around the z-axis, the colatitude may vary only between 0 and θ ′. Use 

mathematical software to average the dipolar field over this restricted range 

of orientation and confirm that the average vanishes when θ ′ is equal to π 

(corresponding to free rotation over a sphere). What is the average value of 

the local dipolar field for the H2O molecule in Problem 49.6 if it is dissolved 

in a liquid crystal that enables it to rotate up to θ ′ = 30°?

Topic 50 Electron paramagnetic resonance

Discussion questions
50.1 Discuss how the Fermi contact interaction and the polarization 

mechanism contribute to hyperfine interactions in EPR.

50.2 Explain how the EPR spectrum of an organic radical can be used to 

identify and map the molecular orbital occupied by the unpaired electron.

Exercises
50.1(a) The centre of the EPR spectrum of atomic hydrogen lies at 329.12 mT 

in a spectrometer operating at 9.2231 GHz. What is the g-value of the electron 

in the atom?

50.1(b) The centre of the EPR spectrum of atomic deuterium lies at 330.02 mT 

in a spectrometer operating at 9.2482 GHz. What is the g-value of the electron 

in the atom?

50.2(a) A radical containing two equivalent protons shows a three-line 

spectrum with an intensity distribution 1:2:1. The lines occur at 330.2 mT, 

332.5 mT, and 334.8 mT. What is the hyperfine coupling constant for each 

proton? What is the g-value of the radical given that the spectrometer is 

operating at 9.319 GHz?

50.2(b) A radical containing three equivalent protons shows a four-line 

spectrum with an intensity distribution 1:3:3:1. The lines occur at 331.4 mT, 

333.6 mT, 335.8 mT, and 338.0 mT. What is the hyperfine coupling constant 

for each proton? What is the g-value of the radical given that the spectrometer 

is operating at 9.332 GHz?

50.3(a) A radical containing two inequivalent protons with hyperfine constants 

2.0 mT and 2.6 mT gives a spectrum centred on 332.5 mT. At what fields do 

the hyperfine lines occur and what are their relative intensities?

50.3(b) A radical containing three inequivalent protons with hyperfine constants 

2.11 mT, 2.87 mT, and 2.89 mT gives a spectrum centred on 332.8 mT. At what 

fields do the hyperfine lines occur and what are their relative intensities?

50.4(a) Predict the intensity distribution in the hyperfine lines of the EPR 

spectra of (a) ·CH3, (b) ·CD3.

50.4(b) Predict the intensity distribution in the hyperfine lines of the EPR 

spectra of (a) ·CH2CH3, (b) ·CD2CD3.

50.5(a) The benzene radical anion has g = 2.0025. At what field should 

you search for resonance in a spectrometer operating at (a) 9.313 GHz, 

(b) 33.80 GHz?

50.5(b) The naphthalene radical anion has g = 2.0024. At what field should 

you search for resonance in a spectrometer operating at (a) 9.501 GHz, 

(b) 34.77 GHz?

50.6(a) The EPR spectrum of a radical with a single magnetic nucleus is split 

into four lines of equal intensity. What is the nuclear spin of the nucleus?

50.6(b) The EPR spectrum of a radical with two equivalent nuclei of a 

particular kind is split into five lines of intensity ratio 1:2:3:2:1. What is the 

spin of the nuclei?

50.7(a) Sketch the form of the hyperfine structures of radicals XH2 and XD2, 

where the nucleus X has I = 5
2

.

50.7(b) Sketch the form of the hyperfine structures of radicals XH3 and XD3, 

where the nucleus X has I = 3
2

.

Problems
50.1 It is possible to produce very high magnetic fields over small volumes by 

special techniques. What would be the resonance frequency of an electron spin 

in an organic radical in a field of 1.0 kT? How does this frequency compare to 

typical molecular rotational, vibrational, and electronic energy level separations?

50.2 The angular NO2 molecule has a single unpaired electron and can be 

trapped in a solid matrix or prepared inside a nitrite crystal by radiation 

damage of NO2
− ions. When the applied field is parallel to the OO direction 

the centre of the spectrum lies at 333.64 mT in a spectrometer operating 
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496 10 Magnetic resonance

at 9.302 GHz. When the field lies along the bisector of the ONO angle, the 

resonance lies at 331.94 mT. What are the g-values in the two orientations?

50.3 The hyperfine coupling constant in ·CH3 is 2.3 mT. Use the information in 

Table 50.1 to predict the splitting between the hyperfine lines of the spectrum 

of ·CD3. What are the overall widths of the hyperfine spectra in each case?

50.4 The p-dinitrobenzene radical anion can be prepared by reduction of 

p-dinitrobenzene. The radical anion has two equivalent N nuclei (I = 1) 

and four equivalent protons. Predict the form of the EPR spectrum using 

a(N) = 0.148 mT and a(H) = 0.112 mT.

50.5 The hyperfine coupling constants observed in the radical anions 1, 2, and 

3 are shown (in millitesla, mT). Use the value for the benzene radical anion to 

map the probability of finding the unpaired electron in the π orbital on each 

C atom.

NO2

NO2

–

0.0110.0172

0.011

0.0172

1   

NO2

NO2

–

0.450
0.108

0.2720.450

2   

NO2

NO2

–
0.112 0.112

0.112 0.112

3

50.6 When an electron occupies a 2s orbital on an N atom it has a hyperfine 

interaction of 55.2 mT with the nucleus. The spectrum of NO2 shows an 

isotropic hyperfine interaction of 5.7 mT. For what proportion of its time is 

the unpaired electron of NO2 occupying a 2s orbital? The hyperfine coupling 

constant for an electron in a 2p orbital of an N atom is 3.4 mT. In NO2 the 

anisotropic part of the hyperfine coupling is 1.3 mT. What proportion of its 

time does the unpaired electron spend in the 2p orbital of the N atom in NO2? 

What is the total probability that the electron will be found on (a) the N atom, 

(b) the O atoms? What is the hybridization ratio of the N atom? Does the 

hybridization support the view that NO2 is angular?

50.7 Sketch the EPR spectra of the di-tert-butyl nitroxide radical (4) at 

292 K in the limits of very low concentration (at which electron exchange is 

negligible), moderate concentration (at which electron exchange effects begin 

to be observed), and high concentration (at which electron exchange effects 

predominate). 

N
O

4 di-tert-Butyl nitroxide

Integrated activities

F10.1 In Problem F6.15 you are asked to use molecular electronic structure 

methods to investigate the hypothesis that the magnitude of the 13C chemical 

shift correlates with the net charge on a 13C atom by calculating the net charge 

at the C atom para to the substituents in the following series of molecules: 

methylbenzene, benzene, trifluoromethylbenzene, benzonitrile, nitrobenzene. 

The 13C chemical shifts of the para C atoms in each of the molecules that you 

examined are given below:

(a) Is there a linear correlation between net charge and 13C chemical shift of 

the para C atom in this series of molecules? 

(b) If you did find a correlation in part (a), use the concepts developed in 

Topic 48 to explain the physical origins of the correlation.

F10.2 EPR spectra are commonly discussed in terms of the parameters that 

occur in the spin-hamiltonian, a hamiltonian operator that incorporates 

various effects involving spatial operators (like the orbital angular 

momentum) into operators that depend on the spin alone. Show that if you 

use � � �H g s lz z= − −e e eγ γB B0 0  as the true hamiltonian, then from second-order 

perturbation theory, the eigenvalues of the spin are the same as those of 

the spin-hamiltonian � �H g sz= − γ eB0  (note the g in place of ge) and find an 

expression for g.

F10.3 The computational techniques described in Topics 28–30 have shown 

that the amino acid tyrosine participates in a number of biological electron 

transfer reactions, including the processes of water oxidation to O2 in plant 

photosystem II and of O2 reduction to water in cytochrome c oxidase. 

During the course of these electron transfer reactions, a tyrosine radical 

forms, with spin density delocalized over the side chain of the amino acid. (a) 

The phenoxy radical shown in 5 is a suitable model of the tyrosine radical. 

Using molecular modelling software and the computational method of your 

choice (semi-empirical or ab initio method), calculate the spin densities at 

the O atom and at all of the C atoms in 5. (b) Predict the form of the EPR 

spectrum of 5.

O

5 Phenoxy radical

F10.4 NMR spectroscopy may be used to determine the equilibrium constant 

for dissociation of a complex between a small molecule, such as an enzyme 

inhibitor I, and a protein, such as an enzyme E:

EI E I EI� + =K [ ][I]/[EI]  

In the limit of slow chemical exchange, the NMR spectrum of a proton in 

I would consist of two resonances: one at νI for free I and another at νEI for 

bound I. When chemical exchange is fast, the NMR spectrum of the same 

proton in I consists of a single peak with a resonance frequency ν given 

by ν = fIνI + fEIνEI, where fI = [I]/([I] + [EI]) and fEI = [EI]/([I] + [EI]) are, 

respectively, the fractions of free I and bound I. For the purposes of analysing 

the data, it is also useful to define the frequency differences δν = ν – νI and 

Δν = νEI – νI. Show that when the initial concentration of I, [I]0, is much 

greater than the initial concentration of E, [E]0, a plot of [I]0 against δν−1 is a 

straight line with slope [E]0Δν and y-intercept –KI.

Substituent CH3 H CF3 CN NO2

δ 128.4 128.5 128.9 129.1 129.4
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One of the most important equations linking the properties of molecules to the properties of the 
bulk matter to which the molecules contribute is the ‘Boltzmann distribution’, which is established 
and developed in this group of Topics. The derivation of the distribution (Topic 51) is based on the 
supposition that molecules are distributed over the available energy levels in the most probable way 
subject to the total energy and the total number of particles of the system having particular values. It 
can then be used to predict the population of each level for a system at a given temperature. Indeed, 
the Boltzmann distribution provides insight into the nature of temperature as the single parameter 
that determines the population of levels of a collection of molecules. As is demonstrated in other 
Topics, the Boltzmann distribution lies at the heart of molecular interpretations of thermodynamics.

The Boltzmann distribution introduces the concept of ‘partition function’ (Topic 52), which is a 
kind of ‘thermodynamic wavefunction’ of the system in the sense that it can be used to calculate 
all its thermodynamic properties, as explained in the groups of Topics on The First Law of thermo-

dynamics, The Second and Third Laws of thermodynamics, Physical equilibria, and Chemical equilibria. 
A ‘molecular partition function’, which is appropriate when molecules can be treated as not interact-
ing with one another, can be calculated from molecular properties, such as the mass (for the trans-
lational contribution), the moment of inertia (for the rotational contribution), and from the force 
constant (for the vibrational contribution). Because parameters such as these can be determined 
from Molecular spectroscopy, the partition function provides a very important link between spec-
troscopy and thermodynamics. When molecular interactions cannot be ignored, it is necessary to 
make use of the concept and techniques related to a ‘canonical ensemble’ and the ‘canonical parti-
tion function’, as explained in Topic 54.

The most straightforward application of the molecular partition function is to the calculation of 
the contribution of the various modes of motion (translation, rotation, and vibration as introduced 
in The quantum mechanics of motion) to the mean energy of a collection of independent molecules 
(Topic 53). That is a basis for the calculation and interpretation of the internal energy of a system, as 
used in the First Law of thermodynamics.

Topic 51 Topic 53 Topic  54Topic  52

FOCUS 11  ON  Statistical thermodynamics

Independent

molecules Interacting

molecules
Focus 9

Molecular
spectroscopy

Focus 3
The quantum

mechanics 
of motion

Focus 12–15

Thermo-
dynamics

The canonical
ensemble

Molecular
energies

Molecular
partition
functions

The
Boltzmann
distribution
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TOPIC 51

The Boltzmann distribution

The crucial step in going from the quantum mechanical prop-

erties of individual molecules to the properties of bulk samples, 

the province of statistical thermodynamics, is to recognize 

that the latter deals with the average behaviour of large num-

bers of molecules. For example, the pressure of a gas depends 

on the average force exerted by its molecules and there is no 

need to specify which molecules happen to be striking the wall 

at any instant. Nor is it necessary to consider the fluctuations in 

the pressure as different numbers of molecules collide with the 

wall at different moments. The fluctuations in pressure are very 

small compared with the steady pressure: it is highly improb-

able that there will be a sudden lull in the number of collisions, 

or a sudden surge. Fluctuations in other bulk properties also 

occur, but for large numbers of particles they are very much 

smaller than the mean values.

We consider a system composed of N molecules, with N a 

large number (of the order of 1023 for systems typical of chem-

istry). Although the total energy is constant at E, it is not pos-

sible to be definite about how that energy is shared between the 

molecules. Collisions result in the ceaseless redistribution of 

energy not only between the molecules but also between the 

quantum states that each molecule occupies. The closest we can 

come to a description of the distribution of energy is to report 

the population of a state, the average number of molecules that 

occupy it, and to say that on average there are Ni molecules in 

a state of energy εi. The populations of the states remain almost 

constant, but the precise identities of the molecules in each 

state may change at every collision.

The problem we address in this Topic is the calculation of 

the populations of states for any type of molecule in any mode 

of motion at any temperature. The only restriction is that the 

molecules should be independent, in the sense that the total 

energy of the system is a sum of their individual energies. We 

are discounting (at this stage) the possibility that in a real sys-

tem a contribution to the total energy may arise from interac-

tions between molecules. We also adopt the principle of equal 

a priori probabilities, the assumption that all possibilities for 

the distribution of energy are equally probable. ‘A priori’ in this 

context loosely means ‘as far as one knows’. We have no reason 

to presume otherwise than that for a collection of molecules at 

thermal equilibrium, a vibrational state of a certain energy, for 

Contents
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Brief illustration 51.1: The weight of a configuration 499

(b) The most probable distribution 500
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(c) The relative population of states 501

Example 51.1: Calculating the relative populations  

of rotational states 501
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Example 51.2 : Using the method of Lagrange  

multipliers 503

(b) Solving for the most probable distribution 503

(c) The final step 504

Checklist of concepts 504
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 ➤ Why do you need to know this material?
The Boltzmann distribution is the key to understanding 
a great deal of chemistry. All thermodynamic properties 
can be interpreted in its terms, as can the temperature 
dependence of equilibrium constants and the rates of 
chemical reactions. It also illuminates the meaning of 
‘temperature’. There is, perhaps, no more important 
unifying concept in chemistry.

 ➤ What is the key idea?
The most probable distribution of molecules over the 
available energy levels subject to certain constraints 
depends on a single parameter, the temperature.

 ➤ What do you need to know already?
You need to be aware that molecules can exist only in 
certain discrete energy levels (Topics 9−14) and that in 
some cases more than one state has the same energy.
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51 The Boltzmann distribution  499

instance, is as likely to be populated as a rotational state of the 

same energy.

One very important conclusion that will emerge from the 

following analysis is that the overwhelmingly most probable 

populations of the available states depend on a single param-

eter, the ‘temperature’. That is, the work we do here provides 

a molecular justification for the concept of temperature and 

some insight into this crucially important quantity.

51.1 Configurations and weights

Any individual molecule may exist in states with energies ε0, 

ε1, …. For reasons that will become clear, we shall always take 

the lowest available state as the zero of energy (that is, we set 

ε0 = 0), and measure all other energies relative to that state. To 

obtain the actual energy of the system we may have to add a 

constant to the energy calculated on this basis. For example, if 

we are considering the vibrational contribution to the energy, 

then we must add the total zero-point energy of any oscillators 

in the system.

(a) Instantaneous configurations
At any instant there will be N0 molecules in the state 0 

with energy ε0, N1 in the state 1 with ε1, and so on, with 

N0 + N1 + … = N, the total number of molecules in the system. 

Initially we shall suppose that all the states have exactly the same 

energy. The specification of the set of populations N0, N1, … 

in the form {N0, N1, …} is a statement of the instantaneous con-

figuration of the system. The instantaneous configuration fluc-

tuates with time because the populations change, perhaps as a 

result of collisions. At this stage the energies of all the configura-

tions are identical so there is no restriction on how many of the 

N molecules are in each state.

We can picture a large number of different instantaneous 

configurations. One, for example, might be {N,0,0,…}, corre-

sponding to every molecule being in state 0. Another might 

be {N − 2,2,0,0,…}, in which two molecules are in state 1. The 

latter configuration is intrinsically more likely to be found 

than the former because it can be achieved in more ways: 

{N,0,0,…} can be achieved in only one way, but {N − 2,2,0,…} 

can be achieved in 1
2 1N N( )−  different ways (Fig. 51.1; see the 

following Justification). If, as a result of collisions, the system 

were to fluctuate between the configurations {N,0,0,…} and 

{N − 2,2,0,…}, it would almost always be found in the second, 

more likely configuration (especially if N were large). In other 

words, a system free to switch between the two configurations 

would show properties characteristic almost exclusively of the 

second configuration. A general configuration {N0,N1,…} can 

be achieved in W different ways, where W is called the weight 

of the configuration. The weight of the configuration {N0,N1,…} 

is given by the expression

W = N

N N N

!

! ! !0 1 2 �   Weight of a configuration  (51.1)

with x! = x(x − 1)…1 and by definition 0! = 1. Equation 51.1 is a 

generalization of the formula W = −1
2 1N N( ) , and reduces to it 

for the configuration {N − 2,2,0,…}.

Brief illustration 51.1 The weight of a configuration

To calculate the number of ways of distributing 20 identi-

cal objects with the arrangement 1, 0, 3, 5, 10, 1, we note that 

the configuration is {1,0,3,5,10,1} with N = 20; therefore the 

weight is

W = = ×20

1 0 3 5 10 1
9 31 108!

! ! ! ! ! !
.

 

Self-test 51.1 Calculate the weight of the configuration in 

which 20 objects are distributed in the arrangement 0, 1, 5, 0, 

8, 0, 3, 2, 0, 1.

Answer: 4.19 × 1010

Justification 51.1 The weight of a configuration

First, consider the weight of the configuration {N − 2,2,0,0,…}, 

which is prepared from the configuration {N,0,0,0, …} by the 

migration of two molecules from state 0 into state 2. One can-

didate for migration to state 1 can be selected in N ways. There 

are N − 1 candidates for the second choice, so the total number 

of choices is N(N − 1). However, we should not distinguish the 

choice (Jack, Jill) from the choice (Jill, Jack) because they lead 

to the same configurations. Therefore, only half the choices 

lead to distinguishable configurations, and the total number 

of distinguishable choices is 1
2 1N N( )− .

Now we generalize this remark. Consider the number of 

ways of distributing N balls into bins. The first ball can be 

selected in N different ways, the next ball in N − 1 different 

Figure 51.1 Whereas a configuration {5,0,0,…} can be achieved 
in only one way, a configuration {3,2,0,…} can be achieved in 
the ten different ways shown here, where the tinted circles 
represent different molecules.
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500 11 Statistical thermodynamics

It will turn out to be more convenient to deal with the natu-

ral logarithm of the weight, ln W, rather than with the weight 

itself. We shall therefore need the expression

ln ln
!

! ! !
ln ! ln ! ! !

ln ! ln ! ln ! ln

W = = −

= − − −

N

N N N
N N N N

N N N N
0 1 2

0 1 2

0 1 2

�
�

!!

ln ! ln !

−

= −∑
�

N N
i

i

 

where in the first line we have used ln(x/y) = ln x − ln y and in 

the second ln xy = ln x + ln y. One reason for introducing ln W 

is that it is easier to make approximations. In particular, we can 

simplify the factorials by using Stirling’s approximation

ln ! ln lnx x x x x≈ +( ) − + >>1
2

1
2 2 1π    

  
(51.2a)

This approximation is in error by less than 1 per cent when x is 

greater than about 10. We deal with far larger values of x, and 

the simplified version

ln ln   x x x x x!≈ − >>1  (51.2b)

is adequate. Then the approximate expression for the weight is

ln { ln } { ln }

ln ln [

W = − − −

= − − + =

∑
∑ ∑

N N N N N N

N N N N N N N N

i

i i i

i

i i

i

ibecause ]]

ln ln= −∑N N N N
i

i i

 

(51.3)

(b) The most probable distribution
We have seen that the configuration {N − 2,2,0,…} dominates 

{N,0,0,…}, and it should be easy to believe that there may be 

other configurations that have a much greater weight than 

both. We shall see, in fact, that there is a configuration with so 

great a weight that it overwhelms all the rest in importance to 

such an extent that the system will almost always be found in 

it. The properties of the system will therefore be characteristic 

of that particular dominating configuration. This dominating 

configuration can be found by looking for the values of Ni that 

lead to a maximum value of W. Because W is a function of all 

the Ni, we can do this search by varying the Ni and looking 

for the values that correspond to dW  = 0 (just as in the search 

for the maximum of any function), or equivalently a maxi-

mum value of ln W. However, there are two difficulties with 

this procedure.

At this point we allow the states to have different energies. 

The first difficulty that results from this change is the need to 

take into account the fact that the only permitted configura-

tions are those corresponding to the specified, constant, total 

energy of the system. This requirement rules out many con-

figurations; {N,0,0,…} and {N − 2,2,0,…}, for instance, have 

different energies (unless the states 0 and 1 happen to be 

degenerate), so both cannot occur in the same isolated system. 

It follows that in looking for the configuration with the great-

est weight, we must ensure that the configuration also satisfies 

the condition

i

i iN E∑ =ε   (51.4)

where E is the total energy of the system.

The second constraint is that, because the total number of 

molecules present is also fixed (at N), we cannot arbitrarily vary 

all the populations simultaneously. Thus, increasing the popu-

lation of one state by 1 demands that the population of another 

state must be reduced by 1. Therefore, the search for the maxi-

mum value of W is also subject to the condition

i

iN N∑ =   (51.5)

We show in the next section that the populations in the con-

figuration of greatest weight, subject to the two constraints in 

Stirling’s 
approximation

Stirling’s approximation 
(for large x)

Constant 
total energy

Energy 
constraint 

Constant total 
number of 
molecules

Number 
constraint

ways for the balls remaining, and so on. Therefore, there are 

N(N − 1)…1 = N! ways of selecting the balls for distribution 

over the bins. However, if there are N0 balls in the bin labelled 

0, there would be N0! different ways in which the same balls 

could have been chosen (Fig. 51.2). Similarly, there are N1! 

ways in which the N1 balls in the bin labelled 1 can be chosen, 

and so on. Therefore, the total number of distinguishable ways 

of distributing the balls so that there are N0 in bin 0, N1 in 

bin 1, etc. regardless of the order in which the balls were cho-

sen is N!/N0!N1!…, which is the content of eqn 51.1.

3! 6! 5! 4!

N = 18

Figure 51.2 The 18 molecules shown here can be 
distributed into four receptacles (distinguished by the 
three vertical lines) in 18! different ways. However, 3! of the 
selections that put three molecules in the first receptacle 
are equivalent, 6! that put six molecules into the second 
receptacle are equivalent, and so on. Hence the number of 
distinguishable arrangements is 18!/3!6!5!4!.
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51 The Boltzmann distribution  501

eqns 51.4 and 51.5, depend on the energy of the state according 

to the Boltzmann distribution:

N

N
i

i

i

i
=

∑

−

−
e

e

βε

βε
  Boltzmann distribution  (51.6a)

The denominator in eqn 51.6a is denoted q and called the parti-

tion function:

q =∑ −

i

ie βε  Definition  Partition function  (51.6b)

In this Topic, the partition function is no more than a con-

venient abbreviation for the sum; but in Topic 52 we see that 

it is central to the statistical interpretation of thermodynamic 

properties.

Equation 51.6a is the justification of the remark that a single 

parameter, here denoted β, determines the most probable pop-

ulations of the states of the system. We shall confirm in Topic 

54 and anticipate throughout this Topic that

β = 1

kT
 (51.7)

where T is the thermodynamic temperature and k is Boltzmann’s 

constant. In other words:

The temperature is the unique parameter that governs the 

most probable populations of states of a system at thermal 

equilibrium.

(c) The relative population of states

If we are interested only in the relative populations of states, 

the sum in the denominator of the Boltzmann distribution 

need not be evaluated, because it cancels when the ratio is 

taken:

N

N
i

j

i

j

i j= =
−

−
− −e

e
e

βε

βε
β ε ε( )

 (51.8a)

That β ∝ 1/T is plausible is demonstrated by noting from eqn 

51.8a that for a given energy separation the ratio of popula-

tions N1/N0 decreases as β increases, which is what is expected 

as the temperature decreases. At T = 0 (β = ∞) all the popula-

tion is in the ground state and the ratio is zero. Equation 51.8a 

is enormously important for understanding a wide range of 

chemical phenomena and is the form in which the Boltzmann 

distribution is commonly employed (for instance, in the dis-

cussion of the intensities of spectral transitions, Topic 16). It 

tells us that the relative population of two states falls off expo-

nentially with their difference in energy.

A very important point to note is that the Boltzmann distri-

bution gives the relative populations of states, not energy lev-

els. Several states might correspond to the same energy, and 

each state has a population given by eqn 51.6. If we want to 

consider the relative populations of energy levels rather than 

states, then we need to take into account this degeneracy. Thus, 

if the level of energy εi is gi-fold degenerate (in the sense that 

there are gi states with that energy), and the level of energy εj 

is gj-fold degenerate, then the relative total populations of the 

levels are given by

N

N

g

g

g

g
i

j

i

j

i

j

i

j

i j= =
−

−
− −e

e
e

βε

βε
β ε ε( )

  (51.8b)

Brief illustration 51.2 The Boltzmann distribution

Suppose that two conformations of an organic molecule differ 

in energy by 5.0 kJ mol−1 (corresponding to 8.3 × 10−21 J for a 

single molecule), so conformation A lies at energy 0 and con-

formation B lies at ε  = 8.3 × 10−21 J. At 20 °C (293 K) the denom-

inator in eqn 51.6a is

i

kTi∑ − − − × × ×= + = + =− −
e e e J J Kβε ε1 1 18 3 10 1 381 10 29321 23/ ( . )/( . ) ( ) .113

The proportion of molecules in conformation B at this tem-

perature is therefore

N

N
B

J J Ke= =
− × × ×− −( . )/( . ) ( )

.
.

8 3 10 1 381 10 29321 23

1 13
0 11

or 11 per cent of the molecules. The remaining 89 per cent of 

the molecules are in conformation A.

Self-Test 51.2 Suppose that there is a third conformation a fur-

ther 0.50 kJ mol−1 above B. What proportion of molecules will 

now be in conformation B?

Answer: 0.10, 10 per cent

Thermal 
equilibrium

Boltzmann 
population 
ratio

Thermal 
equilibrium, 
degeneracies

Boltzmann 
population 
ratio 

Example 51.1 Calculating the relative populations  
of rotational states

Calculate the relative populations of the J = 1 and J = 0 rota-

tional states of HCl at 25 °C.

Method Although the ground state is non-degenerate, the 

level with J = 1 is triply degenerate (MJ = 0, ±1); see Topic 41. 

From that Topic, the energy of state with quantum number J 

is ε J hcBJ J= +� ( )1 . Use �B = −10 591 1. . cm  A useful relation is 

kT/hc = 207.22 cm−1 at 298.15 K.

Answer The energy separation of states with J = 1 and J = 0 is

ε ε1 0 2− = hcB�
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502 11 Statistical thermodynamics

51.2 The derivation of the Boltzmann 
distribution

We remarked earlier that ln W is easier to handle than W. 

Therefore, to find the form of the Boltzmann distribution, we 

look for the condition for ln W  being a maximum rather than 

dealing directly with W. Because ln W depends on all the Ni, 

when a configuration changes and the Ni change to Ni + dNi, the 

function ln W changes to ln W + d ln W, where

d ln
ln

W
W= ⎛

⎝⎜
⎞
⎠⎟∑

i i
iN

dN
∂
∂

 

(a) The role of constraints
All the last expression states is that a change in ln W is the sum 

of contributions arising from changes in each value of Ni. At a 

maximum, d ln W = 0. However, when the Ni change, they do so 

subject to the two constraints

i

i i

i

iN N∑ ∑= =ε d d0 0   Constraints  (51.9)

The first constraint recognizes that the total energy must not 

change, and the second recognizes that the total number of 

molecules must not change. These two constraints prevent us 

from solving d ln W = 0 simply by setting all (∂ ln W/∂Ni) = 0 

because the dNi are not all independent.

The way to take constraints into account was devised by the 

French mathematician Lagrange, and is called the method of 

undetermined multipliers (The chemist’s toolkit 51.1). All we 

need here is the rule that:

a constraint should be multiplied by a constant and then 

added to the main variation equation.

The variables are then treated as though they were all inde-

pendent, and the constants are evaluated at the end of the 

calculation.

The ratio of the population of a state with J = 1 and any one of 

its three states MJ to the population of the single state with J = 0 

is therefore

N

N
J M hcBJ,

0

2= −e
�β

The relative populations of the levels, taking into account the 

threefold degeneracy of the upper state, is

N

N
J hcB

0

23= −e
�β

Inser t ion of hcB hcB kT� �β = =/ cm / cm 1( . ) ( . )10 591 207 221− − =

0 05111.  then gives

N

N
J

0

2 0 051113 2 708= =− ×e . .
 

We see that because the J = 1 level is triply degenerate, it has 

a higher population than the level with J = 0, despite being of 

higher energy. As the example illustrates, it is very important 

to take note of whether you are asked for the relative popula-

tions of individual states or of a (possibly degenerate) energy 

level.

Self-test 51.3 What is the ratio of the populations of the levels 

with J = 2 and J = 1 at the same temperature?

Answer: 1.359

The chemist’s toolkit 51.1 The method of undetermined 
multipliers

Suppose we need to find the maximum (or minimum) value of 

some function f that depends on several variables x1, x2, …, xn. 

When the variables undergo a small change from xi to xi + δxi 

the function changes from f to f + δf, where

δ δf
f

x
x

i

n

i
i= ⎛

⎝⎜
⎞
⎠⎟

=
∑

1

∂
∂

 

At a minimum or maximum, δf = 0, so then

i

n

i
i

f

x
x

=
∑⎛

⎝⎜
⎞
⎠⎟

=
1

0
∂
∂ δ

 

If the xi were all independent, all the δxi would be arbitrary, 

and this equation could be solved by setting each (∂f/∂xi) = 0 

individually. When the xi are not all independent, the δxi are 

not all independent, and the simple solution is no longer valid. 

We proceed as follows.

Let the constraint connecting the variables be an equa-

tion of the form g = 0. The constraint g = 0 is always valid, so g 

remains unchanged when the xi are varied:

δ ∂
∂ δg

g

x
x

i

n

i
i= ⎛

⎝⎜
⎞
⎠⎟

=
=

∑
1

0

 

Because δg is zero, we can multiply it by a parameter, λ , and 

add it to the preceding equation:

i

n

i i
i

f

x

g

x
x

=
∑ ⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

=
1

0
∂
∂

∂
∂λ δ

 

This equation can be solved for one of the δx, δxn for instance, 

in terms of all the other δxi. All those other δxi (i = 1, 2, …,  
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51 The Boltzmann distribution  503

We employ the technique as follows. The two constraints in 

eqn 51.9 are multiplied by the constants −β and α, respectively 

(the minus sign in −β has been included for future conveni-

ence), and then added to the expression for d ln W:

d ln
ln

ln

W
W

W

= ⎛
⎝⎜

⎞
⎠⎟

+ −

= ⎛
⎝⎜

⎞
⎠⎟

+ −

∑ ∑ ∑

∑
i i

i

i

i

i

i i

i i

N
N N N

N

∂
∂

∂
∂

d d dα β ε

α ββεi iN
⎧
⎨
⎩

⎫
⎬
⎭

d

 

(b) Solving for the most probable 
distribution
All the dNi are now treated as independent. Hence the only way 

of satisfying d ln W = 0 is to require that, for each i,

∂
∂
lnW
Ni

i

⎛
⎝⎜

⎞
⎠⎟

+ − =α βε 0  (51.10)

when the Ni have their most probable values.

Equation 51.3 for W is

ln ln lnW = −∑N N N N
i

i i

 

n − 1) are independent, because there is only one constraint 

on the system. But λ is arbitrary; therefore we can choose it 

so that

∂
∂

∂
∂

f

x

g

xn n

⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

=λ 0

 

(A)

Then

i

n

i i
i

f

x

g

x
x

=

−

∑ ⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

=
1

1

0
∂
∂

∂
∂λ δ

 

Now the n −1 variations δxi are independent, so the solution of 

this equation is

∂
∂

∂
∂

f

x

g

x
i n

i i

⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

= = … −λ 0 1 2 1, , ,

 

However, eqn A has exactly the same form as this equation, so 

the maximum or minimum of f can be found by solving

∂
∂

∂
∂

f

x

g

x
i n

i i

⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

= = …λ 0 1 2, , ,

 

If there is more than one constraint, g1 = 0, g2 = 0, …, and this 

final result generalizes to

∂
∂

∂
∂

∂
∂

f

x

g

x

g

x
i n

i i i

⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

+ = = …λ λ1
1

2
2 0 1 2� , , , ,

 

with a corresponding multiplier, λ1, λ2, … for each constraint.

Example 51.2  Using the method of Lagrange 
multipliers

Suppose you have a sheet of metal of area A and want to build 

a box of the greatest volume possible from that sheet. What is 

the maximum volume when A = 1.0 m2?

Method Identify the volume in terms of the lengths of the 

sides (which are mutually perpendicular in a box) and identify 

the constraint in the form g = 0. Introduce the Lagrange mul-

tiplier λ for this constraint and construct and solve the corre-

sponding Lagrange variation equations.

Answer Let the sides of the box be a, b, and c; then its vol-

ume is V = abc. The total area of the surface of the box is 

2(ab + bc + ca), so the constraint on the construction is 

ab + bc + ca = A/2. In the notation used in The chemist’s toolkit 

51.1, g = ab + bc + ca − A/2 = 0. On introducing the Lagrange 

multiplier as λ, the three equations we have to solve to find the 

maximum volume subject to the constraint are

∂
∂

∂
∂

V

x

g

x
x a b c− = =λ 0 , ,

 

That is,

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

V

a

g

a
bc b c

V

b

g

b
ac a c

V

c

g

c
ab

− = − + =

− = − + =

− = −

λ λ

λ λ

λ

(

(

)

)

0

0

λλ(a b+ =) 0
 

Multiplication of the first by a and the second by b and then 

subtracting the second from the first gives

λ λ( ) ( ) ,ab bc ab ac bc ac+ + = − =− 0 0or
 

or a = b. Likewise, the other solutions are a = c and b = c. 

We conclude that the box of greatest volume is a cube 

with sides a = b = c and volume V = a3. From the constraint, 

g = 3a2 − A/2 = 0, so a = (A/6)1/2. In this instance, with A = 1.0 m2, 

a = 0.41 m, so V = 0.069 m3.

Self-test 51.4 Suppose that you require the height of the box, 

a, to be fixed at the value h = 0.40 m. What is the maximum 

volume of the box given the same sheet of metal?

Answer: V = 0.067 m3
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There is a small housekeeping step to take before differentiating 

ln W with respect to Ni: this equation is identical to

ln ln lnW = −∑N N N N
j

j j

 

because all we have done is to change the ‘name’ of the states 

from i to j. This step makes sure that we do not confuse the i in 

the differentiation variable (Ni) with the i in the summation. 

Now differentiation of this expression gives

∂
∂

∂
∂

∂
∂

lnW
N

N N

N

N N

Ni i j

j j

i

= −∑ln ln
 (51.11)

The derivative of the first term on the right is obtained as 

follows:

∂
∂

∂
∂

∂
∂

∂
∂

N N

N

N

N
N N

N

N

N
N

N
N

i i i

i

ln 
=⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

= + = +

ln
ln

ln ln 1

 (51.12)

The ln N in the first term on the right in the second line arises 

because N = N1 + N2 + … and so the derivative of N with respect to 

any of the Ni is 1: that is, ∂N/∂Ni = 1. The second term on the right 

in the second line arises because ∂(ln N)/∂Ni = (1/N)∂N/∂Ni. 

The final 1 is then obtained in the same way as in the preceding 

remark, by using ∂N/∂Ni = 1.

For the derivative of the second term we first note that

∂
∂

∂
∂

lnN

N N

N

N
j

i j

j

i

=
⎛
⎝⎜

⎞
⎠⎟

1
 (51.13)

Moreover, if i ≠ j, Nj is independent of Ni, so ∂Nj/∂Ni = 0. 

However, if i = j,

∂
∂

∂
∂

N

N

N

N
j

i

i

i

= =1  (51.14)

Therefore,

∂
∂
N

N
j

i
ij=δ  (51.15)

with δij the Kronecker delta (δij = 1 if i = j, δij = 0 otherwise). Then

j

j j

i j

j

i
j j

j

i

N N

N

N

N
N N

N

N∑ ∑=
⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

∂
∂

∂
∂

∂
∂

ln
ln

ln

==
⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

=
⎛
⎝⎜

⎞
⎠⎟

∑

∑
j

j

i
j

j

i

j

j

i

N

N
N

N

N

N

N

∂
∂

∂
∂

∂
∂

ln

((ln )

(ln ) ln

N

N N

j

j

ij j i

+

= + = +∑

1

1 1δ
 

and therefore

∂
∂
ln

ln (ln ) ln
W

N
N N

N

Ni
i

i= + − + = −1 1  (51.16)

It follows from eqn 51.10 that

− + − =ln
N

N
i

iα βε 0
 

and therefore that

N

N
i

i= −eα βε  (51.17)

(c) The final step
At this stage we note that

N N N N
i

i

i i

i i= = =∑ ∑ ∑− −e eα βε α βεe

 

Because the N cancels on each side of this equality, it follows that

eα
βε=

∑ −
1

i

ie
 (51.18)

and

N

N
i

i

i i

i

i
= = =

∑
− −

−

−e e
e

e
α βε α βε

βε

βεe   Boltzmann distribution  (51.19)

which is eqn 51.6a.

Checklist of concepts

☐ 1. The instantaneous configuration of a system of N mol-

ecules is the specification of the set of populations N0, 

N1, … of the energy levels ε0, ε1, … .

☐ 2. The Boltzmann distribution gives the numbers of mol-

ecules in each state of a system at any temperature.

☐ 3. The principle of equal a priori probabilities assumes 

that all possibilities for the distribution of energy are 

equally probable.

☐ 4. The relative populations of energy levels, as opposed 

to states, must take into account the degeneracies of the 

energy levels.
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51 The Boltzmann distribution  505

Checklist of equations

Property Equation Comment Equation number

Boltzmann distribution N Ni
i/ /= −e βε q β = 1/kT 51.6a

Partition function q =∑ −

i

ie βε See Topic 52 51.6b

Boltzmann ratio N N g gi j i j
i j/ ( / ) ( )= − −e β ε ε gi, gj are degeneracies 51.8
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TOPIC 52

Molecular partition functions

The partition function q = −Σi
ie βε  is introduced in Topic 51 sim-

ply as a symbol to denote the sum over states that occurs in the 

denominator of the Boltzmann distribution (eqn 51.6a). But it 

is far more important than that might suggest. For instance, it 

contains all the information needed to calculate the bulk prop-

erties of a system of independent particles. In this respect q 

plays a role for bulk matter very similar to that played by the 

wavefunction in quantum mechanics for individual molecules: 

q is a kind of thermal wavefunction. This Topic shows how the 

partition function is calculated in a variety of important cases 

in preparation for seeing how thermodynamic information is 

extracted.

52.1 The significance of the 
partition function

The molecular partition function is

q = ∑ −

states 

e
i

iβε

 
Definition  Molecular partition function  (52.1a)

where β = 1/kT. As emphasized in Topic 51, the sum is over 

states, not energy levels. If gi states have the same energy εi (so 

the level is gi-fold degenerate), we write

q = ∑ −

levels 

e
i

ig iβε Alternative 
definition

Molecular partition 
function (52.1b)

Contents

52.1 The significance of the partition function 506

Brief illustration 52.1: A partition function 507

52.2 Contributions to the partition function 508

(a) The translational contribution 509

Brief illustration 52.2: The translational  

partition function 510

(b) The rotational contribution 510

Example 52.1: Evaluating the rotational  

partition function explicitly 510

Brief illustration 52.3: The rotational contribution 511

Brief illustration 52.4: The symmetry number 513

(c) The vibrational contribution 514

Brief illustration 52.5: The vibrational partition  

function 514

Example 52.2: Calculating a vibrational  

partition function 514

(d) The electronic contribution 515

Brief illustration 52.6: The electronic partition  

function 515

Checklist of concepts 516

Checklist of equations 516

 ➤ Why do you need to know this material?

Statistical thermodynamics provides the link between 
molecular properties that have been calculated or 
derived from spectroscopy and thermodynamic properties, 
includ ing equilibrium concepts. The connection is the 
partition function. Therefore, this material is an essential 
foundation for understanding physical and chemical 
properties of bulk matter in terms of the properties of the 
constituent molecules.

 ➤ What is the key idea?
The partition function is calculated by drawing on calculated 
or spectroscopically derived structural information about 
molecules.

 ➤ What do you need to know already?

You need to know that the Boltzmann distribution 
expresses the most probable distribution of molecules 
over the available energy levels (Topic 51). In that Topic 
we introduce the concept of partition function, which is 
developed further here.
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52 Molecular partition functions  507

where the sum is now over energy levels (sets of states with 

the same energy), not individual states. Also as emphasized in 

Topic 51, we always take the lowest available state as the zero of 

energy and set ε0 = 0.

We have derived the following important expression for the 

partition function for a uniform ladder of states of spacing ε:

q =
− −

1

1 e βε
 

Uniform ladder  Partition function  (52.2a)

We can use this expression to interpret the physical signifi-

cance of a partition function. To do so, we first note that the 

Boltzmann distribution for this arrangement of energy lev-

els gives the fraction, pi = Ni/N, of molecules in the state with 

energy εi as

p
qi

i

i

=

= −( )

−

− −

e

e e

βε

βε βε1
 

Uniform ladder  Population  (52.2b)

Figure 52.4 shows how pi varies with temperature. At very low 

temperatures (large β), where q is close to 1, only the lowest 

state is significantly populated. As the temperature is raised, the 

population breaks out of the lowest state, and the upper states 

become progressively more highly populated. At the same 

time, the partition function rises from 1 towards 2 and then 

higher, so we see that its value gives an indication of the range 

of states populated at any given temperature. The name ‘parti-

tion function’ reflects the sense in which q measures how the 

total number of molecules is distributed—partitioned—over 

the available states.

The corresponding expressions for a two-level system, 

derived in Self-test 52.1, are

q = + −1 e βε
 

Two-level system  Partition function  (52.3a)

p
qi

i i

= =
+

− −

−

e e

e

βε βε

βε1
 

Two-level system  Population  (52.3b)

Brief illustration 52.1 A partition function

Suppose a molecule is confined to the following non-degen-

erate energy levels: 0, ε, 2ε, … (Fig. 52.1; later in this Topic 

we shall see that this array of levels is used when considering 

molecular vibration). Then the molecular partition function is

q = + + +…= + +( ) +− − − −1 12
2

e e e eβε βε βε βε �

The sum of the geometrical series 1 + x + x2 + … is 1/(1 − x), so in 

this case

q =
− −

1

1 e βε

This function is plotted in Fig. 52.2.

Self-test 52.1 Suppose the molecule can exist in only two 

states, with energies 0 and ε. Derive and plot the expression 

for the partition function.

Answer: q = 1 + e−βε; see Fig 52.3.

0

ε

ε

2ε
3ε

. .
 .

Figure 52.1 The equally spaced infinite array of energy 
levels used in the calculation of the partition function.  
A harmonic oscillator has the same spectrum of levels.

0
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Figure 52.2 The partition function for the system shown in 
Fig. 52.1 (a harmonic oscillator) as a function of temperature.
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1.4
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2

1.5

0.5 1

Figure 52.3 The partition function for a two-level system as 
a function of temperature. The two graphs differ in the scale 
of the temperature axis to show the approach to 1 as T → 0 
and the slow approach to 2 as T → ∞.
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In this case, because ε0 = 0 and ε1 = ε,

p p0 1

1

1 1
=

+
=

+−

−

−e

e

eβε

βε

βε
 

(52.4)

These functions are plotted in Fig. 52.5. Notice how the pop-

ulations are p0 = 1 and p1 = 0 and the partition function is q = 1 

(one state occupied) at T = 0. However, the populations tend 

towards equality ( , )p p0
1
2

1
2

= =1
 and q = 2 (two states occupied) 

as T → ∞. Incidentally, a common error is to suppose that when 

T = ∞ all the molecules in the system will be found in the upper 

energy state; however, we see from eqn 52.4 that as T → ∞, 

the populations of states become equal. The same conclusion 

is true of multi-level systems too: as T → ∞, all states become 

equally populated.

We can now generalize the conclusion that the partition 

function indicates the number of thermally accessible states. 

When T is close to zero, the parameter β = 1/kT is close to infin-

ity. Then every term except one in the sum defining q is zero 

because each one has the form e−x with x → ∞. The exception is 

the term with ε0 ≡ 0 (or the g0 terms at zero energy if the ground 

state is g0-fold degenerate), because then ε0/kT ≡ 0 whatever 

the temperature, including zero. As there is only one surviving 

term when T = 0, and its value is g0, it follows that

lim
T

g
→

=
0

0q

That is, at T = 0, the partition function is equal to the degen-

eracy of the ground state (commonly, but not necessarily, 1).

Now consider the case when T is so high that for each term 

in the sum εj/kT ≈ 0. Because e−x = 1 when x = 0, each term in the 

sum now contributes 1. It follows that the sum is equal to the 

number of molecular states, which in general is infinite:

lim
T→∞

= ∞q

In some idealized cases, the molecule may have only a finite 

number of states; then the upper limit of q is equal to the num-

ber of states, as we saw for the two-level system.

In summary:

The molecular partition function gives an indication of 

the number of states that are thermally accessible to a 

molecule at the temperature of the system.

At T = 0, only the ground level is accessible and q = g0. At very 

high temperatures, virtually all states are accessible, and q is 

correspondingly large.

52.2 Contributions to the partition 
function

The energy of a molecule is the sum of contributions from its 

different modes of motion:

ε ε ε ε εi i i i i= + + +T R V E

 
(52.5)

where T denotes translation, R rotation, V vibration, and E the 

electronic contribution. The separation of terms in eqn 52.5 is 

only approximate (except for translation) because the modes 

are not completely independent, but in most cases it is satisfac-

tory. The separation of the electronic and vibrational motions 

is justified provided only the ground electronic state is occu-

pied (for otherwise the vibrational characteristics depend on 

the electronic state) and, for the electronic ground state, that 

the Born–Oppenheimer approximation is valid (Topic 22). The 

separation of the vibrational and rotational modes is justified to 

the extent that the rotational constant (Topic 41) is independ-

ent of the vibrational state.

0
0

0 5 10
Temperature, kT/ε Temperature, kT/ε

1 1

0.5 1

Po
p

u
la

ti
o

n
, p

0.5 0.5

0

p0

p0

p1

p1

Figure 52.5 The fraction of populations of the two states of a 
two-level system as a function of temperature (eqn 52.4). Note 
that as the temperature approaches infinity, the populations 
of the two states become equal (and the fractions both 
approach 0.5).

Low
temperature

High
temperature

3.0 1.0 0.7 0.3
1.05 1.58 1.99 3.86

βε:
q:

Figure 52.4 The populations of the energy levels of the 
system shown in Fig. 52.1 at different temperatures, and the 
corresponding values of the partition function as calculated 
from eqn 52.2a. Note that β = 1/kT.
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52 Molecular partition functions  509

Given that the energy is a sum of independent contributions, 

the partition function factorizes into a product of contributions:

q = =
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That is,

q q q q q= T R V E

  Factorization of the partition function  (52.6)

This factorization means that we can investigate each con-

tribution separately. In general, exact analytical expressions 

for partition functions cannot be obtained. However, closed 

approximate expressions can often be found and prove to be 

very important for understanding chemical phenomena; they 

are derived in the following sections and collected at the end of 

the Topic.

(a) The translational contribution
The translational partition function for a particle of mass m 

free to move in a one-dimensional container of length X can 

be evaluated by making use of the fact that the separation of 

energy levels is very small and that large numbers of states are 

accessible at normal temperatures. As shown in the following 

Justification, in this case

qX

m

h
XT =⎛

⎝⎜
⎞
⎠⎟

2
2

1 2π
β

/

It will prove convenient to anticipate once again that β = 1/kT 

and to write this expression as q X
T /= X Λ, with

Λ =
π

h

mkT2
1 2( ) /

 

Definition  Thermal wavelength  (52.7b)

The quantity Λ (uppercase lambda) has the dimensions of 

length and is called the thermal wavelength (sometimes the 

‘thermal de Broglie wavelength’) of the molecule. The thermal 

wavelength decreases with increasing mass and temperature. 

This expression shows that the partition function for transla-

tional motion increases with the length of the box and the mass 

of the particle, for in each case the separation of the energy lev-

els becomes smaller and more levels become thermally acces-

sible. For a given mass and length of the box, the partition 

function also increases with increasing temperature (decreas-

ing β), because more states become accessible.

The total energy of a molecule free to move in three dimen-

sions is the sum of its translational energies in all three directions:

ε ε ε εn n n n
X

n
Y

n
Z

1 2 3 1 2 3
= + +( ) ( ) ( )

 
(52.8)

where n1, n2, and n3 are the quantum numbers for motion in 

the x-, y-, and z-directions, respectively. Therefore, because 

ea+b+c = eaebec, the partition function factorizes as follows:

q T e e e= =∑ ∑− − − − −( ) ( )
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One-
dimensional

Translational 
partition function (52.7a)

Justification 52.1 The partition function for a particle in 
a one-dimensional box

The energy levels of a molecule of mass m in a container of 

length X are given by eqn 9.8b with L = X:

E
n h

mXn =
2 2

28

The lowest level (n = 1) has energy h2/8mX2, so the energies 

relative to that level are

ε ε εn n h mX= =( )2 2 21 /8−

The sum to evaluate is therefore

qX

n

nT e=
=

∞
− −∑

1

12( )βε

The translational energy levels are very close together in a 

container the size of a typical laboratory vessel, in the sense 

h2/8mkTX2 � 1 (for instance, for H2 in a vessel of length 1 cm 

at 298 K, h2/8mkTX2 ≈ 4 × 10−17); therefore, the sum can be 

approximated by an integral:

qX
n nn nT e d e d= ≈− −

∞
−

∞

∫ ∫( )2 21

1 0

βε βε

The extension of the lower limit to n = 0 and the replacement 

of n2 − 1 by n2 introduces negligible error but turns the integral 

into standard form (Integral G.1 of the Resource section). We 

make the substitution x2 = n2βε, implying dn = dx/(βε)1/2, and 

therefore that

qX
x x

mT e d= ⎛
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510 11 Statistical thermodynamics

That is,

q q q qT T T T= X Y Z  
(52.9)

Equation 52.7a gives the partition function for translational 

motion in the x-direction. The only change for the other two 

directions is to replace the length X by the lengths Y or Z. 

Hence the partition function for motion in three dimensions is

q T =⎛
⎝⎜

⎞
⎠⎟

2
2

3 2πm

h
XYZ

β

/

 
(52.10a)

The product of lengths XYZ is the volume, V, of a rectangular 

container, so we can write

q T = V

Λ3

with Λ as defined in eqn 52.7b. As in the one-dimensional case, 

the partition function increases with the mass of the particle (as 

m3/2) and the volume of the container (as V); for a given mass 

and volume, the partition function increases with temperature 

(as T3/2). As in one dimension, qT → ∞ as T →∞ because an infi-

nite number of states becomes accessible as the temperature is 

raised. Even at room temperature, qT ≈2 × 1028 for an O2 mol-

ecule in a vessel of volume 100 cm3.

The validity of the approximations that led to eqn 52.10 can 

be expressed in terms of the average separation, d, of the parti-

cles in the container. Because q is the total number of accessible 

states, the average number of states per molecule is qT/N. For 

this quantity to be large, we require V/NΛ3 � 1. However, V/N 

is the volume occupied by a single particle, and therefore the 

average separation of the particles is d = (V/N)1/3. The condi-

tion for there being many states available per molecule is there-

fore d3/Λ3 ≫ 1, and therefore d ≫ Λ. That is, for eqn 52.10 to 

be valid, the average separation of the particles must be much 

greater than their thermal wavelength. For H2 molecules at 1 bar 

and 298 K, the average separation is 3 nm, which is signifi-

cantly larger than their thermal wavelength (71.2 pm).

The validity of eqn 52.10 can be expressed in a different 

way by noting that the approximations that led to it are valid if 

many states are occupied, which requires V/Λ3 to be large. That 

will be so if Λ is small compared with the linear dimensions of 

the container. For H2 at 25 °C, Λ = 71 pm, which is far smaller 

than any conventional container is likely to be (but comparable 

to pores in zeolites or cavities in clathrates). For O2, a heavier 

molecule, Λ = 18 pm.

(b) The rotational contribution
The energy levels of a linear rotor are ε J hcBJ J= +� ( )1  with J = 0, 

1, 2, … (Topic 41). The state of lowest energy has zero energy, 

so no adjustment need be made to the energies given by this 

expression. Each level consists of 2J + 1 degenerate states. 

Therefore, the partition function of a non-symmetrical (AB) 

linear rotor is

q R e= + +∑ −

J

g

J hcBJ J
J

J

( ) ( )2 1 1
��� �

� �� ��
β

ε

 

(52.11)

The direct method of calculating q  R is to substitute the experi-

mental values of the rotational energy levels into this expres-

sion and to sum the series numerically.

Three-
dimensional

Translational 
partition function

(52.10b)

Brief illustration 52.2 The translational partition function

To calculate the translational partition function of an H2 mol-

ecule confined to a 100 cm3 vessel at 25 °C we use m = 2.016mu; 

then

Λ =
×

× × ×( )
× ×( )

−

−

− −

6 626 10

2 2 016 1 6605 10

1 381 10
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27
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K
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.

where we have used 1 J = 1 kg m2 s−2. Therefore,

q T m

m
= ×

×( )
= ×

−

−

1 00 10

7 12 10
2 77 10

4 3

11
3

26.

.
.

About 1026 quantum states are thermally accessible, even at 

room temperature and for this light molecule. Many states 

are occupied if the thermal wavelength (which in this case is 

71.2 pm) is small compared with the linear dimensions of the 

container.

Self-test 52.2 Calculate the translational partition function 

for a D2 molecule under the same conditions.

Answer: qT = 7.8 × 1026, 23/2 times larger

Example 52.1 Evaluating the rotational partition 
function explicitly

Evaluate the rotational partition function of 1H35Cl at 25 °C, 

given that �B = −1 591cm0 1. .

Method We need to evaluate eqn 52.11 term by term. We use 

kT/hc = 207.224 cm−1 at 298.15 K. The sum is readily evaluated 

by using mathematical software.

Answer To show how successive terms contribute, we draw up 

the following table by using hcB kT� / 5111=0 0.  (Fig. 52.6):
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52 Molecular partition functions  511

Brief illustration 52.3 The rotational contribution

For 1H35Cl at 298.15 K we use kT/hc = 207.224 cm−1 and 
�B =1 591 cm 10. .−  Then

q R cm

cm
= = =

−

−
kT

hcB�
207 224

10 591
19 59

1

1

.

.
.

The value is in good agreement with the exact value (19.02, 

Example 52.1) and with much less work.

Self-test 52.4 Evaluate the rotational contribution to the parti-

tion function for 1H35Cl at 0 °C.

Answer: 17.93; exact value 18.26, Self-test 52.3

Justification 52.2 The rotational contribution for 
linear molecules

When many rotational states are occupied and kT is much 

larger than the separation between neighbouring states, the 

sum in the partition function can be approximated by an inte-

gral, much as we did for translational motion:

q R e= + − +
∞

∫ ( ) ( )2 1 1

0

J JhcBJ Jβ �
d

This integral can be evaluated without much effort by making 

the substitution x hcBJ J= +β � ( ),1  so that d /dx J hcB J= +β �( )2 1  

and therefore 2 1J dJ x hcB+( ) = d /β � .  Then

q R e= =−
∞

∫1 1

0

1

β βhcB
x

hcB
x

�

� �� ��

�d

which (because β = 1/kT) is eqn 52.12a.

Justification 52.3 The rotational contribution for 
nonlinear molecules

The energies of a symmetric rotor (Topic 41) are

E hcBJ J hc A B KJ K MJ, , ( ) ( )= + + −� � �1 2

with J = 0, 1, 2, …; K = J, J − 1, …, −J; and MJ = J, J − 1, …, −J. 

Instead of considering these ranges, the same values can be 

covered by allowing K to range from −∞ to ∞, with J confined 

to |K|, |K| + 1, …, ∞ for each value of K (Fig. 52.7). Because the 

energy is independent of MJ, and there are 2J + 1 values of MJ 

for each value of J, each value of J is (2J + 1)–fold degenerate. It 

follows that the partition function

q =
=

∞

=− =−

−∑∑ ∑
J K J

J

M J

J

E

J

J K MJ

0

e
β , ,

At room temperature, kT/hc≈ 200 cm−1. The rotational con-

stants of many molecules are close to 1 cm−1 (Table 43.1) and 

often smaller (though the very light H2 molecule, for which 
�B = 6 9 cm 10. ,−  is one exception). It follows that many rota-

tional levels are populated at normal temperatures. When this 

is the case, we show in the following two Justifications that the 

partition function may be approximated by

q R = kT

hcB�  
 Linear rotor  (52.12a)

q R =⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

kT

hc ABC

3 2 1 2/ /π
� � �

 

 Nonlinear rotor  (52.12b)

where � �A B, ,  and �C  are the rotational constants of the mole-

cule expressed as wavenumbers. However, before using these 

expressions, read on (to eqns 52.13 and 52.14).

The sum required by eqn 52.11 (the sum of the numbers in the 

second row of the table) is 19.9, hence q  R = 19.9 at this tempera-

ture. Taking J up to 50 gives q  R = 19.902. Notice that about ten 

J-levels are significantly populated but the number of popu-

lated states is larger on account of the (2J + 1)-fold degeneracy 

of each level.

Self-test 52.3 Evaluate the rotational partition function for 
1H35Cl at 0 °C.

Answer: 18.26

C
o

n
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u

ti
o

n
 t

o
 q

0
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1

1 2

2

3

3

4

4

5 6 7 8 9 10
Quantum number, J

Figure 52.6 The contributions to the rotational partition 
function of an HCl molecule at 25 °C. The vertical axis is 
the value of ( ) .( )2 1 1J hcBJ J+ − +e β �  Successive terms (which are 
proportional to the populations of the levels) pass through 
a maximum because the population of individual states 
decreases exponentially, but the degeneracy of the levels 
increases with J.

J 0 1 2 3 4 … 10

(2J + 1)e−0.05111J(J+1) 1 2.71 3.68 3.79 3.24 … 0.08

Atkins09819.indb   511 9/11/2013   12:39:48 PM



512 11 Statistical thermodynamics

A useful way of expressing the temperature above which the 

rotational approximation is valid is to introduce the character-

istic rotational temperature, θ R /= hcB k� .  Then ‘high tempera-

ture’ means T ≫ θR and under these conditions the rotational 

partition function of a linear molecule is simply T/θ  R. Some 

typical values of θR are shown in Table 52.1. The value for H2 

is abnormally high and we must be careful with the approxima-

tion for this molecule.

The general conclusion at this stage is that molecules with 

large moments of inertia (and hence small rotational constants 

and low characteristic rotational temperatures) have large 

rotational partition functions. The large value of qR reflects the 

closeness in energy (compared with kT) of the rotational levels 

in large, heavy molecules, and the large number of rotational 

states that are accessible at normal temperatures.

We must take care, however, not to include too many rota-

tional states in the sum. For a homonuclear diatomic molecule or 

a symmetrical linear molecule (such as CO2 or HC ≡ CH), a rota-

tion through 180° results in an indistinguishable state of the mol-

ecule. Hence, the number of thermally accessible states is only 

half the number that can be occupied by a heteronuclear dia-

tomic molecule, where rotation through 180° does result in a dis-

tinguishable state. Therefore, for a symmetrical linear molecule,

q R
R

= =kT

hcB

T

2 2� θ

The equations for symmetrical and non-symmetrical molecules 

can be combined into a single expression by introducing the 

symmetry number, σ, which is the number of indistinguish-

able orientations of the molecule. Then

q R
R

= T

σθ  
Linear rotor  Rotational partition function  (52.13b)

For a heteronuclear diatomic molecule, σ = 1; for a homo-

nuclear diatomic molecule or a symmetrical linear molecule, 

σ = 2.

The same care must be exercised for other types of symmet-

rical molecule, and for a nonlinear molecule we write

q R = ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

1
3 2 1 2

σ
kT

hc ABC

/ /π
� � �

Symmetrical 
linear rotor

Rotational partition 
function

(52.13a)

can be written equivalently as

q = + = +
=

∞

=−

−

=−∞

∞

=

∞
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J K J

J

E
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E
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| |
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As in Justification 52.2 we assume that the temperature is so 

high that numerous states are occupied and that the sums may 

be approximated by integrals. Then

q = +( )− −( )
−∞

∞
− +( )∞

∫ ∫e e d d
hc A B K hc BJ J

K

J J K
β β� � �2

2 1 1

| |

As before, the integral over J can be recognized as the integral 

of the derivative of a function, which is the function itself, so, 

as you should verify,

2 1
11 2

J J
hc B

hc BJ J hc BK

K

+( ) =− + −
∞

∫ e d eβ β

β
� �

�
( )

| |

We have also supposed that |K| ≫ 1 for most contributions and 

replaced |K| (|K| + 1) by K2. Now we can write

q = =− −( ) −

−∞

∞
−

−∞

∞

∫1 12 2 2

hc B
K

hc B
K

hc A B K hc BK hc K

β β
β β βΑ

� �
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e e d e d∫∫
=

⎛
⎝⎜

⎞
⎠⎟

1
1 2

hc B hcβ βΑ� �
π

/

For the final integration, we have used Integral G.1 of the 

Resource section. We conclude that

q =
( )

⎛
⎝⎜

⎞
⎠⎟
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⎝⎜
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⎠⎟
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3 2 2

1 2 3 2

2

1 2

hc AB

kT

hc ABβ /

/ / /π π
� � � �

For an asymmetric rotor, one of the �B  is replaced by �C,  to 

give eqn 52.12b.
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(a) (b)        

Figure 52.7 (a) The sum over J = 0, 1, 2, … and K = J, J − 1, …, −J 
(de picted by the circles) can be covered (b) by allowing K to range 
from −∞ to ∞, with J confined to |K|, |K| + 1, …, ∞ for each value of K.

Nonlinear 
rotor

Rotational 
partition 
function

(52.14)

Table 52.1* Rotational and vibrational temperatures

Molecule Mode θV/K θR/K

H2 6330 88

HCl 4300 15

I2 39 0.053

CO2 ν1

ν2

ν3

1997
3380

960

0.561

* More value are given in the Resource section; use hc/k = 1.439 K cm.
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52 Molecular partition functions  513

Some typical values of the symmetry numbers are given in 

Table 52.2. For the way that group theory is used to identify the 

value of the symmetry number, see Problem 52.9.

Brief illustration 52.4 The symmetry number

The value σ(H2O) = 2 ref lects the fact that a 180° rotation 

about the bisector of the HOH angle interchanges two indis-

tinguishable atoms. In NH3, there are three indistinguish-

able orientations around the axis, as shown in 1. For CH4, 

any of three 120° rotations about any of its four CeH bonds 

leaves the molecule in an indistinguishable state (2), so the 

symmetry number is 3 × 4 = 12. For benzene, any of six ori-

entations around the axis perpendicular to the plane of the 

molecule leaves it apparently unchanged (Fig. 52.10), as does 

a rotation of 180° around any of six axes in the plane of the 

molecule (three of which pass along each CeH bond with 

Justification 52.4 The origin of the symmetry number

The quantum mechanical origin of the symmetry number is 

the Pauli principle, which forbids the occupation of certain 

states. We saw in Topic 42, for example, that H2 may occupy 

rotational states with even J only if its nuclear spins are paired 

(para-hydrogen), and odd J states only if its nuclear spins are 

parallel (ortho-hydrogen). There are three states of ortho-H2 to 

each value of J (because there are three parallel spin states of 

the two nuclei).

To set up the rotational partition function we note that 

‘ordinary’ molecular hydrogen is a mixture of one part para-

H2 (with only its even-J rotational states occupied) and three 

parts ortho-H2 (with only its odd-J rotational states occupied). 

Therefore, the average partition function per molecule is

q R

even odd 

e e= + + +∑ ∑− + − +1

4
2 1

3

4
2 11 1

J

hcBJ J

J

hcBJ JJ J( ) ( )( ) (β β� � ))

The odd-J states are more heavily weighted than the even-J 

states (Fig. 52.8). From the illustration we see that we would 

obtain approximately the same answer for the partition func-

tion (the sum of all the populations) if each J term contributed 

half its normal value to the sum. That is, the last equation can 

be approximated as

q R e= +∑ − +1

2
2 1 1

J

hcBJ JJ( ) ( )β �

and this approximation is very good when many terms con-

tribute (at high temperatures, T � 88 K).

The same type of argument may be used for linear symmet-

rical molecules in which identical bosons are interchanged 

by rotation (such as CO2). As pointed out in Topic 42, if the 

ortho-H2

para-H2

Rotational quantum number J10

Po
p

u
la

ti
o

n

Figure 52.8 The values of the individual terms 
( ) ( )2 1 1J hcBJ J+ − +e β �  contributing to the mean partition 
function of a 3:1 mixture of ortho- and para-H2. The partition 
function is the sum of all these terms. At high temperatures, 
the sum is approximately equal to the sum of the terms over 
all values of J, each with a weight of 1

2 .  This is the sum of the 
contributions indicated by the curve.

nuclear spin of the bosons is 0, then only even-J states are 

admissible. Because only half the rotational states are occu-

pied, the rotational partition function is only half the value of 

the sum obtained by allowing all values of J to contribute (Fig. 

52.9).

Rotational quantum number J10

Po
p

u
la

ti
o

n

Figure 52.9 The relative populations of the rotational 
energy levels of CO2. Only states with even J values are 
occupied. The full line shows the smoothed, averaged 
population of levels.

Table 52.2* Symmetry numbers

Molecule σ

H2O  2

NH3  3

CH4 12

C6H6 12

* More values are given in the Resource section.
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(c) The vibrational contribution
The vibrational partition function of a molecule is calculated 

by substituting the measured vibrational energy levels into 

the exponentials appearing in the definition of qV, and sum-

ming them numerically. However, provided it is permissible 

to assume that the vibrations are harmonic, there is a much 

simpler way. In that case, the vibrational energy levels form a 

uniform ladder of separation hc��  (Topic 43), which is exactly 

the problem treated in Brief illustration 52.1 and summarized 

in eqn 52.2a. Therefore we can use that result with ε = hc��  and 

conclude immediately that

q V

e
=

− −

1

1 βhc ��

This function is plotted in Fig. 52.11 (which is essentially the 

same as Fig. 52.1). Similarly, the population of each state is 

given by eqn 52.2b.

In a polyatomic molecule each normal mode (Topic 44) has 

its own partition function (provided the anharmonicities are so 

small that the modes are independent). The overall vibrational 

partition function is the product of the individual partition 

functions, and we can write qV= qV(1)qV(2)…, where qV(K) is 

the partition function for the Kth normal mode and is calcu-

lated by direct summation of the observed spectroscopic levels.

Harmonic 
approximation

Vibrational 
partition function (52.15)

Brief illustration 52.5 The vibrational partition function

To calculate the partition function of I2 molecules at 298.15 K 

we note from Table 43.1 that their vibrational wavenumber is 

214.6 cm−1. Then, because, at 298.15 K, kT/hc = 207.224 cm−1, we 

have

βε = = =
−

−
hc

kT

�� 214 6

207 244
1 036

1

1

.

.
.

cm

cm

Then it follows from eqn 52.15 that

q V

e
=

−
=1

1
1 55

1 036− .
.

We can infer that only the ground and first excited states are 

significantly populated.

Self-test 52.6 Evaluate the populations of the first three vibra-

tional states.

Answer: p0 = 0.645, p1 = 0.229, p2 = 0.081

0
0

1

5

5

10

10

Temperature, kT/hcν~

Pa
rt

it
io

n
 f

u
n

ct
io

n
, q

V

Figure 52.11 The vibrational partition function of a molecule 
in the harmonic approximation. Note that the partition 
function is linearly proportional to the temperature when the 
temperature is high (T ≫ θ  V, with θ  V = hcν~/k).

the remaining three passing through each CeC bond in the 

plane of the molecule).

A B

C

C3

1   

A
B

C

C3

D

2

Self-test 52.5 What is the symmetry number for a naphtha-

lene molecule?

Answer: 3

B
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E
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F
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Figure 52.10 The 12 equivalent orientations of a benzene 
molecule that can be reached by pure rotations, and give 
rise to a symmetry number of 12. The six pale colours are the 
underside of the hexagon after that face has been rotated 
into view.

Example 52.2 Calculating a vibrational partition 
function

The wavenumbers of the three normal modes of H2O are 

3656.7 cm−1, 1594.8 cm−1, and 3755.8 cm−1. Evaluate the vibra-

tional partition function at 1500 K.
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52 Molecular partition functions  515

In many molecules the vibrational wavenumbers are so great 

that βhc�� >1.  For example, the lowest vibrational wavenumber 

of CH4 is 1306 cm−1, so βhc�� = 6 3.  at room temperature. Most 

CeH stretches normally lie in the range 2850 to 2960 cm−1, so 

for them βhc�� ≈14 . In these cases, e−βhc��  in the denominator 

of qV is very close to zero (for example, e−6.3 = 0.002), and the 

vibrational partition function for a single mode is very close 

to 1 (qV = 1.002 when βhc�� = 6 3. ), implying that only the zero-

point level is significantly occupied.

Now consider the case of bonds with such low vibrational 

frequencies that βhc� �� 1. When this condition is satisfied, 

the partition function may be approximated by expanding the 

exponential (ex = 1 + x + …):

q V

e
=

−
=

− − +( )−
1

1

1

1 1β βhc hc� � �� �

That is, for weak bonds at high temperatures,

Brief illustration 52.6 The electronic partition function

Some atoms and molecules have low-lying electronically 

excited states. An example is NO, which has a configuration 

of the form …π1 (Topic 25). The energy of the two degener-

ate states in which the orbital and spin momenta are paral-

lel (giving the 2Π3/2 term, Fig. 52.12) is slightly greater than 

that of the two degenerate states in which they are antipar-

allel (giving the 2Π1/2 term). The separation, which arises 

from spin–orbit coupling, is only 121 cm−1. If we denote the 

energies of the two levels as E1/2 = 0 and E3/2 = ε, the partition 

function is

q E

levels 

e e= = +∑ − −

i

ig iβε βε2 2

This function is plotted in Fig. 52.13. At T = 0, q  E = 2, because 

only the doubly degenerate ground state is accessible. At high 

temperatures, q  E approaches 4 because all four states are 

accessible. At 25 °C, q  E = 3.1.

Self-test 52.8 A certain atom has a fourfold degenerate ground 

state and a sixfold degenerate excited state at 400 cm−1 above 

the ground state. Calculate its electronic partition function at 

25 °C.

Answer: 4.87

High-temperature 
approximation

Vibrational 
partition function

(52.16)q V ≈ kT

hc��

The temperatures for which eqn 52.16 is valid can be 

expressed in terms of the characteristic vibrational tempera-

ture, θ V /= hc k��  (Table 52.1). The value for H2 is abnormally 

high because the atoms are so light and the vibrational fre-

quency is correspondingly high. In terms of the vibrational 

temperature, ‘high temperature’ means T ≫ θV
, and when 

this condition is satisfied, qV = T/θV (the analogue of the rota-

tional expression).

(d) The electronic contribution
Electronic energy separations from the ground state are usu-

ally very large, so for most cases q  E = 1 because only the ground 

state is occupied. An important exception arises in the case of 

atoms and molecules having electronically degenerate ground 

states, in which case q  E = g E, where g E is the degeneracy of the 

electronic ground state. Alkali metal atoms, for example, have 

doubly degenerate ground states (corresponding to the two ori-

entations of their electron spin), so q  E = 2.

Method Use eqn 52.15 for each mode, and then form the prod-

uct of the three contributions. At 1500 K, kT/hc = 1042.6 cm−1.

Answer We draw up the following table displaying the contri-

butions of each mode:

The overall vibrational partition function is therefore

q V 1 31 1 276 1 28 1 352= ×. . . .0 0× =

The three normal modes of H2O are at such high wavenum-

bers that even at 1500 K most of the molecules are in their 

vibrational ground state. However, there may be so many nor-

mal modes in a large molecule that their excitation may be 

significant even though each mode is not appreciably excited. 

For example, a nonlinear molecule containing 10 atoms has 

3N − 6 = 24 normal modes (Topic 44). If we assume a value of 

about 1.1 for the vibrational partition function of one nor-

mal mode, the overall vibrational partition function is about 

qV ≈ (1.1)24 = 9.8, which indicates significant vibrational excita-

tion relative to a smaller molecule, such as H2O.

Self-test 52.7 Repeat the calculation for CO2, where the vibra-

tional wavenumbers are 1388 cm−1, 667.4 cm−1, and 2349 cm−1, 

the second being the doubly degenerate bending mode.

Answer: 6.79

Mode: 1 2 3

��/cm 1− 3656.7 1594.8 3755.8

hc kT��/ 3.507 1.530 3.602

qV 1.031 1.276 1.028
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516 11 Statistical thermodynamics

Checklist of concepts

☐ 1. The molecular partition function is an indication of 

the number of thermally accessible states at the tem-

perature of interest.

☐ 2. If the energy of a molecule is given by the sum of con-

tributions, then the molecular partition function is a 

product of contributions from the different modes.

☐ 3. The symmetry number takes into account the number of 

indistinguishable orientations of a symmetrical molecule.

☐ 4. The vibrational partition function of a molecule may 

be approximated by that of a harmonic oscillator.

☐ 5. Because electronic energy separations from the ground 

state are usually very big, in most cases the electronic 

partition function is equal to the degeneracy of the 

electronic ground state.

Checklist of equations
Property Equation Comment Equation number

Molecular partition function q = ∑ −

states 

e

i

iβε Definition, independent molecules 52.1a

q = ∑ −

levels 

e

i

ig iβε Definition, independent molecules 52.1b

Uniform ladder q = 1/(1 − e−βε) 52.2a

Two-level system q = 1 + e−βε 52.3a

Thermal wavelength Λ = h/(2πmkT)1/2 52.7b

Translation qT = V/Λ3 52.10b

Rotation q R = kT hcB/σ � T ≫ θR, linear rotor, θ R /= hcB k� 52.13

q R = ( ) ( )( / ) / /
/ /

1
3 2 1 2

σ kT hc ABCπ � � � T ≫ θR, nonlinear rotor 52.14

Vibration q V e= − −1 1/( )βhc �� Harmonic approximation 52.15

S

S

S

S

L

L L

L

12
1.

1 
cm

–1

2Π1/2

2Π3/2

Figure 52.12 The doubly degenerate ground electronic 
level of NO (with the spin and orbital angular momentum 
around the axis in opposite directions) and the doubly 
degenerate first excited level (with the spin and orbital 
momenta parallel). The upper level is thermally accessible at 
room temperature.
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Figure 52.13 The variation with temperature of the 
electronic partition function of an NO molecule. Note 
that the curve resembles that for a two-level system (Fig. 
52.3), but rises from 2 (the degeneracy of the lower level) 
and approaches 4 (the total number of states) at high 
temperatures.
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TOPIC 53

Molecular energies

This Topic sets up the basic equations that show how to use the 

molecular partition function to calculate the mean energy of a col-

lection of independent molecules. In Topic 58 we see how those 

mean energies are used to calculate the thermodynamic property 

of ‘internal energy’, and in Topic 60 we extend the discussion to 

the calculation of the other central thermodynamic property, the 

‘entropy’. The equations for collections of interacting molecules are 

very similar (Topic 54), but much more difficult to implement.

53.1 The basic equations

We begin by considering a collection of N molecules that do 

not interact with one another. Any member of the collection 

can exist in a state i of energy εi measured from the lowest 

energy state of the molecule. The mean energy of a molecule, 

〈ε〉, relative to its energy in its ground state, is the total energy 

of the collection, E, divided by the total number of molecules:

〈 〉 = = ∑ε εE

N N
N

i

i i

1
 (53.1)

In Topic 51 it is shown that the overwhelmingly most probable 

population of a state in a collection at a temperature T is given 

by the Boltzmann distribution (eqn 51.6, N Ni / e= −( / )1 q βει ), so 

we can write

〈 〉 = ∑ −ε ε βε1

q
i

i
ie  (53.2)

with β = 1/kT. To manipulate this expression into a form involving 

only q we note that

ε β
βε βε

i
i ie

d

d
e− −= −

It follows that1

〈 〉 = − = − = −∑ ∑− −ε β β β
βε βε1 1 1

q q q
i i

i i
d

d
e

d

d
e

d

d

q
 (53.3)

1 To reinforce the analogy between statistical thermodynamics and quan-

tum mechanics, note the resemblance of eqn 53.3 written as 〈 〉 = −ε βq qd /d  

to the time-dependent Schrödinger equation written as �HΨ Ψ= −d /d(i / ).t 

Contents

53.1 The basic equations 517

Brief illustration 53.1: Mean energy of a two-level 

system 518

53.2 The translational contribution 518

Brief illustration 53.2: The equipartition theorem 519

53.3 The rotational contribution 519

Brief illustration 53.3: Mean rotational energy 520

53.4 The vibrational contribution 520

Brief illustration 53.4: The mean vibrational energy 521

53.5 The electronic contribution 521

Example 53.1: Calculating the electronic contribution  

to the energy 521

Brief illustration 53.5: The spin contribution to the 

energy 522

Checklist of concepts 522

Checklist of equations 523

 ➤ Why do you need to know this material?
The partition function contains thermodynamic information, 
but it needs to be extracted. Here we show how to extract 
one particular property: the average energy of molecules, 
which plays a central role in thermodynamics.

 ➤ What is the key idea?
The average energy of a molecule in a collection of 
independent molecules can be calculated from the 
molecular partition function.

 ➤ What do you need to know already?
You need know how to calculate the molecular partition 
function from calculated or spectroscopic data (Topic 
52) and its significance as a measure of the number of 
accessible states. The Topic also draws on expressions 
for the rotational and vibrational energies of molecules 
(Topics 41 and 43).
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518 11  Statistical thermodynamics

There are several points that need to be made in relation to 

eqn 53.3. Because ε0 = 0 (remember that we measure all ener-

gies from the lowest available level), 〈ε〉 should be interpreted 

as the value of the mean energy relative to its ground-state 

(zero-point) energy. If the lowest energy of the molecule is in 

fact εgs rather than 0, then the true mean energy is εgs + 〈ε〉. For 

instance, for a harmonic oscillator, we would set εgs equal to 

the zero-point energy, 1
2 hc��. Secondly, because the partition 

function may depend on variables other than the tempera-

ture (for example, the volume), the derivative with respect to 

β in eqn 53.3 is actually a partial derivative with these other 

variables held constant. The complete expression relating the 

molecular partition function to the mean energy of a molecule 

is therefore

〈 〉 = − ⎛
⎝⎜

⎞
⎠⎟

ε ε βgs

1

q
∂
∂
q

V

  Mean molecular energy  (53.4a)

An equivalent form is obtained by noting that dx/x = d ln x:

〈 〉 = −⎛
⎝⎜

⎞
⎠⎟

ε ε βgs

∂
∂
lnq

V

  Mean molecular energy  (53.4b)

These two equations confirm that we need know only the par-

tition function (as a function of temperature) to calculate the 

mean energy.

53.2 The translational contribution

For a one-dimensional container of length X, for which 

qT = X/Λ with Λ = h(β/2πm)1/2 (Topic 52), we note that Λ is a 

constant multiplied by β1/2, and obtain

〈 〉 ∂
∂

∂
∂ε β

Λ
β Λ

β

T
T

T

constant d

d

= − ⎛
⎝⎜

⎞
⎠⎟

= − ⎛
⎝⎜

⎞
⎠⎟

= − × × ×

1

1 2

q
q

V V
X

X

X
X

/

ββ β

−β β β β

β

1

1 1

2

1 2

1 2
1 2

1

2
3 2

constant

d

d
/

×
⎛
⎝⎜

⎞
⎠⎟

= =

− −

/

/

/

��� ��

That is,

〈 〉ε T = 1
2 kT  One dimension  Mean translational energy  (53.5a)

For a molecule free to move in three dimensions, the analogous 

calculation leads to

〈 〉ε T = 3
2 kT  

The equipartition theorem of classical mechanics is consistent 

with this result and provides a useful shortcut. First, we need to 

know that a ‘quadratic contribution’ to the energy means a con-

tribution that can be expressed as the square of a variable, such 

as the position or the velocity. For example, the kinetic energy 

Three 
dimensions

Mean 
translational 
energy

(53.5b)

Brief illustration 53.1 Mean energy of a two-level system

If a molecule has only two available energy levels, one at 0 and 
the other at an energy ε, its partition function is

q = + − 1  e βε

Therefore, the mean energy of a collection of these molecules 

at a temperature T is

〈 〉 = −
+

+ =
+

=
+−

− −

−ε β
ε ε

βε

βε βε

βε βε
1

1

1

1 1e

d( e )

d

e

e e

This function is plotted in Fig. 53.1. Notice how the mean 

energy is zero at T = 0, when only the lower state (at the zero 

of energy) is occupied, and rises to 1
2
ε as T ,→∞  when the two 

levels become equally populated.

Self-test 53.1 Deduce an expression for the mean energy when 

each molecule can exist in states with energies 0, ε, and 2ε.

Answer: 〈ε〉 = ε(1 + 2x)x/(1 + x + x2), x = e−βε

0.4

0.2

0
0 0.5 1

M
ea

n
 e

n
er

g
y,

 〈ε
〉/ε

Temperature, kT/ε Temperature, kT/ε
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0.2

0
0 5 10

Figure 53.1 The mean energy of a two-level system 
(expressed as a multiple of ε) as a function of 
temperature, on two temperature scales. The graph on 
the left shows the slow rise away from zero energy at 
low temperatures; the slope of the graph at T = 0 is 0. The 
graph on the right shows the slow rise to 0.5 as T → ∞ as 
both states become equally populated.
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53 Molecular energies  519

of an atom of mass m as it moves through three-dimensional 

space is

E m m mx y zk = + +1
2

2 1
2

2 1
2

2v v v

and there are three quadratic contributions to its energy. In its 

simplest form, and as developed in the following Justification, 

the equipartition theorem then states that:

For a collection of particles at thermal equilibrium 

at a temperature T, the average value of each quadratic 

contribution to the energy is the same and equal to 
1
2 kT .

where k is Boltzmann’s constant. (For the molar energy, mul-

tiply by Avogadro’s constant and use NAk = R.) The equiparti-

tion theorem is a conclusion from classical mechanics and 

is applicable only when the effects of quantization can be 

ignored. In practice, it can be used for molecular translation 

and rotation for all but the lightest of molecules, but not for 

vibration.

A note on good practice You will commonly see the equipar-

tition theorem expressed in terms of the ‘degrees of freedom’ 

rather than quadratic contributions. That can be misleading 

and is best avoided, for a single vibrational degree of freedom 

has two quadratic contributions (the kinetic energy and the 

potential energy).

53.3 The rotational contribution

The mean rotational energy of a linear molecule is obtained 

from the rotational partition function (eqn 52.11):

q R e= +∑ − +

J

hcBJ JJ( ) ( )2 1 1β �

When the temperature is low (in the sense T < θ  R), the series 

must be summed term by term, which for a heteronuclear 

diatomic molecule or other non-symmetrical linear molecule 

gives

q R e e= + + +− −1 3 52 6β βhcB hcB� � �

Hence, because

d

d
e e

Rq
β

β β= − + +− −hcB hcB hcB� �� �
( )6 302 6

Justification 53.1 The equipartition theorem

We consider a one-dimensional system; the approach is eas-

ily generalized to more dimensions. In general, the energy 

depends on the position of a particle, x, and the linear momen-

tum, p, both of which can range from −∞ to +∞. Both quanti-

ties are continuously variable (this is a classical system), so any 

Brief illustration 53.2 The equipartition theorem

According to the equipartition theorem, the average energy 

of each term in the expression above for Ek is 1
2

kT. Therefore, 

the mean energy of the atoms is 3
2

kT  and their molar energy 

is 3
2

RT. At 25 °C, 3
2

3 7RT = . ,kJmol 1−  so translational motion 

contributes about 4 kJ mol−1 to the molar internal energy of 

a gaseous sample of atoms or molecules (the remaining con-

tribution arises from the internal structure of the atoms and 

molecules).

Self-test 53.2 Estimate the mean molar rotational energy of a 

linear molecule.

Answer: RT; see Brief illustration 53.3

sums can be replaced by integrals. The average value of any 

term that depends on x2 is therefore

〈 〉x x x p
x p

2 2=
−

−∞

∞

−∞

∞

∫∫ e
d d

βε ( , )

q

The term in blue is the Boltzmann factor and the partition 

function is

q = −

−∞

∞

−∞

∞

∫∫ e d dβε ( , )x p x p

If the energy has the form ε(x, p) = ap2 + bx2 (for instance, a free 

particle has a = 1/2m and b = 0), then

〈 〉x
x x p

x p

xb x a p

b x a p

2

2 22 2

2 2

= =
−

−∞

∞
−

−∞

∞

−

−∞

∞
−

−∞

∞
∫ ∫
∫ ∫

e d e d

e d e d

β β

β β

ee d

e d

−

−∞

∞

−

−∞

∞
∫
∫

b x

b x

b

b

x

x

β

β

β

β

2

2

3 3 1 2

1 2

1

2
( / )

( / )

/

/

π

π

� ��� ���

� �� 	��

= ⎛
⎝⎜

⎞
⎠⎟

1
2

1

bβ

where we have used Integrals G.1 and G.3 from the Resource 

section. It follows that the average value of a contribution 

to the energy of the form bx2 is 1/2β = 1
2

kT  A similar argu-

ment applies for the average value of p2 and its analogues (for 

instance, angular momentum).
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520 11  Statistical thermodynamics

(q  R is independent of V, so the partial derivative has been 

replaced by a complete derivative), we find

〈 〉ε β
β β

β

R
R

Rd

d

e e

e e

= −

= + +
+ +

− −

− −

1

6 30

1 3 5

2 6

2

q
q

hcB hcB hcB

hcB

� �� �

�
( )

66βhcB� �+

This ungainly function is plotted in Fig. 53.2. At high tempera-

tures (T ≫ θR), q  R is given by eqn 52.13 in the form

q R = 1

σβhcB�

where σ = 1 for a heteronuclear diatomic molecule. It then fol-

lows that

〈 〉ε β β β β
β β β

β

R
R

R

/

d

d

d

d

d

d
= − = − = −

−

1 1 1

1 2

q
q σ

σ
hcB

hcB
�

�




and therefore that

〈 〉ε β
R 1= = kT

 

The high-temperature result, which is valid when many rota-

tional states are occupied, is also in agreement with the equi-

partition theorem, because the classical expression for the 

energy of a linear rotor is E I Ia bk = +1
2

2 1
2

2
⊥ ⊥ω ω  and therefore 

has two quadratic contributions. (There is no rotation around 

the line of atoms.) It follows from the equipartition theorem 

that the mean rotational energy is 2 1
2× =kT kT .

53.4 The vibrational contribution

The vibrational partition function in the harmonic approxima-

tion is given in eqn 52.15:

q V

e
=

− −
1

1 βhc��

Because qV is independent of the volume, it follows that

d

d

d

d e

e

e

Vq
β β β

β

β=
−

= −
−−

−

−
1

1 1 2hc

hc

hc

hc
�

�

�

�
�

�

�

�

( )
 (53.7)

and hence from

〈 〉ε β
β

β

β

β

V
V

Vd

d
e

e

e

e

= − = −
−

=

−
−

−

−

1
1

1 2q
q

( )
( )

hc
hc

hc

h

hc

hc

�
�

�

�

�

�
�

�

�

� cc

hc

�

�

�

�1− −e β

that

〈 〉ε β
V

e
=

−
hc
hc

�
�

�
� 1  

The zero-point energy, 1
2 hc��, can be added to the right-hand 

side if the mean energy is to be measured from 0 rather than 

the lowest attainable level (the zero-point level). The variation 

of the mean energy with temperature is illustrated in Fig. 53.3. 

Linear molecule, 
high temperature 
(T ≫ θR) 

Mean 
rotational 
energy 

(53.6b)

Brief illustration 53.3 Mean rotational energy

To estimate the mean energy of a nonlinear molecule we rec-

ognize that its rotational kinetic energy (the only contribu-

tion to its rotational energy) is E I I Ia a b b c ck = + +1
2

2 1
2

2 1
2

2ω ω ω .  

As there are three quadratic contributions, its mean rotational 

energy is 3
2

kT.  The molar contribution is 3
2

RT.  At 25 °C, this 

contribution is 3.7 kJ mol−1, the same as the translational con-

tribution, for a total of 7.4 kJ mol−1. A monatomic gas has no 

rotational contribution.

Self-test 53.3 How much energy does it take to raise the tem-

perature of 1.0 mol H2O(g) from 100 °C to 200 °C? Consider 

only translational and rotational contributions to the mean 

energy.

Answer: 2.5 kJ

Harmonic 
approximation 

Mean 
vibrational 
energy

 (53.8)
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Figure 53.2 The mean rotational energy of a non-symmetrical 
linear rotor as a function of temperature. At high temperatures 
(T ≫θ  R), the energy is linearly proportional to the temperature, 
in accord with the equipartition theorem.

Unsymmetrical 
linear molecule 

Mean 
rotational 
energy 

(53.6a)
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53 Molecular energies  521

Example 53.1 Calculating the electronic contribution to 
the energy

A certain atom has a doubly degenerate electronic ground 

state and a fourfold degenerate excited state at 600 cm−1 above 

the ground state. What is its mean electronic energy at 25 °C 

expressed as a wavenumber?

Method Write down the expression for the partition func-

tion at a general temperature T (in terms of β ) and then 

derive the mean energy by differentiating with respect to β. 

Finally, substitute the data. Use ε =hc��,  〈 〉 〈 〉ε E E=hc �� , and 

kT/hc = 207.226 cm−1 at 25 °C.

Answer The partition function is

q E e= + −2 4 βε

At high temperatures, when T �θV, or βhc� �� 1 (from Topic 

52, θ V /= hc k�� ), the exponential functions can be expanded 

(ex = 1 + x + …) and all but the leading terms discarded. This 

approximation leads to

〈 〉ε β

β

V = + + −

≈ =

hc

hc

kT

�
� �
�

�( )1 1

1

 

This result is in agreement with the value predicted by the 

classical equipartition theorem, because the energy of a one-

dimensional oscillator is E m k xx= +1
2

2 1
2

v f
2  and the mean energy 

of each quadratic term is is 1
2 kT .  Bear in mind, however, that 

the condition T �θV is rarely satisfied.

High-
temperature 
approximation 
(T ≫θV) 

Mean 
vibrational 
energy 

(53.9)

Brief illustration 53.4 The mean vibrational energy

To calculate the mean vibrational energy of I2 molecules at 

298.15 K we note from Table 43.1 that their vibrational wavenum-

ber is 214.6 cm−1. Then, because, at 298.15 K, kT/hc = 207.224 cm−1, 

from eqn 53.8 with

βε = = =
−

−
hc

kT

�� 214 6

207 244
1 036

1

1

.

.
.

cm

cm

it follows that

〈 〉ε V /
cm

e
cmhc =

−
=

−
−214 6

1
118 0

1

1 036
1

.
.

.

The addition of the zero-point energy (corresponding to 
1
2

214 6× . )cm 1−  increases this value to 225.3 cm−1. The equipar-

tition result is 207.224 cm−1 the discrepancy reflecting the fact 

that in this case it is not true that T ≫θV and (as deduced in 

Brief illustration 52.5) only the ground and first excited states 

are significantly populated.

Self-test 53.4 What must the temperature be before the energy 

estimated from the equipartition theorem is within 2 per cent 

of the energy given by eqn 53.8?

Answer: 625 K; use a spreadsheet

When there are several normal modes that can be treated as 

harmonic, the overall vibrational partition function is the prod-

uct of each individual partition function, and the total mean 

vibrational energy is the sum of the mean energies of each mode.

53.5 The electronic contribution

We shall consider two types of electronic contribution: one 

arising from the electronically excited states of a molecule and 

one from the spin contribution.

In most cases of interest, the electronic states of atoms and 

molecules are so widely separated that only the electronic 

ground state is occupied. As we are adopting the convention 

that all energies are measured from the ground state of each 

mode, we can write

〈 〉ε E = 0   Mean electronic energy  (53.10)

In certain cases, there are thermally accessible states at the 

temperature of interest. In that case the partition function and 

hence the mean electronic energy are best calculated by direct 

summation over the available states. Care must be taken to take 

any degeneracies into account, as we illustrate in Example 53.1.
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Figure 53.3 The mean vibrational energy of a molecule in 
the harmonic approximation as a function of temperature. 
At high temperatures (T ≫θV), the energy is linearly 
proportional to the temperature, in accord with the 
equipartition theorem.
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522 11  Statistical thermodynamics

The mean energy of the spin is therefore

〈 〉ε β ββ
β

β

S
S

S

e

d

d e

d

d
e

B

B

B
B

= − = −
+

+−
−

− −

1 1

1
1

2
2

2 2

q
q

B
B

B

μ
μ

μ μ

( )

B

� ��� ����

=
+

−

−
2

1

2

2

μ μ

μ
B e

e

B

B

B B

B

β

 

That is,

〈 〉ε μ
βμ

S B

e B
=

+
2

12

B
B   Mean spin energy  (53.13)

This function is essentially the same as that plotted in Fig. 53.1.

Brief illustration 53.5 The spin contribution to the 
energy

Suppose a collection of radicals is exposed to a magnetic field 

of 2.5 T (T denotes tesla). With μB = 9.274 ×10−24 J T−1 and a 

temperature of 25 °C,

2  2 9 274 1 JT 2 5T  4 6 1 JB
24 1 23

B

μ

μ

B

B

= × × = …×
× ×

=

× − − −( . ) . .

( .

0 0

2
2 9 274

β
110 2 5

1 381 10 298
0 011

24 1

23 1

− −

− −

JT ( T)

JK K

) .

( . ) ( )
.

× ×
= …

The mean energy is therefore

〈 〉ε S J

e
J= …×

+
= ×

−

…
−4 6 10

1
2 3 10

23

0 011
23.

.
.

This energy is equivalent to 14 J mol−1 (note joules, not 

kilojoules).

Self-test 53.6 Repeat the calculation for a species with S = 1 in 

the same magnetic field.

Answer: 0.0046 zJ, 28 J mol−1

The mean energy is therefore

〈 〉ε β β
ε

βε
βε

βε

ε βε

E
E

E

e

d

d e

d

d
e

e

= − = −
+

+

=

−
−

−

− −

1 1

2 4
2 4

4

2

4

q
q

( )

� ��� ���

++
=

+−4 11
2

e eβε βε
ε

and expressed as a wavenumber

〈 〉�
�

��
�

�
E

e
=

+1
2

1hc kT/

From the data,

〈 〉��E
1

1
2

600/207.226
1

600cm

e 1
59.7cm=

+
=

−
−

Self-test 53.5 Repeat the problem for an atom that has a 

threefold degenerate ground state and a sevenfold degenerate 

excited state 400 cm−1 above.

Answer: 101 cm−1

An electron spin in a magnetic field B has two possible 

energy states that depend on its orientation as expressed by the 

magnetic quantum number ms and which are given by

E mm ss
= 2μBB   Electron spin energies  (53.11)

where μB is the Bohr magneton (see inside the front cover). 

These energies are discussed in more detail in Topic 50, where 

we see that the integer 2 needs to be replaced by a number very 

close to 2. The lower state has ms = − 1
2

,  so the two energy lev-

els available to the electron lie (according to our convention) 

at ε−1/2 = 0 and at ε+1/2 = 2μBB. The spin partition function is 

therefore

q BS e e B= = +∑ − −

ms

ms
βε βμ1 2

  Spin partition function  (53.12)

Checklist of concepts

☐ 1. The mean molecular energy can be calculated from the 

molecular partition function (see the following list of 

equations).

☐ 2. The (classical) equipartition theorem states that, for a 

collection of particles at thermal equilibrium at a tem-

perature T, the average value of each quadratic contribu-

tion to the energy is the same and equal to 1
2 kT .
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53 Molecular energies  523

Checklist of equations 

Property Equation Comment Equation number

Mean energy 〈 〉 = −ε ε βgs /( / )( )1 q q∂ ∂ V 53.4a

〈 〉 = −ε ε βgs /( ln )∂ ∂q V Alternative version 53.4b

Translation 〈 〉ε T = d kT
2 In d dimensions 53.5

Rotation 〈 〉ε R = kT  Linear molecule, T � θR 53.6b

〈 〉ε R = 3
2

kT Nonlinear molecule, T � θR; see Brief illustration 53.3

Vibration 〈 〉ε βV /(e )= −hc hc� �� � 1 Harmonic approximation 53.8

〈 〉ε V =kT T  � θV 53.9
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TOPIC 54

The canonical ensemble

Topic 52 deals with a system composed of independent mole-

cules. Here we consider the formalism appropriate to systems in 

which the molecules interact with one another, as in real gases 

and liquids. The crucial concept we need when treating systems 

of interacting particles is the ‘ensemble’. Like so many scientific 

terms, the term has basically its normal meaning of ‘collection’, 

but it has been sharpened and refined into a precise significance.

The expressions presented in this Topic are the analogues of 

those derived in Topics 52 and 53, and details of the calcula-

tions are found there. The implementation of the equations, 

however, is much more difficult, and except in certain cases is 

best left to specialized texts. This Topic is included principally 

for the sake of completeness and as the endpoint of our journey 

laying the foundations of statistical thermodynamics.

54.1 The concept of ensemble

To set up an ensemble, we take a closed system of specified 

volume, composition, and temperature and think of it as rep-

licated �N  times (Fig. 54.1). All the identical closed systems 

are regarded as being in thermal contact with one another, so 

they can exchange energy. The total energy of all the systems 

is �E  and, because they are in thermal equilibrium with one 

another, they all have the same temperature, T. The volume 

of each member of the ensemble is the same, so the energy 

levels available to the molecules are the same in each system, 

and each member contains the same number of molecules, 

so there is a fixed number of molecules to distribute within 

each system. This imaginary collection of replications of 

the actual system with a common temperature is called the 

canonical ensemble. The word ‘canonical’ means ‘according 

to a rule’.

There are two other important ensembles. In the micro-

canonical ensemble the condition of constant temperature is 

replaced by the requirement that all the systems should have 

exactly the same energy: each system is individually isolated. 

In the grand canonical ensemble the volume and temperature 

of each system is the same, but they are open, which means that 

matter can be imagined as able to pass between the systems; the 

Contents

54.1 The concept of ensemble 524
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Brief illustration 54.1: The canonical distribution 525

(b) Fluctuations from the most probable distribution 526

Brief illustration 54.2: The role of the density  

of states 526

54.2 The mean energy of a system 526
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Brief illustration 54.4: Indistinguishability 527
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Brief illustration 54.5: A configuration integral 528

Checklist of concepts 529

Checklist of equations 529

 ➤ Why do you need to know this material?

Whereas the derivation of the molecular partition function 
(Topic 52) deals with independent molecules, in practice, 
molecules do interact. So, this material is essential for 
constructing models of real gases, liquids, and solids and 
of any system in which intermolecular interactions cannot 
be neglected.

 ➤ What is the key idea?
A system composed of interacting molecules is described 
in terms of a canonical partition function, from which its 
thermodynamic properties may be deduced.

 ➤ What do you need to know already?
This material draws on the calculations in Topic 52: the 
calculations here are analogous to those, and are not 
repeated in detail. This Topic also draws on the calculation 
of energies from partition functions (Topic 53); here too the 
calculations are analogous to those presented in that Topic.
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54 The canonical ensemble  525

composition of each one may fluctuate, but now the property 

known as the chemical potential, μ (which is described in Topic 

69), is the same in each system:

 Microcanonical ensemble: N, V, E common

 Canonical ensemble: N, V, T common

 Grand canonical ensemble: μ, V, T common

The microcanonical ensemble is the basis of the discussion in 

Topic 51 (but not so called there); we shall not consider the 

grand canonical ensemble explicitly.

The important point about an ensemble is that it is a collec-

tion of imaginary replications of the system, so we are free to let 

the number of members be as large as we like; when appropri-

ate, we can let �N  become infinite. The number of members of 

the ensemble in a state with energy Ei is denoted �Ni , and we can 

speak of the configuration of the ensemble (by analogy with the 

configuration of the system used in Topic 51) and its weight, 
�W. Note that �N  is unrelated to N, the number of molecules in 

the actual system; �N  is the number of imaginary replications of 

that system.

(a) Dominating configurations
Just as in Topic 51, some of the configurations of the canoni-

cal ensemble will be very much more probable than others. For 

instance, it is very unlikely that the whole of the total energy, �E, 

will accumulate in one system. By analogy with the discussion 

in Topic 51, we can anticipate that there will be a dominating 

configuration, and that we can evaluate the thermodynamic 

properties by taking the average over the ensemble using that 

single, most probable, configuration. In the thermodynamic 

limit of �N →∞, this dominating configuration is overwhelm-

ingly the most probable, and it dominates the properties of the 

system virtually completely.

The quantitative discussion follows the argument in Topic 51 

with the modification that N and Ni are replaced by �N  and �Ni .  

The weight �W  of a configuration { , , }� � …N N0 1  is

� �
� �W = …

N

N N

!

! !1 2  
 Weight  (54.1)

The configuration of greatest weight, subject to the constraints 

that the total energy of the ensemble is constant at �E  and that 

the total number of members is fixed at �N , is given by the 

canonical distribution:

�
�

N

N
i

Ei

=
−e β

Q  

 Canonical distribution  (54.2a)

where

Q =∑ −

i

Eie β

 

 Canonical partition function  (54.2b)

in which the sum is over all members of the ensemble, each one 

having an energy Ei. The quantity Q  , which is a function of the 

temperature, is called the canonical partition function. Like 

the molecular partition function, the canonical partition func-

tion contains all the thermodynamic information about a sys-

tem, but in this case allowing for the possibility of interactions 

between the constituent molecules.

Brief illustration 54.1 The canonical distribution

Suppose that we are considering a sample of a monatomic 

real gas that contains 1.00 mol atoms. Then at 298 K its total 

energy is close to 3
2

3
2

00nRT = − −( . ) . )1 mol 8 3145 J K mol1 1× ×
( ) . .298K 3 72kJ=  Suppose that for an instant the molecules are 

present at separations where the total energy is 3.72 kJ and an 

instant later are present at separations where the total energy is 

lower than 3.72 kJ by 0.000  000  01 per cent (that is, by 3.72 × 10−7 J).  

To predict the ratio of numbers of members of the ensemble 

with these two energies we use eqn 54.2 in the form

�
�
N

N

( )

( )
( . )/( . ) (lower

higher
e J JK= − − × × ×− − −3 70 10 1 381 10 2987 23 1 KK

e

)

.= ×3 33 107

At first sight, the number of members that have the lower 

energy vastly outweighs the number with the higher energy. 

Why that is not necessarily the case is explained below.

Self-test 54.1 Repeat the calculation for members of the same 

ensemble with energies that differ by 1.0 ×10−20 per cent.

Answer: � �N N( ) ( )lower / higher e= ≈ ×90 391 10

N,
V,
T

N,
V,
T

1 2 3 4 6 7 8 9 10

11 12 13 14 15

5

20

16 17
1918

555

Energy

Figure 54.1 A representation of the canonical ensemble, in this 
case for �N =20.  The individual replications of the actual system 
all have the same composition and volume. They are all in 
mutual thermal contact, and so all have the same temperature. 
Energy may be transferred between them as heat, and so 
they do not all have the same energy. The total �E  of all 20 
replications is a constant because the ensemble is isolated 
overall.
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526 11 Statistical thermodynamics

(b) Fluctuations from the most probable 
distribution

The canonical distribution in eqn 54.2 is only apparently an 

exponentially decreasing function of the energy of the system. 

We must appreciate that the equation gives the probability 

of occurrence of members in a single state i of the entire sys-

tem of energy Ei. There may in fact be numerous states with 

almost identical energies. For example, in a gas the identities 

of the molecules moving slowly or quickly can change without 

necessarily affecting the total energy. The density of states, the 

number of states in an energy range divided by the width of the 

range (Fig. 54.2), is a very sharply increasing function of energy. 

It follows that the probability of a member of an ensemble hav-

ing a specified energy (as distinct from being in a specified 

state) is given by eqn 54.2, a sharply decreasing function, multi-

plied by a sharply increasing function (Fig. 54.3). Therefore, the 

overall distribution is a sharply peaked function. We conclude 

that most members of the ensemble have an energy very close 

to the mean value.

54.2 The mean energy of a system

Just as the molecular partition function can be used to calcu-

late the mean value of a molecular property, so the canonical 

partition function can be used to calculate the mean energy of 

an entire system composed of molecules (that might or might 

not be interacting with one another). Thus, Q is more general 

than q because it does not assume that the molecules are inde-

pendent. We can therefore use Q to discuss the properties of 

condensed phases and real gases where molecular interactions 

are important.

If the total energy of the ensemble is �E, and there are �N  mem-

bers, the average energy of a member is 〈 〉 =E E N� �/ . Because the 

fraction, �pi , of members of the ensemble in a state i with energy 

Ei is given by the analogue of eqn 51.6 (N Ni
i

i i/ e / e= ∑− −βε βε  

written as p qi
i= −e /βε ) as

�p
Qi

Ei

=
−e β

 
(54.3)

Width of
range

Number of
states

E
n

er
g

y

Figure 54.2 The energy density of states is the number of 
states in an energy range divided by the width of the range.

Probability
of energy

Number of
states

Energy

Probability
of state

Figure 54.3 To construct the form of the distribution of 
members of the canonical ensemble in terms of their energies, 
we multiply the probability that any one is in a state of given 
energy, eqn 54.2, by the number of states corresponding to 
that energy (a steeply rising function). The product is a sharply 
peaked function at the mean energy, which shows that almost 
all the members of the ensemble have that energy.

Brief illustration 54.2 The role of the density of states

A function that increases rapidly is xN, with N a large value. 

A function that decreases rapidly is e−Nx, once again with N a 

large value. The product of these two functions, normalized so 

that their maxima coincide,

f x xN N Nx( )= −e e

is plotted for three values of N in Fig. 54.4. We see that the 

width of the product does indeed decrease as N increases.

Self-test 54.2 Show that the product of the functions x2N and 

e−Nx, suitably normalized, behaves similarly.

Answer: Plot f(x) = (1/2)2N e2N x2N e − Nx for 0 ≤ x ≤ 4

f(x)

0
0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5 3x

10

20

50

Figure 54.4 The product of the two functions discussed in 
Brief illustration 54.2, for three different values of N.
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54 The canonical ensemble  527

it follows that

〈 〉E E E
i

i i

i

i
Ei= =∑ ∑ −p

Q
1

e β

 

(54.4)

By the same argument that led to eqn 53.4,

〈 〉 ∂
∂

∂
∂E

V V

= − ⎛
⎝⎜

⎞
⎠⎟

= −⎛
⎝⎜

⎞
⎠⎟

1

Q
Q Q
β β

ln

 

 Mean energy of a system  (54.5)

As in the case of the mean molecular energy, we must add to 

this expression the ground-state energy of the entire system if 

that is not zero.

54.3 Independent molecules revisited

We shall now see how to recover the molecular partition func-

tion from the more general canonical partition function when 

the molecules are independent. When the molecules are inde-

pendent and distinguishable (in the sense to be described), the 

relation between Q and q is

Q q= N

 
(54.6)

If all the molecules are identical and free to move through 

space, we cannot distinguish them and the relation Q = q   N is not 

valid. Suppose that molecule 1 is in some state a, molecule 2 is 

in b, and molecule 3 is in c, then one member of the ensemble 

has an energy E = εa + εb + εc. This member, however, is indis-

tinguishable from one formed by putting molecule 1 in state b, 

molecule 2 in state c, and molecule 3 in state a, or some other 

permutation. There are six such permutations in all, and N! in 

general. In the case of indistinguishable molecules, it follows 

that we have counted too many states in going from the sum 

over system states to the sum over molecular states, so writing 

Q = q  N overestimates the value of Q. The detailed argument is 

quite involved, but at all except very low temperatures it turns 

out that the correction factor is 1/N!. Therefore:

For distinguishable independent molecules :Q q= N

 
(54.7a)

For indistinguishable independent molecules /: !Q q= N N
 

(54.7b)

At low temperatures, where only a few states are thermally acces-

sible, account must be taken of the role of the Pauli principle 

in governing the occupation of states. This is the role of Bose–

Einstein statistics (for bosons) and Fermi–Dirac statistics (for 

fermions), both of which are beyond the scope of this discussion.

Brief illustration 54.3 The expression for the energy

If the canonical partition function is a product of the molecu-

lar partition function of each molecule (which we see below 

is the case when the N molecules of the system are independ-

ent), then we can write Q = q   N, and infer that the energy of the 

system is

〈 〉 ∂
∂

∂
∂

∂
∂E

N N
N

N

N

V

N

N
V V

= −
⎛
⎝⎜

⎞
⎠⎟

= − ⎛
⎝⎜

⎞
⎠⎟

= − ⎛
⎝⎜

⎞
⎠⎟

= 〈
−1 1

q
q q

q
q

q
q

β β β εε 〉

That is, the mean energy of the system is N times the mean 

energy of a single molecule.

Self-test 54.3 Confirm that the same expression is obtained if 

Q = qN/N!, which is another case described below.

Justification 54.1 The relation between Q and q

The total energy of a collection of N independent molecules 

is the sum of the energies of the molecules. Therefore, we can 

write the total energy of a state i of the system as

E Ni i i i= + + +ε ε ε( ) ( ) ( )1 2 …

In this expression, εi(1) is the energy of molecule 1 when the 

system is in the state i, εi(2) the energy of molecule 2 when the 

system is in the same state i, and so on. The canonical parti-

tion function is then

Q =∑ − ( )− − −

i

Ni i ie βε βε βε1 2( ) ( )�

The sum over the states of the system can be reproduced by let-

ting each molecule enter all its own individual states (although 

we meet an important proviso shortly). Therefore, instead of 

summing over the states i of the system, we can sum over all 

the individual states j of molecule 1, all the states j of molecule 

2, and so on. This rewriting of the original expression leads to

Q q=
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=∑ ∑ ∑− − −

j j j

Nj j je e eβε βε βε�

Brief illustration 54.4 Indistinguishability

For molecules to be indistinguishable, they must be of the 

same kind: an Ar atom is never indistinguishable from a Ne 

atom. Their identity, however, is not the only criterion. Each 

identical molecule in a crystal lattice, for instance, can be 

‘named’ with a set of coordinates. Identical molecules in a lat-

tice can therefore be treated as distinguishable because their 

sites are distinguishable, and we use eqn 54.7b. On the other 

hand, identical molecules in a gas are free to move to different 

locations, and there is no way of keeping track of the identity 

of a given molecule; we therefore use eqn 54.7b.
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528 11 Statistical thermodynamics

54.4 The variation of energy  
with volume

When there are interactions between molecules, the energy of 

a collection depends on the average distance between them, 

and therefore on the volume that a fixed number occupy. This 

dependence on volume is particularly important for the discus-

sion of real gases (Topic 36), but we have enough information 

to establish the dependence here.

We need to evaluate (∂〈E〉/∂V〉T, the variation in energy of 

a system with volume at constant pressure. (In Topic 36, this 

quantity is identified with the ‘internal pressure’ of a gas and 

denoted πT.) To proceed, we substitute eqn 54.5 and obtain

∂
∂

∂
∂

∂
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V V
T V T
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lnQ
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(54.8)

We need to consider the translational contribution to Q since 

translational energy levels depend on volume, but to develop 

eqn 54.8 we also need to find a way to build an intermolecular 

potential energy into the expression for Q.

The total kinetic energy of a gas is the sum of the kinetic 

energies of the individual molecules. Therefore, even in a 

real gas the canonical partition function factorizes into a 

part arising from the kinetic energy, which for the perfect 

gas is Q = VN/Λ3NN!, where Λ is the thermal wavelength, eqn 

52.7b, and a factor called the configuration integral, Z, which 

depends on the intermolecular potentials (don't confuse this Z 

with the compression factor in Topic 36). We therefore write

Q
Z=

Λ3N
 

(54.9)

with Z replacing VN/N!, and expect Z to equal VN/N! for a per-

fect gas (see Brief illustration 54.5). It then follows that
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(54.10)

In the second line, we have used the relation (∂ 2f/∂x∂y) =  

(∂
 
2f/∂y∂x) and then noted that Λ is independent of volume, so its 

derivative with respect to volume is zero.

For a real gas of atoms (for which the intermolecular inter-

actions are isotropic), Z is related to the total potential energy 

EP of interaction of all the particles, which depends on all their 

relative locations, by

Z = …−∫1
1 2N

E
N!

e d d dpβ τ τ τ
 

 Configuration integral  (54.11)

where dτi is the volume element for atom i. The physical ori-

gin of this term is that the probability of occurrence of each 

arrangement of molecules possible in the sample is given by a 

Boltzmann distribution in which the exponent is given by the 

potential energy corresponding to that arrangement.

If the potential has the form of a central hard sphere sur-

rounded by a shallow attractive well (Fig. 54.5), then detailed 

calculation, which is too involved to reproduce here, leads to

∂〈 〉
∂

E

V

an

V
T

⎛
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⎞
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=
2

2

 

 Attractive potential  (54.12)

Self-test 54.4 A re ident ica l  molecu les  i n a  l iqu id 

indistinguishable?

Answer: Yes

Po
te

n
ti

al
 e

n
er

g
y,

 V

0
Intermolecular separation

Determines b

Determines a

Figure 54.5 The van der Waals equation of state (Topic 36) 
can be derived on the basis that the intermolecular potential 
energy has a hard core of range b surrounded by a long-range, 
shallow attractive well with an area proportional to a.

Brief illustration 54.5 A configuration integral

Equation 54.11 is very difficult to manipulate in practice, even 

for quite simple intermolecular potentials, except for a perfect 

gas for which EP = 0. In that case, the exponential function 

becomes 1 and

Z = … = ( ) =∫ ∫1 1
1 2N N

V

NN

N N

! ! !
d d d dτ τ τ τ

just as it should be for a perfect gas.

Self-test 54.5 Go on to show that, for a perfect gas, 

∂〈 〉 ∂E V
T

/( ) =0.

Answer: Z in this case is independent of temperature
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54 The canonical ensemble  529

where n is the amount of molecules present in the volume V 

and a is a constant that is proportional to the area under the 

attractive part of the potential. In Topic 36 we see that exactly 

the same expression is implied by the van der Waals equation 

of state. At this point we can conclude that if there are attrac-

tive interactions between molecules in a gas, then its energy 

increases as it expands isothermally (because ( / ) ,∂〈 〉 ∂E V T >0  

and the slope of 〈E〉 with respect to V is positive). The energy 

rises because, at greater average separations, the molecules 

spend less time in regions where they interact favourably.

Checklist of concepts

☐ 1. The canonical ensemble is an imaginary collection 

of replications of the actual system with a common 

temperature.

☐ 2. The canonical distribution gives the number of mem-

bers of the ensemble with a specified total energy.

☐ 3. The mean energy of the members of the ensemble can 

be calculated from the canonical partition function.

Checklist of equations

Property Equation Comment Equation number

Canonical distribution � �N Ni
Ei/ e /= −β Q 54.2a

Canonical partition function Q =∑ −

i

Eie β Definition 54.2b

Mean energy 〈 〉 ∂ ∂ ∂ ∂E V V= − = −( )( ) ( ln )1/ / /Q Q Qβ β 54.5

Configuration integral Q Z= /Λ3N 54.9

Z = …−∫( !)1 1 2/ e d d dpN E
N

β τ τ τ Isotropic interaction 54.11

Variation of mean energy with volume ( )∂〈 〉 ∂E V an VT/ /= 2 2 van der Waals gas; 0 for a perfect gas 54.12
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530 11 Statistical thermodynamics

Focus 11 on Statistical thermodynamics
Assume that all gases are perfect and that data refer to 298 K unless otherwise stated.

Topic 51 The Boltzmann distribution

Discussion questions
51.1 Discuss the relationship between ‘population’, ‘configuration’, and ‘weight’. 

What is the significance of the most probable configuration?

51.2 What is the significance and importance of the principle of equal a priori 

probabilities?

51.3 What is temperature?

51.4 Summarize the role of the Boltzmann distribution in chemistry.

Exercises
51.1(a) Calculate the weight of the configuration in which 16 objects are 

distributed in the arrangement 0, 1, 2, 3, 8, 0, 0, 0, 0, 2.

51.1(b) Calculate the weight of the configuration in which 21 objects are 

distributed in the arrangement 6, 0, 5, 0, 4, 0, 3, 0, 2, 0, 0, 1.

51.2(a) Evaluate 8! by using (a) the exact formula; (b) Stirling’s approximation, 

eqn 51.2b; (c) the more accurate version of Stirling's approximation, eqn 

51.2a.

51.2(b) Evaluate 10! by using (a) the exact formula; (b) Stirling’s 

approximation, eqn 51.2b; (c) the more accurate version of Stirling’s 

approximation, eqn 51.2a.

51.3(a) What are the relative populations of the states of a two-level system 

when the temperature is infinite?

51.3(b) What are the relative populations of the states of a two-level system as 

the temperature approaches zero?

51.4(a) What is the temperature of a two-level system of energy separation 

equivalent to 400 cm−1 when the population of the upper state is one-third 

that of the lower state?

51.4(b) What is the temperature of a two-level system of energy separation 

equivalent to 300 cm−1 when the population of the upper state is one-half that 

of the lower state?

51.5(a) Calculate the relative populations of a linear rotor in the levels with 

J = 0 and J = 5, given that �B = −2 71cm 1.  and a temperature of 298 K.

51.5(b) Calculate the relative populations of a spherical rotor in the levels with 

J = 0 and J = 5, given that �B = −2 71 1. cm  and a temperature of 298 K.

51.6(a) A certain molecule has a non-degenerate excited state lying at 540 cm−1 

above the non-degenerate ground state. At what temperature will 10 per cent 

of the molecules be in the upper state?

51.6(b) A certain molecule has a doubly degenerate excited state lying at 

360 cm−1 above the non-degenerate ground state. At what temperature will 

15 per cent of the molecules be in the upper state?

Problems
51.1 A sample consisting of five molecules has a total energy 5ε. Each 

molecule is able to occupy states of energy jε, with j = 0, 1, 2, …. (a) Calculate 

the weight of the configuration in which the molecules are distributed 

evenly over the available states. (b) Draw up a table with columns headed by 

the energy of the states and write beneath them all configurations that are 

consistent with the total energy. Calculate the weights of each configuration 

and identify the most probable configurations.

51.2 A sample of nine molecules is numerically tractable but on the verge of 

being thermodynamically significant. Draw up a table of configurations for 

N = 9, total energy 9ε, in a system with energy levels jε (as in Problem 51.1). 

Before evaluating the weights of the configurations, guess (by looking for the 

most ‘exponential’ distribution of populations) which of the configurations 

will turn out to be the most probable. Go on to calculate the weights and 

identify the most probable configuration.

51.3 Use mathematical software to evaluate W for N = 20 for a series of 

distributions over a uniform ladder of energy levels, ensuring that the total 

energy is constant. Identify the configuration of greatest weight and compare 

it to the distribution predicted by the Boltzmann expression. Explore what 

happens as the value of the total energy is changed.

51.4 A certain atom has a doubly degenerate ground level pair and an upper 

level of four degenerate states at 450 cm−1 above the ground level. In an 

atomic-beam study of the atoms it was observed that 30 per cent of the atoms 

were in the upper level, and the translational temperature of the beam was 

300 K. Are the electronic states of the atoms in thermal equilibrium with the 

translational states?

51.5 Explore the consequences of using the full version of Stirling’s 

approximation (eqn 51.2a), x xx x! ( ) ,/≈ + −2 e1 2 1/2π  in the development of the 

expression for the configuration of greatest weight. Does the more accurate 

approximation have a significant effect on the form of the Boltzmann 

distribution?

51.6 The most probable configuration is characterised by a parameter we 

know as the ‘temperature’. The temperatures of the system specified in 

Problems 51.1 and 51.2 must be such as to give a mean value of ε for the 

energy of each molecule and a total energy Nε for the system. (a) Show 

that the temperature can be obtained by plotting pj against j, where pj is the 

(most probable) fraction of molecules in the state with energy jε. Apply the 

procedure to the system in Problem 51.2. What is the temperature of the 

system when ε corresponds to 50 cm−1? (b) Choose configurations other than 
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the most probable, and show that the same procedure gives a worse straight 

line, indicating that a temperature is not well defined for them.

51.7‡ The variation of the atmospheric pressure p with altitude h is predicted 

by the barometric formula to be p p h H= −
0e / , where p0 is the pressure at 

sea level and H = RT/Mg with M the average molar mass of air and T the 

average temperature. Obtain the barometric formula from the Boltzmann 

distribution. Recall that the potential energy of a particle at height h above the 

surface of the Earth is mgh. Convert the barometric formula from pressure to 

number density, N. Compare the relative number densities, N(h)/N(0), for O2 

and H2O at h = 8.0 km, a typical cruising altitude for commercial aircraft.

51.8‡ Planets lose their atmospheres over time unless they are replenished. A 

complete analysis of the overall process is very complicated and depends upon 

the radius of the planet, temperature, atmospheric composition, and other 

factors. Prove that the atmosphere of planets cannot be in an equilibrium state 

by demonstrating that the Boltzmann distribution leads to a uniform finite 

number density as r → ∞. Hint: Recall that in a gravitational field the potential 

energy is V(r) = –GMm/r, where G is the gravitational constant, M is the mass 

of the planet, and m is the mass of the particle.

51.9 Consider a protein P with four distinct sites, with each site capable of 

binding one ligand L. Show that the possible varieties (‘configurations’) of 

the species PLi (with PL0 denoting P) are given by the binomial coefficients 

(for binomial coefficients, see Mathematical background 7).

Topic 52 Partition functions

Discussion questions
52.1 Describe the physical significance of the partition function.

52.2 Describe how the mean energy of a system composed of two levels varies 

with temperature.

52.3 What is the difference between a ‘state’ and an ‘energy level’? Why is it 

important to make this distinction?

52.4 Why and when is it necessary to include a symmetry number in the 

calculation of a partition function?

Exercises
52.1(a) Calculate (a) the thermal wavelength, (b) the translational partition 

function at (i) 300 K and (ii) 3000 K of a molecule of molar mass 150 g mol−1 

in a container of volume 1.00 cm3.

52.1(b) Calculate (a) the thermal wavelength, (b) the translational partition 

function of a Ne atom in a cubic box of side 1.00 cm at (i) 300 K and 

(ii) 3000 K.

52.2(a) Calculate the ratio of the translational partition functions of H2 and He 

at the same temperature and volume.

52.2(b) Calculate the ratio of the translational partition functions of Ar and Ne 

at the same temperature and volume.

52.3(a) The bond length of O2 is 120.75 pm. Use the high-temperature 

approximation to calculate the rotational partition function of the molecule 

at 300 K.

52.3(b) The bond length of N2 is 109.75 pm. Use the high-temperature 

approximation to calculate the rotational partition function of the molecule 

at 300 K.

52.4(a) The NOF molecule is an asymmetric rotor with rotational constants 

3.1752 cm−1, 0.3951 cm−1, and 0.3505 cm−1. Calculate the rotational partition 

function of the molecule at (a) 25 °C, (b) 100 °C.

52.4(b) The H2O molecule is an asymmetric rotor with rotational constants 

27.877 cm−1, 14.512 cm−1, and 9.285 cm−1. Calculate the rotational partition 

function of the molecule at (a) 25 °C, (b) 100 °C.

52.5(a) The rotational constant of CO is 1.931 cm−1. Evaluate the rotational 

partition function explicitly (without approximation) and plot its value as a 

function of temperature. At what temperature is the value within 5 per cent of 

the value calculated from the approximate formula?

52.5(b) The rotational constant of HI is 6.511 cm−1. Evaluate the rotational 

partition function explicitly (without approximation) and plot its value as a 

function of temperature. At what temperature is the value within 5 per cent of 

the value calculated from the approximate formula?

52.6(a) The rotational constant of CH4 is 5.241 cm−1. Evaluate the rotational 

partition function explicitly (without approximation but ignoring the role 

of nuclear statistics) and plot its value as a function of temperature. At what 

temperature is the value within 5 per cent of the value calculated from the 

approximate formula?

52.6(b) The rotational constant of CCl4 is 0.0572 cm−1. Evaluate the rotational 

partition function explicitly (without approximation but ignoring the role 

of nuclear statistics) and plot its value as a function of temperature. At what 

temperature is the value within 5 per cent of the value calculated from the 

approximate formula?

52.7(a) The rotational constants of CH3Cl are �A = −5 97cm 1.0  and 
�B = −0. .443 cm 1  Evaluate the rotational partition function explicitly (without 

approximation but ignoring the role of nuclear statistics) and plot its value as 

a function of temperature. At what temperature is the value within 5 per cent 

of the value calculated from the approximate formula?

52.7(b) The rotational constants of NH3 are �A = −6 196cm. 1 and 
�B = −9 444 cm 1. . Evaluate the rotational partition function explicitly (without 

approximation but ignoring the role of nuclear statistics) and plot its value as 

a function of temperature. At what temperature is the value within 5 per cent 

of the value calculated from the approximate formula?

52.8(a) Give the symmetry number for each of the following molecules: 

(a) CO, (b) O2, (c) H2S, (d) SiH4, and (e) CHCl3.

52.8(b) Give the symmetry number for each of the following molecules: 

(a) CO2, (b) O3, (c) SO3, (d) SF6, and (e) Al2Cl6.

52.9(a) Estimate the rotational partition function of ethene at 25 °C given that 
� �A B= =− −4 828 cm  1 12 cm1 1. , . ,00  and �C = −0. .8282 cm 1  Take the symmetry 

number into account.

52.9(b) Evaluate the rotational partition function of pyridine, C5H5N, at 

25 °C given that � � �A B C= = =− − −0 0 0 0 0. , . , . .2 14cm 1936cm 987cm1 1 1  Take the 

symmetry number into account.

‡ These problems were supplied by Charles Trapp and Carmen Giunta.
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52.10(a) The vibrational wavenumber of Br2 is 323.2 cm−1. Evaluate the 

vibrational partition function explicitly (without approximation) and plot its 

value as a function of temperature. At what temperature is the value within 

5 per cent of the value calculated from the approximate formula?

52.10(b) The vibrational wavenumber of I2 is 214.5 cm−1. Evaluate the 

vibrational partition function explicitly (without approximation) and plot its 

value as a function of temperature. At what temperature is the value within 

5 per cent of the value calculated from the approximate formula?

52.11(a) Calculate the vibrational partition function of CS2 at 500 K given the 

wavenumbers 658 cm−1 (symmetric stretch), 397 cm−1 (bend; two modes), 

1535 cm−1 (asymmetric stretch).

52.11(b) Calculate the vibrational partition function of HCN at 900 K given the 

wavenumbers 3311 cm−1 (symmetric stretch), 712 cm−1 (bend; two modes), 

2097 cm−1 (asymmetric stretch).

52.12(a) Calculate the vibrational partition function of CCl4 at 500 K given the 

wavenumbers 459 cm−1 (symmetric stretch, A), 217 cm−1 (deformation, E), 

776 cm−1 (deformation, T), 314 cm−1 (deformation, T).

52.12(b) Calculate the vibrational partition function of CI4 at 500 K given the 

wavenumbers 178 cm−1 (symmetric stretch, A), 90 cm−1 (deformation, E), 

555 cm−1 (deformation, T), 125 cm−1 (deformation, T).

52.13(a) A certain atom has a fourfold degenerate ground level, a non-

degenerate electronically excited level at 2500 cm−1, and a twofold degenerate 

level at 3500 cm−1. Calculate the partition function of these electronic states at 

1900 K. What is the relative population of each level at 1900 K?

52.13(b) A certain atom has a triply degenerate ground level, a non-degenerate 

electronically excited level at 850 cm−1, and a fivefold degenerate level at 

1100 cm−1. Calculate the partition function of these electronic states at 2000 K. 

What is the relative population of each level at 2000 K?

Problems
52.1 This problem is best done using mathematical software. Equation 52.15 is 

the partition function for a harmonic oscillator. Consider a Morse oscillator 

(Topic 43) in which the energy levels are given by eqn 43.15 in the form

E hc hcxv v v= +⎛
⎝⎜

⎞
⎠⎟

− +⎛
⎝⎜

⎞
⎠⎟

1

2

1

2

2

� �� �e

 

Evaluate the partition function for this oscillator, remembering to measure 

energies from the lowest level and to note that there is only a finite number 

of bound-state levels. Plot the partition function against temperature for a 

variety of values of xe, and—on the same graph—compare your results with 

that for a harmonic oscillator.

52.2 Explore the conditions under which the ‘integral’ approximation for the 

translational partition function is not valid by considering the translational 

partition function of an H atom in a one-dimensional box of side comparable 

to that of a typical nanoparticle, 100 nm. Estimate the temperature at which, 

according to the integral approximation, q = 10 and evaluate the exact 

partition function at that temperature.

52.3 (a) Calculate the electronic partition function of a tellurium atom at (i) 

298 K, (ii) 5000 K by direct summation using the following data:

(b) What proportion of the Te atoms are in the ground term and in the term 

labelled 2 at the two temperatures?

52.4 The four lowest electronic levels of a Ti atom are: 3F2, 
3F3, 

3F4, and 5F1, at 

0, 170, 387, and 6557 cm−1, respectively. There are many other electronic states 

at higher energies. The boiling point of titanium is 3287 °C. What are the 

relative populations of these levels at the boiling point? Hint: The degeneracies 

of the levels are 2J + 1.

52.5‡ J. Sugar and A. Musgrove (J. Phys. Chem. Ref. Data 22, 1213 (1993)) have 

published tables of energy levels for germanium atoms and cations from Ge+ 

to Ge+31. The lowest-lying energy levels in neutral Ge are as follows:

Calculate the electronic partition function at 298 K and 1000 K by direct 

summation. Hint: The degeneracy of a level J is 2J + 1.

52.6 The pure rotational microwave spectrum of HCl has absorption lines 

at the following wavenumbers (in cm−1): 21.19, 42.37, 63.56, 84.75, 105.93, 

127.12, 148.31, 169.49, 190.68, 211.87, 233.06, 254.24, 275.43, 296.62, 317.80, 

338.99, 360.18, 381.36, 402.55, 423.74, 444.92, 466.11, 487.30, 508.48. 

Calculate the rotational partition function at 25 °C by direct summation.

52.7 Calculate, by explicit summation, the vibrational partition function 

and the vibrational contribution to the energy of I2 molecules at (a) 100 K, 

(b) 298 K given that its vibrational energy levels lie at the following 

wavenumbers above the zero-point energy level: 0, 213.30, 425.39, 636.27, 

845.93 cm−1. What proportion of I2 molecules are in the ground and first two 

excited levels at the two temperatures?

52.8‡ Consider the electronic partition function of a perfect atomic hydrogen 

gas at a density of 1.99 × 10−4 kg m−3 and 5780 K. These are the mean 

conditions within the Sun's photosphere, the surface layer of the Sun that 

is about 190 km thick. (a) Show that this partition function, which involves 

a sum over an infinite number of quantum states that are solutions to the 

Schrödinger equation for an isolated atomic hydrogen atom, is infinite. 

(b) Develop a theoretical argument for truncating the sum and estimate the 

maximum number of quantum states that contribute to the sum. (c) Calculate 

the equilibrium probability that an atomic hydrogen electron is in each 

quantum state. Are there any general implications concerning electronic states 

that will be observed for other atoms and molecules? Is it wise to apply these 

calculations in the study of the Sun’s photosphere?

52.9 A formal way of arriving at the value of the symmetry number is 

to note that σ is the order (the number of elements) of the rotational 

subgroup of the molecule, the point group of the molecule with all but 

the identity and the rotations removed. The rotational subgroup of 

H2O is {E,C2}, so σ = 2. The rotational subgroup of NH3 is {E,2C3}, so 

σ = 3. This recipe makes it easy to find the symmetry numbers for more 

complicated molecules. The rotational subgroup of CH4 is obtained 

from the T character table as {E,8C3,3C2}, so σ = 12. For benzene, the 

rotational subgroup of D6 h is {E,2C6,2C3,C2,3C2′,3C2″}, so σ = 12. (a) 

Estimate the rotational partition function of ethene at 25 °C given that 
� �A B= =− −4 828cm 1 12cm1 1. , . ,00  and �C = −0. .8282cm 1  (b) Evaluate the 

rotational partition function of pyridine, C5H5N, at room temperature 

( � � �A B C= = =− − −0 0 0 0 0. , . , .2 14cm 1936cm 987cm1 1 1).

Term Degeneracy Wavenumber/cm−1

Ground 5 0

1 1 4707

2 3 4751

3 5 10 559

3P0
3P1

3P2
1D2

1S0

(E/hc)/cm−1 0 557.1 1410.0 7125.3 16 367.3
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Topic 53 Molecular energies

Discussion questions
53.1 Discuss the conditions under which energies predicted from the 

equipartition theorem coincide with energies computed by using partition 

functions.

53.2 Describe the behaviour of the mean energy of a two-level system in the 

limit of (i) very low and (ii) very high temperature.

Exercises
53.1(a) Compute the mean energy at 298 K of a two-level system of energy 

separation equivalent to 500 cm−1.

53.1(b) Compute the mean energy at 400 K of a two-level system of energy 

separation equivalent to 600 cm−1.

53.2(a) Evaluate, by explicit summation, the mean rotational energy of 

CO and plot its value as a function of temperature. At what temperature 

is the equipartition value within 5 per cent of the accurate value? 
�B( ) . .CO 1 931cm 1= −

53.2(b) Evaluate, by explicit summation, the mean rotational energy of 

HI and plot its value as a function of temperature. At what temperature 

is the equipartition value within 5 per cent of the accurate value? 
�B( ) . .HI 6 511cm 1= −

53.3(a) Evaluate, by explicit summation, the mean rotational energy of 

CH4 and plot its value as a function of temperature. At what temperature 

is the equipartition value within 5 per cent of the accurate value? 
�B( ) . .CH 5 241cm 1

4 = −

53.3(b) Evaluate, by explicit summation, the mean rotational energy of 

CCl4 and plot its value as a function of temperature. At what temperature 

is the equipartition value within 5 per cent of the accurate value? 
�B( ) . .CCl 572cm4

1= −0 0

53.4(a) Evaluate, by explicit summation, the mean rotational energy of CH3Cl 

and plot its value as a function of temperature. At what temperature is the 

equipartition value within 5 per cent of the accurate value? �A = −5 97cm 1.0  

and �B = −0. .443cm 1

53.4(b) Evaluate, by explicit summation, the mean rotational energy of NH3 

and plot its value as a function of temperature. At what temperature is the 

equipartition value within 5 per cent of the accurate value? �A = −6 196cm 1.  

and �B = −9 444cm 1. .

53.5(a) Evaluate, by explicit summation, the mean vibrational energy of 

Br2 and plot its value as a function of temperature. At what temperature 

is the equipartition value within 5 per cent of the accurate value? Use 
�� = −323 2cm 1. .

53.5(b) Evaluate, by explicit summation, the mean vibrational energy of I2 

and plot its value as a function of temperature. At what temperature is the 

equipartition value within 5 per cent of the accurate value? Use �� = −214 5cm 1. .

53.6(a) Evaluate, by explicit summation, the mean vibrational energy of 

CS2 and plot its value as a function of temperature. At what temperature 

is the equipartition value within 5 per cent of the accurate value? Use the 

wavenumbers 658 cm−1 (symmetric stretch), 397 cm−1 (bend; two modes), 

1535 cm−1 (asymmetric stretch).

53.6(b) Evaluate, by explicit summation, the mean vibrational energy of 

HCN and plot its value as a function of temperature. At what temperature 

is the equipartition value within 5 per cent of the accurate value? Use the 

wavenumbers 3311 cm−1 (symmetric stretch), 712 cm−1 (bend; two modes), 

2097 cm−1 (asymmetric stretch).

53.7(a) Evaluate, by explicit summation, the mean vibrational energy of 

CCl4 and plot its value as a function of temperature. At what temperature 

is the equipartition value within 5 per cent of the accurate value? Use the 

wavenumbers 459 cm−1 (symmetric stretch, A), 217 cm−1 (deformation, 

E), 776 cm−1 (deformation, T), 314 cm−1 (deformation, T). A modes are 

non-degenerate, E modes are doubly degenerate, and T modes are triply 

degenerate.

53.7(b) Evaluate, by explicit summation, the mean vibrational energy of 

CI4 and plot its value as a function of temperature. At what temperature 

is the equipartition value within 5 per cent of the accurate value? Use the 

wavenumbers 178 cm−1 (symmetric stretch, A), 90 cm−1 (deformation, 

E), 555 cm−1 (deformation, T), 125 cm−1 (deformation, T). A modes are 

non-degenerate, E modes are doubly degenerate, and T modes are triply 

degenerate.

53.8(a) Calculate the mean contribution to the electronic energy at 1900 K for 

a sample composed of the atoms specified in Exercise 52.13(a).

53.8(b) Calculate the mean contribution to the electronic energy at 2000 K for 

a sample composed of the atoms specified in Exercise 52.13(b).

Problems
53.1 An electron trapped in an infinitely deep spherical well of radius R, such 

as may be encountered in the investigation of nanoparticles, has energies 

given by the expression E X m Rnl nl= 2
e

2/22 , with Xnl the value obtained by 

searching for the zeroes of the spherical Bessel functions. The first six values 

(with a degeneracy of the corresponding energy level equal to 2l + 1) are as 

follows:

Evaluate the partition function and mean energy of an electron as a function 

of temperature. Choose the temperature range and radius to be so low that 

only these six energy levels need be considered. Hint: Remember to measure 

energies from the lowest level.

53.2 The NO molecule has a doubly degenerate excited electronic level 

121.1 cm−1 above the doubly degenerate electronic ground term. Calculate 

and plot the electronic partition function of NO from T = 0 to 1000 K. 

Evaluate (a) the term populations and (b) the mean electronic energy at 300 K.

53.3 Consider a system with energy levels εj = jε and N molecules. (a) Show 

that if the mean energy per molecule is aε, then the temperature is given by

β ε= +⎛
⎝⎜

⎞
⎠⎟

1
1

1
ln

a
 

n 1 1 1 2 1 2

l 0 1 2 0 3 1

Xnl 3.142 4.493 5.763 6.283 6.988 7.725
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534 11 Statistical thermodynamics

Evaluate the temperature for a system in which the mean energy is ε, taking ε 

equivalent to 50 cm−1. (b) Calculate the molecular partition function q for the 

system when its mean energy is aε.

53.4 Deduce an expression for the root mean square energy, 〈ε2〉1/2, in terms 

of the partition function and hence an expression for the root mean square 

deviation from the mean, Δε = (〈ε2〉 – 〈ε〉2)1/2. Evaluate the resulting expression 

for a harmonic oscillator.

Topic 54 The canonical ensemble

Discussion questions
54.1 Why is the concept of a canonical ensemble required?

54.2 Explain what is meant by an ensemble and why it is useful in statistical 

thermodynamics.

54.3 Under what circumstances may identical particles be regarded as 

distinguishable?

54.4 What is meant by the ‘thermodynamic limit’?

Exercises
54.1(a) Identify the systems for which it is essential to include a factor of 

1/N! on going from Q to q  : (a) a sample of helium gas, (b) a sample of carbon 

monoxide gas, (c) a solid sample of carbon monoxide, (d) water vapour.

54.1(b) Identify the systems for which it is essential to include a factor of 1/N! 

on going from Q to q  : (a) a sample of carbon dioxide gas, (b) a sample of 

graphite, (c) a sample of diamond, (d) ice.

Problem
54.1‡ For a perfect gas, the canonical partition function, Q, is related to the 

molecular partition function q by Q = q  N/N!. In Topic 66 it is established that 

p = kT(∂ ln Q/∂V)T. Use the expression for q to derive the perfect gas law 

pV = nRT.

Integrated activities

F11.1 An electron spin can adopt either of two orientations in a magnetic 

field, and its energies are ±μBB, where μB is the Bohr magneton. Deduce an 

expression for the partition function and mean energy of the electron and 

sketch the variation of the functions with B. Calculate the relative populations 

of the spin states at (a) 4.0 K, (b) 298 K when B = 1.0 T.

F11.2 A nitrogen nuclear spin can adopt any of three orientations in a 

magnetic field, and its energies are 0, ±γNB, where γN is the magnetogyric 

ratio of the nucleus. Deduce an expression for the partition function and 

mean energy of the nucleus and sketch the variation of the functions with 

B. Calculate the relative populations of the spin states at (a) 1.0 K, (b) 298 K 

when B = 20.0 T.

F11.3 Use mathematical software, a spreadsheet, or the Living graphs 

(labelledLG) on the website of this book for the following:

(a)LG Plot the partition function of a harmonic oscillator against temperature 

for several values of the energy separation ε. How does q vary with 

temperature when T is high, in the sense that kT � ε (or βε � 1)?

(b)LG Consider a three-level system with levels 0, ε, and 2ε. Plot the partition 

function against kT/ε.

(c)LG To visualize the content of Fig. 52.4 in a different way, plot the functions 

p0, p1, p2, and p3 against kT/ε.

(d)LG Consider a three-level system with levels 0, ε, and 2ε. Plot the functions 

p0, p1, and p2 against kT/ε.

(e)LG Plot the temperature dependence of the vibrational contribution to the 

molecular partition function for several values of the vibrational wavenumber. 

Estimate from your plots the temperature above which the harmonic 

oscillator is in the ‘high-temperature’ limit.

(f)LG Plot the temperature dependence of the electronic partition function 

for several values of the energy separation ε between two doubly degenerate 

levels. From your plots, estimate the temperature at which the population of 

the excited level begins to increase sharply.

(g)LG Draw graphs similar to those in Fig. 53.1 for a three-level system with 

levels 0, ε, and 2ε.

(h)LG Plot the temperature dependence of the mean rotational energy 

for several values of the rotational constant (for reasonable values of the 

rotational constant, see the Resource section). From your plots, estimate the 

temperature at which the mean rotational energy begins to increase sharply.

(i)LG Plot the temperature dependence of the mean vibrational energy for 

several values of the vibrational wavenumber (for reasonable values of the 

vibrational wavenumber, see the Resource section). From your plots, estimate the 

temperature at which the mean vibrational energy begins to increase sharply.
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Probability theory  535

Mathematical background 7 Probability theory

Probability theory deals with quantities and events that are dis-

tributed randomly and shows how to calculate average values 

of various kinds. We shall consider variables that take discrete 

values (as in a one-dimensional random walk with a fixed step 

length) and continuous values (as in the diffusion of a particle 

through a fluid).

MB7.1 Discrete distributions
We denote a variable x and the discrete values that it may take 

xi, i = 1, 2, ..., N. If the probability that xi occurs is pi, then the 

mean value (or expectation value) of x is

〈 〉x x p
i

N

i i=
=

∑
1  

 Mean value  (MB7.1a)

The mean values of higher powers of x may be computed 

similarly:

〈 〉x x pn

i

N

i
n

i=
=

∑
1  

 Mean nth power  (MB7.1b)

Although the mean is a useful measure, it is important to 

know the width in the scatter of outcomes around the mean. 

There are two related measures: one is the variance, V(x), and 

the other is the standard deviation, σ(x), the square root of 

the variance:

V x x x( )= −〈 〉 〈 〉2 2

 
 Variance  (MB7.2a)

σ ( ) ( ) /
/

x V x x x= = −{ }1 2 2 2
1 2

〈 〉 〈 〉
 

In certain cases, the probabilities can be expressed in a simple 

way, depending on the nature of the events being considered.

(a) The binomial distribution

In a Bernoulli trial, the outcome of an observation is one of a 

mutually exclusive pair (such as ‘heads’ or ‘tails’ in a coin toss) 

and successive trials are independent (so that getting ‘heads’ 

on one toss does not influence the following toss). Suppose the 

probability of outcome 1 is p and that of the alternative out-

come 2 is q, with p + q = 1. For a fair coin, p q= = 1
2 . Then one 

series of N = 12 trials might be

thhtththttht p q

p qn

Probability of occurrence

and in general

= 5 7 ,
NN n−

 

However, if the order in which ‘heads’ come up is unimpor-

tant, there are 12!/5!7! ways of achieving 5 ‘heads’ in 12 tosses, 

and in general N!/n!(N – n)! ways of achieving n ‘heads’ in N 

trials. The probability of getting exactly n ‘heads’ is therefore 

the product of pnqN−n and the number of ways of distributing n 

‘heads’ over N trials:

P n
N

n
p q

N

n

N

n N n
n N n( )

!

!( )!
=

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝⎜
⎞

⎠⎟
= −

−     where 

 

The symbol 
N

n

⎛

⎝⎜
⎞

⎠⎟
 is the binomial coefficient, as it occurs in the 

binomial expansion:

( )x y
N

n
x yN

n

N

n N n+ =
⎛

⎝⎜
⎞

⎠⎟=

−∑
0  

The expression P(n) is accordingly called the binomial distri-

bution (Fig. MB7.1).

Manipulations of the binomial distribution are often facili-

tated by the following summation procedure:

1. Introduce a dummy variable a.

2. Express the sum as a derivative with respect to a, using 

nan = adan/da to eliminate the factor n; if a power of n 

occurs, apply d/da the appropriate number of times.

3. Evaluate the resulting sum: note the binomial expansion 

(eqn MB7.4).

4. Evaluate the derivative.

5. Finally, set a = 1.
Standard  
deviation

 (MB7.2b)

Binomial 
distribution (MB7.3)

Binomial 
expansion (MB7.4)

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

P(n)

n

10

50

100

150

Figure MB7.1 The binomial distribution for different values of 
N and p = q = ½.
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Note that although the width of the distribution increases (as 

N1/2), its value relative to the mean decreases (as N1/2/N = 1/N1/2). 

For tosses of a fair coin, when p = 1
2 , 〈 〉n N= 1

2
 (half the tosses 

turn up ‘heads’) and σ ( ) /n N= 1
2

1 2.

(b) The Poisson distribution

In another important type of trial, an event either takes place 

or does not, such as an excited molecule dissociating into 

fragments or (more mundanely) a bus arriving. At first sight 

it appears that we cannot assign a meaning to the number of 

times an event does not occur (how many times did the bus not 

arrive in an interval?). However, we can still assign a probability 

that an event occurs by imagining an interval of time Δt that 

is divided into N regions, each of duration Δt/N (or, similarly, 

regions of space Δx/N) that are so small that the probability 

that two or more events occurs in it is negligible and we have 

a ‘heads’ for the event occurring in that brief interval or tiny 

region and a ‘tails’ if it does not.

If the events occur at random, the probability of an event 

occurring within this tiny interval is proportional to the length 

of the interval, and we can write p = Δt/Nτ, where 1/τ is a con-

stant of proportionality (we give it a physical meaning later). It 

then follows that in a set of Bernouilli trials (where ‘heads’ now 

corresponds to ‘did occur’ and ‘tails’ to ‘did not occur’) the total 

probability that n events occur in the interval Δt = N(Δt/N) is 

just the probability of getting n ‘heads’ in a total interval that 

spans N of the tiny intervals:

P n
N

n
p p

N

n

t

N

t

N
n N n

n N n

( ) ( )=
⎛

⎝⎜
⎞

⎠⎟
− =

⎛

⎝⎜
⎞

⎠⎟
Δ⎛

⎝⎜
⎞
⎠⎟

− Δ⎛
⎝⎜

⎞
⎠⎟

−
−

1 1τ τ

If then we suppose that N is very large and make use of the 

relation

lim( ) /

x

xx
→

+ =
0

11 e
 

(MB7.3)

then in a slightly involved but straightforward calculation 

(which we do not reproduce here) we arrive at the Poisson 

distribution:

P n
t

n

n
t( )

( / )

!
/= Δ −Δτ τe

 
 Poisson distribution  (MB7.4)

for the probability that n events will occur in the interval Δt 

(Fig. MB7.2). As shown in the following Brief illustration, the 

mean number of events in the interval Δt is just Δt/τ, so τ can 

be interpreted as the average time between events.

Brief illustration MB7.1 The binomial distribution

We can use the binomial distribution to determine the mean 

number of times that ‘heads’ will be obtained in a series of N 

trials (this is the average value of n, denoted 〈n〉):

〈 〉n nP n n
N

n
p q n

N

n
p p

n

N

n

N

n N n

n

N

n N= =
⎛

⎝⎜
⎞

⎠⎟
=

⎛

⎝⎜
⎞

⎠⎟
−

= =

−

=
∑ ∑ ∑

0 0 0

1( ) ( ) −−n

Application of the summation procedure to this expression 

gives:

〈 〉n n
N

n
a p p a

a

N

n
n

N

n n N n

n

N

=
⎛

⎝⎜
⎞

⎠⎟
− =

⎛

⎝⎜
⎞

=

−

=
∑ ∑

Step1 Step2

 


0 0

1( )
d

d ⎠⎠⎟
−

= + − = + −

−a p p

a
a

ap p Nap ap p

n n N n

N

( )

( [ ]) ( [ ]

1

1 1  
d

d

Step3 Step 4

 


))N

Np

−

=

1

  

Step5



For example, the mean number of times ‘heads’ is obtained for 

a fair coin ( )p = 1
2

 in 10 trials is 5.

Brief illustration MB6.2 The Poisson distribution

To calculate the average number of events that occur in an 

interval Δt (and in the limit N → ∞), we need to evaluate

〈 〉n nP n n
t

n

t

n
n

N

n

N n
t t

n

N n

= = Δ = Δ
−

= =

−Δ −Δ

=
∑ ∑ ∑

1 1 1

( )
( / )

!

( / )

(
/ /τ ττ τe e

11

1
1

1

0

)!

( / )
( / )

( )!
( / )

(/ /= Δ Δ
− = Δ Δ−Δ

=

−
−Δ

=
∑ ∑t

t

n
t

tt

n

N n
t

n

N

τ τ ττ τe e
// )

!

( / ) // /

τ

τ ττ τ

n

t t

n

t t= Δ = Δ−Δ Δe e

where we have used the Taylor series expansion (eqn MB1.7b) 

of ex.

0

0.1

0.2

0.3

0.4

0 1 2 3 4 5 6 7 8 9n

P(n)

1

2

4
6

Figure MB7.2 The Poisson distribution for different values of Δt/τ.
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(c) The Gaussian distribution

Suppose that a variable can take positive and negative integer 

values centred on zero and that to reach a certain value n the 

system jumps to the left or right by taking steps of length λ at 

random for a total of N steps. The number of ways of taking NR 

steps to the right and NL to the left (with N = NR + NL) in any one 

such trial of N steps is

W = N

N N

!

! !L R  
(MB7.7)

Then, because there are 2N possible choices of direction in the 

course of N steps, the probability of being n steps from the ori-

gin, with n = NR – NL in a trial of N steps, is

P n
N

N N

N

N n N nN N
N

( )
!

! !

!

! !

= = =
+⎛

⎝⎜
⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟

W
2 2

2
2 2

L R

 

(MB7.8)

A point of some subtlety and which we draw on later is that if N 

is even, then n must be even (you cannot end up an odd num-

ber of steps from the origin if you take an even number of steps; 

think about N = 4); similarly, if N is odd, then n must be odd too 

(you cannot end up an even number of steps from the origin if 

you take an odd number of steps; think about N = 5). Because 

it then follows that N + n and N – n are both even numbers, the 

factorials we have to evaluate in P(n) are of whole numbers.

To develop this expression in the case of large numbers of 

steps, we take logarithms and use Stirling’s approximation:

ln ! ln( ) ln/x x x x≈ + +⎛
⎝⎜

⎞
⎠⎟

−2
1

2
1 2π

 

This approximation leads, after a fair amount of algebra, to the 

Gaussian distribution

P n
N

n N( )
/

/=
( )

−2

2
1 2

22

π
e

 

 Gaussian distribution  (MB7.5)

with, remember, n even if N is even and n odd if N is odd. This 

bell-shaped curve is illustrated in Fig. MB7.3 for N even and 

N odd. The Gaussian distribution is commonly used to dis-

cuss a continuous function, as we demonstrate in the following 

section.

MB7.2 Continuous distributions
A continuous distribution is a distribution in which the vari-

able can take on a continuum of values. One of the most impor-

tant examples can be developed from the Gaussian distribution 

of the preceding section, as follows.

When N is very large and the xi values are so closely spaced 

that x can be regarded as varying continuously, it is useful to 

express the probability that an outcome will lie between x and 

x + dx as ρ(x)dx, where the function ρ(x) is the probability 

density. The mean value of x continuously varying between –∞ 

and ∞ is then given by

〈 〉x x x x=
−∞

∞

∫ ρ( )d
 

(MB7.11)

with analogous expressions for the variance and standard 

deviation.

To derive the Gaussian version of the probability density we 

use the random-walk model in Section MB7.1 and write x = nλ, 

allowing λ to be very small and n to be very large and effec-

tively continuous. If dx spreads over a sufficiently wide range 

of points, then instead of dealing with a distribution like that 

in Fig. MB7.3a or like that in Fig. MB7.3b, we can deal with the 

average of the two, as shown by the curves superimposed on 

the distribution. That is, for a continuous distribution we use

P n
N

n N( )
( ) /

/= −1

2 1 2
22

π
e

 
(MB7.12)

The total probability of being in the range dx = λdn at x = nλ is 

therefore

ρ λ
λ( )

( ) ( )/
/

/
/x x

N
n

N

xn N x Nd e d e
d= =− −1

2

1

21 2
2

1 2
22 2 2

π π  
(MB7.13)

It follows that

ρ
λ

λ( )
/

/x
N

x N=
( )

−1

2 2
1 2

22 2

π
e

 

(MB7.14)

Stirling’s 
approximation (MB7.9)

n

P(n)

0 1 2 3 4 5 6 7 8 9 10–1–2–3–4–5–6–7–8–9–10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
(a) Even

(b) Odd

Mean

Figure MB7.3 The Gaussian distribution for N even (40) and 
N odd (41), and their mean. The bell-shaped mean curve is 
the average of the two distributions, and corresponds to the 
Gaussian distribution function for a continuous variable.
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This expression is commonly expressed as the Gaussian distri-

bution function (or normal distribution function):

ρ
σ

σ( )

/

/x x=⎛
⎝⎜

⎞
⎠⎟

−1

2 2

1 2

22 2

π
e

 

where σ  = N1/2λ turns out to be the standard deviation of the 

distribution (see below).

Brief illustration MB7.3 Gaussian distribution function

If the bell-shaped curve of the Gaussian distribution function 

is centred on 〈x〉, the distribution becomes

ρ
σ

σ( )

/

( ) /x x x= ⎛
⎝⎜

⎞
⎠⎟

− −1

2 2

1 2

22 2

π
e 〈 〉

Gaussian 
distribution 
function 

(MB7.15)

To evaluate the mean square value of x we write

〈 〉 〈 〉x x x x x xx x2 2
2

1 2

2 21

2

2 2= = ⎛
⎝⎜

⎞
⎠⎟−∞

∞

−∞

∞
− −∫ ∫ρ

σ
σ( )

/

( ) /d e d
π

Now make the subst itut ion z  =  (x  – 〈x〉)/(2σ2)1/2,  so 

dx = (2σ2)1/2dz and x2 = 2σ2 z2 + 2 (2σ2)1/2z〈x〉 + 〈x〉2, and obtain

〈 〉 ×

〈 〉

x

z z x zz

2
2

1 2

2 1 2

2 2 2 1 2

1

2
2

2 2 2
2

= ⎛
⎝⎜

⎞
⎠⎟

+−

−∞

∞

∫

πσ
σ

σ σ

/

/

/

( )

( )e d e−−

−∞

∞
−

−∞

∞

∫ ∫+

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

=

z zz x z
2 2

0

2

1 2
1 2 21

d e d

� �� ��

〈 〉

π
π

/
/{ σ ++ = +〈 〉 〈 〉x x2 1 2 2 2π / } σ
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The First Law of thermodynamics was introduced on the basis of a large number of experiments that 
led to the conclusion that the total energy of an isolated system is conserved. It goes beyond the law 
of the conservation of energy of dynamics, where the energy of a body can be changed when work 
is done on or by it, by introducing the concept of heat as a mode of transfer of energy. The First Law 
focuses on the concept of internal energy (Topic 55), which is essentially the total energy of a system. 
The discussion of internal energy and the recognition that it is a ‘state function’ is based on calcula-
tions of the energy that is transferred as work and as heat. Calculations of the former make use of 
the expression in physics for the work that is done when a body is moved against an opposing force. 
Transfers of energy as heat can typically be calculated from the change in temperature that occurs 
provided we know the property called the ‘heat capacity’ of the system. The internal energy can be 
calculated (in certain cases) and related to molecular properties by using the techniques of Statistical 

thermodynamics.
When a change, such as a reaction, takes place the system might expand (or contract). In other 

words, the system can do work by pushing back the surroundings (or have work done on it by being 
compressed by the surroundings). To avoid having to calculate this effect, the property known 
as the ‘enthalpy’ is introduced (Topic 56). This property takes the work of expansion into account 
automatically.

The enthalpy is the basis of ‘thermochemistry’ (Topic 57), the study of the heat output or require-
ment that accompanies a chemical reaction, which is of considerable importance for assessing fuels 
but also plays a role in determining the spontaneity of a reaction as explained in The Second and Third 

Laws of thermodynamics. Thermochemical calculations make use of measurements by ‘calorimetry’, 
the monitoring of energy transfers as heat, and tabulations of experimental and computed data to 
assess the enthalpy changes accompanying all kinds of reactions.

When we adopt the view that the internal energy of a system of constant composition depends 
on the volume and temperature, powerful relations can be derived that summarize how it changes 
when these parameters are changed (Topic 58). That takes us into a discussion of the molecular inter-
pretation of heat capacity and of the pressure and temperature changes that accompany adiabatic 
processes.
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What is the impact of this material?

The efficiency of fuels is central to the economies of nations, and thermochemistry is used to assess 
their suitability. Foods are fuels, and thermochemical analysis of food is a first step in the application 
of thermodynamics to bioenergetics (Impacts 12.1 and 12.2).

To read more about the impact of this material, scan the QR code or go to 
http://bcs.whfreeman.com/webpub/chemistry/qmc2e/impact/qchem_
impact12.html.
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TOPIC 55

The First Law

Energy can be used to bring about a variety of processes, such 

as heating the surroundings or causing an electric current to 

flow through a circuit. In other words, the energy stored by a 

collection of molecules may be transformed into a variety of 

forms. Thermodynamics is the study of these transformations 

of energy. The historical development of thermodynamics was 

in terms of observations on the properties of bulk samples. 

It can still be explained in that way, but we shall see that our 

understanding of its concepts is greatly enriched by drawing on 

molecular concepts, and in particular the Boltzmann distribu-

tion (Topic 51).

For the purposes of thermodynamics, the universe is 

divided into two parts, the system and its surroundings. The 

system is the part of the world in which we have a special 

interest. It may be a reaction vessel, an engine, an electro-

chemical cell, a biological cell, and so on. The surroundings 

comprise the region outside the system and are where we 

make our measurements. The type of system depends on the 

characteristics of the boundary that divides it from the sur-

roundings (Fig. 55.1). If matter can be transferred through 

the boundary between the system and its surroundings the 

system is classified as open. If matter cannot pass through 

the boundary the system is classified as closed. Both open 

and closed systems can exchange energy with their sur-

roundings. For example, a closed system can expand and 

thereby raise a weight in the surroundings; it may also trans-

fer energy to them if they are at a lower temperature. An 

Contents

55.1 Work, heat, and energy 542

Brief illustration 55.1: Combustions in adiabatic  

and diathermic containers 542

55.2 Internal energy 543

Brief illustration 55.2: The internal energy of a gas 543

Brief illustration 55.3: Contributions to ΔU 544

55.3 Expansion work 544

(a) The general expression for work 545

Brief illustration 55.4: The work of extension 545

(b) Expansion against constant pressure 546

Brief illustration 55.5: The work of expansion 546

(c) Reversible expansion 546

Brief illustration 55.6: The work of isothermal  

reversible expansion 547

(d) The molecular interpretation of reversible  
expansion 547

Example 55.1: Deriving the molecular expression  

for the work of isothermal, reversible expansion 548

55.4 Heat transactions 548

Brief illustration 55.7: The change in internal energy 549

(a) Heat capacity 549

Brief illustration 55.8: The heat capacity of a gas 549

Brief illustration 55.9: The determination of a  

heat capacity 549

(b) The molecular interpretation of heat transfer 550

Brief illustration 55.10: The difference in internal  

energy 550

Checklist of concepts 551

Checklist of equations 551

 ➤ Why do you need to know this material?
The First Law of thermodynamics is the foundation of the 
discussion of the role of energy in chemistry. Wherever 
we are interested in the generation or use of energy in 
physical transformations or chemical reactions, lying in the 
background are the concepts introduced by the First Law.

 ➤ What is the key idea?

Energy may be transferred as either heat or work, and the 
total amount in an isolated system remains constant.

 ➤ What do you need to know already?
This Topic makes use of the discussion of the properties 
of gases (Topic 36), particularly the perfect gas law. 
The molecular interpretations draw on the Boltzmann 
distribution (Topic 51) and the discussion of partition 
functions (Topic 52).
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542 12 The First Law of thermodynamics

isolated system can exchange neither energy nor matter with 

its surroundings.

55.1 Work, heat, and energy

A fundamental concept in thermodynamics is work: work 

is done when motion takes place against an opposing force. 

Doing work is equivalent to raising a weight somewhere in the 

surroundings. An example of doing work is the expansion of 

a gas that pushes out a piston and raises a weight. A chemical 

reaction that drives an electric current through a resistance also 

does work, because the same current could be driven through a 

motor and used to raise a weight.

In molecular terms, work is the transfer of energy that makes 

use of organized motion (Fig. 55.2). When a weight is raised or 

lowered, its atoms move in an organized way (up or down). The 

atoms in a spring move in an orderly way when it is wound; the 

electrons in an electric current move in an orderly direction 

when it flows. When a system does work it causes atoms or elec-

trons in its surroundings to move in an organized way. Likewise, 

when work is done on a system, molecules in the surround-

ings are used to transfer energy to it in an organized way, as the 

atoms in a weight are lowered or a current of electrons is passed.

The energy of a system is its capacity to do work. When work 

is done on an otherwise isolated system (for instance, by com-

pressing a gas or winding a spring), the capacity of the system to 

do work is increased; in other words, the energy of the system 

is increased. When the system does work (i.e. when the piston 

moves out or the spring unwinds), the energy of the system is 

reduced and it can do less work than before.

Experiments have shown that the energy of a system may be 

changed by means other than work itself. When the energy of a 

system changes as a result of a temperature difference between 

the system and its surroundings we say that energy has been 

transferred as heat. When a heater is immersed in a beaker 

of water (the system), the capacity of the system to do work 

increases because hot water can be used to do more work than 

the same amount of cold water.

An exothermic process is one that releases energy as heat. 

All combustion reactions are exothermic. An endothermic 

process is one in which energy is acquired as heat. An exam-

ple of an endothermic process is the vaporization of water. To 

avoid a lot of awkward language, we say that in an exothermic 

process ‘heat is released’ and in an endothermic process ‘heat 

is absorbed’. However, it must never be forgotten that heat is a 

process (the transfer of energy as a result of a temperature dif-

ference), not a thing. When an endothermic process takes place 

in a diathermic (thermally conducting) container, heat flows 

into the system from the surroundings. When an exothermic 

process takes place in a diathermic container, heat flows into 

the surroundings. When an endothermic process takes place 

in an adiabatic (thermally insulating) container, it results in a 

lowering of temperature of the system; an exothermic process 

results in a rise of temperature. These features are summarized 

in Fig. 55.3.

Brief illustration 55.1 Combustions in adiabatic and 
diathermic containers

All combustions are exothermic, provided the reaction is not 

confined to a thermally insulated vessel. Although the tem-

perature rises in the course of the combustion, if we wait long 

enough, the system returns to the temperature of its surround-

ings, so we can speak of a combustion ‘at 25 °C’, for instance. 

If the combustion takes place in an adiabatic container, the 

energy released as heat remains inside the container and 

results in a permanent rise in temperature.

Self-test 55.1 How may the expansion of a gas at constant tem-

perature be achieved?

Answer: Immerse the system in a water bath
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Figure 55.1 (a) An open system can exchange matter and 
energy with its surroundings. (b) A closed system can exchange 
energy with its surroundings, but it cannot exchange matter. 
(c) An isolated system can exchange neither energy nor matter 
with its surroundings.
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Figure 55.2 When a system does work, it stimulates orderly 
motion in the surroundings. For instance, the atoms shown here 
may be part of a weight that is being raised. The ordered motion 
of the atoms in a falling weight does work on the system.
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55 The First Law  543

In molecular terms, heating is the transfer of energy that 

makes use of random molecular motion. The random motion 

of  molecules is called thermal motion. The thermal motion 

of the molecules in the hot surroundings stimulates the 

 molecules in the cooler system to move more vigorously and, 

as a result, the energy of the system is increased. When a sys-

tem heats its  surroundings, molecules of the system stimu-

late the thermal motion of the molecules in the surroundings  

(Fig. 55.4).

55.2 Internal energy

In thermodynamics, the total energy of a system is called its 

internal energy, U. The internal energy is the total kinetic and 

potential energy of the molecules in the system. It is ‘internal’ 

in the sense that it does not include the kinetic energy arising 

from the motion of the system as a whole, such as its kinetic 

energy as it accompanies the Earth on its orbit round the Sun.

For a system composed of N independent molecules, the 

internal energy at a temperature T is

U T U N( ) ( )= + 〈 〉0 ε  (55.1a)

where U(0) is the internal energy at T = 0 and 〈ε〉 is the mean 

molecular energy (as calculated from the molecular partition 

function in Topic 53) at the temperature T. For the more general 

case of a system composed of interacting molecules, we write

U T U E( ) ( )= +〈 〉0  (55.1b)

where 〈E〉 is the mean energy of the system (as calculated from 

the canonical partition function, Topic 54) at the temperature 

T. More formally, and as explained in Topic 54, 〈E〉 is the mean 

value of the energy of the members of a canonical ensemble in 

the thermodynamic limit of �N →∞.

We denote by ΔU the change in internal energy when a sys-

tem changes from an initial state i with internal energy Ui to a 

final state f of internal energy Uf:

ΔU U U= −f i  (55.2)

Brief illustration 55.2 The internal energy of a gas

The molar internal energy is obtained by setting N = nNA, 

where NA is Avogadro’s constant, and dividing the total inter-

nal energy by the amount of molecules, n, in the sample:

U T U Nm m A( ) ( )= + 〈 〉0 ε
 

In Topic 53 it is shown that the mean energy of a molecule due 

to its translational motion is 3
2

kT ; therefore, considering only 

the translational contribution to internal energy,

U T U N kT U RTm m A m( ) ( ) ( )= + = +0 03
2

3
2

At 25 °C, RT = 2.48 kJ mol−1, so the translational motion con-

tributes 3.72 kJ mol−1 to the molar internal energy of gases.

Self-test 55.2 Calculate the molar internal energy of carbon 

dioxide at 25 °C, taking into account its translational and rota-

tional degrees of freedom.

Answer: U T U RTm m( ) ( )= +0 5
2

Definition
Change in 
internal energy
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Exothermic
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Exothermic
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Figure 55.3 (a) When an endothermic process occurs in an 
adiabatic system, the temperature falls; (b) if the process 
is exothermic, then the temperature rises. (c) When an 
endothermic process occurs in a diathermic container, 
energy enters as heat from the surroundings, and the 
system remains at the same temperature. (d) If the process 
is exothermic, then energy leaves as heat, and the process is 
isothermal.
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Figure 55.4 When energy is transferred to the surroundings 
as heat, the transfer stimulates random motion of the atoms 
in the surroundings. Transfer of energy from the surroundings 
to the system makes use of random motion (thermal motion) in 
the surroundings.
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544 12 The First Law of thermodynamics

The internal energy of a closed system may be changed either 

by work being done on (or by) the system or by heating (or 

cooling) it. Whereas we may know how the energy transfer 

has occurred (because we can see if a weight has been raised or 

lowered in the surroundings, indicating transfer of energy by 

doing work, or if ice has melted in the surroundings, indicat-

ing transfer of energy as heat), the system is blind to the mode 

employed. Heat and work are equivalent ways of changing a sys-

tem’s internal energy. A system is like a bank: it accepts depos-

its in either currency, but stores its reserves as internal energy. 

If we write w for the work done on a system, q for the energy 

transferred as heat to a system, and ΔU for the resulting change 

in internal energy, then

ΔU q w= +   Contributions of work and heat  (55.3)

(Be careful to distinguish q, the symbol for energy transferred 

as heat, from q, the symbol for the partition function. Later you 

will also need to distinguish p, for pressure, from p, for popu-

lation. We use script symbols for statistical properties.) This 

equation employs the ‘acquisitive convention’, in which w > 0 or 

q > 0 if energy is transferred to the system as work or heat and 

w < 0 or q < 0 if energy is lost from the system as work or heat. 

In other words, we view the flow of energy as work or heat from 

the system’s perspective.

It is an experimental fact that we cannot use a system to 

do work, leave it isolated for a while, and then return to it to 

find its internal energy restored to its original value and ready 

to provide the same amount of work again. Despite the great 

amount of effort that has been spent trying to build a ‘per-

petual motion machine’, a device that would be an exception 

to this rule by producing work without using fuel, no one has 

ever succeeded in building one. In other words, eqn 55.3 is 

a complete statement of how changes in internal energy may 

be achieved in a closed system: the only way to increase the 

internal energy of a closed system is to transfer energy into 

it as heat or as work. If the system is isolated, then even that 

ability is eliminated, and the internal energy cannot change at 

all. This conclusion is known as the First Law of thermody-

namics, which states:

The internal energy of an isolated system is constant.

Equation 55.3 is the mathematical statement of this law, 

for it implies the equivalence of heat and work as modes of 

transfer of energy and the fact that the internal energy is 

constant in an isolated system (for which q = 0 and w = 0). 

The First Law is closely related to the conservation of energy 

(Foundations, Topic 2) but goes beyond it: the concept of 

heat does not apply to the single particles treated in classical 

mechanics.

According to the First Law, if an isolated system has a cer-

tain internal energy at one instant and is inspected again later, 

then it will be found to have exactly the same internal energy. 

Therefore, if a second system consisting of exactly the same 

amount of substance in exactly the same state as the first (and 

therefore indistinguishable from the first system) is inspected, 

it too would have the same internal energy as the first system. 

We summarize this conclusion by saying that the internal 

energy is a state function, a property that depends only on the 

current state of the system and is independent of how that state 

was prepared. The pressure, volume, temperature, and density 

of a system are also state functions.

The way can now be opened to powerful methods of calcu-

lation by switching attention to infinitesimal changes of state 

(such as an infinitesimal change in temperature) and infinitesi-

mal changes in the internal energy dU. Then, if the work done 

on a system is dw and the energy supplied to it as heat is dq, in 

place of eqn 55.3 we write

d d dU q w= +  (55.4)

To use this expression we must be able to relate dq and dw to 

events taking place in the surroundings.

55.3 Expansion work

We begin by discussing the important case of expansion work, 

the work arising from a change in volume. This type of work 

includes the work done by a gas as it expands and drives back 

the atmosphere. Many chemical reactions result in the gen-

eration or consumption of gases (for instance, the thermal 

decomposition of calcium carbonate or the combustion of 

octane), and the thermodynamic characteristics of a reaction 

Brief illustration 55.3 Contributions to ΔU

If an electric motor produced 15 kJ of energy each second as 

mechanical work and lost 2 kJ as heat to the surroundings, then 

the change in the internal energy of the motor each second is

ΔU = − − = −2 kJ 15 kJ 17 kJ

Suppose that when a spring was wound, 100 J of work was 

done on it but 15 J escaped to the surroundings as heat. The 

change in internal energy of the spring is

ΔU = + − = +1  kJ 15 kJ 85 kJ00

Self-test 55.3 What is the change in internal energy when an 

engine raises a mass of 100 kg through 20.0 m on the surface of 

the Earth (use mgh) and loses 10.0 kJ of energy as heat?

Answer: −29.6 kJ
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55 The First Law  545

depend on the work it can do. The term ‘expansion work’ also 

includes work associated with negative changes of volume, that 

is, compression.

(a) The general expression for work
The calculation of expansion work starts from the defini-

tion used in physics (Foundations, Topic 2), which states that 

the work required to move an object a distance dz against an 

opposing force of magnitude F is

d dw F z= −  (55.5)

The negative sign tells us that when the system moves an object 

against an opposing force, the internal energy of the system 

doing the work will decrease. Now consider the arrangement 

shown in Fig. 55.5 in which one wall of a system is a massless, 

frictionless, rigid, perfectly fitting piston of area A. If the exter-

nal pressure is pex, the magnitude of the force acting on the 

outer face of the piston is F = pexA. When the system expands 

through a distance dz against an external pressure pex, it follows 

that the work done is dw = −pexAdz. But Adz is the change in 

volume, dV, in the course of the expansion. Therefore, the work 

done when the system expands by dV against a pressure pex is

d dexw p V= −   Expansion work  (55.6)

To obtain the total work done when the volume changes from 

Vi to Vf we integrate this expression between the initial and final 

volumes:

w p V
V

V

= −∫ exd
i

f  (55.7)

The force acting on the piston, pexA, is equivalent to a weight 

that is raised as the system expands.

If the system is compressed instead, then the same weight 

is lowered in the surroundings and eqn 55.7 can still be used, 

but now Vf < Vi. It is important to note that it is still the exter-

nal pressure that determines the magnitude of the work. This 

somewhat perplexing conclusion seems to be inconsistent with 

the fact that the gas inside the container is opposing the com-

pression. However, when a gas is compressed, the ability of the 

surroundings to do work is diminished by an amount deter-

mined by the weight that is lowered, and it is this energy that is 

transferred into the system.

Other types of work (for example, electrical work), which 

we shall call non-expansion work, have analogous expres-

sions, with each one the product of an intensive factor (the 

pressure, for instance) and an extensive factor (the change in 

volume). Some are collected in Table 55.1. For the present we 

continue with the work associated with changing the volume, 

the expansion work, and see what we can extract from eqns 

55.6 and 55.7.

Brief illustration 55.4 The work of extension

To establish an expression for the work of stretching an elas-

tomer to an extension l given that the force opposing exten-

sion is proportional to the displacement from the resting state 

of the elastomer, we write F = kfx, where kf is a constant and x 

is the displacement. It then follows from eqn 55.5 that, for an 

infinitesimal displacement from x to x + dx, dw = −kfxdx. For 

the overall work of displacement from x = 0 to the final exten-

sion l,

w k x x k l
l

= − = −∫ f fd
1

2
2

0  

Self-test 55.4 Suppose the restoring force weakens as the elas-

tomer is stretched, and kf(x) = a − bx1/2. Evaluate the work of 

extension to l.

Answer: w al bl= − +1
2

2 2
5

5 2/

dz

External
pressure, pex

Pressure, p

Area, A dV = Adz

Figure 55.5 When a piston of area A moves out through a 
distance dz, it sweeps out a volume dV = Adz. The external 
pressure pex is equivalent to a weight pressing on the piston, 
and the force opposing expansion is F = pexA.

Table 55.1 Varieties of work*

Type of work dw Comment Units†

Expansion −pex dV pex is the external pressure
 dV is the change in volume

Pa m3

Surface 
expansion

γ dσ γ is the surface tension
 dσ is the change in area

N m−1 m2

Extension f dl f is the tension
 dl is the change in length

N m

Electrical φ dQ φ is the electric potential
 dQ is the change in charge

V C

* In general, the work done on a system can be expressed in the form 
dw = −Fdz, where F is a ‘generalized force’ and dz is a ‘generalized 
displacement’.

† For work in joules, note that 1 N m = 1 J, 1 Pa m3 = 1 J, and 1 V C = 1 J.

Definition Work
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546 12 The First Law of thermodynamics

(b) Expansion against constant pressure

Now suppose that the external pressure is constant throughout 

the expansion. For example, the piston may be pressed on by 

the atmosphere, which exerts the same pressure throughout the 

expansion. A chemical example of this condition is the expan-

sion of a gas formed in a chemical reaction. We can evaluate 

eqn 55.7 by taking the constant pex outside the integral:

w p V p V V
V

V

= − = − −∫ex ex f id
i

f

( )
 

Therefore, if we write the change in volume as ΔV = Vf − Vi,

w p V= − exΔ  (55.8)

This result, which is illustrated graphically in Fig. 55.6, makes use 

of the fact that an integral can be interpreted as an area. The mag-

nitude of w, denoted |w|, is equal to the area beneath the horizon-

tal line at p = pex lying between the initial and final volumes.

When the external pressure is zero (as for expansion into a 

vacuum), the system undergoes free expansion. When pex = 0, 

eqn 55.8 implies that the expansion work is zero; that is,

w = 0  Free expansion (pex = 0)  Expansion work  (55.9)

(c) Reversible expansion
A reversible change in thermodynamics is a change that can 

be reversed by an infinitesimal modification of a variable. The 

key word ‘infinitesimal’ sharpens the everyday meaning of the 

word ‘reversible’ as something that can change direction. We 

say that a system is in equilibrium with its surroundings if an 

infinitesimal change in the conditions in opposite directions 

results in opposite changes in its state. One example of revers-

ibility is the thermal equilibrium of two systems with the same 

temperature. The transfer of energy as heat between the two is 

reversible because, if the temperature of either system is low-

ered infinitesimally, then energy flows into the system with the 

lower temperature. If the temperature of either system at ther-

mal equilibrium is raised infinitesimally, then energy flows out 

of the hotter (higher temperature) system.

Suppose a gas is confined by a piston and that the external 

pressure, pex, is set equal to the pressure, p, of the confined gas. 

Such a system is in mechanical equilibrium with its surround-

ings because an infinitesimal change in the external pressure in 

either direction causes changes in volume in the opposite direc-

tion. If the external pressure is reduced infinitesimally, then 

the gas expands slightly. If the external pressure is increased 

infinitesimally, then the gas contracts slightly. In either case 

the change is reversible in the thermodynamic sense. If, on the 

other hand, the external pressure is measurably greater than 

the internal pressure, then reducing pex infinitesimally will not 

decrease it below the pressure of the gas, so will not change the 

direction of the process. Such a system is not in mechanical 

equilibrium with its surroundings and the expansion is ther-

modynamically irreversible.

To achieve reversible expansion we set pex equal to p at each 

stage of the expansion. In practice, this equalization could be 

achieved by gradually removing weights from the piston so 

that the downward force due to the weights always matched the 

changing upward force due to the pressure of the gas. When we 

set pex = p, eqn 55.6 becomes

d d dexw p V p V= − = −  Reversible change  Expansion work  (55.10)

Although the pressure inside the system appears in this expres-

sion for the work, it does so only because pex has been set equal 

Brief illustration 55.5 The work of expansion

When a certain chemical reaction that produces gas takes place 

in a container of cross-sectional area 50 cm2 (5.0 × 10−3 m2) a 

piston is pushed out through 15 cm (1.5 × 10−1 m) against an 

external pressure of 1.0 atm (1.0 × 105 Pa). The work done by 

the system, eqn 55.8, is therefore

w = − × × × × × = −− −( . ) ( . ) ( . )1 1 Pa 5 1 m 1 5 1 m 75 J5 3 2 10 0 0 0 0  

Note how we have converted the data to SI units (using 

1 atm = 101.325 kPa) and base units and have used 1 J = 1 Pa m3.

Self-test 55.5 A reaction that consumes gas took place in 

a container of diameter 5.0 cm and in the process a piston 

moved in through 20 cm when the external pressure was 

750 Torr. Evaluate the work done on the system.

Answer: +39 J

Constant external pressure Expansion work

Pr
es

su
re

, p

pex

Area = pexΔV

Volume, VVi Vf

pex pex

Figure 55.6 The work done by a gas when it expands against 
a constant external pressure, pex, is equal to the shaded area in 
this example of an indicator diagram.
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55 The First Law  547

to p to ensure reversibility. The total work of reversible expan-

sion is therefore

w p V
V

V

= −∫ d
i

f  (55.11)

We can evaluate the integral once we know how the pressure of 

the confined gas depends on its volume. Equation 55.11 is the 

link with the material covered in Topic 36, for if we know the 

equation of state of the gas, then we can express p in terms of V 

and evaluate the integral.

Consider the isothermal (constant-temperature), reversible 

expansion of a perfect gas. The expansion is made isothermal 

by keeping the system in thermal contact with its surround-

ings (which may be a constant-temperature bath). Because 

the equation of state is pV = nRT, we know that at each stage 

p = nRT/V, with V the volume at that stage of the expansion. 

The temperature T is constant in an isothermal expansion, so 

(together with n and R) it may be taken outside the integral. It 

follows that the work of reversible isothermal expansion of a 

perfect gas from Vi to Vf at a temperature T is

w
nRT

V
V nRT

V
V

V

V

V

V

= − = −∫ ∫d d
i

f

i

f 1

 

Then, by using the standard integral of 1/x (Integral A.2 in the 

Resource section), we can write

w nRT
V

V
= − ln f

i

 (55.12)

Expressions that are valid only for perfect gases are labelled, as 

here, in blue.

When the final volume is greater than the initial volume, 

as in an expansion, the logarithm in eqn 55.12 is positive and 

hence w < 0. In this case, the system has done work on the sur-

roundings and the internal energy of the system has decreased 

as a result. In Topic 58 we see that there is a compensating 

influx of energy as heat, so overall the internal energy is con-

stant for the isothermal expansion of a perfect gas. The equa-

tions also show that more work is done for a given change of 

volume when the temperature is increased. The greater pres-

sure of the confined gas then needs a higher opposing pressure 

to ensure reversibility. We cannot obtain more work than for 

the reversible process because increasing the external pres-

sure even infinitesimally at any stage results in compression. 

We may infer from this discussion that, because some push-

ing power is wasted when p > pex, the maximum work avail-

able from a system operating between specified initial and 

final states and passing along a specified path is obtained when 

the change takes place reversibly. As in the case of constant 

external pressure, the work done is equal to the area under the 

isotherm, in this case representing the balanced internal and 

external pressures (Fig. 55.7).

(d) The molecular interpretation of 
reversible expansion
The logarithmic term in eqn 55.12 can be explained in molecu-

lar terms by noting that, in general, an infinitesimal change in 

the total energy (N〈ε〉 = ΣiεiNi) of a collection of independent Reversible, isothermal, 
perfect gas

Expansion 
work

Brief illustration 55.6 The work of isothermal,  
reversible expansion

When a sample of 1.00 mol Ar, regarded here as a perfect gas, 

undergoes an isothermal, reversible expansion at 20.0 °C from 

10.0 dm3 to 30.0 dm3 the work done is

w = − × ×

= −

− −( . ) ( . ) ( . )ln
.

.
1 00 8 3145 293 2

30 0

10 0

2

1 1
3

3
mol JK mol K

dm

dm

..68kJ
 

Self-test 55.6 Suppose that attractions are important between 

gas molecules, and the equation of state is p = nRT/V − n2a/V2. 

Derive an expression for the reversible, isothermal expansion 

of this gas. Is more or less work done on the surroundings when 

it expands (compared with a perfect gas)?

Answer: w = −nRTln(Vf/Vi) − n2a(1/Vf − 1/Vi); less

Pr
es

su
re

, p pf

pi

Volume, VVi Vf

pi pf

p = nRT/V

Figure 55.7 The work done by a perfect gas when it expands 
reversibly and isothermally is equal to the area under the 
isotherm p = nRT/V. The work done during the irreversible 
expansion against the same final pressure is equal to the 
rectangular area shown slightly darker. Note that the reversible 
work is greater than the irreversible work.

Atkins09819.indb   547 9/11/2013   12:46:39 PM



548 12 The First Law of thermodynamics

molecules arises from a change in the energy levels εi they 

occupy and a change in the populations Ni of those levels:

N N N
i

i i

i

i idε ε ε= +∑ ∑d d  (55.13)

We cannot in general identify one of the terms on the right with 

the work done by the system, except in the case of a reversible 

change, when the external force exerted against the system as 

it expands is matched to the force exerted by the molecules 

inside the system. In that case we can use the properties of 

the system to calculate the external opposing force (just as we 

replaced pex by p). Provided this expansion is both infinitesi-

mal and isothermal, there is no change in the populations of the 

levels since the Boltzmann populations depend only on tem-

perature, and therefore the first term on the right of eqn 55.13 

is zero. Therefore, the work done by the system in the course 

of a reversible, isothermal expansion can be identified with the 

second term on the right:

dw N
i

i i=∑ dε  Reversible, isothermal expansion (55.14)

We show in Example 55.1 that when this expression is applied 

to a collection of independent molecules in a box, then we 

obtain the logarithmic term in eqn 55.12. 55.4 Heat transactions

In general, the change in internal energy of a closed system is

d d d d d dexp eU q w q w w= + = + +  (55.15)

where, as usual, dq is the energy transferred as heat and dw the 

energy transferred as work: dwe is non-expansion work, that is, 

work in addition (e for ‘extra’) to the expansion work, dwexp. For 

instance, dwe might be the electrical work of driving a current 

through a circuit. A system kept at constant volume can do no 

expansion work, so dwexp = 0. If the system is also incapable of 

doing any other kind of work (if it is not, for instance, an elec-

trochemical cell connected to an electric motor), then dwe = 0 

too. Under these circumstances:

d  dU q=  (55.16a)

We express this relation by writing dU = dqV, where the sub-

script implies a change at constant volume. For a measurable 

change

ΔU qV=  (55.16b)

It follows that by measuring the energy supplied to a constant-

volume system as heat (q > 0) or obtained from it as heat (q < 0) 

when it undergoes a change of state, we are in fact measuring 

the change in its internal energy.

Example 55.1 Deriving the molecular expression for the 
work of isothermal, reversible expansion

Show that eqn 55.14 leads to the thermodynamic expression 

for the work when it is applied to the expansion of a box con-

taining non-interacting molecules.

Method We know from Topic 9 that the energy levels of a 

particle in a box relative to its ground state (with the index i 

replaced by the quantum number n) are

εn n
h

mL
= −( )2

2

2
1

8  

Therefore, derive an expression for the change in this energy 

when the length of the box is increased infinitesimally and then 

use eqn 55.14. Integrate the resulting expression to obtain the 

work for a measurable change in length. At high temperature, 

use the equipartition value of the mean energy of the particles.

Answer The change in the energy of a level with quantum 

number n when the length of a one-dimensional box changes 

by dL is

d
d

d
d d

dε ε εn
n

nL
L n

h

mL
L

L

L
= ⎛

⎝⎜
⎞
⎠⎟

= − − = −2 1
8

22
2

3
( )

 

Equation 55.14 is therefore

dw N
L

L
N N

L

L
n

n n

n

n n= = − = − 〈 〉∑ ∑d
d dε εε2 2

 

For this one-dimensional system, 〈 〉 =ε 1
2

kT.  Provided the 

temperature is constant (so that 〈ε〉 is constant), we can inte-

grate this expression between the initial and final lengths of 

the box:

w N
L

L
NkT

L

L
nRT

L

LL

L

= − 〈 〉 = − = −∫2 ε d f

i

f

ii

f

ln ln

We have used N = nNA and NAk = R. In three dimensions, the 

ratio of lengths is replaced by the ratio of volumes, as in the 

classical calculation, and we recover eqn 55.12.

Self-test 55.7 Extend this calculation to a particle in a two-

dimensional box.

Answer: w = −nRT ln(Af/Ai)

Constant volume, no 
additional work

Heat transaction

Constant volume, no 
additional work

Heat transaction

Atkins09819.indb   548 9/11/2013   12:46:53 PM

www.ebook3000.com

http://www.ebook3000.org


55 The First Law  549

(a) Heat capacity
The internal energy of a substance increases when its tempera-

ture is raised and the Boltzmann distribution populates higher 

energy levels. The increase depends on the conditions under 

which the heating takes place and for the present we suppose 

that the sample is confined to a constant volume. For example, 

the sample may be a gas in a container of fixed volume.

If the internal energy is plotted against temperature, then 

a curve like that in Fig. 55.8 may be obtained. The slope of 

the tangent to the curve at any temperature is called the heat 

capacity of the system at that temperature. The heat capacity 

at constant volume (or ‘isochoric heat capacity’) is denoted CV 

and is defined formally as

C
U

TV

V

=⎛
⎝⎜

⎞
⎠⎟

∂
∂

 (55.17)

The heat capacity is used to relate a change in internal energy 

to a change in temperature of a constant-volume system. It fol-

lows from eqn 55.17 that

d dU C TV=  Constant volume (55.18a)

That is, at constant volume, an infinitesimal change in temper-

ature brings about an infinitesimal change in internal energy, 

and the constant of proportionality is CV. If the heat capacity is 

independent of temperature over the range of temperatures of 

interest, a measurable change of temperature, ΔT, brings about 

a measurable increase in internal energy, ΔU, where

Δ ΔU C TV=  Constant volume (55.18b)

Because a change in internal energy can be identified with the 

heat supplied at constant volume (eqn 55.16), the last equation 

can also be written

q C TV V= Δ  Constant volume (55.18c)

This relation provides a simple way of measuring the heat 

capacity of a sample: a measured quantity of energy is trans-

ferred as heat to the sample (electrically, for example), and the 

resulting increase in temperature is monitored. The ratio of 

the energy transferred as heat to the temperature rise it causes  

(qV/ΔT) is the constant-volume heat capacity of the sample.

Brief illustration 55.7 The change in internal energy

A combustion reaction took place in a rigid, sealed metal con-

tainer, which was then allowed to reach thermal equilibrium 

with its surroundings, which consisted of a water bath with 

ice, all at 0 °C. At the end of the experiment it was found that 

some ice had melted, the amount corresponding to the trans-

fer of 25 kJ of energy as heat to the water bath. We infer that 

qV = −25 kJ, and therefore that the change in internal energy of 

the system in the course of the combustion is ΔU = −25 kJ.

Self-test 55.8 Repeat the question for a chemical reaction for 

which it was observed that some water in the bath had frozen, 

corresponding to the removal of 30 kJ of energy as heat from 

the water bath.

Answer: ΔU = +30 kJ

Definition Constant-volume 
heat capacity

Brief illustration 55.8 The heat capacity of a gas

The heat capacity of a monatomic perfect gas can be cal-

culated by inserting the expression for the internal energy, 
U U RTm m= +( )0 3

2  (see Brief illustration 55.2); so from eqn 

55.17

C

U RT

T
RV

V

,

( )

m

m

=
+⎧

⎨
⎩

⎫
⎬
⎭

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
∂

∂

0
3

2 3

2

 

The numerical value is 12.47 J K−1 mol−1.

Self-test 55.9 Estimate the molar heat capacity of a diatomic 

perfect gas free to rotate but not vibrate.

Answer: C RV , , .m  J K mol= − −5
2

1 120 7947

Brief illustration 55.9 The determination of a  
heat capacity

Suppose a 55 W electric heater immersed in a gas in a 

 constant-volume adiabatic container was on for 120 s 

and it was found that the temperature of the gas rose by 

5.0 °C (an increase equivalent to 5.0 K). The heat supplied is 

In
te

rn
al

 e
n

er
g

y,
 U

Temperature, T

A

B

Figure 55.8 The internal energy of a system increases as 
the temperature is raised; this graph shows its variation as 
the system is heated at constant volume. The slope of the 
tangent to the curve at any temperature is the heat capacity at 
constant volume at that temperature. Note that, for the system 
illustrated, the heat capacity is greater at B than at A.
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550 12 The First Law of thermodynamics

(b) The molecular interpretation 
of heat transfer
In molecular terms, the influx of energy as heat does not change 

the energy levels of a system, but does modify their popula-

tions. That is, eqn 55.13 becomes

N N
i

i id〈 〉 =∑ε ε d   (55.19a)

and for a measurable change

Δ ΔU N
i

i i=∑ε  (55.19b)

The change in populations and therefore the internal energy is 

due to a change in temperature, which redistributes the mol-

ecules over the fixed energy levels. The relation of this discus-

sion to the molecular basis of heat capacity is taken further in 

Topic 58.

Equation 55.19b is more general than at first it might look, 

for it applies to a chemical reaction as well as to a system com-

posed of a single species. To interpret it in terms of the reaction 

A → B, we imagine the energy levels of the molecules A and B as 

forming a single ladder of levels (Fig. 55.9). It should be recalled 

from Topic 51 that the principle of equal a priori probabilities, 

on which the Boltzmann distribution is based, ignores the spe-

cific types of energy levels, treating all kinds equally: that blind-

ness applies to the energy levels of different species too. At the 

start of the reaction, only the levels belonging to A are occupied; 

at the end of a complete reaction, only the levels belonging to 

B are occupied (later we see that equilibrium corresponds to a 

Boltzmann distribution over both sets of levels). The redistribu-

tion of populations corresponds to the ΔNi in eqn 55.19b:

Δ ΔU N N N
i

i i

i

i i

i

i i= = −∑ ∑ ∑ε ε ε
, ,products reactants

 (55.20)

Changes in internal energy accompanying physical changes 

and chemical reactions are measured using a calorimeter: see 

Topic 57.

Brief illustration 55.10 The difference in internal energy
Suppose that the reactant molecules lie at zero energy (in 

the sense that they define that energy level), and that the 

product molecules lie at an energy 120 kJ mol−1 lower. To 

calculate ΔU when 1 mol of reactant molecules change into 

1 mol of product molecules, we first write

U N N N= − =ε ε εproducts products reactants reactants products productts

products products A= ε n N

where nproducts is the chemical amount (in moles) of the prod-

uct molecules and NA is Avogadro’s constant. Then, with 

εproductsNA = −120 kJ mol−1 and nproducts = 1 mol,

ΔU = − ×( )= −−( )12 kJmol 1mol 12 kJ10 0

Self-test 55.11 Suppose now that 80 per cent of the reactant 

molecules occupy the ground state (of zero energy), 20 per 

cent occupy a level 20 kJ mol−1 above, and 70 per cent of the 

product molecules occupy a level of energy 120 kJ mol−1 lower 

and 30 per cent occupy a level 40 kJ mol−1 above that level. 

Calculate ΔU when 1 mol of reactant molecules change into 

1 mol of product molecules.

Answer: −112 kJ mol−1

(55 W) × (120 s) = 6.6 kJ (we have used 1 J = 1 W s), so the heat 

capacity of the sample is

CV = = −6 6

5 0
1 3 1

.

.
.

kJ

K
kJK

Self-test 55.10 When 229 J of energy is supplied as heat to 

3.0 mol of a gas at constant volume, the temperature of the gas 

increases by 2.55 °C. Calculate CV and the molar heat capacity 

at constant volume.

Answer: 89.8 J K−1, 29.9 J K−1 mol−1

Constant volume, 
no additional 
work

Heat transaction

Constant volume, 
no additional 
work

Heat transaction

Mean
energy

Mean
energy

ΔU

Reactants

Products

E
n

er
g

y

Figure 55.9 The change in internal energy when a chemical 
reaction takes place is equal to the change in mean energy 
between products and reactants, taking into account the 
Boltzmann distribution of populations. The blue lines are the 
distributions, and correspond to the same temperature.
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55 The First Law  551

Checklist of concepts

☐ 1. Thermodynamics is the study of the transformations of 

energy.

☐ 2. The system is the part of the world in which we have a 

special interest. The surroundings is the region outside 

the system where we make our measurements.

☐ 3. An open system has a boundary through which mat-

ter can be transferred. A closed system has a bound-

ary through which matter cannot be transferred. An 

isolated system has a boundary through which neither 

matter nor energy can be transferred.

☐ 4. Energy is the capacity to do work. The internal energy 

is the total energy of a system.

☐ 5. Work is the transfer of energy by motion against an 

opposing force. Heat is the transfer of energy as a result 

of a temperature difference between the system and the 

surroundings. In molecular terms, heating makes use of 

thermal motion, that is, disorderly molecular motion.

☐ 6. An exothermic process releases energy as heat; an 

endothermic process absorbs energy as heat.

☐ 7. A state function is a property that depends only on the 

current state of the system and is independent of how 

that state has been prepared.

☐ 8. The First Law of thermodynamics states that the inter-

nal energy of an isolated system is constant.

☐ 9. A reversible change is a change that can be reversed by 

an infinitesimal modification of a variable.

☐ 10. A system is in equilibrium with its surroundings if an 

infinitesimal change in conditions in an opposite direc-

tion results in an opposite change in state.

☐ 11. Maximum work is achieved in a reversible change.

Checklist of equations

Property Equation Comment Equation number

First Law ΔU = q + w 55.3

dU = dq + dw Infinitesimal change 55.4

Expansion work dw = −pexdV In general 55.6

w = −pexΔV Constant external pressure 55.8

w = −nRT ln(Vf/Vi) Perfect gas, isothermal, reversible 55.12

Heat capacity CV = (∂U/∂T)V Constant volume 55.17

Change in internal energy ΔU = qV Constant volume 55.18
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TOPIC 56

Enthalpy

When the system is free to change its volume, some of the 

energy supplied as heat to the system is returned to the sur-

roundings as expansion work (Fig. 56.1), so dU is less than 

dq. However, we shall now show that in this case the energy 

supplied as heat at constant pressure is equal to the change in 

another thermodynamic property of the system, the enthalpy.

56.1 The definition of enthalpy

The enthalpy, H, is defined as

H U pV= +  Definition  Enthalpy  (56.1)

where p is the pressure of the system and V is its volume. 

Because U, p, and V are all state functions, the enthalpy is a 

state function too. As is true of any state function, the change 

in enthalpy, ΔH, between any pair of initial and final states is 

independent of the path between them.

We show in the following Justification that eqn 56.1 implies 

that the change in enthalpy is equal to the energy supplied as heat at 

constant pressure (provided the system does no additional work):

d dH q=
 

Constant pressure, 
no additional 
work

Enthalpy 
change

(56.2a)
 ➤ Why do you need to know this material?

The concept of enthalpy lies at the heart of the application 
of thermodynamics to chemistry, and in particular thermo-
chemistry (Topic 57) and the discussion of physical and 
chemical equilibria (Topics 69 and 73). It is also central 
to the assessment of the energy resources of fuels and 
foods.

 ➤ What is the key idea?
A change in enthalpy of a system is equal to the energy 
supplied as heat at constant pressure.

 ➤ What do you need to know already?
You need to be familiar with the concepts relating to 
the First Law, particularly the internal energy, and the 
significance of the term ‘state function’ (Topic 55). You 
also need to be familiar with some of the manipulations of 
partial derivatives (Mathematical background 8).

Contents

56.1 The definition of enthalpy 552

Brief illustration 56.1: The change in  

enthalpy 553

56.2 Heat capacity at constant pressure 553

Example 56.1: Evaluating an increase in enthalpy 

with temperature 554

56.3 Changes in enthalpy with pressure and  
temperature 555

Brief illustration 56.2: The Joule–Thomson  

coefficient 555

56.4 The Joule–Thomson effect 555

Brief illustration 56.3: The isothermal Joule– 

Thomson coefficient 558

Checklist of concepts 559

Checklist of equations 559

Energy
as heat

Energy as work

ΔU < q

Figure 56.1 When a system is subjected to constant pressure 
and is free to change its volume, some of the energy supplied 
as heat may escape back into the surroundings as work. In such 
a case, the change in internal energy is smaller than the energy 
supplied as heat.
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56 Enthalpy  553

For a measurable change,

ΔH qp=
 

where the subscript p denotes constant pressure.

The result expressed in eqn 56.2 states that when a system is 

subjected to a constant pressure, and only expansion work can 

occur, the change in enthalpy is equal to the energy supplied as 

heat.

56.2 Heat capacity at constant 
pressure

The enthalpy of a substance increases as its temperature is 

raised. The relation between the increase in enthalpy and the 

increase in temperature depends on the conditions (for exam-

ple, constant pressure or constant volume). The most impor-

tant condition is constant pressure, and the slope of the tangent 

to a plot of enthalpy against temperature at constant pressure is 

called the heat capacity at constant pressure (or ‘isobaric heat 

capacity’), Cp, at a given temperature (Fig. 56.2). More formally:

C
H

Tp

p

= ∂
∂

⎛
⎝⎜

⎞
⎠⎟  

The heat capacity at constant pressure is the analogue of the 

heat capacity at constant volume (Topic 55, eqn 55.17), and is 

an extensive property. As in the case of CV, if the system can 

change its composition it is necessary to distinguish between 

equilibrium and fixed-composition values. All applications in 

this Topic refer to pure substances, so this complication can be 

ignored. The molar heat capacity at constant pressure, Cp,m, is 

the heat capacity per mole of material; it is an intensive property.

Constant 
pressure, no 
additional 
work

Enthalpy 
change (56.2b)

Justification 56.1 The relation ΔH = qp

For a general infinitesimal change in the state of the system, U 

changes to U + dU, p changes to p + dp, and V changes to V + dV, 

so from the definition in eqn 56.1, H changes from U + pV to

H H U U p p V V

U U pV p V V p V

+ = + + + +
= + + + + +

d d d d

d d d d d

( ) ( )( )

p

The last term is the product of two infinitesimally small quan-

tities and can therefore be neglected. As a result, after recog-

nizing U + pV = H on the right, we find that H changes to

H H H U p V V p+ = + + +d d d d

and hence that

d d d dH U p V V p= + +

If we now substitute dU = dq + dw into this expression, we get

d d d d dH q w p V V p= + + +

If the system is in mechanical equilibrium with its surround-

ings at a pressure p and does only expansion work, we can 

write dw = –pdV and obtain

d d dH q V p= +

Now we impose the condition that the heating occurs at con-

stant pressure by writing dp = 0. Then

d d at constant pressure no additional workH q= ( , )

as in eqn 56.2a.

Brief illustration 56.1 The change in enthalpy

If we supply 36 kJ of energy through an electric heater 

immersed in an open beaker of water, then the enthalpy of 

the water increases by 36 kJ and we write +36 kJ. If a beaker of 

water cools to the temperature of its surroundings, and in the 

Definition
Heat capacity 
at constant 
pressure

(56.3)

process loses 36 kJ of energy as heat, the enthalpy of the water 

decreases by 36 kJ and we write ΔH = –36 kJ.

Self-test 56.1 What is the change of enthalpy when an exo-

thermic reaction takes place in an adiabatic container fitted 

with a freely moving piston?

Answer: ΔH = 0

Temperature, T

E
n

th
al

p
y,

 H

A

B

Internal
energy, U

Figure 56.2 The slope of the tangent to a curve of the enthalpy 
of a system subjected to a constant pressure plotted against 
temperature is the constant-pressure heat capacity. The slope 
may change with temperature, in which case the heat capacity 
varies with temperature. Thus, the heat capacities at A and B 
are different. For gases, at a given temperature the slope of 
enthalpy versus temperature is steeper than that of internal 
energy versus temperature, and Cp,m is larger than CV,m.
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554 12 The First Law of thermodynamics

The heat capacity at constant pressure is used to relate the 

change in enthalpy to a change in temperature. For infinitesi-

mal changes of temperature,

d dH C Tp=  Constant pressure (56.4a)

If the heat capacity is constant over the range of temperatures of 

interest, then for a measurable increase in temperature

Δ ΔH C Tp=  Constant pressure, Cp constant (56.4b)

Because an increase in enthalpy can be equated to the energy 

supplied as heat at constant pressure, the practical form of the 

latter equation is

q C Tp p= Δ  Constant pressure, Cp constant (56.4c)

This expression shows us how to measure the heat capacity of a 

sample: a measured quantity of energy is supplied as heat under 

conditions of constant pressure (as in a sample exposed to the 

atmosphere and free to expand), and the temperature rise is 

monitored.

The variation of heat capacity with temperature can some-

times be ignored if the temperature range is small; this approxi-

mation is highly accurate for a monatomic perfect gas (for 

instance, one of the noble gases at low pressure). However, 

when it is necessary to take the variation into account, a con-

venient approximate empirical expression is

C a bT
c

Tp,m = + +
2

The empirical parameters a, b, and c are independent of tem-

perature (Table 56.1).

Most systems expand when heated at constant pressure. Such 

systems do work on the surroundings and therefore some of the 

energy supplied to them as heat escapes back to the surround-

ings. As a result, the temperature of the system rises less than 

when the heating occurs at constant volume. A smaller increase 

in temperature implies a larger heat capacity, so we conclude 

that in most cases the heat capacity at constant pressure of a 

system is larger than its heat capacity at constant volume. We 

show in Topics 58 and 66 that there is a simple relation between 

the two heat capacities of a perfect gas:

C C nRp V− =

It follows that the molar heat capacity of a perfect gas is about 

8 J K−1 mol−1 larger at constant pressure than at constant volume. 

Because the heat capacity at constant volume of a monatomic 

gas is about 12 J K−1 mol−1, the difference is highly significant 

and must be taken into account. For substances other than per-

fect gases, the forces between atoms play a role in determining 

Method The heat capacity of N2 changes with temperature, so 

we cannot use eqn 56.4c (which assumes that the heat capac-

ity of the substance is constant). Therefore, we must use eqn 

56.4a, substitute eqn 56.5 for the temperature dependence of 

the heat capacity, and integrate the resulting expression from 

25 °C to 100 °C.

Answer For convenience, we denote the two temperatures T1 

(298 K) and T2 (373 K). The integral we require is

d dm
m

m

H a bT
c

T
T

H T

H T

T

T

( )

( )

1

2

1

2

2∫ ∫= + +⎛
⎝⎜

⎞
⎠⎟

Now we use the integral of xn (Integral A.1 of the Resource sec-

tion) to obtain

H T H T a T T b T T c
T Tm m( ) ( ) ( ) ( )2 1 2 1

1
2 2

2
1
2

2 1

1 1− = − + − − −⎛
⎝⎜

⎞
⎠⎟

Substitution of the numerical data results in

H Hm m
1373K 298K 2 2 kJmol( ) ( ) .= + −0

If we had assumed a constant heat capacity of 29.14 J K−1 mol−1 

(the value given by eqn 56.5 at 25 °C), we would have found 

that the two enthalpies differed by 2.19 kJ mol−1.

Self-test 56.2 At very low temperatures the heat capacity of a 

solid is proportional to T3, and we can write Cp = aT3. What is 

the change in enthalpy of such a substance when it is heated 

from 0 to a temperature T (with T close to 0)?

Answer: ΔH aT= 1
4

4  

Example 56.1 Evaluating an increase in enthalpy 
with temperature

What is the change in molar enthalpy of N2 when it is heated 

from 25 °C to 100 °C? Use the heat capacity information in 

Table 56.1.

Empirical 
relation

Heat capacity 
dependence on 
temperature

(56.5)

Perfect
gas 

Relation 
between heat 
capacities

(56.6)

Table 56.1* Temperature variation of molar heat capacities, 
Cp,m/(J K−1 mol−1) = a + bT + c/T2

a b/(10−3 K) c/(105 K2)

C(s, graphite) 16.86 4.77 –8.54

CO2(g) 44.22 8.79 –8.62

H2O(l) 75.29 0 0

N2(g) 28.58 3.77 –0.50

* More values are given in the Resource section.
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56 Enthalpy  555

the magnitude of the work of expansion and the expression for 

the difference between Cp and CV is more complicated.1

56.3 Changes in enthalpy with 
pressure and temperature

It turns out that H is a useful thermodynamic function whenever 

the pressure is under our control: we saw a sign of that in the rela-

tion ΔH = qp (eqn 56.2b). We shall therefore regard H as a function 

of p and T, and look for an expression for the variation of H with 

temperature and pressure. As set out in the following Justification, 

we find that, for a closed system of constant composition,

d d dH C p C Tp p= − +μ   Variation of enthalpy  (56.7)

where the Joule–Thomson coefficient, μ (mu), is defined as

μ = ∂
∂

⎛
⎝⎜

⎞
⎠⎟

T

p
H  

As we shall see, this relation is useful for discussing the lique-

faction of gases.

56.4 The Joule–Thomson effect

The analysis of the Joule–Thomson coefficient is central to 

the technological problems associated with the liquefaction 

of gases. We need to be able to interpret it physically and to 

measure it.

As shown in the following Justification, the cunning 

required to impose the constraint of constant enthalpy, so that 

the process is isenthalpic, was supplied by Joule and William 

Thomson (later Lord Kelvin). They let a gas expand through 

a porous barrier from one constant pressure to another, and 

monitored the difference of temperature that arose from the 

expansion (Fig. 56.3). The whole apparatus was insulated so 

that the process was adiabatic. They observed a lower temper-

ature on the low-pressure side, the difference in temperature 

being proportional to the pressure difference they maintained. 

This cooling by isenthalpic expansion is now called the Joule–

Thomson effect.

Justification 56.2 The variation of enthalpy with 
pressure and temperature

Because H may be regarded as a function of p and T, when 

these parameters change the enthalpy changes as follows:

d d dH
H

p
p

H

T
T

T p

= ∂
∂

⎛
⎝⎜

⎞
⎠⎟

+ ∂
∂

⎛
⎝⎜

⎞
⎠⎟

 

Definition
Joule–
Thomson 
coefficient

(56.8)

Brief illustration 56.2 The Joule–Thomson coefficient

When a sample of Freon gas used in refrigeration was allowed 

to expand at constant enthalpy from 32 atm at 0 °C to 1.00 atm, 

the temperature fell by 22 K. The Joule–Thomson coefficient is 

therefore

μ = ∂
∂

⎛
⎝⎜

⎞
⎠⎟

=
−

− = + −T

p
H

22

31
0 71 1

K

atm
K atm.

Self-test 56.3 Repeat the calculation for another experiment 

in which a gas expands from 22 atm to 1 atm, when the tem-

perature fell by 10 K.

Answer: μ = +0.48 K atm−1

1 For details, see our other Physical chemistry (2014).

The second partial derivative is Cp; our task here is to express 

(∂H/∂p)T in terms of recognizable quantities. The chain relation 

(see Mathematics background 8) lets us write

∂
∂

⎛
⎝⎜

⎞
⎠⎟

∂
∂

⎛
⎝⎜

⎞
⎠⎟

∂
∂

⎛
⎝⎜

⎞
⎠⎟

= −H

p

p

T

T

H
T H p

1

and therefore

∂
∂

⎛
⎝⎜

⎞
⎠⎟

= −
∂
∂

⎛
⎝⎜

⎞
⎠⎟

∂
∂

⎛
⎝⎜

⎞
⎠⎟

H

p p

T

T

H
T

H p

1

Both partial derivatives can be brought into the numerator by 

using the reciprocal identity (∂y/∂x = 1/(∂x/∂y)) twice:

∂
∂

⎛
⎝⎜

⎞
⎠⎟

= − ∂
∂

⎛
⎝⎜

⎞
⎠⎟

∂
∂

⎛
⎝⎜

⎞
⎠⎟

H

p

T

p

H

T
T H p

We recognize the Joule–Thomson coefficient and the constant-

pressure heat capacity, so this expression becomes

∂
∂

⎛
⎝⎜

⎞
⎠⎟

= −H

p
C

T

pμ

Equation 56.7 now follows directly.
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556 12 The First Law of thermodynamics

The property measured in the experiment is the ratio of the 

temperature change to the change of pressure, ΔT/Δp. Adding the 

constraint of constant enthalpy and taking the limit of small Δp 

implies that the thermodynamic quantity measured is (∂T/∂p)H, 

which is the Joule–Thomson coefficient, μ. In other words, the 

physical interpretation of μ is that it is the ratio of the change in 

temperature to the change in pressure when a gas expands under 

conditions that ensure there is no change in enthalpy.

The modern method of measuring μ is indirect, and involves 

measuring the isothermal Joule–Thomson coefficient, the 

quantity

μT

T

H

p
= ∂

∂
⎛
⎝⎜

⎞
⎠⎟

 

which is the slope of a plot of enthalpy against pressure at con-

stant temperature (Fig. 56.5). On comparing eqns 56.9 and the 

Justification 56.3 The Joule–Thomson effect

Here we show that the experimental arrangement results in 

expansion at constant enthalpy. Because all changes to the gas 

occur adiabatically,

q U w= =0,  which implies Δ

Consider the work done as the gas passes through the barrier. 

We focus on the passage of a fixed amount of gas from the high-

pressure side, where the pressure is pi, the temperature Ti, and 

the gas occupies a volume Vi (Fig. 56.4). The gas emerges on the 

low-pressure side, where the same amount of gas has a pressure 

pf , a temperature Tf , and occupies a volume Vf . The gas on the 

left is compressed isothermally by the upstream gas acting as a 

piston. The relevant pressure is pi and the volume changes from 

Vi to 0; therefore, the work done on the gas is

w p V pV1 i i i i= − − =( )0

The gas expands isothermally on the right of the barrier (but 

possibly at a different constant temperature) against the pres-

sure pf provided by the downstream gas acting as a piston to 

be driven out. The volume changes from 0 to Vf , so the work 

done on the gas in this stage is

w p V p V2 f f f f= − − = −( )0

The total work done on the gas is the sum of these two quanti-

ties, or

Definition

Isothermal 
Joule–
Thomson 
coefficient

(56.9)

Porous
barrier

Gas at
low
pressure

Thermocouples

Gas at
high pressure

o
a

a
g

Po
ba

Ga
hig

Porous
barrier

Gas at
low
pressure

Thermocouples

Gas at
high pressure

Figure 56.3 The apparatus used for measuring the Joule–
Thomson effect. The gas expands through the porous 
barrier, which acts as a throttle, and the whole apparatus is 
thermally insulated. As explained in the text, this arrangement 
corresponds to an isenthalpic expansion (expansion at 
constant enthalpy). Whether the expansion results in a heating 
or a cooling of the gas depends on the conditions.

w w w pV p V= + = −1 2 i i f f

It follows that the change of internal energy of the gas as it 

moves adiabatically from one side of the barrier to the other is 

U U w pV p Vf i i i f f− = = −

Reorganization of this expression gives

U p V U pV H Hf f f i i i f ior+ = + =,

Therefore, the expansion occurs without change of enthalpy.

Downstream
pressure

Upstream
pressure

Throttle

pi, Vi, Ti

pf, Vf,Tf

pi

pi

pf

pf

pfpi

Figure 56.4 The thermodynamic basis of Joule–Thomson 
expansion. The pistons represent the upstream and 
downstream gases, which maintain constant pressures 
either side of the throttle. The transition from the top 
diagram to the bottom diagram, which represents the 
passage of a given amount of gas through the throttle, 
occurs without change of enthalpy.
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56 Enthalpy  557

relation (∂H/∂p)T  = –μCp derived in Justification 56.2, we see 

that the two coefficients are related by

μ μT pC= −   Relation between coefficients  (56.10)

Note that, whereas the Joule–Thomson coefficient is an 

in tensive property, the isothermal Joule–Thomson coefficient 

depends on the heat capacity of the sample passing through the 

apparatus and is extensive.

To measure μT , the gas is pumped continuously at a steady 

pressure through a heat exchanger (which brings it to the 

required temperature), and then through a porous plug inside a 

thermally insulated container. The steep pressure drop is meas-

ured, and the cooling effect is exactly offset by an electric heater 

placed immediately after the plug (Fig. 56.6). The energy pro-

vided by the heater is monitored. Because the energy transferred 

as heat can be identified with the value of ΔH for the gas (because 

ΔH = qp), and the pressure change Δp is known, we can find μT 

from the limiting value of ΔH/Δp as Δp → 0, and then convert it 

to μ. Table 56.2 lists some values obtained in this way.

Real gases have nonzero Joule–Thomson coefficients. De-

pending on the identity of the gas, the pressure, the relative 

magnitudes of the attractive and repulsive intermolecular 

forces, and the temperature, the sign of the coefficient may be 

either positive or negative (Fig. 56.7). A positive sign implies 

that dT is negative when dp is negative, in which case the gas 

cools on expansion. Gases that show a heating effect (μ < 0) at 

one temperature show a cooling effect (μ > 0) when the tem-

perature passes through an inversion temperature, TI (Table 

56.2, Fig. 56.8). As indicated in Fig. 56.8, a gas typically has 

two inversion temperatures, one at high temperature and the 

other at low.

Gas flow

Heater
Porous
plug

Thermocouples

Figure 56.6 A schematic diagram of the apparatus used for 
measuring the isothermal Joule–Thomson coefficient. The 
electrical heating required to offset the cooling arising from 
expansion is interpreted as ΔH and used to calculate (∂H/∂p)T, 
which is then converted to μ as explained in the text.

Te
m

p
er

at
u

re
, T

Pressure, p

μ > 0

μ < 0

Cooling

Heating

Figure 56.7 The sign of the Joule–Thomson coefficient, μ, 
depends on the conditions. Inside the boundary, the shaded 
area, it is positive and outside it is negative. The temperature 
corresponding to the boundary at a given pressure is the 
‘inversion temperature’ of the gas at that pressure. For a 
given pressure, the temperature must be below a certain 
value if cooling is required, but if it becomes too low, the 
boundary is crossed again and heating occurs. Reduction 
of pressure under adiabatic conditions moves the system 
along one of the isenthalps, or curves of constant enthalpy. 
The inversion temperature curve runs through the points of 
the isenthalps where their slope changes from negative to 
positive.

Table 56.2* Inversion temperatures, normal freezing 
and boiling points, and Joule–Thomson coefficients 
at 1 atm and 298 K

TI/K Tf/K Tb/K μ/(K bar −1)

Ar 723 83.8 87.3

CO2 1500 194.7 +1.10

He 40 4.2 –0.062

N2 621 63.3 77.4 +0.27

* More values are given in the Resource section.

E
n

th
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p
y,

 H

Temperature, T

Pressure, p

∂H
∂p( )

T
μT

=

Figure 56.5 The isothermal Joule–Thomson coefficient is the 
slope of the enthalpy with respect to changing pressure, the 
temperature being held constant.

Atkins09819.indb   557 9/11/2013   12:48:56 PM



558 12 The First Law of thermodynamics

The kinetic model of gases (Topic 78) and the equiparti-

tion theorem (Topic 53) imply that the mean kinetic energy 

of molecules in a gas is proportional to the temperature. It 

follows that reducing the average speed of the molecules is 

equivalent to cooling the gas. If the speed of the molecules 

can be reduced to the point that neighbours can capture each 

other by their intermolecular attractions, then the cooled gas 

will condense to a liquid. To slow the gas molecules, we make 

use of an effect similar to that seen when a ball is thrown into 

the air: as it rises it slows in response to the gravitational 

attraction of the Earth and its kinetic energy is converted 

into potential energy. Molecules in a real gas attract each 

other (the attraction is not gravitational, but the effect is the 

same). It follows that if we can cause the molecules to move 

apart from each other, like a ball rising from a planet, then 

they should slow.

The ‘Linde refrigerator’ makes use of Joule–Thomson ex-

pansion to liquefy gases (Fig. 56.9). The gas at high pressure 

is allowed to expand through a throttle, it cools, and is circu-

lated past the incoming gas. That gas is cooled, and its sub-

sequent expansion cools it still further. There comes a stage 

when the circulating gas becomes so cold that it condenses to 

a liquid.

As we show in the following Justification, for a perfect gas, 

μ = 0; hence, the temperature of a perfect gas is unchanged by 

Joule–Thomson expansion. This characteristic points clearly 

to the involvement of intermolecular forces in determining the 

size of the effect. However, the Joule–Thomson coefficient of a 

real gas does not necessarily approach zero as the pressure is 

reduced even though the equation of state of the gas approaches 

that of a perfect gas. The coefficient behaves like the properties 

discussed Topic 36 in the sense that it depends on derivatives 

and not on p, V, and T themselves.

Justification 56.4 The Joule–Thomson coefficient of a 
perfect gas

For a perfect gas, H = U + pV  = U + nRT. Therefore, the isother-

mal Joule–Thomson coefficient is

μT

T T

H

p

U

p
= ∂

∂
⎛
⎝⎜

⎞
⎠⎟

= ∂
∂

⎛
⎝⎜

⎞
⎠⎟

However, for a perfect gas, the internal energy depends only 

on the temperature (Topic 58), so the derivative and therefore 

μT is zero. Because μT = 0, it follows from eqn 56.10 that μ = 0 

also.

Brief illustration 56.3 The isothermal Joule–Thomson 
coefficient

Suppose 2.00 mol of Freon gas molecules was used in the 

experiment described in Brief illustration 56.2. Given that the 

molar heat capacity of the Freon is 60.1 J K−1 mol−1, the heat 

capacity of the sample is 120.2 J K−1, so the isothermal Joule–

Thomson coefficient for the sample is

μ μT pC= − = − = −− − −( . ) ( . )12 2 J K 71 K atm 85 J atm1 1 10 0×

Self-test 56.4 Repeat the calculation for the experiment 

described in Self-test 56.3 in which 1.50 mol of monatomic gas 

molecules was used.

Answer: μT = −15 J atm−1

Te
m

p
er

at
u

re
, T

/K

Pressure, p

μ > 0

μ < 0

0 200 400
0

200

400

600

Helium

Nitrogen

Upper
inversion
temperature

Heating

Lower
inversion
temperature

Hydrogen

Cooling

Figure 56.8 The inversion temperatures for three real gases, 
nitrogen, hydrogen, and helium.

Heat
exchanger

Compressor

Cold gas

Throttle

Liquid

Figure 56.9 The principle of the Linde refrigerator is shown 
in this diagram. The gas is recirculated, and so long as it is 
beneath its inversion temperature it cools on expansion 
through the throttle. The cooled gas cools the high-pressure 
gas, which cools still further as it expands. Eventually liquefied 
gas drips from the throttle.

Atkins09819.indb   558 9/11/2013   12:49:08 PM

www.ebook3000.com

http://www.ebook3000.org


56 Enthalpy  559

It is very easy to move molecules apart from each other: we 

simply allow the gas to expand, which increases the average 

separation of the molecules. To cool a gas, therefore, we allow 

it to expand without allowing any energy to enter from outside 

as heat. As the gas expands, the molecules move apart to fill 

the available volume, struggling as they do so against the attrac-

tion of their neighbours. Because some kinetic energy must be 

converted into potential energy to reach greater separations, 

the molecules travel more slowly as their separation increases. 

This sequence of molecular events explains the Joule–Thomson 

effect: the cooling of a real gas by adiabatic expansion. The 

cooling effect, which corresponds to μ > 0, is observed under 

conditions when attractive interactions are dominant, because 

the molecules have to climb apart against the attractive force 

in order for them to travel more slowly. For molecules under 

conditions when repulsions are dominant, the Joule–Thomson 

effect results in the gas becoming warmer, or μ < 0.

Checklist of concepts

☐ 1. The enthalpy change of a system is equal to the energy 

transferred as heat at constant pressure.

☐ 2. The heat capacity at constant pressure is used to relate 

the change in enthalpy to a change in temperature.

☐ 3. The Joule–Thomson effect is the cooling of a real gas by 

isenthalpic expansion.

☐ 4. Gases that show a Joule–Thomson heating effect 

(μ < 0) at one temperature show a cooling effect (μ > 0) 

when the temperature passes through an inversion 

temperature.

Checklist of equations

Property Equation Comment Equation number

Enthalpy H = U + pV Definition 56.1

Enthalpy change ΔH = qp At constant pressure,  
no additional work

56.2b

Heat capacity at constant pressure C H Tp p= ( )∂ ∂/ Definition 56.3

Relation between heat capacities Cp – CV = nR Perfect gas 56.6

Variation of enthalpy dH = –μCpdp + CpdT Closed system 56.7

Joule–Thomson coefficient μ = ( )∂ ∂T p H/ Definition 56.8

Isothermal Joule–Thomson coefficient μT TH p= ( )∂ ∂/ Definition 56.9

Relation between coefficients μT = –Cpμ 56.10
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TOPIC 57

Thermochemistry

The study of the energy transferred as heat during the 

course of chemical reactions is called thermochemistry. 

Thermochemistry is a branch of thermodynamics because a 

reaction vessel and its contents form a system, and chemical 

reactions result in the exchange of energy between the system 

and the surroundings. Thus we can use calorimetry to meas-

ure the energy supplied or discarded as heat by a reaction, and 

can identify q with a change in internal energy if the reaction 

occurs at constant volume, and with a change in enthalpy if the 

reaction occurs at constant pressure. Conversely, if we know 

the ΔU or ΔH for a reaction, we can predict the energy (trans-

ferred as heat) that the reaction can produce.

57.1 Calorimetry

Calorimetry is the study of heat transfer during physical and 

chemical processes. A calorimeter is a device for measur-

ing energy transferred as heat. The most common device for 

measuring ΔU (not ΔH without further analysis, as we describe 

below) is an adiabatic bomb calorimeter (Fig. 57.1). The pro-

cess we wish to study—which may be a chemical reaction—is 

initiated inside a constant-volume container, the ‘bomb’. The 

bomb is immersed in a stirred water bath, and the whole device 

is the calorimeter. The calorimeter is also immersed in an outer 

water bath. The water in the calorimeter and of the outer bath 

are both monitored and adjusted to the same temperature. 

This arrangement ensures that there is no net loss of heat from 

the calorimeter to the surroundings (the bath) and hence that 

the calorimeter is adiabatic. Changes in enthalpy and internal 

 ➤ Why do you need to know this material?
Thermochemistry is one of the interfaces between formal 
thermodynamics and its practical application. You need 
to be familiar with thermochemistry if you want to assess 
the heat output of fuels and foods. Thermochemistry also 
provides a foundation for the quantitative discussion of 
chemical equilibrium (Topic 73).

 ➤ What is the key idea?
Because enthalpy is a state function, the enthalpy changes 
associated with physical and chemical processes can 
be combined to obtain the information about a real or 
hypothetical composite process.

Contents

57.1 Calorimetry 560

(a) Conventional calorimetry 561

Brief illustration 57.1: The calorimeter constant 561

Example 57.1: Calculating a change in enthalpy 562

(b) Differential scanning calorimetry 562

57.2 Standard enthalpy changes 563

(a) Enthalpies of physical change 563

Brief illustration 57.2: Forward and reverse processes 564

(b) Enthalpies of chemical change 564

Example 57.2: Using Hess's law 565

57.3 Standard enthalpies of formation 566

(a) The reaction enthalpy in terms of enthalpies of 
formation 566

Brief illustration 57.3: The standard reaction enthalpy 566

(b) Enthalpies of formation and molecular modelling 567

Brief illustration 57.4: Molecular modelling software 567

57.4 The temperature dependence of reaction 
enthalpies 567

Brief illustration 57.5: Kirchhoff's law 568

Checklist of concepts 568

Checklist of equations 568

 ➤ What do you need to know already?

This Topic is an extended application of the concept of 
enthalpy (Topic 56), and you need to be familiar with the 
concept of state function (Topic 55) and heat capacity 
(Topic 55). The Topic also draws on some aspects of the 
internal energy (Topic 55).
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57 Thermochemistry  561

energy may also be measured by non-calorimetric methods 

(Topic 75).

(a) Conventional calorimetry
The change in temperature, ΔT, of the calorimeter is pro-

portional to the heat that the reaction releases or absorbs. 

Therefore, by measuring ΔT we can determine qV and hence 

find ΔU. The conversion of ΔT to qV is best achieved by cali-

brating the calorimeter using a process of known heat output, 

observing the temperature rise it produces, and determining 

the calorimeter constant, the constant C in the relation

q C T= Δ
 

Definition  Calorimeter constant  (57.1)

The calorimeter constant may also be measured electrically by 

passing a constant current, I, from a source of known potential 

difference, V, through a heater for a known period of time, t, for 

then (see The chemist’s toolkit 57.1)

q I t= V
 

 Electrical heating  (57.2)

Alternatively, C may be determined by burning a known 

mass of substance (benzoic acid is often used) that has a known 

heat output. With C known, it is simple to interpret an observed 

temperature rise as a release of heat.

A calorimeter for studying processes at constant pressure is 

called an isobaric calorimeter. A simple example is a thermally 

insulated vessel open to the atmosphere: the heat released in the 

reaction is monitored by measuring the change in temperature 

of the contents. For a combustion reaction an adiabatic flame 

calorimeter may be used to measure ΔT when a given amount 

of substance burns in a supply of oxygen (Fig. 57.2). Another 

route to ΔH is to measure the internal energy change by using 

a bomb calorimeter, and then to convert ΔU to ΔH. Because 

solids and liquids have small molar volumes, for them pVm is 

so small that the molar enthalpy and molar internal energy are 

almost identical (Hm = Um + pVm ≈ Um). Consequently, if a pro-

cess involves only solids or liquids, the values of ΔH and ΔU 

are almost identical. Physically, such processes are accompa-

nied by a very small change in volume, the system does negligi-

ble work on the surroundings when the process occurs, so the 

energy supplied as heat stays entirely within the system. If gases 

Brief illustration 57.1 The calorimeter constant

If a current of 10.0 A from a 12 V supply is passed for 300 s, 

then from eqn 57.2 the energy supplied as heat is

q =( )×( )× = × =1 A 12V (3 s) 3 6 1 A Vs 36kJ40 0 00 0. .

because 1 A V s = 1 J. If the observed rise in temperature is 5.5 K, 

then from eqn 57.1 the calorimeter constant is

C =( ) =36kJ /(5 5K) 6 5kJK 1. . −

Self-test 57.1 Calculate the calorimeter constant for a similar 

experiment in which the temperature rose by 6.3 K when a 

current of 11.5 A from a 12 V supply was passed for 450 s.

Answer: 9.9 kJ K−1

The chemist’s toolkit 57.1 Electrical quantities

Electric current, I, is measured in amperes (A), an SI base 

unit. A current of 1 A flowing for 1 s delivers a charge of 1 cou-

lomb (1 C), so 1 C = 1 A s. Because the fundamental charge is 

1.602 × 10−19 C, a current of 1 A corresponds to the passage of 

6.24 × 1018 (10.4 μmol) of electrons per second.

According to Ohm's law, the current is proportional to the 

potential difference, V (in volts, 1 V = 1 J A−1), applied across 

the conductor. The constant of proportionality depends on 

the shape and constitution of the conductor and is written in 

terms of its resistance, R (in ohm, 1 Ω = 1 V A−1 = 1 J A−2). Ohm's 

law is then

I R IR= =V V/ or  

The power dissipated when a current I flows through a resist-

ance R is

P R I= =I2 V  

Therefore, the energy generated as heat when the current 

passes for a time t is

q Pt I t= = V  

Thermometer
Oxygen input

Firing
leads

Sample

Oxygen
under pressure

Water

Bomb

Figure 57.1 A constant-volume adiabatic bomb calorimeter. 
The ‘bomb’ is the central vessel, which is strong enough to 
withstand high pressures. The calorimeter (for which the heat 
capacity must be known) is the entire assembly shown here. 
To ensure adiabaticity, the calorimeter is immersed in a water 
bath with a temperature continuously readjusted to that of the 
calorimeter at each stage of the combustion.
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562 12 The First Law of thermodynamics

are involved in the reaction, we treat them as perfect and use 

H = U + nRT, in which case

Δ Δ ΔH U n RT= + g  

where Δng is the change in the amount of gas molecules in the 

reaction. Note that this expression applies to reactants and 

products at the same temperature. The temperature might rise 

or fall in the course of the reaction, but after it is over, the prod-

ucts are allowed to return to the same temperature as the reac-

tants were initially.

(b) Differential scanning calorimetry

A differential scanning calorimeter (DSC) measures the energy 

transferred as heat to or from a sample at constant pressure dur-

ing a physical or chemical change. The term ‘differential’ refers 

to the fact that the behaviour of the sample is compared to that 

of a reference material which does not undergo a physical or 

chemical change during the analysis. The term ‘scanning’ refers 

to the fact that the temperatures of the sample and reference 

material are increased, or scanned, during the analysis.

A DSC consists of two small compartments that are heated 

electrically at a constant rate. The temperature, T, at time t dur-

ing a linear scan is T = T0 + αt, where T0 is the initial tempera-

ture and α is the temperature scan rate (in kelvin per second, 

K s−1). A computer controls the electrical power output in order 

to maintain the same temperature in the sample and reference 

compartments throughout the analysis (Fig. 57.3).

Perfect gas (57.3) Relation between 
ΔU and ΔH   

Example 57.1 Calculating a change in enthalpy

Water is heated to boiling under a pressure of 1.0 atm. When 

an electric current of 0.50 A from a 12 V supply is passed for 

300 s through a resistance in thermal contact with it, it is 

found that 0.798 g of water is vaporized. Calculate the molar 

internal energy and enthalpy changes at the boiling point 

(373.15 K).

Method Because the vaporization occurs at constant pressure, 

the enthalpy change is equal to the heat supplied by the heater. 

Therefore, the strategy is to calculate the energy supplied as 

heat (from q = IVt), express that as an enthalpy change, and 

then convert the result to a molar enthalpy change by division 

by the amount of H2O molecules vaporized. To convert from 

enthalpy change to internal energy change, we assume that the 

vapour is a perfect gas and use eqn 57.3.

Answer The enthalpy change is

ΔH qp= =( )× × = + ×0 0 00 0 0 00. ( ) ( ) ( . )5 A 12 V 3 s 5 12 3 J×  

Here we have used 1 A V s = 1 J. Because 0.798 g of water is (0.798 g)/

(18.02 g mol−1) = (0.798/18.02) mol H2O, the enthalpy of vapor-

ization per mole of H2O is

Δ = +
× ×

= +Hm

J

/ mol
kJ mol

0 50 12 300

0 798 18 02
41 1

.

( . . )
−

 

In the process H2O(l) → H2O(g) the change in the amount of 

gas molecules is Δng = +1 mol, so

Δ ΔU H RTm m
138 kJ mol= − = + −
 

Notice that the internal energy change is smaller than the 

enthalpy change because energy has been used to drive back 

the surrounding atmosphere to make room for the vapour.

Self-test 57.2 The molar enthalpy of vaporization of benzene 

at its boiling point (353.25 K) is 30.8 kJ mol−1. What is the 

molar internal energy change? For how long would the same 

12 V source need to supply a 0.50 A current in order to vapor-

ize a sample of mass 10.0 g?

Answer: +27.9 kJ mol−1, 660 s

Sample Reference

Heaters

Thermocouples

Figure 57.3 A differential scanning calorimeter. The sample 
and a reference material are heated in separate but identical 
metal heat sinks. The output is the difference in power needed 
to maintain the heat sinks at equal temperatures as the 
temperature rises.

Gas, vapour

Oxygen

Products

Figure 57.2 A constant-pressure flame calorimeter consists of 
this component immersed in a stirred water bath. Combustion 
occurs as a known amount of reactant is passed through to fuel 
the flame, and the rise of temperature is monitored.
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57 Thermochemistry  563

The temperature of the sample changes significantly rela-

tive to that of the reference material if a chemical or physical 

process involving the transfer of energy as heat occurs in the 

sample during the scan. To maintain the same temperature in 

both compartments, excess energy is transferred as heat to or 

from the sample during the process. For example, an endother-

mic process lowers the temperature of the sample relative to 

that of the reference and, as a result, the sample must be heated 

more strongly than the reference in order to maintain equal 

temperatures.

If no physical or chemical change occurs in the sample at 

temperature T, we use eqn 57.1 to write the heat transferred 

to the sample as qp = CpΔT, where ΔT = T – T0 and we have 

assumed that Cp is independent of temperature. The chemical 

or physical process requires the transfer of qp + qp,ex, where qp,ex 

is excess energy transferred as heat, to attain the same change 

in temperature of the sample. We interpret qp,ex in terms of an 

apparent change in the heat capacity at constant pressure of the 

sample, Cp, during the temperature scan. Then we write the heat 

capacity of the sample as Cp + Cp,ex, and

q q C C Tp p p p+ =( + ), ,ex ex Δ  (57.4a)

It follows that

C
q

T

q

t

P
p

p p

,

, ,

ex

ex ex ex=
Δ

= =
α α  

(57.4b)

where Pex = qp,ex/t is the excess electrical power necessary 

to equalize the temperature of the sample and reference 

compartments.

A DSC trace, a thermogram, consists of a plot of Pex or Cp,ex 

against T (Fig. 57.4). Broad peaks in the thermogram indicate 

processes requiring transfer of energy as heat. From the relation 

dH = CpdT, the enthalpy change associated with the process is

ΔH C Tp
T

T

= ,exd
1

2

∫  (57.5)

where T1 and T2 are, respectively, the temperatures at which the 

process begins and ends. This relation shows that the enthalpy 

change is the area under the curve of Cp,ex versus T. With a DSC, 

enthalpy changes may be determined in samples of masses as 

low as 0.5 mg, which is a significant advantage over bomb or 

flame calorimeters, which require several grams of material.

57.2 Standard enthalpy changes

Changes in enthalpy are normally reported for processes taking 

place under a set of standard conditions. In most of our discus-

sions we shall consider the standard enthalpy change, ΔH<, 

the change in enthalpy for a process in which the initial and 

final substances are in their standard states:

The standard state of a substance is its pure form at 1 bar.

(The standard state of substances in solution is described in 

Topic 72.) Standard enthalpy changes may be reported for 

any temperature. However, the conventional temperature for 

reporting thermodynamic data is 298.15 K (corresponding to 

25.00 °C). Unless otherwise mentioned, all thermodynamic 

data in this text are for this conventional temperature.

(a) Enthalpies of physical change
The standard enthalpy change that accompanies a change of 

physical state is called the standard enthalpy of transition 

and is denoted ΔtrsH
< (Table 57.1). The standard enthalpy of 

vaporization, ΔvapH<, is one example. Another is the stand-

ard enthalpy of fusion, ΔfusH
<, the standard enthalpy change 

accompanying the conversion of a solid to a liquid, as in

H O(s) H O(l) 273 K 6 1 kJ mol2 2 fus
1→ = +Δ H <( ) .0 −
 

As in this case, it is sometimes convenient to know the stand-

ard enthalpy change at the transition temperature as well as at 

the conventional temperature. The different types of enthalpy 

changes encountered in thermochemistry are summarized in 

Table 57.1 and values for some processes are listed in Table 57.2. 

We shall meet them again in various locations throughout the 

text.

A note on good practice The attachment of the name of 

the transition to the symbol Δ, as in ΔtrsH, is the modern 

9

6

3

0
30 45 60 75 90

Temperature, θ/°C

C
p

,e
x/

(m
J 

K
–1

)

Figure 57.4 A thermogram for the protein ubiquitin at 
pH = 2.45. The protein retains its native structure up to about 
45 °C and then undergoes an endothermic conformational 
change. (Adapted from B. Chowdhry and S. LeHarne, J. Chem. 

Educ. 74, 236 (1997).)
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564 12 The First Law of thermodynamics

convention. However, the older convention, ΔHtrs, is still 

widely used. The new convention is more logical because 

the subscript identifies the type of change, not the physical 

observable related to the change.

Because enthalpy is a state function, a change in enthalpy is 

independent of the path between the specified initial and final 

states of the system. There are two immediate consequences of 

this path independence. One is that the enthalpy of an over-

all transition, such as sublimation (the direct conversion from 

solid to vapour), may be expressed as the sum of the enthalpies 

of fusion and vaporization (at the same temperature, 1).

Δ Δ Δsub fus vapH T H T H T< < <( )= +( ) ( )
 

An immediate conclusion is that, because almost all enthalpies of 

fusion are positive (helium is the exception), apart from helium 

the enthalpy of sublimation of a substance is always greater than 

its enthalpy of vaporization (at a given temperature). The second 

consequence is that the standard enthalpy changes of a forward 

process and its reverse differ only in sign (2):

Δ ΔH T H T< <( , ) ( , )A B B A→ =− →

E
n

th
al

p
y,

 H

s

l

g

ΔvapH 
<

ΔsubH 
<

ΔfusH 
<

1

E
n

th
al

p
y,

 H

ΔH
 <

 (
A

→
B

)

ΔH
 <

 (
B

→
A

)

2

A

B

(b) Enthalpies of chemical change
The standard enthalpy of reaction (or ‘standard reaction 

enthalpy’), ΔrH
<, is the difference in standard molar enthalpies 

of the products and reactants weighted by their stoichiometric 

coefficients in the chemical equation. Thus, for the reaction

2 A B 3 C D+ → +
 

the standard reaction enthalpy is

Δ r m m m m3 C D 2 A BH H H H H< < < < <= −{ ( ) ( )} { ( ) ( )}+ +
 

and in general

Δ = −∑ ∑r H H H< < <

Products

m

Reactants

m� �

 

corresponding to the process

Reactants in their standard states → 

    products in their standard states

At same 
temperature  (57.6)

Composition 
of changes  

At same 
temperature (57.7) Reverse 

change  

Brief illustration 57.2 Forward and reverse processes

Because the standard enthalpy of vaporization of water is 

+44.01 kJ mol−1 at 298 K, its standard enthalpy of condensation 

at that temperature is –44.01 kJ mol−1. The standard enthalpy 

of fusion of water at 298 K is close to 6 kJ mol−1 (an estimate). 

Therefore, the standard enthalpy of sublimation at this tem-

perature is 6 + 44.01 kJ mol−1 = 50 kJ mol−1.

Self-test 57.3 The standard enthalpy of fusion of solid ammo-

nia is close to 5 kJ mol−1 and its standard enthalpy of vapori-

zation is 23 kJ mol−1 at the same temperature. What is the 

standard enthalpy of vapour deposition at that temperature?

Answer: –28 kJ mol−1

Definition (57.8a)
 Standard 
reaction 
enthalpy  

Table 57.1 Enthalpies of transition

Transition Process Symbol*

Transition Phase α → phase β ΔtrsH

Fusion s → l ΔfusH

Vaporization l → g ΔvapH

Sublimation s → g ΔsubH

Mixing Pure → mixture ΔmixH

Solution Solute → solution ΔsolH

Hydration X±(g) → X±(aq) ΔhydH

Atomization Species(s, l, g) → atoms(g) ΔatH

Ionization X(g) → X+(g) + e−(g) ΔionH

Electron gain X(g) + e−(g) → X−(g) ΔegH

Reaction Reactants → products ΔrH

Combustion Compounds(s, l, g) + O2(g) → CO2(g), H2O(l,g) ΔcH

Formation Elements → compound ΔfH

Activation Reactants → activated complex Δ‡H

* IUPAC recommendations. In common usage, the transition subscript is often 

attached to ΔH, as in ΔHtrs.

Table 57.2* Standard enthalpies of fusion and vaporization at 
the transition temperature, ΔtrsH

</(kJ mol−1)

Tf/K Fusion Tb/K Vaporization

Ar 83.8 1.188 87.29 6.506

C6H6 278.61 10.59 353.2 30.8

H2O 273.15 6.008 373.15 40.656
44.016 at 298 K

He 3.5 0.021 4.22 0.084

* More values are given in the Resource section.
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57 Thermochemistry  565

Except in the case of ionic reactions in solution, the enthalpy 

changes accompanying mixing of the pure reactants and sep-

aration of the products into their pure form (as implied by 

‘standard state’) are insignificant in comparison with the con-

tribution from the reaction itself.

A note on good practice The units of the standard reaction 

enthalpy ΔrH
< are kilojoules per mole. The ‘per mole’ refers 

to ‘per mole of reaction events’ of the reaction as written, such 

as per 2 mol A or per mol B that are consumed, or per 3 mol C 

or per mol D that are formed.

Equation 57.8a may be written in a more compact man-

ner by adopting the convention that the stoichiometric coef-

ficients of products are positive and those of reactants are 

negative. For instance, in the reaction 2 A + B → 3 C + D, the 

coefficients are νA = –2, νB = –1, νC = 3, and νD = 1. Then eqn 

57.8a becomes

Δ ∑r

J

J m JH H< <= � ( ) 

It will be familiar from introductory chemistry that, just 

as standard enthalpies of transition may be combined, stand-

ard enthalpies of reactions can also be combined to obtain 

the enthalpy of another reaction. This application, which is a 

direct consequence of the fact that enthalpy is a state function, 

is called Hess’s law:

The standard enthalpy of an overall reaction is the sum of 

the standard enthalpies of the individual reactions into 

which a reaction may be divided.

The individual steps need not be realizable in practice: they 

may be hypothetical reactions, the only requirement being that 

their chemical equations should balance and that all numerical 

values should refer to the same temperature.

Compact 
definition (57.8b)

Standard 
reaction 
enthalpy 

Example 57.2 Using Hess’s law

Use the following data to determine the standard reaction 

enthalpy of 2 B(s) + 3 H2(g) → B2H6(g).

(1) B H g 3 O g B O s 3 H O g

1941 kJ mol

(2) 2 B s

2 6 2 2 3 2

r
1

( ) ( ) ( ) ( )

( )

+ →
= − −

+
Δ H <

++ = −
+

3
2

1
2

O g B O s 2368 kJ mol

(3) H g O g H O g

2 2 3 r
1

2 2 2

( ) ( )

( ) ( ) ( )

→
→

−Δ
Δ

H <

rr
1242 kJ molH < = − −

 

Method Find a combination (sum or difference) of the three 

chemical equations that is equal to the chemical equation of 

interest, and combine the standard reaction enthalpies in the 

same way. Subtracting an equation is the same as adding its 

reverse.

57.3 Standard enthalpies of formation

The standard enthalpy of formation, ΔfH
<, of a substance is 

the standard reaction enthalpy for the formation of the com-

pound from its elements in their reference states. The refer-

ence state of an element is its most stable state at the specified 

temperature and 1 bar. For example, at 298 K the reference 

state of nitrogen is a gas of N2 molecules, that of mercury is 

liquid mercury, that of carbon is graphite, and that of tin is 

Answer The difference (2) – (1) is

Now add 3 × (3) to remove the H2O from the left-hand side:

Finally, combine the standard reaction enthalpies in the 

same way:

Δ Δ Δ Δr r r r

1

2 1 3 (3)

2368 1941 3( 242) kJ mol

H H H H< < < <= − +
= − −(− )+ − −

( ) ( )

== − −1153 kJ mol 1

Self-test 57.4 From the following data, calculate the standard 

reaction enthalpy for the isomerization of cyclopropane to 

propene.

( ) ( ) ( ) ( ) ( )

(

1

0

9
2

cyclo

H

-C H g g 3 CO 3 H O g

2 91 kJ mol

3 6 2 2 2

r
1

+ → +
− −

O g

Δ < =
22

3 1
2

) ( ) ( ) ( )

( ) ( ) ( ) (

C s O g CO g 394 kJ mol

H g O g H O g

2 2 r
1

2 2 2

+ →
→

Δ H < = −
+

−

))

( ) ( ) ( ) ( )

Δ
Δ

r
1

2 3 2 r

242 kJ mol

3 C s 3 H g CH CH CH g 2 kJ mo

H

H

<

<

= −
+ → = +

−

4 0� ll 1−
 

Answer: –163 kJ mol−1

 (2):
      

2 B( ) O g B O s2 2 3s + →3
2

( ) ( )

–(1):    B2O3(s) + 3 H2O(g) → B2H6(g) + 3 O2(g)

 
(2) – (1)

      
2 B(s) O (g) B O (s) 3 H O(g)

B O (s) B H (g) 3 O (g)

2 2 3 2

2 3 2 6 2

+ + +3
2

→
+ +

 Or:
      

2 B(s) 3 H O(g) B H g O (g)2 2 6 2+ → +( ) 3
2  

 (2) – (1):
     

2 B(s) 3 H O(g) B H g O (g)2 2 6 2+ +→ ( ) 3
2

 3(3):
      

3 H g O g 3 H O(g)2 2 2( ) ( )+ 3
2

→

 
(2) – (1) + 3(3):

        

2 B(s) 3 H O(g) 3 H (g) O g

B H g O (g) 3 H O(g)

2 2 2

2 6 2 2

+ + +
+

3
2

3
2

( )

( )→ +

 Or:       2 B(s) + 3 H2(g) → B2H6(g)
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566 12 The First Law of thermodynamics

Brief illustration 57.3 The standard reaction enthalpy

The standard reaction enthalpy of 2 HN3(l) + 2 NO(g)  

→ H2O2(l) + 4 N2(g) is calculated as follows:

Δ Δ Δ Δ
Δ

r f 2 2 f 2 f 3

f

(H O l) 4 N g 2 HN l)

2 NO g

1

H H H H

H

< < < <

<

= + −
−

={−

, ( , ) ( ,

( , )

887 78 4 2(264 ) 2 9 25 kJ mol

896 3 kJ mol

1

1

. . .

.

+ ( )− − ( )}
−

−

−

0 0 0

=  

Therefore, 896.3 kJ of energy is transferred to the surround-

ings as heat at constant pressure per mole of reaction events, 

that is, per 2 mol HN3 or per 2 mol NO that are consumed or 

per mol H2O2 or per 4 mol N2 that are formed.

the white (metallic) form. There is one exception to this gen-

eral prescription: the reference state of phosphorus is taken 

to be white phosphorus despite this allotrope not being the 

most stable form but simply the most reproducible form of 

the element. Standard enthalpies of formation are expressed 

as enthalpies per mole of molecules or (for ionic substances) 

formula units of the compound. The standard enthalpy of for-

mation of liquid benzene at 298 K, for example, refers to the 

reaction

6 C(s graphite) 3 H g C H l2 6 6, ( ) ( )+ →
 

and is +49.0 kJ mol−1. The standard enthalpies of formation 

of elements in their reference states are zero at all tempera-

tures because they are the enthalpies of such ‘null’ reactions 

as N2(g) → N2(g). Some enthalpies of formation are listed in 

Tables 57.3 and 57.4.

The standard enthalpy of formation of ions in solution poses 

a special problem because it is impossible to prepare a solution 

of cations alone or of anions alone. This problem is solved by 

defining one ion, conventionally the hydrogen ion, to have zero 

standard enthalpy of formation at all temperatures:

Δ f H aqH < ( , )+ = 0  Definition (57.9)

Thus, if the enthalpy of formation of HBr(aq) is found to be 

–122 kJ mol−1, then the whole of that value is ascribed to the 

formation of Br−(aq), and we write ΔfH
<(Br−, aq) = –122 kJ 

mol−1. That value may then be combined with, for instance, the 

enthalpy of formation of AgBr(aq) to determine the value of 

ΔfH
<(Ag+, aq), and so on. In essence, this definition adjusts the 

actual values of the enthalpies of formation of ions by a fixed 

amount, which is chosen so that the standard value for one of 

them, H+(aq), has the value zero. Tabulated values are based on 

a set of experimental values and adjusted to give the best fit to 

the entire set rather than just isolated pairs of measurements.

(a) The reaction enthalpy in terms of 
enthalpies of formation
Conceptually, we can regard a reaction as proceeding by 

decomposing the reactants into their elements and then form-

ing those elements into the products. The value of ΔrH
< for the 

overall reaction is the sum of these ‘unforming’ and forming 

enthalpies. Because ‘unforming’ is the reverse of forming, the 

enthalpy of an unforming step is the negative of the enthalpy 

of formation (3). Hence, in the enthalpies of formation of sub-

stances, we have enough information to calculate the enthalpy 

of any reaction by using

Δ Δ∑r

J

J f JH H< <= � ( )

 

E
n

th
al

p
y,

 H

ΔrH 
<

3 Reactants

Elements

Products

Practical 
implementation 

 Standard 
reaction 
enthalpy  

(57.10)Table 57.3* Standard enthalpies of formation and combustion 
of organic compounds at 298 K

ΔfH
</(kJ mol−1) ΔcH

</(kJ mol−1)

Benzene, C6H6(l) +49.0 –3268

Ethane, C2H6(g) –84.7 –1560

Glucose, C6H12O6(s) –1274 –2808

Methane, CH4(g) –74.8 –890

Methanol, CH3OH(l) –238.7 –726

* More values are given in the Resource section.

Table 57.4* Standard enthalpies of formation of inorganic 
compounds at 298 K

ΔfH
</(kJ mol−1)

H2O(l) –285.83

H2O(g) –241.82

NH3(g) –46.11

N2H4(l) +50.63

NO2(g) 33.18

N2O4(g) +9.16

NaCl(s) –411.15

KCl(s) –436.75

* More values are given in the Resource section.
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(b) Enthalpies of formation and 
molecular modelling
We have seen how to construct standard reaction enthalpies 

by combining standard enthalpies of formation. The question 

that now arises is whether we can construct standard enthalp-

ies of formation from a knowledge of the chemical constitution 

of the species. The short answer is that there is no thermody-

namically exact way of expressing enthalpies of formation in 

terms of contributions from individual atoms and bonds. In the 

past, approximate procedures based on mean bond enthalpies, 

ΔH(A–B), the average molar enthalpy change associated with 

the breaking of a specific A–B bond,

A B(g) A(g) B(g)− → +
 

have been used. However, this procedure is notoriously un -

reliable, in part because the ΔH(A–B) are average values for a 

series of related compounds. Nor does the approach distinguish 

between geometrical isomers, where the same atoms and bonds 

may be present but experimentally the enthalpies of formation 

might be significantly different.

Computer-aided molecular modelling has largely displaced 

this more primitive approach. Commercial software packages 

use the principles developed in Topics 27–30 to calculate the 

standard enthalpy of formation of a molecule drawn on the 

computer screen. As pointed out there, the parameters used in 

a variety of semi-empirical approaches are optimized for the 

computation of enthalpies of formation. The techniques can be 

applied to different conformations of the same molecule. In the 

case of methylcyclohexane, for instance, the calculated confor-

mational energy difference ranges from 5.9 to 7.9 kJ mol−1, with 

the equatorial conformer having the lower standard enthalpy 

of formation. These estimates compare favourably with the 

experimental value of 7.5 kJ mol−1. However, good agreement 

between calculated and experimental values is relatively rare. 

Computational methods almost always predict correctly which 

conformer is more stable but do not always predict the correct 

magnitude of the conformational energy difference.

57.4 The temperature dependence 
of reaction enthalpies

The standard enthalpies of many important reactions have 

been measured at different temperatures. However, in the 

absence of this information, standard reaction enthalpies at 

different temperatures may be calculated from heat capaci-

ties and the reaction enthalpy at some other temperature (Fig. 

57.5). In many cases heat capacity data are more accurate than 

reaction enthalpies, so, providing the information is available, 

the procedure we are about to describe is more accurate that 

a direct measurement of a reaction enthalpy at an elevated 

temperature.

It follows from eqn 56.4a (dH = CpdT) that when a substance 

is heated from T1 to T2, its enthalpy changes from H(T1) to

H T H T C Tp
T

T

( ) ( )2 1
1

2

= +∫ d
 

(57.11)

(We have assumed that no phase transition takes place in the 

temperature range of interest.) Because this equation applies to 

Self-test 57.5 From the data in Tables 57.3 and 57.4, calculate 

ΔrH
< at 298 K for the reaction C(graphite) + H2O(g) → CO(g) + 

H2(g).

Answer: +131.29 kJ mol−1

Brief illustration 57.4 Molecular modelling software

Each software package has its own procedures; the general 

approach, though, is the same in most cases: the structure 

of the molecule is specified and the nature of the calculation 

selected. When the procedure is applied to the axial and equa-

torial isomers of methylcyclohexane, a typical value for the 

standard enthalpy of formation of equatorial isomer in the gas 

phase is –183 kJ mol−1 (using the AM1 semi-empirical proce-

dure) whereas that for the axial isomer is –177 kJ mol−1, a dif-

ference of 6 kJ mol−1. The experimental difference is 7.5 kJ mol−1.

Self-test 57.6 If you have access to modelling software, repeat 

this calculation for the two isomers of cyclohexanol.

Answer: Using AM1: eq: –345 kJ mol−1; ax: –349 kJ mol−1

Reactants

Products ΔrH 
<(T2)

ΔrH 
<(T1)

Temperature, T

E
n

th
al

p
y,

 H

T1 T2

Figure 57.5 An illustration of the content of Kirchhoff’s law. 
When the temperature is increased, the enthalpy of the 
products and the reactants both increase, but may do so to 
different extents. In each case, the change in enthalpy depends 
on the heat capacities of the substances. The change in reaction 
enthalpy reflects the difference in the changes of the enthalpies.
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568 12 The First Law of thermodynamics

each substance in the reaction, the standard reaction enthalpy 

changes from ΔrH
<(T1) to

Δ Δ + Δ∫r r r dH T H T C Tp
T

T
< < <( ) ( )2 1

1

2

=   Kirchhoff’s law  (57.12)

where ΔrC p
<  is the difference of the molar constant-pressure 

heat capacities of products and reactants under standard condi-

tions weighted by the stoichiometric coefficients that appear in 

the chemical equation:

Δ =∑r

J

J m JC Cp p
< <� , ( )

 

(57.13)

Equation 57.12 is known as Kirchhoff ’s law. It is normally a 

good approximation to assume that ΔrCp is independent of the 

temperature, at least over reasonably limited ranges: although 

the individual heat capacities may vary, their difference varies 

less significantly. When ΔC p
<  is independent of temperature in 

the range T1 to T2, the integral in eqn 57.12 evaluates to (T2 – 

T1)ΔrC p
< . Therefore,

Δ Δ
Δ

r 2 r 1

2 1 r

H T H T

T T Cp

< <

<

( ) ( )=
−+( )  

Brief illustration 57.5 Kirchhoff’s law

The standard enthalpy of formation of gaseous H2O at 298 K, 

H (g) O (g) H O(g)2 2 2+ 1
2

→ ,  is –241.82 kJ mol−1. To estimate its 

value at 100 °C, given the following values of the molar heat 

capacities at constant pressure: 

H2O(g): 33.58 J K−1 mol−1; H2(g): 28.84 J K−1 mol−1; O2(g): 

29.37 J K−1 mol−1 

we assume that the heat capacities are independent of temper-

ature and calculate ΔrCp
< from the data:

Δr m 2 m 2 m 2

1

H O g H g O g

9 94 J K mol

C C C Cp p p p
< < < <= −

=
, , ,( , ) ( , ) ( , )

.

−
− − −

1
2

11

 

(Notice: joules not kilojoules.) It then follows that

Δ f
1 1 1373 K 241 82 kJ mol 75 K 9 94 J K mol

242 6 kJ m

H <( ) . ( . )

.

= − +( )
= −

− × − − −

ool 1−
 

Self-test 57.7 Estimate the standard enthalpy of formation of 

cyclohexene at 400 K from the data in Table 57.3.

Answer: –163 kJ mol−1

Δ rC p
<

 
independent of 
temperature 

 Approximate 
form of 
Kirchhoff’s law   

(57.14)

Checklist of concepts

☐ 1. The standard enthalpy change is the change in enthalpy 

for a process in which the initial and final substances 

are in their standard states.

☐ 2. The standard state is the pure substance at 1 bar.

☐ 3. Hess’s law states that the standard enthalpy of an over-

all reaction is the sum of the standard enthalpies of 

the individual reactions into which a reaction may be 

divided.

☐ 4. The standard enthalpy of formation (ΔfH
<) is the 

standard reaction enthalpy for the formation per mole 

of the compound from its elements in their reference 

states.

☐ 5. The reference state is the most stable state of an element 

at the specified temperature and 1 bar.

☐ 6. The temperature dependence of the reaction enthalpy is 

given by Kirchhoff’s law.

In some cases the temperature dependence of heat capacities 

is taken into account by using eqn 56.5 (that Cp,m = a + bT + c/T 2).

Checklist of equations

Property Equation Comment Equation number

Calorimeter constant C = q/ΔT Definition 57.1

Electrical heating q = IV t 57.2

Relation between ΔH and ΔU ΔH = ΔU + ΔngRT Gases are perfect 57.3
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57 Thermochemistry  569

Property Equation Comment Equation number

Standard reaction enthalpy
Δ =

=

∑ ∑
∑

r

Products

m

Reactants

m

J

J m J

H H H

H

< < <

<

� �

�

−

( )
 

Definition 57.8

Δ = Δ∑r

J

J f JH H< <� ( )

 

Practical implementation 57.10

Kirchhoff ’s law
Δ Δ + Δ∫r r r dH T H T C Tp

T

T
< < <( ) ( )2 1

1

2

=
 

57.12

Δ =∑r

J

J m JC Cp p
< <� , ( )

 
Definition 57.13

Δ = Δ Δr r rH T H T T T Cp
< < <( ) ( ) ( )2 1 2 1+ −  Approximate form; Δ rCp

<  constant 57.14
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TOPIC 58

Internal energy

The internal energy, U, of a system of constant composition can 

be regarded as a function of V, T, and p; but because there is an 

equation of state, stating the values of two of the variables fixes 

the value of the third (for instance, p = nRT/V for a perfect gas). 

Therefore, it is possible to write U in terms of just two independ-

ent variables: V and T, p and T, or p and V. Expressing U as a func-

tion of volume and temperature fits the purpose of our discussion.

58.1 Changes in internal energy

The internal energy depends on parameters under our control, 

such as the volume, pressure, and temperature. The simplest 

expressions are obtained by treating U as a function of V and T.

(a) The effect of changing temperature 
and volume
When V changes by dV and T changes by dT, the internal 

energy changes by

d d dU
U

V
V

U

T
T

T V

= ∂
∂

⎛
⎝⎜

⎞
⎠⎟

+ ∂
∂

⎛
⎝⎜

⎞
⎠⎟

 (58.1)

Contents

58.1 Changes in internal energy 570

(a) The effect of changing temperature 
and volume 570

Brief illustration 58.1: Changes in internal  

energy 571

(b) Changes at constant pressure 571

Example 58.1: Calculating the expansion  

coefficient of a gas 572

58.2 The molecular basis of heat capacity 572

Example 58.2: Calculating the mean square  

deviation of energies of a perfect gas 573

Example 58.3: Deriving the vibrational  

contribution to the heat capacity 574

Example 58.4: Estimating the molar heat  

capacity of a gas 576

58.3 Adiabatic processes 576

(a) The work of adiabatic expansion 576

Brief illustration 58.2: Adiabatic expansion 1 577

(b) Adiabats 577

Brief illustration 58.3: Adiabatic expansion 2 578

(c) The molecular interpretation of adiabatic  
change 578

Brief illustration 58.4: The preservation  

of populations 579

Checklist of concepts 579

Checklist of equations 579

 ➤ Why do you need to know this material?
This Topic introduces you to the way that thermodynamics 
acquires power and gives insight by showing how the 
changes in the internal energy are related to a variety 
of bulk and molecular properties. Other Topics focus on 
isothermal changes; this Topic also shows how to use 
internal energy and heat capacity to discuss another great 
class of processes, adiabatic changes.

 ➤ What is the key idea?

Changes in the internal energy are related to the heat 
capacity and internal pressure, and the heat capacity is 
related to the spread of populations over the available 
energy levels.

 ➤ What do you need to know already?
You need to be familiar with the definition of internal 
energy in terms of transfers of energy as work and heat, 
and the definition and significance of the heat capacity at 
constant volume (Topic 55). For the molecular interpretation 
sections, you need to be familiar with the relation between 
the mean energy in terms of the molecular partition 
function and the equipartition theorem (Topic 53).
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58 Internal energy  571

The quantity (∂U/∂T)V is introduced in Topic 53 as the con-

stant-volume heat capacity, CV :

C
U

TV

V

=⎛
⎝⎜

⎞
⎠⎟

∂
∂

 (58.2)

It follows from eqn 58.1 that the change in internal energy when 

the temperature is changed by dT at constant volume (dV = 0) is

d dU C TV=  Constant volume (58.3)

The other coefficient, (∂U/∂V)T, plays a major role in thermo-

dynamics because it is a measure of the variation of the inter-

nal energy of a substance as its volume is changed at constant 

temperature (Fig. 58.1). We denote it πT and, because it has the 

same dimensions as pressure, call it the internal pressure:

πT

T

U

V
=⎛

⎝⎜
⎞
⎠⎟

∂
∂

 Definition  Internal pressure  (58.4)

It follows from eqn 58.1 that the change in internal energy when 

the volume is changed by dV at constant temperature (dT = 0) is

d dU VT=π  Constant temperature (58.5)

When there are no interactions between the molecules, the 

internal energy is independent of their separation and hence 

independent of the volume of the sample. Therefore, for a 

perfect gas we can write πT = 0. This conclusion is put on a 

more formal basis in Topic 66. The statement πT = 0 (that is, 

the internal energy is independent of the volume occupied 

by the sample) can be taken to be the definition of a perfect 

gas, for in Topic 66 we see that it implies the equation of 

state pV = nRT. In terms of the notation CV and πT, eqn 58.1 

becomes

d d dU V C TT V= +π  (58.6)

(b) Changes at constant pressure
Partial derivatives have many useful properties and some that 

we shall draw on frequently are reviewed in Mathematical back-

ground 8. Skilful use of them can often turn some unfamiliar 

quantity into a quantity that can be recognized, interpreted, and 

measured.

As an example, suppose you want to find out how the inter-

nal energy varies with temperature when the pressure of the 

system is kept constant. If we divide both sides of eqn 58.6 by 

dT and impose the condition of constant pressure on the result-

ing differentials, so dU/dT on the left becomes (∂U/∂T)p, we 

obtain

∂
∂

∂
∂

U

T

V

T
C

p

T

p

V

⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

+π
 

It is usually sensible in thermodynamics to inspect the output 

of a manipulation like this to see if it contains any recogniza-

ble physical quantity. The partial derivative on the right in this 

expression is the slope of the plot of volume against tempera-

ture (at constant pressure). This property is normally tabulated 

as the (cubic) expansion coefficient, α, of a substance, which is 

defined as

α =
⎛
⎝⎜

⎞
⎠⎟

1

V

V

T
p

∂
∂  Definition  Expansion coefficient  (58.7)

Definition
Constant-volume 
heat capacity

Brief illustration 58.1 Changes in internal energy

For a gas that obeys the van der Waals equation of state, 

πT = n2a/V2 (see Topic 66) and we can take C RV , ,m = 3
2

 a value 

that applies strictly to monatomic perfect gases (see Topic 55) 

but is a good approximation in this calculation. Suppose that 

1.0 mol Ar, for which a = 0.1337 Pa m6 mol−2, occupies 10 dm3. 

The internal pressure is

πT =
×

×
= …

−

−

( . ) ( . )

( )
.

1 0 0 1337

10 10
1 33

2 6 2

3 3 2

mol Pa m mol

m
kPa

 

When its volume is increased by 100 cm3 and its temperature 

raised by 5.0 °C the change in internal energy is approximately

Δ × ×
×

U = … +−

− −

( . ) ( . ) ( . )

( . )

1 33  kPa 1 1 m 1 mol

8 314 J K mol

4 3

1 1

00 0 03
2

××( . )

.

5  K

133  Pa m 62 J 62J3

0

0= … + … ≈ +
 

We have used 1 Pa m3 = 1 J. Notice how the effect of the increase 

in temperature dominates the effect of the increase in volume.

Self-test 58.1 Repeat the calculation for Cl2(g) (refer to Table 

36.3 for a).

Answer: +104 J

In
te

rn
al

 e
n

er
g

y,
 U

Temperature, T

Volume, V

In

U

dV

πT

Figure 58.1 The internal pressure, πT, is the slope of U with 
respect to V with the temperature T held constant.

Atkins09819.indb   571 9/11/2013   12:50:28 PM



572 12 The First Law of thermodynamics

and physically is the fractional change in volume that accom-

panies a rise in temperature. A large value of α means that the 

volume of the sample responds strongly to changes in tem-

perature. Table 58.1 lists some experimental values of α and 

also of the isothermal compressibility, κT (kappa), which is 

defined as

κ T

T
V

V

p
= −

⎛
⎝⎜

⎞
⎠⎟

1 ∂
∂  Definition  Isothermal compressibility  (58.8)

The isothermal compressibility is a measure of the fractional 

change in volume when the pressure is increased by a small 

amount; the negative sign in the definition ensures that the 

compressibility is a positive quantity, because an increase of 

pressure, implying a positive dp, brings about a reduction of vol-

ume, a negative dV.

When we introduce the definition of α into the equation for 

(∂U/∂T)p, it becomes

∂
∂
U

T
V C

p

T V

⎛
⎝⎜

⎞
⎠⎟

= +απ  (58.9)

This equation is entirely general (provided the system is closed 

and its composition is constant). It expresses the dependence 

of the internal energy on the temperature at constant pressure 

in terms of CV, which can be measured in one experiment, in 

terms of α, which can be measured in another, and in terms of 

the quantity πT. For a perfect gas, πT = 0, so then

∂
∂

⎛
⎝⎜

⎞
⎠⎟

=U

T
C

p

V  Perfect gas (58.10)

That is, although the constant-volume heat capacity is defined 

as the slope of a plot of internal energy against temperature at 

constant volume, for a perfect gas CV is also the slope at con-

stant pressure.

In Topic 56 we encounter the enthalpy, H = U + pV, and the 

constant -pressure heat capacity, Cp = (∂H/∂T)p. Equation 58.10 

provides an easy way to derive the relation between Cp and CV 

for a perfect gas. Thus, we use it to express both heat capacities 

in terms of derivatives at constant pressure:

C C
H

T

U

Tp V

p p

− = ∂
∂

⎛
⎝⎜

⎞
⎠⎟

− ∂
∂

⎛
⎝⎜

⎞
⎠⎟

 Perfect gas (58.11)

Then we replace the pV in H = U + pV by nRT and substitute 

H = U + nRT into the first term, which results in

C C
U

T
nR

U

T
nRp V

p p

− =
⎛
⎝⎜

⎞
⎠⎟

+ −
⎛
⎝⎜

⎞
⎠⎟

=∂
∂

∂
∂  Perfect gas (58.12)

This relation is used and discussed in Topic 57.

58.2 The molecular basis 
of heat capacity

The molecular interpretation of heat capacity provides consid-

erable insight into this important property. We proceed in two 

steps. First we show in the following Justification that the heat 

capacity is proportional to the spread of occupied energy levels, 

in the sense that

C
N

kTV = = 〈 −〈 〉〉Δ Δε ε ε ε
2

2
2 2 2  (58.13)

Then we show how the heat capacity may be calculated from a 

knowledge of the structure of molecules.

Example 58.1 Calculating the expansion coefficient  
of a gas

Derive an expression for the expansion coefficient of a perfect 

gas.

Method The expansion coefficient is defined in eqn 58.7. To 

use this expression, substitute the expression for V in terms of 

T obtained from the equation of state for the gas. As implied 

by the subscript in eqn 58.7, the pressure, p, is treated as a 

constant.

Answer Because pV = nRT, we can write

α = ∂
∂

⎛
⎝⎜

⎞
⎠⎟

= =1 1

V

nRT p

T

nR

pV T
p

( )/

 

The higher the temperature, the less responsive is the volume 

of a perfect gas to a change in temperature.

Self-test 58.2 Derive an expression for the isothermal com-

pressibility of a perfect gas.

Answer: κT = 1/p

Table 58.1* Expansion coefficients (α) and 
isothermal compressibilities (κT) at 298 K

α/(10−4 K−1) κT/(10−6 bar−1)

Benzene 12.4 90.9

Diamond 0.030 0.185

Lead 0.861 2.18

Water 2.1 49.0

* More values are given in the Resource section.
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58 Internal energy  573

Equation 58.13 shows that the heat capacity rises as the 

spread in occupied energy levels increases. When all the mol-

ecules occupy the ground state, there is no difference between 

the mean of the square of the energies and the square of the 

mean energy, so the heat capacity is then zero. As the system is 

heated, this equality no longer holds, and provided the numer-

ator in eqn 58.13 increases more rapidly than the denomina-

tor, the heat capacity rises. In certain cases, the numerator 

increases as T2, in which case CV is independent of temperature 

(provided T > 0).

Justification 58.1 The heat capacity and the width of a 
population distribution

Because differentiation with respect to β = 1/kT is often much 

simpler than differentiation with respect to T, we form

C
U

T

U

T kT

U
V

V V V

= ⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

= − ⎛
⎝⎜

⎞
⎠⎟

∂
∂

∂
∂

∂
∂β

β
β

d

d

1
2

 

Then, because the only change occurring to the energy levels 

is their populations, from eqn 53.1 (〈 〉 = ∑ε ε( )1/N Ni i i  in the 

form 〈 〉 = ∑E Ni i iε ) write

∂
∂
U N

V i

i
i

β ε β
⎛
⎝⎜

⎞
⎠⎟

=∑ d

d
 

It then follows from the Boltzmann distribution (eqn 51.6, 

N Ni
i= −e /βε q ,  where q is the partition function) that

d

d

d

d

e e d

d

eN
N N Ni

i

i i i

β β ε β
βε βε βε

= = − − ⎛
⎝⎜

⎞
⎠⎟

− − −

q q
q

q 2

 

Because N Ni
i= −e /βε q  and −(1/q)(dq/dβ) = 〈ε〉, it follows that

d

d

N
N Ni

i i iβ ε ε= − + 〈 〉
 

Therefore,

∂
∂
U

N N

N N

V i

i i

i

i iβ ε ε ε

ε ε

⎛
⎝⎜

⎞
⎠⎟

= − +〈 〉

= − 〈 + 〈 〉〉

∑ ∑2

2 2
 

That is, provided the volume is constant and the system 

is closed (so that there is no change in its composition), the 

change in its internal energy with temperature is found by 

substituting this expression into the first equation of this 

Justification, and results in eqn 58.13.

Example 58.2 Calculating the mean square deviation of 
energies of a perfect gas

Calculate the value of 〈ε2〉 for a one-dimensional monatomic 

perfect gas and then show that its heat capacity is independent 

of temperature.

Method For a one-dimensional monatomic perfect gas, 

we know from the equipartition theorem (Topic 53) that 

〈 〉 =ε 1
2

kT ,  and can evaluate the mean square energy by using 

the same approximations used to derive the translational par-

tition function in Topic 52. As before, we interpret the state 

index i as the quantum number n.

Answer To evaluate the mean square energy, we write

〈 = = ≈
⎛
⎝⎜

⎞
⎠⎟

〉 ∑ ∑ − −ε ε ε βε β2 2 2
2 2

2

2

81 1 1

8

2 2

N
N

n h

mL
n

n n

n

n
n h mLn

q qT T
e e / 22

0

dn
∞

∫
 

As in Justification 52.1, we have replaced n2 − 1 by n2 in 

the expression for the energy relative to the ground state, 

because most occupied levels have n  � 1. We now make the 

substitution

n
mL

h
x=

⎛
⎝⎜

⎞
⎠⎟

8 2

2

1 2

β

/

 

to obtain

〈 =
⎛
⎝⎜

⎞
⎠⎟

〉 −
∞

∫ε
β β

2
2

2

2

1 2

4

0

1 1 8 2

q T
e d

mL

h
x xx

/

3
8

1/2π
� �� ��

 

Now use Integral G.5 in the Resource section and the transla-

tional partition function (eqn 52.7)

q T =⎛
⎝⎜

⎞
⎠⎟

2
2

1 2πm

h
L

β

/

 

to obtain

〈 =
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= =〉ε
β

β
β β

2
2

2
1 2

2

2

1 2

1 2
2

1

2

8 3

8

3

4L

h

m

mL

hπ π
/ /

/ 33

4
2 2k T

 

The mean energy is 1
2

kT ,  so

C

N k T k T

kT
Nk nRV =

−⎛
⎝⎜

⎞
⎠⎟

= =

3

4

1

4 1

2

1

2

2 2 2 2

2
 

where once again we have used N = nNA and NAk = R.

Self-test 58.3 Use eqn 58.13 to show that the heat capacity of a 

two-level system is zero at infinite temperature.

Answer: CV ∝ 1/T2 → 0 as T → ∞
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574 12 The First Law of thermodynamics

Although eqn 58.13 gives some insight into the origin of heat 

capacities, it is not the easiest route to their calculation. To cal-

culate the heat capacity at constant volume, all we need do is to 

evaluate the internal energy as a function of temperature and 

then form the derivative. In most cases it is easier to evaluate 

the derivative with respect to β, and therefore to evaluate (as 

shown in the preceding Justification)

C
kT

U N

kT

N

kTV

V V V

= − ∂
∂

⎛
⎝⎜

⎞
⎠⎟

= − ∂〈 〉
∂

⎛
⎝⎜

⎞
⎠⎟

= ∂
∂

⎛
⎝⎜

⎞
⎠⎟

1
2 2 2

2

2β
ε
β β

lnq
 (58.14)

We have used dβ/dT = –1/kT2, dU = Nd〈ε〉, and 〈ε〉 = –(∂ ln q/ 

∂β)V. In Problem 58.9 you are invited to confirm that this 

expression can be converted into eqn 58.13. Once we know the 

partition function, all we need to do is to evaluate its second 

derivative with respect to β.

Example 58.3 Deriving the vibrational contribution to 
the heat capacity

Derive an expression for the heat capacity of a harmonic oscil-

lator. At the same time derive an expression for the spread of 

energies (Δε2) and plot both functions against temperature.

Method The partition function is given in eqn 52.15 and the 

expression derived for the mean energy is given in eqn 53.8. 

It is simplest to differentiate the latter expression with respect 

to β, and express the resulting expression as a function of T. 

Compare that expression with eqn 58.13 to identify Δε2.

Answer The mean energy of a harmonic oscillator (relative to 

its ground state, eqn 53.8) is

〈 =
−

〉ε β
V

e

hc
hc

�
�
�

� 1  

Therefore,

d

d

e

e

V〈 = −
−

〉ε
β

β

β
( )

( )

hc hc

hc

� �

�
� �

�

2

21
 

and consequently, by using eqn 58.14 in the form CV = –Nk(1/

kT)2(∂〈ε〉/∂β)V,

C Nk
hc

kT
Nk

hc

kTV

hc

hc

hc k

= ⎛
⎝⎜

⎞
⎠⎟ −

= ⎛
⎝⎜

⎞
⎠⎟

� ��

�

�� ��

�

�2

2

2

1

e

e

eβ

β( )

/ TT

hc kT( )/e �� −1 2

 

This function is plotted in Fig. 58.2. Comparison with eqn 

58.13 lets us infer that

Δε 2
2

21
=

−
( )

( )

/

/

hc hc kT

hc kT

� �

�
� �

�

e

e  

This function is plotted in Fig. 58.3. Note that at high tempera-

tures ( )T hc� �� � k  the spread is

Δε 2
2

2

2

2

1

1 1
= + +

+ + −
=( ) /

( / )

( )

( )

( )hc hc kT

hc kT

hc

hc kT

� � �
� �

�
�

� �

�

�

�/
== ( )kT 2

 

and the spread increases quadratically as the temperature 

rises. That dependence is cancelled by the T2 in the denomina-

tor of eqn 58.13, and the heat capacity approaches a constant 

value (of Nk) at high temperatures, as expected from the equi-

partition theorem.

Self-test 58.4 Repeat the analysis for a two-level system.

Answer: C Nkf kT fV = → = →0 2 2 1
4

2, ( ) ,Δε ε  where 

f kT kT kT= +( ) ( ) ,/ /ε ε ε/ e / e2 21  see Fig. 58.4
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Figure 58.2 The heat capacity of a collection of harmonic 
oscillators as a function of temperature.
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Figure 58.3 The mean square fluctuations in the energy of a 
collection of harmonic oscillators as a function of temperature.
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Figure 58.4 The heat capacity of a collection of two-level 
systems as a function of temperature.
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When the temperature is high enough for the rotations of the 

molecules to be highly excited (when T �  θ R, where the rota-

tional temperature θ R is defined in Topic 52 as θ R = hcB k� / ),  

we can use the equipartition value kT for the mean rotational 

energy (for a linear rotor) and NAk = R to obtain CV,m = R. For 

nonlinear molecules, the mean rotational energy rises to 3
2

kT ,  

so the molar rotational heat capacity rises to 3
2

R  when T  � θ R. 

Only the lowest rotational state is occupied when the tempera-

ture is very low, and then rotation does not contribute to the 

heat capacity. We can calculate the rotational heat capacity at 

intermediate temperatures by differentiating the equation for 

the mean rotational energy (eqn 53.6a). The resulting (untidy) 

expression, which is plotted in Fig. 58.5, shows that the contri-

bution rises from zero (when T = 0) to the equipartition value 

(when T � θ R). Because the translational contribution is always 

present, we can expect the molar heat capacity of a gas of dia-

tomic molecules (C CV
T

V
R

, ,m m+ ) to rise from 3
2

R  to 5
2

R  as the 

temperature is increased above θ R. Problem 58.18 explores 

how the overall shape of the curve can be traced to the sum of 

thermal excitations between all the available rotational energy 

levels (Fig. 58.6).

Molecular vibrations contribute to the heat capacity, but 

only when the temperature is high enough for them to be 

significantly excited. The equipartition mean energy is kT for 

each mode, so the maximum contribution to the molar heat 

capacity is R. However, it is very unusual for the vibrations to 

be so highly excited that equipartition is valid, and it is more 

appropriate to use the full expression for the vibrational heat 

capacity, which was derived in Example 58.3. The curve in Fig. 

58.7 shows how the vibrational heat capacity depends on tem-

perature. Note that even when the temperature is only slightly 

above the characteristic vibrational temperature θ V /=hc k��  

of the normal mode, the heat capacity is close to its equiparti-

tion value.

The total heat capacity of a molecular substance is the sum 

of each contribution (Fig. 58.8). When equipartition is valid 

(almost always for translation and when the temperature is 

well above the characteristic temperature of the mode M = R 

or V; that is, T � θ M) we can estimate the heat capacity by 

counting the numbers of modes that are active. In gases, all 

three translational modes are always active and contribute 3
2

R  

to the molar heat capacity. If we denote the number of active 

rotational modes by �R
*  (so for most molecules at normal tem-

peratures �R
* = 2  for linear molecules, and �R

* =3  for nonlin-

ear molecules), then the rotational contribution is 1
2
�R

* R.  If 

the temperature is high enough for �V
*  vibrational modes to be 

active, the vibrational contribution to the molar heat capacity 
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Figure 58.7 The temperature dependence of the 
vibrational contribution to the heat capacity of a molecule 
in the harmonic approximation calculated by using the full 
expression derived in Example 58.3 but expressed in terms 
of the vibrational temperature. Note that the heat capacity 
is within 10 per cent of its classical value for temperatures 
greater than θ V.
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Figure 58.5 The temperature dependence of the rotational 
contribution to the heat capacity of a linear molecule.
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Figure 58.6 The rotational heat capacity of a linear molecule 
can be regarded as the sum of contributions from a collection 
of two-level systems, in which the rise in temperature 
stimulates transitions between J levels, some of which are 
shown here. The calculation on which this illustration is based 
is the topic of Problem 58.18.
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576 12 The First Law of thermodynamics

is �V
* R.  In most cases �V

* ≈ 0.  It follows that the total molar 

heat capacity is

C RV , ( )* *
m R V3 2= + +1

2
� �  (58.15)

58.3 Adiabatic processes

Work is done when a perfect gas expands adiabatically (with-

out a transfer of energy as heat) but because no heat enters the 

system, the internal energy falls and therefore the temperature 

of the working gas also falls. In molecular terms, the kinetic 

energy of the molecules falls as work is done, so their average 

speed decreases, and hence the temperature falls.

(a) The work of adiabatic expansion
The change in internal energy of a perfect gas when the temper-

ature is changed from Ti to Tf and the volume is changed from 

Vi to Vf can be expressed as the sum of two steps (Fig. 58.9). In 

the first step, only the volume changes and the temperature is 

held constant at its initial value. However, because the internal 

energy of a perfect gas is independent of the volume the mole-

cules occupy, the overall change in internal energy arises solely 

from the second step, the change in temperature at constant 

volume. Provided the heat capacity is independent of tempera-

ture, this change is

Δ ΔU C T T C TV V= − =( )f i
 

Because the expansion is adiabatic, we know that q = 0; because 

ΔU = q + w, it then follows that ΔU = wad. The subscript ‘ad’ 

denotes an adiabatic process. Therefore,

w C TVad = Δ  Perfect gas  Adiabatic change  (58.16)

That is, the work done during an adiabatic expansion of a per-

fect gas is proportional to the temperature difference between 

the initial and final states. That is exactly what we expect on 

molecular grounds, because the mean kinetic energy is propor-

tional to T, so a change in internal energy arising from tem-

perature alone is also expected to be proportional to ΔT. In the 

following Justification we show that the initial and final tem-

peratures of a perfect gas that undergoes reversible adiabatic 

expansion (reversible expansion in a thermally insulated con-

tainer) can be calculated from

T
V

V
T

c

f
i

f
i=⎛

⎝⎜
⎞
⎠⎟

1/

 Perfect gas, reversible change (58.17a)

where c = CV,m/R, or equivalently

VT V Tc c
i i f f=  Perfect gas, reversible change (58.17b)

This result is often summarized in the form VT c = constant.

High 
temperature, 
T � θM

Molar heat 
capacity

Example 58.4 Estimating the molar heat capacity of a gas

Estimate the molar constant-volume heat capacity of water 

vapour at 100 °C. The vibrational wavenumbers of H2O are 

3656.7 cm−1, 1594.8 cm−1, and 3755.8 cm−1 and the rotational 

constants are 27.9, 33.5, and 9.3 cm−1.

Method We need to assess whether the rotational and vibra-

tional modes are active by computing their characteristic tem-

peratures from the data (to do so, use hc/k = 1.439 cm K).

Answer The characteristic temperatures (in round num-

bers) of the vibrations are 5300 K, 2300 K, and 5400 K; the 

vibrations are therefore not significantly excited at 373 K. 

The three rotational modes have characteristic tempera-

tures 40 K, 21 K, and 13 K, so they are fully excited, like the 

three translational modes. The translational contribution is 
3
2 R = − −12 5 JK mol1 1. .  Fully excited rotations (�R

* 3= ) con-

tribute a further 3
2

R = − −12 5 JK mol1 1. .  Therefore, a value 

close to 25 J K−1 mol−1 is predicted. The experimental value is 

26.1 J K−1 mol−1. The discrepancy is probably due to deviations 

from perfect gas behaviour.

Self-test 58.5 Estimate the molar constant-volume heat capac-

ity of gaseous I2 at 25 °C ( � �� �= =− −0 037 214 51 1. and . )cm cm .

Answer: 29 J K−1 mol−1
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Figure 58.8 The general features of the temperature 
dependence of the heat capacity of diatomic molecules are as 
shown here. Each mode becomes active when its characteristic 
temperature is exceeded. The heat capacity becomes very 
large when the molecule dissociates because the energy is 
used to cause dissociation and not to raise the temperature. 
Then it falls back to the translation-only value of the atoms.
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(b) Adiabats
We show in the following Justification that the pressure of a per-

fect gas that undergoes reversible adiabatic expansion from a 

volume Vi to a volume Vf is related to its initial pressure by

p V pV C Cp Vf f i i m m/γ γ γ= = , ,
 (58.18)

This result is commonly summarized in the form pVγ = constant. 

For a monatomic perfect gas, C RV , ,m = 3
2

 and from eqn 58.12 

C Rp, ;m = 5
2  so γ = 5

3
.  For a gas of nonlinear polyatomic mol-

ecules (which can rotate as well as translate), CV,m = 3R, so γ = 4
3

.

Brief illustration 58.2 Adiabatic expansion 1

Consider the adiabatic, reversible expansion of 0.020 mol Ar, 

initially at 25 °C, from 0.50 dm3 to 1.00 dm3. The molar heat 

capacity of argon at constant volume is 12.48 J K−1 mol−1, so 

c = 1.501. Therefore, from eqn 58.17a,

Tf

dm

dm
K K=

⎛
⎝⎜

⎞
⎠⎟

× =
0 50

1 00
298 188

3

3

1 1 501
.

.
( )

/ .

 

It follows that ΔT = –110 K, and therefore, from eqn 58.16, that

w = − = −− −{( . ) ( . )} ( )0 0 0 02  mol 12 48 J K mol 11  K 27 J1 1× ×  

Note that the temperature change is independent of the 

amount of gas but the work is not.

Self-test 58.6 Calculate the final temperature, the work done, 

and the change of internal energy when ammonia is used in a 

reversible adiabatic expansion from 0.50 dm3 to 2.00 dm3, the 

other initial conditions being the same. Use Table 57.4.

Answer: 194 K, –56 J, –56 J

Perfect gas, 
reversible 
change

Adiabatic 
expansion

Justification 58.2 Adiabatic processes

Consider a stage in a reversible adiabatic expansion when 

the pressure inside and out is p. The work done when the 

gas expands by dV is dw = –pdV; therefore, from eqn 58.6 

(dU = πT dV + CV dT with πT = 0 for a perfect gas and dU = dw for 

an adiabatic change)

C T p VVd d= −
 

We are dealing with a perfect gas, so we can replace p by 

nRT/V and obtain

C T

T

nR V

V
Vd d= −

 

To integrate this expression we note that T is equal to Ti when 

V is equal to Vi, and is equal to Tf when V is equal to Vf at the 

end of the expansion. Therefore,

C
T

T
nR

V

VV
T

T

V

Vd d

i

f

i

f

∫ ∫= −
 

(We are taking CV to be independent of temperature.) Then, 

because ∫ = +d / ln constantx x x ,  we obtain

C
T

T
nR

V

VV ln lnf

i

f

i

= −
 

Because ln(x/y) = –ln(y/x), this expression rearranges to

C

nR

T

T

V

V
V ln lnf

i

i

f

=
 

With c = CV/nR we obtain (because ln xa = a ln x)

ln ln
T

T

V

V

c

f

i

i

f

⎛
⎝⎜

⎞
⎠⎟

=
 

which implies that (Tf/Ti)
c = (Vi/Vf) and, upon rearrangement, 

eqn 58.17.

The initial and final states of a perfect gas satisfy the perfect 

gas law regardless of how the change of state takes place, so we 

can use pV = nRT to write

T

T

p V

pV

p V

pV

V

V

c

f

i

f f

i i

f f

i i

i

f

and therefore= ⎛
⎝⎜

⎞
⎠⎟

=,

 

By taking the 1/c root of each side of this expression and com-

bining terms we obtain

p V

pV

V

V

V

V

p V
c c c

f f

i i

i

f

f

i

f fand therefore= ⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

− +1 1 1 1/ / /

ppV c
i i

1 1
1+ =

/
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Figure 58.9 To achieve a change of state from one 
temperature and volume to another temperature and volume, 
we may consider the overall change as composed of two steps. 
In the first step, the system expands at constant temperature; 
there is no change in internal energy if the system consists of a 
perfect gas. In the second step, the temperature of the system 
is reduced at constant volume. The overall change in internal 
energy is the sum of the changes for the two steps.
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578 12 The First Law of thermodynamics

The curves of pressure versus volume for adiabatic change 

are known as adiabats, and one for a reversible path is illus-

trated in Fig. 58.10. Because γ  > 1, an adiabat falls more 

steeply (p ∝ 1/Vγ ) than the corresponding isotherm (p ∝ 1/V). 

The physical reason for the difference is that in an isothermal 

expansion, energy flows into the system as heat and maintains 

the temperature; as a result, the pressure does not fall as much 

as in an adiabatic expansion.

(c) The molecular interpretation 
of adiabatic change
We can get some insight into the origin of the temperature 

dependence expressed by eqn 58.17 and understand adiaba-

tic changes at a molecular level by considering the reversible, 

adiabatic expansion of particles in a one-dimensional box. In 

quantum mechanics, an adiabatic process is one that occurs 

so slowly that the system follows a single evolving state of a 

system and, in contrast to an impulsive change, does not jump 

into a linear combination of other states. We can explore the 

consequence of this model in statistical mechanics by sup-

posing that the molecules that occupy a given level of the 

box all remain in that level as the box expands reversibly and 

adiabatically (Fig. 58.11). That is, we suppose that all the Ni 

remain constant even though the energy levels are chang-

ing. For the populations to remain the same even though the 

energy levels are getting closer together, the temperature must 

fall, so our task is to see how that changing temperature must 

vary with the length of the box. In other words, we must look 

for a solution of

d

d

d

d

eN

L L

Nn
n

= ⎛
⎝⎜

⎞
⎠⎟

=
−βε

q
0  (58.19)

However, because, for a perfect gas, Cp,m − CV,m = R,

1
1 1 1+ = + = + =

+
=

c

c

c

C nR

C nR

C R

C

C

C
V

V

V

V

p

V

/

/
m

m

m

m

,

,

,

,  

and we recognize the heat capacity ratio γ  = Cp,m/CV,m. It fol-

lows that

p V

pV
f f

i i

γ

γ =1
 

which rearranges to pV p Vii f f
γ γ= ,  which is eqn 58.18.

Brief illustration 58.3 Adiabatic expansion 2

When a sample of argon (for which γ = 5
3 ) at 100 kPa expands 

reversibly and adiabatically to twice its initial volume the final 

pressure will be

p
V

V
pf

i

f
i kPa kPa=⎛

⎝⎜
⎞
⎠⎟

=⎛
⎝⎜

⎞
⎠⎟

× =
γ

1

2
100 31 5

5 3/

( ) .

 

For an isothermal doubling of volume, the final pressure 

would be 50 kPa.

Self-test 58.7 Calculate the final pressure of a sample of car-

bon dioxide that expands reversibly and adiabatically from 

67.4 kPa and 0.50 dm3 to a final volume of 2.00 dm3. Take 

γ   = 1.4.

Answer: 9.7 kPa
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Figure 58.10 An adiabat depicts the variation of pressure with 
volume when a gas expands adiabatically (and, in this case, 
reversibly). Note from the insert that the pressure declines 
more steeply for an adiabat than it does for an isotherm 
because the temperature also decreases during an adiabatic 
expansion. Ti Tf

E
n

er
g

y

Figure 58.11 In a reversible adiabatic expansion, the 
populations of the quantum states remain constant, which 
corresponds to a lowering of the temperature if the Boltzmann 
distribution is to continue to match the same distribution but 
now over the changed energy levels.
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with β and εn, and therefore q too, functions of L. Because 

βεn = n2h2/8mkL2T, the value of βεn and therefore the population 

Nn is independent of the length if at all stages of the expansion

LT1 2 constant/ =  (58.20)

However, for a one-dimensional system, the molar heat capacity is 
1
2

R,  so this solution is the one-dimensional version of eqn 58.17.

Another way to appreciate the conclusion in eqn 58.20 is to 

consider the relative populations of the states with quantum 

numbers n and 1 (the ground state), with energies En = n2h2/8mL2 

and E1 = h2/8mL2, respectively. This ratio is

N

N
n E E kT n h mkL Tn

1

1 81
2 2 2= =− − − −e e( )/ ( ) /  (58.21)

and is a constant for a given value of n provided that T adjusts 

as L changes such that L2T (and therefore LT1/2) is a constant.

The result we have obtained shows what to imagine is hap-

pening at a molecular level during a reversible adiabatic expan-

sion of a perfect gas. As shown in Fig. 58.11, the populations of 

each level remain constant as the levels fall in energy. However, 

for that to be the case the temperature must  fall. The precise 

dependence of the temperature that guarantees this constancy 

is exactly the condition expressed in eqn 58.17.

Brief illustration 58.4 The preservation of populations

Although gases are normally considered to occupy labora-

tory-sized vessels, we can illustrate the content of eqn 58.21 

and the relation in eqn 58.20 by considering a tiny vessel of 

length 100 nm and the relative population of the state with 

Checklist of concepts

☐ 1. Changes in the internal energy of a system may be 

expressed in terms of the constant-volume heat capac-

ity and the internal pressure (see below).

☐ 2. The heat capacity is proportional to the spread of occu-

pied energy levels.

☐ 3. The equipartition theorem may be used to estimate the 

heat capacity of a gas.

☐ 4. In an adiabatic expansion, the temperature falls as a 

perfect gas does work, and the pressure/volume relation 

is known as an adiabat.

☐ 5. In quantum mechanics, an adiabatic process is one that 

occurs so slowly that the system remains in its initial 

but evolving state.

☐ 6. In the adiabatic, reversible expansion of a perfect gas, 

the populations of each level remain constant as the lev-

els fall in energy.

Checklist of equations

n such that (n2 − 1)h−2/8mk = 106 nm2 K. At 300 K the relative 

populations are

N

N
n

1

10 100 3006 2 2

0 716= = …− ×e nm K nm K( )/( ) ( ) .
 

When the length of the vessel is increased to 110 nm, the same 

relative population is achieved provided the temperature is 

adjusted to 248 K:

N

N
n

1

10 110 2486 2 2

0 716= = …− ×e nm K nm K( )/( ) ( ) .
 

Self-test 58.8 What temperature is needed to preserve this 

ratio when the length is increased adiabatically to 120 nm?

Answer: 208 K

Property Equation Comment Equation number

Constant-volume heat capacity C U TV V= ∂ ∂( )/ Definition 58.2

Internal pressure πT TU V= ∂ ∂( )/ Definition; for a perfect gas, πT = 0 58.4

Change of internal energy dU = πTdV + CVdT Closed, constant-composition system 58.6

Expansion coefficient α = ∂ ∂( )( )1/ /V V T p Definition; for a perfect gas, α = 1/T 58.7
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580 12 The First Law of thermodynamics

Property Equation Comment Equation number

Isothermal compressibility κT TV V p= − ∂ ∂( )( )1/ /  Definition; for a perfect gas κT = 1/p 58.8

( )∂ ∂ =U T Cp V/ Perfect gas 58.10

Relation between heat capacities Cp – CV = nR Perfect gas 58.12

Molecular origin of heat capacity C N kTV =

= −

Δ

Δ

ε

ε ε ε

2 2

2 2 2

/

〈 〉 〈 〉

Independent molecules 58.13

C N kTV V= ∂ ∂( )( ln )/ /2 2 2q β Independent molecules 58.14

C RV ,
* *( )m R V3 2= + +1

2
� � Perfect gas, T  � θ M 58.15

Work of adiabatic expansion wad = CVΔT Perfect gas 58.16

Volume and temperature VT V T c C Rc c
Vi i f f m /= =, , Reversible change; perfect gas 58.17

Pressure and volume p V pV C Cp Vf f i i m m /γ γ γ= =, , ,
Reversible change; perfect gas 58.18
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Exercises and problems  581

Focus 12 on The First Law of thermodynamics
Assume all gases are perfect unless stated otherwise. Unless otherwise stated, thermochemical data are for 298.15 K.

Topic 55 The First Law

Discussion questions
55.1 Describe and distinguish the various uses of the words ‘system’ and ‘state’ 

in physical chemistry.

55.2 Describe the distinction between heat and work in thermodynamic and 

molecular terms, the latter in terms of populations and energy levels.

55.3 Give examples of state functions and discuss why they play a critical role 

in thermodynamics.

Exercises
55.1(a) Use the equipartition theorem to estimate the molar internal energy of 

(a) I2, (b) CH4, (c) C6H6 in the gas phase at 25 °C.

55.1(b) Use the equipartition theorem to estimate the molar internal energy of 

(a) O3, (b) C2H6, (c) SO2 in the gas phase at 25 °C.

55.2(a) Which of (a) pressure, (b) temperature, (c) work, (d) enthalpy are state 

functions?

55.2(b) Which of (a) volume, (b) heat, (c) internal energy, (d) density are state 

functions?

55.3(a) Calculate the work needed for a 60 kg person to climb through 6.0 m 

(a) on the surface of the Earth and (b) on the Moon (g = 1.60 m s−2).

55.3(b) Calculate the work needed for a bird of mass 150 g to fly to a height of 

75 m from the surface of the Earth.

55.4(a) A chemical reaction takes place in a container of cross-sectional area 

50 cm2. As a result of the reaction, a piston is pushed out through 15 cm 

against an external pressure of 1.0 atm. Calculate the work done by the  

system.

55.4(b) A chemical reaction takes place in a container of cross-sectional area 

75.0 cm2. As a result of the reaction, a piston is pushed out through 25.0 cm 

against an external pressure of 150 kPa. Calculate the work done by the system.

55.5(a) A sample consisting of 1.00 mol Ar is expanded isothermally at 20 °C 

from 10.0 dm3 to 30.0 dm3 (a) reversibly, (b) against a constant external 

pressure equal to the final pressure of the gas, and (c) freely (against zero 

external pressure). For the three processes calculate q, w, and ΔU.

55.5(b) A sample consisting of 2.00 mol He is expanded isothermally at 

0 °C from 5.0 dm3 to 20.0 dm3 (a) reversibly, (b) against a constant external 

pressure equal to the final pressure of the gas, and (c) freely (against zero 

external pressure). For the three processes calculate q, w, and ΔU.

55.6(a) A sample consisting of 1.00 mol of perfect gas atoms, for which 

C RV , ,m = 3
2

 initially at p1 = 1.00 atm and T1 = 300 K, is heated reversibly to 

400 K at constant volume. Calculate the final pressure, ΔU, q, and w.

55.6(b) A sample consisting of 2.00 mol of perfect gas molecules, for which 

C RV , ,m = 5
2

 initially at p1 = 111 kPa and T1 = 277 K, is heated reversibly to 

356 K at constant volume. Calculate the final pressure, ΔU, q, and w.

Problems
55.1 Calculate the work done during the isothermal, reversible expansion 

of a van der Waals gas (Topic 36). Plot on the same graph the indicator 

diagrams (graphs of pressure against volume) for the isothermal reversible 

expansion of (a) a perfect gas, (b) a van der Waals gas in which a = 0 and 

b = 5.11 × 10−2 dm3 mol−1, and (c) a = 4.2 dm6 atm mol−2 and b = 0. The values 

selected exaggerate the imperfections but give rise to significant effects on the 

indicator diagrams. Take Vi = 1.0 dm3, n = 1.0 mol, and T = 298 K.

55.2 It is possible to see with the aid of a powerful microscope that a long 

piece of double-stranded DNA is flexible, with the distance between the ends 

of the chain adopting a wide range of values. This flexibility is important 

because it allows DNA to adopt very compact conformations as it is packaged 

in a chromosome. It is convenient to visualize a long piece of DNA as a ‘freely 

jointed chain’, a chain of N small, rigid units of length l that are free to make 

any angle with respect to each other. The length l, the persistence length, 

is approximately 45 nm, corresponding to approximately 130 base pairs. 

You will now explore the work associated with extending a DNA molecule. 

(a) Suppose that a DNA molecule resists being extended from an equilibrium, 

more compact conformation with a restoring force F = −kFx, where x is the 

difference in the end-to-end distance of the chain from an equilibrium value 

and kF is the force constant. Use this model to write an expression for the 

work that must be done to extend a DNA molecule by a distance x. Draw a 

graph of your conclusion. (b) A better model of a DNA molecule is the ‘one-

dimensional freely jointed chain’, in which a rigid unit of length l can only 

make an angle of 0° or 180° with an adjacent unit. In this case, the restoring 

force of a chain extended by x = nl is given by

F
kT

l

n

N
= +

−
⎛
⎝⎜

⎞
⎠⎟

=
2

1

1
ln

�

�
�

 

where k is Boltzmann’s constant. (i) What is the magnitude of the force that 

must be applied to extend a DNA molecule with N = 200 by 90 nm? (ii) Plot 

the restoring force against ν, noting that ν can be either positive or negative. 

How is the variation of the restoring force with end-to-end distance different 

from that predicted by Hooke’s law? (iii) Keep in mind that the difference in 
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end-to-end distance from an equilibrium value is x = nl and, consequently, 

dx = ldn = Nldν, and write an expression for the work of extending a DNA 

molecule. (iv) Calculate the work of extending a DNA molecule from ν = 0 

to ν = 1.0. Hint: You must integrate the expression for w. The task can be 

accomplished easily with mathematical software. (c) Show that for small 

extensions of the chain, when ν ≪ 1, the restoring force is given by

F
kT

l

nkT

Nl
≈ =�

 

(d) Is the variation of the restoring force with extension of the chain given 

in part (c) different from that predicted by Hooke’s law? Explain your 

answer.

Topic 56 Enthalpy

Discussion questions
56.1 Explain why a perfect gas does not have an inversion temperature.

56.2 Explain why in most cases the constant-pressure heat capacity is larger 

than the constant-volume heat capacity.

56.3 Describe how the Joule–Thomson effect is used in the liquefaction of 

gases.

Exercises
56.1(a) When 229 J of energy is supplied as heat to 3.0 mol Ar(g), the 

temperature of the sample increases by 2.55 K. Calculate the molar heat 

capacities at constant volume and constant pressure of the gas.

56.1(b) When 178 J of energy is supplied as heat to 1.9 mol of gas molecules, 

the temperature of the sample increases by 1.78 K. Calculate the molar heat 

capacities at constant volume and constant pressure of the gas.

56.2(a) The constant-pressure heat capacity of a sample of a perfect  

gas was found to vary with temperature according to the expression  

Cp/(J K−1) = 20.17 + 0.3665(T/K). Calculate q, w, and ΔU when the  

temperature is raised from 25 °C to 100 °C (a) at constant pressure,  

(b) at constant volume.

56.2(b) The constant-pressure heat capacity of a sample of a perfect  

gas was found to vary with temperature according to the expression  

Cp/(J K−1) = 20.17 + 0.4001(T/K). Calculate q, w, and ΔU when the 

temperature is raised from 0 °C to 200 °C (a) at constant pressure, (b) at 

constant volume.

56.3(a) When 3.0 mol O2 is heated at a constant pressure of 3.25 atm, its 

temperature increases from 260 K to 285 K. Given that the molar heat capacity 

of O2 at constant pressure is 29.4 J K−1 mol−1, calculate q, ΔH, and ΔU.

56.3(b) When 2.0 mol CO2 is heated at a constant pressure of 1.25 atm, its 

temperature increases from 250 K to 277 K. Given that the molar heat capacity 

of CO2 at constant pressure is 37.11 J K−1 mol−1, calculate q, ΔH, and ΔU.

56.4(a) Given that μ = 0.25 K atm−1 for nitrogen, calculate the value of its 

isothermal Joule–Thomson coefficient. Calculate the energy that must be 

supplied as heat to maintain constant temperature when 10.0 mol N2 flows 

through a throttle in an isothermal Joule–Thomson experiment and the 

pressure drop is 85 atm.

56.4(b) Given that μ = 1.11 K atm−1 for carbon dioxide, calculate the value of 

its isothermal Joule–Thomson coefficient. Calculate the energy that must be 

supplied as heat to maintain constant temperature when 10.0 mol CO2 flows 

through a throttle in an isothermal Joule–Thomson experiment and the 

pressure drop is 75 atm.

Problems
56.1 The following data show how the standard molar constant-pressure heat 

capacity of sulfur dioxide varies with temperature. By how much does the 

standard molar enthalpy of SO2(g) increase when the temperature is raised 

from 298.15 K to 1500 K?

56.2 The following data show how the standard molar constant-pressure heat 

capacity of ammonia depends on the temperature. Use mathematical software 

to fit an expression of the form of eqn 56.5 to the data and determine the 

values of a, b, and c. Explore whether it would be better to express the data as 

Cp,m = α + βT + γT2, and determine the values of these coefficients.

56.3 A sample consisting of 2.0 mol CO2 occupies a fixed volume of 15.0 dm3 

at 300 K. When it is supplied with 2.35 kJ of energy as heat its temperature 

increases to 341 K. Assume that CO2 is described by the van der Waals 

equation of state (Topic 36) and calculate w, ΔU, and ΔH.

56.4 (a) Express (i) (∂CV/∂V)T as a second derivative of U and find its relation 

to (∂U/∂V)T, and (ii) (∂Cp/∂p)T as a second derivative of H and find its 

relation to (∂H/∂p)T. (b) From these relations show that (∂CV/∂V)T = 0 and 

(∂Cp/∂p)T = 0 for a perfect gas.

56.5‡ A gas obeying the equation of state p(V − nb) = nRT is subjected to a 

Joule–Thomson expansion. Will the temperature increase, decrease, or remain 

the same?

56.6 Use the fact that ( ) /∂ ∂ =U V a VT/ m
2  for a van der Waals gas (Topic 36) 

to show that μCp,m ≈ (2a/RT) − b by using the definition of μ and appropriate 

relations between partial derivatives. Hint: Use the approximation pVm ≈ RT 

when it is justifiable to do so.

56.7‡ Concerns over the harmful effects of chlorofluorocarbons on 

stratospheric ozone have motivated a search for new refrigerants. One such 

alternative is 2,2-dichloro-1,1,1-trifluoroethane (refrigerant 123). Younglove 

and McLinden published a compendium of thermophysical properties 

of this substance (B.A. Younglove and M. McLinden, J. Phys. Chem. Ref. 

Data 23, 7 (1994)), from which properties such as the Joule–Thomson ‡ These problems were supplied by Charles Trapp and Carmen Giunta.

T/K 300 500 700 900 1100 1300 1500

Cp, /( )m JK mol< − −1 1 39.909 46.490 50.829 53.407 54.993 56.033 56.759

T/K 300 400 500 600 700 800 900 1000

Cp, /( )m JK mol< − −1 1 35.678 38.674 41.994 45.229 48.269 51.112 53.769 56.244
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coefficient μ can be computed. (a) Compute μ at 1.00 bar and 50 °C given that 

(∂H/∂p)T = −3.29 × 103 J MPa−1 mol−1 and Cp,m = 110.0 J K−1 mol−1. (b) Compute 

the temperature change which would accompany adiabatic expansion of 

2.0 mol of this refrigerant from 1.5 bar to 0.5 bar at 50 °C.

56.8‡ Another alternative refrigerant (see preceding problem) is 

1,1,1,2-tetrafluoroethane (refrigerant HFC-134a). A compendium of 

thermophysical properties of this substance has been published (R. Tillner-Roth 

and H.D. Baehr, J. Phys. Chem. Ref. Data 23, 657 (1994)) from which properties 

such as the Joule–Thomson coefficient μ can be computed. (a) Compute μ at 

0.100 MPa and 300 K from the following data (all referring to 300 K):

(The specific constant-pressure heat capacity is 0.7649 kJ K−1 kg−1.) 

(b) Compute μ at 1.00 MPa and 350 K from the following data (all 

referring to 350 K):

(The specific constant-pressure heat capacity is 1.0392 kJ K−1 kg−1.)

Topic 57 Thermochemistry

Discussion questions
57.1 Describe two calorimetric methods for the determination of enthalpy 

changes that accompany chemical processes.

57.2 Distinguish between ‘standard state’ and ‘reference state’, and indicate 

their applications.

Exercises
57.1(a) For tetrachloromethane, ΔvapH< = 30.0 kJ mol−1. Calculate q, w, ΔH, 

and ΔU when 0.75 mol CCl4(l) is vaporized at 250 K and 750 Torr.

57.1(b) For ethanol, ΔvapH< = 43.5 kJ mol−1. Calculate q, w, ΔH, and ΔU when 

1.75 mol C2H5OH(l) is vaporized at 260 K and 765 Torr.

57.2(a) The standard enthalpy of formation of ethylbenzene is −12.5 kJ mol−1. 

Calculate its standard enthalpy of combustion.

57.2(b) The standard enthalpy of formation of phenol is −165.0 kJ mol−1. 

Calculate its standard enthalpy of combustion.

57.3(a) The standard enthalpy of combustion of cyclopropane is −2091 kJ mol−1 

at 25 °C. From this information and enthalpy of formation data for CO2(g) 

and H2O(g), calculate the enthalpy of formation of cyclopropane. The 

enthalpy of formation of propene is +20.42 kJ mol−1. Calculate the enthalpy of 

isomerization of cyclopropane to propene.

57.3(b) From the following data, determine ΔfH
< for diborane, B2H6(g), at 

298 K:

(1) B2H6(g) + 3 O2(g) → B2O3(s) + 3 H2O(g)  ΔrH
< = −1941 kJ mol−1

(2) 2 B(s) O (g) B O s 2368 kJ mol2 2 3 r
1+ → = −3

2
( ) Δ H <

(3) H (g) O (g) H O(g) 241 8 kJ mol2 2 2 r
1+ → = − −1

2
Δ H < .

57.4(a) Given that the standard enthalpy of formation of HCl(aq) is 

−167 kJ mol−1, what is the value of ΔfH
<(Cl−, aq)?

57.4(b) Given that the standard enthalpy of formation of HI(aq) is 

−55 kJ mol−1, what is the value of ΔfH
<(I−, aq)?

57.5(a) When 120 mg of naphthalene, C10H8(s), was burned in a bomb 

calorimeter the temperature rose by 3.05 K. Calculate the calorimeter 

constant. By how much will the temperature rise when 150 mg of phenol, 

C6H5OH(s), is burned in the calorimeter under the same conditions? 

57.5(b) When 2.25 mg of anthracene, C14H10(s), was burned in a bomb 

calorimeter the temperature rose by 1.75 K. Calculate the calorimeter 

constant. By how much will the temperature rise when 125 mg of phenol, 

C6H5OH(s), is burned in the calorimeter under the same conditions? 

(ΔcH
<(C14H10, s) = −7061 kJ mol−1.)

57.6(a) Given the reactions (1) and (2) below, determine (i) ΔrH
< and ΔrU

< 

for reaction (3), (ii) ΔfH
< for both HCl(g) and H2O(g), all at 298 K.

(1) H2(g) + Cl2(g) → 2 HCl(g)  ΔrH
< = −184.62 kJ mol−1

(2) 2 H2(g) + O2(g) → 2 H2O(g)  ΔrH
< = −483.64 kJ mol−1

(3) 4 HCl(g) + O2(g) → 2 Cl2(g) + 2 H2O(g)

57.6(b) Given the reactions (1) and (2) below, determine (i) ΔrH
< and ΔrU

< 

for reaction (3), (ii) ΔfH
< for both HI(g) and H2O(g), all at 298 K.

  (1) H2(g) + I2(s) → 2 HI(g)      ΔrH
< = +52.96 kJ mol−1

  (2) 2 H2(g) + O2(g) → 2 H2O(g)    ΔrH
< = −483.64 kJ mol−1

  (3) 4 HI(g) + O2(g) → 2 I2(s) + 2 H2O(g)

57.7(a) For the reaction C2H5OH(l) + 3 O2(g) → 2 CO2(g) + 3 H2O(g), 

ΔrU
< = −1373 kJ mol−1 at 298 K. Calculate ΔrH

<.

57.7(b) For the reaction 2 C6H5COOH(s) + 15 O2(g) → 14 CO2(g) + 6 H2O(g), 

ΔrU
< = −772.7 kJ mol−1 at 298 K. Calculate ΔrH

<.

57.8(a) From the data in Tables 57.3 and 57.4, calculate ΔrH
< and ΔrU

< at 

(a) 298 K, (b) 478 K for the reaction C(graphite) + H2O(g) → CO(g) + H2(g). 

Assume all heat capacities to be constant over the temperature range of interest.

57.8(b) Calculate ΔrH
< and ΔrU

< at 298 K and ΔrH
< at 427 K for the 

hydrogenation of ethyne (acetylene) to ethene (ethylene) from the enthalpy of 

combustion and heat capacity data in Tables 57.3 and 57.4. Assume the heat 

capacities to be constant over the temperature range involved.

57.9(a) Estimate ΔrH
<(500 K) for the combustion of methane, 

CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(g), by using the data on the temperature 

dependence of heat capacities in Table 56.1 (and Tables 57.3 and 57.4 for any 

species not in Table 56.1).

p/MPa 0.080 0.100 0.12

Specific enthalpy/(kJ kg−1) 426.48 426.12 425.76

p/MPa 0.80 1.00 1.2

Specific enthalpy/(kJ kg−1) 461.93 459.12 456.15
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57.9(b) Estimate ΔrH
<(478 K) for the combustion of naphthalene, 

C10H8(l) + 12 O2(g) → 10 CO2(g) + 4 H2O(g), by using the data on the 

temperature dependence of heat capacities in Table 56.1 (and Tables 57.3 and 

57.4 for any species not in Table 56.1).

57.10(a) Set up a thermodynamic cycle for determining the enthalpy of 

hydration of Mg2+ ions using the following data: enthalpy of sublimation 

of Mg(s), +167.2 kJ mol−1; first and second ionization enthalpies of Mg(g), 

7.646 eV and 15.035 eV, respectively dissociation enthalpy of Cl2(g), 

+241.6 kJ mol−1; electron gain enthalpy of Cl(g), −3.78 eV; enthalpy of solution 

of MgCl2(s), −150.5 kJ mol−1; enthalpy of hydration of Cl−(g), −383.7 kJ mol−1.

57.10(b) Set up a thermodynamic cycle for determining the enthalpy of 

hydration of Ca2+ ions using the following data: enthalpy of sublimation 

of Ca(s), +178.2 kJ mol−1; first and second ionization enthalpies of Ca(g), 

589.7 kJ mol−1 and 1145 kJ mol−1,  respectively enthalpy of vaporization of 

bromine, +30.91 kJ mol−1; dissociation enthalpy of Br2(g), +192.9 kJ mol−1; 

electron gain enthalpy of Br(g), −331.0 kJ mol−1; enthalpy of solution of 

CaBr2(s), −103.1 kJ mol−1; enthalpy of hydration of Br−(g), +97.5 kJ mol−1.

Problems
57.1 A sample of the sugar d-ribose (C5H10O5) of mass 0.727 g was placed 

in a calorimeter and then ignited in the presence of excess oxygen. The 

temperature rose by 0.910 K. In a separate experiment in the same calorimeter, 

the combustion of 0.825 g of benzoic acid, for which the internal energy of 

combustion is −3251 kJ mol−1, gave a temperature rise of 1.940 K. Calculate 

the enthalpy of formation of d-ribose.

57.2 The standard enthalpy of formation of bis(benzene)chromium 

was measured in a calorimeter. It was found for the reaction 

Cr(C6H6)2(s) → Cr(s) + 2 C6H6(g) that ΔrU
<(583 K) = +8.0 kJ mol−1. Find 

the corresponding reaction enthalpy and estimate the standard enthalpy 

of formation of the compound at 583 K. The constant-pressure molar heat 

capacity of benzene is 136.1 J K−1 mol−1 in its liquid state and 81.67 J K−1 mol−1 

as a gas.

57.3‡ From the enthalpy of combustion data in Table 57.3 for the alkanes 

methane through octane, test the extent to which the relation ΔcH
< =  

k{(M/(g mol−1)}n holds and find the numerical values for k and n. Predict 

ΔcH
< for decane and compare to the known value.

57.4‡ Kolesov, et al. reported the standard enthalpy of combustion and of 

formation of crystalline C60 based on calorimetric measurements (V.P. 

Kolesov, et al., J. Chem. Thermodynamics 28, 1121 (1996)). In one of their 

runs, they found the standard specific internal energy of combustion to be 

−36.0334 kJ g−1 at 298.15 K Compute ΔcH
< and ΔfH

< of C60.

57.5‡ A thermodynamic study of DyCl3 (E.H.P. Cordfunke, et al., J. Chem. 

Thermodynamics 28, 1387 (1996)) determined its standard enthalpy of 

formation from the following information

(1) DyCl3(s) → DyCl3(aq, in 4.0 m HCl)  ΔrH
< = −180.06 kJ mol−1

(2) Dy(s) 3HCl(aq 4 ) DyCl (aq in 4 HCl(aq)) H g

6

M M3 2

r

+ → +

= −

, . , . ( )0 0 3
2

Δ H < 999 43 kJ mol 1. −

(3) 1
2

1
2

0H (g) Cl (g) HCl(aq 4 ) 158 31kJ mol2 2 r
1

M+ → = − −, . .Δ H <

Determine ΔfH
<(DyCl3, s) from these data.

57.6‡ Silylene (SiH2) is a key intermediate in the thermal decomposition 

of silicon hydrides such as silane (SiH4) and disilane (Si2H6). H.K. Moffat, 

et al. (J. Phys. Chem. 95, 145 (1991)) report ΔfH
<(SiH2) = +274 kJ mol−1. If 

ΔfH
<(SiH4) = +34.3 kJ mol−1 and ΔfH

<(Si2H6) = +80.3 kJ mol−1, compute the 

standard enthalpies of the following reactions:

(a) SiH4(g) → SiH2(g) + H2(g)

(b) Si2H6(g) → SiH2(g) + SiH4(g)

57.7 As remarked in Problem 56.2, it is sometimes appropriate to express the 

temperature dependence of the heat capacity by the empirical expression 

Cp,m = α + βT + γ T 2. Use this expression to estimate the standard enthalpy of 

combustion of methane at 350 K. Use the following data:

57.8 Figure F12.1 shows the experimental DSC scan of hen white lysozyme 

(G. Privalov, et al., Anal. Biochem. 79, 232 (1995)) converted to joules (from 

calories). Determine the enthalpy of unfolding of this protein by integration 

of the curve and the change in heat capacity accompanying the transition.

57.9 An average human produces about 10 MJ of heat each day through 

metabolic activity. If a human body were an isolated system of mass 65 kg with 

the heat capacity of water, what temperature rise would the body experience? 

Human bodies are actually open systems, and the main mechanism of heat 

loss is through the evaporation of water. What mass of water should be 

evaporated each day to maintain constant temperature?

57.10 In biological cells that have a plentiful supply of oxygen, glucose is 

oxidized completely to CO2 and H2O by a process called aerobic oxidation. 

Muscle cells may be deprived of O2 during vigorous exercise and, in that 

case, one molecule of glucose is converted to two molecules of lactic acid, 

CH3CH(OH)COOH, by a process called anaerobic glycolysis. (a) When 

0.3212 g of glucose was burned in a bomb calorimeter of calorimeter constant 

641 J K−1 the temperature rose by 7.793 K. Calculate (i) the standard molar 

enthalpy of combustion, (ii) the standard internal energy of combustion, and 

(iii) the standard enthalpy of formation of glucose. (b) What is the biological 

advantage (in kilojoules per mole of energy released as heat) of complete 

aerobic oxidation compared with anaerobic glycolysis to lactic acid?

α/(J K−1 mol−1) β/(mJ 
K−2 mol−1)

γ/(μJ K−3 mol−1)

CH4(g) 14.16 75.5 −17.99

CO2(g) 26.86 6.97 −0.82

O2(g) 25.72 12.98 −3.862

H2O(g) 30.36 9.61 1.184
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Figure F12.1 An experimental DSC scan of hen white lysozyme.
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Topic 58 Internal energy

Discussion questions
58.1 Suggest (with explanation) how the internal energy of a van der Waals gas 

should vary with volume at constant temperature.

58.2 Use concepts of statistical thermodynamics to describe the molecular 

features that determine the magnitude of the constant-volume molar heat 

capacity of a molecular substance.

58.3 Use concepts of statistical thermodynamics to describe the molecular 

features that lead to the equations of state of perfect and real gases.

Exercises
58.1(a) The ground level of Cl is 2P3/2 and a 2P1/2 level lies 881 cm−1 above it. 

Calculate the electronic contribution to the molar constant-volume heat 

capacity of Cl atoms at (a) 500 K and (b) 900 K.

58.1(b) The first electronically excited state of O2 is 1Δg and lies 7918.1 cm−1 

above the ground state, which is 3 Σg
− .  Calculate the electronic contribution to 

the molar constant-volume heat capacity of O2 at 400 K.

58.2(a) Use the equipartition principle to estimate the values of γ  = Cp/CV 

for gaseous ammonia and methane. Do this calculation with and without 

the vibrational contribution to the energy. Which is closer to the expected 

experimental value at 25 °C?

58.2(b) Use the equipartition principle to estimate the value of γ = Cp/CV 

for carbon dioxide. Do this calculation with and without the vibrational 

contribution to the energy. Which is closer to the expected experimental value 

at 25 °C?

58.3(a) What is the root mean square deviation of the molecular energy of 

argon atoms at 298 K?

58.3(b) What is the root mean square deviation of the molecular energy of 

carbon dioxide molecules at 298 K?

58.4(a) Calculate the final temperature of a sample of argon of mass 12.0 g that 

is expanded reversibly and adiabatically from 1.0 dm3 at 273.15 K to 3.0 dm3.

58.4(b) Calculate the final temperature of a sample of carbon dioxide of mass 

16.0 g that is expanded reversibly and adiabatically from 500 cm3 at 298.15 K 

to 2.00 dm3.

58.5(a) A sample consisting of 1.0 mol of perfect gas molecules with 

CV = 20.8 J K−1 is initially at 4.25 atm and 300 K. It undergoes reversible, 

adiabatic expansion until its pressure reaches 2.50 atm. Calculate the final 

volume and temperature and the work done.

58.5(b) A sample consisting of 2.5 mol of perfect gas molecules with 

Cp,m = 20.8 J K−1 mol−1 is initially at 240 kPa and 325 K. It undergoes reversible, 

adiabatic expansion until its pressure reaches 150 kPa. Calculate the final 

volume and temperature and the work done.

58.6(a) A sample of carbon dioxide of mass 2.45 g at 27.0 °C is allowed to 

expand reversibly and adiabatically from 500 cm3 to 3.00 dm3. What is the 

work done by the gas?

58.6(b) A sample of nitrogen of mass 3.12 g at 23.0 °C is allowed to expand 

reversibly and adiabatically from 400 cm3 to 2.00 dm3. What is the work done 

by the gas?

58.7(a) Calculate the final pressure of a sample of carbon dioxide that expands 

reversibly and adiabatically from 67.4 kPa and 0.50 dm3 to a final volume of 

2.00 dm3. Take γ  = 1.4.

58.7(b) Calculate the final pressure of a sample of water vapour that expands 

reversibly and adiabatically from 97.3 Torr and 400 cm3 to a final volume of 

5.0 dm3. Take γ  = 1.3.

58.8(a) Estimate the internal pressure, πT, of water vapour at 1.00 bar and 

400 K, treating it as a van der Waals gas (Topic 36). Hint: Simplify the 

approach by estimating the molar volume by treating the gas as perfect.

58.8(b) Estimate the internal pressure, πT, of sulfur dioxide at 1.00 bar 

and 298 K, treating it as a van der Waals gas (Topic 36). Hint: Simplify the 

approach by estimating the molar volume by treating the gas as perfect.

58.9(a) For a van der Waals gas (Topic 36), πT a V= / m
2 .  Calculate ΔUm for the 

isothermal expansion of nitrogen gas from an initial volume of 1.00 dm3 to 

20.00 dm3 at 298 K. What are the values of q and w?

58.9(b) Repeat Exercise 58.9a. for argon, from an initial volume of 1.00 dm3 to 

30.00 dm3 at 298 K.

58.10(a) The volume of a certain liquid varies with temperature as

V V T T= ′ + × + ×− −{ . . . ( ) }0 0 075 3 9 1 ( /K) 1 48 1 /K4 6 2

 

where V′ is its volume at 300 K. Calculate its expansion coefficient, α, at 320 K.

58.10(b) The volume of a certain liquid varies with temperature as

V V T T= ′ + × + ×− −{ . . . ( ) }0 0 077 3 7 1 ( /K) 1 52 1 /K4 6 2

 

where V′ is its volume at 298 K. Calculate its expansion coefficient, α, at 310 K.

58.11(a) The isothermal compressibility of water at 293 K is 4.96 × 10−5 atm−1. 

Calculate the pressure that must be applied in order to increase its density by 

0.10 per cent.

58.11(b) The isothermal compressibility of lead at 293 K is 2.21 × 10−6 atm−1. 

Calculate the pressure that must be applied in order to increase its density by 

0.10 per cent.

Problems
58.1‡ In 2006, the Intergovernmental Panel on Climate Change (IPCC) 

considered a global average temperature rise of 1.0−3.5 °C likely by the year 2100, 

with 2.0 °C its best estimate. Predict the average rise in sea level due to thermal 

expansion of seawater based on temperature rises of 1.0 °C, 2.0 °C, and 3.5 °C, 

given that the volume of the Earth’s oceans is 1.37 × 109 km3 and their surface area 

is 361 × 106 km2, and state the approximations which go into the estimates.
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586 12 The First Law of thermodynamics

58.2 The constant-volume heat capacity of a gas can be measured by observing 

the decrease in temperature when it expands adiabatically and reversibly. The 

value of γ  = Cp/CV can be inferred if the decrease in pressure is also measured 

and the constant-pressure heat capacity deduced by combining the two values. 

A fluorocarbon gas was allowed to expand reversibly and adiabatically to 

twice its volume; as a result, the temperature fell from 298.15 K to 248.44 K 

and its pressure fell from 202.94 kPa to 81.840 kPa. Evaluate Cp.

58.3 The NO molecule has a doubly degenerate electronic ground state and 

a doubly degenerate excited state at 121.1 cm−1. Calculate the electronic 

contribution to the molar heat capacity of the molecule at (a) 100 K, (b) 298 K, 

and (c) 600 K.

58.4 The energy levels of a CH3 group attached to a larger fragment are given 

by the expression for a particle on a ring (Topic 13), provided the group is 

rotating freely. What is the high-temperature contribution to the heat capacity 

of such a freely rotating group at 25 °C? The moment of inertia of CH3 about 

its threefold rotation axis (the axis that passes through the C atom and the 

centre of the equilateral triangle formed by the H atoms) is 5.341 × 10−47 kg m2.

58.5 Calculate the temperature dependence of the heat capacity of p-H2 

(in which only rotational states with even values of J are populated) at low 

temperatures on the basis that its rotational levels J = 0 and J = 2 constitute 

a system that resembles a two-level system except for the degeneracy of 

the upper level. Use �B = 60 864 1. cm−  and sketch the heat capacity curve. 

The experimental heat capacity of p-H2 does in fact show a peak at low 

temperatures.

58.6‡ In a spectroscopic study of buckminsterfullerene, C60, F. Negri, et al. 

(J. Phys. Chem. 100, 10849 (1996)) reviewed the wavenumbers of all the 

vibrational modes of the molecule. The wavenumber for the single Au mode 

is 976 cm−1; wavenumbers for the four threefold degenerate T1u modes are 

525, 578, 1180, and 1430 cm−1; wavenumbers for the five threefold degenerate 

T2u modes are 354, 715, 1037, 1190, and 1540 cm−1; wavenumbers for the six 

fourfold degenerate Gu modes are 345, 757, 776, 963, 1315, and 1410 cm−1; 

and wavenumbers for the seven fivefold degenerate Hu modes are 403, 525, 

667, 738, 1215, 1342, and 1566 cm−1. How many modes have a vibrational 

temperature θV below 1000 K? Estimate the molar constant-volume heat 

capacity of C60 at 1000 K, counting as active all modes with θV below this 

temperature.

58.7‡ Treat carbon monoxide as a perfect gas and apply equilibrium statistical 

thermodynamics to the study of its properties, as specified below, in the 

temperature range 100−1000 K at 1 bar. �� = 2169 8 1. ,cm−  �B =1 931 1. ,cm−  and 

hcD
~

0 = 11.09 eV; neglect anharmonicity and centrifugal distortion. (a) Examine 

the probability distribution of molecules over available rotational and vibrational 

states. (b) Explore numerically the differences, if any, between the rotational 

molecular partition function as calculated with the discrete energy distribution 

and that calculated with the classical, continuous energy distribution. 

(c) Calculate the individual contributions to Um(T) − Um(100 K) and CV,m(T) 

made by the translational, rotational, and vibrational degrees of freedom.

58.8 In the realm of nanotechnology, even translational quantization may  

have significant consequences. Suppose an electron is trapped in a tiny  

one-dimensional well, where only about 10 states are thermally accessible. 

Derive an expression for (a) the heat capacity, (b) the root mean square spread 

in energies (Δε) at such low temperatures (without making the ‘continuum’ 

approximation), and plot the heat capacity as a function of temperature. Can 

you identify a ‘characteristic temperature’ for the system?

58.9 Show that eqn 58.14 can be converted into eqn 58.13.

58.10 The energies of the first six levels of a particle in a spherical cavity are 

specified in Problem 53.1. Suppose that these levels are the only ones that are 

thermally accessible, and derive an expression for (a) the heat capacity, (b) the 

root mean square spread in energies (Δε), and plot the former as a function of 

temperature.

58.11 Derive an expression for the rotational contribution to the heat capacity 

of a linear rotor without making the high-temperature approximation, and 

plot CV,m against T/θ R, where the ‘rotational temperature’ is θ R = hcB k� / .  

Ignore the role of nuclear statistics.

58.12 Are there thermal consequences of nuclear statistics that even the 

Victorians might have noticed? Explore the consequences, by direct 

summation of energy levels, of nuclear statistics for the molar heat capacities 

of ortho- and para-hydrogen.

58.13 In one of the earliest applications of quantum theory, Einstein sought to 

account for the decrease in heat capacity with decreasing temperature that had 

been observed. He supposed that each of the atoms in a monatomic solid could 

vibrate in three dimensions with a frequency ν. Deduce the Einstein formula 

and plot CV,m against T/θ E, where the ‘Einstein temperature’ is θ E = hν/k.

58.14 Debye improved on Einstein’s model by considering the collective modes 

of the atoms in the solid. Why would that lead to a higher heat capacity at 

all temperatures? He took the Einstein formula (Problem 58.13), multiplied 

it by a factor that represents the number of vibrational modes in the range 

ν to ν + dν, and then integrated the resulting expression from ν = 0 up to a 

maximum value νmax. The result is

C R
T x

xV

x

x

T

,

/

m
e

e

d

D

= ⎛
⎝⎜

⎞
⎠⎟ −( )∫9

1

3 4

2
0θ

θ

D

 

where the ‘Debye temperature’ is θ D = hνmax/k. Use mathematical software to 

plot CV,m against T/θ D. Show that when T ≪ θ D, the heat capacity follows the 

‘Debye T3 law’ (see Self-test 56.2). You will need Integral E.2 in the Resource 

section.

58.15‡ For H2 at very low temperatures, only translational motion contributes 

to the heat capacity. At temperatures above θ R = hcB k� / ,  the rotational 

contribution to the heat capacity becomes significant. At still higher 

temperatures, above θ V = hν/k, the vibrations contribute. But at this latter 

temperature, dissociation of the molecule into the atoms must be considered. 

(a) Explain the origin of the expressions for θ R and θ V, and calculate their 

values for hydrogen. (b) Obtain an expression for the molar constant-pressure 

heat capacity of hydrogen at all temperatures, taking into account the 

dissociation of hydrogen. (c) Make a plot of the molar constant-pressure heat 

capacity as a function of temperature in the high temperature region where 

dissociation of the molecule is significant.

58.16 Although expressions like ε = −d ln q/dβ are useful for formal 

manipulations in statistical thermodynamics, and for expressing thermodynamic 

functions in neat formulas, they are sometimes more trouble than they are worth 

in practical applications. When presented with a table of energy levels, it is often 

much more convenient to evaluate the following sums directly:

q q q= = =∑ ∑ ∑− − −

j j

j

j

j
j j je e eβε βε βεβε βε� �� ( )2

 

where �q  and ��q  are related to the first and second derivatives of q with 

respect to β. (a) Derive expressions for the internal energy and heat capacity 

in terms of these three functions. (b) Apply the technique to the calculation 

of the electronic contribution to the constant-volume molar heat capacity of 

magnesium vapour at 5000 K using the following data:

58.17 Calculate the values of q, q⋅  and q⋅⋅  (Problem 58.16) for the rotational 

states of (a) HCl ( . )�B =10 593 1cm−  and (b) CCl4 ( . ).�B = 5 797 1m−  (Be alert to 

the units!)

Term 1S 3P0
3P1

3P2
1P1

3S

Degeneracy 1 1 3 5 3 3

��/cm−1 0 218 50 218 70 219 11 350 51 411 97
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Exercises and problems  587

58.18 Show how the heat capacity of a linear rotor is related to the following 

sum:

ζ β ε ε β ε ε( ) ( ) e { ( ) ( )}= − ′ ′
′

− + ′∑1
2

2

q
J J

J JJ J g J g J

,

{ ( )} ( ) ( )

 

by

C k= 1

2
2β ζ β( )

 

where the ε(J) are the rotational energy levels and g(J) their degeneracies. 

Then go on to show graphically that the total contribution to the heat capacity 

of a linear rotor can be regarded as a sum of contributions due to transitions 

0→1, 0→2, 1→2, 1→3, etc. In this way, construct Fig. 58.6 for the rotational 

heat capacities of a linear molecule.

58.19 The ‘bump’ in the low-temperature variation of the heat capacity with 

temperature seen in Fig. 58.6 is more pronounced in the case of para-

hydrogen, where only even values of J are allowed. Adapt the expression 

derived in Problem 58.18 to the cases of ortho- and para-hydrogen, and 

construct graphs of their heat capacities.

58.20 Set up a calculation like that in Problem 58.18 to analyse the vibrational 

contribution to the heat capacity in terms of excitations between levels and 

illustrate your results graphically in terms of a diagram like that in Fig. 58.6.

58.21 Equation 58.19 in the form

d

d

e

L

i−
=

βε

βq( )
0

 

is a differential equation for β (and therefore T) as a function of L, but we 

solved it there by inspection. Solve the equation formally and confirm that 

eqn 58.20 is a solution.

58.22 The heat capacity ratio of a gas determines the speed of sound in it 

through the formula cs = (γ  RT/M)1/2, where γ  = Cp/CV and M is the molar mass 

of the gas. Deduce an expression for the speed of sound in a perfect gas of 

(a) diatomic, (b) linear triatomic, (c) nonlinear triatomic molecules at high 

temperatures (with translation and rotation active). Estimate the speed of 

sound in air at 25 ° C.

58.23 Starting from the expression Cp − CV = T(∂p/∂T)V(∂V/∂T)p, use the 

appropriate relations between partial derivatives to show that

C C
T V T

V pp V
p

T
− =

∂ ∂
∂ ∂
( )

( )

/

/

2

 

Evaluate Cp − CV for a perfect gas.

58.24 (a) Write expressions for dV and dp given that V is a function of p and T 

and that p is a function of V and T. (b) Deduce expressions for d ln V and d ln 

p in terms of the expansion coefficient and the isothermal compressibility.

58.25 Rearrange the van der Waals equation of state (Topic 36), p =  

nRT/(V − nb) − n2a/V2, to give an expression for T as a function of p and V 

(with n constant). Calculate (∂T/∂p)V and confirm that (∂T/∂p)V = 1/(∂p/∂T)V. 

Go on to confirm Euler’s chain relation (Mathematical background 8).

58.26 Calculate the isothermal compressibility and the expansion coefficient 

of a van der Waals gas (see Problem 58.25). Show, using Euler’s chain relation 

(Mathematical background 8), that κTR = α(Vm − b).

58.27 The speed of sound, cs, in a gas of molar mass M is related to the ratio 

of heat capacities γ by cs = (γ RT/M)1/2. Show that cs = (γp/ρ)1/2, where ρ is the 

mass density of the gas. Calculate the speed of sound in argon at 25 °C.

58.28 The statistical properties of a two-level system enable us to give formal 

significance to negative thermodynamic temperatures. From the Boltzmann 

distribution for such a system, show that the temperature may be defined as

T
k

N N
=

− +

ε /

/ln( )
 

where ε is the energy separation and N+ and N− are the populations of the 

upper and lower states, respectively. Find the corresponding expression for 

β = 1/kT. It follows that if the system can be contrived to have N−<N+, then 

T<0. Go on to plot graphs of the partition function, internal energy, and heat 

capacity of the system in the range −∞ < kT/ε < ∞. Observe that there are 

discontinuities in the graphs. These discontinuities are eliminated by plotting 

the properties against β in the range −∞ < εβ < ∞: do so.

Integrated activities

F12.1 Explore whether a magnetic field can influence the heat capacity of a 

paramagnetic molecule by calculating the electronic contribution to the heat 

capacity of an NO2 molecule in a magnetic field. Estimate the total constant-

volume heat capacity by using equipartition, and calculate the percentage 

change in heat capacity brought about by a 10.0 T magnetic field at (a) 100 K, 

(b) 298 K.

F12.2 The thermochemical properties of hydrocarbons are commonly 

investigated by using molecular modelling methods. (a) Use software to 

predict ΔcH
< values for the alkanes methane through pentane. To calculate 

ΔcH
< values, estimate the standard enthalpy of formation of CnH2n + 2(g) by 

performing semi-empirical calculations (for example, AM1 or PM3 methods) 

and use experimental standard enthalpy of formation values for CO2(g) and 

H2O(l). (b) Compare your estimated values with the experimental values of 

ΔcH
< (Table 57.3) and comment on the reliability of the molecular modelling 

method. (c) Test the extent to which the relation ΔcH
< = constant ×  

{(M/(g mol−1)}n holds and determine the numerical values of the constant  

and n. Compare to the results of Problem 57.3.

F12.3 Explain the difference between the change in internal energy and the 

change in enthalpy accompanying a chemical or physical process.

F12.4 Glucose and fructose are simple sugars with the molecular formula 

C6H12O6. Sucrose, or table sugar, is a complex sugar with molecular formula 

C12H22O11 that consists of a glucose unit covalently bound to a fructose unit 

(a water molecule is eliminated as a result of the reaction between glucose and 

fructose to form sucrose). (a) Calculate the energy released as heat when a 

typical table sugar cube of mass 1.5 g is burned in air. (b) To what height could 

you climb on the energy a table sugar cube provides, assuming 25 per cent 

of the energy is available for work? (c) The mass of a typical glucose tablet is 

2.5 g. Calculate the energy released as heat when a glucose tablet is burned in 

air. (d) To what height could you climb on the energy a glucose tablet provides 

assuming 25 per cent of the energy is available for work?

F12.5 (a) Derive the relation CV = −(∂U/∂V)T(∂V/∂T)U from the expression 

for the total differential of U(T,V) and (b) starting from the expression for 

the total differential of H(T,p), express (∂H/∂p)T in terms of Cp and the Joule–

Thomson coefficient, μ.
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588 12 The First Law of thermodynamics

F12.6 (a) By direct differentiation of H = U + pV, obtain a relation between 

(∂H/∂U)p and (∂U/∂V)p. (b) Confirm that (∂H/∂U)p = 1 + p(∂V/∂U)p by 

expressing (∂H/∂U)p as the ratio of two derivatives with respect to volume and 

then using the definition of enthalpy.

F12.7‡ A gas obeys the equation of state Vm = RT/p + aT2 and its constant-

pressure heat capacity is given by Cp,m = A + BT + Cp, where a, A, B, and C 

are constants independent of T and p. Obtain expressions for (a) the Joule–

Thomson coefficient and its constant-volume heat capacity.

F12.8 Use mathematical software, a spreadsheet, or the Living graphs (labelled 
LG) on the website of this book for the following exercises.

(a) Calculate the work of isothermal reversible expansion of 1.0 mol CO2(g) 

at 298 K from 1.0 dm3 to 3.0 dm3 on the basis that it obeys the van der Waals 

equation of state.

(b)LG Explore the effect of the rotational constant on the plot of CV ,m
R  against T.

(c)LG Explore the effect of the vibrational wavenumber on the plot of CV ,m
V  

against T.

(d)LG Explore how the parameter γ  = Cp,m/CV,m affects the dependence of the 

pressure on the relative volume. Does the pressure–volume dependence 

become stronger or weaker with increasing volume?
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Multivariate calculus  589

Mathematical background 8 Multivariate calculus

A thermodynamic property of a system typically depends on 

a number of variables, such as the internal energy depending 

on the amount, volume, and temperature. To understand how 

these properties vary with the conditions we need to under-

stand how to manipulate their derivatives. This is the field of 

multivariate calculus, the calculus of several variables.

MB8.1 Partial derivatives
A partial derivative of a function of more than one variable, 

such as f(x,y), is the slope of the function with respect to one of 

the variables, all the other variables being held constant (Fig. 

MB8.1). Although a partial derivative shows how a function 

changes when one variable changes, it may be used to determine 

how the function changes when more than one variable changes 

by an infinitesimal amount. Thus, if f is a function of x and y, 

then when x and y change by dx and dy, respectively, f changes by

d d df
f

x
x

f

y
y

y x

= ∂
∂

⎛
⎝⎜

⎞
⎠⎟

+ ∂
∂

⎛
⎝⎜

⎞
⎠⎟

 

(MB8.1)

where the symbol ∂ (‘curly d’) is used (instead of d) to denote 

a partial derivative and the subscript on the parentheses indi-

cates which variable is being held constant. The quantity df is 

also called the differential of f. Successive partial derivatives 

may be taken in any order:
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(MB8.2)

In the following, z is a variable on which x and y depend (for 

example, x, y, and z might correspond to p, V, and T).

Relation 1. When x is changed at constant z:
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(MB8.3a)

Relation 2
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(MB8.3b)

Relation 3
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(MB8.3c)

By combining Relations 2 and 3 we obtain the Euler chain 

relation:
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 Euler chain relation  (MB8.4)

Brief illustration MB8.1 Partial derivatives

Suppose that f(x,y) = ax3y + by2 (the function plotted in 

Fig. MB8.1). Then

∂
∂

∂
∂

f

x
ax y

f

y
ax by

y x

⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

= +3 22 3

Then, when x and y undergo infinitesimal changes, f changes 

by

d  d  ( ) df ax y x ax by y= + +3 22 3

To verify that the order of taking the second partial derivative 

is irrelevant, we form
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(∂f/∂y)x

(∂f/∂x)y

Figure MB8.1 A function of two variables, f(x,y), as depicted 
by the coloured surface, and the two partial derivatives, 
(∂f/∂x)y and (∂f/∂y)x, the slope of the function parallel to 
the x- and y-axes, respectively. The function plotted here is 
f(x,y) = ax3y + by2 with a = 1 and b = –2.
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590 Mathematical background 8

MB8.2 Exact differentials
The relation in eqn MB8.2 is the basis of a test for an exact dif-

ferential; that is, the test of whether

d d df g x y x h x y y= +( , ) ( , )
 

(MB8.3)

has the form in eqn MB8.1. If it has that form, then g can be 

identified with (∂f/∂x)y and h can be identified with (∂f/∂y)x. 

Then eqn MB8.2 becomes

∂
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x y  

 Test for exact differential  (MB8.6)

If df is exact, then we can do two things:

From knowledge of the functions g and h we can 

reconstruct the function f.

We can be confident that the integral of df between 

specified limits is independent of the path between those 

limits.

The first conclusion is best demonstrated with a specific 

example.

To demonstrate that the integral of df is independent of the 

path is now straightforward. Because df is a differential, its inte-

gral between the limits a and b is

df f b f a
a

b

∫ = −( ) ( )
 

The value of the integral depends only on the values at the 

 endpoints and is independent of the path between them. If df is 

not an exact differential, the function f does not exist, and this 

argument no longer holds. In such cases, the integral of df does 

depend on the path.

Brief illustration MB8.2 Exact differentials

Suppose, instead of the form df = 3ax2ydx + (ax3 + 2by)dy in 

the previous Brief illustration, we were presented with the 

expression

d d df ax y x ax by y= + +3 22 2

g x y h x y( , ) ( , )
 � �� ��
( )

with ax2 in place of ax3 inside the second parentheses. To test 

whether this is an exact differential, we form
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These two expressions are not equal, so this form of df is not an 

exact differential and there is not a corresponding integrated 

function of the form f(x,y).

Brief illustration MB8.3  The reconstruction of an equation

We consider the differential df = 3ax2ydx + (ax3 + 2by)dy, which 

we know to be exact. Because (∂f/∂x)y = 3ax2y, we can integrate 

with respect to x with y held constant, to obtain

Brief illustration MB8.4 Path-dependent integration

Consider the inexact differential (the expression with ax2 in 

place of ax3 inside the second parentheses):

d d  df ax y x ax by y= + +3 22 2( )

Suppose we integrate df from (0,0) to (2,2) along the two paths 

shown in Fig. MB8.2. Along Path 1,

d d d

d d
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f ax y x ax by y

a y b y y
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0 0

2 0
2

2 0

2 2
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3 2
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= + +
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f f ax y x ay x x ax y k= = = = +∫ ∫ ∫d d d3 32 2 3

where the ‘constant’ of integration k may depend on y (which 

has been treated as a constant in the integration), but not on 

x. To find k(y), we note that (∂f/∂y)x = ax3 + 2by, and therefore

∂
∂

∂
∂

f

y

ax y k

y
ax

dk

dy
ax by

x x

⎛
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⎞
⎠⎟

= +⎛
⎝⎜

⎞
⎠⎟

= + = +( )3
3 3 2

Therefore

d

d

k

y
by=2

from which it follows that k = by2 + constant. We have found, 

therefore, that

f x y ax y by( , )= + +3 2 constant

which, apart from the constant, is the original function in 

Brief illustration MB8.1. The value of the constant is pinned 

down by stating the boundary conditions; thus, if it is known 

that f(0,0) = 0, then the constant is zero.
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Brief illustration MB8.5 An integrating factor

We have seen that the differential df = 3ax2ydx + (ax2 + 2by)

dy is inexact; the same is true when we set b = 0 and consider 

df = 3ax2ydx + ax2dy instead. Suppose we multiply this df by 

xmyn and write xmyndf = df ′, then we obtain

d d  df ax y x ax y ym n m n′ = ++ + +3 2 1 2

g x y h x y( , ) ( , )� �� �� ��� ��

We evaluate the following two partial derivatives:
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For the new differential to be exact, these two partial deriva-

tives must be equal, so we write

3 1 22 1a n x y a m x ym n m n( ) ( )+ = ++ +

which simplifies to

3 1 2( )n x m+ = +

The only solution that is independent of x is n = –1 and m = –2. 

It follows that

d d df a x a y y′ = +3 ( / )

is an exact differential. By the procedure already illustrated, its 

integrated form is f ′(x,y) = 3ax + a ln y + constant.

whereas along Path 2,

d  d  d

d

Path

f ax y x ax by y

a x x

2

2

0 2

2 2
2
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0 2

2

0
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,

,

,

( )

bb y y a bd
0

2

16 4∫ = +

The two integrals are not the same.

An inexact differential may sometimes be converted into an 

exact differential by multiplication by a factor known as an inte-

grating factor. A physical example is the integrating factor 1/T 

that converts the inexact differential dqrev into the exact differ-

ential dS in thermodynamics (Topic 61).

x

y

(0,2)

(2,0)

Path 1Path 2

(2,2)y = 2

y = 0

x 
= 

2

x 
= 

0

Figure MB8.2 The two integration paths referred to in  
Brief illustration MB8.4.
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The Second Law (Topic 59) identifies the criterion for a change being ‘spontaneous’, that is, having a 
tendency to occur without needing to do work to bring it about. It recognizes the tendency of mat-
ter and energy to disperse in disorder. The First Law of thermodynamics uses the internal energy to 
identify permissible changes; the Second Law uses the entropy to identify the spontaneous changes 
among those permissible changes and states that the entropy of an isolated system increases in the 
course of a spontaneous change. For our present purposes it is sufficient to think of entropy as a 
measure of disorder, with high entropy corresponding to great disorder.

The formal definition of entropy is set out from a statistical viewpoint in Topic 60 and from a 
thermodynamic viewpoint in Topic 61. The statistical definition enables entropies of collections of 
individual molecules to be calculated from structural and spectroscopic data by using the partition 
function of Statistical thermodynamics. The thermodynamic definition is the basis of much of practi-
cal thermodynamics and enables changes in entropy to be determined from calorimetric and other 
observations (Topic 62). These measurements are brought into line with the statistical calculations 
by the Third Law of thermodynamics (Topic 63).

To assess spontaneity it is essential to take into account the change of entropy in the surroundings 
as well as the system of interest. However, provided we are content to work under certain constraints 
(such as constant pressure and temperature), the criterion of spontaneity can be expressed solely in 
terms of properties relating to the system by introducing the ‘Gibbs and Helmholtz energies’ (Topic 
64) and expressing the former in terms of Gibbs energies of formation (Topic 65). These state func-
tions, particularly the former, are then used in a wide variety of applications in many other Topics 
including Physical equilibria and Chemical equilibria and are the principal functions found in chemical 
thermodynamics.

The fact that the internal energy, the entropy, and the Gibbs and Helmholtz energies are state 
functions endows them with considerable power, especially when the First and Second Laws are 
combined to provide criteria for spontaneity under a variety of conditions (Topic 66).

FOCUS 13  ON  The Second and Third Laws of thermodynamics

Topic  63 

The
Third Law

Topic  66

Combining the
First and Second

Laws

Topic  62

Entropy changes
for specific
processes

Topic  61

The
thermodynamic

entropy

Topic  60

The statistical
entropy

Topic  65

Standard
Gibbs energies

Topic  64

Spontaneous
processes

Topic  59 

The
Second Law

Overview

The First Law
of thermo-
dynamics

Focus 12

Equilibria

Focus 14,15 Focus 11

Statistical
thermo-

dynamics

Atkins09819.indb   593 9/11/2013   12:53:05 PM



What is the impact of this material?

Topics relating to the Second and Third Laws pervade the whole of chemistry and related disciplines, 
and here we highlight two issues, one from technology and the other from materials science. In the 
first (Impact 13.1), we show how the same arguments used to assess the efficiencies of heat engines 
can be applied to refrigerators and heat pumps. In the second (Impact 13.2), we explore how thermo-
dynamics is used to assess the presence of defects in materials and the important consequences for 
their properties.

To read more about the impact of this material, scan the QR code or go to http://
bcs.whfreeman.com/webpub/chemistry/qmc2e/impact/qchem_impact13.html.
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TOPIC 59

The Second Law

This is a short Topic. However, the Second Law is of immense 

importance in chemistry, and this Topic sets the scene for what 

is dealt with in the remaining Topics of this Focus group.

59.1 The recognition of 
spontaneous change

The Second Law is the recognition that some things happen 

naturally, but some things don’t. A gas expands to fill the avail-

able volume, a hot body cools to the temperature of its sur-

roundings, and a chemical reaction runs in one direction rather 

than another. Some aspect of the world determines the spon-

taneous direction of change, the direction of change that does 

not require work to be done to bring it about.

An important point is that throughout this text ‘spontane-

ous’ must be interpreted as a natural tendency that may or may 

not be realized in practice. Thermodynamics is silent on the 

rate at which a spontaneous change in fact occurs, and some 

spontaneous processes (such as the conversion of diamond to 

graphite) may be so slow that the tendency is never realized in 

practice whereas others (such as the expansion of a gas into a 

vacuum) are almost instantaneous.

 ➤ Why do you need to know this material?
The Second Law of thermodynamics is central to an 
understanding of a wide variety of physical and chemical 
processes, including freezing, vaporization, dissolving, 
and chemical reaction. You need to be familiar with 
the law if you are to understand chemical equilibrium, 
bioenergetics, and the efficiency of engines.

 ➤ What is the key idea?
Matter and energy tend to disperse in disorder.

 ➤ What do you need to know already?
This Topic introduces a new group of ideas, and does 
not draw on other Topics except, by implication, the 
conservation of energy.

Contents

59.1 The recognition of spontaneous change 595

Brief illustration 59.1: Spontaneous changes 595

Brief illustration 59.2: The Kelvin statement 596

59.2 The direction of spontaneous change 596

Brief illustration 59.3: The molecular basis  

of spontaneous change 597

59.3 Entropy 597

Brief illustration 59.4: The increase in entropy 598

Checklist of concepts 598

Brief illustration 59.1 Spontaneous changes

A gas can be confined to a smaller volume, an object can be 

cooled by using a refrigerator, and some reactions can be 

driven in reverse (as in the electrolysis of water). However, 

none of these processes is spontaneous; each one must be 

brought about by doing work. To compress a gas we need to do 

the work of driving in a piston. To cool an object in a refrigera-

tor we need to do work on the compressor that drives the cool-

ing system. To electrolyse water, we need to force an electric 

current though a sample using an external supply.

Self-test 59.1 Identify other spontaneous physical and chemi-

cal processes.

Answer: Two examples: dissipation of energy by friction; combustion
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596 13 The Second and Third Laws of thermodynamics

The recognition of two classes of process, spontaneous and 

non-spontaneous, is summarized by the Second Law of ther-

modynamics. This law may be expressed in a variety of equiva-

lent ways. One statement was formulated by Kelvin:

No process is possible in which the sole result is the 

absorption of heat from a reservoir and its complete 

conversion into work.

59.2 The direction of spontaneous 
change

What determines the direction of spontaneous change? It is not 

the total energy of the isolated system. The First Law of ther-

modynamics states that energy is conserved in any process, and 

we cannot disregard that law now and say that everything tends 

towards a state of lower energy: the total energy of an isolated 

system is constant.

Is it perhaps the energy of the system of interest, a region 

within the overall isolated system, that tends towards a 

minimum? Two arguments show that this cannot be so. First, 

a perfect gas expands spontaneously into a vacuum, yet its 

internal energy remains constant as it does so. Secondly, if the 

energy of a system does happen to decrease during a spontane-

ous change, the energy of its surroundings must increase by the 

same amount (by the First Law). The increase in energy of the 

surroundings is just as spontaneous a process as the decrease in 

energy of the system.

When a change occurs, the total energy of an isolated system 

remains constant but it is parcelled out in different ways. Can it 

be, therefore, that the direction of change is related to the distri-

bution of energy? We shall see that this idea is the key, and that 

spontaneous changes are always accompanied by the random 

dispersal of energy.

We can begin to understand the role of the distribution of 

energy by thinking about a ball (the system) bouncing on a 

floor (the surroundings). The ball does not rise as high after 

each bounce because there are inelastic losses in the materi-

als of the ball and floor. The kinetic energy of the ball’s over-

all motion is spread out into the energy of thermal motion of 

its particles and those of the floor that it hits. The direction of 

spontaneous change is towards a state in which the ball is at rest 

with all its energy dispersed as the disorderly thermal motion 

of molecules in the air and spread over the atoms of the virtu-

ally infinite floor (Fig. 59.2).

A ball resting on a warm floor has never been observed to 

start bouncing. For bouncing to begin, something rather spe-

cial would need to happen. In the first place, some of the ther-

mal motion of the atoms in the floor would have to accumulate 

in a single small object, the ball. This accumulation requires 

a spontaneous localization of energy from the myriad vibra-

tions of the atoms of the floor into the much smaller number of 

atoms that constitute the ball (Fig. 59.3). Furthermore, whereas 

the thermal motion is random, for the ball to move upwards 

Figure 59.2 The direction of spontaneous change for a ball 
bouncing on a floor. On each bounce some of its energy 
is degraded into the thermal motion of the atoms of the 
floor, and that energy disperses. The reverse has never been 
observed to take place on a macroscopic scale.

Brief illustration 59.2 The Kelvin statement

It has proved impossible to construct an engine, like that 

shown in Fig. 59.1, in which heat is drawn from a hot reservoir 

and completely converted into work. All real heat engines have 

both a hot source and a cold sink; some energy is always dis-

carded into the cold sink as heat and not converted into work. 

The Kelvin statement is a generalization of another everyday 

observation, that a ball at rest on a surface has never been 

observed to leap spontaneously upwards. An upward leap of 

the ball would be equivalent to the conversion of heat from the 

surface into work.

Self-test 59.2 Why doesn’t a spring wind itself spontaneously?

Answer: Atoms must move in an organized way, which would involve 

heat being converted into work

Hot source

Work
Heat

Flow of energy

Engine

Figure 59.1 The Kelvin statement of the Second Law denies 
the possibility of the process illustrated here, in which heat 
is changed completely into work, there being no other 
change. The process is not in conflict with the First Law 
because energy is conserved.
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59 The Second Law  597

its atoms must all move in the same direction. The localization 

of random, disorderly motion as concerted, ordered motion is 

so unlikely that we can dismiss it as virtually impossible except 

on the very small scale characteristic of ‘Brownian motion’, the 

 jittering motion of small particles suspended in water.

We appear to have found the signpost of spontaneous 

change: we look for the direction of change that leads to the ran-

dom dispersal of the total energy of the isolated system. This prin-

ciple accounts for the direction of change of the bouncing ball, 

because its energy is spread out as thermal motion of the atoms 

of the floor. The reverse process is not spontaneous because it is 

highly improbable that energy will become not only localized 

but also localized as uniform motion of the ball’s atoms.

It may seem very puzzling that the spreading out of energy 

and matter, the collapse into disorder, can lead to the for-

mation of such ordered structures as crystals or proteins. 

Nevertheless, in due course, we shall see that the tendency of 

energy and matter to disperse in disorder accounts for change 

in all its forms.

59.3 Entropy

The First Law of thermodynamics led to the introduction of 

the internal energy, U. The internal energy is a state function 

that lets us assess whether a change is permissible: only those 

changes may occur for which the internal energy of an iso-

lated system remains constant. The law that is used to identify 

the signpost of spontaneous change, the Second Law of ther-

modynamics, may also be expressed in terms of another state 

function, the entropy, S. The entropy lets us assess whether 

one state is accessible from another by a spontaneous change. 

The First Law uses the internal energy to identify permissi-

ble changes; the Second Law uses the entropy to identify the 

spontaneous changes among those permissible changes. The 

formal definition of entropy is set out in Topics 60 and 61. 

For our present purposes it is sufficient to think of entropy 

as a measure of disorder, with high entropy corresponding to 

great disorder.

With the intuitive notion of entropy as a measure of disor-

der, we can re-express the tendency of matter and energy to 

disperse in disorder in its terms. Thus, in terms of entropy, the 

Second Law of thermodynamics states:

The entropy of an isolated system increases in the 

course of a spontaneous change: ΔStot > 0

where Stot is the total entropy of the isolated system, which itself 

may consist of a smaller system (for example a beaker of hot 

water) and its surroundings. Thermodynamically irreversible 

processes (like cooling to the temperature of the surroundings 

and the free expansion of gases) are spontaneous processes, and 

hence must be accompanied by an increase in total entropy. 

There are many subtleties associated with this statement, and 

we introduce them and unfold the consequences of the Second 

Law in the following Topics.

Brief illustration 59.3 The molecular basis  
of spontaneous change

A gas does not contract spontaneously because to do so the 

random motion of its molecules, which distributes their kinetic 

energy throughout the container, would have to take them all 

into the same region of the container, thereby localizing the 

energy. The opposite change, spontaneous expansion, is a natu-

ral consequence of energy becoming more widely dispersed as 

the gas molecules occupy a larger volume. An object does not 

spontaneously become warmer than its surroundings because 

it is highly improbable that the jostling of randomly vibrating 

atoms in the surroundings will lead to the localization of ther-

mal motion in the object. The opposite change, the spreading of 

the object’s energy into the surroundings as thermal motion, is 

natural.

Self-test 59.3 Account for the Kelvin statement of the Second 

Law in molecular terms.

Answer: Work involves the uniform motion of atoms and cannot arise 

spontaneously from the same quantity of heat, the random motion of 

atoms (see Topic 55)

(a) (b)

Figure 59.3 The molecular interpretation of the irreversibility 
expressed by the Second Law. (a) A ball resting on a warm 
surface; the atoms are undergoing thermal motion (vibration, 
in this instance), as indicated by the arrows. (b) For the ball to 
fly upwards, some of the random vibrational motion would 
have to change into coordinated, directed motion. Such a 
conversion is highly improbable.
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598 13 The Second and Third Laws of thermodynamics

Checklist of concepts

☐ 1. A spontaneous change is a change that does not require 

work to be done to bring it about.

☐ 2. A spontaneous change is one that has a natural ten-

dency to occur but might not be realized in practice.

☐ 3. The Kelvin statement of the Second Law is that no pro-

cess is possible in which the sole result is the absorption 

of heat from a reservoir and its complete conversion 

into work.

☐ 4. The direction of spontaneous change is the one that 

leads to the random dispersal of the total energy of the 

isolated system.

☐ 5. Entropy is a measure of the disorder of energy and 

matter.

☐ 6. The entropy of an isolated system increases in the 

course of a spontaneous change: ΔStot > 0.

Brief illustration 59.4 The increase in entropy

Consider the spontaneous processes mentioned earlier. When 

a perfect gas expands, the greater dispersal of its atoms cor-

responds to a greater entropy of the system. When an object 

cools, the greater dispersal of its energy corresponds to a 

greater entropy of the surroundings. When a fuel burns, the 

compact hydrocarbon liquid is dispersed as small water and 

carbon dioxide molecules and the energy released in the com-

bustion spreads into the surroundings: both processes con-

tribute to an increase in entropy.

Self-test 59.4 In what sense is there an increase in entropy 

when a solute forms a crystal?

Answer: The process is exothermic, and energy spreads 

into the surroundings
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TOPIC 60

The statistical entropy

If it is true, as claimed in Topic 52, that a partition function 

contains all the thermodynamic information about a system, 

then it must be possible to use it to calculate the entropy as well 

as the internal energy. Because, as argued in Topic 59, entropy 

is related to the dispersal of energy and, as described in Topic 

52, a partition function is a measure of the number of thermally 

accessible states, we can be confident that the two are indeed 

related.

60.1 The statistical definition 
of entropy

All the calculations of entropy from structural and spectro-

scopic data spring from a single equation proposed originally 

by Ludwig Boltzmann. Here we present that equation and 

then evaluate various contributions to the entropy of isolated 

molecules.

 ➤ Why do you need to know this material?

Entropy lies at the heart of the chemical applications 
of thermodynamics, but in some cases the only way 
to evaluate it is to use statistical thermodynamics and 
calculate it from spectroscopic and structural data. 
Moreover, the statistical approach described here gives 
you insight into the molecular features that are responsible 
for the entropy of a substance.

Contents

60.1  The statistical definition of entropy 599

(a) The Boltzmann formula 600

Brief illustration 60.1: The Boltzmann formula 600

(b) The connection with the thermodynamic entropy 600

Brief illustration 60.2: The change in entropy 601

60.2 The entropy in terms of the partition function 601

(a) The basic equations 601

Brief illustration 60.3: Distinguishable and  

indistinguishable particles 601

(b) The translational contribution 602

Brief illustration 60.4: Molar entropy of a gas 603

(c) The rotational contribution 603

Brief illustration 60.5: The rotational contribution 

to the entropy 603

(d) The vibrational contribution 604

Brief illustration 60.6: The vibrational contribution 

to the entropy 605

(e) The electronic contribution 605

Example 60.1: Calculating the electronic  

contribution to the entropy 606

Checklist of concepts 606

Checklist of equations 607

 ➤ What is the key idea?

The entropy of a substance can be calculated from the 
molecular partition function and is greatest when many 
molecular states are occupied.

 ➤ What do you need to know already?
You need to be familiar with the molecular partition 
function and its calculation from structural data, and its 
relation on the one hand to the weight of a configuration 
(Topic 51 and, for the canonical ensemble, Topic 54) and 
on the other to the calculation of molecular energies 
(Topic 53). There is an interplay between this Topic and 
that on the thermodynamic definition of entropy (Topic 
61), and it will help if you have at least a passing familiarity 
with that approach.
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600 13 The Second and Third Laws of thermodynamics

(a) The Boltzmann formula

Boltzmann looked for a definition of entropy that was a meas-

ure of the dispersal of energy and was a state function, was 

extensive, and increased in the course of a spontaneous change. 

He suggested that an appropriate definition is what we now call 

the Boltzmann formula for the entropy:

S k= ln W  Definition  Boltzmann formula for the entropy  (60.1)

where k is Boltzmann’s constant and W is the weight of the most 

probable configuration of the system (Topic 51).

(b) The connection with the 
thermodynamic entropy

The entropy defined in eqn 60.1 has properties that confirm 

that it can be identified with the thermodynamic entropy 

defined in Topic 61. It is clearly a state function, as the weight 

of the most probable configuration is independent of how the 

system was prepared. That S is extensive can be seen by con-

sidering a system as being composed of two parts with entro-

pies S1 = k ln W1 and S2 = k ln W2, respectively. The total weight 

of the entire system (the total number of ways of achieving a 

configuration) is the product of the weights of the two com-

ponent parts, W = W1W2, and so the total entropy of the sys-

tem is

S k k k S S= = + = + ln  ln  ln W W W W1 2 1 2 1 2  

Because the total entropy is the sum of the entropies of its com-

ponent parts, the entropy is extensive.

That S is the signpost of spontaneous change is plausible 

because an isolated system in an arbitrary initial configuration 

tends to collapse into the distribution with the greatest weight, 

so the entropy as defined in eqn 60.1 increases in a spontane-

ous change. Informally, we can imagine the system as exploring 

all the distributions available to it, with certain distributions 

achieved far more often than others. To an external observer, 

the system migrates into a configuration corresponding to the 

overwhelmingly dominant distribution.

To express this conclusion more formally, we first sup-

pose that the two parts of an entire system are not in equilib-

rium with each other. Each part of the system is in internal 

 equilibrium, and so W1 and W2 have their respective maxi-

mum  values, the combined weight is Wi = W1W2, and the  initial 

entropy is

S k k k k S Si i= = = + = + ln   ln  ln  ln W W W W W1 2 1 2 1 2  

When the two parts are allowed to interact, the weight becomes 

Wf , which—if any change occurs at all—will become larger 

than Wi as the total system explores all the available configu-

rations and settles into a configuration of greatest weight. The 

entropy becomes

S k k Sf f i iln ln= > =    W W
 

That is, because ln Wf is greater than ln Wi, the entropy of the 

final state is greater than that of the initial state, as we sought to 

demonstrate.

More specifically, we now show that the definition in eqn 

60.1 implies the thermodynamic definition of entropy in Topic 

61 (that dS = dqrev/T). From eqn 60.1 a change in entropy arises 

from a change in populations of the available states:

d d dS k k
N

N
i i

i= = ∂
∂

⎛
⎝⎜

⎞
⎠⎟∑ln

ln
W

W

 

We established in eqn 51.10 that for the most probable 

distribution

∂
∂

⎛
⎝⎜

⎞
⎠⎟

= −lnW
Ni

iβε α
 

and therefore it follows that

dS k N k N
i

i i

i

i= −∑ ∑β ε αd d

 

The second sum, over changes in populations, is zero for a sys-

tem with a fixed number of particles, and so

Brief illustration 60.1 The Boltzmann formula

Suppose that each diatomic molecule in a solid sample can 

be arranged in either of two orientations and that there are 

N = 6.022 × 1023 molecules in the sample (that is, 1 mol of mol-

ecules). Then W = 2N and the entropy of the sample is

S k NkN= = = × × ×
=

− −

−

ln  ln ( ) JK ln

JK

2 2 6 022 10 1 381 10 2

5 76

23 23 1

1

. ( . )

.  

We see that the units of entropy are joules per kelvin (J K−1), 

the same as those of Boltzmann’s constant. The molar entropy, 

Sm = S/n, therefore has the units joules per kelvin per mole 

(J K−1 mol−1), the same as the gas constant. The standard molar 

entropy, Sm ,<  is the molar entropy under standard conditions 

(pure, 1 bar).

Self-test 60.1 What is the molar entropy of a similar system 

in which each molecule can be arranged in four different 

orientations?

Answer: 11.5 J K−1 mol−1
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dS k N
T

N
i

i i

i

i i= =∑ ∑β ε εd d
1

 

However, for a system that is heated, there is no change in the 

energy levels themselves and the change in energy of the system 

is due only to the change in populations of those unchanging 

energy levels. Moreover, if the heating is reversible, the popula-

tions retain their most probable values at all stages. It follows 

that the sum on the right in this expression can be identified 

with the energy transferred reversibly as heat. That is,

dS
T

N
T

i

i i

q

= =∑1 ε d
d

d

rev

rev� �� ��
q

 

(60.2)

in accord with the classical definition, developed in Topic 61.

60.2 The entropy in terms of the 
partition function

Here we establish the basic expression relating the entropy to 

the partition function, and then evaluate the contributions of 

each mode of motion.

(a) The basic equations
For eqn 60.1 to be a useful route to the calculation of the 

entropy, we need to express it in terms of the partition function. 

To do so, we substitute the expression for ln W given in Topic 

51 into eqn 60.1 and, as shown in the following Justification, for 

independent, distinguishable particles obtain

S
U U

T
Nk= − +( )

ln
0

q
 

and for independent, indistinguishable particles

S
U U

T
Nk

N
= − +( )

ln
0 q e

 

(The presence of the exponential e in the logarithm is explained 

in the Justification.) Apart from changes of detail, we see that 

the entropy increases as the number of thermally accessible 

states (as measured by q) increases, just as we should expect. 

The following sections give many examples of the application 

of these equations.
Brief illustration 60.2 The change in entropy

Equation 60.2 is developed fully in Topics 61 and 62, but there 

are two points worth illustrating here. First, suppose that 10 J 

is transferred reversibly as heat to a sample of water at 298 K, 

then (making the approximation that infinitesimal quanti-

ties (dX) can be replaced by small finite quantities (δX) in this 

case), the change in entropy of the water is

δS = = + −10

298
0 034 1

J

K
JK.

We see that the units are the same as in the Boltzmann defini-

tion, joules per kelvin. The second point is that calculations 

of entropy changes by using eqn 60.2 are typically very much 

easier than by using the Boltzmann formula, which relies on 

detailed structural information (as we see below).

Self-test 60.2 Calculate the change in entropy when 10 J of 

energy is removed as heat from water at –5.0 °C.

Answer: –0.037 J K−1

Independent, 
distinguishable 
particles 

Entropy  (60.3a)

Independent, 
indistinguishable 
particles 

Entropy  (60.3b)

Brief illustration 60.3 Distinguishable and 
indistinguishable particles

The molecules of a perfect gas are indistinguishable and can-

not be tracked, so we use eqn 60.3b to calculate the entropy. 

Once that gas has condensed and frozen to a solid, the mol-

ecules, although still identical and assumed to be independ-

ent of each other, can be labelled with their coordinates in the 

solid, and so can be tracked unambiguously. As a result, we 

now use eqn 60.3a to calculate the entropy.

Self-test 60.3 Do you need to consider indistinguishability 

when calculating the additional vibrational contribution to 

the entropy of a gaseous sample?

Answer: No; use once, only for the translational contribution

Justification 60.1 The statistical entropy

For a system composed of N distinguishable molecules, eqn 

51.3 for ln W is

ln ln ln ln ln

ln ln ln( )

W = − = −

= − = −

∑ ∑ ∑
∑ ∑

N N N N N N N N

N N N N
N

i

i i

i

i

i

i i

i

i i

i

i
ii

N
 

because N = ΣiNi. Equation 60.1 (S = k ln W) becomes

S k N
N

N
i

i
i= − ∑ ln
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602 13 The Second and Third Laws of thermodynamics

Equation 60.3 expresses the entropy of a collection of inde-

pendent molecules in terms of the internal energy and the 

molecular partition function. However, it is shown in Topic 

52 that, to a good approximation, the energy of a molecule is 

a sum of independent contributions, such as translational (T), 

rotational (R), vibrational (V), and electronic (E), and therefore 

the partition function factorizes into a product of contributions 

(see eqn 52.6, q = q Tq Rq Vq E). As a result, the entropy is the sum 

of the individual contributions. For independent, distinguish-

able particles, each contribution is of the form of eqn 60.3, and 

for a mode M we write

S
U U

T
NkM

M
M= − +{ ( )}

ln
0

q
 

This expression applies to M = R, V, and E (as in Self-test 60.3); 

the analogous version of eqn 60.3b should be used for M = T, for 

the molecules are then indistinguishable.

Equation 60.3 is in terms of the molecular partition function 

and is too restrictive to accommodate interactions between 

molecules. As in Topic 54, to accommodate interacting parti-

cles we have to use the canonical partition function Q and the 

weight W of the most probable configuration of the canonical 

ensemble, �W . However, because � �W W= N (each member of 

the ensemble is independent of the others, so we can multiply 

together their weights to get the overall weight of the ensemble) 

we can use W W= � �1/N in the Boltzmann formula and obtain

S k
k

N
N= =ln ln/� �

�
�W W1

 
(60.4)

The number of members of the ensemble, �N , goes to infinity (to 

achieve the thermodynamic limit). The entropy can expressed 

in terms of Q by the same argument as in Justification 60.1, and 

we obtain

S
U U

T
k= − +( )

ln
0

Q
 

This expression reduces to eqn 60.3 when we write Q = q N for 

distinguishable, non-interacting particles and Q = q N/N! for 

indistinguishable, non-interacting particles.

(b) The translational contribution
The expressions we have derived for the entropy accord with 

what we should expect for entropy if it is a measure of the 

spread of the populations of molecules over the available states. 

For instance, we show in the following Justification that the 

Sackur–Tetrode equation for the molar entropy of a mona-

tomic perfect gas, where the only motion is translation in three 

dimensions, is

S R
V

Nm
m

A

e= ⎛
⎝⎜

⎞
⎠⎟

ln
/5 2

3Λ
 

The value of Ni/N for the most probable distribution is given 

by the Boltzmann distribution:

N

N
i

i

=
−e βε

q  

and so

ln ln ln ln
N

N
i

i
i= − = − −−e βε βεq q

 

Therefore,

S k N k N

Nk Nk
i

i i

i

i= +

= +

∑ ∑β

β

ε

ε

lnq

q〈 〉 ln
 

Finally, because N〈ε〉 = U – U(0) and β = 1/kT, we obtain eqn 

60.3a.

To treat a system composed of N indistinguishable molecules, 

we need to reduce the weight W  by a factor of 1/N!, because the 

N! permutations of the molecules among the states result in the 

same state of the system. Then, because ln(W/N!) = ln W – ln N!, 

the equation in the first line of this Justification becomes

ln ln ln ln !

ln ln ln

W = − −

= − −
∑

∑

∑ ∑

−

N N N N N

N N N N N N

i

i i

i

i

i

i i

 

 

N N N

Ni i

ln




++

= − +∑

N

N N N

i

i i ln

 

where we have used Stirling’s approximation to write ln N! =  

N ln N – N. As before, we replace Ni by the Boltzmann value, 

N Ni
i= −e βε /q :

i

i i

i

i iN N N N

N N N N

N N
N

∑ ∑= − −

= − −

= − −

ln ln ln

ln ln

ln

( )βε

β ε

β ε

q

q
q

〈 〉

〈 〉
 

The entropy in this case is therefore

S Nk Nk
N

Nk= + +β ε〈 〉 ln
q

 

Now note that Nk can be written Nk ln e and Nk ln q/N +  

Nk ln e = Nk ln qe/N, which gives eqn 60.3b.

Independent, 
distinguishable 
particles, M ≠ T

Entropy 
due to 
mode M

 (60.3c)

Monatomic 
perfect gas

Sackur–
Tetrode 
equation

(60.6a)

General interacting 
system

Entropy (60.5)
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60 The statistical entropy  603

where Λ is the thermal wavelength introduced in Topic 52 

(eqn 52.7b, Λ = h/(2πmkT)1/2). To calculate the standard molar 

entropy, we note that Vm = RT/p, and set p = p<:

S R
RT

p N
R

kT

pm
A

e e<
< <

= ⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

ln ln
/ /5 2

3

5 2

3Λ Λ
 

(60.6b)

We have used R/NA = k. These expressions are based on the 

high-temperature approximation of the partition functions, 

which assumes that many levels are occupied; therefore, they 

do not apply when T is equal to or very close to zero.

The implications of eqn 60.6 are as follows:

Because the molecular mass appears in the numerator 

(because it appears in the denominator of Λ), the molar 

entropy of a perfect gas of heavy molecules is greater 

than that of a perfect gas of light molecules under 

the same conditions.

Because the molar volume appears in the numerator, 

the molar entropy increases with the molar volume 

of the gas.

Because the temperature appears in the numerator 

(because, like m, it appears in the denominator of 

Λ), the molar entropy increases with increasing 

temperature.

We can understand the first feature in terms of the energy levels 

of a particle in a box being closer together for heavy particles 

than for light particles, so more states are thermally accessible. 

The reason for the second feature is similar: large containers 

have more closely spaced energy levels than small containers, 

so once again more states are thermally accessible. The reason 

for the third feature is that more energy levels become acces-

sible as the temperature is raised.

The Sackur–Tetrode equation written in the form

S nR
V

nN
nR aV a

nN
= = =ln ln ,

/ /e e

A A

5 2

3

5 2

3Λ Λ
 

implies that when a monatomic perfect gas expands isother-

mally from Vi to Vf , its entropy changes by

ΔS nR aV nR aV

nR
V

V

=

=

−ln ln

ln

f i

f

i  

This expression, which is plotted in Fig. 60.1, shows that the 

entropy of a perfect gas increases logarithmically with volume 

(because more energy levels become accessible as they become 

less widely spaced), and that the increase is independent of the 

identity of the gas (because the factor a has cancelled). As shown 

in Topic 62, the same expression is obtained starting from the 

thermodynamic definition of entropy and is illustrated there.

(c) The rotational contribution
The rotational contribution to the molar entropy, Sm

R , can be 

calculated once we know the molecular partition function. For 

a linear molecule, the high-temperature limit of q is kT hcB/σ �  

(eqn 52.13) and the equipartition theorem gives the rotational 

Brief illustration 60.4 Molar entropy of a gas

To calculate the standard molar entropy of gaseous argon at 

25 °C, we use eqn 60.6b with Λ = h/(2πmkT)1/2. The mass of an 

Ar atom is m = 39.95mu. At 25 °C, its thermal wavelength is 

16.0 pm (by the same kind of calculation as in Brief illustration 

52.2) and kT = 4.12 × 10−21 J. Therefore,

S Rm

J e

Nm m
< =

× ×
× ×

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭

−

− −ln
( . )

( ) ( . )

/4 12 10

10 1 60 10

21 5 2

5 2 11 3 ⎪⎪
= = − −18 6 155 1 1. R JK mol

We can anticipate, on the basis of the number of accessible 

states for a lighter molecule, that the standard molar entropy 

of Ne is likely to be smaller than for Ar; its actual value is 

17.60R at 298 K.

Self-test 60.4 Calculate the translational contribution to the 

standard molar entropy of H2 at 25 °C.

Answer: 14.2R

P
h
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ti
o

n

Justification 60.2 The Sackur–Tetrode equation

We start with eqn 60.3b for a collection of independent, 

indistinguishable particles and write N = nNA, where NA 

is Avogadro’s constant. The only mode of motion for a gas 

of atoms is translation, and, as shown in Brief illustration 

55.2, U U nRT− =( )0 3
2

. The partition function is q = V/Λ3 

(eqn 52.10b), where Λ is the thermal wavelength. Therefore,

S
U U

T
Nk

N
nR Nk

V

nN

nR

= − + = +

=

( )
ln ln

0 3
2 3

3
2

3
2

ln e3/2

nRT

nR
��� ��


qe e

AΛ




+

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=ln ln

/V

N
nR

V

N
m

A

m

A

e e

Λ Λ3

5 2

3

 

where Vm = V/n is the molar volume of the gas and we have 

used 3
2

= lne3/2. Division of both sides by n then results in eqn 

60.6a.

Perfect 
gas, 
isother-
mal 

Change of 
entropy 
on expan-
sion

 (60.7)
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604 13 The Second and Third Laws of thermodynamics

contribution to the molar internal energy as RT; therefore, 

from eqn 60.3c,

S
U U

T
R

RT
kT hcB

R
m
R m m= − +( )

ln

/
0

� �� ��

 �

q
σ

 

and the contribution at high temperatures is

S R
kT

hcB
m
R = +⎧

⎨
⎩

⎫
⎬
⎭

1 ln
σ �

 

Recall (Topic 52) that θ R = hcB k� / . In terms of this rotational 

temperature,

S R
T

m
R = +⎧

⎨
⎩

⎫
⎬
⎭

1 ln
σθ R

 

This function is plotted in Fig. 60.2. We see that:

The rotational contribution to the entropy increases 

with temperature because more rotational states 

become accessible.

The rotational contribution is large when �B  is small, 

because then the rotational energy levels are close 

together.

Thus, large, heavy molecules have a large rotational contribu-

tion to their entropy. As we show in the following Brief illustra-

tion, the rotational contribution to the molar entropy of 35Cl2 is 

58.6 J K−1 mol−1, whereas that for H2 is only 12.7 J K−1 mol−1. We 

can regard Cl2 as a more rotationally disordered gas than H2, 

in the sense that at a given temperature Cl2 occupies a greater 

number of rotational states than H2 does.

Equation 60.8 is valid at high temperatures (T � θR); to track 

the rotational contribution down to low temperatures it would 

be necessary to use the full form of the rotational partition 

function (Topic 52; see Problem 60.1); the resulting curve has 

the form shown in Fig. 60.2. We see, in fact, that the approxi-

mate curve matches the exact curve very well for T/θ R greater 

than about 1.

(d) The vibrational contribution
The vibrational contribution to the molar entropy, Sm

V, is 

obtained by combining the expression for the molecular 

Linear molecule, 
high temperature 
(T � θR) 

Rotational 
contribution

 (60.8a)

Linear molecule, 
high temperature 
(T � θR) 

Rotational 
contribution  (60.8b)

Brief illustration 60.5 The rotational contribution 
to the entropy

The rotational contribution for 35Cl2 at 25 °C, for instance, 

is calculated by noting that σ = 2 for this homonuclear dia-

tomic molecule and taking �B =0 2441.  cm 1−  (corresponding to 

24.42 m−1). The rotational temperature of the molecule is

θ R
Js ms m

JK
=

× × × ×
×

− − −

−

( . ) ( . ) ( . )

.

6 626 10 2 998 10 24 42

1 381 10

34 8 1 1

23 −−

=

1

0 351. K

Therefore,

S R Rm
R

K

K
JK mol= + ×

⎧
⎨
⎩

⎫
⎬
⎭

= = − −1
298

2 0 351
7 05 58 6 1 1ln

( . )
. .

Self-test 60.5 Calculate the rotational contribution to the 

molar entropy of H2 at 25 °C.

Answer: 12.7 J K−1 mol−1
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1 10 20 30
0

1

2
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4
ΔS

/n
R

Vf /Vi

Figure 60.1 The logarithmic increase in entropy of a perfect 
gas as it expands isothermally.
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1
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Temperature, T/θR

E
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 S
/N

k

Exact

Approximate

Figure 60.2 The variation of the rotational contribution to the 
entropy of a linear molecule (σ  = 1) using the high-temperature 
approximation and the exact expression (the latter evaluated 
up to J = 20).
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60 The statistical entropy  605

partition function (eqn 52.15, qV = 1/(1 – e−βε)) with the expres-

sion for the mean energy (eqn 53.8, 〈εV〉 = ε /(eβε – 1)), to obtain

S
U U

T
R

N k
R

N

k

R

m
V m m V

A

A
V

e e

= − +

=
−

+
− −

( )
ln

ln

/

0

1

1

1

1

〈 〉ε

β

βε β
βε

� �� ��

�




q

εε

βε
βεβε=

−
− −⎧

⎨
⎩

⎫
⎬
⎭

−R
e

e
1

1ln( )

 

Now we recognize that ε = hc��  and obtain

S R
hc

hc
hc

m
V =

−
− −⎧

⎨
⎩

⎫
⎬
⎭

−β
β

β�
�

��
�

�

e
e

1
1ln( )

 

Once again it is convenient to express this formula in terms of a 

characteristic temperature, in this case the vibrational tempera-

ture θ V = hc k��/ :

S R
T

T

T
m
V =

−
− −

⎧
⎨
⎩

⎫
⎬
⎭⎪

−θ
θ

θ
V/

e
eV

V

/

/ln( )
1

1

 

This function is plotted in Fig. 60.3. As usual, it is helpful to 

interpret it, with the graph in mind:

Both terms multiplying R become zero as T → 0, so 

the entropy is zero at T = 0.

The molar entropy rises as the temperature is 

increased as more vibrational states become 

accessible.

The molar entropy is higher at a given temperature for 

molecules with heavy atoms or low force constant than 

one with light atoms or high force constant. The 

vibrational energy levels are closer together in the former 

case than in the latter, so more are thermally accessible.

(e) The electronic contribution

As in the calculation of the electronic contribution to the 

internal energy, in most cases molecules are in their elec-

tronic ground state at normal temperatures and excited states 

are thermally inaccessible. However, in some cases a limited 

number of excited states are accessible, and we need to take 

their contribution into account, just as we did for the internal 

energy.

If the ground electronic state is gE-fold degenerate and there 

are no other thermally accessible states, then we know at once 

that q E = gE, and so the contribution to the molar entropy is

S
U U

T
R

g

m
E m m E

E

= − +( )
ln

0

0� �� ��


q

 

That is,

S R gm
E = ln E

 

If some excited states are thermally accessible, then we proceed 

as in the case of the calculation of molecular energy, and write 

the partition function for the species specifically, taking into 

account the degeneracies of the levels.

Vibrational 
contribution 
to the entropy

 (60.9a)

Vibrational 
contribution to 
the entropy

 (60.9b)
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Brief illustration 60.6 The vibrational contribution 
to the entropy

The vibrational wavenumber of I2 is 214.5 cm−1, corresponding 

to 2.145 × 104 m−1, so its vibrational temperature is

θ V
Js ms m

=
× × × × ×

×

− − −

−

( . ) ( . ) ( . )

.

6 626 10 2 998 10 2 145 10

1 381 10

34 8 1 4 1

223 1

309

JK

K

−

=  

Therefore, at 25 °C, for instance, βε = 1.036 (Example 53.4), so 

Sm
V =8 38.  J K  mol1 1− − .

S R Rm
V /

e
e JK=

−
− −⎧

⎨
⎩

⎫
⎬
⎭

= =− −309 298

1
1 1 01 8 38

309 298
309 298

/
/ln( ) . . 11 1mol−

 

Self-test 60.6 Calculate the vibrational contribution to the 

molar entropy of 1H2 at 25 °C (θ V = 6332 K).

Answer: 0.11 μJ K−1

Degenerate 
ground state 

Electronic 
contribution to 
the entropy

 (60.10)
0

0
Temperature, T/θV

10

2

4

E
n

tr
o

p
y,

 S
m
/R

5

1

3

Figure 60.3 The temperature variation of the molar entropy 
of a collection of harmonic oscillators (expressed here as a 
multiple of R). The entropy approaches zero as T → 0, and 
increases without limit as T → ∞.
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606 13 The Second and Third Laws of thermodynamics

As in the calculation of the electronic contribution to molec-

ular energies, the explicit expression for a two-level system is 

instructive, for instance, if considering the spin state of a dou-

blet species. The partition function and mean energy (with the 

superscript S denoting spin) are

q S Se
e

= + =
+

−1
1

βε
βεε ε〈 〉

 

The contribution to the molar entropy is therefore, with 

1/T = kβ, simply

S Rm
S

e
e=

+
+ +⎧

⎨
⎩

⎫
⎬
⎭

−βε
βε

βε

1
1ln( )

 

 Two-level system  (60.11)

This awkward function is plotted in Fig. 60.4. It should be noted 

that as T → ∞ (corresponding to β → 0), the molar entropy 

approaches R ln 2. For an application of this expression, see 

Problem 60.6.

Checklist of concepts

☐ 1. The statistical definition of the entropy is given by the 

Boltzmann formula.

☐ 2. The statistical entropy has properties that coincide with 

those of the thermodynamic entropy.

☐ 3. The statistical entropy is a measure of the number of 

states that are occupied at a given temperature.

☐ 4. The Boltzmann formula for the entropy can be con-

verted into an expression for the entropy in terms of the 

molecular partition function.

☐ 5. Standard molar entropies can be calculated by sub-

stituting calculated or spectroscopically determined 

structural parameters into the partition function.

☐ 6. The statistical entropy is the sum of contributions 

from individual modes of motion (provided they are 

independent).

☐ 7. The Sackur–Tetrode equation gives the standard molar 

entropy of a perfect gas.

Example 60.1 Calculating the electronic contribution 
to the entropy

This example is a continuation of Example 53.1, where we con-

sider an atom that has a doubly degenerate electronic ground 

state and a fourfold degenerate excited state at 600 cm−1 above 

the ground state. What is the electronic contribution to the 

molar entropy at 25 °C?

Method The partition function and mean energy are calcu-

lated in Example 53.1, so all we need do is import them into 

the expression for the molar entropy, eqn 60.3c. As in that 

example, use kT/hc = 207.226 cm−1 at 25 °C.

Answer The partition function is

q E e e

e

= + = +
= + =

− −

−

2 4 2 4

2 4 2 221600 207 226

βε hc kT��/

/ . .  

and the mean molar energy is

N hc
N hc

N hc
hc kTA

E A
Ae

cm〈 〉�
�

��
�

�
=

+
= × −

1
2

1

1
59 7

/
( . )

 

The contribution to the entropy is therefore

S
U U

T
R

N khc

k

N hc

R

m
E m m E

A

cmA

cm

= − +

=

×

−

−

( )
ln
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( . )
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−
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.
ln . . .

q E
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1
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Self-test 60.7 Repeat the problem for an atom that has a 

threefold degenerate ground state and a sevenfold degenerate 

excited state 400 cm−1 above.

Answer: 1.88R, 15.6 J K−1 mol−1

0
Temperature, kT/εTemperature, kT/ε

5 10

ln 2

0

E
n

tr
o

p
y,

 S
m
/R

0.5

1

0 0.5 1

Figure 60.4 The temperature variation of the molar entropy of 
a two-level system (expressed as a multiple of R). As T → ∞, the 
two states become equally populated and the molar entropy 
approaches R ln 2.
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60 The statistical entropy  607

Checklist of equations

Property Equation Comment Equation number

Boltzmann formula S = k ln W Definition 60.1

Entropy S = {U(T) – U(0)}/T + Nk ln q Independent, distinguishable particles 60.3a

S = {U(T) – U(0)}/T + Nk ln (qe/N) Independent, indistinguishable particles 60.3b

S = {U(T) – U(0)}/T + k ln Q General case 60.5

Sackur–Tetrode equation S  = nR ln aV, a = e5/2/nNAΛ3 Monatomic perfect gas 60.6

Rotational contribution S R Tm
R R/= +{ ln( )}1 σθ Linear molecule, T � θ R 60.8

Vibrational contribution S R T T T
m
V V/ e e

V V

= − −{ }− −( )/( ) ln( )/ /θ θ θ1 1 Harmonic approximation 60.9

Electronic contribution S R gm
E E= ln Degenerate ground state (the only thermally 

accessible states)
60.10

Two-level system Sm = R{β ε/(eβε +1) + ln(1 + e–βε)} 60.11
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TOPIC 61

The thermodynamic entropy

The thermodynamic definition of entropy can be motivated 

in a variety of ways. One is developed in Topic 60, where it is 

shown that the Boltzmann formula for the entropy (S = k ln W ) 

implies that

d
d revS
q

T
=

 
Definition  Entropy change  (61.1)

Whereas in Topic 60 this equation is derived from statistical 

considerations, in this Topic we take it as a definition.

The definition in eqn 61.1 has a straightforward physical 

interpretation. The change in entropy is proportional to the 

energy transferred as heat, for that stimulates greater thermal 

disorder in the system. However, the change in entropy brought 

about by a given transfer of energy as heat is greater at low tem-

peratures than at high. The temperature at which the transfer 

occurs is a measure of the thermal disorder already present, 

and a given transfer of energy has a greater impact at low tem-

perature (when the disorder initially present is small) than at 

high (when the disorder initially present is great).

For a measurable change between two states i and f, eqn 61.1 

integrates to

ΔS
q

T
=∫ d rev

i

f

 
 Measurable entropy change  (61.2)

That is, to calculate the difference in entropy between any 

two states of a system from thermodynamic data, we iden-

tify a reversible path between them, and integrate the energy 

supplied as heat at each stage of the path divided by the 

temperature at which the heating occurs. Several examples 

of this procedure are given in the following sections and in 

Topic 62.

61.1 The entropy as a state function

Entropy is a state function. That is evident from the statistical 

definition in Topic 60, but is it true of the thermodynamic defi-

nition? To prove that it is, we need to show that the integral of 

dS between two specified states is independent of path. To do 

Contents

61.1 The entropy as a state function 608

(a) The Carnot cycle 609

Brief illustration 61.1: The Carnot cycle 610

(b) The independence of working substance 610

Brief illustration 61.2: Thermal efficiency 611

(c) Generalization to any cycle 611

61.2 The thermodynamic temperature 612

Brief illustration 61.3: The thermodynamic  

temperature 612

61.3 The Clausius inequality 612

Example 61.1: Using the Clausius inequality 612

61.4 Entropy changes in the surroundings 613

Brief illustration 61.4: Entropy change in the  

surroundings 613

Checklist of concepts 614

Checklist of equations 614

 ➤ Why do you need to know this material?
Because calculations of the entropy from its statistical 
definition are difficult, you also need to know how to 
apply calorimetric data to the study of entropy changes 
associated with chemical reactions.

 ➤ What is the key idea?
The thermodynamic entropy, a state function, is defined in 
terms of the heat supplied reversibly to a system.

 ➤ What do you need to know already?
This Topic makes use of the concepts of heat, reversibility, 
and state function (Topic 55). It refers to the work done 
during reversible isothermal and adiabatic expansion of a 
perfect gas (Topics 55 and 58).
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61 The thermodynamic entropy  609

so, it is sufficient to prove that the integral of eqn 61.2 around 

an arbitrary cycle i → f → i is zero, for that guarantees that the 

entropy is the same at the initial and final states of the system 

regardless of the path taken between them (Fig. 61.1). That is, 

we need to show that

d revq

T
=∫ 0�

 
(61.3)

where the symbol # … denotes integration around a closed 

path. The mathematical interpretation of eqn 61.3 is that 

whereas dqrev is an incomplete differential, in the sense that 

its integral depends on the path of integration (as explained 

in Topic 55), multiplication by 1/T, which in calculus is 

called  an ‘integrating factor’, converts it into a complete 

(exact) differential (see Mathematical background 8). This 

mathematical viewpoint can be regarded as another motiva-

tion of the definition in eqn 61.1, with the presence of 1/T 

ensuring that dS is an exact differential with a path-inde-

pendent integral.

There are three steps in the argument that shows that dS is 

an exact differential (a consequence of 1/T being an integrating 

factor of dqrev) and therefore that S is a state function:

First, show that eqn 61.3 is true for a special cycle (a 

‘Carnot cycle’) involving a perfect gas.

Then show that the result is true whatever the working 

substance, not just a perfect gas.

Finally, show that the result is true for any reversible 

cycle.

(a) The Carnot cycle
A Carnot cycle, which is named after the French engineer Sadi 

Carnot, consists of four reversible stages (Fig. 61.2):

1. Reversible isothermal expansion from A to B at Th; the 

entropy change is qh/Th, where qh is the heat supplied 

from the hot source.

2. Reversible adiabatic expansion from B to C. No 

energy leaves the system as heat, so the change in 

entropy is zero. In the course of this expansion, the 

temperature falls from Th to Tc, the temperature of the 

cold sink.

3. Reversible isothermal compression from C to D at Tc. 

Energy is released as heat to the cold sink; the 

corresponding change in entropy is qc/Tc; in this 

expression qc is negative.

4. Reversible adiabatic compression from D to A. No energy 

enters the system as heat, so the change in entropy is 

zero. The temperature rises from Tc to Th.

The total change in entropy around the cycle is

d h

h

c

c

h

h

c

c

S
q

T

q

T

q

T

q

T
= + + + = +∫

1
2

3
4

0 0











�

However, we show in the Justification below that for a per-

fect gas

q

q

T

T

q

T

q

T
h

c

h

c

h

h

c

c

or= − = −,
 

 Perfect gas, reversible change  (61.4)

Substitution of this relation into the preceding equation gives 

zero on the right, which is what we wanted to prove.

Pr
es

su
re

, p

Volume, V

Adiabat

AdiabatIsotherm

Isotherm

1

2
3

4

A

B

C

D

Figure 61.2 The basic structure of a Carnot cycle. In Step 1, 
there is isothermal reversible expansion at the temperature 
Th. Step 2 is a reversible adiabatic expansion in which the 
temperature falls from Th to Tc. In Step 3 there is an isothermal 
reversible compression at Tc, and that isothermal step is 
followed by an adiabatic reversible compression (Step 4), which 
restores the system to its initial state.

Pr
es

su
re

, p

Volume, V

Initial state

Final state

Figure 61.1 In a thermodynamic cycle, the overall change in a 
state function (from the initial state to the final state and then 
back to the initial state again) is zero.
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610 13 The Second and Third Laws of thermodynamics

(b) The independence of working substance

In the second step we need to show that eqn 61.4 applies to any 

material, not just a perfect gas. We begin this step of the argu-

ment by introducing the efficiency, η (eta), of a ‘heat engine’, a 

device (like that treated in Brief illustration 61.1) in which heat 

is converted into work:

η = =
work performed

heat absorbed
h

w

q
 

Definition  Efficiency  (61.5)

The modulus signs (|…|) are included to ensure that the effi-

ciency is a positive number. The definition implies that the 

greater the work output for a given supply of heat from the hot 

reservoir, the greater is the efficiency of the engine.

The efficiency can be expressed in terms of the heat transac-

tions alone, because (as shown in Fig. 61.3) the energy supplied as 

work by the engine is the difference between the energy supplied 

as heat by the hot reservoir and returned to the cold reservoir:

w q q= −h c

We have used absolute values because keeping track of signs 

can be tricky. Then the efficiency is

η =
−

= −
q q

q

q

q

h c

h

c

h

1

 

(61.6)

It then follows from eqn 61.4 in the form |qc|/|qh| = |Tc|/|Th| that

η = −1
T

T
c

h  
Reversible change  Carnot efficiency  (61.7)

Justification 61.1 Heating accompanying reversible 
adiabatic expansion

As explained in Topic 55, for a perfect gas,

q nRT
V

V
q nRT

V

Vh h
B

A
c c

D

C

= =ln ln

The temperatures Th and Tc lie on the same adiabat in Fig. 

61.2. From the relations between temperature and volume 

for reversible adiabatic processes (eqn 58.17, summarized as 

VTc = constant with c = CV,m/R):

V T V T V T V Tc c c
A h D c C c B h

c= =

Multiplication of the first of these expressions by the second 

gives

V V T T V V T Tc c c c
A C h c D B h c=

which simplifies to

V

V

V

V
A

B

D

C

=

Consequently,

q nRT
V

V
nRT

V

V
nRT

V

Vc c
D

C
c

A

B
c

B

A

= = = −ln ln ln

and therefore

q

q

nRT V V

nRT V V

T

T
h

c

h B A

c B A

h

c

= − = −ln( / )

ln( / )

as in eqn 61.4.

Brief illustration 61.1 The Carnot cycle

The Carnot cycle can be regarded as a representation of the 

changes taking place in an actual idealized engine, where 

heat is converted into work. (However, other cycles are closer 

approximations to real engines.) In an engine running in 

accord with the Carnot cycle, 100 J of energy is withdrawn 

from the hot source (qh = +100 J) at 500 K and some is used 

to do work, with the remainder deposited in the cold sink at 

300 K. According to eqn 61.4, the amount of heat deposited is

q q
T

T
c

c h
h

J
K

K
J= − × = − × = −100

300

500
60

That means that 40 J was used to do work.

Self-test 61.1 How much work can be extracted when the tem-

perature of the hot source is increased to 800 K?

Answer: 62 J

Cold sink

Hot source

qc

qh

Th

Tc

20

15

5
w

 

Figure 61.3 Suppose an energy qh (for example, 20 kJ) is supplied 
to the engine and qc is lost from the engine (for example, 
qc = –15 kJ) and discarded into the cold reservoir. The work 
done by the engine is equal to qh + qc (for example, 20 kJ + (–15 
kJ) = 5 kJ). The efficiency is the work done divided by the energy 
supplied as heat from the hot source (in this case, 5 kJ/20 kJ = 0.25).
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61 The thermodynamic entropy  611

Now we are ready to generalize to any working substance. 

The Second Law of thermodynamics implies that all reversible 

engines working between two reservoirs with fixed temperatures 

have the same efficiency regardless of their construction. To see 

the truth of this statement, suppose two reversible engines are 

coupled together and run between the same two reservoirs 

(Fig. 61.4). The working substances and details of construction 

of the two engines are entirely arbitrary. Initially, suppose that 

engine A is more efficient than engine B, and that we choose 

a setting of the controls that causes engine B to take energy 

as heat from the cold reservoir and to release a certain quan-

tity of energy as heat into the hot reservoir. However, because 

engine A is more efficient than engine B, not all the work that 

A produces is needed for this process, and the difference can 

be used to do work. The net result is that the cold reservoir is 

unchanged, work has been done, and the hot reservoir has lost 

a certain amount of energy. This outcome is contrary to the 

Kelvin statement of the Second Law (Topic 59), because some 

heat has been converted directly into work, and so the initial 

assumption that engines A and B can have different efficien-

cies must be false. It follows that the relation between the heat 

transfers and the temperatures must also be independent of the 

working material, and therefore that eqn 61.7 is true for any 

substance involved in a Carnot cycle.

(c) Generalization to any cycle
For the final step in the argument, we note that any reversible 

cycle can be approximated as a collection of Carnot cycles and 

the cyclic integral around an arbitrary path is the sum of the 

integrals around each of the Carnot cycles (Fig. 61.5). This 

approximation becomes exact as the individual cycles are 

allowed to become infinitesimal. The entropy change around 

each individual cycle is zero, so the sum of entropy changes for 

all the cycles is zero. However, in the sum, the entropy change 

along any individual path is cancelled by the entropy change 

along the path it shares with the neighbouring cycle. Therefore, 

all the entropy changes cancel except for those along the perim-

eter of the overall cycle. That is,

all

rev

perimeter

rev∑ ∑= =q

T

q

T
0

In the limit of infinitesimal cycles, the non-cancelling edges of 

the Carnot cycles match the overall cycle exactly, and the sum 

Brief illustration 61.2 Thermal efficiency

A certain power station operates with superheated steam 

at 300 °C (Th = 573 K) and discharges the waste heat into the 

environment at 20 °C (Tc = 293 K). The theoretical efficiency is 

therefore

η = − =1
293

573
0 489 48 9

K

K
or per cent. , .

In practice, there are other losses due to mechanical friction 

and the fact that the turbines do not operate reversibly.

Self-test 61.2 At what temperature of the hot source would the 

theoretical efficiency reach 80 per cent?

Answer: 1465 K

Cold sink

qc
qc

qh qh’

Tc

ww

qq

B

Cold sink

qc
qc

qh qh’

Tc

w

q

Hot source Th

A B A

qqh – qh’

w

Hot source Th

A

(a) (b)

Figure 61.4 (a) The demonstration of the equivalence of 
the efficiencies of all reversible engines working between 
the same thermal reservoirs is based on the flow of energy 
represented in this diagram. (b) The net effect of the processes 
is the conversion of heat into work without there being a need 
for a cold sink: this is contrary to the Kelvin statement of the 
Second Law.

Pr
es

su
re

, p

Volume, V

Figure 61.5 A general cycle can be divided into small Carnot 
cycles. The match is exact in the limit of infinitesimally small 
cycles. Paths cancel in the interior of the collection, and only 
the perimeter, an increasingly good approximation to the 
true cycle as the number of cycles increases, survives. Because 
the entropy change around every individual cycle is zero, the 
integral of the entropy around the perimeter is zero too.
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612 13 The Second and Third Laws of thermodynamics

becomes an integral. Equation 61.3 then follows immediately. 

This result implies that dS is an exact differential and therefore 

that S is a state function.

61.2 The thermodynamic 
temperature

The discussion of the efficiency of heat engines opens up the 

opportunity to establish a temperature scale that is independ-

ent of any working substance. Suppose we have an engine that is 

working reversibly between a hot source at a temperature Th and 

a cold sink at a temperature T. Then we know from eqn 61.7 that

T T= −( )1 η h  
 Thermodynamic temperature  (61.8)

This expression enabled Kelvin to define the thermodynamic 

temperature scale in terms of the efficiency of a heat engine, 

which in principle can be measured by observing the rise and 

fall of weights in a gravitational field. That is, it can be put on a 

purely mechanical basis.

The zero of the scale, T = 0, occurs for a Carnot efficiency of 1. 

The size of the unit to report other temperatures is entirely arbi-

trary, but until recently (2011) the Kelvin scale was defined by 

setting the temperature of the triple point of water as 273.16 K 

exactly (Topic 67). It is now (in 2014) intended to define the 

kelvin in a more abstract manner by setting Boltzmann’s con-

stant at an exact, defined value.

61.3 The Clausius inequality

We now show that the thermodynamic definition of entropy, 

like the statistical definition (Topic 60), is consistent with the 

Second Law (Topic 59). To begin, we recall that more energy 

flows as work under reversible conditions than under irrevers-

ible conditions. That is,

− ≥ − − ≥d d or d drev revw w w w, 0

where the equal sign applies when the process is reversible. 

Because the internal energy is a state function, its change is the 

same for irreversible and reversible paths between the same 

two states, so we can also write

d d d d drev revU q w q w= + = +

It follows that

d d d d or d drev rev revq q w w q q− = − ≥ ≥0,

and therefore, on dividing by T, that

d drevq

T

q

T
≥

Now we use the thermodynamic definition of the entropy (eqn 

61.1, dS = dqrev/T) to write

d
d

S
q

T
≥

 
 Clausius inequality  (61.9)

This expression is the Clausius inequality. The equality 

refers  to a reversible change and the greater-than sign to 

an irreversible change. It proves to be of great importance 

for the discussion of the spontaneity of chemical reactions 

(Topic 73).

Brief illustration 61.3 The thermodynamic temperature

A heat engine was constructed that used a hot source at the 

triple-point temperature of water and used as a cold source 

a cooled liquid. The efficiency of the engine was measured as 

0.400. The temperature of the liquid is therefore

T = − × =( )  K K1 0 400 273 16 164. ( . )
 

Self-test 61.3 What temperature would be reported for the hot 

source if a thermodynamic efficiency of 0.500 was measured 

when the cold sink was at 273.16 K?

Answer: 546 K

Example 61.1 Using the Clausius inequality

Use the Clausius inequality to show that the transfer of heat 

from hot to cold is spontaneous.

Method Consider the transfer of energy as heat from one 

system—the hot source—at a temperature Th to another sys-

tem—the cold sink—at a temperature Tc (Fig. 61.6) and show 

that the Clausius inequality implies that dS > 0.

Answer When heat leaves the hot source, the Clausius ine-

quality implies that the entropy of the hot source changes 

by dSh≥ dqh/Th. In this case, because heat leaves the source, 

dqh < 0, so dqh = –|dqh|. When heat enters the cold sink the 

Clausius inequality implies that the entropy of the cold sink 

changes by dSc ≥ dqc/Tc. In this case, because heat enters the 

sink dqc > 0, so dqc = |dqc|. Overall, therefore, the entropy 

change dS = dSh + dSc is

d
d d d d

h

h

c

c

h

h

c

c

S
q

T

q

T

q

T

q

T
≥ + = − +
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61 The thermodynamic entropy  613

We now suppose that the system is isolated from its sur-

roundings, so that dq = 0. The Clausius inequality implies that

dS ≥ 0  (61.10)

and we conclude that in an isolated system the entropy cannot 

decrease when a spontaneous change occurs. This statement cap-

tures the content of the Second Law (Topic 59).

61.4 Entropy changes in 
the surroundings

The definition in eqn 61.1 can be used to formulate an expres-

sion for the change in entropy of the surroundings, ΔSsur, which 

would be very difficult to evaluate statistically.

Consider an infinitesimal transfer of heat dqsur to the sur-

roundings. The surroundings consist of a reservoir of constant 

pressure and temperature, so the energy supplied to them as 

heat can be identified with the change in their enthalpy, dHsur. 

The enthalpy is a state function and dHsur is an exact differ-

ential. As we have seen, these properties imply that dHsur is 

independent of how the change is brought about and in par-

ticular is independent of whether the process is reversible 

or irreversible. The same remarks therefore apply to dqsur, to 

which dHsur is equal. Therefore, we can adapt the definition in 

eqn 61.1 to write

d
d d

sur
sur rev

sur

sur

sur

S
q

T

q

T
= =,

 
 Entropy change of surroundings  (61.11a)

Furthermore, because the temperature of the surroundings is 

constant however much heat enters them (they have infinite 

heat capacity), for a measurable change

ΔS
q

Tsur
sur

sur

=
 

 Entropy change of surroundings  (61.11b)

That is, regardless of how the change is brought about in the 

system, reversibly or irreversibly, we can calculate the change of 

entropy of the surroundings by dividing the heat transferred by 

the temperature at which the transfer takes place.

Equation 61.11 makes it very simple to calculate the changes 

in entropy of the surroundings that accompany any process. 

For instance, for any adiabatic change, qsur = 0, so

ΔSsur = 0
 

 Adiabatic change  (61.12)

This expression is true however the change takes place, revers-

ibly or irreversibly.

Brief illustration 61.4 Entropy change in the 
surroundings

To calculate the entropy change in the surroundings when 

1.00 mol H2O(l) is formed from its elements under standard 

conditions at 298 K, we use ΔH< = –286 kJ from Table 57.4. 

The energy released as heat is supplied to the surroundings, so 

qsur = +286 kJ. Therefore,

ΔSsur

J

K
JK= × = + −2 86 10

298
960

5
1.

This strongly exothermic reaction results in an increase in the 

entropy of the surroundings as energy is released into them as 

heat.

Self-test 61.5 Calculate the entropy change in the surround-

ings when 1.00 mol N2O4(g) is formed from 2.00 mol NO2(g) 

under standard conditions at 298 K.

Answer: –192 J K−1

However, because the same quantity of heat enters the sink as 

left the source, |dqh| = |dqc|, so

d
d d

d
c

h

c

c
c

c h

S
q

T

q

T
q

T T
≥ − + = −⎛

⎝⎜
⎞
⎠⎟

1 1

which is positive (because Th≥ Tc). Hence, cooling (the trans-

fer of heat from hot to cold) is spontaneous, as we know from 

experience.

Self-test 61.4 What is the change in entropy when 1.0 J of 

energy as heat transfers from a large block of iron at 30 °C to 

another large block at 20 °C?

Answer: +0.1 mJ K−1

Cold sink

Hot source

dq

Th

Tc
S

S dS = –|dq|/Th

dS = +|dq|/Tc

Figure 61.6 When energy leaves a hot reservoir as heat, the 
entropy of the reservoir decreases. When the same quantity 
of energy enters a cooler reservoir, the entropy increases 
by a larger amount. Hence, overall there is an increase in 
entropy and the process is spontaneous. Relative changes in 
entropy are indicated by the sizes of the arrows.
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614 13 The Second and Third Laws of thermodynamics

Checklist of concepts

☐ 1. The definition of thermodynamic entropy conforms to 

it being a state function, with 1/T an integrating factor.

☐ 2. A change in entropy may be calculated by finding a 

reversible route between the specified initial and final 

states of a system.

☐ 3. The change of entropy in the surroundings is cal-

culated by assessing the heat transferred to the 

surroundings.

Checklist of equations

Property Equation Comment Equation number

Entropy change dS = dqrev/T Definition 61.1

Carnot efficiency η = 1 − Tc/Th Reversible operation of heat engine 61.7

Thermodynamic temperature T = (1 − η)Th Definition 61.8

Clausius inequality dS ≥ dq/T Any change; equality for a reversible change 61.9

Entropy change of surroundings ΔSsur = qsur/Tsur Any change 61.11
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TOPIC 62

Entropy changes for 

specific processes

Here we see how to calculate the entropy changes that accom-

pany a variety of basic processes. In each case we develop the 

argument using classical thermodynamics (Topic 61, based 

on dS = dqrev/T), but relate each result to the statistical defini-

tion (Topic 60, based on S = k ln W  ). You should always keep 

in mind that the entropy of a system increases as more states 

become accessible, either through a rise in temperature (which 

extends the tail of the Boltzmann distribution) or because there 

is a change in the energy levels that brings more of them within 

reach.

62.1 Isothermal expansion 
of a perfect gas

Equation 61.2 of Topic 61,

ΔS
q

T
=∫ d rev

i

f  (62.1)

instructs us to find the energy supplied as heat for a reversible 

path between the stated initial and final states regardless of the 

actual manner in which the process in fact takes place. When 

the expansion is isothermal the temperature is a constant and 

may be taken outside the integral. The energy absorbed as heat 

during a reversible isothermal expansion of a perfect gas can be 

calculated from dU = dq + dw and, because the internal energy 

is independent of volume for an isothermal change (Topic 

58), we know that dU = 0. Therefore dq = –dw in general and 

therefore dqrev = –dwrev for a reversible change. The change in 

entropy of the gas is therefore

ΔS
q

T T
w

w

TV

V

V

V

= = − = −∫∫ d
drev

rev
rev

i

f

i

f 1

 

Contents

62.1 Isothermal expansion of a perfect gas 615

Brief illustration 62.1: The entropy change 

accompanying expansion 616

62.2 Phase transitions 616

Brief illustration 62.2: Trouton’s rule 617

62.3 Entropy changes on heating 617

Example 62.1: Calculating an entropy change 618

Checklist of concepts 619

Checklist of equations 619

 ➤ Why do you need to know this material?
This section shows how to put the equations developed 
in Topic 61 into practice. You will see how to calculate 
the entropy changes accompanying a variety of common 
processes. The expressions are used extensively in the 
discussion of the thermodynamics of chemical reactions.

 ➤ What is the key idea?
The entropy changes associated with physical and 
chemical processes may be calculated from data on 
enthalpy changes and heat capacities.

 ➤ What do you need to know already?
This Topic makes use of the equations developed in Topic 
61 for entropy changes for the system and surroundings. 
It also draws on the expression for the work done 
during reversible isothermal expansion of a perfect gas 
(Topic 55).
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616 13 The Second and Third Laws of thermodynamics

The work of reversible isothermal expansion (or compression) 

is calculated in Topic 55 as

w nRT
V

Vrev
f

i

= − ln
 

It follows that

ΔS nR
V

V
= ln f

i

 (62.2)

exactly as obtained by statistical arguments (Topic 60). In that 

case the increase in entropy on expansion is ascribed to the fact 

that the energy levels available to the molecules become closer 

as the container expands, so more can be populated at a given 

temperature.

An important point is that because S is a state function, 

the  value of ΔS of the system is independent of the path 

between the initial and final states, and eqn 62.2 applies 

whether the change of state occurs reversibly or irreversibly. 

The logarithmic dependence of entropy on volume is illus-

trated in Fig. 62.1.

The total change in entropy, the sum of the changes in the 

system and the surroundings, however, does depend on how 

the expansion takes place. For any process dqsur = –dq, and for 

a reversible isothermal change, we use q = nRT ln(Vf/Vi) (see 

Justification 61.1 of Topic 61), with the surroundings at the 

same temperature T as the system, to write

ΔS
q

T

q

T
nR

V

Vsur
sur f

i

= = − = − ln  (62.3)

This change is the negative of the change in the system, so we 

can conclude that ΔStot = 0, which is what we should expect for 

a reversible process.

If the isothermal expansion occurs freely (w = 0) and irre-

versibly, then q = 0 (because ΔU = 0). Consequently, ΔSsur = 0, 

and the total entropy change is

ΔS nR
V

Vtot
f

i

= ln  (62.4)

In this case, ΔStot > 0, as we expect for an irreversible process.

62.2 Phase transitions

The entropy of a substance changes when a substance freezes 

or boils as a result of changes in the orderliness with which the 

molecules pack together and the extent to which the energy is 

localized or dispersed. For example, when a substance vaporizes, 

a compact condensed phase changes into a widely dispersed gas 

and we can expect the entropy of the substance to increase con-

siderably. The entropy of a solid also increases when it melts to 

a liquid and when that liquid turns into a gas. Although we can 

understand the changes of entropy in these statistical, molecular 

terms, it is far easier to use classical thermodynamics to calcu-

late numerical values, and we shall do that here.

Consider a system and its surroundings at the normal tran-

sition temperature, Ttrs, the temperature at which two phases 

are in equilibrium at 1 atm. This temperature is 0 °C (273 K) 

for ice in equilibrium with liquid water at 1 atm, and 100 °C 

(373 K) for water in equilibrium with its vapour at 1 atm. At the 

transition temperature, any transfer of energy as heat between 

the system and its surroundings is reversible because the two 

phases in the system are in equilibrium. Because at constant 

pressure q = ΔtrsH, the change in molar entropy of the system is

Δ Δ
trs

trs

trs

S
H

T
=  (62.5)

Recall from Topic 57 that ΔtrsH is an enthalpy change per 

mole of substance; so ΔtrsS is also a molar quantity with units 

joules per kelvin per mole (J K−1 mol−1). If the phase transi-

tion is exothermic (ΔtrsH < 0, as in freezing or condensing), 

then the entropy change is negative. This decrease in entropy 

Perfect gas, 
isothermal

Entropy change 
on expansion

Brief illustration 62.1 The entropy change 
accompanying expansion

When the volume occupied by 1.00 mol of any perfect gas mol-

ecules is doubled at any constant temperature, Vf/Vi = 2 and

ΔS = × × = +( mol) (  J K mol ) ln JK1 00 8 3145 2 5 761 1 1. . .− − −
 

Self-test 62.1 Develop an expression for the change in entropy 

when the pressure of a perfect gas is changed isothermally 

from pi to pf.

Answer: ΔS = nR ln(pi/pf)

Perfect gas, 
free expansion, 
isothermal

Total entropy 
change

Constant pressure, at the 
transition temperature 

Entropy of 
transition

Perfect gas, 
reversible, 
isothermal

Entropy 
change of 
surroundings

1 10 20 30
0

1

2

3

4

ΔS
/n

R

Vf/Vi

Figure 62.1 The logarithmic increase in entropy of a perfect 
gas as it expands isothermally.
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62 Entropy changes for specific processes  617

is consistent with localization of matter and energy that accom-

panies the formation of a solid from a liquid or a liquid from 

a gas. If the transition is endothermic (ΔtrsH > 0, as in melting 

and vaporization), then the entropy change is positive, which 

is consistent with dispersal of energy and matter in the system.

Table 62.1 lists some experimental entropies of transi-

tion. Table 62.2 lists in more detail the standard entropies of 

vaporization of several liquids at their normal boiling points. 

An interesting feature of the data is that a wide range of liq-

uids give approximately the same standard entropy of vaporiza-

tion (about 85 J K−1 mol−1): this empirical observation is called 

Trouton’s rule. The explanation of Trouton’s rule is that a simi-

lar change in volume occurs (with an accompanying change in 

the number of accessible microstates) when any liquid evapo-

rates and becomes a gas at 1 bar. Hence, all liquids can be 

expected to have similar standard entropies of vaporization.

Liquids that show significant deviations from Trouton’s rule 

do so on account of strong molecular interactions that result 

in a partial ordering of their molecules. As a result, there is a 

greater change in disorder when the liquid turns into a vapour 

than for a fully disordered liquid. An example is water, where 

the large entropy of vaporization reflects the presence of struc-

ture arising from hydrogen-bonding in the liquid. Hydrogen 

bonds tend to organize the molecules in the liquid so that they 

are less random than, for example, the molecules in liquid 

hydrogen sulfide (in which there is little hydrogen bonding).

Methane has an unusually low entropy of vaporization. A 

part of the reason is that the entropy of the gas itself is slightly 

low (186 J K−1 mol−1 at 298 K); the entropy of N2 under the same 

conditions is 192 J K−1 mol−1. Small, light molecules have a low 

rotational contribution to their entropy because the rotational 

levels are far apart (Topic 41).

62.3 Entropy changes on heating

In Topic 60 it is explained that the translational, vibrational, 

and rotational contributions to the statistical entropy increase 

with temperature as more states become accessible. The ther-

modynamic definition can be used to draw the same conclu-

sion. Thus, from eqn 62.1, the expression

S T S T
q

TT

T

( ) ( )f i
revd

i

f

= +∫  (62.6)

is used to calculate the entropy of a system at a temperature 

Tf from a knowledge of its entropy at a temperature Ti and 

the heat supplied to change its temperature from one value to 

the other. We shall be particularly interested in the entropy 

change when the system is subjected to constant pressure 

(such as from the atmosphere) during the heating. Then, from 

the definition of constant-pressure heat capacity (Topic 56), 

dqrev = CpdT provided the system is doing no non-expansion 

work. Consequently, at constant pressure,

S T S T
C

T
T

p

T

T

( ) ( )f i d
i

f

= +∫  (62.7)

The same expression applies at constant volume, but with Cp 

replaced by CV. When Cp is independent of temperature in the 

Brief illustration 62.2 Trouton’s rule
There is no hydrogen bonding in liquid bromine and Br2 is a 

heavy molecule that is unlikely to display unusual behaviour 

in the gas phase, so it is safe to use Trouton’s rule. To pre-

dict the standard molar enthalpy of vaporization of bromine 

given that it boils at 59.2 °C, we use the rule in the form

Δvap b JK molH T< = ×( )85 1 1− −
 

Substitution of the data then gives

Δvap K JK mol Jmol

kJmol

H < = × =+ ×
=+

( . ) ( ) .332 4 85 2 8 10

28

1 1 4 1

1

− − −

−
 

The experimental value is +29.45 kJ mol−1.

Self-test 62.2 Predict the enthalpy of vaporization of ethane 

from its normal boiling point, −88.6 °C.

Answer: 16 kJ mol−1

Constant 
pressure

Entropy change 
on heating

Table 62.1* Standard entropies (and temperatures) of phase 
transitions, ΔtrsS</(J K−1 mol−1)

Fusion (at Tf) Vaporization (at Tb)

Argon, Ar 14.17 (at 83.8 K) 74.53 (at 87.3 K)

Benzene, C6H6 38.00 (at 279 K) 87.19 (at 353 K)

Water, H2O 22.00 (at 273.15 K) 109.1 (at 373.15 K)

Helium, He 4.8 (at 1.8 K and 30 bar) 19.9 (at 4.22K)

* More values are given in the Resource section.

Table 62.2* The standard entropies of vaporization of liquids

ΔvapH</
(kJ mol–1)

θ b/°C Tb/K ΔvapS</(J 
K–1 mol–1)

Benzene 30.8 80.1 353.3 87.2

Carbon tetrachloride 30 76.7 349.9 85.8

Cyclohexane 30.1 80.7 353.9 85.1

Hydrogen sulfide 18.7 –60.4 212.8 87.9

Methane 8.18 –161.5 111.7 73.2

Water 40.7 100.0 373.2 109.1

* More values are given in the Resource section.
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618 13 The Second and Third Laws of thermodynamics

temperature range of interest, it can be taken outside the inte-

gral and we obtain

S T S T C
T

Tp
T

T

( ) ( )f i d
i

f

= + ∫ 1
 

and therefore

S T S T C
T

Tp( ) ( ) lnf i
f

i

= +  (62.8)

with a similar expression for heating at constant volume. The 

logarithmic dependence of entropy on temperature is illus-

trated in Fig. 62.2.

The change of entropy with temperature is the basis of the 

calorimetric determination of entropies, which is described in 

Topic 63.

Constant pressure, 
Cp constant 

Entropy 
change on 
heating

Example 62.1 Calculating an entropy change

Calculate the entropy change when argon at 25 °C and 1.00 

bar in a container of volume 0.500 dm3 is allowed to expand to 

1.000 dm3 and is simultaneously heated to 100 °C.

Method Because S is a state function we are free to choose the 

most convenient path from the initial state. One such path is 

reversible isothermal expansion to the final volume, followed 

by reversible heating at constant volume to the final tempera-

ture (Fig. 62.3). The entropy change in the first step is given by 

eqn 62.2 and that of the second step, provided CV is independ-

ent of temperature, by eqn 62.8 (with CV in place of Cp). In each 

case we need to know n, the amount of gas molecules, and can 

calculate it from the perfect gas equation and the data for the 

initial state from n = piVi/RTi. The heat capacity at constant 

volume is given by the equipartition theorem as 3
2

R.  (The 

equipartition theorem is reliable for monatomic gases: for oth-

ers and in general use experimental data like that in Tables 

57.3 and 57.4 of the Resource section.) If necessary, convert Cp,m 

to CV,m by using the relation Cp, m – CV,m = R.

Answer Because n = piVi/RTi, from eqn 62.2

ΔS
pV

RT
R

V

V

pV

T

V

V

n

( )Step ln lni i

i

f

i

i i

i

f

i

1 = × =




 

The entropy change in the second step, from 298 K to 373 K at 

constant volume, from eqn 62.8 with CV replacing Cp, is

ΔS
pV

RT
R

T

T

pV

T

T

T

n CV

( ) ln

,

/

Step lni i

i

f

i

i i

i

f

i

m

2
3

2

3 2

= × × = ⎛
⎝⎜

⎞
⎠⎟


 


 

where we have used 3
2

3 2ln ln ./  x x=  The overall entropy 

change, the sum of these two changes, is

ΔS
pV

T

V

V

pV

T

T

T

pV

T

V

V

T

T
= + ⎛

⎝⎜
⎞
⎠⎟

= ⎛
⎝⎜

⎞i i

i

f

i

i i

i

f

i

i i

i

f

i

f

i

ln ln ln

/3 2

⎠⎠⎟
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

3 2/

 

At this point we substitute the data and obtain (by using 1 Pa 

m3 = 1 J)

ΔS =
× × × ⎛

⎝⎜
⎞
⎠⎟

−( . ) ( . )
ln

.

.

1 00 10 0 500 10

298

1 000

0 500

373

298

5 3 3Pa m

K

33 2

10 173

/

.

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= + −JK

 

A note on good practice It is sensible to proceed as gener-

ally as possible before inserting numerical data so that, if 

required, the formula can be used for other data; the pro-

cedure also minimizes rounding errors.

Self-test 62.3 Calculate the entropy change when the same 

initial sample is compressed to 50.0 cm3 and cooled to –25 °C.

Answer: –0.433 J K−1

Volume, V

Te
m

p
er

at
u

re
, T

Reversible isothermal expansion

R
ev

er
si

b
le

 h
ea

ti
n

g

(0.500 dm3,
25 °C)

(1.000 dm3,
100 °C)

Figure 62.3 The overall path and the constituent paths 
used to reach the same destination in the system treated in 
Example 62.1.

1 10 20 30
0
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10

15

ΔS
/n

R

Tf/Ti

1

2

3

4

Figure 62.2 The logarithmic increase in entropy of a substance 
as it is heated at constant volume. Different curves correspond 
to different values of the constant-volume molar heat capacity 
(which is assumed constant over the temperature range) 
expressed as CV,m/R.
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62 Entropy changes for specific processes  619

Checklist of concepts

☐ 1. The entropy of a perfect gas increases when it expands 

isothermally: the effect can be interpreted in terms of 

the separation of the translational energy levels becom-

ing smaller.

☐ 2. The entropy of a substance changes when a substance 

freezes or boils and is proportional to the enthalpy of 

transition at the transition temperature.

☐ 3. Trouton’s rule states that a wide range of liquids have 

approximately the same standard entropy of vaporiza-

tion (about 85 J K−1 mol−1).

☐ 4. The dependence of the entropy on temperature is log-

arithmic for substances with heat capacities that are 

independent of temperature.

Checklist of equations

Property Equation Comment Equation number

Entropy change on expansion of gas ΔS = nR ln(Vf /Vi) Isothermal, perfect gas 62.2

Entropy of transition ΔtrsS = ΔtrsH/Ttrs At the transition temperature 62.5

Entropy change on heating S T S T C T Tp
T

T

( ) ( ) ( / )f i

i

f

d= +∫ Constant pressure 62.7

Entropy change on heating S(Tf) = S(Ti) + Cp ln(Tf/Ti) Constant pressure, Cp a constant 62.8
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TOPIC 63

The Third Law

Topic 60 describes how to calculate the entropy of a substance 

from spectroscopic data. In this Topic we see how it may be 

measured calorimetrically. The procedure raises the question 

about matching the statistical and thermodynamic values, 

which is resolved by a series of experimental results summa-

rized by the ‘Third Law’ of thermodynamics.

63.1 The calorimetric measurement 
of entropy

The entropy of a system at a temperature T is related to its 

entropy at T = 0 by measuring its heat capacity Cp at different 

temperatures and evaluating the integral in Topic 62, which we 

repeat here for convenience:

S T S T
C

T
T

p

T

T

( ) ( )2 1
1

2

= +∫ d
 

(63.1)

It is also necessary to add the entropy of transition (ΔtrsH/Ttrs) 

for each phase transition between T = 0 and the temperature of 

interest. For example, if a substance melts at Tf and boils at Tb, 

then its entropy above its boiling temperature is given by

S T S
C

T
T

H

T

C

T
T

H

T

C

p
T

p

T

T
p

( ) ( )
( )

( ) (

= + +

+ + +

∫
∫

0
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s
d

l
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f

f

b

Δ

Δ gg
d

b

)

T
T

T

T

∫
 

(63.2)

where we have indicated the phases for the heat capacities. All 

the properties required, except S(0), can be measured calori-

metrically, and the integrals can be evaluated either graphically 

or, as is now more usual, by fitting a polynomial to the data 

and integrating the polynomial analytically or numerically. 

The former procedure is illustrated in Fig. 63.1: the area under 

the curve of Cp/T against T is the integral required. Because 

dT/T = d ln T, an alternative procedure is to evaluate the area 

under a plot of Cp against ln T.

Contents

63.1 The calorimetric measurement of entropy 620

Example 63.1: Evaluating a change in entropy 621

Example 63.2: Calculating the entropy at low  

temperatures 621

63.2 The Nernst heat theorem and the Third Law 622

Brief illustration 63.1: The Nernst heat theorem 622

Example 63.3: Estimating a residual entropy 622

63.3 Third-Law entropies 623

Brief illustration 63.2: Absolute and relative entropies 623

63.4 The standard reaction entropy 624

Brief illustration 63.3: The standard reaction entropy 624

Checklist of concepts 624

Checklist of equations 624

 ➤ Why do you need to know this material?
Much of chemical thermodynamics relies on knowing 
the entropies of substances. This Topic explains how 
entropies are measured. It also introduces the final law that 
completes the foundations of thermodynamics and allows 
thermodynamic properties to be determined and used.

 ➤ What is the key idea?
The entropies of all perfectly crystalline materials are zero 
at T = 0; heat capacity data are used to determine values of 
the entropy at T > 0.

 ➤ What do you need to know already?
This Topic is based on the thermodynamic definition of 
entropy (Topic 61) and the concept of heat capacity (Topics 
55 and 56).
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63 The Third Law  621

One problem with the determination of entropy is the dif-

ficulty of measuring heat capacities near T = 0. There are good 

theoretical grounds for assuming that the heat capacity of non-

metallic solids is proportional to T3 when T is low, and this 

dependence is the basis of an extrapolation based on the Debye 

T3 law, which states that for non-metallic solids the heat capac-

ity is proportional to T3 as T → 0. In this method, Cp is measured 

down to as low a temperature as possible and a curve of the form 

aT3 is fitted to the data. That fit determines the value of a, and 

the expression Cp(T) = aT3 is assumed valid down to T = 0.

Example 63.1 Evaluating a change in entropy

Over a small range in temperature the molar constant-pres-

sure heat capacity of carbon dioxide gas varies with tempera-

ture as Cp,m = a + bT + c/T2 with the parameters a = 44.22 J K−1 

mol−1, b = 8.79 mJ K−2 mol−1, and c = −862 kJ K mol−1. What is the 

change in molar entropy when carbon dioxide is heated from 

0 °C to 100 °C?

Method The general expression for the change in entropy 

with temperature is eqn 63.1, so we begin by substituting the 

polynomial expression for Cp,m into that equation and simpli-

fying the resulting expression as far as possible. Then there are 

two routes forward. One is to evaluate the resulting integrals 

analytically. The other is to feed the integral into mathemati-

cal software, and let it do the hard work. We demonstrate the 

former approach here. For the numerical evaluation, take 

T1 = 273 K (0 °C) and T2 = 373 K (100 °C).

Answer We substitute Cp,m = a + bT + c/T2 into eqn 63.1 and obtain

S T S T
C

T
T

S T
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⎞
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Insertion of the values of the coefficients and the initial and 

final temperatures gives ΔSm = Sm(T2) – Sm(T1) = +11.99 J K−1 

mol−1.

Example 63.2 Calculating the entropy at low 
temperatures

The molar constant-pressure heat capacity of a certain non-

metallic solid at 4.2 K is 0.43 J K−1 mol−1. What is its molar 

entropy at that temperature?

Method Because the temperature is so low, we can assume that 

the heat capacity varies with temperature as aT3, in which case 

we can use eqn 63.1 to calculate the entropy at a temperature T 

in terms of the entropy at T = 0 and the constant a. When the 

integration is carried out, it turns out that the result can be 

expressed in terms of the heat capacity at the temperature T, so 

the data can be used directly to calculate the entropy.

Answer The integration required is

S T S
aT

T
T S aT T

S aT

T T

m m m

m

d d( ) ( ) ( )

( )

= + = +

= +

∫ ∫0 0

0
1

3

3

0

2

0

3

However, because aT3 is the heat capacity at the temperature T,

S T S C Tp( ) ( ) ( )= +0
1

3

from which it follows that

S Sm m K  J K mol ( ) ( ). .4 2 0 140 1 1= + − −

Self-test 63.2 For metals, there is also a contribution to the 

heat capacity from the electrons which is linearly proportional 

to T when the temperature is low. Find its contribution to the 

entropy at low temperatures.

Answer: S(T) = S(0) + Cp(T)

Self-test 63.1 Find an expression for the temperature depend-

ence of the molar entropy for a substance for which Cp,m = a +  

b ln T.

Answer: S T S T a T T b T T T Tm m  ln( )  ln( ) ln( )( ) ( ) //2 1 2 1
1
2 1 2 2 1= + +

M
el
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Solid Liquid Gas

Figure 63.1 The calculation of a Third-Law entropy from heat 
capacity data. The variation of Cp/T with the temperature for a 
sample is shown by the line above the yellow region. The entropy, 
which is equal to the area beneath the upper curve up to the 
corresponding temperature, plus the entropy of each phase 
transition passed, is shown by the line above the green region. 
Note the use of the Debye approximation at low temperatures.
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622 13 The Second and Third Laws of thermodynamics

63.2 The Nernst heat theorem 
and the Third Law

The question remains about the value of S(0), the entropy at 

T = 0. At T = 0, all thermal motion has been quenched, and in 

a perfect crystal all the atoms or ions are in a regular, uniform 

array. The localization of matter and the absence of thermal 

motion suggest that such materials also have zero entropy. 

This conclusion is consistent with the statistical definition 

of entropy, because S = k lnW  = 0 if there is only one way of 

arranging the molecules and only one state is accessible (the 

ground state) and W  = 1. However, because the argument used 

to relate the statistical definition to the thermodynamic defini-

tion in Topic 61 is in terms of changes of entropy, there remains 

the possibility that the definition in eqn 63.1 differs from the 

statistical entropy by a constant that might be different for each 

substance.

The experimental observation that turns out to be consistent 

with the view that the entropy of a regular array of molecules is 

zero at T = 0 is summarized by the Nernst heat theorem:

The entropy change accompanying any physical or chemical 

transformation approaches zero as the temperature appro-

aches zero: ΔS → 0 as T → 0 provided all the substances 

involved are perfectly ordered.

It follows from the Nernst theorem that, if we arbitrarily 

ascribe the value zero to the entropies of elements in their perfect 

crystalline form at T = 0, then all perfect crystalline compounds 

also have zero entropy at T = 0 (because the change in entropy that 

accompanies the formation of the compounds, like the entropy 

of all transformations at that temperature, is zero). This conclu-

sion is summarized by the Third Law of thermodynamics:

The entropy of all perfect crystalline substances is zero 

at T = 0.

As far as thermodynamics is concerned, choosing this common 

value as zero is then a matter of convenience. The statistical for-

mulation of entropy, however, justifies the value S = 0 at T = 0.

In most cases, W  = 1 at T = 0 because there is only one way 

of achieving the lowest total energy: put all the molecules into 

the same, lowest state. Therefore, S = 0 at T = 0, in accord with 

the Third Law of thermodynamics. In certain cases, though, W 

may differ from 1 at T = 0. This is the case if there is no energy 

advantage in adopting a particular orientation even at absolute 

zero. For instance, for a diatomic molecule AB there may be 

almost no energy difference between the arrangements …AB 

AB AB… and …BA AB BA…, so W  > 1 even at T = 0. If S > 0 at 

T = 0 we say that the substance has a residual entropy.

Brief illustration 63.1 The Nernst heat theorem

Consider the entropy of the transition between orthorhombic 

sulfur, S(α), and monoclinic sulfur, S(β), which can be calcu-

lated from the transition enthalpy (–402 J mol−1) at the transi-

tion temperature (369 K):

Δ trs m m

Jmol

K
JK molS S S= − =

−
= −

−
− −( ) ( )

( )
.α β

402

369
1 09

1
1 1

The two individual entropies can also be determined by meas-

uring the heat capacities from T = 0 up to T = 369 K. It is found 

that Sm(α) = Sm(α,0) + 37 J K−1 mol−1 and Sm(β) = Sm(β,0) + 38 J 

K−1 mol−1. These two values imply that at the transition 

temperature

Δ trs m m JK molS S S= − − −( ) ( ), ,α β−0 0 1 1 1

On comparing this value with the one above, we conclude that 

Sm(α,0) – Sm(β,0) ≈ 0, in accord with the theorem.

Self-test 63.3 Two forms of a metallic solid (see Self-test 63.2) 

undergo a phase transition at Ttrs, which is close to T = 0. What 

is the enthalpy of transition at Ttrs in terms of the heat capaci-

ties of the two polymorphs?

Answer: ΔtrsH(Ttrs) = TtrsΔCp(Ttrs)

Example 63.3 Estimating a residual entropy

Estimate the residual entropy of ice by taking into account the 

distribution of hydrogen bonds and chemical bonds about the 

oxygen atom of one H2O molecule. The experimental value is 

3.4 J K−1 mol−1.

Method Focus on the O atom, and consider the number of 

ways that that O atom can have two short (chemical) bonds 

and two long hydrogen bonds to its four neighbours. Refer to 

Fig. 63.2.

Answer Suppose each H atom can lie either close to or far from 

its ‘parent’ O atom, as depicted in Fig. 63.2. The total number 

of these conceivable arrangements in a sample that contains 

N H2O molecules and therefore 2N H atoms is 22N. Now con-

sider a single central O atom. The total number of possible 

arrangements of locations of H atoms around the central O 

atom of one H2O molecule is 24 = 16. Of these 16 possibilities, 

only 6 correspond to two short and two long bonds. That is, 

only 6
16

3
8

=  of all possible arrangements are possible, and for 

N such molecules only ( )3
8

N  of all possible arrangements are 

possible. Therefore, the total number of allowed arrangements 

in the crystal is 2 42 3
8

3
8

3
2

N N N N N( ) ( ) ( )= = . If we suppose that all 

these arrangements are energetically identical, the residual 

entropy is

S k Nk nN k nR

N

( )0
3

2

3

2

3

2

3

2
= = = =⎛

⎝⎜
⎞
⎠⎟

 ln  ln  ln  lnA
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63 The Third Law  623

63.3 Third-Law entropies

Entropies reported on the basis that S(0) = 0 are called Third-

Law entropies (and often just ‘entropies’). They are measured 

calorimetrically by using eqn 63.2 and setting S(0) = 0. When 

the substance is in its standard state at the temperature T, the 

standard (Third-Law) entropy is denoted S<(T). A list of 

standard molar values at 298 K is given in Table 63.1.

Just as in the discussion of enthalpies in Topic 57, where 

it is acknowledged that solutions of cations cannot be pre-

pared in the absence of anions, the standard molar entro-

pies of ions in solution are reported on a scale in which the 

standard entropy of the H+ ions in water is taken as zero at all 

temperatures:

S< ( , )H+ =aq 0
 

Definition  Standard reaction entropy  (63.3)

The values based on this choice are included in Tables 57.3 and 

57.4 in the Resource section.

Because the entropies of ions in water are values relative to 

the hydrogen ion in water, they may be either positive or nega-

tive. A positive entropy means that an ion has a higher molar 

entropy than H+ in water and a negative entropy means that 

the ion has a lower molar entropy than H+ in water. In terms of 

the language of ‘partial molar’ quantities introduced in Topic 

69, the entropies of ions in solution are actually partial molar 

entropies, for their values include the consequences of their 

presence on the organization of the solvent molecules around 

them. As partial entropies, even their ‘absolute’ values may be 

negative. Thus, the entropies vary as expected on the basis that 

they are related to the degree to which the ions order the water 

molecules around them in the solution. Small, highly charged 

ions induce local structure in the surrounding water, and the 

disorder of the solution is decreased more than in the case of 

large, singly charged ions. The absolute, Third-Law standard 

partial molar entropy of the proton in water can be estimated 

by proposing a model of the structure it induces, and there 

is some agreement on the value –21 J K−1 mol−1. The negative 

value indicates that the proton induces order in the solvent.

Brief illustration 63.2 Absolute and relative entropies

The standard molar entropy of Cl−(aq) is +57 J K−1 mol−1 and 

that of Mg2+(aq) is –128 J K−1 mol−1. That is, the partial molar 

entropy of Cl−(aq) is 57 J K−1 mol−1 higher than that of the pro-

ton in water (presumably because it induces less local struc-

ture in the surrounding water), whereas that of Mg2+(aq) is 

128 J K−1 mol−1 lower (presumably because its higher charge 

induces more local structure in the surrounding water).

Self-test 63.5 Estimate the absolute values of the partial molar 

entropies of these ions.

Answer: +36 J K−1 mol−1, –149 J K−1 mol−1

and the residual molar entropy would be

S Rm  ln JK mol( ) .0 3 43
2

1 1= = − −

in accord with the experimental value.

Self-test 63.4 What would be the residual molar entropy of 

HCF3 on the assumption that each molecule could take up one 

of four tetrahedral orientations in a crystal?

Answer: 11.5 J K−1 mol−1

(a)

(b)

Figure 63.2 (a) The possible locations of H atoms around a 
central O atom in ice and (b) the permitted arrangements 
of short (chemical) and long (hydrogen) bonds in the local 
neighbourhood.

Table 63.1*  Standard Third-Law entropies at 298 K

Sm
</(J K–1 mol–1)

Solids:

Graphite, C(s) 5.7

Diamond, C(s) 2.4

Sucrose, C12H22O11(s) 360.2

Iodine, I2(s) 116.1

Liquids:

Benzene, C6H6(l) 173.3

Water, H2O(l) 69.9

Mercury, Hg(l) 76.0

Gases:

Methane, CH4(g) 186.3

Carbon dioxide, CO2(g) 213.7

Hydrogen, H2(g) 130.7

Helium, He 126.2

Ammonia, NH3(g) 192.4

* More values are given in the Resource section.
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624 13 The Second and Third Laws of thermodynamics

Brief illustration 63.3 The standard reaction entropy

To  c a l c u l a t e  t h e  s t a nd a r d  r e a c t io n  e nt r o p y  o f 

H O H O(l)22
1
2 2(g) (g)+ →  at 25 °C, we use the data in Table 

57.4 of the Resource section to write

63.4 The standard reaction entropy

The standard reaction entropy, ΔrS
<, is defined, like the stand-

ard reaction enthalpy, as the difference between the molar 

entropies of the pure, separated products and the pure, sepa-

rated reactants, all substances being in their standard states at 

the specified temperature:

Δr

J

J m JS S< <=∑� ( )  Definition  Standard reaction entropy  (63.4)

where we have used the notation introduced in Topic 57. 

Standard reaction entropies are likely to be positive if there is a 

net formation of gas in a reaction, and are likely to be negative 

if there is a net consumption of gas.

Checklist of concepts

☐ 1. Entropies are determined calorimetrically by measur-

ing the heat capacity of a substance from low tempera-

tures up to the temperature of interest.

☐ 2. The Debye T 3 law is used to estimate heat capacities of 

non-metallic solids close to T = 0.

☐ 3. The Nernst heat theorem states that the entropy change 

accompanying any physical or chemical transformation 

approaches zero as the temperature approaches zero: 

ΔS →    0 as T→   0 provided all the substances involved are 

perfectly ordered.

☐ 4. The Third Law of thermodynamics states that the entropy 

of all perfect crystalline substances is zero at T = 0.

☐ 5. The residual entropy of a solid is the entropy arising 

from disorder that persists at T = 0.

☐ 6. Third-law entropies are entropies based on S(0) = 0.

☐ 7. The standard entropies of ions in solution are based on 

setting S<(H+,aq) = 0 at all temperatures.

☐ 8. The standard reaction entropy, ΔrS
< , is the difference 

between the molar entropies of the pure, separated 

products and the pure, separated reactants, all sub-

stances being in their standard states at the specified 

temperature.

Checklist of equations

Δr m m mH O  l H  g O  g

 JK mol

S S S S< < < <=
=

( , ) ( , ) ( , )

.

2 2
1
2 2

1 169 9 13

− −
−− − 00 7

205 0

163 3

1 1

1
2

1 1

1 1

.

( . )

.

JK mol

JK mol

JK mol

− −

− −

− −

−
−=

The negative value is consistent with the conversion of two 

gases to a compact liquid.

A note on good practice Do not make the mistake of set-

ting the standard molar entropies of elements equal to 

zero: they have nonzero values (provided T > 0), as we have 

already discussed.

Self-test 63.6 Calculate the standard reaction entropy for the 

combustion of methane to carbon dioxide and liquid water 

at 25 °C.

Answer: –243 J K−1 mol−1

Property Equation Comment Equation number

Entropy S T S T C T Tp
T

T

( ) ( ) ( / )2 1

1

2

= +∫ d Constant pressure
63.1

Debye T 3 law Cp(T) = aT 3 Non-metallic solid; low temperature Text

Standard entropy of ions S<(H+,aq) = 0 Convention, all temperatures 63.3

Standard reaction entropy Δr

J

J m JS S< <=∑� ( ) Definition
63.4
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TOPIC 64

Spontaneous processes

Entropy is the basic concept for discussing the direction of nat-

ural change, but to use it we have to analyse changes in both 

the system and its surroundings. It is shown in Topic 61 that 

it is always very simple to calculate the entropy change in the 

surroundings; in this Topic we see that it is possible to devise a 

simple method for taking that contribution into account auto-

matically. This approach focuses our attention on the system 

and simplifies discussions. Moreover, it is the foundation of 

all the applications of chemical thermodynamics described in 

other Topics.

64.1 Criteria of spontaneity

Consider a process taking place in a system in thermal equi-

librium with its surroundings at a temperature T. The Clausius 

inequality derived in Topic 61 reads

d
d

or d dS
q

T
T S q≥ ≥,

 
(64.1)

We now develop this inequality in two ways according to the 

conditions (of constant volume or constant pressure) under 

which the process occurs.

 ➤ Why do you need to know this material?

Almost the whole of chemical thermodynamics—from 
predicting how much work a system can do to establishing 
criteria of equilibrium—is expressed in terms of the Gibbs 
energy, which is introduced in this Topic.

Contents

64.1 Criteria of spontaneity 625

(a) Changes at constant volume 626

Brief illustration 64.1: Spontaneous changes  

at constant volume 626

(b) Changes at constant pressure 626

Brief illustration 64.2: Spontaneous changes  

at constant pressure 626

64.2 The Helmholtz and Gibbs energies 626

(a) Criteria of spontaneity and equilibrium 627

Brief illustration 64.3: The spontaneity of  

endothermic reactions 627

(b) The statistical basis of the Helmholtz  
and Gibbs energies 627

Brief illustration 64.4: The molar Helmholtz  

energy 628

Brief illustration 64.5: The molar Gibbs energy 628

64.3 Maximum work 628

(a) Maximum total work 629

Example 64.1: Calculating the maximum  

available work 630

(b) Maximum non-expansion work 630

Example 64.2: Calculating the maximum  

non-expansion work of a reaction 631

Checklist of concepts 631

Checklist of equations 631

 ➤ What is the key idea?
At constant temperature and pressure, a system tends 
towards lower Gibbs energy.

 ➤ What do you need to know already?
You need to be aware of the concept of entropy (Topic 
59) and its determination (Topic 63). The development of 
criteria for spontaneity of physical and chemical processes 
is based on the Clausius inequality (Topic 61).
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626 13 The Second and Third Laws of thermodynamics

(a) Changes at constant volume
First, consider the transfer of energy as heat at constant volume. 

Then, in the absence of non-expansion work (such as electrical 

work), we can write dqV = dU; consequently the second form of 

eqn 64.1 becomes

T S Ud d≥  

(The equality here and in the following applies to a system in 

which the process has reached equilibrium.) The importance of 

the inequality in this form is that it expresses the criterion for 

spontaneous change solely in terms of state functions. At either 

constant internal energy (dU = 0) or constant entropy (dS = 0), 

this expression becomes, respectively,

( ) (b), ,a  d  dS UU V S V≥ 0 ≤ 0   Spontaneous process  (64.3)

The subscripts specify the constant properties.

The first inequality in eqn 64.3 states that at constant vol-

ume and constant internal energy (such as an isolated sys-

tem), the entropy increases in a spontaneous change. That 

statement is essentially the content of the Second Law. In sta-

tistical terms, it corresponds to the tendency of an isolated 

system to collapse into its most probable distribution and 

never into a less probable one. The second inequality is less 

obvious, for it says that if the entropy and volume are con-

stant, then the internal energy of the system must decrease 

in a spontaneous change. Do not interpret this criterion as a 

tendency of a system to sink to lower energy. It is a disguised 

statement about entropy, and should be interpreted as imply-

ing that if the entropy of the system is unchanged, then there 

must be an increase in entropy of the surroundings, which 

can be achieved only if the energy of the system decreases as 

energy flows out as heat.

(b) Changes at constant pressure
When energy is transferred as heat at constant pressure, and 

there is no work other than expansion work, we can write 

dqp = dH, substitute this equality into the second form of eqn 

64.2, and obtain

T S Hd d≥  

At either constant enthalpy (dH = 0) or constant entropy 

(dS = 0) this inequality becomes, respectively,

( ) (b), ,a  d  dS HH p S p≥ ≤0 0   Spontaneous process  (64.5)

The interpretations of these two inequalities are similar to 

those of eqn 64.3. The entropy of the system at constant pres-

sure must increase if its enthalpy remains constant (for there 

can then be no change in entropy of the surroundings if no heat 

flows into them). Alternatively, the enthalpy must decrease if 

the entropy of the system is constant, for then it is essential to 

have an increase in entropy of the surroundings, which requires 

heat to spread into them.

64.2 The Helmholtz and Gibbs 
energies

Because eqns 64.2 and 64.4 can be written in the form dU − 

TdS ≤ 0 and dH − TdS ≤ 0, respectively, they can be expressed 

more simply by introducing two more thermodynamic quanti-

ties. One is the Helmholtz energy, A, which is defined as

A U TS= −  Definition  Helmholtz energy  (64.6)

Constant volume, no 
non-expansion work 

Spontaneous 
process

 (64.2)

Brief illustration 64.1 Spontaneous changes at 
constant volume

A concrete example of the criterion dSU,V ≥ 0 is the diffusion 

of a solute B through a solvent A to form an ideal solution (in 

the sense of Topic 70, in which AA, BB, and AB interactions 

are identical). There is no change in internal energy or volume 

of the system or the surroundings as B spreads into A, but the 

process is spontaneous.

Self-test 64.1 Invent an example of the criterion dUS,V ≤ 0.

Answer: A phase change in which one perfectly ordered phase changes 

into another of lower energy and equal density at T = 0

Constant 
pressure, no 
additional work 

 (64.4)Spontaneous 
process

Brief illustration 64.2 Spontaneous changes at 
constant pressure

A concrete example of the criterion dSH,p ≥ 0 is the mixing of 

two perfect gases. For instance, if gas A is in a container at a 

certain pressure and the same amount of B is in a container of 

the same volume and at the same pressure, then when the con-

nection between the containers is opened, the gases mix spon-

taneously. The pressure remains the same and, in the absence 

of intermolecular interactions, the enthalpy is unchanged. 

Only the entropy increases.

Self-test 64.2 Invent an example of the criterion dHS,p ≤ 0.

Answer: An exothermic phase change at T = 0 and 1 bar in which one 

perfectly ordered phase changes into another of differing density
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64 Spontaneous processes  627

The other function we introduce is the Gibbs energy, G:

G H TS= −  Definition  Gibbs energy  (64.7)

For reasons that will become clear, both functions are also often 

referred to as ‘free energies’ and distinguished as ‘Helmholtz 

free energy’ and ‘Gibbs free energy’.

(a) Criteria of spontaneity and equilibrium
When the state of the system changes at constant temperature 

(dT = 0), the two properties change as follows:

( )

(b)

a  d d d

 d d d

A U T S

G H T S

=
=

−
−

 

When we introduce eqns 64.2 (TdS ≥ dU) and 64.4 

(TdS ≥ dH), respectively, we obtain the criteria of spontane-

ous change as

( ) , ,a  d (b) dA GT V T p≤ ≤0 0
 

 Spontaneous process  (64.9)

These inequalities are the most important conclusions from 

thermodynamics for chemistry.

The expressions dA = dU − TdS and dA < 0 are sometimes 

interpreted as follows. A negative value of dA is favoured by a 

negative value of dU and a positive value of TdS. This observa-

tion suggests that the tendency of a system to move to lower A 

is due to its tendency to move towards states of lower internal 

energy and higher entropy. However, this interpretation is false 

(even though it is a good rule of thumb for remembering the 

expression for dA) because the tendency to lower A is solely 

a tendency towards states of greater overall entropy. Systems 

change spontaneously if in doing so the total entropy of the 

system and its surroundings increases, not because they tend 

to lower internal energy. The form of dA may give the impres-

sion that systems favour lower energy, but that is misleading: 

dS is the entropy change of the system, –dU/T is the entropy 

change of the surroundings (when the volume of the system is 

constant), and their total tends to a maximum.

The Gibbs energy is more common in chemistry than the 

Helmholtz energy because, at least in laboratory chemistry, 

we are usually more interested in changes occurring at con-

stant pressure than at constant volume. The criterion dGT,p < 0 

carries over into chemistry as the observation that, at con-

stant temperature and pressure, chemical reactions are sponta-

neous in the direction of decreasing Gibbs energy. Therefore, if 

we want to know whether a reaction is spontaneous, the pres-

sure and temperature being constant, we assess the change in 

the Gibbs energy. If G decreases as the reaction proceeds, then 

the reaction has a spontaneous tendency to convert the reac-

tants into products. If G increases, then the reverse reaction is 

spontaneous.

According to the discussion so far, a change in a system at 

constant temperature and volume is spontaneous if dAT,V < 0 

and, if instead temperature and pressure are constant, then if 

dGT,p < 0. That is, a change under these conditions is spontane-

ous if it corresponds to a decrease in the Helmholtz energy or 

Gibbs energy, respectively. Such systems move spontaneously 

towards states of lower A or G if a path is available. The crite-

rion of equilibrium, when neither the forward nor reverse pro-

cess has a tendency to occur, is

( ) (b), ,a  d  dA GT V T p= =0 0   Equilibrium  (64.10)

We build on these criteria, and especially the second, in other 

Topics.

(b) The statistical basis of the Helmholtz and 
Gibbs energies
Both A and G can be expressed in terms of the partition func-

tions developed in Topics 52 and 54, which give a route to 

their calculation and molecular interpretation. The Helmholtz 

energy has a very simple relation to the canonical partition 

function. First, note that A(0) = U(0), and then use eqn 60.5 

(S = {U − U(0)}/T + k ln Q) to find

A A kT− −( )0 =  ln Q
 

 Helmholtz energy  (64.11a)

Constant 
temperature 

Changes 
in A and G  (64.8)

Brief illustration 64.3 The spontaneity of endothermic 
reactions

The existence of spontaneous endothermic reactions provides 

an illustration of the role of G. In such reactions, H increases, 

the system rises spontaneously to states of higher enthalpy, 

and dH > 0. Because the reaction is spontaneous we know that 

dG < 0 despite dH > 0; it follows that the entropy of the system 

increases so much that TdS outweighs dH in dG = dH − TdS. 

Endothermic reactions are therefore driven by the increase 

of entropy of the system, and this entropy change overcomes 

the reduction of entropy brought about in the surroundings 

by the inflow of heat into the system (dSsur = −dH/T at constant 

pressure).

Self-test 64.3 Why are so many exothermic reactions 

spontaneous?

Answer: With dH < 0, it is common for dG < 0 unless TdS is strongly 

negative
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628 13 The Second and Third Laws of thermodynamics

For a system composed of independent, indistinguishable 

molecules (as in a perfect gas), we may replace Q by q N/N! and 

obtain

A A kT
N

NkT kT N
N

− = − = − +( ) ln
!

ln ln !0
q

q
 

Then, by using Stirling’s approximation (eqn 51.2b, that  

ln N! ≈ N ln N − N) and expressing NkT as NkT ln e (because ln 

e = 1),

A A NkT kT N N N

NkT NkT N NkT

NkT

− = − + −
= − + −
= − −

( ) ln ( ln )

ln ln ln

(ln l

0 q
q
q

e

nn ln )N + e
 

That is,

A A NkT
N

− = −( ) ln0  
qe

 

We see that A − A(0) is essentially proportional to the loga-

rithm of the molecular partition function, and therefore that 

it is (negatively) large when many energy levels are thermally 

accessible.

The Gibbs energy can now be expressed in terms of a parti-

tion function. Because H = U + pV and A = U – TS, we can write 

G = A + pV and from eqn 64.11a obtain the statistical thermo-

dynamic expression for the Gibbs energy as

G G kT pV− −( )0 = + ln Q
  Gibbs energy  (64.12a)

For a gas of independent particles, pV can be replaced by nRT 

and Q by qN/N!. It follows that

G G kT
N

nRT

NkT kT N

N
nN kT NkT

N N N N

− = − +

= − + +

=

≈ −

( ) ln
!

ln ln !

ln ! ln

0
q

q

A




NNkT

NkT kT N N N NkT

NkT NkT N

= − + − +
= − +

ln ( ln )

ln ln

q
q

 

In the second line we have once again used Stirling’s approxi-

mation. We conclude that

G G NkT
N

− = −( ) ln0
q

 

As we shall see, it is easier to give precise molecular inter-

pretations of the Helmholtz energy than of the Gibbs energy, 

just as it is easier to give precise molecular interpretations of the 

internal energy than the enthalpy. However, it will also turn out 

that the Gibbs energy is more important than the Helmholtz 

energy in chemistry, just as enthalpy is more important than 

the internal energy. Fortunately, because (like H and U), G dif-

fers from A by the addition of the term pV, we may use—with 

caution in some cases—the molecular interpretation of A to 

interpret most of the properties of G.

64.3 Maximum work

It turns out that A and G carry a greater significance than being 

simply a signpost of spontaneous change. They each indicate 

Independent, 
indistin guish-
able molecules 

Helmholtz 
energy

 (64.11b)

Brief illustration 64.4 The molar Helmholtz energy

In Topic 52, Brief illustration 52.2, it is calculated that 

q  = 2.77 × 1026 for the translational partition function of H2 in 

a 100 cm3 vessel at 25 °C. For a sample of the gas that contains 

1 mol H2, corresponding to 6.022 × 1023 molecules, the contri-

bution to the Helmholtz energy due to translational motion is

A A− = − × × ×

× ×
×

− −( ) ( . ) ( . )

( ) ln
( .

0 6 022 10 1 381 10

298
2 77 10

23 23 1

26

JK

K
))

.

.

×
×

= −

e

kJ

6 022 10

17 7

23

Therefore, because this number of molecules corresponds to 

1 mol H2, the contribution to the molar Helmholtz energy is 

–17.7 kJ mol−1.

Self-test 64.4 What is the total contribution of the transla-

tional and rotational motion of the molecules? The rotational 

partition function of H2 at 25 °C is 1.14.

Answer: –18.0 kJ mol−1

Independent, 
indistinguishable 
molecules 

Gibbs 
energy  (64.12b)

Brief illustration 64.5 The molar Gibbs energy

The only difference between eqns 64.11b and eqn 64.12b is the 

presence of e in the former, so it is easy to adapt the calculation 

in Brief illustration 64.4 to find the translational contribution 

to the molar Gibbs energy of H2(g). First we note that

G G− = − × × ×

× × ×

−( ) ( . ) ( . )

( ) ln
.

0 6 022 10 1 381 10

298
2 77 10

6

23 23 1

26

JK

K

−

..

.

022 10

15 2

23×
= − kJ

Therefore, because this number of molecules corresponds to 

1 mol H2, the contribution to the molar Gibbs energy is –15.2 

kJ mol−1.

Self-test 64.5 What is the total contribution of the transla-

tional and rotational motion of the molecules? The rotational 

partition function of H2 at 25 °C is 1.14.

Answer: –15.5 kJ mol−1
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64 Spontaneous processes  629

the maximum work, of various kinds, that can be extracted 

from a process under certain conditions.

(a) Maximum total work
As we show in the following Justification: the change in the 

Helmholtz energy is equal to the maximum work accompanying 

a process at constant temperature:

d dmaxw A=
 Constant temperature  Maximum work  (64.13)

As a result, A is sometimes called the ‘maximum work func-

tion’, or the ‘work function’. (Arbeit is the German word for 

work; hence the symbol A.)

The relation between A and maximum work can be under-

stood in molecular terms by noting that, in terms of the molecu-

lar partition function and eqn 64.11b (A = A(0) − NkT ln(qe/N)),

ΔA A NkT
N

A NkT
N

A A

= − − −⎛
⎝⎜

⎞
⎠⎟

( ) ln ( ) ln0 0
q qf ie e

f i� ��� ��� � ���� ����

== −NkT ln
q
q

f

i  

(64.14)

where qf is the partition function for the final state and qi that of 

the initial state. The rotational and vibrational partition func-

tions are unchanged on expansion because they depend on only 

the internal variables of the molecules (Topic 52), so cancel in 

the expression qf/qi, leaving only the ratio of translational contri-

butions. However, because q for translational motion is propor-

tional to V (from Topic 52, qT = V/Λ3) we immediately find that

w NkT
V

Vmax
f

i

= − ln
 

(64.15)

which is the same expression as we found for the reversible, 

isothermal expansion of a perfect gas. We can now see that 

reversible expansion produces maximum work because it 

corresponds to the progressive change of the distribution of 

molecules through a sequence of equilibrium states (those cor-

responding to the Boltzmann distribution, as expressed by the 

partition function).

When a measurable isothermal change takes place in the sys-

tem, eqn 64.13 becomes

w A A U T Smax  = =Δ Δ Δ Δ, −
 

This expression shows that in some cases, depending on the 

sign of TΔS, not all the change in internal energy may be avail-

able for doing work. If the change occurs with a decrease in 

entropy (of the system), in which case TΔS < 0, then ΔA = ΔU – 

TΔS is not as negative as ΔU itself, and consequently the maxi-

mum work is less than ΔU. For the change to be spontaneous, 

some of the energy must escape as heat in order to generate 

enough entropy in the surroundings to overcome the reduc-

tion in entropy in the system (Fig. 64.1). In this case, Nature is 

Justification 64.1 Maximum work

To demonstrate that maximum work can be expressed in 

terms of the changes in Helmholtz energy, we combine the 

Clausius inequality dS ≥ dq/T (Topic 61) in the form TdS ≥ dq 

with the First Law, dU = dq + dw, and obtain

d d dU T S w≤ +

(dU can be smaller than the term on the right because we are 

replacing dq by TdS, which in general is larger.) This expres-

sion rearranges to dU − TdS ≤ dw and therefore to

d d dw U T S≥ −

Now recall that a large negative w means that a lot of energy 

has been transferred from the system as work—the system has 

done a lot of work. It follows that the most negative value of 

dw, and therefore the maximum energy that can be obtained 

from the system as work, must correspond to the equals sign 

in this expression because a higher (less negative) value of dw 

implies that less work has been done. Therefore,

d d dmaxw U T S= −

This maximum work is done only when the path is traversed 

reversibly (because then the equality in dS ≥ dq/T applies). 

Because at constant temperature dA = dU − TdS, we conclude 

that dwmax = dA.

Constant 
temperature 

Maximum 
work

 (64.16)

ΔU  < 0

ΔS  < 0

q

|w | < |ΔU |

ΔSsur > 0

Figure 64.1 In a system not isolated from its surroundings, the 
work done may be different from the change in internal energy. 
Moreover, the process is spontaneous if overall the entropy 
of the system and its surroundings increases. In the process 
depicted here, the entropy of the system decreases, so that of 
the surroundings must increase in order for the process to be 
spontaneous, which means that energy must pass from the 
system to the surroundings as heat. Therefore, less work than 
ΔU can be obtained.
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630 13 The Second and Third Laws of thermodynamics

demanding a tax on the internal energy as it is converted into 

work. This is the origin of the alternative name ‘Helmholtz free 

energy’ for A, because ΔA is that part of the change in internal 

energy that we are free to use to do work.

Further insight into the relation between the work that a sys-

tem can do and the Helmholtz energy is to recall that work is 

energy transferred to the surroundings as the uniform motion 

of atoms. We can interpret the expression A = U − TS as show-

ing that A is the total internal energy of the system, U, less a 

contribution that is stored as energy of thermal motion (the 

quantity TS). Because energy stored in random thermal motion 

cannot be used to achieve uniform motion in the surroundings, 

only the part of U that is not stored in that way, the quantity U – 

TS, is available for conversion into work.

If the change occurs with an increase of entropy of the system 

(in which case TΔS > 0), then ΔA = ΔU − TΔS is more negative 

than ΔU. In this case, the maximum work that can be obtained 

from the system is greater than ΔU. The explanation of this 

apparent paradox is that the system is not isolated and energy 

may flow in as heat as work is done. Because the entropy of the 

system increases, we can afford a reduction of the entropy of 

the surroundings yet still have, overall, a spontaneous process. 

Therefore, some energy (no more than the value of TΔS) may 

leave the surroundings as heat and contribute to the work the 

change is generating (Fig. 64.2). Nature is now providing a tax 

refund.

(b) Maximum non-expansion work
The analogue of the maximum work interpretation of ΔA, 

and the origin of the name ‘Gibbs free energy’, can be found 

for ΔG. In the following Justification we show that at constant 

temperature and pressure (note the two constraints), the maxi-

mum additional (non-expansion) work, wadd,max, is given by the 

change in Gibbs energy:

d dadd maxw G, =
 

The corresponding expression for a measurable change is

w G G H T Sadd max, ,= =Δ Δ Δ Δ−
 

This expression is particularly useful for assessing the electrical 

work that may be produced by fuel cells and electrochemical 

cells, and we shall see many applications of it.

Example 64.1 Calculating the maximum available work

When 1.000 mol C6H12O6 (glucose) is oxidized to carbon diox-

ide and water at 25 °C according to the equation C6H12O6(s) +  

6 O2(g) → 6 CO2(g) + 6 H2O(l), calorimetric measurements give 

ΔrU
< = –2808 kJ mol−1 and ΔrS

<= +182.4 J K−1 mol−1 at 25 °C. 

How much of this energy change can be extracted as (a) heat at 

constant pressure, (b) work?

Method We know that the heat released at constant pressure 

is equal to the value of ΔH, so we need to relate ΔrH
< to ΔrU

< , 

which is given. To do so, we suppose that all the gases involved 

are perfect, and use eqn 57.3 of Topic 57 (ΔH = ΔU + ΔngRT). 

For the maximum work available from the process we use eqn 

64.16.

Answer (a) Because Δng = 0, we know that ΔrH
< = ΔrU

< = –2808 

kJ mol−1. Therefore, at constant pressure, the energy available 

as heat is 2808 kJ mol−1. (b) Because T = 298 K, the value of 

ΔrA
< is

Δ Δ Δr r r kJmolA U T S< < <= =− − −2862 1

Therefore, the combustion of 1.000 mol C6H12O6 can be used 

to produce up to 2862 kJ of work. The maximum work avail-

able is greater than the change in internal energy on account 

of the positive entropy of reaction (which is partly due to the 

generation of a large number of small molecules from one big 

one). The system can therefore draw in energy from the sur-

roundings (so reducing their entropy) and make it available 

for doing work.

Self-test 64.6 Repeat the calculation for the combustion of 

1.000 mol CH4(g) under the same conditions, using data from 

Tables 57.3 and 57.4 of the Resource section.

Answer: |qp| = 890 kJ, |wmax| = 813 kJ

Constant 
temperature 
and pressure 

Maximum 
non-expansion 
work

 (64.17a)

Constant 
tempera-
ture and 
pressure 

Maximum 
non-
expansion 
work

 (64.17b)

ΔU  < 0

ΔS  > 0

q

|w | > |ΔU |

ΔSsur < 0

Figure 64.2 In this process, the entropy of the system 
increases, hence we can afford to lose some entropy of the 
surroundings. That is, some of their energy may be lost as heat 
to the system. This energy can be returned to them as work. 
Hence the work done can exceed ΔU.
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64 Spontaneous processes  631

Checklist of concepts

☐ 1. The Gibbs and Helmholtz energies provide criteria for 

spontaneity at constant pressure and constant volume, 

respectively.

☐ 2. The change in the Helmholtz energy is equal to the 

maximum work accompanying a process at constant 

temperature.

☐ 3. The change in the Gibbs energy is equal to the maxi-

mum non-expansion work accompanying a process at 

constant temperature and pressure.

Justification 64.2 Maximum non-expansion work

Because H = U + pV, for a general change in conditions, the 

change in enthalpy is

d d d d( )H q w pV= + +

The corresponding change in Gibbs energy (G = H − TS) is

d d d d d d d( ) d dG H T S S T q w pV T S S T= = + +− − − −

When the change is isothermal we can set dT = 0; then

d d d d( ) dG q w pV T S= + + −

When the change is reversible, dw = dwrev and dq = dqrev = TdS, 

so for a reversible, isothermal process

d d d d( ) d d d( )rev revG T S w pV T S w pV= + + = +−

The work consists of expansion work, which for a reversible 

change is given by –pdV, and possibly some other kind of work 

(for instance, the electrical work of pushing electrons through 

a circuit or of raising a column of liquid); this additional work 

we denote dwadd. Therefore, with d(pV) = pdV + Vdp,

d d d d d d dadd,rev add,revG p V w p V V p w V p= + + + = +( )−

If the change occurs at constant pressure (as well as constant 

temperature), we can set dp = 0 and obtain dG = dwadd,rev. 

Therefore, at constant temperature and pressure, dwadd,rev = dG. 

However, because the process is reversible, the work done 

must now have its maximum value, so eqn 64.17 follows.

Example 64.2 Calculating the maximum non-expansion 
work of a reaction

How much energy is available for sustaining muscular and 

nervous activity from the combustion of 1.00 mol of glucose 

molecules under standard conditions at 37 °C (blood tempera-

ture)? The standard entropy of reaction is +182.4 J K−1 mol−1.

Method The non-expansion work available from the reaction 

is equal to the change in standard Gibbs energy for the reaction 

(ΔrG
< , a quantity defined more fully in Topic 65). To calculate 

this quantity, it is legitimate to ignore the temperature depend-

ence of the reaction enthalpy, to obtain ΔrH
< from Tables 57.3 

and 57.4, and to substitute the data into ΔrG
< = ΔrH

< − TΔrS
< .

Answer Because t he standard react ion ent ha lpy is 

−2808 kJ mol−1 (see Example 64.1), it follows that the standard 

reaction Gibbs energy is

ΔrG
< = ×

=
− −( )
−

− − −

−

2808 310 182 4

2865

1 1 1

1

 kJ mol K JK mol

 kJ mol

( . )

Therefore, wadd,max = –2865 kJ for the combustion of 1 mol glu-

cose molecules (180 g of glucose), and the reaction can be used 

to do up to 2865 kJ of non-expansion work. To place this result 

in perspective, consider that a person of mass 70 kg needs to 

do 2.1 kJ of work to climb vertically through 3.0 m; therefore, 

at least (2.1 kJ/2865 kJ) × 180 g = 0.13 g of glucose is needed to 

complete the task (and in practice significantly more).

Self-test 64.7 How much non-expansion work can be obtained 

from the combustion of 1.00 mol CH4(g) under standard con-

ditions at 298 K? Use ΔrS
< = −243 J K−1 mol−1.

Answer: 818 kJ

Checklist of equations

Property Equation Comment Equation number

Criteria of spontaneity (a) dSU,V ≥ 0, (b) dUS,V ≤ 0 Constant volume (etc.)* 64.3

(a) dSH,p ≥ 0, (b) dHS,p ≤ 0 Constant pressure (etc.) 64.5

Helmholtz energy A = U − TS Definition 64.6
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632 13 The Second and Third Laws of thermodynamics

Property Equation Comment Equation number

Gibbs energy G = H − TS Definition 64.7

Criteria of spontaneity (a) dAT,V ≤ 0, (b) dGT,p ≤ 0 Constant temperature (etc.) 64.9

Equilibrium (a) dAT,V = 0, (b) dGT,p = 0 Constant temperature (etc.) 64.10

Statistical calculation A − A(0) = –kT ln Q General case 64.11a

A − A(0) = −NkT ln (qe/N) Independent and indistinguishable molecules 64.11b

G − G(0) = –kT lnQ  +  pV General case 64.12a

G − G(0) = −NkT ln(q/N) Independent and indistinguishable molecules 64.12b

Maximum work dwmax = dA, wmax  =  ΔA Constant temperature 64.13, 64.16

Maximum non-expansion work dwadd,max = dG, wadd,max  =  ΔG Constant temperature and pressure 64.17

* The other constant properties are specified as subscripts; the equality applies at equilibrium

Atkins09819.indb   632 9/11/2013   12:57:05 PM

www.ebook3000.com

http://www.ebook3000.org


TOPIC 65

Standard Gibbs energies

The definition of Gibbs energy (Topic 64) is G = H – TS. It fol-

lows that the standard value of the Gibbs energy, the value it 

has when the species are in their standard states (pure, at 1 bar) 

is G< = H< − TS<. The standard Gibbs energy of reaction (or 

‘standard reaction Gibbs energy’), ΔrG
< , is the difference in 

standard molar Gibbs energies of the products and reactants in 

their standard states at the temperature specified for the reac-

tion as written. In the notation introduced in Topic 57,

Δr

J

J m JG G< <=∑� ( )

 

where νJ is positive for products and negative for reactants. 

(That is, eqn 65.1 gives the difference ‘products – reactants’, 

weighted by their respective stoichiometric coefficients.) One 

approach to the calculation of standard Gibbs energy of reac-

tion ΔrG
< is simply to combine the corresponding standard 

enthalpy and entropy of reaction, and to write

Δ Δ Δr r rG H T S< < <= −  

Values of ΔrH
< and ΔrS

< may be obtained from calorimetric 

measurements, as described in Topics 57 and 63. Another route 

to the determination of ΔrG
< is electrochemistry, as described 

in Topics 76 and 77.

65.1 Gibbs energies of formation

As in the case of standard reaction enthalpies (Topic 57), it is 

convenient to define the standard Gibbs energies of formation, 

ΔfG
<, the standard reaction Gibbs energy for the formation per 

mole of a compound from its elements in their reference states, 

their most stable states at the specified temperature and 1 bar. 

Standard Gibbs energies of formation of the elements in their 

reference states are zero, because their formation is a ‘null’ reac-

tion. A selection of values for compounds is given in Table 65.1. 

From the values given there, it is a simple matter to obtain the 

Standard reaction 
Gibbs energy (65.2)

Definition Standard reaction 
Gibbs energy 

 (65.1)

Contents

65.1 Gibbs energies of formation 633

Brief illustration 65.1: The reaction Gibbs energy 634

Example 65.1: Calculating a standard Gibbs  

energy of formation from partition functions 634

65.2 Ions in solution 635

(a) The convention 635

Brief illustration 65.2: Standard Gibbs energies of ions 635

Example 65.2: Setting up an expression for  

the Gibbs energy of formation of an ion 635

(b) The Born equation 636

Brief illustration 65.3: The Born equation 636

Checklist of concepts 637

Checklist of equations 637

 ➤ Why do you need to know this material?
The practical implementation of thermodynamics in 
a wide range of problems, including the discussion of 
equilibrium and electrochemistry, depends on being able 
to use the data described in this Topic to calculate the 
Gibbs energies of reactions.

 ➤ What is the key idea?
The standard Gibbs energy of reaction can be calculated 
from the standard Gibbs energies of formation of the 
reactants and products.

 ➤ What do you need to know already?
You need to be aware of the definition of the Gibbs energy 
(Topic 64) and of the concepts of standard and reference 
states (Topic 57). The standard enthalpy and entropy of 
reaction are defined in Topics 57 and 63. The statistical 
interpretation of values of thermodynamic properties 
draws on the material in Topics 53 and 60. The derivation 
of the Born equation uses information on electrostatics 
described in Foundations, Topic 2.
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634 13 The Second and Third Laws of thermodynamics

standard Gibbs energy of reaction by taking the appropriate 

‘products – reactants’ combination:

Δ Δr

J

J f JG G< <=∑� ( )

 

Calorimetry (for ΔH directly, and for S from heat capacities) is 

only one of the ways of determining standard Gibbs energies of 

formation by forming the combination Δ Δ Δr r rG H T S< < <= − . 

They may also be calculated from spectroscopic data. Thus, it is 

established in Topic 64 that the Gibbs energy of a gaseous spe-

cies can be calculated from the molecular partition function by 

using eqn 64.12 (G – G(0) = –NkT ln(q/N), with Nk = nNAk = nR) 

by using data from spectroscopy. For such calculations, it is 

convenient to introduce the molar partition function, qm = q/n, 

with n = N/NA, and then to write the expression for the standard 

value of Gm as

G G RT
Nm m

m

A

< <
<

= −( ) ln0
q

 
 Calculation of G  (65.4)

To use this equation, note that G Um m
< <( ) ( )0 0=  and that Um

< ( )0  

is simply the molar ground-state energy of the species, Em, 

because no other states are occupied at T = 0. The Em may then 

be identified with the dissociation energies of the species.

Brief illustration 65.1 The reaction Gibbs energy

To calculate the standard Gibbs energy of the reaction 

CO(g) O g CO g2 2+ →1
2

( ) ( ) at 298 K, we write

Δ Δ Δ Δr f 2 f f 2

1

CO g CO g O ,g

394 4 kJmol 1

G G G G< < < <= − −
= − − −−

( , ) ( , ) ( )

. (

1
2

337 2 kJmol

257 2kJmol

1

1

. ) ( )

.

−

−

−
= −

1
2

0

Self-test 65.1 Calculate the standard reaction Gibbs energy for 

the combustion of CH4(g) at 298 K.

Answer: –818 kJ mol−1

Example 65.1 Calculating a standard Gibbs energy of 
formation from partition functions

Calculate the standard Gibbs energy of formation of H2O(g) 

at 25 °C.

Method Write the chemical equation for the formation reac-

tion, and then the expression for the standard Gibbs energy 

of formation in terms of the Gibbs energy of each molecule; 

then express those Gibbs energies in terms of the molecular 

partition function of each species by using eqn 64.12. Ignore 

molecular vibration as it is unlikely to be excited at 25 °C. Take 

numerical values from the Resource section together with the 

following rotational constants of H2O: 27.877, 14.512, and 

9.285 cm−1.

Answer The chemical reaction is H g O g H O g2 2 2( ) ( ) ( ).+ →1
2

 

Therefore,

Δ f m 2 m 2 m 2H O g H g O gG G G G< < < <= − −( , ) ( , ) ( , )1
2

Now write the standard molar Gibbs energies in terms of the 

standard molar partition functions of each species J:

G E RT
N

V

m m
m

A

m m
T R m R

J J
J

J J J
J

J

<
<

< <
<

( ) ( )
( )

( ) ( ) ( )

ln ,

( )
(

= −

= =

q

q q q q
Λ 3

))

Therefore

Δ f m
m

A

m
m

A

H O
H O

H
H

G E RT
N

E RT
N

<
<

<

= −
⎧
⎨
⎩

⎫
⎬
⎭

− −
⎧
⎨
⎩

⎫

( )
( )

( )
( )

ln

ln

2
2

2
2

q

q
⎬⎬
⎭

− −
⎧
⎨
⎩

⎫
⎬
⎭

= −

1

2 2
2

2
3

E RT
N

E RT
V N

m
m

A

m
m A

R

O
O

/ H O

( )
( )

ln

ln
{ ( ) }

q

q

<

<

Δ Λ (( )

( ){ ( ) }

H O

/ H Hm A
R

2

2
3

2

q

q

q

m 2 A

m 2

(H O)/

(H )/

<

<

<

N� ������ ������

V N Λ
NN

N

A

m 2 A(O )/

� ����� 	����

� ����

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥×

{ ( ) } ( )V Nm A
R/ O O<

<

Λ 2
3

2q
q
�� 	����

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

= −

1 2

1 2
2 2

1 2
2

3

/

/ /

ln
( ) ( ) ( ){ }ΔE RT

N

Vm
A

m

H O / H OΛ Λ Λ
<11 2

2 2
1 2

2
/ /{ ( ) ( ) ( )}q q qR R RH O / H O

where

ΔE E E Em m m mH O H O= − −( ) ( ) ( )2 2 2

1

2  

Table 65.1*  Standard Gibbs energies of formation (at 298 K)

ΔfG </(kJ mol−1)

Diamond, C(s) +2.9

Benzene, C6H6(l) +124.3

Methane, CH4(g) –50.7

Carbon dioxide, CO2(g) –394.4

Water, H2O(l) –237.1

Ammonia, NH3(g) –16.5

Sodium chloride, NaCl(s) –384.1

* More values are given in the Resource section.

Practical 
implementation 

Standard reaction 
Gibbs energy 

 (65.3)
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65 Standard Gibbs energies  635

65.2 Ions in solution

Ions in solution present a special problem for the definition of 

their standard Gibbs energy of formation, for cations are always 

accompanied by anions. Therefore, to discuss individual ions, 

we need to adopt a convention.

(a) The convention
Just as in Topic 57 for enthalpies of formation, we define one 

ion, conventionally the hydrogen ion, to have zero standard 

Gibbs energy of formation at all temperatures:

Δ f H aqG< ( , )+ = 0
 

In essence, this definition adjusts the actual values of the Gibbs 

energies of formation of ions by a fixed amount, which is cho-

sen so that the standard value for one of them, H+(aq), has the 

value zero. Then for the reaction

1
2

1
2H g Cl g H aq Cl aq

131 23 kJ mol

2 2

r
1

( ) ( ) ( ) ( )

.

+ → +
= −

+ −

−Δ G<

we can write

Δ Δ Δ Δr f f fH aq Cl aq Cl aqG G G G< < < <= + =+ − −( , ) ( , ) ( , )

and hence identify Δ fG
< (Cl−,aq) as –131.23 kJ mol−1. All the 

Gibbs energies of formation of ions tabulated in the Resource 

section were calculated in the same way.

The factors responsible for the magnitude of the Gibbs 

energy of formation of an ion in solution can be identified by 

analysing it in terms of a thermodynamic cycle. An important 

point to note is that the value of ΔfG
< of an ion X is not deter-

mined by the properties of X alone but includes contributions 

from the dissociation, ionization, and hydration of hydrogen.

Brief illustration 65.2 Standard Gibbs energies of ions

With the value of ΔfG
< (Cl−,aq) established, we can find the 

value of ΔfG
<(Ag+,aq) from

Ag s Cl g Ag aq Cl aq

54 12kJmol

2

r
1

( ) ( ) ( ) ( )

. .

+ → +
= −

+ −

−

1
2

Δ G<

It follows that ΔfG
< (Ag+,aq) = –54.12 kJ mol−1 – (–131.23 kJ 

mol−1) = +77.11 kJ mol−1.

Self-test 65.3 Develop this point to calculate the value of 

ΔfG
<(Ca2+,aq) given that

Ca s Cl g Ca aq 2 Cl aq

816 kJmol

2
2

r
1

( ) ( ) ( ) ( )

. .

+ → +
= −

+ −

−Δ G< 0

Answer: ΔfG
< (Ca2+,aq) = –553.5 kJ mol−1

Example 65.2 Setting up an expression for the Gibbs 
energy of formation of an ion

Set up an expression for the Gibbs energy of formation of Cl− 

in water at 298 K.

Method Treat the formation reaction of an ion X aq−( ),
1
2

1
2

H g X g H aq X aq2 2( ) ( ) ( ) ( ),+ → ++ −  as the outcome of the 

sequence of steps shown in Fig. 65.1a and take values from the 

Resource section. The standard Gibbs energies of formation 

of the gas-phase ions are unknown. Therefore, use ionization 

At this point we introduce the thermal wavelengths and the 

rotational partition functions (eqns 52.7b, 52.13, and 52.14 of 

Topic 52):

Λ

σ

( )
{ ( ) } /

J
J

and

R

R

= =

=

=

h

m kT

kT

hcB2 21 2

2

π
q

q

�

� �� ��
Linear molecule,

11

2

3 2 1 2
kT

hc ABC

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=

/ /π
� � �

� ����
Nonlinear molecule,

2σ�� �����

 

and set V RT pm /< <= . Now substitute the data, and find

It then follows that

Δ Δ Δf m m kJmolG E RT E< = − = + −ln . .0 0291 8 77 1

Now use

ΔE D D Dm

1

H O H O

498 428 436 498kJmol 24

= − + +
= − + + + = −−

( ) ( ) ( )

( )

2 2 2
1
2

1
2

× 11kJmol 1−

where the D are dissociation energies. Thus,

Δ = − + = −− −
f kJmol kJmolG< 241 8 77 2321 1.

The value quoted in Table 65.1 is –228.57 kJ mol−1; the dis-

crepancy is probably due to the use of the high-temperature 

approximation for the rotational partition functions.

Self-test 65.2 Estimate the standard Gibbs energy of forma-

tion of NH3(g) at 25 °C.

Answer: Experimental value: –16.45 kJ mol−1

Λ(H2) = 71.21 pm Λ(O2) = 17.87 pm Λ(H2O) = 23.82 pm

q R(H2) = 1.702 q R(O2) = 71.60 q R(H2O) = 42.13

Convention 
Standard Gibbs energy 
of formation of H+(aq)

 (65.5)
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636 13 The Second and Third Laws of thermodynamics

(b) The Born equation

Gibbs energies of solvation of individual ions, which appear 

in the thermodynamic cycle used to estimate Gibbs energies 

of formation, may be estimated from an equation derived by 

Max Born. He identified ΔsolvG
< with the electrical work of 

transferring an ion from a vacuum into the solvent treated 

as a continuous dielectric of relative permittivity εr. The 

resulting Born equation, which is derived in the following 

Justification, is

Δsolv
A

r

G
z e N

r
i

i

< = − −⎛
⎝⎜

⎞
⎠⎟

2 2

08
1

1

πε ε
 

 Born equation  (65.6a)

where zi is the charge number of the ion and ri its radius (NA 

is Avogadro’s constant). Note that ΔsolvG
< < 0, and that ΔsolvG

< 

is strongly negative for small, highly charged ions in media 

of high relative permittivity. For water, for which εr = 78.54 at 

25 °C,

Δsolv /pm
kJmolG

Az

r
Ai

i

< = − = × −
2

4 16 86 10
( )

, .
 

(65.6b)

Brief illustration 65.3 The Born equation

To see how closely the Born equation reproduces the experi-

mental data, we calculate the difference in the values of ΔfG
< 

for Cl− and I− in water, at 25 °C, given their radii as 181 pm and 

220 pm (Table 38.2), respectively; the difference is

Δ Δsolv solvCl I

kJ

G G A

A

< <( )

.

( )− −− = − −⎛
⎝⎜

⎞
⎠⎟

= − × = −

1

181

1

220

1 0 10 673 mmol−1

This estimated difference is in good agreement with the exper-

imental difference, which is –61 kJ mol−1.

Self-test 65.5 Estimate the value of ΔsolvG
<(H+) from the con-

clusion in Example 65.1 and the Born equation.

Answer: –1039 kJ mol−1

energies and electron affinities and neglect any errors arising 

from the conversion of enthalpies to Gibbs energies. The con-

clusions from the cycles are therefore only approximate.

Answer The cycle leading to the formation of Cl−(aq) is shown 

in Fig. 65.1a. The sum of the Gibbs energies for all the steps 

around a closed cycle is zero, so

− +
+ + + −
+

− +

−

{ ( , ) ( , )}

( )

Δ Δ

Δ

f f

1

sol

Cl aq H aq

218 1312 1 6 349 kJmol

G G< <

0

vv solvCl HG G< <( ) ( )− ++ =Δ 0
 

Therefore, with ΔfG
<(H+, aq) = 0,

Δ Δ Δf
1

solv solvCl aq 1287 kJmol Cl HG G G< < <( , ) ( ) ( )− − − += + +
 

The Gibbs energies of solvation of the ions are unknown (but 

see the following section), and it would be dangerous to iden-

tify them with the enthalpies of solvation because the two 

types of ions are likely to have significantly different effects on 

the entropy of solvation. The experimental value of ΔfG
<(Cl−, 

aq), from electrochemical measurements of the type described 

in Topic 77, is –131 kJ mol−1, so we can conclude that

Δ Δsolv solv
1Cl H 1418 kJ molG G< <( ) ( )− + −+ = −

This conclusion is taken further in Brief illustration 65.3 and 

its Self-test.

Self-test 65.4 Estimate the value of ΔsolvG
< (I−) + ΔsolvG

< (H+) 

in water at 298 K.

Answer: See Fig. 65.1b; –1357 kJ mol−1

Justification 65.1 The Born equation

We model an ion as a sphere of radius ri immersed in a 

medium of permittivity ε. If the charge of the sphere is Q, the 

electric potential at its surface is the same as the potential due 

to a point charge at its centre, so (Topic 2)

φ ε( )r
Q

ri
i

=
4π

E
n

th
al

p
y,

 H

+106

+1312

+218

–349

H+(g) + Cl(g) + e–

H+(g) + Cl–(g)

H+(g) + Cl–(aq)

H+(aq) + Cl–(aq)

H+(g) + ½ Cl2(g) + e–

H(g) + ½ Cl2(g)

½ H2(g) + ½ Cl2(g)

–{ΔfG
<(H+, aq) +ΔfG

<(Cl–, aq)}

ΔsolvG
<(H+)

ΔsolvG
<(Cl–)

+70

+1312

+218

–295

H+(g) + I(g) + e–

H+(g) + I–(g)

H+(g) + I–(aq)

H+(aq) + I–(aq)

H+(g) + ½ I2(s) + e–

H(g) + ½ I2(s)

½ H2(g) + ½ I2(s)

–{ΔfG
<(H+, aq) +ΔfG

<(I–, aq)}

ΔsolvG
<(H+)

ΔsolvG
<(I–)

(a) (b)

Figure 65.1 The thermodynamic cycles for the discussion 
of the Gibbs energies of solvation (hydration) and 
formation of (a) chloride ions, (b) iodide ions in aqueous 
solution. The sum of the changes in Gibbs energies around 
the cycle sum to zero because G is a state function.
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65 Standard Gibbs energies  637

Checklist of concepts

☐ 1. The standard Gibbs energies of formation is the stand-

ard reaction Gibbs energy for the formation of a com-

pound from its elements in their reference states.

☐ 2. The Gibbs energies of formation of ions in solution are 

relative to the Gibbs energy of formation of H+(aq).

☐ 3. The Born equation is used to estimate the Gibbs ener-

gies of formation of ions in solution.

Checklist of equations

The work of bringing up a charge dQ to the sphere is φ(ri)

dQ. Therefore, the total work of charging the sphere from 0 

to zie is

w r
r

Q
z e

ri
i

i

i

z ez e ii

= = =∫∫ φ ε ε( )d dQ Q
1

4 8

2 2

00 π π

This electrical work of charging, when multiplied by Avogadro’s 

constant, is the molar Gibbs energy for charging the ions.

The work of charging an ion in a vacuum is obtained by set-

ting ε = ε0, the vacuum permittivity The corresponding value 

for charging the ion in a medium regarded as a continuum is 

obtained by setting ε = εrε0, where εr is the relative permittiv-

ity of the medium. It follows that the change in molar Gibbs 

energy that accompanies the transfer of ions from a vacuum to 

a solvent is the difference of these two quantities:

Δsolv
A A

A

r

G
N z e

r

N z e

r

N z e

r

i

i

i

i

i

i

= −

= − −⎛
⎝⎜

⎞
⎠

2 2 2 2

0

2 2

0

8 8

8
1

1

π π

π

ε ε

ε ε ⎟⎟

which is eqn 65.6a.

Property Equation Comment Equation number

Standard reaction Gibbs energy ΔrG
< = ΔrH

< − TΔrS
< Definition 65.2

Δ = Δ∑r

J

J f JG G< <� ( )
Practical implementation 65.3

Ions in solution ΔfG
<(H+,aq) = 0 Convention, all temperatures 65.5

Born equation Δsolv A r/G z e N ri i
< = − −( )( / )2 2

08 1 1πε ε Solvent a continuous dielectric of relative 
permittivity εr

65.6a
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TOPIC 66

Combining the First and 

Second Laws

The First and Second Laws of thermodynamics are both rel-

evant to the behaviour of matter, and we can bring the whole 

force of thermodynamics to bear on a problem by setting up a 

formulation that combines them.

66.1 The fundamental equation

The First Law of thermodynamics (Topic 55) may be writ-

ten dU = dq + dw. For a reversible change in a closed system 

of constant composition, and in the absence of any additional 

(non-expansion) work, we may set dwrev = −pdV and (from the 

thermodynamic definition of entropy, Topic 61) dqrev = TdS, 

where p is the pressure of the system and T its temperature. 

Therefore, for a reversible change in a closed system,

d d dU T S p V= −
 

However, because dU is an exact differential, its value is inde-

pendent of path. Therefore, the same value of dU is obtained 

whether the change is brought about irreversibly or revers-

ibly. Consequently, eqn 66.1 applies to any change—reversible 

 ➤ Why do you need to know this material?

By combining the First and Second Laws we obtain a very 
powerful device for discussing the thermodynamic properties 
of matter. In this Topic you see how to derive expressions for 
the pressure and temperature dependence of the Gibbs 
energy, and thus provide the foundations for discussing the 
response of equilibria to changes in the conditions.

Contents

66.1 The fundamental equation 638

66.2 Properties of the internal energy 639

(a) The Maxwell relations 639

Brief illustration 66.1: The Maxwell relations 639

(b) The thermodynamic equation of state 640

Example 66.1: Deriving a thermodynamic relation 640

66.3 Properties of the Gibbs energy 640

(a) General considerations 640

Brief illustration 66.2: The variation of Gibbs energy  

with temperature 641

Brief illustration 66.3: The variation of Gibbs  

energy with pressure 642

(b) The variation of the Gibbs energy with  
temperature 642

Brief illustration 66.4: The Gibbs–Helmholtz  

equation 642

(c) The variation of the Gibbs energy with pressure 642
Brief illustration 66.5: The pressure dependence  

of the Gibbs energy of a gas 643

66.4 Properties of the Helmholtz energy 643

Example 66.2: Deriving the equation of state  

of a gas 644

Checklist of concepts 644

Checklist of equations 644

 ➤ What is the key idea?
The fact that thermodynamic functions are state functions 
implies important relations between them and their 
variation with changes in the conditions.

 ➤ What do you need to know already?
You need to be aware of the concept of ‘state function’ (Topic 
55) and the mathematical concept of exact differential 
(Mathematical background 8). This Topic combines the 
discussion of internal energy in Topic 58 with the discussion 
of the Gibbs and Helmholtz energies in Topic 64.

Fundamental equation 
of thermodynamics  (66.1)
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66 Combining the First and Second Laws  639

or irreversible—of a closed system that does no additional (non-

expansion) work. We shall call this combination of the First and 

Second Laws the fundamental equation of thermodynamics.

The fact that the fundamental equation applies to both revers-

ible and irreversible changes may be puzzling at first sight. The 

reason is that only in the case of a reversible change may TdS 

be identified with dq and −pdV with dw. When the change is 

irreversible, TdS > dq (the Clausius inequality, Topic 61) and 

−pdV < dw (work has its most negative value for the reversible 

process, Topic 55). The sum of dw and dq remains equal to the 

sum of TdS and −pdV, provided the composition is constant.

66.2 Properties of the internal energy

Equation 66.1 shows that the internal energy of a closed system 

changes in a simple way when either S or V is changed (dU ∝ dS 

and dU ∝ dV). These simple proportionalities suggest that U 

should be regarded as a function of S and V. We could regard 

U as a function of other variables, such as S and p or T and V, 

because they are all interrelated; but the simplicity of the funda-

mental equation suggests that U(S,V) is the best choice. From 

that simple observation, powerful consequences flow.

(a) The Maxwell relations
It follows from the discussion in Mathematical background 8 

that the mathematical consequence of U being a function of 

S and V is that we can express an infinitesimal change dU in 

terms of changes dS and dV by

d d dU
U

S
S

U

V
V

V S

= ∂
∂

⎛
⎝⎜

⎞
⎠⎟

+ ∂
∂

⎛
⎝⎜

⎞
⎠⎟

 

(66.2)

The two partial derivatives are the slopes of the plots of U 

against S and V, respectively, with the other variable held con-

stant. When this mathematical expression is compared to the 

thermodynamic relation, eqn 66.1, we see that, for systems of 

constant composition,

∂
∂

⎛
⎝⎜

⎞
⎠⎟

= ∂
∂

⎛
⎝⎜

⎞
⎠⎟

= −U

S
T

U

V
p

V S  
(66.3)

The first of these two equations is a purely thermodynamic def-

inition of temperature (a Zeroth-Law concept)1 as the ratio of 

the changes in the internal energy (a First-Law concept) and 

entropy (a Second-Law concept) of a constant-volume, closed, 

constant-composition system. We are beginning to generate 

relations between the properties of a system and to discover 

the power of thermodynamics for establishing unexpected 

relations.

Because the fundamental equation, eqn 66.1, is an expres-

sion for an exact differential, the functions multiplying dS and 

dV (namely T and −p) must pass the test for exact differentials 

set out in Mathematical background 8 (that df = gdx + hdy is 

exact if (∂g/∂y)x = (∂h/∂x)y). That is,

for d d d it must be the case thatto be exact, U T S p V

T

= −

∂

g x +h y
 

 
d d

∂∂
⎛
⎝⎜

⎞
⎠⎟

= − ∂
∂

⎛
⎝⎜

⎞
⎠⎟

∂ ∂ ∂ ∂

V

p

S
S V

g y h x
x y( / ) ( / )��� �� � �� ��

 

 

(66.4)

We have generated a relation between quantities which, at first 

sight, would not seem to be related and are certainly very dif-

ficult to justify on a molecular basis.

Equation 66.4 is an example of a Maxwell relation. However, 

apart from being unexpected, it does not look particularly inter-

esting. Nevertheless, it does suggest that there may be other simi-

lar relations that are more useful. Indeed, we can use the fact that 

H, G, and A are all state functions to derive three more Maxwell 

relations. The argument to obtain them runs in the same way in 

each case: because H, G, and A are state functions, the expres-

sions for dH, dG, and dA satisfy relations that yield expressions 

like eqn 66.4. All four relations are listed in Table 66.1.

1 This point is elaborated in our other Physical chemistry (2014).

Brief illustration 66.1 The Maxwell relations

Suppose that for a certain gas (∂p/∂T)V = +380 Pa K−1. Then we 

would know from the Maxwell relation (∂S/∂V)T = (∂p/∂T)V 

that the variation of entropy with volume at constant tempera-

ture is also +380 Pa K−1, which is equivalent to +380 J K−1 m−3, 

and therefore that an increase in volume by 1.0 dm3 would 

result in an increase in entropy of about 0.38 J K−1.

Table 66.1 The Maxwell relations

State function Exact differential Maxwell relation

U dU = TdS − pdV ∂
∂

⎛
⎝⎜

⎞
⎠⎟

= − ∂
∂

⎛
⎝⎜

⎞
⎠⎟

T

V

p

S
S V

H dH = TdS + Vdp ∂
∂

⎛
⎝⎜

⎞
⎠⎟

= ∂
∂

⎛
⎝⎜

⎞
⎠⎟

T

p

V

S
S p

A dA = −pdV − SdT ∂
∂

⎛
⎝⎜

⎞
⎠⎟

= ∂
∂

⎛
⎝⎜

⎞
⎠⎟

p

T

S

V
V T

G dG = Vdp − SdT ∂
∂

⎛
⎝⎜

⎞
⎠⎟

= − ∂
∂

⎛
⎝⎜

⎞
⎠⎟

V

T

S

p
p T
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640 13 The Second and Third Laws of thermodynamics

(b) The thermodynamic equation of state
As an example of the use of the Maxwell relations, we show 

in the following Justification that the internal pressure 

πT = (∂U/∂V)T introduced in Topic 36 may be expressed as

πT

V

T
p

T
p= ∂

∂
⎛
⎝⎜

⎞
⎠⎟

−
 

This relation is called a thermodynamic equation of state 

because it is an expression for pressure in terms of a variety of 

thermodynamic properties of the system.

66.3 Properties of the Gibbs energy

The same arguments that we have used for U can be used for 

the Gibbs energy (Topic 64, G = H − TS). They lead to expres-

sions showing how G varies with pressure and temperature that 

are important for discussing phase transitions (Topics 67–69) 

and chemical reactions (Topic 73).

(a) General considerations
When the system undergoes a change of state, G may change 

because H, T, and S all change:

d d d d d dG H TS H T S S T= − = − −( )  

Because H = U + pV, we know that

d d d d d dH U pV U p V V p= + = + +( )
 

Self-test 66.1 Suppose we know that for a certain gas that (∂Vm/

∂T)p = 8.3 × 10−5 m3 mol−1 K−1. What can be inferred about the 

variation of its molar entropy with pressure?

Answer: (∂Sm/∂p)T = −8.3 × 10−5 J K−1 mol−1 Pa−1

Thermodynamic 
equation of state  (66.5)

Justification 66.1 The thermodynamic equation of state

We obtain an expression for the coefficient πT by dividing both 

sides of eqn 66.2 by dV and imposing the constraint of con-

stant temperature, which gives

∂
∂

⎛
⎝⎜

⎞
⎠⎟

= ∂
∂

⎛
⎝⎜

⎞
⎠⎟

∂
∂

⎛
⎝⎜

⎞
⎠⎟

+ ∂
∂

⎛
⎝⎜

⎞
⎠⎟

U

V

U

S

S

V

U

V
T V T

TTπ��� �� ��� ��

SS

p−��� ��

 

We have used eqn 66.3 to identify T and −p. Next, as shown by 

the annotations, this equation is the same as

πT

T

T
S

V
p= ∂

∂
⎛
⎝⎜

⎞
⎠⎟

−
 

The third Maxwell relation in Table 66.1 turns (∂S/∂V)T into 

(∂p/∂T)V, which completes the proof of eqn 66.5.

Example 66.1 Deriving a thermodynamic relation

Show thermodynamically that πT = 0 for a perfect gas, and 

derive its value for a van der Waals gas.

Method Proving a result ‘thermodynamically’ means basing 

it entirely on general thermodynamic relations and equations 

of state, without drawing on molecular arguments (such as the 

existence of intermolecular forces). We know that, for a per-

fect gas, p = nRT/V, so this relation should be used in eqn 66.5. 

Similarly, the van der Waals equation (Topic 36) should be 

used instead for the second part of the question.

Answer For a perfect gas we write

∂
∂

⎛
⎝⎜

⎞
⎠⎟

= ∂
∂

⎛
⎝⎜

⎞
⎠⎟

=p

T

nRT V

T

nR

V
V V

( / )

 

Then, eqn 66.5 becomes

πT

nRT

V
p= − =0

 

The equation of state of a van der Waals gas (Topic 36) is

p
nRT

V nb
a

n

V
= − −

2

2
 

Because a and b are independent of temperature,

∂
∂

⎛
⎝⎜

⎞
⎠⎟

= −
p

T

nR

V nb
V  

Therefore, from eqn 66.5,

π

∂ ∂

T

nRT

V nb

nRT

V nb
a

n

V
a

n

V
= − − − + =

−T p T pV( / )��� � ��� ���
2

2

2

2
 

exactly as obtained in Topics 36 and 54 on the basis of molecu-

lar arguments and the formulation of a model intermolecular 

potential with an attractive region proportional to a.

Self-test 66.2 Calculate πT for a gas that obeys the virial equa-

tion of state (Topic 36).

Answer: πT VRT B T V= ∂ ∂ +2 2( / ) / m …
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66 Combining the First and Second Laws  641

and therefore

d d d d d dG U p V V p T S S T= + + − −
 

For a closed system doing no non-expansion work, we can 

replace dU by the fundamental equation dU = TdS − pdV and 

obtain

d d d d d d dG T S p V p V V p T S S T= − + + − −
 

Four terms now cancel on the right, and we conclude that for 

a closed system in the absence of non-expansion work and at 

constant composition

d d dG V p S T= −   Variation of G with p and T  (66.6)

This expression, which shows that a change in G is proportional 

to a change in p or T, suggests that G may be best regarded as 

a function of p and T. It confirms that G is an important quan-

tity in chemistry because the pressure and temperature are usu-

ally the variables under our control. In other words, G carries 

around the combined consequences of the First and Second 

Laws in a way that makes it particularly suitable for chemical 

applications.

The same argument that led to eqn 66.3, when applied to the 

exact differential dG = Vdp − SdT, now gives

∂
∂

⎛
⎝⎜

⎞
⎠⎟

= − ∂
∂

⎛
⎝⎜

⎞
⎠⎟

=G

T
S

G

p
V

p T  

These relations show how the Gibbs energy varies with temper-

ature and pressure (Fig. 66.1). The first implies that:

Because S > 0 for all substances, G always decreases when 

the temperature is raised (at constant pressure and 

composition).

Insofar as G is the negative logarithm of the molecular partition 

function (Topic 64, G − G(0) = −NkTln(q/N)), we can under-

stand this behaviour on the basis that q increases with tempera-

ture as more states become thermally accessible, and therefore 

−ln q becomes more negative.

Because (∂G/∂T)p becomes more negative as S increases, 

G decreases most sharply when the entropy of the system 

is large.

A large entropy implies that many states are occupied, and 

therefore that many are thermally accessible. Such a system is 

more sensitive to changes in temperature than one in which 

only a small number of states are accessible. In macroscopic 

terms, the Gibbs energy of the gaseous phase of a substance, 

which has a high molar entropy, is more sensitive to tempera-

ture than its liquid and solid phases (Fig. 66.2).

Similarly, the second relation implies that:

Because V > 0 for all substances, G always increases when 

the pressure of the system is increased (at constant 

temperature and composition).

We can understand this behaviour on the basis (once again, 

using Topic 64, G − G(0) = −NkTln(q/N)) that q decreases with 

decreasing volume as states move apart and become less ther-

mally accessible, and therefore −ln q becomes less negative.

Because (∂G/∂p)T increases with V, G is more sensitive to 

pressure when the volume of the system is large.

Once again, a large volume implies closely spaced transla-

tional energy levels, and therefore a responsiveness to change. 

Because the molar volume of the gaseous phase of a substance 

is greater than that of its condensed phases, the molar Gibbs 

Brief illustration 66.2 The variation of Gibbs energy 
with temperature

The standard molar entropy of liquid water at 25 °C is 

69.91 J K−1 mol−1. Therefore, when the temperature is increased 

to 30 °C we can expect its standard molar Gibbs energy to 

change by

Δ Δ ΔG
G

T
T S T

p

m
m

m JK mol K

Jmo

<
<

<≈ ∂
∂

⎛
⎝⎜

⎞
⎠⎟

= − = − ×

= −

− −( . ) ( )69 91 5

350

1 1

ll−1

 

The same calculation for gaseous water (for which the stand-

ard molar entropy is 188.83 J K−1 mol−1) gives a decrease of 

944 J mol−1.

Self-test 66.3 Estimate the change in the value of Gm
< when the 

temperature of liquid mercury is changed from 25 °C to 0 °C.

Answer: −1.9 kJ mol−1

Slope = –S

Slope = +V

Gibbs
energy, G

Te
mperature, T

Pressure, p

Figure 66.1 The variation of the Gibbs energy of a system with 
temperature and pressure. The slope of the former is equal to 
the negative of the entropy of the system and that of the latter 
is equal to the volume.

 (66.7)
Variation of G with 
temperature and 
pressure

Atkins09819.indb   641 9/11/2013   12:58:32 PM



642 13 The Second and Third Laws of thermodynamics

energy of a gas is more sensitive to pressure than its liquid and 

solid phases (Fig. 66.3).

(b) The variation of the Gibbs energy 
with temperature

Although eqn 66.7 expresses the variation of G in terms of the 

entropy, we can express it in terms of the enthalpy by using the 

definition of G = H − TS to write −S = (G − H)/T. Then we obtain 

the Gibbs–Helmholtz equation:

∂
∂

⎛
⎝⎜

⎞
⎠⎟

= −G

T

G H

T
p  

 Gibbs–Helmholtz equation  (66.8a)

As we show in the following Justification, an alternative (and 

more useful) form is

∂
∂

⎛
⎝⎜

⎞
⎠⎟

= −
T

G

T

H

T
p

2

 

 Gibbs–Helmholtz equation  (66.8b)

This expression shows that if we know the enthalpy of the sys-

tem, then we know how G/T varies with temperature.

Brief illustration 66.3 The variation of Gibbs energy 
with pressure

The mass density of water at 25 °C is close to 1.0 g cm−3, so 

its molar volume at that temperature is (18.02 g mol−1)/(1.0 g 

cm−3) = 18 cm3 mol−1 (corresponding to 1.8 × 10−5 m3 mol−1). 

Therefore, when the pressure is increased from 1.0 bar to 2.0 bar, 

so Δp = +1.0 bar = +1.0 × 105 Pa, we can expect its standard molar 

Gibbs energy to change by

Δ Δ ΔG
G

p
p V p

T

m
m

m

m mol Pa

<
<

<≈ ∂
∂

⎛
⎝⎜

⎞
⎠⎟

=

= × × × = +− −( . ) ( . )1 8 10 1 0 105 3 1 5 11 8 1. Jmol−
 

(We have used 1 Pa m3 = 1 J.) Provided we ignore at this 

stage the compression that occurs, the same calculation 

for gaseous water (for which the standard molar volume is 

2.5 × 10−2 m3 mol−1) gives an increase of 2.5 kJ mol−1. The effect 

of compression is taken into account in Brief illustration 66.5.

Self-test 66.4 Estimate the change in the value of Gm
< when the 

pressure of liquid mercury is changed from 1.0 bar to (a) 2.0 

bar; (b) 1.0 kbar. (The mass density of mercury is 13.5 g cm−3.)

Answer: (a) +1.5 J mol−1; (b) +1.5 kJ mol−1

Justification 66.2 The Gibbs–Helmholtz equation

First, we reorganize eqn 66.8a into

∂
∂

⎛
⎝⎜

⎞
⎠⎟

− = −G

T

G

T

H

T
p  

Then we combine the two terms on the left by noting that
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Figure 66.2 The variation of the Gibbs energy with the 
temperature is determined by the entropy. Because the 
entropy of the gaseous phase of a substance is greater than 
that of the liquid phase, and the entropy of the solid phase is 
smallest, the Gibbs energy changes most steeply for the gas 
phase, followed by the liquid phase, and then the solid phase 
of the substance.

Pressure, p

G
ib

b
e 
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er

g
y,

 G
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Solid

Figure 66.3 The variation of the Gibbs energy with the 
pressure is determined by the volume of the sample. Because 
the volume of the gaseous phase of a substance is greater than 
that of the same amount of liquid phase, and the entropy of the 
solid phase is smallest (for most substances), the Gibbs energy 
changes most steeply for the gas phase, followed by the liquid 
phase, and then the solid phase of the substance. Because 
the volumes of the solid and liquid phases of a substance are 
similar, their molar Gibbs energies vary by similar amounts as 
the pressure is changed.

Atkins09819.indb   642 9/11/2013   12:58:42 PM

www.ebook3000.com

http://www.ebook3000.org


66 Combining the First and Second Laws  643

The Gibbs–Helmholtz equation is most useful when it 

is applied to changes, including changes of physical state 

and chemical reactions at constant pressure. Then, because 

ΔG = Gf − Gi for the change of Gibbs energy between the final 

and initial states and because the equation applies to both Gf 

and Gi, we can write

∂
∂

⎛
⎝⎜

⎞
⎠⎟

= −
T

G

T

H

T
p

Δ Δ
2

 

This equation shows that if we know the change in enthalpy of 

a system that is undergoing some kind of transformation (such 

as vaporization or reaction), then we know how the correspond-

ing change in Gibbs energy varies with temperature. As we see 

in Topics 73 and 75, this is a crucial piece of information in 

chemistry.

Brief illustration 66.4 The Gibbs–Helmholtz equation

In Topic 73 it is shown that ΔrG
</T = −R ln K, where K is the 

equilibrium constant of the reaction for which ΔrG
< is the stand-

ard reaction Gibbs energy. Suppose we know that the standard 

enthalpy of the reaction is −200 kJ mol−1 at 298 K. Then from 

eqn 66.9 we can predict that

∂
∂

⎛
⎝⎜

⎞
⎠⎟

= =
− ×

×

−

− −T
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H

RT
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Δr
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5 1

1 1
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8 3145 2988

0 27

2

1

K

K

)

.= − −
 

That is, the logarithm of the equilibrium constant decreases by 

0.27 for each 1 K rise in temperature.

Self-test 66.5 Estimate the change in ln K for a reaction for 

which ΔrH
<= +500 kJ mol−1 at 298 K.

Answer: +0.68 K−1

When we substitute eqn 66.7, that (∂G/∂T)p = −S, into this 

expression, we obtain

∂
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⎛
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⎞
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H TS


 

which is eqn 66.8b.

 (66.9)
Gibbs–Helmholtz 
equation for changes

 (66.10b)
Pressure 
dependence 
of Gm

(c) The variation of the Gibbs 
energy with pressure
To find the Gibbs energy at one pressure in terms of its value at 

another pressure, the temperature being constant, we set dT = 0 

in eqn 66.6, which gives dG = Vdp, and integrate:

G p G p V p
p

p

( ) ( )f i d
i

f

= +∫
 

 Pressure dependence of G  (66.10a)

For molar quantities,

G p G p V p
p

p

m f m i md
i

f

( ) ( )= +∫
 

This expression is applicable to any phase of matter, but to eval-

uate it we need to know how the molar volume, Vm, depends on 

the pressure.

The molar volume of a condensed phase changes only 

slightly as the pressure changes (Fig. 66.4), so we can treat Vm as 

a constant and take it outside the integral:

V p V p V p p
p

p

p

p

m m m f id d
i

f

i

f

= = × −∫ ∫ ( )

Δp��� ��

 

Therefore,

G p G p V pm f m i m( ) ( )= + Δ
 

(The molar volume of a substance of molar mass M is related 

to its mass density ρ by Vm = M/ρ.) Under normal laboratory 

conditions VmΔp is very small and may be neglected. Hence, 

we may usually suppose that the Gibbs energies of solids and 

liquids are independent of pressure. For the implication of this 

expression, see Brief illustration 66.3.

The molar volumes of gases are large, so the Gibbs energy 

of a gas depends strongly on the pressure: the closeness of its 

translational energy levels makes the partition function highly 

responsive to external influences. Furthermore, because the 

volume also varies markedly with the pressure, we cannot treat 

it as a constant in the integral in eqn 66.10b (Fig. 66.5). For a 

Pressure, p

Vo
lu

m
e,

 V

Δp

Volume assumed
constant

Actual volume

pi pf

Figure 66.4 The difference in Gibbs energy of a solid or liquid 
at two pressures is equal to the rectangular area shown. We 
have assumed that the variation of volume with pressure is 
negligible.

 (66.11)
Incompressible 
substance

Pressure 
dependence 
of Gm
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644 13 The Second and Third Laws of thermodynamics

perfect gas we substitute Vm = RT/p into the integral, treat RT as 

a constant, use

V p RT
p

p RT
p

pp

p

p

p

m
f

i

d d
i

f

i

f

= =∫ ∫ 1
ln

 

and conclude that

G p G p RT
p

pm f m i
f

i

( ) ( ) ln= +
 

This expression shows that when the pressure is increased ten-

fold at room temperature, the molar Gibbs energy increases by 

RT ln 10 ≈ 6 kJ mol−1. It also follows from this equation that if 

we set pi = p< (the standard pressure of 1 bar), then the molar 

Gibbs energy of a perfect gas at a pressure p (set pf = p) is related 

to its standard value by

G p G RT
p

pm m( ) ln= +<
<

 

The logarithmic dependence of the molar Gibbs energy on the 

pressure predicted by eqn 66.13 is illustrated in Fig. 66.6.

66.4 Properties of the 
Helmholtz energy

By exactly the same kind of argument that led to eqn 66.7, 

we can compare the two equations for the variation of the 

Helmholtz energy A with temperature and volume. From the 

definition of A,

d d dA p V S T= −  (66.14)

and from the general mathematical form

d d dA
A

V
V
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T

T V
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it follows that

∂
∂

⎛
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⎞
⎠⎟

= − ∂
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⎛
⎝⎜

⎞
⎠⎟

= −A

T
S

A

V
p

V T  

Note that whereas the change in molar Gibbs energy for a 

condensed phase (Self-test 66.4) is a few joules per mole, this 

change is of the order of kilojoules per mole. The value obtained 

here is smaller than in Brief illustration 66.3 (+2.5 kJ mol−1) 

where compression was ignored because the compression that 

results from the application of pressure diminishes the vol-

ume progressively, so dG/dp becomes smaller than its initial 

value as the pressure is increased.

Self-test 66.6 Repeat the calculation for iron vapour at 3000 °C 

treated as a perfect gas.

Answer: +19 kJ mol−1

Brief illustration 66.5 The pressure dependence of the 
Gibbs energy of a gas

To calculate the change in the molar Gibbs energy of water 

vapour (treated as a perfect gas) when the pressure is increased 

isothermally from 1.0 bar to 2.0 bar (and, unlike in Brief illus-

tration 66.3, now allowing for compression) at 298 K we write 

eqn 66.12 as

ΔG RT
p

pm
f

i

JK mol K
bar

bar

k

= = × ×

= +

− −ln ( . ) ( ) ln
.

.

.

8 3145 298
2 0

1 0

1 7

1 1

JJmol−1

 

Pressure, p

Vo
lu

m
e,

 V

pi pf

V = nRT/p

∫V dp

Figure 66.5 The difference in Gibbs energy for a perfect gas at 
two pressures is equal to the area shown below the perfect-gas 
isotherm.
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Figure 66.6 The molar Gibbs energy of a perfect gas is 
proportional to ln p, and the standard state is reached at p <. 
Note that as p → 0, the molar Gibbs energy becomes  
negatively infinite.

Perfect 
gas

Pressure 
dependence 
of Gm

 (66.12)

Perfect 
gas

Pressure 
dependence 
of Gm

 (66.13)

 (66.15)
Variation of A with 
temperature and 
volume
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66 Combining the First and Second Laws  645

The second of these relations gives us a valuable route to the 

calculation of the pressure from the partition function, for 

we already know how to calculate A. Thus, from Topic 64 

(A = A(0) − kT ln Q) we obtain the simple relation

p kT
V

T

= ∂
∂

⎛
⎝⎜

⎞
⎠⎟

lnQ

 

We are at the point where we can confirm that β = 1/kT, as 

asserted in Topic 51. Thus, if we had not made the identification 

β = 1/kT in the derivation of eqn 66.16 we would have found

p
V

T

= ∂
∂

⎛
⎝⎜

⎞
⎠⎟

1

β
lnQ

 

The work in the preceding Example would have led to

p
N

V
= β  

which requires us to identify β as 1/kT in order to recover the 

perfect gas law.

Example 66.2 Deriving the equation of state of a gas

Show that eqn 66.16 reduces to the perfect gas equation of state 

in the case of a gas of independent particles.

Method Substitute Q = q N/N! (Topic 54), and note that only the 

translational contribution depends on the volume.

Answer On substituting Q = q N/N! into eqn 66.16 we obtain

p kT
N

V
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= ∂
∂

⎛
⎝⎜

⎞
⎠⎟

ln !

ln
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q

because only q (and not N) depends on V. Moreover, because ln 

q = ln q Tq Rq Vq E = ln q T + ln q Rq Vq E, and q R, q V, and q E are inde-

pendent of volume, we need consider only the translational 

partition function. Thus we use q = V/Λ3 (Topic 52) to obtain
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When this relation is substituted into the preceding one

p
NkT

V
=

and we use N = nNA and NAk = R, we find p = NkT/V = nRT/V, 

the equation of state of a perfect gas.

Self-test 66.7 Obtain the corresponding expression for a real 

gas in terms of the configuration integral Z introduced in 

Topic 54.

Answer: p = kT(∂ln Z/∂V)T

Checklist of concepts

 1. The fundamental equation of thermodynamics 

(see below) combines the First and Second Laws of 

thermodynamics.

 2. The Maxwell relations (Table 66.1) relate the deriva-

tives of thermodynamic state functions.

 3. A thermodynamic equation of state is an expression 

for pressure in terms of a variety of thermodynamic 

properties of the system.

 4. The Gibbs energy of a pure substance decreases when 

the temperature is raised but increases when the pres-

sure is raised.

 5. The Gibbs–Helmholtz equation (see below) expresses 

the variation of G/T with temperature in terms of the 

enthalpy of the system.

 (66.16)

Pressure in 
terms of the 
partition 
function
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646 13 The Second and Third Laws of thermodynamics

Checklist of equations

Property Equation Comment Equation number

Fundamental equation dU = TdS − pdV Closed system of constant composition 66.1

Variation of U (∂U/∂S)V = T, (∂U/∂V)S = −p 66.3

Maxwell relations See Table 66.1 66.4

Thermodynamic equation of state πT = T(∂p/∂T)V − p 66.5

Change in Gibbs energy dG = Vdp − SdT 66.6

Variation of G (∂G/∂T)p = −S, (∂G/∂p)T = V 66.7

Gibbs–Helmholtz equation (∂(ΔG/T)/∂T)p = −ΔH/T2 66.9

Variation of Gibbs energy with pressure Gm(pf) = Gm(pi) + VmΔp Incompressible substance 66.11

G p G RT p pm m( ) ln( / )= +< < Perfect gas 66.13

Change in Helmholtz energy dA = −pdV − SdT 66.14

Variation of A (∂A/∂T)V = −S, (∂A/∂V)T = −p 66.15

Pressure in terms of the partition function p = kT(∂lnQ/∂V)T 66.16
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Exercises and problems  647

Focus 13 on The Second and Third Laws 
of thermodynamics
Assume that all gases are perfect and that data refer to 298.15 K unless otherwise stated.

Topic 59 The Second Law

Discussion questions
59.1 The evolution of life requires the organization of a very large number 

of molecules into biological cells. Does the formation of living organisms 

violate the Second Law of thermodynamics? State your conclusion clearly and 

present detailed arguments to support it.

59.2 Discuss the significance of the terms ‘dispersal’ and ‘disorder’ in the 

context of the Second Law.

Exercises
59.1(a) During a hypothetical process, the entropy of a system increases by 

125 J K−1 while the entropy of the surroundings decreases by 125 J K−1. Is the 

process spontaneous?

59.1(b) During a hypothetical process, the entropy of a system increases by 

105 J K−1 while the entropy of the surroundings decreases by 95 J K−1. Is the 

process spontaneous?

Topic 60 The statistical entropy

Discussion questions
60.1 Discuss the relationship between the thermodynamic and statistical 

definitions of entropy.

60.2 Justify the differences between the partition function expression for the 

entropy for distinguishable particles and the expression for indistinguishable 

particles.

60.3 Account for the temperature and volume dependence of the entropy of a 

perfect gas in terms of the Boltzmann distribution.

Exercises
60.1(a) Calculate the standard molar entropy at 298 K of (a) gaseous helium, 

(b) gaseous xenon.

60.1(b) Calculate the translational contribution to the standard molar entropy 

at 298 K of (a) H2O(g), (b) CO2(g).

60.2(a) At what temperature is the standard molar entropy of helium equal to 

that of xenon at 298 K?

60.2(b) At what temperature is the translational contribution to the standard 

molar entropy of CO2(g) equal to that of H2O(g) at 298 K?

60.3(a) Calculate the rotational partition function of H2O at 298 K from its 

rotational constants 27.878 cm−1, 14.509 cm−1, and 9.287 cm−1 and use your 

result to calculate the rotational contribution to the molar entropy of gaseous 

water at 25 °C.

60.3(b) Calculate the rotational partition function of SO2 at 298 K from its 

rotational constants 2.027 36 cm−1, 0.34417 cm−1, and 0.293 535 cm−1 and use 

your result to calculate the rotational contribution to the molar entropy of 

sulfur dioxide at 25 °C.

60.4(a) Calculate the rotational contribution to the molar entropy of CO2 at 

298 K. Use �B = 0 3902. .cm 1−

60.4(b) Calculate the rotational contribution to the molar entropy of CS2 at 

298 K. Use �B = −0 1091. .cm 1

60.5(a) The ground state of the Co2+ ion in CoSO4·7H2O may be regarded as 
4T9/2. The entropy of the solid at temperatures below 1 K is derived almost 

entirely from the electron spin. Estimate the molar entropy of the solid at 

these temperatures.

60.5(b) Estimate the contribution of the spin to the molar entropy of a solid 

sample of a d-metal complex with S = 5
2

.

60.6(a) Predict the standard molar entropy of methanoic acid (formic acid, 

HCOOH) at (a) 298 K, (b) 500 K. The normal modes occur at wavenumbers 

3570, 2943, 1770, 1387, 1229, 1105, 625, 1033, 638 cm−1.

60.6(b) Predict the standard molar entropy of ethyne at (a) 298 K, (b) 500 K. 

The normal modes (and their degeneracies in parentheses) occur at 

wavenumbers 612(2), 729(2), 1974, 3287, and 3374 cm−1.
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648 13 The Second and Third Laws of thermodynamics

Problems
60.1 Use the accurate expression for the rotational partition function 

calculated in Problem 52.6 for HCl(g) to calculate the rotational contribution 

to the molar entropy over a range of temperature and plot the contribution as 

a function of temperature.

60.2 Calculate the standard molar entropy of N2(g) at 298 K from its rotational 

constant �B = −1 9987 1. cm  and its vibrational wavenumber �� = −2358 cm 1. The 

thermochemical value is 192.1 J K−1 mol−1. What does this suggest about the 

solid at T = 0?

60.3‡ J.G. Dojahn, et al. (J. Phys. Chem. 100, 9649 (1996)) characterized the 

potential energy curves of the ground and electronic states of homonuclear 

diatomic halogen anions. The ground state of F2
−  is 2 ∑+

u  with a fundamental 

vibrational wavenumber of 450.0 cm−1 and equilibrium internuclear distance 

of 190.0 pm. The first two excited states are at 1.609 and 1.702 eV above the 

ground state. Compute the standard molar entropy of F2
−  at 298 K.

60.4‡ Treat carbon monoxide as a perfect gas and apply equilibrium statistical 

thermodynamics to the study of its properties, as specified below, in the 

temperature range 100–1000 K at 1 bar. � �� = =− −2169 8 1. , . ,cm 1 931 cm 1B  

and hcD
~

0 =11.09 eV; neglect anharmonicity and centrifugal distortion. (a) 

Examine the probability distribution of molecules over available rotational 

and vibrational states. (b) Explore numerically the differences, if any, between 

the rotational molecular partition function as calculated with the discrete 

energy distribution and that calculated with the classical, continuous energy 

distribution. (c) Calculate the individual contributions to Um(T) – Um(100 K), 

CV,m(T), and Sm(T) – Sm(100 K) made by the translational, rotational, and 

vibrational degrees of freedom.

60.5 The energy levels of a Morse oscillator (Topic 43) are 

E hc hcxv v v= + − +( ) ( ) .1
2

1
2

2� �� �e  Set up the expression for the molar entropy 

of a collection of Morse oscillators and plot it as a function of temperature 

for a series of anharmonicities. Take into account only the finite number of 

bound states. On the same graph plot the entropy of a harmonic oscillator and 

investigate how the two diverge.

60.6 Explore how the entropy of a collection of two-level systems behaves 

when the temperature is formally allowed to become negative. You should 

also construct a graph in which the temperature is replaced by the variable 

β = 1/kT. Account for the appearance of the graphs physically.

60.7 Derive the Sackur–Tetrode equation for a monatomic gas confined to a 

two-dimensional surface, and hence derive an expression for the standard 

molar entropy of condensation to form a mobile surface film.

60.8 In Problem 58.16 you are invited to consider the expressions

q q q= = =∑ ∑ ∑− − −

j j

j

j

j
j j je e eβε βε βεβε βε.

( )�� 2

 

in the context of the First Law. To see that these expressions are also relevant 

to the Second Law, derive an expression for the entropy in terms of these 

three functions. (b) Apply the technique to the calculation of the electronic 

contribution to the standard molar entropy of magnesium vapour at 5000 K 

using the following data:

Topic 61 The thermodynamic entropy

Discussion question
61.1 Discuss the relationships between the various formulations of the Second 

Law of thermodynamics.

Exercises
61.1(a) A certain ideal heat engine uses water at the triple point as the hot 

source and an organic liquid as the cold sink. It withdraws 10.00 kJ of heat 

from the hot source and generates 3.00 kJ of work. What is the temperature of 

the organic liquid?

61.1(b) A certain ideal heat engine uses water at the triple point as the hot 

source and an organic liquid as the cold sink. It withdraws 2.71 kJ of heat 

from the hot source and generates 0.71 kJ of work. What is the temperature of 

the organic liquid?

61.2(a) Calculate the change in entropy when 100 kJ of energy is transferred 

reversibly and isothermally as heat to a large block of copper at (a) 0 °C, (b) 50 °C.

61.2(b) Calculate the change in entropy when 250 kJ of energy is transferred 

reversibly and isothermally as heat to a large block of lead at (a) 20 °C, (b) 100 °C.

Problems
61.1 Represent the Carnot cycle on a temperature–entropy diagram and show 

that the area enclosed by the cycle is equal to the work done.

61.2 The cycle involved in the operation of an internal combustion engine 

is called the Otto cycle. Air can be considered to be the working substance 

and can be assumed to be a perfect gas. The cycle consists of the following 

steps: (1) Reversible adiabatic compression from A to B, (2) reversible 

constant-volume pressure increase from B to C due to the combustion of 

a small amount of fuel, (3) reversible adiabatic expansion from C to D, 

and (4) reversible and constant-volume pressure decrease back to state A. 

Determine the change in entropy (of the system and of the surroundings) for 

each step of the cycle and determine an expression for the efficiency of the 

cycle, assuming that the heat is supplied in Step 2. Evaluate the efficiency for a 

compression ratio of 10:1. Assume that in state A, V = 4.00 dm3, p = 1.00 atm, 

and T = 300 K, that VA =10VB, pC/pB = 5, and C Rp, .m = 7
2

61.3 Prove that two reversible adiabatic paths can never cross. Assume that the 

energy of the system under consideration is a function of temperature only. 

(Hint: Suppose that two such paths can intersect, and complete a cycle with 

the two paths plus one isothermal path. Consider the changes accompanying ‡ These problems were supplied by Charles Trapp and Carmen Giunta.

Term 1S 3P0
3P1

3P2
1P1

3S

Degeneracy 1 1 3 5 3 3

��/cm−1 0 21 850 21 870 21 911 35 051 41 197
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each stage of the cycle and show that they conflict with the Kelvin statement 

of the Second Law.)

61.4 To calculate the work required to lower the temperature of an object in a 

Carnot-like device, we need to consider how the coefficient of performance, 

the ratio of the energy transferred as heat from the cold source to the work 

required, c(T) = |qc|/|w|, changes with the temperature of the object. (a) 

Find an expression for the work of cooling an object from Ti to Tf when the 

refrigerator is in a room at a temperature Th. Hint: Write dw = dq/c(T), relate 

dq to dT through the heat capacity Cp, and integrate the resulting expression. 

Assume that the heat capacity is independent of temperature in the range of 

interest. (b) Use the result in part (a) to calculate the work needed to freeze 

250 g of water in a refrigerator at 293 K. How long will it take when the 

refrigerator operates at 100 W?

61.5 The expressions that apply to the treatment of refrigerators (Problem 

61.4) also describe the behaviour of heat pumps treated as Carnot engines, 

where warmth is obtained from the back of a refrigerator while its front is 

being used to cool the outside world. Heat pumps are popular home heating 

devices because they are very efficient. Compare heating of a room at 295 K by 

each of two methods: (a) direct conversion of 1.00 kJ of electrical energy in an 

electrical heater, and (b) use of 1.00 kJ of electrical energy to run a reversible 

heat pump with the outside at 260 K. Discuss the origin of the difference in 

the energy delivered to the interior of the house by the two methods.

Topic 62 Entropy changes for specific processes

Discussion question
62.1 Account for deviations from Trouton’s rule for liquids such as water and 

ethanol. Is their entropy of vaporization larger or smaller than 85 J K−1 mol−1? 

Why?

Exercises
62.1(a) Which of F2(g) and I2(g) is likely to have the higher standard molar 

entropy at 298 K?

62.1(b) Which of H2O(g) and CO2(g) is likely to have the higher standard 

molar entropy at 298 K?

62.2(a) Calculate the change in entropy when 15 g of carbon dioxide gas is 

allowed to expand from 1.0 dm3 to 3.0 dm3 at 300 K.

62.2(b) Calculate the change in entropy when 4.00 g of nitrogen is allowed to 

expand from 500 cm3 to 750 cm3 at 300 K.

62.3(a) Predict the enthalpy of vaporization of benzene from its normal boiling 

point, 80.1 °C.

62.3(b) Predict the enthalpy of vaporization of cyclohexane from its normal 

boiling point, 80.7 °C.

62.4(a) Calculate the molar entropy of a constant-volume sample of neon at 

500 K given that it is 146.22 J K−1 mol−1 at 298 K.

62.4(b) Calculate the molar entropy of a constant-volume sample of argon at 

250 K given that it is 154.84 J K−1 mol−1 at 298 K.

62.5(a) Calculate ΔS (for the system) when the state of 3.00 mol of perfect gas 

atoms, for which C Rp, ,m = 5
2

 is changed from 25 °C and 1.00 atm to 125 °C 

and 5.00 atm. How do you rationalize the sign of ΔS?

62.5(b) Calculate ΔS (for the system) when the state of 2.00 mol diatomic 

perfect gas molecules, for which C Rp, ,m = 7
2

 is changed from 25 °C and 1.50 

atm to 135 °C and 7.00 atm. How do you rationalize the sign of ΔS?

62.6(a) A sample consisting of 3.00 mol of diatomic perfect gas molecules at 

200 K is compressed reversibly and adiabatically until its temperature reaches 

250 K. Given that CV,m = 27.5 J K−1 mol−1, calculate ΔS.

62.6(b) A sample consisting of 2.00 mol of diatomic perfect gas molecules at 

250 K is compressed reversibly and adiabatically until its temperature reaches 

300 K. Given that CV,m = 27.5 J K−1 mol−1, calculate ΔS.

62.7(a) Calculate ΔStot when two copper blocks, each of mass 1.00 kg, one at 

50 °C and the other at 0 °C, are placed in contact in an isolated container. 

The specific heat capacity of copper is 0.385 J K−1 g−1 and may be assumed 

constant over the temperature range involved.

62.7(b) Calculate ΔStot when two iron blocks, each of mass 10.0 kg, one at 

100 °C and the other at 25 °C, are placed in contact in an isolated container. 

The specific heat capacity of iron is 0.449 J K−1 g−1 and may be assumed 

constant over the temperature range involved.

62.8(a) Calculate the change in the entropies of the system and the 

surroundings, and the total change in entropy, when a sample of nitrogen gas 

of mass 14 g at 298 K and 1.00 bar doubles its volume in (a) an isothermal 

reversible expansion, (b) an isothermal irreversible expansion against pex = 0, 

and (c) an adiabatic reversible expansion.

62.8(b) Calculate the change in the entropies of the system and the 

surroundings, and the total change in entropy, when the volume of a sample 

of argon gas of mass 21 g at 298 K and 1.50 bar increases from 1.20 dm3 

to 4.60 dm3 in (a) an isothermal reversible expansion, (b) an isothermal 

irreversible expansion against pex = 0, and (c) an adiabatic reversible 

expansion.

62.9(a) The enthalpy of vaporization of chloroform (CHCl3) is 29.4 kJ mol−1 at 

its normal boiling point of 334.88 K. Calculate (a) the entropy of vaporization 

of chloroform at this temperature and (b) the entropy change of the 

surroundings.

62.9(b) The enthalpy of vaporization of methanol is 35.27 kJ mol−1 at its 

normal boiling point of 64.1 °C. Calculate (a) the entropy of vaporization 

of methanol at this temperature and (b) the entropy change of the 

surroundings.

62.10(a) Calculate the change in entropy of the system when 10.0 g of ice at 

−10.0 °C is converted into water vapour at 115.0 °C and at a constant pressure 

of 1 bar. The constant-pressure molar heat capacity of H2O(s) and H2O(l) is 

75.291 J K−1 mol−1 and that of H2O(g) is 33.58 J K−1 mol−1. Enthalpies of phase 

transitions are given in Table 57.2.

62.10(b) Calculate the change in entropy of the system when 15.0 g of ice 

at −12.0 °C is converted to water vapour at 105.0 °C at a constant pressure of 

1 bar. For data, see the preceding exercise.
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Problems
62.1 Calculate the difference in molar entropy (a) between liquid water and ice 

at –5 °C, (b) between liquid water and its vapour at 95 °C and 1.00 atm. The 

differences in heat capacities on melting and on vaporization are 37.3 J K−1 

mol−1 and –41.9 J K−1 mol−1, respectively. Distinguish between the entropy 

changes of the sample, the surroundings, and the total system, and discuss the 

spontaneity of the transitions at the two temperatures.

62.2 The molar heat capacity of chloroform (trichloromethane, CHCl3) in the 

range 240 K to 330 K is given by Cp,m/(J K−1 mol−1) = 91.47 + 7.5 × 10−2 (T/K). 

In a particular experiment, 1.00 mol CHCl3 is heated from 273 K to 300 K. 

Calculate the change in molar entropy of the sample. 

62.3 A block of copper of mass 2.00 kg (Cp,m = 24.44 J K−1 mol−1) and 

temperature 0 °C is introduced into an insulated container in which there 

is 1.00 mol H2O(g) at 100 °C and 1.00 atm. (a) Assuming all the steam is 

condensed to water, what will be the final temperature of the system, the 

heat transferred from water to copper, and the entropy change of the water, 

copper, and the total system? (b) In fact, some water vapour is present at 

equilibrium. From the vapour pressure of water at the temperature calculated 

in (a), and assuming that the heat capacities of both gaseous and liquid water 

are constant and given by their values at that temperature, obtain an improved 

value of the final temperature, the heat transferred, and the various entropies. 

(Hint: You will need to make plausible approximations.)

62.4 A sample consisting of 1.00 mol of perfect gas molecules at 27 °C is 

expanded isothermally from an initial pressure of 3.00 atm to a final pressure 

of 1.00 atm in two ways: (a) reversibly, and (b) against a constant external 

pressure of 1.00 atm. Determine the values of q, w, ΔU, ΔH, ΔS, ΔSsurr, ΔStot 

for each path.

62.5 A block of copper of mass 500 g and initially at 293 K is in thermal contact 

with an electric heater of resistance 1.00 kΩ and negligible mass. A current 

of 1.00 A is passed for 15.0 s. Calculate the change in entropy of the copper, 

taking Cp,m = 24.4 J K−1 mol−1. The experiment is then repeated with the 

copper immersed in a stream of water that maintains its temperature at 293 K. 

Calculate the change in entropy of the copper and the water in this case.

62.6 Find an expression for the change in entropy when two blocks of the 

same substance and of equal mass, one at the temperature Th and the other 

at Tc, are brought into thermal contact and allowed to reach equilibrium. 

Evaluate the change for two blocks of copper, each of mass 500 g, with 

Cp,m = 24.4 J K−1 mol−1, taking Th = 500 K and Tc = 250 K.

62.7 According to Newton’s law of cooling, the rate of change of temperature 

is proportional to the temperature difference between the system and its 

surroundings. Given that S(T) – S(Ti) = C ln(T/Ti), where Ti is the initial 

temperature and C the heat capacity, deduce an expression for the rate of 

change of entropy of the system as it cools.

62.8 The protein lysozyme unfolds at a transition temperature of 75.5 °C and 

the standard enthalpy of transition is 509 kJ mol−1. Calculate the entropy of 

unfolding of lysozyme at 25.0 °C, given that the difference in the constant-

pressure heat capacities upon unfolding is 6.28 kJ K−1 mol−1 and can be 

assumed to be independent of temperature. Hint: Imagine that the transition 

at 25.0 °C occurs in three steps: (i) heating of the folded protein from  

25.0 °C to the transition temperature, (ii) unfolding at the transition 

temperature, and (iii) cooling of the unfolded protein to 25.0 °C. Because the 

entropy is a state function, the entropy change at 25.0 °C is equal to the sum of 

the entropy changes of the steps.

Topic 63 The Third Law

Discussion question
63.1 Discuss why the standard entropies of ions in solution may be positive, 

negative, or zero.

Exercises
63.1(a) Calculate the residual molar entropy of a solid in which the molecules 

can adopt (a) three, (b) five, (c) six orientations of equal energy at T = 0.

63.1(b) Suppose that the hexagonal molecule C6HnF6–n has a residual entropy 

on account of the similarity of the H and F atoms. Calculate the residual for 

each value of n.

63.2(a) Calculate the standard reaction entropy at 298 K of

(a) 2 CH3CHO(g) + O2(g) → 2 CH3COOH(l)

(b) 2 AgCl(s) + Br2(l) → 2 AgBr(s) + Cl2(g)

(c) Hg(l) + Cl2(g) → HgCl2(s)

63.2(b) Calculate the standard reaction entropy at 298 K of

(a) Zn(s) + Cu2+(aq) → Zn2+(aq) + Cu(s)

(b) C12H22O11(s) + 12 O2(g) → 12 CO2(g) + 11 H2O(l)

Problems
63.1 The standard molar entropy of NH3(g) is 192.45 J K−1 mol−1 at 298 K,  

and its heat capacity is given by eqn 56.5 with the coefficients given in  

Table 56.1. Calculate the standard molar entropy at (a) 100 °C and  

(b) 500 °C.

63.2 The molar heat capacity of lead varies with temperature as  

follows:

Calculate the standard Third-Law entropy of lead at (a) 0 °C and (b) 25 °C.

T/K 10 15 20 25 30 50

Cp,m/(J K−1 mol−1) 2.8 7.0 10.8 14.1 16.5 21.4

T/K 70 100 150 200 250 298

Cp,m/(J K−1 mol−1) 23.3 24.5 25.3 25.8 26.2 26.6
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T/K 10 20 30 40 50 60

Cp,m/(J K−1 mol−1) 2.09 14.43 36.44 62.55 87.03 111.0

T/K 70 80 90 100 110 150

Cp,m/(J K−1 mol−1) 131.4 149.4 165.3 179.6 192.8 237.6

T/K 160 170 180 190 200

Cp,m/(J K−1 mol−1) 247.3 256.5 265.1 273.0 280.3

T/K 14.14 16.33 20.03 31.15 44.08 64.81

Cp,m/(J K−1 mol−1) 9.492 12.70 18.18 32.54 46.86 66.36

T/K 100.90 140.86 183.59 225.10 262.99 298.06

Cp,m/(J K−1 mol−1) 95.05 121.3 144.4 163.7 180.2 196.4

63.3 From standard enthalpies of formation, standard entropies, and standard 

heat capacities available from tables in the Resource section, calculate the 

standard enthalpies and entropies at 298 K and 398 K for the reaction 

CO2(g) + H2(g) → CO(g) + H2O(g). Assume that the heat capacities are 

constant over the temperature range involved.

63.4 The molar heat capacity of anhydrous potassium hexacyanoferrate(II) 

varies with temperature as follows:

Calculate the molar enthalpy relative to its value at T = 0 and the Third-Law 

entropy at each of these temperatures.

63.5 The compound 1,3,5-trichloro-2,4,6-trifluorobenzene is an intermediate 

in the conversion of hexachlorobenzene to hexafluorobenzene, and its 

thermodynamic properties have been examined by measuring its heat 

capacity over a wide temperature range (R.L. Andon and J.F. Martin, J. Chem. 

Soc. Faraday Trans. I, 871 (1973)). Some of the data are as follows:

Calculate the molar enthalpy relative to its value at T = 0 and the Third-Law 

molar entropy of the compound at these temperatures.

63.6‡ Given that Sm 29 79 JK mol< = − −. 1 1  for bismuth at 100 K and  

the following tabulated heat capacity data (D.G. Archer, J. Chem. Eng.  

Data 40, 1015 (1995)), compute the standard molar entropy of bismuth at 

200 K.

Compare the value to the value that would be obtained by taking the heat 

capacity to be constant at 24.44 J K−1 mol−1 over this range.

63.7 Derive an expression for the molar entropy of a monatomic solid on the 

basis of the Einstein and Debye models and plot the molar entropy against the 

temperature (use T/θ in each case, with θ the Einstein or Debye temperature). 

Use the following expressions for the temperature dependence of the heat 

capacities:
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Use mathematical software to evaluate the appropriate expressions.

63.8 An average human DNA molecule has 5 × 108 binucleotides (rungs on the 

DNA ladder) of four different kinds. If each rung were a random choice of one 

of these four possibilities, what would be the residual entropy associated with 

this typical DNA molecule?

Topic 64 Spontaneous processes

Discussion questions
64.1 The following expressions have been used to establish criteria for 

spontaneous change: dAT,V < 0 and dGT,p < 0. Discuss the origin, significance, 

and applicability of each criterion.

64.2 Under what circumstances, and why, can the spontaneity of a process be 

discussed in terms of the properties of the system alone?

Exercises
64.1(a) Combine the reaction entropies calculated in Exercise 63.2(a) with 

the reaction enthalpies, and calculate the standard reaction Gibbs energies at 

298 K.

64.1(b) Combine the reaction entropies calculated in Exercise 63.2(b) with 

the reaction enthalpies, and calculate the standard reaction Gibbs energies at 

298 K.

64.2(a) Calculate the standard Gibbs energy of the reaction 4 HI(g) + O2(g) →  

2 I2(s) + 2 H2O(l) at 298 K, from the standard entropies and enthalpies of 

formation given in the Resource section.

64.2(b) Calculate the standard Gibbs energy of the reaction 

CO(g) + CH3CH2OH(l) → CH3CH2COOH(l) at 298 K, from the standard 

entropies and enthalpies of formation given in the Resource section.

64.3(a) Calculate the maximum non-expansion work per mole that may be 

obtained from a fuel cell in which the chemical reaction is the combustion of 

methane at 298 K.

64.3(b) Calculate the maximum non-expansion work per mole that may be 

obtained from a fuel cell in which the chemical reaction is the combustion of 

propane at 298 K.

64.4(a) A CO2 molecule is linear, and its vibrational wavenumbers are 

1388.2 cm−1, 667.4 cm−1, and 2349.2 cm−1, the last being doubly degenerate 

and the others non-degenerate. The rotational constant of the molecule is 

0.3902 cm−1. Calculate the rotational and vibrational contributions to the 

molar Gibbs energy at 298 K.

64.4(b) An O3 molecule is angular, and its vibrational wavenumbers are 

1110 cm−1, 705 cm−1, and 1042 cm−1. The rotational constants of the molecule 

T/K 100 120 140 150 160 180 200

Cp,m/(J K−1 mol−1 ) 23.00 23.74 24.25 24.44 24.61 24.89 25.11
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are 3.553 cm−1, 0.4452 cm−1, and 0.3948 cm−1. Calculate the rotational and 

vibrational contributions to the molar Gibbs energy at 298 K.

64.5(a) The ground level of Cl is 2P3/2 and a 2P1/2 level lies 881 cm−1 above it. 

Calculate the electronic contribution to the molar Gibbs energy of Cl atoms at 

(a) 500 K and (b) 900 K.

64.5(b) The first electronically excited state of O2 is 1Δg and lies 7918.1 cm−1 

above the ground state, which is 3 ∑−
g . Calculate the electronic contribution to 

the molar Gibbs energy of O2 at 500 K.

Problems
64.1 Consider a perfect gas contained in a cylinder and separated by a 

frictionless adiabatic piston into two sections A and B. All changes in B 

are isothermal; that is, a thermostat surrounds B to keep its temperature 

constant. There is 2.00 mol of the gas in each section. Initially TA = TB = 300 K, 

VA = VB = 2.00 dm3. Energy is supplied as heat to Section A and the piston 

moves to the right reversibly until the final volume of Section B is 1.00 L. 

Calculate (a) ΔSA and ΔSB, (b) ΔAA and ΔAB, (c) ΔGA and ΔGB, (d) ΔS of the 

total system and its surroundings. If numerical values cannot be obtained, 

indicate whether the values should be positive, negative, or zero or are 

indeterminate from the information given. (Assume CV,m = 20 J K−1 mol−1.)

64.2 Calculate the molar internal energy, molar entropy, and molar Helmholtz 

energy of a collection of harmonic oscillators and plot your expressions as a 

function of T/θV, where θV = hν/k.

64.3 In biological cells, the energy released by the oxidation of foods is stored 

in adenosine triphosphate (ATP or ATP4−). The essence of ATP's action is 

its ability to lose its terminal phosphate group by hydrolysis and to form 

adenosine diphosphate (ADP or ADP3−):

ATP aq H O l ADP aq HPO aq H O aq4
2

3 2
3

− − − ++ → + +( ) ( ) ( ) ( ) ( )4  

At pH = 7.0 and 37 °C (310 K, blood temperature) the enthalpy and 

Gibbs energy of hydrolysis are ΔrH = −20 kJ mol−1 and ΔrG = −31 kJ mol−1, 

respectively. Under these conditions, the hydrolysis of 1 mol ATP4−(aq) 

results in the extraction of up to 31 kJ of energy that can be used to do non-

expansion work, such as the synthesis of proteins from amino acids, muscular 

contraction, and the activation of neuronal circuits in our brains. (a) Calculate 

and account for the sign of the entropy of hydrolysis of ATP at pH = 7.0 and 

310 K. (b) Suppose that the radius of a typical biological cell is 10 μm and that 

inside it 106 ATP molecules are hydrolysed each second. What is the power 

density of the cell in watts per cubic metre (1 W = 1 J s−1)? A computer battery 

delivers about 15 W and has a volume of 100 cm3. Which has the greater 

power density, the cell or the battery? (c) The formation of glutamine from 

glutamate and ammonium ions requires 14.2 kJ mol−1 of energy input. It is 

driven by the hydrolysis of ATP to ADP mediated by the enzyme glutamine 

synthetase. How many moles of ATP must be hydrolysed to form 1 mol 

glutamine?

64.4‡ The molecule Cl2O2, which is believed to participate in the seasonal 

depletion of ozone over Antarctica, has been studied by several means. 

Birk, et al. (J. Chem. Phys. 91, 6588 (1989)) report its rotational constants 

B as 13109.4, 2409.8, and 2139.7 MHz. They also report that its rotational 

spectrum indicates a molecule with a symmetry number of 2.19. Its 

vibrational wavenumbers are 753, 542, 310, 127, 646, and 419 cm−1. Compute 

G Gm m2  K< <( ) ( )00 0−  of Cl2O2.

Topic 65 Standard Gibbs energies

Discussion questions
65.1 Describe ways the standard Gibbs energies of formation can be 

determined.

65.2 Identify the thermodynamic factors responsible for the magnitude of the 

Gibbs energy of formation of an ion in solution.

Exercises
65.1(a) Use standard Gibbs energies of formation to calculate the standard 

reaction Gibbs energies at 298 K of the reactions

(a) 2 CH3CHO(g) + O2(g) → 2 CH3COOH(l)

(b) 2 AgCl(s) + Br2(l) → 2 AgBr(s) + Cl2(g)

(c) Hg(l) + Cl2(g) → HgCl2(s)

65.1(b) Use standard Gibbs energies of formation to calculate the standard 

reaction Gibbs energies at 298 K of the reactions

(a) Zn(s) + Cu2+(aq) → Zn2+(aq) + Cu(s)

(b) C12H22O11(s) + 12 O2(g) → 12 CO2(g) + 11 H2O(l)

65.2(a) The standard enthalpy of combustion of ethyl acetate (CH3COOC2H5) 

is –2231 kJ mol−1 at 298 K and its standard molar entropy is 259.4 J K−1 mol−1. 

Calculate the standard Gibbs energy of formation of the compound at 298 K.

65.2(b) The standard enthalpy of combustion of the amino acid glycine 

(NH2CH2COOH) is –969 kJ mol−1 at 298 K and its standard molar entropy is 

103.5 J K−1 mol−1. Calculate the standard Gibbs energy of formation of glycine 

at 298 K.

Problem
65.1‡ R. Viswanathan, et al. (J. Phys. Chem. 100, 10784 (1996)) studied 

the thermodynamic properties of several boron–silicon gas-phase 

species experimentally and theoretically. These species can occur in the 

high-temperature chemical vapour deposition (CVD) of silicon-based 

semiconductors. Among the computations they reported was computation 

of the Gibbs energy of BSi(g) at several temperatures based on a 4Σ− ground 

state with equilibrium internuclear distance of 190.5 pm and fundamental 

vibrational wavenumber of 772 cm−1 and a 2P0 first excited level 8000 cm−1 

above the ground level. Compute the standard molar Gibbs energy 

G Gm m2  K< <( ) ( ).000 0−
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Topic 66 Combining the First and Second Laws

Discussion question
66.1 Suggest a physical interpretation of the dependence of the Gibbs energy 

on the temperature.

Exercises
66.1(a) Suppose that 2.5 mmol N2(g) occupies 42 cm3 at 300 K and expands 

isothermally to 600 cm3. Calculate ΔG for the process.

66.1(b) Suppose that 6.0 mmol Ar(g) occupies 52 cm3 at 298 K and expands 

isothermally to 122 cm3. Calculate ΔG for the process.

66.2(a) The change in the Gibbs energy of a certain constant-pressure process 

was found to fit the expression ΔG/J = –85.40 + 36.5(T/K). Calculate the value 

of ΔS for the process.

66.2(b) The change in the Gibbs energy of a certain constant-pressure process 

was found to fit the expression ΔG/J = –73.1 + 42.8(T/K). Calculate the value 

of ΔS for the process.

66.3(a) Estimate the change in the Gibbs energy and molar Gibbs energy of 1.0 

dm3 of octane when the pressure acting on it is increased from 1.0 atm to 100 

atm. The mass density of octane is 0.703 g cm−3.

66.3(b) Estimate the change in the Gibbs energy and molar Gibbs energy of 

100 cm3 of water when the pressure acting on it is increased from 100 kPa to 

500 kPa. The mass density of water is 0.997 g cm−3.

66.4(a) Calculate the change in the molar Gibbs energy of hydrogen gas when 

its pressure is increased isothermally from 1.0 atm to 100.0 atm at 298 K.

66.4(b) Calculate the change in the molar Gibbs energy of oxygen when its 

pressure is increased isothermally from 50.0 kPa to 100.0 kPa at 500 K.

66.5(a) Calculate the change in Gibbs energy of 35 g of ethanol (mass density 

0.789 g cm−3) when the pressure is increased isothermally from 1 atm to 3000 

atm.

66.5(b) Calculate the change in Gibbs energy of 25 g of methanol (mass density 

0.791 g cm−3) when the pressure is increased isothermally from 100 kPa to 

100 MPa.

Problems
66.1 Calculate Δr 375 KG<( )  for the reaction 2 CO(g) + O2(g) → 2 CO2(g) 

from the values of Δ Δr r298 K 298 KG H< <( ): ( ),and  and the Gibbs–

Helmholtz equation.

66.2 Estimate the standard reaction Gibbs energy of N2(g) + 3 H2(g) →  

2 NH3(g) at (a) 500 K, (b) 1000 K from its value at 298 K.

66.3 At 298 K the standard enthalpy of combustion of sucrose is –5797 kJ mol−1 

and the standard Gibbs energy of the reaction is –6333 kJ mol−1. Estimate 

the additional non-expansion work that may be obtained by raising the 

temperature to blood temperature, 37 °C.

66.4 Two empirical equations of state of a real gas are as follows:

van der Waals
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Evaluate (∂S/∂V)T for each gas. For an isothermal expansion, for which 

kind of gas (also consider a perfect gas) will ΔS be greatest? Explain your 

conclusion.

66.5 Two of the four Maxwell relations were derived in the text, but two were 

not. Complete their derivation by showing that (∂S/∂V)T = (∂p/∂T)V and 

(∂T/∂p)S = (∂V/∂S)p.

66.6 (a) Use the Maxwell relations to express the derivatives (∂S/∂V)T,  

(∂V/∂S)p, (∂p/∂S)V, and (∂V/∂S)p in terms of the heat capacities, the expansion 

coefficient, α = (1/V)(∂V/∂T)p, and the isothermal compressibility, κT =  

–(1/V)(∂V/∂p)T. (b) The Joule coefficient, μJ, is defined as μJ = (∂T/∂V)U.  

Show that μJCV = p – αT/κT.

66.7 Suppose that S is regarded as a function of p and T. Show that TdS = CpdT – 

αTVdp. Hence, show that the energy transferred as heat when the pressure 

on an incompressible liquid or solid is increased by Δp is equal to –αTVΔp, 

where α = (1/V)(∂V/∂T)p. Evaluate q when the pressure acting on 100 cm3 of 

mercury at 0 °C is increased by 1.0 kbar. (α = 1.82 × 10−4 K−1.)

66.8 Equation 66.5 (πT = T(∂p/∂T)V – p) expresses the internal pressure πT in 

terms of the pressure and its derivative with respect to temperature. Express 

πT in terms of the molecular partition function.

66.9 Explore the consequences of replacing the equation of state of a perfect 

gas by the van der Waals equation of state for the pressure dependence of 

the molar Gibbs energy (eqn 66.10). Proceed in three steps. First, consider 

the case when a = 0 and only repulsions are significant. Then consider the 

case when b = 0 and only attractions are significant. For the latter, you should 

consider making the approximation that the attractions are weak. Finally, 

explore the full expression by using mathematical software. In each case plot 

your results graphically and account physically for the deviations from the 

perfect gas expression.

66.10‡ Nitric acid hydrates have received much attention as possible 

catalysts for heterogeneous reactions which bring about the Antarctic 

ozone hole. Worsnop, et al. (Science 259, 71 (1993)) investigated the 

thermodynamic stability of these hydrates under conditions typical of 

the polar winter stratosphere. They report thermodynamic data for the 

sublimation of mono-, di-, and trihydrates to nitric acid and water vapours, 

HNO3·nH2O(s) → HNO3(g) + n H2O(g), for n = 1, 2, and 3. Given ΔrG
<  and 

ΔrH <  for these reactions at 220 K, use the Gibbs–Helmholtz equation to 

compute ΔrG
<  at 190 K.

n 1 2 3

ΔrG
</(kJ mol−1) 46.2 69.4 93.2

ΔrH
</(kJ mol−1) 127 188 237
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654 13 The Second and Third Laws of thermodynamics

Integrated activities

F13.1 Identify as many arguments as you can that confirm the relation 

β = 1/kT. Present arguments that show that β is a more appropriate parameter 

for expressing the temperature than T itself. What is the status of k as a 

fundamental constant?

F13.2 A gaseous sample consisting of 1.00 mol molecules is described 

by the equation of state pVm = RT(1 + Bp). Initially at 373 K, it undergoes 

Joule–Thomson expansion from 100 atm to 1.00 atm. Given that C Rp, ,m = 5
2

 

μ = 0.21 K atm−1, B = –0.525(K/T) atm−1 and that these are constant over the 

temperature range involved, calculate ΔT and ΔS for the gas.

F13.3 A Carnot cycle uses 1.00 mol of monatomic perfect gas molecules as 

the working substance from an initial state of 10.0 atm and 600 K. It expands 

isothermally to a pressure of 1.00 atm (step 1), and then adiabatically to a 

temperature of 300 K (step 2). This expansion is followed by an isothermal 

compression (step 3), and then an adiabatic compression (step 4) back to the 

initial state. Determine the values of q, w, ΔU, ΔH, ΔS, ΔStot, and ΔG for each 

stage of the cycle and for the cycle as a whole. Express your answer as a table 

of values.

F13.4 Suppose that an internal combustion engine runs on octane, for which 

the enthalpy of combustion is –5512 kJ mol−1, and take the mass of 1 gallon of 

fuel as 3 kg. What is the maximum height, neglecting all forms of friction, to 

which a car of mass 1000 kg can be driven on 1.00 gallon of fuel given that the 

engine cylinder temperature is 2000 °C and the exit temperature is 800 °C?

F13.5 Deduce the result (∂U/∂S)V = T and then use the calculation on 

which Problem 60.6 is based to draw a graph of U against S (or vice versa) to 

identify the temperature. Hint: Use mathematical software to construct the 

graph.

F13.6 Use mathematical software, a spreadsheet, or the Living graphs (labelled 
LG) on the website of this book for the following exercises.

(a) Evaluate the change in entropy that accompanies the expansion of 

1.00 mol CO2(g) from 0.0010 m3 to 0.010 m3 at 298 K, treated as a van der 

Waals gas.

(b) Plot the function dS/dT, the temperature coefficient of the entropy for 

a collection of harmonic oscillators, against kT/ε. Is there a temperature at 

which this coefficient passes through a maximum? If you find a maximum, 

explain its physical origins.

(c) Plot the change in entropy of a perfect gas of (a) atoms, (b) linear rotors, (c) 

nonlinear rotors as the sample is heated over the same range under conditions 

of (i) constant volume, (ii) constant pressure. Use the high-temperature limit 

for the rotors.

(d)LG Allow for the temperature dependence of the heat capacity by writing 

C = a + bT + c/T2, and plot the change in entropy of heating for different values of 

the three coefficients (including negative values of c).

(e) Show how the first derivative of G, (∂G/∂p)T, varies with pressure for a 

perfect gas, and plot the resulting expression over a pressure range. What is 

the physical significance of (∂G/∂p)T?
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Physical equilibria are very important aspects of the properties of matter, for they include phase tran-
sitions of pure substances and mixtures. They also provide an introduction to the thermodynamic 
discussion of how one component can affect the properties of another present in the mixture, and 
are an essential preliminary to the discussion of Chemical equilibria, in which the components can 
change their chemical identities by reaction.

The equilibria between the various phases of a substance or a mixture of substances can be sum-
marized by constructing a ‘phase diagram’, a map showing the conditions under which each phase 
is the most stable. For one-component systems (Topic 67) the natural choice of variables for the 
diagram is the pressure and temperature. For two-component systems (Topic 68) there is a wider 
choice, with temperature and composition or pressure and composition being natural and useful 
choices. These diagrams also allow us to discuss fractional distillation of liquid mixtures.

The conversion of one phase into another when the conditions change has a thermodynamic 
basis and can be expressed by drawing on The Second and Third Laws of thermodynamics. We show 
(Topic 69) how it is possible to predict the location of phase boundaries (where two phases are in 
equilibrium) and thus to use thermodynamic criteria to show, for instance, how a change in pressure 
affects the boiling temperature of a liquid.

Thermodynamics acquires considerable predictive power when the contribution of each sub-
stance to the Gibbs energy of a mixture is expressed in terms of the ‘chemical potential’ (Topic 70), 
one of several ‘partial molar quantities’. Equilibria can be expressed in terms of the balancing of 
chemical potentials between phases. We set up expressions for showing how the chemical potential 
of a substance in a mixture can be expressed in terms of the composition of the mixture, and in the 
process introduce the concepts of ‘ideal’ and ‘ideal–dilute’ solutions.

The presence of a solute in a solution affects the entropy of the mixture, and through that effect 
changes various physical properties of the solvent, such as its freezing and boiling temperatures and 
its osmotic pressure (Topic 71). The last of these properties has important applications in biology and 
macromolecular science.

Ideal solutions, however, are abstractions, and in the final section (Topic 72) we see how to trans-
form the equations developed for ideal solutions into similar equations for real solutions by replac-
ing concentrations by ‘activities’. Activities are essential for the discussion of electrolyte solutions.

FOCUS 14  ON  Physical equilibria

Topic 67 Topic 68 Topic 69 Topic 70 Topic 71 Topic 72

The Second 
and Third Laws
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What is the impact of this material?

Almost everything we encounter in the everyday world is a mixture. In the two Impacts referred to 
here we focus on biology and technology. Impact 14.1 describes the importance of osmosis in bio-
logy, and in particular its role in maintaining the shape and structural integrity of biological cells. 
Impact 14.2 describes another ubiquitous modern material, the liquid crystals that are common in 
electronic displays, and explores how the formulation of mixtures affects their optical properties.

To read more about the impact of this material, scan the QR code or go to 
http://bcs.whfreeman.com/webpub/chemistry/qmc2e/impact/qchem_
impact14.html.

Atkins09819.indb   656 9/11/2013   12:59:56 PM

www.ebook3000.com

http://www.ebook3000.org


TOPIC 67

Phase diagrams: one-component 

systems

A phase of a substance is a form of matter that is uniform 

throughout in chemical composition and physical state. Thus, 

we speak of solid, liquid, and gas phases of a substance, and of 

its various solid phases, such as the white and black allotropes 

of phosphorus. A phase transition, the spontaneous conver-

sion of one phase into another phase, occurs at a characteris-

tic temperature for a given pressure. Thus, at 1 atm, ice is the 

stable phase of water below 0 °C, but above 0 °C liquid water is 

more stable. This difference indicates that below 0 °C the Gibbs 

energy (Topic 64) decreases as liquid water changes into ice 

and that above 0 °C the Gibbs energy decreases as ice changes 

into liquid water. An empirically constructed phase diagram 

of a substance shows the regions of pressure and temperature 

at which its various phases are thermodynamically stable (Fig. 

67.1). The lines separating the regions, which are called phase 

boundaries, show the values of p and T at which two phases 

coexist in equilibrium. Similar diagrams can be constructed 
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Brief illustration 67.1: Constituents and components 658

67.2 The Ehrenfest classification 659
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67.3 One-component systems 660

(a) Phase characteristics 660

Brief illustration 67.3: Triple points 661

(b) Three typical phase diagrams 661

Checklist of concepts 663
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 ➤ Why do you need to know this material?
Phase transitions occur widely in nature and industry, and 
it is important to be able to keep track of them. Phase 
diagrams are used in materials science and related fields 
to display the conditions under which each phase of a 
substance or a mixture is the most stable.

 ➤ What is the key idea?
When two phases are in equilibrium, their chemical 
potentials are equal; a consequence is the phase rule, 
which constrains the freedom to change the conditions 
while preserving equilibrium.

 ➤ What do you need to know already?
This Topic draws on the concept of chemical potential 
(Topic 69), but if you have not encountered that concept, 
interpret it as the molar Gibbs energy of a substance 
(Topic 64). Some of the discussion relies on knowledge of 
concepts in equilibrium (Topic 64) and simple concepts of 
crystal structure (Topic 37).

Pr
es

su
re

, p

Temperature, T

Solid
Liquid

Vapour

T3 Tc

Critical
point

Triple
point

Figure 67.1 The general regions of pressure and temperature 
where solid, liquid, or gas is stable (that is, has minimum molar 
Gibbs energy) are shown on this phase diagram. For example, 
the solid phase is the most stable phase at low temperatures 
and high pressures. In the following paragraphs we locate the 
precise boundaries between the regions.
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658 14 Physical equilibria

for mixtures (Topic 68), where the regions summarize, for 

instance, the compositions and temperatures at which the 

various phases are stable and the boundaries summarize the 

conditions under which these phases are in equilibrium with 

one another.

All the properties we describe in this Topic can be traced 

to the intermolecular interactions that bind the molecules 

together. Which particular phase is the most stable at a given 

pressure and at T = 0, where entropy plays no role, corre-

sponds to the lowest energy that can be achieved as the mole-

cules pack together. At higher temperatures entropy does play 

a role, and the substance adopts the molecular arrangement 

that corresponds to lowest Gibbs energy at the prevailing 

pressure. Although it is difficult to extend the computational 

techniques of Topics 27–30 to solids and liquids, that can be 

done, and phase transitions can in some cases be predicted. 

However, that is beyond the scope of this text: here for the 

most part we shall simply refer to the qualitative features of 

intermolecular forces.

67.1 The phase rule

One of the most celebrated results in chemical thermody-

namics, the phase rule, can be used as a basis for discussing 

the implications of phase diagrams. The phase rule is a general 

relation between the variance, F, the number of components, C, 

and the number of phases at equilibrium, P, for a system of any 

composition:

F C P= − +2   Phase rule  (67.1)

To count the number of components we first recognize that:

A constituent is a chemical species (an ion or a molecule) 

that is present.

The term constituent should then be carefully distinguished 

from ‘component’, which has a more technical meaning.

A component is a chemically independent constituent of 

a system. The number of components, C, in a system is 

the minimum number of independent species necessary 

to define the composition of all the phases present in the 

system.

The variance, F, of a system is the number of intensive 

variables that can be changed independently without 

disturbing the number of phases in equilibrium.

Finally, as stated above and for completeness here,

A phase of a substance is a form of matter that is uniform 

throughout in chemical composition and physical state. 

P is the number of phases in mutual equilibrium.

In a single-component, single-phase system (C = 1, P = 1), 

the pressure and temperature may be changed independently 

without changing the number of phases, so F = 2. We say that 

such a system is bivariant, or that it has two degrees of free-

dom. On the other hand, if two phases are in equilibrium (a liq-

uid and its vapour, for instance) in a single-component system 

(C = 1, P = 2), the temperature (or the pressure) can be changed 

at will, but the change in temperature (or pressure) demands an 

accompanying change in pressure (or temperature) to preserve 

the number of phases in equilibrium. That is, the variance of 

the system has fallen to 1.

To see the origin of eqn 67.1, consider first the special case of 

a one-component system. We focus on the molar Gibbs energy, 

Gm, of the substance in each phase. However, in anticipation of 

extending the discussion to many-component systems, we shall 

replace this quantity by the ‘chemical potential’, μ. As far as we 

are concerned at this stage, μ = Gm; this relation is put on a for-

mal basis in Topic 69.

For two phases α and β in equilibrium, the molar Gibbs ener-

gies of the substance are equal and we can write μJ(α) = μJ(β). 

Each chemical potential is a function of the pressure and tem-

perature, so

μ μJ J( ; , ) ( ; , )α βp T p T=  

This is an equation relating p and T, so only one of these vari-

ables is independent (just as the equation x + y = 2 is a relation 

for y in terms of x: y = 2 – x). That conclusion is consistent with 

F = 1. For three phases in mutual equilibrium,

μ μ μJ J J( ; , ) ( ; , ) ( ; , )α β γp T p T p T= =  

This relation is actually two equations for two unknowns 

(μJ(α;p,T) = μJ(β;p,T) and μJ(β;p,T) = μJ(γ ;p,T)), and therefore 

has a solution only for a single value of p and T (just as the pair 

of equations x + y = 2 and 3x – y = 4 has the single solution x = 3
2  

and y = 1
2

). That conclusion is consistent with F = 0. Four phases 

cannot be in mutual equilibrium in a one-component system 

because the three equalities

Brief illustration 67.1 Constituents and components

A mixture of ethanol and water has two constituents. A solu-

tion of sodium chloride has three constituents: water, Na+ 

ions, and Cl− ions. That solution has only two components: 

water and sodium chloride, because the amounts of Na+ and 

Cl− ions are constrained to be equal.

Self-test 67.1 How many constituents and components 

does water have, after allowing for its autoprotolysis? Hint: 

Acknowledge the constraints of equilibria and charge balance.

Answer: 3 constituents (H2O, H3O+, OH−), 1 component
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are three equations for two unknowns (p and T) and are not 

consistent (just as x + y = 2, 3x – y = 4, and x + 4y = 6 have no solu-

tion). The general case is treated in the following Justification.

For a one-component system, such as pure water, F = 3 – P. 

When only one phase is present, F = 2 and both p and T can be 

varied independently without changing the number of phases. 

In other words, a single phase is represented by an area on a 

phase diagram. When two phases are in equilibrium, F = 1, 

which implies that pressure is not freely variable if the tempera-

ture is set; indeed, at a given temperature, a liquid has a charac-

teristic vapour pressure. It follows that the equilibrium of two 

phases is represented by a line in the phase diagram. Instead of 

selecting the temperature, we could select the pressure, but hav-

ing done so the two phases would be in equilibrium at a single 

definite temperature. Therefore, freezing (or any other phase 

transition) occurs at a definite temperature at a given pressure.

When three phases are in equilibrium, F = 0 and the system 

is invariant. This special condition can be established only at a 

definite temperature and pressure that is characteristic of the 

substance and outside our control. The equilibrium of three 

phases is therefore represented by a point, the triple point, on a 

phase diagram. Four phases cannot be in equilibrium in a one-

component system because F cannot be negative.

67.2 The Ehrenfest classification

Many familiar phase transitions, like fusion and vaporization, 

are accompanied by changes of enthalpy and volume. These 

changes have implications for the slopes of the chemical poten-

tials (the molar Gibbs energies) of the phases at either side of 

the phase transition. Thus, at the transition from a phase α to 

another phase β,

∂ β
∂

∂ α
∂ β α

∂ β
∂

μ μ

μ
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p p
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(67.2)

We have used eqn 66.7 ((∂G/∂p)T = V and (∂G/∂T)p = –S) of Topic 

66 to relate the slopes to molar volumes and entropies. Because 

ΔtrsV and ΔtrsH are nonzero for melting and vaporization, it fol-

lows that for such transitions the slopes of the chemical potential 

plotted against either pressure or temperature are different on 

either side of the transition (Fig. 67.2a). In other words, the first 

derivatives of the chemical potentials with respect to pressure 

and temperature are discontinuous at the transition.

The Ehrenfest classification takes note of whether the deriv-

atives in eqn 67.2 are continuous or discontinuous. A transi-

tion for which the first derivative of the chemical potential with 

respect to temperature is discontinuous is classified as a first-

order phase transition. The constant-pressure heat capacity, Cp, 

of a substance is the slope of a plot of the enthalpy with respect 

to temperature. At a first-order phase transition, H changes 

by a finite amount for an infinitesimal change of temperature. 

Therefore, at the transition the heat capacity is infinite. The 

Justification 67.1 The phase rule

We begin by counting the total number of intensive variables. 

The pressure, p, and temperature, T, count as 2. We can spec-

ify the composition of a phase by giving the mole fractions of 

C  – 1 components. We need specify only C – 1 and not all C 

mole fractions because x1 + x2 + …+ xC = 1, and all mole frac-

tions are known if all except one are specified. Because there 

are P phases, the total number of composition variables is 

P(C – 1). At this stage, the total number of intensive variables 

is P(C – 1) + 2.

At equilibrium, the chemical potential of a component J 

must be the same in every phase:

μ μJ J  for phases( ) ( )α β= =… P

That is, there are P – 1 equations of this kind to be satisfied 

for each component J. As there are C components, the total 

number of equations is C(P – 1). Each equation reduces our 

freedom to vary one of the P(C – 1) + 2 intensive variables. It 

follows that the total number of degrees of freedom is

F P C C P C P= − + − − = − +( ) ( )1 2 1 2  

which is eqn 67.1.

(b)

Temperature, T

Volume, 
V

Enthalpy, 
H

Chemical
potential,
μ

Entropy,
S

Heat
capacity, 
Cp

(a) First-
order

Second-
order

Figure 67.2 The changes in thermodynamic properties 
accompanying (a) first-order and (b) second-order phase 
transitions.
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660 14 Physical equilibria

physical reason is that heating drives the transition rather than 

raising the temperature. For example, boiling water stays at the 

same temperature even though heat is being supplied.

A second-order phase transition in the Ehrenfest sense is one 

in which the first derivative of μ with respect to temperature is con-

tinuous but its second derivative is discontinuous. A continuous 

slope of μ (a graph with the same slope on either side of the transi-

tion) implies that the volume and entropy (and hence the enthalpy) 

do not change at the transition (Fig. 67.2b). The heat capacity is 

discontinuous at the transition but does not become infinite there. 

An example of a second-order transition is the conducting–super-

conducting transition in metals at low temperatures.

67.3 One-component systems

We begin exploring the implications of the phase rule and the 

thermodynamic criteria of equilibrium by considering a liq-

uid sample of a pure substance in a closed vessel. The pres-

sure of a vapour in equilibrium with the liquid is called the 

vapour pressure of the substance (Fig. 67.4). Therefore, the 

liquid–vapour phase boundary in a phase diagram shows 

how the vapour pressure of the liquid varies with tempera-

ture. Similarly, the solid–vapour phase boundary shows the 

temperature variation of the sublimation vapour pressure, 

the vapour pressure of the solid phase. The vapour pressure 

of a substance increases with temperature because at higher 

temperatures more molecules have sufficient energy to escape 

from their neighbours.

(a) Phase characteristics
When a liquid is heated in an open vessel, the liquid vapor-

izes from its surface as molecules acquire enough kinetic 

energy to escape from their neighbours. At the temperature at 

which its vapour pressure would be equal to the external pres-

sure, vapour can form throughout the bulk of the liquid and 

can expand freely into the surroundings. The condition of free 

vaporization throughout the liquid is called boiling. The tem-

perature at which the vapour pressure of a liquid is equal to the 

external pressure is called the boiling temperature at that pres-

sure; therefore, the liquid–vapour phase boundary also shows 

how the boiling temperature varies with external pressure. 

For the special case of an external pressure of 1 atm, the boil-

ing temperature is called the normal boiling point, Tb. With 

the replacement of 1 atm by 1 bar as standard pressure, there 

is some advantage in using the standard boiling point instead: 

this is the temperature at which the vapour pressure reaches 

1 bar. Because 1 bar is slightly less than 1 atm (1.00 bar = 0.987 

atm), the standard boiling point of a liquid is slightly lower than 

Vapour
pressure,
p

Liquid
or solid

Vapour

Figure 67.4 The vapour pressure of a liquid or solid is the 
pressure exerted by the vapour in equilibrium with the 
condensed phase.

Brief illustration 67.2 The Ehrenfest classification

One type of second-order transition is associated with a 

change in symmetry of the crystal structure of a solid. Thus, 

suppose the arrangement of atoms in a solid is like that repre-

sented in Fig. 67.3a, with one dimension of the tetragonal unit 

cell longer than the other two, which are equal. Moreover, 

suppose the two shorter dimensions increase more than the 

long dimension when the temperature is raised. There may 

come a stage when the three dimensions become equal. At 

that point the crystal has cubic symmetry (Fig. 67.3b), and at 

higher temperatures it will expand equally in all three direc-

tions (because there is no longer any distinction between 

them). The tetragonal → cubic phase transition has occurred, 

but as it has not involved a discontinuity in the interaction 

energy between the atoms or the volume they occupy, the 

transition is not first-order.

Self-test 67.2 Identify the Ehrenfest order for sublimation.

Answer: first-order; ΔsubV  and ΔsubS  nonzero

Fast

Fast

Slow

Tetragonal
phase

Cubic phase

Equal
rates

Equal
ratesEqual

rates

Phase
transition

(a) (b)

Figure 67.3 One version of a second-order phase transition 
in which (a) a tetragonal phase expands more rapidly in two 
directions than a third, and hence becomes a cubic phase, 
which (b) expands uniformly in three directions as the 
temperature is raised. There is no rearrangement of atoms 
at the transition temperature, and hence no enthalpy of 
transition.
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67 Phase diagrams: one-component systems  661

its normal boiling point. The normal boiling point of water is 

100.0 °C; its standard boiling point is 99.6 °C.

Boiling does not occur when a liquid is heated in a partly 

filled, rigid, closed vessel. Instead, the vapour pressure, and 

hence the density of the vapour, rises as the temperature is raised 

(Fig. 67.5). At the same time, the density of the liquid decreases 

slightly as a result of its expansion. There comes a stage when the 

density of the vapour is equal to that of the remaining liquid and 

the surface between the two phases disappears. The temperature 

at which the surface disappears is the critical temperature, Tc, 

of the substance (see Fig. 67.1 again). The vapour pressure at 

the critical temperature is called the critical pressure, pc. At and 

above the critical temperature, a single uniform phase called a 

supercritical fluid fills the container and an interface no longer 

exists. That is, above the critical temperature, the liquid phase of 

the substance does not exist.

The temperature at which, under a specified pressure, the 

liquid and solid phases of a substance coexist in equilibrium is 

called the melting temperature. Because a substance melts at 

exactly the same temperature as it freezes, the melting tempera-

ture of a substance is the same as its freezing temperature. The 

freezing temperature when the pressure is 1 atm is called the 

normal freezing point, Tf, and its freezing point when the pres-

sure is 1 bar is called the standard freezing point. The normal 

and standard freezing points are negligibly different for most 

purposes. The normal freezing point is also called the normal 

melting point.

There is a set of conditions (and, in general, several sets) 

under which three different phases of a single substance (such 

as solid, liquid, and vapour) all simultaneously coexist in 

equilibrium. These conditions are represented by the triple 

point, a point at which the three phase boundaries meet. The 

temperature at the triple point is denoted T3 (see Fig. 67.1). The 

triple point of a pure substance depends on the details of the 

intermolecular interactions and is outside our control: it occurs 

at a single definite pressure and temperature characteristic of 

the substance: because P = 3 and C = 1, it follows that F = 0 and 

the triple point is invariant.

As we can see from Fig. 67.1, the triple point marks the low-

est pressure at which a liquid phase of a substance can exist. 

If (as is common) the slope of the solid–liquid phase bound-

ary is as shown in the diagram, then the triple point also marks 

the lowest temperature at which the liquid can exist; the critical 

temperature is the upper limit.

(b) Three typical phase diagrams
The phase diagram for carbon dioxide is shown in Fig. 

67.6. The features to notice include the positive slope of the 

solid–liquid boundary (the direction of this line is charac-

teristic of most substances), which indicates that the melting 

Brief illustration 67.3 Triple points

The triple point of water lies at 273.16 K and 611 Pa (6.11 mbar, 

4.58 Torr), and the three phases of water (ice, liquid water, and 

water vapour) coexist in equilibrium at no other combina-

tion of pressure and temperature. This invariance of the triple 

point was the basis of its use in the now superseded definition 

of the Kelvin scale of temperature (Topic 61).

Self-test 67.3 How many triple points are present in the (as far 

as it is known) full phase diagram for water shown later in this 

Topic in Fig. 67.7?

Answer: 6

(a) (b) (c)

Figure 67.5 (a) A liquid in equilibrium with its vapour. (b) 
When a liquid is heated in a sealed container, the density of 
the vapour phase increases and that of the liquid decreases 
slightly. There comes a stage (c) at which the two densities are 
equal and the interface between the phases disappears. This 
disappearance occurs at the critical temperature. The container 
needs to be strong: the critical temperature of water is 374 °C 
and the vapour pressure is then 218 atm.
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Figure 67.6 The experimental phase diagram for carbon 
dioxide. Note that, as the triple point lies at pressures well 
above atmospheric, liquid carbon dioxide does not exist 
under normal conditions (a pressure of at least 5.1 atm must 
be applied).
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662 14 Physical equilibria

temperature of solid carbon dioxide rises as the pressure 

is increased. Notice also that as the triple point lies above 1 

atm, the liquid cannot exist at normal atmospheric pressures 

whatever the temperature, and the solid sublimes when left 

in the open (hence the name ‘dry ice’). To obtain the liquid, it 

is necessary to exert a pressure of at least 5.11 atm. Cylinders 

of carbon dioxide generally contain the liquid or compressed 

gas; at 25 °C that implies a vapour pressure of 67 atm if both 

gas and liquid are present in equilibrium. When the gas 

squirts through the throttle it cools by the Joule–Thomson 

effect (Topic 56), so when it emerges into a region where 

the  pressure is only 1 atm, it condenses into a finely divided 

snow-like solid.

Figure 67.7 is the phase diagram for water. The liquid–

vapour boundary in the phase diagram summarizes how the 

vapour pressure of liquid water varies with temperature. It also 

summarizes how the boiling temperature varies with pressure: 

we simply read off the temperature at which the vapour pres-

sure is equal to the prevailing atmospheric pressure. The solid–

liquid boundary shows how the melting temperature varies 

with the pressure. Its very steep slope indicates that enormous 

pressures are needed to bring about significant changes. Notice 

that the line has a negative slope up to 2 kbar, which means 

that the melting temperature falls as the pressure is raised. The 

reason for this almost unique behaviour can be traced to the 

decrease in volume that occurs on melting, and hence it being 

more favourable for the solid to transform into the liquid as the 

pressure is raised. The decrease in volume is a result of the very 

open molecular structure of ice: the water molecules are held 

apart, as well as together, by the hydrogen bonds between them 

but the structure partially collapses on melting and the liquid is 

denser than the solid.

Figure 67.7 shows that water has one liquid phase but many 

different polymorphs, or different solid phases, other than 

ordinary ice (‘ice I’). This polymorphic richness is due in large 

measure to the adaptability of the directional characteristics of 

hydrogen-bonding interactions, which allow the oxygen atoms 

to adopt slightly different arrangements throughout the solid in 

response to changes in pressure and temperature. Some of the 

phases melt at high temperatures. Ice VII, for instance, melts at 

100 °C but exists only above 25 kbar. Note that five more triple 

points occur in the diagram other than the one where vapour, 

liquid, and ice I coexist. Each one occurs at a definite pressure 

and temperature that cannot be changed. The polymorphs of 

ice differ in the arrangement of the water molecules: under the 

influence of very high pressures, hydrogen bonds buckle and 

the H2O molecules adopt different arrangements. They may be 

responsible for the advance of glaciers, for ice at the bottom of 

glaciers experiences very high pressures where it rests on jag-

ged rocks.

Figure 67.8 shows the phase diagram of helium. Helium 

behaves unusually at low temperatures. For instance, the solid 

and gas phases of helium are never in equilibrium however low 

the temperature: the atoms are so light that they vibrate with a 

large-amplitude motion even at very low temperatures and the 

solid simply shakes itself apart. Solid helium can be obtained, 

but only by holding the atoms together by applying pressure. 

Pure helium-4 has two liquid phases. The phase marked He-I 

in the diagram behaves like a normal liquid; the other phase, 

He-II, is a superfluid; it is so called because it flows without 

viscosity. Provided we discount liquid crystalline substances, 

helium is the only known substance with a liquid–liquid 

boundary, shown as the λ-line (lambda line) in Fig. 67.8. The 

phase diagram of helium-3 differs from the phase diagram of 

helium-4, but it also possesses a superfluid phase. Helium-3 is 
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67 Phase diagrams: one-component systems  663

unusual in that the entropy of the liquid is lower than that of 

the solid, and melting is exothermic.

The existence of superfluid helium is a quantum phenomenon 

that manifests itself on a macroscopic scale. Because the intera-

tomic forces in helium are so weak, as a first approximation we 

can treat the liquid as a collection of non-interacting particles in 

a box. According to Topic 52, many translational states of a par-

ticle in a box are occupied provided the separation of particles, 

d = (V/N)1/3 is much larger than their thermal wavelength, Λ = h/

(2πmkT)1/2. Given the mass density, ρ, of liquid helium of 0.15 g 

cm−3 and noting that N/V = ρ/m, this condition requires T � 6 K 

(as you should verify). But the normal boiling point of helium is 

4.2 K, so it is not true that many translational states of He atoms 

are occupied in the liquid and we have to treat the phase as a 

quantum system. The second important point is that helium-4 

atoms are bosons, so that an unrestricted number of them can 

occupy a single quantum state.

The current view is that helium-II consists of two compo-

nents. In this two-fluid model, below 2.17 K the liquid consists 

of a normal liquid component and a superfluid component, 

with the proportions changing as the temperature is lowered 

and becoming entirely superfluid at T = 0. Although it is tempt-

ing to think of the superfluid phase as consisting of all the 

atoms in the lowest energy state (corresponding to n = 1 for a 

particle in a box) and zero linear momentum, that is not quite 

right, for neutron scattering experiments have shown that only 

about 10 per cent of the atoms have zero linear momentum 

at T = 0, despite the phase then being entirely superfluid. The 

ground state is in fact much more complicated, with correlated 

pairs of atoms with zero overall linear momentum.

Helium-3 forms a superfluid phase despite being a spin- 1
2  

fermion. In its case, pairs of atoms act jointly (like pairs of elec-

trons in superconductivity, Topic 39), and each pair behaves 

like a single spin-0 boson.

Checklist of concepts

☐ 1. A phase is a form of matter that is uniform throughout 

in chemical composition and physical state.

☐ 2. A transition temperature is the temperature at which 

the two phases are in equilibrium.

☐ 3. A phase diagram is a diagram showing the regions of 

pressure and temperature at which its various phases 

are thermodynamically stable.

☐ 4. The phase boundaries in a phase diagram show the 

pressures and temperatures at which two phases are in 

equilibrium.

☐ 5. The vapour pressure is the pressure of a vapour in equi-

librium with the condensed phase.

☐ 6. The boiling temperature is the temperature at which 

the vapour pressure of a liquid is equal to the external 

pressure.

☐ 7. The critical temperature is the temperature at which 

a liquid surface disappears and above which a liq-

uid does not exist whatever the pressure. The criti-

cal  pressure is the vapour pressure at the critical 

temperature.

☐ 8. The melting temperature (or freezing temperature) 

is the temperature at which, under a specified pressure, 

the liquid and solid phases of a substance coexist in 

equilibrium.

☐ 9. The triple point is a point on a phase diagram at which 

the three phase boundaries meet and all three phases 

are in mutual equilibrium.

☐ 10. Phase transitions are categorized by the Ehrenfest 

classification.

Checklist of equations

Property Equation Comment Equation number

Phase rule F = C – P + 2 F: variance; C: components; P: phases 67.1
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TOPIC 68

Phase diagrams: two-component 

systems

If two components are present in a mixture, there are three 

variables to consider: the pressure, the temperature, and the 

composition. Hence, one form of the phase diagram is a map 

of pressures and compositions at which each phase is stable at 

a fixed temperature. Alternatively, the pressure could be held 

constant and the phase diagram depicted in terms of tempera-

ture and composition.

68.1 Liquid–vapour systems

The choice of variables under our control, such as pressure or 

temperature, leads to two types of two-component phase dia-

gram that show the equilibrium composition of the system 

under the selected conditions.

(a) Pressure–composition diagrams
Figure 68.1 is a typical pressure–composition diagram at a 

fixed temperature. All the points above the diagonal line in the 

graph correspond to a system under such high pressure that it 

contains only a liquid phase (the applied pressure is higher than 

the vapour pressure). All points below the lower curve corre-

spond to a system under such low pressure that it contains only 

a vapour phase (the applied pressure is lower than the vapour 

pressure). Points that lie between the two lines correspond to a 

system in which there are two phases present, one a liquid and 

the other a vapour.

To see this interpretation in more detail, consider the effect 

of lowering the pressure on a liquid mixture of overall compo-

sition a in Fig. 68.1. The changes to the system do not affect the 

overall composition, so the state of the system moves down the 

vertical line that passes through a. This vertical line is called an 

isopleth (from the Greek words for ‘equal abundance’). Until 

 ➤ Why do you need to know this material?
Most phase diagrams of technological, geological, and 
chemical interest represent the phase stabilities of systems 
of more than one component. This Topic shows how 
to interpret the phase diagrams of two-component 
systems and use them to discuss the important process 
of distillation.

 ➤ What is the key idea?
A two-component phase diagram depicts the phases that 
are stable under the specified conditions of pressure and 
temperature.

 ➤ What do you need to know already?
This Topic develops the introduction of the phase rule in 
Topic 67 and uses the terms introduced there.
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68 Phase diagrams: two-component systems 665

the point a1 is reached (when the pressure has been reduced to 

p1), the sample consists of a single liquid phase. At a1 the liquid 

can exist in equilibrium with its vapour of composition ′a1. A 

line joining two points representing phases in equilibrium is 

called a tie line. The composition of the liquid is the same as 

initially (a1 lies on the isopleth through a), so we have to con-

clude that at this pressure there is virtually no vapour present; 

however, the tiny amount of vapour that is present has the com-

position ′a1.

To use a phase diagram to find the relative amounts of two 

phases α and β that are in equilibrium when the system is in a 

two-phase region, we measure the distances lα and lβ along the 

horizontal tie line, and then use the lever rule (Fig. 68.2) which 

is derived in the following Justification:

n l n lα α β β=   Lever rule  (68.1)

Here nα is the amount of phase α and nβ the amount of phase β. 

In the case illustrated in Fig. 68.2, because lβ ≈ lα, the two phases 

are in equal abundance.

(b) Temperature–composition diagrams

A temperature–composition diagram is a phase diagram in 

which the boundaries show the composition of the phases that 

are in equilibrium at various temperatures (and at a fixed pres-

sure, typically 1 atm). An example is shown in Fig. 68.3. Note 

that the liquid phase now lies in the lower part of the diagram 

because all points below the lower curve correspond to a sys-

tem under such low temperature than it contains only a liquid 

phase. The region between the lines in Fig. 68.3 is a two-phase 

region; the regions outside the phase lines correspond to a sin-

gle phase.

Consider what happens when a liquid of composition a1 

is heated. It boils when the temperature reaches T2. Then the 

Brief illustration 68.1 The lever rule

At p1 in Fig. 68.1, the ratio lvap/lliq is almost infinite for this tie 

line, so nliq/nvap is also almost infinite, and there is only a trace 

of vapour present. When the pressure is reduced to p2, the 

value of lvap/lliq is about 0.5, so nliq/nvap ≈ 0.5 and the amount of 

liquid is about one-half the amount of vapour. When the pres-

sure has been reduced to p3, the sample is almost completely 

gaseous and because lvap/lliq ≈ 0 we conclude that there is only a 

trace of liquid present.

Self-test 68.1 What is the ratio of abundances of the two 

phases at p4?

Answer: nvap/nliq ≈ 3.8

Justification 68.1 The lever rule

To prove the lever rule we write n = nα + nβ and the overall 

amount of A as nxA, where xA is the mole fraction of A in the 

mixture. The amount of A is also the sum of its amounts in the 

two phases:

nx n x n xA A A= α α β β, ,+  

where xA,α is the mole fraction of A in phase α and xA,β is its 

mole fraction in phase β. Since also

nx n n x n x n xA A A A= + = +( )α β α β  

by equating these two expressions it follows that

n x x n x xα α β β( ) ( ), ,A A A A− = −  

which corresponds to eqn 68.1.
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Figure 68.1 A typical phase diagram for a mixture of two 
volatile liquids. A point between the two lines corresponds 
to both liquid and vapour being present; outside that region 
there is only one phase present.
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Figure 68.2 The lever rule. The distances lα and lβ are used 
to find the proportions of the amounts of phases α (such as 
vapour) and β (for example, liquid) present at equilibrium. 
The lever rule is so called because a similar rule relates the 
masses at two ends of a lever to their distances from a pivot 
(mαlα = mβlβ for balance).
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666 14 Physical equilibria

liquid has composition a2 (the same as a1) and the vapour 

(which is present only as a trace) has composition ′a2 . The 

vapour is richer in the more volatile component A (the com-

ponent with the lower boiling point). From the location 

of ′a2 , we can state the vapour's composition at the boiling 

point, and from the location of the tie line joining a2 and ′a2  

we can read off the boiling temperature (T2) of the original 

liquid mixture.

In a simple distillation, the vapour is withdrawn and con-

densed. This technique is used to separate a volatile liquid from 

a non-volatile solute or solid. In fractional distillation, the 

boiling and condensation cycle is repeated successively. This 

technique is used to separate volatile liquids. We can follow 

the changes that occur by seeing what happens when the first 

condensate of composition a3 is reheated. The phase diagram 

shows that this mixture boils at T3 and yields a vapour of com-

position ′a3 ,  which is even richer in the more volatile compo-

nent. That vapour is drawn off, and the first drop condenses to 

a liquid of composition a4. The cycle can then be repeated until 

in due course almost pure A is obtained.

Although many liquids have temperature–composition 

phase diagrams resembling the version in Fig. 68.3, in a num-

ber of important cases there are marked deviations. A maxi-

mum in the phase diagram (Fig. 68.4) may occur when the 

favourable interactions between A and B molecules reduce the 

vapour pressure of the mixture below the ideal value implied by 

Raoult’s law (Topic 70): in effect, the A–B interactions stabilize 

the liquid. Examples of this behaviour include trichlorometh-

ane/propanone and nitric acid/water mixtures. Phase diagrams 

showing a minimum (Fig. 68.5) indicate that the mixture is 

destabilized relative to the ideal solution, the A–B interactions 

then being unfavourable. Examples include dioxane/water and 

ethanol/water mixtures.

Deviations from ideality are not always so strong as to lead to 

a maximum or minimum in the phase diagram, but when they 

do there are important consequences for distillation. Consider 

a liquid of composition a on the right of the maximum in Fig. 

68.4. The vapour (at ′a2 ) of the boiling mixture (at a2) is richer 

in A. If that vapour is removed (and condensed elsewhere), 

then the remaining liquid will move to a composition that is 

richer in B, such as that represented by a3, and the vapour in 

equilibrium with this mixture will have composition ′a3.  As 

that vapour is removed, the composition of the boiling liquid 

shifts to a point such as a4, and the composition of the vapour 

shifts to ′a4 . Hence, as evaporation proceeds, the composi-

tion of the remaining liquid shifts towards B as A is drawn off. 

The boiling point of the liquid rises, and the vapour becomes 

richer in B. When so much A has been evaporated that the liq-

uid has reached the composition b, the vapour has the same 

composition as the liquid. Evaporation then occurs without 

change of composition. The mixture is said to form an azeo-

trope (from the Greek words for ‘boiling without changing’). 
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Figure 68.4 A high-boiling azeotrope. When the liquid of 
composition a is distilled, the composition of the remaining 
liquid changes towards b but no further.
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Figure 68.5 A low-boiling azeotrope. When the mixture 
at a is fractionally distilled, the vapour in equilibrium in the 
fractionating column moves towards b and then remains 
unchanged.
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Figure 68.3 The temperature–composition diagram 
corresponding to an ideal mixture (Topic 70) with the 
component A more volatile than component B. Successive 
boilings and condensations of a liquid originally of 
composition a1 lead to a condensate that is pure A. The 
separation technique is called fractional distillation.
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68 Phase diagrams: two-component systems 667

When the azeotropic composition has been reached, distilla-

tion cannot separate the two liquids because the condensate 

has the same composition as the azeotropic liquid. One exam-

ple of azeotrope formation is hydrochloric acid/water, which is 

azeotropic at 80 per cent by mass of water and boils unchanged 

at 108.6 °C.

68.2 Liquid–liquid systems

Now we consider temperature–composition diagrams for sys-

tems that consist of pairs of partially miscible liquids, which 

are liquids that do not mix in all proportions at all tempera-

tures. An example is hexane and nitrobenzene.

Suppose a small amount of a liquid B is added to a sam-

ple of another liquid A at a temperature T′. It dissolves com-

pletely, and the binary system remains a single phase. As 

more B is added, a stage comes at which no more dissolves. 

The sample now consists of two phases in equilibrium with 

each other, the most abundant one consisting of A saturated 

with B, the minor one a trace of B saturated with A. In the 

temperature–composition diagram drawn in Fig. 68.6, the 

composition of the former is represented by the point a′ and 

that of the latter by the point a″. The relative abundances of 

the two phases are given by the lever rule. When more B is 

added, A dissolves in it slightly. However, the amount of one 

phase increases at the expense of the other. A stage is reached 

when so much B is present that it can dissolve all the A, and 

the system reverts to a single phase. The addition of more B 

now simply dilutes the solution, and from then on it remains 

a single phase.

The compositions of the two phases at equilibrium vary 

with the temperature. For hexane and nitrobenzene, raising 

the temperature increases their miscibility. The two-phase sys-

tem therefore becomes less extensive, because each phase in 

equilibrium is richer in its minor component: the A-rich phase 

is richer in B and the B-rich phase is richer in A. The phase 

diagram is constructed by repeating the observations at differ-

ent temperatures and drawing the envelope of the two-phase 

region.

The upper critical solution temperature (or upper con-

solute temperature), Tuc, is the highest temperature at which 

phase separation occurs. Above the upper critical temperature 

the two components are fully miscible. This temperature exists 

because the greater thermal motion overcomes any poten-

tial energy advantage in molecules of one type being close 

together. One example is the nitrobenzene/hexane system 

shown in Fig. 68.6. Some systems show a lower critical solu-

tion temperature (or lower consolute temperature), Tlc, below 

which they mix in all proportions and above which they form 

two phases. An example is water and triethylamine (Fig. 68.7). 

In this case, at low temperatures the two components are more 

miscible because they form a weak complex; at higher tem-

peratures the complexes break up and the two components are 

less miscible.

For the thermodynamic treatment of these features, and 

their modelling in terms of a ‘regular solution’, see Topic 72.

Brief illustration 68.2 Azeotropes

The system shown in Fig. 68.5 is azeotropic, but shows its aze-

otropy in a different way. Suppose we start with a mixture of 

composition a1. The mixture boils at a2 to give a vapour of 

composition ′a2.  This vapour condenses to a liquid of the same 

composition (now marked a3). That liquid reaches equilib-

rium with its vapour at ′a3  which condenses to give a liquid of 

the same composition, which we now call a4. The distillation 

therefore shifts the vapour towards the azeotropic composi-

tion at b, but not beyond, and the azeotropic vapour emerges 

from the top of the column. An example is ethanol/water, 

which boils unchanged when the water content is 4 per cent by 

mass and the temperature is 78 °C.

Self-test 68.2 Consider a liquid of a composition on the left 

of the maximum in Fig. 68.4. Show that repeated distillations 

will also result in formation of the azeotrope.

Answer: As evaporation proceeds, the composition of the  

remaining liquid shifts towards A as B is drawn off
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Figure 68.6 The temperature–composition diagram for 
a system composed of two partially miscible liquids. The 
region below the curve corresponds to the compositions 
and temperatures at which the liquids are partially miscible. 
The upper critical temperature, Tuc, is the temperature above 
which the two liquids are miscible in all proportions. In this and 
subsequent phase diagrams, P is the number of phases. This 
phase diagram is for A = hexane and B = nitrobenzene, with 
Tuc = 294 K.
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Example 68.1 Interpreting a liquid–liquid phase 
diagram

A mixture of 50 g of hexane (0.58 mol C6H14) and 50 g of 

nitrobenzene (0.41 mol C6H5NO2) was prepared at 290 K. 

What are the compositions of the phases, and in what propor-

tions do they occur? To what temperature must the sample be 

heated in order to obtain a single phase?

Method The compositions of phases in equilibrium are given 

by the points where the tie-line representing the temperature 

intersects the phase boundary. Their proportions are given by 

the lever rule (eqn 68.1). The temperature at which the com-

ponents are completely miscible is found by following the iso-

pleth upwards and noting the temperature at which it enters 

the one-phase region of the phase diagram.

Answer We denote hexane by H and nitrobenzene by N; refer to 

Fig. 68.8, which is a more quantitative version of Fig. 68.6. The 

point xN = 0.41, T = 290 K occurs in the two-phase region of the 

phase diagram. The horizontal tie line cuts the phase boundary 

at xN = 0.35  and xN = 0.83, so those are the compositions of the 

two phases. According to the lever rule, the ratio of amounts of 

each phase  is equal to the ratio of the distances lα and lβ:

n

n

l

l
α

β

β

α
= = −

− = =0 83 0 41

0 41 0 35

0 42

0 06
7

. .

. .

.

.
 

That is, there is about seven times more hexane-rich phase than 

nitrobenzene-rich phase. Heating the sample to 292 K takes it 

into the single-phase region. Because the phase diagram has 

been constructed experimentally, these conclusions are not 

based on any assumptions about ideality. They would be modi-

fied if the system were subjected to a different pressure.
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68.3 Liquid–solid systems

Finally, we consider a simple example of a two-component 

mixture that forms both liquid and solid phases. The inter-

pretation of the phase diagram follows the same principles as 

before. Thus, consider the two-component liquid of composi-

tion a1 in Fig. 68.9. The changes that occur may be expressed 

as follows:

a1 → a2. The system enters the two-phase region labelled 

‘Liquid + B’. Pure solid B begins to come out of solution 

and the remaining liquid becomes richer in A.

a2 → a3. More of the solid forms, and the relative 

amounts of the solid and liquid (which are in 

equilibrium) are given by the lever rule. At this stage 

there are roughly equal amounts of each. The liquid 

phase is richer in A than before (its composition is 

given by b3) because some B has been deposited.

a3 → a4. At the end of this step, there is less liquid 

than at a3, and its composition is given by e. This 

liquid now freezes to give a two-phase system of pure 

B and pure A.

The isopleth at e in Fig. 68.9 corresponds to the eutectic com-

position, the mixture with the lowest melting point (the name 

comes from the Greek words for ‘easily melted’). A liquid with 

0 1
Mole fraction of triethylamine, xE

Composition
of one
phase Composition

of second
phaseP = 2

P = 1

Te
m

p
er

at
u

re
, T

Tlc

0.2 0.4 0.6 0.8

Figure 68.7 The temperature–composition diagram for 
water and triethylamine. This system shows a lower critical 
temperature at 292 K. The labels indicate the interpretation 
of the boundaries.

Self-test 68.3 Repeat the problem for 50 g of hexane and 100 g 

of nitrobenzene at 273 K.

Answer: xN = 0.09 and 0.95 in ratio 1:1.3; 294 K

Mole fraction of nitrobenzene, xN
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p
er

at
u
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, T
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292
290

273

294

P = 1
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Figure 68.8 The temperature–composition diagram for 
hexane and nitrobenzene at 1 atm with the points and 
lengths discussed in Example 68.1.
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68 Phase diagrams: two-component systems 669

the eutectic composition freezes at a single temperature, with-

out previously depositing solid A or B. A solid with the eutec-

tic composition melts, without change of composition, at the 

lowest temperature of any mixture. Solutions of composition 

to the right of e deposit B as they cool, and solutions to the 

left deposit A: only the eutectic mixture (apart from pure A 

or pure B) solidifies at a single definite temperature without 

gradually unloading one or other of the components from the 

liquid.

Checklist of concepts

☐ 1. The tie line in a phase diagram joins two points repre-

senting phases in equilibrium.

☐ 2. The lever rule (see below) allows for the calculation of 

the relative amounts of two phases in equilibrium.

☐ 3. At the eutectic composition, the liquid–solid system 

has its lowest melting point.

☐ 4. An azeotrope is a mixture that boils without change of 

composition.

☐ 5. The upper critical solution temperature is the high-

est temperature at which phase separation occurs in a 

binary liquid mixture.

☐ 6. The lower critical solution temperature is the tempera-

ture below which the components of a binary mixture 

mix in all proportions and above which they form two 

phases.

Checklist of equations

0 1Mole fraction of B, xB

Te
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p
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at
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re
, T
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b3

a5’ a5”

a2

a3

a4

a5

Liquid
P = 1

P = 2

Liquid + A Liquid + B

Solid

e

Figure 68.9 The temperature–composition phase  
diagram for two almost immiscible solids and their 
completely miscible liquids. The isopleth through e 
corresponds to the eutectic composition, the mixture with 
lowest melting point.

Property Equation Comment Equation number

Lever rule nαlα = nβlβ 68.1

Brief illustration 68.3 A binary phase diagram

Figure 68.10 is the phase diagram for silver and tin. The regions 

have been labelled to show which each one represents. When a liq-

uid of composition a is cooled, solid silver with dissolved tin begins 

to precipitate at a1 and the sample solidifies completely at a2.

Self-test 68.4 Describe what happens when the sample of 

composition b is cooled.

Answer: Solid Ag with dissolved Sn begins to precipitate at b1, and the 

liquid becomes richer in Sn as the temperature falls further. At b2 solid 

Ag3Sn begins to precipitate, and the liquid becomes richer in Sn. At b3 

the system has its eutectic composition (a solid solution of Sn and Ag3Sn) 

and it freezes without further change in composition.
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Figure 68.10 The phase diagram for the binary system 
silver–tin.
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TOPIC 69

Physical transformations

In this Topic we see how thermodynamic considerations can 

account for the features of the phase diagrams described in 

Topics 67 and 68. All our considerations are based on the Gibbs 

energy of the system (Topic 65). At constant temperature and 

pressure, a system tends towards lowest Gibbs energy: that is, it 

tends to achieve the greatest total entropy of the system and its 

surroundings.

69.1 Partial molar quantities

Central to the discussion of mixtures is the concept of ‘partial 

molar quantity’. The easiest partial molar property to visualize 

is the ‘partial molar volume’, the contribution that a component 

of a mixture makes to the total volume of a sample.

(a) Partial molar volume
Imagine a huge volume of pure water at 25 °C. When a further 

1 mol H2O is added, the volume increases by 18 cm3 and we 

can report that 18 cm3 mol−1 is the molar volume of pure water. 

However, when we add 1 mol H2O to a huge volume of pure 

ethanol the volume increases by only 14 cm3. The reason for the 

different increase in volume is that the volume occupied by a 

given number of water molecules depends on the identity of 

the molecules that surround them. In the latter case, there is so 

much ethanol present that each H2O molecule is surrounded by 

ethanol molecules. The network of hydrogen bonds that nor-

mally hold H2O molecules at certain distances from each other 

in pure water does not form. The packing of the molecules in 

Contents

69.1 Partial molar quantities 670

(a) Partial molar volume 670

Example 69.1: Determining a partial molar volume 671

(b) Partial molar Gibbs energies 672

69.2 The chemical potential 673

(a) Changes in the Gibbs energy 673

Brief illustration 69.1: The Gibbs–Duhem equation 673

(b) The thermodynamic criterion of equilibrium 673

Brief illustration 69.2: Phase equilibria 674

(c) The response of the chemical potential  
to the conditions 674

Brief illustration 69.3: The variation of chemical  

potential with temperature 674

Brief illustration 69.4: The variation of chemical  

potential with pressure 675

69.3 The structure of one-component  
phase diagrams 675

Example 69.2: Estimating the effect of pressure  

on the boiling temperature 676

Example 69.3: Estimating a boiling temperature 677

Checklist of concepts 677

Checklist of equations 678

 ➤ Why do you need to know this material?
The chemical potential is a central unifying property for 
discussing the thermodynamic criteria of equilibrium of 
all kinds. This Topic defines it, introduces its variation with 
temperature and pressure, and shows how to use it to 
discuss the phase equilibria of pure substances.

 ➤ What is the key idea?
The chemical potentials of a substance are the same in all 
the phases in which it exists at equilibrium.

 ➤ What do you need to know already?

This Topic makes use of the properties of the Gibbs energy 
(Topic 65) and provides a thermodynamic justification of 
the material in Topic 66. The chemical potential introduced 
in Topic 67 is developed in greater detail here.
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69 Physical transformations  671

the mixture results in the H2O molecules increasing the volume 

by only 14 cm3. The quantity 14 cm3 mol−1 is the partial molar 

volume of water in pure ethanol. In general, the partial molar 

volume of a substance A in a mixture is the change in volume 

per mole of A added to a large volume of the mixture.

The partial molar volumes of the components of a mixture 

vary with composition because the environment of each type of 

molecule changes as the composition changes from pure A to 

pure B. It is this changing molecular environment, and the con-

sequential modification of the forces acting between molecules, 

that results in the variation of the thermodynamic properties 

of a mixture as its composition is changed. The partial molar 

volumes of water and ethanol across the full composition range 

at 25 °C are shown in Fig. 69.1.

The partial molar volume, VJ , of a substance J at some gen-

eral composition is defined formally as follows:

V
V

n
p T n

J
J

=
⎛
⎝⎜

⎞
⎠⎟ ′

∂
∂

, ,  

Definition  Partial molar volume  (69.1)

where the subscript n′ signifies that the amounts of all other 

substances present are constant. The partial molar volume is 

the slope of the plot of the total volume as the amount of J is 

changed, the pressure, temperature, and amount of the other 

components being constant (Fig. 69.2). Its value depends on 

the composition, as we saw for water and ethanol.

A note on good practice The IUPAC recommendation is to 

denote a partial molar quantity by X  but only when there is 

the possibility of confusion with the quantity X. For instance, 

to avoid confusion, the partial molar volume of NaCl in water 

could be written V(NaCl, aq) to distinguish it from the total 

volume of the solution, V.

The definition in eqn 69.1 implies that when the composi-

tion of the mixture is changed by the addition of dnA of A and 

dnB of B, then the total volume of the mixture changes by

d d d d dV
V

n
n

V

n
n V n V n

A p T n

A
B p T n

B A A B B

B A

=⎛
⎝⎜

⎞
⎠⎟

+⎛
⎝⎜

⎞
⎠⎟

= +∂
∂

∂
∂

, , , ,  

(69.2)

Provided the relative composition is held constant as the 

amounts of A and B are increased, the partial molar volumes 

are both constant. In that case we can obtain the final volume 

by integration, treating VA and VB as constants:

V V n V n V n V n

V n V n

A A

n

B B

n

A A

n

B B

n

A A B B

A B A B

= + = +

= +
∫ ∫ ∫ ∫d d d d

0 0 0 0

 

(69.3)

Although we have envisaged the two integrations as being 

linked (in order to preserve constant relative composition), 

because V is a state function the final result in eqn 69.3 is valid 

however the solution is in fact prepared.

Partial molar volumes can be measured in several ways. One 

method is to measure the dependence of the volume on the 

composition and to fit the observed volume to a function of the 

amount of the substance. Once the function has been found, 

its slope can be determined at any composition of interest by 

differentiation.

Example 69.1 Determining a partial molar volume

A polynomial fit to measurements of the total volume of a 

water/ethanol mixture at 25 °C that contains 1.000 kg of 

water is

v= + − +1 2 93 54 6664 363 94 28 2562 300 0 0 0. . . .x x x
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Figure 69.1 The partial molar volumes of water and ethanol 
at 25 °C. Note the different scales (water on the left, ethanol on 
the right).
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m
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 V
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Figure 69.2 The partial molar volume of a substance is the 
slope of the variation of the total volume of the sample plotted 
against the composition. In general, partial molar quantities 
vary with the composition, as shown by the different slopes at 
the compositions a and b. Note that the partial molar volume at 
b is negative: the overall volume of the sample decreases as A is 
added.
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672 14 Physical equilibria

Molar volumes are always positive, but partial molar quanti-

ties need not be. For example, the limiting partial molar vol-

ume of MgSO4 in water (its partial molar volume in the limit 

of zero concentration) is −1.4 cm3 mol−1, which means that the 

addition of 1 mol MgSO4 to a large volume of water results in a 

decrease in volume of 1.4 cm3. The mixture contracts because 

the salt breaks up the open structure of water as the Mg2+ and 

SO4
2– ions become hydrated, and it collapses slightly.

(b) Partial molar Gibbs energies
The concept of a partial molar quantity can be extended to any 

extensive state function. Thus, to discuss the Gibbs energy of a 

system that in general consists of several components J, each of 

which contributes to the total Gibbs energy, we introduce the 

partial molar Gibbs energy of each component. This quantity is 

so important that it is given its own name, the chemical poten-

tial, and symbol, μ (mu):

μJ
J

= ∂
∂

⎛
⎝⎜

⎞
⎠⎟ ′

G

n
p T n, ,  

Definition  Chemical potential  (69.4)

The n′ signifies that the abundances of all the other species in 

the mixture are held constant; the units of a chemical potential 

are joules (from G) per mole (from n). For a one-component 

system, G = nGm, and the chemical potential is simply the molar 

Gibbs energy of the substance because

μ = ∂
∂

⎛
⎝⎜

⎞
⎠⎟

=
∂( )

∂
⎛

⎝⎜
⎞

⎠⎟
=G

n

nG

n
G

p T p T, ,

m

m

 

(69.5)

Just like the partial molar volume, the chemical potential 

of a substance in a mixture varies with the composition of the 

mixture because the environment of each type of molecule 

changes as the composition changes. When the composition 

of a binary (two-component) mixture of A and B molecules is 

nearly pure A, each A molecule is surrounded almost entirely 

by A molecules and μA has a value characteristic of this envi-

ronment. When the mixture is almost pure B, each A mol-

ecule is surrounded almost entirely by B molecules and now 

μA has a different value, one characteristic of this environ-

ment. At intermediate compositions, the environment of A 

lies between these two extremes, and μA has the correspond-

ing value.

By the same argument used for the total volume of a mixture, 

it follows that the total Gibbs energy of a mixture is simply

G n=∑
J

J Jμ
 

 Gibbs energy of a mixture  (69.6)

with the chemical potential of each component evaluated at 

the composition of the mixture. According to this equation, 

the chemical potential of a substance in a mixture is the con-

tribution of that substance to the total Gibbs energy of the 

mixture.

where v  = V/cm3, x = nE/mol, and nE is the amount of 

CH3CH2OH present. Determine the partial molar volume of 

ethanol.

Method Apply the definition in eqn 69.1, taking care to con-

vert the derivative with respect to n to a derivative with respect 

to x and keeping the units intact.

Answer The partial molar volume of ethanol, VE, is

V
V

n

V

n
p T n p T nW

E
E E

W

cm

mol

cm

mol
=⎛

⎝⎜
⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

=∂
∂

∂
∂

∂

, , , ,

( )/

( / )

3 3 vv
∂x

p T n

⎛
⎝⎜

⎞
⎠⎟

−

, , W

cm mol3 1

Then, because

d

d

v
x

x x= +54 6664 2 0 363 94 3 0 028 256 2. ( . ) ( . )−

we can conclude that

V x xE
3 1 2/ cm mol 54 6664 72788 84768( ) . . .− −= +0 0 0

Figure 69.3 is a graph of this function.

Self-test 69.1 At 25 °C, the density of a 50 per cent by mass 

ethanol/water solution is 0.914 g cm−3. Given that the partial 

molar volume of water in the solution is 17.4 cm3 mol−1, what is 

the partial molar volume of the ethanol?

Answer: 54.6 cm3 mol−1 by the formula above
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Figure 69.3 The partial molar volume of ethanol as 
expressed by the polynomial in Example 69 1.
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69 Physical transformations  673

69.2 The chemical potential

The name ‘chemical potential’ is instructive and should be 

borne in mind. As we develop the concept, we shall see that μ 

is a measure of the potential—the capacity—that a substance 

has for producing change in a system. In this Topic, it reflects 

the potential of a substance to bring about physical change. In 

Topic 73 it is shown that μ is also the potential of a substance to 

bring about chemical change.

(a) Changes in the Gibbs energy
Because chemical potentials depend on composition (and the 

pressure and temperature), the Gibbs energy of a mixture may 

change when these variables change, and for a system of several 

components eqn 66.6 (dG = Vdp – SdT) becomes

d d d d
J

J JG V p S T n= − +∑μ

This expression is the fundamental equation of chemical ther-

modynamics. Its implications and consequences are explored 

and developed in this and other Topics.

At constant pressure and temperature, eqn 69.7 simplifies to

d d
J

J JG np T, =∑μ
 

(69.8)

However, when the composition is changed infinitesimally 

from eqn 69.6 we might expect G to change by

d d d
J

J J

J

J JG n np T, = +∑ ∑μ μ

Because G is a state function, the last two equations must be 

equal, which implies that, at constant temperature and pres-

sure, changes in the chemical potentials of the components 

of a mixture at equilibrium must satisfy the Gibbs–Duhem 

equation:

J

J Jd∑ =n μ 0

The significance of this equation is that the chemical potential 

of one component of a mixture cannot change independently 

of the chemical potentials of the other components. In a binary 

mixture, if the chemical potential of one component increases, 

then the other must decrease, with the two changes related by 

nAdμA + nBdμB = 0, and therefore by

d dB
A

B
Aμ μ= − n

n  
(69.10)

(b) The thermodynamic criterion  
of equilibrium

The importance of the chemical potential for the discussion of 

phase equilibria is that:

At equilibrium, the chemical potential of a substance is the 

same throughout a sample, regardless of how many phases 

are present.

When the liquid and solid phases of a single substance are in 

equilibrium, the chemical potential of the substance is the same 

in both phases and throughout each phase (Fig. 69.4). When 

two phases of a many-component mixture are in equilibrium 

the chemical potential of each component is the same in every 

phase.

To see the validity of this remark, consider a system in 

which the chemical potential of any one component is μ1 at 

one location and μ2 at another location. The locations may be 

in the same or in different phases. When an amount dn of the 

substance is transferred from one location to the other, the 

Gibbs energy of the system changes by –μ1dn when material 

Fundamental equation of 
chemical thermodynamics (69.7)

Brief illustration 69.1 The Gibbs–Duhem equation

If the composition of a mixture is such that nA = 2nB, and 

a small change in composition results in μA changing by 

δμA = +1 J mol−1, μB will change by

δμB Jmol Jmol= − ×( )= −− −2 1 21 1

Self-test 69.2 Suppose that nA = 0.3nB and a small change in 

composition results in μA changing by δμA = –10 J mol−1, by 

how much will μB change?

Answer: +3 J mol−1

Constant temperature 
and pressure

Gibbs–Duhem 
equation (69.9)

Same chemical
potential

Figure 69.4 When two or more phases are in equilibrium, 
the chemical potential of a substance (and, in a mixture, a 
component) is the same in each phase and is the same at all 
points in each phase.
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674 14 Physical equilibria

is removed from location 1, and it changes by +μ2dn when that 

material is added to location 2. The overall change is there-

fore dG = (μ2 − μ1)dn. If the chemical potential at location 1 is 

higher than that at location 2, the transfer is accompanied by a 

decrease in G, and so has a spontaneous tendency to occur. The 

spontaneous direction is from high to low chemical potential 

and the most stable phase is the one of lowest chemical poten-

tial under the prevailing conditions. Only if μ1 = μ2 is there no 

change in G, and only then is the system at equilibrium.

(c) The response of the chemical potential  
to the conditions

The temperature dependence of the Gibbs energy is expressed 

in terms of the entropy of the system by eqn 66.7 of Topic 66 

((∂G/∂T)p = −S). Because, as we have seen, the chemical poten-

tial of a pure substance is just another name for its molar Gibbs 

energy, it follows that

∂
∂

μ
T

S
p

⎛
⎝⎜

⎞
⎠⎟

= − m

 

 Temperature variation of the chemical potential  (69.11)

This relation shows that as the temperature is raised, the 

chemical potential of a pure substance decreases: Sm > 0 for 

all substances, so the slope of a plot of μ against T is negative. 

At first sight it might seem odd that the chemical potential, 

the capacity to bring about change, decreases as the temper-

ature is raised. However, in Topic 64 it is remarked that an 

interpretation of the Gibbs energy is that it is the difference 

between the total energy and the energy stored chaotically: 

the latter increases with temperature, so the energy ‘free’ to 

do work decreases.

Equation 69.11 implies that the slope of a plot of μ against 

temperature is steeper for gases than for liquids, because 

Sm(g) > Sm(l). The slope is also usually steeper for a liquid than 

the corresponding solid, because Sm(l) > Sm(s) almost always. 

These features are illustrated in Fig. 69.6. The steep negative 

Brief illustration 69.3 The variation of chemical potential 
with temperature

The molar entropy of water vapour at 25 °C is 189 J K−1 mol−1 

(Table 57.4). Therefore, (∂μ/∂T)p = −189 J K−1 mol−1. Therefore, 

an increase in temperature of 1 K decreases the chemical 

potential of H2O(g) by 189 J mol−1.

Self-test 69.4 Repeat the calculation for liquid water at the 

same temperature.

Answer: Decreases by 70 J mol−1
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Solid
stable

Liquid
stable
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stableTf
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Figure 69.6 The schematic temperature dependence of the 
chemical potential of the solid, liquid, and gas phases of a 
substance (in practice, the lines are curved). The phase with 
the lowest chemical potential at a specified temperature 
is the most stable one at that temperature. The transition 
temperatures, the melting and boiling temperatures (Tf and 
Tb, respectively), are the temperatures at which the chemical 
potentials of the two phases are equal.

Brief illustration 69.2 Phase equilibria

Consider the two-component, two-phase system in which a 

mixture of water and ethanol is in equilibrium with its vapour. 

The chemical potentials of ethanol in the vapour and liquid 

phases are equal, μethanol(g) = μethanol(l), as are those of water, 

μwater(g) = μwater(l). Because no solid phases are present, they 

are not the stable phases under the prevailing conditions and 

therefore μethanol(s) > μethanol(g) and μethanol(s) > μethanol(l) and 

likewise μwater(s) > μwater(g) and μwater(s) > μwater(l).

Self-test 69.3 What is the relation between the chemical 

potentials of the phases of water at 273.16 K and 611 Pa? You 

might wish to consult the phase diagram (Fig. 67.7), a section 

of which is reproduced here as Fig. 69.5 for convenience.

Answer: triple point: μwater(s) = μwater(g) = μwater(l)
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es

su
re

, p
/P

a
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Liquid

Vapour

Solid

Figure 69.5 A region of the phase diagram for water, 
extracted from Fig. 67.7 of Topic 67.
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69 Physical transformations  675

slope of μ(l) results in its falling below μ(s) when the tem-

perature is high enough, and then the liquid becomes the sta-

ble phase: the solid melts. The chemical potential of the gas 

phase plunges steeply downwards as the temperature is raised 

(because the molar entropy of the vapour is so high), and there 

comes a temperature at which it lies lowest. Then the gas is the 

stable phase and vaporization is spontaneous.

As summarized in the phase diagrams in Topic 67, most 

substances melt at a higher temperature when subjected to 

pressure. It is as though the pressure is preventing the forma-

tion of the less dense liquid phase. Exceptions to this behav-

iour include water, for which the liquid is denser than the solid. 

Application of pressure to water encourages the formation of 

the liquid phase. That is, water freezes at a lower temperature 

when it is under pressure (see Fig. 69.5).

We can rationalize the response of melting temperatures to 

pressure as follows. The variation of the chemical potential of a 

pure substance with pressure is expressed (from the second of 

eqn 66.7 in Topic 66, (∂G/∂p)T = V) by

∂
∂
μ
p

V
T

⎛
⎝⎜

⎞
⎠⎟

= m

 

 Pressure variation of the chemical potential  (69.12)

This equation shows that the slope of a plot of chemical poten-

tial against pressure is equal to the molar volume of the sub-

stance. An increase in pressure raises the chemical potential of 

any pure substance (because Vm > 0). In most cases, Vm(l) > Vm(s) 

and the equation predicts that an increase in pressure increases 

the chemical potential of the liquid more than that of the solid. 

As shown in Fig. 69.7a, the effect of pressure in such a case is 

to raise the melting temperature slightly, as is seen for carbon 

dioxide in Fig. 67.6, reproduced for convenience here as Fig. 

69.8. For water, however, Vm(l) < Vm(s), and an increase in pres-

sure increases the chemical potential of the solid more than that 

of the liquid. In this case, the melting temperature is lowered 

slightly (Fig. 69.7b), as is seen for water in Fig. 69.5.

69.3 The structure of one-component 
phase diagrams

The precise locations of the phase boundaries in a one-compo-

nent phase diagram—the pressures and temperatures at which 

any two of its phases can coexist—can be found by making 

use of the fact that when two phases are in equilibrium, their 

chemical potentials must be equal. Therefore, where the phases 

α and β are in equilibrium,

μ μ( ; , ) ( ; , )α βp T p T=
 

(69.13)

Brief illustration 69.4 The variation of chemical potential 
with pressure

The molar volume of water vapour at 25 °C, treated as a per-

fect gas, is 25 dm3 mol−1, corresponding to 2.5 × 10−2 m3 mol−1. 

Therefore, (∂μ/∂p)T = +2.5 × 10−2 m3 mol−1 and an increase in 

pressure of 1.0 bar (1.0 × 105 Pa) increases the chemical poten-

tial of H2O(g) by

δ − −

−

μ = × × ×
= + × = +

( . ) ( . )

. .

2 5 1 m mol 1 1 Pa

2 5 1 Pa m mol 2 5 k

2 3 1 5

3 3 1

0 0 0

0 JJ mol 1−

Self-test 69.5 Repeat the calculation for liquid water at the 

same temperature, when its mass density is 0.997 g cm−3.

Answer: Increases by 1.8 kJ mol−1C
h

em
ic

al
 p

o
te

n
ti

al
, μ

Temperature, T

Tf Tf’

High
pressure

Low
pressure

Solid

Liquid

Temperature, T

TfTf’

High
pressure

Low
pressure

Solid

Liquid

(b)(a)

Figure 69.7 The pressure dependence of the chemical 
potential of a substance depends on the molar volume 
of the phase. The lines show schematically the effect of 
increasing pressure on the chemical potential of the solid 
and liquid phases (in practice, the lines are curved), and the 
corresponding effects on the freezing temperatures. (a) In this 
case the molar volume of the solid is smaller than that of the 
liquid and μ(s) increases less than μ(l). As a result, the freezing 
temperature rises. (b) Here the molar volume is greater for the 
solid than the liquid (as for water), μ(s) increases more strongly 
than μ(l), and the freezing temperature is lowered.
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Figure 69.8 The phase diagram for carbon dioxide  
(from Fig. 67.6).
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676 14 Physical equilibria

As we show in the following Justification, by solving this equa-

tion for p in terms of T, we get the Clapeyron equation for the 

phase boundary:

d

d
trs

trs

p

T

S

V
= Δ

Δ  

 Clapeyron equation  (69.14)

In this expression ΔtrsS = Sm(β) – Sm(α) and ΔtrsV = Vm(β) – Vm(α) 

are the entropy and volume of transition. The Clapeyron equa-

tion is an exact expression for the slope of the phase bound-

ary and applies to any phase equilibrium of any pure substance. 

It implies that we can use thermodynamic data to predict the 

appearance of phase diagrams and to understand their form.

Melting (fusion) is accompanied by a molar enthalpy change 

ΔfusH and occurs at a temperature T. The molar entropy of 

melting at T is therefore ΔfusH/T (Topic 62), and the Clapeyron 

equation becomes

d

d
fus

fus

p

T

H

T V
= Δ

Δ  

 Solid–liquid boundary  (69.15a)

where ΔfusV is the change in molar volume that occurs on melt-

ing. The enthalpy of melting is positive (the only exception is 

helium-3) and the volume change is usually positive (water 

being an exception) and always small. Consequently, the slope 

dp/dT is steep and usually positive, as in Fig. 69.8 for carbon 

dioxide. The entropy of vaporization at a temperature T is equal 

to ΔvapH/T; the Clapeyron equation for the liquid–vapour 

boundary is therefore

d

d
vap

vap

p

T

H

T V
=

Δ
Δ

 

 Liquid–vapour boundary  (69.15b)

The enthalpy of vaporization is positive; ΔvapV is large and posi-

tive. Therefore, dp/dT is positive, but it is much smaller than for 

the solid–liquid boundary. It follows that dT/dp, the inverse of 

dp/dT, is large, and hence that the boiling temperature is more 

Example 69.2 Estimating the effect of pressure on the 
boiling temperature

Estimate the typical size of the effect of increasing pressure on 

the boiling point of a liquid.

Method To use eqn 69.14 we need to estimate the right-hand 

side. At the boiling point, the term ΔvapS is Trouton’s con-

stant (Topic 62). Because the molar volume of a gas is so much 

greater than the molar volume of a liquid, we can write

Δvap m m mg l gV V V V= ≈( ) ( ) ( )−

and take for Vm(g) the molar volume of a perfect gas (at low 

pressures, at least).

Answer Trouton’s constant has the value 85 J K−1 mol−1. The 

molar volume of a perfect gas is about 25 dm3 mol−1 at 1 atm 

and near but above room temperature. Therefore,

d

d

J K mol

m mol
J m K

p

T
≈

×
= ×

− −

−
− −85

2 5 10
3 4 10

1 1

3 3 1
3 3 1

.
.−

Then, because 1 J = 1 Pa m3, this value corresponds to 3.4 kPa 

K−1 and therefore to about 0.034 atm K−1 and hence to dT/dp  

= 29 K atm−1. Therefore, a change of pressure of +0.1 atm can be 

expected to change a boiling temperature by about +3 K.

Self-test 69.6 Estimate dT/dp for water at its normal boiling 

point using the information in Table 62.2 and Vm(g) = RT/p.

Answer: 28 K atm−1

Justification 69.1 The Clapeyron equation

It turns out to be simplest to discuss the phase boundaries in 

terms of their slopes, dp/dT. Let p and T be changed infinitesi-

mally, but in such a way that the two phases α and β remain in 

equilibrium. The chemical potentials of the phases are initially 

equal (the two phases are in equilibrium). They remain equal 

when the conditions are changed to another point on the phase 

boundary, where the two phases continue to be in equilibrium 

(Fig. 69.9). Therefore, the changes in the chemical potentials of 

the two phases must be equal and we can write dμ(α) = dμ(β). 

Because, dG = Vdp – SdT, we know that dμ = –SmdT + Vmdp for 

each phase; it follows that

− α α − β βS T V p S T V pm m m md d d d( ) ( ) ( ) ( )+ = +

where Sm(α) and Sm(β) are the molar entropies of the phases 

and Vm(α) and Vm(β) are their molar volumes. Hence

V V p S S Tm m m md d( ) ( ) ( ) ( )β − α β − α{ } ={ }
which rearranges into eqn 69.14.

a

b

dp

dT

Phase α

Phase βPr
es

su
re

, p

Temperature, T

Figure 69.9 When pressure is applied to a system in which 
two phases are in equilibrium (at a), the equilibrium is 
disturbed. It can be restored by changing the temperature, 
so moving the state of the system to b. It follows that there 
is a relation between dp and dT that ensures that the system 
remains in equilibrium as either variable is changed.
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69 Physical transformations  677

responsive to pressure than the freezing temperature, as shown 

in Figs 69.5 and 69.8. Exactly the same reasoning applies to the 

solid–vapour boundary, and we can write

d

d
sub

sub

p

T

H

T V
= Δ

Δ  

 Solid–vapour boundary  (69.15c)

where ΔsubH and ΔsubV are the enthalpy and volume of sublima-

tion (the direct conversion of solid into vapour).

Because the molar volume of a gas is so much greater than 

the molar volume of a liquid or solid, we can write ΔvapV≈ Vm(g) 

(as in Example 69.2) and similarly ΔsubV ≈ Vm(g). Moreover, if 

the gas behaves perfectly, Vm(g) = RT/p. These two approxima-

tions turn the exact Clapeyron equation into

d

d /
vap vapp

T

H

T RT p

p H

RT
≈ =

Δ Δ
( ) 2

with a similar expression for the solid–vapour boundary. 

Because dp/p = d ln p, this expression rearranges into the 

Clausius–Clapeyron equation for the variation of vapour pres-

sure with temperature:

d

d
vapln p

T

H

RT
=

Δ
2

Like the Clapeyron equation, the Clausius–Clapeyron equa-

tion is used to understand the location and shape of the liquid–

vapour and solid–vapour phase boundaries of one-component 

phase diagrams (Topic 67). The only difference between the 

solid–vapour boundary and liquid–vapour boundary is the 

replacement of the enthalpy of vaporization by the enthalpy 

of sublimation, ΔsubH. Because the enthalpy of sublimation is 

greater than the enthalpy of vaporization (ΔsubH = ΔfusH + ΔvapH 

at a given temperature), the equation predicts a steeper slope 

for the sublimation curve than for the vaporization curve at 

similar temperatures, which is near where they meet at the tri-

ple point. This behaviour can be seen in Figs 69.5 and 69.8.

Because the boiling temperature of a liquid is the tempera-

ture at which the vapour pressure matches the external pres-

sure, the Clausius–Clapeyron equation can also be interpreted 

as an expression for the variation in boiling temperature with 

applied pressure. This interpretation is illustrated in the follow-

ing Example.

Checklist of concepts

☐ 1. The partial molar volume is the contribution (per mole) 

that a substance makes to the total volume of a mixture.

☐ 2. The chemical potential is the partial molar Gibbs 

energy of a species.

☐ 3. The temperature variation of the chemical potential is 

governed by the molar entropy.

☐ 4. The pressure variation of the chemical potential is gov-

erned by the molar volume.

Example 69.3 Estimating a boiling temperature

The vapour pressure of dichloromethane at 24.1 °C is 53.3 kPa 

and its enthalpy of vaporization is 28.7 kJ mol−1. Estimate its 

boiling temperature when the external pressure is 80.0 kPa.

Method We need to determine the temperature at which 

the vapour pressure matches the external pressure. Convert 

the Clausius–Clapeyron equation into an expression for the 

vapour pressures at two temperatures by integration on the 

assumption that the enthalpy of vaporization is independent 

of temperature, and solve it for the temperature at which the 

vapour pressure matches the stated external pressure.

Answer The integration of eqn 69.16 proceeds as follows:

d d
dvap vap

ln
ln

ln

p

p

T

T

T

T

p
H

RT
T

H

R

T

T
1

2

1

2

1

2

2 2∫ ∫ ∫= =
Δ Δ

Therefore

ln
p

p

H

R T T
2

1 1 2

1 1= −⎛
⎝⎜

⎞
⎠⎟

Δvap

On rearranging to find an expression for the temperature T2 at 

which the vapour pressure is p2, we find

T
H R

H RT p p

T

RT H p p2
1 2 1

1

1 2 11
= − = −

Δ
Δ Δ

vap

vap vap

/

/ / / /ln( ) ( )ln( )

From the data (T1 = 297.3 K, ΔvapH = 28.7 kJ mol−1, p1 = 53.3 kPa, 

p2 = 80.0 kPa), we find

T2 1 1

4 1

297 3

1
8 3145 297 3

2 87 10

80 0
=

−
×

×

− −

−

.

( . ) ( . )

.
ln

.

K

JK mol K

Jmol

kPPa

kPa

K

53 3

308

.

⎛
⎝⎜

⎞
⎠⎟

=

The boiling temperature is therefore predicted to be 35 °C.

Self-test 69.7 The vapour pressure of a substance at 20.0 °C 

is 48.4 kPa and its enthalpy of vaporization is 34.7 kJ mol−1. 

Estimate its boiling temperature when the external pressure 

is 58.0 kPa.

Answer: 23.8 °C

Vapour is a 
perfect gas

Clausius–Clapeyron 
equation

(69.16)
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678 14 Physical equilibria

☐ 5. The chemical potential is the same for all phases of a 

component throughout a system at equilibrium.

☐ 6. The slope of a phase boundary is given by the Clapeyron 

equation (see below).

☐ 7. The dependence of the vapour pressure of a condensed 

phase is given by the Clausius–Clapeyron equation 

(see below).

Checklist of equations

Property Equation Comment Equation number

Partial molar volume VJ = (∂V/∂nJ)p,T,n′ Definition 69.1

Total volume of a mixture V = nAVA + nBVB 69.3

Chemical potential μJ = (∂G/∂nJ)p,T,n′ Definition 69.4

Total Gibbs energy of a mixture G n=∑
J

J Jμ 69.6

Fundamental equation of chemical thermodynamics d d d d

J

J JG V p S T n= − +∑μ 69.7

Gibbs–Duhem equation

J

J Jd∑ =n μ 0 Constant temperature and pressure 69.9

Temperature variation of μ (∂μ/∂T)p = −Sm 69.11

Pressure variation of μ (∂μ/∂p)T = Vm 69.12

Clapeyron equation dp/dT = ΔtrsS/ΔtrsV 69.14

dp/dT = ΔtrsH/TΔtrsV 69.15

Clausius–Clapeyron equation d ln p/dT = ΔvapH/RT2 Vapour a perfect gas 69.16
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TOPIC 70

Ideal mixtures

To start our investigation of the thermodynamics of mixtures, 

we consider the act of mixing itself, and begin with the simplest 

possible case, the mixing of two perfect gases.

70.1 The mixing of perfect gases

We show in the following Justification that the Gibbs energy of 

mixing of two perfect gases at a temperature T is

Δmix A A B Bln lnG nRT x x x x= +( ) 

where the xJ are the mole fractions of the gases in the mixture 

and n is the total amount of molecules of gas. Because mole 

fractions are never greater than 1, the logarithms in this equa-

tion are negative, and ΔmixG < 0 (Fig. 70.1). The conclusion that 

ΔmixG is negative for all compositions confirms that perfect 

gases mix spontaneously in all proportions. However, the equa-

tion extends common sense by allowing us to discuss the pro-

cess quantitatively. ➤ Why do you need to know this material?
Mixtures are a hugely important aspect of chemistry, for 
chemical reactions start when reagents are mixed and 
the products are also typically mixtures. Even mixtures of 
non-reactive substances are important, for the presence 
of solutes can affect their physical properties. This Topic 
establishes the groundwork for this type of discussion.

 ➤ What is the key idea?
The changes in thermodynamic properties when 
substances mix are established by considering how 
the chemical potential of each component varies with 
composition.

 ➤ What do you need to know already?
This Topic makes use of the properties of the chemical 
potential (Topic 69). It draws on the variation of Gibbs 
energy with temperature and pressure (Topic 66).

Contents

70.1 The mixing of perfect gases 679

Example 70.1: Calculating a Gibbs energy  

of mixing 680

70.2 The mixing of liquids 682

(a) Raoult’s law 682

Brief illustration 70.1: Raoult’s law 683

(b) Henry’s law 684

Example 70.2: Investigating the validity  

of Raoult’s and Henry’s laws 684

(c) The thermodynamics of ideal solutions 685

Brief illustration 70.2: The thermodynamics  

of mixing of liquids 685

Checklist of concepts 686

Checklist of equations 686

Perfect 
gases 

 Gibbs energy 
of mixing  (70.1)

0

–0.2

–0.4

–0.6

–0.8

Δ m
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G

/n
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T

0 0.5 1
Mole fraction of A, xA

Figure 70.1 The Gibbs energy of mixing of two perfect 
gases and (as discussed later) of two liquids that form an 
ideal solution. The Gibbs energy of mixing is negative for 
all compositions and temperatures, so perfect gases mix 
spontaneously in all proportions.
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680 14 Physical equilibria

Justification 70.1 The Gibbs energy of mixing

Let the amounts of two perfect gases in the two containers 

be nA and nB; both are at a temperature T and a pressure p 

(Fig. 70.2). At this stage, the chemical potentials of the two 

gases have their ‘pure’ values. It then follows from eqn 66.13 

of Topic 66 ( ( )),G p G RT p pm m( ) ln /= +< <  with μ J = Gm(J), 

that for each gas J

μ μJ J= +<
<

RT
p

p
ln

 

where μJ
<  is the standard chemical potential, the chemical 

potential of the pure gas J at 1 bar (that is, its standard molar 

Gibbs energy). The initial Gibbs energy of the total system is 

then given by eqn 69.6 (G = nA μA + nB μB) as

G n RT
p

p
n RT

p

pi A A B B= +⎛
⎝⎜

⎞
⎠⎟

+ +⎛
⎝⎜

⎞
⎠⎟

μ μ<
<

<
<

ln ln

 

After mixing, the partial pressures of the gases are pA and pB, 

with pA + pB = p. The total Gibbs energy changes to

G n RT
p

p
n RT

p

pf A A
A

B B
B= +⎛

⎝⎜
⎞
⎠⎟

+ +⎛
⎝⎜

⎞
⎠⎟

μ μ<
<

<
<

ln ln

 

The difference Gf − Gi, the Gibbs energy of mixing, ΔmixG, is 

therefore

Δ = +mix A
A

B
BG n RT

p

p
n RT

p

p
ln ln

 

At this point we can replace nJ by xJn, where n is the total 

amount of A and B and xJ = nJ/n is the mole fraction of J, and 

use the definition of partial pressure in terms of the mole frac-

tion (see The chemist’s toolkit 70.1), pJ = xJp, to write pJ/p = xJ for 

each component, which gives eqn 70.1.

The chemist’s toolkit 70.1 Mole fraction

The mole fraction of a component J in a mixture is defined as

x
n

n
n nJ

J

J

J= =∑
 

where nJ is the amount of atoms or molecules of the substance 

J. For a binary mixture,

x xA B 1+ =
 

The partial pressure, pJ, of a gas J (perfect or real) in a mixture 

of gases is defined as

p x pJ J=
 

where p is the total pressure. When all the gases in the mixture 

are perfect, p = nRT/V and

p
x nRT

V

n RT

VJ
J J= =

 

To relate the mole fraction of a solute B in a solution of molal-

ity b we note that b = nB/(1 kg), where 1 kg is the mass of sol-

vent. If the solvent has molar mass M, then the amount of 

solvent (A) molecules present is nA = (1 kg)/M, so b = nB/nAM 

and nA = nB/bM. It follows that the mole fraction of B is

x
n

n n

n

n bM n

bM

bMB
B

A B

B

B B

= + = + = +/ 1  

If bM ≪1, xB≈ bM.

nA, T, p
nB, T, p

T, pA, pB with pA + pB = p

Figure 70.2 The arrangement for calculating the 
thermodynamic functions of mixing of two perfect gases.

Example 70.1 Calculating a Gibbs energy of mixing

A container is divided into two equal compartments (Fig. 

70.3). One contains 3.0 mol H2(g) at 25 °C; the other contains 

1.0 mol N2(g) at 25 °C. Calculate the Gibbs energy of mixing 

when the partition is removed. Assume perfect behaviour.

3.0 mol H2

3.0 mol H2
1.0 mol N2

1.0 mol N2

3p

2p

p

p(H2) = 3/2p
p(N2) = 1/2p

Figure 70.3 The initial and final states considered in 
the calculation of the Gibbs energy of mixing of gases at 
different initial pressures in Example 70.1.
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70 Ideal mixtures  681

Method Equation 70.1 cannot be used directly because the 

two gases are initially at different pressures. We proceed by 

calculating the initial Gibbs energy from the chemical poten-

tials. To do so, we need the pressure of each gas. Write the 

pressure of nitrogen as p; then the pressure of hydrogen as a 

multiple of p can be found from the gas laws. Next, calculate 

the Gibbs energy for the system when the partition is removed. 

The volume occupied by each gas doubles, so its initial partial 

pressure is halved.

Answer:  Given that the pressure of nitrogen is p, the pressure of  

hydrogen is 3p; therefore, the initial Gibbs energy is

G RT

RT

p

p

p

p

i 2

2

 (3  mol) H ln

(1  mol) N ln

= + +

+

. { ( ) }

. { ( ) }

0

0

3μ

μ

<

<

<

<

 

When the partition is removed and each gas occupies twice 

the original volume, the partial pressure of nitrogen falls to 
1
2

p  and that of hydrogen falls to 3
2

p.  Therefore, the Gibbs 

energy changes to

G RT

RT

p

p

p

p

f 2

2

 (3  mol) (H ) ln   

(1  mol) (N ) ln

= + +

+

. { }

. {

0

0

3

2

2

μ

μ

<

<

<

<< }
 

The Gibbs energy of mixing is the difference of these two 

quantities:

Δ =
⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

= −

mix mol molG RT
p

p
RT

p

p
( . ) ln ( . ) ln

( .

3 0
3

1 0

3 0

3
2

1
2

mmol mol

mol kJ

) ln ( . ) ln

( . ) ln .

RT RT

RT

2 1 0 2

4 0 2 6 9

−
= − = −

In this Example, the value of ΔmixG is the sum of two contribu-

tions: the mixing itself, and the changes in pressure of the two 

gases to their final total pressure, 2p. When 3.0 mol H2 mixes 

with 1.0 mol N2 at the same pressure, with the volumes of the 

vessels adjusted accordingly, the change of Gibbs energy is 

−5.6 kJ.

Self-test 70.1 Suppose that 2.0 mol H2 at 2.0 atm and 25 °C and 

4.0 mol N2 at 3.0 atm and 25 °C are mixed at constant volume. 

Calculate ΔmixG. What would be the value of ΔmixG had the 

pressures been identical initially?

Answer: −9.7 kJ, −9.5 kJ

Once we have an expression for the Gibbs energy of mix-

ing we can find expressions for other mixing functions. Thus, 

because (∂G/∂T)p,n = −S, it follows that the entropy of mixing is

Δ = − ∂Δ
∂

⎛
⎝⎜

⎞
⎠⎟mix

mixS
G

T
p  

On substituting eqn 70.1 we obtain

Δmix A A B Bln lnS nR x x x x= − +( )
 

Because ln x < 0, it follows that ΔmixS > 0 for all compositions 

(Fig. 70.4). For equal amounts of gas, for instance, we set 

x xA B= = 1
2 , and obtain ΔmixS = nR ln 2, with n the total amount 

of gas molecules. In this case, ΔmixS/n = +5.76 J K−1 mol−1. An 

increase in entropy is what we expect when one gas disperses 

into the other and the disorder increases.

We can calculate enthalpy of mixing, ΔmixH, the enthalpy 

change accompanying mixing, of two perfect gases from 

ΔG = ΔH − TΔS. It follows from eqns 70.1 and 70.2 that

Δmix  H = 0  Perfect gases  Enthalpy of mixing  (70.3)

The enthalpy of mixing is zero, as we should expect for a system 

in which there are no interactions between the molecules form-

ing the gaseous mixture. It follows that the whole of the driv-

ing force for mixing comes from the increase in entropy of the 

system, because the entropy of the surroundings is unchanged.

In statistical terms we can understand the spontaneity of 

mixing of perfect gases as the molecular tendency to populate 

the new energy levels that become available when the volume 

accessible to the molecules of each becomes larger (Fig. 70.5). 

We show in the following Justification that this statistical inter-

pretation leads to the same conclusion as the thermodynamic 

analysis.

Perfect 
gases

Entropy 
of mixing (70.2)

0

0.2

0.4

0.6

0.8

Δ m
ix
S

/n
R

0 0.5 1
Mole fraction of A, xA

Figure 70.4 The entropy of mixing of two perfect gases and 
(as discussed later) of two liquids that form an ideal solution. 
The entropy increases for all compositions and temperatures, 
so perfect gases mix spontaneously in all proportions. Because 
there is no transfer of heat to the surroundings when perfect 
gases mix, the entropy of the surroundings is unchanged. 
Hence, the graph also shows the total entropy of the system 
plus the surroundings when perfect gases mix.
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682 14 Physical equilibria

70.2 The mixing of liquids

To discuss the equilibrium properties of liquid mixtures we 

need to know how the Gibbs energy of a liquid varies with com-

position. To calculate its value, we use the fact that, at equilib-

rium, the chemical potential of a substance present as a vapour 

must be equal to its chemical potential in the liquid.

(a) Raoult’s law
We shall denote quantities relating to pure substances by a 

superscript *, so the chemical potential of pure A is written μA
* ,  

and as μA
* ( )1  when we need to emphasize that A is a liquid. 

Because the vapour pressure of the pure liquid is p* ,A
 it follows 

from the relation of chemical potential and pressure (eqn 66.13 

of Topic 66, G p G RT p pm m( ) ln /= +< <( ),  with μ = Gm) that the 

chemical potential of A in the vapour (treated as a perfect gas) 

is μA AIn( / )< <+ RT p p* . These two chemical potentials are equal 

at equilibrium (Fig. 70.6), so we can write

μ μA Al  ln /* *( ) ( )= +A
< <RT p p

 
(70.4a)

If another substance, a solute, is also present in the liquid, 

the chemical potential of A in the liquid is changed to μA, its 

vapour pressure is changed to pA, and the chemical potential of 

the vapour becomes μA Aln( / )< <+ RT p p . The vapour and sol-

vent are still in equilibrium, so we can write

μ μA A(l) ln /= +A
< <RT p p( )

 
(70.4b)

Next, we combine these two equations to eliminate the stand-

ard chemical potential of the gas. To do so, we write eqn 70.4a 

as μ μA A A Al ln /< <= * *( ) ( )−RT p p  and substitute this expression 

into eqn 70.4b to obtain

Justification 70.2 The statistical thermodynamic 
description of mixing

This statistical picture is expressed quantitatively by using 

the relation between the Gibbs energy and the molecular 

partition function in (eqn 64.12 of Topic 64, G = G(0) − nRT ×  
ln(q/N)). Thus, initially, when the partition function of gas J is 

q V JJ J /= Λ3 , where ΛJ is the thermal wavelength of J (eqn 52.7b, 

ΛJ = h/(2πmJkT)1/2), the total Gibbs energy is
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In the second line we have used VJ/NJ = kT/p. To simplify the 

appearance of this and the next equation we write it as

G G G n RT
A

p
n RT

B

pi A B A B= + − ⎛
⎝⎜

⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

( ) ( ) ln ln0 0

where A kT= / AΛ3  and B kT= / BΛ3 . In the final state of the sys-

tem, each type of molecule has access to the total volume, 

VA + VB, and the partial pressures are pJ; so
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We have used (VA + VB)/NJ = kT/pJ in the second line. This 

expression has the form

G G G n RT
A

p
n RT

B

pf A B A
A

B
B

= + − ⎛
⎝⎜

⎞
⎠⎟

− ⎛
⎝⎜

⎞
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( ) ( ) ln ln0 0

The difference Gf − Gi is

Δmix A
A

B
B

G n RT
p

p
n RT

p

p
= − ⎛

⎝⎜
⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

ln ln

which we recognize as eqn 70.1 once we write pJ = xJp and 

nJ = xJn. This result confirms that spontaneous mixing is just 

the hunt of the molecules for the configuration of the greatest 

weight, their most probable distribution in the system.

Before mixing After mixing

Figure 70.5 The molecular interpretation of the entropy 
of mixing. Before mixing, each collection of gas molecules 
occupies the available energy levels with a Boltzmann 
distribution of populations. After mixing, more levels are 
accessible to the molecules as they occupy a greater volume 
(with the same temperature).
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(70.5)

In the final step we draw on additional experimental informa-

tion about the relation between the ratio of vapour pressures 

and the composition of the liquid. In a series of experiments on 

mixtures of closely related liquids (such as benzene and meth-

ylbenzene), the French chemist François Raoult found that the 

ratio of the partial vapour pressure of each component to its 

vapour pressure as a pure liquid, p pA A/ * , is approximately equal 

to the mole fraction of A in the liquid mixture. That is, he estab-

lished what we now call Raoult’s law:

p x pA A A= *  Ideal solution  Raoult’s law  (70.6)

Raoult’s law is illustrated in Fig. 70.7. Some mixtures obey 

Raoult’s law very well, especially when the components are struc-

turally similar. Mixtures that obey the law throughout the com-

position range from pure A to pure B for both components are 

called ideal solutions. Some solutions depart significantly from 

Raoult’s law. Nevertheless, even in these cases the law is obeyed 

increasingly closely for the component in excess (the solvent) as 

it approaches purity. The law is therefore a good approximation 

for the properties of the solvent if the solution is dilute.

The molecular origin of Raoult’s law is the effect of the sol-

ute on the entropy of the solution. In the pure solvent, the mol-

ecules have a certain disorder and a corresponding entropy; 

the vapour pressure then represents the tendency of the sys-

tem and its surroundings to reach a higher entropy. When a 

solute is present, the solution has a greater disorder than the 

pure solvent because we cannot be sure that a molecule chosen 

at random will be a solvent molecule. Because the entropy of 

the solution is higher than that of the pure solvent, the solution 

has a lower tendency to acquire an even higher entropy by the 

solvent vaporizing. In other words, the vapour pressure of the 

solvent in the solution is lower than that of the pure solvent.

For an ideal solution, it follows from eqns 70.5 and 70.6 that

μ μA A A(l) (l) ln= +* RT x

Brief illustration 70.1 Raoult’s law

The vapour pressure of benzene at 20 °C is 75 Torr and that 

of methylbenzene is 21 Torr at the same temperature. In an 

Ideal 
solution

Chemical potential 
of solvent (70.7)

equimolar mixture x xbenzene methylbenzene= = 1
2

 so the vapour 

pressure of each one in the mixture is

p

p

benzene

methylbenzene

75 Torr 38 Torr

21Torr 11Torr

= × =
= × =

1
2

1
2

The total vapour pressure of the mixture is 49 Torr. Given the 

two partial vapour pressures, it follows from the definition of 

partial pressure in The chemist’s toolkit 70.1 that the mole frac-

tions in the vapour are xvap,benzene = (38 Torr)/(49 Torr) = 0.78 

and xvap,methylbenzene = (11 Torr)/(49 Torr) = 0.22. The vapour is 

richer in the more volatile component (benzene).

Self-test 70.2 At 90 °C the vapour pressure of 1,2-dimethyl-

benzene is 20 kPa and that of 1,3-dimethylbenzene is 18 kPa. 

What is the composition of the vapour when the liquid mix-

ture has the composition x12 = 0.33 and x13 = 0.67?

Answer: xvap,12 = 0.35, xvap,13 = 0.65

Partial
pressure 
of A

Partial
pressure 
of B

Total
pressure

pB*

pA*

Pr
es

su
re

Mole fraction of A, xA

Figure 70.7 The total vapour pressure and the two partial 
vapour pressures of an ideal binary mixture are proportional to 
the mole fractions of the components.

A(g) + B(g)

A(l) + B(l)

μA(g, p)

μA(l)

=

Figure 70.6 At equilibrium, the chemical potential of the 
gaseous form of a substance A is equal to the chemical 
potential of its condensed phase. The equality is preserved if 
a solute is also present. Because the chemical potential of A in 
the vapour depends on its partial vapour pressure, it follows 
that the chemical potential of liquid A can be related to its 
partial vapour pressure.
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684 14 Physical equilibria

This important equation can be used as the definition of an ideal 

solution (so that it implies Raoult’s law rather than stemming 

from it). It is in fact a better definition than eqn 70.6 because it 

does not assume that the vapour is a perfect gas.

(b) Henry’s law
In ideal solutions the solute, as well as the solvent, obeys Raoult’s 

law. However, the English chemist William Henry found experi-

mentally that for real solutions at low concentrations, although 

the vapour pressure of the solute is proportional to its mole frac-

tion, the constant of proportionality is not the vapour pressure 

of the pure substance (Fig. 70.8). Henry’s law is

p x KB B B=
 Ideal–dilute solution  Henry’s law  (70.8a)

In this expression xB is the mole fraction of the solute B and 

KB is an empirical constant (with the dimensions of pressure) 

chosen so that the plot of the vapour pressure of B against its 

mole fraction is tangent to the experimental curve at xB = 0. In 

practice, a polynomial is fitted to the vapour pressure data and 

the slope of the curve at xB = 0 is determined by differentiation 

or equivalently by identifying the coefficient of the term that is 

proportional to xB. In practical applications of Henry’s law it is 

often more convenient to express it in terms of the molality, b, 

of the solute, in which case we write

p b KB B B=
 

Ideal–dilute solution  Henry’s law  (70.8b)

Table 70.1 gives a selection of values of the Henry’s law constant 

for this convention.

Mixtures for which the solute obeys Henry’s law and the sol-

vent obeys Raoult’s law are called ideal–dilute solutions. We 

shall also label equations with a blue number when they have 

been derived from Henry’s law. The difference in behaviour of 

the solute and solvent at low concentrations (as expressed by 

Henry’s and Raoult’s laws, respectively) arises from the fact that 

in a dilute solution the solvent molecules are in an environment 

very much like the one they have in the pure liquid (Fig. 70.9). 

In contrast, the solute molecules are surrounded by solvent 

molecules, which is entirely different from their environment 

when pure. Thus, the solvent behaves like a slightly modified 

pure liquid, but the solute behaves entirely differently from its 

pure state unless the solvent and solute molecules happen to be 

very similar. In the latter case, the solute also obeys Raoult’s law. 

This point is taken further in Topic 72; in this Topic, we confine 

attention to ideal solutions.

Mole fraction of B, xB
0 1

Pr
es

su
re

, p

Ideal–dilute
solution
(Henry)

Ideal solution
(Raoult)

Real
solution

KB

pB*

Figure 70.8 When a component (the solvent) is nearly pure, 
it has a vapour pressure that is proportional to mole fraction 
with a slope pB

*  (Raoult’s law). When it is the minor component 
(the solute) its vapour pressure is still proportional to the 
mole fraction, but the constant of proportionality is now KB 
(Henry’s law).

Table 70.1*  Henry’s law constants for gases in water at 298 K

KB/(kPa kg mol−1)

CO2 3.01 × 103

H2 1.28 × 105

N2 1.56 × 105

O2 7.92 × 104

* More values are given in the Resource section.

Figure 70.9 In a dilute solution, the solvent molecules (the 
blue spheres) are in an environment that differs only slightly 
from that of the pure solvent. The solute particles (the purple 
spheres), however, are in an environment totally unlike that of 
the pure solute.

Example 70.2 Investigating the validity of Raoult’s and 
Henry’s laws

The vapour pressures of each component in a mixture of pro-

panone (acetone, A) and trichloromethane (chloroform, C) 

were measured at 35 °C with the following results:

xC 0 0.20 0.40 0.60 0.80 1

pC/kPa 0 4.7 11 18.9 26.7 36.4

pA/kPa 46.3 33.3 23.3 12.3 4.9 0
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70 Ideal mixtures  685

(c) The thermodynamics of ideal solutions
The Gibbs energy of mixing of two liquids to form an ideal 

solution is calculated in exactly the same way as for two gases. 

The total Gibbs energy before liquids are mixed is

G n ni A A B B= +μ μ* *

When they are mixed, the individual chemical potentials are 

given by eqn 70.7 and the total Gibbs energy is

G n RT x n RT xf A A A B B B{ ln } ln= + + +μ μ* *{ }

Consequently, the Gibbs energy of mixing is

Δmix A A B Bln lnG nRT x x x x= +{ }
 

where n = nA + nB. As for gases, it follows that the ideal entropy 

of mixing of two liquids is

Δmix A A B Bln lnS nR x x x x= − +{ }
 

and because ΔmixH = ΔmixG + TΔmixS = 0, the ideal enthalpy of 

mixing is zero:

ΔmixH = 0  Ideal solution  Enthalpy of mixing  (70.9c)

The ideal volume of mixing, the change in volume on mixing, 

is also zero because it follows from eqn 66.7 ((∂G/∂p)T = V) that 

ΔmixV = (∂ΔmixG /∂p)T, but ΔmixG in eqn 70.9a is independent of 

pressure, so the derivative with respect to pressure is zero.

Ideal 
solution 

Entropy of 
mixing  (70.9b)

Brief illustration 70.2 The thermodynamics of mixing  
of liquids

Suppose an equimolar mixture of benzene and methylb-

enzene (toluene), which form a nearly ideal solution, is pre-

pared. The mole fractions of the components of the mixture 

are x xA B= = 1
2

,  and suppose the total amount of molecules is 

1.0 mol; then at 25 °C

Δ − −

−

mix
1 1(1  mol) 8 3145 J K mol 298 KG = × ×
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Self-test 70.4 Repeat the calculation for a mixture in which 

the mole ratio of components is 2:1.

Answer: ΔmixG = −1.6 kJ, ΔmixS = +5.3 J K−1

Ideal 
solution 

Gibbs 
energy of 
mixing

 (70.9a)

Confirm that the mixture conforms to Raoult’s law for the 

component in large excess and to Henry’s law for the minor 

component. Find the Henry’s law constants.

Method Both Raoult’s and Henry’s laws are statements about 

the form of the graph of partial vapour pressure against mole 

fraction. Therefore, plot the partial vapour pressures against 

mole fraction. Raoult’s law is tested by comparing the data 

with the straight line p x pJ J J= *  for each component in the 

region in which it is in excess (and acting as the solvent). 

Henry’s law is tested by finding a straight line pJ = xJKJ that 

is tangent to each partial vapour pressure at low x, where the 

component can be treated as the solute. For the best results, 

use mathematical software to fit the data and determine the 

slopes of the tangent lines by differentiation.

Answer The data are plotted in Fig. 70.10 with best-fit lines of 

the form a + bx + cx2 + dx3 together with the Raoult’s law lines. 

The tangent lines have slope b + 2cx + 3dx2 evaluated at x = 0 or 

1 for each component. Henry’s law then requires KA = 16.9 kPa 

for propanone and KC = 20.4 kPa for trichloromethane (which 

are taken from the intercepts of the Henry’s law lines with 

the vertical axes). Notice how the system deviates from both 

Raoult’s and Henry’s laws even for quite small departures 

from x = 1 and x = 0, respectively. We deal with these devia-

tions in Topic 72.

Self-test 70.3 The vapour pressure of chloromethane at vari-

ous mole fractions in a mixture at 25 °C was found to be as 

follows:

Estimate the Henry’s law constant.

Answer: 5 MPa

0 0.2 0.60.4 0.8 1
0

10

20

30

40

50
Pr

es
su

re
, p

/k
Pa

Mole fraction of CHCl3, xC

Raoult’s law

Henry’s law

pA*

KA

KC

pC*

Figure 70.10 The plots of the data in Example 70.2 and the 
fitted curves.

x 0.005 0.009 0.019 0.024

p/kPa 27.3 48.4 101 126
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686 14 Physical equilibria

Equation 70.9 is the same as that for two perfect gases and 

all the conclusions drawn there are valid here: the driving force 

for mixing is the increasing entropy of the system as the mol-

ecules mingle and the enthalpy of mixing is zero. The variation 

of the Gibbs energy and entropy of mixing with composition 

is the same as that already depicted for gases in Figs 70.1 and 

70.4. It should be noted, however, that solution ideality means 

something different from gas perfection. In a perfect gas there 

are no forces acting between molecules. In ideal solutions there 

are interactions, but the average energy of A–B interactions in 

the mixture is the same as the average energy of A–A and B–B 

interactions in the pure liquids.

A note on good practice It is on the basis of this difference that 

the term ‘perfect gas’ is preferable to the more common ‘ideal 

gas’. However, it must be admitted that the battle is almost 

lost, for almost everyone uses the inferior term ‘ideal gas’ and 

thus obscures a subtle but in our view important distinction.

Checklist of concepts

☐ 1. An ideal solution is a solution in which all components 

obey Raoult’s law throughout the composition range.

☐ 2. An ideal–dilute solution is a solution for which the sol-

ute obeys Henry’s law and the solvent obeys Raoult’s law.

☐ 3. The enthalpy of mixing is zero for ideal solutions and 

mixtures of perfect gases.

Checklist of equations

Property Equation Comment Equation number

Gibbs energy of mixing ΔmixG = nRT(xA ln xA + xB ln xB) Perfect gas; ideal solution 70.1

Entropy of mixing ΔmixS = −nR(xA ln xA + xB ln xB) Perfect gas; ideal solution 70.2

Enthalpy of mixing ΔmixH = 0 Perfect gas; ideal solution 70.3

Raoult’s law p x pJ J J= * Both components, ideal solution 70.6

Chemical potential μ μJ J J(l) (l) ln= +* RT x Both components; ideal solution 70.7

Henry’s law pB = xBKB Solute; ideal–dilute solution 70.8a
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TOPIC 71

Colligative properties

The presence of a solute modifies the physical properties of the 

solvent, such as its vapour pressure, boiling point, and freezing 

point. It also introduces a new property, the ‘osmotic pressure’. 

In dilute solutions these properties depend only on the number 

of solute particles present, not their identity. For this reason, 

they are called colligative properties (denoting ‘depending on 

the collection’).

71.1 The origin of colligative 
properties

All the colligative properties stem from the reduction of the 

chemical potential of the liquid solvent as a result of the pres-

ence of solute (Topics 69 and 70). For an ideal–dilute solution, 

the reduction is from μA
*  for the pure solvent to μA An* x+ RT l  

when a solute is present (ln xA is negative because xA < 1). There 

is no direct influence of the solute on the chemical potential 

of the solvent vapour and the solid solvent because the solute, 

which is assumed to be non-volatile and insoluble in the solid 

solvent, appears in neither the vapour nor the solid. As can be 

seen from Fig. 71.1, the reduction in chemical potential of the 

solvent implies that the liquid–vapour equilibrium occurs at a 

higher temperature (the boiling point is raised) and the solid–

liquid equilibrium occurs at a lower temperature (the freezing 

point is lowered).

The molecular origin of the lowering of the chemical poten-

tial is the effect of the solute on the entropy of the solution. The 

pure liquid solvent has a characteristic entropy and its vapour 

pressure reflects the tendency of the system towards greater 

entropy, which can be achieved if the liquid vaporizes to form 

a gas. When a solute is present, there is an additional contri-

bution to the entropy of the liquid, even in an ideal solution, 

because in a blind selection of molecules we cannot predict 

with certainty that we will draw a solvent or a solute molecule. 

Because the entropy of the liquid is already higher than that of 

the pure liquid, there is a weaker tendency to form the gas in 

the sense that less has to vaporize to maximize the total entropy 

(Fig. 71.2). As a result, the vapour pressure of the solvent is 

Contents

71.1 The origin of colligative properties 687

Brief illustration 71.1: Cryoscopic and ebullioscopic 

effects 688

71.2 Osmosis 688

(a) The van ’t Hoff equation 689

Brief illustration 71.2: The van ’t Hoff equation 689

(b) Osmometry 690

Example 71.1: Using osmometry to determine  

the molar mass of a macromolecule 690

(c) Molar mass averages 691

Example 71.2: Calculating number- and  

weight-average molar masses 691

Checklist of concepts 692

Checklist of equations 692

 ➤ Why do you need to know this material?

The determination of molar mass by the technique of 
osmometry is important in the field of polymeric materials 
and macromolecules, where other techniques might not 
be viable.

 ➤ What is the key idea?
Colligative properties, properties of solutions that depend 
only on the number of solute particles, result from the 
effect of the solute on the chemical potential of the 
solvent.

 ➤ What do you need to know already?
You need to be aware of the concept of chemical potential 
(Topic 69) and its role as the criterion of equilibrium 
between phases. You need to be aware of the properties 
of ideal and ideal–dilute solutions (Topic 70).
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688 14 Physical equilibria

lowered and hence its boiling point is raised. Similarly, the 

enhanced molecular randomness of the solution opposes the 

tendency to freeze. Consequently, a lower temperature must 

be reached before equilibrium between solid and solution is 

achieved. Hence, the freezing point is lowered.

A thermodynamic analysis of the depression of freezing 

point and the elevation of boiling point1 gives expressions for 

the two effects in terms of the properties of the solvent. More 

useful are the empirical expressions

ΔT K bf f =   Depression of freezing point  (71.1)

ΔT K bb b =
 

 Elevation of boiling point  (71.2)

where b is the molality of the solute. The two empirical con-

stants are known as the cryoscopic constant (Kf) and the ebul-

lioscopic constant (Kb). However, because the effect is so small, 

these expressions are no longer of practical importance and 

apart from illustrating their relative values we shall not dwell 

on them.

When assessing colligative properties it is essential to focus 

on the solute particles that are present, not just the identity of 

the solute. Thus, when an ionic solute dissolves, it gives rise to 

cations and anions, both of which count as ‘solute particles’. It is 

commonly supposed in elementary work that an ionic solute is 

fully dissociated in solution, although this is by no means reli-

ably the case.

It is commonly stated that the depression of freezing point 

is an important colligative property because, for instance, it 

accounts for the use of antifreeze in engines. Antifreeze, how-

ever, is used in much higher concentration than can justify its 

effect as a colligative property; its effect is to interfere with the 

solidification of water molecules. The use of salt on highways 

is also at concentrations far outside the range of this discus-

sion. The effect of impurities on the melting points of organic 

compounds is more complex, as the impurity is dissolved in the 

solid, a situation excluded in the treatment of colligative prop-

erties. Boiling-point elevation is too small to be of any practical 

significance. No one, except perhaps as a laboratory exercise, 

any longer uses the depression of freezing point or elevation of 

boiling point to determine molar mass.

71.2 Osmosis

The only colligative property of real importance is osmosis 

(from the Greek word for ‘push’), the spontaneous passage of 1 For details, see our other Physical chemistry (2014).

Brief illustration 71.1 Cryoscopic and ebullioscopic 
effects

For water as solvent, Kf = 1.86 K kg mol−1 and Kb = 0.513 K kg 

mol−1. Therefore, in a solution in which the molality of a non-

electrolyte (such as glucose) is 0.10 mol kg−1,

Δ
Δ

T

T

f
1 1

b

 1 86 K kg mol 1  mol kg 19 K

513 K 

= × =
=

( . ) ( . ) .

( .

− −0 0 0

0 kkg mol 1  mol kg 51 K1 1− −) ( . ) .× =0 0 0 0

Self-test 71.1 The observed depression of freezing point of 

0.25 mol kg−1 CaCl2(aq) is 1.27 K. What can be inferred?

Answer: Presence of 3 ions for each formula unit; electrostatic 

 interaction probably important

Pure
liquid

Solution

Solid
Vapour

C
h

em
ic

al
 p

o
te

n
ti

al
, μ

Tf’ Tf Tb Tb’

Temperature, T

Freezing-
point
depression

Boiling-
point
elevation

Figure 71.1 The chemical potential of a solvent in the presence 
of a solute. The lowering of the liquid’s chemical potential has 
a greater effect on the freezing point than on the boiling point 
because of the angles at which the lines intersect.

pA* pA

(a) (b)

Figure 71.2 The vapour pressure of a pure liquid represents 
a balance between the increase in disorder arising from 
vaporization and the decrease in disorder of the surroundings. 
(a) Here the structure of the liquid is represented highly 
schematically by the grid of squares. (b) When solute (the dark 
squares) is present, the disorder of the condensed phase is 
higher than that of the pure liquid, and there is a decreased 
tendency to acquire the disorder characteristic of the vapour.
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71 Colligative properties  689

a pure solvent into a solution separated from it by a semiper-

meable membrane, a membrane permeable to the solvent but 

not to the solute (Fig. 71.3). The osmotic pressure, Π, is the 

pressure that must be applied to the solution to stop the influx 

of solvent. Important examples of osmosis include transport of 

fluids through cell membranes, dialysis, and osmometry, the 

determination of molar mass by the measurement of osmotic 

pressure. Osmometry is widely used to determine the molar 

masses of macromolecules.

In the simple arrangement shown in Fig. 71.4, the opposing 

pressure arises from the column of solution that the osmosis 

itself produces. Equilibrium is reached when the hydrostatic 

pressure of the column of solution matches the osmotic pres-

sure. The complicating feature of this arrangement is that the 

entry of solvent into the solution results in its dilution, and 

so it is more difficult to treat than the arrangement in Fig. 

71.3, in which there is no flow and the concentrations remain 

unchanged.

(a) The van ’t Hoff equation
The thermodynamic treatment of osmosis depends on not-

ing that, at equilibrium, the chemical potential of the solvent 

must be the same on each side of the membrane. The chemical 

potential of the solvent is lowered by the solute, but is restored 

to its ‘pure’ value by the application of pressure. As shown in the 

following Justification, this equality implies that for dilute solu-

tions the osmotic pressure is given by the van ’t Hoff equation:

Π =  [B]RT   van’t Hoff equation  (71.3)

where [B] = nB/V is the molar concentration of the solute.

Brief illustration 71.2 The van ’t Hoff equation

We saw in Brief illustration 71.1 that an 0.10 mol kg−1 non-elec-

trolyte solution has only tiny effects on the freezing and boil-

ing points of water. The osmotic pressure of the same solution 

at 25 °C, assuming that the molar concentration is 0.10 mol 

dm−3, corresponding to 1.0 × 102 mol m−3 (which is the case if 

the density of the solution differs insignificantly from that of 

pure water), is

Π = × × ×
= ×

 1 1 mol m 8 3145 J K mol 298 K  

 2 5 1 J

2 3 1 1

5

( . ) ( . ) ( )

.

0 0

0

− − −

  m 3−

or 2.5 bar (because 1 J m−3 = 1 Pa and 1 bar = 105 Pa). This is a 

huge and easily measured pressure: it would drive water to a 

height of 25 m.

Self-test 71.2 Use the information in Self-test 71.1 to esti-

mate the osmotic pressure of 0.25 mol kg−1 CaCl2(aq) at 25 °C. 

Assume that the density of the solution is that of pure water.

Answer: 17 bar

Justification 71.1 The van ’t Hoff equation

On the pure solvent side the chemical potential of the solvent, 

which is at a pressure p, is μA* ( ).p  On the solution side, the 

chemical potential is lowered by the presence of the solute, 

which reduces the mole fraction of the solvent from 1 to xA. 

However, the chemical potential of A is raised on account of 

the greater pressure, p + Π, that the solution experiences. At 

equilibrium the chemical potential of A is the same in both 

compartments, and we can write

μ μA A A( )* p x p= +( , )Π

The presence of solute is taken into account in the normal way 

(Topic 70):

μ μA A A A( ) lnx p p RT x, ( )+ = + +Π Π*

p p + Π

Pure solvent Solution

μA*(p) μA(p + Π)

Equal at equilibrium

Figure 71.3 The equilibrium involved in the calculation of 
osmotic pressure, Π, is between pure solvent A at a pressure 
p on one side of the semipermeable membrane and A as a 
component of the mixture on the other side of the membrane, 
where the pressure is p + Π.

Height proportional
to osmotic pressure

Solution

Solvent
Semipermeable 
membrance

Figure 71.4 In a simple version of the osmotic pressure 
experiment, A is at equilibrium on each side of the membrane 
when enough has passed into the solution to cause a 
hydrostatic pressure difference.
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690 14 Physical equilibria

(b) Osmometry

Because the effect of osmotic pressure is so readily measurable 

and large, one of the most common applications of osmometry 

is to the measurement of molar masses of macromolecules, 

such as proteins and synthetic polymers. As these huge mol-

ecules dissolve to produce solutions that are far from ideal, it is 

assumed that the van ’t Hoff equation is only the first term of a 

virial-like expansion:

Π = + + [J] 1 JRT B{ [ ] }…   Osmotic virial equation  (71.4)

where we have denoted the solute by J to avoid too many dif-

ferent Bs in this expression. The additional terms take the non-

ideality into account; the empirical constant B is called the 

osmotic virial coefficient.

We saw in Topic 69 (specifically eqn 69.12) how to take the 

effect of pressure into account. Thus, because (∂μA/∂p)T = VA,m, 

for pure A, we can write dμA = VA,mdp, and on integration 

obtain

μ μA A md* *( ) ( )p p V p
p

p

+ = +
+

∫Π
Π

where Vm is the molar volume of the pure solvent A (which we 

assume to be negligibly different from its ‘partial molar vol-

ume’, VA,m, the contribution that A makes to the total volume 

of the sample). When these three equations are combined and 

equivalent terms cancelled we get

− =
+

∫RT x V p
p

p

ln A md
Π

This expression enables us to calculate the additional pressure 

Π that must be applied to the solution to restore the chemical 

potential of the solvent to its ‘pure’ value and thus to restore 

equilibrium across the semipermeable membrane. For dilute 

solutions, ln xA may be replaced by ln(1 – xB ) ≈ –xB, and the left-

hand side of this expression becomes simply RTxB. We may also 

assume that the pressure range in the integration is so small that 

the molar volume of the almost incompressible solvent is a con-

stant. That being so, Vm may be taken outside the integral, giving

RTx VB m= Π

When the solution is dilute, xB ≈ nB/nA. Moreover, because 

nAVm = V, the total volume of the solvent, the equation simpli-

fies to eqn 71.3.

Example 71.1 Using osmometry to determine the  
molar mass of a macromolecule

The osmotic pressures of solutions of poly(vinyl chloride), 

PVC, in cyclohexanone at 298 K are given below. The pres-

sures are expressed in terms of the heights of solution (of mass 

density ρ = 0.980 g cm−3) in balance with the osmotic pressure. 

Determine the molar mass of the polymer.

Method The osmotic pressure is measured at a series of mass 

concentrations, c, and a plot of Π/c against c is used to deter-

mine the molar mass of the polymer. We use eqn 71.4 with 

[J] = c/M, where c is the mass concentration of the polymer 

and M is its molar mass. The osmotic pressure is related to the 

hydrostatic pressure by Π = ρgh with g = 9.81 m s−2. With these 

substitutions, eqn 71.4 becomes

ρ
∏

gh
c

M
RT

c

M
B






�= × + +⎧
⎨
⎩

⎫
⎬
⎭

[J]

1

and then

h

c

RT

gM

RTB

gM
c

y b m
x


 
 




�= + +ρ ρ 2

This expression, truncated after the second term on the right, 

has the form of a straight line, y = b + mx. Therefore, to find 

M, plot h/c against c, and expect a straight line with intercept 

RT/ρgM at c = 0.

Answer The data give the following values for the quantities 

to plot:

The points are plotted in Fig. 71.5. The intercept from a least-

squares analysis is at 0.21. Therefore,

M
RT

g
= ×

=
×

×

−

− −

−

ρ
1

0 21

8 3145 298

980 9

1 3

1 1

3

.

( . ) ( )

( ) (

cmg dm

JK mol K

kg m .. ) .

.

81

1

2 1 10

1 2 10

2 3 4 1

2 1

ms m kg

kg mol

− − −

−

×
×

= ×

where we have used 1 kg m2 s−2 = 1 J. Modern osmometers 

give readings of osmotic pressure in pascals, so the analysis 

c/(g dm−3) 1.00 2.00 4.00 7.00 9.00

h/cm 0.28 0.71 2.01 5.10 8.00

c/(g dm−3) 1.00 2.00 4.00 7.00 9.00

(h/c)/(cm g−1 dm3) 0.28 0.36 0.503 0.729 0.889
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71 Colligative properties  691

(c) Molar mass averages
Care must be taken in the interpretation of molar masses 

de termined by osmosis. Thus, although a pure protein is almost 

monodisperse, meaning that it has a single, definite molar 

mass (although there may be small variations, such as one 

amino acid replacing another, depending on the source of the 

sample), a synthetic polymer is polydisperse, in the sense that 

a sample is a mixture of molecules with various chain lengths 

and molar masses. The number-average molar mass, Mn , is 

the value obtained by weighting each molar mass by the num-

ber of molecules of that mass present in the sample:

M
N

N M
i

i in = ∑1

 

where Ni is the number of molecules with molar mass Mi and 

there are N molecules in all. The weight-average molar mass, 

Mw, is the average calculated by weighting the molar masses of 

the molecules by the mass of each one present in the sample:

M
m

m M
i

i iw = ∑1

 

Definition 
Number-
average molar 
mass

 (71.5a)

Definition 
Weight-average 
molar mass  (71.5b)

In this expression, mi is the total mass of molecules of molar 

mass Mi and m is the total mass of the sample. Because 

mi = NiMi/NA and m N Mi i i = Σ  we can also express this average 

as

M

N M

N M

i i

i

i i

i

w =
∑
∑

2

 

(71.5c)

This expression shows that the weight-average molar mass 

is proportional to the mean square molar mass. In practice, 

osmometry gives the number-average molar mass and light 

scattering experiments give the weight-average molar mass.

of the data is more straightforward and eqn 71.4 can be used 

directly.

Self-test 71.3 The osmotic pressures of solutions of poly-

styrene in methylbenzene at 293 K are given below. Determine 

the molar mass of the polymer.

Answer: 140 kg mol−1

0.8

0.6

0.4

0.2

(h
/c

)/
(c

m
 g

–1
 d

m
3 )

0 2 4 6 8 10
c/(g dm–3)

Figure 71.5 The plot involved in the determination of molar 
mass by osmometry in Example 71.1. The molar mass is 
calculated from the intercept at c = 0.

c/(g dm−3) 1.00 2.00 4.00 7.00 9.00

Π/Pa 17.7 35.5 70.8 125.0 162.0

Example 71.2 Calculating number- and weight-average 
molar masses

Determine the number-average and the weight-average molar 

masses for a sample of poly(vinyl chloride) from the following 

data:

Method The relevant equations are eqns 71.5a and 71.5b. 

Calculate the two averages by weighting the molar mass 

within each interval by the number and mass, respectively, 

of the molecule in each interval. Obtain the numbers in each 

interval by dividing the mass of the sample in each interval by 

the average molar mass for that interval. Because number of 

molecules is proportional to amount of substance (the num-

ber of moles), the number-weighted average can be obtained 

directly from the amounts in each interval. Use a spread-

sheet to evaluate the sums (but here we show the calculation 

explicitly).

Answer The amounts in each interval are as follows:

Molar mass 
interval/(kg mo1−1)

Average molar mass 
within interval/(kg mo1−1)

Mass of sample 
within interval/g

5–10  7.5 9.6

10–15 12.5 8.7

15–20 17.5 8.9

20–25 22.5 5.6

25–30 27.5 3.1

30–35 32.5 1.7

Interval 5–10 10–15 15–20 20–25 25–30 30–35

Molar mass/ 
(kg mol−1)

7.5 12.5 17.5 22.5 27.5 32.5

Amount/ 
(10−3 mo1)

1.3 0.7 0.51 0.25 0.11 0.052

Total: 2.92
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692 14 Physical equilibria

The ratio M Mw n/  is called the heterogeneity index (or 

‘polydispersity index’, PDI). In the determination of protein 

molar masses we expect the various averages to be the same 

because the sample is monodisperse (unless there has been 

degradation). A synthetic polymer normally spans a range of 

molar masses and the different averages yield different val-

ues. Typical synthetic materials have M Mw n/ ≈ 4. The term 

‘monodisperse’ is conventionally applied to synthetic poly-

mers in which this index is less than 1.1; commercial poly-

ethylene samples might be much more heterogeneous, with 

a ratio close to 30. One consequence of a narrow molar mass 

distribution for synthetic polymers is often a higher degree of 

three-dimensional long-range order in the solid and therefore 

higher density and melting point. The spread of values is con-

trolled by the choice of catalyst and reaction conditions. In 

practice, it is found that long-range order is determined more 

by structural factors (branching, for instance) than by molar 

mass.

The number-average molar mass is therefore

Mn /(kg mol )−

=
× + × + × + ×

+

1

1

2 92

1 3 7 5 0 70 12 5 0 51 17 5 0 25 22 5

0.

. . . . . . . .

.111 27 5 0 052 32 5× + ×
⎛

⎝⎜
⎞

⎠⎟

=
. . .

13
 

where the factor 10−3 cancels. The weight-average molar mass 

is calculated directly from the data after noting that the total 

mass of the sample is 37.6 g:

Mw /(kg mol )−

=
× + × + × + × + ×

1

1

37 6

9 6 7 5 8 7 12 5 8 9 17 5 5 6 22 5 3 1 2

.

. . . . . . . . . 77 5

1 7 32 5

16

.

. .+ ×
⎛

⎝⎜
⎞

⎠⎟

=

Note the significantly different values of the two averages. In 

this instance, M Mw n/ . .=1 2

Self-test 71.4 The Z-average molar mass is defined as

M

N M

N M

i i

i

i i

i

Z =
∑
∑

3

2

 

Definition  Z-average molar mass  (71.5d)

and can be interpreted in terms of the mean cubic molar mass. 

Evaluate the Z-average molar mass of the sample described in 

this Example.

Answer: 19 kg mo1−1

Checklist of concepts

☐ 1. Colligative properties are properties that depend on 

the relative number but not the identity of the solute 

particles.

☐ 2. Colligative properties include the depression of freez-

ing point, the elevation of boiling point, and osmosis.

☐ 3. All three colligative properties stem from the effect of 

the solute on the entropy of the solution.

☐ 4. Osmosis is the only colligative effect of practical impor-

tance; it is used to determine the molar masses of mac-

romolecules in solution.

☐ 5. Osmometry gives the number-average molar mass and 

light scattering experiments give the weight-average 

molar mass.

☐ 6. The heterogeneity index, M Mw n/ , is an indication of 

the range of molar masses present in a sample.

Checklist of equations

Property Equation Comment Equation number

Depression of freezing point ΔTf = Kfb Empirical; dilute solution 71.1

Elevation of boiling point ΔTb = Kbb Empirical; dilute solution 71.2

van ’t Hoff equation Π = [B]RT Ideal solution 71.3
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Property Equation Comment Equation number

Osmotic virial equation Π = [J]RT{1 + B[J] + …} Empirical extension 71.4

Number-average molar mass M N N M

i

i in /= ∑( )1 Definition 71.5a

Weight-average molar mass M m m M

i

i iw = ∑( / )1 Definition 71.5b
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TOPIC 72

Real solutions

Ideal solutions are treated in Topic 70: they are solutions in 

which A–A, A–B, and B–B interactions are all the same, where 

A denotes the solvent and B the solute. Real solutions are com-

posed of particles for which A–A, A–B, and B–B interactions 

are all different. Not only may there be enthalpy and volume 

changes when liquids mix, but there may also be an additional 

contribution to the entropy arising from the way in which the 

molecules of one type might cluster together instead of min-

gling freely with the others. If the enthalpy change is large and 

positive or if the entropy change is adverse (because of a reor-

ganization of the molecules that results in an orderly mixture), 

then the Gibbs energy might be positive for mixing. In that 

case, separation is spontaneous and the liquids may be immis-

cible. Alternatively, the liquids might be partially miscible, 

which means that they are miscible only over a certain range of 

compositions.

72.1 Activities

Real solutions differ from ideal solutions as a result of differ-

ences in intermolecular interactions between their components 

and how the molecules aggregate. These differences are taken 

into account by replacing the concentrations in expressions for 

the chemical potential by effective concentrations known as 

‘activities’.

(a) The solvent activity
The general form of the chemical potential of a real or ideal 

solvent is given by a straightforward modification of eqn 

70.5 (that μ μA A A Aln /= +* *RT p p( )), where pA
*  is the vapour 

pressure of pure A and pA is the vapour pressure of A when 

it is a component of a solution. For an ideal solution, as is 

shown in Topic 70, the solvent obeys Raoult’s law at all con-

centrations and we can express this relation as eqn 70.7 (that 

is, as μ μA A Aln= +* RT x ). The form of this relation can be 

preserved when the solution does not obey Raoult’s law by 

writing

μ μA A Aln= +* RT a
 

Definition  Solvent activity  (72.1)

Contents

72.1 Activities 694

(a) The solvent activity 694

Brief illustration 72.1: The solvent activity 695

(b) The solute activity 695

Example 72.1: Measuring activity 696

72.2 Model systems: regular solutions 696

Brief illustration 72.2: Regular solutions 697

Brief illustration 72.3: The Margules equations 698

Brief illustration 72.4: The vapour pressure  

of a regular solution 699

72.3 Model systems: ionic solutions 699

(a) The mean activity coefficient 699

Brief illustration 72.5: The mean activity coefficient 700

(b) The Debye–Hückel theory 700

Brief illustration 72.6: The ionic strength 701

Checklist of concepts 702

Checklist of equations 702

 ➤ Why do you need to know this material?
All actual solutions are real solutions, and to describe their 
thermodynamic properties it is important to be able to go 
beyond the primitive model of ideal solutions and take 
intermolecular and interionic interactions into account.

 ➤ What is the key idea?
The activity of a component in solution is its effective 
concentration, taking into account the effects of 
intermolecular and interionic interactions.

 ➤ What do you need to know already?
You need to be familiar with the properties of ideal 
solutions, specifically Henry’s and Raoult’s laws (Topic 
70), and the dependence of chemical potential on 
concentration (Topic 69). This Topic extends the discussion 
of the enthalpy, entropy, and Gibbs energy of mixing of 
ideal solutions (Topic 70).
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72 Real solutions  695

(b) The solute activity
The problem with defining activity coefficients and standard 

states for solutes is that they approach ideal–dilute (Henry’s 

law, Topic 70) behaviour as xB → 0, not as xB → 1 (correspond-

ing to pure solute). We shall show how to set up the definitions 

for a solute that obeys Henry’s law exactly, and then show how 

to allow for deviations.

The vapour pressure of a solute B that satisfies Henry’s 

law is given by pB = KBxB, where KB is an empirical con-

stant. In this case, it follows from the general expression 

μ μB B B B/= +* *RT p pln( )  that the chemical potential of B is

μ μ

μ

B
B B

B
B

B
B

B
B

= +

= + +

*
*

*
*

RT
K x

p

RT
K

p
RT x

ln

ln ln

Both KB and pB
*  are characteristics of the solute independent 

of its abundance, so the second term on the right may be com-

bined with the first to give a new standard chemical potential:

μ μB
B

B

B

< = +*
*

RT
K

p
ln

If the solution is ideal, K pB B= *  and eqn 72.6 reduces to 

μ μB B
< = * ,  as we should expect. It now follows that the chemical 

potential of a solute in an ideal–dilute solution is related to its 

mole fraction by

μ μB B B= +< RT xln

We now permit deviations from ideal–dilute, Henry’s law 

behaviour. For the solute, we introduce aB in place of xB in eqn 

72.7, and obtain

μ μB B Bln= +< RT a
 

Definition  Activity of solute  (72.8)

The standard state remains unchanged in this last stage, and 

all the deviations from ideality are captured in the activity aB. 

The value of the activity at any concentration can be obtained 

in the same way as for the solvent, but in place of eqn 72.2 

we use

a
p

KB
B

B

=
 

 Solute activity  (72.9)

As for the solvent, it is sensible to introduce an activity coef-

ficient through

a xB B B=γ
 

Definition  Solute activity coefficient  (72.10)

The quantity aA is the activity of A, a kind of ‘effective’ mole 

fraction.

Because the expression that μ μA A A A/= +* *RT p pln( ) is true 

for both real and ideal solutions, we can conclude by compar-

ing it with eqn 72.1 that

a
p

pA
A

A

=
*

 

 Solvent activity  (72.2)

Note—and this is a very important point—that it follows that 

the activity of a pure substance (when p pA A= * ) is 1. We see 

that there is nothing mysterious about the activity of a solvent: 

it can be determined experimentally simply by measuring the 

vapour pressure and then using eqn 72.2.

Because all solvents obey Raoult’s law (that p p xA A A/ * ,=  eqn 

70.6 of Topic 70) increasingly closely as the concentration of 

solute approaches zero, the activity of the solvent approaches 

the mole fraction as xA→ 1:

a x xA A Aas 1→ →
 

(72.3)

A convenient way of expressing this convergence is to intro-

duce the activity coefficient, γ, by the definition

a x xA A A A A1 as 1= → →γ γ

at all temperatures and pressures. The chemical potential of the 

solvent is then

μ μ γA A A Aln ln = + +* RT x RT
 

(72.5)

and all the deviation from ideal behaviour is expressed by 

RT ln γA. The standard state of the solvent, the pure liquid sol-

vent at 1 bar, is established when xA = 1.

Standard chemical 
potential of solute

Definition (72.6)

Chemical 
potential of solute

Ideal–dilute 
solution

(72.7)

Activity 
coefficientDefinition (72.4)

Brief illustration 72.1 The solvent activity

The vapour pressure of 0.500 m KNO3(aq) at 100 °C (when 

the vapour pressure of pure water is 1 atm, or 101.3 kPa) is 

99.95 kPa, so the activity of water in the solution at this tem-

perature is

aA

kPa

kPa
= =

99 95

101 3
0 9867

.

.
.

Self-test 72.1 The vapour pressure of water at 20 °C is 2.339 kPa 

and that of a saturated solution of KBr in water at the same 

temperature is 1.853 kPa. What is the activity of water in this 

solution?

Answer: 0.7922
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696 14 Physical equilibria

Now all the deviations from ideality are captured in the activity 

coefficient γB. Because the solute obeys Henry’s law as its con-

centration goes to zero, it follows that

a x xB B B Band 1 as→ → →γ 0
 

(72.11)

at all temperatures and pressures. Deviations of the solute from 

ideality disappear as zero concentration is approached.

The conventions for activities, activity coefficients, and stand-

ard states are summarized in Table 72.1.

72.2 Model systems: regular solutions

The thermodynamic properties of real solutions are commonly 

expressed in terms of the excess functions, XE, the difference 

between the observed thermodynamic function of mixing and 

the function for an ideal solution. The excess entropy, SE, for 

example, is defined as

S S SE
mix mix

ideal= −Δ Δ  Definition  Excess entropy  (72.12)

Table 72.1 Activities and standard states

Component Basis Standard state Activity Limits

Solid or liquid Pure a = 1

Solvent Raoult Pure solvent a = p/p*, a = γx γ → 1 as x → 1 (pure 
solvent)

Solute Henry (1) A hypothetical state of the pure solute a = p/K, a = γx γ → 1 as x → 0

(2) A hypothetical state of the solute at molality b< = 1 mol kg−1 a = γ b/b< γ → 1 as b → 0

In each case, μ = μ< + RT ln a.

Example 72.1 Measuring activity

Calculate the activity and activity coefficient of chloroform 

(trichloromethane) in acetone (propanone) at 25 °C, treating it 

first as a solvent and then as a solute, given the following data 

for the partial pressures pC of chloroform and pA of acetone as 

a function of chloroform mole fraction xC.

The Henry’s law constant KC is 22.0 kPa for chloroform at 

25 °C.

Method For the activity of chloroform as a solvent (the 

Raoult’s law activity), form ac p p= C / C
*  and γC = aC/xC. For its 

activity as a solute (the Henry’s law activity), form aC = pC/KC 

and γC = aC/xC.

Answer Because pC kPa* = 36 4.  and KC = 22.0 kPa, we can 

construct the following tables. For instance, at xC = 0.20, in 

the Raoult’s law case we find aC = (4.7 kPa)/(36.4 kPa) = 0.13 

and γC = 0.13/0.20 = 0.65; likewise, in the Henry’s law case, 

aC = (4.7 kPa)/(22.0 kPa) = 0.21 and γC = 0.21/0.20 = 1.05.

From Raoult’s law (chloroform regarded as the solvent):

xC 0 0.20 0.40 0.60 0.80 1

pC/kPa 0 4.7 11 18.9 26.7 36.4

pA/kPa 46.3 33.3 23.3 12.3 4.9 0

aC 0 0.13 0.30 0.52 0.73 1.00

γC 0.65 0.75 0.87 0.91 1.00

From Henry’s law (chloroform regarded as the solute):

These values are plotted in Fig. 72.1. Notice that γC → 1 as 

xC→ 1 in the Raoult’s law case, but that γC → 1 as xC → 0 in the 

Henry’s law case.

Self-test 72.2 Calculate the activities and activity coefficients 

for acetone according to the two conventions (KA is 23.3 kPa).

Answer: At xA = 0.60, for instance, aR = 0.50, γ R = 0.83, aH = 1.00, γ H = 1.67
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Figure 72.1 The variation of activity and activity coefficient 
of chloroform (trichloromethane) and acetone (propanone) 
with composition according to (a) Raoult’s law, (b) Henry’s law.

aC 0 0.21 0.50 0.86 1.21 1.65

γC 1 1.05 1.25 1.43 1.51 1.65
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72 Real solutions  697

where ΔmixS
ideal is given by eqn 70.2 (ΔmixS

ideal = –nR(xA ln xA + 
 xB ln xB). The excess enthalpy and volume are both equal to the 

observed enthalpy and volume of mixing, because the ideal val-

ues are zero in each case. Figure 72.2 shows two examples of the 

composition dependence of molar excess functions.

Deviations of the excess energies from zero indicate the 

extent to which the solutions are non-ideal. In this connection 

a useful model system is the regular solution, a solution for 

which HE ≠ 0 but SE = 0. We can think of a regular solution as 

one in which the two kinds of molecules are distributed ran-

domly (as in an ideal solution) but have different energies of 

interactions with each other.

To express this model quantitatively, we suppose that the 

excess enthalpy depends on composition as

H n RTx xE
A B= ξ  

(72.13)

where ξ (xi) is a dimensionless parameter that is a measure 

of the energy of AB interactions relative to that of the A–A 

and B–B interactions; for an ideal solution, ξ = 0. The func-

tion given by eqn 72.13 is plotted in Fig. 72.3 and we see it 

resembles the experimental curve in Fig. 72.2. If ξ < 0, mixing 

is exothermic and the solute–solvent interactions are more 

favourable than the solvent–solvent and solute–solute inter-

actions. If ξ > 0, then the mixing is endothermic. Because for a 

regular solution the entropy of mixing has its ideal value, the 

excess Gibbs energy is equal to the excess enthalpy, and the 

Gibbs energy of mixing is

Δmix A A B B A Bln lnG nRT x x x x x x= + +( )ξ
 

(72.14)

with xB = 1 − xA.

Figure 72.4 shows how ΔmixG varies with composition for 

different values of ξ. The important feature is that for ξ > 2 the 

graph shows two minima separated by a maximum. The impli-

cation of this observation is that,  provided ξ > 2, the system will 

separate spontaneously into two phases with compositions cor-

responding to the two minima, for that separation corresponds 

to a reduction in Gibbs energy. This behaviour is what is sum-

marized by the experimentally determined two-component 

liquid mixture in Fig. 68.1.

We can take this analysis further and identify the upper 

critical solution temperature (Topic 68). The compositions 

corresponding to the two minima in Fig. 72.4 are obtained by 

looking for the conditions at which ∂ΔmixG/∂xA = 0, and a sim-

ple manipulation of eqn 72.14 shows that we have to solve

ln ( )
x

x
xA

A
A1

1 2 0
−

+ − =ξ

Brief illustration 72.2 Regular solutions

When x xA B= = 1
2

 the excess enthalpy is H RTE/n = 1
4
ξ .  From 

the graph in Fig. 72.2 for a mixture of benzene and cyclohex-

ane at 25 °C, we see that this point corresponds to +700 J. It 

follows that for this mixture

ξ =
×

×
= +

−

− −

4 700

8 3145 298
1 13

1

1 1

( )

( . ) ( )
.

Jmol

JK mol K

We shall use this value as this section develops.

Self-test 72.3 In another mixture of two liquids at 20 °C, the 

excess enthalpy was found to be equal to –420 J mol−1 when 

the mole fraction of one component was 0.333. What is the 

value of ξ for this mixture?

Answer: –0.776

H
E
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0.5 1
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2

1

Figure 72.3 The excess enthalpy according to a model in 
which it is proportional to ξxAxB for different values of the 
parameter ξ.
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Figure 72.2 Experimental excess functions at 25 °C. (a) HE 
for benzene/cyclohexane; this graph shows that the mixing 
is endothermic (because ΔmixH = 0 for an ideal solution). (b) 
The excess volume, VE, for tetrachloroethene/cyclopentane; 
this graph shows that there is a contraction at low 
tetrachloroethene mole fractions, but an expansion at high 
mole fractions (because ΔmixV = 0 for an ideal mixture).
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698 14 Physical equilibria

This expression is an example of a ‘transcendental equation’, an 

equation that does not have a solution that can be expressed in 

a closed form. The solutions can be found numerically by using 

mathematical software or by plotting the first term against the 

second and identifying the points of intersection as ξ is changed.

The solutions are plotted in Fig. 72.5. We see that the two 

minima move together as ξ decreases and merge when ξ = 2. 

Because HE ∝ ξRT, for constant excess enthalpy (correspond-

ing to the effect of intermolecular forces being constant as the 

temperature is raised) a decrease in ξ can be interpreted as an 

increase in temperature, so the vertical axis in Fig. 72.5 can be 

interpreted as indicating the temperature, and so the topmost 

point of the curve corresponds to the upper critical solution 

temperature.

The concept of a regular solution gives further insight into 

the origin of deviations from Raoult’s law and its relation to 

activity coefficients. We show in the following Justification that 

for a regular solution modelled by the parameter ξ the activity 

coefficients are given by the Margules equations:

ln lnA B B Aγ ξ γ ξ= =x x2 2

At this point we can use the Margules equations to write the 

activity of A as

a x x xx x
A A A A Ae eB A= = = −γ ξ ξ2 21( )

 
(72.16)

with a similar expression for aB. The activity of A, though, is 

just the ratio of the vapour pressure of A in the solution to the 

vapour pressure of pure A (eqn 72.2, a p pA A A/= * ), so we can 

write

p x px
A A Ae A={ }−ξ ( )1 2

*
 Regular solution  Vapour pressure  (72.17)

Brief illustration 72.3 The Margules equations

For the mixture of benzene and cyclohexane illustrated in 

Fig. 72.2 and treated in Brief illustration 72.2 on the basis of 

being a regular solution we know that ξ = 1.13. It follows that 

the activity coefficient of benzene when xbenzene  =  0.250 (and 

xcyclohexane = 0.750) is given by

ln 1 13 75 636benzene cyclohexane
2 2γ ξ= = =x . . .×0 0 0

which implies that γ benzene = e0.636 = 1.89 for this solution.

Self-test 72.4 What is the activity coefficient of A for the solu-

tion treated in Self-test 72.3 when xA = 0.333?

Answer: 0.708

Justification 72.1 The Margules equations

The Gibbs energy of mixing to form a non-ideal solution is

Δmix A A B Bln lnG nRT x a x a= +( )

This relation follows from the derivation of eqn 70.1 for ideal 

solutions with activities in place of mole fractions. When each 

activity is replaced by γ JxJ, this expression becomes

Δmix A A B B A A B Bln ln ln lnG nRT x x x x x x= + + +( )γ γ

Now we introduce the two expressions in eqn 72.15, and use 

xA + xB = 1, which gives

Δmix A A B B A B B A

A A B B

ln ln

ln ln

G nRT x x x x x x x x

nRT x x x x

= + + +
= + +

( )

{

ξ ξ
ξ

2 2

xx x x x

nRT x x x x x x

A B A B

A A B B A Bln ln

( )}

( )

+
= + +ξ

as required by eqn 72.14. Note, moreover, that the activity 

coefficients behave correctly for dilute solutions: γA → 1 as 

xB → 0 and γ B → 1 as xA → 0.
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Figure 72.4 The Gibbs energy of mixing for different values 
of the parameter ξ.
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Figure 72.5 The location of the phase boundary as computed 
on the basis of the ξ-parameter model.

Margules 
equations

Regular solution (72.15)
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72 Real solutions  699

This function is plotted in Fig. 72.6. We see that ξ = 0, corre-

sponding to an ideal solution, gives a straight line, in accord with 

Raoult’s law (indeed, when ξ = 0, eqn 72.17 becomes p x pA A A= * ,  

which is Raoult’s law). Positive values of ξ (endothermic mix-

ing, unfavourable solute–solvent interactions) give vapour pres-

sures higher than ideal. Negative values of ξ (exothermic mixing, 

favourable solute–solvent interactions) give a lower vapour pres-

sure. All the curves approach linearity and coincide with the 

Raoult’s law line as xA→ 1 and the exponential function in eqn 

72.17 approaches 1. When xA <<  1, eqn 72.17 approaches

p x pA A Ae= ξ *
 

(72.18)

This expression has the form of Henry’s law once we identify K 

with e A
ξ p* ,  which is different for each solute–solvent system.

72.3 Model systems: ionic solutions

Solutions of ionic compounds are central to much of chem-

istry and we need to be able to discuss them thermodynami-

cally. However, the Coulombic interactions between ions are so 

strong that the approximation of replacing activities by mole 

fractions or molalities is valid only in very dilute solutions (less 

than 10−3 mol kg−1 in total ion concentration), and in precise 

work activities themselves must be used. We need, therefore, 

to pay special attention to the activities of ions in solution, 

especially in preparation for the discussion of electrochemical 

phenomena.

(a) The mean activity coefficient
If the chemical potential of a univalent cation M+ is denoted μ+ 

and that of a univalent anion X− is denoted μ−, the total molar 

Gibbs energy of the ions in the electrically neutral solution is 

the sum of these two quantities. The molar Gibbs energy of an 

ideal solution is

Gm
ideal ideal ideal= ++ −μ μ

 
(72.19a)

However, for a real solution of M+ and X− of the same molality,

G RT RT

G RT

m
ideal ideal

m
ideal

ln ln

ln

= + = + + +
= +

+ − + − + −

+ −

μ μ μ μ γ γ
γ γ

 
(72.19b)

All the deviations from ideality are contained in the last term.

There is no experimental way of separating the product γ+γ− 

into contributions from the cations and the anions. The best we 

can do experimentally is to assign responsibility for the non-

ideality equally to both kinds of ion. Therefore, for an electro-

lyte of the form MX we introduce the mean activity coefficient 

as the geometric mean of the individual coefficients (the geo-

metric mean of xp and yq is (xpyq)1/(p+q)):

γ γ γ± + −= ( ) /1 2

and express the individual chemical potentials of the ions as

μ μ γ μ μ γ+ + ± − − ±= + = +ideal idealln lnRT RT
 

(72.21)

The sum of these two chemical potentials is the same as before, 

eqn 72.19b, but now the non-ideality is shared equally.

We can generalize this approach to the case of a compound 

MpXq that dissolves to give a solution of p cations and q anions 

from each formula unit. The molar Gibbs energy of the ions is 

the sum of their partial molar Gibbs energies:

G p q G pRT qRTm m
ideal ln ln= + = + ++ − + −μ μ γ γ

 
(72.22)

Brief illustration 72.4 The vapour pressure of a regular 
solution

The vapour pressure of benzene at 25 °C is 13.8 kPa. For a mix-

ture of benzene and cyclohexane at that temperature we know 

from Brief illustration 72.2 that ξ = 1.13. The value of Henry’s 

law constant for benzene in this mixture is therefore predicted 

to be

K = e 13 8 kPa 42 7 kPa1 13. . .× =

Self-test 72.5 Given that the vapour pressure of pure A in the 

mixture treated in Self-test 72.3 is 22.0 kPa, what is the value 

of its Henry’s law constant?

Answer: 10.1 kPa

Definition; 1:1 
electrolyte

Mean activity 
coefficient (72.20)
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Figure 72.6 The vapour pressure of a mixture based on a 
model in which the excess enthalpy is proportional to ξxAxB. 
An ideal solution corresponds to ξ = 0 and gives a straight line, 
in accord with Raoult’s law. Positive values of ξ give vapour 
pressures higher than ideal. Negative values of ξ give a lower 
vapour pressure.
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If we introduce the mean activity coefficient

γ γ γ± + −= = +( ) /p q s s p q1

and write the chemical potential of each ion as

μ μ γi i RT= + ±
ideal ln

 
 Mean ionic chemical potential  (72.24)

we get the same expression as in eqn 72.22 for Gm when we 

write

G p qm = ++ −μ μ
 

(72.25)

However, both types of ion now share equal responsibility for 

the non-ideality.

(b) The Debye–Hückel theory

The long range and strength of the Coulombic interaction 

between ions means that it is likely to be primarily responsible 

for the departures from ideality in ionic solutions and to domi-

nate all the other contributions to non-ideality. This domina-

tion is the basis of the Debye–Hückel theory of ionic solutions, 

which was devised by Peter Debye and Erich Hückel in 1923. 

We give here a qualitative account of the theory and its princi-

pal quantitative conclusions.1

Oppositely charged ions attract one another. As a result, ani-

ons are more likely to be found near cations in solution, and 

vice versa (Fig. 72.7). Overall the solution is electrically neu-

tral, but near any given ion there is an excess of counter-ions 

(ions of opposite charge). Averaged over time, counter-ions are 

more likely to be found near any given ion. This time-averaged, 

spherical haze around the central ion, in which counter-ions 

outnumber ions of the same charge as the central ion, has a 

net charge equal in magnitude but opposite in sign to that on 

the central ion, and is called its ionic atmosphere. The energy, 

and therefore the chemical potential, of any given central ion is 

lowered as a result of its electrostatic interaction with its ionic 

atmosphere. This lowering of energy appears as the difference 

between the molar Gibbs energy Gm and the ideal value Gm
ideal of 

the solute, and hence can be identified with RT ln γ±. (That the 

Gibbs energy is involved rather than the internal energy is clar-

ified in the formal derivation of the theory, where we see that 

we need to consider the electrical work of charging the ion: as 

shown in Topic 64, non-expansion work is equal to the change 

in Gibbs energy.) The stabilization of ions by their interaction 

with their ionic atmospheres is part of the explanation for why 

chemists commonly use dilute solutions, in which the stabili-

zation is less important, to achieve precipitation of ions from 

electrolyte solutions.

The model leads to the result that at very low concentra-

tions the activity coefficient can be calculated from the Debye–

Hückel limiting law:

log 1 2γ ± + −= − z z AI /

 
 Debye–Hückel limiting law  (72.26)

where A = 0.509 for an aqueous solution at 25 °C and I is the 

dimensionless ionic strength of the solution:

I z b b
i

i i= ∑1

2
2 / <

 

Definition  Ionic strength  (72.27)

In this expression zi is the charge number of an ion i (positive 

for cations and negative for anions) and bi is its molality, with 

b< = 1 mol kg−1. The ionic strength occurs widely wherever 

ionic solutions are discussed, as we shall see. The sum extends 

over all the ions present in the solution. For solutions consist-

ing of two types of ion at molalities b+ and b−,

Mean activity 
coefficient

Definition; MpXq 
electrolyte

(72.23)

Brief illustration 72.5 The mean activity coefficient

In a certain solution of CaCl2 the activity coefficients of the 

Ca2+ and Cl− ions were calculated as 0.874 and 0.981, respec-

tively. For this solute, p = 1, q = 2, and s = 3. The mean activity 

coefficient for the solute is therefore

γ ± = ={( . )( . ) } ./0 0 0874 981 9442 1 3

Self-test 72.6 In a solution of a salt that dissolved as the ions 

A2+ and B3– the activity coefficients were 0.872 and 0.789, 

respectively. What is the mean activity coefficient of the 

solute?

Answer: 0.838

Figure 72.7 The picture underlying the Debye–Hückel theory 
is of a tendency for anions to be found around cations, and of 
cations to be found around anions (one such local clustering 
region is shown by the grey sphere). The ions are in ceaseless 
motion, and the diagram represents a snapshot of their 
motion. The solutions to which the theory applies are far less 
concentrated than shown here.

1 For details of the calculation, see our other Physical chemistry (2014).
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I b z b z b= ++ + − −
1
2

2 2( )/ <

 
(72.28)

The ionic strength emphasizes the charges of the ions because 

the charge numbers occur as their squares. Table 72.2 sum-

marizes the relation of ionic strength and molality in an easily 

usable form.

The name ‘limiting law’ is applied to eqn 72.26 because 

ionic solutions of moderate molalities may have activity coef-

ficients that differ from the values given by this expression, yet 

all solutions are expected to conform as b → 0. Table 72.3 lists 

some experimental values of activity coefficients for salts of 

various valence types. Figure 72.8 shows some of these values 

plotted against I1/2, and compares them with the theoretical 

straight lines calculated from the limiting law. The agree-

ment at very low molalities (less than about 1 mmol kg−1, 

depending on charge type) is impressive, and convincing evi-

dence in support of the model. Nevertheless, the departures 

from the theoretical curves above these molalities are large, 

and show that the approximations are valid only at very low 

concentrations.

When the ionic strength of the solution is too high for the 

limiting law to be valid, the activity coefficient may be esti-

mated from the Davies equation:

log
/

/
γ ±

+ −= −
+

+
A z z I

BI
CI

1 2

1 21  
 Davies equation  (72.29)

Brief illustration 72.6 The ionic strength

The mean activity coefficient of 5.0 mmol kg−1 KCl(aq) at 25 °C 

is calculated by writing

I b b b b b= + =+ −
1
2

( )/ /< <

where b is the molality of the solution (and b+ = b− = b). Then, 

from eqn 72.26,

log 5 9 5 1 363 1 2γ ± =− =−0 0 0 0 0 0. ( . ) ./× × −

Hence, γ± = 0.92. The experimental value is 0.927.

Self-test 72.7 Calculate the ionic strength and the mean activ-

ity coefficient of 1.00 mmol kg−1 CaCl2(aq) at 25 °C.

Answer: 3.00 × 10−3, 0.880

Table 72.2  Ionic strength and molality, I = kb/b <

k X− X2– X3– X4–

M+  1  3  6 10

M2+  3  4 15 12

M3+  6 15  9 42

M4+ 10 12 42 16

For example, the ionic strength of an M2X3 solution of molality b, which is 

understood to give M3+ and X2– ions in solution, is 15b/b < .

Table 72.3 Mean activity coefficients 
in water at 298 K

b/b< KCl CaCl2

0.001 0.966 0.888

0.01 0.902 0.732

0.1 0.770 0.524

1.0 0.607 0.725

* More values are given in the Resource section.

NaCl

MgCl2

MgSO4

0
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4 8 12 16
100I1/2
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lo
g

 γ
±

(X+,Y–)

(X2+,Y–)
(X2+,Y2–)

Figure 72.8 An experimental test of the Debye–Hückel 
limiting law. Although there are marked deviations for 
moderate ionic strengths, the limiting slopes as I → 0 are in 
good agreement with the theory, so the law can be used for 
extrapolating data to very low molalities.

0
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100I1/2

–0.08
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 γ
±
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Figure 72.9 The extended Debye–Hückel law gives agreement 
with experiment (as indicated by the circles) over a wider range 
of molalities (as shown here for an MX electrolyte, such as 
NaCl), but it fails at higher molalities.
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702 14 Physical equilibria

where A, B, and C are dimensionless constants. The same 

expression but without the term CI is called the extended 

Debye–Hückel law. Although B can be interpreted as a measure 

of the closest approach of the ions, it (like C) is best regarded as 

an adjustable empirical parameter. A curve drawn in this way is 

shown in Fig. 72.9. It is clear that eqn 72.29 accounts for some 

activity coefficients over a moderate range of dilute solutions 

(up to about 0.1 mol kg−1); nevertheless it remains very poor 

near 1 mol kg−1.

Current theories of activity coefficients for ionic solutes take 

an indirect route. They set up a theory for the dependence 

of the activity coefficient of the solvent on the concentration 

of the solute, and then use the Gibbs–Duhem equation (eqn 

69.9 of Topic 69, ∑ =J nJ Jdμ 0 ) to estimate the activity coef-

ficient of the solute. The results are reasonably reliable for 

solutions with molalities greater than about 0.1 mol kg−1 and 

are valuable for the discussion of mixed salt solutions, such as 

sea-water.

Checklist of concepts

☐ 1. An activity is the effective mole fraction of a species.

☐ 2. Activity coefficients are based on Raoult’s law for the 

solvent and on Henry’s law for the solute.

☐ 3. Activity coefficients approach 1 as xsolute→ 0 and as 

xsolvent → 1.

☐ 4. An excess function (XE) is the difference between the 

observed thermodynamic function of mixing and the 

function for an ideal solution.

☐ 5. A regular solution is a solution for which HE≠ 0 but SE = 0.

☐ 6. The mean activity coefficient is the geometric mean of 

the individual coefficients.

☐ 7. The Debye–Hückel theory of activity coefficients of 

electrolyte solutions is based on the assumption that 

Coulombic interactions between ions are dominant.

☐ 8. A key idea of the Debye–Hückel theory is that of an 

ionic atmosphere.

Checklist of equations

Property Equation Comment Equation number

Solvent activity μ μA A Aln= +* RT a 72.1

a p pA A A/= * Practical determination 72.2

Solute activity μ μB B Bln= +< RT a 72.8

aB = pB/KB Practical determination 72.9

Activity coefficient γB = aB/xB Definition; see Table 72.1 72.10

Excess function XE = ΔmixX – ΔmixX
ideal Definition 72.12

Model of regular solution HE = nξRTxAxB Model 72.13

Margules equations ln  lnA B B Aγ ξ γ ξ= =x x2 2, Regular solution 72.15

Vapour pressure p x px
A A Ae A= −{ }( )ξ 1 2

* Regular solution 72.17

Mean activity coefficient γ± = (γ+
pγ−

q)1/(p+q) Salt of the form MpXq 72.23

Debye–Hückel law log γ± = –|z+z−|AI1/2 Limiting law, A = 0.509 for aqueous  
solution at 298 K

72.26

Ionic strength
I z b b

i

i i= ∑1

2
2 / < Dimensionless 72.27
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Focus 14 on Physical equilibria

Topic 67 Phase diagrams: one-component systems

Discussion questions
67.1 Discuss what would be observed as a sample of water is taken along a 

path in its phase diagram that encircles and is close to its critical point.

67.2 Distinguish between a first-order phase transition, a second-order phase 

transition, and a λ-transition at both molecular and macroscopic levels.

67.3 Define and provide examples of the following terms: phase, constituent, 

component, and degree of freedom.

67.4 Explain why four phases cannot be in equilibrium in a one-component 

system.

Exercises
67.1(a) How many phases are present at the points marked a and b in Fig. 

F14.1?

67.1(b) How many phases are present at the points marked c and d in Fig. 

F14.1?

Pr
es

su
re

Temperature

a
b

c           d

Figure F14.1 The phase diagram referred to in Exercises 67.1(a) and (b).

Problem
67.1 In a theoretical study of a protein, the temperature–composition diagram 

shown in Fig. F14.2 was obtained. It shows three structural regions: the native 

form, the unfolded form, and a ‘molten globule’ form, a partially unfolded but 

still compact form of the protein. (i) Is the molten globule form ever stable 

when the denaturant concentration is below 0.1? (ii) Describe what happens 

to the polymer as the native form is heated in the presence of denaturant at 

concentration 0.15.

0 0.1 0.2 0.3
0.5

0.6

0.7

0.8

0.9

1

Denaturant

Te
m

p
er

at
u

re

Native

Unfolded

Molten
globular

Figure F14.2 The phase diagram for the conformations of a model protein.

For more problems relating to one-component phase diagrams, see the Integrated 

activities section of this collection.
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Topic 68 Phase diagrams: two-component systems

Discussion questions
68.1 What factors determine the number of theoretical plates required to 

achieve a desired degree of separation in fractional distillation?

68.2 What molecular features determine whether a mixture of two liquids will 

show high- and low-boiling azeotropic behaviour?

Exercises
68.1(a) Methyl ethyl ether (A) and diborane, B2H6 (B), form a compound 

which melts congruently at 133 K. The system exhibits two eutectics, one at 

25 mol per cent B and 123 K and a second at 90 mol per cent B and 104 K. The 

melting points of pure A and B are 131 K and 110 K, respectively. Sketch the 

phase diagram for this system. Assume negligible solid–solid solubility.

68.1(b) Sketch the phase diagram of the system NH3/N2H4 given that the 

two substances do not form a compound with each other, that NH3 freezes 

at –78 °C and N2H4 freezes at +2 °C, and that a eutectic is formed when the 

mole fraction of N2H4 is 0.07 and that the eutectic melts at –80 °C.

68.2(a) Figure F14.3 shows the phase diagram for water (A) and 2-methyl-1-

propanol (B). Describe what will be observed when a mixture of composition 

xB = 0.8 is heated, at each stage giving the number, composition, and relative 

amounts of the phases present.

68.2(b) Refer to Fig. F14.3 again. Describe what will be observed when a 

mixture of composition xB = 0.3 is heated, at each stage giving the number, 

composition, and relative amounts of the phases present.
Te

m
p

er
at

u
re

, T

Mole fraction of B, xB

0 0.2 0.4 0.6 0.8 1

T1

Figure F14.3 The phase diagram for two partially miscible liquids.

Problems
68.1 The following temperature–composition data were obtained for a mixture 

of octane (O) and methylbenzene (M) at 1.00 atm, where x is the mole 

fraction in the liquid and y the mole fraction in the vapour at equilibrium.

The boiling points are 110.6 °C and 125.6 °C for M and O, respectively. 

Plot the temperature–composition diagram for the mixture. What is the 

composition of the vapour in equilibrium with the liquid of composition 

(a) xM = 0.250 and (b) xO = 0.250?

68.2 Figure F14.4 shows the experimentally determined phase diagrams for 

the nearly ideal solution of hexane and heptane. (a) Label the regions of 

the diagrams to which phases are present. (b) For an equimolar mixture of 

C6H14 and C7H16, estimate the vapour pressure at 70 °C when vaporization on 

reduction of the external pressure just begins. (c) What is the vapour pressure 

of the solution at 70 °C when just one drop of liquid remains? (d) Estimate 

from the figures the mole fraction of hexane in the liquid and vapour phases 

for the conditions of part b. (e) What are the mole fractions for the conditions 

of part (c)?
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Mole fraction of heptane, xH
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Mole fraction of heptane, xH

0 0.2 0.4 0.6 0.8 1
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70 °C

760 Torr

Figure F14.4 The phase diagram for a mixture of hexane and heptane. 

68.3 Uranium tetrafluoride and zirconium tetrafluoride melt at 1035 °C and 

912 °C respectively. They form a continuous series of solid solutions with a 

θ/°C 110.9 112.0 114.0 115.8 117.3 119.0 121.1 123.0

xM 0.908 0.795 0.615 0.527 0.408 0.300 0.203 0.097

yM 0.923 0.836 0.698 0.624 0.527 0.410 0.297 0.164
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minimum melting temperature of 765 °C and composition x(ZrF4) = 0.77. At 

900 °C, the liquid solution of composition x(ZrF4) = 0.28 is in equilibrium with 

a solid solution of composition x(ZrF4) = 0.14. At 850 °C the two compositions 

are 0.87 and 0.90, respectively. Sketch the phase diagram for this system and 

state what is observed when a liquid of composition x(ZrF4) = 0.40 is cooled 

slowly from 900 °C to 500 °C.

68.4 Hexane and perfluorohexane show partial miscibility below 22.7 °C. 

The concentration at the upper critical temperature is x = 0.355, where x is 

the mole fraction of C6F14. At 22.0 °C the two solutions in equilibrium have 

x = 0.24 and x = 0.48, respectively, and at 21.5 °C the mole fractions are 0.22 

and 0.51. Sketch the phase diagram. Describe the phase changes that occur 

when perfluorohexane is added to a fixed amount of hexane at (a) 23 °C,  

(b) 22 °C.

68.5 Methane (melting point 91 K) and tetrafluoromethane (melting point 

89 K) do not form solid solutions with each other, and as liquids they are 

only partially miscible. The upper critical temperature of the liquid mixture 

is 94 K at x(CF4) = 0.43 and the eutectic temperature is 84 K at x(CF4) = 0.88. 

At 86 K, the phase in equilibrium with the tetrafluoromethane-rich solution 

changes from solid methane to a methane-rich liquid. At that temperature, 

the two liquid solutions that are in mutual equilibrium have the compositions 

x(CF4) = 0.10 and x(CF4) = 0.80. Sketch the phase diagram.

68.6 Magnesium oxide and nickel oxide withstand high temperatures. 

However, they do melt when the temperature is high enough and the 

behaviour of mixtures of the two is of considerable interest to the ceramics 

industry. Draw the temperature–composition diagram for the system using 

the data below, where x is the mole fraction of MgO in the solid and y its mole 

fraction in the liquid.

θ/°C 1960 2200 2400 2600 2800

x 0 0.35 0.60 0.83 1.00

y 0 0.18 0.38 0.65 1.00

State (a) the melting point of a mixture with x = 0.30, (b) the composition 

and proportion of the phases present when a solid of composition x = 0.30 

is heated to 2200 °C, (c) the temperature at which a liquid of composition 

y = 0.70 will begin to solidify.

Topic 69 Physical transformations

Discussion questions
69.1 Consider the variation of the melting point with pressure observed for 

water and carbon dioxide. Provide a molecular explanation for differences in 

behaviour of these two substances.

69.2 Discuss the scope and applicability of the fundamental equation of 

chemical thermodynamics.

69.3 Compare the dependence of the chemical potential on temperature for 

a solid, liquid, and gas. How are these dependencies reflected in the phase 

diagram?

69.4 Interpret the forms of the Clapeyron and Clausius–Clapeyron equations, 

paying particular attention to the appearance in them of parameters such as 

the enthalpy of transition and the temperature.

69.5 Why does the chemical potential of a substance depend on the pressure 

even if the substance is incompressible?

Exercises
69.1(a) The solid and liquid phases of a mixture of water (W) and ethanol (E) 

are in equilibrium. What are the relationships between the magnitudes of 

μW(s), μW(l), μE(s), and μE(l)?

69.1(b) The liquid and vapour phases of a mixture of benzene (B) and 

methylbenzene (M) are in equilibrium. What are the relationships between 

the magnitudes of μB(l), μB(g), μM(l), and μM(g)?

69.2(a) A mixture of water and ethanol is prepared with a mole fraction of 

water of 0.60. If a small change in the mixture composition results in an 

increase in the chemical potential of water by 0.25 J mol−1, by how much will 

the chemical potential of ethanol change?

69.2(b) A mixture of water and ethanol is prepared with a mole fraction of 

water of 0.40. If a small change in the mixture composition results in an 

increase in the chemical potential of ethanol by 0.35 J mol−1, by how much will 

the chemical potential of water change?

69.3(a) By how much does the chemical potential of pure water change when 

the temperature of a sample is increased from 20 °C to 25 °C?

69.3(b) By how much does the chemical potential of pure octane change when 

the temperature of a sample is increased from 20 °C to 25 °C?

69.4(a) By how much does the chemical potential of pure water increase when 

the pressure on a sample is increased from 1.0 bar to 100 kbar? The mass 

density of water at 20 °C is 0.997 g cm−3.

69.4(b) By how much does the chemical potential of pure octane increase 

when the pressure on a sample is increased from 1.0 bar to 100 kbar? The 

mass density of octane at 20 °C is 0.703 g cm−3.

69.5(a) The molar volume of a certain solid is 161.0 cm3 mol−1 at 1.00 atm 

and 350.75 K, its melting temperature. The molar volume of the liquid at 

this temperature and pressure is 163.3 cm3 mol−1. At 100 atm the melting 

temperature changes to 351.26 K. Calculate the enthalpy and entropy of fusion 

of the solid.

69.5(b) The molar volume of a certain solid is 142.0 cm3 mol−1 at 1.00 atm 

and 427.15 K, its melting temperature. The molar volume of the liquid at 

this temperature and pressure is 152.6 cm3 mol−1. At 1.2 MPa the melting 

temperature changes to 429.26 K. Calculate the enthalpy and entropy of fusion 

of the solid.

69.6(a) The vapour pressure of a liquid in the temperature range 200 K to 260 K 

was found to fit the expression ln(p/Torr) = 19.176 – 1501.8/(T/K). Calculate 

the enthalpy of vaporization of the liquid.
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69.6(b) The vapour pressure of a liquid in the temperature range 200 K to 

260 K was found to fit the expression ln(p/Torr) = 17.461 – 2100.8/(T/K). 

Calculate the enthalpy of vaporization of the liquid.

69.7(a) When benzene freezes at 5.5 °C (the normal freezing point) its 

density changes from 0.879 g cm−3 to 0.891 g cm−3. Its enthalpy of fusion is 

10.59 kJ mol−1. Estimate the freezing point of benzene at 10.0 kbar.

69.7(b) When a certain liquid freezes at –3.65 °C (the normal freezing point) 

its density changes from 0.790 g cm−3 to 0.799 g cm−3. Its enthalpy of fusion is 

6.68 kJ mol−1. Estimate the freezing point of the liquid at 100 MPa.

69.8(a) The normal boiling point of carbon tetrachloride is 76.8 °C. Estimate 

(a) its enthalpy of vaporization and (b) its vapour pressure at 25 °C and 70 °C.

69.8(b) The normal boiling point of hexane is 69.0 °C. Estimate (a) its enthalpy 

of vaporization and (b) its vapour pressure at 25 °C and 60 °C.

69.9(a) Calculate the melting point of ice under a pressure of 50 bar. Assume 

that the density of ice under these conditions is approximately 0.92 g cm−3 and 

that of liquid water is 1.00 g cm−3.

69.9(b) Calculate the melting point of ice under a pressure of 10 MPa. Assume 

that the density of ice under these conditions is approximately 0.915 g cm−3 

and that of liquid water is 0.998 g cm−3.

Problems
69.1 The temperature dependence of the vapour pressure of solid sulfur 

dioxide can be approximately represented by the relation log(p/Torr) =  

10.5916 – 1871.2/(T/K) and that of liquid sulfur dioxide by log(p/Torr) =  

8.3186 – 1425.7/(T/K). Estimate the temperature and pressure of the triple 

point of sulfur dioxide. 

69.2 The enthalpy of vaporization of a certain liquid is found to be 

22.0 kJ mol−1 at 380 K, its normal boiling point. The molar volumes of 

the liquid and the vapour at the boiling point are 120 cm3 mol−1 and 14.5 

dm3 mol−1, respectively. (a) Estimate dp/dT from the Clapeyron equation and 

(b) the percentage error in its value if the Clausius–Clapeyron equation is 

used instead.

69.3 The enthalpy of fusion of mercury is 2.292 kJ mol−1, and its normal 

freezing point is 234.3 K with a change in molar volume of +0.517 cm3 mol−1 

on melting. At what temperature will the bottom of a column of mercury 

(density 13.6 g cm−3) of height 10.0 m be expected to freeze?

69.4 The vapour pressure, p, of naphthalene varies with temperature as 

follows:

What are (a) the normal boiling point and (b) the enthalpy of vaporization of 

naphthalene?

69.5 Construct the phase diagram for benzene near its triple point at 

36 Torr and 5.50 °C using the following data: ΔfusH = 10.6 kJ mol−1, 

ΔvapH = 30.8 kJ mol−1, ρ(s) = 0.891 g cm−3, ρ(l) = 0.879 g cm−3.  

69.6‡ In an investigation of thermophysical properties of methylbenzene (R.D. 

Goodwin, J. Phys. Chem. Ref. Data 18, 1565 (1989)), Goodwin presented 

expressions for two coexistence curves (phase boundaries). The solid–liquid 

coexistence curve is given by

p p x x/bar /bar 1 5 6 11 7273= + × +000 0( . . )  

where x = T/T3 – 1 and the triple point pressure and temperature are 

p3 = 0.4362 μbar and T3 = 178.15 K. The liquid–vapour curve is given by

ln /bar 1 418/ 21 157 15 996 14 15 5 12

4 722

2 3( ) . . . . .

.

p y y y y= − + − + −

+

0 0 0 0

44 1 1 7( ) .− y 0

 

where y = T/Tc = T/(593.95 K). (a) Plot the solid–liquid and liquid–vapour 

phase boundaries. (b) Estimate the standard melting point of methylbenzene. 

(c) Estimate the standard boiling point of methylbenzene. (d) Compute 

the standard enthalpy of vaporization of methylbenzene, given that the 

molar volumes of the liquid and vapour at the normal boiling point are 0.12 

dm3 mol−1 and 30.3 dm3 mol−1, respectively.

69.7 Show that two phases are in thermal equilibrium only if their 

temperatures are the same.

69.8 Show that two phases are in mechanical equilibrium only if their 

pressures are equal.

69.9 The change in enthalpy is given by dH = CpdT + Vdp. The Clapeyron 

equation relates dp and dT at equilibrium, and so in combination the two 

equations can be used to find how the enthalpy changes along a phase 

boundary as the temperature changes and the two phases remain in 

equilibrium. Show that d(ΔH/T) = ΔCp d ln T.

69.10 Combine the barometric formula (Problem 51.7) for the dependence 

of the pressure on altitude with the Clausius–Clapeyron equation, and 

predict how the boiling temperature of a liquid depends on the altitude and 

the ambient temperature. Take the mean ambient temperature as 20 °C and 

predict the boiling temperature of water at 3000 m.

69.11 Figure 69.6 shows a schematic representation of how the chemical 

potentials of the solid, liquid, and gaseous phases of a substance vary with 

temperature. All have a negative slope, but it is unlikely that they are truly 

straight lines as indicated in the illustrations. Derive an expression for the 

curvatures (specifically, the second derivatives with respect to temperature) of 

these lines. Is there a restriction on the curvature of these lines? Which state 

of matter shows the greatest curvature?

69.12‡ A substance as well known as methane still receives research attention 

because it is an important component of natural gas, a commonly used fossil 

fuel. Friend, et al. have published a review of thermophysical properties 

of methane (J. Phys. Chem. Ref. Data 18, 583 (1989)), which included the 

following data describing the liquid–vapour phase boundary:

T/K 100 108 110 112 114 120 130 140 150 160 170 190

p/MPa 0.034 0.074 0.088 0.104 0.122 0.192 0.368 0.642 1.041 1.593 2.329 4.521

(a) Plot the liquid–vapour phase boundary. (b) Estimate the standard boiling 

point of methane. (c) Compute the standard enthalpy of vaporization of 

methane, given that the molar volumes of the liquid and vapour at the 

standard boiling point are 3.80 ×10−2 and 8.89 dm3 mol−1, respectively.

T/K 250 270 280 290 300 310 330

p/kPa 0.036 0.514 1.662 4.918 13.43 34.1 182.9

‡ These problems were supplied by Charles Trapp and Carmen Giunta.
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Topic 70 Ideal mixtures

Discussion questions
70.1 Describe the molecular basis of Raoult’s law. 70.2 What is the difference between an ideal solution and an ideal–dilute 

solution?

Exercises
70.1(a) An open vessel containing (a) water (vapour pressure 3.2 kPa), 

(b) benzene (vapour pressure 13.1 kPa) stands in a laboratory measuring 

4.0 m × 4.0 m × 3.0 m at 25 °C. What mass of each substance will be found in 

the air if there is no ventilation?

70.1(b) An open vessel containing mercury (vapour pressure 0.23 Pa) stands in 

a laboratory measuring 6.0 m × 5.0 m × 3.5 m at 25 °C. What mass of mercury 

will be found in the air if there is no ventilation?

70.2(a) Consider a container of volume 10.0 dm3 that is divided into two 

compartments of equal size. In the left compartment there is nitrogen at 

1.5 bar and 25 °C; in the right compartment there is hydrogen at the same 

temperature and pressure. Calculate the entropy and Gibbs energy of mixing 

when the partition is removed. Assume that the gases are perfect.

70.2(b) Consider a container of volume 350 cm3 that is divided into two 

compartments of equal size. In the left compartment there is argon at 150 kPa 

and 0 °C; in the right compartment there is neon at the same temperature 

and pressure. Calculate the entropy and Gibbs energy of mixing when the 

partition is removed. Assume that the gases are perfect.

70.3(a) Air is approximately 76 per cent N2, 23 per cent O2, and 1 per cent Ar 

by mass. Calculate the entropy, enthalpy, and Gibbs energy of mixing when it 

is prepared from the pure (and perfect) gases.

70.3(b) Calculate the Gibbs energy, entropy, and enthalpy of mixing when 25 g 

of hexane is mixed with 25 g of heptane at 298 K; treat the solution as ideal.

70.4(a) What proportions of hexane and heptane should be mixed (a) by mole 

fraction, (b) by mass in order to achieve the greatest entropy of mixing?

70.4(b) What proportions of benzene and ethylbenzene should be mixed (a) by 

mole fraction, (b) by mass in order to achieve the greatest entropy of mixing?

70.5(a) At 300 K, the partial vapour pressures of HCl (that is, the partial 

pressure of the HCl vapour) in liquid GeCl4 are as follows:

Show that the solution obeys Henry’s law in this range of mole fractions, and 

calculate the Henry’s law constant at 300 K.

70.5(b) At 310 K, the partial vapour pressures of a substance B dissolved in a 

liquid A are as follows:

Show that the solution obeys Henry’s law in this range of mole fractions, and 

calculate the Henry’s law constant at 310 K.

70.6(a) The vapour pressure of pure liquid A at 300 K is 76.7 kPa and that of 

pure liquid B is 52.0 kPa. These two compounds form ideal liquid and gaseous 

mixtures. Consider the equilibrium composition of a mixture in which the 

mole fraction of A in the vapour is 0.350. Calculate the total pressure of the 

vapour and the composition of the liquid mixture.

70.6(b) The vapour pressure of pure liquid A at 293 K is 68.8 kPa and that of 

pure liquid B is 82.1 kPa. These two compounds form ideal liquid and gaseous 

mixtures. Consider the equilibrium composition of a mixture in which the 

mole fraction of A in the vapour is 0.612. Calculate the total pressure of the 

vapour and the composition of the liquid mixture.

70.7(a) Predict the partial vapour pressure of HCl above its solution in liquid 

germanium tetrachloride of molality 0.15 mol kg−1. For data, see Exercise 

70.5(a).

70.7(b) Predict the partial vapour pressure of the component B above its 

solution in A in Exercise 70.5(b) when the molality of B is 0.15 mol kg−1.

70.8(a) The vapour pressure of benzene is 53.3 kPa at 60.6 °C, but it fell to 

51.5 kPa when 19.0 g of an non-volatile organic compound was dissolved in 

500 g of benzene. Calculate the molar mass of the compound.

70.8(b) The vapour pressure of 2-propanol is 50.00 kPa at 338.8 °C, but it fell to 

49.62 kPa when 8.69 g of an non-volatile organic compound was dissolved in 

250 g of 2-propanol. Calculate the molar mass of the compound.

70.9(a) Use Henry’s law and the data in Table 70.1 to calculate the solubility (as 

a molality) of CO2 in water at 25 °C when its partial pressure is (a) 0.10 atm, 

(b) 1.00 atm.

70.9(b) The mole fractions of N2 and O2 in air at sea level are approximately 

0.78 and 0.21. Calculate the molalities of the solution formed in an open flask 

of water at 25 °C.

Problems
70.1 The following table gives the mole fraction of methylbenzene (A) in 

liquid and gaseous mixtures with butanone at equilibrium at 303.15 K and 

the total pressure p. Take the vapour to be perfect and calculate the partial 

pressures of the two components. Plot them against their respective mole 

fractions in the liquid mixture and find the Henry’s law constants for the two 

components.

xHCl 0.005 0.012 0.019

pHCl/kPa 32.0 76.9 121.8

xB 0.010 0.015 0.020

pB/kPa 82.0 122.0 166.1

xA 0 0.0898 0.2476 0.3577 0.5194 0.6036

yA 0 0.0410 0.1154 0.1762 0.2772 0.3393

p/kPa 36.066 34.121 30.900 28.626 25.239 23.402

xA 0.7188 0.8019 0.9105 1

yA 0.4450 0.5435 0.7284 1

p/kPa 20.6984 18.592 15.496 12.295
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70.2 For the calculation of the solubility c of a gas in a solvent, it is often 

convenient to use the expression c = Kp, where K is the Henry’s law constant. 

Breathing air at high pressures, such as in scuba diving, results in an 

increased concentration of dissolved nitrogen. The Henry’s law constant for 

the solubility of nitrogen is 0.18 μg/(g H2O atm). What mass of nitrogen is 

dissolved in 100 g of water saturated with air at 4.0 atm and 20 °C? Compare 

your answer to that for 100 g of water saturated with air at 1.0 atm. (Air is 

78.08 mole per cent N2.) If nitrogen is four times as soluble in fatty tissues as 

in water, what is the increase in nitrogen concentration in fatty tissue in going 

from 1 atm to 4 atm?

Topic 71 Colligative properties

Discussion question
71.1 Explain the origin of colligative properties in both thermodynamic and 

molecular terms.

Exercises
71.1(a) The osmotic pressures of solutions of polystyrene in toluene were 

measured at 25 °C and the pressure was expressed in terms of the height of the 

solvent of density 1.004 g cm−3:

Calculate the molar mass of the polymer.

71.1(b) The molar mass of an enzyme was determined by dissolving it in water, 

measuring the osmotic pressure at 20 °C, and extrapolating the data to zero 

concentration. The following data were obtained:

Calculate the molar mass of the enzyme.

71.2(a) A sample consists of 30 per cent by mass of a dimer with M = 30 kg mol−1 

and its monomer. What are the values of the number-average and weight-

average molar masses?What is the value of the heterogeneity index?

71.2(b) A sample consists of 25 per cent by mass of a trimer with M = 22 kg mol−1 

and its monomer. What are the values of the number-average and weight-

average molar masses?What is the value of the heterogeneity index?

Problems
71.1‡ Sato, et al. (J. Polym. Sci., Polym. Phys. 14, 619 (1976)) have reported 

the data in the table below for the osmotic pressures of polychloroprene 

(ρ = 1.25 g cm−3) in toluene (ρ = 0.858 g cm−3) at 30 °C. Determine the molar 

mass of polychloroprene and its second osmotic virial coefficient.

71.2 Deduce an expression for the depression of freezing point of an ideal 

solution and show, subject to a series of approximations that you should 

specify, that the depression is proportional to the mole fraction of the solute, 

ΔT = KfxB, with K RT Hf f fus/= * ,Δ  where Tf
*  is the freezing temperature 

of the pure solvent and ΔfusH its enthalpy of fusion. Hint: At the freezing 

temperature of the solvent, the chemical potential of the liquid solvent is equal 

to that of the solid solvent.

71.3 Repeat the preceding problem for the elevation of boiling point of a 

solvent in a solution.

71.4‡ Polymer scientists often report their data in rather strange units. For 

example, in the determination of molar masses of polymers in solution 

by osmometry, osmotic pressures are often reported in grams per square 

centimetre (g cm−2) and concentrations in grams per cubic centimetre (g 

cm−3). (a) With these choices of units, what would be the units of R in the 

van ’t Hoff equation? (b) The data in the table below on the concentration 

dependence of the osmotic pressure of polyisobutene in chlorobenzene at 

25 °C have been adapted from J. Leonard and H. Daoust (J. Polym. Sci. 57, 

53 (1962)). From these data, determine the molar mass of polyisobutene by 

plotting Π/c against c. (c) Theta solvents are solvents for which the second 

osmotic coefficient is zero; for ‘poor’ solvents the plot is linear and for 

good solvents the plot is nonlinear. From your plot, how would you classify 

chlorobenzene as a solvent for polyisobutene? Rationalize the result in terms 

of the molecular structure of the polymer and solvent. (d) Determine the 

second and third osmotic virial coefficients by fitting the curve to the virial 

form of the osmotic pressure equation. (e) Experimentally, it is often found 

that the virial expansion can be represented as

Π / / 1 2 2c RT M B c gB c= + ′ + ′ ′ +( )…
 

and in good solvents, the parameter g is often about 0.25. With terms beyond 

the second power ignored, obtain an equation for (Π/c)1/2 and plot this 

quantity against c. Determine the second and third virial coefficients from the 

plot and compare to the values from the first plot. Does this plot confirm the 

assumed value of g?

c/(g dm−3) 2.042 6.613 9.521 12.602

h/cm 0.592 1.910 2.750 3.600

c/(mg cm−3) 3.221 4.618 5.112 6.722

h/cm 5.746 8.238 9.119 11.990

c/(mg cm−3) 1.33 2.10 4.52 7.18 9.87

Π/(N m−2) 30 51 132 246 390

10−2(Π/c)/(g cm−2/g cm−3) 2.6 2.9 3.6 4.3 6.0 12.0

c/(g cm−3) 0.0050 0.010 0.020 0.033 0.057 0.10

10−2(Π/c)/(g cm−2/g cm−3) 19.0 31.0 38.0 52 63

c/(g cm−3) 0.145 0.195 0.245 0.27 0.29
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Topic 72 Real solutions

Discussion questions
72.1 Explain what is meant by a regular solution. Discuss how the magnitude 

and sign of the parameter ξ captures various features of real solutions.

72.2 Describe the general features of the Debye–Hückel theory of electrolyte 

solutions. Why is it only a limiting law?

Exercises
72.1(a) The maximum value of the excess enthalpy of mixing of a mixture at  

40 °C is 1.8 kJ mol−1. Identify the value of the parameter ξ in the expression 

that is used to model a regular solution. Can you expect phase separation?

72.1(b) The maximum value of the excess enthalpy of mixing of a mixture  

at 25 °C is 1.4 kJ mol−1. Identify the value of the parameter ξ in the 

expression that is used to model a regular solution. Can you expect phase 

separation?

72.2(a) Substances A and B are both volatile liquids with pA 3* = 00 Torr, 

pB* = 250 Torr, and KB = 200 Torr (concentration expressed in mole fraction). 

When xA = 0.9 and bB = 2.22 mol kg−1, then pA = 250 Torr and pB = 25 Torr. 

Calculate the activities and activity coefficients of A and B. Use the mole 

fraction, Raoult’s law basis system for A and the Henry’s law basis system 

(both mole fractions and molalities) for B.

72.2(b) Given that p*( ) .H O 23 82 = 0 0 0  atm and p(H2O) = 0.02239 atm in 

a solution in which 0.122 kg of a non-volatile solute (M = 241 g mol−1) is 

dissolved in 0.920 kg water at 293 K, calculate the activity and activity 

coefficient of water in the solution.

72.3(a) By measuring the equilibrium between liquid and vapour phases of an 

acetone (A)/methanol (M) solution at 57.2 °C at 1.00 atm, it was found that 

xA = 0.400 (in liquid) when yA = 0.516 (in vapour). Calculate the activities and 

activity coefficients of both components in this solution on the Raoult’s law 

basis. The vapour pressures of the pure components at this temperature are: 

pA 1 5 kPa* = 0  and pM 73 5 kPa* . .=
72.3(b) By measuring the equilibrium between liquid and vapour phases of 

a solution at 30 °C at 1.00 atm, it was found that xA = 0.220 (in liquid) when 

yA = 0.314 (in vapour). Calculate the activities and activity coefficients of both 

components in this solution on the Raoult’s law basis. The vapour pressures of 

the pure components at this temperature are: pA 73  kPa* .= 0  and pB =92 1 kPa* . .

72.4(a) The maximum value of the excess enthalpy of mixing of two liquids 

that form a regular solution at 20 °C is 800 J mol−1. What are the activities of 

the components at that composition?

72.4(b) The maximum value of the excess enthalpy of mixing of two liquids 

that form a regular solution at 30 °C is 1.4 kJ mol−1. What are the activities of 

the components at that composition?

72.5(a) Calculate the ionic strength of a solution that is 0.15 mol kg−1 in 

KCl(aq) and 0.35 mol kg−1 in CuSO4(aq).

72.5(b) Calculate the ionic strength of a solution that is 0.080 mol kg−1 in 

K3[Fe(CN)6](aq), 0.030 mol kg−1 in KCl(aq), and 0.075 mol kg−1 in NaBr(aq).

72.6(a) Calculate the masses of (a) Ca(NO3)2 and, separately, (b) NaCl to add 

to a 0.250 mol kg−1 solution of KNO3(aq) containing 800 g of solvent to raise 

its ionic strength to 0.450.

72.6(b) Calculate the masses of (a) KNO3 and, separately, (b) Ba(NO3)2 to add 

to a 0.150 mol kg−1 solution of KNO3(aq) containing 250 g of solvent to raise 

its ionic strength to 1.00.

72.7(a) Estimate the mean activity coefficient and activity of a solution that is 

5.0 mmol kg−1 CaCl2(aq) and 4.0 mmol kg−1 NaF(aq) at 25 °C.

72.7(b) Estimate the mean activity coefficient and activity of a solution that is 

2.5 mmol kg−1 NaCl(aq) and 5.5 mmol kg−1 Ca(NO3)2(aq) at 25 °C.

72.8(a) The mean activity coefficients of HBr in three dilute aqueous solutions 

at 25 °C are 0.930 (at 5.0 mmol kg−1), 0.907 (at 10.0 mmol kg−1), and 0.879 (at 

20.0 mmol kg−1). Estimate the value of B in the extended Debye–Hückel law.

72.8(b) The mean activity coefficients of KCl in three dilute aqueous solutions 

at 25 °C are 0.927 (at 5.0 mmol kg−1), 0.902 (at 10.0 mmol kg−1), and 0.816 (at 

50.0 mmol kg−1). Estimate the value of B in the extended Debye–Hückel law.

Problems
72.1 The table below lists the vapour pressures of mixtures of iodoethane 

(I) and ethyl acetate (A) at 50 °C. Find the activity coefficients of both 

components on (a) the Raoult’s law basis, (b) the Henry’s law basis with 

iodoethane as solute.

72.2‡ Aminabhavi, et al. examined mixtures of cyclohexane with various 

long-chain alkanes (J. Chem. Eng. Data 41, 526 (1996)). Among their data are 

the following measurements of the density of a mixture of cyclohexane and 

pentadecane as a function of mole fraction of cyclohexane (xc) at 298.15 K:

Fit a polynomial expression to the data (use mathematical software) 

and determine the excess volume of mixing and partial molar volumes, 

VJ = (∂V/∂nJ)p,T, of the components. Plot your results.

72.3‡ Comelli and Francesconi examined mixtures of propionic acid with 

various other organic liquids at 313.15 K (J. Chem. Eng. Data 41, 101 (1996)). 

They report the excess volume of mixing propionic acid with oxane as 

VE = x1x2{a0 + a1(x1 – x2)}, where x1 is the mole fraction of propionic acid, x2 

that of oxane, a0 = –2.4697 cm3 mol−1, and a1 = 0.0608 cm3 mol−1 . The density of 

propionic acid at this temperature is 0.97174 g cm−3; that of oxane is 0.86398 g 

cm−3. (a) Derive an expression for the partial molar volume VJ = (∂V/∂nJ)p,T of 

xI 0 0.0579 0.1095 0.1918 0.2353 0.3718

pI/kPa 0 3.73 7.03 11.7 14.05 20.72

pA/kPa 37.38 35.48 33.64 30.85 29.44 25.05

xI 0.5478 0.6349 0.8253 0.9093 1.0000

pI/kPa 28.44 31.88 39.58 43.00 47.12

pA/kPa 19.23 16.39 8.88 5.09 0

xc 0.6965 0.7988 0.9004

ρ/(g cm−3) 0.7661 0.7674 0.7697
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710 14 Physical equilibria

each component at this temperature. (b) Compute the partial molar volume for 

each component in an equimolar mixture.

72.4‡ Francesconi, et al. studied the liquid–vapour equilibria of 

trichloromethane and 1,2-epoxybutane at several temperatures (J. Chem. Eng. 

Data 41, 310 (1996)). Among their data are the following measurements of 

the mole fractions of trichloromethane in the liquid phase (xT) and the vapour 

phase (yT) at 298.15 K as a function of pressure.

Compute the activity coefficients of both components on the basis of 

Raoult’s law.

72.5 The mean activity coefficients for aqueous solutions of NaCl at 25 °C are 

given below. Confirm that they support the Debye–Hückel limiting law and 

that an improved fit is obtained with the extended law.

72.6 The excess Gibbs energy of a certain binary mixture is equal to  

gRTx(1–x), where g is a constant and x is the mole fraction of a solute A. Find 

an expression for the chemical potential of A in the mixture and sketch its 

dependence on the composition.

72.7 The excess Gibbs energy of mixing of methylcyclohexane (MCH) and 

tetrahydrofuran (THF) at 303.15 K were found to fit the expression

G RTx x x xE 21 4857 1 77 2 1 191 2 1= − − + −( ){ . . ( ) . ( ) }− 0 0 0 0 0  

where x is the mole fraction of the methylcyclohexane. Does this empirical 

expression support the view that the solution is regular? If it is not regular 

over the full range of compositions, is it regular over short regions? Can you 

adjust the regular model to accommodate the data?

72.8 Use the Gibbs–Duhem equation to show that the chemical potential of 

a component B in a binary mixture can be obtained if the chemical potential 

of the second component A is known for all compositions up to the one of 

interest. Do this by proving that

μ μ μ
μ

μ

B
A

A
A

A

A

= − −∫B d*
*

x

x1
 

Go on to formulate a version of this expression for a regular solution in which 

the activity coefficients are represented by the Margules equations and the 

parameter ξ.

72.9 A similar expression to that derived in Problem 72.8 applies to the 

partial molar volume. Use the following data (which are for 298 K) to evaluate 

the integral graphically to find the partial molar volume of propanone in a 

propanone/trichloromethane mixture at x = 0.500.

72.10 The ‘osmotic coefficient’, φ, is defined as φ = –(xA/xB) ln aA. By writing 

r = xB/xA and using the Gibbs–Duhem equation, show that it is possible to 

calculate the activity of B from the activities of A over a composition range by 

using the formula

ln ( )
a

r r
r

r
B d= − + −⎛

⎝⎜
⎞
⎠⎟∫φ φ φ

0
1

0  

72.11 The addition of a small amount of a salt, such as (NH4)2SO4, to a solution 

containing a charged protein increases the solubility of the protein in water. 

This observation is called the salting-in effect. However, the addition of large 

amounts of salt can decrease the solubility of the protein to such an extent that 

the protein precipitates from solution. This observation is called the salting-out 

effect and is used widely by biochemists to isolate and purify proteins. Consider 

the equilibrium PXν(s) � Pν+(aq) + ν X−(aq), where Pν+ is a polycationic protein 

of charge +ν and X− is its counter-ion. Use Le Chatelier’s principle and the 

physical principles behind the Debye–Hückel theory to provide a molecular 

interpretation for the salting-in and salting-out effects. Hint: Le Chatelier’s 

principle should be familiar to you from introductory chemistry.

Integrated activities

F14.1 Plot the vapour pressure data for a mixture of benzene (B) and acetic 

acid (A) given below and plot the vapour pressure–composition curve for 

the mixture at 50 °C. Then confirm that Raoult’s and Henry’s laws are obeyed 

in the appropriate regions. Deduce the activities and activity coefficients of 

the components on the Raoult’s law basis and then, taking B as the solute, its 

activity and activity coefficient on a Henry’s law basis. Finally, evaluate the 

excess Gibbs energy of the mixture over the composition range spanned by 

the data.

F14.2‡ Chen and Lee studied the liquid–vapour equilibria of cyclohexanol 

with several gases at elevated pressures (J.-T. Chen and M.-J. Lee, J. Chem. 

Eng. Data 41, 339 (1996)). Among their data are the following measurements 

of the mole fractions of cyclohexanol in the vapour phase (y) and the liquid 

phase (x) at 393.15 K as a function of pressure.

Determine the Henry’s law constant of CO2 in cyclohexanol, and compute the 

activity coefficient of CO2.

F14.3‡ The following data (x: liquid phase; y: gas phase) have been obtained 

for the liquid–vapour equilibrium compositions of mixtures of nitrogen and 

oxygen at 100 kPa.

b/(mmol kg−1) 1.0 2.0 5.0 10.0 20.0

γ± 0.9649 0.9519 0.9275 0.9024 0.8712

x(CHCl3) 0 0.194 0.385 0.559 0.788 0.889 1.000

Vm/(cm3 mol−1) 73.99 75.29 76.50 77.55 79.08 79.82 80.67

xA 0.0160 0.0439 0.0835 0.1138 0.1714

pA/kPa 0.484 0.967 1.535 1.89 2.45

pB/kPa 35.05 34.29 33.28 32.64 30.90

xA 0.2973 0.3696 0.5834 0.6604 0.8437 0.9931

pA/kPa 3.31 3.83 4.84 5.36 6.76 7.29

pB/kPa 28.16 26.08 20.42 18.01 10.0 0.47

p/bar 10.0 20.0 30.0 40.0 60.0 80.0

ycyc 0.0267 0.0149 0.0112 0.00947 0.00835 0.00921

xcyc 0.9741 0.9464 0.9204 0.892 0.836 0.773

p/kPa 23.40 21.75 20.25 18.75 18.15 20.25 22.50 26.30

x 0 0.129 0.228 0.353 0.511 0.700 0.810 1

y 0 0.065 0.145 0.285 0.535 0.805 0.915 1
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Plot the data on a temperature–composition diagram and determine the 

extent to which it fits the predictions for an ideal solution by calculating the 

activity coefficients of O2 at each composition.

F14.4 Show that the osmotic pressure of a real solution is given by ΠV =  

–RT ln aA. Go on to show that, provided the concentration of the solution is 

low, this expression takes the form ΠV = φ RT[B] and hence that the osmotic 

coefficient, φ, (which is defined in Problem 72.10) may be determined from 

osmometry.

F14.5 Show that the freezing-point depression of a real solution in which the 

solvent of molar mass M has activity aA obeys

d

d

ln Aa

T

M

K f( )Δ = −
 

and use the Gibbs–Duhem equation to show that

d

d

ln B

B

a

T b K f( )Δ = − 1

 

where aB is the solute activity and bB is its molality. Use the Debye–Hückel 

limiting law to show that the osmotic coefficient (φ, Problem 72.10) is given 

by φ = − ′1 1
3

A I  with A′ = 2.303A and I = b/b′.

F14.6‡ Diamond is the hardest substance and the best conductor of heat yet 

characterized. For these reasons, it is used widely in industrial applications 

that require a strong abrasive. Unfortunately, it is difficult to synthesize 

diamond from the more readily available allotropes of carbon, such as 

graphite. To illustrate this point, calculated the pressure required for diamond 

to become thermodynamically more stable than graphite at 25 °C. The 

following data apply to 25 °C and 100 kPa. Assume the specific volume, Vs, 

and κT  are constant with respect to pressure changes.

F14.7 Use the expressions relating the Gibbs energy and entropy of a 

perfect gas to the molecular partition function to show that (a) eqns 64.12b 

and 60.3 are consistent with eqn 69.11, (b) eqn 64.12b is consistent with 

eqn 69.12.

F14.8 Use mathematical software, a spreadsheet, or the Living graphs (labelled 
LG) on the website of this book for the following exercises:

(a)LG Draw graphs of ΔmixG against xA for an ideal solution at different 

temperatures in the range 298 K to 500 K. For what value of xA does ΔmixG 

depend on temperature most strongly?

(b) Determine the value of the osmotic virial coefficient B from the data in 

Exercise 71.1.

(c)LG Refer to the graph in Fig. 72.3, fix ξ, and vary the temperature. For what 

value of xA does the excess enthalpy depend on temperature most strongly?

(d)LG Refer to the graph in Fig. 72.4, fix ξ at 1.5, and vary the temperature. Is 

there a range of temperatures over which you observe phase separation?

(e)LG Plot p pA A/ *  against xA with ξ = 2.5 by using eqn 70.6 and then eqn 72.17. 

Above what value of xA do the values of p pA A/ *  given by these equations differ 

by more than 10 per cent?

(f) Consider the plot of log γ± against I1/2 with B = 1.50 and C = 0 in the Davies 

equation as a representation of experimental data for a certain 1,1 electrolyte. 

Over what range of ionic strengths does the application of the limiting law 

lead to an error in the value of the activity coefficient of less than 10 per cent 

of the value predicted by the extended law?

T/K 77.3 78 80 82 84 86 88 90.2

x(O2) 0 0.10 0.34 0.54 0.70 0.82 0.92 1

y(O2) 0 0.02 0.11 0.22 0.35 0.52 0.73 1

p*(O2)/Torr 154 171 225 294 377 479 601 760

Graphite Diamond

ΔfG
</(kJ mol−1) 0 +2.8678

Vs/(cm3 g−1) 0.444 0.284

κT/kPa−1 3.04 × 10−8 0.187 × 10−8
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Of all the applications of thermodynamics to chemistry, probably the most important is its role in 
the description of chemical equilibrium, including aspects of chemistry that make use of equilibrium 
concepts, such as electrochemistry.

The concept of chemical potential introduced in Physical equilibria plays a central role in the 
description of chemical equilibrium and the establishment of the connection between the Gibbs 
energy (introduced in The Second and Third Laws of thermodynamics) and the equilibrium constant of 
a reaction (Topic 73). In this context, we can envisage chemical equilibrium as the point of balance 
between the ‘pushing powers’, as expressed by their chemical potentials, of the reactants and the 
products. This important discussion establishes the link between the equilibrium constant and ther-
modynamic properties that can be measured calorimetrically.

Deeper insight into the significance of the equilibrium constant comes from setting up the rela-
tion between it and the molecular partition function introduced in the discussion of the Statistical 

thermodynamics (Topic 74). Moreover, because the partition function can be calculated from spec-
troscopic data, we arrive at a way to predict equilibrium constants by using structural data.

Both thermodynamics and the Boltzmann distribution provide routes to predict and understand 
how the value of an equilibrium constant depends on the conditions (Topic 75), which is invaluable 
information for maximizing the yield of a reaction.

Many reactions, particularly but not only redox reactions, can be envisaged as occurring by the 
transfer of electrons. These reactions may often be carried out in an ‘electrochemical cell’, and hence 
the electric potential difference between the electrodes of the cell can be used to monitor the pro-
gress of the reaction towards equilibrium and to determine the concentrations of electroactive spe-
cies (Topic 76). Moreover, by ascribing different contributions to each electrode (Topic 77), data can 
be compiled that enable the equilibrium constants of a wide variety of reactions to be discussed and 
used to decide whether one species can reduce another in solution.

FOCUS 15  ON  Chemical equilibria
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What is the impact of this material?

Spontaneous chemical reactions, those heading for equilibrium, are used to generate power. In 
Impact 15.1 we explore biological power, where chemical reactions taking place in biological cells 
drive the processes that keep organisms alive. In Impact 15.2 we explore fuel cells, the technological 
analogues of biological cells, which generate electrical power to drive the artefacts of civilization.

To read more about the impact of this material, scan the QR code or go to 
http://bcs.whfreeman.com/webpub/chemistry/qmc2e/impact/qchem_
impact15.html.
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TOPIC 73

Chemical transformations

Chemical reactions tend to move towards a dynamic equilib-

rium in which both reactants and products are present but have 

no further tendency to undergo net change. In some cases, 

the concentration of products in the equilibrium mixture is so 

much greater than that of the unchanged reactants that for all 

practical purposes the reaction is ‘complete’. However, in many 

important cases the equilibrium mixture has significant con-

centrations of both reactants and products. In this Topic we see 

how to use thermodynamics to predict the equilibrium compo-

sition under any reaction conditions. Because many reactions 

of ions involve the transfer of electrons, they can be studied 

(and utilized) by allowing them to take place in an electro-

chemical cell. Measurements like those described in this Topic 

provide data that are very useful for discussing the characteris-

tics of electrolyte solutions and of ionic equilibria in solution.

In Topic 64 it is shown that the direction of spontaneous 

change at constant temperature and pressure is towards lower 

values of the Gibbs energy, G. The idea is entirely general, and 

in this Topic we apply it to the discussion of chemical reactions.

73.1 The reaction Gibbs energy

We locate the equilibrium composition of a reaction mixture by 

calculating the Gibbs energy of the reaction mixture and iden-

tifying the composition that corresponds to minimum G.

Consider the reaction A → B. Even though this reaction 

looks trivial, there are many examples of it, such as the isomeri-

zation of pentane to 2-methylbutane and the conversion of 

l-alanine to d-alanine. Suppose an infinitesimal amount dξ 

of A turns into B, then the change in the amount of A present 

Contents

73.1 The reaction Gibbs energy 714

Brief illustration 73.1: The reaction Gibbs energy 715

73.2 The thermodynamic description of  
equilibrium 715

(a) Perfect gas equilibria 716

Brief illustration 73.2: The equilibrium constant 1 716

(b) The general case of a reaction 717

Brief illustration 73.3: The advancement of  

a reaction 717

Brief illustration 73.4: The reaction quotient 717

Brief illustration 73.5: The equilibrium constant 2 718

(c) Calculating equilibrium constants from 
thermodynamic data 718

Example 73.1: Calculating an equilibrium constant 718

(d) Equilibria in biological systems 719

Brief illustration 73.6: The biological equilibrium 

constant 719

73.3 Exergonic and endergonic reactions 719

Brief illustration 73.7: Exergonic reactions 720

Checklist of concepts 720

Checklist of equations 721

 ➤ Why do you need to know this material?
This Topic introduces the crucial link between thermo-
dynamic properties and the chemically important concept 
of the equilibrium constant. Whenever thermodynamic 
arguments are used in the discussion of equilibria, they are 
based on the material described here.

 ➤ What is the key idea?
At constant temperature and pressure, a reaction tends 
to approach the composition corresponding to minimum 
Gibbs energy.

 ➤ What do you need to know already?
You need to know how the Gibbs energy is related to the 
spontaneous direction of change (Topic 64) and be familiar 
with the concept of chemical potential and its relation to 
the activities of species in mixtures (Topics 69, 70, and 72).

Atkins09819.indb   715 9/11/2013   1:06:18 PM



716 15 Chemical equilibria

is dnA = −dξ and the change in the amount of B present is 

dnB = +dξ. The quantity ξ (xi) is called the extent of reaction; 

it has the dimensions of amount of substance and is reported 

in moles. When the extent of reaction changes by a measur-

able amount Δξ, the amount of A present changes from nA,0 to 

nA,0 − Δξ and the amount of B changes from nB,0 to nB,0 + Δξ. So, 

if initially 2.0 mol A is present and we wait until Δξ = +1.5 mol, 

then the amount of A remaining will be 0.5 mol.

The reaction Gibbs energy, ΔrG, is defined as the slope of the 

graph of the Gibbs energy plotted against the extent of reaction 

at constant temperature and pressure:

ΔrG
G

T p

= ∂
∂

⎛
⎝⎜

⎞
⎠⎟ξ

,

 Definition  Reaction Gibbs energy  (73.1)

Although Δ normally signifies a difference in values, here Δr sig-

nifies a derivative, the slope of G with respect to ξ. However, to 

see that there is a close relationship with the normal usage, sup-

pose the reaction advances by dξ. The corresponding change in 

Gibbs energy (at constant temperature and pressure) is

d d d d d ( )dA A B B A B B AG n n= + = − + = −μ μ μ μ μ μξ ξ ξ  

This equation can be reorganized into

∂
∂
G

T p
ξ

⎛
⎝⎜

⎞
⎠⎟

= −
,

μ μB A  

That is,

Δr B AG = −μ μ  (73.2)

We see that ΔrG can also be interpreted as the difference between 

the chemical potentials (the partial molar Gibbs energies) of the 

reactants and products at the composition of the reaction mixture.

Because chemical potential varies with composition, the 

slope of the plot of Gibbs energy against extent of reaction 

changes as the reaction proceeds. Moreover, because the reac-

tion runs in the direction of decreasing G (that is, down the  

slope of G plotted against ξ), we see from eqn 73.2 that 

the reaction A → B is spontaneous when μA > μB, whereas  

the reverse reaction is spontaneous when μB > μA. The slope 

is zero, and the reaction is spontaneous in neither direction, 

when

ΔrG = 0  (73.3)

This condition occurs when μB = μA (Fig. 73.1). It follows that 

if we can find the composition of the reaction mixture that 

ensures μB = μA, then we can identify the composition of the 

reaction mixture at equilibrium.

We can express the spontaneity of a reaction at constant tem-

perature and pressure in terms of the reaction Gibbs energy:

If ΔrG < 0, the forward reaction is spontaneous.

If ΔrG > 0, the reverse reaction is spontaneous.

If ΔrG = 0, the reaction is at equilibrium.

73.2 The thermodynamic description 
of equilibrium

With the background established, we are ready to see how 

to apply thermodynamics to the description of chemical 

equilibrium.

(a) Perfect gas equilibria
When A and B are perfect gases we can use μ = μ<+ RT ln(p/p<) 

(see Justification 70.1 of Topic 70) to write

Brief illustration 73.1 The reaction Gibbs energy

Suppose that in a certain reaction, the Gibbs energy decreases 

by 10 J when the reaction advances by 0.10 mol; the reaction 

Gibbs energy would be

Δr

J

mol
JmolG =

−
=− −

10

0 10
100 1

.
 

At a later stage in the reaction, the Gibbs energy reduces by 

5.0 J for the same advancement; now ΔrG = −50 J mol−1. The 

magnitude of the slope of the Gibbs energy is decreasing as the 

reaction approaches equilibrium.

Self-test 73.1 Beyond the equilibrium composition, when 

there is an excess of products compared to the equilibrium 

composition, two states of a system differ by 10 J for a differ-

ence in advancement of 0.10 mol. What is the reaction Gibbs 

energy now?

Answer: +100 J mol−1

G
ib

b
s 

en
er

g
y,

 G

Extent of reaction, ξ

ΔrG < 0

ΔrG = 0

ΔrG > 0

Figure 73.1 As the reaction advances (represented by motion 
from left to right along the horizontal axis) the slope of the 
Gibbs energy changes. Equilibrium corresponds to zero slope, 
at the foot of the valley.
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73 Chemical transformations  717

Δ

Δ

r B A B B A A

r
B

A

ln / ln /G RT p p RT p p

G RT
p

p

= − = + − +

= +

μ μ μ μ< < < <

<

( ) ( ( ))

ln
 

 (73.4)

where ΔrG
< = μB

<
 − μA

<
. If we denote the ratio of partial pres-

sures by Q, we obtain

Δ Δr r
B

A

G G RT Q Q
p

p
= + =< ln  

(73.5)

The ratio Q is an example of a reaction quotient. It ranges 

from 0 when pB = 0 (corresponding to pure A) to infinity when 

pA = 0 (corresponding to pure B). The standard reaction Gibbs 

energy, ΔrG
<, is defined (like the standard reaction enthalpy) 

as the difference in the standard molar Gibbs energies of the 

reactants and products. For our reaction

Δr B m A mG G G< < <= −, ,
 (73.6a)

In Topic 65 it is shown that the difference in standard molar 

Gibbs energies of the products and reactants is equal to the 

difference in their standard Gibbs energies of formation, so in 

practice we calculate ΔrG
< from

Δ Δ Δr f f (B) AG G G< < <= − ( ) (73.6b)

At equilibrium, ΔrG = 0. The ratio of partial pressures at equi-

librium is denoted K, and eqn 73.5 becomes

0 = +Δr lnG RT K<  

This expression rearranges to

RT K Gln r= −Δ <  (73.7)

This relation is a special case of one of the most important equa-

tions in chemical thermodynamics: it is the link between tables 

of thermodynamic data, such as those in the Resource section, 

and the chemically important equilibrium constant, K.

We see from eqn 73.7 (and in Self-test 73.2) that when 

ΔrG
< > 0, the equilibrium constant K < 1. Therefore, at equi-

librium the partial pressure of A exceeds that of B, which 

means that the reactant A is favoured in the equilibrium. 

When ΔrG
< < 0, the equilibrium constant K > 1 (as in Brief 

illustration 73.2), so at equilibrium the partial pressure of 

B exceeds that of A. Now the product B is favoured in the 

equilibrium.

In molecular terms, the minimum in the Gibbs energy, 

which corresponds to ΔrG = 0, stems from the Gibbs energy of 

mixing of the two gases. Hence, an important contribution to 

the position of chemical equilibrium is the mixing of the prod-

ucts with the reactants as the products are formed.

To appreciate the role of mixing, consider a hypothetical 

reaction in which A molecules at 1 bar change into B molecules 

also at 1 bar without mingling together. The Gibbs energy of 

the system changes from G<(A) to G<(B) in proportion to the 

amount of B that had been formed, and the slope of the plot of 

G against the extent of reaction is a constant and equal to ΔrG
< 

at all stages of the reaction (Fig. 73.2). There is no intermediate 

minimum in the graph. However, in fact the newly produced 

B molecules do mix with the surviving A molecules. The con-

tribution of a mixing process to the change in Gibbs energy is 

Brief illustration 73.2 The equilibrium constant 1

The standard Gibbs energies of formation of gas-phase species 

A and B are −8.20 kJ mol−1 and −12.50 kJ mol−1, respectively (at 

298 K). The standard reaction Gibbs energy for the reaction 

A(g) → B(g) in the gas phase is therefore

Δr
1 1 112 5  kJ mol 8 2  kJ mol 4 3 kJ molG< = − − − = −− − −( . ) ( . ) .0 0 0

It follows from eqn 73.7 that

ln
.

( . ) ( )
.K = −

− ×
×

= + …
−

− −

4 30 10

8 3145 298
1 73

3 1

1 1

Jmol

J K mol K
 

It follows that K = e1.73 = 5.7, so the partial pressure of B is 5.7 

times that of A at equilibrium.

Self-test 73.2 In a similar reaction, the standard Gibbs ener-

gies of formation of A and B are −16.0 kJ mol−1 and −9.7 kJ 

mol−1, respectively, at 298 K. Calculate K.

Answer: 0.079

0

0

G
ib

b
s 

en
er

g
y,

 G

Including
mixing

Without
mixing

Mixing

Extent of reaction, ξ

Figure 73.2 If the mixing of reactants and products is ignored, 
then the Gibbs energy changes linearly from its initial value 
(pure reactants) to its final value (pure products) and the slope 
of the line is ΔrG

< . However, as products are produced, there 
is a further contribution to the Gibbs energy arising from 
their mixing (lowest curve). The sum of the two contributions 
(middle curve) has a minimum. That minimum corresponds to 
the equilibrium composition of the system.
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718 15 Chemical equilibria

given by eqn 70.1 of Topic 70 (ΔmixG = nRT(xA ln xA + xB ln xB)). 

This expression makes a U-shaped contribution to the total 

change in Gibbs energy. As can be seen from Fig. 73.2, there 

is now an intermediate minimum in the Gibbs energy, and its 

position corresponds to the equilibrium composition of the 

reaction mixture.

(b) The general case of a reaction
We can easily extend the argument that led to eqn 73.7 to a gen-

eral reaction. First, we need to generalize the concept of extent 

of reaction.

In Topic 57 it is shown that a chemical reaction, such as  

2 A + B → 3 C + D, can be expressed in the form

0 =∑
J

JJ�  (73.8)

where J denotes the substances and the νJ are the corresponding 

stoichiometric numbers in the chemical equation. In our exam-

ple, these numbers have the values νA = −2, νB = −1, νC = +3, and 

νD = +1; a stoichiometric number is positive for products and 

negative for reactants. We now define ξ so that if it changes by 

dξ, then the change in the amount of any species J is νJdξ.

In the following Justification, we show that the Gibbs energy 

of reaction can always be written

Δ Δr r lnG G RT Q= +<   Reaction Gibbs energy  (73.9)

with the standard reaction Gibbs energy calculated from

Δ Δ

Δ

r

Products

f

Reactants

f

G G

G

< <

<

=

−

∑
∑

�

�

 (73.10a)

or, more formally,

Δ Δr

J

J f JG G< <=∑� ( )  (73.10b)

The reaction quotient, Q, has the form

Q =
activities of products

activities of reactants
 Definition  Reaction quotient  (73.11a)

with each species raised to the power given by its stoichiomet-

ric coefficient. More formally, to write the general expression 

for Q we introduce the symbol Π to denote the product of what 

follows it (just as Σ denotes the sum), and define Q as

Q a=∏
J

J
J�
 (73.11b)

Because reactants have negative stoichiometric numbers, 

they  automatically appear as the denominator when the 

product is written out explicitly. Recall from Table 72.1 that, 

for pure solids and liquids, the activity is 1 under ordinary 

 laboratory conditions, so such substances make no contri-

bution to Q even though they may appear in the chemical 

equation.

Brief illustration 73.3 The advancement of a reaction

In the notation of eqn 73.8, the stoichiometric numbers 

in the equation N2(g) + 3 H2(g) → 2 NH3(g) are �N2
1= − ,  

�H2
3= − ,  and �NH3

2= + . Therefore, if initially 10 mol N2 is 

present, then when the extent of reaction changes from ξ = 0 

to ξ = 1 mol, implying that Δξ = +1 mol, the amount of N2 

changes from 10 mol to 9 mol. All the N2 has been consumed 

when ξ = 10 mol. When Δξ = +1 mol, the amount of H2 changes 

by −3 × (1 mol) = −3 mol and the amount of NH3 changes by 

+2 × (1 mol) = +2 mol.

Self-test 73.3 Consider the reaction 2 H2(g) + O2(g) →  

2 H2O(g). By how much do the amounts of the substances 

change when Δξ = +1 mol?

Answer: H2: −2 mol; O2: −1 mol; H2O: +2 mol

Practical 
implementation

Reaction 
Gibbs 
energy

Brief illustration 73.4 The reaction quotient

Consider the reaction 2 A + 3 B → C + 2 D, in which case 

νA = −2, νB = −3, νC = +1, and νD = +2. The reaction quotient is 

then

Q a a a a
a a

a a
= =− −

A B C D
C D

A B

2 3 1 2
2

2 3
 

Self-test 73.4 Write Q for the reaction A + 2 B → 2 C.

Answer: Q a a a= C A B/2 2

Justification 73.1 The dependence of the reaction Gibbs 
energy on the reaction quotient

Consider a reaction with stoichiometric numbers νJ. When 

the reaction advances by dξ, the amounts of reactants and 

products change by dnJ = νJdξ. The resulting infinitesimal 

change in the Gibbs energy at constant temperature and pres-

sure is

d d d d

J

J J

J

J J

J

J JG n= = =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑ ∑ ∑μ μ μ� �ξ ξ
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73 Chemical transformations  719

Now we conclude the argument based on eqn 73.9. At equi-

librium, the slope of G is zero: ΔrG = 0. The activities then have 

their equilibrium values and we can write

K Q a= =
⎛

⎝
⎜

⎞

⎠
⎟∏equilibrium

J

J

equilibrium

J�
 (73.12)

This expression has the same form as for Q, eqn 73.11, but is 

evaluated using equilibrium activities. From now on, we shall 

not write the ‘equilibrium’ subscript explicitly, and will rely 

on the context to make it clear that for K we use equilibrium 

values and for Q we use the values at the specified stage of the 

reaction.

An equilibrium constant K expressed in terms of activi-

ties is called a thermodynamic equilibrium constant. Note 

that, because activities are dimensionless numbers, the ther-

modynamic equilibrium constant is also dimensionless. In 

elementary applications, the activities that occur in eqn 73.12 

are often replaced by the numerical values of molalities (that 

is, by replacing aJ by bJ/b
<, where b< = 1 mol kg−1), molar con-

centrations (that is, as [J]/c<, where c< = 1 mol dm−3), or partial 

pressures (that is, by pJ/p
<, where p< = 1 bar). In each case, the 

resulting expressions are only approximations. The approxima-

tion is particularly severe for electrolyte solutions, for in them 

activity coefficients differ from 1 even in very dilute solutions 

(Topic 72).

(c) Calculating equilibrium constants 
from thermodynamic data
If we set ΔrG = 0 in eqn 73.9 and replace Q by K, then we imme-

diately obtain

RT K Gln r= −Δ <   K from thermodynamic data  (73.13)

as in eqn 73.7 for perfect-gas equilibria. This is an exact and 

highly important thermodynamic relation, for it enables us to 

predict the equilibrium constant of any reaction from tables 

of thermodynamic data, and hence to predict the equilibrium 

composition of the reaction mixture.

Example 73.1 Calculating an equilibrium constant

Calculate the equilibrium constant for the ammonia synthesis 

reaction, N2(g) + 3 H2(g) � 2 NH3(g), at 298 K and show how 

K is related to the partial pressures of the species at equilib-

rium when the overall pressure is low enough for the gases to 

be treated as perfect.

Method Calculate the standard reaction Gibbs energy from 

eqn 73.10 and convert it to the value of the equilibrium con-

stant by using eqn 73.13. The expression for the equilibrium 

constant is obtained from eqn 73.12, and, because the gases 

are taken to be perfect, replace each activity by the ratio p/p < , 

where p is a partial pressure.

Answer The standard Gibbs energy of the reaction is

Δ Δ Δ Δ
Δ

r f 3 f 2 f 2

f 3

2 (NH g) (N g) 3 N g

(NH g) 2

G G G G

G

< < < <

<

= − +
= ×

, { , ( , )}

,=2 (( . )− −16 5kJmol 1
 

Brief illustration 73.5 The equilibrium constant 2

The equilibrium constant for the heterogeneous equilibrium 

CaCO3(s) � CaO(s) + CO2(g) is

K a a a
a a

a
= =−

CaCO s CaO s CO g
CaO s CO g

CaCO s
3 2

2

3

1
( ) ( ) ( )

( ) ( )

( )

1

1




��� 	��
= ≈a p pCO g CO /

2 2( )
<

 

where the activities of CaO(s) and CaCO3(s) are set to 1 

because each substance appears in the reaction as a separate, 

pure phase. The approximation depends on being able to treat 

carbon dioxide as a perfect gas. We can conclude that in this 

case the equilibrium constant is the numerical value of the 

decomposition vapour pressure of calcium carbonate.

Self-test 73.5 Write the expression for the equilibrium con-

stant of the reaction 2 H2(g) + O2(g) � 2 H2O(l).

Answer: K a a p p p= ≈1
2 2 2 2

2 3 2/ /
H O H O

<

It follows that

Δr

J

J JG
G

T p

= ⎛
⎝⎜

⎞
⎠⎟

=∑∂
∂ξ

,

� μ
 

To make further progress, we note that the chemical potential 

of a species J is related to its activity by eqn 72.8 ( μ μJ J= +< RT  ×  
ln aJ; see also Table 72.1). When this expression is substituted 

into the preceding equation we obtain

Δ

Δ

Δ

r

J

J J J

J

J J

J

J J

r

J

G RT a RT a

G RT

= + = +

= +

∑ ∑ ∑

∑

� � �( )ln lnμ μ< <

<

<
rG� �� ��

lln ln

ln

a G RT a

G RT Q

J r

J

J

r

J J� �= +

= +

∏Δ

Δ

<

<

Q���

 

with Q given by eqn 73.11b. We have used the relations

a x x x xa

i

i

i

iln ln ln ln= =
⎛

⎝
⎜

⎞

⎠
⎟∑ ∏

+ +…
…

ln ln
ln

a b
ab

��� ��
� �� �� 

 

Definition
Equilibrium 
constant
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720 15 Chemical equilibria

We can also express the thermodynamic equilibrium con-

stant in terms of the mole fractions, xJ, or molalities, bJ, of the 

species. To do so, we need to know the activity coefficients, and 

then use aJ = γJxJ or aJ = γJbJ/b
< (recalling that the activity coef-

ficients depend on the choice). For example, in the latter case, 

for an equilibrium of the form A + B � C + D, where all four 

species are solutes, we write

K
a a

a a

b b

b b
K Kb= = × =C D

A B

C D

A B

C D

A B

γ γ
γ γ γ  (73.14)

The activity coefficients must be evaluated at the equilibrium 

composition of the mixture (for instance, by using one of the 

Debye–Hückel expressions, Topic 72), which may involve a 

complicated calculation, because the activity coefficients are 

known only if the equilibrium composition is already known. 

In elementary applications, and to begin the iterative calcula-

tion of the concentrations in a real example, the assumption is 

often made that the activity coefficients are all so close to unity 

that Kγ  = 1. Then we obtain the result widely used in elementary 

chemistry that K ≈ Kb, and equilibria are discussed in terms of 

molalities (or molar concentrations) themselves.

(d) Equilibria in biological systems
For biological systems it is appropriate to adopt the biologi-

cal standard state (as indicated by the superscript ⊕), in which 

aH
+ = 10−7 and pH = −log aH

+ = 7. It follows from eqn 73.9 that 

the relation between the thermodynamic and biological stand-

ard Gibbs energies of reaction for a reaction of the form

A H aq P+ →+� ( )  (73.15a)

is

Δ Δr r 7 ln 1G G RT⊕ = +< � 0  (73.15b)

Note that there is no difference between the two standard val-

ues if hydrogen ions are not involved in the reaction (ν = 0).

73.3 Exergonic and endergonic 
reactions

A reaction for which ΔrG < 0 is called exergonic (from the Greek 

words for ‘work producing’). The name signifies that, because 

the process is spontaneous, it can be used to drive another pro-

cess, such as another reaction, or used to do non-expansion 

work. A simple mechanical analogy is a pair of weights joined 

by a string (Fig. 73.3): the lighter of the pair of weights will be 

pulled up as the heavier weight falls down. Although the lighter 

weight has a natural tendency to move downward, its coupling 

to the heavier weight results in it being raised. In biological 

cells, the oxidations of carbohydrates act as the heavy weights 

Brief illustration 73.6 The biological equilibrium 
constant

Consider the reaction

NADH(aq)  H aq NAD (aq)  H g2+ → ++ +( ) ( )  

at 37 °C, for which ΔrG
< = −21.8 kJ mol−1; NADH is the reduced 

form of nicotinamide adenine dinucleotide and NAD+ is its 

oxidized form; the molecules play an important role in the 

later stages of the respiratory process. It follows that because 

ν = 1 and 7 ln10 = 16.1,

Δr
1 3 1 121 8kJmol 16 1 8 3145 1 kJK mol

31 K 19

G⊕ − − − −=− + × ×
× =+

. . ( . )

( ) .

0

0 77 kJmol 1−

Note that the biological standard value is opposite in sign 

(in this example) to the thermodynamic standard value: the 

much lower concentration of hydronium ions (by seven orders 

of magnitude) at pH = 7 in place of pH = 0 has resulted in the 

reverse reaction becoming spontaneous under these bio-

logically standard conditions (with all other species at unit 

activity).

Self-test 73.7 For a particular reaction of the form A → B +  

2 H+ in aqueous solution, it was found that ΔrG
< = +20 kJ mol−1 

at 28 °C. Estimate the value of ΔrG
⊕.

Answer: −61 kJ mol−1

Then,

ln
( . )

( . ) ( )

.
K = −

× − ×
×

= × ×−

− −

2 16 5 10

8 3145 298

2 16 5 103 1

1 1

Jmol

JK mol K

33

8 3145 298
13 3

.
.× = …

 

Hence, K = 6.1 × 105. This result is thermodynamically exact. 

The thermodynamic equilibrium constant for the reaction is

K
a

a a
= NH

N H

3

2 2

2

3

 

and this ratio has exactly the value we have just calculated. 

At low overall pressures, the activities can be replaced by the 

ratios p/p < , where p is a partial pressure, and an approximate 

form of the equilibrium constant is

K
p p

p p p p

p p

p p
≈ =

( )

( )( )
NH

N H

NH

N H

/

/ /
3

2 2

3

2 2

2

3

2 2

3

<

< <

<

Self-test 73.6 Evaluate the equilibrium constant for N2O4(g) � 

2 NO2(g) at 298 K.

Answer: K = 0.15
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73 Chemical transformations  721

that drive other reactions forward and result in the formation 

of proteins from amino acids, muscle contraction, and brain 

activity. A reaction for which ΔrG > 0 is called endergonic (sig-

nifying ‘work consuming’). The reaction can be made to occur 

only by doing work on it, such as electrolysing water to reverse 

its spontaneous formation reaction.

In view of its exergonicity, as described in the preceding Brief 

illustration, the ADP–phosphate bond has been called a ‘high-

energy phosphate bond’. The name is intended to signify a high 

tendency to undergo reaction, and should not be confused with 

‘strong’ bond. In fact, even in the biological sense it is not of very 

‘high energy’. The action of ATP depends on it being intermedi-

ate in activity. Thus ATP acts as a phosphate donor to a number of 

acceptors (for example, glucose), but is recharged by more pow-

erful phosphate donors in a number of biochemical processes.

Checklist of concepts

☐ 1. The extent of reaction is defined such that, when it 

changes by dξ, the amount of J present in a reaction 

mixture changes by νJdξ.

☐ 2. The reaction Gibbs energy, ΔrG, is the slope of the 

graph of the Gibbs energy plotted against the extent of 

reaction at constant temperature and pressure.

☐ 3. If ΔrG < 0, the forward reaction is spontaneous; if 

ΔrG > 0, the reverse reaction is spontaneous; if ΔrG = 0, 

the reaction is at equilibrium.

☐ 4. A natural measure of the composition of a reaction 

measure is the reaction quotient, Q.

☐ 5. The (thermodynamic) equilibrium constant, K, of a 

reaction is the value of Q at equilibrium.

☐ 6. The standard reaction Gibbs energy, ΔrG
< , is the dif-

ference in the standard molar Gibbs energies of the 

reactants and products.

☐ 7. A reaction for which ΔrG < 0 is exergonic; a reaction for 

which ΔrG > 0 is endergonic.

Brief illustration 73.7 Exergonic reactions

In biological cells, the energy released by the oxidation of 

foods is stored in adenosine triphosphate (ATP, 1). The essence 

of the action of ATP is its ability to lose its terminal phos-

phate group by hydrolysis and to form adenosine diphosphate 

(ADP):

ATP(aq)  H O(l) ADP(aq)  P (aq)  H O aq2 i 3+ → + +− +( )  

where Pi
−  denotes an inorganic phosphate group, such as 

H PO2 4
− . The biological standard values for ATP hydrolysis 

at 37 °C (310 K, blood temperature) are ΔrG
⊕ = −31 kJ mol−1, 

ΔrH
⊕ = −20 kJ mol−1, and ΔrS

⊕ = +34 J K−1 mol−1. The hydrolysis 

is therefore exergonic (ΔrG < 0) under these conditions and 

31 kJ mol−1 is available for driving other reactions, such as 

the strongly endergonic biosynthesis of proteins from amino 

acids. Moreover, because the reaction entropy is large, the 

reaction Gibbs energy is sensitive to temperature.

OHHO

ONN

H2N
N

N

P O
O

HO

OH

O
P

O

OH

O
P
O

OH

1 ATP

Self-test 73.8 At blood temperature, ΔrG
⊕ = −147 kJ mol−1 for 

the oxidation of glucose by NAD+ to pyruvate ions. This oxi-

dation is coupled to the conversion of two ADP molecules to 

two ATP molecules. What is the value of ΔrG
⊕ for the overall 

reaction? Is the overall reaction spontaneous?

Answer: −85 kJ mol−1; yes

Figure 73.3 If two weights are coupled as shown here, 
then the heavier weight will move the lighter weight in its  
non-spontaneous direction: overall, the process is still 
spontaneous. The weights are the analogues of two chemical 
reactions: a reaction with a large negative ΔG can force another 
reaction with a positive or smaller negative ΔG to run in its non-
spontaneous direction.
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722 15 Chemical equilibria

Checklist of equations

Property Equation Comment Equation number

Reaction Gibbs energy ΔrG = (∂G/∂ξ)T,p Definition 73.1

Chemical reaction 0 = ∑
J

JJ� Formal structure 73.8

Reaction Gibbs energy ΔrG = ΔrG
< + RT ln Q General stage of reaction 73.9

Standard reaction Gibbs energy Δ Δr
J

J f JG G< <= ∑ � ( ) Practical implementation 73.10a

Reaction quotient Q a= ∏
J

J
J�

Definition 73.10b

Equilibrium constant K Q a= = ∏
⎛
⎝⎜

⎞
⎠⎟equilibrium

J
J

equilibrium

J�
Definition 73.12

Thermodynamic connection RT ln K = −ΔrG
< 73.13

Biological standard value ΔrG
⊕ = ΔrG

< + 7νRT ln 10 A + ν H+(aq) → P 73.15b
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TOPIC 74

The statistical description 

of equilibrium

The Gibbs energy of a gas of independent molecules is given by 

eqn 64.12b of Topic 64 (G = G(0) − nRT ln q/N, with N = nNA). 

The equilibrium constant K of a reaction is related to the 

standard Gibbs energy of reaction by eqn 73.13 of Topic 73 

(ΔrG
< = −RT ln K). It follows that we should be able to com-

bine these two equations to calculate the equilibrium constant. 

We shall consider gas-phase reactions in which the equilibrium 

constant is expressed in terms of the partial pressures of the 

reactants and products.

74.1 The relation between K and the 
partition function

To find an expression for the standard reaction Gibbs energy in 

terms of partition functions we need expressions for the stand-

ard molar Gibbs energies, G</n, of each species J:

G G RT
nNm m

A

/
/

J J< <
<

< <

<

( ) ( ), ln

G n G n
N


 ��� �� 


= −0

(0)/

q

q

 
(74.1)

It will prove convenient in this Topic to define the molar par-

tition function as qm = q/n; its units are mol−1. In particular, 

we shall need the value of the molar partition function when 

p = p< (where p< = 1 bar): we denote the resulting standard 

molar partition function q m
< . For a species J it follows that

G G RT
Nm m
m

A

J J
J< <

<

( ) ( ), ln
( )= −0

q

The molar partition function has the form given by eqn 52.6 of 

Topic 52, which we repeat here:

q
q q q q

q q q q q q

m

T R V E

R V E R V E m/

=

=

n

V n V=
Λ Λ3 3

 

 Molar partition function  (74.3)
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equilibrium constant 727
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 ➤ Why do you need to know this material?

The equilibrium constant provides an important link 
between thermodynamic and chemically significant 
quantities; this Topic shows how to extend that link to relate 
the equilibrium constant to structural and spectroscopic 
data.

 ➤ What is the key idea?
The equilibrium constant can be expressed in terms of the 
molecular partition function.

 ➤ What do you need to know already?
You need to know the significance of the molecular partition 
function and how to calculate it from structural data (Topic 
52). You also need to know how the molecular partition 
function is related to the Gibbs energy of a substance (Topic 
64) and how the thermodynamic equilibrium constant is 
related to the standard reaction Gibbs energy (Topic 73).

Standard molar 
Gibbs energy (74.2)
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724 15 Chemical equilibria

with Λ = h/(2πmkT)1/2 (eqn 52.7b). Because only the transla-

tional component depends on the pressure, q m
<  is found by 

evaluating the partition function with Vm replaced by Vm
< ,  

where V RT pm /< <= .

By combining expressions like eqn 74.2 (as shown in the fol-

lowing Justification), the equilibrium constant for the reaction 

a A + b B → c C + d D is given by the expression

K
N N

N N

c d

a b
E R=

{ } { }
{ } { }

−
q q

q q

m A m A

m A m A

/
C / D /

A / B /
e r

< <

< <

( ) ( )

( ) ( )

Δ 0 TT

 

 K in terms of q  (74.4a)

where ΔrE0 is the difference in molar energies of the ground 

states of the products and reactants (this term is defined more 

precisely in the Justification), and is calculated from the bond 

dissociation energies of the species (Fig. 74.1). More formally 

and generally, in terms of the stoichiometric numbers, we write 

this relation as

K
N

E RT= −

J

m

A

/
J

e
J

r∏⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

q < ( )
�

Δ 0

 

(74.4b)

Although these expressions might look formidable, their form 

resembles those given for K in Topic 73 ( )K a= ∏
J

J
J�

 with aJ 

replaced by qm AJ /< ( ) N  and an additional exponential factor.

We shall illustrate the application of eqn 74.4 to an equilib-

rium in which a diatomic molecule X2 dissociates into its atoms 

in the gas phase, with all gases treated as perfect:

X g X(g)
/

/
X

X

X

X
2

2 2

2
2 2

( )
( )

� K
p p

p p

p

p p
=

<

< <
=

 

According to eqn 74.4,

K
N

N N
E RT E R=

{ }
= −

q
q

q
q

m A

m A

/ m

m A

/
X /

X /
e

X

X
r r

<

<

<

<

( )

( )

( )

( )

2

2

2

2

0 0−Δ Δe TT

 

(74.5a)

with

Δ r m m 22 X X X XE E E D0 0= − = −( ) ( ) ( )
 

(74.5b)

where D0(X–X) is the (molar) dissociation energy of the 

X–X  bond. The standard molar partition functions of the 

atoms X are

q m e
m eX X
X

X

X
<

<

<
( ) ( )

( )

( ) ( )
= =g

V g RT

pΛ Λ3 3

Justification 74.1 The equilibrium constant in terms  
of the partition function 1

The standard molar reaction Gibbs energy for the reaction is

Δr

J

J m

J

J m
m

A

J

J m

J

J
J

J

G G

G RT
N

G

< <

<
<

<

=

−

∑

∑

∑

=
⎧
⎨
⎩

⎫
⎬
⎭

=

�

�

�

( )

, ln
( )

,

( )

(

0
q

00) ln
( )− RT

N
J

J
m

A

J∑�
q <

Because G Um mJ J<( , ) ( , )0 0=  and at T = 0 only the ground state 

of a species is accessible, G Em mJ J<( , ) ( ),0 =  the molar ground-

state energy of J. The first term on the right is therefore

J

J m

J

J m rJ J∑ ∑=� �G E E<( ), ( )0 0= Δ

The second term on the right is

RT
N

RT
N

RT

J

J
m

A
J

m

A

J J
J

∑ ∑ ⎛
⎝⎜

⎞
⎠⎟

=

+

�

�

ln
( )

ln
( )q q< <

=

+ …ln lna b� ��� ���

lln
( )

J

m

A

J
J

∏⎛
⎝⎜

⎞
⎠⎟

q <

N

�

lnab…� ��� ���

Now we can write

Δ Δ

Δ

r r

J

m

A

r

J

m

A

J

J

J

G E RT
N

RT
E

RT N

<
<

<

= −

= − − +

0

0

ln
( )

ln
( )

∏

∏

⎛
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⎞
⎠⎟

⎛
⎝

q
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⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

�J

At this stage we can pick out an expression for K by comparing 

this equation with ΔrG
< = −RT ln K, which gives

ln ln
( )

K
E

RT N
=

⎛
⎝⎜

⎞
⎠⎟∏− +Δr

J

m

A

J
J

0 q <
�

This expression is easily rearranged into eqn 74.4 by forming 

the exponential of both sides.

D0(reactants)
D0(products)

ΔrE0

Figure 74.1 The definition of ΔrE0 for the calculation of 
equilibrium constants.
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74 The statistical description of equilibrium  725

where ge(X) is the degeneracy of the electronic ground state 

of X. The diatomic molecule X2 also has rotational and vibra-

tional degrees of freedom, so its standard molar partition 

function is

q q q

q q

m e
R V m

e
R V

X X X X
X

X X X

<
<

<

( ) ( ) ( ) ( )

( ) ( ) ( )

( )2 2 2 2
2

3

2 2 2

= g
V

g RT

p

Λ

=
ΛΛ( )X2

3

where ge(X2) is the degeneracy of the electronic ground state 

of X2. It follows from eqn 74.5 that the equilibrium constant is

K
kT

p

g

g
= ×

<

e

e
V R

X

X X X

X

X

( )

( ) ( ) ( )

( )

( )

2

2 2 2

2

2

1⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
q q

Λ
Λ ⎠⎠⎟

3

0e X X /− −D RT( )

 (74.6)

(We have used R/NA = k.) All the quantities in this expres-

sion can be calculated from spectroscopic data. Expressions 

for the Λs, the thermal wavelengths of the species, are given 

in eqn 52.7b of Topic 52 (Λ = h/(2πmkT)1/2) and depend on 

the masses of the species and the temperature; the expres-

sions for the rotational and vibrational partition functions are 

also available in Topic 52 as eqns 52.13–52.15 (q R /= kT hcBσ �  

for linear molecules and q V / e= − −1 1( )β hc�� ) and depend on 

the rotational constant and vibrational wavenumber of the 

molecule.

74.2 Contributions to the equilibrium 
constant

We are now in a position to appreciate the physical basis of equi-

librium constants. To see what is involved, consider a simple 

R � P gas-phase equilibrium (R for reactants, P for products).

Figure 74.2 shows two sets of energy levels; one set of states 

belongs to R, and the other belongs to P. The populations of the 

states are given by the Boltzmann distribution, and are inde-

pendent of whether any given state happens to belong to R or 

to P. We can therefore imagine a single Boltzmann distribution 

spreading, without distinction, over the two sets of states. If the 

spacings of R and P are similar (as in Fig. 74.2), and P lies above 

R, the diagram indicates that R will dominate in the equilib-

rium mixture. However, if P has a high density of states (a large 

number of states in a given energy range, as in Fig. 74.3), then 

even though its zero-point energy lies above that of R, the spe-

cies P might still dominate at equilibrium.

R

P

ΔrE0

Figure 74.2 The array of R(eactants) and P(roducts) energy 
levels. At equilibrium all are accessible (to differing extents, 
depending on the temperature), and the equilibrium compo-
sition of the system reflects the overall Boltzmann distribution of 
populations. As ΔrE0 increases, R becomes dominant.

Then, from eqn 74.6,

K =
× ×( )

×

× × ×
× −

( . )

.

.

(

1 381 10 1000

10
2

1

2246 4 885

8 14 10

23 1

5
2

12

− −J K K

m

111 5 10 12 2

3

8 47

. )

.

.

×
×

=

−
−

m
e

2 47

⎛
⎝⎜

⎞
⎠⎟

…

We have used 1 J = 1 kg m2 s−2 and 1 Pa = 1 kg m−1 s−1.

Self-test 74.1 Evaluate K at 1500 K.

Answer: 52

Example 74.1 Calculating an equilibrium constant

Calculation is sometimes the only way to arrive at the value 

of an equilibrium constant, for experimental values are often 

not available. Evaluate the equilibrium constant for the dis-

sociation Na2(g) → 2 Na(g) at 1000 K from the following data: 
� �B = =− −0. , . ,1547 cm 159 2 cm1 1�  D0 = 70.4 kJ mol−1. The Na 

atoms have doublet ground terms.

Method The partition functions required are specified in eqn 

74.6. They are evaluated by using the expressions in Topic 52 

quoted above. For a homonuclear diatomic molecule, σ = 2. In 

the evaluation of kT/p < use p < = 105 Pa and 1 Pa m3 = 1 J.

Answer The partition functions and other quantities required 

are as follows:

Λ(Na2) = 8.14 pm Λ(Na) = 11.5 pm

q R(Na2) = 2246 qV(Na2) = 4.885

g(Na) = 2 g(Na2) = 1      D0/RT = 8.47…
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726 15 Chemical equilibria

It is quite easy to show (see the Justification below) that the 

ratio of numbers of R and P molecules at equilibrium is given by

N

N
E RTP

R

P

R

/e r= q
q

−Δ 0

 

(74.7a)

and therefore that the equilibrium constant for the reaction is

K E RT= q
q

P

R

/e r−Δ 0

 
(74.7b)

just as would be obtained from eqn 74.4. For an R � P equi-

librium, the V factors in the partition functions cancel, so the 

appearance of q in place of q< has no effect. In the case of a 

more general reaction, the conversion from q to q< comes 

about at the stage of converting the pressures that occur in K to 

numbers of molecules.

The content of eqn 74.7 can be seen most clearly by exag-

gerating the molecular features that contribute to it. We shall 

suppose that R has only a single accessible level, which implies 

that qR = 1. We also suppose that P has a large number of evenly, 

closely spaced levels (Fig. 74.4). The partition function of P is 

then qP = kT/ε (see Topic 52). In this model system, the equilib-

rium constant is

K
kT E RT= −

ε
e r /Δ 0

 
(74.8)

When ΔrE0 is very large, the exponential term dominates and  

K � 1, which implies that very little P is present at equilibrium. Justification 74.2 The equilibrium constant in terms 
of the partition function 2

The population in a state i of the composite (R,P) system is

n
N

i

i

=
−e βε

q

where N is the total number of molecules and q is the parti-

tion function for the composite system. The total number of R 

molecules is the sum of these populations taken over the states 

belonging to R; these states we label r with energies εr. The 

total number of P molecules is the sum over the states belong-

ing to P; these states we label P with energies ′ε p  (the prime is 

explained in a moment):

N n
N

N n
N

r p

p

p

r p

R Pe e= = − −

r

r∑ ∑ ∑ ∑= = ′
q q

βε βε

The sum over the states of R is its partition function, qR, so

N
N

R
R=

q
q

The sum over the states of P is also a partition function, but 

the energies are measured from the ground state of the com-

bined system, which is the ground state of R. However, because 

′ +ε ε εp p= Δ 0  where Δε0 is the separation of zero-point energies,

N
N N N

p p

E RTp p

P
P /e e e e= =

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟∑ ∑− − − −

q q
q
q

β ε ε βε β ε( )+ =Δ Δ Δ0 0 0

The switch from Δε0/k to ΔrE0/R in the last step is the conversion 

of molecular energies to molar energies: E0 = NAε and R = NAk.

The equilibrium constant of the R � P reaction is propor-

tional to the ratio of the numbers of the two types of molecule. 

Therefore,

K
N

N
E RT= =P

R

P

R

/e r

q
q

−Δ 0

as in eqn 74.7b.

R

P

ΔrE0

ε

Figure 74.4 The model used in the text for exploring the 
effects of energy separations and densities of states on 
equilibria. The products P can dominate provided ΔrE0 is not 
too large and P has an appreciable density of states.

P

ΔrE0

R

Figure 74.3 It is important to take into account the densities 
of states of the molecules. Even though P might lie above R in 
energy (that is, ΔrE0 is positive), P might have so many states 
that its total population dominates in the mixture. In classical 
thermodynamic terms, we have to take entropies into account 
as well as enthalpies when considering equilibria.
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74 The statistical description of equilibrium  727

When ΔrE0 is small but still positive, K can exceed 1 because the 

factor kT/ε may be large enough to overcome the small size of 

the exponential term. The size of K then reflects the predomi-

nance of P at equilibrium on account of its high density of states.

The model also shows why the Gibbs energy, G, and not 

just the enthalpy, determines the position of equilibrium. 

It shows that the density of states (and hence the entropy) of 

each species as well as their relative energies controls the dis-

tribution of populations and hence the value of the equilibrium 

constant. This competition is mirrored in eqn 73.13 of Topic 

73 (ΔrG
< = −RT ln K), as can be seen most clearly by using 

ΔrG
<  = ΔrH

< − TΔrS
<  and writing it in the form

K H RT S R= e er r/ /−Δ Δ< <

 (74.9)

Note that a positive reaction enthalpy results in a lowering of 

the equilibrium constant (that is, an endothermic reaction can 

be expected to have an equilibrium composition that favours 

the reactants). However, if there is positive reaction entropy, 

then the equilibrium composition may favour products, 

despite the endothermic character of the reaction.

Brief illustration 74.1 Interpretation of the equilibrium 
constant

Suppose P has an array of energy levels separated by 1.00 cm−1 

beginning 1000 cm−1 above the single state of R. The equilib-

rium constant of the system at 25 °C is calculated, with wave-

numbers converted to energies, by writing

kT kT

hcε =

=
−

−

��
( . )

( . ) .

1 381 10 298

6 626 10 2 998

23 1

34

× ×( )
× ×( ×

− J K K

J s 110 1 00

207

10 1 1

0 0 0

cm s cm

r r r

− )

=

×
=

=

−( . )

Δ Δ ΔE

RT kT

hc

kT

ε ��

=
× ×

×

− − −

−

( . ) . ( )

( .

6 626 10 2 998 10 1000

1 381 10

34 10 1 1

23

J s cms cm

J

×( × )
KK K

 4 82

− ×
= …

1 298) ( )

.

Therefore,

K = × =207 1 74 82e− …. .

and products are more abundant than reactants, despite lying 

at a higher energy.

Self-test 74.2 For the same separation of ground states, what 

separation of energy levels of P (expressed as a wavenumber) 

would correspond to K = 1?

Answer: 1.66 cm−1

Checklist of concepts

☐ 1. The equilibrium constant can be expressed in terms of 

the standard molar partition functions of the reactants 

and products.

☐ 2. The density of states (and hence the entropy) of each 

species as well as their relative energies controls the dis-

tribution of populations and hence the value of the equi-

librium constant.

Checklist of equations

Property Equation Comment Equation number

Standard molar Gibbs energy G G RT Nm m m AJ J J /< < <( ) , ln( ( ) )( )= −0 q Independent molecules, qm = q/n 74.2

Equilibrium constant K N E RT= ⎧
⎨
⎩

⎫
⎬
⎭

−Π Δ
J

m A
/J / eJ r( ( ) )q < � 0 Independent molecules 74.4b
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TOPIC 75

The response of equilibria  

to the conditions

Equilibria respond to changes in pressure, temperature, and 

concentrations of reactants and products. The equilibrium 

constant for a reaction is not affected by the presence of a cata-

lyst or an enzyme (a biological catalyst). Catalysts increase the 

rate at which equilibrium is attained but do not affect its posi-

tion. However, it is important to note that in industry reactions 

rarely reach equilibrium, partly on account of the rates at which 

reactants mix.

75.1 The response of equilibria  
to pressure

The thermodynamic equilibrium constant depends on the 

value of ΔrG
<, which is defined at a single, standard pressure 

(Topic 65). The value of ΔrG
<, and hence of K, is therefore 

independent of the pressure at which the equilibrium is actu-

ally established. Formally we may express this independence as

∂
∂

⎛
⎝⎜

⎞
⎠⎟

=K

p
T

0   K independent of p   (75.1)

The conclusion that K is independent of pressure does not 

necessarily mean that the equilibrium composition is inde-

pendent of the pressure, and its effect depends on how the pres-

sure is changed. The pressure within a reaction vessel can be 

increased by injecting an inert gas into it. However, so long as 

the gases are perfect, this addition of gas leaves all the partial 

pressures of the reacting gases unchanged: the partial pressure 

of a perfect gas is the pressure it would exert if it were alone in 

the container, so the presence of another gas has no effect. It fol-

lows that pressurization by the addition of an inert gas has no 

effect on the equilibrium composition of the system (provided 

the gases are perfect). Alternatively, the pressure of the system 

may be increased by confining the gases to a smaller volume 

(that is, by compression). Now the individual partial pressures 

Contents

75.1 The response of equilibria to pressure 728

Brief illustration 75.1: The effect of compression 729

75.2 The response of equilibria to temperature 730

(a) The van ’t Hoff equation 730

Example 75.1: Measuring a reaction enthalpy 731

(b) The value of K at different temperatures 731

Brief illustration 75.2: The temperature  

dependence of K 732

Checklist of concepts 732

Checklist of equations 732

 ➤ Why do you need to know this material?
Chemists and chemical engineers often need to know 
whether the yield of a reaction that reaches equilibrium 
can be improved by changing the conditions, such as 
the temperature or the pressure. The thermodynamic 
arguments presented here let us make predictions about 
these questions.

 ➤ What is the key idea?
A system at equilibrium, when subjected to a disturbance, 
responds in a way that tends to minimize the effect of the 
disturbance.

 ➤ What do you need to know already?
This material develops the discussion of the thermodynamic 
description of chemical equilibrium (Topic 73). It uses a 
result (the Gibbs–Helmholtz equation) derived in Topic 66. 
Some of the explanation draws on the discussion of the 
statistical basis of the equilibrium constant (Topic 74), but 
only qualitatively.
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75 The response of equilibria to the conditions  729

are changed but their ratio (as it appears in the equilibrium 

constant) remains the same. Consider, for instance, the perfect 

gas equilibrium A � 2 B, for which the equilibrium constant is

K
p p

p p

p

p p
= =( )B

A

B

A

/

/

<

< <

2 2

The right-hand side of this expression remains constant only 

if an increase in pA cancels an increase in the square of pB. This 

relatively steep increase of pA compared to pB will occur if the 

equilibrium composition shifts in favour of A at the expense of 

B. Then the number of A molecules will increase as the volume 

of the container is decreased and its partial pressure will rise 

more rapidly than can be ascribed to a simple change in volume 

alone (Fig. 75.1).

The increase in the number of A molecules and the corre-

sponding decrease in the number of B molecules in the equi-

librium A  �  2 B is a special case of a principle proposed by 

the French chemist Henri Le Chatelier. Le Chatelier’s principle 

states that:

A system at equilibrium, when subjected to a disturbance, 

responds in a way that tends to minimize the effect of the 

disturbance.

The principle implies that if a system at equilibrium is com-

pressed, then the reaction will adjust so as to minimize the 

increase in pressure. This it can do by reducing the number of 

particles in the gas phase, which implies a shift A ← 2 B.

To treat the effect of compression quantitatively, we suppose 

that there is an amount n of A present initially (and no B). At 

equilibrium the amount of A is (1 − α)n and the amount of B is 

2αn, where α is the extent of dissociation of A into 2B. It fol-

lows that the mole fractions present at equilibrium are

x
n

n n
xA B= −

− +
= −

+
=

+
( )

( )

1

1 2

1

1

2

1

α
α α

α
α

α
α

The equilibrium constant for the reaction is

K
p

p p

x p

x pp

p

p
= = =

−
B

A

B

A

2 2 2 2

2

4

1< < <

α
α

which rearranges to

α =
+

⎛
⎝⎜

⎞
⎠⎟

1

1 4

1 2

p Kp/ <

/

 (75.2)

This formula shows that, even though K is independent of pres-

sure, the amounts of A and B do depend on pressure (Fig. 75.2). 

It also shows that, as p is increased, α decreases, in accord with 

Le Chatelier’s principle.

Brief illustration 75.1 The effect of compression

To predict the effect of compression on the composition of 

the ammonia synthesis at equilibrium, N2(g) + 3 H2(g) →  

2 NH3(g), we note that the number of gas molecules decreases 

(from 4 to 2). So, Le Chatelier’s principle predicts that com-

pression will favour the product. The equilibrium constant, 

treating all gases as perfect, is

K
p p

p p p p

p p

p p

x p p

x
= = =

( )

( )( )
NH

N H

NH

N H

NH

N

/

/ /
3

2 2

3

2 2

3

2

3

2 2

3

2 2 2<

< <

< <

22 2

3 4

2

2x p

K p

p
x

H

=
<

where Kx is the part of the equilibrium constant expression 

that contains the equilibrium mole fractions of reactants and 

products (note that unlike K itself, Kx is not an equilibrium 
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Figure 75.2 The pressure dependence of the degree of 
dissociation, α , at equilibrium for an A(g) � 2 B(g) reaction for 
different values of the equilibrium constant K. The value α = 0 
corresponds to pure A, α = 1 to pure B.

(a) (b)

Figure 75.1 When a reaction at equilibrium is compressed 
(from a to b), the reaction responds by reducing the number 
of molecules in the gas phase (in this case by producing the 
dimers represented by the linked spheres).
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730 15 Chemical equilibria

75.2 The response of equilibria  
to temperature

Le Chatelier’s principle predicts that a system at equilibrium will 

tend to shift in the endothermic direction if the temperature is 

raised, for then energy is absorbed as heat and the rise in tem-

perature is opposed. Conversely, an equilibrium can be expected 

to shift in the exothermic direction if the temperature is lowered, 

for then energy is released as heat and the reduction in tempera-

ture is opposed. These conclusions can be summarized as follows:

Exothermic reactions (ΔrH
< < 0): increased temperature 

favours the reactants.

Endothermic reactions (ΔrH
< > 0): increased temperature 

favours the products.

We shall now justify these remarks and see how to express the 

changes quantitatively.

(a) The van ’t Hoff equation
The van ’t Hoff equation, which is derived in the following 

Justification, is an expression for the slope of a plot of the equi-

librium constant (specifically, ln K) as a function of tempera-

ture. It may be expressed in either of two ways:

( )
ln

( )
ln

/
a

d

d
b

d

d
r rK

T

H

RT

K

T

H

R
= Δ

( ) = − Δ< <

2 1
 

Equation 75.3a shows that d ln K/dT < 0 (and therefore that 

dK/dT < 0) for an exothermic reaction (ΔrH
< < 0). A negative 

slope means that ln K, and therefore K itself, decreases as the 

temperature rises. Therefore, as asserted above, in the case of an 

exothermic reaction the equilibrium shifts away from products. 

The opposite occurs in the case of endothermic reactions.

constant). Therefore, doubling the pressure must increase Kx 

by a factor of 4 to preserve the value of K.

Self-test 75.1 Predict the effect of a compression that results in 

a tenfold pressure increase on the equilibrium composition of 

the reaction 3 N2(g) + H2(g) → 2 N3H(g).

Answer: 100-fold increase in Kx

van ’t 
Hoff 
equation

(75.3)

Justification 75.1 The van ’t Hoff equation

We start with eqn 73.13 of Topic 73 (−RT ln K = ΔrG
<) in the 

form

lnK
G

RT
= − Δr

<

Differentiation of ln K with respect to temperature then gives

d

d

d( / )

d
rlnK

T R

G T

T
= − Δ1 <

The differentials are complete because K and ΔrG
< depend 

only on temperature, not on pressure. To develop this equa-

tion we use the Gibbs–Helmholtz equation (eqn 66.9 of Topic 

66, d(ΔG/T)/dT = −ΔH/T2) in the form

d /

d

r r
Δ( )

= − ΔG T

T

H

T

< <

2

where ΔrH
< is the standard reaction enthalpy at the tem-

perature T. Combining the two equations gives the van  

’t Hoff equation, eqn 75.3a. The second form of the equation is 

obtained by noting that

d

d
so d d

( / )
, ( / )

1 1
1

2
2T

T T
T T T= − =−

It follows that eqn 75.3a can be rewritten as

− = Δd

d
rln

( / )

K

T T

H

RT2 21

<

which simplifies into eqn 75.3b.
E

n
er

g
y,

 E

Population, P

A B

Low temperature

High temperature

Population, P

A B

Low temperature

High temperature

E
n

d
o

th
er

m
ic

E
xo

th
er

m
ic

(a) (b)

Figure 75.3 The effect of temperature on a chemical 
equilibrium can be interpreted in terms of the change in the 
Boltzmann distribution with temperature and the effect of that 
change in the population of the species. (a) In an endothermic 
reaction, the population of B increases at the expense of A as 
the temperature is raised. (b) In an exothermic reaction, the 
opposite happens.
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75 The response of equilibria to the conditions  731

Some insight into the thermodynamic basis of this behav-

iour comes from the expression ΔrG
<= ΔrH

< − TΔrS
< written 

in the form −ΔrG
</T = − ΔrH

</T + ΔrS
<. When the reaction 

is exothermic, −ΔrH
</T corresponds to a positive change of 

entropy of the surroundings and favours the formation of prod-

ucts. When the temperature is raised, −ΔrH
</T decreases and 

the increasing entropy of the surroundings has a less important 

role. As a result, the equilibrium lies less to the right. When the 

reaction is endothermic, the principal factor is the increasing 

entropy of the reaction system. The importance of the unfa-

vourable change of entropy of the surroundings is reduced if 

the temperature is raised (because then ΔrH
</T is smaller), and 

the reaction is able to shift towards products.

From a molecular perspective, consider the typical arrange-

ment of energy levels for an endothermic reaction, as shown in 

Fig. 75.3a. When the temperature is increased, the Boltzmann 

distribution adjusts and the populations change as shown. 

The change corresponds to an increased population of the 

higher energy states at the expense of the population of the 

lower energy states. We see that the states that arise from  

the B molecules become more populated at the expense of the A 

molecules. Therefore, the total population of B states increases, 

and B becomes more abundant in the equilibrium mixture. 

Conversely, if the reaction is exothermic (Fig. 75.3b), then an 

increase in temperature increases the population of the A states 

(which start at higher energy) at the expense of the B states, so 

the reactants become more abundant.

(b) The value of K at different temperatures
To find the value of the equilibrium constant at a temperature 

T2 in terms of its value K1 at another temperature T1, we inte-

grate eqn 75.3b between these two temperatures:

ln ln ( / )
/

/

K K
R

H T
T

T

2 1
1

11
1

1

2

− = − Δ∫ r d<  (75.4)

If we need to consider the temperature dependence of ΔrH
<, we 

can use Kirchhoff’s law (Topic 57). However, if we suppose that 

ΔrH
< varies only slightly with temperature over the temperature 

range of interest, we may take it outside the integral. It follows that

ln lnK K
H

R T T2 1
2 1

1 1− = − Δ −⎛
⎝⎜

⎞
⎠⎟

r
<

 (75.5)

Δ = + × × = + −
r

3 19 6 1 K 8 kJmolH R< ( . )0 0

The temperature dependence of the equilibrium constant 

provides a non-calorimetric method of determining ΔrH
< . A 

drawback is that the reaction enthalpy is actually temperature-

dependent, so the plot is not expected to be perfectly linear. 

However, the temperature dependence is weak in many cases, 

so the plot is reasonably straight. In practice, the method is 

not very accurate, but it is often the only method available.

Self-test 75.2 The equilibrium constant of the reaction 

2 SO2(g) + O2(g) � 2 SO3(g) is 4.0 × 1024 at 300 K, 2.5 × 1010 at 

500 K, and 3.0 × 104 at 700 K. Estimate the reaction enthalpy 

at 500 K.

Answer: −200 kJ mol−1

2 2.2 2.4 2.6 2.8 3

8

6

4

2

0

–l
n

 K

(103 K)/T

Figure 75.4 When –ln K is plotted against 1/T, a straight line is 
expected with slope equal to ΔrH

</R if the standard reaction 
enthalpy does not vary appreciably with temperature. This is 
a non-calorimetric method for the measurement of reaction 
enthalpies. The data points are from Example 75.1.

Example 75.1 Measuring a reaction enthalpy

The data below show the temperature variation of the equilib-

rium constant of the reaction Ag2CO3(s) � Ag2O(s) + CO2(g). 

Calculate the standard reaction enthalpy of the decomposition.

Method It follows from eqn 75.3b that, provided the reaction 

enthalpy can be assumed to be independent of temperature, 

a plot of −ln K against 1/T should be a straight line of slope 

ΔrH
</R.

Answer We draw up the following table:

These points are plotted in Fig. 75.4. The slope of the graph is 

+9.6 × 103, so

T/K 350 400 450 500

K 3.98 × 10−4 1.41 × 10−2 1.86 × 10−1 1.48

T/K 350 400 450 500

(103 K)/T 2.86 2.50 2.22 2.00

−ln K 7.83 4.26 1.68 −0.39
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732 15 Chemical equilibria

Brief illustration 75.2 The temperature dependence of K

To estimate the equilibrium constant for the synthesis of 

ammonia at 500 K from its value at 298 K (6.1 × 105 for the 

reaction N2(g) + 3 H2(g) → 2 NH3(g)) we use the standard 

 reaction enthalpy, which can be obtained from Table 57.4 

in the Resource section by using ΔrH
< = 2ΔfH

<(NH3,g),  

and assume that its value is constant over the range of 

 temperatures. Then, with ΔrH
< = −92.2 kJ mol−1, from eqn 

75.5 we find

ln ln( . )
.

.
K2

5

3 1

1 1
6 1 10

92 2 10

8 3145

1

500

1

29
= × −

− ×( )
−

−

− −

Jmol

J K mol K 88

1 71

K

⎛
⎝⎜

⎞
⎠⎟

= − ….

Knowledge of the temperature dependence of the equilibrium 

constant for a reaction can be useful in the design of laboratory 

and industrial processes. For example, synthetic chemists can 

improve the yield of a reaction by changing the temperature of 

the reaction mixture. Also, reduction of a metal oxide with car-

bon or carbon monoxide results in the extraction of the metal 

when the process is carried out at a temperature for which K ≫ 1.

Checklist of concepts

☐ 1.  The thermodynamic equilibrium constant is inde-

pendent of pressure.

☐ 2. Le Chatelier’s principle states that a system at equilib-

rium, when subjected to a disturbance, responds in a 

way that tends to minimize the effect of the disturbance.

☐ 3. Even though K is independent of pressure, the composi-

tion of the equilibrium mixture may depend on pressure.

☐ 4. For exothermic reactions (ΔrH
< < 0) an increase in tem-

perature favours the reactants; for endothermic reac-

tions (ΔrH
< > 0) an increase in temperature favours the 

products.

☐ 5. The van ’t Hoff equation (see below) is an expression 

for the dependence of the equilibrium constant on the 

temperature.

Checklist of equations

It follows that K2 = 0.18, a lower value than at 298 K, as 

expected for this exothermic reaction.

Self-test 75.3 The equilibrium constant for N2O4(g) � 2 NO2(g) 

was calculated in Self-test 73.6 Estimate its value at 100 °C.

Answer: 15

Property Equation Comment Equation number

Variation of K with pressure (∂K/∂p)T = 0 75.1

Variation of K with temperature d (ln K)/dT = ΔrH
</RT2 van ’t Hoff equation 75.3

d (ln K)/d(1/T) = −(ΔrH
</R)

ln K2 − ln K1 = −(ΔrH
</R)(1/T2 − 1/T1) ΔrH

< independent of temperature 75.5
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TOPIC 76

Electrochemical cells

Thermodynamic arguments about equilibrium, with certain 

changes of technical detail, can be used to describe the prop-

erties of reactions taking place in electrochemical cells. The 

ability to make very precise measurements of currents and 

potential differences (‘voltages’) means that electrochemical 

methods can be used to determine thermodynamic properties 

of reactions that may be inaccessible by other methods.

An electrochemical cell consists of two electrodes, or metal-

lic conductors, in contact with an electrolyte, an ionic conduc-

tor (which may be a solution, a liquid, or a solid). An electrode 

and its electrolyte comprise an electrode compartment. The 

two electrodes may share the same compartment. The various 

kinds of electrode are summarized in Table 76.1. Any ‘inert 

metal’ shown as part of the specification is present to act as a 

source or sink of electrons, but takes no part in the reaction 

other than perhaps acting as a catalyst for it. If the electrolytes 

are different, the two compartments may be joined by a salt 

Contents

76.1 Half-reactions and electrodes 734

Brief illustration 76.1: Half-reactions 734

Brief illustration 76.2: The reaction quotient  

of a half-reaction 734

76.2 Varieties of cells 734

Brief illustration 76.3: Cell notation 735

76.3 The cell potential 736

Brief illustration 76.4: The cell reaction 736

(a) The cell potential and the reaction  
Gibbs energy 736

Brief illustration 76.5: The cell potential 737

(b) The Nernst equation 737

Brief illustration 76.6: The Nernst equation 738

(c) Cells at equilibrium 738

Brief illustration 76.7: The equilibrium  

constant 738

Checklist of concepts 739

Checklist of equations 739

 ➤ Why do you need to know this material?

Electrochemistry is already of considerable technological 
importance, as it underlies the operation of batteries 
and the industrial production and refinement of some 
metals. Concepts arising in electrochemistry are also 
used to assess the viability of redox reactions, and its 
arguments are central to many discussions of inorganic 
chemistry. Electrochemistry also provides sensitive 
techniques for the measurement of thermodynamic 
properties.

 ➤ What is the key idea?
The electrical work that a cell reaction can produce is 
equal to the reaction Gibbs energy.

 ➤ What do you need to know already?

You need to know the connection between Gibbs energy 
and non-expansion work (Topic 64), how the reaction 
Gibbs energy is defined in terms of the advancement of 
the reaction, and how its value is related to the reaction 
quotient (Topic 73).

Table 76.1 Varieties of electrode

Electrode 
type

Designation Redox 
couple

Half-reaction

Metal/
metal 
ion

M(s)|M+(aq) M+/M M+(aq) + e− → M(s)

Gas Pt(s)|X2(g)|X+(aq) X+/X2 X (aq)  e X g2
+ −+ → 1

2
( )

Pt(s)|X2(g)|X−(aq) X2/X
− 1

2
X (g)  e X aq2 + →− −( )

Metal/
insoluble 
salt

M(s)|MX(s)|X−(aq) MX/M,X− MX(s) + e− → M(s) + X−(aq)

Redox Pt(s)|M+(aq),M2+(aq) M2+/M+ M2+(aq) + e− → M+(aq)
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734 15 Chemical equilibria

bridge, which is a tube containing a concentrated electrolyte 

solution (almost always potassium chloride in agar jelly) that 

completes the electrical circuit and enables the cell to function. 

A galvanic cell (also called a ‘voltaic cell’) is an electrochemical 

cell that produces electricity as a result of the spontaneous reac-

tion occurring inside it. An electrolytic cell is an electrochemi-

cal cell in which a non-spontaneous reaction is driven by an 

external source of current.

76.1 Half-reactions and electrodes

It will be familiar from introductory chemistry that oxidation 

is the removal of electrons from a species, reduction is the addi-

tion of electrons to a species, and a redox reaction is a reac-

tion in which there is a transfer of electrons from one species 

to another. The electron transfer may be accompanied by other 

events, such as atom or ion transfer, but the net effect is elec-

tron transfer and hence a change in oxidation number of an ele-

ment. The reducing agent (or ‘reductant’) is the electron donor; 

the oxidizing agent (or ‘oxidant’) is the electron acceptor.

It should also be familiar that any redox reaction may be 

expressed as the difference of two reduction half-reactions, 

which are conceptual reactions showing the gain of electrons. 

Even reactions that are not redox reactions may often be 

expressed as the difference of two reduction half-reactions. The 

reduced and oxidized species in a half-reaction form a redox 

couple. In general we write a couple as Ox/Red and the corre-

sponding reduction half-reaction as

Ox e Red+ →−�
 

 General reduction half-reaction  (76.1)

We shall often find it useful to express the composition of 

an electrode compartment in terms of the reaction quotient, Q, 

for the half-reaction. This quotient is defined like the reaction 

quotient for the overall reaction (Topic 73), but the electrons 

are ignored.

The reduction and oxidation processes responsible for the 

overall reaction in a cell are separated in space: oxidation takes 

place at one electrode and reduction takes place at the other. As 

the reaction proceeds, the electrons released in the oxidation 

Red1 → Ox1 + � e− at one electrode travel through the external 

circuit and re-enter the cell through the other electrode. There 

they bring about reduction Ox2 + � e− → Red2. The electrode 

at which oxidation occurs is called the anode; the electrode 

at which reduction occurs is called the cathode. In a galvanic 

cell, the cathode has a higher potential than the anode: the spe-

cies undergoing reduction, Ox2, withdraws electrons from its 

electrode (the cathode, Fig. 76.1), so leaving a relative positive 

charge on it (corresponding to a high potential). At the anode, 

oxidation results in the transfer of electrons to the electrode, 

so giving it a relative negative charge (corresponding to a low 

potential).

76.2 Varieties of cells

The simplest type of cell has a single electrolyte common 

to both electrodes (as in Fig. 76.1). In some cases it is neces-

sary to immerse the electrodes in different electrolytes, as in 

the ‘Daniell cell’ in which the redox couple at one electrode is 

Cu2+/Cu and at the other is Zn2+/Zn (Fig. 76.2). In an electro-

lyte concentration cell, the electrode compartments are iden-

tical except for the concentrations of the electrolytes. In an 

electrode concentration cell the electrodes themselves have 

Brief illustration 76.1 Half-reactions

The dissolution of si lver chloride in water AgCl(s) →  

Ag+(aq) + Cl−(aq), which is not a redox reaction, can be 

written as the difference of the following two reduction 

half-reactions:

AgCl(s)  e Ag(s)  Cl (aq)

Ag (aq)  e Ag(s)

Difference A

+ → +
+ →

− −

+ −

: ggCl(s)  Ag (aq) Cl (aq)

Rearrange AgCl(s) Ag (aq)  Cl a

− + −

+ −

→
→ +: ( qq)

The redox couples are AgCl/Ag, Cl− and Ag+/Ag, respectively.

Self-test 76.1 Express the formation of H2O from H2 and O2 

in acidic solution (a redox reaction) as the difference of two 

reduction half-reactions.

Answer: 4 H+(aq) + 4 e− → 2 H2(g), O2(g) + 4 H+(aq) + 4 e−→ 2 H2O(l)

Brief illustration 76.2 The reaction quotient of a  
half-reaction

The reaction quotient for the reduction of O2 to H2O in acid 

solution, O2(g) + 4 H+(aq) + 4 e− → 2 H2O(l), is

Q
a

a a p p a

p

p a
= = =

+ + +

H O

O H O H O H
/

2

2 2 2

2

4 4 4

1

( )<

<

The approximations used in the second step are that the activ-

ity of water is 1 (because the solution is dilute) and the oxygen 

behaves as a perfect gas, so a p pO O /
2 2

≈ <.

Self-test 76.2 Write the half-reaction and the reaction quo-

tient for a chlorine gas electrode.

Answer: Cl2(g) + 2 e− → 2 Cl−(aq), Q a p p= −Cl Cl/2
2

<
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76 Electrochemical cells  735

different concentrations, either because they are gas electrodes 

operating at different pressures or because they are amalgams 

(solutions in mercury) with different concentrations.

In a cell with two different electrolyte solutions in contact, as 

in the Daniell cell, there is an additional source of potential dif-

ference across the interface of the two electrolytes. This poten-

tial is called the liquid junction potential, Elj. Another example 

of a junction potential is that between different concentrations 

of hydrochloric acid. At the junction, the mobile H+ ions dif-

fuse into the more dilute solution. The bulkier Cl− ions follow, 

but initially do so more slowly, which results in a potential dif-

ference at the junction. The potential then settles down to a 

value such that, after that brief initial period, the ions diffuse 

at the same rates. Electrolyte concentration cells always have a 

liquid junction; electrode concentration cells do not.

The contribution of the liquid junction to the potential can 

be reduced (to about 1 to 2 mV) by joining the electrolyte com-

partments through a salt bridge (Fig. 76.3). The reason for the 

success of the salt bridge is that the liquid junction potentials at 

either end are largely independent of the concentrations of the 

two dilute solutions, and so nearly cancel.

The following conventions are used to denote cells:

Phase boundaries are denoted by a vertical bar: r

A liquid junction is denoted by a dotted vertical line: “

An interface for which it is assumed that the junction 

potential has been eliminated is denoted by a double 

vertical line: s

When it is necessary to specify the ‘left’ and ‘right’ electrodes, 

the electrode on the left of the cell diagram (not necessarily in 

physical space) is denoted L and that on the right is denoted R. 

These letters may be used to denote the molalities, b (as bL or 

bR), and pressures, p (as pL or pR), of the electroactive species in 

each compartment of the cell.

Brief illustration 76.3 Cell notation

The cell in Fig. 76.4 is denoted

Pt(s) H g HCl(aq) AgCl(s) Ag(s)2 L( , )p

The cell in Fig. 76.2 is denoted

Zn(s) ZnSO (aq ) CuSO aq Cu4 L 4 R| , ( , )| ( )b b� s

An example of an electrolyte concentration cell in which the 

liquid junction potential is assumed to be eliminated, as it is 

Fig. 76.3 but with compartments that differ only in concentra-

tion of the electroactive species, is denoted

Zn(s) ZnSO aq ZnSO aq Zn(s)4 L 4 R( , ) ( , )b b

Electrons

Anode Cathode

+–

Oxidation Reduction

Figure 76.1 When a spontaneous reaction takes place in a 
galvanic cell, electrons are deposited in one electrode (the 
site of oxidation, the anode) and collected from another (the 
site of reduction, the cathode), and so there is a net flow of 
current which can be used to do work. Note that the + sign of 
the cathode can be interpreted as indicating the electrode at 
which electrons enter the cell, and the − sign of the anode is 
where the electrons leave the cell.

+–

Copper

Copper(II) sulfate
solution

Zinc sulfate
solution

Porous
pot

Zinc

Figure 76.2 One version of the Daniell cell. The copper 
electrode is the cathode and the zinc electrode is the anode. 
Electrons leave the cell from the zinc electrode and enter it 
again through the copper electrode.

Electrode Electrode
Salt bridge

ZnSO4(aq) CuSO4(aq)

Zn Cu

Electrode compartments

Figure 76.3 The salt bridge, essentially an inverted U-tube full 
of concentrated salt solution in a jelly, has two opposing liquid 
junction potentials which almost cancel.
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736 15 Chemical equilibria

76.3 The cell potential

The current produced by a galvanic cell arises from the sponta-

neous chemical reaction taking place inside it. The cell reaction 

is the reaction in the cell written on the assumption that the 

right-hand electrode is the cathode, and hence that the spon-

taneous reaction is one in which reduction is taking place in 

the right-hand compartment. In Topic 77 we see how to predict 

if the right-hand electrode is in fact the cathode; if it is, then 

the cell reaction is spontaneous as written. If the left-hand elec-

trode turns out to be the cathode, then the reverse of the cor-

responding cell reaction is spontaneous.

To write the cell reaction corresponding to a cell diagram, we 

first write the right-hand half-reaction as a reduction (because 

we have assumed that to be the spontaneous direction of the 

cell reaction). Then we subtract from it the left-hand reduction 

half-reaction (for, by implication, that electrode is the site of 

oxidation).

(a) The cell potential and the reaction  
Gibbs energy
A cell in which the overall cell reaction has not reached chemi-

cal equilibrium can do electrical work as the reaction drives 

electrons through an external circuit. The work that a given 

transfer of electrons can accomplish depends on the poten-

tial difference between the two electrodes. When this poten-

tial difference is large, a given number of electrons travelling 

between the electrodes can do a lot of electrical work. When 

the potential difference is small, the same number of electrons 

can do only a little work. A cell in which the overall reaction is 

at equilibrium can do no work, and then its potential difference 

is zero.

According to the discussion in Topic 64, the maximum 

non-expansion work, which in the current context is electri-

cal work, that a system (the cell) can do is given by eqn 64.17b 

(we,max = ΔG), with ΔG identified (as we shall show) with the 

Gibbs energy of the cell reaction, ΔrG. It follows that to draw 

thermodynamic conclusions from measurements of the work 

a cell can do, we must ensure that the cell is operating revers-

ibly, for only then is it producing maximum work. Moreover, 

as shown in Topic 73, the reaction Gibbs energy is actually a 

property relating to a specified composition of the reaction 

mixture (through eqn 73.9, ΔrG = ΔrG
< + RT ln Q). Therefore, 

to make use of ΔrG we must ensure that the cell is operating 

reversibly at a specific, constant composition. Both these con-

ditions are achieved by measuring the potential difference gen-

erated by the cell when it is balanced by an exactly opposing 

source of potential so that the cell reaction occurs reversibly, 

the composition is constant, and no current flows: in effect, the 

cell reaction is poised for change, but not actually changing. 

The resulting potential difference is called the cell potential, 

Ecell. The cell potential was formerly and is still widely called the 

electromotive force (emf). That name, however, has fallen out of 

favour with the IUPAC because the cell potential is not a force.

As we show in the following Justification, the relation 

between the reaction Gibbs energy and the cell potential is

− =�FE Gcell r Δ
 

where F is Faraday’s constant, F = eNA, and ν is the stoi-

chiometric coefficient of the electrons in the two matching 

rearranged into

Cu (aq) Zn(s) Cu(s) Zn aq2 2+ ++ → + ( )

Self-test 76.4 Construct the cell reaction for the cell Pt(s), 

H2(g)|HCl(aq)|AgCl(s)|Ag(s).

Answer: 2 AgCl(s) + H2(g) → 2 Ag(s) + 2 HCl(aq), as 2 H+(aq) + 2 Cl−(aq)

Reversible 
conditions 

Cell potential and 
Gibbs energy  (76.2)

Brief illustration 76.4 The cell reaction

In the cell Zn(s)rZnSO4(aq)sCuSO4(aq)rCu(s) the two elec-

trodes and their reduction half-reactions are

Right-hand electrode  Cu (aq)  2 e Cu(s)

Left-hand elect

2: + −+ →
rrode Zn (aq)  2 e Zn(s)2: + −+ →

Hence, the overall cell reaction is the difference:

Cu (aq) Zn aq Cu(s) Zn(s)2 2+ + → −− ( )

Self-test 76.3 Write the specification of a cell in which both 

electrodes are hydrogen electrodes and each compartment is 

hydrochloric acid; there is a salt bridge.

Answer: Pt(s)|H2(g,pL)| HCl(aq,bL)||HCl(aq,bR)|H2(g,pR)|Pt(s)

HCl(aq)

H2(g)

Pt(s)

AgCl(s)
on Ag(s)

Figure 76.4 A cell with a common electrolyte: a hydrogen 
electrode on the left and a silver/silver chloride electrode on 
the right.
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76 Electrochemical cells  737

(electron-balanced) half-reactions into which the cell reaction 

can be divided. This equation is the key connection between 

electrical measurements on the one hand and thermodynamic 

properties on the other. It is the basis of all that follows.

It follows from eqn 76.2 that, by knowing the reaction Gibbs 

energy at a specified composition, we can state the cell potential 

at that composition. Note that a negative reaction Gibbs energy, 

corresponding to a spontaneous cell reaction, corresponds to a 

positive cell potential. Another way of looking at the content of 

eqn 76.2 is that it shows that the driving power of a cell is pro-

portional to the slope of the Gibbs energy with respect to the 

extent of reaction. It is plausible that a reaction that is far from 

equilibrium (when the slope is steep) has a strong tendency to 

drive electrons through an external circuit (Fig. 76.5). When 

the slope is close to zero (when the cell reaction is close to equi-

librium), the cell potential is small.

An important feature of cell potentials is that they are 

unchanged if the chemical equation for the cell reaction or a 

half-reaction is multiplied by a numerical factor. A numerical 

factor increases the value of the standard Gibbs energy for the 

reaction. However, it also increases the number of electrons 

transferred by the same factor, and by eqn 76.2 the value of 

Ecell remains unchanged. A practical consequence is that a cell 

potential is independent of the physical size of the cell. In other 

words, cell potential is an intensive property.

(b) The Nernst equation
We can go on to relate the cell potential to the activities of the 

participants in the cell reaction. We know that the reaction 

Justification 76.1 The relation between the cell 
potential and the reaction Gibbs energy

The variation of Gibbs energy with the advancement, ξ, of a 

reaction is treated in Topic 73, where the reaction Gibbs energy 

is defined as ΔrG = (∂G/∂ξ)T,p. We consider the change in G 

when the cell reaction advances by an infinitesimal amount 

dξ at some composition, the temperature and pressure being 

constant. It follows that

d d drG
G

G
T p

= ∂
∂

⎛
⎝⎜

⎞
⎠⎟

=ξ ξ ξ
,

Δ

Because dwe = dG, the maximum non-expansion (electrical) 

work that the reaction can do as it advances by dξ at constant 

temperature and pressure is therefore

d  de rw G= Δ ξ

This work is infinitesimal, and the composition of the system 

is virtually constant when it occurs.

Suppose that the reaction advances by dξ; then νdξ elec-

trons must travel from the anode to the cathode. The total 

charge transported between the electrodes when this change 

occurs is −νeNAdξ (because νdξ is the amount of electrons 

and the charge per mole of electrons is −eNA). Hence, the total 

charge transported is −νFdξ, because eNA = F. The work done 

when an infinitesimal charge −νFdξ travels from the anode 

to the cathode is equal to the product of the charge and the 

potential difference Ecell:

d  de cellw FE= −� ξ

When this relation is equated to the one above (dwe = ΔrGdξ), 

the advancement dξ cancels, and we obtain eqn 76.2.

Brief illustration 76.5 The cell potential

Equation 76.2 provides an electrical method for measuring a 

reaction Gibbs energy at any composition of the reaction mix-

ture: we simply measure the cell potential and convert it to ΔrG. 

Conversely, if we know the value of ΔrG at a particular com-

position, then we can predict the cell potential. For example, 

if ΔrG = −100 kJ mol−1 (taking 100 to be 1 × 102) and ν = 1, then

E
G

Fcell
r

Jmol

C mol
V= − = −

− ×
× ×

=
−

−
Δ
�

( )

( . )

1 10

1 9 6485 10
1

5 1

4 1

We have used 1 J = 1 C V.

Self-test 76.5 What is the reaction Gibbs energy of a typical 

cell that produces 1.5 V and involves the transfer of two elec-

trons in each reaction event?

Answer: −290 kJ mol−1

G
ib

b
s 

en
er

g
y,

 G

Extent of reaction, ξ

ΔrG < 0

ΔrG = 0

ΔrG > 0

E > 0

E < 0

E = 0

Figure 76.5 A spontaneous reaction occurs in the direction 
of decreasing Gibbs energy. The spontaneous direction of 
change can be expressed in terms of the cell potential, Ecell. The 
reaction is spontaneous as written (from left to right on the 
illustration) when Ecell > 0. The reverse reaction is spontaneous 
when Ecell < 0. When the cell reaction is at equilibrium, the cell 
potential is zero.
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738 15 Chemical equilibria

Gibbs energy is related to the composition of the reaction mix-

ture by eqn 73.9 of Topic 73 (ΔrG = ΔrG
< + RT ln Q); it follows, 

on division of both sides by −νF, that

Δ Δ Δr r rG

F

G

F

RT

F
Q

G

F

RT

F
Q

−
=

−
+

−
= − −

� � � � �

< <

ln ln
 

The term on the far left (in blue) is Ecell; the first term on the 

right is written

E
G

Fcell
r<

<

= − Δ
�  

Definition  Standard cell potential  (76.3)

and is called the standard cell potential. That is, the standard 

cell potential is the standard reaction Gibbs energy expressed 

as a potential (in volts). It follows that

E E
RT

F
Qcell cell= −<

�
ln

 
 Nernst equation  (76.4)

This equation for the cell potential in terms of the composition 

is called the Nernst equation; the dependence on composition 

that it predicts is summarized in Fig. 76.6.

We see from eqn 76.4 that the standard cell potential can 

be interpreted as the cell potential when all the reactants and 

products in the cell reaction are in their standard states, for 

then all activities are 1, so Q = 1 and ln Q = 0. However, the fact 

that the standard cell potential is merely a disguised form of 

the standard reaction Gibbs energy (eqn 76.3) should always be 

kept in mind and underlies all its applications.

(c) Cells at equilibrium
A special case of the Nernst equation has great importance in 

electrochemistry and provides a link to other parts of chem-

istry. Suppose the reaction has reached equilibrium; then 

Q = K, where K is the equilibrium constant of the cell reaction. 

However, a chemical reaction at equilibrium cannot do work, 

and hence it generates zero potential difference between the 

electrodes of a galvanic cell. Therefore, setting Ecell = 0 and Q = K 

in the Nernst equation gives

lnK
FE

RT
= � cell

<

 
 Equilibrium constant  (76.5)

This very important equation lets us predict equilibrium con-

stants from measured standard cell potentials.

Brief illustration 76.6 The Nernst equation

Because RT/F = 25.7 mV at 25 °C, a practical form of the Nernst 

equation at that temperature is

E E Qcell cell

mV
= −<

25 7.
ln

�

It then follows that for a reaction in which ν = 1, if Q is 

increased by a factor of 10, then the cell potential decreases by 

(25.7 mV) ln 10 = 59.2 mV.

Self-test 76.6 What is the cell potential at 25 °C when 

Ecell V< =+1 20.  and Q = 0.10 in a cell for which ν = 2?

Answer: +1.23 V

Brief illustration 76.7 The equilibrium constant

Because the standard potential of the Daniell cell is +1.10 V, 

the equilibrium constant at 298 K for the cell reaction Cu2+(aq) +  

Zn(s) → Cu(s) + Zn2+(aq), for which ν = 2, is obtained from

ln
( . )

.
.K =

× +
×

= …
2 1 10

25 7 10
85 6

3

V

V−

and is K = 1.5 × 1037. We conclude that the displacement of 

copper by zinc goes virtually to completion. Note that a cell 

potential of about 1 V is easily measurable but corresponds to 

an equilibrium constant that would be impossible to measure 

by direct chemical analysis.

Self-test 76.7 Evaluate the equilibrium constant for a cell reac-

tion for which Ecell V< = −0 22.  at 25 °C and ν = 2.

Answer: 3.7 × 10−8

8

6

4

2

0

0

–2

–2 –1

–4

–6

–8
–3 1

1

2

2

3

3

log Q

(E
 –

 E
<

)/
(R

T
/F

)

ν

Figure 76.6 The variation of cell potential with the value of the 
reaction quotient for the cell reaction for different values of ν 
(the number of electrons transferred). At 298 K, RT/F = 25.69 mV, 
so the vertical scale refers to multiples of this value.
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76 Electrochemical cells  739

Checklist of concepts

☐ 1. Oxidation is the removal of electrons from a species; 

reduction is the addition of electrons to a species.

☐ 2. A redox reaction (and some other reactions) may be 

expressed as the difference of two reduction half-reac-

tions, which are conceptual reactions showing the gain 

of electrons.

☐ 3. An electrochemical cell consists of two electrodes, or 

metallic conductors, in contact with an electrolyte, an 

ionic conductor.

☐ 4. A galvanic cell is an electrochemical cell that produces 

electricity as a result of the spontaneous reaction occur-

ring inside it.

☐ 5. An electrolytic cell is an electrochemical cell in which 

a non-spontaneous reaction is driven by an external 

source of current.

☐ 6. The electrode at which oxidation occurs is called the 

anode; the electrode at which reduction occurs is called 

the cathode.

☐ 7. In an electrolyte concentration cell, the electrode com-

partments are identical except for the concentrations of 

the electrolytes.

☐ 8. A salt bridge reduces the contribution of the liquid 

junction to the potential.

☐ 9. The cell reaction is the reaction in the cell written on 

the assumption that the right-hand electrode is the 

cathode.

☐ 10. The standard cell potential is the standard reaction 

Gibbs energy expressed as a potential.

Checklist of equations

Property Equation Comment Equation number

Half-reaction Ox + ν e− → Red e− is stateless 76.1

Cell potential −νFEcell = ΔrG Constant temperature and pressure, reversible 76.2

Standard cell potential E G Fcell r /< <= −Δ � Definition 76.3

Nernst equation E E RT F Qcell cell /= −< ( ) ln� 76.4

Equilibrium constant lnK FE RT= � cell /< 76.5
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TOPIC 77

Standard electrode potentials

The structure and thermodynamic properties of galvanic cells 

are described in Topic 76, where it is shown that each one is a 

combination of two electrodes. Instead of listing the cell poten-

tial of every conceivable cell, it turns out to be sensible and eco-

nomical, as well as having other advantages, to consider that 

each individual electrode makes a certain contribution.

77.1 The conventions

Each electrode is considered to make a characteristic contribu-

tion to the overall cell potential, the difference of the two con-

tributions being the cell potential:

Red Ox Red OxL L R R cell R L, || , E E E= −
 

Here ER is the potential of the right-hand electrode (of the cell 

as written) and EL is that of the left-hand electrode. It is con-

ventional to label each contribution by the redox couple, as in 

E(Ox,Red).

Although it is not possible to measure the contribution of a 

single electrode, we can define the potential of one of the elec-

trodes as zero and then assign values to others on that basis. 

The specially selected electrode is the standard hydrogen elec-

trode (SHE):

Pt(s) H g H aq

(H H )

2

2

( ) ( )

,

+

+ =E< 0
 

 ➤ Why do you need to know this material?
The tabulation of individual electrode potentials 
allows the calculation of several chemically important 
quantities, including cell potentials, activity coefficients, 
and equilibrium constants. It is also a route to the 
determination of the values of thermodynamic properties 
of ions in solution.

 ➤ What is the key idea?
The cell potential can be expressed as the difference 
between the two electrode potentials that form the cell.

Contents

77.1 The conventions 740

(a) The determination of standard electrode  
potentials 741

Example 77.1: Determining a standard electrode  

potential 741

(b) Combining electrode potentials 742

Example 77.2: Evaluating a standard potential  

from two others 742

77.2 Applications of standard potentials 743

(a) The electrochemical series 743

Brief illustration 77.1: The electrochemical series 743

(b) The determination of activity coefficients 743

Brief illustration 77.2: The activity coefficient 743

(c) The determination of equilibrium constants 744

Brief illustration 77.3: Equilibrium constants 744

(d) The determination of thermodynamic functions 744

Example 77.3: Using the temperature coefficient  

of the cell potential 744

Checklist of concepts 745

Checklist of equations 745

 ➤ What do you need to know already?

You need to know the notation and construction of 
galvanic cells and how the cell potential is related to the 
reaction Gibbs energy (Topic 76). The material draws on 
the discussion of activity coefficients and the Debye–
Hückel limiting law (Topic 72).

 (77.1)
Electrode 
potentials

Convention
Standard 
hydrogen 
electrode

 (77.2)
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77 Standard electrode potentials  741

at all temperatures. To achieve the standard conditions, the activ-

ity of the hydrogen ions must be 1 (that is, pH = 0) and the pres-

sure of the hydrogen gas must be 1 bar. The standard potential, 

E<(Ox,Red), of another couple is then assigned by constructing 

a cell in which it is the right-hand electrode and the standard 

hydrogen electrode is the left-hand electrode. Table 77.1 lists the 

standard potentials of a number of electrodes at 298 K.

(a) The determination of standard  
electrode potentials
The procedure for measuring a standard potential can be illus-

trated by considering a specific case, the silver chloride elec-

trode. The measurement is made on the ‘Harned cell’:

Pt(s) H g HCl(aq ) AgCl(s) Ag(s)

H (g) AgCl(s) HCl(aq) A

2

2

( , ) ,p b
1
2

+ → + gg(s)
 

We show in the following Justification that

g b E Cb

g b E
RT

F
b

( ) , , ,

( ) ln

( ) /= +

= +

−< Ag AgCl Cl

with cell

1 2

2
 (77.3)

Therefore, if g(b) is evaluated at a range of molalities, plotted 

against b1/2, and extrapolated to b = 0, then the intercept at 

b1/2 = 0 is the value of E<(Ag, AgCl, Cl−).

Justification 77.1 The determination of the standard 
cell potential

The Nernst equation for the Harned cell is

E E
RT

F

a a
cell cell

H Cl= − +<

< <




� ��� ���
E E(Ag,AgCl,Cl ) (H+,H2 )

0
− −

ln
−−

+ −= −−

a

E
RT

F

a a

a

H

H Cl

H

Ag AgCl Cl

2

2

1 2

1 2

/

/
( ), , ln<

 

We shall suppose that the pressure of hydrogen (treated as a 

perfect gas) is 1 bar, so set aH2
1= :

E E
RT

F
a acell H ClAg AgCl Cl= −−

+ −
< ( ), , ln

 

As shown in Topic 72, the activities can be expressed in 

terms of the molality b of HCl(aq) through aH
+ = γ±b/b < and 

aCl
− = γ±b/b < , so

E E
RT

F
b

E
RT

F

cell Ag AgCl Cl

Ag AgCl Cl

= −

= − −

−
±

−
±

<

<

( )

( )

, , ln

, , ln

γ

γ

2 2

2 RRT

F
bln 2

 

where for simplicity we have replaced b/b < by b. This expres-

sion rearranges to

E
RT

F
b E

RT

Fcell Ag AgCl Cl+ = −−
±

2 2
ln , , ln( )

g(b)� ��� ���
< γ

 

The function g(b) can be determined by measuring the cell 

potential for each molality b and forming Ecell + 2(RT/F) ln b 

in each case.

From the Debye–Hückel limiting law for an electrolyte con-

sisting of singly charged M+ and X− ions (eqn 72.26 of Topic 

72, log γ± = −AI1/2, with I = b/b <), we can infer that ln γ± ∝ −b1/2. 

Therefore, with all the constants of proportionality absorbed 

into a single symbol C, the last equation becomes

g b E Cb( ) , ,( ) /= +−< Ag AgCl Cl 1 2

 

as in eqn 77.3. In precise work, the b1/2 term is brought to the 

left, and a higher-order correction term from the extended 

Debye–Hückel law (Topic 72) is used on the right.

Table 77.1* Standard potentials at 298 K

Couple E</V

Ce4+(aq) + e− → Ce3+(aq) +1.61

Cu2+(aq) + 2 e− → Cu(s) +0.34

H (aq) e H g2
+ −+ → 1

2
( )  0

AgCl(s) + e− → Ag(s) + Cl−(aq) +0.22

Zn2+(aq) + 2 e− → Zn(s) −0.76

Na+(aq) + e− → Na(s) −2.71

* More values are given in the Resource section.

Example 77.1 Determining a standard electrode 
potential

The potential of the cell Pt(s)|H2(g,p <)|HCl(aq,b)|AgCl(s)| 

Ag(s) at 25 °C has the following values:

Determine the standard potential of the silver/silver chloride 

electrode.

Method As outlined in the text, we draw up a table of val-

ues of g(b) = Ecell + (2RT/F) ln b, using 2RT/F = 0.051 39 V. The 

extrapolated intercept on the vertical axis at b = 0 is the value 

of E<(Ag, AgCl, Cl−). Although the graph gives an indication of 

the intercept, use linear regression to preserve the precision of 

the data.

b/(10−3 b<) 3.215 5.619 9.138 25.63

Ecell/V 0.520 53 0.492 57 0.468 60 0.418 24

Atkins09819.indb   741 9/11/2013   8:38:07 AM



742 15 Chemical equilibria

(b) Combining electrode potentials
The standard potentials in Table 77.1 may be combined to give 

values for couples that are not listed there. However, to do so, 

we must take into account the fact that different couples may 

correspond to the transfer of different numbers of electrons. 

The procedure is illustrated in the following example.

The generalization of the calculation in Example 77.2, since 

(a) = (b) + (c), is

� � �a b c(a) (b) cE E E< < <= + ( )
 

A note on good practice Whenever combining standard 

potentials to obtain the standard potential of a third couple, 

always work via the Gibbs energies because they are additive, 

whereas, in general, standard potentials are not.

77.2 Applications of 
standard potentials

Cell potentials are a convenient source of data on equilibrium 

constants and the Gibbs energies, enthalpies, and entropies of 

reactions. In practice the standard values of these quantities are 

the ones normally determined.

Example 77.2 Evaluating a standard potential from 
two others

Given that the standard potentials of the Cu2+/Cu and Cu+/Cu  

couples are +0.340 V and +0.522 V, respectively, evaluate 

E<(Cu2+, Cu+).

Method First, we note that reaction Gibbs energies may be 

added (as in a Hess’s law analysis of reaction enthalpies, Topic 57).  

Therefore, we should convert the E< values to ΔrG
< values by 

using the relation ΔrG
< = −νFE< developed in Topic 76 (which 

applies to electrode potentials as well as to the overall cell 

potential), add them appropriately, and then convert the overall 

ΔrG
< to the required E< by using the same relation again. This 

roundabout procedure is necessary because, as we shall see, 

although the factor F cancels, the factor ν in general does not.

Answer The electrode reactions are as follows:

(a) Cu (aq) 2 e Cu(s)

Cu Cu 34  V  

so 2(

2

2

r

+ −

+

+ →
=+

=−
E

G

<

<

( , ) . ,

.

0 0

0Δ 334  V)

(b) Cu (aq) e Cu(s)

Cu Cu 522 V  

so r

0

0

F

E

G

+ −

+

+ →
=+

=−

<

<

( , ) . ,

Δ (( . )0 522V F
 

The required reaction is

(c) Cu (aq) e Cu aq

(Cu Cu ) /

2

2
r

+ − +

+ +

+ →
=−

( )

,E F< <Δ G
 

Because (c) = (a) − (b), the standard Gibbs energy of reaction (c) is

Δ Δ Δr r r(a) (b) 158VG G G F< < <= − =− ×( . )0

Therefore, E<(Cu2+,Cu+) = +0.158 V.

Self-test 77.2 Calculate the standard potential of the Fe3+/Fe 

couple from the values for the Fe3+/Fe2+ and Fe2+/Fe couples.

Answer: −0.037 V

Answer The data give the following table:

The data are plotted in Fig. 77.1; as can be seen (and is in fact 

verified by a linear regression analysis), they extrapolate to 

E<(Ag, AgCl, Cl−) = +0.2232 V.

Self-test 77.1 The data below are for the cell Pt(s)|H2(g,p <)| 

HBr(aq,b)|AgBr(s)|Ag(s) at 25 °C. Determine the standard 

potential of the cell.

Answer: +0.071 V

b/(10−3 b<) 3.215 5.619 9.138 25.63

{b/(10−3 b<)}1/2 1.793 2.370 3.023 5.063

Ecell/V 0.520 53 0.492 57 0.468 60 0.418 24

g(b)/V 0.2256 0.2263 0.2273 0.2299

b/(10−4 b<) 4.042 8.444 37.19

Ecell/V 0.473 81 0.436 36 0.361 73

0.2300

02290

0.2280

0.2270

0.2260

0.2250

0.2240

0.2230

g
(b

)/
V

 

0 1 2 3 4 5
(b/10–3b<)1/2

Figure 77.1 The plot and the extrapolation used in Example 
77.1 for the experimental measurement of a standard 
electrode potential. The intercept at b1/2 = 0 is E<(Ag, AgCl, Cl−).

 (77.4)
Combination 
of standard 
potentials
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77 Standard electrode potentials  743

(a) The electrochemical series
In Topic 76 it is shown that a cell reaction is spontaneous 

under standard conditions (and therefore in the sense K > 1, as 

explained in that Topic) if Ecell
< >0 (corresponding to ΔrG

<< 0). 

We have seen that, for two redox couples Ox1/Red1 and Ox2/Red2, 

the cell potential is given by eqn 77.1; for their standard values

Red Ox Red OxL L R R cell R L, || , E E E< < <= −
 

(77.5a)

It follows that the cell reaction (Ox + ν e− → Red)R − (Ox + ν e− →  

Red)L, which is

Red  Ox Ox RedL R L R+ → +
 

(77.5b)

is spontaneous as written (in the sense K > 1) if E ER L
< <> . 

Because in the cell reaction RedL reduces OxR, we can conclude 

that

RedL has a thermodynamic tendency to reduce OxR 

if E EL R
< << .

More briefly: low reduces high.

Table 77.2 shows a part of the electrochemical series, the 

metallic elements (and hydrogen) arranged in the order of their 

reducing power as measured by their standard potentials in 

aqueous solution. A metal low in the series (with a lower stand-

ard potential) can reduce the ions of metals with higher stand-

ard potentials. This conclusion is qualitative. The quantitative 

value of K for the reaction is obtained by doing the calculations 

described in Topic 76. It should always be remembered that 

even for reactions that are thermodynamically favourable there 

may be kinetic factors that result in very slow rates of reaction.

(b) The determination of activity coefficients
Once the standard potential of an electrode in a cell is known, 

perhaps by calculation from tables of standard electrode poten-

tials or by direct measurement, it can be used to determine 

mean activity coefficients. The procedure involves measuring 

the cell potential for a known molality, b, of electroactive spe-

cies, using the Nernst equation to find the value of the activ-

ity, a, that corresponds to the observed cell potential, and then 

determining the activity coefficient from an expression of the 

form γ  = a/(b/b<). For instance, if we write the Nernst equation 

for the Harned cell in the form

g b E
RT

F
( ) , , ln( )− = −−

±
< Ag AgCl Cl

2 γ
 

(77.6)

then all we need do is measure g(b) = Ecell + (2RT/F) ln b (with b 

interpreted as b/b<) for a given value of b.

Brief illustration 77.1 The electrochemical series

Because E< (Zn2+,Zn) = −0.76 V < E< (Cu2+,Cu) = +0.34 V, zinc 

has a thermodynamic tendency to reduce Cu2+ ions in aque-

ous solution. More qualitatively: to determine whether zinc 

can displace magnesium from aqueous solutions, we note that 

zinc lies above magnesium in the electrochemical series, so 

zinc cannot reduce magnesium ions in aqueous solution.

Self-test 77.3 Can zinc displace hydrogen from acid? Can 

copper?

Answer: Yes; no

Brief illustration 77.2 The activity coefficient

From the data in Example 77.1 we know that E< (Ag, AgCl, 

Cl−) = +0.2232 V and that when b = 9.138 mmol kg−1, Ecell =  

0.468 60 V, corresponding to g(b) = 0.2273 V. Therefore, with 

RT/F = 25.693 mV,

ln
. .

( . )
.γ ± −= − −

× ×
= − …0 2273 0 2232

2 25 693 10
0 0798

3

V V

V
 

That is, γ± = 0.9233.

Self-test 77.4 Use data from Example 77.1 to determine γ± 

when b = 25.63 mmol kg−1.

Answer: 0.8778

Table 77.2 The electrochemical series of the metals*

Least strongly reducing

Gold

Platinum

Silver

Mercury

Copper

(Hydrogen)

Lead

Tin

Nickel

Iron

Zinc

Chromium

Aluminium

Magnesium

Sodium

Calcium

Potassium

Most strongly reducing

* The complete series can be inferred from Table 77.1 in the Resource section.
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744 15 Chemical equilibria

(c) The determination of 
equilibrium constants

The principal use for standard potentials is to calculate the 

standard potential of a cell formed from any two electrodes. To 

do so, we subtract the standard potential of the left-hand elec-

trode from the standard potential of the right-hand electrode, 

E E Ecell R L
< < <= − . Because ΔG EF< <= −� cell ,  it then follows that if 

the result gives Ecell
< >0, then the corresponding cell reaction 

has K > 1. To calculate the numerical value of K we use eqn 76.5 

of Topic 76 (ln K FE RT= � cell
< / ).

(d) The determination of 
thermodynamic functions
The standard cell potential is related to the standard reaction 

Gibbs energy through eqn 76.3 of Topic 76 (Δr cellG FE< <= −� ). 

Therefore, by measuring Ecell
<  or by constructing its value from 

standard electrode potentials we can obtain this important 

thermodynamic quantity. Its value can then be used to calcu-

late the Gibbs energy of formation of ions by using the conven-

tion explained in Topic 65.

The temperature coefficient of the standard cell potential, 

d /dcellE T< , gives the standard entropy of the cell reaction. This con-

clusion follows from the thermodynamic relation (∂G/∂T)p = −S 

(Topic 66) and eqn 76.3 of Topic 76 (Δr cellG FE< <= −� ), which 

combine to give

d

d
cell rE

T

S

F

< <

= Δ
�  

 Temperature coefficient of the cell potential  (77.7)

The derivative is complete because Ecell
< , like ΔrG

<, is inde-

pendent of the pressure. Hence we have an electrochemi-

cal technique for obtaining standard reaction entropies and 

through them the entropies of ions in solution.

Finally, we can combine the results obtained so far and 

use them to obtain the standard reaction enthalpy by writing 

ΔG = ΔH − TΔS in the form ΔH = ΔG + TΔS:

Δr cell
celld

d
H F E T

E

T
< <

<

= − −⎛
⎝⎜

⎞
⎠⎟

�

 

 Standard reaction enthalpy  (77.8)

This expression provides a non-calorimetric method for 

measuring ΔrH
< and, through the convention ΔfH

<(H+, 

aq) = 0, the standard enthalpies of formation of ions in solu-

tion (Topic 57).

Brief illustration 77.3 Equilibrium constants

A disproportionation is a reaction in which a species is 

both oxidized and reduced. To study the disproportiona-

tion 2 Cu+(aq) → Cu(s) + Cu2+(aq) we combine the following 

electrodes:

Right-hand electrode Cu(s) Cu aq

Cu (aq) e Cu(aq) R

: | ( )

.

+

+ −+ → = +E< 0 552V

Left-hand electrode Pt(s) Cu (aq) Cu (aq)

Cu (aq) e

2

2

: | ,+ +

+ −+ →CCu (s) 16VL
+ = +E< 0.

where the standard potentials are measured at 298 K. The 

standard cell potential is therefore

Ecell 52V 16 V 36 V< = + − = +0 0 0. . .

We can now calculate the equilibrium constant of the cell 

reaction. Because ν = 1 and RT/F = 25.693 V,

ln
.

.
.K =

×
= …−

0 36

25 693 10
14 0

3

V

V

Hence, K = 1.2 × 106.

Self-test 77.5 Calculate the solubility constant (the equilibrium 

constant for the reaction Hg Cl s Hg aq Cl aq2 2( ) ( ) ( )� 2
2 2+ + − ) at 

298.15.

Answer: 2.6 × 10−18

Example 77.3 Using the temperature coefficient 
of the cell potential

The standard potential of the cell Pt(s)|H2(g)|HBr(aq)|AgBr(s)|

Ag(s) was measured over a range of temperatures, and the data 

were fitted to the following polynomial:

E T

T

cell
4

6 2

/V 7131 4 99 1 ( /K 298)

3 45 1 /K 298

< = − × −
− × −

−

−

0 0 0

0

. .

. ( )
 

Evaluate the standard reaction Gibbs energy, enthalpy, and 

entropy at 298 K of the reaction AgBr(s)  H g Ag(s)2+ → +1
2

( )
HBr(aq).

Method The standard Gibbs energy of reaction is obtained 

by using ΔrG
< = −νFE< after evaluating E< at 298 K, and by 

using 1 V C = 1 J. The standard entropy of reaction is obtained 

by using eqn 77.7, which involves differentiating the polyno-

mial with respect to T and then setting T = 298 K. The reaction 

enthalpy is obtained by combining the values of the standard 

Gibbs energy and entropy.

Answer At T = 298 K, Ecell V,< = +0 07131.  so

Δr cell
4 11 9 6485 1 C mol 7131V

6 88

G F E< <= − = − × × × +
= − ×

−� ( ) ( . ) ( . )

.

0 0 0

0 11 VC mol 6 88 kJmol3 1 10 0− −= − .
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77 Standard electrode potentials  745

Checklist of concepts

☐ 1. Each electrode is considered to make a characteristic 

contribution to the overall cell potential, the difference 

of the two contributions being the cell potential.

☐ 2. Tables of standard electrode potentials are compiled on 

the basis that the standard hydrogen electrode has zero 

potential at all temperatures.

☐ 3. In the electrochemical series, the metallic elements 

(and hydrogen) are arranged in the order of their reduc-

ing power as measured by their standard potentials in 

aqueous solution.

☐ 4. A metal low in the electrochemical series (with a lower 

standard potential) can reduce the ions of metals with 

higher standard potentials.

☐ 5. The temperature coefficient of the standard cell poten-

tial, d dcellE T< / , gives the standard entropy of the cell 

reaction.

☐ 6. Standard potentials can be used to determine activity 

coefficients, equilibrium constants, and thermody-

namic functions.

Checklist of equations

The temperature coefficient of the standard cell potential is

d

d
4 99 1 VK 2 3 45 1 /K 298 VKcell 4 1 6 1E

T
T

<

= × ×− − −− − − −. ( . )( )0 0
 

At T = 298 K this expression evaluates to

d

d
4 99 1 VKcell 4 1E

T

<

= ×− − −. 0
 

So, from eqn 77.7, the reaction entropy is

Δr
4 1 4 1

1 1

1 9 6485 1 C mol 4 99 1 VK

48 1JK mol

S< = × × × − ×
=−

− − −

− −

( . ) ( . )

.

0 0

 

It then follows that

Δ Δ Δr r r

1 1 16 88 kJmol (298K) 481kJK mol

H G T S< < <= +
= − + × −
= −

− − −. ( . )0 0 0

221 2kJmol 1. −
 

One difficulty with this procedure lies in the accurate meas-

urement of small temperature coefficients of the cell potential. 

Nevertheless, it is another example of the striking ability of 

thermodynamics to relate the apparently unrelated, in this 

case to relate electrical measurements to thermal properties.

Self-test 77.6 Predict the standard potential of the Harned cell 

at 303 K from tables of thermodynamic data.

Answer: +0.2222 V

Property Equation Comment Equation number

Cell potential Ecell = ER − EL Definition 77.1

Standard hydrogen electrode E<(H+,H2) = 0 Convention, at all temperatures 77.2

Combinations of standard electrode potentials νaE
<(a) = νbE<(b) + νcE

<(c)
77.4

Temperature coefficient of cell potential d /d /cell rE T S F< <= Δ � 77.7

Standard reaction enthalpy Δr cell celld /dH F E T E T< < <= − −� ( ) 77.8
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746 15 Chemical equilibria

Focus 15 on Chemical equilibria

Topic 73 Chemical transformations

Discussion questions
73.1 Explain how the mixing of reactants and products affects the position of 

chemical equilibrium.

73.2 Explain how a reaction that is not spontaneous may be driven forward by 

coupling to a spontaneous reaction.

73.3 Suggest how the thermodynamic equilibrium constant may respond 

differently to changes in pressure and temperature from the equilibrium 

constant expressed in terms of partial pressures.

Exercises
73.1(a) Write the expressions for the equilibrium constants of the following 

reactions in terms of (i) activities and (ii) where appropriate, the ratios p/p< 

and the products γ b:

(a) CO(g) + Cl2(g) ⇌ COCl(g) + Cl(g)

(b) 2 SO2(g) + O2(g) ⇌ 2 SO3(g)

(c) Fe(s) + PbSO4(aq) ⇌ FeSO4(aq) + Pb(s)

(d) Hg2Cl2(s) + H2(g) ⇌ 2 HCl(aq) + 2 Hg(l)

(e) 2 CuCl(aq) ⇌ Cu(s) + CuCl2(aq)

 73.1(b) Write the expressions for the equilibrium constants of the following 

reactions in terms of (i) activities and (ii) where appropriate, the ratios p/p< 

and the products γ b:

(a) H2(g) + Br2(g) ⇌ 2 HBr(g)

(b) 2 O3(g) ⇌ 3 O2(g)

(c) 2 H2(g) + O2(g) ⇌ 2 H2O(l)

(d) H2(g) + O2(g) ⇌ H2O2(aq)

(e) H2(g) + I2(g) ⇌ 2 HI(aq)

73.2(a) Identify the stoichiometric numbers in the reaction Hg2Cl2(s) + H2(g) →  

2 HCl(aq) + 2 Hg(l).

73.2(b) Identify the stoichiometric numbers in the reaction CH4(g) +  

2 O2(g) → CO2(g) + 2 H2O(l).

73.3(a) The standard reaction Gibbs energy of the isomerization of borneol 

(C10H17OH) to isoborneol in the gas phase at 503 K is +9.4 kJ mol−1. Calculate 

the reaction Gibbs energy in a mixture consisting of 0.15 mol of borneol 

molecules and 0.30 mol of isoborneol molecules when the total pressure is 600 

Torr. Under these conditions, is the isomerization of borneol spontaneous?

73.3(b) The standard reaction Gibbs energy of the isomerization of cis-2-

butene to trans-2-butene in the gas phase at 298 K is −2.9 kJ mol−1. Calculate 

the reaction Gibbs energy in a mixture consisting of 0.25 mol of cis-2-butene 

molecules and 0.95 mol of trans-2-butene molecules when the total pressure 

is 600 Torr. Under these conditions, is the isomerization of cis-2-butene 

spontaneous?

73.4(a) The equilibrium pressure of O2 over solid silver and silver oxide, Ag2O, 

at 298 K is 11.85 Pa. Calculate the standard Gibbs energy of formation of 

Ag2O(s) at 298 K.

73.4(b) The equilibrium pressure of H2 over solid uranium and uranium 

hydride, UH3, at 500 K is 139 Pa. Calculate the standard Gibbs energy of 

formation of UH3(s) at 500 K.

73.5(a) For CaF2(s) ⇌ Ca2+(aq) + 2 F−(aq), K = 3.9 × 10−11 at 25 °C and the 

standard Gibbs energy of formation of CaF2(s) is −1167 kJ mol−1. Calculate the 

standard Gibbs energy of formation of CaF2(aq).

73.5(b) For PbI2(s) ⇌ Pb2+(aq) + 2 I−(aq), K = 1.4 × 10−8 at 25 °C and the 

standard Gibbs energy of formation of PbI2(s) is −173.64 kJ mol−1. Calculate 

the standard Gibbs energy of formation of PbI2(aq).

73.6(a) In the gas-phase reaction 2 A + B ⇌ 3 C + 2 D, it was found that when 

1.00 mol A, 2.00 mol B, and 1.00 mol D were mixed and allowed to come 

to equilibrium at 25 °C, the resulting mixture contained 0.90 mol C at a 

total pressure of 1.00 bar. Calculate (a) the mole fractions of each species at 

equilibrium, (b) Kx, (c) K, and (d) ΔrG
<.

73.6(b) In the gas-phase reaction A + B ⇌ C + 2 D, it was found that when 

2.00 mol A, 1.00 mol B, and 3.00 mol D were mixed and allowed to come 

to equilibrium at 25 °C, the resulting mixture contained 0.79 mol C at a 

total pressure of 1.00 bar. Calculate (a) the mole fractions of each species at 

equilibrium, (b) Kx, (c) K, and (d) ΔrG
<.

73.7(a) The hydrolysis of ATP is written as  ATP (aq) H O(l) ADP (aq)4
2

3− −+ →
+ +− +HPO (aq) H O aq34

2 ( ).  For this reaction the standard reaction Gibbs 

energy is +10 kJ mol−1 at 298 K. What is the biological standard state value?

73.7(b) The overall reaction for the glycolysis reaction is C H O (aq)6 12 6 +  

2 NAD (aq) 2 ADP (aq) 2 HPO (aq) 2 H O(l) 2 CH COCO (a3
2 3

+ − − −+ + + →4
2

2 qq)+
2 NADH(aq) 2 ATP (aq) 2 H O (aq)4

3+ +− + .  For this reaction, the standard 

reaction Gibbs energy is −80.6 kJ mol−1 at 298 K. What is the biological 

standard state value?

Problems
73.1 The equilibrium constant for the reaction, I2(s) + Br2(g) ⇌ 2 IBr(g) is 0.164 

at 25 °C. (a) Calculate ΔrG
< for this reaction. (b) Bromine gas is introduced 

into a container with excess solid iodine. The pressure and temperature are 

held at 0.164 atm and 25 °C. Find the partial pressure of IBr(g) at equilibrium. 

Assume that all the bromine is in the liquid form and that the vapour pressure 

of iodine is negligible. (c) In fact, solid iodine has a measurable vapour 

pressure at 25 °C. In this case, how would the calculation have to be modified?

73.2 The standard Gibbs energy of formation of NH3(g) is −16.5 kJ mol−1 at 

298 K. What is the reaction Gibbs energy when the partial pressures of the 
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N2, H2, and NH3 (treated as perfect gases) are 3.0 bar, 1.0 bar, and 4.0 bar, 

respectively? What is the spontaneous direction of the reaction in this case?

73.3 The degree of dissociation, α, is defined as the fraction of reactant that 

has decomposed; if the initial amount of reactant is n and the amount at 

equilibrium is neq, then α = (n − neq)/n. The standard Gibbs energy of reaction 

for the decomposition H O(g) H (g)+ O g22 2
1
2

→ ( )  is +118.08 kJ mol−1 at 

2300 K. What is the degree of dissociation of H2O at 2300 K and 1.00 bar? 

Hints: The equilibrium constant is obtained from the standard Gibbs energy of 

reaction by using eqn 73.13, so the task is to relate the degree of dissociation, 

α, to K and then to find its numerical value. Proceed by expressing the 

equilibrium compositions in terms of α. For example, if an amount n H2O is 

present initially, then an amount αn H2O reacts to reach equilibrium and an 

amount(1 − α)n H2O(g) is present at equilibrium. Then, solve for α in terms of 

K. Because the standard Gibbs energy of reaction is large and positive, we can 

anticipate that K will be small and hence that α � 1, which opens the way to 

making approximations to obtain its numerical value.

73.4 Calculate the equilibrium constant of the reaction CO(g) + H2(g) ⇌  

H2CO(g) given that for the production of liquid formaldehyde ΔrG
< =  

+28.95 kJ mol−1 at 298 K and that the vapour pressure of formaldehyde is 1500 

Torr at that temperature.

73.5 A sealed container was filled with 0.300 mol H2(g), 0.400 mol I2(g), and 

0.200 mol HI(g) at 870 K and total pressure 1.00 bar. Calculate the amounts 

of the components in the mixture at equilibrium given that K = 870 for the 

reaction H2(g) + I2(g) ⇌ 2 HI(g).

73.6‡ In a study of Cl2O(g) by photoelectron ionization (R.P. Thorn, et al.  

J. Phys. Chem. 100, 14178 (1996)), the authors report ΔfH
<(Cl2O) =  

+77.2 kJ mol−1. They combined this measurement with literature data on 

the reaction Cl2O(g) + H2O(g) → 2 HOCl(g), for which K = 8.2 × 10−2 and 

ΔrS
< = +16.38 J K−1 mol−1, and with readily available thermodynamic data 

on water vapour to report a value for ΔfH
<(HOCl). Calculate that value. All 

quantities refer to 298 K.

73.7‡ The 1980s saw reports of ΔfH
<(SiH2) ranging from 243 to 289 kJ mol−1. 

For example, the lower value was cited in the review article by R. Walsh (Acc. 

Chem. Res. 14, 246 (1981)); Walsh later leant towards the upper end of the 

range (H.M. Frey, et al. J. Chem. Soc., Chem. Commun. 1189 (1986)). The 

higher value was reported by S.-K. Shin and J.L. Beauchamp (J. Phys. Chem. 

90, 1507 (1986)). If the standard enthalpy of formation is uncertain by this 

amount, by what factor is the equilibrium constant for the formation of SiH2 

from its elements uncertain at (a) 298 K, (b) 700 K?

73.8 Express the equilibrium constant of a gas-phase reaction A + 3 B ⇌ 2 C in 

terms of the equilibrium value of the extent of reaction, ξ, given that initially 

A and B were present in stoichiometric proportions. Find an expression for 

ξ as a function of the total pressure, p, of the reaction mixture and sketch a 

graph of the expression obtained.

73.9 The equilibrium constant K calculated from thermodynamic data refers 

to activities. For gas-phase reactions, that means partial pressures (and 

explicitly, pJ/p
<). However, in practical applications we might wish to discuss 

gas-phase reactions in terms of molar concentrations. The equilibrium 

constant is then denoted Kc, and for the equilibrium a A(g) + b B(g) ⇌  

c C(g) + d D(g), we write

K
c d

a bc
C D

A B
= [ ]

[ ] [ ]

[ ]

 

with, as usual, the molar concentration [J] interpreted as [J]/c< with 

c< = 1 mol dm−3. Show that

K K
T

T
T

p

Rc
= ×⎛

⎝⎜
⎞
⎠⎟

=c

gas

<
<

<

<

Δ�

 

where Δνgas = c + d − (a + b). Evaluate T<.

 73.10 The protein myoglobin (Mb) stores O2 in muscle and the protein 

haemoglobin (Hb) transports O2 in blood; haemoglobin is composed of four 

myoglobin-like molecules. Here we explore the chemical equilibria associated 

with binding of O2 in these proteins. (a) First, consider the equilibrium 

between Mb and O2:

Mb(aq) O g MbO aq
MbO

Mb2 2+ =( ) ( )
[ ]

[ ]
� K

p
2

 

where p is the numerical value of the partial pressure (in Torr) of O2 gas. 

Show that the fractional saturation, s, the fraction of Mb molecules that are 

oxygenated, is

s
Kp

Kp
= +1

 

and plot the dependence of s on p for K = 5 Torr. (b) Now consider the 

equilibria between Hb and O2:

Hb(aq) O g HbO (aq)

HbO (aq) O g Hb(O )

HbO

Hb2 2

2 2 2 2

+

+

=( )
[ ]

( ) (

[ ]
�

�

K
p1
2

aaq

Hb(O ) (aq) O g Hb(O ) aq

Hb O

HbO

Hb
2 2 2 2 3

)
[ ]

( ) ( )
[

( )

[ ]
K

p

K

2
2 2

2

3

=

=+ �
(( )

[ ( ) ]

( )

]

( ) ( )
[ ]

O

Hb O

Hb O
Hb(O ) (aq) O g Hb(O ) aq2 3 2 2

2 3

2 2

4
2 4

4

p

K+ =�
[[ ( ) ]Hb O2 3 p  

Show that

s
AK p

B
= =[ ]

[ ]

O

Hb
bound

total

2 1

4 4
 

with

A K p K K p K K K p

B K p K K p K K K p K K K

= + + +

= + + + +

 1 2 3  4

 1

2 2 3
2

2 3 4
3

1 1 2
2

1 2 3
3

1 2 33 4
3K p  

and plot the dependence of s on p (in torr) for K1 = 0.01, K2 = 0.02, K3 = 0.04, 

and K4 = 0.08. Hints: To develop an expression for s, proceed as follows: (i) 

express [Hb(O2)2] in terms of [HbO2] by using K2, then express [HbO2] in 

terms of [Hb] by using K1, and likewise for all the other concentrations of 

Hb(O2)3 and Hb(O2)4. (ii) Show that

[ ]

[

O  [HbO ] 2[Hb(O ) ] 3[Hb(O ) ] 4[Hb(O ) ]

Hb

2 bound 2 2 2 2 3 2 4

1

= + + +
= AK p ]]

[ ] [ ]Hb Hbtotal = B  

(iii) Use the fact that each Hb molecule has four sites at which O2 can attach. 

(c) The binding of O2 to haemoglobin is an example of cooperative binding, in 

which the binding of a ligand (in this case O2) to a biopolymer (in this case 

Hb) becomes more favourable thermodynamically (that is, the equilibrium 

constant increases) as the number of bound ligands increases up to the 

maximum number of binding sites. Which features of the plot from part (b) 

can be ascribed to cooperative binding of O2 to Hb?
‡  These problems were supplied by Charles Trapp and Carmen Giunta.
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73.11 The curves you were asked to plot in Problem 73.10 may also be 

modelled mathematically by the equation

log log log
s

s
p K

1−
⎛
⎝⎜

⎞
⎠⎟

= −� �H H

 

where s is the saturation, p is the partial pressure of O2, K is a constant (not 

the binding constant for one ligand), and vH is the Hill coefficient, which 

varies from 1, for no cooperativity, to N, for all-or-none binding of N ligands 

(N = 4 in Hb). The Hill coefficient for myoglobin is 1, and for haemoglobin it 

is 2.8. (a) Determine the constant K for both Mb and Hb from the graph of 

fractional saturation (at s = 0.5) and then calculate the fractional saturation 

of Mb and Hb for the following values of p/kPa: 1.0, 1.5, 2.5, 4.0, 8.0. (b) 

Calculate the value of s at the same p values assuming vH has the theoretical 

maximum value of 4.

73.12 Here we investigate the molecular basis for the observation that the 

hydrolysis of ATP is exergonic at pH = 7.0 and 310 K. (a) It is thought that 

the exergonicity of ATP hydrolysis is due in part to the fact that the standard 

entropies of hydrolysis of polyphosphates are positive. Why would an 

increase in entropy accompany the hydrolysis of a triphosphate group into 

a diphosphate and a phosphate group? (b) Under identical conditions, the 

Gibbs energies of hydrolysis of H4ATP and MgATP2−, a complex between the 

Mg2+ ion and ATP4−, are less negative than the Gibbs energy of hydrolysis 

of ATP4−. This observation has been used to support the hypothesis that 

electrostatic repulsion between adjacent phosphate groups is a factor that 

controls the exergonicity of ATP hydrolysis. Provide a rationale for the 

hypothesis and discuss how the experimental evidence supports it. Do these 

electrostatic effects contribute to the ΔrH or ΔrS terms that determine the 

exergonicity of the reaction? Hint: In the MgATP2−complex, the Mg2+ ion and 

ATP4− anion form two bonds: one that involves a negatively charged oxygen 

belonging to the terminal phosphate group of ATP4− and another that involves 

a negatively charged oxygen belonging to the phosphate group adjacent to the 

terminal phosphate group of ATP4−.

73.13 To get a sense of the effect of cellular conditions on the ability of ATP 

to drive biochemical processes, compare the standard Gibbs energy of 

hydrolysis of ATP to ADP with the reaction Gibbs energy in an environment 

at 37 °C in which pH = 7.0 and the ATP, ADP, and Pi
−  concentrations are all 

1.0 μmol dm−3.

73.14 Under biochemical standard conditions, aerobic respiration produces 

approximately 38 molecules of ATP per molecule of glucose that is completely 

oxidized. (a) What is the percentage efficiency of aerobic respiration under 

biochemical standard conditions? (b) The following conditions are more 

likely to be observed in a living cell: pCO
2

2
=5 3  1 atm,. × −0  pO 2

0 132= . atm,  

[glucose] = 5.6 × 10−2 mol dm−3, [ATP] = [ADP] = [Pi] = 1.0 × 10−4 mol dm−3, 

pH = 7.4, T = 310 K. Assuming that activities can be replaced by the numerical 

values of molar concentrations, calculate the efficiency of aerobic respiration 

under these physiological conditions. (c) A typical diesel engine operates 

between Tc = 873 K and Th = 1923 K with an efficiency that is approximately 

75 per cent of the theoretical limit of (1 − Tc/Th) (see Topic 61). Compare the 

efficiency of a typical diesel engine with that of aerobic respiration under 

typical physiological conditions (see part b). Why is biological  

energy conversion more or less efficient than energy conversion in a  

diesel engine?

73.15 In anaerobic bacteria, the source of carbon may be a molecule other 

than glucose and the final electron acceptor is some molecule other than 

O2. Could a bacterium evolve to use the ethanol/nitrate pair instead of the 

glucose/O2 pair as a source of metabolic energy?

73.16‡ Nitric acid hydrates have received much attention as possible catalysts 

for heterogeneous reactions which bring about the Antarctic ozone hole. 

Worsnop, et al. investigated the thermodynamic stability of these hydrates 

under conditions typical of the polar winter stratosphere (D.R. Worsnop, et al. 

Science 259, 71 (1993)). Standard reaction Gibbs energies can be computed 

for the following reactions at 190 K from their data:

(i) H2O(g) → H2O(s) ΔrG
< = −23.6 kJ mol−1

(ii) H2O(g) + HNO3(g) → HNO3
.H2O(s) ΔrG

< = −57.2 kJ mol−1

(iii) 2 H2O(g) + HNO3(g) → HNO3
.2H2O(s) ΔrG

< = −85.6 kJ mol−1

(iv) 3 H2O(g) + HNO3(g) → HNO3
.3H2O(s) ΔrG

< = −112.8 kJ mol−1

Which solid is thermodynamically most stable at 190 K if pH O2
1 3 10 7= × −.  

and pHNO3
4 1 10 10= × −. ?  Hint: Try computing ΔrG for each reaction under 

the prevailing conditions; if more than one solid forms spontaneously, 

examine ΔrG for the conversion of one solid to another.

Topic 74 The statistical description of equilibrium

Discussion question
74.1 Use concepts of statistical thermodynamics to describe the molecular 

features that determine the magnitudes of equilibrium constants and their 

variation with temperature.

Exercises
74.1(a) Calculate the value of K for the reaction I2(g) ⇌ 2 I(g) at 1000 K from 

the following data for I2: �� = −214 36 1. ,cm  �B = −0 0373 1. ,cm  De = 1.5422 eV. The 

ground state of the I atoms is 2P3/2, implying fourfold degeneracy.

74.1(b) Calculate the value of K at 298 K for the gas-phase isotopic exchange 

reaction 2 79Br81Br ⇌ 79Br79Br + 81Br81Br. The Br2 molecule has a non-degenerate 

ground state, with no other electronic states nearby. Base the calculation on the 

wavenumber of the vibration of 79Br81Br, which is 323.33 cm−1.
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Problems
74.1 Calculate and plot as a function of temperature, in the 

range 300 K to 1000 K, the equilibrium constant for the 

reaction CD4(g) + HCl(g) ⇌ CHD3(g) + DCl(g) using the 

following data (numbers in parentheses are degeneracies): 

��( ) ( ), ( ), ( ), ( ), ( );CHD /cm     3
−1 2993 1 2142 1 1003 3 1291 2 1036 2=  

��( ) ( ), ( ), ( ), ( );CD /cm    4
−1 2109 1 1092 2 2259 3 996 3=  ��( ) ;HCl /cm−1 2991=  

��( ) ;DCl /cm−1 2145=  �B( )/ . ;HCl cm−1 10 59=  �B( ) . ;DCl /cm−1 5 445=  
�A( ) . ;CHD /cm3

−1 3 28=  � �B B( ) . ; ( ) . .CHD /cm CD /cm3 4
− −1 12 63 2 63= =

74.2 The exchange of deuterium between acid and water is an important 

type of equilibrium, and we can examine it using spectroscopic data on 

the molecules. Calculate the equilibrium constant at (a) 298 K and (b) 

800 K for the gas-phase exchange reaction H2O + DCl ⇌ HDO + HCl 

from the following data: ��( ) . , . , . ;H O /cm   2
−1 3656 7 1594 8 3755 8=  

��( )/ . , . , . ;HDO cm   −1 2726 7 1402 2 3707 5=  
� � �A B C( ) . ; ( )/ . ; ( ) . ;H O /cm  H O cm  H O /cm2 2 2

− − −1 1 127 88 14 51 9 29= = =  
� � �A B C( ) . ; ( ) . ; ( ) .HDO /cm  HDO /cm  HDO /cm− − −1 1 123 38 9 102 6 417= = = ;;  
�B( ) . ;HCl /cm−1 10 59=  � �B( ) . ; ( ) ;DCl /cm  HCl /cm− −1 15 449 2991= =�  
��( ) .DCl /cm−1 2145=

Topic 75 The response of equilibria to the conditions

Discussion questions
75.1 Account for Le Chatelier’s principle in terms of thermodynamic 

quantities. Can you think of a reason why the principle might fail?

75.2 State the limits to the generality of the van ’t Hoff equation, written as in 

eqn 75.5.

Exercises
75.1(a) Calculate the percentage change in Kx for the reaction 

H2CO(g) ⇌ CO(g) + H2(g) when the total pressure is increased from 1.0 bar to 

3.0 bar at constant temperature.

75.1(b) Calculate the percentage change in Kx for the reaction 

CH3OH(g) + NOCl(g) ⇌ HCl(g) + CH3NO2(g) when the total pressure is 

increased from 1.0 bar to 4.0 bar at constant temperature.

75.2(a) The standard reaction enthalpy of Zn(s) + H2O(g) → ZnO(s) + H2(g) 

is approximately constant at +224 kJ mol−1 from 920 K up to 1280 K. The 

standard reaction Gibbs energy is +33 kJ mol−1 at 1280 K. Estimate the 

temperature at which the equilibrium constant becomes greater than 1.

75.2(b) The standard enthalpy of a certain reaction is approximately constant 

at +125 kJ mol−1 from 800 K up to 1500 K. The standard reaction Gibbs energy 

is +22 kJ mol−1 at 1120 K. Estimate the temperature at which the equilibrium 

constant becomes greater than 1.

75.3(a) The equilibrium constant of the reaction 2 C3H6(g) ⇌ C2H4(g) +  

C4H8(g) is found to fit the expression ln K = A + B/T + C/T2 between 300 K 

and 600 K, with A = −1.04, B = −1088 K, and C = 1.51 × 105 K2. Calculate the 

standard reaction enthalpy and standard reaction entropy at 450 K.

75.3(b) The equilibrium constant of a reaction is found to fit the expression 

ln K = A + B/T + C/T3 between 400 K and 600 K with A = −2.01, B = −1170 K, 

and C = 2.2 × 107 K3. Calculate the standard reaction enthalpy and standard 

reaction entropy at 500 K.

75.4(a) What is the standard enthalpy of a reaction for which the equilibrium 

constant is (a) doubled, (b) halved when the temperature is increased by 10 K 

at 298 K?

75.4(b) What is the standard enthalpy of a reaction for which the equilibrium 

constant is (a) doubled, (b) halved when the temperature is increased by 15 K 

at 310 K?

75.5(a) Estimate the temperature at which CaCO3(calcite) decomposes.

75.5(b) Estimate the temperature at which CuSO4⋅5H2O undergoes 

dehydration.

75.6(a) From information in the Resource section, calculate the standard 

Gibbs energy and the equilibrium constant at (a) 298 K and (b) 400 K for the 

reaction PbO(s) + CO(g) ⇌ Pb(s) + CO2(g). Assume that the reaction enthalpy 

is independent of temperature.

75.6(b) From information in the Resource section, calculate the standard Gibbs 

energy and the equilibrium constant at (a) 25 °C and (b) 50 °C for the reaction 

CH4(g) + 3 Cl2(g) ⇌ CHCl3(l) + 3 HCl(g). Assume that the reaction enthalpy is 

independent of temperature.

Problems
75.1 The dissociation vapour pressure of NH4Cl at 427 °C is 608 kPa but at 459 °C 

it has risen to 1115 kPa. Calculate (a) the equilibrium constant, (b) the standard 

reaction Gibbs energy, (c) the standard enthalpy, (d) the standard entropy of 

dissociation, all at 427 °C. Assume that the vapour behaves as a perfect gas and 

that ΔH< and ΔS< are independent of temperature in the range given.

75.2 Consider the dissociation of methane, CH4(g), into the elements H2(g) 

and C(s, graphite). (a) Given that ΔfH
<(CH4, g) = −74.85 kJ mol−1 and 

that ΔfS
<(CH4, g) = −80.67 J K−1 mol−1 at 298 K, calculate the value of the 

equilibrium constant at 298 K. (b) Assuming that ΔfH
< is independent of 

temperature, calculate K at 50 °C.

75.3 The equilibrium pressure of H2 over U(s) and UH3(s) between 450 K 

and 715 K fits the expression ln(p/Pa) = A + B/T + C ln(T/K), with A = 69.32, 

B = −1.464 × 104 K, and C = −5.65. Find an expression for the standard enthalpy 

of formation of UH3(s) and from it calculate ΔrCp
<.
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75.4 The degree of dissociation, αe = (ninitial − nequilibrium)/ninitial, of CO2(g) into 

CO(g) and O2(g) at high temperatures was found to vary with temperature as 

follows:

Assuming ΔrH
< to be constant over this temperature range, calculate ΔrH

< 

and, at each of the above three temperatures, K, ΔrG
<, and ΔrS

<. Make any 

justifiable approximations.

75.5 The standard reaction enthalpy for the decomposition of CaCl2⋅NH3(s) 

into CaCl2(s) and NH3(g) is nearly constant at +78 kJ mol−1 between 350 K 

and 470 K. The equilibrium pressure of NH3 in the presence of CaCl2⋅NH3 is 

1.71 kPa at 400 K. Find an expression for the temperature dependence of ΔrG
< 

in the same range.

75.6 Acetic acid was evaporated in a container of volume 21.45 cm3 at 437 K 

and at an external pressure of 200 kPa. The container was then sealed. The 

mass of acid present in the sealed container was 0.0519 g. The experiment 

was repeated with the same container but at 471 K, and it was found that 

0.0380 g of acetic acid was present. Calculate the equilibrium constant for the 

dimerization of the acid in the vapour and the enthalpy of vaporization.

75.7 The dissociation of I2 can be monitored by measuring the total pressure, 

and three sets of results are as follows:

where nI is the amount of I atoms per mole of I2 molecules in the mixture, 

which occupied 342.68 cm3. Calculate the equilibrium constants of 

the dissociation and the standard enthalpy of dissociation at the mean 

temperature.

75.8‡ Suppose that an iron catalyst at a particular manufacturing plant 

produces ammonia in the most cost-effective manner at 450 °C when the 

pressure is such that ΔrG for the reaction 1
2

3
2

N (g) H (g) NH g2 2 3+ → ( ) is 

equal to −500 J mol−1. (a) What pressure is needed? (b) Now suppose that 

a new catalyst is developed that is most cost-effective at 400 °C when the 

pressure gives the same value of ΔrG. What pressure is needed when the new 

catalyst is used? What are the advantages of the new catalyst? Assume that 

(i) all gases are perfect gases or that (ii) all gases are van der Waals gases. 

Isotherms of ΔrG(T, p) in the pressure range 100 atm ≤ p ≤ 400 atm are needed 

to derive the answer. (c) Do the isotherms you plotted confirm Le Chatelier’s 

principle concerning the response of equilibrium to changes in temperature 

and pressure?

75.9 Find an expression for the standard reaction Gibbs energy at a 

temperature T ′ in terms of its value at another temperature T and the 

coefficients a, b, and c in the expression for the molar heat capacity listed 

in Table 56.1. Evaluate the standard Gibbs energy of formation of H2O(l) at 

372 K from its value at 298 K.

75.10‡ The dimerization of ClO in the Antarctic winter stratosphere is believed 

to play an important part in that region’s severe seasonal depletion of ozone. 

The following equilibrium constants are based on measurements by Cox 

and Hayman (R. A. Cox and G. D. Hayman, Nature 332, 796 (1988)) on the 

reaction 2 ClO(g) → (ClO)2(g).

(a) Derive the values of ΔrH
< and ΔrS

< for this reaction. (b) Compute the 

standard enthalpy of formation and the standard molar entropy of (ClO)2 

given ΔfH
<(ClO) = +101.8 kJ mol−1 and Sm ClO J K mol<( ) . .= 226 6 1 1− −

Topic 76 Electrochemical cells

Discussion questions
76.1 Describe the various types of galvanic and electrolytic cells. 76.2 Explain why salt bridges are used in electrochemical cell measurements.

Exercise
76.1(a) Write the cell reaction and electrode half-reactions of each of the 

following cells:

(a) Zn(s)|ZnSO4(aq)‖AgNO3(aq)|Ag(s)

(b) Cd(s)|CdCl2(aq)‖HNO3(aq)|H2(g)|Pt(s)

(c) Pt(s)|K3[Fe(CN)6](aq),K4[Fe(CN)6](aq)‖CrCl3(aq)|Cr(s)

(d) Pt(s)|Fe3+(aq),Fe2+(aq)‖Sn4+(aq),Sn2+(aq)|Pt(s)

76.1(b) Write the cell reaction and electrode half-reactions of each of the 

following cells:

(a) Pt(s)|K3[Fe(CN)6](aq),K4[Fe(CN)6](aq)‖Mn2+(aq),H+(aq)|MnO2(s)|Pt(s)

(b) Cu(s)|Cu2+(aq)‖Mn2+(aq),H+(aq)|MnO2(s)|Pt(s)

(c) Pt(s)|Cl2(g)|HCl(aq)‖HBr(aq)|Br2(l)|Pt(s)

(d) Fe(s)|Fe2+(aq)‖Mn2+(aq),H+(aq)|MnO2(s)|Pt(s)

Problems
76.1 A fuel cell develops an electric potential from the chemical reaction 

between reagents supplied from an outside source. What is the potential 

of a cell fuelled by (a) hydrogen and oxygen, (b) the complete oxidation of 

benzene at 1.0 bar and 298 K?

T/K 973 1073 1173

100p/atm 6.244 7.500 9.181

104nI 2.4709 2.4555 2.4366

T/K 1395 1443 1498

αe/10−4 1.44 2.50 4.71

T/K 233 248 258 268 273

K 4.13 × 108 5.00 × 107 1.45 × 107 5.37 × 106 3.20 × 106

T/K 280 288 295 303

K 9.62 × 105 4.28 × 105 1.67 × 105 7.02 × 104
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76.2 A fuel cell is constructed in which both electrodes make use of the 

oxidation of methane. The left-hand electrode makes use of the complete 

oxidation of methane to carbon dioxide and water; the right-hand electrode 

makes use of the partial oxidation of methane to carbon monoxide and water. 

(a) Which electrode is the cathode? (b) What is the cell potential at 25 °C 

when all gases are at 1 bar?

Topic 77 Standard electrode potentials

Discussion questions
77.1 Discuss how the electrochemical series can be used to determine if a 

redox reaction is spontaneous under standard conditions.

77.2 Describe a method for the determination of the standard potential of a 

redox couple.

77.3 Describe at least one non-calorimetric experimental method for 

determining a standard reaction enthalpy.

Exercises
77.1(a) Calculate the standard potential of the Ce4+/Ce couple from the values 

for the Ce3+/Ce and Ce4+/Ce3+ couples.

77.1(b) Calculate the standard potential of the Au3+/Au+ couple from the 

values for the Au3+/Au and Au+/Au couples.

77.2(a) Can mercury produce zinc metal from aqueous zinc sulfate under 

standard conditions?

77.2(b) Can chlorine gas oxidize water to oxygen gas under standard 

conditions in basic solution?

77.3(a) The potential of the cell Ag(s)|AgI(s)|AgI(aq)|Ag(s) is +0.9509 V at 

25 °C. Calculate (a) the solubility of AgI and (b) the equilibrium constant for 

the dissolution of AgI(s).

77.3(b) The potential of the cell Bi(s)|Bi2S3(s)|Bi2S3(aq)|Bi(s) is −0.96 V at 

25 °C. Calculate (a) the solubility of Bi2S3 and (b) the equilibrium constant for 

the dissolution of Bi2S3(s).

77.4(a) The standard potential of the cell Pt(s)|H2(g)|HCl(aq)|Hg2Cl2(s)|Hg(l)  

was found to be +0.2699 V at 293 K and +0.2669 V at 303 K. Evaluate the 

standard reaction Gibbs energy, enthalpy, and entropy at 298 K of the reaction 

Hg2Cl2(s) + H2(g) → 2 Hg(l) + 2 HCl(aq).

77.4(b) The standard potential of the cell Pt(s)|H2(g)|HBr(aq)|AgBr(s)|Ag(s)  

was found to be +0.07372 V at 293 K and +0.06873 V at 303 K. Evaluate the 

standard reaction Gibbs energy, enthalpy, and entropy at 298 K of the reaction 

AgBr(s) + ½ H2(g) → Ag(s) + HBr(aq).

77.5(a) Calculate the standard cell potential and the value of ΔrG
< at 25 °C for 

the reactions in the following cells:

(a) Zn(s)|ZnSO4(aq)||AgNO3(aq)|Ag(s)

(b) Cd(s)|CdCl2(aq)||HNO3(aq)|H2(g)|Pt(s)

(c) Pt(s)|K3[Fe(CN)6](aq),K4[Fe(CN)6](aq)||CrCl3(aq)|Cr(s)

(d) Pt(s)|Fe3+(aq),Fe2+(aq)||Sn4+(aq),Sn2+(aq)|Pt(s)

77.5(b) Calculate the standard cell potential and the value of ΔrG
< at 25 °C for 

the reactions in the following cells:

(a) Pt(s)|K3[Fe(CN)6](aq),K4[Fe(CN)6](aq)||Mn2+(aq),H+(aq)|MnO2(s)|Pt(s)

(b) Cu(s)|Cu2+(aq)‖Mn2+(aq),H+(aq)|MnO2(s)|Pt(s)

(c) Pt(s)|Cl2(g)|HCl(aq)‖HBr(aq)|Br2(l)|Pt(s)

(d) Fe(s)|Fe2+(aq)‖Mn2+(aq),H+(aq)|MnO2(s)|Pt(s)

77.6(a) Devise cells in which the following are the reactions and calculate the 

standard cell potential in each case:

(a) Fe(s) + PbSO4(aq) → FeSO4(aq) + Pb(s)

(b) Hg2Cl2(s) + H2(g) → 2 HCl(aq) + 2 Hg(l)

(c) 2 H2(g) + O2(g) → 2 H2O(l)

77.6(b) Devise cells in which the following are the reactions and calculate the 

standard cell potential in each case:

(a) H2(g) + O2(g) → H2O2(aq)

(b) H2(g) + I2(g) → 2 HI(aq)

(c) 2 CuCl(aq) → Cu(s) + CuCl2(aq)

77.7(a) Consider the cell Ag|AgBr(s)|KBr(aq, 0.050 mol kg−1)‖Cd(NO3)2(aq, 

0.010 mol kg−1)|Cd. (a) Write the cell reaction. (b) Write the Nernst equation 

for the cell. (c) Use the Debye–Hückel limiting law and the Nernst equation to 

estimate the cell potential at 25 °C.

77.7(b) Consider the cell Pt|H2(g,p<)|HCl(aq, 0.010 mol kg−1)|AgCl(s)|Ag. 

(a) Write the cell reaction. (b) Write the Nernst equation for the cell. (c) Use 

the Debye–Hückel limiting law and the Nernst equation to estimate the cell 

potential at 25 °C.

77.8(a) Calculate the equilibrium constants of the following reactions at 25 °C 

from standard potential data:

(a) Sn(s) + Sn4+(aq) ⇌ 2 Sn2+(aq)

(b) Fe(s) + Hg(NO3)2(aq) ⇌ Hg(l) + Fe(NO3)2(aq)

77.8(b) Calculate the equilibrium constants of the following reactions at 25 °C 

from standard potential data:

(a) Cd(s) + CuSO4(aq) ⇌ Cu(s) + CdSO4(aq)

(b) 3 Au2+(aq) ⇌ Au(s) + 2 Au3+(aq)

Problems
77.1 Given that ΔrG

< = −212.7 kJ mol−1 for the reaction in the Daniell cell at 

25 °C, and b(CuSO4) = 1.0 × 10−3 mol kg−1 and b(ZnSO4) = 3.0 × 10−3 mol kg−1, 

calculate (a) the ionic strengths of the solutions, (b) the mean ionic activity 

coefficients in the compartments, (c) the reaction quotient, (d) the standard 

cell potential, and (e) the cell potential. (Take γ+ = γ− = γ± in the respective 

compartments.)
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77.2 Although the hydrogen electrode may be simple conceptually, it is 

cumbersome to use and several substitutes have been devised. One of these 

alternatives is the quinhydrone electrode (quinhydrone, Q⋅QH2, is a complex 

of quinone, C6H4O2 = Q, and hydroquinone, C6H4O2H2 = QH2). The electrode 

half-reaction is Q(aq) + 2 H+(aq) + e− → QH2(aq), E< = +0.6994 V. If the cell 

Hg|Hg2Cl2(s)|HCl(aq)|Q⋅QH2|Au is prepared, and the measured cell potential 

is +0.190 V, what is the pH of the HCl solution? Assume that the Debye–

Hückel limiting law is applicable.

77.3 Consider the cell, Zn(s)|ZnCl2(0.0050 mol kg−1)|Hg2Cl2(s)|Hg(l), for 

which the cell reaction is Hg2Cl2(s) + Zn(s) → 2 Hg(l) + 2 Cl−(aq) + Zn2+(aq). 

Given that E<(Zn2+,Zn) = −0.7628 V, E<(Hg2Cl2,Hg) = +0.2676 V, and that 

the cell potential is +1.2272 V, (a) write the Nernst equation for the cell. 

Determine (b) the standard cell potential; (c) ΔrG, ΔrG
<, and K for the cell 

reaction; (d) the mean activity and activity coefficient of ZnCl2 from the 

measured cell potential; and (e) the mean activity coefficient of ZnCl2 from 

the Debye–Hückel limiting law. (f) Given that (∂E/∂T)p = −4.52 × 10−4 V K−1, 

calculate ΔrS and ΔrH.

77.4 The potential of the cell Pt(s)|H2(g, p<)|HCl(aq,b)|Hg2Cl2(s)|Hg(l) has 

been measured with high precision (G. J. Hills and D. J. G. Ives, J. Chem. Soc., 

311 (1951)), with the following results at 25 °C:

Determine the standard potential of the cell and the mean activity coefficient 

of HCl at these molalities. (Make a least-squares fit of the data to the best 

straight line.)

77.5 Careful measurements of the potential of the cell Pt(s)|H2(g, p<)|NaOH 

(aq, 0.0100 mol kg−1), NaCl(aq, 0.01125 mol kg−1)|AgCl(s)|Ag(s) have been 

reported (C.P. Bezboruah, et al. J. Chem. Soc. Faraday Trans. I 69, 949 (1973)). 

Among the data is the following information:

Calculate pKw at these temperatures and the standard enthalpy and entropy of 

the autoprotolysis of water at 25.0 °C.

77.6 Measurements of the potentials of cells of the type Ag(s)|AgX(s)MX(b1)| 

MxHg|MX(b2)|AgX(s)|Ag(s), where MxHg denotes an amalgam and the 

electrolyte is an alkali metal halide dissolved in ethylene glycol, have been 

reported (U. Sen, J. Chem. Soc. Faraday Trans. I 69, 2006 (1973)), and 

some values for LiCl are given below. Estimate the activity coefficient at 

the concentration marked * and then use this value to calculate activity 

coefficients from the measured cell potential at the other concentrations. Base 

your answer on the Davies equation (eqn 72.29, log γ± = −AI1/2/(1 + BI1/2) + CI) 

for the mean ionic activity, with A = 1.461, B = 1.70, k = 0.20, and I = b/b<. For 

b2 = 0.09141 mol kg−1:

77.7 The standard potential of the AgCl/Ag,Cl− couple has been measured 

very carefully over a range of temperature (R.G. Bates and V.E. Bowers, 

J. Res. Nat. Bur. Stand. 53, 283 (1954)) and the results were found to fit the 

expression

E< /V 23659  4 8564 1 ( / C) 3 42 5 1 / C

5 869

4 6 2= − × ° − × °

+ ×

− −0 0 0 0. . . ( )

.

θ θ

11 / C9 30− °( )θ
 

Calculate the standard Gibbs energy and enthalpy of formation of Cl−(aq) and 

its entropy at 298 K.

77.8‡ The table below summarizes the potential observed for the cell 

Pd(s)|H2(g,1 bar)|BH(aq,b), B(aq,b)|AgCl(s)|Ag(s). Each measurement 

is made at equimolar concentrations of 2-aminopyridinium chloride 

(BH) and 2-aminopyridine (B). The data are for 25 °C and it is found that 

E< = 0.22251 V. Use the data to determine pKa for the acid at 25 °C and the 

mean activity coefficient (γ±) of BH as a function of molality (b) and ionic 

strength (I). Use the Davies equation for the mean activity coefficient (see 

Problem 77.6) with A = 0.5091. Draw a graph of the mean activity coefficient 

with b = 0.04 mol kg−1 and 0 ≤ I ≤ 0.1.

Hint: Use mathematical software or a spreadsheet.

77.9 Show that if the ionic strength of a solution of the sparingly soluble salt 

MX and the freely soluble salt NX is dominated by the concentration C of the 

latter, and if it is valid to use the Debye–Hückel limiting law, the solubility S′ 
in the mixed solution is given by

′ =S
K

C

AC
se

4 606 1 2. /

 

when Ks is small (in a sense to be specified).

77.10 If the mitochondrial electric potential between matrix and the 

intermembrane space were 70 mV, as is common for other membranes, how 

much ATP could be synthesized from the transport of 4 mol H+, assuming the 

pH difference remains the same?

77.11 The standard potentials of proteins are not commonly measured 

by the methods described in this Topic because proteins often lose their 

native structure and function when they react on the surfaces of electrodes. 

In an alternative method, the oxidized protein is allowed to react with an 

appropriate electron donor in solution. The standard potential of the protein 

is then determined from the Nernst equation, the equilibrium concentrations 

of all species in solution, and the known standard potential of the electron 

donor. We shall illustrate this method with the protein cytochrome c. The one-

electron reaction between cytochrome c, cyt, and 2,6-dichloroindophenol, 

D, can be followed spectrophotometrically because each of the four species 

in solution has a distinct colour, or absorption spectrum. We write the 

reaction as cytox + Dred ⇌ cytred + Dox , where the subscripts ‘ox’ and ‘red’ refer 

to oxidized and reduced states, respectively. (a) Consider Ecyt
<  and ED

<  to 

be the standard potentials of cytochrome c and D, respectively. Show that, at 

equilibrium (‘eq’), a plot of ln([Dox]eq/[Dred]eq) versus ln([cytox]eq/[cytred]eq) is 

linear with slope of 1 and y-intercept F E E RT( ) ,cyt D /< <−  where equilibrium 

activities are replaced by the numerical values of equilibrium molar 

concentrations. (b) The following data were obtained for the reaction between 

oxidized cytochrome c and reduced D in a pH = 6.5 buffer at 298 K. The ratios 

[Dox]eq/[Dred]eq and [cytox]eq/[cytred]eq were adjusted by titrating a solution 

containing oxidized cytochrome c and reduced D with a solution of sodium 

ascorbate, which is a strong reductant. From the data and the standard 

potential of D of 0.237 V, determine the standard potential of cytochrome c at 

pH = 6.5 and 298 K.

b/(mmol kg−1) 1.6077 3.0769 5.0403 7.6938 10.9474

E/V 0.60080 0.56825 0.54366 0.52267 0.50532

θ/°C 20.0 25.0 30.0

E/V 1.04774 1.04864 1.04942

b1/(mol kg−1) 0.0555 0.09141* 0.1652 0.2171 1.040 1.350

E/V −0.0220 0.0000 0.0263 0.0379 0.1156 0.1336

b/(mol kg−1) 0.01 0.02 0.03 0.04 0.05

E<(25 °C)/V 0.74452 0.72853 0.71928 0.71314 0.70809

b/(mol kg−1) 0.06 0.07 0.08 0.09 0.10

E<(25 °C)/V 0.70380 0.70059 0.69790 0.69571 0.69338

[Dox]eq/[Dred]eq 0.00279 0.00843 0.0257 0.0497

[cytox]eq/[cytred]eq 0.0106 0.0230 0.0894 0.197

[Dox]eq/[Dred]eq 0.0748 0.238 0.534

[cytox]eq/[cytred]eq 0.335 0.809 1.39

Atkins09819.indb   752 9/11/2013   8:39:13 AM

www.ebook3000.com

http://www.ebook3000.org


Exercises and problems  753

Integrated activities

F15.1 Nitrogen dioxide, a paramagnetic compound, is in equilibrium with its 

dimer, dinitrogen tetroxide, a diamagnetic compound. Derive an expression 

in terms of the equilibrium constant, K, for the dimerization to show how 

the molar magnetic susceptibility varies with the pressure of the sample 

(Topic 39). Suggest how the susceptibility might be expected to vary as the 

temperature is changed at constant pressure.

F15.2 Use mathematical software, a spreadsheet, or the Living graphs (labelled 
LG) on the website of this book for the following exercises:

(a) Plot xA and xB against the pressure p for several values of the equilibrium 

constant K for a reaction of the form A(g) ⇌ 2 B(g).

(b) The equilibrium constant of a reaction is found to fit the expression  

ln K = a + b/(T/K) + c/(T/K)3 over a range of temperatures. (a) Write 

expressions for ΔrH
< and ΔrS

<. (b) Plot ln K against T between 400 K and 

600 K for a = −2.0, b = −1.0 × 103, and c = 2.0 × 107.

(c) Plot the variation of cell potential with the value of the reaction quotient 

for the cell reaction for different values of the temperature. Does the cell 

potential become more or less sensitive to composition as the temperature 

increases?

(d) For the cell described in Example 77.1, plot a family of curves of E against 

b/b< for several values of the temperature T.
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That so many chemical reactions take place in gas and liquid phases is due in part to the mobility of 
molecules and ions in fluid media. To understand the rates of these reactions, which are treated as 
an aspect of Reaction dynamics, we need to know how fast molecules migrate and encounter one 
another.

A perfect gas is in principle very simple, and the model of a gas in which the molecules are in 
ceaseless chaotic motion provides a way to predict many of its properties (Topic 78). In fact, the 
kinetic theory of gases described in this Topic is a remarkable example of model-building in science, 
for from the flimsiest of assumptions precise predictions can be made about the pressure and the 
speeds of the molecules. Moreover, when molecules fly through space, they carry properties with 
them. By noting how far and how fast molecules move, we can build quantitative expressions for a 
number of these ‘transport properties’, including the thermal conductivity and viscosity of a perfect 
gas (Topic 79).

The motion of ions and molecules in liquids is quite different: instead of flying freely through 
space, a molecule or ion must migrate through a dense but mobile medium. One way to study this 
motion is to apply an electric field and to monitor the rate at which ions migrate under its influ-
ence (Topic 80). All solute particles, however, migrate by jostling their way past the surrounding sol-
vent molecules, and their motion can be understood in terms of a ‘thermodynamic force’ that relies 
on the concept of the chemical potential introduced in Physical equilibria; furthermore we see that 
their average motion can be expressed in terms of two very powerful and general laws of diffusion 
(Topic 81). In fact, by treating the motion as a random walk, we see that there are analogies between 
the migration of molecules in liquids and in gases.

What is the impact of this material?

The migration of molecules and ions through matter is crucial to the occurrence of chemical reac-
tions, but it also plays a central role in biology. In Impact 16.1 we examine how the transport proper-
ties of molecules are used in genomics and proteomics to establish the composition of nucleic acids 
and proteins. In Impact 16.2 we see how the experimental detection of the migration of ions across 
biological membranes leads to insights about the function of biological cells.

Reaction
dynamics
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Motion
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TOPIC 78

The kinetic theory of gases

In the kinetic theory of gases (which is sometimes called the 

kinetic-molecular theory, KMT) it is assumed that the only 

contribution to the energy of the gas is from the kinetic ener-

gies of the molecules. The kinetic model is one of the most 

remarkable—and arguably most beautiful—models in physical 

chemistry, for from a set of very slender assumptions, powerful 

quantitative conclusions can be reached.

78.1 The kinetic model

The kinetic model of a pure gas (of identical molecules) is based 

on four assumptions:

1. The gas consists of molecules of mass m in ceaseless 

random motion obeying the laws of classical 

mechanics.

2. The size of the molecules is negligible, in the sense that 

their diameters are much smaller than the average 

distance travelled between collisions.

3. Because the forces between molecules are assumed to 

have a short range, the molecules interact only through 

brief collisions.

4. The collisions are elastic.

An elastic collision is a collision in which the total trans-

lational kinetic energy of the molecules is conserved. The 

theory is applicable to a sample consisting of a large num-

ber of molecules in which it is safe to consider the average 

behaviour of the molecules and to ignore fluctuations from 

the mean.

 ➤ Why do you need to know this material?
There are ‘scientific’ and practical reasons for the 
importance of this material. The ‘scientific’ reason is that the 
discussion shows how to extract quantitative information 
from a qualitative model. The practical importance of the 
material is that it is used in the discussion of the properties 
of gases (Topic 36), in the discussion of catalysis (Topic 97), 
and in the discussion of reaction rates in gases (Topic 87).

 ➤ What is the key idea?
According to the kinetic model, a gas consists of molecules 
of negligible size in ceaseless random motion and obeying 
the laws of classical mechanics in their collisions.

Contents

78.1 The kinetic model 757

(a) Pressure and molecular speeds 758

Brief illustration 78.1:The number of molecules  

with a range of speeds 760

(b) Mean values 761

Example 78.1: Calculating the mean speed  

of molecules in a gas 762

(c) The collision frequency 763

Brief illustration 78.2: Molecular collisions 763

(d) The mean free path 764

Brief illustration 78.3: The mean free path 764

78.2 Collisions with walls and surfaces 764

(a) The collision flux 764

Brief illustration 78.4: The collision flux 764

(b) Effusion 765

Example 78.2: Calculating the vapour pressure  

from a mass loss 765

Checklist of concepts 766

Checklist of equations 766

 ➤ What do you need to know already?

You need to be aware of Newton’s second law of motion, 
that the acceleration of a body is proportional to the force 
acting on it (Foundations, Topic 2).
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758 16 Molecular motion

(a) Pressure and molecular speeds
From the very economical assumptions of the kinetic model, 

we show in the following Justification that the pressure, p, and 

volume, V, of the gas are related by

pV nM= 1
3

2vrms  
Perfect gas  Pressure  (78.1)

where M = mNA, the molar mass of the molecules of mass m, 

n is the amount of molecules in the sample, and vrms is the 

square root of the mean of the squares of the speeds, v, of the 

molecules:

v vrms = 〈 〉2 1 2/

 Definition  Root mean square speed  (78.2)

Justification 78.1 The pressure of a gas according  
to the kinetic model

Consider the arrangement in Fig. 78.1. When a particle of mass 

m that is travelling with a component of velocity vx parallel to 

the x-axis collides with the wall on the right and is reflected, 

its linear momentum changes from mvx before the collision 

to −mvx after the collision (when it is travelling in the oppo-

site direction). The x-component of momentum therefore 

changes by 2mvx on each collision (the y- and z-components 

are unchanged). Many molecules collide with the wall in an 

interval Δt, and the total change of momentum is the product 

of the change in momentum of each molecule multiplied by the 

number of molecules that reach the wall during the interval.

Because a molecule with velocity component vx can travel 

a distance vxΔt along the x-axis in an interval Δt, all the mol-

ecules within a distance vxΔt of the wall will strike it if they are 

travelling towards it (Fig. 78.2). It follows that if the wall has 

area A, then all the particles in a volume A × vxΔt will reach the 

wall (if they are travelling towards it). The number density of 

particles is nNA/V, where n is the total amount of molecules in 

the container of volume V and NA is Avogadro’s constant, so the 

number of molecules in the volume AvxΔt is (nNA/V) × AvxΔt.

At any instant, half the particles are moving to the right 

and half are moving to the left. Therefore, the average num-

ber of collisions with the wall during the interval Δt is 

mvx

–mvx

x

Before
collision

After
collision

Figure 78.1 The pressure of a gas arises from the impact 
of its molecules on the walls. In an elastic collision of a 
molecule with a wall perpendicular to the x-axis, the  
x-component of velocity is reversed but the y- and  
z-components are unchanged.

1
2

nN A t VA xv Δ / .  The total momentum change in that interval 

is the product of this number and the change 2mvx:

Momentum change A

A

= ×

= =

nN A t

V
m

nmN A t

V

nMA t

V

x
x

x x

v
v

v v

Δ

Δ Δ

2
2

2 2

M


Next, to find the force, we calculate the rate of change of 

momentum, which is this change of momentum divided by 

the interval Δt during which it occurs:

Rate of change of momentum= nMA

V
xv2

This rate of change of momentum is equal to the force (by 

Newton’s second law of motion). It follows that the pressure, 

the force divided by the area, is

Pressure = nM

V
xv2

Not all the molecules travel with the same velocity, so the 

detected pressure, p, is the average (denoted 〈…〉) of the quan-

tity just calculated:

p
nM

V
x= 〈 〉v2

This expression already resembles the perfect gas equation of 

state.

To write an expression for the pressure in terms of the root 

mean square speed, we begin by writing the speed of a single 

molecule, v, as v v v v2 2 2 2= + +x y z .  Because the root mean square 

speed, vrms, is defined as vrms = 〈v2〉1/2 (as in eqn 78.2), it follows 

that

v v v v vrms
2 2 2 2 2= = + +〈 〉 〈 〉 〈 〉 〈 〉x y z

However, because the molecules are moving randomly, all 

three averages are the same. It follows that v vrms
2 23= 〈 〉.  

Equation 78.1 follows immediately by substituting 〈 〉v vx
2 1

3
2= rms  

into p nM Vx= 〈 〉v2 / .

Will

Won’t

|vxΔt|

Volume = |vxΔt|A

Area, A

x

Figure 78.2 A molecule will reach the wall on the right 
within an interval Δt if it is within a distance vxΔt of the wall 
and travelling to the right.
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78 The kinetic theory of gases 759

Equation 78.1 is one of the key results of the kinetic model. 

We see that, if the root mean square speed of the molecules 

depends only on the temperature, then at constant temperature

pV = constant
 

which is the content of Boyle’s law. Moreover, for eqn 78.1 to be 

the equation of state of a perfect gas, its right-hand side must be 

equal to nRT. It follows that the root mean square speed of the 

molecules in a gas at a temperature T must be

vrms =⎛
⎝⎜

⎞
⎠⎟

3
1 2

RT

M

/

 

Perfect gas  Root mean square speed  (78.3)

It is also possible to confirm that the right-hand side of eqn 

78.1 is equal to nRT by appealing to the Boltzmann distribu-

tion. To do so, we proceed in two steps. First, in the following 

Justification we show that the fraction of molecules that have a 

speed in the range v to v + dv is f(v)dv, where

f
M

RT
M RT( )

/

/v v v= ⎛
⎝⎜

⎞
⎠⎟

−4
2

3 2

2 22π
π

e
 

Justification 78.2 The Maxwell–Boltzmann distribution 
of speeds

The Boltzmann distribution implies that the fraction of 

molecules with velocity components vx, vy, and vz is propor-

tional to an exponential function of their kinetic energy: 

f(v) = Ke−ε/kT, where K is a constant of proportionality. The 

kinetic energy is

ε = + +1
2

2 1
2

2 1
2

2m m mx y zv v v

Therefore, we can use the relation ax+y+z = axayaz to write

f K Km m m kT m kT m kT mx y z x y z( ) ( )/ / / /v v v v v v v= =− + + − − −e e e e
2 2 2 2 2 22 2 2 2kkT

The distribution factorizes into three terms, and we can write 

f(v) = f(vx) f(vy) f(vz) and K = KxKyKz, with

f Kx x
m kTx( ) /v v= −e

2 2

and likewise for the other two axes.

To determine the constant Kx, we note that a molecule 

must have a velocity component somewhere in the range 

−∞ < vx < ∞, so

f x x( )v vd =
−∞

∞

∫ 1

Substitution of the expression for f(vx) and use of Integral G.1 

in the Resource section then gives

1
22 2

1 2

= = ⎛
⎝⎜

⎞
⎠⎟

−

−∞

∞

∫K K
kT

mx
m kT

x x
xe dv v/

/π

Therefore, Kx = (m/2πkT)1/2 and at this stage we can write

f
m

kTx
m kTx( )

/

/v v= ⎛
⎝⎜

⎞
⎠⎟

−
2

1 2

22

π e

The probability that a molecule has a velocity in the range vx to 

vx + dvx, vy to vy + dvy, vz to vz + dvz is therefore

f f f

m

kT

x y z

m kT m k

x y z

x y

( ) ( ) ( )

/

/ /

v v v v v v

v v

d d d

e e= ⎛
⎝⎜

⎞
⎠⎟

− −

2

3 2

2 22 2

π
TT m kT

m kT

x y z

x y z

z

m

kT

e

e

d d d

d d d

−

−= ⎛
⎝⎜

⎞
⎠⎟

v

v

v v v

v v v

2

2

2

3 2

2

2

/

/

/

π

where v v v v2 2 2 2= + +x y z .

To evaluate the probability that the molecules have a speed 

in the range v to v + dv regardless of direction we think of the 

three velocity components as defining three coordinates in 

‘velocity space’, with the same properties as ordinary space 

except that the coordinates are labelled (vx,vy,vz) instead of 

(x,y,z). Just as the volume element in ordinary space is dxdydz, 

so the volume element in velocity space is dvxdvydvz. The sum 

of all the volume elements in ordinary space that lie at a dis-

tance r from the centre is the volume of a spherical shell of 

radius r and thickness dr. That volume is the product of its 

surface area, 4πr2, and its thickness, dr, and is therefore 4πr2dr. 

Similarly, the analogous volume in velocity space is the volume 

of a shell of radius v and thickness dv, namely 4πv2dv (Fig. 

78.3). Now, because f(vx)f(vy)f(vz), the term in blue in the last 

equation, depends only on v2, and has the same value every-

where in a shell of radius v, the total probability of the mol-

ecules possessing a speed in the range v to v + dv is the product 

Perfect 
gas

Maxwell–
Boltzmann 
distribution

 (78.4)

vz

vy

vx

v

Thickness, dvSurface
area, 4πv2

Figure 78.3 To evaluate the probability that a molecule 
has a speed in the range v to v + dv, we evaluate the 
total probability that the molecule will have a speed 
that is anywhere on the surface of a sphere of radius 
v v v v= + +( ) /

x y z
2 2 2 1 2  by summing the probabilities that it is in 

a volume element dvxdvydvz at a distance v from the origin.
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760 16 Molecular motion

The function f(v) is called the Maxwell–Boltzmann distri-

bution of speeds. Then we use this distribution to calculate the 

average value of v2.

The important features of the Maxwell–Boltzmann distribu-

tion are as follows (and are shown pictorially in Fig. 78.4):

Equation 78.4 includes a decaying exponential function 

(more specifically, a Gaussian function). Its presence 

implies that the fraction of molecules with very high 

speeds will be very small because e−x2

 becomes very 

small when x is large.

The factor M/2RT multiplying v2 in the exponent is 

large when the molar mass, M, is large, so the 

exponential factor goes most rapidly towards zero 

when M is large. That is, heavy molecules are 

unlikely to be found with very high speeds.

The opposite is true when the temperature, T, is high: 

then the factor M/2RT in the exponent is small, so the 

exponential factor falls towards zero relatively slowly as  

v increases. In other words, a greater fraction of the 

molecules can be expected to have high speeds at high 

temperatures than at low temperatures.

A factor v2 (the term before the e) multiplies the 

exponential. This factor goes to zero as v goes to zero, so 

the fraction of molecules with very low speeds will also 

be very small whatever their mass.

The remaining factors (the term in parentheses in eqn 

78.4 and the 4π) simply ensure that, when we sum the 

fractions over the entire range of speeds from zero to 

infinity, we get 1.

The Maxwell–Boltzmann distribution can be used to evalu-

ate the fraction of molecules in the range from v1 to v2 by evalu-

ating the integral

F f( , ) ( )v v v v
v

v

1 2
1

2

=∫ d
 

(78.5)

This integral is the area under the graph of f as a function of v 

and in general has to be evaluated numerically by using math-

ematical software (Fig. 78.5).

of the term in blue and the volume of the shell of radius v and 

thickness dv. If this probability is written f(v)dv, it follows that

f
m

kT
m kT( )

/

/v v v v vd d e= ⎛
⎝⎜

⎞
⎠⎟

−4
2

2

3 2

22π π

and f(v) itself, after minor rearrangement, is

f
m

kT
m kT( )

/

/v v v= ⎛
⎝⎜

⎞
⎠⎟

−4
2

3 2

2 22π π e

Because m/k = M/R, this expression is eqn 78.4.

Brief illustration 78.1 The number of molecules with 
a range of speeds

To evaluate the number of N2 molecules that have speeds in 

the range 200 to 220 m s−1 at 400 K we need to evaluate the 

integral in eqn 78.5 with M = 28.02 g mol−1. First, we write

M

RT2

2 802 10

2 8 3145 400
4 21 10

2 1

1 1
=

×
× ×

= …×
− −

− −
−.

( . ) ( )
.

kg mol

JK mol K
66 2 2m s−

and denote it a2. Then (by using mathematical software to 

evaluate the integral),

D
is

tr
ib

u
ti

o
n

 f
u

n
ct

io
n

, f
(v

) 

Speed, v

Low temperature
or
high molecular mass

High temperature
or
low molecular mass

Intermediate temperature
or
molecular mass

Figure 78.4 The distribution of molecular speeds with 
temperature and molar mass. Note that the most probable 
speed (corresponding to the peak of the distribution) increases 
with temperature and with decreasing molar mass, and 
simultaneously the distribution becomes broader.

P
h
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n

Speed, v

v1 v2

D
is

tr
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u
ti

o
n

 f
u

n
ct

io
n

, f
 (v

)

Figure 78.5 To calculate the probability that a molecule will 
have a speed in the range v1 to v2, we integrate the distribution 
between those two limits; the integral is equal to the area of 
the curve between the limits, as shown shaded here.
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78 The kinetic theory of gases 761

The Maxwell–Boltzmann distribution has been verified 

experimentally. For example, molecular speeds can be meas-

ured directly with a velocity selector (Fig. 78.6). The spinning 

cylinder has channels that permit the passage of only those 

molecules moving through them at the appropriate speed, and 

the number of molecules can be determined by collecting them 

at a detector.

(b) Mean values
Once we have the Maxwell–Boltzmann distribution, we can 

calculate the mean value of any power of the speed by evalu-

ating the appropriate integral (see The chemist’s toolkit 78.1). 

Thus, to evaluate the average value of vn we calculate

〈 〉v v v vn n f=
∞

∫ ( )d
0  

(78.6)

In particular, integration with n = 2 results in eqn 78.3 for the 

mean square speed ( )vrms
2  of the molecules at a temperature 

T. We can conclude that the root mean square speed of the 

molecules of a gas is proportional to the square root of the 

temperature and inversely proportional to the square root 

of the molar mass. That is, the higher the temperature, the 

higher the root mean square speed of the molecules, and, 

at a given temperature, heavy molecules travel more slowly 

than light molecules. Sound waves are pressure waves, and 

for them to propagate the molecules of the gas must move to 

form regions of high and low pressure. Therefore, we should 

expect the root mean square speeds of molecules to be com-

parable to the speed of sound in air (340 m s−1). The root mean 

square speed of N2 molecules, for instance, is found from eqn 

78.3 to be 515 m s−1 at 298 K.

F
a a( , )

/

200 220 41 1
2

3 2

2 2

ms ms e− − −=
⎛
⎝⎜

⎞
⎠⎟

× − −

π π

1.95 10 m s8 3 3

� �� ��

v vv v2

1

1

200

220

0 0143

d
m s

m s

−

−

−

∫
×

=

7.32 10 m s5 3 3

� ���� ����

.

That is, 1.43 per cent of the molecules lie in the specified range.

Self-test 78.1 Calculate the fraction of CO2 molecules that 

have speeds in the range 400 to 500 m s−1 at 298 K.

Answer: 0.199

The chemist’s toolkit 78.1 Mean values

The mean value (also called the expectation value) 〈x〉 of a 

property (such as the speed v) is calculated by first multiplying 

each discrete value xi that the property can have (such as v1,  

v2, …, vN) by the probability pi that xi occurs and then sum-

ming these products over all possible N values:

〈 〉x p x

i

N

i i=
=

∑
1

When N is very large and the xi values are so closely spaced that 

the property can be regarded as varying continuously (as is the 

case with molecular speeds), it is useful to express the probabil-

ity that it can have a value between x and x + dx as

Probability of finding a value between and d dx x x f x x+ = ( )
 

where the function f(x) is the probability density. It follows that 

the probability that the property has a value between x = a and 

x = b is

Probability of finding a value between and da b f x x
a

b

=∫ ( )

The integral is equivalent to the area beneath the graph of the 

function f(x) between the limits a and b. If g(x) is a function of 

the property (for instance, a power of x, such as x2; in the case 

of speeds, v2), then its mean value in the range is

〈 〉g x g x f x x
a

b

( ) ( ) ( )=∫ d

The mean value if x spans an infinite but positive range (like 

molecular speeds) is

〈 〉g x g x f x x( ) ( ) ( )=
∞

∫ d
0

Source
Selector

Detector

Figure 78.6 A velocity selector. The molecules are produced 
in the source (which may be an oven with a small hole in one 
wall), and travel in a beam towards the rotating discs. Only 
if the speed of a molecule is such as to carry it through the 
sequence of slits will it reach the detector. Thus, the number 
of slow molecules can be counted by rotating the discs slowly, 
and the number of fast molecules counted by rotating the discs 
rapidly.
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762 16 Molecular motion

As shown in Example 78.1, we can use the Maxwell–

Boltzmann distribution to evaluate the mean speed, vmean, of 

the molecules in a gas:

vmean =⎛
⎝⎜

⎞
⎠⎟

8
1 2

RT

Mπ

/

 
Perfect gas  Mean speed  (78.7)

We can identify the most probable speed, vmp, from the loca-

tion of the peak of the distribution:

vmp =⎛
⎝⎜

⎞
⎠⎟

2
1 2

RT

M

/

 
Perfect gas  Most probable speed  (78.8)

The location of the peak of the distribution is found by differ-

entiating f(v) with respect to v and looking for the value of v at 

which the derivative is zero (other than at v = 0 and v = ∞; see 

Problem 78. 5). Figure 78.7 summarizes these results.

The mean relative speed, vrel, the mean speed with which one 

molecule approaches another of the same kind, can also be cal-

culated from the distribution:

v vrel mean= 21 2/

 

This result is much harder to derive, but the diagram in Fig. 

78.8 should help to show that it is plausible. For the relative 

mean speed of two dissimilar molecules of masses mA and mB,

vrel
A B

A B

=⎛
⎝⎜

⎞
⎠⎟

=
+

8
1 2

RT M M

M Mπμ
μ

/

 

Example 78.1 Calculating the mean speed of molecules 
in a gas

Calculate the mean speed, vmean, of N2 molecules in air at 25 °C.

Method The mean speed, vmean, is obtained by evaluating the 

integral

v v v vmean d=
∞

∫ f ( )
0

with f(v) given in eqn 78.4. Either use mathematical software 

or use Integral G.4 given in the Resource section.

Answer The integral required is

v v vv
mean e d= ⎛

⎝⎜
⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

×

−
∞

∫4
2

4
2

1

2

3 2

3 2

0

3 2

2π π

π π

M

RT

M

RT

m kT

/

/

/
22 8

1 2 1 2
RT

M

RT

M

⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

/ /

π

Substitution of the data then gives

vmean

JK mol K

kg mol
=

× ×
× ×

⎛
⎝⎜

⎞
⎠

− −

− −

8 8 3145 298

28 02 10

1 1

3 1

( . ) ( )

( . )π ⎟⎟ = −

1 2

1475

/

ms

We have used 1 J = 1 kg m2 s−2.

Self-test 78.2 Evaluate the root mean square speed of N2 mol-

ecules at 25 °C by integration. Use mathematical software or 

Integral G.5 of the Resource Section.

Answer: vrms = (3RT/M)1/2 = 515 m s−1

vmp = (2RT/M)1/2

vrms = (3RT/M)1/2

1 (4/π)1/2 (3/2)1/2

vmean = (8RT/πM)1/2

v/(2RT/M)1/2

f(
v)

/4
π(

M
/2

πR
T

)3/
2

Figuer 78.7 A summary of the conclusions that can be 
deduced from the Maxwell–Boltzmann distribution for 
molecules of molar mass M at a temperature T: vmp is the most 
probable speed, vmean is the mean speed, and vrms is the root 
mean square speed.

Perfect gas, 
identical molecules

Mean relative 
speed  (78.9a)

Perfect 
gas  (78.9b)

Mean 
relative 
speed

v

v

v

v

vvv

v

0 21/2v

21/2v

2v

Figure 78.8 A simplified version of the argument to show 
that the mean relative speed of molecules in a gas is related to 
the mean speed. When the molecules are moving in the same 
direction, the relative speed is zero; it is 2v when the molecules 
are approaching each other. A typical mean direction of 
approach is from the side, and the speed of approach is then 
21/2v. The last direction of approach is the most characteristic, 
so the speed of approach can be expected to be about 21/2v. 
This value is confirmed by more detailed calculation.
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78 The kinetic theory of gases 763

Equation 78.9b turns into eqn 78.9a when the molecules are 

identical (that is when MA = MB = M so μ = M/2).

(c) The collision frequency
Although the kinetic-molecular theory assumes that the mol-

ecules are point-like, we can count a ‘hit’ whenever the cen-

tres of two molecules come within a distance d of each other, 

where d, the collision diameter, is of the order of the actual 

diameters of the molecules (for impenetrable hard spheres d is 

the diameter). As we show in the following Justification, we can 

use the kinetic model to deduce that the collision frequency, 

z, the number of collisions made by one molecule divided by 

the time interval during which the collisions are counted, when 

there are N molecules in a volume V, is

z =σvrelN  
Perfect gas  Collision frequency  (78.10a)

with N = N/V, the number density, and vrel  given by eqn 

78.9.The area σ = πd2 is called the collision cross-section of the 

molecules. Some typical collision cross-sections are given in 

Table 78.1. In terms of the pressure (as is also shown in the fol-

lowing Justification),

z
p

kT
= σvrel

 
Perfect gas  Collision frequency  (78.10b)

Equation 78.10a shows that, at constant volume, the collision 

frequency increases with increasing temperature. Equation 

78.10b shows that, at constant temperature, the collision fre-

quency is proportional to the pressure. Such a proportion-

ality is plausible because the greater the pressure, the greater 

the number density of molecules in the sample, and the rate at 

which they encounter one another is greater even though their 

average speed remains the same.

Brief illustration 78.2 Molecular collisions

For an N2 molecule in a sample at 1.00 atm (101 kPa) and 25 °C, 

from Example 78.1 we know that vmean = 475 m s−1, so from eqn 

78.9a, vrel = 21/2 × 475 m s−1. Therefore, from eqn 78.10b, and 

taking σ = 0.43 nm2 (corresponding to 0.43 × 10−18 m2) from 

Table 78.1,

z =
× × × × ×

×

− −

−

( . ) ( ) ( . )

( .

/0 43 10 2 475 1 01 10

1 381 10

18 2 1 2 1 5

23

m ms Pa

JK−−

−

×
= ×

1

9 1

298

7 1 10

) ( )

.

K

s

so a given molecule collides about 7 × 109 times each second. 

We are beginning to appreciate the timescale of events in 

gases.

Self-test 78.3 Evaluate the collision frequency between H2 

molecules in a gas under the same conditions.

Answer: 1.7 × 1010 s−1

Table 78.1* Collision cross-sections

σ/nm2

C6H6 0.88

CO2 0.52

He 0.21

N2 0.43

* More values are given in the Resource section.

Justification 78.3 The collision frequency

Consider the positions of all the molecules except one to be 

frozen. Then note what happens as one mobile molecule 

travels through the gas with a mean relative speed vrel for a 

time Δt. In doing so it sweeps out a ‘collision tube’ of cross-

sectional area σ = πd2 and length vrelΔt and therefore of vol-

ume σvrelΔt (Fig. 78.9). The number of stationary molecules 

with centres inside the collision tube is given by the volume 

of the tube multiplied by the number density N = N/V, and is 

NσvrelΔt. The number of hits scored in the interval Δt is equal 

to this number, so the number of collisions divided by the time 

interval is Nσvrel, which is eqn 78.10a. The expression in terms 

of the pressure of the gas is obtained by using the perfect gas 

equation and R = kNA to write

N = = = = 
N

V

nN

V

nN

nRT p

p

kT
A A

/

Miss

Hit

vrelΔt

d

Area, σ

d

Figure 78.9 In an interval Δt, a molecule of diameter d 
sweeps out a tube of radius d and length vrelΔt. As it does so 
it encounters other molecules with centres that lie within 
the tube, and each such encounter counts as one collision. 
In reality, the tube is not straight, but changes direction at 
each collision. Nevertheless, the volume swept out is the 
same, and this straightened version of the tube can be used 
as a basis of the calculation.
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764 16 Molecular motion

(d) The mean free path
Once we have the collision frequency, we can calculate the 

mean free path, λ (lambda), the average distance a molecule 

travels between collisions. If a molecule collides with a fre-

quency z, it spends a time 1/z in free flight between collisions, 

and therefore travels a distance (1/z)vrel. It follows that the 

mean free path is

λ = vrel

z  
Perfect gas  Mean free path  (78.11)

Substitution of the expression for z in eqn 78.10b gives

λ
σ

= kT

p  
Perfect gas  Mean free path  (78.12)

Doubling the pressure reduces the mean free path by half.

Although the temperature appears in eqn 78.12, in a sam-

ple of constant volume, the pressure is proportional to T, so 

T/p remains constant when the temperature is increased. 

Therefore, the mean free path is independent of the temper-

ature in a sample of gas in a container of fixed volume: the 

distance between collisions is determined by the number of 

molecules present in the given volume, not by the speed at 

which they travel.

In summary, a typical gas (N2 or O2) at 1 atm and 25 °C 

can be thought of as a collection of molecules travelling with 

a mean speed of about 500 m s−1. Each molecule makes a colli-

sion within about 1 ns, and between collisions it travels about 

103 molecular diameters. The kinetic model of gases is valid 

and the gas behaves nearly perfectly if the diameter of the 

molecules is much smaller than the mean free path (d � λ), 

for then the molecules spend most of their time far from one 

another.

78.2 Collisions with walls and 
surfaces

The key result for accounting for transport in the gas phase is 

the rate at which molecules strike an area (which may be an 

imaginary area embedded in the gas, or part of a real wall). The 

collision flux, ZW is the number of collisions with the area in a 

given time interval divided by the area and the duration of the 

interval.

(a) The collision flux
The collision frequency, the number of hits per second, is 

obtained by multiplication of the collision flux by the area of 

interest. We show in the following Justification that the collision 

flux is

Z
p

mkTW =
( ) /2 1 2π  

Perfect gas  Collision flux  (78.13)

Brief illustration 78.3 The mean free path

In Brief illustration 78.2 we noted that vrel = 21/2 × 475 m s−1 for 

N2 molecules at 25 °C, and z = 7.1 × 109 s−1 when the pressure is 

1.00 atm. Under these circumstances, the mean free path of N2 

molecules is

λ =
×
×

= ×
−

−
−2 475

7 1 10
9 5 10

1 2 1

9 1
8

/

.
.

ms

s
m

or 95 nm, about 103 molecular diameters.

Self-test 78.4 Evaluate the mean free path of benzene mol-

ecules at 25 °C in a sample where the pressure is 0.10 atm.

Answer: 460 nm

Justification 78.4 The collision flux

Consider a wall of area A perpendicular to the x-axis (as in 

Fig. 78.2). If a molecule has vx > 0 (that is, it is travelling in 

the direction of positive x), then it will strike the wall within 

an interval Δt if it lies within a distance vxΔt of the wall. 

Therefore, all molecules in the volume AvxΔt, and with posi-

tive x-component of velocities, will strike the wall in the 

interval Δt. The total number of collisions in this interval is 

therefore the volume AvxΔt multiplied by the number density, 

N, of molecules. However, to take account of the presence of a 

range of velocities in the sample, we must sum the result over 

Brief illustration 78.4 The collision flux

The collision f lux of O2 molecules, with m = M/NA and 

M = 32.00 g mol−1, at 25 °C and at 1.00 bar is

ZW

Pa

kg mol mol
=

×
× × ×

− −

− −

1 00 10

2 32 00 10 6 022 10

5

3 1 23

.

{ ( . / .

kgm s1 2




π −−

− −

− −

× × ×
= ×

1

23 1 1 2

27 2 1

1 381 10 298

2 70 10

)

( . ) ( )}

.

/JK K

m s

This flux corresponds to 2.70 × 1023 cm−2 s−1.

Self-test 78.5 Evaluate the collision flux of H2 molecules under 

the same conditions.

Answer: 1.07 × 1028 m−2 s−1
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78 The kinetic theory of gases 765

(b) Effusion

The essential empirical observations on effusion are summa-

rized by Graham’s law of effusion, which states that the rate 

of effusion is inversely proportional to the square root of the 

molar mass. The basis of this result is that, as remarked above, 

the mean speed of molecules is inversely proportional to M1/2, 

so the rate at which they strike the area of the hole is also 

inversely proportional to M1/2. However, by using the expres-

sion for the rate of collisions, we can obtain a more detailed 

expression for the rate of effusion and hence use effusion data 

more effectively.

When a gas at a pressure p and temperature T is separated 

from a vacuum by a small hole, the rate of escape of its mole-

cules is equal to the rate at which they strike the area of the hole, 

which is the product of the area and collision flux. Therefore, 

for a hole of area A0

Rate of effusion W= =Z A
pA

mkT0
0

1 22( ) /π  

Because M = mNA, this rate is inversely proportional to M1/2, in 

accord with Graham’s law.

Equation 78.14 is the basis of the Knudsen method for the 

determination of the vapour pressures of liquids and solids, 

particularly of substances with very low vapour pressures. In 

this technique, a sample of the substance is enclosed in a cav-

ity with a small hole and its mass is monitored as a function of 

time. The value of the vapour pressure, p, is then obtained by 

applying eqn 78.14.

all the positive values of vx weighted by the probability distri-

bution of velocities given in Justification 78.2:

Number of collisions d=
∞

∫NA t fx x xΔ v v v( )
0

The collision flux is the number of collisions divided by A and 

Δt, so

Z fx x xW d=
∞

∫N v v v( )
0

Then, using the velocity distribution f(vx) found in Justification 

78.2 and Integral G.2 from the Resource section, we find

v v v v vv
x x x x

m kT
xf

m

kT

kT

m
x( )

/

/d e d=⎛
⎝⎜

⎞
⎠⎟

=⎛
⎝⎜

⎞
⎠⎟

∞
−

∞

∫ ∫0

1 2

2

02 2
2

π π

11 2/

Therefore,

Z
kT

mW = ⎛
⎝⎜

⎞
⎠⎟

N
2

1 2

π

/

Substitution of N = p/kT then gives eqn 78.13.

Example 78.2 Calculating the vapour pressure from 
a mass loss

Caesium (m.p. 29 °C, b.p. 686 °C) was introduced into a con-

tainer and heated to 500 K. When a hole of diameter 0.50 mm 

was opened in the container for 100 s, a mass loss of 385 mg 

was measured. Calculate the vapour pressure of liquid cae-

sium at 500 K.

Method The pressure of vapour is constant inside the con-

tainer despite the effusion of atoms because the hot liquid 

metal replenishes the vapour. The rate of effusion is therefore 

constant, and given by eqn 78.14. To express the rate in terms 

of mass, multiply the number of atoms that escape by the mass 

of each atom.

Answer The mass loss Δm in an interval Δt is related to the 

collision flux by Δm = ZWA0mΔt, where A0 is the area of the 

hole and m is the mass of one atom. It follows from eqn 78.14 

that

Δ Δ Δ
m

pA m t

mkT

pA m t

kT
= =0

1 2
0

1 2

1 22 2( ) ( )/

/

/π π

and therefore that

p
kT

m

m

A t

RT

M

m

A t
= ⎛

⎝⎜
⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

2 2
1 2

0

1 2

0

π π/ /Δ
Δ

Δ
Δ

Substitution of the data and M = 132.9 g mol−1 gives

p =
× ×

×
⎛
⎝⎜

⎞
⎠⎟

×
×

−

− −

−

2 8 3145 500

132 9 10

385 10

1

3 1

1 2
π ( . ) ( )

.

/
JK K

kg mol

66

3 2

3 1 2

0 25 10 100

8 7 10

kg

m s

kg m s

π× × ×

= ×

−

− −

( . ) ( )

.

Pa� �� ��

or 8.7 kPa.

Self-test 78.6 How long would it take 1.0 g of Cs atoms to 

effuse out of the oven under the same conditions?

Answer: 260 s

Perfect 
gas  (78.14)Effu-

sion
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766 16 Molecular motion

Checklist of concepts

☐ 1. In the kinetic theory (or kinetic-molecular theory, 

KMT) of gases it is assumed that the only contribution 

to the energy of the gas is from the kinetic energies of 

the molecules.

☐ 2. An elastic collision is a collision in which the total 

translational kinetic energy of the molecules is 

conserved.

☐ 3. The Maxwell–Boltzmann distribution of speeds gives 

the probability that a molecule will have a given speed 

(see below).

☐ 4. The root mean square speed of the molecules of a gas is 

proportional to the square root of the temperature and 

inversely proportional to the square root of the molar 

mass.

☐ 5. The collision frequency is the number of collisions 

made by one molecule divided by the time interval dur-

ing which the collisions are counted.

☐ 6. The mean free path is the average distance a molecule 

travels between collisions.

☐ 7. The collision flux is the number of collisions with the 

area in a given time interval divided by the area and the 

duration of the interval.

☐ 8. Graham’s law of effusion states that the rate of effusion 

is inversely proportional to the square root of the molar 

mass.

☐ 9. The Knudsen method is a technique for the determi-

nation of the vapour pressures of liquids and solids by 

monitoring mass loss by effusion.

Checklist of equations

Property Equation Comment Equation number

Pressure pV nM= 1
3

2vrms
KMT* 78.1

Root mean square speed vrms = 〈v2〉1/2 Definition 78.2

vrms = (3RT/M)1/2 KMT 78.3

Maxwell–Boltzmann distribution f M RT M RT( ) /
/ /v v v= ( ) −4 2

3 2 2 22π π e KMT 78.4

Mean speed vmean = (8RT/πM)1/2 KMT 78.7

Most probable speed vmp = (2RT/M)1/2 KMT 78.8

Mean relative speed vrel = (8RT/πμ)1/2 μ = MAMB/(MA + MB), KMT 78.9b

Collision frequency z = σvrelN KMT 78.10a

Mean free path λ = vrel/z KMT 78.11

Collision flux ZW = p/(2πmkT)1/2 KMT 78.13

Rate of effusion Rate of effusion = ZWA0 KMT; rate in terms of number, not amount 78.14

* KMT denotes a result derived on the basis of kinetic-molecular theory of gases.
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TOPIC 79

Transport properties of gases

Transport properties are commonly expressed in terms of a 

number of ‘phenomenological’ equations, equations that are 

empirical summaries of experimental observations. These 

phenomenological equations apply to all kinds of properties 

and media. In the following sections, we introduce the equa-

tions for the general case and then show how to calculate the 

parameters that appear in them.

79.1 The phenomenological 
equations

By a ‘phenomenological equation’, a term encountered com-

monly in the study of fluids, we mean an equation that summa-

rizes empirical observations on phenomena without, initially at 

least, being based on an understanding of the molecular pro-

cesses responsible for the property.

The net rate of transport of a property is measured by its flux, 

J, the quantity of that property passing through a given area in 

a given time interval divided by the area and the duration of 

the interval. If matter is flowing (as in diffusion), we speak of a 

matter flux of so many molecules per square metre per second; 

if the property is the energy of thermal motion (as in thermal 

conduction), then we speak of the energy flux and express it in 

joules per square metre per second, and so on.

Experimental observations on transport properties show 

that the flux of a property is usually proportional to the first 

derivative of some other related property. For example, the flux 

of matter diffusing parallel to the z-axis of a container is found 

to be proportional to the first derivative of the concentration:

J
z

( )matter
d

d
∝ N

 
(79.1)

where N is the number density of particles with units num-

ber per metre cubed (m−3). The SI units of J are number per 

square metre per second (m−2 s−1). The proportionality of the 

flux of matter to the concentration gradient is sometimes called 

Fick’s first law of diffusion: the law implies that if the concen-

tration varies steeply with position, then diffusion will be fast.1 

 ➤ Why do you need to know this material?
The transport of properties by gas molecules plays an 
important role in the atmosphere. It also extends the 
approach of kinetic theory, showing how to extract 
quantitative expressions from simple models.

 ➤ What is the key idea?
A molecule carries properties through space for about the 
distance of its mean free path.

 ➤ What do you need to know already?
This Topic builds on and extends the kinetic theory of gases 
(Topic 78) and you need to be familiar with the expressions 
from that Topic for the mean speed of molecules and with 
the significance of the mean free path and its pressure 
dependence. It also uses the expression for the collision 
flux.

Contents

79.1 The phenomenological equations 767

Brief illustration 79.1: Energy flux 769

79.2 The transport parameters 769

(a) The diffusion coefficient 769

Brief illustration 79.2: The diffusion coefficient 770

(b) Thermal conductivity 770

Brief illustration 79.3: The thermal conductivity 771

(c) Viscosity 771

Brief illustration 79.4: The viscosity 772

Checklist of concepts 772

Checklist of equations 773

1 Fick’s ‘second law’ is treated in Topic 81.
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768 16 Molecular motion

There is no net flux if the concentration is uniform (dN/dz = 0). 

Similarly, the rate of thermal conduction (the flux of the energy 

associated with thermal motion) is found to be proportional to 

the temperature gradient:

J
T

z
( )energy of thermal motion

d
∝ d

 
(79.2)

The SI units of this flux are joules per square metre per second 

(J m−2 s−1).

A positive value of J signifies a flux towards positive z; a 

negative value of J signifies a flux towards negative z. Because 

matter flows down a concentration gradient, from high con-

centration to low concentration, J is positive if dN/dz is nega-

tive (Fig. 79.1). Therefore, the coefficient of proportionality in 

eqn 79.1 must be negative, and we write it −D, with D a positive 

constant:

J D
z

( )matter
d

= − dN

 
Definition  Diffusion coefficient  (79.3)

The constant D is called the diffusion coefficient; its SI units are 

metre squared per second (m2 s−1). Energy of thermal motion 

(‘heat’) migrates down a temperature gradient, and the same 

reasoning leads to

J
T

z

(

)

energy of thermal

motion
d

d
= −κ

 

where κ (kappa) is the coefficient of thermal conductivity. The 

SI units of κ are joules per kelvin per metre per second, or watts 

per kelvin per metre (J K−1 m−1 s−1, or W K−1 m−1). Some experi-

mental values are given in Table 79.1.

To see the connection between the flux of momentum and 

the viscosity, consider a fluid in a state of Newtonian flow, 

which can be imagined as occurring by a series of layers mov-

ing past one another (Fig. 79.2). The layer next to the wall of 

the vessel is stationary, and the velocity of successive layers 

varies linearly with distance, z, from the wall. Molecules cease-

lessly move between the layers and bring with them the x-com-

ponent of linear momentum they possessed in their original 

layer. A layer is retarded by molecules arriving from a more 

slowly moving layer because they have a low momentum in the 

x-direction. A layer is accelerated by molecules arriving from a 

more rapidly moving layer. We interpret the net retarding effect 

as the fluid's viscosity.

Because the retarding effect depends on the transfer of the 

x-component of linear momentum into the layer of interest, 

the viscosity depends on the flux of this x-component in the 

z-direction. The flux of the x-component of momentum is pro-

portional to dvx/dz because there is no net flux when all the lay-

ers move at the same velocity. We can therefore write

J x

z
x

(

)

-component

of momentum
d

d
= −η v

 

Definition  Viscosity  (79.5)

Definition Thermal 
conductivity

 (79.4)

W
al

l

z

x
Brings
low
momentum

Brings
high
momentum

Figure 79.2 The viscosity of a fluid arises from the transport 
of linear momentum. In this illustration the fluid is undergoing 
laminar (Newtonian) flow, and particles bring their initial 
momentum when they enter a new layer. If they arrive with 
high x-component of momentum they accelerate the layer; if 
with low x-component of momentum they retard the layer.

Table 79.1* Transport properties of gases at 1 atm

κ/(mW K−1 m−1) η/μP†

273 K 273 K 293 K

Ar 16.3 210 223

CO2 14.5 136 147

He 144.2 187 196

N2 24.0 166 176

* More values are given in the Resource section.

† 1 μP = 10−7 kg m−1 s−1.

N

dN
dz

< 0 z

J > 0

Figure 79.1 The flux of particles down a concentration 
gradient. Fick’s first law states that the flux of matter (the 
number of particles passing through an imaginary window in a 
given time interval divided by the area of the window and the 
length of the interval) is proportional to the density gradient at 
that point.
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79 Transport properties of gases  769

The constant of proportionality, η (eta), is the coefficient of 

viscosity (or simply ‘the viscosity’). Its SI units are kilogram 

per metre per second (kg m−1 s−1, which is equivalent to Pa s).  

Viscosities are often reported in the non-SI unit poise (P), 

where 1 P = 10−1 kg m−1 s−1. There is a variety of methods of 

determining viscosity, including monitoring the rate of flow of 

a fluid through a narrow tube. Some experimental values are 

given in Table 79.1.

79.2 The transport parameters

Here we derive expressions for the diffusion characteristics 

(specifically, the diffusion coefficient, the thermal conduc-

tivity, and the viscosity) of a perfect gas on the basis of the 

 kinetic-molecular theory.

(a) The diffusion coefficient
In the following Justification we show that the flux of molecules 

through a gas is in accord with Fick’s first law, and specifically 

that

J
zz = − ⎛

⎝⎜
⎞
⎠⎟

1
2

0

vmean

d

d
λ N

 

(79.6)

Brief illustration 79.1 Energy flux

Suppose that there is a temperature difference of 10 K between 

two metal plates that are separated by 1.0 cm. The temperature 

gradient is

d

d

K

m
K m

T

z
= − = − × −10

1 0 10
1 0 10

2
3 1

.
.

× −

Therefore, the energy flux in air (Table 79.1) is

J( ) .

.

energy of thermal motion JK m s

K m

= −( )
× (− ×

0 0241

1 0 10

1 1 1

3 1

− − −

− ))= + − −24 2 1Jm s

As a result, in 1.0 h (3600 s) the transfer of energy through an 

area of the opposite walls of 1.0 cm2 is

Transfer 24Jm s 1 1 m 36 s 8 6J2 1 4 2=( )× × ×( ) =− − −( . ) .0 0 00

Self-test 79.1 The thermal conductivity of glass is 0.92 J K−1  

m−1 s−1. What is the rate of energy transfer (in watts, 1 W = 1 J s−1) 

through a window pane of thickness 0.50 cm and area 1.0 m2 

when the room is at 22 °C and the exterior is at 0 °C?

Answer: 4.0 kW

Justification 79.1 The diffusion coefficient

Consider the arrangement depicted in Fig. 79.3. On average, 

the molecules passing through the area A at z = 0 have trav-

elled about one mean free path λ since their last collision. 

Therefore, the number density where they originated is N(z) 

evaluated at z = −λ. This number density is approximately

N N
N− = −λ λ( ) ⎛

⎝⎜
⎞
⎠⎟

( )0
d

dz
0

where we have used a Taylor expansion of the form 

f(x) = f(0) + (df/dx)0x + … truncated after the second term (see 

Mathematical background 1). Similarly, the number density at 

an equal distance on the other side of the area is

N N
N

( ) ( )λ λ= ⎛
⎝⎜

⎞
⎠⎟

0
0

+ d

dz

The average number of impacts on the imaginary window of 

area A0 during an interval Δt is ZWA0Δt, where ZW is the col-

lision flux (from Justification 78.4 and eqn 78.7 for the mean 

speed, Z kT mW
1 2

mean/2= π =N N( ) )./ 1
4

v Therefore, the f lux 

from left to right, J(L → R), arising from the supply of mole-

cules on the left, is

J
A t

A t
( )

( )
( )L R mean

mean→ =
Δ

Δ

1
4 0

0

1
4

N
N

−
= −

λ
λ

v
v

ZW� ��� ���

There is also a flux of molecules from right to left. On average, 

the molecules making the journey have originated from z = +λ 

where the number density is N(λ). Therefore,

J( ) ( )L R mean← = 1
4

N λ v

Area, A

–λ

+λ

0

z

N
u

m
b

er
 d

en
si

ty
, N N(–λ)

N(0)
N(+λ)

Figure 79.3 The calculation of the rate of diffusion of a gas 
considers the net flux of molecules through a plane of area 
A as a result of arrivals from on average a distance λ away in 
each direction, where λ is the mean free path.

Atkins09819.indb   769 9/11/2013   8:40:34 AM



770 16 Molecular motion

At this stage it looks as though we can pick out a value of 

the diffusion coefficient by comparing eqns 79.6 and 79.3, so 

obtaining D = 1
2
λvmean .  It must be remembered, however, that 

the calculation is quite crude, and is little more than an assess-

ment of the order of magnitude of D. One aspect that has not 

been taken into account is illustrated in Fig. 79.4, which shows 

that although a molecule may have begun its journey very close 

to the window, it could have a long flight before it gets there. 

Because the path is long, the molecule is likely to collide before 

reaching the window, so it ought to be added to the graveyard 

of other molecules that have collided. To take this effect into 

account involves a lot of work, but the end result is the appear-

ance of a factor of 2
3

 representing the lower flux. The modifica-

tion results in

D = 1
3
λvmean  

 Diffusion coefficient  (79.7)

There are three points to note about eqn 79.7:

The mean free path, λ , decreases as the pressure is 

increased (eqn 78.12 of Topic 78, λ = kT/σp), so D 

decreases with increasing pressure and, as a result, the 

gas molecules diffuse more slowly.

The mean speed, vmean, increases with the 

temperature (eqn 78.7 of Topic 78, vmean=(8kT/πm)1/2),  

so D also increases with temperature. As a result, 

molecules in a hot sample diffuse more quickly than 

those in a cool sample (for a given concentration 

gradient).

Because the mean free path increases when the 

collision cross-section of the molecules decreases 

(eqn 78.12 of Topic 78, λ = kT/σp), the diffusion 

coefficient is greater for small molecules than for large 

molecules.

(b) Thermal conductivity
According to the equipartition theorem (Foundations, Topic 2), 

each molecule carries an average energy ε = νkT, where ν is a 

number of the order of 1. For atoms, � = 3
2
.  When one mol-

ecule passes through the imaginary window, it transports that 

average energy. We suppose that the number density is uniform 

but that the temperature is not. Molecules arrive from the left 

after travelling a mean free path from their last collision in a 

hotter region, and therefore with a higher energy. Molecules 

also arrive from the right after travelling a mean free path from 

a cooler region. When this model is developed quantitatively, 

as in the following Justification, it turns out that the energy flux 

is proportional to the temperature gradient and that the ther-

mal conductivity is

κ λ= 1
3
�vmean Nk

 
 Thermal conductivity  (79.8a)

If we identify N = nNA/V = [J]NA, where [J] is the molar concen-

tration of the carrier particles J and NA is Avogadro’s constant, 

and identify νkNA as the molar constant-volume heat capacity 

of a perfect gas (which follows from CV,m = NA(∂ε/∂T)V), this 

expression becomes

κ λ= 1
3
vmean mJ[ ] ,CV  

 Thermal conductivity  (79.8b)

Brief illustration 79.2 The diffusion coefficient

In Brief illustration 78.3 of Topic 78 it is established that the 

mean free path of N2 molecules in a gas at 1.0 bar is 95 nm; in 

Example 78.1 of the same Topic it is calculated that the mean 

speed of N2 molecules at 25 °C is 475 m s−1. Therefore, the dif-

fusion coefficient for N2 molecules under these conditions is

D = × × =− − − −1
3

× ×( . ) .9 5 1 m 475ms 1 5 1 m s8 1 5 2 10 0

The experimental value (for N2 in O2) is 2.0 × 10−5 m2 s−1.

Self-test 79.2 Evaluate D for H2 under the same conditions.

Answer: 9.0 × 10−5 m2 s−1
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The net flux from left to right is

J J J

z

z = → ←
=

= ⎛
⎝⎜

⎞

( ) ( )

( ) ( )

( )

{ }

L R L R

d

d

mean

mean

−
− −

−

1
4

1
4

0

v

v

N N

N
N

λ λ

λ
⎠⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ ( ) ⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪0 0

0− +N
Nλ d

dz

That is,

J
zz = − ⎛

⎝⎜
⎞
⎠⎟

1
2

0

vmean

d

d
λ N

which is eqn 79.6.

Short flight
(survives)

Long flight
(collides in flight)

Figure 79.4 One approximation ignored in the simple 
treatment is that some particles might make a long flight to 
the plane even though they are only a short perpendicular 
distance away, and therefore they have a higher chance of 
colliding during their journey.
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79 Transport properties of gases  771

Yet another form is found by recognizing that N = p/kT and 

using the expression for D in eqn 79.7, for then

κ = �pD

T  
 Thermal conductivity  (79.8c)

To interpret eqn 79.8, we note that:

Because λ is inversely proportional to the pressure (eqn 

78.12 of Topic 78, λ = kT/σp), and hence inversely 

proportional to the molar concentration of the gas, 

and N is proportional to the pressure (N = p/kT), the 

thermal conductivity, which is proportional to the 

product λp, is independent of the pressure.

The thermal conductivity is greater for gases with a 

high heat capacity (eqn 79.8b) because a given 

temperature gradient then corresponds to a greater 

energy gradient.

The physical reason for the pressure independence of the ther-

mal conductivity is that it can be expected to be large when 

many molecules are available to transport the energy, but the 

presence of so many molecules limits their mean free path 

and they cannot carry the energy over a great distance. These 

two effects balance. The thermal conductivity is indeed found 

experimentally to be independent of the pressure, except when 

the pressure is very low, when κ ∝ p. At low pressures λ exceeds 

the dimensions of the apparatus, and the distance over which 

the energy is transported is determined by the size of the con-

tainer and not by the other molecules present. The flux is still 

proportional to the number of carriers, but the length of the 

journey no longer depends on λ, so κ ∝ [J], which implies that 

κ ∝ p.

(c) Viscosity
Arguments very similar to those employed above, but applied 

to linear momentum (see the following Justification), show that 

the flux of momentum is proportional to the velocity gradient 

in the fluid and that the viscosity of a perfect gas is given by

η λ= 1
3
vmean mN

 
 Viscosity  (79.9a)

Two alternative forms of this expression (after using mNA = M) 

are

η = MD[ ]J
 

 Viscosity  (79.9b)

η = pMD

RT  
 Viscosity  (79.9c)

where [J] is the molar concentration of the gas molecules and 

M is their molar mass.

Justification 79.2 Thermal conduction

The two opposing energy fluxes are

J J( ) ( ) ( ) ( )L R L Rmean mean→ = − ← =1
4

1
4

N Nv v

Z ZW W��� �� ��� ��
ε λ ε λ

and the net flux is

J J J

z

z = → − ←
= −

= − ⎛
⎝

( ) ( )

{ ( ) ( )}

( )

L R L R

d

d

mean

mean

1
4

1
4

0

v

v

N

N

ε λ λ

ε λ ε

−ε

⎜⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ ( ) ⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪0 0

0− +ε λ εd

dz

That is,

J
z

k
T

zz = − ⎛
⎝⎜

⎞
⎠⎟

= − ⎛
⎝⎜

⎞
⎠⎟

1

2

1

2
0 0

v vmean mean

d

d

d

d
λ ε λN N�

The energy flux is proportional to the temperature gradient, as 

we wanted to show. As before, we multiply by 2
3

 to take long 

flight paths into account, and after comparison of this equa-

tion with eqn 79.4 arrive at eqn 79.8.
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Brief illustration 79.3 The thermal conductivity

In Brief illustration 79.2 we calculated D = 1.5 × 10−5 m2 s−1 

for N2 molecules at 25 °C. To use eqn 79.8c note that for N2 

molecules � = 5
2

 (there are three translational modes and two 

rotational; whereas the rotational modes are active at room 

temperature, the vibrational mode is not). Therefore, at 1.0 bar,

κ =
× ×

=

−

− −

− − −

5
2

5 5 2 1

2 1 1

1 0 10 1 5 10

298

1 3 10

( . .

.

)× ×( )

×

Pa m s

K

JK m s

J m 3




−−1

or 13 mW K−1 m−1.

Self-test 79.3 Estimate the thermal conductivity of argon gas 

at 25 °C and 1.0 bar.

Answer: 7.6 mW K−1 m−1

Justification 79.3 Viscosity

Molecules travelling from the right in Fig. 79.5 (from a fast 

layer to a slower one) transport a momentum mvx(λ) to their 

new layer at z = 0; those travelling from the left transport 

mvx(−λ) to it. If it is assumed that the density is uniform, the 
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772 16 Molecular motion

We can interpret eqn 79.9a as follows:

Because λ ∝ 1/p (eqn 78.12 of Topic 78, λ = kT/σp))  

and [J] ∝ p, it follows that η ∝ λN is independent of 

p. That is, the viscosity is independent of the 

pressure.

Because vmean ∝ T1/2 (eqn 78.7 of Topic 78, 

vmean = (8kT/πm)1/2), η ∝ T1/2. That is, the viscosity 

of a gas increases with temperature.

The physical reason for the pressure independence of the vis-

cosity is the same as for the thermal conductivity: more mol-

ecules are available to transport the momentum, but they 

carry it less far on account of the decrease in mean free path. 

The increase of viscosity with temperature is explained when 

we remember that at high temperatures the molecules travel 

more quickly, so the flux of momentum is greater. By contrast, 

as discussed in Topic 80, the viscosity of a liquid decreases with 

increase in temperature because intermolecular interactions 

must be overcome.

Brief illustration 79.4 The viscosity

We have already calculated D = 1.5 × 10−5 m2 s−1 for N2 at 25 °C. 

Because M = 28.02 g mol−1, for the gas at 1.0 bar, eqn 79.9c 

gives

η =

×
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

×

−

− − −1 0 10 28 02 10 1 5 105 3 1 5 2. . .Pa kg mol m s

J m 3



×( )×( × − 11

1 1

5 1 1

8 3145 298

1 7 10

)

×( )
×

( . )

.

JK mol K

kg m s

− −

− − −=

or 17 μPa s. The experimental value is 18 μPa s.

Self-test 79.4 Evaluate the viscosity of benzene vapour at 

0.10 bar and 25 °C.

Answer: 1.4 × 10−5 kg m−1 s−1
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Checklist of concepts

☐ 1. The flux of a property is the quantity of that property 

passing through a given area in a given time interval 

divided by the area and the duration of the interval.

☐ 2. Fick’s first law of diffusion states that the flux of matter 

is proportional to the concentration gradient.

☐ 3. In a state of Newtonian flow a series of layers of the 

fluid are considered to move past one another.

☐ 4. The diffusion coefficient of a perfect gas decreases with 

increasing pressure and increases with temperature; it 

is greater for small molecules than for large molecules.

collision f lux is 1
4

Nvmean.  Those arriving from the right on 

average carry a momentum

m m m
zx x

xv v
v

( ) ( )λ λ= +0
0

d

d

⎛
⎝⎜

⎞
⎠⎟
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m m m
zx x

xv v
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λ λ= −0
0

d

d

The net flux of x-momentum in the z-direction is therefore
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The flux is proportional to the velocity gradient, as we wished 

to show. Comparison of this expression with eqn 79.5, and 

multiplication by 2
3

 in the normal way, leads to eqn 79.9.

Slow
layer

Fast
layer

0
–λ

z

x

λ

Figure 79.5 The calculation of the viscosity of a gas 
examines the net x-component of momentum brought to a 
plane from faster and slower layers on average a mean free 
path away in each direction.
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79 Transport properties of gases  773

☐ 5. The thermal conductivity of a perfect gas is independ-

ent of the pressure and is large for gases with a high heat 

capacity.

☐ 6. The viscosity of a perfect gas is independent of the pres-

sure and increases with temperature.

Checklist of equations

Property Equation Comment Equation number

Matter flux J = −DdN/dz Fick’s first law 79.3

Energy of thermal motion flux J = −κdT/dz ‘Heat flux’ 79.4

x-component of momentum flux J = −ηdvx/dz Viscosity 79.5

Diffusion coefficient D = 1

3
λvmean KMT* 79.7

Thermal conductivity κ = 1

3
�vmeanNk KMT 79.8a

κ λ= 1

3
vmean mJ[ ] ,CV 79.8b

κ = νpD/T 79.8c

Coefficient of viscosity η λ= 1

3
vmean mN KMT 79.9a

η = MD[J] 79.9b

η = pMD/RT 79.9c

* KMT denotes that the expressions are derived on the basis of the kinetic theory of gases, a model of a perfect gas.
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TOPIC 80

Motion in liquids

In this Topic we consider two aspects of motion in liquids. 

First, we deal with pure liquids, and examine how the mobili-

ties of their molecules, as measured by their viscosity, vary with 

temperature. Then we consider the motion of solutes. A par-

ticularly simple and to some extent controllable type of motion 

through a liquid is that of an ion, and we see that the informa-

tion that motion provides can be used to infer the behaviour of 

uncharged species too.

80.1 Pure liquids

The motion of molecules in liquids can be studied experimen-

tally by a variety of methods. Relaxation time measurements in 

NMR and EPR (Topics 49 and 50) can be interpreted in terms 

of the mobilities of the molecules, and have been used to show 

that big molecules in viscous fluids typically rotate in a series of 

small (about 5°) steps, whereas small molecules in non-viscous 

fluids typically jump through about 1 radian (57°) in each step. 

Another important technique is inelastic neutron scattering, 

in which the energy neutrons collect or discard as they pass 

through a sample is interpreted in terms of the motion of its 

particles. The same technique is used to examine the internal 

dynamics of macromolecules.

More mundane than these experiments are viscosity meas-

urements. The coefficient of viscosity, η (eta), is introduced 

in Topic 79 as a phenomenological coefficient, the constant of 

proportionality between the flux of linear momentum and the 

velocity gradient in a fluid:

J x
zz

x( )-component of momentum
d

d
= −η v

 
 Viscosity  (80.1)

(This is eqn 79.5 of Topic 79.) Some values are given in Table 

80.1. The SI units of viscosity are kilograms per metre per sec-

ond (kg m−1 s−1), but they may also be reported in the equiva-

lent units of pascal seconds (Pa s). The non-SI unit poise (P) 

and centipoise (cP) are still widely encountered: 1 P = 10−1 Pa s 

and so 1 cP = 1 mPa s.

Contents

80.1 Pure liquids 774

Brief illustration 80.1: Liquid viscosity 775

80.2 Electrolyte solutions 775

(a) Conductivity 775

Example 80.1: Determining the limiting  

molar conductivity 776

(b) The mobilities of ions 777

Brief illustration 80.2: Ion mobility 777

(c) Mobility and conductivity 778

(d) The Einstein relations 779

Brief illustration 80.3: Ionic conductivity 779

Brief illustration 80.4: Mobility and diffusion 780

Checklist of concepts 780

Checklist of equations 780

 ➤ Why do you need to know this material?
Liquids are central to chemical reactions, and it is important 
to know how the mobility of their molecules and solutes in 
them varies with the conditions. Ionic motion is a way of 
exploring this motion as forces to move them can be applied 
electrically. From electrical measurements the properties of 
diffusing neutral molecules may also be inferred.

 ➤ What is the key idea?
Ions reach a terminal velocity when the electrical force on 
them is balanced by the drag due to the viscosity of the 
solvent, which decreases with increasing temperature.

 ➤ What do you need to know already?
The discussion of viscosity starts with the definition of 
viscosity coefficient introduced in Topic 79. One derivation 
uses the same argument about flux as was used in Topic 
79. The final section quotes the relation between the drift 
speed and a generalized force acting on a solute particle, 
which is derived in Topic 81.
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80 Motion in liquids  775

Unlike in a gas, for a molecule to move in a liquid it must 

acquire at least a minimum energy (an ‘activation energy’ in the 

language of Topic 87) to escape from its neighbours. The prob-

ability that a molecule has at least an energy Ea is proportional 

to e a−E RT/ , so the mobility of the molecules in the liquid should 

follow this type of temperature dependence. Because the coeffi-

cient of viscosity is inversely proportional to the mobility of the 

particles, we should expect that

η η= 0e aE RT/

 
 Temperature dependence of viscosity (liquid)  (80.2)

where η0 is a constant independent of temperature. Note the 

positive sign of the exponent, because the viscosity is inversely 

proportional to the mobility. This expression implies that the 

viscosity should decrease sharply with increasing temperature. 

Such a variation is found experimentally, at least over reason-

ably small temperature ranges (Fig. 80.1). The activation energy 

typical of viscosity is comparable to the mean potential energy 

of intermolecular interactions.

One problem with the interpretation of viscosity measure-

ments is that the change in density of the liquid as it is heated 

makes a pronounced contribution to the temperature variation 

of the viscosity. Thus, the temperature dependence of viscosity 

at constant volume, when the density is constant, is much less 

than that at constant pressure. The intermolecular interactions 

between the molecules of the liquid govern the magnitude 

of Ea, but the problem of calculating it is immensely difficult 

and still largely unsolved. At low temperatures, the viscosity of 

water decreases as the pressure is increased. This behaviour is 

consistent with the need to rupture hydrogen bonds for migra-

tion to occur.

80.2 Electrolyte solutions

Further insight into the nature of molecular motion can be 

obtained by studying the net transport of charged species 

through solution, for ions can be dragged through the solvent 

by the application of a potential difference between two elec-

trodes immersed in the sample. By studying the transport of 

charge through electrolyte solutions it is possible to build up 

a picture of the events that occur in them and, in some cases, 

to extrapolate the conclusions to species that have zero charge, 

that is, to neutral molecules.

(a) Conductivity
The fundamental measurement used to study the motion of 

ions is that of the electrical resistance, R, of the solution. The 

conductance, G, of a solution is the inverse of its resistance R: 

G = 1/R. As resistance is expressed in ohms, Ω, the conductance 

Brief illustration 80.1 Liquid viscosity

The viscosity of water at 25 °C and 50 °C is 0.890 mPa s and 

0.547 mPa s, respectively. It follows from eqn 80.2 that the 

activation energy for molecular migration is the solution of

η
η

( )

( )
/ / /T

T
E R T T2

1

1 12 1= ( ) −( )e a

which is

E
R T T

T Ta

/ JK mol
= { }

− =
( )− −ln ( ) ( )

/ /

. ln . / .η η2 1

2 1

1 1

1 1

8 3145 0 547 0 8900

1 323 1 298

1 56 104 1

( )
−

= × −

/( /(

.

K) K)

Jmol

or 15.6 kJ mol−1. That is comparable to the strength of a hydro-

gen bond (Topic 35).

Self-test 80.1 The corresponding values of the viscosity of 

benzene are 0.604 mPa s and 0.436 mPa s. Evaluate the activa-

tion energy for viscosity.

Answer: 10.4 kJ mol−1
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Figure 80.1 The experimental temperature dependence of 
the viscosity of water. As the temperature is increased, more 
molecules are able to escape from the potential wells provided 
by their neighbours, and so the liquid becomes more fluid. A 
plot of ln η against 1/T is a straight line (over a small range) with 
positive slope.

Table 80.1* Viscosities of liquids at 298 K

η/(10−3 kg m−1 s−1)

Benzene 0.601

Mercury 1.55

Pentane 0.224

Water† 0.891

*More values are given in the Resource section.

† The viscosity of water corresponds to 0.891 cP.
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776 16 Molecular motion

of a sample is expressed in Ω−1. The reciprocal ohm used to be 

called the mho, but its SI designation is now the siemens, S, and 

1 S = 1 Ω−1 = 1 C V−1 s−1. It is found that the conductance of a 

sample decreases with its length l and increases with its cross-

sectional area A. We therefore write

G
A

l
=κ

 
Definition of κ Conductance  (80.3)

where κ (kappa) is the electrical conductance. With the con-

ductance in siemens and the dimensions in metres, it follows 

that the SI units of κ are siemens per metre (S m−1).

The conductivity of a solution depends on the number of 

ions present, and it is normal to introduce the molar conduc-

tivity, Λm, which is defined as

Λ κ
m =

c  
Definition  Molar conductivity  (80.4)

where c is the molar concentration of the added electrolyte. 

The SI unit of molar conductivity is siemens metre-squared per 

mole (S m2 mol−1), and typical values are about 10 mS m2 mol−1 

(where 1 mS = 10−3 S).

The values of the molar conductivity as calculated by eqn 

80.4 are found to vary with the concentration. One reason for 

this variation is that the number of ions in the solution might 

not be proportional to the nominal concentration of the elec-

trolyte. For instance, the concentration of ions in a solution of 

a weak electrolyte depends on the concentration of the solute 

in a complicated way, and doubling the concentration of the 

solute added does not double the number of ions. Secondly, 

because ions interact strongly with one another, the conductiv-

ity of a solution is not exactly proportional to the number of 

ions present.

In an extensive series of measurements during the nine-

teenth century, Friedrich Kohlrausch established what is now 

known as Kohlrausch’s law, that at low concentrations the 

molar conductivities of strong electrolytes vary linearly with 

the square root of the concentration:

Λ Λm m= −° K c1 2/

 
 Kohlrausch’s law  (80.5)

The Kohlrausch constant K depends on the identity of the sol-

ute and the solvent. Kohlrausch also established that Λm
° , the 

limiting molar conductivity, the molar conductivity in the 

limit of zero concentration, is the sum of contributions from its 

individual ions. If the limiting molar conductivity of the cati-

ons is denoted λ+ and that of the anions λ−, then his law of the 

independent migration of ions states that

Λ λ λm
° = ++ + − −� �

 

where ν+ and ν− are the numbers of cations and anions per for-

mula unit of electrolyte. For example, ν+ = ν− = 1 for HCl, NaCl, 

and CuSO4, but ν+ = 1, ν− = 2 for MgCl2.

Limiting 
law 

Law of the 
independent 
migration of ions

 (80.6)

Example 80.1 Determining the limiting molar 
conductivity

The conductivity of KCl(aq) at 25 °C is 14.668 mS m−1 when 

c = 0.001 00 mol dm−3 and 71.740 mS m−1 when c = 0.005 00 mol 

dm−3. Determine the values of the limiting molar conductivity  

Λm
°  and the Kohlrausch constant K.

Method Use eqn 80.4 to determine the molar conductivities at 

the two concentrations, then use the Kohlrausch law, eqn 80.5, 

in the form

Λ Λm 2 m 1
1 2 /( ) ( ) /c c c c− −= ( )K 1 2

1 2

to determine K. Then find Λm
°  from the law in the form

Λ Λm m
° = +K c1 2/

With more data available, a better procedure is to perform a 

linear regression.

Answer It follows that the molar conductivity of KCl when 

c = 0.001 00 mol dm−3 is

Λm

mSm

mol m
mSm mol=

×
=

−

−
−14 688

0 00100 10
14 688

1

3 3
2 1

.

.
.

Similarly, when c = 0.005 00 mol dm−3 the molar conductivity 

is 14.348 mS m2 mol−1. It then follows that

K = −
−

=
− −Λ Λm m

mSm mol( ) ( ) ( . . )

( ./ /

c c

c c
2 1

1
1 2

2
1 2

2 114 348 14 688

0 001000 0 00500

8 698

1 2 1 2 3 1 2

2 1 3 1 2

/ / /

/

. ) ( )

. /( )

−
=

−

− −

 mol dm

mSm mol mol dm

(It is best to keep this awkward but convenient array of units as 

they are rather than converting them to the equivalent 10−3/2 S 

m7/2 mol−3/2.) Now we find the limiting value from the data for 

c = 0.001 00 mol dm−3:

Λm mSm mol
mS m mol

mol dm

mol

° = +

×

−
−

−14 688 8 698

0 00100

2 1
2 1

3 1 2
. .

( )

( .

/

ddm mS m mol− −=3 1 2 2 114 963) ./

Self-test 80.2 The conductivity of KClO4(aq) at 25 °C is 13.780 

mS m−1 when c = 0.001 00 mol dm−3 and 67.045 mS m−1 when 

c = 0.005 00 mol dm−3. Determine the values of the limiting 

molar conductivity Λm
°  and the Kohlrausch constant K for this 

system.

Answer: K =

=

− −

−

9 491

14 08

2 1 3 1 2

2 1

. ,

.

/mS m mol /(mol dm )

mS m molmΛ°
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80 Motion in liquids  777

Kohlrausch’s law is used to provide an extrapolation pro-

cedure for determining the limiting molar conductivity of an 

electrolyte solution, and hence to assemble values of the limit-

ing conductivities of individual ions. As the following section 

explains, those values are used to explore the mobilities of ions 

in solution and to construct models of their properties.

(b) The mobilities of ions
To interpret conductivity measurements we need to know why 

ions move at different rates, why they have different molar con-

ductivities, and why the molar conductivities of strong electro-

lytes decrease with the square root of the molar concentration. 

The central idea in this section is that although the motion of 

an ion remains largely random, the presence of an electric field 

biases its motion, and the ion undergoes net migration through 

the solution.

When the potential difference between two planar elec-

trodes a distance l apart is Δφ, the ions in the solution between 

them experience a uniform electric field of magnitude (see 

Foundations, Topic 2)

E = Δφ
l  

(80.7)

In such a field, an ion of charge ze experiences a force of 

magnitude

F = =ze
ze

l
E

Δφ
 

 Electric force  (80.8)

where here and throughout this section we disregard the sign of 

the charge number and so avoid notational complications.

A cation responds to the application of the field by accelerat-

ing towards the negative electrode and an anion responds by 

accelerating towards the positive electrode. However, this accel-

eration is short-lived. As the ion moves through the solvent it 

experiences a frictional retarding force, Ffric, proportional to its 

speed. For a spherical particle of radius a travelling at a speed 

s, this force is given by Stokes’s law, which was derived by con-

sidering the hydrodynamics of the passage of a sphere through 

a continuous fluid:

Ffric 6= =fs f aπη
 

 Stokes’s law  (80.9)

where η is the viscosity. In writing eqn 80.9, we have assumed 

that it applies on a molecular scale, and independent evidence 

from magnetic resonance suggests that it often gives at least the 

right order of magnitude.

The two forces act in opposite directions, and the ions 

quickly reach a terminal speed, the drift speed, when the accel-

erating force is balanced by the viscous drag. The net force is 

zero when fs = zeE, or

s
ze

f
= E

 
 Drift speed  (80.10)

It follows that the drift speed of an ion is proportional to the 

strength of the applied field. We write

s u= E
 Definition of u  Mobility  (80.11)

where u is called the mobility of the ion (Table 80.2). 

Comparison of the last two equations shows that

u
ze

f

ze

a
= =

6πη
 

 Mobility  (80.12)

Because the drift speed governs the rate at which charged 

species are transported, we might expect the conductivity 

to decrease with increasing solution viscosity and ion size. 

Brief illustration 80.2 Ion mobility

For an order of magnitude estimate we can take z = 1 and a as 

the radius of an ion such as Cs+ (which might be typical of a 

smaller ion plus its hydration sphere), which is 170 pm. For the 

viscosity, we use η = 1.0 cP (1.0 mPa s, Table 80.1). Then

u = ×

× ×
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

× ×

=
−

− −

1 6 10

6 1 0 10 170 10

19

3 12

.

. ( )

C

Pa s m

J V-1

J m-3




�π

55 0 10 8 2 1 1. × − − −m V s

This value means that when there is a potential difference of 

1 V across a solution of length 1 cm (so E = 100 V m−1), the drift 

speed is typically about 5 μm s−1. That speed might seem slow, 

but not when expressed on a molecular scale, for it corresponds 

to an ion passing about 104 solvent molecules per second.

Self-test 80.3 The mobility of an SO4
2−  ion in water at 25 °C is 

8.29 × 10−8 m2 V−1 s−1. What is its effective radius? Use the vis-

cosity given above.

Answer: 205 pm

Table 80.2* Ionic mobilities in water at 298 K

u/(10−8 m2 s−1 V−1) u/(10−8 m2 s−1 V−1)

H+ 36.23 OH− 20.64

Na+ 5.19 Cl− 7.91

K+ 7.62 Br− 8.09

Zn2+ 5.47 SO4
2− 8.29

* More values are given in the Resource section.
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778 16 Molecular motion

Experiments confirm these predictions for bulky ions (such 

as R4N
+ and RCO2

− ) but not for small ions. For example, the 

mobilities of the alkali metal ions in water increase from Li+ to 

Cs+ (Table 80.2) even though the ionic radii increase. The para-

dox is resolved when we realize that the radius a in the Stokes 

formula is the hydrodynamic radius (or ‘Stokes radius’) of the 

ion, its effective radius in the solution taking into account all 

the H2O molecules it carries in its hydration shell. Small ions 

give rise to stronger electric fields than large ones (the electric 

field at the surface of a sphere of radius r is proportional to ze/r2 

and it follows that the smaller the radius, the stronger the field), 

so small ions are more extensively solvated than big ions. Thus, 

an ion of small ionic radius may have a large hydrodynamic 

radius because it drags many solvent molecules through the 

solution as it migrates. The hydrating H2O molecules are often 

very labile, however, and NMR and isotope studies have shown 

that the exchange between the coordination sphere of the ion 

and the bulk solvent is very rapid for ions of low charge but may 

be slow for ions of high charge (Fig. 80.2).

The proton, although it is very small, has a very high mobility 

(Table 80.2)! Proton and 17O-NMR show that the times char-

acteristic of protons hopping from one molecule to the next 

are about 1.5 ps, which is comparable to the time that inelas-

tic neutron scattering shows it takes a water molecule to re-

orientate through about 1 radian (1 to 2 ps). According to the 

Grotthuss mechanism, there is an effective motion of a proton 

that involves the rearrangement of bonds in a group of water 

molecules (Fig. 80.3). However, the actual mechanism is still 

highly contentious. The mobility of NH4
+  in liquid ammonia 

is also anomalous and presumably occurs by an analogous 

mechanism.

(c) Mobility and conductivity
Ionic mobilities provide a link between measurable and theo-

retical quantities. As a first step we establish in the following 

Justification the relation between an ion’s mobility and its molar 

conductivity:

λ = zuF   Ion conductivity  (80.13)

where F is Faraday’s constant (F = NAe).

+

+

Figure 80.3 The Grotthuss mechanism of conduction by 
protons in water. There is a virtual transfer of a proton from one 
end of the chain to the other as the bonds and hydrogen bonds 
adjust.
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Figure 80.2 The half-lives of water molecules in the hydration 
spheres of ions.

Justification 80.1 The relation between ionic mobility 
and molar conductivity

To keep the calculation simple, we ignore signs in the follow-

ing, and concentrate on the magnitudes of quantities.

Consider a solution of a fully dissociated strong electrolyte 

at a molar concentration c. Let each formula unit give rise to 

ν+ cations of charge z+e and ν− anions of charge z−e. The molar 

concentration of each type of ion is therefore νc (with ν = ν+ or 

ν−), and the number density of each type is νcNA. The number 

of ions of one kind that pass through an imaginary window of 

area A during an interval Δt is equal to the number within the 

distance sΔt (Fig. 80.4), and therefore to the number in the vol-

ume sΔtA. (The same sort of argument is used in Topic 79 in 

the discussion of the transport properties of gases.) The num-

ber of ions of that kind in this volume is equal to sΔtAνcNA. 

The flux through the window (the number of this type of ion 

Cations

Anions
Area, A

s+Δt
s–Δt

Figure 80.4 In the calculation of the current, all the cations 
within a distance s+Δt (that is, those in the volume s+AΔt) will 
pass through the area A. The anions in the corresponding 
volume on the other side of the window will also contribute 
to the current similarly.
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80 Motion in liquids  779

Equation 80.13 applies to the cations and to the anions. 

Therefore, for the solution itself in the limit of zero concentra-

tion (when there are no ionic interactions),

Λm
° = ++ + + − − −( )z u z u F� �

 
(80.14a)

For a symmetrical z:z electrolyte (for example, CuSO4 with z = 2 

and ν+ = ν− = 1), this equation simplifies to

Λm
° = ++ −z u u F( )

 
(80.14b)

(d) The Einstein relations
An important relation between the drift speed s and a force F of 

any kind acting on a particle is derived in Topic 81:

s
D

RT
= F

 
 Drift speed  (80.15)

where D is the diffusion coefficient for the species and F is the 

thermodynamic force (a molar quantity). We have seen that 

an ion in solution has a drift speed s = uE in the presence of an 

electric field of strength E and experiences a thermodynamic 

force of magnitude NAzeE. Therefore, substituting these known 

values into eqn 80.15 and using NAe = F gives uE = DFzE/RT 

and hence, on cancelling the E, we obtain the Einstein relation:

u
zDF

RT
=

 
 Einstein relation  (80.16)

The Einstein relation provides a link between the molar con-

ductivity of an electrolyte and the diffusion coefficients of its 

ions. First, by using eqns 80.13 and 80.16 we write

λ = =zuF
z DF

RT

2 2

 
(80.17)

for each type of ion. Then, from Λ λ λm
° = ++ + − −� � ,  the limiting 

molar conductivity is

Λ°
m = +( )+ + + − − −� �z D z D

F

RT
2 2

2

 
 Nernst–Einstein equation  (80.18)

which is the Nernst–Einstein equation. An application of this 

equation is to the determination of ionic diffusion coefficients 

from conductivity measurements; another is to the prediction 

of conductivities using models of ionic diffusion.

Equations 80.12 (u = ez/f) and 80.16 (u = zDF/RT in the form 

u = zDe/kT) relate the mobility of an ion to the frictional force 

and to the diffusion coefficient, respectively. We can combine 

the two expressions and cancel the ze and obtain the Stokes–

Einstein equation:

D
kT

f
=

 
 Stokes–Einstein equation  (80.19a)

Brief illustration 80.3 Ionic conductivity

In Brief illustration 80.2, we estimated the typical ionic mobil-

ity as 5.0 × 10−8 m2 V−1 s−1; so, with z = 1 for both the cation and 

anion, we can estimate that a typical limiting molar conduc-

tivity should be about

λ = × × ×
= ×

( . ) ( . )

.

5   1 m V s 9 648 1 C mol

4 8 1 m V s C

8 2 1 1 4 1

3 2 1 1

0 0 0

0

− − − −

− − − mmol 1−

But 1 V−1 s−1 C = 1 S (see the remark preceding eqn 80.3), so 

λ ≈ 5 mS m2 mol−1, and, from eqn 80.14b, about twice that 

value for Λm
° , in accord with experiment. The experimental 

value for KCl, for instance, is 15 mS m2 mol−1.

Self-test 80.4 Estimate the ionic conductivity of an SO4
2−  ion 

in water at 25 °C from its mobility (Table 80.2).

Answer: 16 mS m2 mol−1

passing through the window divided by the area of the win-

dow and the duration of the interval) is therefore

J
s tA cN

tA
s cN( )ions A

A= =Δ
Δ

�
�

Each ion carries a charge ze, so the flux of charge is

J zs ceN zs cF( )charge A= =� �

Because s = uE, the flux is

J zu cF( )charge = � E

The current, I, through the window due to the ions we are con-

sidering is the charge flux times the area:

I JA zu cF A= = � E

Because the electric field is the potential gradient (eqn 80.7, 

E = Δφ/l), we can write

I
zu cFA

l
= � Δφ

Current and potential difference are related by Ohm’s law, 

Δφ = IR, so it follows that

I
R

G
A

l
= = =Δ Δ Δφ φ κ φ

where we have used eqn 80.3. Comparison of the last two 

expressions gives κ = zuνcF. Division by the molar concentra-

tion of ions, νc, then results in eqn 80.13.
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780 16 Molecular motion

If the frictional force is described by Stokes’s law, then we also 

obtain a relation between the diffusion coefficient and the vis-

cosity of the medium:

D
kT

a
=

6πη  
 Stokes–Einstein equation  (80.19b)

An important feature of eqn 80.19 is that it makes no reference 

to the charge of the diffusing species. Therefore, the equation 

also applies in the limit of vanishingly small charge; that is, it 

also applies to neutral molecules. This feature is taken further 

in Topic 81 where the general features of diffusion are dis-

cussed. It must not be forgotten, however, that both equations 

depend on the assumption that the viscous drag is proportional 

to the speed.

Checklist of concepts

☐ 1. The viscosity of a liquid decreases with increasing 

temperature.

☐ 2. The conductance of a solution is the inverse of its 

resistance.

☐ 3. Kohlrausch’s law states that at low concentrations the 

molar conductivities of strong electrolytes vary linearly 

with the square root of the concentration.

☐ 4. The law of the independent migration of ions states that 

the molar conductivity in the limit of zero concentra-

tion is the sum of contributions from its individual ions.

☐ 5. An ion reaches a drift speed when the acceleration due 

to the electrical force is balanced by the viscous drag.

☐ 6. The hydrodynamic radius of an ion may be greater 

than its geometrical radius due to solvation.

☐ 7. The high mobility of a proton in water is explained by 

the Grotthuss mechanism.

Checklist of equations

Brief illustration 80.4 Mobility and diffusion

From Table 80.2, the mobility of SO4
2−  is 8.29 ×10−8 m2 V−1 s−1. 

It follows from eqn 80.16 in the form D = uRT/zF that the diffu-

sion coefficient for the ion in water at 25 °C is

D =
× × ×

× ×

− −( . ) ( . ) ( )

.

8 29 10 8 3145 298

2 9 649 10

8 2 1 1 1 1

4

− − −m V s JK mol K

C
JJ V-1
� mol

m s

−

− −

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= ×

1

9 2 11 06 10.

Self-test 80.5 Repeat the calculation for the NH4
+ ion.

Answer: 1.96 × 10−9 m2 s−1

Property Equation Comment Equation number

Viscosity η η= 0e aE RT/ Narrow temperature range 80.2

Conductivity κ = Gl/A Definition, G = 1/R 80.3

Molar conductivity Λm = κ/c Definition 80.4

Kohlrausch’s law Λ Λm m= −° K c1 2/ Empirical observation 80.5

Law of independent migration of ions Λ λ λm
° = ++ + − −� � Limiting law 80.6

Stokes’s law Ffric = fs, f = 6πηa Hydrodynamic radius a 80.9

Drift speed s = uE Defines u 80.11

Ion mobility u = ze/6πηa Assumes Stokes’s law 80.12

Conductivity and mobility λ = zuF 80.13

Molar conductivity and mobility Λm° = ++ + + − − −( )z u z u F� � Limiting law 80.14
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80 Motion in liquids  781

Property Equation Comment Equation number

Drift speed s = DF/RT 80.15

Einstein relation u = zDF/RT 80.16

Nernst–Einstein relation Λm /°
+ + + − − −= +( )( )� �z D z D F RT2 2 2 80.18

Stokes–Einstein relation D = kT/f 80.19
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TOPIC 81

Diffusion

That solutes in gases, liquids, and solids have a tendency to 

spread can be discussed from three points of view. One view-

point is from the Second Law of thermodynamics and the ten-

dency for entropy to increase or, if the temperature and pressure 

are constant, for the Gibbs energy to decrease. When this law is 

applied to solutes it appears that there is a force acting to disperse 

the solute. That force is illusory, but it provides an interesting and 

useful approach to discussing diffusion. The second approach 

is to set up a differential equation for the change in concentra-

tion in a region by considering the flux of material through its 

boundaries. The resulting ‘diffusion equation’ can then be solved 

(in principle, at least) for various configurations of the system, 

such as the shape of a reaction vessel. The third approach is 

more mechanistic, and is to imagine diffusion as taking place in 

a series of random small steps: it enriches the thermodynamic 

view by providing a model of what is taking place when matter 

diffuses. We explore all three viewpoints in this Topic.

81.1 The thermodynamic view

In Topic 64 it is established that, at constant temperature and 

pressure, the maximum non-expansion work that can be done 

when a substance moves from a location where its Gibbs energy 

is G to a location where its Gibbs energy is G + dG is dw = dG. 

Since the chemical potential is the (partial) molar Gibbs energy 

(Topic 69), the maximum non-expansion work per mole is 

dw = dμ. In a system in which the chemical potential depends 

on the position x,

d d dw
x

x
T p

= =⎛
⎝⎜

⎞
⎠⎟

μ μ∂
∂

,  

 ➤ Why do you need to know this material?

Diffusion is a hugely important process both in the 
atmosphere and in solution, and it is important to be able 
to predict the spread of one material through another 
when discussing reactions in solution and the spread of 
substances into the environment.

 ➤ What is the key idea?
Particles tend to spread and achieve a uniform distribution.

 ➤ What do you need to know already?
This Topic draws on arguments relating to flux that are 
treated in Topic 79, particularly the way to calculate 
the flux of particles through a window of given area. 
This Topic goes into more detail about the diffusion 
coefficient, which was introduced in Topic 79 and used in 

Contents

81.1 The thermodynamic view 782

Brief illustration 81.1: The thermodynamic force 783

Brief illustration 81.2: The thermodynamic force  

and the drift speed 784

81.2 The diffusion equation 784

(a) Simple diffusion 784

Brief illustration 81.3: The diffusion equation 785

(b) Diffusion with convection 785

Brief illustration 81.4: Convection 785

(c) Solutions of the diffusion equation 786

Example 81.1: Calculating the average  

displacement 786

81.3 The statistical view 787

Brief illustration 81.5: Random walk 788

Checklist of concepts 789

Checklist of equations 789

Topic 80. It uses the concept of chemical potential (Topic 
69) to discuss the direction of spontaneous change. One 
of the mathematical manipulations draws on Stirling’s 
approximation, which is introduced in Topic 51.
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81 Diffusion  783

It is also established in Foundations, Topic 2 that in general 

work can always be expressed in terms of an opposing force 

(which here we write F), and that

d dw x= −F
 

By comparing these two expressions, we see that the slope of 

the chemical potential can be interpreted as an effective force 

per mole of molecules. We write this thermodynamic force as

F = −⎛
⎝⎜

⎞
⎠⎟

∂
∂
μ
x

T p,  

 Thermodynamic force  (81.1)

There is not necessarily a real force pushing the particles down 

the slope of the chemical potential. As we shall see, the force 

may represent the spontaneous tendency of the molecules to 

disperse as a consequence of the Second Law and the hunt for 

maximum entropy.

In a solution in which the activity of the solute is a, the 

chemical potential is μ = μ< + RT ln a (see Table 72.1 of Topic 

72). If the solution is not uniform the activity depends on the 

position and we can write

F = − ⎛
⎝⎜

⎞
⎠⎟

RT
a

x
T p

∂
∂
ln

,  

(81.2a)

If the solution is ideal, a may be replaced by c/c<, and then

F = − ⎛
⎝⎜

⎞
⎠⎟

= − ⎛
⎝⎜

⎞
⎠⎟

RT
c c

x

RT

c

c

x
T p T p

∂
∂

∂
∂

ln( / )

, ,

<

 

(81.2b)

where we have also used the relation d ln y/dx = (1/y)(dy/dx).

In Topic 79 it is established that Fick’s first law of diffusion, 

which we write here in the form

J D
x

( )number
d

d
= − N

 
 Fick’s first law  (81.3)

can be deduced from the kinetic model of gases. Here we gen-

eralize that result. We show that it can be deduced more gener-

ally and that it applies to the diffusion of species in condensed 

phases too. To do so, we suppose that the flux of diffusing par-

ticles is motion in response to a thermodynamic force arising 

from a concentration gradient. The diffusing particles reach 

a steady ‘drift speed’, s, when the thermodynamic force, F, is 

matched by the drag due to the viscosity of the medium. This 

drift speed is proportional to the thermodynamic force, and we 

write s ∝ F. However, the particle flux, J, is proportional to the 

drift speed, and the thermodynamic force is proportional to the 

concentration gradient, dc/dx. The chain of proportionalities 

(J ∝ s, s ∝ F, and F  ∝ dc/dx) implies that J ∝ dc/dx, which is the 

content of Fick’s law.

If we divide both sides of eqn 81.3 by Avogadro’s constant, 

thereby converting numbers into amounts (numbers of moles), 

noting that N/NA = (N/V)/NA = (nNA/V)/NA = n/V = c, the molar 

concentration, then Fick’s law becomes

J D
c

x
( )amount

d

d
= −  (81.4)

In this expression, D is the diffusion coefficient and dc/dx is the 

slope of the molar concentration. The flux is related to the drift 

speed by

J sc( )amount =  (81.5)

This relation follows from the argument used in Topic 79. Thus, 

all particles within a distance sΔt, and therefore in a volume 

sΔtA, can pass through a window of area A in an interval Δt. 

Hence, the amount of substance that can pass through the win-

dow in that interval is sΔtAc. The particle flux is this quantity 

divided by the area A and the time interval Δt, and is therefore 

simply sc.

By combining the last two equations and using eqn 81.2

sc D
c

x

Dc

RT
s

D

RT
= − = =d

d
or

F F
 

(81.6)

Therefore, once we know the effective force and the diffusion 

coefficient, D, we can calculate the drift speed of the particles 

(and vice versa), whatever the origin of the force. This equa-

tion is used in Topic 80 where the force is applied electrically 

to an  ion.

Brief illustration 81.1 The thermodynamic force

Suppose a linear concentration gradient is set up across a 

container at 25 °C, with points separated by 1.0 cm differing 

in concentration by 0.10 mol dm−3 around a mean value of 

1.0 mol dm−3. According to eqn 81.2b, the solute experiences a 

thermodynamic force of magnitude

F =
×

×
×

=

− −

−

−

−

( . ) ( )

.

.

.

8 3145 298

1 0

0 10

1 0 10

1 1

3

3

2

JK mol K

mol dm

mol dm

m

22 5 104 1 1. × − −Jm mol

N


or 25 kN mol−1. Note that the thermodynamic force is a molar 

quantity.

Self-test 81.1 Suppose that the concentration of a solute 

decreases exponentially as c x c x( ) ./= −
0e λ  Derive an expres-

sion for the thermodynamic force.

Answer: F = RT/λ
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784 16 Molecular motion

81.2 The diffusion equation

We now turn to the discussion of time-dependent diffusion 

processes, where we are interested in the spreading of inho-

mogeneities with time. One example is the temperature of a 

metal bar that has been heated at one end: if the source of heat 

is removed, then the bar gradually settles down into a state of 

uniform temperature. When the source of heat is maintained 

and the bar can radiate, it settles down into a steady state of 

non-uniform temperature. Another example (and one more 

relevant to chemistry) is the concentration distribution in a sol-

vent to which a solute is added. We shall focus on the descrip-

tion of the diffusion of particles, but similar arguments apply to 

the diffusion of physical properties, such as temperature. Our 

aim is to obtain an equation for the rate of change of the con-

centration of particles in an inhomogeneous region.

(a) Simple diffusion
The central equation of this section is the diffusion equation, 

also called ‘Fick’s second law of diffusion’, which relates the rate 

of change of concentration at a point to the spatial variation of 

the concentration at that point:

∂
∂

∂
∂

c

t
D

c

x
=

2

2
 

 Diffusion equation  (81.7)

We show in the following Justification that the diffusion equa-

tion follows from Fick’s first law of diffusion.

Brief illustration 81.2 The thermodynamic force  
and the drift speed

Laser measurements showed that a molecule has a drift 

speed of 1.0 μm s−1 in water at 25 °C, with diffusion coefficient 

5.0 × 10−9 m2 s−1. The corresponding thermodynamic force 

from eqn 81.6 in the form F = sRT/D is

F =
× × ×

×

=

− − − −

− −

( . ) ( . ) ( )

( . )

1 0 10 8 3145 298

5 0 10

5

6 1 1 1

9 2 1

ms JK mol K

m s

..0 105 1 1× − −Jm mol

N


or about 500 kN mol−1.

Self-test 81.2 What is the drift speed of a sucrose molecule in 

water at 25 °C if the thermodynamic force is 250 kN mol−1? Use 

D = 5.4 × 10−10 m2 s−1.

Answer: 5.3 μm s−1

Justification 81.1 The diffusion equation

Consider a thin slab of cross-sectional area A that extends 

from x to x + λ (Fig. 81.1). Let the concentration at x be c at 

the time t. The rate at which the amount (in moles) of particles 

enter the slab is JA, so the rate of increase in molar concentra-

tion inside the slab (which has volume Aλ) on account of the 

flux from the left is

∂
∂

c

t

JA

A

J= =λ λ

There is also an outflow through the right-hand window. The 

flux through that window is J′, and the rate of change of con-

centration that results is

∂
∂

′c

t

J= − λ

The net rate of change of concentration is therefore

∂
∂

′c

t

J J= −
λ

Each flux is proportional to the concentration gradient at the 

respective window. So, by using Fick’s first law, we can write

J J D
c

x
D

c

x
− = − +′ ∂

∂
∂ ′
∂

The concentration at the right-hand window is related to that 

on the left by

c c
c

x
′ ∂

∂= +⎛
⎝⎜

⎞
⎠⎟

λ

which implies that

J J D
c

x
D

x
c

c

x
D

c

x
− = − + +⎛

⎝⎜
⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

=′ ∂
∂

∂
∂

∂
∂

∂
∂

λ λ
2

2

When this relation is substituted into the expression for the 

rate of change of concentration in the slab, we get eqn 81.7.

x
x+λ

J(x+λ)

J(x)
Area, A
Volume, Aλ

Figure 81.1 The net flux in a region is the difference 
between the flux entering from the region of high 
concentration (on the left) and the flux leaving to the region 
of low concentration (on the right).
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81 Diffusion  785

The diffusion equation shows that the rate of change of con-

centration is proportional to the curvature (more precisely, to 

the second derivative) of the concentration with respect to dis-

tance. If the concentration changes sharply from point to point 

(if the distribution is highly wrinkled), then the concentration 

changes rapidly with time. Where the curvature is positive 

(a dip, Fig. 81.2), the change in concentration is positive; the 

dip tends to fill. Where the curvature is negative (a heap), the 

change in concentration is negative; the heap tends to spread. 

If the curvature is zero, then the concentration is constant in 

time. If the concentration decreases linearly with distance, then 

the concentration at any point is constant because the inflow of 

particles is exactly balanced by the outflow.

The diffusion equation can be regarded as a mathematical 

formulation of the intuitive notion that there is a natural ten-

dency for the wrinkles in a distribution to disappear. More suc-

cinctly: Nature abhors a wrinkle.

(b) Diffusion with convection

The transport of particles arising from the motion of a stream-

ing fluid is called convection. If for the moment we ignore dif-

fusion, then the flux of particles through an area A in an interval 

Δt when the fluid is flowing at a velocity v can be calculated in 

the way we have used several times elsewhere (such as in Topic 

79, by counting the particles within a distance vΔt), and is

J
cA t

A t
cconv = =v
v

Δ
Δ  

 Convective flux  (81.8)

This J is called the convective flux. The rate of change of con-

centration in a slab of thickness l and area A is, by the same 

argument as before and assuming that the velocity does not 

depend on the position,

∂
∂

∂
∂

∂
∂

c

t

J J c
c

c

x

c

x

= − ′ = − +⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

= −⎛
⎝⎜

⎞
⎠⎟

conv conv

λ λ
λ

λ
v v

v
 

 Convection  (81.9)

When both diffusion and convection occur, the total change of 

concentration in a region is the sum of the two effects, and the 

generalized diffusion equation is

∂
∂

∂
∂

∂
∂

c

t
D

c

x

c

x
= −

2

2
v

 
 Generalized diffusion equation  (81.10)

A further refinement, which is important in chemistry, is the 

possibility that the concentrations of particles may change as 

a result of reaction. When reactions are included in eqn 81.10 

(Topic 88) we get a powerful differential equation for discuss-

ing the properties of reacting, diffusing, convecting systems 

and which is the basis of reactor design in chemical industry 

and of the utilization of resources in living cells.

Brief illustration 81.3 The diffusion equation

If a concentration falls linearly across a small region of space, 

in the sense that c = c0 – ax, then ∂ 2c/∂x2 = 0 and consequently 

∂c/∂t = 0. The concentration in the region is constant because 

the inward flow through one window is matched by the out-

ward f low through the other window. If the concentration 

varies as c c ax= −0
1
2

2, then ∂2c/∂x2 = −a and consequently 

∂c/∂t = −Da. Now the concentration decreases, because there 

is a greater outward flow than inward flow.

Self-test 81.3 What is the change in concentration when 

the concentration falls exponentially across a region? Take 

c c x= −
0e / .λ

Answer: ∂c/∂t = (D/λ2)c

Brief illustration 81.4 Convection

Here we continue the discussion of the systems treated in 

Brief illustration 81.3 and suppose that there is a convective 

flow v. If the concentration falls linearly across a small region 

of space, in the sense that c = c0 − ax, then ∂c/∂x = −a and the 

change in concentration in the region is ∂c/∂t = av. There is 

now an increase in the region because the inward convective 

flow outweighs the outward flow, and there is no diffusion. If 

a = 0.010 mol dm−3 m−1 and v = +1.0 mm s−1,

∂
∂

c

t
= × ×

= ×

− − − −

− − −

( . ) ( . )

.

0 010 1 0 10

1 0 10

3 1 3 1

5 3 1

mol dm m ms

mol dm s

Position, x

Positive
curvature

Negative
curvature

Spreads

Fills

C
o

n
ce

n
tr

at
io

n
, c

Figure 81.2 Nature abhors a wrinkle. The diffusion equation 
tells us that peaks in a distribution (regions of negative 
curvature) spread and troughs (regions of positive curvature) 
fill in.
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786 16 Molecular motion

(c) Solutions of the diffusion equation
The diffusion equation is a second-order differential equation 

with respect to space and a first-order differential equation 

with respect to time. Therefore, we must specify two boundary 

conditions for the spatial dependence and a single initial condi-

tion for the time dependence (see Mathematical background 2).

As an illustration, consider a solvent in which the solute is 

initially coated on one surface of the container (for example, 

a layer of sugar on the bottom of a deep beaker of water). The 

single initial condition is that at t = 0 all N0 particles are con-

centrated on the yz-plane (of area A) at x = 0. The two bound-

ary conditions are derived from the requirements (1) that the 

concentration must everywhere be finite and (2) that the total 

amount (number of moles) of particles present is n0 (with 

n0 = N0/NA) at all times. These requirements imply that the flux 

of particles is zero at the top and bottom surfaces of the system. 

Under these conditions it is found that

c x t
n

A Dt
x Dt( , )

( ) /
/= −0

1 2
42

π
e

 
 One-dimensional diffusion  (81.11)

as may be verified by direct substitution (Problem 81.5). Figure 

81.3 shows the shape of the concentration distribution at  

various times, and it is clear that the concentration spreads and 

tends to uniformity.

Another useful result is for a localized concentration of sol-

ute in a three-dimensional solvent (a sugar lump suspended in 

a large flask of water). The concentration of diffused solute is 

spherically symmetrical, and at a radius r is

c r t
n

Dt
r Dt( , )

( ) /
/= −0

3 2
4

8

2

π
e

 
 Three-dimensional diffusion  (81.12)

Other chemically (and physically) interesting arrangements, 

such as transport of substances across biological mem-

branes, can be treated. In many cases the solutions are more 

cumbersome.

The solutions of the diffusion equation are useful for experi-

mental determinations of diffusion coefficients (Table 81.1). 

In the capillary technique, a capillary tube, open at one end 

and containing a solution, is immersed in a well-stirred larger 

quantity of solvent, and the change of concentration in the 

tube is monitored. The solute diffuses from the open end of the 

capillary at a rate that can be calculated by solving the diffu-

sion equation with the appropriate boundary conditions, so D 

may be determined. In the diaphragm technique, the diffu-

sion occurs through the capillary pores of a sintered glass dia-

phragm separating the well-stirred solution and solvent. The 

concentrations are monitored and then related to the solutions 

of the diffusion equation corresponding to this arrangement. 

Diffusion coefficients may also be measured by a number of 

techniques, including NMR spectroscopy.

The solutions of the diffusion equation can be used to predict 

the concentration of particles (or the value of some other physi-

cal quantity, such as the temperature in a non-uniform system) 

at any location. We can also use them to calculate the average 

displacement of the particles in a given time.

and the concentration increases at the rate of 10 μmol dm−3 s−1.

Self-test 81.4 What rate of flow is needed to replenish the con-

centration when the concentration varies exponentially as 

c = c0e−x/λ across the region?

Answer: v = D/λ

Example 81.1 Calculating the average displacement

Calculate the average displacement of particles in a time t in 

a one-dimensional system if they have a diffusion constant D.

Method We need to use the results of probability theory 

summarized in Mathematical background 7. In this case, we 

C
o

n
ce

n
tr

at
io

n
, c

/(
n

0/
A

)

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2
Distance,x

1.0

0.3

0.1

0.05

Figure 81.3 The concentration profiles above a plane from 
which a solute is diffusing. The curves are plots of eqn 81.11 and 
are labelled with different values of Dt. The units of Dt and x 
are arbitrary, but are related so that Dt/x2 is dimensionless. For 
example, if x is in metres, Dt would be in metres squared; so, for 
D = 10−9 m2 s−1, Dt = 0.1 m2 corresponds to t = 108 s.

Table 81.1* Diffusion coefficients at 298 K

D/(10−9 m2 s−1)

H+ in water 9.31

I2 in hexane 4.05

Na+ in water 1.33

Sucrose in water 0.522

* More values are given in the Resource section.
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As shown in Example 81.1, the average displacement of a dif-

fusing particle in a time t in a one-dimensional system is

〈 〉 πx
Dt= ⎛

⎝⎜
⎞
⎠⎟

2

1 2/

 
One dimension  Mean displacement  (81.13)

and the root mean square displacement in the same time is 

(from Self-test 81.5)

〈 〉x Dt2 1 2 1 22/ /( )=
 

The latter is a valuable measure of the spread of particles when 

they can diffuse in both directions from the origin (for then 

〈x〉 = 0 at all times). The root mean square displacement of par-

ticles with a typical diffusion coefficient (D = 5 × 10−10 m2 s−1) is 

illustrated in Fig. 81.4, which shows how long it takes for diffu-

sion to increase the net distance travelled on average to about 

1 cm in an unstirred solution. The graph shows that diffusion 

is a very slow process (which is why solutions are stirred, to 

encourage mixing by convection). The diffusion of phero-

mones in still air is also very slow, and greatly accelerated by 

convection.

81.3 The statistical view

An intuitive picture of diffusion is of the particles moving in a 

series of small steps and gradually migrating from their origi-

nal positions. We explore this idea by using a model in which 

the particles can jump through a distance λ in a time τ. The 

total distance travelled by a particle in a time t is therefore tλ/τ. 

However, the particle will not necessarily be found at that dis-

tance from the origin. The direction of each step may be dif-

ferent, and the net distance travelled must take the changing 

directions into account.

If we simplify the discussion by allowing the particles to 

travel only along a straight line (the x-axis), and for each step 

(to the left or the right) to be through the same distance λ, then 

we obtain the one-dimensional random walk. We show in the 

following Justification that the probability of a particle being at 

a distance x from the origin after a time t is

P x t
t

x t( , )

/

/=⎛
⎝⎜

⎞
⎠⎟

−2
1 2

22 2τ τ λ

π e
 

One dimension  Probability  (81.15)

calculate the probability that a particle will be found at a cer-

tain distance from the origin, and then calculate the average 

by weighting each distance by that probability. You will need 

to use eqn 81.11 as well as Integral G.2 listed in the Resource 

section.

Answer The number of particles in a slab of thickness dx and 

area A at x, where the molar concentration is c, is cANAdx. The 

probability that any of the N0 = n0NA particles is in the slab is 

therefore cANAdx/N0. If the particle is in the slab, it has trav-

elled a distance x from the origin. Therefore, the average dis-

placement of all the particles is the sum of each x weighted by 

the probability of its occurrence:

〈 〉
π

x x
c x t AN

N
x

Dt
x xx Dt= =

∞
−

∞

∫ ∫( , )

( ) /
/A d e d

00
1 2

4

0

1 2

n NA0

Integral

�

  G.2� ��� ���

= ⎛
⎝⎜

⎞
⎠⎟

2

1 2
Dt

π

/

The average displacement varies as the square root of the 

lapsed time.

Self-test 81.5 Derive an expression for the root mean square 

distance travelled by diffusing particles in a time t in a one-

dimensional system. You will need Integral G.3 listed in the 

Resource section.

Answer: 〈x2〉1/2 = (2Dt)1/2

One 
dimension

Root mean square 
displacement  (81.14)

Justification 81.2 The one-dimensional random walk

Consider a one-dimensional random walk of N steps in which 

each step is through a distance λ to the left or right. The num-

ber of ways of performing a walk with NR steps to the right and 

NL to the left is given by the binomial coefficient (Mathematical 

background 7)

W
N

N N

N

N N N
= = −

!

! !

!

( )! !L R R R
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Figure 81.4 The root mean square distance covered by 
particles with D = 5 × 10−10 m2 s−1. Note the great slowness of 
diffusion.
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788 16 Molecular motion

The differences of detail between eqns 81.11 (for one-dimen-

sional diffusion) and 81.15 arise from the fact that in the pre-

sent calculation the particles can migrate in either direction 

from the origin. Moreover, they can be found only at discrete 

points separated by λ instead of being anywhere on a continu-

ous line. The fact that the two expressions are so similar sug-

gests that diffusion can indeed be interpreted as the outcome of 

a large number of steps in random directions.

We can now relate the coefficient D to the step length λ and 

the rate at which the jumps occur. Thus, by comparing the two 

exponents in eqn 81.11 and eqn 81.15 we can immediately 

write down the Einstein–Smoluchowski equation:

D = λ
τ

2

2  
 Einstein–Smoluchowski equation  (81.16)

For a one-dimensional random walk, eqn 81.13 in combi-

nation with eqn 81.16 implies that the distance walked after 

N = t/τ steps of length λ is

〈 〉 πx
N= ⎛

⎝⎜
⎞
⎠⎟

λ 2
1 2/

 

The corresponding expressions for the mean radius reached in 

a random walk in two dimensions (like a molecule migrating 

on a flat surface) and in three dimensions (in a solution; see 

Problem 81.13) are

〈 〉r N= λ 1 2/

 
Two dimensions  Mean distance from origin  (81.17b)

〈 〉 πr
N= ⎛

⎝⎜
⎞
⎠⎟

λ 8
1 2/

 

Note that the average distance increases as the dimensionality 

increases, as the particles have greater freedom to escape than 

in one dimension.

The Einstein–Smoluchowski equation is the central connec-

tion between the microscopic details of particle motion and 

the macroscopic parameters relating to diffusion (for exam-

ple, the diffusion coefficient and, through the Stokes–Einstein 

relation, eqn 80.19b of Topic 80, D = kT/6πηa, the viscosity). It 

also brings us back full circle to the properties of the perfect gas 

treated in Topic 79. For if we interpret λ/τ as vmean, the mean 

speed of the molecules, and interpret λ as a mean free path, 

then we can recognize in the Einstein–Smoluchowski equation 

Brief illustration 81.5 Random walk

Suppose an SO4
2− ion jumps through its own diameter each 

time it makes a move in an aqueous solution. Then, because 

D = 1.1 × 10−9 m2 s−1 (Table 81.1) and a = 250 pm (as deduced 

from mobility measurements, Topic 80), it follows from λ = 2a 

that

τ = = =
× ×

×
= ×

−

− −
−( ) ( )

.
.

2

2

2 2 250 10

1 1 10
1 1 10

2 2 12 2

9 2 1
10a

D

a

D

pm

m s
s

or τ = 110 ps. Because τ is the time for one jump, the ion makes 

about 1 × 1010 jumps per second.

Self-test 81.6 Suppose the activation energy for diffusion is 

40 kJ mol−1. What would be the jump time when the tempera-

ture was increased from 25 °C (as above) to 30 °C?

Answer: 84 ps

One 
dimension

Mean distance 
from origin  (81.17a)

Three 
dimensions 

Mean distance 
from origin

 (81.17c)

The total possible number of paths is 2N as each of the N steps 

may be in either of two directions. The probability of the 

net distance walked being nλ with n = NR − NL = 2NR − N is 

therefore

P n
N

( )λ = number of paths with steps to the right

total numb

 R

eer of paths

R R

= =
−

W N

N N NN N2 2

!

( )! !

This expression can be developed by making use of Stirling’s 

approximation (Topic 51) in the form

ln ! ln( ) ( )ln/x x x x≈ + + −2 1 2 1
2

π

and the parameter

μ = −N

N
R 1

2
1�

which is small because almost exactly half the steps are to the 

right. The smallness of μ allows us to use the expansion

ln ln
1

2
2 2 2 2±⎛

⎝⎜
⎞
⎠⎟

= − ± − +μ μ μ �

and retain terms through the order μ2 in the overall expres-

sion for ln P(nλ). The final result, after quite a lot of algebra 

(see Problem 81.10), is

P n
N N

N N

N

N

( )
( )( ) / /

λ
μ μ

= =
+ − −2

2 2

2

2

1 2

1 2

2

1 2

2 2

e e

π π

At this point we recognize that

N
N N

N

N N

N

n

N
μ2

2 2 22

4 4 4
= − = − =( ) ( )R R L

The net distance from the origin is x = nλ and the number of 

steps taken in a time t is N = t/τ, so Nμ2 = τx2/4tλ2. Substitution 

of these quantities into the expression for P gives eqn 81.15.
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81 Diffusion  789

essentially the same expression as we obtained from the kinetic 

model of gases (eqn 79.7 of Topic 79, D = 1
3
λvmean ). That is, the 

diffusion of a perfect gas is a random walk with an average step 

size equal to the mean free path.

Checklist of concepts

☐ 1. The thermodynamic force represents the spontaneous 

tendency of the molecules to disperse as a consequence 

of the Second Law and the hunt for maximum entropy.

☐ 2. The diffusion equation (Fick’s second law; see below) 

can be regarded as a mathematical formulation of the 

notion that there is a natural tendency for concentra-

tion to become uniform.

☐ 3. Convection is the transport of particles arising from 

the motion of a streaming fluid.

☐ 4. An intuitive picture of diffusion is of the particles mov-

ing in a series of small steps and gradually migrating 

from their original positions.

Checklist of equations

Property Equation Comment Equation number

Thermodynamic force F = −(∂μ/∂x)T,p
Definition 81.1

Fick’s first law J(amount) = −Ddc/dx 81.4

Diffusive flux J = sc 81.5

Drift speed s = DF/RT 81.6

Diffusion equation ∂c/∂t = D∂2c/∂x2 One dimension 81.7

Convective flux J = cv 81.8

Generalized diffusion equation ∂c/∂t = D∂2c/∂x2 − v∂c/∂x One dimension 81.10

Mean displacement 〈x〉 = 2(Dt/π)1/2 One-dimensional diffusion 81.13

Root mean square displacement 〈x2〉1/2 = (2Dt)1/2 One-dimensional diffusion 81.14

Probability of displacement P x t t x t( , ) ( / ) / /= −2 1 2 22 2τ τ λπ e One-dimensional random walk 81.15

Einstein–Smoluchowski equation D = λ2/2τ One-dimensional random walk 81.16
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790 16 Molecular motion

Focus 16 on Molecular motion

Topic 78 The kinetic theory of gases

Discussion questions
78.1 Specify and analyse critically the assumptions that underlie the kinetic 

model of gases.

78.2 Provide molecular interpretations for the dependencies of the mean free 

path on the temperature, pressure, and size of gas molecules.

Exercises
78.1(a) Determine the ratios of (a) the mean speeds, (b) the mean translational 

kinetic energies of H2 molecules and Hg atoms at 20 °C.

78.1(b) Determine the ratios of (a) the mean speeds, (b) the mean kinetic 

energies of He atoms and Hg atoms at 25 °C.

78.2(a) Calculate the root mean square speeds of H2 and O2 molecules at 

20 °C.

78.2(b) Calculate the root mean square speeds of CO2 molecules and He atoms 

at 20 °C.

78.3(a) Use the Maxwell distribution of speeds to estimate the fraction of N2 

molecules at 400 K that have speeds in the range 200 to 210 m s−1.

78.3(b) Use the Maxwell distribution of speeds to estimate the fraction of CO2 

molecules at 400 K that have speeds in the range 400 to 405 m s−1.

78.4(a) Calculate the most probable speed, the mean speed, and the mean 

relative speed of CO2 molecules in air at 20 °C.

78.4(b) Calculate the most probable speed, the mean speed, and the mean 

relative speed of H2 molecules in air at 20 °C.

78.5(a) Assume that air consists of N2 molecules with a collision diameter 

of 395 pm. Calculate (a) the mean speed of the molecules, (b) the mean free 

path, (c) the collision frequency in air at 1.0 atm and 25 °C.

78.5(b) The best laboratory vacuum pump can generate a vacuum of about 

1 nTorr. At 25 °C and assuming that air consists of N2 molecules with a 

collision diameter of 395 pm, calculate (a) the mean speed of the molecules, 

(b) the mean free path, (c) the collision frequency in the gas.

78.6(a) At what pressure does the mean free path of argon at 20 °C become 

comparable to the diameter of a 100 cm3 vessel that contains it? Take 

σ = 0.36 nm2.

78.6(b) At what pressure does the mean free path of argon at 20 °C become 

comparable to 10 times the diameters of the atoms themselves?

78.7(a) At an altitude of 20 km the temperature is 217 K and the pressure 

0.050 atm. What is the mean free path of N2 molecules? (σ = 0.43 nm2).

78.7(b) At an altitude of 15 km the temperature is 217 K and the pressure 

12.1 kPa. What is the mean free path of N2 molecules? (σ = 0.43 nm2).

78.8(a) How many collisions does a single Ar atom make in 1.0 s when the 

temperature is 25 °C and the pressure is (a) 10 atm, (b) 1.0 atm, (c) 1.0 μatm?

78.8(b) How many collisions per second does an N2 molecule make at an 

altitude of 15 km? (See Exercise 78.7b for data.)

78.9(a) A solid surface with dimensions 5.0 mm × 4.0 mm is exposed to argon 

gas at 25 Pa and 300 K. How many collisions do the Ar atoms make with this 

surface in 100 s?

78.9(b) A solid surface with dimensions 2.0 cm × 10.0 cm is exposed to helium 

gas at 120 Pa and 1200 K. How many collisions do the He atoms make with 

this surface in 1.0 s?

78.10(a) If 125 cm3 of hydrogen gas effuses through a small hole in 135 

seconds, how long will it take the same volume of oxygen gas to effuse under 

the same temperature and pressure?

78.10(b) If 175 cm3 of carbon dioxide effuses through a small hole in 255 

seconds, how long will it take the same volume of sulfur dioxide to effuse 

under the same temperature and pressure?

78.11(a) An effusion cell has a circular hole of diameter 1.50 mm. If the molar 

mass of the solid in the cell is 300 g mol−1 and its vapour pressure is 0.735 Pa at 

500 K, by how much will the mass of the solid decrease in a period of 1.00 h?

78.11(b) An effusion cell has a circular hole of diameter 1.00 mm. If the molar 

mass of the solid in the cell is 250 g mol−1 and its vapour pressure is 0.324 Pa 

at 425 K, by how much will the mass of the solid decrease in a week (use 

1 week = 7 × 24 h)?

78.12(a) A manometer was connected to a bulb containing a gaseous sample 

under slight pressure. The gas was allowed to escape through a small pinhole, 

and the time for the manometer reading to drop from 74 cm to 20 cm 

was 152 s. When the experiment was repeated using nitrogen (for which 

M = 28.02 g mol−1) the same fall took place in 45 s. Calculate the molar mass of 

the sample.

78.12(b) A manometer was connected to a bulb containing nitrogen under 

slight pressure. The gas was allowed to escape through a small pinhole, and 

the time for the manometer reading to drop from 75.1 cm to 32.5 cm was 

22.5 s. When the experiment was repeated using a fluorocarbon gas, the same 

fall took place in 135.0 s. Calculate the molar mass of the fluorocarbon.

78.13(a) A space vehicle of internal volume 3.0 m3 is struck by a meteor and a 

hole of radius 0.10 mm is formed. If the oxygen pressure within the vehicle is 

initially 80 kPa and its temperature 298 K, how long will the pressure take to 

fall to 70 kPa?

78.13(b) A container of internal volume 22.0 m3 was punctured, and a hole of 

radius 0.050 mm was formed. If the nitrogen pressure within the vehicle is 

initially 122 kPa and its temperature 293 K, how long will the pressure take to 

fall to 105 kPa?
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Problems
78.1 The speed of molecules can also be measured with a rotating slotted-disc 

apparatus, which consists of five coaxial 5.0 cm diameter disks separated by 

1.0 cm, the slots in their rims being displaced by 2.0° between neighbours. 

The relative intensities, I, of the detected beam of Kr atoms for two different 

temperatures and at a series of rotation rates were as follows:

Find the distributions of molecular velocities, f(vx), at these temperatures, and 

check that they conform to the theoretical prediction for a one-dimensional 

system.

78.2 A Knudsen cell was used to determine the vapour pressure of germanium 

at 1000 °C. During an interval of 7200 s the mass loss through a hole of radius 

0.50 mm amounted to 43 μg. What is the vapour pressure of germanium at 

1000 °C? Assume the gas to be monatomic.

78.3 The pressure of a Knudsen cell of volume V in which a vapour is 

confined (with no condensed phase to replenish the vapour phase) decays 

exponentially with a time constant τ = (2πM/RT)1/2(V/A) (see Problem  

78.12 for the derivation of a related expression). How long would it take  

the pressure of barium vapour in a cell with V = 100 cm3 and A = 0.10 mm2 at 

1300 °C to fall to 1/10 of its initial value?

78.4 The vapour pressure of zinc in the range 250 °C to 419 °C can be 

estimated from the expression log(p/Torr) = a − b/T with a = 9.200 and 

b = 6947 K. Calculate and plot the beam flux (in Zn atoms per second) 

emerging from a hole of radius 0.20 mm as the temperature of the oven 

containing solid zinc is raised from 250 °C to 400 °C.

78.5 Start from the Maxwell–Boltzmann distribution and derive an expression 

for the most probable speed of a gas of molecules at a temperature T. Go on 

to demonstrate the validity of the equipartition conclusion that the average 

translational kinetic energy of molecules free to move in three dimensions 

is  3
2

kT .

78.6 In Topic 58 it is established that the heat capacity of a collection of 

molecules is proportional to the variance of their energy (the mean square 

deviation of the energy from its mean value). Use the Maxwell–Boltzmann 

distribution of speeds to calculate the translational contribution to the heat 

capacity of a gas by this approach.

78.7 Consider molecules that are confined to move in a plane (a two-

dimensional gas). Calculate the distribution of speeds and determine the 

mean speed of the molecules at a temperature T.

78.8 A specially constructed velocity selector accepts a beam of molecules 

from an oven at a temperature T but blocks the passage of molecules with a 

speed greater than the mean. What is the mean speed of the emerging beam, 

relative to the initial value, treated as a one-dimensional problem?

78.9 What, according to the Maxwell–Boltzmann distribution, is the 

proportion of gas molecules having (a) more than, (b) less than the root mean 

square speed? (c) What are the proportions having speeds greater and smaller 

than the mean speed?

78.10 Calculate the fractions of molecules in a gas that have a speed in a range 

Δv at the speed nvmp relative to those in the same range at vmp itself? This 

calculation can be used to estimate the fraction of very energetic molecules 

(which is important for reactions). Evaluate the ratio for n = 3 and n = 4.

78.11 Derive an expression for 〈vn〉1/n from the Maxwell–Boltzmann 

distribution of speeds. You will need Integrals G.7 and G.8 listed in the 

Resource section.

78.12 Derive an expression that shows how the pressure of a gas inside an 

effusion oven (a heated chamber with a small hole in one wall) varies with 

time if the oven is not replenished as the gas escapes. Then show that t1/2, 

the time required for the pressure to decrease to half its initial value, is 

independent of the initial pressure. Hint: Begin by setting up a differential 

equation relating dp/dt to p = NkT/V, and then integrating it.

78.13 Calculate the escape velocity (the minimum initial velocity that will 

take an object to infinity) from the surface of a planet of radius R. What is the 

value for (a) the Earth, R = 6.37 × 106 m, g = 9.81 m s−2; (b) Mars, R = 3.38 × 106 

m, mMars/mEarth = 0.108. At what temperatures do H2, He, and O2 molecules 

have mean speeds equal to their escape speeds? What proportion of the 

molecules have enough speed to escape when the temperature is (a) 240 K, 

(b) 1500 K? Calculations of this kind are very important in considering the 

composition of planetary atmospheres.

78.14 The kinetic model of gases is valid when the size of the particles is 

negligible compared with their mean free path. It may seem absurd, therefore, 

to expect the kinetic theory and, as a consequence, the perfect gas law, to be 

applicable to the dense matter of stellar interiors. In the Sun, for instance, the 

density is 1.50 times that of liquid water at its centre and comparable to that 

of water about half way to its surface. However, we have to realize that the 

state of matter is that of a plasma, in which the electrons have been stripped 

from the atoms of hydrogen and helium that make up the bulk of the matter 

of stars. As a result, the particles making up the plasma have diameters 

comparable to those of nuclei, or about 10 fm. Therefore, a mean free path 

of only 0.1 pm satisfies the criterion for the validity of the kinetic model and 

the perfect gas law. We can therefore use pV = nRT as the equation of state 

for the stellar interior. (a) Calculate the pressure half way to the centre of 

the Sun, assuming that the interior consists of ionized hydrogen atoms, the 

temperature is 3.6 MK, and the mass density is 1.20 g cm−3 (slightly higher 

than the density of water). (b) Combine the result from part (a) with the 

expression for the pressure from the kinetic model to show that the pressure 

of the plasma is related to its kinetic energy density, ρk = Ek/V, the kinetic 

energy of the molecules in a region divided by the volume of the region, by 

p = 2
3

ρ k.  (c) What is the kinetic energy density half way to the centre of the 

Sun? Compare your result with the (translational) kinetic energy density of 

the Earth's atmosphere on a warm day (25 °C), 1.5 × 105 J m−3 (corresponding 

to 0.15 J cm−3). (d) A star eventually depletes some of the hydrogen in its 

core, which contracts and results in higher temperatures. The increased 

temperature results in an increase in the rates of nuclear reactions, some of 

which result in the formation of heavier nuclei, such as carbon. The outer part 

of the star expands and cools to produce a red giant. Assume that halfway 

to the centre a red giant has a temperature of 3500 K, is composed primarily 

of fully ionized carbon atoms and electrons, and has a mass density of 

1200 kg m−3. What is the pressure at this point? (e) If the red giant in part  

(d) consisted of neutral carbon atoms, what would be the pressure at the same 

point under the same conditions?

78.15 The principal components of the atmosphere of the Earth are diatomic 

molecules, which can rotate as well as translate. Given that the translational 

kinetic energy density of the atmosphere is 0.15 J cm−3, what is the total kinetic 

energy density, including rotation?

ν/Hz 20 40 80 100 120

I (40 K ) 0.846 0.513 0.069 0.015 0.002

I (100 K) 0.592 0.485 0.217 0.119 0.057
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792 16 Molecular motion

Topic 79 Transport properties of gases

Discussion questions
79.1 Explain how Fick’s first law arises from the concentration gradient of gas 

molecules.

79.2 Provide molecular interpretations for the dependencies of the diffusion 

coefficient and the viscosity on the temperature, pressure, and size of gas 

molecules.

79.3 What might be the effect of molecular interactions on the transport 

properties of a gas?

Exercises
79.1(a) Calculate the thermal conductivity of argon (CV,m = 12.5 J K−1 mol−1, 

σ = 0.36 nm2) at 298 K.

79.1(b) Calculate the thermal conductivity of nitrogen (CV,m = 20.8 J K−1 mol−1, 

σ = 0.43 nm2) at 298 K.

79.2(a) Calculate the diffusion constant of argon at 20 °C and (a) 1.00 Pa,  

(b) 100 kPa, (c) 10.0 MPa. If a pressure gradient of 1.0 bar m−1 is established  

in a pipe, what is the flow of gas due to diffusion?

79.2(b) Calculate the diffusion constant of nitrogen at 20 °C and (a) 100.0 Pa, 

(b) 100 kPa, (c) 20.0 MPa. If a pressure gradient of 1.20 bar m−1 is established 

in a pipe, what is the flow of gas due to diffusion?

79.3(a) Calculate the flux of energy arising from a temperature gradient of 

10.5 K m−1 in a sample of argon in which the mean temperature is 280 K.

79.3(b) Calculate the flux of energy arising from a temperature gradient of 

8.5 K m−1 in a sample of hydrogen in which the mean temperature is 290 K.

79.4(a) Use the experimental value of the thermal conductivity of neon (Table 

79.1) to estimate the collision cross-section of Ne atoms at 273 K.

79.4(b) Use the experimental value of the thermal conductivity of nitrogen 

(Table 79.1) to estimate the collision cross-section of N2 molecules at 298 K.

79.5(a) In a double-glazed window, the panes of glass are separated by 1.0 cm. 

What is the rate of transfer of heat by conduction from the warm room  

(28 °C) to the cold exterior (−15 °C) through a window of area 1.0 m2? What 

power of heater is required to make good the loss of heat?

79.5(b) Two sheets of copper of area 2.00 m2 are separated by 5.00 cm. What is 

the rate of transfer of heat by conduction from the warm sheet (70 °C) to the 

cold sheet (0 °C)? What is the rate of loss of heat?

79.6(a) Use the experimental value of the coefficient of viscosity for neon 

(Table 79.1) to estimate the collision cross-section of Ne atoms at 273 K.

79.6(b) Use the experimental value of the coefficient of viscosity for nitrogen 

(Table 79.1) to estimate the collision cross-section of the molecules at 273 K.

79.7(a) Calculate the viscosity of air at (a) 273 K, (b) 298 K, (c) 1000 K. Take 

σ ≈ 0.40 nm2. (The experimental values are 173 μP at 273 K, 182 μP at 20 °C, 

and 394 μP at 600 °C.)

79.7(b) Calculate the viscosity of benzene vapour at (a) 273 K, (b) 298 K, 

(c) 1000 K. Take σ ≈ 0.88 nm2.

Problems
79.1‡ Fenghour, et al. (J. Phys. Chem. Ref. Data 24, 1649 (1995)) have 

compiled an extensive table of viscosity coefficients for ammonia in the 

liquid and vapour phases. Deduce the effective molecular diameter of NH3 

based on each of the following vapour-phase viscosity coefficients: (a) 

η = 9.08 × 10−6 kg m−1 s−1 at 270 K and 1.00 bar; (b) η = 1.749 × 10−5 kg m−1 s−1 at 

490 K and 10.0 bar.

79.2 Calculate the ratio of the thermal conductivities of gaseous hydrogen 

at 300 K to gaseous hydrogen at 10 K. Be circumspect, and think about the 

modes of motion that are thermally active at the two temperatures.

79.3 Interstellar space is quite a different medium than the gaseous 

environments we commonly encounter on Earth. For instance, a typical 

density of the medium is about 1 atom cm−3 and that atom is typically H; 

the effective temperature due to stellar background radiation is about 10 kK. 

Estimate the diffusion coefficient and thermal conductivity of H under these 

conditions. Comment: Energy is in fact transferred much more effectively by 

radiation.

Topic 80 Motion in liquids

Discussion questions
80.1 Discuss the difference between the hydrodynamic radius of an ion and 

its ionic radius and explain why a small ion can have a large hydrodynamic 

radius.

80.2 Discuss the mechanism of proton conduction in water. How could the 

model be tested?

80.3 Why is a proton less mobile in liquid ammonia than in water?

‡ These problems were supplied by Charles Trapp and Carmen Giunta.
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Exercises
80.1(a) The viscosity of water at 20 °C is 1.002 cP and 0.7975 cP at 30 °C. What 

is the energy of activation for the transport process?

80.1(b) The viscosity of mercury at 20 °C is 1.554 cP and 1.450 cP at 40 °C. 

What is the energy of activation for the transport process?

80.2(a) The mobility of a chloride ion in aqueous solution at 25 °C is 

7.91 × 10−8 m2 s−1 V−1. Calculate the molar ionic conductivity.

80.2(b) The mobility of an acetate ion in aqueous solution at 25 °C is 

4.24 × 10−8 m2 s−1 V−1. Calculate the molar ionic conductivity.

80.3(a) The mobility of a Rb+ ion in aqueous solution is 7.92 × 10−8 m2 s−1 V−1 at 

25 °C. The potential difference between two electrodes placed in the solution 

is 25.0 V. If the electrodes are 7.00 mm apart, what is the drift speed of the Rb+ 

ion?

80.3(b) The mobility of a Li+ ion in aqueous solution is 4.01 × 10−8 m2 s−1 V−1 at 

25 °C. The potential difference between two electrodes placed in the solution 

is 24.0 V. If the electrodes are 5.0 mm apart, what is the drift speed of the ion?

80.4(a) The limiting molar conductivities of NaI, NaNO3, and AgNO3 are 

12.69 mS m2 mol−1, 12.16 mS m2 mol−1, and 13.34 mS m2 mol−1, respectively (all 

at 25 °C). What is the limiting molar conductivity of AgI at this temperature?

80.4(b) The limiting molar conductivities of KF, KCH3CO2, and Mg(CH3CO2)2 

are 12.89 mS m2 mol−1, 11.44 mS m2 mol−1, and 18.78 mS m2 mol−1, respectively 

(all at 25 °C). What is the limiting molar conductivity of MgF2 at this 

temperature?

80.5(a) At 25 °C the molar ionic conductivities of Li+, Na+, and K+ are 

3.87 mS m2 mol−1, 5.01 mS m2 mol−1, and 7.35 mS m2 mol−1, respectively. What 

are their mobilities?

80.5(b) At 25 °C the molar ionic conductivities of F−, Cl−, and Br− are 

5.54 mS m2 mol−1, 7.635 mS m2 mol−1, and 7.81 mS m2 mol−1, respectively. What 

are their mobilities?

80.6(a) Estimate the effective radius of a sucrose molecule in water at 25 °C 

given that its diffusion coefficient is 5.2 × 10−10 m2 s−1 and that the viscosity of 

water is 1.00 cP.

80.6(b) Estimate the effective radius of a glycine molecule in water at 25 °C 

given that its diffusion coefficient is 1.055 × 10−9 m2 s−1 and that the viscosity of 

water is 1.00 cP.

Problems
80.1 The viscosity of benzene varies with temperature as shown in the 

following table. Use the data to infer the activation energy for viscosity (the 

parameter Ea in eqn 80.2).

80.2 An empirical expression that reproduces the viscosity of water in the 

range 20–100 °C is

log
. ( ) . ( )η

η
θ θ

θ20

21 3272 20 0 001053 20

105
= ° °

° +
− − −/ C / C

/ C
 

where η20  is the viscosity at 20 °C. Explore (by using mathematical software) 

the possibility of fitting an exponential curve to this expression and hence 

identify an activation energy for the viscosity. This approach is taken further 

in Problem 80.10.

80.3 The conductivity of aqueous ammonium chloride at a series of 

concentrations is listed in the following table. Deduce the molar conductivity 

and determine the parameters that occur in Kohlrausch’s law.

80.4 Conductivities are often measured by comparing the resistance of a cell 

filled with the sample to its resistance when filled with some standard solution, 

such as aqueous potassium chloride. The conductivity of water is 76 mS m−1 

at 25 °C and the conductivity of 0.100 mol dm−3 KCl(aq) is 1.1639 S m−1. A 

cell had a resistance of 33.21 Ω when filled with 0.100 mol dm−3 KCl(aq) and 

300.0 Ω when filled with 0.100 mol dm−3 CH3COOH(aq). What is the molar 

conductivity of acetic acid at that concentration and temperature?

80.5 The resistances of a series of aqueous NaCl solutions, formed by successive 

dilution of a sample, were measured in a cell with cell constant (the constant C 

in the relation κ = C/R) equal to 0.2063 cm−1. The following values were found:

Verify that the molar conductivity follows the Kohlrausch law and find the 

limiting molar conductivity. Determine the coefficient K. Use the value of K 

(which should depend only on the nature, not the identity, of the ions) and 

the information that λ(Na+) = 5.01 mS m2 mol−1 and λ(I−) = 7.68 mS m2 mol−1 

to predict (a) the molar conductivity, (b) the conductivity, (c) the resistance it 

would show in the cell of 0.010 mol dm−3 NaI(aq) at 25 °C.

80.6 What are the drift speeds of Li+, Na+, and K+ in water when a potential 

difference of 100 V is applied across a 5.00 cm conductivity cell? How 

long would it take an ion to move from one electrode to the other? In 

conductivity measurements it is normal to use alternating current: what are 

the displacements of the ions in (a) centimetres, (b) solvent diameters (about 

300 pm) during a half-cycle of 2.0 kHz applied potential difference?

80.7‡ Bakale, et al. (J. Phys. Chem. 100, 12477 (1996)) measured the mobility 

of singly charged C60
− ions in a variety of nonpolar solvents. In cyclohexane at 

22 °C, the mobility is 1.1 cm2 V−1 s−1. Estimate the effective radius of the C60
−  

ion. The viscosity of the solvent is 0.93 × 10−3 kg m−1 s−1. Suggest a reason why 

there is a substantial difference between this number and the van der Waals 

radius of neutral C60.

80.8 Estimate the diffusion coefficients and the effective hydrodynamic radii 

of the alkali metal cations in water from their mobilities at 25 °C. Estimate the 

approximate number of water molecules that are dragged along by the cations. 

Ionic radii are given Table 38.2.

80.9 Nuclear magnetic resonance can be used to determine the mobility 

of molecules in liquids. A set of measurements on methane in carbon 

tetrachloride showed that its diffusion coefficient is 2.05 × 10−9 m2 s−1 at 0 °C 

and 2.89 × 10−9 m2 s−1 at 25 °C. Deduce what information you can about the 

mobility of methane in carbon tetrachloride.

80.10 In Topic 85 it is shown that a general expression for the activation 

energy of a chemical reaction is Ea = RT2(d ln k/dT). Confirm that the same 

expression may be used to extract the activation energy from eqn 80.2 

for the viscosity and then apply the expression to deduce the temperature 

dependence of the activation energy when the viscosity of water is given 

by the empirical expression in Problem 80.2. Plot this activation energy 

as a function of temperature. Suggest an explanation of the temperature 

dependence of Ea.

θ/°C 10 20 30 40 50 60 70

η/cP 0.758 0.652 0.564 0.503 0.442 0.392 0.358

c/(mol dm−3) 1.334 1.432 1.529 1.672 1.725

κ/(mS cm−1) 131 139 147 156 164

c/(mol dm−3) 0.00050 0.0010 0.0050 0.010 0.020 0.050

R/Ω 3314 1669 342.1 174.1 89.08 37.14
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Topic 81 Diffusion

Discussion questions
81.1 Describe the origin of the thermodynamic force. To what extent can it be 

regarded as an actual force?

81.2 Account physically for the form of the diffusion equation.

Exercises
81.1(a) The diffusion coefficient of glucose in water at 25 °C is 

6.73 × 10−10 m2 s−1. Estimate the time required for a glucose molecule to 

undergo a root mean square displacement of 5.0 mm.

81.1(b) The diffusion coefficient of H2O in water at 25 °C is 2.26 × 10−9 m2 s−1. 

Estimate the time required for an H2O molecule to undergo a root mean 

square displacement of 1.0 cm.

81.2(a) A layer of 20.0 g of sucrose is spread uniformly over a surface of area 

5.0 cm2 and covered in water to a depth of 20 cm. What will be the molar 

concentration of sucrose molecules at 10 cm above the original layer at 

(a) 10 s, (b) 24 h? Assume diffusion is the only transport process and take 

D = 5.216 × 10−9 m2 s−1.

81.2(b) A layer of 10.0 g of iodine is spread uniformly over a surface of area 

10.0 cm2 and covered in hexane to a depth of 10 cm. What will be the molar 

concentration of sucrose molecules at 5.0 cm above the original layer at 

(a) 10 s, (b) 24 h? Assume diffusion is the only transport process and take 

D = 4.05 × 10−9 m2 s−1.

Problems
81.1 A dilute solution of potassium permanganate in water at 25 °C was 

prepared. The solution was in a horizontal tube of length 10 cm, and at first 

there was a linear gradation of intensity of the purple solution from the 

left (where the concentration was 0.100 mol dm−3) to the right (where the 

concentration was 0.050 mol dm−3). What is the magnitude and sign of the 

thermodynamic force acting on the solute (a) close to the left face of the 

container, (b) in the middle, (c) close to the right face? Give the force per mole 

and force per molecule in each case.

81.2 A dilute solution of potassium permanganate in water at 25 °C was 

prepared. The solution was in a horizontal tube of length 10 cm, and at first 

there was a Gaussian distribution of concentration around the centre of 

the tube at x = 0, c x c ax( ) ,= −
0

2

e  with c0 = 0.100 mol dm−3 and a = 0.10 cm−2. 

Determine the thermodynamic force acting on the solute as a function 

of location, x, and plot the result. Give the force per mole and force per 

molecule in each case. What do you expect to be the consequence of the 

thermodynamic force?

81.3 Instead of a Gaussian ‘heap’ of solute, as in Problem 81.2, suppose that 

there is a Gaussian dip, a distribution of the form c x c ax( ) ( ).= −
0 1

2−e  Repeat 

the calculation in Problem 81.2 and its consequences.

81.4 A lump of sucrose of mass 10.0 g is suspended in the middle of a spherical 

flask of water of radius 10 cm at 25 °C. What is the concentration of sucrose at 

the wall of the flask after (a) 1.0 h, (b) 1.0 week? Take D = 5.22 × 10−10 m2 s−1.

81.5 Confirm that eqn 81.11 is a solution of the diffusion equation with the 

correct initial value.

81.6 Confirm that

c x t
c

Dt
x x t Dt( , )

( )
( ) /= − −0

1 2
4

4
0

2

π /
e− v

 

is a solution of the diffusion equation with convection (eqn 81.10) with all 

the solute concentrated at x = x0 at t = 0 and plot the concentration profile at a 

series of times to show how the distribution spreads and its centroid drifts.

81.7 The thermodynamic force has a direction as well as a magnitude, and in 

a three-dimensional ideal system eqn 81.2 becomes F = −RT∇(ln c) . What 

is the thermodynamic force acting to bring about the diffusion summarized 

by eqn 81.12 (that of a solute initially suspended at the centre of a flask of 

solvent)? Hint: Use ∇ = i∂/∂x + j∂/∂y + k∂/∂z.

81.8 The diffusion equation is valid when many elementary steps are taken in 

the time interval of interest, but the random walk calculation lets us discuss 

distributions for short times as well as for long. Use eqn 81.15 to calculate the 

probability of being six paces from the origin (that is, at x = 6λ) after (a) four, 

(b) six, (c) twelve steps.

81.9 Use mathematical software to calculate P in a one-dimensional random 

walk, and evaluate the probability of being at x = nλ for n = 6, 10, 14, …, 60. 

Compare the numerical value with the analytical value in the limit of a large 

number of steps. At what value of n is the discrepancy no more than 0.1 per cent?

81.10 Supply the intermediate mathematical steps in Justification 81.2.

81.11 The diffusion coefficient of a particular kind of t-RNA molecule is 

D = 1.0 × 10−11 m2 s−1 in the medium of a cell interior. How long does it take 

molecules produced in the cell nucleus to reach the walls of the cell at a 

distance 1.0 μm, corresponding to the radius of the cell?

81.12‡ In this problem, we examine a model for the transport of oxygen 

from air in the lungs to blood. First, show that, for the initial and boundary 

conditions c(x,t) = c(x,0) = co (0 < x < ∞) and c(0,t) = cs (0 ≤ t ≤ ∞), where co and 

cs are constants, the concentration, c(x,t), of a species is given by

c x t c c c x t
x

Dt
o o( , ) ( ){ ( )} ( , )

( )
= −+ − =s 1 erf

/
ξ ξ

4 1 2
 

where erf(ξ) is the error function (see Integral G.6 in the Resource section) and 

the concentration c(x,t) evolves by diffusion from the yz-plane of constant 

concentration, such as might occur if a condensed phase is absorbing a 

species from a gas phase. Now draw graphs of concentration profiles at several 

different times of your choice for the diffusion of oxygen into water at 298 K 

(when D = 2.10 × 10−9 m2 s−1) on a spatial scale comparable to passage of 

oxygen from lungs through alveoli into the blood. Use co=0 and set cs equal to 

the solubility of oxygen in water. Hint: Use mathematical software.

81.13 Derive eqn 81.17c for the mean radius reached in a random walk in 

three dimensions. Use eqn 81.12 and an argument similar to that presented in 

Example 81.1.
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Exercises and problems  795

Integrated activities

F16.1 In a series of observations on the displacement of rubber latex spheres of 

radius 0.212 μm, the mean square displacements after selected time intervals 

were on average as follows:

These results were originally used to find the value of Avogadro's constant, but 

there are now better ways of determining NA, so the data can be used to find 

another quantity. Find the effective viscosity of water at the temperature of 

this experiment (25 °C).

F16.2 Use mathematical software, a spreadsheet, or the Living graphs (labelled 
LG) on the website of this book to carry out the following exercises:

(a) LG Refer to Fig. 78.4. Plot different distributions by keeping the molar mass 

constant at 100 g mol−1 and varying the temperature of the sample between 

200 K and 2000 K.

(b) Evaluate numerically the fraction of molecules with speeds in the range 

100 m s−1 to 200 m s−1 at 300 K and 1000 K. Based on your observations, 

provide a molecular interpretation of temperature.

(c) Generate a family of curves similar to that shown in Fig. 81.3 but by using 

eqn 81.12, which describes diffusion in three dimensions.

t/s 30 60 90 120

1012〈x2〉/m2 88.2 113.5 128 144
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‘Chemical kinetics’ is the study of reaction rates. The rate of a chemical reaction might depend on 
variables under our control, such as the pressure, the temperature, and the presence of a catalyst, 
and we may be able to optimize the rate by the appropriate choice of conditions. Here we begin to 
see how such manipulations are possible, preparing us for the study of more complicated or more 
specialized cases.

Topic 82 discusses the definition of reaction rate and outlines the techniques for its measure-
ment with tools from Molecular spectroscopy. The results of such measurements show that reaction 
rates depend on the concentration of reactants (and products) and ‘rate constants’ that are charac-
teristic of the reaction. This dependence can be expressed in terms of differential equations known 
as ‘rate laws’.

‘Integrated rate laws’ are the solutions of the rate laws and give concentrations as a function of 
time (Topic 83). We explore simple yet very useful integrated rate laws that appear throughout this 
group of Topics. An important case is the inclusion of both the forward and reverse reactions, giv-
ing rise to expressions that describe the approach to equilibrium, when the forward and reverse 
rates are equal (Topic 84). A result of this analysis is a useful relation between the equilibrium con-
stant of the overall process and the rate constants of the forward and reverse reactions in the pro-
posed mechanism.

The rate constants of most reactions increase with increasing temperature. We see that the 
‘Arrhenius equation’ captures this empirically determined temperature dependence by using only 
two parameters (Topic 85). This equation is developed theoretically in our discussion of Reaction 

dynamics.
The study of reaction rates also leads to an understanding of the ‘mechanisms’ of reactions, their 

analysis into a sequence of ‘elementary steps’ (Topic 86). Here we see how to construct rate laws 
from a proposed mechanism. The elementary steps themselves have simple rate laws which can be 
combined by invoking the concept of the ‘rate-determining step’ of a reaction or either making the 
‘steady-state approximation’ or assuming the existence of a ‘pre-equilibrium’. The stage is now set 
for detailed study of Processes in fluid systems and Processes on solid surfaces.

Molecular
spectroscopy

Focus 9

Reaction
dynamics

Focus 18

Processes in
fluid systems

Focus 19 Focus 20

FOCUS 17  ON  Chemical kinetics

Topic  82

Reaction
rates

Topic  83

Integrated
rate laws

Topic  85

The Arrhenius
equation

Topic  86

Reaction
mechanisms

Topic  84

Reactions
approaching
equilibrium

Processes on
solid surfaces
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TOPIC 82

Reaction rates

This Topic introduces the principles of chemical kinetics, the 

study of reaction rates, by showing how the rates of reactions 

may be measured and interpreted. The results of such measure-

ments show that reaction rates depend on the concentration 

of reactants (and products) in characteristic ways that can be 

expressed in terms of differential equations known as rate laws.

82.1 Monitoring the progress  
of a reaction

The first steps in the kinetic analysis of reactions are to establish 

the stoichiometry of the reaction and identify any side reac-

tions. The basic data of chemical kinetics are then the concen-

trations of the reactants and products at different times after a 

reaction has been initiated.

(a) General considerations
The rates of most chemical reactions are sensitive to the tem-

perature, so in conventional experiments the temperature of 

the reaction mixture must be held constant throughout the 

course of the reaction. This requirement puts severe demands 

on the design of an experiment. Gas-phase reactions, for 

instance, are often carried out in a vessel held in contact with 

a substantial block of metal. Liquid-phase reactions, includ-

ing flow reactions, must be carried out in an efficient ther-

mostat. Special efforts have to be made to study reactions at 

low temperatures, as in the study of the kinds of reactions 

that take place in interstellar clouds. Thus, supersonic expan-

sion of the reaction gas can be used to attain temperatures as 

low as 10 K. For work in the liquid phase and the solid phase, 

very low temperatures are often reached by flowing cold 

liquid or cold gas around the reaction vessel. Alternatively, 

the entire reaction vessel is immersed in a thermally insu-

lated container filled with a cryogenic liquid, such as li quid 

helium (for work at around 4 K) or liquid nitrogen (for 

work at around 77 K). Non-isothermal conditions are some-

times employed. For instance, the shelf-life of an expensive 

Contents

82.1 Monitoring the progress of a reaction 799

(a) General considerations 799

Example 82.1: Monitoring the variation in pressure 800

(b) Special techniques 800

82.2 The rates of reactions 801
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Brief illustration 82.1: Reaction rates from  

balanced chemical equations 802

(b) Rate laws and rate constants 802

Brief illustration 82.2: Rate constants with  

different units 803
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Brief illustration 82.3: Rate laws 803

(d) The determination of the rate law 803

Example 82.2: Using the method of initial rates 804

Checklist of concepts 805

Checklist of equations 805

 ➤ Why do you need to know this material?
Studies of the rates of disappearance of reactants and 
appearance of products allow us to predict how quickly 
a reaction mixture approaches equilibrium. Furthermore, 
studies of reaction rates lead to detailed descriptions 
of the molecular events that transform reactants into 
products.

 ➤ What is the key idea?
Reaction rates can be expressed mathematically in terms 
of the concentrations of reactants and, in some cases, 
products.

 ➤ What do you need to know already?
To understand the experimental techniques used to study 
the progress of chemical reactions, you should review the 
basic concepts of spectroscopy (Topic 40).
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800 17 Chemical kinetics

pharmaceutical may be explored by slowly raising the tem-

perature of a single sample.

Spectroscopy is widely applicable to the study of reaction 

kinetics, and is especially useful when one substance in the reac-

tion mixture has a strong characteristic absorption in a conven-

iently accessible region of the electromagnetic spectrum. For 

example, the progress of the reaction H2(g) + Br2(g) → 2 HBr(g) 

can be followed by measuring the absorption of visible light by 

bromine. A reaction that changes the number or type of ions 

present in a solution may be followed by monitoring the elec-

trical conductivity of the solution. The replacement of neutral 

molecules by ionic products can result in dramatic changes 

in the conductivity, as in the reaction (CH3)3CCl(aq) + H2O(l)  

→ (CH3)3COH(aq) + H+(aq) + Cl−(aq). If hydrogen ions are 

produced or consumed, the reaction may be followed by moni-

toring the pH of the solution.

Other methods of determining composition include emis-

sion spectroscopy (Topic 46), mass spectrometry, gas chro-

matography, nuclear magnetic resonance (Topics 47–49), and 

electron paramagnetic resonance (for reactions involving radi-

cals or paramagnetic d-metal ions; see Topic 50).

A reaction in which at least one component is a gas might 

result in an overall change in pressure in a system of constant 

volume, so its progress may be followed by recording the varia-

tion of pressure with time.

(b) Special techniques
The method used to monitor concentrations depends on the 

species involved and the rapidity with which their concentra-

tions change. Many reactions reach equilibrium over periods 

of minutes or hours, and several techniques may then be used 

to follow the changing concentrations. In a real-time analysis 

the composition of the system is analysed while the reaction 

is in progress. Either a small sample is withdrawn or the bulk 

solution is monitored. In the flow method the reactants are 

mixed as they flow together in a chamber (Fig. 82.1). The reac-

tion continues as the thoroughly mixed solutions flow through 

the outlet tube, and observation of the composition at different 

positions along the tube is equivalent to the observation of the 

reaction mixture at different times after mixing. The disadvan-

tage of conventional flow techniques is that a large volume of 

reactant solution is necessary. This makes the study of fast reac-

tions particularly difficult because to spread the reaction over 

a length of tube the flow must be rapid. This disadvantage is 

avoided by the stopped-flow technique, in which the reagents 

are mixed very quickly in a small chamber fitted with a syringe 

instead of an outlet tube (Fig. 82.2). The flow ceases when the 

plunger of the syringe reaches a stop, and the reaction contin-

ues in the mixed solutions. Observations, commonly using 

spectroscopic techniques such as ultraviolet–visible absorption 

and fluorescence emission (all introduced in Topics 40, 45, and 

46), are made on the sample as a function of time. The tech-

nique allows for the study of reactions that occur on the milli-

second to second timescale. The suitability of the stopped-flow 

Example 82.1 Monitoring the variation in pressure

Predict how the total pressure varies during the gas-phase 

decomposition 2 N2O5(g) → 4 NO2(g) + O2(g) in a constant-

volume container.

Method The total pressure (at constant volume and tempera-

ture and assuming perfect gas behaviour) is proportional to 

the number of gas-phase molecules. Therefore, because each 

mole of N2O5 gives rise to 5
2

 mol of gas molecules, we can 

expect the pressure to rise to 5
2

 times its initial value. To con-

firm this conclusion, express the progress of the reaction in 

terms of the fraction, α, of N2O5 molecules that have reacted.

Answer Let the initial pressure be p0 and the initial amount of 

N2O5 molecules present be n. When a fraction α of the N2O5 

molecules has decomposed, the amounts of the components 

in the reaction mixture are:

When α = 0 the pressure is p0, so at any stage the total pres-

sure is

N2O5 NO2 O2 Total

Amount: n(1 − α) 2αn 1
2

αn n 1
3

2
+⎛

⎝⎜
⎞
⎠⎟

α

p p= +⎛
⎝⎜

⎞
⎠⎟

1
3

2 0α

When the reaction is complete, the pressure will have risen to 
5
2

 times its initial value.

Self-test 82.1 Repeat the calculation in Example 82.1 for  

2 NOBr(g) → 2 NO(g) + Br2(g).

Answer: p p= +⎛
⎝⎜

⎞
⎠⎟

1
1

2 0α

Driving
pistons

Mixing
chamber Movable

spectrometer

Figure 82.1 The arrangement used in the flow technique 
for studying reaction rates. The reactants are injected into 
the mixing chamber at a steady rate. The location of the 
spectrometer corresponds to different times after initiation.
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82 Reaction rates  801

method to the study of small samples means that it is appropri-

ate for many biochemical reactions, and it has been widely used 

to study the kinetics of protein folding and enzyme action.

Very fast reactions can be studied by flash photolysis, in 

which the sample is exposed to a brief flash of light that initi-

ates the reaction and then the contents of the reaction chamber 

are monitored. The apparatus used for flash photolysis studies 

is based on the experimental design for time-resolved spectros-

copy, in which reactions occurring on a picosecond or femtosec-

ond timescale may be monitored by using electronic absorption 

or emission, infrared absorption, or Raman scattering (Topic 40).

In contrast to real-time analysis, quenching methods are 

based on stopping, or quenching, the reaction after it has been 

allowed to proceed for a certain time. In this way the compo-

sition is analysed at leisure and reaction intermediates may 

be trapped. These methods are suitable only for reactions that 

are slow enough for there to be little reaction during the time 

it takes to quench the mixture. In the chemical quench flow 

method, the reactants are mixed in much the same way as in the 

flow method but the reaction is quenched by another reagent, 

such as a solution of acid or base, after the mixture has trav-

elled along a fixed length of the outlet tube. Different reaction 

times can be selected by varying the flow rate along the outlet 

tube. An advantage of the chemical quench flow method over 

the stopped-flow method is that spectroscopic fingerprints are 

not needed in order to measure the concentration of reactants 

and products. Once the reaction has been quenched, the solu-

tion may be examined by ‘slow’ techniques, such as gel elec-

trophoresis, mass spectrometry, and chromatography. In the 

freeze–quench method, the reaction is quenched by cooling the 

mixture within milliseconds, with the concentrations of reac-

tants, intermediates, and products measured spectroscopically.

82.2 The rates of reactions

Reaction rates depend on the composition and the tempera-

ture of the reaction mixture. The next few sections look at these 

observations in more detail.

(a) The definition of rate
Consider a reaction of the form A + 2 B → 3 C + D, in which at 

some instant the molar concentration of a participant J is [J] 

and the volume of the system is constant. The instantaneous 

rate of consumption of one of the reactants at a given time is 

−d[R]/dt, where R is A or B. This rate is a positive quantity (Fig. 

82.3). The rate of formation of one of the products (C or D, 

which we denote P) is d[P]/dt (note the difference in sign). This 

rate is also positive.

It follows from the stoichiometry of the reaction A + 2 B →  

3 C + D that

d D

d

d C

d

d[A]

d

d B

d

[ ] [ ] [ ]

t t t t
= = − = −1

3

1

2

so there are several rates connected with the reaction. The 

undesirability of having different rates to describe the same 

reaction is avoided by using the extent of reaction, ξ (xi, the 

quantity introduced in Topic 73),

ξ =
−n nJ J

J

,0

�
 

Definition  Extent of reaction  (82.1)

where νJ is the stoichiometric number of species J (Topic73), 

and defining the unique rate of reaction, v, as the rate of change 

of the extent of reaction:

v= 1

V t

d

d

ξ
 

Definition  Rate of reaction  (82.2)

where V is the volume of the system. It follows that

v= ×1 1

�J

Jd

dV

n

t
 

(82.3a)

Driving
pistons

Mixing
chamber

Fixed
spectrometer

Stopping
piston

Figure 82.2 In the stopped-flow technique the reagents are 
driven quickly into the mixing chamber by the driving pistons 
and then the time dependence of the concentrations is 
monitored.

Product

Reactant

M
o

la
r 

co
n

ce
n

tr
at

io
n

, [
J]

Time, t

(a) Tangent, rate = slope

(b) Tangent, rate = –slope

Figure 82.3 The definition of (instantaneous) rate as the 
slope of the tangent drawn to the curve showing the variation 
of concentration of (a) products, (b) reactants with time. For 
negative slopes, the sign is changed when reporting the rate, 
so all reaction rates are positive.
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802 17 Chemical kinetics

(Remember that νJ is negative for reactants and positive for 

products.) For a homogeneous reaction in a constant-volume 

system the volume V can be taken inside the differential and we 

use [J] = nJ/V to write

v= 1

�J

d J

d

[ ]

t
 

(82.3b)

For a heterogeneous reaction, we use the (constant) surface 

area, A, occupied by the species in place of V and use σJ = nJ/A 

to write

v= 1

�J

Jd

d

σ
t

 

(82.3c)

In each case there is now a single rate for the entire reaction (for 

the chemical equation as written). With molar concentrations 

in moles per cubic decimetre and time in seconds, reaction 

rates of homogeneous reactions are reported in moles per cubic 

decimetre per second (mol dm−3 s−1) or related units. For gas-

phase reactions, such as those taking place in the atmosphere, 

concentrations are often expressed in molecules per cubic 

centimetre (molecules cm−3) and rates in molecules per cubic 

centimetre per second (molecules cm−3 s−1). For heterogene-

ous reactions, rates are expressed in moles per square metre per 

second (mol m−2 s−1) or related units.

(b) Rate laws and rate constants

The rate of reaction is often found to be proportional to the 

concentrations of the reactants raised to a power. For example, 

the rate of a reaction may be proportional to the molar concen-

trations of two reactants A and B, so we write

v=kr A B[ ][ ]  (82.4)

with each concentration raised to the first power. The coef-

ficient kr is called the rate constant for the reaction. The rate 

constant is independent of the concentrations but depends on 

the temperature. An experimentally determined equation of 

this kind is called the rate law of the reaction. More formally, 

a rate law is an equation that expresses the rate of reaction as a 

function of the concentrations of all the species present in the 

overall chemical equation for the reaction at some time:

v= …f ([ ],[ ], )A B

For homogeneous gas-phase reactions, it is often more conven-

ient to express the rate law in terms of partial pressures, which 

are related to molar concentrations by pJ = RT[J]. In this case, 

we write

v= …f p p( , , )A B

The rate law of a reaction is determined experimentally, and 

cannot in general be inferred from the chemical equation for 

the reaction. The reaction of hydrogen and bromine, for exam-

ple, has a very simple stoichiometry, H2(g) + Br2(g) → 2 HBr(g), 

but its rate law is complicated:

v= +
k

k
a

b

[ ][ ]

[ ] [ ]

/H Br

Br HBr
2 2

3 2

2  
(82.6)

In certain cases the rate law does reflect the stoichiometry of 

the reaction, but that is either a coincidence or reflects a feature 

of the underlying reaction mechanism (see Topic 86).

A note on good (or, at least, our) practice We denote a general 

rate constant kr to distinguish it from the Boltzmann constant 

k. In some texts k is used for the former and kB for the latter. 

When expressing the rate constants in a more complicated 

rate law, such as that in eqn 82.6, we use ka, kb, and so on.

The units of kr are always such as to convert the product of 

concentrations into a rate expressed as a change in concen-

tration divided by time. For example, if the rate law is the one 

shown in eqn 82.4, with concentrations expressed in mol dm−3, 

then the units of kr will be dm3 mol−1 s−1 because

dm mol s mol dm mol dm mol dm s3 1 1 3 3 3 1− − − − − −× × =

In gas-phase studies, including studies of the processes tak-

ing place in the atmosphere, concentrations are commonly 

expressed in molecules cm−3, so the rate constant for the reac-

tion above would be expressed in cm3 molecule−1 s−1. We can 

use the approach just developed to determine the units of the 

rate constant from rate laws of any form. For example, the rate 

constant for a reaction with rate law of the form kr[A] is com-

monly expressed in s−1.

Brief illustration 82.1 Reaction rates from balanced 
chemical equations

If the rate of formation of NO in the reaction 2 NOBr(g) →  

2 NO(g) + Br2(g) is reported as 0.16 mmol dm−3 s−1, we use 

νNO = +2 to report that v = 0.080 mmol dm−3 s−1. Because 

νNOBr = −2 it follows that d[NOBr]/dt = −0.16 mmol dm−3 s−1. 

The rate of consumption of NOBr is therefore 0.16 mmol dm−3 

s−1, or 9.6 × 1016 molecules cm−3 s−1.

Self-test 82.2 The rate of change of molar concentration of 

CH3 radicals in the reaction 2 CH3(g) → CH3CH3(g) was 

reported as d[CH3]/dt = −1.2 mol dm−3 s−1 under particular 

conditions. What is (a) the rate of reaction and (b) the rate of 

formation of CH3CH3?

Answer: (a) 0.60 mol dm−3 s−1, (b) 0.60 mol dm−3 s−1

General form
Rate law in terms 
of concentrations

(82.5a)

(82.5b)General form
Rate law in 
terms of partial 
pressures
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82 Reaction rates  803

A practical application of a rate law is that once we know the 

law and the value of the rate constant, we can predict the rate of 

reaction from the composition of the mixture. As we shall see 

later, by knowing the rate law, we can go on to predict the com-

position of the reaction mixture at a later stage of the reaction. 

Moreover, a rate law is a guide to the mechanism of the reaction 

(Topic 86), for any proposed mechanism must be consistent 

with the observed rate law.

(c) Reaction order
Many reactions are found to have rate laws of the form

v= …k a b
r A B[ ] [ ]

 
(82.7)

The power to which the concentration of a species (a product 

or a reactant) is raised in a rate law of this kind is the order of 

the reaction with respect to that species. A reaction with the 

rate law in eqn 82.4 is first-order in A and first-order in B. The 

overall order of a reaction with a rate law like that in eqn 82.7 is 

the sum of the individual orders, a + b + …. The rate law in eqn 

82.4 is therefore second-order overall.

A reaction need not have an integral order, and many gas-

phase reactions do not. For example, a reaction having the 

rate law

v=kr
1 2A B[ ] [ ]/

 
(82.8)

is half-order in A, first-order in B, and three-halves-order over-

all. If a reaction rate is independent of the concentration of 

one of the reactants, then we say that it is zeroth-order in that 

reactant (because [J]0 = 1, independent of the value of [J], just 

as x0 = 1).

An example of a zeroth-order reaction is the catalytic decom-

position of phosphine (PH3) on hot tungsten at high pressures, 

with the rate law

v=kr  
(82.9)

The PH3 decomposes at a constant rate until it has almost 

entirely disappeared. Zeroth-order reactions typically occur 

when there is a bottleneck of some kind in the mechanism, as in 

heterogeneous reactions when the surface is saturated and the 

subsequent reaction slow, and in a number of enzyme reactions 

when there is a large excess of substrate relative to the enzyme.

As we saw in Brief illustration 82.3, when a rate law is not 

of the form in eqn 82.7, the reaction does not have an overall 

order and may not even have definite orders with respect to 

each participant.

These remarks point to three important problems:

To identify the rate law and obtain the rate constant from 

the experimental data. We concentrate on this aspect in 

this Topic.

To construct reaction mechanisms that are consistent 

with the rate law. We introduce the techniques for doing 

so in Topic 86.

To account for the values of the rate constants and 

explain their temperature dependence. This dependence 

is treated in Topic 85.

(d) The determination of the rate law
The determination of a rate law is simplified by the isola-

tion method in which the concentrations of all the reactants 

Brief illustration 82.2 Rate constants with different units

The rate constant for the reaction O(g) + O3(g) → 2 O2(g) 

is 8.0 × 10−15 cm3 molecule−1 s−1 at 298 K. To express this rate 

constant in dm3 mol−1 s−1, we make use of the two relations 

1 cm = 10−1 dm and 1 molecule = (1 mol)/(6.022 × 1023). It fol-

lows that

kr
15 3 1 1 8 1 cm molecule s

dm
mol

= ×

= ×
×

.

( ).
.

0 0

8 0 10 10
1

6 022
15 1 3

− − −

− −

110

0 0 0 0 0

23

1

1
⎛
⎝⎜

⎞
⎠⎟

= × × × ×
= ×

−

−

− − − −

s

8 1 1 6 22 1 dm mol s

4 8

15 3 23 3 1 1. .

. 11 dm mol s6 3 1 10 − −

Self-test 82.3 A reaction has a rate law of the form kr[A]2[B]. 

What are the units of the rate constant if the reaction rate is 

measured in mol dm−3 s−1?

Answer: dm6 mol−2 s−1

Brief illustration 82.3 Rate laws

The reduction of nitrogen dioxide by carbon monoxide

NO g CO(g) NO(g) CO g2 2( ) ( )+ → +

has the rate law v = kr[NO2]
2, which is second-order in NO2 

and, because no other species occurs in the rate law, second-

order overall. The rate of this reaction is independent of the 

concentration of CO provided that some CO is present, so it is 

zeroth-order in CO. The experimentally determined rate law 

for the gas-phase reaction H2(g) + Br2(g) → 2 HBr(g) is given 

by eqn 82.6. Although the reaction is first-order in H2, it has 

an indefinite order with respect to both Br2 and HBr and an 

indefinite order overall.

Self-test 82.4 Repeat this analysis for a typical rate law for the 

action of an enzyme E on a substrate S (see Topic 92 for the 

derivation of this rate law): v = kr[E][S]/([S] + KM), where KM is 

a constant.

Answer: First-order in E; no specific order with respect to S
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804 17 Chemical kinetics

except one are in large excess. If B is in large excess in a reaction 

between A and B, for example, then to a good approximation 

its concentration is constant throughout the reaction. Although 

the true rate law might be v = kr[A][B], we can approximate [B] 

by [B]0, its initial value, and write

v= ′ ′ =k k kr r rA B[ ] [ ]0  
(82.10)

which has the form of a first-order rate law. Because the true 

rate law has been forced into first-order form by assuming that 

the concentration of B is constant, eqn 82.10 is called a pseudo-

first-order rate law. The dependence of the rate on the con-

centration of each of the reactants may be found by isolating 

them in turn (by having all the other substances present in large 

excess), and so constructing a picture of the overall rate law.

In the method of initial rates, which is often used in con-

junction with the isolation method, the rate is measured at the 

beginning of the reaction for several different initial concentra-

tions of reactants. We shall suppose that the rate law for a reac-

tion with A isolated is v= ′k a
r[ ]A ; then its initial rate, v0, is given 

by the initial values of the concentration of A, and we write 

v =0 0′k a
r[ ] .A  Taking logarithms gives

log log log[A]rv0 0= ′ +k a
 

(82.11)

For a series of initial concentrations, a plot of the logarithms of 

the initial rates against the logarithms of the initial concentra-

tions of A should be a straight line with slope a.

The method of initial rates might not reveal the full rate law, 

for once the products have been generated they might partici-

pate in the reaction and affect its rate. For example, products 

participate in the synthesis of HBr, because eqn 82.6 shows 

that the full rate law depends on the concentration of HBr. To 

avoid this difficulty, the rate law should be fitted to the data 

throughout the reaction. The fitting may be done, in simple 

cases at least, by using a proposed rate law to predict the con-

centration of any component at any time, and comparing it 

with the data. A rate law should also be tested by observing 

whether the addition of products or, for gas-phase reactions, a 

change in the surface-to-volume ratio in the reaction chamber 

affects the rate.

Example 82.2 Using the method of initial rates

The recombination of iodine atoms in the gas phase in the pres-

ence of argon was investigated and the order of the reaction 

was determined by the method of initial rates. The initial rates 

of reaction of 2 I(g) + Ar(g) → I2(g) + Ar(g) were as follows:

The Ar concentrations are (a) 1.0 mmol dm−3, (b) 5.0 mmol 

dm−3, and (c) 10.0 mmol dm−3. Determine the orders of reac-

tion with respect to the I and Ar atom concentrations, and the 

rate constant.

Method Plot the logarithm of the initial rate, log v0, against 

log [I]0 for a given concentration of Ar, and, separately, against 

log [Ar]0 for a given concentration of I. The slopes of the two 

lines are the orders of reaction with respect to I and Ar, respec-

tively. The intercepts with the vertical axis give log kr.

[I]0/(10−5 mol dm−3) 1.0 2.0 4.0 6.0

v0/(mol dm−3 s−1) (a) 8.70 × 10−4 3.48 × 10−3 1.39 × 10−2 3.13 × 10−2

(b) 4.35 × 10−3 1.74 × 10−2 6.96 × 10−2 1.57 × 10−1

(c) 8.69 × 10−3 3.47 × 10−2 1.38 × 10−1 3.13 × 10−1

Answer The plots are shown in Fig. 82.4. The slopes are 2 and 

1, respectively, so the (initial) rate law is v0 0
2

0=kr I Ar[ ] [ ] . This 

rate law signifies that the reaction is second-order in [I], first-

order in [Ar], and third-order overall. The intercept corre-

sponds to kr = 9 × 109 mol−2 dm6 s−1.

A note on good practice The units of kr come auto-

matically from the calculation, and are always such as to 

convert the product of concentrations to a rate in con-

centration/time (for example, mol dm−3 s−1).

Self-test 82.5 The initial rate of a reaction depended on con-

centration of a substance J as follows:

Determine the order of the reaction with respect to J and cal-

culate the rate constant.

Answer: 2, 1.4 × 10−2 dm3 mol−1 s−1

lo
g

(v
0/

m
o

l d
m

–3
 s

–1
)

–3

–2

–1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
log [I]0 + 5 log [Ar]0 + 3

(a) (b)

Figure 82.4 The plot of log v0 against (a) log [I]0 for a given 
[Ar]0, and (b) log [Ar]0 for a given [I]0.

[J]0/(mmol dm−3) 5.0 8.2 17 30

v0/(10−7 mol dm−3 s−1) 3.6 9.6 41 130
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82 Reaction rates  805

Checklist of concepts

☐ 1. The rates of chemical reactions are measured by 

using  techniques that monitor the concentra-

tions of  species present in the reaction mixture. 

Examples  include real-time and quenching proce-

dures, f low and stopped-flow techniques, and f lash 

photolysis.

 2. The instantaneous rate of a reaction is the slope of 

the tangent to the graph of concentration against time 

(expressed as a positive quantity).

 3. A rate law is an expression for the reaction rate in terms 

of the concentrations of the species that occur in the 

overall chemical reaction.

Checklist of equations

Property Equation Comment Equation number

Extent of reaction ξ = (nJ − nJ,0)/νJ
Definition 82.1

Rate of a reaction v = (1/V)(dξ/dt) Definition 82.2

Rate law (in some cases) v = kr[A]a[B]b… a, b, …: orders; a + b + …: overall order 82.7

Method of initial rates log log log [A]rv0 0= ′ +k a 82.11
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TOPIC 83

Integrated rate laws

Because rate laws (Topic 82) are differential equations, we must 

integrate them if we want to find the concentrations as a func-

tion of time. Even the most complex rate laws may be integrated 

numerically. However, in a number of simple cases analytical 

solutions, known as integrated rate laws, are easily obtained, 

and prove to be very useful. We examine a few of these simple 

cases here.

83.1 First-order reactions

As shown in the following Justification, the integrated form of 

the first-order rate law

d A

d
Ar

[ ]
[ ]

t
k= −

 
(83.1a)

is

ln
[ ]

[ ]
[ ] [ ]

A

A
A A er

r

0
0= − = −k t k t

where [A]0 is the initial concentration of A (at t = 0).

Justification 83.1 First-order integrated rate law

First, we rearrange eqn 83.1a into

d A

A
dr

[ ]

[ ]
= −k t

This expression can be integrated directly because kr is a con-

stant independent of t. Initially (at t = 0) the concentration of A 

is [A]0, and at a later time t it is [A], so we make these values the 

limits of the integrals and write

d A

A
d

A

A

r

[ ]

[ ][ ]

[ ]

0 0∫ ∫= −k t
t

Because the integral of 1/x is ln x + constant (Integral A.2 in 

the Resource section), eqn 83.1b is obtained immediately.

(83.1b)Integrated first-
order rate law

Contents

83.1 First-order reactions 806

Example 83.1: Analysing a first-order reaction 807

83.2 Second-order reactions 808

Brief illustration 83.1: Second-order reactions 809

Checklist of concepts 811

Checklist of equations 811

 ➤ Why do you need to know this material?
A complete analysis of the time course of depletion of 
reactants and appearance of products is a required step 
in the formulation and verification of the mechanism of a 
reaction. The practical application of the material is that 
it enables you to predict the composition of a reaction 
system at any stage.

 ➤ What is the key idea?
A comparison between experimental data and the 
integrated form of the rate law leads to the verification of 
a proposed rate law and the determination of the order 
and rate constant of a reaction.

 ➤ What do you need to know already?
You need to be familiar with the concepts of rate 
law, reaction order, and rate constant (Topic 82). The 
manipulation of simple rate laws requires only elementary 
techniques of integration (see the Resource section for 
standard integrals).
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83 Integrated rate laws  807

Equation 83.1b shows that if ln([A]/[A]0) is plotted against t, 

then a first-order reaction will give a straight line of slope −kr. 

Some rate constants determined in this way are given in Table 

83.1. The second expression in eqn 83.1b shows that in a first-

order reaction the reactant concentration decreases exponen-

tially with time with a rate determined by kr (Fig. 83.1).

A useful indication of the rate of a first-order chemical reac-

tion is the half-life, t1/2, of a substance, the time taken for the 

concentration of a reactant to fall to half its initial value. This 

quantity is readily obtained from the integrated rate law. Thus, 

the time for [A] to decrease from [A]0 to 1
2 0[ ]A  in a first-order 

reaction is given by eqn 83.1b as

k tr
A

A1 2

1
2 0

0

1
2 2/ ln

[ ]

[ ]
ln ln= − = − =

 

Hence

t
k1 2

2
/

ln=
r  

First-order reaction  Half-life  (83.2)

(Note that ln 2 = 0.693.) The main point to note about this 

result is that, for a first-order reaction, the half-life of a reac-

tant is independent of its initial concentration. Therefore, if 

the concentration of A at some arbitrary stage of the reaction 

is [A], then it will have fallen to 1
2 [ ]A  after a further interval of  

(ln 2)/kr. Some half-lives are given in Table 83.1.

Another indication of the rate of a first-order reaction is the 

time constant, τ (tau), the time required for the concentration 

of a reactant to fall to 1/e of its initial value. From eqn 83.1b it 

follows that

kr
e

e

A

A
τ = − = − =ln

[ ]

[ ]
ln

1
0

0

1 1

That is, the time constant of a first-order reaction is the 

reciprocal of the rate constant:

τ = 1

kr  

First-order reaction  Time constant  (83.3)

Table 83.1*  Kinetic data for first-order reactions

Reaction Phase θ/°C kr/s
−1 t1/2

2 N2O5→ 4 NO2 + O2 g 25 3.38 × 10−5 5.70 h

Br2(l) 25 4.27 × 10−5 4.51 h

C2H6→ 2 CH3 g 700 5.36 × 10−4 21.6 min

* More values are given in the Resource section.

[A
]/

[A
] 0

1

0.8

0.6

0.4

0.2

0
0

kr,small

kr,smallt

kr,large

1 2 3

Figure 83.1 The exponential decay of the reactant in a first-
order reaction. The larger the rate constant, the more rapid the 
decay: here kr,large = 3kr,small.

Example 83.1 Analysing a first-order reaction

The variation in the partial pressure of azomethane with time 

was followed at 600 K, with the results given below. Confirm 

that the decomposition

CH N CH g CH CH (g) N g3 2 3 3 3 2( ) ( )→ +

is first-order in azomethane, and find the rate constant, half-

life, and time constant at 600 K.

Method As indicated in the text, to confirm that a reaction is 

first-order, plot ln([A]/[A]0) against time and expect a straight 

line. Because the partial pressure of a gas is proportional to 

its concentration, an equivalent procedure is to plot ln(p/p0) 

against t. If a straight line is obtained, its slope can be identi-

fied with −kr. The half-life and time constant are then calcu-

lated from kr by using eqns 83.2 and 83.3, respectively.

Answer We draw up the following table:

Figure 83.2 shows the plot of ln(p/p0) against t. The plot 

is straight, confirming a first-order reaction, and its slope is 

−3.6 × 10−4. Therefore, kr = 3.6 × 10−4 s−1.

A note on good practice Because the horizontal and ver-

tical axes of graphs are labelled with pure numbers, the 

slope of a graph is always dimensionless. For a graph of 

the form y = b + mx we can write y = b + (m units)(x/units), 

where ‘units’ are the units of x, and identify the (dimen-

sionless) slope with ‘m units’. Then m = slope/units. In the 

present case, because the graph shown here is a plot of 

ln(p/p0) against t/s (with ‘units’ = s) and kr is the negative 

value of the slope of ln(p/p0) against t itself, kr = −slope/s.

t/s 0 1000 2000 3000 4000

p/Pa 10.9 7.63 5.32 3.71 2.59

t/s 0 1000 2000 3000 4000

ln(p/p0) 0 −0.357 −0.717 −1.078 −1.437
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808 17 Chemical kinetics

83.2 Second-order reactions

We show in the following Justification that the integrated form 

of the second-order rate law

d A

d
Ar

[ ]
[ ]

t
k= − 2

 
(83.4a)

is either of the following two forms:

1 1

0[ ] [ ]A A r− = k t
 

Second-order reaction  Integrated rate law  (83.4b)

[ ]
[ ]

[ ]
A

A

Ar

= +
0

01 k t

where [A]0 is the initial concentration of A (at t = 0).

Equation 83.4b shows that to test for a second-order reaction 

we should plot 1/[A] against t and expect a straight line. The 

slope of the graph is kr. Some rate constants determined in this 

way are given in Table 83.2. The rearranged form, eqn 83.4c, 

lets us predict the concentration of A at any time after the start 

of the reaction. It shows that the concentration of A approaches 

zero more slowly than in a first-order reaction with the same 

initial rate (Fig. 83.3).

It follows from eqn 83.4b by substituting t = t1/2 and 

[ ] [ ]A A= 1
2 0 that the half-life of a species A that is consumed in a 

second-order reaction is

t
k1 2

0

1
/ [ ]

=
r A  

Second-order reaction  Half-life  (83.5)

Therefore, unlike a first-order reaction, the half-life of a sub-

stance in a second-order reaction varies with the initial con-

centration. A practical consequence of this dependence is that 

species that decay by second-order reactions (which includes 

some environmentally harmful substances) may persist in low 

concentrations for long periods because their half-lives are long 

Justification 83.2 Second-order integrated rate law

To integrate eqn 83.4a we rearrange it into

d A

A
dr

[ ]

[ ]2
= −k t

The concentration is [A]0 at t = 0 and [A] at a general time t 

later. Therefore,

− =∫ ∫d A

A
d

A

A

r

[ ]

[ ][ ]

[ ]

2
00

k t
t

Because the integral of 1/x2 is −1/x + constant (Integral A.1 in 

the Resource section), we obtain eqn 83.4b by substitution of 

the limits

1 1 1

0 0[ ] [ ] [ ] [ ]

[ ]

A
constant

A

A A A r+ = − = k t

We can then rearrange this expression into eqn 83.4c.

(83.4c)
Second-order 

reaction

Alternative form 
of the integrated 
rate law

Table 83.2*  Kinetic data for second-order reactions

Reaction Phase θ/°C kr/(dm3 mol−1 s−1)

2 NOBr → 2 NO + Br2 g 10 0.80

2 I → I2 g 23 7 × 109

CH3Cl + CH3O
− CH3OH(l) 20 2.29 × 10−6

* More values are given in the Resource section.

It follows from eqns 83.2 and 83.3 that the half-life and time 

constant are, respectively,

t1 2 4 1
5

4 1
52

3 6 10
1 9 10

1

3 6 10
2 8 10/

ln

.
.

.
.=

×
= × =

×
= ×−

−
−

−

s
s

s
sτ

Self-test 83.1 In a particular experiment, it was found that the 

concentration of N2O5 in liquid bromine varied with time as 

follows:

Confirm that the reaction is first-order in N2O5 and determine 

the rate constant.

Answer: kr = 2.1 × 10−3 s−1

0 1 2 3 4
t/(103 s)

ln
(p

/p
0)

–1.5

–1

–0.5

0

Figure 83.2 The determination of the rate constant of a 
first-order reaction: a straight line is obtained when  
ln [A]/[A]0 (or, as here, ln p/p0) is plotted against t; the slope 
gives kr.

t/s 0 200 400 600 1000

[N2O5]/(mol dm−3) 0.110 0.073 0.048 0.032 0.014
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83 Integrated rate laws  809

when their concentrations are low. In general, for an nth-order 

reaction (with n neither 0 nor 1) of the form A → products, the 

half-life is related to the rate constant and the initial concentra-

tion of A by (see Problem 83.16)

t
n k

n

n1 2

1

0
1

2 1

1/ ( ) [ ]
= −

−

−

−
r A

 
nth-order reaction  Half-life  (83.6)

Another type of second-order reaction is one that is first-order 

in each of two reactants A and B:

d A

d
A Br

[ ]
[ ][ ]

t
k= −

 
(83.7)

This rate law cannot be integrated until we know how the 

concentration of B is related to that of A. For example, if the 

reaction is A + B → P, where P denotes products, and the initial 

concentrations are [A]0 and [B]0, then it is shown in the follow-

ing Justification that at a time t after the start of the reaction, the 

concentrations satisfy the relation

ln
[ ]/[ ]

[ ]/[ ]
([ ] [ ] )

B B

A A
B A r

0

0
0 0= − k t

Therefore, a plot of the expression on the left against t should be 

a straight line from which kr can be obtained. As shown in the 

following Brief illustration, the rate constant may be estimated 

quickly by using data from only two measurements.

(83.8)

Second-order 
reaction 
of the type 
A + B → P

Integrated 
rate law

Brief illustration 83.1 Second-order reactions

Consider a second-order reaction of the type A + B → P carried 

out in solution. Initially, the concentrations of reactants were 

[A]0 = 0.075 mol dm−3 and [B]0 = 0.050 mol dm−3. After 1.0 h 

the concentration of B fell to [B] = 0.020 mol dm−3. Because 

Δ[B] = Δ[A], it follows that during this time interval

Δ
Δ

[ ] ( . . ) .

[ ] .

B   2 5  mol dm 3  mol dm

A  3  

3 3= − = −
= −

− −0 0 0 0 0 0 0 0 0

0 0 0 mmol dm 3−

Therefore, the concentrations of A and B after 1.0 h are

[A] [A]  [A]  3   75  mol dm

 45 mol dm

3= + = − +
=

−

−

Δ 0 0 0 0 0 0

0 0

( . . )

. 33

3[B]  2  mol dm= −0 0 0.

It follows from rearrangement of eqn 83.8 that

kr s
mol dm

ln( )
( . . )

. / .

. / .
3600

1

0 050 0 075

0 020 0 050

0 045 0 0753
=

− −

where we have used 1 hr = 3600 s. Solving this expression for 

the rate constant gives

kr
3 3 1 1 4 5  1 dm mol s= × − − −. 0

Self-test 83.2 Calculate the half-life of the reactants for the 

reaction above.

Answer: t1/2(A) = 5.1 × 103 s, t1/2(B) = 2.1 × 103 s

Justification 83.3 Overall second-order rate law

It follows from the reaction stoichiometry that when the 

concentration of A has fallen to [A]0 − x, the concentration 

of B will have fallen to [B]0− x (because each A that disap-

pears entails the disappearance of one B). It follows that

d[A]

d
A Brt

k x x= − − −( )( )[ ] [ ]0 0

Because [A] = [A]0 − x, it follows that d[A]/dt = −dx/dt and the 

rate law may be written as

d

d
A Br

x

t
k x x= − −( )( )[ ] [ ]0 0

The initial condition is that x = 0 when t = 0, so the integration 

required is

d

A B
dr

x

x x
k t

x

([ ] )([ ] )0 00 0− − =∫ ∫
t

The integral on the right is simply krt. The integral on the left 

is evaluated by using the method of partial fractions (see The 

chemist’s toolkit 83.1):

d

A B B A

A

A

B

B

x

x x x x

x

([ ] )([ ] ) [ ] [ ]
ln

[ ]

[ ]
ln

[ ]

[ ]0 00 0 0

0

0

0

0

1

− − = − − − −
⎧∫ ⎨⎨
⎩

⎫
⎬
⎭

[A
]/

[A
] 0

0
0

0.2

0.4

0.6

0.8

1

1 2 3
kr,small[A]0t

kr,small

kr,large

Figure 83.3 The variation with time of the concentration of a 
reactant in a second-order reaction. The dotted lines are the 
corresponding decays in a first-order reaction with the same 
initial rate. For this illustration, kr,large = 3kr,small.
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810 17 Chemical kinetics

The two logarithms can be combined as follows:

ln ln ln
[ ]

ln
[ ]

ln
[ ]/

[ ]

[ ]

[ ]

[ ]

[ ] [ ]

[ ]

A

A

B

B

A

A

B

B

A A

0

0

0

0

0 0

0

1

− − − = −

= −

x x

lln
[ ]/

ln
[ ]/

[ ]/

[ ]

[ ]

[ ]

1

0

0

0

B B

B B

A A
=

where we have used [A] = [A]0 − x and [B] = [B]0 − x. Combining 

all the results so far gives eqn 83.8. Similar calculations may 

be carried out to find the integrated rate laws for other orders, 

and some are listed in Table 83.3.

The chemist’s toolkit 83.1 Integration by the method 
of partial fractions

To solve an integral of the form

I
a x b x

x= − −∫ 1

( )( )
d

where a and b are constants, we use the method of partial frac-

tions, in which a fraction that is the product of terms (as in 

the denominator of this integrand) is written as a sum of frac-

tions. To implement this procedure we write the integrand as

1 1 1 1

( )( )a x b x b a a x b x− − = − − − −
⎛
⎝⎜

⎞
⎠⎟

Then we integrate each term on the right. It follows that

I
b a

x

a x

x

b x

b a a x b x

= − − − −
⎛
⎝⎜

⎞
⎠⎟

= − − − −
⎛
⎝⎜

∫ ∫1

1 1 1
2

d d

Integral A.

ln ln

 ⎞⎞

⎠⎟
+ constant

Table 83.3 Integrated rate laws

Order Reaction Rate law* t1/2

0 A → P v = kr [A]0/2kr

krt = x for 0 ≤ x ≤ [A]0

1 A → P v = kr[A] (ln 2)/kr

k t
xr

A

A
= −ln

[ ]

[ ]
0

0

2 A → P v = kr[A]2 1/kr[A]0

k t
x

xr A A
= −[ ] ([ ] )0 0

A + B → P v = kr[A][B]

k t
x

xr B A

A B

A B
= −

−
−

1

0 0

0 0

0 0[ ] [ ]
ln

([ ] )

([ ] )[ ]

[ ]

A + 2 B → P v = kr[A][B]

k t
x

xr B A

A B

A B
= −

−
−

1

2

2

0 0

0 0

0 0[ ] [ ]
ln

([ ] )

([ ] )[ ]

[ ]

A → P with autocatalysis v = kr[A][P]

k t
x

xr A P

A P

A P
= +

+
−

1

0 0

0 0

0 0[ ] [ ]
ln

([ ] )

([ ] )[ ]

[ ]

3 A + 2 B → P v = kr[A][B]2

k t
x

xr A B B B A B

A B= − − +
−

−2

2 2

1

20 0 0 0 0 0
2

0 0

( [ ] [ ] )([ ] )[ ] [ ] [ ]
ln

([ ]

( )

[ ] 22

0 0

x

x

)

([ ] )[ ]A B−
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83 Integrated rate laws  811

Checklist of concepts

☐ 1. An integrated rate law is an expression for the concen-

tration of a reactant or product as a function of time 

(Table 83.3).

☐ 2. Analysis of experimental data using integrated rate 

laws allows for the prediction of the composition of a 

reaction system at any stage.

Checklist of equations

Property Equation Comment Equation number

Integrated rate law ln([A]/[A]0) = −krt or [ ] [ ]A A e r= −
0

k t First-order, A → P 83.1

Half-life t1/2 = (ln 2)/kr First-order, A → P 83.2

Time constant τ = 1/kr First-order 83.3

Integrated rate law 1/[A] − 1/[A]0 = krt, or [A] = [A]0/(1 + krt[A]0) Second-order, A → P 83.4

Half-life t1/2 = 1/kr[A]0 Second-order, A → P 83.5

Half-life t n kn n
1 2

1
r

1 2 1 / 1 A/ ( ) ( ) [ ]= − −− −
0 nth-order 83.6

Integrated rate law ln{([B]/[B]0)/([A]/[A]0)} = ([B]0 − [A]0)krt Second-order A + B → P 83.8

Order Reaction Rate law* t1/2

n ≥ 2 A → P v = kr[A]n 2 1

1

1

0
1

n

nn k

−

−
−

−( ) [ ]r A

k t
n x n nr

A A
= − −

−
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
− −

1

1

1 1

0
1

0
1( )[ ] [ ]

* x = [P] and v = dx/dt
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TOPIC 84

Reactions approaching 

equilibrium

In practice, most kinetic studies are made on reactions 

that are far from equilibrium, and the reverse reactions are 

unimportant. For this reason, none of the laws considered so 

far describes the overall rate when the reaction is close to equi-

librium. At that stage the products may be so abundant that the 

reverse reaction must be taken into account.

84.1 First-order reactions close  
to equilibrium

We can explore the variation of the composition with time close 

to chemical equilibrium by considering the reaction in which A 

forms B and both forward and reverse reactions are first-order 

(as in some isomerizations). The scheme we consider is

A B A

B A B

r

r

→ =
→ = ′

v

v

k

k

[ ]

[ ]
 

(84.1)

The concentration of A is reduced by the forward reaction (at a 

rate kr[A]) but it is increased by the reverse reaction (at a rate 

′kr B[ ]). The net rate of change is therefore

d A

d
BAr r

[ ]
[ ][ ]

t
k k= − + ′

 
(84.2)

If the initial concentration of A is [A]0, and no B is present ini-

tially, then at all times [A] + [B] = [A]0. Therefore,

d A

d
A A A

A A

r r

r r r

[ ]
[ ] [ ]

( )[ ] [ ]

[ ] { }
t

k k

k k k

= − + ′ −

= − + ′ + ′
0

0  

(84.3)

The solution of this first-order differential equation (as may be 

checked by differentiation, Problem 84.1) is

[ ] [ ]A
e

Ar r

r r

r r

= ′ +
+ ′

− + ′( )k k

k k

k k t

0

 
(84.4)

Contents

84.1 First-order reactions close to equilibrium 812

Brief illustration 84.1: The equilibrium constant  

from rate constants 813

84.2 Relaxation methods 813

Example 84.1: Analysing a temperature- 

jump experiment 814

Checklist of concepts 815

Checklist of equations 815

 ➤ Why do you need to know this material?
All reactions approach equilibrium, so it is important to 
be able to describe the changing composition as they 
approach this composition.

 ➤ What is the key idea?
Both forward and reverse reactions must be incorporated 
into a reaction scheme to account for the approach to 
equilibrium, and the analysis of the mechanism shows 
that there is a relation between the corresponding rate 
constants and the equilibrium constant.

 ➤ What do you need to know already?
You need to be familiar with the concepts of rate law, 
reaction order, and rate constant (Topic 82), integrated 
rate laws (Topic 83), and equilibrium constants (Topic 
73). As in Topic 83, the manipulation of simple rate laws 
requires only elementary techniques of integration.
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84  Reactions approaching equilibrium  813

Figure 84.1 shows the time dependence predicted by this equa-

tion, with [B] = [A]0 − [A].

As t → ∞, the concentrations reach their equilibrium values, 

which are given by eqn 84.4 as

[ ]
[ ]

[ ] [ ] [ ]
[ ]

A
A

B A A
A

eq
r

r r
eq eq

r

r r

= ′
+ ′

= − = + ′
k

k k

k

k k
0

0
0

 
(84.5)

It follows that the equilibrium constant of the reaction is

K
k

k
= =

′
[ ]

[ ]

B

A
eq

eq

r

r  

(84.6)

(As explained in Topic 72, we are justified in replacing activities 

with the numerical values of molar concentrations if the latter 

are low.) Exactly the same conclusion can be reached—more 

simply, in fact—by noting that, at equilibrium, the forward and 

reverse rates must be the same, so

k kr r eqeqA B[ ] [ ]= ′
 

(84.7)

This relation rearranges into eqn 84.6. The theoretical impor-

tance of eqn 84.6 is that it relates a thermodynamic quantity, 

the equilibrium constant, to quantities relating to rates. Its 

practical importance is that if one of the rate constants can be 

measured, then the other may be obtained if the equilibrium 

constant is known.

Equation 84.6 is valid even if the forward and reverse reac-

tions have different orders, but in that case we need to be careful 

with units. For instance, if the reaction A + B → C is second-

order forward and first-order in reverse, then the condition 

for equilibrium is k kr eq eq r eqA B C[ ] [ ] [ ]= ′  and the dimensionless 

equilibrium constant in full dress is

K
c

c c
c

k

k
c= =⎛

⎝⎜
⎞
⎠⎟

=
′
×

[ ] /

([ ] )([ ] )

[ ]

[ ][ ]

C

A / B /

C

A B
eq

eq eq eq

r

r

<

< <
< <<

The presence of c< = 1 mol dm−3 in the last term ensures that 

the ratio of second-order to first-order rate constants, with 

their different units, is turned into a dimensionless quantity.

For a more general reaction, the overall equilibrium constant 

can be expressed in terms of the rate constants for all the inter-

mediate stages of the reaction mechanism (see Problem 84.4):

K
k

k

k

k
=

′
×

′
×a

a

b

b

�

where the ks are the rate constants for the individual steps and 

the k′s are those for the corresponding reverse steps.

84.2 Relaxation methods

The term relaxation denotes the return of a system to equilib-

rium. It is used in chemical kinetics to indicate that an exter-

nally applied influence has shifted the equilibrium position of a 

reaction, normally suddenly, and that the reaction is adjusting 

to the equilibrium composition characteristic of the new con-

ditions (Fig. 84.2). We shall consider the response of reaction 

rates to a temperature jump, a sudden change in temperature. 

We know from Topic 75 that the equilibrium composition of 

a reaction depends on the temperature (provided ΔrH
< is 

nonzero), so a shift in temperature acts as a perturbation on 

the system. One way of achieving a temperature jump is to dis-

charge a capacitor through a sample made conducting by the 

addition of ions, but laser or microwave discharges can also be 

used. Temperature jumps of between 5 and 10 K can be achieved 

in about 1 μs with electrical discharges. The high-energy output 

of pulsed lasers (Topic 46) is sufficient to generate temperature 

Brief illustration 84.1 The equilibrium constant from  
rate constants

The rates of the forward and reverse reactions for a dimeriza-

tion reaction were found to be 8.0 × 108 dm3 mol−1 s−1 (second-

order) and 2.0 × 106 s−1 (first-order). The equilibrium constant 

for the dimerization is therefore

K =
×

×
× = ×

− −

−
−8 0 10

2 0 10
1 4 0 10

8 3 1 1

6 1
3 2

.

.
.

dm mol s

s
mol dm

Self-test 84.1 The equilibrium constant for the attachment of 

a drug molecule to a protein was measured as 2.0 × 102. In a 

separate experiment, the rate constant for the second-order 

attachment was found to be 1.5 × 108 dm3 mol−1 s−1. What is 

the rate constant for the loss of the drug molecule from the 

protein?

Answer: 7.5 × 105 s−1

(84.8)
The equilibrium constant in 
terms of the rate constants

[J
]/

[J
] 0

0

0.2

0.4

0.6

0.8

1

(kr + kr’)t
0 1 2 3

B

A

Figure 84.1 The approach of concentrations to their 
equilibrium values as predicted by eqn 84.4 for a reaction A � B 
that is first-order in each direction, and for which k kr r= ′2 .
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814 17 Chemical kinetics

Equation 84.9 shows that the concentrations of A and B relax 

into the new equilibrium at a rate determined by the sum of 

the two new rate constants. Because the equilibrium constant 

under the new conditions is K k k≈ ′r r/ ,  its value may be com-

bined with the relaxation time measurement to find the indi-

vidual kr and ′kr .

Example 84.1 Analysing a temperature-jump 
experiment

The equilibrium constant for the autoprotolysis of water, 

H2O(l) � H+(aq) + OH−(aq), is Kw = a(H+)a(OH−) = 1.008 × 10−14  

at 298 K, where we have used the exact expression in terms of 

activities. After a temperature jump, the reaction returns to 

equilibrium with a relaxation time of 37 μs at 298 K and pH ≈ 7. 

Given that the forward reaction is first-order and the reverse is 

second-order overall, calculate the rate constants for the for-

ward and reverse reactions.

Method We need to derive an expression for the relaxa-

tion time, τ (the time constant for return to equilibrium), 

in terms of kr (forward, first-order reaction) and ′kr  (reverse, 

second-order reaction). We can proceed as above, but it will 

be necessary to make the assumption that the deviation from 

equilibrium (x) is so small that terms in x2 can be neglected. 

Relate kr and ′kr  through the equilibrium constant, but be care-

ful with units because Kw is dimensionless.

Answer The forward rate at the final temperature is kr[H2O] 

and the reverse rate is ′ + −kr H OH[ ][ ]. The net rate of deprotona-

tion of H2O is

d[H O]

d
H O H OHr r

2
2t

k k= − + ′ + −[ ] [ ][ ]

We w rite [H 2O] =  [H 2O]eq +  x ,  [H+] =  [H+]eq −  x ,  and 

[OH−] = [OH−]eq − x, and obtain

d

d
H OH H O

H OH

r r eq eq r eq

r eq eq

x

t
k k x k

k

= − + ′ + −

+ ′

+ −

+ −

{ ([ ] [ ] )}

[ ] [ ]

[ ]2

++ ′
≈ − + ′ ++ −

k x

k k x

r

r r eq eqH OH

2

{ ([ ] [ ] )}

(84.9)First-order 
reaction

Relaxation after 
a temperature 
jump

jumps of between 10 and 30 K within nanoseconds in aque-

ous samples. Some equilibria are also sensitive to pressure, and 

pressure-jump techniques may then also be used.

When a sudden temperature increase is applied to a sim-

ple A � B equilibrium that is first-order in each direction, we 

show in the following Justification that the composition relaxes 

exponentially to the new equilibrium composition:

x x
k k

t= = + ′
−

0

1
e

r r

/τ τ

where x0 is the departure from equilibrium immediately after 

the temperature jump, x is the departure from equilibrium 

at the new temperature after a time t, and kr and ′kr  are the 

forward and reverse rate constants, respectively, at the new 

temperature.

Justification 84.1 Relaxation to equilibrium

When the temperature of a system at equilibrium is increased 

suddenly, the rate constants change from their earlier values 

to the new values kr and ′kr  characteristic of that tempera-

ture, but the concentrations of A and B remain for an instant 

at their old equilibrium values. As the system is no longer at 

equilibrium, it readjusts to the new equilibrium concentra-

tions, which are now given by

k kr eq r eqA B[ ] [ ]= ′

and it does so at a rate that depends on the new rate constants. 

We write the deviation of [A] from its new equilibrium value 

as x, so [A] = [A]eq + x and [B] = [B]eq − x. The concentration of A 

then changes as follows:

d[A]

d
A B

A B

r r

r eq r eq

r r

t
k k

k x k x

k k x

= − + ′

= − + + ′ −
= − + ′

[ ]

( )

[ ]

[ ] ([ ] )

( )

because the two terms involving the equilibrium concentra-

tions cancel. Because d[A]/dt = dx/dt, this equation is a first-

order differential equation with a solution that resembles eqn 

83.1b and is given in eqn 84.9.

C
o

n
ce

n
tr

at
io

n
, [

A
]

Time, t

T1 T2

Initial
equilibrium

Final
equilibrium

Exponential
relaxation

Figure 84.2 The relaxation to the new equilibrium 
composition when a reaction initially at equilibrium at 
a temperature T1 is subjected to a sudden change of 
temperature, which takes it to T2.
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84  Reactions approaching equilibrium  815

Checklist of concepts

☐ 1. There is a relation between the equilibrium constant, a 

thermodynamic quantity, and the rate constants of the 

forward and reverse reactions (see table below).

☐ 2. In relaxation methods of kinetic analysis, the equilib-

rium position of a reaction is first shifted suddenly and 

then allowed to readjust to the equilibrium composi-

tion characteristic of the new conditions.

Checklist of equations

where we have neglected the term in x2 because it is so 

small and have used the equilibrium condition kr eqH O[ ]2 =
′ + −kr eq eqH OH[ ] [ ]  to eliminate the terms that are independent 

of x. It follows that

1

τ = + ′ ++ −k kr r eq eqH OH([ ] [ ] )

At this point we note that

K a a c c

c

w eq eq

eq eq
2

H OH H / OH /

H OH /

= ≈
=

+ +

+

( ) ( ) ([ ] )([ ] )

[ ] [ ]

− −

−

< <

<

with c < = 1 mol dm−3. For this electrically neutral system, 

[H+] = [OH−], so the concentration of each type of ion is 

K cw
1 2/ ,<  and hence

1
21 2 1 2 1 2

τ = + ′ +( )= ′ ′ +⎧
⎨
⎩

⎫
⎬
⎭

k k K c K c k
k

k
K cr r w w r

r

r
w

/ / /< < <

At this point we note that

k

k

K cr

r

eq eq

eq

w

eq

H OH

H O H O′
= =

+ −[ ] [ ]

[ ] [ ]2

2

2

<

The molar concentration of pure water is 55.6 mol dm−3, so 

[H2O]eq/c< = 55.6. If we write K = Kw/55.6 = 1.81 × 10−16, we obtain

1
2 1 2

τ = ′ +( )k K K cr w
/ <

Hence,

′ =
+( )

=
× × × ×

= ×

− − −

k
K K c

r

w

s mol dm

1

2

1

3 7 10 2 0 10 1

1 4

1 2

5 7 3

τ /

( . ) ( . ) ( )

.

<

11011 3 1 1dm mol s− −

It follows that

k k Kcr r
5 12 4 1 s= ′ = ×< . 0− −

The reaction is faster in ice, where ′ = × − −kr
12 3 1 18 6 1 dm mol s. .0

A note on good practice Notice how we keep track of units 

through the use of c< : K and Kw are dimensionless; ′kr  is 

expressed in dm3 mol−1 s−1 and kr is expressed in s−1.

Self-test 84.2 Derive an expression for the relaxation time of 

a concentration when the reaction A + B � C + D is second-

order in both directions.

Answer: 1 A B C Dr eq r eq/ ([ ] [ ]) ([ ] [ ])τ = + + ′ +k k

Property Equation Comment Equation number

Equilibrium constant in terms of rate constants K k k k k= ′ × ′ ×a a b b/ / � Include c< as appropriate 84.8

Relaxation of an equilibrium A � B after a temperature jump x x

k k

t=
= + ′

−
0

1

e

r r

/

/( )

τ

τ
First-order in each direction 84.9
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TOPIC 85

The Arrhenius equation

In this Topic we interpret the common experimental observa-

tion that chemical reactions usually go faster as the temperature 

is increased. We also begin to see how exploration of the tem-

perature dependence of reaction rates can reveal some details 

of the energy requirements for molecular encounters that lead 

to the formation of products from reactants.

85.1 The temperature dependence 
of reaction rates

The rates of most reactions increase with temperature. More 

specifically, it is found experimentally for many reactions that 

a plot of ln kr against 1/T gives a straight line with a negative 

slope, indicating that an increase in ln kr (and therefore an 

increase in kr) results from a decrease in 1/T (that is, an increase 

in T). This behaviour is normally expressed mathematically by 

introducing two parameters, one representing the intercept 

and the other the slope of the straight line, and writing the 

Arrhenius equation

ln lnk A
E

RTr
a= −

 
 Arrhenius equation  (85.1)

The parameter A, which corresponds to the intercept of the line 

at 1/T = 0 (at infinite temperature, Fig. 85.1), is called the pre–

exponential factor or the ‘frequency factor’. The parameter Ea, 

which is obtained from the slope of the line (−Ea/R), is called 

 ➤ Why do you need to know this material?
The rates of reactions depend on the temperature. 
Exploration of this dependence leads to the formulation 
of theories that can help you understand why a collection 
of reactants under specific conditions leads to certain 
products, but not others.

 ➤ What is the key idea?
Analysis of the temperature dependence of the rate 
constant provides insight into the energy requirements 
for reactions.

 ➤ What do you need to know already?
You need to know that the rate law of a chemical reaction 
is expressed in terms of a rate constant (Topic 82).

Contents

85.1 The temperature dependence of reaction rates 816

Example 85.1: Determining the Arrhenius  

parameters 817

Brief illustration 85.1: The Arrhenius equation 817

85.2 The interpretation of the Arrhenius parameters 818

(a) A first look at the energy requirements  
of reactions 818

Brief illustration 85.2: The fraction of reactive  

collisions 819

(b) The effect of a catalyst on the activation energy 819

Brief illustration 85.3: The effect of a catalyst  

on the rate constant 819

Checklist of concepts 820

Checklist of equations 820

1/T

ln
 k

r

ln A

Slope = –Ea/R

Figure 85.1 A plot of ln kr against 1/T is a straight line when 
the reaction follows the behaviour described by the Arrhenius 
equation (eqn 85.1). The slope gives −Ea/R and the intercept at 
1/T = 0 gives ln A.
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85 The Arrhenius equation  817

the activation energy. Collectively the two quantities are called 

the Arrhenius parameters (Table 85.1). The activation energy 

is almost always a positive quantity, but under certain circum-

stances it can be negative (Topic 86).

Once the activation energy of a reaction is known, it is a sim-

ple matter to predict the value of a rate constant kr,2 at a tem-

perature T2 from its value kr,1 at another temperature T1. To do 

so, we write

ln ln,k A
E

RTr
a

2
2

= −
 

and then subtract eqn 85.1 (with T identified as T1 and kr as 

kr,1), so obtaining

ln ln, ,k k
E

RT

E

RTr r
a a

2 1
2 1

− = − +
 

We can rearrange this expression to

ln ,

,

k

k

E

R T T
r

r

a2

1 1 2

1 1= −⎛
⎝⎜

⎞
⎠⎟

 

 (85.2)
Temperature 
dependence of 
the rate constant

Brief illustration 85.1 The Arrhenius equation

For a reaction with an activation energy of 50 kJ mol−1, an 

increase in the temperature from 25 °C to 37 °C (body tem-

perature) corresponds to

ln
.

,

,

k

k
r

r

Jmol

JK mol K K
2

1

3 1

1 1

50 10

8 3145

1

298

1

310

50

=
×

−
⎛
⎝⎜

⎞
⎠⎟

=

−

− −

×× −⎛
⎝⎜

⎞
⎠⎟

= …10

8 3145

1

298

1

310
0 781

3

.
.

By taking natural antilogarithms (that is, by forming ex), 

kr,2 = 2.18kr,1. This result corresponds to slightly more than a 

doubling of the rate constant as the temperature is increased 

from 298 K to 310 K.

Table 85.1* Arrhenius parameters

(1) First-order reactions A/s−1 Ea/(kJ mol−1)

CH3NC → CH3CN 3.98 × 1013 160

2 N2O5→ 4 NO2 + O2 4.94 × 1013 103.4

(2) Second-order reactions A/(dm3 mol−1 s−1) Ea/(kJ mol−1)

OH + H2 → H2O + H 8.0 × 1010 42

NaC2H5O + CH3I in ethanol 2.42 × 1011 81.6

* More values are given in the Resource section.

ln
{k

r/(
d

m
3  

m
o

l–1
 s

–1
)}

0

5

–5
1 1.1 1.2 1.3 1.4

(103 K)/T

Figure 85.2 The Arrhenius plot using the data in 
Example  85.1.

Example 85.1 Determining the Arrhenius parameters

The rate of the second-order decomposition of acetaldehyde 

(ethanal, CH3CHO) was measured over the temperature range 

700–1000 K, and the rate constants are reported below. Find 

Ea and A.

Method According to eqn 85.1, the data can be analysed by 

plotting ln(kr/dm3 mol−1 s−1) against 1/(T/K), or more con-

veniently (103 K)/T, and getting a straight line. Obtain the 

activation energy from the dimensionless slope by writing 

−Ea/R = slope/units, where in this case ‘units’ =1/(103 K), so 

Ea= –slope × R × 103 K. The intercept at 1/T = 0 is ln(A/dm3 

mol−1 s−1). Use a least-squares procedure to determine the plot 

parameters.

Answer We draw up the following table:

Now plot ln kr against 1/T (Fig. 85.2). The least-squares fit 

results in a line with slope −22.7 and intercept 27.7. Therefore,

E

A

a
1 1 3 1

27 7 3

22 7 8 3145JK mol 1 K 189kJmol

 e dm mol

= =
=

− − −

−

. ( . ) ( )

.

× × 0

11 1 12 3 1 1s 1 1 1 dm mol s− − −= . × 0

Note that A has the same units as kr.

Self-test 85.1 Determine A and Ea from the following data:

Answer: 8 × 1010 dm3 mol−1 s−1, 23 kJ mol−1

T/K 700 730 760 790 810 840 910 1000

kr/(dm3 
mol−1 s−1)

0.011 0.035 0.105 0.343 0.789 2.17 20.0 145

(103 K)/T 1.43 1.37 1.32 1.27 1.23 1.19 1.10 1.00

ln(kr/dm3 
mol−1 s−1)

–4.51 –3.35 –2.25 –1.07 –0.24 0.77 3.00 4.98

T/K 300 350 400 450 500

kr/(dm3 mol−1 s−1) 7.9 × 106 3.0 × 107 7.9 × 107 1.7 × 108 3.2 ×108
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818 17 Chemical kinetics

The fact that Ea is given by the slope of the plot of ln kr against 

1/T means that the stronger the temperature dependence of 

the rate constant (that is, the steeper the slope), the higher the 

activation energy. A high activation energy signifies that the rate 

constant depends strongly on temperature. If a reaction has zero 

activation energy, its rate is independent of temperature. In 

some cases the activation energy is negative, which indicates 

that the rate decreases as the temperature is raised.

The temperature dependence of some reactions is non-

Arrhenius, in the sense that a straight line is not obtained when 

ln kr is plotted against 1/T. However, it is still possible to define 

an activation energy at any temperature as

E RT
k

Ta
rd

d
= ⎛

⎝⎜
⎞
⎠⎟

2 ln

 

Definition  Activation energy  (85.3)

This definition reduces to the earlier one (as the slope of a 

straight line) for a temperature-independent activation energy 

(see Problem 85.1). However, the definition in eqn 85.3 is more 

general than that in eqn 85.1, because it allows Ea to be obtained 

from the slope (at the temperature of interest) of a plot of ln 

kr against 1/T even if the Arrhenius plot is not a straight line. 

Non-Arrhenius behaviour is sometimes a sign that quantum 

mechanical tunnelling (Topic 10) is playing a significant role 

in the reaction. In biological reactions it might signal that an 

enzyme has undergone a structural change and has become less 

efficient.

85.2 The interpretation of the 
Arrhenius parameters

For the present Topic we shall regard the Arrhenius parameters 

as purely empirical quantities that enable us to summarize the 

variation of rate constants with temperature. However, it is use-

ful to have an interpretation in mind.

(a) A first look at the energy requirements 
of reactions
To interpret Ea we consider how the molecular potential energy 

changes in the course of a chemical reaction that begins with a 

collision between molecules of A and molecules of B (Fig. 85.3). 

In the gas phase, that is an actual collision; in solution, it is best 

regarded as a close encounter, possibly with excess energy, and 

might involve the solvent too. As the reaction event proceeds, 

A and B come into contact, distort, and begin to exchange or 

discard atoms. The reaction coordinate is the collection of 

motions, such as changes in interatomic distances and bond 

angles, that are directly involved in the formation of products 

from reactants. (The reaction coordinate is essentially a geo-

metrical concept and quite distinct from the extent of reac-

tion.) The potential energy rises to a maximum and the cluster 

of atoms that corresponds to the region close to the maximum 

is called the activated complex.

After the maximum, the potential energy falls as the atoms 

rearrange in the cluster, and reaches a value characteristic of the 

products. The climax of the reaction is at the peak of the poten-

tial energy, which corresponds to the activation energy Ea. Here 

two reactant molecules have come to such a degree of close-

ness and distortion that a small further distortion will send 

them in the direction of products. This crucial configuration is 

called the transition state of the reaction. Although some mol-

ecules entering the transition state might revert to reactants, if 

they pass through this configuration then it is inevitable that 

products will emerge from the encounter. (The terms ‘activated 

complex’ and ‘transition state’ are often used as synonyms; 

however, we shall preserve a distinction.)

We conclude from the preceding discussion that the activa-

tion energy is the minimum energy reactants must have in order 

to form products. For example, in a reaction mixture there are 

numerous molecular encounters each second, but only very few 

are sufficiently energetic to lead to reaction. The fraction of close 

encounters between reactants with energy in excess of Ea is given 

by the Boltzmann distribution (Foundations, Topic 2, and Topic 

51) as e a /−E RT .  This interpretation is confirmed by comparing this 

expression with the Arrhenius equation written in the form

k A E RT
r

/e a= −
 Alternative form  Arrhenius equation  (85.4)

which is obtained by taking antilogarithms of both sides of eqn 

85.1. We show in the following Justification that the exponential 

Self-test 85.2 The activation energy of one of the reactions in 

a biochemical process is 87 kJ mol−1. What is the change in rate 

constant when the temperature falls from 37 °C to 15 °C?

Answer: kr(15 °C) = 0.076kr(37 °C)

Po
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n
ti
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 e

n
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g
y

Reaction coordinate

Reactants

Products

Ea

Figure 85.3 A potential energy profile for an exothermic 
reaction. The height of the barrier between the reactants and 
products is the activation energy of the reaction.
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85 The Arrhenius equation  819

factor in eqn 85.4 can be interpreted as the fraction of encoun-

ters that have enough energy to lead to reaction. This point is 

explored further for gas-phase reactions in Topic 87 and for 

reactions in solution in Topic 88.

The pre-exponential factor is a measure of the rate at which 

collisions occur irrespective of their energy. Hence, the product 

of A and the exponential factor, e a /−E RT ,  gives the rate of suc-

cessful collisions. We develop these remarks in Topics 87 and 

88 and see that they have their analogues for reactions that take 

place in liquids.

(b) The effect of a catalyst on the 
activation energy
The Arrhenius equation tells us that the rate constant of a 

reaction can be increased by increasing the temperature or by 

decreasing the energy of activation. Changing the temperature 

of a reaction mixture is an easy strategy. Reducing the energy 

of activation requires more effort, but is possible if a reaction 

takes place in the presence of a suitable catalyst, a substance 

that accelerates a reaction but undergoes no net chemical 

change. The catalyst lowers the activation energy of the reac-

tion by providing an alternative path that avoids the slow, 

rate-determining step of the uncatalysed reaction (Fig 85.5). 

Catalysis is discussed further in Topics 92 and 97.

Brief illustration 85.2 The fraction of reactive collisions

If we rewrite the equation for the fraction of molecules in 

states with energy of at least εmin ( 1
N

i i
i

kTN∑ =
=

∞
−

min

mine ε / , as in 

Justification 85.1) by

multiplying εmin and k by NA, Avogadro’s constant, and

identifying NAεmin with Ea,

then the fraction f of molecular collisions that occur with a 

kinetic energy Ea becomes f E RT= −e a / .  With Ea = 50 kJ mol−1 =  

5.0 × 104 J mol−1 and T = 298 K, we calculate

f = = ×− × × −− − −
e J mol J K mol K( . )/( . ) .5 0 10 8 3145 298 994 1 1 1

1 7 10

Self-test 85.3 At what temperature would f = 0.10 if Ea =  

50 kJ mol−1?

Answer:  2612 K

Brief illustration 85.3 The effect of a catalyst on the 
rate constant

Enzymes are biological catalysts. For example, the enzyme 

catalase reduces the activation energy for the decomposition 

of hydrogen peroxide from 76 kJ mol−1 to 8 kJ mol−1. From eqn 

Justification 85.1 Interpreting the activation energy

Suppose the energy levels available to the system form a uni-

form array of separation ε (Fig. 85.4). The Boltzmann distribu-

tion is

N

N
i

i
i= = −

−
− −e

e e
εβ

εβ εβ
q

( )1

where β = 1/kT and we have used the result in eqn 51.2b for the 

partition function q. The total number of molecules in states 

with energy of at least εmin = iminε is

i i

i

i

i

i

i

i

i

i

iN N N N
N

=

∞

=

∞

=

−

=

−
−∑ ∑ ∑ ∑= − = −

min

min min

e

0 0

1

0

1

q
εβ

The sum of the finite geometrical series is

i

i

i
i

i

=

−
−

−

−
−∑ = −

−
= −

0

1
1

1
1

min
min

mine
e

e
eεβ

εβ

εβ
εβq( )

Therefore, the fraction of molecules in states with energy of at 

least εmin = iminε is

1
1 1

N
N

i i

i
i i

kT

=

∞
− −

−

∑ = − − =

=
min

min min

min

e e

e

( )

/

εβ εβ

ε

E
n

er
g

y εmin

Population

e
–εmin/kT

Figure 85.4 Equally spaced energy levels of an idealized 
system. As shown in Justification 85.1, the fraction of molecules 
with energy of at least εmin is e min /−ε kT .
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820 17 Chemical kinetics

Checklist of concepts

☐ 1. The activation energy, the parameter Ea in the 

Arrhenius equation, is the minimum energy of close 

molecular encounters able to result in reaction.

☐ 2. The larger the activation energy, the more sensitive the 

rate constant is to the temperature.

☐ 3. The pre-exponential factor is a measure of the rate at 

which encounters occur irrespective of their energy.

☐ 4. A catalyst lowers the activation energy of a reaction.

Checklist of equations

85.4 and assuming that the exponential factor is the same in 

both cases, it follows that the ratio of rate constants is

k

k

A

A

E RT

E

r catalysed

r uncatalysed

e

e

a catalysed

a unc

,

,

/,

,

 

 
 

=
−

− aatalysed

a catalysed a uncatalysede
/

( )/

(

,

RT

E E RT=

=

− −

×

 

e

, 

68 10333 1 1 18 3145 298 118 3 10J J K mol Kmol− − − × = ×)/( . ) ( ) .

Self-test 85.4 Consider the decomposition of hydrogen perox-

ide, which can be catalysed in solution by iodide ion. By how 

much is the activation energy of the reaction reduced if the 

rate constant of reaction increases by a factor of 2000 at 298 K 

upon addition of the catalyst?

Answer: 25 per cent

Reactants

Products

Ea(uncatalysed)
Ea(catalysed)

Reaction coordinate

Po
te

n
ti

al
 e

n
er

g
y

Figure 85.5 A catalyst provides a different path with a lower 
activation energy. The result is an increase in the rate of 
formation of products.

Property Equation Comment Equation number

Arrhenius equation ln kr = ln A − Ea/RT Empirical observation 85.1

Activation energy E RT k Ta
2

r(d ln /d= ) Definition 85.3

Arrhenius equation k A E RT
r = −e a / Alternative form 85.4
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TOPIC 86

Reaction mechanisms

The mechanism of a reaction is its analysis into a sequence of 

elementary steps. Here we see how simple elementary steps 

with simple rate laws can be combined by invoking one or more 

approximations.

86.1 Elementary reactions

Most reactions occur in a sequence of steps called elementary 

reactions, each of which involves only a small number of mol-

ecules or ions. A typical elementary reaction is

H Br HBr Br2+ → +
 

Note that the phase of the species is not specified in the chemi-

cal equation for an elementary reaction, and the equation rep-

resents the specific process occurring to individual molecules. 

This equation, for instance, signifies that an H atom attacks a 

Br2 molecule to produce an HBr molecule and a Br atom. The 

molecularity of an elementary reaction is the number of mol-

ecules coming together to react in an elementary reaction. In 

a unimolecular reaction, a single molecule shakes itself apart 

or its atoms into a new arrangement, as in the isomerization 

of cyclopropane to propene. In a bimolecular reaction (as in 

the above elementary reaction), a pair of molecules collide and 

exchange energy, atoms, or groups of atoms, or undergo some 

Contents

86.1 Elementary reactions 821

Brief illustration 86.1: The rate laws of  

elementary steps 822

86.2 Consecutive elementary reactions 822

Example 86.1: Analysing consecutive reactions 823

86.3 The steady-state approximation 823

Example 86.2: Using the steady-state  

approximation 824

86.4 The rate-determining step 825

Brief illustration 86.2: The rate law of a 

mechanism with a rate-determining step 825

86.5 Pre-equilibria 826

Example 86.3: Analysing a pre-equilibrium 826

86.6 Kinetic and thermodynamic control  
of reactions 827

Brief illustration 86.3: The outcome of  

kinetic control 827

Checklist of concepts 827

Checklist of equations 828

 ➤ Why do you need to know this material?

The mechanism of a reaction not only explains why 
specific products are formed but also allows for careful 
consideration of how the yield of desired products can be 
optimized. It also gives insight into the atomic processes 
going on when reactions take place.

 ➤ What is the key idea?
Most chemical reactions occur as a sequence of simpler 
steps, with corresponding rate laws that can be combined 
together by applying one or more approximations.

 ➤ What do you need to know already?

You need to be familiar with the concept of rate laws 
(Topic 82) and how to integrate them (Topics 83 and 84). 
You also need to be familiar with the Arrhenius equation 
(Topic 85). Only standard techniques of calculus are 
necessary to make progress with mathematical analysis 
of rate laws.
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822 17 Chemical kinetics

other kind of change. It is most important to distinguish molec-

ularity from order:

reaction order is an empirical quantity, and obtained 

from the experimental rate law;

molecularity refers to an elementary reaction proposed as 

an individual step in a mechanism.

The rate law of a unimolecular elementary reaction is first-

order in the reactant:

A P
d A

d
Ar→ = −[ ]

[ ]
t

k
 

where P denotes products (several different species may be 

formed). A unimolecular reaction is first-order because the 

number of A molecules that decay in a short interval is propor-

tional to the number available to decay. For instance, ten times 

as many decay in the same interval when there are initially 1000 

A molecules as when there are only 100 present. Therefore, the 

rate of decomposition of A is proportional to its molar concen-

tration at any moment during the reaction.

An elementary bimolecular reaction has a second-order rate 

law:

A B P
d A

d
A Br+ → = −[ ]

[ ][ ]
t

k
 

A bimolecular reaction is second-order because its rate is pro-

portional to the rate at which the reactant species meet, which 

in turn is proportional to their concentrations. Therefore, if we 

have evidence that a reaction is a single-step, bimolecular pro-

cess, we can write down the rate law (and then go on to test it).

We see in the following sections how to combine a series of 

simple steps into an overall mechanism and how to arrive at the 

corresponding overall rate law. For the present we emphasize 

that, if the reaction is an elementary bimolecular process, then 

it has second-order kinetics, but if the kinetics is second-order, 

then the reaction might occur through the formation of a complex 

mechanism. The postulated mechanism can be explored only 

by detailed detective work on the system, and by investigat-

ing whether side products or intermediates appear during the 

course of the reaction. Detailed analysis of this kind was one of 

the ways, for example, in which the reaction H2(g) + I2(g) → 2 

HI(g) was shown to proceed by a complex mechanism. For 

many years the reaction had been accepted on good, but 

insufficiently meticulous, evidence as a fine example of a sim-

ple bimolecular reaction, H2 + I2 → HI + HI, in which atoms 

exchanged partners during a collision.

86.2 Consecutive elementary 
reactions

Some reactions proceed through the formation of an interme-

diate (I), as in the consecutive unimolecular reactions

A I P
a b→ →
k k

 

Note that the intermediate occurs in the reaction steps but does 

not appear in the overall reaction, which in this case is A → P. 

An example of this type of mechanism is the decay of a radioac-

tive family, such as

239 23 5 239 2 35 239U Np Pu
min days. .⎯ →⎯⎯ ⎯ →⎯⎯

 

(The times are half-lives.) The characteristics of this type of 

reaction are discovered by setting up the rate laws for the net 

rate of change of the concentration of each substance.

The rate of unimolecular decomposition of A is

d A

d
Aa

[ ]
[ ]

t
k= −

 
(86.3a)

 (86.2)
Bimolecular 
elementary 
reaction

Brief illustration 86.1 The rate laws of elementary steps

Bimolecular elementary reactions are believed to account for 

many homogeneous reactions, such as the dimerization of 

alkenes and dienes and reactions such as

CH I(alc) CH CH O alc CH OCH CH alc I alc3 3 2 3 2 3+ → +− −( ) ( ) ( )
 

(where ‘alc’ signifies alcohol solution). There is evidence that 

the mechanism of this reaction is a single elementary step:

CH I CH CH O CH OCH CH I3 3 2 3 2 3+ → +− −

This bimolecular mechanism is consistent with the observed 

rate law

v = kr 3 3 2CH I CH CH O[ ][ ]−

Self-test 86.1 The following are elementary processes: (a) the 

dimerization of NO(g) to form N2O2(g), and (b) the decompo-

sition of the N2O2(g) dimer into NO(g) molecules. Write the 

rate laws for these processes.

Answer: (a) bimolecular process: kr[NO]2, (b) unimolecular process: 

kr[N2O2]

Unimolecular 
elementary reaction

 (86.1)
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86 Reaction mechanisms  823

and A is not replenished. The intermediate I is formed from A 

(at a rate ka[A]) but decays to P (at a rate kb[I]). The net rate of 

formation of I is therefore

d I

d
A Ia b

[ ]
[ ][ ]

t
k k= −

 
(86.3b)

The product P is formed by the unimolecular decay of I:

d P

d
Ib

[ ]
[ ]

t
k=

 
(86.3c)

We suppose that initially only A is present, and that its concen-

tration is [A]0.

The first of the rate laws, eqn 86.3a, is an ordinary first-order 

decay, so we can write

[ ] [ ]A A e a= −
0

k t

 
(86.4a)

When this equation is substituted into eqn 86.3b, we obtain 

after rearrangement

d I

d
I A eb a

a
[ ]

[ ] [ ]
t

k k k t+ = −
0

 

This differential equation has a standard form (see Mathematical 

background 2) and, after setting [I]0 = 0, the solution is

[ ] [ ]I e e Aa

b a

a b= − −( )− −k

k k
k t k t

0

 
(86.4b)

At all times [A] + [I] + [P] = [A]0, so it follows that

[ ] [ ]P
e e

Aa b

b a

b a

= + −
−

⎧
⎨
⎩

⎫
⎬
⎭

− −

1 0

k k

k k

k t k t

 
(86.4c)

The concentration of the intermediate I rises to a maximum 

and then falls to zero (Fig. 86.1). The concentration of the prod-

uct P rises from zero towards [A]0.

86.3 The steady-state approximation

One feature of the calculation so far has probably not gone 

unnoticed: there is a considerable increase in mathematical 

complexity as soon as the reaction mechanism has more than 

a couple of steps. A reaction scheme involving many steps is 

nearly always unsolvable analytically, and alternative methods 

of solution are necessary. One approach is to integrate the rate 

laws numerically. An alternative approach, which continues to 

be widely used because it leads to convenient expressions and 

more readily digestible results, is to make an approximation.

The steady-state approximation (which is also widely called 

the quasi-steady-state approximation, QSSA, to distinguish it 

from a true steady state) assumes that, after an initial induction 

period, an interval during which the concentrations of inter-

mediates, I, rise from zero, and during the major part of the 

reaction, the rates of change of concentrations of all reaction 

intermediates are negligibly small (Fig. 86.2):

d I

d

[ ]

t
≈ 0

 
 Steady-state approximation  (86.5)

This approximation greatly simplifies the discussion of reaction 

schemes. For example, when we apply the approximation to the 

Example 86.1 Analysing consecutive reactions

Suppose that in an industrial batch process a substance A 

produces the desired compound I which goes on to decay to 

a worthless product C, each step of the reaction being first-

order. At what time will I be present in greatest concentration?

Method The time dependence of the concentration of I is 

given by eqn 86.4b. We can find the time tmax, at which [I] 

passes through a maximum, by calculating d[I]/dt and setting 

the resulting rate equal to zero.

Answer It follows from eqn 86.4b that

d I

d

e e Aa a b

b a

a b[ ] [ ]

t

k k k

k k

k t k t

= −
−( )
−

− −
0

This rate is equal to zero when k kk t k t
a be ea b− −= . Therefore,

t
k k

k

kmax
a b

a

b

= −
1

ln

For a given value of ka, as kb increases both the time at which 

[I] is a maximum and the yield of I decrease.

Self-test 86.2 Develop an expression for the maximum con-

centration of I and justify the last remark.

Answer: [I]max/[A]0 = (ka/kb)
c, c = kb/(kb− ka)

C
o

n
ce

n
tr

at
io

n
, [

J]
/[

A
] 0

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3
Time, kat 

A

I

P

Figure 86.1 The concentrations of A, I, and P in the consecutive 
reaction scheme A → I → P. The curves are plots of eqns 86.4a–c 
with ka = 10kb. If the intermediate I is in fact the desired product, 
it is important to be able to predict when its concentration is 
greatest; see Example 86.1.
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824 17 Chemical kinetics

consecutive first-order mechanism, we set d[I]/dt = 0 in eqn 

86.3b, which then becomes ka[A] − kb[I] = 0. Then

[ ] ( )[ ]I / Aa b= k k
 (86.6)

For this expression to be consistent with eqn 86.4b, we require 

ka/kb � 1 (so that, even though [A] does depend on the time, 

the dependence of [I] on the time is negligible). On substituting 

this value of [I] into eqn 86.3c, that equation becomes

d P

d
I Ab a

[ ]
[ ] [ ]

t
k k= ≈

 
(86.7)

and we see that P is formed by a first-order decay of A, with a 

rate constant ka, the rate constant of the slower step. We can 

write down the solution of this equation at once by substituting 

the solution for [A], eqn 86.4a, and integrating:

[ ] [ ] ( )[ ]P A e d e Aa
a a= = −− −∫k tk t k t

t

0 0
0

1
 

(86.8)

This is the same (approximate) result as before, eqn 86.4c 

(when kb � ka), but much more quickly obtained. Figure 86.3 

compares the approximate solutions found here with the exact 

solutions found earlier: kb does not have to be very much bigger 

than ka for the approach to be reasonably accurate.

Example 86.2 Using the steady-state approximation

Devise the rate law for the decomposition of N2O5,

2 N O g 4 NO g O g2 5 2 2( ) ( ) ( )→ +

on the basis of the following mechanism:

N O NO NO

NO NO N O

NO NO NO O  NO

NO N O N

2 5 2 3 a

2 3 2 5 a

2 3 2 2 b

2 5

→ +
+ → ′
+ → + +

+ →

k

k

k

OO NO NO2 2 2 c+ + k

A note on good practice Note that when writing the 

equation for an elementary reaction all the species are 

displayed individually; so we write A → B + B, for instance, 

not A → 2B. Also, addition of the equations for the for-

ward elementary steps must result in the overall balanced 

chemical equation.

Method First, identify the intermediates and write expres-

sions for their net rates of formation. Then, all net rates of 

change of the concentrations of intermediates are set equal to 

zero and the resulting equations are solved algebraically.

Answer The intermediates are NO and NO3; the net rates of 

change of their concentrations are

d NO

d
NO NO NO N O

d NO

d
N O N

b c

a a

[ ]
[ ][ ]

[ ]
[ ] [

[ ][ ]
t

k k

t
k k

= − ≈

= − ′

2 3 2 5

3
2 5

0

OO NO NO NOb2 3 2 3 0][ ] [ ][ ]− ≈k

The net rate of change of concentration of N2O5 is

d N O

d
N O NO NO NO N Oa a c

[ ]
[ ][ ] [ ][ ][ ]2 5

2 5 2 3 2 5t
k k k= − + ′ −

We use

k kb cNO NO NO N O[ ][ ] [ ][ ]2 3 2 5 0− ≈

from the first of these rate laws and

k k ka a bN O NO NO NO NO[ ] [ ][ ] [ ][ ]2 5 2 3 2 3 0− ′ − ≈

from the second to write

[ ]
[ ]

[ ]
[ ]

( )[ ]

[ ][ ]
NO

NO NO

N O
NO

N O

NO
b

c

a

a b

= = ′ +
k

k

k

k k
2 3

2 5
3

2 5

2  

and then substitute these expressions into that for d[N2O5]/dt 

to obtain

d N O

d

N Oa b

a b

[ ] [ ]2 5 2 52

t

k k

k k
=− ′ +

Self-test 86.3 Derive the rate law for the decomposition of 

ozone in the reaction 2 O3(g) → 3 O2(g) on the basis of the 

(incomplete) mechanism

O O O

O O O

O O O O

3 2 a

2 3 a

3 2 2 b

→ +
+ → ′

+ → +

k

k

k

Answer: d[O ]/d 2 O / O2 O33 a b 3
2

a bt k k kk= +′− [ ] ( [ ] [ ])
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n
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n
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]

Reactants

Products

Intermediates

Time, t

Figure 86.2 The basis of the steady-state approximation. It 
is supposed that the concentrations of intermediates remain 
small and hardly change during most of the course of the 
reaction.
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86 Reaction mechanisms  825

86.4 The rate-determining step

Equation 86.8 shows that when kb � ka the formation of the 

final product P depends on only the smaller of the two rate con-

stants. That is, the rate of formation of P depends on the rate 

at which I is formed, not on the rate at which I changes into P. 

For this reason, the step A → I is called the ‘rate-determining 

step’ of the reaction. Its existence has been likened to building 

a six-lane highway up to a single-lane bridge: the traffic flow 

is governed by the rate of crossing the bridge. Similar remarks 

apply to more complicated reaction mechanisms, and in gen-

eral the rate-determining step is the slowest step in a mech-

anism and controls the overall rate of the reaction. However, 

the rate-determining step is not just the slowest step: it must be 

slow and be a crucial gateway for the formation of products. If 

a faster reaction can also lead to products, then the slowest step 

is irrelevant because the slow reaction can then be sidestepped 

(Fig. 86.4).

The rate law of a reaction that has a rate-determining step can 

often—but certainly not always—be written down almost by 

inspection. If the first step in a mechanism is rate- determining, 

then the rate of the overall reaction is equal to the rate of the 

first step because all subsequent steps are so fast that once the 

first intermediate is formed it results immediately in the for-

mation of products. Figure 86.5 shows the reaction profile for 

a mechanism of this kind in which the slowest step is the one 

with the highest activation energy. Once over the initial bar-

rier, the intermediates cascade into products. However, a rate-

determining step may also stem from the low concentration of 

a crucial reactant and need not correspond to the step with the 

highest activation barrier.

Brief illustration 86.2 The rate law of a mechanism with 
a rate-determining step

The oxidation of NO(g) to NO2 proceeds by the following 

mechanism:

NO NO N O

N O NO NO

N O O NO NO

2 2 a

2 2 a

2 2 2 2 2 b

+ →
→ + ′
+ → +

k

k

k

with rate law (see Self-test 86.4)

d NO

d

NO O

O
a b

a b

[ ] [ ] [ ]

[ ]
2

2
2

2

2

t

k k

k k
= ′ +

When the concentration of O2 in the reaction mixture is so 

large that the third step is very fast, so that [ ]O b a2 k k� ′ , then 

the rate law simplifies to

d NO

d
NOa

[ ]
[ ]2 22

t
k=

0

0.2

0.4

0.6

0.8

1
C

o
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n

tr
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n

, [
J]

/[
A

] 0

Time, kat
0 1 2 3

A

I

P

Figure 86.3 A comparison of the exact result for the 
concentrations of a consecutive reaction and the 
concentrations obtained by using the steady-state 
approximation (dotted lines) for kb = 20ka. (The curve for [A] is 
unchanged.)
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Figure 86.4 In these diagrams of reaction schemes, heavy 
arrows represent fast steps and light arrows represent slow 
steps. (a) The first step is rate-determining; (b) the second step 
is rate-determining; (c) although one step is slow, it is not rate-
determining because there is a fast route that circumvents it.
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Figure 86.5 The reaction profile for a mechanism in which the 
first step (RDS) is rate-determining.
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826 17 Chemical kinetics

86.5 Pre-equilibria

From a simple sequence of consecutive reactions we now turn 

to a slightly more complicated mechanism in which an inter-

mediate I reaches an equilibrium with the reactants A and B:

A B I P+ →�   Pre-equilibrium  (86.9)

The rate constants are ka and ′ka  for the forward and reverse reac-

tions of the equilibrium and kb for the final step. This scheme 

involves a pre-equilibrium, in which an intermediate is in equi-

librium with the reactants. A pre-equilibrium can arise when 

the rate of decay of the intermediate back into reactants is much 

faster than the rate at which it forms products; thus, the condi-

tion is possible when ′k ka b�  but not when k kb a� ′.  Because we 

assume that A, B, and I are in equilibrium, we can write

K K
k

k
= =

′
[ ]

[ ][ ]

I

A B
with a

a  
(86.10)

In writing these equations, we are presuming that the rate of 

reaction of I to form P is too slow to affect the maintenance of 

the pre-equilibrium (see the example below). We are also ignor-

ing the fact, as is commonly done, that the standard concentra-

tion c< should appear in the expression for K to ensure that it is 

dimensionless. The rate of formation of P may now be written

d P

d
I A Bb b

[ ]
[ ][ ][ ]

t
k k K= =

 
(86.11)

This rate law has the form of a second-order rate law with rate 

constant that is a combination of the rate constants of the ele-

mentary steps:

d P

d
A B withr r b

a b

a

[ ]
[ ][ ]

t
k k k K

k k

k
= = =

′  
(86.12)

One feature to note is that, although each of the rate constants 

in eqn 86.12 increases with temperature, that might not be true 

of kr itself. Thus, if the rate constant ka′ increases more rapidly 

than the product kakb increases, then kr will decrease with 

increasing temperature and the reaction will go more slowly 

as the temperature is raised. Mathematically, we would say that 

the composite reaction had a ‘negative activation energy’. For 

example, suppose that each rate constant in eqn 86.12 exhib-

its an Arrhenius temperature dependence (Topic 85). It follows 

from the Arrhenius equation (eqn 85.4, k A E RT
r e a= − / ) that

k
A A

A

A A

A

E RT E RT

E RT

E E
r

a b

a

a b=
( )( )

=
− −

−
− +

′

e e

e
e

a a a b

a a

a a

a

, ,

,

,

/ /

/
′ ′

aa b a a, , /−( )′E RT

 

where we have used the relations: ex+y = exey and ex−y = ex/ey. The 

effective activation energy of the reaction is therefore

E E E Ea a a a b a a= + ′, , ,−
 

(86.13)

This activation energy is positive if Ea,a + Ea,b > Ea,a′ (Fig. 86.6a) 

but negative if Ea,a′ > Ea,a + Ea,b (Fig. 86.6b). An important 

and the formation of N2O2 in the first step is rate-determining. 

We could have written the rate law by inspection of the mech-

anism, because the rate law for the overall reaction is simply 

the rate law of that rate-determining step.

Self-test 86.4 Verify that application of the steady-state 

approximation to the intermediate N2O2 results in the rate law.

Example 86.3 Analysing a pre-equilibrium

Repeat the pre-equilibrium calculation but without ignoring 

the fact that I is slowly leaking away as it forms P.

Method Begin by writing the net rates of change of the con-

centrations of the substances and then invoke the steady-

state approximation for the intermediate I. Use the resulting 

expression to obtain the rate of change of the concentration 

of P.

Answer The net rates of change of P and I are

d P

d
I

d I

d
A B I I

b

a a b

[ ]

[ ]
[ ]

[ ]

[ ][ ] [ ]

t
k

t
k k k

=

= − ′ − ≈0

The second equation solves to

[ ]
[ ][ ]

I
A Ba

a b

≈ ′ +
k

k k

When we substitute this result into the expression for the rate 

of formation of P, we obtain

d P

d
A B withr r

a b

a b

[ ]
[ ][ ]

t
k k

k k

k k
≈ =

′ +

This expression reduces to that in eqn 86.12 when the rate con-

stant for the decay of I into products is much smaller than that 

for its decay into reactants, k kb a� ′.

Self-test 86.5 Show that the pre-equilibrium mechanism in 

which 2 A � I (K) followed by I + B → P (kb) results in an over-

all third-order reaction.

Answer: d[P]/dt = kbK[A]2[B]
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86 Reaction mechanisms  827

consequence of this discussion is that we have to be very cau-

tious about making predictions about the effect of temperature 

on reactions that are the outcome of several steps.

86.6 Kinetic and thermodynamic 
control of reactions

In some cases reactants can give rise to a variety of products, 

as in nitrations of mono-substituted benzene, when various 

proportions of the ortho-, meta-, and para-substituted products 

are obtained, depending on the directing power of the original 

substituent. Suppose two products, P1 and P2, are produced by 

the following competing reactions:

A B P (P ) A B

A B P (P ) A B

1 1 r 1

2 2 r 2

+ → =
+ → =

v

v

k

k

,

,

[ ][ ]

[ ][ ]
 

The relative proportion in which the two products have been 

produced at a given stage of the reaction (before it has reached 

equilibrium) is given by the ratio of the two rates, and therefore 

of the two rate constants:

[ ]

[ ]
,

,

P

P
r

r

2

1

2

1

=
k

k
 

 Kinetic control  (86.14)

This ratio represents the kinetic control over the proportions 

of products, and is a common feature of the reactions encoun-

tered in organic chemistry where reactants are chosen that 

facilitate pathways favouring the formation of a desired prod-

uct. If a reaction is allowed to reach equilibrium, then the pro-

portion of products is determined by thermodynamic rather 

than kinetic considerations, and the ratio of concentrations is 

controlled by considerations of the standard Gibbs energies of 

all the reactants and products.

Checklist of concepts

☐ 1. The mechanism of reaction is the sequence of elemen-

tary steps involved in a reaction.

☐ 2. The molecularity of an elementary reaction is the num-

ber of molecules coming together to react.

☐ 3. An elementary unimolecular reaction has first-order 

kinetics; an elementary bimolecular reaction has 

 second-order kinetics.

☐ 4. The rate-determining step is the slowest step in a reaction 

mechanism that controls the rate of the overall reaction.

☐ 5. In the steady-state approximation, it is assumed that 

the concentrations of all reaction intermediates remain 

constant and small throughout the reaction.

☐ 6. Pre-equilibrium is a state in which an intermediate 

is in equilibrium with the reactants and which arises 

Brief illustration 86.3 The outcome of kinetic control

Consider two products formed from reactant R in reactions 

for which (a) product P1 is thermodynamically more stable 

than product P2, and (b) the activation energy Ea for the reac-

tion leading to P2 is greater than that leading to P1. It follows 

from eqn 86.14 and the Arrhenius equation ( k A E RT
r e a= − / ,  

eqn 85.4) that the ratio of products is

[ ]

[ ]

,

,

, ,

/

/
( )/P

P

e

e
e

a

a

a a2

1

2

1

2

1

2

1

2

1

2 1= = = =
−

−
− −k

k

A

A

A

A

E RT

E RT
E E RT AA

A
E RT2

1

e a−Δ /

Because ΔEa = Ea,2− Ea,1 > 0, as T increases

the term ΔEa/RT decreases, and

the term e a−ΔE RT/  increases.

Consequently, the ratio [P2]/[P1] increases with increasing 

temperature before equilibrium is reached.

Self-test 86.6 Consider the reactions from Brief illustration 

86.3. Derive an expression for the ratio [P2]/[P1] when the reac-

tion is under thermodynamic control. State your assumptions.

Answer: [ ]/[ ] ,( )/P P e r r
2 1

2 1= − −Δ ΔG G RT< <
 assuming that activities can be 

replaced by concentrations

Ea,a

Ea,b

Ea,a′

(a)

(b)

Po
te

n
ti

al
 e

n
er

g
y

Reaction coordinate

Figure 86.6 For a reaction with a pre-equilibrium, there are 
three activation energies to take into account: two referring 
to the reversible steps of the pre-equilibrium and one for the 
final step. The relative magnitudes of the activation energies 
determine whether the overall activation energy is (a) positive 
or (b) negative.
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828 17 Chemical kinetics

when the rates of formation of the intermediate and its 

decay back into reactants are much faster than its rate 

of formation of products.

☐ 7. Provided a reaction has not reached equilibrium, the 

products of competing reactions are controlled by 

kinetics.

Checklist of equations

Property Equation Comment Equation number

Unimolecular reaction d[A]/dt = −kr[A] A → P 86.1

Bimolecular reaction d[A]/dt = −kr[A][B] A + B → P 86.2

Consecutive reactions [ ] [ ]

[ ] ( ( ))( )[ ]

[ ] {( (

A A e

I / e e A

P e

a

a b
a b a

a

=

= − −

= +

−

− −
0

0

1

k t

k t k tk k k

k −− −− −k t k tk k kb a
b b ae A/) ( ))}[ ]0

A I P
a b

→ →
k k

86.4

Steady-state approximation d[I]/dt ≈ 0 I is an intermediate 86.5
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Exercises and problems 829

Focus 17 on Chemical kinetics

Topic 82 Reaction rates

Discussion question
82.1 Distinguish between zeroth-order, first-order, second-order, and 

pseudofirst-order reactions and illustrate how reaction orders may change 

under different circumstances.

Exercises
82.1(a) Predict how the total pressure varies during the gas-phase reaction 

2 ICl(g) + H2(g) → I2(g) + 2 HCl(g) in a constant-volume container.

82.1(b) Predict how the total pressure varies during the gas-phase reaction 

N2(g) + 3 H2(g) → 2 NH3(g) in a constant-volume container.

82.2(a) The rate of the reaction A + 2 B →3 C + D was reported as 2.7 mol dm−3 

s−1. State the rates of formation and consumption of the participants.

82.2(b) The rate of the reaction A + 3 B → C + 2 D was reported as 2.7 mol dm−3 

s−1. State the rates of formation and consumption of the participants.

82.3(a) The rate of formation of C in the reaction 2 A + B → 2 C + 3 D is 2.7 mol 

dm−3 s−1. State the reaction rate, and the rates of formation or consumption of 

A, B, and D.

82.3(b) The rate of consumption of B in the reaction A + 3 B → C + 2 D 

is 2.7 mol dm−3 s−1. State the reaction rate, and the rates of formation or 

consumption of A, C, and D.

82.4(a) The rate law for the reaction in Exercise 82.2(a) was found to be 

v = kr[A][B]. What are the units of kr? Express the rate law in terms of the rates 

of formation and consumption of (a) A, (b) C.

82.4(b) The rate law for the reaction in Exercise 82.2(b) was found to be 

v = kr[A][B]2. What are the units of kr? Express the rate law in terms of the 

rates of formation and consumption of (a) A, (b) C.

82.5(a) The rate law for the reaction in Exercise 82.3(a) was reported as  

d[C]/dt = kr[A][B][C]. Express the rate law in terms of the reaction rate v; 

what are the units for kr in each case?

82.5(b) The rate law for the reaction in Exercise 82.3(b) was reported as  

d[C]/dt = kr[A][B][C]−1. Express the rate law in terms of the reaction rate v; 

what are the units for kr in each case?

82.6(a) If the rate laws are expressed with (a) concentrations in moles per 

decimetre cubed, (b) pressures in kilopascals, what are the units of the 

second-order and third-order rate constants?

82.6(b) If the rate laws are expressed with (a) concentrations in molecules per 

metre cubed, (b) pressures in pascals, what are the units of the second-order 

and third-order rate constants?

Problem
82.1 At 400 K, the rate of decomposition of a gaseous compound initially 

at a pressure of 12.6 kPa was 9.71 Pa s−1 when 10.0 per cent had reacted, 

and 7.67 Pa s−1 when 20.0 per cent had reacted. Determine the order of the 

reaction.

Topic 83 Integrated rate laws

Discussion question
83.1 Describe the main features, including advantages and disadvantages, 

of the following experimental methods for determining the rate law of a 

reaction: the isolation method, the method of initial rates, and fitting data to 

integrated rate law expressions.

Exercises
83.1(a) At 518 °C, the half-life for the decomposition of a sample of gaseous 

acetaldehyde (ethanal) initially at 363 Torr was 410 s. When the pressure was 

169 Torr, the half-life was 880 s. Determine the order of the reaction.

83.1(b) At 400 K, the half-life for the decomposition of a sample of a gaseous 

compound initially at 55.5 kPa was 340 s. When the pressure was 28.9 kPa, the 

half-life was 178 s. Determine the order of the reaction.

Atkins09819.indb   829 9/11/2013   8:45:24 AM



830 17 Chemical kinetics

83.2(a) The rate constant for the first-order decomposition of N2O5 in the 

reaction 2 N2O5(g) → 4 NO2(g) + O2(g) is kr = 3.38 × 10−5 s−1 at 25 °C. What is 

the half-life of N2O5? What will be the pressure, initially 500 Torr,  (i) 50 s, (ii) 

20 min after initiation of the reaction?

83.2(b) The rate constant for the first-order decomposition of a compound 

A in the reaction 2 A→ P is kr = 3.56 × 10−7 s−1 at 25 °C. What is the half-life 

of A? What will be the pressure, initially 33.0 kPa, (i) 50 s, (ii) 20 min after 

initiation of the reaction?

83.3(a) The second-order rate constant for the reaction CH3COOC2H5(aq) + 

OH−(aq) → CH3CO2
−(aq) + CH3CH2OH(aq) is 0.11 dm3 mol−1 s−1. What is the 

concentration of ester (CH3COOC2H5) after (a) 20 s, (b) 15 min when ethyl 

acetate is added to sodium hydroxide so that the initial concentrations are 

[NaOH] = 0.060 mol dm−3 and [CH3COOC2H5] = 0.110 mol dm−3?

83.3(b) The second-order rate constant for the reaction A + 2 B → C + D is 

0.34 dm3 mol−1 s−1. What is the concentration of C after (a) 20 s, (b) 15 min 

when the reactants are mixed with initial concentrations of [A] = 0.027 mol 

dm−1 and [B] = 0.130 mol dm−3?

83.4(a) A reaction 2 A → P has a second-order rate law with kr = 4.30 × 10−4 

dm3 mol−1 s−1. Calculate the time required for the concentration of A to 

change from 0.210 mol dm−3 to 0.010 mol dm−3.

83.4(b) A reaction 2 A → P has a third-order rate law with kr = 6.50 × 10−4 dm6 

mol−2 s−1. Calculate the time required for the concentration of A to change 

from 0.067 mol dm−3 to 0.015 mol dm−3.

Problems
83.1 For a first-order reaction of the form A → nB (with n possibly fractional), 

the concentration of the product varies with time as [ ] [ ] ( ).B B e r= − −n k t
0 1  Plot 

the time dependence of [A] and [B] for the cases n = 1
2

,  1, and 2.

83.2 For a second-order reaction of the form A → nB (with n possibly 

fractional), the concentration of the product varies with time as 

[ ] [ ] /( [ ] ).B A 1 Ar r= +nk t k t0
2

0  Plot the time dependence of [A] and [B] for the 

cases n = 1
2

,  1, and 2.

83.3 The data below apply to the formation of urea from ammonium cyanate, 

NH4CNO → NH2CONH2. Initially 22.9 g of ammonium cyanate was dissolved 

in enough water to prepare 1.00 dm3 of solution. Determine the order of 

the reaction, the rate constant, and the mass of ammonium cyanate left after 

300 min.

83.4 The data below apply to the reaction, (CH3)3CBr + H2O → (CH3)3COH + 

HBr. Determine the order of the reaction, the rate constant, and the molar 

concentration of (CH3)3CBr after 43.8 h.

83.5 The thermal decomposition of an organic nitrile produced the 

following data:

Determine the order of the reaction and the rate constant.

83.6 A second-order reaction of the type A + 2 B → P was carried out in a 

solution that was initially 0.050 mol dm−3 in A and 0.030 mol dm−3 in B. After 

1.0 h the concentration of A had fallen to 0.010 mol dm−3. (a) Calculate the 

rate constant. (b) What is the half-life of the reactants?

83.7‡ The oxidation of HSO3
− by O2 in aqueous solution is a reaction 

of importance to the processes of acid rain formation and flue gas 

desulfurization. R.E. Connick, et al. (Inorg. Chem. 34, 4543 (1995)) 

report that the reaction 2 HSO3
− + O2 → 2 SO4

2− + 2 H+ follows the rate law 

v = kr[HSO3
−]2[H+]2. Given pH = 5.6 and an oxygen molar concentration 

of 2.4 × 10−4 mol dm−3 (both presumed constant), an initial HSO3
− molar 

concentration of 5 × 10−5 mol dm−3, and a rate constant of 3.6 × 106 dm9 mol−3 s−1, 

what is the initial rate of reaction? How long would it take for HSO3
− to reach 

half its initial concentration?

83.8 Pharmacokinetics is the study of the rates of absorption and elimination 

of drugs by organisms. In most cases, elimination is slower than absorption 

and is a more important determinant of availability of a drug for binding to its 

target. A drug can be eliminated by many mechanisms, such as metabolism 

in the liver, intestine, or kidney followed by excretion of breakdown products 

through urine or faeces. As an example of pharmacokinetic analysis, consider 

the elimination of beta adrenergic blocking agents (beta blockers), drugs used 

in the treatment of hypertension. After intravenous administration of a beta 

blocker, the blood plasma of a patient was analysed for remaining drug and 

the data are shown below, where c is the drug concentration measured at a 

time t after the injection.

(a) Is removal of the drug a first- or second-order process? (b) Calculate the 

rate constant and half-life of the process. Comment: An essential aspect of 

drug development is the optimization of the half-life of elimination, which 

needs to be long enough to allow the drug to find and act on its target organ 

but not so long that harmful side-effects become important.

83.9 The following data have been obtained for the decomposition of N2O5(g) 

at 67 °C according to the reaction 2 N2O5(g) → 4 NO2(g) + O2(g). Determine 

the order of the reaction, the rate constant, and the half-life. It is not necessary 

to obtain the result graphically; you may do a calculation using estimates of 

the rates of change of concentration.

83.10 The gas-phase decomposition of acetic acid at 1189 K proceeds by way of 

two parallel reactions:

What is the maximum percentage yield of the ketene CH2CO obtainable at 

this temperature?

83.11 Sucrose is readily hydrolysed to glucose and fructose in acidic solution. 

The hydrolysis is often monitored by measuring the angle of rotation of plane-

polarized light passing through the solution. From the angle of rotation the 

concentration of sucrose can be determined. An experiment on the hydrolysis 

of sucrose in 0.50 m HCl(aq) produced the following data:

t/min 0 20.0 50.0 65.0 150

m(urea)/g 0 7.0 12.1 13.8 17.7

t/h 0 3.15 6.20 10.00 18.30 30.80

[(CH3)3CBr]/(10−2 mol dm−3) 10.39 8.96 7.76 6.39 3.53 2.07

t/(103 s) 0 2.00 4.00 6.00 8.00 10.00 12.00 ∞

[nitrile]/ 
(mol dm−3)

1.50 1.26 1.07 0.92 0.81 0.72 0.65 0.40

t/min 30 60 120 150 240 360 480

c/(ng cm−3) 699 622 413 292 152 60 24

t/min 0 1 2 3 4 5

[N2O5]/(mol dm−3) 1.000 0.705 0.497 0.349 0.246 0.173

(1) CH3COOH → CH4 + CO2 k1 = 3.74 s−1

(2) CH3COOH → CH2CO + H2O k2 = 4.65 s−1

‡ These problems were supplied by Charles Trapp and Carmen Giunta.
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Determine the rate constant of the reaction and the half-life of a sucrose 

molecule.

83.12 The composition of the liquid-phase reaction 2 A → B was followed by a 

spectrophotometric method with the following results:

Determine the order of the reaction and its rate constant.

83.13 The ClO radical decays rapidly by way of the reaction 2 ClO → Cl2 + O2. 

The following data have been obtained:

Determine the rate constant of the reaction and the half-life of a ClO radical.

83.14 Cyclopropane isomerizes into propene when heated to 500 °C in the gas 

phase. The extent of conversion for various initial pressures has been followed 

by gas chromatography by allowing the reaction to proceed for a time with 

various initial pressures:

where p0 is the initial pressure and p is the final pressure of cyclopropane. 

What is the order and rate constant for the reaction under these conditions?

83.15 The addition of hydrogen halides to alkenes has played a fundamental 

role in the investigation of organic reaction mechanisms. In one study 

(M.J. Haugh and D.R. Dalton, J. Amer. Chem. Soc. 97, 5674 (1975)), high 

pressures of hydrogen chloride (up to 25 atm) and propene (up to 5 atm) were 

examined over a range of temperatures and the amount of 2-chloropropane 

formed was determined by NMR. Show that if the reaction A + B → P 

proceeds for a short time δt, the concentration of product follows  

[P]/[A] = kr[A]m−1[B]nδt if the reaction is mth-order in A and nth-order in B. 

In a series of runs the ratio of [chloropropane] to [propene] was independent 

of [propene] but the ratio of [chloropropane] to [HCl] for constant amounts 

of propene depended on [HCl]. For δt ≈ 100 h (which is short on the  

timescale of the reaction) the latter ratio rose from zero to 0.05, 0.03, 0.01 

for p(HCl) = 10 atm, 7.5 atm, 5.0 atm. What are the orders of the reaction with 

respect to each reactant?

83.16 Show that t1/2 is given by eqn 83.6 for a reaction that is nth-order in A. 

Then deduce an expression for the time it takes for the concentration of a 

substance to fall to one-third the initial value in an nth-order reaction.

83.17 Derive an integrated expression for a second-order rate law v = kr[A][B] 

for a reaction of stoichiometry 2 A + 3 B → P.

83.18 Derive the integrated form of a third-order rate law v = kr[A]2[B] in 

which the stoichiometry is 2 A + B → P and the reactants are initially present 

in (a) their stoichiometric proportions, (b) with B present initially in twice the 

amount.

83.19 Show that the ratio t1/2/t3/4, where t1/2 is the half-life and t3/4 is the time 

for the concentration of A to decrease to 3
4

 of its initial value (implying that 

t3/4 < t1/2), can be written as a function of n alone, and can therefore be used as 

a rapid assessment of the order of a reaction.

Topic 84 Reactions approaching equilibrium

Discussion question
84.1 Describe the strategy of a temperature-jump experiment. What 

parameters of a reaction are accessible using this technique?

Exercises
84.1(a) The equilibrium NH aq H O l NH aq OH aq3 2( ) ( ) ( ) ( )+ ++ −� 4  at 25 °C is 

subjected to a temperature jump which slightly increases the concentration 

of NH4
+(aq) and OH−(aq). The measured relaxation time is 7.61 ns. The 

equilibrium constant for the system is 1.78 × 10−5 at 25 °C, and the equilibrium 

concentration of NH3(aq) is 0.15 mol dm−3. Calculate the rate constants for 

the forward and reverse steps.

84.1(b) The equilibrium A � B + C at 25 °C is subjected to a temperature 

jump which slightly increases the concentrations of B and C. The measured 

relaxation time is 3.0 μs. The equilibrium constant for the system is 2.0 × 10−16 

at 25 °C, and the equilibrium concentrations of B and C at 25 °C are both 

2.0 × 10−4 mol dm−3. Calculate the rate constants for the forward and reverse 

steps.

Problems
84.1 Show by differentiation that eqn 84.4 is a solution of eqn 84.3.

84.2 Set up the rate equations and plot the corresponding graphs for the 

approach to an equilibrium of the form A � 2 B.

84.3 The equilibrium A � B is first-order in both directions. Derive an 

expression for the concentration of A as a function of time when the 

initial molar concentrations of A and B are [A]0 and [B]0. What is the final 

composition of the system?

84.4 Show that eqn 84.8 is an expression for the overall equilibrium constant 

in terms of the rate constants for the intermediate steps of a reaction 

mechanism. To facilitate the task, begin with a mechanism containing three 

steps, and then argue that your expression may be generalized for any number 

of steps.

84.5 Consider the dimerization 2 A � A2, with forward rate constant 

ka and backward rate constant ′ka . (a) Derive the following expression 

t/min 0 14 39 60 80 110 140 170 210

[sucrose]/ 
(mol dm−3)

0.316 0.300 0.274 0.256 0.238 0.211 0.190 0.170 0.146

t/min 0 10 20 30 40 ∞

[B]/(mol dm−3) 0 0.089 0.153 0.200 0.230 0.312

t/ ms 0.12 0.62 0.96 1.60 3.20 4.00 5.75

[ClO]/(10−6 mol dm−3) 8.49 8.09 7.10 5.79 5.20 4.77 3.95

p0/Torr 200 200 400 400 600 600

t/s 100 200 100 200 100 200

p/Torr 186 173 373 347 559 520
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832 17 Chemical kinetics

for the relaxation time in terms of the total concentration of protein, 

[A]tot = [A] + 2[A2]:

1
8

2
2

τ
= + ′k k ka a a totA′ [ ]

 

(b) Describe the computational procedures that lead to the determination of 

the rate constants ka and ′ka from measurements of τ for different values of 

[A]tot. (c) Use the data provided below and the procedure you outlined in part 

(b) to calculate the rate constants ka and ′ka ,  and the equilibrium constant K 

for formation of hydrogen-bonded dimers of 2-pyridone.

84.6 Consider the dimerization 2 A � A2 with forward rate constant kr and 

backward rate constant ′kr . Show that the relaxation time is

τ =
′ +

1

4k kr r eqA[ ]
 

Topic 85 The Arrhenius equation

Discussion question
85.1 Define the terms in and discuss the generality of the expression 

ln kr = ln A – Ea/RT.

Exercises
85.1(a) The rate constant for the decomposition of a certain substance is 

3.80 × 10−3 dm3 mol−1 s−1 at 35 °C and 2.67 × 10−2 dm3 mol−1 s−1 at 50 °C. 

Evaluate the Arrhenius parameters of the reaction.

85.1(b) The rate constant for the decomposition of a certain substance is 

2.25 × 10−2 dm3 mol−1 s−1 at 29 °C and 4.01 × 10−2 dm3 mol−1 s−1 at 37 °C. 

Evaluate the Arrhenius parameters of the reaction.

85.2(a) The rate of a chemical reaction is found to triple when the temperature 

is raised from 24 °C to 49 °C. Determine the activation energy.

85.2(b) The rate of a chemical reaction is found to double when the 

temperature is raised from 25 °C to 35 °C. Determine the activation  

energy.

Problems
85.1 Show that the definition of Ea given in eqn 85.3 reduces to eqn 85.1 for a 

temperature-independent activation energy.

85.2 A first-order decomposition reaction is observed to have the following 

rate constants at the indicated temperatures. Estimate the activation energy.

85.3 The second-order rate constants for the reaction of oxygen atoms with 

aromatic hydrocarbons have been measured (R. Atkinson and J.N. Pitts,  

J. Phys. Chem. 79, 295 (1975)). In the reaction with benzene the rate constants 

are 1.44 × 107 dm3 mol−1 s−1 at 300.3 K, 3.03 × 107 dm3 mol−1 s−1 at 341.2 K, 

and 6.9 × 107 dm3 mol−1 s−1 at 392.2 K. Find the pre-exponential factor and 

activation energy of the reaction.

85.4‡ P.W. Seakins, et al. (J. Phys. Chem. 96, 9847 (1992)) measured 

the forward and reverse rate constants for the gas-phase reaction 

C2H5(g) + HBr(g) → C2H6(g) + Br(g) and used their findings to compute 

thermodynamic parameters for C2H5. The reaction is bimolecular in both 

directions with Arrhenius parameters A = 1.0 × 109 dm3 mol−1 s−1, Ea = −4.2 kJ 

mol−1 for the forward reaction and A = 1.4 × 1011 dm3 mol−1 s−1, Ea = 53.3 kJ mol−1 

for the reverse reaction. Compute Δf mH S< <, , and ΔfG
< of C2H5 at 298 K.

85.5‡ Methane is a by-product of a number of natural processes (such as 

digestion of cellulose in ruminant animals, anaerobic decomposition of 

organic waste matter), and industrial processes (such as food production 

and fossil fuel use). Reaction with the hydroxyl radical OH is the main 

path by which CH4 is removed from the lower atmosphere. T. Gierczak, 

et al. (J. Phys. Chem. A 101, 3125 (1997)) measured the rate constants 

for the elementary bimolecular gas-phase reaction of methane with the 

hydroxyl radical over a range of temperatures of importance to atmospheric 

chemistry. Deduce the Arrhenius parameters A and Ea from the following 

measurements:

85.6‡ As we saw in Problem 85.5, reaction with the hydroxyl radical OH is 

the main path by which CH4, a by-product of many natural and industrial 

processes, is removed from the lower atmosphere. T. Gierczak, et al. 

(J. Phys. Chem. A 101, 3125 (1997)) measured the rate constants for the 

bimolecular gas-phase reaction CH4(g) + OH(g) → CH3(g) + H2O(g) and 

found A = 1.13 × 109 dm3 mol−1 s−1 and Ea = 14.1 kJ mol−1 for the Arrhenius 

parameters. (a) Estimate the rate of consumption of CH4. Take the average 

OH concentration to be 1.5 × 10−21 mol dm−3, that of CH4 to be 4.0 × 10−8 mol 

dm−3, and the temperature to be −10 °C. (b) Estimate the global annual mass 

of CH4 consumed by this reaction (which is slightly less than the amount 

introduced to the atmosphere) given an effective volume for the Earth's lower 

atmosphere of 4 × 1021 dm3.

[P]/(mol dm−3) 0.500 0.352 0.251 0.151 0.101

τ/ns 2.3 2.7 3.3 4.0 5.3

kr/(10−3 s−1) 2.46 45.1 576

θ/°C 0 20.0 40.0

T/K 295 223 218 213 206 200 195

kr/(106 dm3 mol−1 s−1) 3.55 0.494 0.452 0.379 0.295 0.241 0.217
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Exercises and problems 833

Topic 86 Reaction mechanisms

Discussion questions
86.1 Distinguish reaction order and molecularity.

86.2 Assess the validity of the following statement: the rate-determining step is 

the slowest step in a reaction mechanism.

86.3 Distinguish between a pre-equilibrium approximation and a steady-state 

approximation.

86.4 Distinguish between kinetic and thermodynamic control of a reaction. 

Suggest criteria for expecting one rather than the other.

86.5 Is it possible for the activation energy of a reaction to be negative? 

Explain your conclusion and provide a molecular interpretation.

Exercises
86.1(a) The reaction mechanism for the decomposition of A2,

A A A fast

A B P slow

2 � +
+ →

( )

( )  

involves an intermediate, A. Deduce the rate law for the reaction in two 

ways by (i) assuming a pre-equilibrium and (ii) making a steady-state 

approximation.

86.1(b) The reaction mechanism for renaturation of a double helix from its 

strands A and B,

A B unstable helix fast

Unstable helix stable double heli

+ � ( )

→ xx (slow) 

involves an intermediate. Deduce the rate law for the reaction in two ways by 

(i) assuming a pre-equilibrium and (ii) making a steady-state approximation.

86.2(a) The mechanism of a composite reaction consists of a fast pre-

equilibrium step with forward and reverse activation energies of 25 kJ mol−1 

and 38 kJ mol−1, respectively, followed by an elementary step of activation 

energy 10 kJ mol−1. What is the activation energy of the composite reaction?

86.2(b) The mechanism of a composite reaction consists of a fast pre-

equilibrium step with forward and reverse activation energies of 27 kJ mol−1 

and 35 kJ mol−1, respectively, followed by an elementary step of activation 

energy 15 kJ mol−1. What is the activation energy of the composite reaction?

Problems
86.1 Use mathematical software or spreadsheet to examine the time 

dependence of [I] in the reaction mechanism A → I → P (ka, kb). In all of the 

following calculations, use [A]0 = 1 mol dm−3 and a time range of 0 to 5 s. 

(a) Plot [I] against t for ka = 10 s−1 and kb = 1 s−1. (b) Increase the ratio kb/ka 

steadily by decreasing the value of ka and examine the plot of [I] against t at 

each turn. What approximation about d[I]/dt becomes increasingly valid?

86.2 Use mathematical software or a spreadsheet to investigate the effects on 

[A], [I], [P], and tmax of decreasing the ratio ka/kb from 10 (as in Fig. 86.1) to 

0.01. Compare your results with those shown in Fig. 86.3.

86.3 Set up the rate equations for the reaction mechanism

A B C
a

a

b

b

k

k

k

k′ ′
⎯ →⎯← ⎯⎯ ⎯ →⎯← ⎯⎯

 

Show that the mechanism is equivalent to

A C
r

r

k

k′
⎯ →⎯← ⎯⎯

 

under specified circumstances.

86.4 Derive an equation for the steady state rate of the sequence of reactions 

A � B  � C  � D, with [A] maintained at a fixed value and the product D 

removed as soon as it is formed.

86.5 Show that the following mechanism can account for the rate law of the 

reaction in Problem 83.15:

What further tests could you apply to verify this mechanism?

86.6 Polypeptides are polymers of amino acids. Suppose that a long 

polypeptide chain can undergo a transition from a helical conformation to a 

random coil. Consider a mechanism for a helix–coil transition that begins in 

the middle of the chain:

hhhh hchh

hchh hcch

… � …
… � …

 

in which h and c label, respectively, an amino acid in a helical or coil part of 

the chain. The first conversion from h to c, also called a nucleation step, is 

relatively slow, so neither step may be rate-determining. (a) Set up the rate 

equations for this mechanism. (b) Apply the steady-state approximation 

and show that, under these circumstances, the mechanism is equivalent to 

hhhh… � cccc….

HCl + HCl � (HCl)2 K1

HCl + CH3CH=CH2 � complex K2

(HCl)2 + complex → CH3CHClCH3 + HCl + HCl kr (slow)
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834 17 Chemical kinetics

Integrated activities

F17.1‡ J. Czarnowski and H.J. Schuhmacher (Chem. Phys. Lett. 17, 235 (1972)) 

suggested the following mechanism for the thermal decomposition of F2O in 

the reaction 2 F2O(g) → 2 F2(g) + O2(g):

(a) Using the steady-state approximation, show that this mechanism is 

consistent with the experimental rate law − = + ′d F O /d F O F O2 r 2
2

r 2
3 2[ ] [ ] [ ] ./t k k  

(b) The experimentally determined Arrhenius parameters in the range 

501–583 K are A = 7.8 × 1013 dm3 mol−1 s−1, Ea/R = 1.935 × 104 K for kr; 

and A = 2.3 × 1010 dm3 mol−1 s−1, Ea/R = 1.691 × 104 K for ′kr . At 540 K, 

ΔfH
<(F2O) = +24.41 kJ mol−1, D(F–F) = 160.6 kJ mol−1, and D(O–O) = 498.2 

kJ mol−1. Estimate the bond dissociation energies of the first and second F–O 

bonds in F2O and the Arrhenius activation energy of reaction 2.

F17.2 Two groups of protons have δ = 4.0 and δ = 5.2 and are interconverted 

by a conformational change of a fluxional molecule. In a 60 MHz NMR 

spectrometer the spectrum collapsed into a single line at 280 K but at 

300 MHz the collapse did not occur until the temperature had been raised to 

300 K. What is the activation energy of the interconversion?

F17.3 Conventional equilibrium considerations do not apply when 

a reaction is being driven by light absorption. Thus the steady-state 

concentration of products and reactants might differ significantly from 

equilibrium values. For instance, suppose the reaction A → B is driven by 

light absorption, and that its rate is Ia, but that the reverse reaction B → A 

is bimolecular and second-order with a rate kr[B]2. What is the stationary-

state concentration of B? Why does this ‘photostationary state’ differ from 

the equilibrium state?

F17.4 The photochemical chlorination of chloroform in the gas phase has been 

found to follow the rate law d[CCl4]/dt = kr[Cl2]
1/2Ia

1/2. Devise a mechanism 

that leads to this rate law when the chlorine pressure is high.

(1) F2O + F2O → F + OF + F2O ka

(2) F + F2O → F2 + OF kb

(3) OF + OF → O2 + F + F kc

(4) F + F + F2O → F2 + F2O kd
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As well as its interest in structure, chemistry is concerned with change. In this group of Topics we 
consider a variety of models of how chemical reactions take place. The focus is on the calculation, 
or at least the interpretation, of the magnitude of the rate constant of a reaction, as introduced in 
Chemical kinetics, and particularly its temperature dependence as expressed by the Arrhenius equa-
tion described there.

The simplest model of bimolecular elementary reactions in the gas phase is collision theory (Topic 
87), in which it is supposed that a reaction occurs when two reactant molecules collide with suf-
ficient energy and in an appropriate relative orientation. This simple model can be elaborated by 
assessing the way in which the energy of the collision is dispersed over the molecules and then con-
gregates in one particular bond.

In solution we are confronted with a different type of problem, for there are now two principal 
components to the rate of reaction (Topic 88). One is the rate at which two reactants diffuse through 
the solvent and finally encounter; the other is the rate at which, once they are together, they acquire 
sufficient energy to react. When the former process is dominant, elaborations of the diffusion equa-
tion introduced in Molecular motion enable us to relate the rate to the diffusional characteristics of 
the solution.

Reactions in both types of fluid medium are brought together in a theory that supposes that the 
reactants form a cluster of atoms when they encounter one another that can be treated as being 
in equilibrium with the reactants. This ‘transition-state theory’ (Topic 89) draws on the concepts of 
Statistical thermodynamics and Chemical equilibria to relate the rate constant to the supposed struc-
ture adopted by the cluster of atoms.

Underlying all these discussions is the quantum mechanical process of reactants moving through 
space (in states described in The quantum mechanics of motion) and exchanging partners. Some 
headway with this immensely intricate problem has been made by advances in computational 
chemistry, as outlined in Molecular structure, and the analysis of motion over potential energy sur-
faces (Topic 90).

FOCUS 18  ON  Reaction dynamics
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TOPIC 87

Collision theory

We consider the following gas-phase bimolecular elementary 

reaction with rate constant kr:

A B P A+ → =v kr[ ][B]  (87.1)

where A and B denote reactants and P products. We can antici-

pate the general form of the expression for kr by considering 

the physical requirements for reaction. To build a model of the 

reaction rate we can expect that it will be proportional to the 

rate of collisions, and therefore

proportional to the mean speed of the molecules, 

vmean ∝ (T/M)1/2 (eqn 78.7 of Topic 78), where M is the 

molar mass of the molecules and T is the temperature;

proportional to their collision cross-section, σ (Topic 78), 

the ‘target area’ the molecules present in a collision;

proportional to the number densities of A and B, 

NA = NA[A] and NB = NA[B], where NA is Avogadro’s 

constant.

That is, we expect

v∝ ∝σ σ( / ) ( / ) [A][B]/ /T M T MA B
1 2 1 2N N

However, a collision will be successful only if the kinetic energy 

exceeds a minimum value, which we denote E′. This require-

ment suggests in addition that

the rate should also be proportional to a Boltzmann 

factor of the form e−E′/RT representing the fraction of 

collisions with at least the minimum required energy E′.

Therefore,

v∝ − ′σ ( / ) [A][B]/ /T M E RT1 2 e  

We can now anticipate, by writing the reaction rate in the form 

given in eqn 87.1, that

k T M E RT
r e∝ ′σ ( / ) / /1 2 −

 

At this point, we begin to recognize the form of the Arrhenius 

equation (k A E RT
r e a= − / , eqn 85.4) and identify the minimum 

kinetic energy E′ with the activation energy Ea of the reaction. 

This identification, however, should not be regarded as precise, 

since collision theory is only a rudimentary model of chemical 

reactivity.

 ➤ Why do you need to know this material?
A major component of chemistry is the study of the 
mechanisms of chemical reactions. One of the earliest 
approaches, which continues to give insight into the details 
of mechanisms, is collision theory.

 ➤ What is the key idea?
According to collision theory, in a bimolecular gas-phase 
reaction, a reaction takes place on the collision of reactants 
provided their relative kinetic energy exceeds a threshold 
value and certain steric requirements are fulfilled.

 ➤ What do you need to know already?
This Topic draws on the kinetic theory of gases (Topic 78). 
You should also be familiar with the Arrhenius equation for 
the temperature dependence of the rate constant (Topic 85).

Contents

87.1 Collision rates in gases 837

Brief illustration 87.1: Collision density 837

87.2 The energy requirement 838

Brief illustration 87.2: The rate constant 839

87.3 The steric requirement 840

Brief illustration 87.3: The steric factor 840

Example 87.1: Estimating a steric factor 841

Checklist of concepts 841

Checklist of equations 842
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87 Collision theory  837

Finally, we should note that

not every collision will lead to reaction even if the energy 

requirement is satisfied, because the reactants may need 

to collide in a certain relative orientation.

This ‘steric requirement’ suggests that a further factor, P, should 

be introduced, and that

k T MP E RT
r e∝ ′σ ( / ) / /1 2 −

 (87.2)

As we shall see in detail below, this expression has the form pre-

dicted by collision theory. It reflects three aspects of a success-

ful collision:

k T MP E RT
r e∝ ′

Steric
requirement

Encounter
rate

Mi


 � �� ��
σ ( / ) / /1 2 −

nnimum
energy

requirement���

 

87.1 Collision rates in gases

We have anticipated that the reaction rate, and hence kr, 

depends on the frequency with which molecules collide. The 

collision density, ZAB, is the number of (A,B) collisions in a 

region of the sample in an interval of time, divided by the vol-

ume of the region and the duration of the interval. The fre-

quency of collisions of a single molecule in a gas was calculated 

in Topic 78 (eqn 78.10, z = σvrelNA). As shown in the following 

Justification, that result can be adapted to deduce that

Z
kT

NAB = π
⎛
⎝⎜

⎞
⎠⎟

σ μ
8

1 2

2

/

[ ][B]A A

where σ is the collision cross-section (Fig. 87.1),

σ =π = +d d d dA B
2 1

2
( )

 
 Collision cross-section  (87.3b)

dA and dB are the diameters of A and B, respectively, and μ is the 

reduced mass,

μ = +
m m

m m
A B

A B  
 Reduced mass  (87.3c)

For like molecules, μ = 1
2 mA, and at a molar concentration [A],

Z
kT

m
N

kT

m
NAA

A
A

A
AA A= π

⎛
⎝⎜

⎞
⎠⎟

= π
⎛
⎝⎜

⎞
⎠⎟

1

2

16 4
1 2

2 2

1 2

2 2σ σ
/ /

[ ] [ ]

 
(87.3d)

The factor of 1
2  is included to avoid double-counting of colli-

sions in this instance. The molar concentration of a perfect gas 

is [A] = n/V = p/RT.

Brief illustration 87.1 Collision density

Collision densities may be very large. For example, in nitrogen 

at 25 °C and 1.0 bar, when [N2] ≈ 40 mol m−3, with σ = 0.43 nm2 

(Table 78.1) and m mN u2
28 02= . , the collision density is

ZN N m

JK K

2 2
4 3 10

4 1 381 10 298

28 02 1 6

19 2

23 1

= ×

×
× × ×

× ×

−

− −

( . )

( . ) ( )

. ( .π 661 10

6 022 10 40

8

27

1 2

23 1 2 3 2

×
⎛
⎝⎜

⎞
⎠⎟

× × ×
=

−

− −

kg

   mol mol m

)

( . ) ( )

.

/

44 1034 3 1× − −m s

Self-test 87.1 Calculate the collision density in molecular 

hydrogen under the same conditions. (See Table 78.1 for σ.)

Answer: ZH H m s
2 2

2 0 1035 3 1= × − −.

Justification 87.1 The collision density

It follows from Topic 78 that the collision frequency, z, for a 

single A molecule of mass mA in a gas of other A molecules 

is z = σvrel NA, where NA is the number density of A molecules 

and vrel is their relative mean speed. As indicated in Topic 78, 

vrel = 21/2 vmean with vmean =(8kT/πm)1/2. For future conveni-

ence, it is sensible to introduce μ = 1
2

m  (for like molecules of 

mass m), and then to write vrel = (8kT/πμ)1/2. This expression 

also applies to the mean relative speed of dissimilar molecules, 

provided that μ is interpreted as the reduced mass.

The total collision density is the collision frequency multi-

plied by the number density of A molecules:

Z zAA A A= =1

2

1

2
2N Nσ vrel

 

Kinetic-
molecular 
theory

Collision 
density 

(87.3a)

A

B

Area σ

dA

dB

d

Figure 87.1 The collision cross-section for two molecules can 
be regarded as the area within which the projectile molecule 
(A) must enter around the target molecule (B) in order for a 
collision to occur. If the diameters of the two molecules are 
dA and dB, the radius of the target area is d = ½(dA + dB) and the 
cross-section is πd2.

Atkins09819.indb   837 9/11/2013   8:45:56 AM



838 18 Reaction dynamics

87.2 The energy requirement

According to collision theory, the rate of change in the 

number density, NA, of A molecules is the product of the 

collision density and the probability that a collision occurs 

with sufficient energy. The latter condition can be incorpo-

rated by writing the collision cross-section σ as a function 

of the kinetic energy ε of approach of the two colliding spe-

cies, and setting the cross-section, σ(ε), equal to zero if the 

kinetic energy of approach is below a certain threshold value, 

εa. Later, we shall identify NAεa as Ea, the (molar) activation 

energy of the reaction. Then, for a collision between A and 

B with a specific relative speed of approach srel (not, at this 

stage, the mean value, vrel),

d

d
A

rel A B

N
N N

t
s= −σ ε( )

 
(87.4a)

or, in terms of molar concentrations,

d[A]

d
A Brel At

s N= −σ ε( ) [ ][ ]
 

(87.4b)

The kinetic energy associated with the relative motion of the 

two particles takes the form ε μ= 1
2

2srel when the centre-of-mass 

coordinates are separated from the internal coordinates of each 

particle. Therefore the relative speed is given by srel = (2ε/μ)1/2. 

At this point we recognize that a wide range of approach ener-

gies ε is present in a sample, so we should average the expres-

sion just derived over a Boltzmann distribution of energies f(ε), 

and write (see Mathematical background 7 for a discussion of 

averages)

d[A]

d
d A Brel At

s f N= −⎧
⎨
⎩

⎫
⎬
⎭

∞

∫ σ ε ε ε( ) ( ) [ ][ ]
0

 

(87.5)

and hence recognize the rate constant as

k N s fr A rel d=
∞

∫ σ ε ε ε( ) ( )
0  

 Rate constant  (87.6)

Now suppose that the reactive collision cross-section is zero 

below εa. We show in the following Justification that, above εa, 

σ(ε) varies as

σ ε ε
ε σ( )= −⎛

⎝⎜
⎞
⎠⎟

1 a

 
 Energy dependence of σ  (87.7)

with the energy independent σ given by eqn 87.3b. This form 

of the energy dependence for σ(ε) is broadly consistent with 

experimental determinations of the reaction between H and D2 

as determined by molecular beam measurements of the kind 

described in Topic 90 (Fig. 87.2).

The factor of 1
2  has been introduced to avoid double-counting 

of the collisions (so one A molecule colliding with another A 

molecule is counted as one collision regardless of their actual 

identities). For collisions of A and B molecules present at num-

ber densities NA and NB, the collision density is

ZAB =σ vrelN NA B  

The factor of 1
2  has been discarded because now we are consid-

ering an A molecule colliding with any of the B molecules as a 

collision. The number density of a species J is NJ = NA[J], where 

[J] is their molar concentration and NA is Avogadro's constant. 

Equation 87.3 then follows.

Justification 87.2 The collision cross-section

Consider two colliding molecules A and B with relative 

speed srel and relative kinetic energy ε μ= 1
2

2srel (Fig 87.3). 

Intuitively we expect that a head-on collision between A and 

B will be most effective in bringing about a chemical reaction. 

Therefore, srel,A−B, the magnitude of the relative velocity com-

ponent parallel to an axis that contains the vector connecting 

the centres of A and B, must be large. From trigonometry and 

the definitions of the distances a and d, and the angle θ given 

in Fig 87.3, it follows that

s s s
d a

drel A B rel rel,

/

cos− = = −⎛
⎝⎜

⎞
⎠⎟

θ
2 2

2

1 2

We assume that only the kinetic energy associated with 

the head-on component of the collision, εA–B, can lead to a 

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

σ
(ε

)/
σ

ε/εa

1.7 × 104 pm2, 1.95 eV

1.0 × 104 pm2, 0.90 eV

Figure 87.2 The variation of the reactive cross-section with 
energy, as expressed by eqn 87.7. The data points are from 
experiments on the reaction H + D2 → HD + D (K. Tsukiyama,  
et al., J. Chem. Phys. 84, 1934 (1986)).
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87 Collision theory  839

With the energy dependence of the collision cross-section 

established, we can evaluate the integral in eqn 87.6. In the fol-

lowing Justification we show that

k N E RT
r A rele a= −σ v /

 
Collision theory  Rate constant  (87.8)

Equation 87.8 has the Arrhenius form k A E RT
r e= − a /  provided 

the exponential temperature dependence dominates the weak 

square-root temperature dependence of the pre-exponential 

factor A. It follows that we can identify (within the constraints 

of collision theory) the activation energy, Ea, with the mini-

mum kinetic energy along the line of approach that is needed 

for reaction, and that the pre-exponential factor is a measure of 

the rate at which collisions occur in the gas.

The simplest procedure for calculating kr is to use for σ the 

values obtained for non-reactive collisions (for example, typi-

cally those obtained from viscosity measurements) or from 

tables of molecular radii. If the collision cross-sections of A 

and B are σ A A=πd2  and σ B B=πd2, then an approximate value 

of the AB cross-section can be estimated from σ = πd2, with 

d d dA B= +1
2 ( ) . That is,

σ σ σ≈ +1

4
1 2 1 2 2( )/ /
A B

 

Justification 87.3 The rate constant

The Maxwell–Boltzmann distribution of molecular speeds is 

eqn 78.4 of Topic 78:

f
kT

kT( )

/

/v v v vvd e d= ⎛
⎝⎜

⎞
⎠⎟

−4
2

3 2

2 22π π
μ μ

 

(We have replaced M/R by μ/k.) This expression may be 

expressed in terms of the kinetic energy, ε, by writing ε μ= 1
2

2v ; 

then dv = dε/(2μ ε)1/2 , when it becomes

f
kT

kT

kT( )
( )

/

/
/

v vd e
d= π π

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= π π
⎛
⎝⎜

−4
2

2

2

2
1

3 2

1 2

μ ε
μ

ε
με

ε

⎞⎞
⎠⎟

=−
3 2

1 2

/

/ / ( )ε ε ε εεe d dkT f
 

The integral we need to evaluate is therefore

σ ε ε ε σ ε ε
μ

ε μ

( ) ( ) ( )

/ /

0

3 2

0

2
1 2∞ ∞

( )

∫ ∫= π π
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠

s f
kTrel d

2 1/2



⎟⎟

= π
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

−

∞
−∫

1 2

1 2

1 2

0

8 1

/

/ /

/

/( )

ε ε

μ εσ ε ε

ε

ε

e d

e d

kT

kT

kT kT
 

To proceed, we introduce the approximation for σ(ε) in eqn 

87.7 and evaluate

εσ ε ε σ ε ε
ε ε σε

ε

ε ε( ) ( )/ / /

0

21
∞

−
∞

− −∫ ∫= −⎛
⎝⎜

⎞
⎠⎟

=e d e d ea

a

akT kT kTkT

 

We have made use of the fact that σ = 0 for ε < εa. It follows that

σ ε ε ε σ μ
ε( ) ( )

/

/

0

1 2
8∞

−∫ = π
⎛
⎝⎜

⎞
⎠⎟

s f
kT kT

rel d e a

 

as in eqn 87.8 (with εa/kT = Ea/RT).

Brief illustration 87.2 The rate constant

To estimate the rate constant for the reaction H2 + C2H4 → C2H6 

at 628 K we f irst ca lcu late the reduced mass using 

m(H2) = 2.016mu and m(C2H4) = 28.05mu. A straightforward 

calculation gives μ = 3.123 × 10−27 kg. It then follows that

8 8 1 381 10 628

3 123 10

1 2 23 1

27

kT

π πμ
⎛
⎝⎜

⎞
⎠⎟

=
× × ×

× ×

− −

−

/
( . ) ( )

( . )

JK K

kg

⎛⎛
⎝⎜

⎞
⎠⎟

= … −

1 2

12 65

/

. kms
 

chemical reaction. After squaring both sides of this equation 

and multiplying by 1
2

μ , it follows that

ε εA B− = × −d a

d

2 2

2

The existence of an energy threshold, εa, for the formation of 

products implies that there is a maximum value of a, amax, 

above which reaction does not occur. Setting a = amax and 

εA–B = εa gives

a dmax
a2 21= −⎛

⎝⎜
⎞
⎠⎟

ε
ε

 

Substitution of σ(ε) for πamax
2  and σ for πd2 in the equation 

above gives eqn 87.7. Note that the equation can be used only 

when ε  >  εa.

d

A

B
a

θ

srel

srel, A–B

(d2 − a2)1/2

Figure 87.3 The parameters used in the calculation of the 
dependence of the collision cross-section on the relative 
kinetic energy of two molecules A and B.
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840 18 Reaction dynamics

87.3 The steric requirement

Table 87.1 compares some values of the pre-exponential factor 

calculated from the collisional data in Table 78.1 with values 

obtained from Arrhenius plots. One of the reactions shows fair 

agreement between theory and experiment, but for others there 

are major discrepancies. In some cases the experimental values 

are orders of magnitude smaller than those calculated, which 

suggests that the collision energy is not the only criterion for 

reaction and that some other feature, such as the relative ori-

entation of the colliding species, is important. Moreover, one 

reaction in the table has a pre-exponential factor larger than 

theory, which seems to indicate that the reaction occurs more 

quickly than the particles collide!

The disagreement between experiment and theory can be 

accommodated by introducing a steric factor, P, and express-

ing the reactive cross-section, σ *, as a multiple of the colli-

sion cross-section, σ * = Pσ (Fig. 87.4). Then the rate constant 

becomes

k P N
kT E RT

r A e a= ⎛
⎝⎜

⎞
⎠⎟

−σ μ
8

1 2

π

/

/

 
(87.9)

This expression has the form we anticipated in eqn 87.2. The 

steric factor is normally found to be several orders of magni-

tude smaller than 1.

An example of a reaction for which it is possible to esti-

mate the steric factor is K + Br2 → KBr + Br, with the experi-

mental value P = 4.8. In this reaction, the distance of approach 

at which reaction occurs appears to be considerably larger 

than the distance needed for deflection of the path of the 

approaching molecules in a non-reactive collision. It has been 

proposed that the reaction proceeds by a harpoon mecha-

nism. This brilliant name is based on a model of the reaction 

which pictures the K atom as approaching a Br2 molecule, and 

when the two are close enough an electron (the harpoon) flips 

across from K to Br2. In place of two neutral particles there 

are now two ions, so there is a Coulombic attraction between 

them: this attraction is the line on the harpoon. Under its 

Brief illustration 87.3 The steric factor

It is found experimentally that the pre-exponential factor 

for the reaction H2 + C2H4 → C2H6 at 628 K is 1.24 × 106 dm3 

mol−3 s−1. In Brief illustration 87.2 we calculated the result that 

can be expressed as A = 7.04… × 1011 dm3 mol−1 s−1
. It follows 

that the steric factor for this reaction is

P
A

A
= =

×
…×

− −
experimental

calculated

dm mol s

dm

1 24 10

7 04 10

6 3 1 1

11

.

. 33 1 1
61 8 10

mol s− −
−≈ ×.

The very small value of P is one reason why catalysts are 

needed to bring this reaction about at a reasonable rate. As a 

general guide, the more complex the reactant molecules, the 

smaller the value of P.

Self-test 87.3 It is found for the reaction NO + Cl2 → NOCl + Cl 

that A = 4.0 × 109 dm3 mol−1 s−1 at 298 K. Estimate the P factor 

for the reaction (see the preceding Self-test).

Answer: 0.019

From Table 78.1, σ (H2) = 0.27 nm2 and σ(C2H4) = 0.64 nm2, 

giving σ( H2,C2H4) ≈ 0.44 nm2. The activation energy is large: 

180 kJ mol−1. Therefore,

kr m ms mol

  e

= × × …× × ×

×

− − −

−

( . ) ( . ) ( . )

( .

4 4 10 2 65 10 6 022 1019 2 3 1 23 1

1 880 10 8 3145 628

8 3 1

5 1 1 1

7 04 10

× ×

− −

− − −

= …×

Jmol JK mol K

m mol s

)/( . ) ( )

. 11 34 4 7 3 1 17 5 10

A� ����� �����
× = ×− … − − −e m mol s. .

 

or 7.5 × 10−4 dm3 mol−1 s−1.

Self-test 87.2 Evaluate the rate constant for the reaction 

NO + Cl2 → NOCl + Cl at 298 K from σ (NO) = 0.42 nm2 and 

σ(Cl2) = 0.93 nm2 and an activation energy of 85 kJ mol−1 .

Answer: 2.7 × 10−4 dm3 mol−1 s−1

Area σ*

Area σ

Products

Deflected reactant
molecule

Figure 87.4 The collision cross-section is the target area that 
results in simple deflection of the projectile molecule; the 
reactive cross-section is the corresponding area for chemical 
change to occur on collision.

Table 87.1* Arrhenius parameters for gas-phase reactions

A/(dm3 mol−1 s−1)

Experiment Theory Ea/(kJ 
mol−1)

P

2 NOCl → 2 NO + Cl2 9.4 × 109 5.9 × 1010 102 0.16

2 ClO → Cl2 + O2 6.3 × 107 2.5 × 1010 0 2.5 × 10−3

H2 + C2H4 → C2H6 1.24 × 106 7.4 × 1011 180 1.7 × 10−6

K + Br2 → KBr + Br 1.0 × 1012 2.1 × 1011 0 4.8

* More values are given in the Resource section.
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87 Collision theory  841

influence the ions move together (the line is wound in), the 

reaction takes place, and KBr + Br emerge. The harpoon 

extends the cross-section for the reactive encounter, and the 

reaction rate is significantly underestimated by taking for the 

collision cross-section the value for simple mechanical con-

tact between K and Br2.

Example 87.1 illustrates two points about steric factors. First, 

the concept of a steric factor is not wholly useless because in 

some cases, such as unimolecular gas-phase reactions (Topic 

91), its numerical value can be estimated. Second, and more 

pessimistically, most reactions are much more complex than 

K + Br2, and we cannot expect to obtain P so easily.

Example 87.1 Estimating a steric factor

Estimate the value of P for the harpoon mechanism by calcu-

lating the distance at which it becomes energetically favour-

able for the electron to leap from K to Br2. Take the sum of 

the radii of the reactants (treating them as spherical) to be 

400 pm.

Method Begin by identifying al l the contributions to 

the energy of interaction between the colliding species. 

There are three contributions to the energy of the process 

K Br K Br+ +→ +
2 2

−. The first is the ionization energy, I, of K. 

The second is the electron affinity, Eea, of Br2. The third is the 

Coulombic interaction energy between the ions when they 

have been formed: when their separation is R, this energy 

is –e2/4πε0R. The electron f lips across when the sum of 

these three contributions changes from positive to negative 

(that is, when the sum is zero) and becomes energetically 

favourable.

Answer The net change in energy when the transfer occurs at 

a separation R is

E I E
e

R
= − − πea

2

04 ε

The ionization energy I is larger than Eea, so E becomes nega-

tive only when R has decreased to less than some critical value 

R* given by

R
e

I E
* = −

2

04πε ( )ea  

When the particles are at this separation, the harpoon shoots 

across from K to Br2, so we can identify the reactive cross-sec-

tion as σ * = πR*2. This value of σ * implies that the steric factor is

P
R

d

e

d I E
= = = π −

⎛
⎝⎜

⎞
⎠⎟

σ
σ ε

* *2

2

2

0

2

4 ( )ea
 

where d = R(K) + R(Br2), the sum of the radii of the spherical 

reactants. With I = 420 kJ mol−1 (corresponding to 7.0 × 10−19 J), 

Eea ≈ 250 kJ mol−1 (corresponding to 4.2 × 10−19 J), and d = 400 

pm, we find P = 4.2, in good agreement with the experimental 

value (4.8).

Self-test 87.4 Estimate the value of P for the harpoon 

reaction between Na and Cl2 for which d ≈ 350 pm; take 

Eea ≈ 230 kJ mol−1.

Answer: 2.2

Checklist of concepts

☐ 1. In collision theory, it is supposed that the rate is pro-

portional to the collision frequency, a steric factor, and 

the fraction of collisions that occur with at least the 

kinetic energy Ea along their lines of centres.

☐ 2. The collision density is the number of collisions in 

a region of the sample in an interval of time divided 

by the volume of the region and the duration of the 

interval.

☐ 3. The activation energy is the minimum kinetic energy 

along the line of approach of reactant molecules that is 

required for reaction.

☐ 4. The steric factor is an adjustment that takes into 

account the orientational requirements for a successful 

collision.
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842 18 Reaction dynamics

Checklist of equations

Property Equation Comment Equation 
number

Collision density Z kT NAB A A B=σ μ( / ) [ ][ ]/8 1 2 2π Unlike molecules, KMT (kinetic-molecular theory) 87.3a

Z kT m NAA A A A=σ ( / ) [ ]/4 1 2 22π Like molecules, KMT 87.3d

Energy dependence of σ σ (ε) = (1 − εa/ε)σ σ  = 0 for ε < εa 87.7

Rate constant k P N kT E RT
r A e a= −σ μ( )/ / /8 1 2π KMT, collision theory 87.8
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TOPIC 88

Diffusion-controlled reactions

To consider reactions in solution we have to imagine processes 

that are entirely different from those in gases. No longer are 

there collisions of molecules hurtling together; now there is the 

jostling of one molecule through a dense but mobile collection 

of molecules making up the fluid environment.

88.1 Reaction in solution

Encounters between reactants in solution occur in a very dif-

ferent manner from encounters in gases. The encounters 

of reactant molecules dissolved in solvent are considerably 

less frequent than in a gas. However, because a molecule also 

migrates only slowly away from a location, two reactant mol-

ecules that encounter each other stay near each other for much 

longer than in a gas. This lingering of one molecule near another 

on account of the hindering presence of solvent molecules is 

called the cage effect. Such an encounter pair may accumulate 

enough energy to react even though it does not have enough 

energy to do so when it first forms. The activation energy of a 

reaction is a much more complicated quantity in solution than 

in a gas because the encounter pair is surrounded by solvent 

and we need to consider the energy of the entire local assembly 

of reactant and solvent molecules.

(a) Classes of reaction
The complicated overall process can be divided into simpler 

parts by setting up a simple kinetic scheme. We suppose that 

the rate of formation of an encounter pair AB is first-order in 

each of the reactants A and B:

A B AB A Bd+ → =v k [ ][ ]

As we shall see, kd (where the d signifies diffusion) is deter-

mined by the diffusional characteristics of A and B. The 

encounter pair can break up without reaction or it can go on to 

form products P. If we suppose that both processes are pseudo-

first-order reactions (with the solvent perhaps playing a role), 

then we can write

AB A+B ABd→ = ′v k [ ]

and

AB P ABa→ =v k [ ]

 ➤ Why do you need to know this material?
Most chemical reactions take place in solution, and it is 
important to understand what controls their rates and 
how those rates can be modified.

 ➤ What is the key idea?
There are two limiting types of chemical reaction in 
solution: diffusion control and activation control.

 ➤ What do you need to know already?
This Topic makes use of the steady-state approximation 
(Topic 86) and draws on the formulation and solution of 
the diffusion equation (Topic 81). At one point it uses the 
Stokes–Einstein relation (Topic 80).

Contents

88.1 Reaction in solution 843

(a) Classes of reaction 843

(b) Diffusion and reaction 844

Brief illustration 88.1: Diffusion control 1 844

Brief illustration 88.2: Diffusion control 2 845

88.2 The material-balance equation 845

(a) The formulation of the equation 846

(b) Solutions of the equation 846

Brief illustration 88.3: Reaction with diffusion 846

Checklist of concepts 847

Checklist of equations 847
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844 18 Reaction dynamics

The concentration of AB can now be found from the equa-

tion for the net rate of change of concentration of AB:

d AB

d
A B AB ABd d a

[ ]
[ ][ ] [ ] [ ]

t
k k k= − ′ − = 0

where we have applied the steady-state approximation 

(Topic 86). This expression solves to

[ ]
[ ][ ]

AB
A Bd

a

= + ′
k

k kd

The rate of formation of products is therefore

d P

d
AB A Ba r r

a d

a

[ ]
[ ] [ ][ ]

t
k k k

k k

k k
= = = + ′d  

(88.1)

Two limits can now be distinguished. If the rate of separation 

of the unreacted encounter pair is much slower than the rate 

at which it forms products, then ′k kd a�  and the effective rate 

constant is

k
k k

k
kr

a d

a
d= =

 
 Diffusion-controlled limit  (88.2a)

In this diffusion-controlled limit, the rate of reaction is gov-

erned by the rate at which the reactant molecules diffuse 

through the solvent. Because the combination of radicals 

involves very little activation energy, radical and atom recombi-

nation reactions are often diffusion-controlled. An activation-

controlled reaction arises when a substantial activation energy 

is involved in the reaction AB → P. Then k ka d� ′ and

k
k k

k
k Kr

a d
a=

′
=

d  
 Activation-controlled limit  (88.2b)

where K is the equilibrium constant for A + B � AB. In this 

limit, the reaction proceeds at the rate at which energy accu-

mulates in the encounter pair from the surrounding solvent. 

Some experimental data are given in Table 88.1.

(b) Diffusion and reaction
The rate of a diffusion-controlled reaction is calculated by con-

sidering the rate at which the reactants diffuse together. As 

shown in the following Justification, the rate constant for a reac-

tion in which the two molecules react if they come within a dis-

tance R* of one another is

k R DNd A= 4π *
 

(88.3)

where D is the sum of the diffusion coefficients of the two reac-

tant species in the solution.

Brief illustration 88.1 Diffusion control 1

The order of magnitude of R* is 10−7 m (100 nm) and that of D 

for a species in water is 10−9 m2 s−1. It follows from eqn 88.3 that

kd m m s m mol s≈ × × × × ≈− − − − −4 10 10 6 022 10 107 9 2 1 23 9 3 1 1π ( ) ( ) ( . )

which corresponds to 1012 dm3 mol−1 s−1. An indication that a 

reaction is diffusion-controlled is that its rate constant is of 

the order of 1012 dm3 mol−1 s−1.

Self-test 88.1 Estimate the rate constant for a diffusion-

controlled reaction in benzene (D ≈ 2 × 10−9 m2 s−1), taking 

R* ≈ 100 nm.

Answer: 1.5 × 1012 dm3 mol−1 s−1

Justification 88.1 Solution of the radial diffusion equation

The general form of the diffusion equation (Topic 81) cor-

responding to motion in three dimensions is DB∇2[B](r,t)  

= ∂[B](r,t)/∂t; therefore, the concentration of B when the 

system has reached a steady state (∂[B](r,t)]/∂t = 0) satisfies 

∇2[B](r) = 0, with the concentration of B now depending 

only on location, not time. For a spherically symmetrical 

system, ∇2 can be replaced by radial derivatives alone (see 

Table 6.1), so the equation satisfied by [B](r), as [B](r) can 

now be written, is

d B

d

d B

d

2

2

2
0

[ ]( ) [ ]( )r

r r

r

r
+ =

The general solution of this equation is

[ ]( )B r a
b

r
= +

as may be verified by substitution. We need two boundary 

conditions to pin down the values of the two constants (a and 

b). One condition is that [B](r) has its bulk value [B] as r → ∞. 

Table 88.1* Arrhenius parameters for reactions in solution

A/(dm3 mol−1 s−1) Ea/(kJ mol−1)

(CH3)3CCl solvolysis

 in water 7.1 × 1016 100

 in ethanol 3.0 × 1013 112

 in chloroform 1.4 × 104  45

CH3CH2Br + OH− in ethanol 4.3 × 1011  90

* More values are given in the Resource section.
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88 Diffusion-controlled reactions  845

We can take eqn 88.3 further by incorporating the Stokes–

Einstein equation (eqn 80.19 of Topic 80, DJ = kT/6πηRJ) relat-

ing the diffusion constant and the hydrodynamic radius RA and 

RB of each molecule in a medium of viscosity η. As this rela-

tion is approximate, little extra error is introduced if we write 

R R RA B= = 1
2 *, which leads to

k
RT

d = 8

3η  
 Diffusion-controlled rate constant  (88.5)

(The R in this equation is the gas constant.) The radii have can-

celled because, although the diffusion constants are smaller 

when the radii are large, the reactive collision radius is larger 

and the particles need travel a shorter distance to meet. In this 

approximation, the rate constant is independent of the identi-

ties of the reactants, and depends only on the temperature and 

the viscosity of the solvent.

88.2 The material-balance equation

The diffusion of reactants plays an important role in many 

chemical processes, such as the diffusion of O2 molecules 

Brief illustration 88.2 Diffusion control 2

The rate constant for the recombination of I atoms in hexane 

at 298 K, when the viscosity of the solvent is 0.326 cP (with 

1 P = 10−1 kg m−1 s−1), is

kd

JK mol K

kg m s
=

× ×
× ×

= ×
− −

− − −

8 8 3145 298

3 3 26 10
2 0 10

1 1

4 1 1
7

( . ) ( )

( . )
. mm mol s3 1 1− −

where we have used 1 J = 1 kg m2 s−2. Because 1 m3 = 103 dm3, 

this result corresponds to 2.0 × 1010 dm3 mol−1 s−1. The experi-

mental value is 1.3 × 1010 dm3 mol−1 s−1, so the agreement is very 

good considering the approximations involved.

Self-test 88.2 Evaluate a typical rate constant for a reaction 

taking place in ethanol at 20 °C, for which the viscosity is 

1.06 cP.

Answer: 6.1 × 109 dm3 mol−1 s−1

The second condition is that the concentration of B is zero at 

r = R*, the distance at which reaction occurs. It follows that 

a = [B] and b = −R*[B], and hence that (for r ≥ R*)

[ ]( )
*

[ ]B Br
R

r
= −⎛

⎝⎜
⎞
⎠⎟

1

 

(88.4)

Figure 88.1 illustrates the variation of concentration expressed 

by this equation.

The rate of reaction is the (molar) flux, J, of the reactant B 

towards A, multiplied by the area of the spherical surface of 

radius R*:

Rate of reaction= 4 2πR J*

From Fick’s first law (eqn 79.3 of Topic 79, written in the form 

J = −D∂[J]/∂x), the flux of B towards A is proportional to the 

concentration gradient, so, at a radius R*,

J D
r

r

D

R
r R

= ⎛
⎝⎜

⎞
⎠⎟

=
=

B
Bd[B]( )

d

B

*

[ ]
*

(A sign change has been introduced because we are interested 

in the flux towards decreasing values of r.) It follows that

Rate of reaction BB= 4πR D* [ ]

The rate of the diffusion-controlled reaction is equal to the 

average flow of B molecules to all the A molecules in the sam-

ple. If the bulk concentration of A is [A], the number of A mol-

ecules in the sample of volume V is NA[A]V; the global flow 

of all B to all A is therefore 4πR*DBNA[A][B]V. Because it is 

unrealistic to suppose that all A molecules are stationary, we 

replace DB by the sum of the diffusion coefficients of the two 

species and write D = DA + DB. Then the rate of change of con-

centration of AB is

d AB

d
A BA

[ ]
* [ ][ ]

t
R DN= 4π

Hence, the diffusion-controlled rate constant is as given in 

eqn 88.3.

Radius, r/R*
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B
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B
]
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Figure 88.1 The concentration profile for reaction in 
solution when a molecule B diffuses towards another 
reactant molecule and reacts if it reaches R*.
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into red blood corpuscles and the diffusion of a gas towards 

a catalyst. We can catch a glimpse of the kinds of calculations 

involved by considering the diffusion equation (Topic 81) gen-

eralized to take into account the possibility that the diffusing, 

convecting molecules are also reacting.

(a) The formulation of the equation
Consider a small volume element in a chemical reactor (or 

a biological cell). The net rate at which J molecules enter the 

region by diffusion and convection is given by eqn 81.10 of 

Topic 81, which we repeat here:

∂
∂

∂
∂

∂
∂

[ ] [ ] [ ]J J J

t
D

x x
= −

2

2
v

 
 Diffusion equation  (88.6)

where v is the velocity of flow of J. The net rate of change of 

molar concentration due to chemical reaction is
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if we suppose that J disappears by a pseudofirst-order reac-

tion. Therefore, the overall rate of change of the concentration 

of J is
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Equation 88.7 is called the material-balance equation. If the 

rate constant is large, then [J] will decline rapidly. However, if 

the diffusion constant is large, then the decline can be replen-

ished as J diffuses rapidly into the region. The convection term, 

which may represent the effects of stirring, can sweep material 

either into or out of the region according to the signs of v and 

the concentration gradient ∂[J]/∂x.

(b) Solutions of the equation
The material-balance equation is a second-order partial differ-

ential equation and is far from easy to solve in general. Some 

idea of how it is solved can be obtained by considering the 

special case in which there is no convective motion (as in an 

unstirred reaction vessel):
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∂

∂
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[ ] [ ]
[ ]

J J
Jrt

D
x

k= −
2

2
 

(88.8)

As may be verified by substitution (Problem 88.1), if the solu-

tion of this equation in the absence of reaction (that is, for 

kr = 0) is [J], then the solution [J]* in the presence of reaction 

(kr > 0) is

[ ]* [ ]J J e r= −k t
  Diffusion with reaction  (88.9)

An example of a solution of the diffusion equation in the 

absence of reaction is that given in Topic 81 (eqn 81.11) for a 

system in which initially a layer of n0NA molecules is spread 

over a plane of area A:

[ ]
( )

/

/
J

e=
−n

A Dt

x Dt
0

4

1 2

2

π  
(88.10)

When this expression is substituted into eqn 88.9, we obtain 

the concentration of J as it diffuses away from its initial sur-

face layer and undergoes reaction in the overlying solution 

(Fig. 88.2).

Material-balance 
equation (88.7)
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Figure 88.2 The concentration profiles for a diffusing, reacting 
system (for example, a column of solution) in which one 
reactant is initially in a layer at x = 0. In the absence of reaction 
(grey lines) the concentration profiles are the same as in 
Fig. 81.3.

Brief illustration 88.3 Reaction with diffusion

Suppose 1.0 g of iodine (3.9 mmol I2) is spread over a surface of 

area 5.0 cm2 under a column of hexane (D = 4.1 × 10−9 m2 s−1). 

As it diffuses upwards it reacts with a pseudofirst-order rate 

constant kr = 4.0 × 10−5 s−1. By substituting these values into

[ ]*
( )

/

/
J

e r

=
− −n

A Dt

x Dt k t
0

4

1 2

2

π

we can construct the following table:

Self-test 88.3 What is the value of [J] at 15 000 s at the same 

three locations?

Answer: 1.02, 0.92, 0.68 mol dm−3

[J]*/(mol dm−3) x

t 1 mm 5 mm 1 cm

100 s 3.72 0 0

1000 s 1.96 0.45 0.005

10 000 s 0.46 0.40 0.25
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88 Diffusion-controlled reactions  847

Even this relatively simple example has led to an equation 

that is difficult to solve, and only in some special cases can the 

full material-balance equation be solved analytically. Most 

modern work on reactor design and cell kinetics uses numeri-

cal methods to solve the equation, and detailed solutions for 

realistic environments, such as vessels of different shapes 

(which influence the boundary conditions on the solutions) 

and with a variety of inhomogeneously distributed reactants, 

can be obtained reasonably easily.

Checklist of concepts

☐ 1. A reaction in solution may be diffusion-controlled if 

its rate is controlled by the rate at which reactant mol-

ecules encounter each other in solution.

☐ 2. The rate of an activation-controlled reaction is con-

trolled by the rate at which the encounter pair accumu-

lates sufficient energy.

☐ 3. The material-balance equation relates the overall rate 

of change of the concentration of a species to its rates of 

diffusion, convection and reaction.

☐ 4. The cage effect, the lingering of one reactant molecule 

near another due to the hindering presence of solvent 

molecules, results in the formation of an encounter 

pair of reactant molecules.

Checklist of equations

Property Equation Comment Equation number

Diffusion-controlled limit kr = kd v = kd[A][B] for the encounter rate 88.2a

Activation-controlled limit kr = kaK K for A + B � AB, ka for the 
decomposition of AB to P

88.2b

Diffusion-controlled rate constant kd = 4πR*DNA D = DA + DB 88.3

kd = 8RT/3η Assumes Stokes–Einstein relation 88.5

Material-balance equation ∂[J]/∂t = D∂2[J]/∂x2 − v∂[J]/∂x − kr[J] Pseudofirst-order reaction 88.7
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TOPIC 89

Transition-state theory

In transition-state theory (which is also widely referred to as 

activated-complex theory), the notion of the transition state is 

used in conjunction with concepts of statistical thermodynam-

ics to provide a more detailed calculation of rate constants than 

that presented by collision theory (Topic 87). Transition-state 

theory has the advantage that a quantity corresponding to the 

steric factor appears automatically, and P does not need to be 

grafted on to an equation as an afterthought; it is an attempt to 

identify the principal features governing the size of a rate con-

stant in terms of a model of the events that take place during 

the reaction. There are several approaches to the calculation of 

rate constants by transition-state theory; here we present the 

simplest one.

89.1 The Eyring equation

In the course of a chemical reaction that begins with a colli-

sion between molecules of A and molecules of B, the potential 

energy of the system typically changes in the manner shown 

in Fig. 89.1. Although the illustration displays an exothermic 

reaction, a potential barrier is also common for endothermic 

reactions. As the reaction event proceeds, A and B come into 

contact, distort, and begin to exchange or discard atoms.

(a) The formulation of the equation
The reaction coordinate is a representation of the atomic dis-

placements, such as changes in interatomic distances and bond 

angles, that are directly involved in the formation of products 

from reactants. The potential energy rises to a maximum and 

 ➤ Why do you need to know this material?

Transition-state theory provides a way to relate the rate 
constant of reactions to models of the cluster of atoms whose 
formation is proposed when reactants come together. It 
provides a link between information about the structures of 
reactants and the rate constant for their reaction.

 ➤ What is the key idea?
Reactants come together to form an activated complex 
that decays into products.

 ➤ What do you need to know already?
This Topic makes use of two strands: one is the relation 
between equilibrium constants and partition functions 

Contents

89.1 The Eyring equation 848

(a) The formulation of the equation 848

(b) The rate of decay of the activated complex 848

Brief illustration 89.1: The decay rate 850

(c) The concentration of the activated complex 850

Brief illustration 89.2: The discarded mode 850

(d) The rate constant 851

Example 89.1: Analysing the collision  

of structureless particles 851

(e) Observation and manipulation of the activated 
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Brief illustration 89.3: Femtosecond analysis 852

89.2 Thermodynamic aspects 853

(a) Activation parameters 853

Brief illustration 89.4: Activation parameters 854

(b) Reactions between ions 854

Example 89.2: Analysing the kinetic salt effect 855

Checklist of concepts 856
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(Topic 74); the other is the relation between equilibrium 
constants and thermodynamic functions, such as the 
Gibbs energy, enthalpy, and entropy of reaction (Topic 73). 
You need to be aware of the Arrhenius equation for the 
temperature dependence of the rate constant (Topic 85).
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89 Transition-state theory  849

the cluster of atoms that corresponds to the region close to the 

maximum is called the activated complex. After the maximum, 

the potential energy falls as the atoms rearrange in the cluster 

and reaches a value characteristic of the products. The climax 

of the reaction is at the peak of the potential energy, which can 

be identified with the activation energy Ea; however, as in col-

lision theory, this identification should be regarded as approxi-

mate. Here two reactant molecules have come to such a degree 

of closeness and distortion that a small further distortion will 

send them in the direction of products. This crucial configu-

ration is called the transition state of the reaction. Although 

some molecules entering the transition state might revert 

to reactants, if they pass through this configuration then it is 

inevitable that products will emerge from the encounter. (This 

point is developed in more detail in the discussion of potential 

energy surfaces in Topic 90.)

A note on good practice The terms activated complex and 

transition state are often used as synonyms; however, it is best 

to preserve the distinction, with the former referring to the 

cluster of atoms and the latter to their critical configuration.

Transition-state theory pictures a reaction between A and B 

as proceeding through the formation of an activated complex, 

C‡, in a rapid pre-equilibrium (Fig. 89.2):

A B C C

A B

+ � ‡ ‡ ‡

K
p p

p p
=

<

 
(89.1)

where we have replaced the activity of each species by p/p<. 

When we express the partial pressures, pJ, in terms of the molar 

concentrations, [J], by using pJ = RT[J], the concentration of 

activated complex is related to the (dimensionless) equilibrium 

constant by

[ ] [ ][ ]C A B‡ ‡= RT

p
K

<

 

(89.2)

The activated complex falls apart by unimolecular decay into 

products, P, with a rate constant k‡:

C P C‡ ‡ ‡→ =v k [ ]
 

(89.3)

It follows that

v= =k k
RT

p
k Kr rA B[ ][ ]

<
‡ ‡

 

(89.4)

Our task is to calculate the unimolecular rate constant k‡ and 

the equilibrium constant K‡.

(b) The rate of decay of the activated 
complex
An activated complex can form products if it passes through 

the transition state. As the reactant molecules approach the 

activated complex region, some bonds are forming and short-

ening while others are lengthening and breaking; therefore, 

along the reaction coordinate, there is a vibration-like motion 

of the atoms in the activated complex. If this motion occurs 

with a frequency ν‡, then the frequency with which the clus-

ter of atoms forming the complex approaches the transition 

state is also ν‡. However, it is possible that not every oscillation 

along the reaction coordinate takes the complex through the 

transition state. For instance, the centrifugal effect of rotations 

might also be an important contribution to the break-up of the 

complex, and in some cases the complex might be rotating too 

slowly, or rotating rapidly but about the wrong axis. Therefore, 

we suppose that the rate of passage of the complex through the 

transition state is proportional to the vibrational frequency 

along the reaction coordinate, and write

k‡ ‡=κ �  (89.5)
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Figure 89.1 A potential energy profile for an exothermic 
reaction. The height of the barrier between the reactants and 
products is the activation energy of the reaction.
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Figure 89.2 A reaction profile (for an exothermic reaction). The 
horizontal axis is the reaction coordinate, and the vertical axis is 
potential energy. The activated complex is the region near the 
potential maximum, and the transition state corresponds to 
the maximum itself.
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850 18 Reaction dynamics

where κ (kappa) is the transmission coefficient. In the absence 

of information to the contrary, κ is assumed to be about 1.

(c) The concentration of the activated 
complex
Topic 74 explains how to calculate equilibrium constants from 

structural data. Equation 74.4 of that Topic (K in terms of the 

standard molar partition functions q J
<) can be used directly, 

which in this case gives

K
N

E RT‡ ‡= A C

A B

/e
q

q q

<

< <
−Δ 0

 

(89.6)

with

ΔE E E E0 0 0 0= ( ) ( ) ( )C A B‡ − −
 

(89.7)

Note that the units of NA and the q J
<  are mol−1, so K‡ is dimen-

sionless (as is appropriate for an equilibrium constant).

In the final step of this part of the calculation, we focus atten-

tion on the partition function of the activated complex. We 

have already assumed that a vibration of the activated complex 

C‡ tips it through the transition state. The partition function for 

this vibration is (see eqn 52.15 of Topic 52, which is essentially 

the following)

q =
− −

1

1 e /h kT�‡

 

where ν‡ is its frequency (the same frequency that determines 

k‡). This frequency is much lower than for an ordinary molecu-

lar vibration because the oscillation corresponds to the com-

plex falling apart (Fig. 89.3), so the force constant is very low. 

Therefore, provided that hν‡/kT � 1, the exponential may be 

expanded and the partition function reduces to

q =
− − +

≈1

1 1 h kT

kT

h� �‡ ‡/ �( )
 

We can therefore write

q q
C C‡ ‡‡
< = kT

h�  
(89.8)

where qC‡  denotes the partition function for all the other modes 

of the complex. The constant K‡ is therefore

K
kT

h
K K

N
E RT‡

‡
‡ ‡ ‡= =

�
A C

A B

/e
q

q q

<

< <
−Δ 0

 

(89.9)

with K ‡  a kind of equilibrium constant, but with one vibra-

tional mode of C‡ discarded.

Brief illustration 89.1 The decay rate

Typical molecular vibration wavenumbers of small molecules 

(Topic 44) occur at wavenumbers of the order of 103 cm−1 (C–H 

bends, for example, occur in the range 1340–1465 cm−1) and 

therefore at frequencies of the order of 1013 Hz. If we suppose 

that the loosely bound cluster vibrates at one or two orders of 

magnitude lower frequency, then ν‡ ≈ 1011 − 1012 Hz. These fig-

ures suggest that k‡ ≈ 1011 − 1012 s−1, with κ perhaps reducing 

that value further.

Self-test 89.1 Estimate the change in ν‡ that would occur if 
1H is replaced by 2H in a CeH group at the site of reaction. 

Assume that the C atom is immobile.
Answer: ν‡ → ν‡/21/2

Brief illustration 89.2 The discarded mode

Consider the case of two structureless particles A and B col-

liding to give an activated complex that resembles a diatomic 

molecule. The activated complex is a diatomic cluster. It has 

one vibrational mode, but that mode corresponds to motion 

along the reaction coordinate and therefore does not appear 

Vibrational
levels
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Reaction coordinate

Figure 89.3 In an elementary depiction of the activated 
complex close to the transition state, there is a broad, 
shallow dip in the potential energy surface along the 
reaction coordinate. The complex vibrates harmonically and 
almost classically in this well. However, this depiction is an 
oversimplification, for in many cases there is no dip at the 
top of the barrier, and the curvature of the potential energy, 
and therefore the force constant, is negative. Formally, the 
vibrational frequency is then imaginary. We ignore this 
problem here.
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89 Transition-state theory  851

(d) The rate constant
We can now combine all the parts of the calculation into

k
RT

p
k K

kT

h

RT

p
Kr =

< <
‡ ‡ ‡

‡
‡=κ�

�
 

At this stage the unknown frequencies ν‡ (in blue) cancel, and, 

after writing K KRT pc
‡ ‡= ( ) ,/ <  we obtain the Eyring equation:

k
kT

h
Kr =κ c

‡

 
 Eyring equation  (89.10)

The factor Kc
‡  is given by eqn 89.9 and the definition 

K KRT pc
‡ ‡= ( )/ <  in terms of the partition functions of A, B, and 

C‡, so in principle we now have an explicit expression for the 

second-order rate constant for a bimolecular reaction in terms 

of the molecular parameters for the reactants and the activated 

complex, and the quantity κ.

The partition functions for the reactants can normally be 

calculated quite readily using either spectroscopic information 

about their energy levels or the approximate expressions set out 

in Topic 52. The difficulty with the Eyring equation, however, 

lies in the calculation of the partition function of the activated 

complex: C‡ is difficult to investigate spectroscopically (but see 

the following section), and in general we need to make assump-

tions about its size, shape, and structure. We shall illustrate 

what is involved in one simple but significant case.

in q
C‡
<. It follows that the standard molar partition function 

of the activated complex has only rotational and translational 

contributions.

Self-test 89.2 Which mode would be discarded for a reaction 

in which the activated complex is modelled as a linear tria-

tomic cluster?
Answer: Antisymmetric stretch

cluster of mass m m mC A B‡ = +  and moment of inertia I. It has 

one vibrational mode but, as explained in Brief illustration 

89.2, that mode corresponds to motion along the reaction 

coordinate. It follows that the standard molar partition func-

tion of the activated complex has only rotational and trans-

lational contributions. Expressions for the relevant partition 

functions are given by eqns 52.10 and 52.13 of Topic 52 (and 

are repeated below).

Answer The translational partition functions are

q J
m

J
J

J
/ m

<
<

<
<

= =V h

m kT
V

RT

pΛ
Λ

3 1 22( )π
=

with J = A, B, and C‡, and with m m mC A B‡ = + . The expression 

for the partition function of the activated complex is

q

q q

C
m

C

‡

‡

<
<

= 2
2 3

IkT V





R T

Λ
 

where we have used the high-temperature form of the rota-

tional partition function (Topic 52). By substituting these 

expressions into the Eyring equation, we find that the rate 

constant is

k
kT

h
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2
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The moment of inertia of a diatomic molecule of bond length r 

is μr2, where μ = mAmB/(mA + mB) is the effective mass, so after 

introducing the expressions for the thermal wavelengths and 

cancelling common terms, we find (Problem 89.3)

k N
kT

r E RT
r A

/

/e= π πκ μ
8

1 2

2 0
⎛
⎝⎜

⎞
⎠⎟

−Δ

 

Finally, by identifying κπr2 as the reactive cross-section σ*, we 

arrive at precisely the same expression as that obtained from 

simple collision theory (eqn 87.9):

k N
kT E RT

r A

/

/e= π
8

1 2

0

μ σ⎛
⎝⎜

⎞
⎠⎟

−* Δ

 

Self-test 89.3 What additional factors would be present if the 

reaction were AB + C → Products through a linear activated 

complex?

Answer: Rotation and vibration of AB, bends and symmetric  

stretch of the activated complex

Example 89.1 Analysing the collision of structureless 
particles

Consider the case of two structureless (and different) particles 

A and B colliding to give an activated complex that resembles 

a diatomic molecule, and deduce an expression for the rate 

constant of the reaction A + B → Products.

Method Because the reactants J = A, B are structureless 

‘atoms’, the only contributions to their partition functions are 

the translational terms. The activated complex is a diatomic 
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852 18 Reaction dynamics

(e) Observation and manipulation of the 
activated complex

The development of femtosecond pulsed lasers (Topic 46) has 

made it possible to make observations on species that have 

such short lifetimes that in a number of respects they resemble 

an activated complex, which often survive for only a few pico-

seconds. In a typical experiment designed to detect an activated 

complex, a femtosecond laser pulse is used to excite a mol-

ecule to a dissociative state, and then the system is exposed to 

a second femtosecond pulse at an interval after the dissociating 

pulse. The frequency of the second pulse is set at an absorp-

tion of one of the free fragmentation products, so its absorption 

is a measure of the abundance of the dissociation product. For 

example, when ICN is dissociated by the first pulse, the emer-

gence of CN from the photoactivated state can be monitored by 

watching the growth of the free CN absorption (or, more com-

monly, its laser-induced fluorescence). In this way it has been 

found that the CN signal remains zero until the fragments have 

separated by about 600 pm, which takes about 205 fs.

Some sense of the progress that has been made in the study of 

the intimate mechanism of chemical reactions can be obtained 

by considering the decay of the ion pair Na+I−. As shown in 

Fig. 89.4, excitation of the ionic species with a femtosecond 

laser pulse forms an excited state that corresponds to a cova-

lently bonded NaI molecule. The system can be described with 

two potential energy surfaces, one largely ‘ionic’ and another 

‘covalent’, which cross at an internuclear separation of 693 pm. 

A short laser pulse is composed of a wide range of frequen-

cies, which excite many vibrational states of NaI simultane-

ously. Consequently, the electronically excited complex exists 

as a superposition of states, or a localized wavepacket, which 

oscillates between the ‘covalent’ and ‘ionic’ potential energy 

surfaces, as shown in Fig. 89.4. The complex can also dissoci-

ate, shown as movement of the wavepacket toward very long 

internuclear separation along the dissociative surface. However, 

not every outward-going swing leads to dissociation because 

there is a chance that the I atom can be harpooned again, in 

which case it fails to make good its escape. The dynamics of the 

system is probed by a second laser pulse with a frequency that 

corresponds to the absorption frequency of the free Na product 

or to the frequency at which Na absorbs when it is a part of the 

complex. The latter frequency depends on the Na…I distance, 

so an absorption (in practice, a laser-induced fluorescence) is 

obtained each time the wavepacket returns to that separation.
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(ionic)

Na + I
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Figure 89.4 Excitation of the ion pair Na+I− forms an excited 
state with covalent character. Also shown is migration between 
a ‘covalent’ surface (upper curve) and an ‘ionic’ surface (lower 
curve) of the wavepacket formed by laser excitation.

Brief illustration 89.3 Femtosecond analysis

A typical set of results is shown in Fig. 89.5. The bound Na 

absorption intensity shows up as a series of pulses that recur in 

about 1 ps, showing that the wavepacket oscillates with about 

that period. The decline in intensity shows the rate at which 

the complex can dissociate as the two atoms swing away from 

each other. The free Na absorption also grows in an oscillat-

ing manner, showing the periodicity of wavepacket oscilla-

tion, each swing of which gives it a chance to dissociate. The 

precise period of the oscillation in NaI is 1.25 ps. The complex 

survives for about ten oscillations. In contrast, although the 

oscillation frequency of NaBr is similar, it barely survives one 

oscillation.

Self-test 89.4 Confirm the assumption in transition-state 

theory that the vibrational frequency of the dissociative mode 

of the activated complex is very low by calculating the vibra-

tional wavenumber corresponding to the 1.25 ps period of 

oscillation in NaI.
Answer: 27 cm−1

Free Na
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Figure 89.5 Femtosecond spectroscopic results for the 
reaction in which sodium iodide separates into Na and I. The 
lower curve is the absorption of the electronically excited 
complex and the upper curve is the absorption of free Na 
atoms. (Adapted from A.H. Zewail, Science 242, 1645 (1988).)
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89 Transition-state theory  853

Femtosecond spectroscopy has also been used to exam-

ine analogues of the activated complex involved in bimolecu-

lar reactions. Thus, a molecular beam can be used to produce 

a van der Waals molecule (Topic 90), such as IH…OCO. The 

HI bond can be dissociated by a femtosecond pulse, and the H 

atom is ejected towards the O atom of the neighbouring CO2 

molecule to form HOCO. Hence, the van der Waals molecule 

is a source of a species that resembles the activated complex of 

the reaction

H CO HOCO HO CO2+ →[ ]‡ → +
 

The probe pulse is tuned to the OH radical, which enables the 

evolution of [HOCO]‡ to be studied in real time.

The techniques used for the spectroscopic detection of 

transition states can also be used to control the outcome of a 

chemical reaction by direct manipulation of the transition 

state. Consider the reaction I2 + Xe → XeI* + I, which occurs by 

a harpoon mechanism with a transition state denoted as [Xe+…

I−…I]. The reaction can be initiated by exciting I2 to an elec-

tronic state at least 52 460 cm−1 above the ground state and then 

followed by measuring the time dependence of the chemilumi-

nescence of XeI*. To exert control over the yield of the product, 

a pair of femtosecond pulses can be used to induce the reac-

tion. The first pulse excites the I2 molecule to a low-energy and 

unreactive electronic state. We already know that excitation by 

a femtosecond pulse generates a wavepacket that can be treated 

as a particle travelling across the potential energy surface. In 

this case, the wavepacket does not have enough energy to react, 

but excitation by another laser pulse with the appropriate wave-

length can provide the necessary additional energy. It follows 

that activated complexes with different geometries can be pre-

pared by varying the time delay between the two pulses, as the 

partially localized wavepacket will be at different locations on 

the potential energy surface as it evolves after being formed 

by the first pulse. Because the reaction occurs by the harpoon 

mechanism, the product yield expected to be optimal if the sec-

ond pulse is applied when the wavepacket is at a point where 

the Xe…I2 distance is just right for electron transfer from Xe to 

I2 to occur. This type of control of the I2 + Xe reaction has been 

demonstrated.

89.2 Thermodynamic aspects

The statistical thermodynamic version of transition-state the-

ory rapidly runs into difficulties because only in some cases is 

anything known about the structure of the activated complex. 

However, the concepts that it introduces, principally that of an 

equilibrium between the reactants and the activated complex, 

have motivated a more general, empirical approach in which 

the activation process is expressed in terms of thermodynamic 

functions.

(a) Activation parameters
If we accept that K ‡ is an equilibrium constant (despite one 

mode of C‡ having been discarded), we can express it in terms 

of a Gibbs energy of activation, Δ‡G, through the definition

Δ = −‡ ‡G RT Kln
 

All the Δ‡X in this section are standard thermodynamic quan-

tities, Δ‡X<, but we shall omit the standard state sign to avoid 

overburdening the notation. Then the rate constant becomes

k
kT

h

RT

p
G RT

r
/e=κ

<
−Δ‡

 

(89.12)

Because G = H–TS, the Gibbs energy of activation can be 

divided into an entropy of activation, Δ‡S, and an enthalpy of 

activation, Δ‡H, by writing

Δ =Δ − Δ‡ ‡ ‡G H T S
 

When eqn 89.13 is used in eqn 89.12 and κ is absorbed into the 

entropy term, we obtain

k B B
kT

h

RT

p
S R H RT

r
/e e= =Δ −Δ‡ ‡ /

<

 

(89.14)

The formal definition of activation energy (eqn 85.3 of Topic 

85, Ea = RT2(d ln kr/dT)) then gives Ea = Δ‡H + 2RT, so1

k B S R E RT
r

/ /e e e a= Δ2 ‡ −
 

(89.15a)

from which it follows that the Arrhenius factor A can be identi-

fied as

A B S R= Δe e /2 ‡

 Transition-state theory  A-factor  (89.15b)

The entropy of activation is negative because throughout the 

system reactant species are combining to form reactive pairs. 

However, if there is a reduction in entropy below what would 

be expected for the simple encounter of A and B, then the 

Arrhenius factor A will be smaller than that expected on the 

basis of simple collision theory. Indeed, we can identify that 

additional reduction in entropy, Δ‡Ssteric, as the origin of the 

steric factor of collision theory, and write

P S R= Δe steric
‡ /

 Transition-state theory  P-factor  (89.15c)

1 For reactions of the type A + B → P in the gas phase, Ea = Δ‡H + 2RT. For 

such reactions in solution, Ea = Δ‡H + RT.

Definition  
Gibbs 
energy of 
activation

 (89.11)

Definition 
Entropy and 
enthalpy of 
activation

 (89.13)
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854 18 Reaction dynamics

Thus, the more complex the steric requirements of the encoun-

ter, the more negative the value of Δ‡Ssteric, and the smaller the 

value of P.

Gibbs energies, enthalpies, entropies, volumes, and heat 

capacities of activation are widely used to report experimen-

tal reaction rates, especially for organic reactions in solution. 

They are encountered when relationships between equilibrium 

constants and rates of reaction are explored using correlation 

analysis, in which ln K (which is equal to –ΔrG
</RT) is plot-

ted against ln kr (which is proportional to –Δ‡G/RT). In many 

cases the correlation is linear, signifying that, as the reaction 

becomes thermodynamically more favourable, its rate constant 

increases (Fig. 89.6). This linear correlation is the origin of the 

alternative name linear free energy relation (LFER).

(b) Reactions between ions
The thermodynamic version of transition-state theory simpli-

fies the discussion of reactions in solution. The statistical ther-

modynamic theory is very complicated to apply because the 

solvent plays a role in the activated complex. In the thermody-

namic approach we combine the rate law

d P

d
C

[ ]
[ ]

t
k= ‡ ‡

 

with the thermodynamic equilibrium constant

K
a

a a
K

c
K= =C

A B

C

A B

C

A B

‡ ‡
‡

= γ γ
γ

γ γ
[ ]

[ ][ ]

<

 

Then

d P

d
A Br r

[ ]
[ ][ ]

t
k k

k K

K c
= =

‡

γ
<

 

(89.16a)

If kr
�  is the rate constant when the activity coefficients are 1 

(that is, k k K cr /� = ‡ <), we can write

k
K

k k K
k

r r r
r log= = −
�

�

γ
γlog log

 

(89.16b)

At low concentrations the activity coefficients can be 

expressed in terms of the ionic strength, I, of the solution by 

using the Debye–Hückel limiting law (Topic 72, particularly 

eqn 72.26, log γ±  =  –A|z+z−|I1/2). However, we need the expres-

sions for the individual ions rather than the mean value, and so 

write log J J
1/2γ = −Az I2  and

log logA A
2 1/2

B B
2 1/2γ γ= − = −Az I Az I

 
(89.17a)

with A = 0.509 in aqueous solution at 298 K and zA and zB the 

charge numbers of A and B, respectively. Because the activated 

complex forms from reaction of one of the ions of A with one 

of the ions of B, the charge number of the activated complex is 

zA + zB, where zJ is positive for cations and negative for anions. 

Therefore

log C A B
2 1/2γ ‡ = − +A z z I( )

 
(89.17b)

Brief illustration 89.4 Activation parameters

The reaction of propylxanthate ion in acetic acid buffer solutions 

can be represented by the equation A− + H+ → P. Near 30 °C, 

A = 2.05 × 1013 dm3 mol−1 s−1. To evaluate the entropy of activa-

tion at 30 °C we first note that because the reaction is in solution 

the e2 of eqn 89.15 should be replaced by e (see footnote 1 on the 

previous page), and then use eqn 89.15b in the form

Δ = = = ×‡S R
A

B
B

kT

h

RT

p
ln .

e
with dm mol s

<
1 592 1014 3 1 1− −

Therefore,

Δ
×

‡S R R=
× ×( ) =

− −

− −
ln

.

.
ln .

2 05 10

1 592 10
0

13 3 1 1

14 3 1 1

dm mol s

e dm mol s
0047

25 4 1 1

…

= − −− . J K mol

Self-test 89.5 The reaction A− + H+ → P in solution has 

A = 6.92 × 1012 dm3 mol−1 s−1. Evaluate the entropy of activation 

at 25 °C.

Answer: −34.1 J K−1 mol−1

Δ‡G(A)

Δ‡G(B)

ΔrG
<(B)

ΔrG
<(A)

G
ib

b
s 

en
er

g
y,

 G

Reaction coordinate

Figure 89.6 For a related pair of reactions (denoted A and B), 
the reaction with the larger (more negative) standard reaction 
Gibbs energy (B) has a lower activation barrier and therefore 
larger rate constant. This approximate linear correlation 
between Δ‡G and ΔrG

< is the origin of linear free energy 
relations.
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89 Transition-state theory  855

Inserting these relations into eqn 89.16b results in

log log ( )

log 2

r r A
2

B
2

A B
2 1/2

r A B
1/2

k k A z z z z I

k Az z I

= − +
= +

�

�

− +{ }

 

(89.18)

Equation 89.18 expresses the kinetic salt effect, the vari-

ation of the rate constant of a reaction between ions with the 

ionic strength of the solution (Fig. 89.7). If the reactant ions 

have the same sign (as in a reaction between cations or between 

anions), then increasing the ionic strength by the addition of 

inert ions increases the rate constant. The formation of a single, 

highly charged ionic complex from two less highly charged ions 

is favoured by a high ionic strength because the new ion has 

a denser ionic atmosphere and interacts with that atmosphere 

more strongly. Conversely, ions of opposite charge react more 

slowly in solutions of high ionic strength. Now the charges can-

cel and the complex has a less favourable interaction with its 

atmosphere than the separated ions.

or

2+ 2+

2+

2+ +

+

+

+

+

+

–

–
2–2–

0

0

lo
g

(k
r/k

r°
)

0.6

0.4

0.2

0.2

0

0

–0.2

–0.4
0.1 I1/2

Figure 89.7 Experimental tests of the kinetic salt effect for 
reactions in water at 298 K. The ion types are shown as spheres, 
and the slopes of the lines are those given by the Debye–
Hückel limiting law and eqn 89.18.

Method According to eqn 89.18, a plot of log( )k kr r/ �  against 

I1/2 will have a slope of 1.02zAzB, from which we can infer the 

charges of the ions involved in the formation of the activated 

complex.

Answer Form the following table:

These points are plotted in Fig. 89.8. The slope of the (least-

squares) straight line is –2.04, indicating that zAzB = –2. 

Because zA = –1 for the OH− ion, if that ion is involved in the 

formation of the activated complex, then the charge num-

ber of the second ion is +2. This analysis suggests that the 

pentaamminebromidocobalt(III) cation, [CoBr(NH3)5]
2+, par-

ticipates in the formation of the activated complex and that 

the charge of the activated complex is –1 + 2 = +1. Although we 

do not pursue the point here, you should be aware that the rate 

constant is also influenced by the relative permittivity of the 

medium.

Self-test 89.6 An ion of charge number +1 is known to be 

involved in the activated complex of a reaction. Deduce the 

charge number of the other ion from the following data:

Answer: –1

0 0.1 0.2
I1/2

0

–0.1

–0.2

–0.3

lo
g

(k
r/k

r°
)

Figure 89.8 The experimental ionic strength dependence 
of the rate constant of a hydrolysis reaction: the slope 
gives information about the charge types involved in 
the activated complex of the rate-determining step. See 
Example 89.2.

I 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300

k kr r/ �
0.930 0.902 0.884 0.867 0.853 0.841

I 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300

I1/2 0.071 0.100 0.122 0.141 0.158 0.173

log( )k kr r/ ° −0.14 −0.20 −0.25 −0.29 −0.32 −0.35

Example 89.2 Analysing the kinetic salt effect

The rate constant for the base (OH−) hydrolysis of [CoBr(NH3)5]
2+ 

varies with ionic strength as tabulated below. What can be 

deduced about the charge of the activated complex in the rate-

determining stage? We cannot assume without more evidence 

that it is a bimolecular process with an activated complex of 

charge +1.

I 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300

k kr r/ �
0.718 0.631 0.562 0.515 0.475 0.447
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Checklist of concepts

☐ 1. In transition-state theory, it is supposed that an acti-

vated complex is in equilibrium with the reactants.

☐ 2. The rate at which the activated complex forms products 

depends on the rate at which it passes through a transi-

tion state.

☐ 3. The rate constant may be parameterized in terms of the 

Gibbs energy, entropy, and enthalpy of activation.

☐ 4. The kinetic salt effect is the effect of an added inert salt 

on the rate of a reaction between ions.

Checklist of equations

Property Equation Comment Equation number

‘Equilibrium constant’ for activated  
complex formation

K N E RT‡
‡= −( )A C A B

// eq q q< < < Δ 0 Assume equilibrium; one vibrational  
mode of C‡ discarded

89.9

Eyring equation k kT h Kr /=κ ( ) c
‡ Transition-state theory 89.10

Gibbs energy of activation Δ‡ ‡G RT K= − ln Definition 89.11

Enthalpy and entropy of activation Δ Δ Δ‡ ‡ ‡G H T S= − Definition 89.13

Parameterization k Bn S R E RT
r

/ /e e e a= −Δ‡
n = 2 for gas-phase reactions;  

n = 1 for solution
89.15a

A-factor A Bn S R= e e /Δ‡
89.15b

P-factor P S R= e steric /Δ‡
89.15c

Kinetic salt effect log log 2r r A B
1/2k k Az z I= +° Assumes Debye–Hückel limiting law valid 89.18
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TOPIC 90

The dynamics of  

molecular collisions

The investigation of the dynamics of the collisions between 

reactant molecules is the most detailed level of the examination 

of the factors that govern the rates of reactions.

90.1 Molecular beams

Molecular beams, which consist of collimated, narrow streams 

of molecules travelling through an evacuated vessel, allow us to 

study collisions between molecules in preselected energy states 

(for example, specific rotational and vibrational states), and can 

be used to determine the states of the products of a reactive col-

lision. Information of this kind is essential if a full picture of the 

reaction is to be built, because the rate constant is an average 

over events in which reactants in different initial states evolve 

into products in their final states.

(a) Techniques
The basic arrangement for a molecular beam experiment is 

shown in Fig. 90.1. If the pressure of vapour in the source is 

increased so that the mean free path of the molecules in the 

emerging beam is much shorter than the diameter of the pin-

hole, many collisions take place even outside the source. The 

net effect of these collisions, which give rise to hydrodynamic 

flow, is to transfer momentum into the direction of the beam. 

The molecules in the beam then travel with very similar speeds, 

Contents
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(b) Experimental results 858

Brief illustration 90.1: The role of the impact parameter 859

90.2 Reactive collisions 860

(a) Probes of reactive collisions 860

(b) State-to-state reaction dynamics 861

Brief illustration 90.2: The state-to-state rate constant 861
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90.4 Some results from experiments and calculations 863

(a) The direction of attack and separation 864

Brief illustration 90.4: The angular product  

distribution 864

(b) Attractive and repulsive surfaces 864

Brief illustration 90.5: Attractive and repulsive surfaces 865

(c) Classical trajectories 865

Brief illustration 90.6: The complex mode process 866

(d) Quantum mechanical scattering theory 866

Example 90.1: Deriving the collision-theory  

rate constant 867

Checklist of concepts 867
Checklist of equations 868

 ➤ What do you need to know already?
This Topic builds on the concept of rate constant (Topic 82) 
and in one part of the discussion uses the concept of partition 
function (Topic 52). The discussion of potential energy 
surfaces is qualitative, but the underlying calculations are 
those of self-consistent field theory (Topic 27). You should 
also be familiar with the concepts of rotational states (Topic 
14) and vibrational states (Topic 12).

 ➤ Why do you need to know this material?
Chemists are interested in the details of chemical reactions, 
and there is no more detailed approach than that involved in 
the study of the dynamics of reactive encounters, when one 
molecule collides with another and atoms exchange partners.

 ➤ What is the key idea?
The rates of reactions in the gas phase can be investigated 
by exploring the trajectories of molecules on potential 
energy surfaces.
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858 18 Reaction dynamics

so further downstream few collisions take place between them. 

This condition is called molecular flow. Because the spread in 

speeds is so small, the molecules are effectively in a state of 

very low translational temperature (Fig. 90.2). The transla-

tional temperature may reach as low as 1 K. Such jets are called 

supersonic because the average speed of the molecules in the 

jet is much greater than the speed of sound in the jet.

A supersonic jet can be converted into a more parallel super-

sonic beam if it is ‘skimmed’ in the region of hydrodynamic 

flow and the excess gas is pumped away. A skimmer consists 

of a conical nozzle shaped to avoid any supersonic shock waves 

spreading back into the gas and so increasing the translational 

temperature (Fig. 90.3). A jet or beam may also be formed by 

using helium or neon as the principal gas, and injecting mol-

ecules of interest into it in the hydrodynamic region of flow.

The low translational temperature of the molecules is reflected 

in the low rotational and vibrational temperatures of the mol-

ecules. In this context, a rotational or vibrational temperature 

means the temperature that should be used in the Boltzmann 

distribution to reproduce the observed populations of the 

states. However, as rotational modes equilibrate more slowly, 

and vibrational modes equilibrate even more slowly, the rota-

tional and vibrational populations of the species correspond to 

somewhat higher temperatures, of the order of 10 K for rotation 

and 100 K for vibrations.

The target gas may be either a bulk sample or another molecu-

lar beam. The detectors may consist of a chamber fitted with a 

sensitive pressure gauge, a bolometer (a detector that responds 

to the incident energy by making use of the temperature depend-

ence of resistance), or an ionization detector, in which the incom-

ing molecule is first ionized and then detected electronically. The 

state of the scattered molecules may also be determined spec-

troscopically, and is of interest when the collisions change their 

vibrational or rotational states.

(b) Experimental results
The primary experimental information from a molecular beam 

experiment is the fraction of the molecules in the incident 

beam that are scattered into a particular direction. The fraction 

is normally expressed in terms of dI, the rate at which mole-

cules are scattered into a cone (described by a solid angle dΩ ) 

that represents the area covered by the ‘eye’ of the detector (Fig. 

90.4). This rate is reported as the differential scattering cross-

section, σd, the constant of proportionality between the value 

of dI and the intensity, I, of the incident beam, the number den-

sity of target molecules, N, and the infinitesimal path length, 

dx, through the sample:

d ddI I x=σ N

dΩ

θ

Figure 90.4 The definition of the solid angle, dΩ, for scattering.

(90.1)
Rate of molecular scattering in terms of 
the differential scattering cross-section

Source
Selector

Detector

Figure 90.1 The basic arrangement of a molecular beam 
apparatus. The atoms or molecules emerge from a heated 
source, and pass through the velocity selector, a rotating series 
of slotted discs. Molecules emerging from the source travel in a 
beam towards the rotating slits. Only if the speed of a molecule 
is such as to carry it along the succession of slits that rotate 
into its path will it collide with the target gas molecules. The 
scattering occurs from the target gas molecules (which might 
form another beam), and the flux of particles entering the 
detector set at some angle is recorded.

Molecular speed

In
te

n
si

ty

Maxwell–Boltzmann
distribution Supersonic

nozzle

Figure 90.2 The shift in the mean speed and the width of the 
distribution brought about by use of a supersonic nozzle.

Gas flow

Pinhole

Oven Skimmer

Collimator

Figure 90.3 A supersonic nozzle skims off some of the molecules 
of the beam and leads to a beam with well-defined velocity.
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90 The dynamics of molecular collisions  859

The value of σd (which has the dimensions of area) depends 

on the impact parameter, b, the initial perpendicular separa-

tion of the paths of the colliding molecules (Fig. 90.5), and the 

details of the intermolecular potential.

The scattering pattern of real molecules, which are not hard 

spheres, depends on the details of the intermolecular potential, 

including the anisotropy (the dependence on relative orienta-

tion) that is present when the molecules are not spherical. The 

scattering also depends on the relative speed of approach of the 

two particles: a very fast particle might pass through the inter-

action region without much deflection, whereas a slower one 

on the same path might be temporarily captured and undergo 

considerable deflection (Fig. 90.7). The variation of the scat-

tering cross-section with the relative speed of approach should 

therefore give information about the strength and range of the 

intermolecular potential.

A further point is that the outcome of collisions is deter-

mined by quantum, not classical, mechanics. The wave nature 

of the particles can be taken into account, at least to some 

extent, by drawing all classical trajectories that take the projec-

tile particle from source to detector, and then considering the 

effects of interference between them.

Two quantum mechanical effects are of great importance. A 

particle with a certain impact parameter might approach the 

attractive region of the potential in such a way that the particle 

is deflected towards the repulsive core (Fig. 90.8), which then 

repels it out through the attractive region to continue its flight 

in the forward direction. Some molecules, however, also travel 

in the forward direction because they have impact parameters 

so large that they are undeflected. The wavefunctions of the 

b

Figure 90.5 The definition of the impact parameter, b, as the 
perpendicular separation of the initial paths of the particles.

Slow
molecule

Fast
molecule

Figure 90.7 The extent of scattering may depend on the 
relative speed of approach as well as the impact parameter. The 
dark central zone represents the repulsive core; the fuzzy outer 
zone represents the long-range attractive potential.

Brief illustration 90.1 The role of the impact parameter

The role of the impact parameter is most easily seen by con-

sidering the impact of two hard spheres (Fig. 90.6). If b = 0, 

the lighter projectile is on a trajectory that leads to a head-on 

collision, so the only scattering intensity is detected when the 

detector is at θ = π. When the impact parameter is so great 

that the spheres do not make contact (b > RA + RB), there is no 

scattering and the scattering cross-section is zero at all angles 

except θ = 0. Glancing blows, with 0 < b < RA + RB, lead to scat-

tering intensity in cones around the forward direction.

Self-test 90.1 What is the scattering angle for identical hard 

spheres of radius R when b = R?

Answer: 45°

RA RB

b > RA + RB

b = 0

0 < b < RA + RB

(a) (b)

(c)

Figure 90.6 Three typical cases for the collisions of two 
hard spheres: (a) b = 0, giving backward scattering; (b) 
b > RA + RB, giving forward scattering; (c) 0 < b < RA + RB, 
leading to scattering into one direction on a ring of 
possibilities. (The target molecule is taken to be so heavy 
that it remains virtually stationary.)

Interfering
paths

Figure 90.8 Two paths leading to the same destination will 
interfere quantum mechanically; in this case they give rise to 
quantum oscillations in the forward direction.
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particles that take the two types of path interfere, and the inten-

sity in the forward direction is modified. The effect is called 

quantum oscillation. The same phenomenon accounts for the 

optical ‘glory effect’, in which a bright halo can sometimes be 

seen surrounding an illuminated object. (The coloured rings 

around the shadow of an aircraft cast on clouds by the Sun, and 

often seen in flight, are an example of an optical glory.)

The second quantum effect we need consider is the observa-

tion of a strongly enhanced scattering in a non-forward direc-

tion. This effect is called rainbow scattering because the same 

mechanism accounts for the appearance of an optical rainbow. 

The origin of the phenomenon is illustrated in Fig. 90.9. As the 

impact parameter decreases, there comes a stage at which the 

scattering angle passes through a maximum and the interfer-

ence between the paths results in a strongly scattered beam. 

The rainbow angle, θr , is the angle for which dθ/db = 0 and the 

scattering is strong.

Another phenomenon that can occur in certain beams is the 

capturing of one species by another. The vibrational tempera-

ture in supersonic beams is so low that van der Waals mole-

cules may be formed, which are complexes of the form AB in 

which A and B are held together by van der Waals forces or 

hydrogen bonds. Large numbers of such molecules have been 

studied spectroscopically, including ArHCl, (HCl)2, ArCO2, 

and (H2O)2. More recently, van der Waals clusters of water mol-

ecules have been pursued as far as (H2O)6. The study of their 

spectroscopic properties gives detailed information about the 

intermolecular potentials involved.

90.2 Reactive collisions

Detailed experimental information about the intimate processes 

that occur during reactive encounters comes from molecular 

beams, especially crossed molecular beams (Fig. 90.10). The 

detector for the products of the collision of two beams can be 

moved to different angles, so the angular distribution of the 

products can be determined. Because the molecules in the 

incoming beams can be prepared with different energies (for 

example, with different translational energies by using rotating 

sectors and supersonic nozzles, with different vibrational ener-

gies by using selective excitation with lasers, and with different 

orientations by using electric fields), it is possible to study the 

dependence of the success of collisions on these variables and 

to study how they affect the properties of the emerging product 

molecules.

(a) Probes of reactive collisions
One method for examining the energy distribution in the 

products is infrared chemiluminescence, in which vibra-

tionally excited molecules emit infrared radiation as they 

return to their ground states. By studying the intensities of 

the infrared emission spectrum, the populations of the vibra-

tional states of the products may be determined (Fig. 90.11). 

Another method makes use of laser-induced fluorescence. 

In this technique, a laser is used to excite a product molecule 

from a specific vibration–rotation level; the intensity of the 

fluorescence from the upper state is monitored and inter-

preted in terms of the population of the initial vibration–

rotation state of the product.

When the molecules being studied do not fluoresce effi-

ciently, versions of Raman spectroscopy (Topic 40) can be used 

to monitor the progress of reaction. Multiphoton ionization 

(MPI) techniques are also good alternatives for the study of 

weakly fluorescing molecules. In MPI, the absorption by a mol-

ecule of several photons from one or more pulsed lasers results 

in ionization if the total photon energy is greater than the ioni-

zation energy of the molecule.

Decreasing b

Maximum deflection angle, θr

Figure 90.9 The interference of paths leading to rainbow 
scattering. The rainbow angle, θr , is the maximum scattering 
angle reached as b is decreased. Interference between 
the numerous paths at that angle modifies the scattering 
intensity markedly.

Source 1

Source 2

Detector

Figure 90.10 In a crossed-beam experiment, state-selected 
molecules are generated in two separate sources, and are 
directed perpendicular to one another. The detector responds 
to molecules (which may be product molecules if a chemical 
reaction occurs) scattered into a chosen direction.
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The angular distribution of products can be determined by 

reaction product imaging. In this technique, product ions 

are accelerated by an electric field towards a phosphorescent 

screen and the light emitted from specific spots where the 

ions struck the screen is imaged by a charge-coupled device 

(CCD). An important variant of MPI is resonant multiphoton 

ionization (REMPI), in which one or more photons promote 

a molecule to an electronically excited state and then addi-

tional photons are used to generate ions from the excited state. 

The power of REMPI lies in the fact that the experimenter 

can choose which reactant or product to study by tuning the 

laser frequency to the electronic absorption band of a specific 

molecule.

(b) State-to-state reaction dynamics
The concept of collision cross-section is introduced in connec-

tion with collision theory in Topic 87, where it is shown that the 

second-order rate constant, kr, can be expressed as a Boltzmann-

weighted average of the reactive cross-section and the relative 

speed of approach of the colliding reactant molecules, srel. We 

shall write eqn 87.6 of that Topic ( ( ) ( ) )k N s fr A rel d= ∫
∞
0 σ ε ε ε  as

k s Nr rel A= 〈 〉σ
 (90.2)

where the angle brackets denote a Boltzmann average. 

Molecular beam studies provide a more sophisticated version of 

this quantity, for they provide the state-to-state cross-section, 

σnn′, and hence the state-to-state rate constant, knn′, for the reac-

tive transition from initial state n of the reactants to final state n′ 
of the products:

k s Nnn nn′ ′〈 〉= σ rel A  
 State-to-state rate constant  (90.3)

The rate constant kr is the sum of the state-to-state rate con-

stants over all final states (because a reaction is successful 

whatever the final state of the products) and over a Boltzmann-

weighted sum of initial states (because the reactants are initially 

present with a characteristic distribution of populations at a 

temperature T):

k k T f T
n n

nn nr =∑
,

( ) ( )
′

′

 

(90.4)

where fn(T) is the Boltzmann factor at a temperature T. It fol-

lows that if we can determine or calculate the state-to-state 

cross-sections for a wide range of approach speeds and initial 

and final states, then we have a route to the calculation of the 

rate constant for the reaction.

90.3 Potential energy surfaces

One of the most important concepts for discussing beam 

results and calculating the state-to-state collision cross-

section is the potential energy surface of a reaction, the 

potential energy as a function of the relative positions of 

all the atoms taking part in the reaction. Potential energy 

surfaces may be constructed from experimental data and 

from results of quantum chemical calculations (Topics 

27−30). The theoretical method requires the systematic 

calculation of the energies of the system in a large number 

of geometrical arrangements. Special computational tech-

niques, such as those described in Topics 29−30, are used 

to take into account electron correlation, which arises from 

Brief illustration 90.2 The state-to-state rate constant

Suppose a harmonic oscillator collides with another oscil-

lator of the same effective mass and force constant. Assume 

the state-to-state rate constant for the excitation of the latter’s 

vibration is k kvv vv′ ′= r
�δ  for all the states v and v′, where δvv′ 

is the Kronecker delta: δvv′ = 1 when v = v′ and 0 otherwise. 

It follows that an excitation can flow only from any level to 

the same level of the second oscillator. At a temperature T, 

when fv(T) = e−vhν/kT/q, where q is the molecular vibrational 

partition function (Topic 52, q = 1/(1 − e−hν/kT), the overall rate 

constant is

k
k k

kh kT h kT
r

r r
re e= = =

°
−

°
− °∑ ∑q q

q

v v

vv
v

v

v

,

/ /

′
′

′

′δ � �

� �� ��

Self-test 90.2 Now suppose that k kvv vv
v

′ ′= ° −
r eδ λ , implying that 

the transfer becomes less efficient as the vibrational quantum 

number increases. Evaluate kr.

Answer: k k h kT h kT
r r e e= − −° − − +( )/( )/ ( / )1 1n nλ

0

1

2

3

4
5
6
7v

Figure 90.11 Infrared chemiluminescence from CO produced 
in the reaction O + CS → CO + S arises from the non-equilibrium 
populations of the vibrational states of CO and the radiative 
relaxation to equilibrium.
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862 18 Reaction dynamics

instantaneous interactions between electrons as they move 

closer to and farther from each other in a molecule or molec-

ular cluster. Techniques that incorporate electron correla-

tion accurately are very time-consuming and, consequently, 

only reactions between relatively simple particles, such as 

the reactions H + H2 → H2 + H and H + H2O → OH + H2, cur-

rently are amenable to this type of theoretical treatment. An 

alternative is to use semi-empirical methods, in which results 

of calculations and experimental parameters are used to con-

struct the potential energy surface.

To illustrate the features of a potential energy surface, con-

sider the collision between an H atom and an H2 molecule. 

Detailed calculations show that the approach of an atom HA 

along the HB–HC axis requires less energy for reaction than 

any other approach, so initially we confine our attention to a 

collinear approach. Two parameters are required to define the 

nuclear separations: one is the HA–HB separation, RAB, and the 

other is the HB–HC separation, RBC.

At the start of the encounter RAB is infinite and RBC is 

the  H2 equilibrium bond length. At the end of a success-

ful reactive encounter RAB is equal to the equilibrium bond 

length and RBC is infinite. The total energy of the three-atom 

system depends on their relative separations, and can be 

found by doing an electronic structure calculation. The plot 

of the total energy of the system against RAB and RBC gives 

the potential energy surface of this collinear reaction (Fig. 

90.12). This surface is normally depicted as a contour dia-

gram (Fig. 90.13).

When RAB is very large, the variation in potential energy 

represented by the surface as RBC changes is that of an iso-

lated H2 molecule as its bond length is altered. A section 

through the surface at RAB = ∞, for example, is the same as the 

H2 bonding potential energy curve. At the edge of the dia-

gram where RBC is very large, a section through the surface 

is the molecular potential energy curve of an isolated HAHB 

molecule.

The actual path of the atoms in the course of the encoun-

ter depends on their total energy, the sum of their kinetic and 

potential energies. However, we can obtain an initial idea of the 

paths available to the system for paths that correspond to least 

potential energy. For example, consider the changes in poten-

tial energy as HA approaches HBHC. If the HB–HC bond length 

is constant during the initial approach of HA, then the potential 

energy of the H3 cluster rises along the path marked A in Fig. 

90.14. We see that the potential energy reaches a high value as 

HA is pushed into the molecule and then decreases sharply as 

HC breaks off and separates to a great distance. An alternative 

reaction path can be imagined (B) in which the HB–HC bond 

length increases while HA is still far away. Both paths, although 

feasible if the molecules have sufficient initial kinetic energy, 

take the three atoms to regions of high potential energy in the 

course of the encounter.

The path of least potential energy is the one marked C, cor-

responding to RBC lengthening as HA approaches and begins to 

Brief illustration 90.3 A potential energy surface

The bimolecular reaction H + O2 → OH + O plays an impor-

tant role in combustion processes. The reaction can be char-

acterized in terms of the HO2 potential energy surface and the 

two distances for collinear approach, RHOA
 and RO OA B

.  When 

RHOA
 is very large, the variation of the HO2 potential energy 

with RO OA B
 is that of an isolated dioxygen molecule as its bond 

length is changed. Similarly, when RO OA B
 is very large, a section 

through the potential energy surface is the molecular poten-

tial energy curve of an isolated OH radical.

Self-test 90.3 Repeat the analysis for H + OD → OH + D.

Answer: RHO at infinity: OD potential energy curve; ROD at infinity: OH 

potential energy curve

Potential energy

  RBC
  RAB

Figure 90.12 The potential energy surface for the H + H2 → H2 + H 
reaction when the atoms are constrained to be collinear.

Re

Re

RBC

RAB

Figure 90.13 The contour diagram (with contours of equal 
potential energy) corresponding to the surface in Fig. 90.12. Re 
marks the equilibrium bond length of an H2 molecule (strictly, it 
relates to the arrangement when the third atom is at infinity).
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90 The dynamics of molecular collisions  863

form a bond with HB. The HB–HC bond relaxes at the demand 

of the incoming atom, and the potential energy climbs only as 

far as the saddle-shaped region of the surface, to the saddle 

point marked C‡. The encounter of least potential energy is 

one in which the atoms take route C up the floor of the valley, 

through the saddle point, and down the floor of the other valley 

as HC recedes and the new HA–HB bond achieves its equilib-

rium length. This path is the reaction coordinate.

We can now make contact with the transition-state theory of 

reaction rates (Topic 89). In terms of trajectories on potential 

surfaces with a total energy close to the saddle-point energy, 

the transition state can be identified with a critical geometry 

such that every trajectory that goes through this geometry 

goes on to react (Fig. 90.15). Most trajectories on potential 

energy surfaces do not go directly over the saddle point and 

therefore, to result in a reaction, they require a total energy 

significantly higher than the saddle-point energy. As a result, 

the experimentally determined activation energy is often much 

higher than the calculated saddle-point energy.

90.4 Some results from experiments 
and calculations

To travel successfully from reactants to products, classically 

the incoming molecules must possess enough kinetic energy 

to be able to climb to the saddle point of the potential sur-

face. We proceed with this classical argument, although quan-

tum mechanical tunnelling can also play an important role in 

reactivity, particularly in hydrogen atom or electron transfer 

reactions. Therefore, the shape of the surface can be explored 

experimentally by changing the relative speed of approach (by 

selecting the beam velocity) and the degree of vibrational exci-

tation and observing whether reaction occurs and whether the 

products emerge in a vibrationally excited state (Fig. 90.16). 

For example, one question that can be answered is whether it 

is better to smash the reactants together with a lot of transla-

tional kinetic energy or to ensure instead that they approach in 

RBC

RAB

0

A

B
C

C‡

Figure 90.14 Various trajectories through the potential 
energy surface shown in Fig. 90.13. Path A corresponds to a 
route in which RBC is held constant as HA approaches; path B 
corresponds to a route in which RBC lengthens at an early stage 
during the approach of HA; path C is the route along the floor of 
the potential valley.

Potential energy

  RBCRAB

Figure 90.15 The transition state is a set of configurations 
(here, marked by the line across the saddle point) through 
which successful reactive trajectories must pass.

C1
*

C2
*

C3

C4

RBC

RAB

(a) (b)

(c) (d)

Figure 90.16 Some successful (*) and unsuccessful encounters. 
(a) C1

* corresponds to the path along the foot of the valley;  
(b) C2

* corresponds to an approach of A to a vibrating BC 
molecule, and the formation of a vibrating AB molecule as C 
departs. (c) C3 corresponds to A approaching a non-vibrating 
BC molecule, but with insufficient translational kinetic 
energy; (d) C4 corresponds to A approaching a vibrating BC 
molecule, but still the energy, and the phase of the vibration, 
is insufficient for reaction.
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highly excited vibrational states. Thus, is trajectory C2
*, where 

the HBHC molecule is initially vibrationally excited, more effi-

cient at leading to reaction than the trajectory C1
*, in which the 

total energy is the same but reactants have a high translational 

kinetic energy?

(a) The direction of attack and separation
Figure 90.17 shows the results of a calculation of the potential 

energy as an H atom approaches an H2 molecule from differ-

ent angles, the H2 bond being allowed to relax to the optimum 

length in each case. The potential barrier is least for collinear 

attack, as we assumed earlier. (But we must be aware that other 

lines of attack are feasible and contribute to the overall rate.) 

In contrast, Fig. 90.18 shows the potential energy changes that 

occur as a Cl atom approaches an HI molecule. The lowest 

barrier occurs for approaches within a cone of half-angle 30° 

surrounding the H atom. The relevance of this result to the cal-

culation of the steric factor of collision theory should be noted: 

not every collision is successful, because not every one lies 

within the reactive cone.

If the collision is sticky, so that when the reactants collide 

they orbit around each other, the products can be expected 

to emerge in random directions because all memory of the 

approach direction has been lost. A rotation takes about 1 ps, 

so if the collision is over in less than that time the complex will 

not have had time to rotate and the products will be thrown off 

in a specific direction.

(b) Attractive and repulsive surfaces
Some reactions are very sensitive to whether the energy has been 

pre-digested into a vibrational mode or left as the relative trans-

lational kinetic energy of the colliding molecules. For example, 

if two HI molecules are hurled together with more than twice 

the activation energy of the reaction, then no reaction occurs if 

all the energy is translational. For F + HCl → Cl + HF, for exam-

ple, the reaction is about five times more efficient when the HCl 

is in its first vibrational excited state than when, although HCl 

has the same total energy, it is in its vibrational ground state.

The origin of these requirements can be found by examining 

the potential energy surface. Figure 90.19 shows an attractive 

surface in which the saddle point occurs early in the reaction 

coordinate. Figure 90.20 shows a repulsive surface in which 

the saddle point occurs late. A surface that is attractive in one 

direction is repulsive in the reverse direction.

Consider first the attractive surface. If the original molecule 

is vibrationally excited, then a collision with an incoming mol-

ecule takes the system along C. This path is bottled up in the 

region of the reactants, and does not take the system to the sad-

dle point. If, however, the same amount of energy is present 

solely as translational kinetic energy, then the system moves 

Brief illustration 90.4 The angular product distribution

The collision of K with CH3I leads to formation of KI and CH3 

only if the molecules approach each other very closely. In this 

mechanism, K effectively bumps into a brick wall, and the KI 

product bounces out in the backward direction. The detec-

tion of this anisotropy in the angular distribution of products 

gives an indication of the distance and orientation of approach 

needed for reaction, as well as showing that the event is com-

plete in less than 1 ps.

Self-test 90.4 In the collision of K and I2, most of the products 

(KI and I) are thrown off in the forward direction (forward 

and backward directions refer to directions in a centre-of-

mass coordinate system with the origin at the centre of mass 

of the colliding reactants and collision occurring when mol-

ecules are at the origin.) How can this product distribution be 

explained?
Answer: Harpoon mechanism (Topic 87);  

transition takes place at long range

H

H

H

Figure 90.17 An indication of how the anisotropy of the 
potential energy changes as H approaches H2 with different 
angles of attack. The collinear attack has the lowest potential 
barrier to reaction. The surface indicates the potential energy 
profile along the reaction coordinate for each configuration.

I H
Cl

Unsuccessful
attack

Successful
attack

Figure 90.18 The potential energy barrier for the approach of 
Cl to HI. In this case, successful encounters occur only when Cl 
approaches within a cone surrounding the H atom.
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along C* and travels smoothly over the saddle point into prod-

ucts. We can therefore conclude that reactions with attractive 

potential energy surfaces proceed more efficiently if the energy 

is in relative translational motion. Moreover, the potential sur-

face shows that once past the saddle point the trajectory runs 

up the steep wall of the product valley, and then rolls from 

side to side as it falls to the foot of the valley as the products 

separate. In other words, the products emerge in a vibrationally 

excited state.

Now consider the repulsive surface. On trajectory C the 

collisional energy is largely in translation. As the reactants 

approach, the potential energy rises. Their path takes them up 

the opposing face of the valley, and they are reflected back into 

the reactant region. This path corresponds to an unsuccessful 

encounter, even though the energy is sufficient for reaction. 

On C* some of the energy is in the vibration of the reactant 

molecule and the motion causes the trajectory to weave from 

side to side up the valley as it approaches the saddle point. This 

motion may be sufficient to tip the system round the corner to 

the saddle point and then on to products. In this case, the prod-

uct molecule is expected to be in an unexcited vibrational state. 

Reactions with repulsive potential surfaces can therefore be 

expected to proceed more efficiently if the excess energy is pre-

sent as vibrations. This is the case with the H + Cl2 → HCl + Cl 

reaction, for instance.

(c) Classical trajectories
A clear picture of the reaction event can be obtained by using 

classical mechanics to calculate the trajectories of the atoms 

taking place in a reaction from a set of initial conditions, such 

as velocities, relative orientations, and internal energies of 

the reacting particles. The initial values used for the internal 

energy reflect the quantization of electronic, vibrational, and 

rotational energies in molecules but the features of quantum 

mechanics are not used explicitly in the calculation of the 

trajectory.

Figure 90.21 shows the result of such a calculation of the 

positions of the three atoms in the reaction H + H2 → H2 + H, 

the horizontal coordinate now being time and the vertical 

coordinate the separations. This illustration shows clearly the 

vibration of the original molecule and the approach of the 

attacking atom. The reaction itself, the switch of partners, takes 

place very rapidly and is an example of a direct-mode process. 

The newly formed molecule shakes, but quickly settles down 

to steady, harmonic vibration as the expelled atom departs. In 

contrast, Fig. 90.22 shows an example of a complex-mode pro-

cess, in which the activated complex survives for an extended 

period.

Brief illustration 90.5 Attractive and repulsive surfaces

The reaction H + Cl2 → HCl + Cl has a repulsive potential sur-

face. Of the following four reactive processes, all at the same 

total energy,

( ) ( ) ( )

( ) ( ) ( )

( )

1 0 0

2 2 0

3

2

2

H Cl HCl Cl

H Cl HCl Cl

H C

+ = → = +
+ = → = +
+

v v
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′
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ll HCl Cl

H Cl HCl Cl

2

2

0 2

4 2 2

( ) ( )
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v v

v v

= → = +
+ = → = +

′
′

reaction (2) is most probable, with reactants vibrationally 

excited and products vibrationally unexcited.

Self-test 90.5 Which of the following four reactive processes, 

all at the same total energy, is most probable?

( ) ( ) ( )

( ) ( ) ( )

( )

1 0 0

2 2 0

3

2

2

HCl Cl H+Cl

HCl Cl H+Cl

HCl

v v

v v

= + → =
= + → =

′
′

(( ) ( )

( ) ( ) ( )

v v

v v

= + → =
= + → =

0 2

4 2 2

2

2

Cl H+Cl

HCl Cl H+Cl

′
′

Answer: (3); attractive surface

C

C* ‡

Figure 90.19 An attractive potential energy surface. A 
successful encounter (C*) involves high translational kinetic 
energy and results in a vibrationally excited product.

C

C*
‡

Figure 90.20 A repulsive potential energy surface. A successful 
encounter (C*) involves initial vibrational excitation and the 
products have high translational kinetic energy. A reaction that 
is attractive in one direction is repulsive in the reverse direction.
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(d) Quantum mechanical scattering theory
Classical trajectory calculations do not recognize the fact that 

the motion of atoms, electrons, and nuclei is governed by quan-

tum mechanics. The concept of trajectory then fades and is 

replaced by the unfolding of a wavefunction that represents ini-

tially the reactants and finally the products.

Complete quantum mechanical calculations of rate constants 

are very onerous because it is necessary to take into account all 

the allowed electronic, vibrational, and rotational states popu-

lated by each atom and molecule in the system at a given tem-

perature. There are many thermally accessible states, with some 

transitions between reactant states and product states being 

allowed but others not allowed. The cumulative reaction prob-

ability, P E( ), at a fixed total energy E is written as

P E P E
i j

ij( ) ( )
,

=∑
 

 Cumulative reaction probability  (90.5)

where Pij(E) is the state-to-state reaction probability, with i des-

ignating the reactant state and j the product state. Although 

each Pij cannot exceed 1, their sum, P , can exceed 1. The cumu-

lative reaction probability increases with energy as more reac-

tant and product states become accessible, and the observed 

rate constant is proportional to a Boltzmann average of P E( ) at 

the prevailing temperature. Specifically,

k T
P E E

h T

E kT

r
R

e d
( )

( )

( )

/

=
−

∞

∫0

Q
 

 Rate constant  (90.6)

where Q  R(T) is the partition function density (the partition 

function divided by the volume) of the reactants at the tem-

perature T.

The significance of eqn 90.6 is that it provides a direct con-

nection between an experimental quantity, the rate constant, 

and a theoretical quantity, P E( ). For instance, if we were devel-

oping a version of transition-state theory we might make the 

following assumptions for the model of the process:

A product is formed only if an activated complex is 

formed.

If the complex is formed in any state, then it will form 

products.

A minimum energy is needed for the complex to form.

The activated complex has a thermal equilibrium 

distribution of populations corresponding to a 

temperature T.

The second condition implies that Pij is the state-to-state reac-

tion probability for reactant states i forming complex states j. 

The third condition implies that Pij = 0 for E less than a thresh-

old value Ea, the lowest energy state of the complex. It follows 

that P E( )= 0 for E < Ea. As the energy increases above Ea, suc-

cessive states of the activated complex become accessible and, 

from the second condition, the cumulative reaction probability 

increases in steps of 1. To implement this model, it follows that 

we need to count the number of thermally accessible states of 

Brief illustration 90.6 The complex-mode process

The react ion in Fig. 90.22 is the exchange react ion 

KCl + NaBr → KBr + NaCl. The tetratomic activated complex 

survives for about 5 ps, during which time the atoms make 

about 15 oscillations before dissociating into products.

Self-test 90.6 What is the approximate vibrational frequency 

of the mode of the activated complex that leads to its dissocia-

tion and formation of products?

Answer: 3 THz

In
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u
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r 
d
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/p

m

Time, t/fs

0
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0 10 20 30 40

RAB

RBC

Figure 90.21 The calculated trajectories for a reactive 
encounter between A and a vibrating BC molecule leading to 
the formation of a vibrating AB molecule. This direct-mode 
reaction is between H and H2 (M. Karplus, et al., J. Chem. Phys. 
43, 3258 (1965)).
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RBrCl
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RNaBr

Figure 90.22 An example of the trajectories calculated for a 
complex-mode reaction, KCl + NaBr → KBr + NaCl, in which the 
collision cluster has a long lifetime (P. Brumer and M. Karplus, 
Faraday Disc. Chem. Soc. 55, 80 (1973)).
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Example 90.1 Deriving the collision-theory rate constant

Consider the case of two structureless particles colliding to 

give an activated complex that resembles a diatomic molecule 

and derive an expression for the rate constant of the reaction 

A + A → Products.

Method Because the reactant A is a structureless ‘atom’ 

of mass m, the only contribution to its partition function is 

translation. The complex is a diatomic cluster of ‘bond length’ 

r, mass 2m, and moment of inertia I r mr= =μ 2 1
2

2.  The vibra-

tional mode corresponds to motion along the reaction coor-

dinate, so (as in transition-state theory) does not contribute to 

qc. Expressions for the relevant partition functions are given 

by eqns 52.10 and 52.13 of Topic 52.

Answer Because P E( )=0 for E < Ea and P E c( )=q  for E ≥ Ea, 

eqn 90.6 becomes

k
h T

E
kT

h T
E kT E kT

E
r

R R

e d e a

a

= =− −
∞

∫q
Q

q
Q

c c

( ) ( )
/ /

Only translation contributes to the partition functions of the 

reactants A + A, and

qr
T

r

= =V V mkT

hΛ3

3 2

3

2( ) /π

The reactant partition function density is therefore

Q
q

R
r
T

( )
( ) ( ) ( )/

T
V

mkT V

h V

mkT V

h
= =

⎛
⎝⎜

⎞
⎠⎟

=
2 3 2

3

2
3

6

2 1 2π π

Checklist of concepts

☐ 1. A molecular beam is a collimated, narrow stream of 

molecules travelling through an evacuated vessel.

☐ 2. In a molecular beam, the scattering pattern of real mol-

ecules depends on quantum mechanical effects and the 

details of the intermolecular potential.

☐ 3. Two quantum mechanical effects in scattering pro-

cesses are quantum oscil lations  and rainbow 

scattering.

☐ 4. van der Waals molecules are complexes of the form AB 

in which A and B are held together by van der Waals 

forces or hydrogen bonds.

☐ 5. Techniques for the study of reactive collisions include 

infrared chemiluminescence, laser-induced fluorescence, 

multiphoton ionization (MPI), reaction product imaging, 

and resonant multiphoton ionization (REMPI).

☐ 6. A potential energy surface maps the potential energy 

as a function of the relative positions of all the atoms 

taking part in a reaction.

☐ 7. In an attractive surface, the saddle point (the highest 

point) occurs early on the reaction coordinate.

☐ 8. In a repulsive surface, the saddle point occurs late on 

the reaction coordinate.

The translational and rotational partition functions of the 

complex A2 (from eqns 52.10 and 52.13, with symmetry num-

ber σ = 2) are

q

q

c
T C

c
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= =

= =
=

V m kT

h

V mkT

h

kTI

h

m
I mr

( ) ( )
/ /2 4

4 2

3 2

3

3 2

3

2

2

2

1
2

2

π π

π π

‡


 kkTr

h

2

2

It follows that
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=
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k
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h

mkTr mkT Vh

h mkT V
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⎠
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1 2
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/

/πr E kTe a

which is the same as the result from collision theory (see eqn 

87.9) provided we identify the reactive cross-section with πr2. 

Note that eqn 87.9 was derived for collisions between two dif-

ferent particles A and B so we need to introduce a factor of 1
2

 

into that equation to avoid the double-counting of the colli-

sions between identical particles.

Self-test 90.7 Verify that the result for kr in Example 90.1 

matches the result from transition-state theory (Example 89.1) 

when the atoms A and B are not identical.

Answer: k kT r E RT
r e= −( / ) / /8 1 2 2 0π πμ Δ

the complex, N(E), for the available energy, and set P E N E( ) ( )=  

for E ≥ Ea. The fourth assumption implies that we can estimate 

this number by equating it to the molecular partition function 

of the complex qc at the prevailing temperature.
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Checklist of equations

Property Equation Comment Equation number

Rate of molecular scattering dI = σdINdx σd is the differential scattering cross-section 90.1

Rate constant kr = 〈σsrel〉NA 90.2

State-to-state rate constant knn′ = 〈σnn′srel〉NA 90.3

Overall rate constant
k k T f T

n n

nn nr =∑
,

( ) ( )

′

′
90.4

Cumulative reaction probability
P E P E

i j

ij( ) ( )

,

=∑ 90.5

Rate constant k P E E h TT E kT
r Re d( ) ( ) / ( )/= −

∞

∫ Q
0

Q  R(T) is the partition function density of the  
reactants

90.6
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Exercises and problems  869

Focus 18 on Reaction dynamics

Topic 87 Collision theory

Discussion questions
87.1 Discuss how the collision theory of gases builds on the kinetic-molecular 

theory.

87.2 Describe the essential features of the harpoon mechanism.

Exercises
87.1(a) Calculate the collision frequency, z, and the collision density, Z, in 

ammonia, R = 190 pm, at 30 °C and 120 kPa. What is the percentage increase 

when the temperature is raised by 10 K at constant volume?

87.1(b) Calculate the collision frequency, z, and the collision density,  

Z, in carbon monoxide, R = 180 pm, at 30 °C and 120 kPa. What is the 

percentage increase when the temperature is raised by 10 K at constant 

volume?

87.2(a) Collision theory depends on knowing the fraction of molecular 

collisions having at least the kinetic energy Ea along the line of flight. What 

is this fraction when (i) Ea = 20 kJ mol−1, (ii) Ea = 100 kJ mol−1 at (1) 350 K and 

(2) 900 K?

87.2(b) Collision theory depends on knowing the fraction of molecular 

collisions having at least the kinetic energy Ea along the line of flight. What 

is this fraction when (i) Ea = 15 kJ mol−1, (ii) Ea = 150 kJ mol−1 at (1) 300 K and 

(2) 800 K?

87.3(a) Calculate the percentage increase in the fractions in Exercise 87.2(a) 

when the temperature is raised by 10 K.

87.3(b) Calculate the percentage increase in the fractions in Exercise 87.2(b) 

when the temperature is raised by 10 K.

87.4(a) Use the collision theory of gas-phase reactions to calculate the 

theoretical value of the second-order rate constant for the reaction 

H2(g) + I2(g) → 2 HI(g) at 650 K, assuming that it is elementary and 

bimolecular. The collision cross-section is 0.36 nm2, the reduced mass is 

3.32 × 10−27 kg, and the activation energy is 171 kJ mol−1. (Assume a steric 

factor of 1.)

87.4(b) Use the collision theory of gas-phase reactions to calculate the 

theoretical value of the second-order rate constant for the reaction 

D2(g) + Br2(g) → 2 DBr(g) at 450 K, assuming that it is elementary and 

bimolecular. Take the collision cross-section as 0.30 nm2, the reduced mass 

as 3.930mu, and the activation energy as 200 kJ mol−1. (Assume a steric factor 

of 1.)

87.5(a) For the gaseous reaction A + B → P, the reactive cross-section obtained 

from the experimental value of the pre-exponential factor is 9.2 × 10−22 m2. The 

collision cross-sections of A and B estimated from the transport properties are 

0.95 and 0.65 nm2 respectively. Calculate the P-factor for the reaction.

87.5(b) For the gaseous reaction A + B → P, the reactive cross-section obtained 

from the experimental value of the pre-exponential factor is 8.7 × 10−22 m2. The 

collision cross-sections of A and B estimated from the transport properties are 

0.88 and 0.40 nm2, respectively. Calculate the P-factor for the reaction.

Problems
87.1 In the dimerization of methyl radicals at 25 °C, the experimental pre-

exponential factor is 2.4 × 1010 dm3 mol−1 s−1. What are (a) the reactive cross-

section, (b) the P-factor for the reaction if the C–H bond length is 154 pm?

87.2 Nitrogen dioxide reacts bimolecularly in the gas phase: NO2 + NO2 → NO +  

NO + O2. The temperature dependence of the second-order rate constant for 

the rate law d[P]/dt = kr[NO2]
2 is given below. What are the P-factor and the 

reactive cross-section for the reaction?

Take σ = 0.60 nm2.

87.3 The diameter of the methyl radical is about 308 pm. What is the 

maximum rate constant in the expression d[C2H6]/dt = kr[CH3]
2 for second-

order recombination of radicals at room temperature? 10 per cent of a sample 

of ethane of volume 1.0 dm3 at 298 K and 100 kPa is dissociated into methyl 

radicals. What is the minimum time for 90 per cent recombination?

87.4 Total cross-sections for reactions between alkali metal atoms and halogen 

molecules are given in the table below (R.D. Levine and R.B. Bernstein, 

Molecular reaction dynamics, Clarendon Press (1974), page 72). Assess the 

data in terms of the harpoon mechanism.

Electron affinities are approximately 1.3 eV (Cl2), 1.2 eV (Br2), and 1.7 eV ( I2), 

and ionization energies are 5.1 eV (Na), 4.3 eV (K), 4.2 eV (Rb), and 3.9 eV (Cs).

87.5‡ One of the most historically significant studies of chemical reaction 

rates was that by M. Bodenstein (Z. phys. Chem. 29, 295 (1899)) of the gas-

phase reaction 2 HI(g) → H2(g) + I2(g) and its reverse, with rate constants 

kr and ′kr ,  respectively. The measured rate constants as a function of 

temperature are

‡ These problems were supplied by Charles Trapp and Carmen Giunta.

T/K 600 700 800 1000

kr/(cm3 mol−1 s−1) 4.6 × 102 9.7 × 103 1.3 × 105 3.1 × 106

σ */nm2 Cl2 Br2 I2

Na 1.24 1.16 0.97

K 1.54 1.51 1.27

Rb 1.90 1.97 1.67

Cs 1.96 2.04 1.95

T/K 647 666 683 700 716 781

kr/(22.4 dm3 mol−1 min−1) 0.230 0.588 1.37 3.10 6.70 105.9

′ − −kr
3 1 1/(22 4 dm mol min ). 0.0140 0.0379 0.0659 0.172 0.375 3.58
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870 18 Reaction dynamics

Demonstrate that these data are consistent with the collision theory of 

bimolecular gas-phase reactions.

87.6‡ R. Atkinson (J. Phys. Chem. Ref. Data 26, 215 (1997)) has reviewed a 

large set of rate constants relevant to the atmospheric chemistry of volatile 

organic compounds. The recommended rate constant for the bimolecular 

association of O2 with an alkyl radical R at 298 K is 4.7 × 109 dm3 mol−1 s−1 for 

R = C2H5 and 8.4 × 109 dm3 mol−1 s−1 for R = cyclohexyl. Assuming no energy 

barrier, compute the steric factor, P, for each reaction. Hint: Obtain collision 

diameters from collision cross-sections of similar molecules in the Resource 

section.

Topic 88 Diffusion-controlled reactions

Discussion questions
88.1 Distinguish between a diffusion-controlled reaction and an activation-

controlled reaction. Do both have activation energies?

88.2 Describe the role of the encounter pair in the cage effect.

Exercises
88.1(a) A typical diffusion coefficient for small molecules in aqueous solution 

at 25 °C is 6 × 10−9 m2 s−1. If the critical reaction distance is 0.5 nm, what value 

is expected for the second-order rate constant for a diffusion-controlled 

reaction?

88.1(b) Suppose that the typical diffusion coefficient for a reactant in aqueous 

solution at 25 °C is 5.2 × 10−9 m2 s−1. If the critical reaction distance is 0.4 nm, 

what value is expected for the second-order rate constant for the diffusion-

controlled reaction?

88.2(a) Calculate the magnitude of the diffusion-controlled rate constant 

at 298 K for a species in (i) water, (ii) pentane. The viscosities are 

1.00 × 10−3 kg m−1 s−1 and 2.2 × 10−4 kg m−1 s−1, respectively.

88.2(b) Calculate the magnitude of the diffusion-controlled rate constant at 

298 K for a species in (i) decylbenzene, (ii) concentrated sulfuric acid. The 

viscosities are 3.36 cP and 27 cP, respectively.

88.3(a) Calculate the magnitude of the diffusion-controlled rate constant at 

320 K for the recombination of two atoms in water, for which η = 0.89 cP. 

Assuming the concentration of the reacting species is 1.5 mmol dm−3 initially, 

how long does it take for the concentration of the atoms to fall to half that 

value? Assume the reaction is elementary.

88.3(b) Calculate the magnitude of the diffusion-controlled rate constant at 

320 K for the recombination of two atoms in benzene, for which η = 0.601 cP. 

Assuming the concentration of the reacting species is 2.0 mmol dm−3 initially, 

how long does it take for the concentration of the atoms to fall to half that 

value? Assume the reaction is elementary.

88.4(a) Two neutral species, A and B, with diameters 655 pm and 1820 pm, 

respectively, undergo the diffusion-controlled reaction A + B → P in a solvent 

of viscosity 2.93 × 10−3 kg m−1 s−1 at 40 °C. Calculate the initial rate d[P]/dt if 

the initial concentrations of A and B are 0.170 mol dm−3 and 0.350 mol dm−3, 

respectively.

88.4(b) Two neutral species, A and B, with diameters 421 pm and 945 pm, 

respectively, undergo the diffusion-controlled reaction A + B → P in a 

solvent of viscosity 1.35 cP at 20 °C. Calculate the initial rate d[P]/dt if the 

initial concentrations of A and B are 0.155 mol dm−3 and 0.195 mol dm−3, 

respectively.

Problems
88.1 Confirm that eqn 88.9 is a solution of eqn 88.8, where [J] is a solution of 

the same equation but with kr = 0 and for the same initial conditions.

88.2LG Use mathematical software, a spreadsheet, or the Living graphs (labelled 
LG) on the website of this book to explore the effect of varying the value of the 

rate constant kr on the spatial variation of [J]* (see eqn 88.9 with [J] given in 

eqn 88.10) for a constant value of the diffusion constant D.

88.3‡ The compound α-tocopherol, a form of vitamin E, is a powerful 

antioxidant that may help to maintain the integrity of biological membranes. 

R.H. Bisby and A.W. Parker (J. Amer. Chem. Soc. 117, 5664 (1995)) studied 

the reaction of photochemically excited duroquinone with the antioxidant in 

ethanol. Once the duroquinone was photochemically excited, a bimolecular 

reaction took place at a rate described as diffusion-limited. (a) Estimate the 

rate constant for a diffusion-limited reaction in ethanol. (b) The reported rate 

constant was 2.77 × 109 dm3 mol−1 s−1; estimate the critical reaction distance if 

the sum of diffusion constants is 1 × 10−9 m2 s−1.

Topic 89 Transition-state theory

Discussion questions
89.1 Describe in outline the formulation of the Eyring equation. 89.2 Explain the physical origin of the kinetic salt effect. What might be the 

effect of the relative permittivity of the medium?
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Exercises
89.1(a) The reaction of propylxanthate ion in acetic acid buffer solution has the 

mechanism A− + H+ → P. Near 30 °C the rate constant is given by the empirical 

expression kr = (2.05 × 1013) e−(8681 K)/T dm3 mol−1 s−1. Evaluate the energy and 

entropy of activation at 30 °C.

89.1(b) The reaction A− + H+ → P has a rate constant given by the empirical 

expression kr = (6.92 × 1012)e−(5925 K)/T dm3 mol−1 s−1. Evaluate the energy and 

entropy of activation at 25 °C.

89.2(a) When the reaction in Exercise 89.1(a) occurs in a dioxane/water 

mixture which is 30 per cent dioxane by mass, the rate constant fits 

kr = (7.78 × 1014)e−(9134 K)/T dm3 mol−1 s−1 near 30 °C. Calculate Δ‡G for the 

reaction at 30 °C.

89.2(b) A rate constant is found to fit the expression kr = (4.98 × 1013) 

e−(4972 K)/T dm3 mol−1 s−1 near 25 °C. Calculate Δ‡G for the reaction at 25 °C.

89.3(a) The gas phase association reaction between F2 and IF5 is first-order in 

each of the reactants. The energy of activation for the reaction is 58.6 kJ mol−1. 

At 65 °C the rate constant is 7.84 × 10−3 kPa−1 s−1. Calculate the entropy of 

activation at 65 °C.

89.3(b) A gas-phase recombination reaction is first-order in each of 

the reactants. The energy of activation for the reaction is 39.7 kJ mol−1. At 

65 °C the rate constant is 0.35 m3 s−1. Calculate the entropy of activation  

at 65 °C.

89.4(a) Calculate the entropy of activation for a collision between two 

structureless particles at 300 K, taking M = 65 g mol−1 and σ = 0.35 nm2.

89.4(b) Calculate the entropy of activation for a collision between two 

structureless particles at 450 K, taking M = 92 g mol−1 and σ = 0.45 nm2.

89.5(a) The pre-exponential factor for the gas-phase decomposition of 

ozone at low pressures is 4.6 × 1012 dm3 mol−1 s−1 and its activation energy 

is 10.0 kJ mol−1. What are (a) the entropy of activation, (b) the enthalpy of 

activation, (c) the Gibbs energy of activation at 298 K?

89.5(b) The pre-exponential factor for a gas-phase decomposition of a 

gas at low pressures is 2.3 × 1013 dm3 mol−1 s−1 and its activation energy is 

30.0 kJ mol−1. What are (a) the entropy of activation, (b) the enthalpy of 

activation, (c) the Gibbs energy of activation at 298 K?

89.6(a) The rate constant of the reaction H2O2(aq) + I−(aq) + H+(aq) →  

H2O(l) + HIO(aq) is sensitive to the ionic strength of the aqueous solution 

in which the reaction occurs. At 25 °C, kr = 12.2 dm6 mol−2 min−1 at an ionic 

strength of 0.0525. Use the Debye–Hückel limiting law to estimate the rate 

constant at zero ionic strength.

89.6(b) At 25 °C, kr = 1.55 dm6 mol−2 min−1 at an ionic strength of 0.0241 for 

a reaction in which the rate-determining step involves the encounter of two 

singly charged cations. Use the Debye–Hückel limiting law to estimate the rate 

constant at zero ionic strength.

Problems
89.1 The rates of thermolysis of a variety of cis- and trans-azoalkanes have 

been measured over a range of temperatures in order to settle a controversy 

concerning the mechanism of the reaction. In ethanol an unstable cis-

azoalkane decomposed at a rate that was followed by observing the N2 

evolution, and this led to the rate constants listed below (P.S. Engel and D.J. 

Bishop, J. Amer. Chem. Soc. 97, 6754 (1975)). Calculate the enthalpy, entropy, 

energy, and Gibbs energy of activation at –20 °C.

89.2 In an experimental study of a bimolecular reaction in aqueous solution, 

the second-order rate constant was measured at 25 °C and at a variety of ionic 

strengths and the results are tabulated below. It is known that a singly charged 

ion is involved in the rate-determining step. What is the charge on the other 

ion involved?

89.3 Derive the expression for kr given in Example 89.1 by introducing the 

equations for the thermal wavelengths.

89.4 The rate constant of the reaction I−(aq) + H2O2(aq) → H2O(l) + IO−(aq) 

varies slowly with ionic strength, even though the Debye–Hückel limiting law 

predicts no effect. Use the following data from 25 °C to find the dependence of 

log kr on the ionic strength:

Evaluate the limiting value of kr at zero ionic strength. What does the result 

suggest for the dependence of log γ on ionic strength for a neutral molecule in 

an electrolyte solution?

89.5‡ M. Cyfert, et al. (Int. J. Chem. Kinet. 28, 103 (1996)) examined the 

oxidation of tris(1,10-phenanthroline)iron(II) by periodate in aqueous 

solution, a reaction which shows autocatalytic behaviour. To assess the 

kinetic salt effect, they measured rate constants at a variety of concentrations 

of Na2SO4 far in excess of reactant concentrations and reported the 

following data:

What can be inferred about the charge of the activated complex of the rate-

determining step?

89.6‡ For the gas-phase reaction A + A → A2, the experimental rate constant, 

kr, has been fitted to the Arrhenius equation with the pre-exponential factor 

A = 4.07 × 105 dm3 mol−1 s−1 at 300 K and an activation energy of 65.43 kJ mol−1. 

Calculate Δ‡S, Δ‡H, Δ‡U, and Δ‡G for the reaction.

89.7 Use the Debye–Hückel limiting law to show that changes in ionic strength 

can affect the rate of reaction catalysed by H+ from the deprotonation of a 

weak acid. Consider the mechanism H+ + B → P, where H+ comes from the 

deprotonation of the weak acid, HA. The weak acid has a fixed concentration. 

First show that log [H+], derived from the ionization of HA, depends on the 

activity coefficients of ions and thus depends on the ionic strength. Then find 

the relationship between log(rate) and log [H+] to show that the rate also 

depends on the ionic strength.

89.8‡ Show that bimolecular reactions between nonlinear molecules are 

much slower than between atoms even when the activation energies of both 

reactions are equal. Use transition-state theory and make the following 

assumptions: (1) all vibrational partition functions are close to unity; (2) all 

rotational partition functions are approximately 1 × 101.5, which is a reasonable 

order-of-magnitude number; (3) the translational partition function for each 

species is 1 × 1026.

θ/°C −24.82 −20.73 −17.02 −13.00 −8.95

104 × kr/s
−1 1.22 2.31 4.39 8.50 14.3

I/(mol kg−1) 0.0025 0.0037 0.0045 0.0065 0.0085

kr/(dm3 mol−1 s−1) 1.05 1.12 1.16 1.18 1.26

I/(mol kg−1) 0.0207 0.0525 0.0925 0.1575

kr/(dm3 mol−1 min−1) 0.663 0.670 0.679 0.694

[Na2SO4]/(mol kg−1) 0.2 0.15 0.1 0.05 0.025 0.0125 0.005

kr/(dm3/2 mol−1/2 s−1) 0.462 0.430 0.390 0.321 0.283 0.252 0.224
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89.9 This problem gives some familiarity with the difficulties involved in 

predicting the structure of activated complexes. It also demonstrates the 

importance of femtosecond spectroscopy to our understanding of chemical 

dynamics because direct experimental observation of the activated complex 

removes much of the ambiguity of theoretical predictions. Consider the attack 

of H on D2, which is one step in the H2 + D2 reaction. (a) Suppose that the H 

approaches D2 from the side and forms a complex in the form of an isosceles 

triangle. Take the H–D distance as 30 per cent greater than in H2 (74 pm) and 

the D–D distance as 20 per cent greater than in H2. Let the critical coordinate 

be the antisymmetric stretching vibration in which one H–D bond stretches 

as the other shortens. Let all the vibrations be at about 1000 cm−1. Estimate kr 

for this reaction at 400 K using the experimental activation energy of about 

35 kJ mol−1. (b) Now change the model of the activated complex in part (a) 

and make it linear. Use the same estimated molecular bond lengths and 

vibrational frequencies to calculate kr for this choice of model. (c) Clearly, 

there is much scope for modifying the parameters of the models of the 

activated complex. Use mathematical software or write and run a program 

that allows you to vary the structure of the complex and the parameters in 

a plausible way, and look for a model (or more than one model) that gives a 

value of kr close to the experimental value, 4 × 105 dm3 mol−1 s−1.

89.10 The study of conditions that optimize the association of proteins in 

solution guides the design of protocols for formation of large crystals that 

are amenable to analysis by X-ray diffraction techniques. It is important to 

characterize protein dimerization because the process is considered to be the 

rate-determining step in the growth of crystals of many proteins. Consider the 

variation with ionic strength of the rate constant of dimerization in aqueous 

solution of a cationic protein P:

What can be deduced about the charge of P?

89.11 The Eyring equation can also be applied to physical processes. As an 

example, consider the rate of diffusion of an atom stuck to the surface of a 

solid. Suppose that in order to move from one site to another it has to reach 

the top of the barrier, where it can vibrate classically in the vertical direction 

and in one horizontal direction, but vibration along the other horizontal 

direction takes it into the neighbouring site. Find an expression for the rate of 

diffusion, and evaluate it for W atoms on a tungsten surface (Ea = 60 kJ mol−1). 

Suppose that the vibration frequencies at the transition state are (a) the 

same as, (b) one-half the value for the adsorbed atom. What is the value of 

the diffusion coefficient D at 500 K? (Take the site separation as 316 pm and 

ν‡ = 0.1 THz.)

89.12 Suppose now that the adsorbed, migrating species treated in Problem 

89.11 is a spherical molecule, and that it can rotate classically as well as vibrate 

at the top of the barrier, but that at the adsorption site itself it can only vibrate. 

What effect does this have on the diffusion constant? Take the molecule to be 

methane, for which �B = 5.24 cm−1.

Topic 90 The dynamics of molecular collisions

Discussion questions
90.1 Describe how the following techniques are used in the study of chemical 

dynamics: infrared chemiluminescence, laser-induced fluorescence, 

multiphoton ionization, resonant multiphoton ionization, and reaction 

product imaging.

90.2 Discuss the relationship between the saddle-point energy and the 

activation energy of a reaction.

90.3 A method for directing the outcome of a chemical reaction consists of 

using molecular beams to control the relative orientations of reactants during 

a collision. Consider the reaction Rb + CH3I → RbI + CH3. How should CH3I 

molecules and Rb atoms be oriented to maximize the production of RbI?

90.4 Consider a reaction with an attractive potential energy surface. Discuss 

how the initial distribution of reactant energy affects how efficiently the 

reaction proceeds. Repeat for a repulsive potential energy surface.

90.5 Describe how molecular beams are used to investigate intermolecular 

potentials.

Exercises
90.1(a) The interaction between two diatomic molecules is described by an 

attractive potential energy surface. What distribution of vibrational and 

translational energies among reactants and products is most likely to lead to a 

successful reaction?

90.1(b) The interaction between two diatomic molecules has a repulsive 

potential energy surface. What distribution of vibrational and translational 

energies among reactants and products is most likely to lead to a successful 

reaction?

90.2(a) If the cumulative reaction probability were independent of energy, 

what would be the temperature dependence of the rate constant predicted by 

the numerator of eqn 90.6?

90.2(b) If the cumulative reaction probability equalled 1 for energies less 

than a barrier height V and vanished for higher energies, what would be the 

temperature dependence of the rate constant predicted by the numerator of 

eqn 90.6?

Problems
90.1 Show that the intensities of a molecular beam before and after passing 

through a chamber of length L containing inert scattering atoms are related by 

I = I0 e
−NσL, where σ is the collision cross-section and N  is the number density 

of scattering atoms.

90.2 In a molecular beam experiment to measure collision cross-sections it 

was found that the intensity of a CsCl beam was reduced to 60 per cent of its 

intensity on passage through CH2F2 at 10 μTorr, but that when the target was 

Ar at the same pressure the intensity was reduced only by 10 per cent. What 

I/(mol kg−1) 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350

k kr r/ ′ 8.10 13.30 20.50 27.80 38.10 52.00
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are the relative cross-sections of the two types of collision? Why is one much 

larger than the other?

90.3 Consider the collision between a hard-sphere molecule of radius R1 and 

mass m, and an infinitely massive impenetrable sphere of radius R2. Plot the 

scattering angle θ as a function of the impact parameter b. Carry out the 

calculation using simple geometrical considerations.

90.4 The dependence of the scattering characteristics of atoms on the energy 

of the collision can be modelled as follows. We suppose that the two colliding 

atoms behave as impenetrable spheres, as in Problem 90.3, but that the 

effective radius of the heavy atoms depends on the speed v of the light atom. 

Suppose its effective radius depends on v as R2e / *−v v  where v*  is a constant. 

Take R R1 2= 1
2

 for simplicity and an impact parameter b R= 1
2 2 , and plot the 

scattering angle as a function of (a) speed, (b) kinetic energy of approach.

Integrated activity

F18.1 Estimate the orders of magnitude of the partition functions involved 

in a rate expression. State the order of magnitude of q q q qm
T

A
R V E/N , , ,  for 

typical molecules. Check that in the collision of two structureless molecules 

the order of magnitude of the pre-exponential factor is of the same order as 

that predicted by collision theory. Go on to estimate the P-factor for a reaction 

in which A + B → P, and A and B are nonlinear triatomic molecules.
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In this group of Topics we develop four examples of important reaction mechanisms in fluid systems: 
the gas-phase and liquid solutions. We describe a special class of ‘unimolecular reactions’ in the gas 
phase that depend on the collisions (of the types described in Reaction dynamics) between reac-
tants. These processes can be explained by the ‘Lindemann–Hinshelwood mechanism’ and the ‘RRK 
model’ (Topic 91).

The rates of reactions (as explored in Chemical kinetics) increase upon the addition of a catalyst to 
the reaction mixture. In Topic 92 we discuss the general mechanism of action of ‘enzymes’, which 
are biological catalysts. We show how to assemble expressions for their influence on the rate of reac-
tions and the effect of substances that inhibit their function.

‘Photochemistry’ is the study of reactions that are initiated by light by using techniques of 
Molecular spectroscopy. In Topic 93 we explore mechanisms of photochemical reactions, with special 
emphasis on electron and energy transfer processes.

Electron transfer between molecules in homogeneous systems is described in more detail in 
Topic 94. We provide a theoretical approach for the calculation of electron transfer rates, and then 
compare the results with experimental data.

What is the impact of this material?

Plants, algae, and some species of bacteria evolved apparatus that perform ‘photosynthesis’, the 
capture of visible and near-infrared radiation for the purpose of synthesizing high-energy molecules 
in the cell. In Impact 19.1 we explore plant photosynthesis in some detail.

To read more about the impact of this material, scan the QR code or go to http://
bcs.whfreeman.com/webpub/chemistry/qmc2e/impact/qchem_impact19.
html.

FOCUS 19  ON  Processes in fluid systems

Topic  91

Unimolecular
reactions

Topic  92

Enzymes

Topic  93

Photo-
chemistry

Topic  94

Electron
transfer in

homogeneous
systems

Chemical
kinetics

Focus 17

Reaction
dynamics

Focus 18

Molecular
spectroscopy

Focus 9
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TOPIC 91

Unimolecular reactions

Many reactions take place by mechanisms that involve several 

elementary steps. We focus here on the kinetic analysis of a spe-

cial class of reactions in the gas phase.

91.1 The Lindemann–Hinshelwood 
mechanism

A number of gas-phase reactions follow first-order kinet-

ics, as in the isomerization of cyclopropane, cyclo-C3H6 →  

CH3CH = CH2, for which v = kr[cyclo-C3H6]. The problem with 

the interpretation of first-order rate laws is that presumably a 

molecule acquires enough energy to react as a result of its colli-

sions with other molecules. However, collisions are simple bimo-

lecular events, so how can they result in a first-order rate law? 

First-order gas-phase reactions are widely called ‘unimolecular 

reactions’ because they also involve an elementary unimolecu-

lar step in which the reactant molecule changes into the product. 

This term must be used with caution, however, because the over-

all mechanism has bimolecular as well as unimolecular steps.

The first successful explanation of unimolecular reactions 

was provided by Frederick Lindemann in 1921 and then elabo-

rated by Cyril Hinshelwood. In the Lindemann–Hinshelwood 

mechanism it is supposed that a reactant molecule A becomes 

energetically excited by collision with another A molecule in a 

bimolecular step (Fig. 91.1):

A A A* A
d[A*]

d
Aa+ + =→

t
k [ ]2

 
(91.1a)

The energized molecule (A*) might lose its excess energy by 

collision with another molecule:

A A* A A
d A*

d
A A*a+ → + = −[ ]

[ ][ ]
t

k′
 

(91.1b)

Contents

91.1 The Lindemann–Hinshelwood mechanism 876

Example 91.1: Analysing the Lindemann– 

Hinshelwood mechanism 877

91.2 The RRK model 877

Brief illustration 91.1: The RRK model 879

Checklist of concepts 880

Checklist of equations 880

 ➤ Why do you need to know this material?
The analysis of first-order gas-phase reactions illustrates 
how kinetic data are used to build insight into the detailed 
mechanism of chemical reactions.

 ➤ What is the key idea?
The Lindemann–Hinshelwood mechanism and the RRK 
model of ‘unimolecular’ reactions account for the first-
order kinetics of gas-phase reactions.

 ➤ What do you need to know already?
You need to be familiar with rate laws (Topic 82), the 
steady-state approximation (Topic 86), and collision theory 
(Topic 87).

A

A

A

A*
Products

Figure 91.1 A representation of the Lindemann–Hinshelwood 
mechanism of unimolecular reactions. The species A is excited 
by collision with A, and the excited A molecule (A*) may either 
be deactivated by a collision with A or go on to decay by a 
unimolecular process to form products.
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91 Unimolecular reactions  877

Alternatively, the excited molecule might shake itself apart and 

form products P. That is, it might undergo the unimolecular 

decay

A P
d A

d
A*

*
*b→ = −[ ]

[ ]
t

k
 

(91.1c)

If the unimolecular step is slow enough to be the rate-deter-

mining step, the overall reaction will have first-order kinetics, 

as observed. This conclusion can be demonstrated explicitly by 

applying the steady-state approximation to the net rate of for-

mation of A*:

d A

d
A A A A

*
* *a a b

[ ]
[ ] [ ][ ] [ ]

t
k k k= − − ≈2 0′

 
(91.2)

This equation solves to

[ ]
[ ]

[ ]
A

A

A
* a

b a

=
+
k

k k

2

′
 

(91.3)

so the rate law for the formation of P is

d P

d
A

A

A
*b

a b

b a

[ ] [ ]

[ ]
[ ]

t
k

k k

k k
= =

+

2

′
 

(91.4)

At this stage the rate law is not first-order. However, if the rate of 

deactivation by (A*,A) collisions is much greater than the rate 

of unimolecular decay, in the sense that k ka bA A A* *′[ ][ ] [ ]>> , or 

(after cancelling the [A*]), k ka bA′[ ]>> , then we can neglect kb in 

the denominator and obtain

d P

d
A withr r

a b

a

[ ]
[ ]

t
k k

k k

k
= =

′
 

(91.5)

Equation 91.5 is a first-order rate law, as we set out to show.

The Lindemann–Hinshelwood mechanism can be tested 

because it predicts that, as the concentration (and therefore the 

partial pressure) of A is reduced, the reaction should switch to 

overall second-order kinetics. Thus, when k ka bA′[ ]� , the rate 

law in eqn 91.4 becomes

d P

d
Aa

[ ]
[ ]

t
k= 2

 
(91.6)

The physical reason for the change of order is that at low pres-

sures the rate-determining step is the bimolecular formation of 

A*. If we write the full rate law in eqn 91.4 as

d P

d
A with

A

A
r r

a b

b a

[ ] [ ]

[ ]
[ ]

t
k k

k k

k k
= =

+ ′

then the expression for the effective rate constant, kr, can be 

rearranged to

1 1

k

k

k k kr

a

a b a A
= +

′

[ ]

Hence, a test of the theory is to plot 1/kr against 1/[A], and to 

expect a straight line. This behaviour is observed often at low 

concentrations, but deviations are common at high concentra-

tions. In the following section we develop the description of the 

mechanism to take into account experimental results over a 

range of concentrations and pressures.

91.2 The RRK model

The steric factor P (Topic 87) can also be estimated for uni-

molecular gas-phase reactions, and its introduction brings 

the Lindemann–Hinshelwood mechanism into closer agree-

ment with experimental results. For example, Fig. 91.2 shows 

Example 91.1 Analysing the Lindemann–Hinshelwood 
mechanism

At 300 K the effective rate constant for a gaseous reac-

tion A → P which has a Lindemann–Hinshelwood mecha-

nism is kr,1 = 2.50 × 10−4 s−1 at [A]1 = 5.21 ×10−4 mol dm−3 and 

kr,2 = 2.10 × 10−5 s−1 at [A]2 = 4.81 × 10−6 mol dm−3. Calculate the 

rate constant for the activation step in the mechanism.

Method Use eqn 91.8 to write an expression for the difference 

1/kr,2 − 1/kr,1 and then use the data to solve for ka, the rate con-

stant for the activation step.

Answer It follows from eqn 91.8 that

1 1 1 1 1

2 1 2 1k k kr r a A A, , [ ] [ ]
− = −⎛

⎝⎜
⎞
⎠⎟

and

k
k ka

r r

/ A / A

/ /

/ mol dm /

= −
−

=
× −− −

1 1

1 1

1 4 81 10 1 5 21

2 1

2 1

6 3

[ ] [ ]

( . ) ( .

, ,

××
× − ×

=

− −

− − − −

10

1 2 10 10 1 2 50 10

4 72

4 3

5 1 4 1

3

mol dm

/ s / s

dm mol

)

( . ) ( . )

. −− −1 1s

Self-test 91.1 The effective rate constants for a gaseous reac-

tion A → P which has a Lindemann–Hinshelwood mechanism 

are 1.70 × 10−3 s−1 and 2.20 × 10−4 s−1 at [A] = 4.37 ×10−4 mol 

dm−3 and 1.00 × 10−5 mol dm−3, respectively. Calculate the rate 

constant for the activation step in the mechanism.

Answer: 24.6 dm3 mol−1 s−1

Lindemann–
Hinshelwood 
mechanism

Effective rate 
constant

(91.8)

(91.7)
Lindemann–
Hinshelwood 
mechanism

Rate 
law
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878 19 Processes in fluid systems

a typical plot of experimental values of 1/kr against 1/[A]. The 

plot has a pronounced curvature, corresponding to a larger 

value of kr (a smaller value of 1/kr) at high pressures (low  

1/[A]) than would be expected by a Lindemann–Hinshelwood 

extrapolation of the reasonably linear low pressure (high  

1/[A]) data.

The improved model was proposed in 1926 by O.K. Rice and 

H.C. Ramsperger and almost simultaneously by L.S. Kassel, 

and is now known as the Rice–Ramsperger–Kassel model 

(RRK model). The model has been elaborated, largely by R.A. 

Marcus, into the ‘RRKM model’. Here we outline Kassel's origi-

nal approach to the RRK model; the details are set out in the 

following Justification. The essential feature of the model is that 

although a molecule might have enough energy to react, that 

energy is distributed over all the modes of motion of the mol-

ecule, and reaction will occur only when enough of that energy 

has migrated into a particular location (such as a bond) in the 

molecule. This distribution effect leads to a P factor of the form

P
E

E

s

= −⎛
⎝⎜

⎞
⎠⎟

−

1

1
*

 

 RRK theory  (91.9a)

where s is the number of modes of motion over which the 

energy E may be dissipated and E* is the energy required for 

the bond of interest to break. The resulting Kassel form of the 

unimolecular rate constant for the decay of A* to products is

k E
E

E
k E E

s

b b

*
for( )= −⎛

⎝⎜
⎞
⎠⎟

−

1

1

≥
 

 Kassel form  (91.9b)

where kb is the rate constant used in the original Lindemann 

theory for the decomposition of the activated intermediate (eqn 

91.1c).

0 0.5 1 1.5 2
1/([A]/mmol dm–3)

0

1

2
1/

(k
r/1

0–4
 s

–1
)

Figure 91.2 The pressure dependence of the unimolecular 
isomerization of trans-CHD = CHD, showing a pronounced 
departure from the straight line predicted by the Lindemann–
Hinshelwood mechanism.

Justification 91.1 The RRK model of unimolecular 
reactions

To set up the RRK model, we suppose that a molecule con-

sists of s identical harmonic oscillators, each of which has 

frequency ν. In practice, of course, the vibrational modes of 

a molecule have different frequencies, but assuming that they 

are all the same is a reasonable first approximation. Next, we 

suppose that the vibrations are excited to a total energy E = nhν 

and then set out to calculate the number of ways N in which 

the energy can be distributed over the oscillators.

We can represent the n quanta as follows:

,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,, ,,,

 (cont d)’

…

These quanta must be put in s containers (the s oscillators), 

which can be represented by inserting s – 1 walls, denoted by |. 

One such distribution is

,, ,,,, ,, ,,, ,,,,,,,,

,,,, ,,,,, ,,,, , ,,

| | || | |

||| | |

(cont d)’

…

The total number of arrangements of each quantum and wall 

(of which there are n + s –1 in all) is (n + s – 1)!, where, as usual, 

x! = x(x – 1)…1. However the n! arrangements of the n quanta 

are indistinguishable, as are the (s – 1)! arrangements of the  

s – 1 walls. Therefore, to find N we must divide (n + s – 1)! by 

these two factorials. It follows that

N
n s

n s
= + −

−
( )!

!( )!

1

1

The distribution of the energy throughout the molecule 

means that it is too sparsely spread over all the modes for any 

particular bond to be sufficiently highly excited to undergo 

dissociation. We suppose that a bond will break only if it is 

excited to at least an energy E* = n*hν. Therefore, we isolate 

one critical oscillator as the one that undergoes dissociation 

if it has at least n* of the quanta, leaving up to n – n* quanta 

to be accommodated in the remaining s – 1 oscillators (and 

therefore with s – 2 walls in the partition in place of the s –1 

walls we used above). For example, consider 28 quanta dis-

tributed over 6 oscillators, with excitation by at least 6 quanta 

in a critical oscillator required for dissociation of the asso-

ciated bond. Then all the following partitions will result in 

dissociation:

,,,,,,,,,,,,,,,,,,,,,,, ,,,,,

,,,,,,,,,,,,,,,,,,,,,,

| | | ||

| | | ,, ,,,,,

,,,,,,,,,,,,,,, ,,,,,,,,,,,,,

||

| | | ||

� � � � � �

Atkins09819.indb   878 9/11/2013   8:49:10 AM

www.ebook3000.com

http://www.ebook3000.org


91 Unimolecular reactions  879

The energy dependence of the rate constant given by eqn 

91.9b is shown in Fig. 91.3 for various values of s. We see that 

the rate constant is smaller at a given excitation energy if s is 

large, as it takes longer for the excitation energy to migrate 

through all the oscillators of a large molecule and accumulate in 

the critical mode. As E becomes very large, however, the term 

in parentheses approaches 1, and kb(E) becomes independent 

of the energy and the number of oscillators in the molecule, as 

there is now enough energy to accumulate immediately in the 

critical mode regardless of the size of the molecule.

Brief illustration 91.1 The RRK model

In Brief illustration 87.3 we calculated a value of P = 1.8 × 10−6 

for the reaction H2 + C2H4 → C2H6. Although this is not a uni-

molecular process, it is interesting to analyse it on the basis 

of the RRK theory because in some sense the collision energy 

must accumulate in a region where bonds are broken and 

formed. Thus, C2H4 has six atoms and therefore s = 12 vibra-

tional modes. We can estimate the ratio E*/E by solving

1 1 8 10 1 1 8 10 0 70

11

6 6 1 11−⎛
⎝⎜

⎞
⎠⎟

= × = − × =− −E

E

E

E

*
.

*
( . ) ./or

This result suggests in one interpretation that the energy 

needed to proceed in the reaction (identified here with the 

energy to break the carbon–carbon bond in C2H4) is typically 

70 per cent of the energy of a typical collision. If all eight atoms 

are taken to be involved in sharing the energy of the collision, 

the ratio works out as 0.54.

Self-test 91. 2 Apply the same ana lysis to the reac-

tion in Self-test 87.3, where it is found that P = 0.019 for 

NO + Cl2 → NOCl + Cl. Take the number of atoms in the com-

plex to be 4, so s = 6.

Answer: 0.55 

(The leftmost partition is the critical oscillator.) However, 

these partitions are equivalent to

,,,,,,

,,,,,, ,

,,,,,,,,,,,,,,,,, ,,,,,

,,,,,,,,,,,,,,,

| | | ||

| | | ,, ,,,,,

,,,,,,,,,,,,,,, ,,,,,,,,,,, ,,

||

| | | ||

� � � � � �

and we see that we have the problem of permuting 28 – 6 = 22 

(in general, n – n*) quanta and 5 (in general, s – 1) walls, 

and therefore a total of 27 (in general, n – n* + s – 1) objects. 

Therefore, the calculation is exactly like the one above for N, 

except that we have to find the number of distinguishable per-

mutations of n – n* quanta in s containers (and therefore s – 1 

walls). The number N* is therefore obtained from the expres-

sion for N by replacing n by n – n* and is

N
n n s

n n s
*

*

*
= − + −

− −
( )!

( )!( )!

1

1

From the preceding discussion we conclude that the proba-

bility that one specific oscillator will have undergone sufficient 

excitation to dissociate is the ratio N*/N, which is

P
N

N

n n n s

n n n s
= = − + −

− + −
* *

*

!( )!

( )!( )!

1

1

This equation is still awkward to use, even when written out in 

terms of its factors:

P
n n n

n n n n

n n s n n s

n s
= − − …

− − − … × − + − − + − …
+

( )( )

( )( )

( )( )

(

1 2 1

1 1

1 2 1

* *

* *

−− + − …

= − + − − + − … − +
+ − + − …

1 2 1

1 2 1

1 2

)( )

( )( ) ( )

( )( )

n s

n n s n n s n n

n s n s

* * *

(( )( )n n+ +2 1

However, because s – 1 is small (in the sense s – 1 <<  n – n*), we 

can approximate this expression by

P
n n n n n n

n n n
= − − … −

…

−

−

( )( ) ( )

( )( ) ( )

* * *

s

s

1factors

1fac

� ����� �����

ttors
� �� 	�

= −⎛
⎝⎜

⎞
⎠⎟

−
n n

n

s
*

1

An alternative derivation for this expression for P is developed 

in Problem 91.2. Because the energy of the excited molecule 

is E = nhν and the critical energy is E* = n*hν, this expression 

may be written

P
E

E

s

= −⎛
⎝⎜

⎞
⎠⎟

−

1

1
*

as in eqn 91.9a.
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Figure 91.3 The energy dependence of the rate constant 
given by eqn 91.9b for three values of s.
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880 19 Processes in fluid systems

Checklist of concepts

☐ 1. In the Lindemann–Hinshelwood mechanism of ‘uni-

molecular’ gas-phase reactions, it is supposed that a 

bimolecular activation step is followed by a rate-deter-

mining unimolecular decay step.

☐ 2. In the RRK model, the energy distributed over the 

modes of motion of the activated molecule is supposed 

to accumulate in a single bond.

Checklist of equations

Property Equation Comment Equation number

Lindemann–Hinshelwood rate law d[P] d A with A Ar r a b b a/ , [ ]/( )[ ] [ ]t k k k k k k= = + ′ k k k k k kr a b a a b if A= / [ ]′ ′ � 91.7

Effective rate constant 1 1/ / / [ ]k k k k kr a a b a A= +′ Lindemann–Hinshelwood mechanism 91.8

Steric factor P = (1–E*/E)s–1 RRK theory 91.9a
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TOPIC 92

Enzymes

Figure 92.1 (which is identical to Fig. 85.5) shows that a cata-

lyst lowers the activation energy of the reaction by provid-

ing an alternative path that avoids the slow, rate-determining 

step of the uncatalysed reaction. A homogeneous catalyst is a 

catalyst in the same phase as the reaction mixture. For example, 

the decomposition of hydrogen peroxide in aqueous solution 

is catalysed by iodide ions. Enzymes, which are homogeneous 

biological catalysts, are very specific and can have a dramatic 

effect on the reactions they control. Topic 97 deals with het-

erogeneous catalysts, which are in a different phase from the 

reaction mixture.

Homogeneous catalysts can be very effective. For instance, 

the activation energy for the decomposition of hydrogen per-

oxide in solution is 76 kJ mol−1, and the reaction is slow at room 

temperature. When a small amount of iodide ion is added, 

the activation energy falls to 57 kJ mol−1 and the rate constant 

increases by a factor of 2000. The enzyme catalase reduces the 

activation energy even further, to 8 kJ mol−1, corresponding to 

an acceleration of the reaction by a factor of 1015 at 298 K.

92.1 Features of enzymes

Enzymes are homogeneous biological catalysts acting in the 

aqueous environment of cells. These ubiquitous compounds 

are special proteins or nucleic acids that contain an active site, 

Contents

92.1 Features of enzymes 881

92.2 The Michaelis–Menten mechanism 882

Example 92.1: Analysing a Lineweaver–Burk plot 883

92.3 The catalytic efficiency of enzymes 884

Brief illustration 92.1: The catalytic efficiency  

of an enzyme 885

92.4 Mechanisms of enzyme inhibition 885

Example 92.2: Distinguishing between types  

of inhibition 886

Checklist of concepts 887

Checklist of equations 888

 ➤ Why do you need to know this material?
The role of enzymes in controlling chemical reactions is 
central to biology and the maintenance of life.

 ➤ What is the key idea?
Enzymes are homogeneous catalysts, which are in the 
same phase as the reaction mixture they catalyse and can 
have a dramatic effect on the rates of the reactions they 
control.

 ➤ What do you need to know already?
You need to be familiar with the analysis of reaction 
mechanisms in terms of the steady-state approximation 
(Topic 86) and the effect of a catalyst on the activation 
energy of a reaction (Topic 85).

Reactants

Products

Ea(uncatalysed)
Ea(catalysed)

Reaction coordinate
Po

te
n

ti
al

 e
n

er
g

y

Figure 92.1 A catalyst provides a different path with a lower 
activation energy. The result is an increase in the rate of 
formation of product.
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882 19 Processes in fluid systems  

which is responsible for binding the substrates, the reactants, 

and processing them into products. As is true of any cata-

lyst, the active site returns to its original state after the prod-

ucts are released. Many enzymes consist primarily of proteins, 

some featuring organic or inorganic cofactors in their active 

sites. However, certain RNA molecules can also be biological 

catalysts, forming ribozymes. A very important example of a 

ribozyme is the ribosome, a large assembly of proteins and cata-

lytically active RNA molecules responsible for the synthesis of 

proteins in the cell.

The structure of the active site is specific to the reaction that 

it catalyses, with groups in the substrate interacting with groups 

in the active site by intermolecular interactions, such as hydro-

gen bonding, electrostatic forces, and van der Waals interac-

tions. Figure 92.2 shows two models that explain the binding of 

a substrate to the active site of an enzyme. In the lock-and-key 

model, the active site and substrate have complementary three-

dimensional structures and dock without the need for major 

atomic rearrangements. Experimental evidence favours the 

induced fit model, in which binding of the substrate induces a 

conformational change in the active site. Only after the change 

does the substrate fit snugly in the active site.

Enzyme-catalysed reactions are prone to inhibition by 

molecules that interfere with the formation of product. Many 

drugs for the treatment of disease function by inhibiting 

enzymes. For example, an important strategy in the treatment 

of acquired immune deficiency syndrome (AIDS) involves 

the steady administration of a specially designed protease 

inhibitor. The drug inhibits an enzyme that is key to the for-

mation of the protein envelope surrounding the genetic mate-

rial of the human immunodeficiency virus (HIV). Without a 

properly formed envelope, HIV cannot replicate in the host 

organism.

92.2 The Michaelis–Menten 
mechanism

Experimental studies of enzyme kinetics are typically con-

ducted by monitoring the initial rate of product formation 

in a solution in which the enzyme is present at very low con-

centration. Indeed, enzymes are such efficient catalysts that 

significant accelerations may be observed even when their con-

centration is more than three orders of magnitude smaller than 

that of the substrate.

The principal features of many enzyme-catalysed reactions 

are as follows:

For a given initial concentration of substrate, [S]0, the 

initial rate of product formation is proportional to the 

total concentration of enzyme, [E]0.

For a given [E]0 and low values of [S]0, the rate of product 

formation is proportional to [S]0.

For a given [E]0 and high values of [S]0, the rate of product 

formation becomes independent of [S]0, reaching a 

maximum value known as the maximum velocity, vmax.

The Michaelis–Menten mechanism accounts for these features. 

According to this mechanism, an enzyme–substrate com-

plex (ES) is formed in the first step and the substrate is either 

released unchanged or after modification to form products:

E S ES

ES P E

a

a

b

+ ⎯ →⎯← ⎯⎯

⎯ →⎯ +

k

k

k

′

 

 Michaelis–Menten mechanism 

 

We show in the following Justification that this mechanism 

leads to the Michaelis–Menten equation for the rate of product 

formation,

v= +
k

K
b

M

E

S

[ ]

/[ ]
0

01  
 Michaelis–Menten equation  (92.1)

where K k k kM a b a= +( )/′  is the Michaelis constant, characteris-

tic of a given enzyme acting on a given substrate and having the 

dimensions of a molar concentration.

Justification 92.1 The Michaelis–Menten equation

The rate of product formation according to the Michaelis–

Menten mechanism is

v=kb ES[ ]

We can obtain the concentration of the enzyme–substrate com-

plex by invoking the steady-state approximation and writing

d ES

d
E S ES ESa a b

[ ]
[ ][ ] [ ] [ ]

t
k k k= − −′ ≅0

Lock
and
key

Induced
fit

Active
site

Active
site

S S

E E

SE

Figure 92.2 Two models that explain the binding of a 
substrate to the active site of an enzyme. In the lock-and-key 
model, the active site and substrate have complementary 
three-dimensional structures and dock without the need 
for major atomic rearrangements. In the induced fit model, 
binding of the substrate induces a conformational change in 
the active site. The substrate fits well in the active site after the 
conformational change has taken place.
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92 Enzymes  883

Equation 92.1 shows that, in accord with experimental 

observations (Fig. 92.3),

When [S]0 � KM, the rate is proportional to [S]0:

v= k

K
b

M

S E[ ] [ ]0 0

 
(92.2a)

When, [S]0 � KM, the rate reaches its maximum value 

and is independent of [S]0:

v v= =max [ ]kb E 0  (92.2b)

Substitution of the definition of vmax into eqn 92.1 gives

v
v= +

max

M S1 0K /[ ]  
(92.3a)

which can be rearranged into a form amenable to data analysis 

by linear regression by taking reciprocals of both sides:

1 1 1

0v v v
= +⎛

⎝⎜
⎞
⎠⎟max

M

max S

K

[ ]  

 Lineweaver–Burk plot  (92.3b)

A Lineweaver–Burk plot is a plot of 1/v against 1/[S]0, and 

according to eqn 92.3b it should yield a straight line with 

slope of KM/vmax, a y-intercept at 1/vmax, and an x-intercept at 

−1/KM (Fig. 92.4). The value of kb is then calculated from the 

y-intercept and eqn 92.2b. However, the plot cannot give the 

individual rate constants ka and ka
′ that appear in the expression 

for KM. The stopped-flow technique described in Topic 82 can 

give the additional data needed, because we can find the rate of 

formation of the enzyme–substrate complex by monitoring the 

concentration after mixing the enzyme and substrate. This pro-

cedure gives a value for ka, and ka
′ is then found by combining 

this result with the values of kb and KM.

Example 92.1 Analysing a Lineweaver–Burk plot

The enzyme carbonic anhydrase catalyses the hydration of 

CO2 in red blood cells to give bicarbonate (hydrogencarbon-

ate) ion:

CO g H O l HCO aq H aq2 2 3( ) ( ) ( ) ( )+ → +− +

It follows that

[ ] [ ][ ]ES E Sa

a b

=
+

⎛
⎝⎜

⎞
⎠⎟

k

k k′

where [E] and [S] are the concentrations of free enzyme and 

substrate, respectively. Now we define the Michaelis con-

stant as

K
k k

kM
b

a

E S

ES
= + =a

′ [ ][ ]

[ ]

To express the rate law in terms of the concentrations of 

enzyme and substrate added, we note that [E]0 = [E] + [ES] and

[ ]
[ ]

[ ]
[ ] [ ]

[ ]
E

ES

S
ES ES

S
M M

0 1= + = +⎧
⎨
⎩

⎫
⎬
⎭

K K

Moreover, because the substrate is typically in large excess 

relative to the enzyme, the free substrate concentration is 

approximately equal to the initial substrate concentration and 

we can write [S] ≈ [S]0. It then follows that

[ ]
[ ]

/[ ]
ES

E

SM

= +
0

01 K

Equation 92.1 is obtained when this expression for [ES] is sub-

stituted into that for the rate of product formation (v = kb[ES]).

0 1/[S]
1/
v

1/vmax–1/KM

Slope = KM/vmax

Figure 92.4 A Lineweaver–Burk plot for the analysis of an 
enzyme-catalysed reaction that proceeds by a Michaelis–Menten 
mechanism, and the significance of the intercepts and the slope.
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Substrate concentration, [S]
0

0

1

Figure 92.3 The variation of the rate of an enzyme-catalysed 
reaction with substrate concentration. The approach to a 
maximum rate, vmax, for large [S] is explained by the Michaelis–
Menten mechanism.
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884 19 Processes in fluid systems  

92.3 The catalytic efficiency 
of enzymes

The turnover frequency, or catalytic constant, of an enzyme, 

kcat, is the number of catalytic cycles (turnovers) performed by 

the active site in a given interval divided by the duration of the 

interval. This quantity has units of a first-order rate constant 

and, in terms of the Michaelis–Menten mechanism, is numeri-

cally equivalent to kb, the rate constant for release of product 

from the enzyme–substrate complex. It follows from the identi-

fication of kcat with kb and from eqn 92.2b that

k kcat b
max

E
= = v

[ ]0  
 Turnover frequency  (92.4)

The catalytic efficiency, η (eta), of an enzyme is the ratio 

kcat/KM. The higher the value of η, the more efficient is the 

enzyme. We can think of the catalytic efficiency as the effective 

rate constant of the enzymatic reaction. From K k k kM a b a= +( )/′  

and eqn 92.4, it follows that

η = =
+

k

K

k k

k k
cat

M

a b

a b
′

 
 Catalytic efficiency  (92.5)

The efficiency reaches its maximum value of ka when k kb a� ′ .  

Because ka is the rate constant for the formation of a complex 

from two species that are diffusing freely in solution, the maxi-

mum efficiency is related to the maximum rate of diffusion of 

E and S in solution. This limit (which is discussed further in 

Topic 88) leads to rate constants of about 108–109 dm3 mol−1 s−1 

for molecules as large as enzymes at room temperature. The 

enzyme catalase has η = 4.0 × 108 dm3 mol−1 s−1 and is said to 

have attained ‘catalytic perfection’, in the sense that the rate of 

the reaction it catalyses is controlled only by diffusion: it acts as 

soon as a substrate makes contact.

The following data were obtained for the reaction at pH = 7.1, 

273.5 K, and an enzyme concentration of 2.3 nmol dm−3:

Determine the maximum velocity and the Michaelis constant 

for the reaction at 273.5 K.

Method Prepare a Lineweaver–Burk plot and determine the 

values of KM and vmax by linear regression analysis.

Answer We draw up the following table:

Figure 92.5 shows the Lineweaver–Burk plot for the data. The 

slope is 40.0 and the y-intercept is 4.00. Hence,

vmax mmol dm s
intercept

/( )
.

.− − = = =3 1 1 1

4 00
0 250

and

KM mmol dm
slope

intercept
/( )

.

.
.− = = =3 40 00

4 00
10 0

A note on good practice The slope and the intercept are 

unitless: we have remarked previously that all graphs 

should be plotted as pure numbers.

Self-test 92.1 The enzyme α-chymotrypsin is secreted in 

the pancreas of mammals and cleaves peptide bonds made 

between certain amino acids. Several solutions containing 

the small peptide N-glutaryl-l-phenylalanine-p-nitroanilide 

at different concentrations were prepared and the same small 

1/([CO2]/(mmol dm−3)) 0.800 0.400 0.200 0.0500

1/(v/(mmol dm−3 s−1)) 36.0 20.0 12.0 6.0

0 0.2 0.4 0.6 0.8 1

1/([CO2]/mmol dm–3)

1/
(v

/m
m

o
l d

m
–3

 s
–1

)

0

10

20

30

40

Figure 92.5 The Lineweaver–Burk plot of the data for 
Example 92.1.

[CO2]/
(mmol dm−3)

1.25 2.5 5 20

v/(mmol dm−3 s−1) 2.78 × 10−2 5.00 × 10−2 8.33 × 10−2 1.67 × 10−1

amount of α-chymotrypsin was added to each one. The fol-

lowing data were obtained on the initial rates of the formation 

of product:

Determine the maximum velocity and the Michaelis constant 

for the reaction.

Answer: vmax = 2.80 mmol dm−3 s−1, KM = 5.89 mmol dm−3

[S]/(mmol dm−3) 0.334 0.450 0.667 1.00 1.33 1.67

v/(mmol dm−3 s−1) 0.152 0.201 0.269 0.417 0.505 0.667
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92 Enzymes  885

92.4 Mechanisms of enzyme 
inhibition

An inhibitor, I, decreases the rate of product formation from 

the substrate by binding to the enzyme, to the ES complex, or to 

the enzyme and ES complex simultaneously. The most general 

kinetic scheme for enzyme inhibition is then

E S ES
a

a

+ ⎯ →⎯← ⎯⎯
k

k′

ES P Ebk⎯ →⎯ +

EI E I
E I

EII� + =K
[ ][ ]

[ ]  
(92.6a)

ESI ES I
ES I

ESII� + =K ′ [ ][ ]

[ ]  
(92.6b)

The lower the values of KI and K I
′, the more efficient are the 

inhibitors. The rate of product formation is always given by 

v = kb[ES], because only ES leads to product. As shown in the 

following Justification, the rate of reaction in the presence of an 

inhibitor is

v
v= +

max

M Sα α′ K /[ ]0  
 Effect of inhibition on the rate  (92.7)

where α = 1 + [I]/KI and α ′ ′= +1 [ ]/ .I IK  This equation is 

very similar to the Michaelis–Menten equation for the 

uninhibited enzyme (eqn 92.1) and is also amenable to analysis 

by a Lineweaver–Burk plot:

1 1

0v v v
= +⎛

⎝⎜
⎞
⎠⎟

α α′
max

M

max S

K

[ ]  

(92.8)

There are three major modes of inhibition that give rise to 

distinctly different kinetic behaviour (Fig. 92.6). In competi-

tive inhibition the inhibitor binds only to the active site of the 

enzyme and thereby inhibits the attachment of the substrate. 

This condition corresponds to α > 1 and α ′ = 1 (because ESI 

does not form). In this limit, eqn 92.8 becomes

1 1 1

0v v v
= +⎛

⎝⎜
⎞
⎠⎟max

M

max S

αK

[ ]  
 Competitive inhibition 

The y-intercept is unchanged but the slope of the Lineweaver–

Burk plot increases by a factor of α relative to the slope for data 

on the uninhibited enzyme (Fig. 92.6a). In uncompetitive inhi-

bition the inhibitor binds to a site of the enzyme that is removed 

from the active site, but only if the substrate is already present. 

The inhibition occurs because ESI reduces the concentration 

of ES, the active type of complex. In this case α = 1 (because EI 

does not form) and α ′ > 1 and eqn 92.8 becomes

1 1

0v v v
= +⎛

⎝⎜
⎞
⎠⎟

α ′
max

M

max S

K

[ ]  

 Uncompetitive inhibition 

Brief illustration 92.1 The catalytic efficiency of an 
enzyme

To determine the catalytic efficiency of carbonic anhydrase at 

273.5 K from the results from Example 92.1, we begin by using 

eqn 92.4 to calculate kcat:

kcat
max

E

mol dm s

mol dm
s= =

×
×

= ×
− − −

− −
−v

[ ]

.

.
.

0

4 3 1

9 3
5 1

2 5 10

2 3 10
1 1 10

The catalytic efficiency follows from eqn 92.5:

η = =
×

×
= ×

−

− −
− −k

K
cat

M

s

mol dm
dm mol s

1 1 10

10 0 10
1 1 10

5 1

3 3
7 3 1 1

.

.
.

Self-test 92.2 The enzyme-catalysed conversion of a substrate at 

298 K has KM = 0.015 mol dm−3 and vmax = 4.25 × 10−4 mol dm−3 s−1 

when the enzyme concentration is 3.60 × 10−9 mol dm−3. 

Calculate kcat and η. Is the enzyme ‘catalytically perfect’?

Answer: kcat = 1.18 × 105 s−1, η = 7.9 × 106 dm3 mol−1 s−1; the enzyme is not 

‘catalytically perfect’

Justification 92.2 Enzyme inhibition

By mass balance, the total concentration of enzyme is

[ ] [ ] [ ] [ ] [ ]E E EI ES ESI0 = + + +

By using eqns 92.6a and 92.6b and the definitions

α α= + = +1 1
[ ] [ ]I

and
I

I I
K K

′
′

it follows that

[ ] [ ] [ ]E E ES0 = +α α ′

By using KM = [E][S]/[ES] and replacing [S] with [S]0 we can 

write

[ ]
[ ]

[ ]
[ ] [ ]

[ ]
E

ES

S
ES ES

S
M M

0
0 0

= + = +⎛
⎝⎜

⎞
⎠⎟

K Kα α α α′ ′

The expression for the rate of product formation is then

v= = +k
k

Kb
b

M

ES
E

S
[ ]

[ ]

/[ ]
0

0α α ′

which, upon replacement of kb[E]0 with vmax, gives eqn 92.7.
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The y-intercept of the Lineweaver–Burk plot increases by a 

factor of α ′ relative to the y-intercept for data on the unin-

hibited enzyme but the slope does not change (Fig. 92.6b). In 

non-competitive inhibition (also called mixed inhibition) 

the inhibitor binds to a site other than the active site, and its 

presence reduces the ability of the substrate to bind to the 

active site. Inhibition occurs at both the E and ES sites. This 

condition corresponds to α  > 1 and α ′ > 1. Both the slope and 

the y-intercept of the Lineweaver–Burk plot increase upon 

addition of the inhibitor. Figure 92.6c shows the special case 

of K KI I= ′ and α = α ′, which results in intersection of the lines 

at the x-axis.

In all cases, the efficiency of the inhibitor may be obtained 

by determining KM and vmax from a control experiment with 

uninhibited enzyme and then repeating the experiment with a 

known concentration of inhibitor. From the slope and y-inter-

cept of the Lineweaver–Burk plot for the inhibited enzyme, the 

mode of inhibition, the values of α or α ′, and the values of KI 

and K I
’ may be obtained.

Example 92.2 Distinguishing between types 
of inhibition

Five solutions of a substrate, S, were prepared with the con-

centrations given in the first column below and each one was 

divided into four equal volumes. The same concentration of 

enzyme was present in each one. An inhibitor, I, was then 

added in four different concentrations to the samples, and the 

1/
v

1/
v

1/
v

1/[S] 1/[S]

1/[S]

0 0

0

α > 1, α ′ = 1
α = 1, α ′ > 1

α = α ′ > 1

 α = α ′ = 1  α = α ′ = 1

 α = α ′ = 1

(a) (b)

(c)

Figure 92.6 Lineweaver–Burk plots characteristic of the three 
major modes of enzyme inhibition: (a) competitive inhibition, 
(b) uncompetitive inhibition, and (c) non-competitive 
inhibition, showing the special case α = α ′ > 1.

initial rate of formation of product was determined with the 

results given below. Does the inhibitor act competitively or 

non-competitively? Determine KI and KM.

Method Draw a series of Lineweaver–Burk plots for differ-

ent inhibitor concentrations. If the plots resemble those in 

Fig. 92.6a, then the inhibition is competitive. On the other 

hand, if the plots resemble those in Fig. 92.6c, then the inhi-

bition is non-competitive. To find KI, we need to determine 

the slope at each value of [I], which is equal to αKM/vmax, or 

KM/vmax + KM[I]/KIvmax, then plot this slope against [I]: the 

intercept at [I] = 0 is the value of KM/vmax and the slope is 

KM/KIvmax.

Answer First we draw up a table of 1/[S]0 and 1/v for each 

value of [I]:

The five plots (one for each [I]) are given in Fig. 92.7. We see 

that they pass through the same intercept on the vertical 

axis, so the inhibition is competitive. The mean of the (least-

squares) intercepts is 5.83, so vmax = 0.172 μmol dm−3 s−1 (note 

how it picks up the units for v in the data). The (least-squares) 

slopes of the lines are as follows:

These values are plotted in Fig. 92.8. The intercept at [I] = 0 is 

1.234, so KM = 0.212 mmol dm−3. The (least-squares) slope of 

the line is 2.045, so

K
K

I
M

max

mmol dm
slope

0.603/( )
.

. .
− = × = × =3 0 212

2 045 0 172v

1/([S]0/
(mmol dm−3))

[I]/(mmol dm−3)

0 0.20 0.40 0.60 0.80

20 30 38 48 56 62

1/
(v

/(
μm

o
l d

m
−3

 s−1
))

10 18 22 26 30 34

5.0 12 14 16 18 20

2.5 9.01 10.0 11.0 11.9 13.0

1.7 7.94 8.62 9.26 9.90 10.6

[I]/(mmol dm−3) 0 0.20 0.40 0.60 0.80

Slope 1.219 1.627 2.090 2.489 2.832

[S]0/(mmol dm−3)

[I]/(mmol dm−3)

0 0.20 0.40 0.60 0.80

0.050 0.033 0.026 0.021 0.018 0.016

v/
(μ

m
o

l d
m

−3
 s

−1
)

0.10 0.055 0.045 0.038 0.033 0.029

0.20 0.083 0.071 0.062 0.055 0.050

0.40 0.111 0.100 0.091 0.084 0.077

0.60 0.116 0.116 0.108 0.101 0.094
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92 Enzymes  887

Checklist of concepts

☐ 1. A homogeneous catalyst is a catalyst in the same phase 

as the reaction mixture.

☐ 2. Enzymes are homogeneous biological catalysts.

☐ 3. The Michaelis–Menten mechanism of enzyme kinetics 

accounts for the dependence of rate on the concentra-

tion of the substrate and the enzyme.

☐ 4. A Lineweaver–Burk plot is used to determine the 

parameters that occur in the Michaelis–Menten 

mechanism.

☐ 5. In competitive inhibition of an enzyme, the inhibitor 

binds only to the active site of the enzyme.

☐ 6. In uncompetitive inhibition the inhibitor binds to a 

site of the enzyme that is removed from the active site, 

but only if the substrate is already present.

☐ 7. In non-competitive inhibition, the inhibitor binds to a 

site other than the active site.

0 4 8 12 16 20
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20

30

40

50

60
0.80

0.60
0.40

0.20

0

70

0

1/{[S]0/(mmol dm–3)}

1/
{v

/(
μm

o
l d

m
–3

 s
–1

)}

Figure 92.7 Lineweaver–Burk plots for the data in Example 
92.2. Each line corresponds to a different concentration of 
inhibitor.

1

2

3

S
lo

p
e

0 0.2 0.4 0.6 0.8
[I]/(mmol dm–3)

Figure 92.8 Plot of the slopes of the plots in Fig. 92.7 
against [I] based on the data in Example 92.2.

Self-test 92.3 Repeat the question using the following data:

Answer: Non-competitive, KM = 0.30 mmol dm−3, KI = 0.57 mmol dm−3

[S]0/
(mmol dm−3)

[I]/(mmol dm−3)

0 0.20 0.40 0.60 0.80

0.050 0.020 0.015 0.012 0.0098 0.0084

v/
(μ

m
o

l d
m

−3
 s

−1
)

0.10 0.035 0.026 0.021 0.017 0.015

0.20 0.056 0.042 0.033 0.028 0.024

0.40 0.080 0.059 0.047 0.039 0.034

0.60 0.093 0.069 0.055 0.046 0.039
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888 19 Processes in fluid systems  

Checklist of equations

Property Equation Comment Equation number

Michaelis–Menten equation v = vmax/(1 + KM/[S]0) 92.3a

Lineweaver–Burk plot 1/v = 1/vmax + (KM/vmax)(1/[S]0) 92.3b

Turnover frequency kcat = vmax/[E]0 Definition 92.4

Catalytic efficiency η = kcat/KM Definition 92.5

Effect of inhibition v = vmax/(α ′+ αKM/[S]0) Assumes Michaelis–Menten mechanism 92.7
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TOPIC 93

Photochemistry

Photochemical processes are initiated by the absorption of 

electromagnetic radiation. Among the most important of 

these processes are those that capture the radiant energy of the 

Sun. Some of these reactions lead to the heating of the atmos-

phere during the daytime by absorption of ultraviolet radia-

tion. Others include the absorption of visible radiation during 

photosynthesis. Without photochemical processes, the Earth 

would be simply a warm, sterile rock.

93.1 Photochemical processes

Table 93.1 summarizes common photochemical reactions. 

Photochemical processes are initiated by the absorption of radia-

tion by at least one component of a reaction mixture. In a primary 

process, products are formed directly from the excited state of a 

reactant. Examples include fluorescence (Topic 46) and the cis–

trans photoisomerization of retinal. Products of a secondary pro-

cess originate from intermediates that are formed directly from 

the excited state of a reactant, such as oxidative processes initiated 

by the oxygen atoms formed by ozone photodissociation.

Competing with the formation of photochemical products are 

numerous primary photophysical processes that can deactivate 

the excited state (Table 93.2). Therefore, it is important to con-

sider the timescales of the formation and decay of excited states 

before describing the mechanisms of photochemical reactions.

Electronic transitions caused by absorption of ultraviolet and 

visible radiation occur within 10−16–10−15 s. We expect, then, the 

upper limit for the rate constant of a first-order photochemical 

reaction to be about 1016 s−1. Fluorescence is slower than absorp-

tion, with typical lifetimes of 10−12–10−6 s. Therefore, the excited 

singlet state can initiate very fast photochemical reactions in the 

femtosecond (10−15 s) to picosecond (10−12 s) range. Examples 

of such ultrafast reactions are the initial events of vision and of 

photosynthesis. Typical intersystem crossing (ISC, Topic 46) 

and phosphorescence times for large organic molecules are 

10−12–10−4 s and 10−6–10−1 s, respectively. As a consequence of 

their long lifetimes, excited triplet states are photochemically 

important. Indeed, because phosphorescence decay is several 

Contents

93.1 Photochemical processes 889

Brief illustration 93.1: The nature of the excited state 890

93.2 The primary quantum yield 891

Example 93.1: Calculating a primary quantum yield 891

93.3 Mechanism of decay of excited singlet states 892

Brief illustration 93.2: The fluorescence rate constant 893

93.4 Quenching 893

Example 93.2: Determining the quenching  

rate constant 893

93.5 Resonance energy transfer 894

Brief illustration 93.3: The FRET technique 896

Checklist of concepts 896

Checklist of equations 897

 ➤ Why do you need to know this material?

Many chemical and biological processes, including 
photosynthesis and vision, can be initiated by the 
absorption of electromagnetic radiation, so you need to 
know how to include the effect of light in rate laws. You 
also need to see how to obtain insight into these processes 
by the quantitative analysis of their mechanisms.

 ➤ What is the key idea?
The mechanisms of many photochemical reactions lead 
to relatively simple rate laws that yield rate constants and 
quantitative measures of the efficiency with which radiant 
energy induces reactions.

 ➤ What do you need to know already?
You need to be familiar with the concepts of singlet 
and triplet states (Topic 21), modes of radiative decay 
(fluorescence and phosphorescence, Topic 46), concepts 
of electronic spectroscopy (Topic 45), and the formulation 
of a rate law from a proposed mechanism (Topic 86).
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890 19 Processes in fluid systems

orders of magnitude slower than most typical reactions, species 

in excited triplet states can undergo a very large number of colli-

sions with other reactants before they are deactivated.

Brief illustration 93.1 The nature of the excited state

To judge whether the excited singlet or triplet state of the reac-

tant is a suitable product precursor, we compare the emission 

lifetimes with the time constant for chemical reaction of the 

reactant, τ (Topic 83). Consider a unimolecular photochemi-

cal reaction with rate constant kr = 1.7 × 104 s−1 and therefore 

time constant τ =1/(1.7 × 104 s−1) = 59 μs that involves a reac-

tant with an observed fluorescence lifetime of 1.0 ns and an 

observed phosphorescence lifetime of 1.0 ms. The excited 

singlet state is too short-lived to be a major source of product 

in this reaction. On the other hand, the relatively long-lived 

excited triplet state is a good candidate for a precursor.

Self-test 93.1 Consider a molecule with a fluorescence lifetime 

of 10.0 ns that undergoes unimolecular photoisomerization. 

What approximate value of the half-life would be consistent 

with the excited singlet state being the product precursor?

Answer: The value of t1/2 should be less than about 7 ns

Table 93.2 Common photophysical processes†

Primary absorption S + h� → S*

Excited-state absorption S* + h� → S**

T* + h� → T**

Fluorescence S* → S + h�

Stimulated emission S* + h� → S + 2h�

Intersystem crossing (ISC) S* → T*

Phosphorescence T* → S + h�

Internal conversion (IC) S* → S

Collision-induced emission S* + M → S + M + h�

Collisional deactivation S* + M → S + M

T* + M → S + M

Electronic energy transfer:

 Singlet–singlet S* + S → S + S*

 Triplet–triplet T* + T → T + T*

Excimer formation S* + S → (SS)*

Energy pooling

 Singlet–singlet S* + S* → S** + S

 Triplet–triplet T* + T* → S* + S

† An asterisk (*) denotes an excited state, ** a more excited state, S a singlet state, T a 

triplet state, and M a third body.

Table 93.1 Examples of photochemical processes

Process General form Example

Ionization A* → A+ + e− NO* NO e
nm134⎯ →⎯⎯⎯ −+ +

Electron transfer A* + B → A+ + B− or A− + B+ [ ] * [ ]Ru(bpy) Fe Ru(bpy) Fe3
2 3

3
3 2nm+ + + +++ ⎯ →⎯⎯⎯452

Dissociation A* → B + C O O3 2
nm* 1180⎯ →⎯⎯⎯ +O

A* + B—C → A + B + C Hg CH Hg CH H4 3
nm

* + 254⎯ →⎯⎯⎯ + +

Addition 2 A* → B
2 230 nm*

, ,

⎯ →⎯⎯⎯

A* + B → AB

Abstraction A* + B—C → A—B + C Hg H HgH H2
nm

* + +254⎯ →⎯⎯⎯

Isomerization or rearrangement A* → A′

O

O380 nm⎯ →⎯⎯⎯

* Excited state.
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93 Photochemistry  891

93.2 The primary quantum yield

The rates of deactivation of the excited state by radiative, non-

radiative, and chemical processes determine the yield of prod-

uct in a photochemical reaction. The primary quantum yield, 

φ, is defined as the number of photophysical or photochemical 

events that lead to primary products, divided by the number of 

photons absorbed by the molecule in the same interval:

φ =
number of events

number of photons absorbed

When both the numerator and the denominator of this expres-

sion are divided by the time interval over which the events 

occur, we see that the primary quantum yield is also the rate of 

radiation-induced primary events divided by the rate of photon 

absorption, Iabs:

φ = =
rate of process

rate of photon absorption abs

v
I

A molecule in an excited state must either decay to the 

ground state or form a photochemical product. Therefore, the 

total number of molecules deactivated by radiative processes, 

non-radiative processes, and photochemical reactions must be 

equal to the number of excited species produced by absorption 

of light. We conclude that the sum of primary quantum yields 

φi for all photophysical and photochemical events i must be 

equal to 1, regardless of the number of reactions involving the 

excited state:

i

i

i

i

I∑ ∑φ = =v

abs

1

 

(93.2)

It follows that, for an excited singlet state that decays to the 

ground state only via the photophysical processes described in 

Section 93.1 (and without reacting), we write

φ φ φF IC ISC 1+ + =

where φF, φIC, and φISC are the quantum yields of fluorescence, 

internal conversion, and intersystem crossing, respectively. If 

intersystem crossing leads to formation of a triplet state, then 

(93.1b)
Primary quantum 
yield in terms of 
rates of processes

Definition
Primary 
quantum 
yield

(93.1a)

Example 93.1 Calculating a primary quantum yield

In an experiment to determine the quantum yield of a pho-

tochemical reaction, the absorbing substance was exposed to 

490 nm light from a 100 W source for 2700 s, with 60 per cent 

of the incident light being absorbed. As a result of irradiation, 

0.344 mol of the absorbing substance decomposed. Determine 

the primary quantum yield.

Method We need to calculate the terms used in eqn 93.1a. To 

calculate the number of absorbed photons, Nabs, which is the 

denominator of the expression on the right-hand side of eqn 

93.1a, we note that:

The energy absorbed by the substance is Eabs = fPt, 

where P is the incident power, t is the time of 

exposure, and the factor f (in this case f = 0.60) is the 

proportion of incident light that is absorbed.

Eabs is also related to the number, Nabs, of absorbed 

photons through Eabs = Nabshc/λ , where hc/λ is the 

energy of a single photon of wavelength λ (eqn 3.3 of 

Foundations, Topic 3).

By combining both expressions for the absorbed 

energy, the value of Nabs follows readily.

The number of photochemical events, and hence the numer-

ator of the expression on the right-hand side of eqn 93.1a, is 

simply the number of decomposed molecules Ndecomposed. The 

primary quantum yield follows from φ = Ndecomposed/Nabs.

Answer From the expressions for the absorbed energy, it fol-

lows that

E Pt N
hc

abs abs= ⎛
⎝⎜

⎞
⎠⎟

0 60. = λ

and that

N
Pt

hcabs = 0 60. λ

Now we use eqn 93.1a to write

φ λ=
N

N

N hc

Pt
decomposed

abs

decomposed=
0 60.

Wit h Nd e c omp o s e d =  (0 . 34 4 mol)  ×  (6 .022 ×  10 23 mol−1), 

P = 100 W = 100 J s−1, t = 2700 s, and λ = 490 nm = 4.90 × 10−7 m, 

it follows that

φ =

−

−
( . ) .

( . ) .

0 344 6 022 10

6 626 10 2 998 10

23 1

34 8

mol mol

Js m

×( × )
× × ×( × ss

Js s m

−

− −

1

1 70 60 100 2700 4 90 10

0 52

)
× ×( )× ×

=
. ( ) ( . )

.

Self-test 93.2 In an experiment to measure the quantum 

yield of a photochemical reaction, the absorbing substance 

was exposed to 320 nm radiation from an 87.5 W source for 

38 min. The intensity of the transmitted light was 0.35 that of 

the incident light. As a result of irradiation, 0.324 mol of the 

absorbing substance decomposed. Determine the primary 

quantum yield.

Answer: φ = 0.93
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892 19 Processes in fluid systems

the quantum yield of photon emission by fluorescence and 

phosphorescence is φemission = φF + φP, which is less than 1. If 

the excited singlet state also participates in a primary photo-

chemical reaction with quantum yield φr, we write

φ φ φ φF IC ISC 1+ + + =r

We can now strengthen the link between reaction rates and pri-

mary quantum yield already established by eqns 93.1 and 93.2. 

By taking the constant Iabs out of the summation in eqn 93.2 

and rearranging, we obtain Iabs = Σivi. Substituting this result 

into eqn 93.2 gives the general result

φi
i

i
i

=
∑
v

v
 

(93.3)

Therefore, the primary quantum yield may be determined 

directly from the experimental rates of all photophysical and 

photochemical processes that deactivate the excited state.

93.3 Mechanism of decay of excited 
singlet states

Consider the formation and decay of an excited singlet state in 

the absence of a chemical reaction:

in which S is an absorbing singlet-state species, S* an excited 

singlet state, T* an excited triplet state, and h�i and h�f the 

energies of the incident and fluorescent photons, respectively. 

From the methods presented in Topic 86 and the rates of the 

steps that form and destroy the excited singlet state S*, we write 

the rate of formation and decay of S* as

Rate of formation of S

Rate of disappearance of S S

abs

F IS

*

* [ *]

=
= +

I

k k CC IC

F ISC IC

S S

S

[ *] [ *]

*

+
=( + + )[ ]

k

k k k

It follows that the excited state decays by a first-order process, 

so, when the light is turned off, the concentration of S* varies 

with time t as

[ ]( )S* S* e /t t=[ ] −
0

0τ
 (93.4)

where the observed lifetime, τ0, of the first excited singlet state 

is defined as

τ 0

1= +k k kF ISC IC+

We show in the following Justification that the quantum yield of 

fluorescence is

φF
F

F ISC IC
,0 = + +

k

k k k  
 Quantum yield of fluorescence  (93.6)

The observed fluorescence lifetime can be measured by 

using a pulsed-laser technique (Topic 40). First, the sample is 

excited with a short light pulse from a laser using a wavelength 

at which S absorbs strongly. Then, the exponential decay of the 

fluorescence intensity after the pulse is monitored. From eqns 

93.5 and 93.6, it follows that

τ

φ

0

0

1 1= = ×
k k k

k

k k k k

k

F ISC IC

F

F ISC IC F

F

F

+ + + +

= ,

 

(93.7)

(93.5)Definition
Observed lifetime 
of the excited 
singlet state

Justification 93.1 The quantum yield of fluorescence

Most fluorescence measurements are conducted by illuminat-

ing a relatively dilute sample with a continuous and intense 

beam of light. It follows that [S*] is small and constant, so we 

may invoke the steady-state approximation (Topic 86) and 

write

d S*

d
S* S* S*

S*

abs F ISC IC

abs F ISC IC

[ ]
[ ] [ ]

( )[
t

I k k k

I k k k

= [ ]− −

= + +

−

− ]]≈0

Consequently,

I k k kabs F ISC IC S*= + +( )[ ]

By using this expression and eqn 93.1b, we write the quantum 

yield of fluorescence as

φF
F

abs

F

F ISC IC

S*

S*,

[ ]

( )[ ]0= v
I

k

k k k
= + +

which, by cancelling the [S*], simplifies to eqn 93.6.

Absorption: S + h�i → S* vabs = Iabs

Fluorescence: S* → S + h�f vF = kF[S*]

Internal conversion: S* → S vIC = kIC[S*]

Intersystem crossing: S* → T* vISC = kISC[S*]
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93 Photochemistry  893

93.4 Quenching

The shortening of the lifetime of the excited state by the pres-

ence of another species is called quenching. Quenching may be 

either a desired process, such as in energy or electron transfer, 

or an undesired side reaction that can decrease the quantum 

yield of a desired photochemical process. Quenching effects 

may be studied by monitoring the emission from the excited 

state that is involved in the photochemical reaction.

The addition of a quencher, Q, opens an additional channel 

for deactivation of S*:

Quenching: S Q S Q Q SQ Q* [ ][ *]+ → + =v k

The Stern–Volmer equation, which is derived in the following 

Justification, relates the fluorescence quantum yields, φF,0 and 

φF , measured in the absence and presence, respectively, of a 

quencher Q at a molar concentration [Q]:

φ
φ τF

F
Q

, [ ]0
01= + k Q

 
 Stern–Volmer equation  (93.8)

This equation tells us that a plot of φF,0/φF against [Q] should 

be a straight line with slope τ0kQ. Such a plot is called a Stern–

Volmer plot (Fig. 93.1). The method may also be applied to the 

quenching of phosphorescence.

Because the fluorescence intensity and lifetime are both pro-

portional to the fluorescence quantum yield (specifically, from 

eqn 93.7, τ = φF/kF), plots of IF,0/IF and τ0/τ (where the subscript 

0 indicates a measurement in the absence of quencher) against 

[Q] should also be linear with the same slope and intercept as 

those shown for eqn 93.8.

Brief illustration 93.2 The fluorescence rate constant

The f luorescence quantum yield and observed f luorescence 

lifetime of tryptophan in water are φF,0 = 0.20 and τ0 = 2.6 ns, 

respectively. It follows from eqn 93.7 that the fluorescence rate 

constant kF is

kF
F

s
s= = = ×

φ
τ

, .

.
.0

0
9

7 10 20

2 6 10
7 7 10

× −
−

Self-test 93.3 A substance has a fluorescence quantum yield of 

φF,0 = 0.35. In an experiment to measure the fluorescence life-

time of this substance, it was observed that the fluorescence 

emission decayed with a half-life of 5.6 ns. Determine the fluo-

rescence rate constant of this substance.

Answer: kF = 4.3 × 107 s−1

Justification 93.2 The Stern–Volmer equation

With the addition of quenching, the steady-state approxima-

tion for [S*] now gives

d S

d
Q Sabs F ISC IC Q

[ *]
( [ ])[ *]

t
I k k k k= + + + ≈− 0

and the f luorescence quantum yield in the presence of the 

quencher is

φF
F

F ISC IC Q Q
= + +

k

k k k k+ [ ]

It follows that

φ
φ

F

F

F

F ISC IC

F ISC IC Q

F

F ISC IC Q

Q

Q

, [ ]

[ ]

0 = + ×
+ +

=
+

k

k k k

k k k k

k

k k k k

+
+

+ +
kk k k

k

k k k

F ISC IC

Q

F ISC IC

Q

+ +

+= + +1 [ ]

By using eqn 93.7, this expression simplifies to eqn 93.8.

φ F,
0
/φ

F

Quencher concentration, [Q]

Slope = τ0kQ

0

1

Figure 93.1 The format of a Stern–Volmer plot and the 
interpretation of the slope in terms of the rate constant for 
quenching and the observed fluorescence lifetime in the 
absence of quenching.

Example 93.2 Determining the quenching rate constant

The molecule 2,2′-bipyridine (1, bpy) forms a complex with 

the Ru2+ ion. Ruthenium(II) tris-(2,2′-bipyridyl), Ru(bpy)3
2+  

(2), has a strong metal-to-ligand charge transfer (MLCT) tran-

sition (Topic 45) at 450 nm.

N N

N N

1 2,2′-Bipyridine (bpy)   

Ru

N

N

N
NN

N

2 [Ru(bpy)3]2+

2+

Atkins09819.indb   893 9/11/2013   8:50:33 AM



894 19 Processes in fluid systems

Three common mechanisms for bimolecular quenching of 

an excited singlet (or triplet) state are:

Collisional deactivation: S Q S Q

Resonance energy transfer: S

*

*

+ +→
++ +
+ ++ − −

Q S Q

Electron transfer: S Q S Q/ /

→
→ +

*

*

The quenching rate constant itself does not give much insight 

into the mechanism of quenching. For the system of Example 

93.2, it is known that the quenching of the excited state of 

Ru(bpy)3
2+  is a result of electron transfer to Fe3+, but the quench-

ing data do not allow us to prove the mechanism.

There are, however, some criteria that govern the relative 

efficiencies of collisional quenching, resonance energy transfer, 

and electron transfer. Collisional quenching is particularly effi-

cient when Q is a species, such as iodide ion, which receives 

energy from S* and then decays to the ground state primarily 

by releasing energy as heat. As we show in detail in Topic 94, 

according to the Marcus theory of electron transfer, which was 

proposed by R.A. Marcus in 1965, the rates of electron transfer 

(from ground or excited states) depend on:

The distance between the donor and acceptor, with 

electron transfer becoming more efficient as the distance 

between donor and acceptor decreases.

The reaction Gibbs energy, ΔrG, with electron transfer 

becoming more efficient as the reaction becomes more 

exergonic (up to a point, as we see in Topic 94). For 

example, it follows from the thermodynamic principles 

that lead to the electrochemical series (Topic 77) that 

efficient photo-oxidation of S requires that the reduction 

potential of S* be lower than the reduction potential of Q.

The reorganization energy, the energy cost incurred by 

molecular rearrangements of donor, acceptor, and solvent 

medium during electron transfer. The electron transfer 

rate is predicted to increase as this reorganization energy 

is matched closely by the reaction Gibbs energy.

Electron transfer can also be studied by time-resolved spec-

troscopy (Topic 40). The oxidized and reduced products often 

have electronic absorption spectra distinct from those of their 

neutral parent compounds. Therefore, the rapid appearance of 

such known features in the absorption spectrum after excita-

tion by a laser pulse may be taken as indication of quenching by 

electron transfer. In the following section we explore resonance 

energy transfer in detail.

93.5 Resonance energy transfer

We visualize the process S* + Q → S + Q* as follows. The oscil-

lating electric field of the incoming electromagnetic radiation 

The quenching of the *Ru(bpy)3
2+  excited state by Fe(OH )2 6

3+  

in acidic solution was monitored by measuring emission life-

times at 600 nm. Determine the quenching rate constant for 

this reaction from the following data:

Method Rewrite the Stern–Volmer equation (eqn 93.8) for use 

with lifetime data; then fit the data to a straight line.

Answer Upon substitution of τ0/τ for φF,0/φF in eqn 93.8 and 

after rearrangement, we obtain

1 1

0τ τ= +kQ Q[ ]

Figure 93.2 shows a plot of 1/τ against [Fe3+] and the results 

of a fit to this equation. The slope of the line is 2.8 × 109, so 

kQ = 2.8 × 109 dm3 mol−1 s−1. This example shows that measure-

ments of emission lifetimes are preferred because they yield 

the value of kQ directly. To determine the value of kQ from 

intensity or quantum yield measurements, we need to make 

an independent measurement of τ0.

Self-test 93.4 The quenching of tryptophan f luorescence by 

dissolved O2 gas was monitored by measuring emission life-

times at 348 nm in aqueous solutions. Determine the quench-

ing rate constant for this process from the following data:

Answer: 1.3 × 1010 dm3 mol−1 s−1

[O2]/(10−2 mol dm−3) 0 2.3 5.5 8 10.8

τ/(10−9 s) 2.6 1.5 0.92 0.71 0.57

0 0.5 1
[Fe3+]/(mmol dm–3)

1/
(τ

/μ
s)

1

2

3

4

5

Figure 93.2 The Stern–Volmer plot of the data for  
Example 93.2.

[Fe(OH ) mol dm2 6
3 4 310+ −]/( )− 0 1.6 4.7 7 9.4

τ/(10−7 s) 6 4.05 3.37 2.96 2.17
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93 Photochemistry  895

induces an oscillating electric dipole moment in S. Energy is 

absorbed by S if the frequency of the incident radiation, �, is such 

that � = ΔES/h, where ΔES is the energy separation between the 

ground and excited electronic states of S and h is Planck’s con-

stant. This is the ‘resonance condition’ for absorption of radiation 

(essentially the Bohr frequency condition, eqn 4.4 of Topic 4). The 

oscillating dipole on S now can affect electrons bound to a nearby 

Q molecule by inducing an oscillating dipole moment in them. If 

the frequency of oscillation of the electric dipole moment in S is 

such that � = ΔEQ/h, then Q will absorb energy from S.

The efficiency, ηT , of resonance energy transfer is defined as

η φ
φT

F

F

= −1
0,

According to the Förster theory of resonance energy transfer, 

energy transfer is efficient when:

The energy donor and acceptor are separated by a short 

distance (of the order of nanometres).

Photons emitted by the excited state of the donor can be 

absorbed directly by the acceptor.

In the following Justification we see that, for donor–acceptor 

systems held rigidly either by covalent bonds or by a protein 

‘scaffold’, ηT increases with decreasing distance, R, according to

ηT =
+
R

R R
0
6

0
6 6

where R0 is a parameter (with dimensions of distance) that is 

characteristic of each donor–acceptor pair. It can be regarded 

as the distance at which energy transfer is 50 per cent efficient 

for a given donor–acceptor pair. (You can verify this assertion 

by using R = R0 in eqn 93.10.) Equation 93.10 has been verified 

experimentally and values of R0 are available for a number of 

donor–acceptor pairs (Table 93.3).

The emission and absorption spectra of molecules span a 

range of wavelengths, so the second requirement of the Förster 

theory is met when the emission spectrum of the donor mol-

ecule overlaps significantly with the absorption spectrum of the 

acceptor. In the overlap region, photons emitted by the donor 

have the appropriate energy to be absorbed by the acceptor 

(Fig. 93.3).

Justification 93.3 The Förster theory of resonance 
energy transfer

Resonance energy transfer arises from the interaction between 

two oscillating dipoles with moments μS and μQ. From Topic 

35, the energy of the dipole–dipole interaction, Vdipole–dipole, is

V
Rdipole dipole
S Q

− ∝
μ μ

3

where R is the distance between the dipoles. As explained in 

Topic 16, the rate of a transition from a state i to a state f at a 

radiation frequency � is proportional to the square modulus 

of the matrix element of the perturbation between the two 

states:

w Hf i fi← ∝ ( )1
2

For energy transfer, the wavefunctions of the initial and final 

states may be denoted as ψ ψS* Q and ψ ψS Q* , respectively, and 

H(1) may be written from Vdipole–dipole. It follows that the rate of 

energy transfer, wT, at a fixed distance R is given by

w
R

R

T S Q* S Q S* Q

S S S* Q* Q Qd d

∝ 1

1

6

2

6

2 2

∫
∫ ∫

( )
= ( ) ( )

ψ ψ μ μ ψ ψ τ

ψ μ ψ τ ψ μ ψ τ

d

(93.9)Definition
Efficiency of 
resonance energy 
transfer

(93.10)
Efficiency of energy 
transfer in terms of the 
donor–acceptor distance

Emission
spectrum of S*

Absorption
spectrum
of Q

In
te

n
si

ty

Wavelength, λ

Figure 93.3 According to the Förster theory, the rate of energy 
transfer from a molecule S* in an excited state to a quencher 
molecule Q is optimized at radiation frequencies in which 
the emission spectrum of S* overlaps with the absorption 
spectrum of Q, as shown in the (green) shaded region.

Table 93.3 Values of R0 for some donor–acceptor pairs*

Donor‡ Acceptor R0/nm

Naphthalene Dansyl 2.2

Dansyl ODR 4.3

Pyrene Coumarin 3.9

1.5-I IEDANS FITC 4.9

Tryptophan 1.5-I IEDANS 2.2

Tryptophan Haem (heme) 2.9

*Additional values may be found in J.R. Lacowicz, Principles of fluorescence 

spectroscopy, Kluwer Academic/Plenum (1999).
‡Abbreviations:

Dansyl: 5-dimethylamino-1-naphthalenesulfonic acid

FITC: fluorescein 5-isothiocyanate

1.5-I IEDANS: 5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid

ODR: octadecyl-rhodamine
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896 19 Processes in fluid systems

Equation 93.10 forms the basis of fluorescence resonance 

energy transfer (FRET), in which the dependence of the energy 

transfer efficiency, ηT, on the distance, R, between energy 

donor and acceptor is used to measure distances in biological 

systems. In a typical FRET experiment, a site on a biopolymer 

or membrane is labelled covalently with an energy donor and 

another site is labelled covalently with an energy acceptor. In 

certain cases, the donor or acceptor may be natural constitu-

ents of the system, such as amino acid groups, cofactors, or 

enzyme substrates. The distance between the labels is then cal-

culated from the known value of R0 and eqn 93.10. Several tests 

have shown that the FRET technique is useful for measuring 

distances ranging from 1 to 9 nm.

If donor and acceptor molecules diffuse in solution or in the 

gas phase, Förster theory predicts that the efficiency of quench-

ing by energy transfer increases as the average distance trav-

elled between collisions of donor and acceptor decreases. That 

is, the quenching efficiency increases with concentration of 

quencher, as predicted by the Stern–Volmer equation.

Brief illustration 93.3 The FRET technique

As an illustration of the FRET technique, consider a study 

of the protein rhodopsin. When an amino acid on the sur-

face of rhodopsin was labelled covalently with the energy 

donor 1.5-I AEDANS (3), the fluorescence quantum yield of 

the label decreased from 0.75 to 0.68 due to quenching by the 

visual pigment 11-cis-retinal (4). From eqn 93.9, we calculate 

ηT = 1 − (0.68/0.75) = 0.093 and from eqn 93.10 and the known 

value of R0 = 5.4 nm for the 1.5-I AEDANS/11-cis-retinal pair 

we calculate R = 7.9 nm. Therefore, we take 7.9 nm to be the dis-

tance between the surface of the protein and 11-cis-retinal.

SO3
–

HN
NH I

O

3 1.5-I AEDANS   

CHO

4 11-cis-Retinal

Self-test 93.5 An amino acid on the surface of a protein was 

labelled covalently with 1.5-I AEDANS and another was 

labelled covalently with FITC (fluorescein 5-isothiocyanate). 

The fluorescence quantum yield of 1.5-I AEDANS decreased 

by 10 per cent due to quenching by FITC. What is the distance 

between the amino acids?

Answer: 7.1 nm

We have used the fact that the terms related to S are functions 

of coordinates that are independent of those for the functions 

related to Q. As usual, we need to interpret theoretical expres-

sions. In this case, we see that:

The theory predicts correctly that the rate of energy 

transfer is proportional to R−6.

The integrals in the last expression are squares of 

transition dipole moments at the radiation frequency 

�, the first corresponding to emission of S* to S and 

the second to absorption of Q to Q*. Therefore, the 

theory predicts that the energy transfer rate is 

optimized when both emission of radiation by S* and 

absorption of radiation by Q are efficient at the 

frequency �.

In practice, it is more convenient to measure the efficiency 

of energy transfer and not the rate itself. In much the same 

way that we defined the quantum yield as a ratio of rates, 

we can also define the efficiency of energy transfer, ηT, as 

the ratio

ηT = + =( + + )[ ]w

w w
w k k kT

T
F IC ISC S

0
0 *

 
(93.11)

where w0 is the rate of deactivation of S* in the absence of 

the quencher. The efficiency may be expressed in terms of 

the experimental fluorescence quantum yields φF,0 and φF 

of the donor in the absence and presence of the acceptor, 

respectively. To proceed, we use eqn 93.3 to write

φ φF
F

F
F

T
,0

0 0

= = +
v v
w w w

where �F is the rate of fluorescence. Substituting these results 

into eqn 93.11 gives, after a little algebra, eqn 93.9.

Alternatively, w0 can be expressed in terms of the parameter 

R0, the characteristic distance at which wT = w0 for a specified 

pair of S and Q (Table 93.3). By using wT ∝ R−6 and w R0 0
6∝ − ,  

the expression for ηT can be rearranged into eqn 93.10.

Checklist of concepts

☐ 1. The primary quantum yield of a photochemical reac-

tion is the number of reactant molecules producing 

specified primary products for each photon absorbed.

☐ 2. The observed lifetime of an excited state is related to 

the quantum yield and rate constant of emission.
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93 Photochemistry  897

☐ 3. A Stern–Volmer plot is used to analyse the kinetics of 

fluorescence quenching in solution.

☐ 4. Collisional deactivation, electron transfer, and reso-

nance energy transfer are common f luorescence 

quenching processes.

☐ 5. The efficiency of resonance energy transfer decreases 

with increasing separation between donor and acceptor 

molecules.

Checklist of equations

Property Equation Comment Equation number

Primary quantum yield φ = v/Iabs 93.1b

Excited-state lifetime τ0 = 1/(kF + kISC + kIC) No quencher present 93.5

Quantum yield of fluorescence φF,0 = kF/(kF + kISC + kIC) Without quencher present 93.6

Observed excited-state lifetime τ0 = φF,0/kF 93.7

Stern–Volmer equation φF,0/φF = 1 + τ0kQ[Q] 93.8

Efficiency of resonance energy transfer ηT = 1 − φF/φF,0 Definition 93.9

ηT /= +R R R0
6

0
6 6( ) Förster theory 93.10
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TOPIC 94

Electron transfer in 

homogeneous systems

Here we apply the concepts of transition-state theory and quan-

tum theory to the study of a deceptively simple process, elec-

tron transfer between molecules in homogeneous systems. We 

describe a theoretical approach to the calculation of rate con-

stants and discuss the theory in the light of experimental results 

on a variety of systems, including protein complexes. We shall 

see that relatively simple expressions may be used to predict the 

rates of electron transfer with reasonable accuracy.

94.1 The rate law

Consider electron transfer from a donor species D to an accep-

tor species A in solution. The overall reaction is

D A D A D Ar+ → + =+ − v k [ ][ ]  (94.1)

In the first step of the mechanism, D and A must diffuse 

through the solution and collide to form a complex, DA, in 

which the donor and acceptor are separated by d, the distance 

between the outer surface of each species.

D A DA+ ⎯ →⎯← ⎯⎯
k

k

a

a
′  

(94.2a)

Next, electron transfer occurs within the DA complex to yield 

D+A−:

DA D A
et +
k

ket
′

−⎯ →⎯← ⎯⎯
 

(94.2b)

The complex D+A− can also break apart and the ions diffuse 

through the solution:

D A D Ad+ +⎯ →⎯ +− −k

 (94.2c)

We show in the following Justification that on the basis of this 

model

1 1
1

k k

k

k k

k

kr a

a

a et

et

d

= + ′ + ′⎛
⎝⎜

⎞
⎠⎟  

 Electron transfer rate constant  (94.3)
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 ➤ Why do you need to know this material?
Electron transfer reactions between protein-bound 
cofactors or between proteins play an important role in a 
variety of biological processes, including photosynthesis. 
Electron transfer is also important in homogeneous, non-
biological catalysis.

 ➤ What is the key idea?
The rate constant of electron transfer in a donor–acceptor 
complex depends on the distance between electron 
donor and acceptor, the standard reaction Gibbs energy, 
and the energy needed to reach a particular arrangement 
of atoms.

 ➤ What do you need to know already?
This Topic makes use of transition-state theory (Topic 
89). It also uses the concept of tunnelling (Topic 10), 
the steady-state approximation (Topic 86), the Franck–
Condon principle (Topic 45), and the discussion of the 
rate of change of a system affected by a perturbation 
(Topic 16).
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94 Electron transfer in homogeneous systems  899

To gain insight into eqn 94.3 and the factors that determine 

the rate of electron transfer reactions in solution, we assume that 

the main decay route for D+A− is dissociation of the complex into 

separated ions, or k k k kd et et d and /� ′ + ′ ≈1 1. It follows that

1 1 1
1

k k

k

k k k

k

kr a

a

a et a

a

et

≈ + ′ = + ′⎛
⎝⎜

⎞
⎠⎟

 

When k k k ket a r a � ′ ≈,  and the rate of product formation 

is controlled by diffusion of D and A in solution, 

which fosters formation of the DA complex.

When k k k k k k Kket a r a a et et /� ′ ≈ ′ =, ( ) ,  where K is the 

equilibrium constant for the diffusive encounter. 

The process is controlled by ket and therefore by the 

activation energy of electron transfer in the DA complex.

94.2 The rate constant

This analysis can be taken further by introducing the implica-

tion from transition-state theory (Topic 89) that

k G RT
et e∝ Δ− /

 (94.4)

where Δ‡G is the Gibbs energy of activation. Our remaining 

task, therefore, is to find expressions for the proportionality 

constant and Δ‡G.

Our discussion concentrates on the following two key 

aspects of the theory of electron transfer processes, which was 

developed independently by R.A. Marcus, N.S. Hush, V.G. 

Levich, and R.R. Dogonadze:

Electrons are transferred by tunnelling through a 

potential energy barrier, the height of which is partly 

determined by the ionization energies of the DA and 

D+A− complexes. Electron tunnelling influences the 

magnitude of the proportionality constant.

The complex DA and the solvent molecules surrounding 

it undergo structural rearrangements prior to electron 

transfer. The energy associated with these rearrangements 

and the standard reaction Gibbs energy determine Δ‡G .

According to the Franck–Condon principle (Topic 45), elec-

tronic transitions are so fast that they can be regarded as tak-

ing place in a stationary nuclear framework. This principle also 

applies to an electron transfer process in which an electron 

migrates from one energy surface, representing the dependence 

of the energy of DA on its geometry, to another representing 

the energy of D+A−. We can represent the potential energy (and 

the Gibbs energy) surfaces of the two complexes (the reactant 

complex, DA, and the product complex, D+A−) by the parabo-

las characteristic of harmonic oscillators, with the displace-

ment coordinate corresponding to the changing geometries 

(Fig. 94.1). This coordinate represents a collective mode of the 

donor, acceptor, and solvent. The Franck–Condon principle 

then implies that electron transfer can occur only after ther-

mal fluctuations bring the geometry of DA to q‡ in Fig 94.1, the 

value of the nuclear coordinate at which the two parabolas inter-

sect and the reactant and product have the same geometrical 

configuration.

(a) The role of electron tunnelling
The proportionality constant in eqn 94.4 is a measure of the 

probability that the system will convert from reactants (DA) to 

products (D+A−) at q‡ by electron transfer within the thermally 

excited DA complex. To understand the process, we must turn 

our attention to the effect that the rearrangement of nuclear 

Justification 94.1 The rate constant for electron transfer 
in solution

We begin by identifying the rate of the overall reaction (eqn 

94.1) with the rate of formation of separated ions:

v= = +k kr dD A D A[ ][ ] [ ]−

There are two reaction intermediates, DA and D+A−, and we 

apply the steady-state approximation (Topic 86) to both. From

d[D A ]

d
DA D A D Aet et d

+ −
+ − + −= − ′ − =

t
k k k[ ] [ ] [ ] 0

it follows that

[ ] [ ]DA D Aet d

et

= ′ + + −k k

k

and from

d[DA]

d
D A DA DA D A

D A

a a et et

a
a

t
k k k k

k
k

= − ′ − + ′

= − ′ +

+ −[ ][ ] [ ] [ ] [ ]

[ ][ ]
( kk k k

k
ket et d

et

D A
)( )

[ ]
′ + −⎧

⎨
⎩

⎫
⎬
⎭

=+ −
et
′ 0

it follows that

[ ] [ ][ ]D A D Aa et

a et a d d et

+ − = ′ ′ + ′ +
k k

k k k k k k

When this expression is multiplied by kd, the resulting equa-

tion has the form of the rate of electron transfer, v = kr[D][A], 

with kr given by

k
k k k

k k k k k kr
a et d

a et a d d et

= ′ ′ + ′ +

To obtain eqn 94.3, divide the numerator and denominator on 

the right-hand side of this expression by kdket and solve for the 

reciprocal of kr.

P
h

ys
ic

al
 

in
te

rp
re

ta
ti

o
n
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900 19 Processes in fluid systems

coordinates has on electronic energy levels of DA and D+A− for 

a given distance d between D and A (Fig. 94.2). Initially, the 

electron to be transferred occupies the HOMO of DA, and the 

overall energy of DA is lower than that of D+A− (Fig 94.2a). As 

the nuclei rearrange to a configuration represented by q‡ in Fig. 

94.2b, the highest occupied electronic level of DA and the low-

est unoccupied electronic level of D+A− become degenerate and 

electron transfer becomes energetically feasible. Over reason-

ably short distances d, the main mechanism of electron trans-

fer is tunnelling through the potential energy barrier depicted 

in Fig 94.2b. After an electron moves from the HOMO of DA 

to the LUMO of D+A− , the system relaxes to the configuration 

represented by q0
P in Fig 94.2c. As shown in the illustration, 

now the energy of D+A− is lower than that of DA, reflecting the 

thermodynamic tendency for A to remain reduced and for D to 

remain oxidized.

The tunnelling event responsible for electron transfer is simi-

lar to that described in Topic 10, except that in this case the elec-

tron tunnels from an electronic level of DA, with wavefunction 

ψDA, to an electronic level of D+A− , with wavefunction ψD
+

A
−. 

The rate of an electronic transition from a level described by the 

wavefunction ψDA to a level described by ψD
+

A
− is, from time-

dependent perturbation theory (Topic 16), proportional to the 

square of the integral

H het DA D A d=∫ψ ψ τ+ −
�

 

where h�  is a hamiltonian that describes the coupling of the elec-

tronic wavefunctions. The probability of tunnelling through a 

potential barrier typically has an exponential dependence on 

distance, so we suspect that the distance dependence of Het
2  is

H d H d
et

2
et

2e( ) = ° −β
 

(94.5)

where d is the edge-to-edge distance between D and A, β is a 

parameter that measures the sensitivity of the electronic cou-

pling matrix element to distance, and Het
°  is the value of the 

electronic coupling matrix element when D and A are in con-

tact (d = 0).

Brief illustration 94.1 The distance dependence  
of the coupling

The value of β depends on the medium through which the 

electron must travel from donor to acceptor. In a vacuum, 

28 nm−1 < β < 35 nm−1, whereas β ≈ 9 nm−1 when the interven-

ing medium is a molecular link between donor and acceptor. 

Electron transfer between protein-bound cofactors can occur 

at distances of up to about 2.0 nm, a long distance on a molec-

ular scale, corresponding to about 20 carbon atoms, with the 

protein providing an intervening medium between donor and 

acceptor.

Self-test 94.1 By how much does HDA change when d is 

increased from 1.0 nm to 2.0 nm, with β ≈ 9 nm−1?

Answer: Decrease by a factor of 8100

Displacement, q

G
ib

b
s 

en
er

g
y

DA

D+A–

Δ‡G

ΔER

ΔrG°

q0
Pq0

R q‡

Figure 94.1 The Gibbs energy surfaces of the complexes 
DA and D+A− involved in an electron transfer process are 
represented by parabolas characteristic of harmonic oscillators, 
with the displacement coordinate q corresponding to the 
changing geometries of the system.
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q0
R

q0
P

q‡

V

Electron
transfer

Nuclear
displacement

Electron
displacement

(a) (b)

(c)
d

Figure 94.2 (a) At the nuclear configuration denoted by q0
R, 

the electron to be transferred in DA is in an occupied electronic 
energy level and the lowest unoccupied energy level of D+A− is 
of too high an energy to be a good electron acceptor. (b) As 
the nuclei rearrange to a configuration represented by q‡, DA 
and D+A− become degenerate and electron transfer occurs by 
tunnelling through the barrier. (c) The system relaxes to the 
equilibrium nuclear configuration of D+A− denoted by q0

P , in 
which the lowest unoccupied electronic level of DA is higher 
in energy than the highest occupied electronic level of D+A−. 
Adapted from R.A. Marcus and N. Sutin (Biochim. Biophys. Acta 
811, 265 (1985)).
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94 Electron transfer in homogeneous systems  901

(b) The reorganization energy
The pre-exponential factor in ket is proportional to the tunnel-

ling probability, which in turn is proportional to Het(d)2 , as 

expressed by eqn 94.5. Therefore, we can expect the full expres-

sion for ket to have the form

k CH d G RT
et et e= −( ) /2 Δ‡

 
(94.6)

with C a constant of proportionality and Het(d)2 given by eqn 

94.5. We show in the following Justification that the Gibbs 

energy of activation Δ‡G is

Δ Δ Δ
Δ

‡G
G E

E
= +( )r R

R

< 2

4  
 Gibbs energy of activation  (94.7)

where ΔrG
< is the standard reaction Gibbs energy for the elec-

tron transfer process DA → D+A−, and ΔER is the reorganiza-

tion energy, the energy change associated with molecular 

rearrangements that must take place so that DA can take on 

the equilibrium geometry of D+A−. These molecular rear-

rangements include the relative reorientation of the D and A 

molecules in DA and the relative reorientation of the solvent 

molecules surrounding DA. Equation 94.7 shows that Δ‡G = 0, 

with the implication that the reaction is not slowed down by 

an activation barrier when ΔrG
< = −ΔER, corresponding to the 

cancellation of the reorganization energy term by the standard 

reaction Gibbs energy.

Justification 94.2 The Gibbs energy of activation  
of electron transfer

The simplest way to derive an expression for the Gibbs energy 

of activation of electron transfer processes is to construct a 

model in which the surfaces for DA (the ‘reactant complex’, 

denoted R) and for D+A− (the ‘product complex’, denoted P) 

are described by classical harmonic oscillators (and therefore 

parabolic potential energies, 1
2

k xf
2 , Topic 12) with identical 

reduced masses μ and angular frequencies ω = (k f/μ)1/2, but 

displaced minima, as shown in Fig. 94.3. Because each para-

bola has the form 1
2

1
2

k x xf
2 2 2= μω , with x q q= − 0

R for R and 

x q q= − 0
P  for P, the molar Gibbs energies Gm,R(q) and Gm,P(q) 

of the reactant and product complexes, respectively, may be 

written as

G q G q N q q

G q G q

m R m R
R

A
2 R 2

m P m P
P

( ) ( )  

( ) ( )  

, ,

, ,

( )= + −
= +

0
1
2 0

0
1

μω

22 0N q qA
2 P 2μω ( )−

where q0
R  and q0

P are the values of q at which the minima of the 

reactant and product parabolas occur, respectively. The stand-

ard reaction Gibbs energy for the electron transfer process 

R → P is Δr m,P
P

m,R
RG G q G q< = −( ) ( ),0 0  the difference in standard 

molar Gibbs energy between the minima of the parabolas. In 

Fig. 94.3, ΔrG
< < 0. Note that

G q G q N q q

G q G q

m R m R
R

A
2 R 2

m P m P
P

 ( )

 ( )

, ,

, ,

( ) ( )

( )

‡ ‡

‡

= +
= +

0
1
2 0

0
1
2

μω −
NN q qA

2 P 2μω ( )‡ − 0

and, as Gm,R(q‡) = Gm,P(q‡), it follows that

Δr m P
P

m R
R

A
2 R 2 P 2( ) ( )G G q G q N q q q q< = = −, , {( ) ( ) }0 0

1
2 0 0− − −μω ‡ ‡

The value of q corresponding to the transition state of the 

complex, q‡, may be written in terms of the parameter α , the 

fractional change in q:

q q q q‡ = + −0 0 0
R P R( )α

If α = 0, q q‡ = 0
R  and, if α = 1, then q q‡ = 0

P . It then follows that

Δr A
2 R P R R 2 R P R P 2( ) ( )G N q q q q q q q q< = + − − − + − −

=

1
2 0 0 0 0 0 0 0 0μω α α{[ ] [ ] }

11
2 0 0 0 0

1
2

N q q q q

N q

A
2 P R 2 P R 2

A
2

( ) 1

 2 1

μω α α
μω α

{[ ] [( )( )] }

( )(

− − − −
= − 00 0

P R 2−q )

Next, we see from Fig. 94.3 that Δ‡ ‡G G q G q= −m R m R
R

, ,( ) ( ).0   

It then follows that

Δ‡ ‡G N q q N q q

N q q

= − = −
= −

1
2 0

1
2 0 0

1
2 0 0

A
2 R 2

A
2 P R 2

A
2 2 P

( )μω μω α
μω α

( ) { }

( RR 2)

We now define the reorganization energy, ΔER, as

ΔE N q qR A
2 P R 2= −1

2 0 0μω ( )

which can be interpreted as G q G qm R
P

m R
R( ), , ( )0 0−  and, conse-

quently, as the (Gibbs) energy required to deform the equilib-

rium configuration of R to the equilibrium configuration of P 

(as shown in Fig. 94.3). Then

Δ Δ Δ Δ‡G E G E= = −α α2
R r Rand 2 1< ( )

Displacement, q

G
ib

b
s 

en
er

g
y

R P

Δ‡G

ΔER

ΔrG
<

q0
Pq0

R q‡

Figure 94.3 The model system used in Justification 94.2.
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902 19 Processes in fluid systems

The only missing piece of the expression for ket is the value of 

the constant of proportionality C in eqn 94.6. Detailed calcula-

tion, which we do not repeat here, gives

C
h RT E

= ⎛
⎝⎜

⎞
⎠⎟

1 3
1 2

π
Δ R

/

 

(94.8)

Equation 94.6 has some limitations, as might be expected 

because perturbation-theory arguments have been used. For 

instance, it describes processes with weak electronic cou-

pling between donor and acceptor. Weak coupling is observed 

when the electroactive species are sufficiently far apart that 

the wavefunctions ψD
+

A
− and ψDA do not overlap extensively 

and the tunnelling is an exponential function of distance. An 

example of a weakly coupled system is the cytochrome c/cyto-

chrome b5 complex, in which the electroactive haem-bound 

iron ions shuttle between oxidation states Fe(II) and Fe(III) 

during electron transfer and are about 1.7 nm apart. Strong 

coupling is observed when the wavefunctions ψD
+

A
− and ψDA 

overlap very extensively and, as well as other complications, 

the tunnelling probability is no longer a simple exponential 

function of distance. Examples of strongly coupled systems are 

mixed-valence, binuclear d-metal complexes with the general 

structure LmMn+ − B − Mp+Lm, in which the electroactive metal 

ions are separated by a bridging ligand B. In these systems, 

d < 1.0 nm. The weak-coupling limit applies to a large number 

of electron transfer reactions, including those between proteins 

during metabolism.

The most meaningful experimental tests of the dependence 

of ket on d are those in which the same donor and acceptor are 

positioned at a variety of distances, perhaps by covalent attach-

ment to molecular linkers (see 1 for an example). Under these 

conditions, the term e−Δ‡G/RT becomes a constant and, after tak-

ing the natural logarithm of eqn 94.6 and using eqn 94.5, we 

obtain

ln constantetk d= − +β
 

(94.9)

which implies that a plot of ln ket against d should be a straight 

line of slope −β.

A

1 An electron donor–acceptor system

R2

R1
O

O

O

O

O

O

A = (a) (b) (c)

(d) (e)

(f) R1 = H, R2 = H
(g) R1 = H, R2 = Cl
(h) R1 = Cl, R2 = Cl

The dependence of ket on the standard reaction Gibbs 

energy has been investigated in systems where the edge-to-

edge distance and the reorganization energy are constant for a 

series of reactions. Then, by using eqn 94.7 for Δ‡G, eqn 94.6 

becomes

lnk
RT

E

G

RT

G

RTet
R

r r constant= − ⎛
⎝⎜

⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

+
4

2

1
2Δ

Δ Δ< <

 

(94.10)

and a plot of ln ket (or log ket = ln ket/ln 10) against ΔrG
< (or  

−ΔrG
<) is predicted to be shaped like a downward parab-

ola (Fig. 94.4). Equation 94.10 implies that the rate constant 

increases as ΔrG
< decreases but only up to −ΔrG

< = ΔER. 

Beyond that, the reaction enters the inverted region, in which 

the rate constant decreases as the reaction becomes more exer-

gonic (ΔrG
< becomes more negative). The inverted region has 

been observed in a series of special compounds in which the 

electron donor and acceptor are linked covalently to a molecu-

lar spacer of known and fixed size (Fig. 94.5).

From the second of these two relations it follows that

α = +
⎛
⎝⎜

⎞
⎠⎟

1

2
1

Δ
Δ

r

R

G

E

<

By inserting this equation into Δ‡G = α2ΔER, we obtain eqn 

94.7. We can obtain an identical relation if we allow the har-

monic oscillators to have different angular frequencies and 

hence different curvatures.

ln
 k

et

0

constant

–ΔrG 

<

constant + ΔER/4RT

ΔER

Figure 94.4 The parabolic dependence of ln ket on −ΔrG
< 

predicted by eqn 94.10.
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94 Electron transfer in homogeneous systems  903

The behaviour predicted by eqn 94.10 and observed experi-

mentally can be explained by considering the dependence 

of Δ‡G on ΔrG
<. We let the minimum energy of P vary while 

keeping q0
P constant, which corresponds to changing the mag-

nitude of ΔrG
<. Figure 94.6 shows the effect of increasing 

the exergonicity of the process. At (a), Δ‡G > 0. As the pro-

cess becomes more exergonic, represented by the parabolas 

moving towards (b), the activation Gibbs energy decreases 

and the rate constant increases. At (b), Δ‡G = 0, there is no 

activation barrier to overcome, and the rate constant reaches a 

maximum. According to eqn 94.10, this condition occurs when  

−ΔrG
< = ΔER. Finally, as the parabola continues to track towards 

(c), Δ‡G becomes positive again and the rate constant decreases.

Checklist of concepts

☐ 1. Electron transfer can occur only after thermal fluctua-

tions bring the nuclear coordinate to the point at which 

the donor and acceptor have the same configuration.

☐ 2. The tunneling probability is supposed to depend 

 exponentially on the separation of the donor and 

acceptor.

Displacement, q

G
ib

b
s 

en
er

g
y

R

P
q0

R

q0
Pq‡(a)q‡(b)q‡(c)

(a)

(b)

(c)

Figure 94.6 (a) Δ‡G > 0 and the transition state is at q q‡( ) .a R> 0  
As the process becomes more exergonic, the activation Gibbs 
energy decreases and the rate constant increases. (b) When 
Δ‡G = 0 and q q‡( ) ,b R= 0  the rate constant for the process reaches 
a maximum as there is no activation barrier to overcome. (c) 
As the process becomes even more exergonic, Δ‡G becomes 
positive again but now the transition state is at q q‡( ) .c R< 0  The 
rate constant for the process decreases steadily as the activation 
barrier for the process increases with decreasing ΔrG

< .

Brief illustration 94.2 The determination of the 
reorganization energy

Kinetic measurements were conducted in 2-methyltetrahy-

drofuran at 296 K for a series of compounds with the struc-

tures given in 1. The distance between the donor (the reduced 

biphenyl group) and the acceptor is constant for all com-

pounds in the series because the molecular linker remains the 

same. Each acceptor has a characteristic standard reduction 

potential, so it follows that the standard Gibbs energy for the 

electron transfer process is different for each compound in the 

series. The line in Fig. 94.5 is a fit to a version of eqn 94.10 and 

7

8

9

10

0
0.5 1 1.5 2 2.5

lo
g

(k
et
/s

–1
)

–ΔrG
</eV

Figure 94.5 Variation of log ket with −ΔrG
< for a series of 

compounds with the structures given in 1 and as described in 
Brief illustration 94.2. Based on J.R. Miller, et al. (J. Am. Chem. Soc. 
106, 3047 (1984)).

the maximum of the parabola occurs at −ΔrG
< = ΔER = 1.4 eV =  

1.4 × 102 kJ mol−1.

Self-test 94.2 Some (invented) data on a series of complexes 

are as follows:

Determine the reorganization energy.

Answer: 1.05 eV

−ΔrG
</eV 0.20 0.60 1.0 1.3 1.6 2.0 2.4

log ket 8.2 9.7 10.2 10.1 9.4 7.7 5.1
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904 19 Processes in fluid systems

☐ 3. The reorganization energy is the energy change asso-

ciated with molecular rearrangements that must take 

place so that DA can acquire the equilibrium geometry 

of D+A−.

☐ 4. In the inverted region, the rate constant ket decreases as 

the reaction becomes more exergonic (ΔrG
< becomes 

more negative).

Checklist of equations

Property Equation Comment Equation number

Electron transfer rate constant 1 1 1/ / / /r a a a et et dk k k k k k k= + ′ + ′( )( ) Steady-state approximation 94.3

Tunnelling probability H d H d
et

2
et

2e( ) = ° −β Assumed 94.5

Rate constant k CH d G RT
et et e= −( ) /2 Δ‡

Transition-state theory 94.6

Gibbs energy of activation Δ Δ Δ Δ‡G G E E= +( )r R R/< 2 4 Assumes parabolic potential energy 94.7

Dependence on separation ln ket = −βd + constant 94.9

Dependence on ΔrG
< ln  et r rk a G b G c= + +Δ Δ< <2 a = −1/4ΔERRT, b = −1/2RT, c  = constant 94.10
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Exercises and problems  905

Focus 19 on Processes in fluid systems

Topic 91 Unimolecular reactions

Discussion questions
91.1 Discuss the limitations of the generality of the expression 

k k k k kr a b b aA A= + ′[ ]/( [ ])  for the effective rate constant of a unimolecular 

reaction according to the Lindemann–Hinshelwood mechanism.

91.2 Discuss the significance of the steric P-factor in the RRK model.

Exercises
91.1(a) The effective rate constant for a gaseous reaction which has a 

Lindemann–Hinshelwood mechanism is 2.50 × 10−4 s−1 at 1.30 kPa and 

2.10 × 10−5 s−1 at 12 Pa. Calculate the rate constant for the activation step 

in the mechanism.

91.1(b) The effective rate constant for a gaseous reaction which has a 

Lindemann–Hinshelwood mechanism is 1.7 × 10−3 s−1 at 1.09 kPa and 

2.2 × 10−4 s−1 at 25 Pa. Calculate the rate constant for the activation step in the 

mechanism.

91.2(a) Consider the unimolecular decomposition of a nonlinear molecule 

containing five atoms. If P = 3.0 × 10−5, what is the value of E*/E?

91.2(b) Consider the unimolecular decomposition of a linear molecule 

containing four atoms. If P = 0.025, what is the value of E*/E?

91.3(a) Suppose that an energy of 250 kJ mol−1 is available in a collision but 

200 kJ mol−1 is needed to break a particular bond in a molecule with s = 10. 

Use the RRK model to calculate the steric P-factor.

91.3(b) Suppose that an energy of 500 kJ mol−1 is available in a collision but 

300 kJ mol−1 is needed to break a particular bond in a molecule with s = 12. 

Use the RRK model to calculate the steric P-factor.

Problems
91.1 In Problem 83.14 the isomerization of cyclopropane over a limited 

pressure range was examined. If the Lindemann–Hinshelwood mechanism of 

first-order reactions is to be tested we also need data at low pressures. These 

have been obtained (H.O. Pritchard, et al. Proc. R. Soc. A217, 563 (1953)):

Test the Lindemann–Hinshelwood theory with these data.

91.2 According to the RRK model (see Justification 91.1),

P
n n n s

n n n s
= − + −

− + −
!( )!

( )!( )!

*

*

1

1  

Use Stirling’s approximation in the form ln x! ≈ x ln x − x (eqn 51.2b of Topic 

51) to deduce that P ≈ ((n − n*)/n)s−1 when s − 1 �n − n*. Hint: Replace terms of 

the form n − n* + s − 1 by n − n* inside logarithms but retain n − n* + s − 1 when 

it is a factor of a logarithm.

Topic 92 Enzymes

Discussion questions
92.1 Discuss the features, advantages, and limitations of the Michaelis–Menten 

mechanism of enzyme action.

92.2 A plot of the rate of an enzyme-catalysed reaction against temperature 

has a maximum, in an apparent deviation from the behaviour predicted by 

the Arrhenius equation (Topic 85). Suggest a molecular interpretation for this 

effect.

92.3 Distinguish between competitive, non-competitive, and uncompetitive 

inhibition of enzymes. Discuss how these modes of inhibition may be 

detected experimentally.

92.4 Some enzymes are inhibited by high concentrations of their own 

products. Sketch a plot of reaction rate against concentration of substrate for 

an enzyme that is prone to product inhibition.

p/Torr 84.1 11.0 2.89 0.569 0.120 0.067

104 kr/s
−1 2.98 2.23 1.54 0.857 0.392 0.303
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Exercises
92.1(a) Consider the base-catalysed reaction

(1) AH B BH A+ ⎯ →⎯← ⎯⎯ +
′

+ −k

k

a

a

  (both fast) 

(2) A AH product− + ⎯ →⎯kb
  (slow)

Deduce the rate law.

92.1(b) Consider the acid-catalysed reaction

(1) HA H HAH+ ⎯ →⎯← ⎯⎯+ +
′

k

k

a

a

     (both fast) 

(2) AH B BH AH H b+ ++ ⎯ →⎯ +k
  (slow) 

Deduce the rate law.

92.2(a) The enzyme-catalysed conversion of a substrate at 25 °C has a 

Michaelis constant of 0.046 mol dm−3. The rate of the reaction is 1.04 × 10−3 

mol dm−3 s−1 when the substrate concentration is 0.105 mol dm−3. What is the 

maximum velocity of this reaction?

92.2(b) The enzyme-catalysed conversion of a substrate at 25 °C has a 

Michaelis constant of 0.032 mol dm−3. The rate of the reaction is 2.05 × 10−4 

mol dm−3 s−1 when the substrate concentration is 0.875 mol dm−3. What is the 

maximum velocity of this reaction?

92.3(a) Consider an enzyme-catalysed reaction that follows Michaelis–Menten 

kinetics with KM = 3.0 × 10−3 mol dm−3. What concentration of a competitive 

inhibitor characterized by KI = 2.0 × 10−5 mol dm−3 will reduce the rate of 

formation of product by 50 per cent when the substrate concentration is held 

at 1.0 × 10−4 mol dm−3?

92.3(b) Consider an enzyme-catalysed reaction that follows Michaelis–Menten 

kinetics with KM = 7.5 × 10−4 mol dm−3. What concentration of a competitive 

inhibitor characterized by KI = 5.6 × 10−4 mol dm−3 will reduce the rate of 

formation of product by 75 per cent when the substrate concentration is held 

at 1.0 × 10−4 mol dm−3?

Problems
92.1 Michaelis and Menten derived their rate law by assuming a rapid pre-

equilibrium of E, S, and ES. Derive the rate law in this manner, and identify 

the conditions under which it becomes the same as that based on the steady-

state approximation (eqn 92.1).

92.2 Use mathematical software, a spreadsheet, or the Living graphs (labelled 
LG) on the website of this book to solve the following problems:

(a)LG Use the Michaelis–Menten equation (eqn 92.1) to generate two families 

of curves showing the dependence of v on [S]: one in which KM varies but vmax 

is constant, and another in which vmax varies but KM is constant.

(b)LG Use eqn 92.7 to explore the effect of competitive, uncompetitive, and 

non-competitive inhibition on the shapes of the plots of v against [S] for 

constant KM and vmax.

92.3 For many enzymes, the mechanism of action involves the formation of 

two intermediates:

E S ES E S

ES E S ES

ES ES ES

ES E P E

a

a

b

c

+ → =
→ + = ′
→ ′ =
′→ + =

v

v

v

v

k

k

k

k

[ ][ ]

[ ]

[ ]

[ ′′S ]
 

Show that the rate of formation of product has the same form as that shown in 

eqn 92.1, but with vmax and KM given by

vmax
b c

b c
M

c a b

a b c

E
and= + = ′ +

+
k k

k k
K

k k k

k k k

[ ] ( )

( )
0

 

92.4 The enzyme-catalysed conversion of a substrate at 25 °C has a Michaelis 

constant of 9.0 × 105 mol dm−3 and a maximum velocity of 2.24 × 10−5 mol 

dm−3 s−1 when the enzyme concentration is 1.60 × 10−9 mol dm−3. (a) Calculate 

kcat and η. (b) Is the enzyme ‘catalytically perfect’?

92.5 The following results were obtained for the action of an ATPase on ATP 

at 20 °C, when the concentration of the ATPase was 20 nmol dm−3:

Determine the Michaelis constant, the maximum velocity of the reaction, the 

turnover frequency, and the catalytic efficiency of the enzyme.

92.6 There are different ways to represent and analyse data for enzyme catalysed 

reactions. For example, in the Eadie–Hofstee plot, v/[S]0 is plotted against v. 

Alternatively, in the Hanes plot, v/[S]0 is plotted against [S]0. (a) Using the simple 

Michaelis–Menten mechanism, derive relations between v/[S]0 and v and 

between v/[S]0 and [S]0. (b) Discuss how the values of KM and vmax are obtained 

from analysis of the Eadie–Hofstee and Hanes plots. (c) Determine the Michaelis 

constant and the maximum velocity of the reaction from Problem 92.5 by using 

Eadie–Hofstee and Hanes plots to analyse the data.

92.7 In general, the catalytic efficiency of an enzyme depends on the pH of 

the medium in which it operates. One way to account for this behaviour is to 

propose that the enzyme and the enzyme–substrate complex are active only 

in specific protonation states. This proposition can be summarized by the 

following mechanism:

EH S ESH

ESH E

H
E H

EH

b

E a

+ ⎯ →⎯← ⎯⎯

⎯ →⎯ +

+ =

′

− +
− +

k

k

k

K

a

a

P

EH E� ⇀�↽ �� ,
[ ][ ]

[ ]]

[ ][ ]

[ ]

[

,

,

EH EH

ESH ES

2
2

+ +
+

+

− +

+ =

+ =

� ⇀�↽ ��

� ⇀�↽ ��

H
EH H

EH

H

E b

ES a

K

K
EES H

ESH

H
ESH H

ESH
ES b

− +

− +
− +

+ =

][ ]

[ ]

[ ][ ]

[ ]
,ESH ESH2

2

� ⇀�↽ �� K

 

in which only the EH and ESH forms are active. (a) For the mechanism above, 

show that

v
v= ′

+ ′
max

M S1 0K /[ ]
 

with

′ =
+ +

′ =
+ +

+

+

+

+

+

v
v

max
max

ES b

ES a

M M
E b

E a

H

H

H

H

1

1

1

[ ]

[ ]

[ ]

[ ]

,

,

,

,

K

K

K K
K

K

[[ ]

[ ],

,H

HES b

ES a
+

++
K

K

 

[ATP]/(μmol dm−3) 0.60 0.80 1.4 2.0 3.0

v/(μmol dm−3 s−1) 0.81 0.97 1.30 1.47 1.69
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where vmax and KM correspond to the form EH of the enzyme. (b) For pH 

values ranging from 0 to 14, plot ′vmax against pH for a hypothetical reaction 

for which vmax = 1.0 × 10−6 mol dm−3 s−1, KES,b = 1.0 × 10−6 mol dm−3, and 

KES,a = 1.0 × 10−8. Is there a pH at which vmax reaches a maximum value? If so, 

determine the pH. (c) Redraw the plot in part (b) by using the same value of 

vmax, but KES,b = 1.0 × 10−4 mol dm−3 and KES,a = 1.0 × 10−10 mol dm−3. Account 

for any differences between this plot and the plot from part (b).

92.8 The enzyme carboxypeptidase catalyses the hydrolysis of polypeptides 

and here we consider its inhibition. The following results were obtained when 

the rate of the enzymolysis of carbobenzoxy-glycyl-d-phenylalanine (CBGP) 

was monitored without inhibitor:

All rates in this problem were measured with the same concentration of 

enzyme and are relative to the rate measured when [CBGP]0 = 0.0713 mol 

dm−3 in the absence of inhibitor. When 2.0 × 10−3 mol dm−3 phenylbutyrate 

ion was added to a solution containing the enzyme and substrate, the 

following results were obtained:

In a separate experiment, the effect of 5.0 × 10−2 mol dm−3 benzoate ion was 

monitored and the results were:

Determine the mode of inhibition of carboxypeptidase by the phenylbutyrate 

ion and benzoate ion.

92.9 Some enzymes are inhibited by high concentrations of their own 

substrates. (a) Show that when substrate inhibition is important the reaction 

rate v is given by

v
v= + +

max

M IS S1 0 0K K/[ ] [ ] /
 

where KI is the equilibrium constant for dissociation of the inhibited enzyme–

substrate complex. (b) What effect does substrate inhibition have on a plot of 

1/v against 1/[S]0?

Topic 93 Photochemistry

Discussion questions
93.1 Describe an experimental procedure for the determination of the 

quantum yield.

93.2 Discuss experimental procedures that make it possible to differentiate 

between quenching by energy transfer, collisions, and electron transfer.

Exercises
93.1(a) In the photochemical reaction A → 2 B + C, the quantum yield with 

500 nm light is 2.1 × 102 mol einstein−1 (1 einstein = 1 mol photons). After 

exposure of 300 mmol of A to the light, 2.28 mmol of B is formed. How many 

photons were absorbed by A?

93.1(b) In the photochemical reaction A → B + C, the quantum yield with 

500 nm light is 1.2 × 102 mol einstein−1 (1 einstein = 1 mol photons). After 

exposure of 200 mmol A to the light, 1.77 mmol B is formed. How many 

photons were absorbed by A?

93.2(a) Consider the quenching of an organic fluorescent species with 

τ0 = 6.0 ns by a d-metal ion with kQ = 3.0 × 108 dm3 mol−1 s−1. Predict the 

concentration of quencher required to decrease the fluorescence intensity of 

the organic species to 50 per cent of the unquenched value.

93.2(b) Consider the quenching of an organic fluorescent species with 

τ0 = 3.5 ns by a d-metal ion with kQ = 2.5 × 109 dm3 mol−1 s−1. Predict the 

concentration of quencher required to decrease the fluorescence intensity of 

the organic species to 75 per cent of the unquenched value.

Problems
93.1 In an experiment to measure the quantum yield of a photochemical 

reaction, the absorbing substance was exposed to 320 nm radiation from a 

87.5 W source for 28.0 min. The intensity of the transmitted light was 0.257 

that of the incident light. As a result of irradiation, 0.324 mol of the absorbing 

substance decomposed. Determine the quantum yield.

93.2‡ Ultraviolet radiation photolyses O3 to O2 and O. Determine the rate at 

which ozone is consumed by 305 nm radiation in a layer of the stratosphere of 

thickness 1 km. The quantum yield is 0.94 at 220 K, the concentration about 

8 × 10−9 mol dm−3, the molar absorption coefficient 260 dm3 mol−1 cm−1, and 

the flux of 305 nm radiation about 1 × 1014 photons cm−2 s−1. (Data from W.B. 

DeMore, et al. Chemical kinetics and photochemical data for use in stratospheric 

modeling: Evaluation Number 11, JPL Publication 94–26 (1994).)

93.3 Dansyl chloride, which absorbs maximally at 330 nm and fluoresces 

maximally at 510 nm, can be used to label amino acids in fluorescence 

microscopy and FRET studies. Tabulated below is the variation of the 

fluorescence intensity of an aqueous solution of dansyl chloride with 

time after excitation by a short laser pulse (with I0 the initial fluorescence 

intensity). The ratio of intensities is equal to the ratio of the rates of photon 

emission.

(a) Calculate the observed fluorescence lifetime of dansyl chloride in water. 

(b) The fluorescence quantum yield of dansyl chloride in water is 0.70. What is 

the fluorescence rate constant?‡  This problem was supplied by Charles Trapp and Carmen Giunta.

[CBGP]0/(10−2 mol dm−3) 1.25 3.84 5.81 7.13

Relative reaction rate 0.398 0.669 0.859 1.000

[CBGP]0/(10−2 mol dm−3) 1.25 2.50 4.00 5.50

Relative reaction rate 0.172 0.301 0.344 0.548

[CBGP]0/(10−2 mol dm−3) 1.75 2.50 5.00 10.00

Relative reaction rate 0.183 0.201 0.231 0.246

t/ns 5.0 10.0 15.0 20.0

IF/I0 0.45 0.21 0.11 0.05
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93.4 When benzophenone is illuminated with ultraviolet light it is excited into 

a singlet state. This singlet changes rapidly into a triplet, which phosphoresces. 

Triethylamine acts as a quencher for the triplet. In an experiment in methanol 

as solvent, the phosphorescence intensity varied with amine concentration as 

shown below. A time-resolved laser spectroscopy experiment had also shown 

that the half-life of the fluorescence in the absence of quencher is 29 μs. What 

is the value of kQ?

93.5 An electronically excited state of Hg can be quenched by N2 according to

Hg*(g) N g Hg(g) N g 12 2+ = → + =( , ) ( , )v v0
 

in which energy transfer from Hg* excites N2 vibrationally. Fluorescence 

lifetime measurements of samples of Hg with and without N2 present are 

summarized below (T = 300 K):

You may assume that all gases are perfect. Determine the rate constant for the 

energy transfer process.

93.6 An amino acid on the surface of an enzyme was labelled covalently with 

1.5-I AEDANS and it is known that the active site contains a tryptophan 

residue. The fluorescence quantum yield of tryptophan decreased by 15 per 

cent due to quenching by 1.5-I AEDANS. What is the distance between the 

active site and the surface of the enzyme?

93.7 The Förster theory of resonance energy transfer and the basis for the 

FRET technique can be tested by performing fluorescence measurements on 

a series of compounds in which an energy donor and an energy acceptor are 

covalently linked by a rigid molecular linker of variable and known length. 

L. Stryer and R.P. Haugland (Proc. Natl. Acad. Sci. USA 58, 719 (1967)) 

collected the following data on a family of compounds with the general 

composition dansyl-(L-prolyl)n-naphthyl, in which the distance R between the 

naphthyl donor and the dansyl acceptor was varied from 1.2 nm to 4.6 nm by 

increasing the number of prolyl units in the linker:

Are the data described adequately by eqn 93.10? If so, what is the value of R0 

for the naphthyl–dansyl pair?

93.8 The first step in plant photosynthesis is absorption of light by chlorophyll 

molecules bound to proteins knows as ‘light-harvesting complexes’, where 

the fluorescence of a chlorophyll molecule is quenched by nearby chlorophyll 

molecules. Given that for a pair of chlorophyll a molecules R0 = 5.6 nm, by 

what distance should two chlorophyll a molecules be separated to shorten the 

fluorescence lifetime from 1 ns (a typical value for monomeric chlorophyll a 

in organic solvents) to 10 ps?

Topic 94 Electron transfer in homogeneous systems

Discussion questions
94.1 Discuss how the following factors determine the rate of electron transfer 

in homogeneous systems: the distance between electron donor and acceptor, 

the standard Gibbs energy of the process, and the reorganization energy of the 

redox active species and the surrounding medium.

94.2 What role does tunnelling play in electron transfer?

94.3 Explain why the rate constant decreases as the reaction becomes more 

exergonic in the inverted region.

Exercises
94.1(a) For a pair of electron donor and acceptor at 298 K, Het(d) = 0.04 cm−1, 

ΔrG
< = −0.185 eV, and ket = 37.5 s−1. Estimate the value of the reorganization 

energy.

94.1(b) For a pair of electron donor and acceptor at 298 K, ket = 2.02 × 105 

s−1 for ΔrG
< = −0.665 eV. The standard reaction Gibbs energy changes to 

ΔrG
< = −0.975 eV when a substituent is added to the electron acceptor and the 

rate constant for electron transfer changes to ket = 3.33 × 106 s−1. Assuming that 

the distance between donor and acceptor is the same in both experiments, 

estimate the values of Het(d) and ΔER.

94.2(a) For a pair of electron donor and acceptor, ket = 2.02 × 105 s−1 when 

d = 1.11 nm, and ket = 4.51 × 104 s−1 when d = 1.23 nm. Assuming that ΔrG
< and 

ΔER are the same in both experiments, estimate the value of β.

94.2(b) Refer to Exercise 94.2(a). Estimate the value of ket when d = 1.59 nm.

Problems
94.1 Consider the reaction D + A → D+ + A−. The rate constant kr may 

be determined experimentally or may be predicted by the Marcus cross-

relation, kr= (kDDkAAK)1/2 f, where kDD and kAA are the experimental rate 

constants for the electron self-exchange processes *D + D+ → *D+ + D and 

*A + A+ → *A+ + A, respectively, and f is a function of K = [D+][A−]/[D]

[A], kDD, kAA, and the collision frequencies. Derive the approximate form 

of the Marcus cross-relation, f = 1 kr = (kDDkAAK)1/2, by following these steps. 

(a) Use eqn 94.7 to write expressions for Δ‡G, Δ‡GDD, and Δ‡GAA, keeping 

in mind that ΔrG
< = 0 for the electron self-exchange reactions. (b) Assume 

that the reorganization energy ΔER,DA for the reaction D + A → D+ + A− is the 

[Q]/(mol dm−3) 0.0010 0.0050 0.0100

IF/(arbitrary units) 0.41 0.25 0.16

pN2
= 0.0atm

Relative fluorescence intensity 1.000 0.606 0.360 0.22 0.135

t/μs 0.0 5.0 10.0 15.0 20.0

pN atm
2

9 74 4= −. ×10

Relative fluorescence intensity 1.000 0.585 0.342 0.200 0.117

t/μs 0.0 3.0 6.0 9.0 12.0

R/nm 1.2 1.5 1.8 2.8 3.1 3.4 3.7 4.0 4.3 4.6

ηT 0.99 0.94 0.97 0.82 0.74 0.65 0.40 0.28 0.24 0.16
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average of the reorganization energies ΔER,DD and ΔER,AA of the electron self-

exchange reactions. Then show that in the limit of small magnitude of ΔrG
<, 

or Δ Δ Δ ΔΔ Δr DD AA rG E G G G< <� R DA, , ( )‡ ‡ ‡G = 1
2

+ + , where ΔrG
< is the 

standard Gibbs energy for the reaction D + A → D+ + A−. (c) Use an equation 

of the form of eqn 94.4 to write expressions for kDD and kAA. (d) Use eqn 94.4 

and the result above to write an expression for kr. (e) Complete the derivation 

by using the results from part (c), the relation K = −e r /Δ G RT<
, and assuming 

that all κv‡ terms, which may be interpreted as collision frequencies, are 

identical.

94.2 Consider the reaction D + A → D+ + A−. The rate constant kr may be 

determined experimentally or may be predicted by the Marcus cross-relation 

(see Problem 94.1). It is common to make the assumption that f ≈ 1. Use the 

approximate form of the Marcus cross-relation to estimate the rate constant 

for the reaction Ru(bpy) Fe(H O) Ru(bpy) Fe(H O)2 23
3

6
2

3
2

6
3+ + + ++ → + , where bpy 

stands for 4,4′-bipyridine. The following data are useful (* denotes an excited 

state):

94.3 A useful strategy for the study of electron transfer in proteins consists of 

attaching an electroactive species to the protein’s surface and then measuring 

ket between the attached species and an electroactive protein cofactor. J.W. 

Winkler and H.B. Gray (Chem. Rev. 92, 369 (1992)) summarize data for 

cytochrome c modified by replacement of the haem iron by a zinc ion, 

resulting in a zinc–porphyrin (ZnP) group in the interior of the protein, 

and by attachment of a ruthenium ion complex to a surface histidine amino 

acid. The edge-to-edge distance between the electroactive species was 

thus fixed at 1.23 nm. A variety of ruthenium ion complexes with different 

standard potentials was used. For each ruthenium-modified protein, either 

the Ru2+ → ZnP+ or the ZnP* → Ru3+, in which the electron donor is an 

electronically excited state of the zinc–porphyrin group formed by laser 

excitation, was monitored. This arrangement leads to different standard 

reaction Gibbs energies because the redox couples ZnP+/ZnP and ZnP+/ZnP* 

have different standard potentials, with the electronically excited porphyrin 

being a more powerful reductant. Use the following data to estimate the 

reorganization energy for this system:

94.4 The photosynthetic reaction centre of the purple photosynthetic 

bacterium Rhodopseudomonas viridis contains a number of bound cofactors 

that participate in electron transfer reactions. The following table shows data 

compiled by Moser, et al. (Nature 355, 796 (1992)) on the rate constants for 

electron transfer between different cofactors and their edge-to-edge distances:

(BChl, bacteriochlorophyll; BChl2, bacteriochlorophyll dimer, functionally 

distinct from BChl; BPh, bacteriophaeophytin; QA and QB, quinone molecules 

bound to two distinct sites; cyt c559, a cytochrome bound to the reaction 

centre complex). Are these data in agreement with the behaviour predicted by 

eqn 94.9? If so, determine the value of β.

94.5 The rate constant for electron transfer between a cytochrome c and the 

bacteriochlorophyll dimer of the reaction centre of the purple bacterium 

Rhodobacter sphaeroides (Problem 94.4) decreases with decreasing 

temperature in the range 300 K to 130 K. Below 130 K, the rate constant 

becomes independent of temperature. Account for these results.

Integrated activities

F19.1 Autocatalysis is the catalysis of a reaction by the products. For example, 

for a reaction A → P it may be found that the rate law is v = kr[A][P] and 

the reaction rate is proportional to the concentration of P. The reaction gets 

started because there are usually other reaction routes for the formation of 

some P initially, which then takes part in the autocatalytic reaction proper. 

(a) Integrate the rate equation for an autocatalytic reaction of the form A → P, 

with rate law v = kr[A][P], and show that

[ ]

[ ]
( )

P

P

e

e0
1

1
= +

+
b

b

at

at

 

where a = ([A]0 + [P]0)kr and b = [P]0/[A]0. Hint: Starting with the expression 

v = −d[A]/dt = kr[A][P], write [A] = [A]0 −x, [P] = [P]0 + x, and then write the 

expression for the rate of change of either species in terms of x. To integrate 

the resulting expression, use the method of partial fractions (The chemist's 

toolkit 83.1), with

1 1 1 1

0 0 0 0 0 0([ ] )([ ] ) [ ] [ ] [ ] [ ]A P A P A P− + = + − + +
⎛
⎝⎜

⎞
⎠⎟x x x x

 

(b) Plot [P]/[P]0 against at for several values of b. Discuss the effect of 

autocatalysis on the shape of a plot of [P]/[P]0 against t by comparing your 

results with those for a first-order process, in which [ ]/[ ]P P e r
0 1= − −k t . (c) Show 

that, for the autocatalytic process discussed in parts (a) and (b), the reaction rate 

reaches a maximum at tmax = −(1/a) ln b. (d) An autocatalytic reaction A → P is 

observed to have the rate law d[P]/dt = kr[A]2[P]. Solve the rate law for initial 

concentrations [A]0 and [P]0. Calculate the time at which the rate reaches a 

maximum. (e) Another reaction with the stoichiometry A → P has the rate law 

d[P]/dt = kr[A][P]2; integrate the rate law for initial concentrations [A]0 and [P]0. 

Calculate the time at which the rate reaches a maximum.

F19.2 Many biological and biochemical processes involve autocatalytic steps 

(Problem F19.1). In the SIR model of the spread and decline of infectious 

diseases, the population is divided into three classes: the susceptibles, S, who 

can catch the disease; the infectives, I, who have the disease and can transmit 

it; and the removed class, R, who have either had the disease and recovered, 

are dead, are immune, or are isolated. The model mechanism for this process 

implies the following rate laws:

d

d

d

d

d

d

S

t
rS

I

t
rS a

R

t
a= − = − =I I I I

 

Ru(bpy) e Ru(bpy)3
3

3
2+ − ++ → E< = 1.26 V

Fe(H O) e Fe(H O)2 26
3

6
2+ − ++ → E< = 0.77 V

* *Ru(bpy) Ru(bpy) Ru(bpy) Ru(bpy)3
3

3
2

3
2

3
3+ + + ++ → + kRu = 4.0 × 108 dm3 

mol−1 s−1

* *Fe(H O) Fe(H O) Fe(H O) Fe(H O)2 2 2 26
3

6
2

6
2

6
3+ + + ++ → + kFe = 4.2 dm3 mol−1 s−1

Reaction BChl− → BPh BPh BChl− +→ 2 BPh− → QA cyt BChl559c → +
2

d/nm 0.48 0.95 0.96 1.23

ket/s
−1 1.58 × 1012 3.98 × 109 1.00 × 109 1.58 × 108

Reaction Q QBA
− → Q BChlA

− +→ 2

d/nm 1.35 2.24

ket/s
−1 3.98 × 107 63.1

−ΔrG
</eV 0.665 0.705 0.745 0.975 1.015 1.055

ket/(106 s−1) 0.657 1.52 1.12 8.99 5.76 10.1
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What are the autocatalytic steps of this mechanism? Find the conditions on 

the ratio a/r that decide whether the disease will spread (an epidemic) or 

die out. Show that a constant population is built into this system, namely 

that S + I + R = N, meaning that the timescales of births, deaths by other 

causes, and migration are assumed large compared to that of the spread of 

the disease.

F19.3 Consult literature sources and list the observed ranges of timescales 

during which the following processes occur: radiative decay of excited 

electronic states, molecular rotational motion, molecular vibrational motion, 

proton transfer reactions, energy transfer between fluorescent molecules used 

in FRET analysis, electron transfer events between complex ions in solution, 

and collisions in liquids.

F19.4 Discuss the factors that govern the rates of photo-induced electron 

transfer according to Marcus theory and that govern the rates of resonance 

energy transfer according to Förster theory. Can you find similarities between 

the two theories?
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Processes at solid surfaces govern the viability of industry constructively, as in catalysis, and the per-
manence of its products destructively, as in corrosion. Chemical reactions at solid surfaces may differ 
sharply from reactions in the bulk, for reaction pathways of much lower activation energy may be 
provided by the surface, and hence result in catalysis. Here we extend the material introduced in 
Chemical kinetics by showing how to deal with processes on solid surfaces.

Topic 95 explores the structure of solid surfaces by drawing from knowledge of crystal structure 
(Interactions) and collisions in the gas phase (Molecular motion). We also describe a number of experi-
mental techniques commonly used in surface science. Moving beyond a discussion of clean surfaces 
is important because for chemists the important aspects of a surface are the attachment of sub-
stances to it and the reactions that take place there. In Topic 96 we discuss the extent to which a solid 
surface is covered and the variation of the extent of coverage with pressure and temperature. This 
material prepares us for a description of chemical reactions on solid surfaces. In Topic 97 we focus on 
how surfaces affect the rate and course of chemical change by acting as the site of catalysis.

What is the impact of this material?

Almost the whole of modern chemical industry depends on the development, selection, and appli-
cation of catalysts, with heterogeneous catalysts being particularly important. All we can hope to do 
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TOPIC 95

Solid surfaces

A great deal of chemistry occurs at solid surfaces. Heterogeneous 

catalysis (Topic 97) is just one example, with the surface provid-

ing reactive sites where reactants can attach, be torn apart, and 

react with other reactants. Even as simple an act as dissolving 

is intrinsically a surface phenomenon, with the solid gradu-

ally escaping into the solvent from sites on the surface. Surface 

deposition, in which atoms are laid down on a surface to create 

layers, is crucial to the semiconductor industry, as it is the way 

in which integrated circuits are created.

95.1 Surface growth

Adsorption is the attachment of particles to a solid surface; 

desorption is the reverse process. The substance that adsorbs is 

the adsorbate and the material to which it adsorbs is the adsor-

bent or substrate.

A simple picture of a perfect crystal surface is as a tray of 

oranges in a grocery store (Fig. 95.1). A gas molecule that col-

lides with the surface can be imagined as a ping-pong ball 

bouncing erratically over the oranges. The molecule loses 

energy as it bounces, but it is likely to escape from the surface 

before it has lost enough kinetic energy to be trapped. The 

same is true, to some extent, of an ionic crystal in contact with 

 ➤ Why do you need to know this material?

To understand the thermodynamics and kinetics of 
chemical reactions occurring on solid surfaces, which 
underlie much of catalysis and therefore the chemical 
industry, you need to understand their structure, 
composition, and growth.

 ➤ What is the key idea?
Structural features, including defects, play important roles 
in physical and chemical processes occurring on solid 
surfaces.

 ➤ What do you need to know already?
You need to be aware of the structure of solids (Topic 
37), but not in detail. This Topic draws on results from the 
kinetic theory of gases (Topic 78).
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Figure 95.1 A schematic diagram of the flat surface of a 
solid. This primitive model is largely supported by scanning 
tunnelling microscope images.
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95 Solid surfaces  913

a solution. There is little energy advantage for an ion in solu-

tion to discard some of its solvating molecules and stick at an 

exposed position on the surface.

The picture changes when the surface has defects, for then 

there are ridges of incomplete layers of atoms or ions. A com-

mon type of surface defect is a step between two otherwise flat 

layers of atoms called terraces (Fig. 95.2). A step defect might 

itself have defects, for it might have kinks. When an atom set-

tles on a terrace it bounces across it under the influence of the 

intermolecular potential, and might come to a step or a corner 

formed by a kink. Instead of interacting with a single terrace 

atom, the molecule now interacts with several, and the inter-

action may be strong enough to trap it. Likewise, when ions 

deposit from solution, the loss of the solvation interaction is 

offset by a strong Coulombic interaction between the arriving 

ions and several ions at the surface defect.

The rapidity of growth depends on the crystal plane con-

cerned, and the slowest-growing faces dominate the appear-

ance of the crystal. This feature is explained in Fig. 95.3, where 

we see that, although the horizontal face grows forward most 

rapidly, it grows itself out of existence, and the slower-growing 

faces survive.

Under normal conditions, a surface exposed to a gas is con-

stantly bombarded with molecules and a freshly prepared sur-

face is covered very quickly. Just how quickly can be estimated 

Brief illustration 95.1 The collision flux

If we write m = M/NA, where M is the molar mass of the gas, 

eqn 95.1 becomes

Z
N k p

TMW
A /= ( )

( )

/

/

2 1 2

1 2

π

After inserting numerical values for the constants and select-

ing units for the variables, the practical form of this expres-

sion is

Z
Z p

T M
ZW

Pa

K / g mol
 with m s= = ×−

− −0
1 1 2 0

24 2 12 63 10
( / )

( / )( ( )
.

{ } /

For air, with M ≈ 29 g mol−1, at p = 1 atm = 1.01325 × 105 Pa and 

T = 298 K, we obtain ZW = 2.9 × 1027 m−2 s−1. Because 1 m2 of 

metal surface consists of about 1019 atoms, each atom is struck 

about 108 times each second. Even if only a few collisions 

leave a molecule adsorbed to the surface, the time for which a 

freshly prepared surface remains clean is very short.

Self-test 95.1 Calculate the collision flux with a surface of a 

vessel containing propane at 25 °C when the pressure is 100 Pa.

Answer: ZW = 2.30 × 1020 cm−2 s−1

using the kinetic model of gases and the following expression 

for the collision flux (eqn 78.13):

Z
p

mkTW =
( ) /2 1 2π  

 Collision flux  (95.1)

where p is the pressure, m is the molecular mass, k is 

Boltzmann’s constant, and T is the temperature.

95.2 Physisorption and 
chemisorption

Molecules and atoms can attach to surfaces in two ways. In 

physisorption (an abbreviation of ‘physical adsorption’), there 

is a van der Waals interaction (for example, a dispersion or a 

dipolar interaction, Topic 35) between the adsorbate and the 

substrate; van der Waals interactions have a long range but are 

weak, and the energy released when a particle is physisorbed 

is of the same order of magnitude as the enthalpy of conden-

sation. Such small energies can be absorbed as vibrations of 

the lattice and dissipated as thermal motion, and a molecule 

bouncing across the surface will gradually lose its energy and 

finally adsorb to it in the process called accommodation.

The enthalpy of physisorption can be measured by monitor-

ing the rise in temperature of a sample of known heat capacity, 

Terrace

Terrace

Step
Adatom

Kink

ace

Figure 95.2 Some of the kinds of defects that may occur on 
otherwise perfect terraces. Defects play an important role in 
surface growth and catalysis.

Fast

Slow

Figure 95.3 The slower-growing faces of a crystal dominate 
its final external appearance. Three successive stages of the 
growth are shown.
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914 20 Processes on solid surfaces

and typical values are in the region of −20 kJ mol−1 (Table 95.1). 

This small enthalpy change is insufficient to lead to bond break-

ing, so a physisorbed molecule retains its identity, although it 

might be distorted by the presence of the surface.

In chemisorption (an abbreviation of ‘chemical adsorption’), 

the molecules (or atoms) stick to the surface by forming a chem-

ical (usually covalent) bond, and tend to find sites that maximize 

their coordination number with the substrate. The enthalpy of 

chemisorption is very much greater than that for physisorption, 

and typical values are in the region of −200 kJ mol−1 (Table 95.2). 

The distance between the surface and the closest adsorbate atom 

is also typically shorter for chemisorption than for physisorp-

tion. A chemisorbed molecule may be torn apart at the demand 

of the unsatisfied valencies of the surface atoms, and the exist-

ence of molecular fragments on the surface as a result of chem-

isorption is one reason why solid surfaces catalyse reactions 

(Topic 97).

Except in special cases, chemisorption must be exothermic. 

A spontaneous process requires ΔG < 0 at constant pressure and 

temperature. Because the translational freedom of the adsorb-

ate is reduced when it is adsorbed, ΔS is negative. Therefore, 

in order for ΔG = ΔH − TΔS to be negative, ΔH must be nega-

tive (that is, the process is exothermic). Exceptions may occur if 

the adsorbate dissociates and has high translational mobility on 

the surface. For example, H2 adsorbs endothermically on glass 

because there is a large increase of translational entropy accom-

panying the dissociation of the molecules into atoms that move 

quite freely over the surface. In this case, the entropy change in 

the process H2(g) → 2 H(glass) is sufficiently positive to over-

come the small positive enthalpy change.

The enthalpy of adsorption depends on the extent of surface 

coverage, mainly because the adsorbate particles interact. If the 

particles repel each other (as for CO on palladium) the adsorp-

tion becomes less exothermic (the enthalpy of adsorption less 

negative) as coverage increases. Moreover, studies show that 

such species settle on the surface in a disordered way until 

packing requirements demand order. If the adsorbate particles 

attract one another (as for O2 on tungsten), then they tend to 

cluster together in islands, and growth occurs at the borders. 

These adsorbates also show order–disorder transitions when 

they are heated enough for thermal motion to overcome the 

particle–particle interactions, but not so much that they are 

desorbed.

Whether a result of physisorption or chemisorption, the 

extent of surface coverage is normally expressed as the frac-

tional coverage, θ:

θ = number of adsorption sites occupied

number of adsorption ssites available  

The fractional coverage is often expressed in terms of the vol-

ume of adsorbate adsorbed by θ = V/V∞, where V∞ is the volume 

of adsorbate corresponding to complete monolayer coverage. 

In each case, the volumes in the definition of θ are those of the 

free gas measured under the same conditions of temperature 

and pressure, not the volume the adsorbed gas occupies when 

attached to the surface.

95.3 Experimental techniques

A vast array of experimental techniques are used to study 

the composition and structure of solid surfaces at the atomic 

level. Many of the arrangements allow for direct visualization 

of changes in the surface as adsorption and chemical reactions 

take place there.

Experimental procedures must begin with a clean surface. 

The obvious way to retain cleanliness of a surface is to reduce 

the pressure and thereby reduce the number of impacts on the 

 (95.2)

Defini-
tion 

Fractional 
coverage

Brief illustration 95.2 Fractional coverage

For the adsorption of CO on charcoal at 273 K, V∞ = 111 cm3, a 

value corrected to 1 atm. When the partial pressure of CO is 

80.0 kPa, the value of V (also corrected to 1 atm) is 41.6 cm3, so 

it follows that θ = (41.6 cm3)/(111 cm3) = 0.375.

Self-test 95.2 It is commonly observed that θ  increases 

sharply with the partial pressure of adsorbate at low pressures, 

but becomes increasingly less dependent on partial pressure at 

high pressures. Explain this behaviour.
Answer: See Topic 96

Table 95.1* Maximum observed standard 
enthalpies of physisorption at 298 K

Adsorbate ΔadH</(kJ mol−1)

CH4 −21

H2 −84

H2O −59

N2 −21

* More values are given in the Resource section.

Table 95.2* Standard enthalpies of chemisorption,  
ΔadH</(kJ mol−1) at 298 K

Adsorbate Adsorbent (substrate)

Cr Fe Ni

C2H4 −427 −285 −243

CO −192

H2 −188 −134

NH3 −188 −155

* More values are given in the Resource section.
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95 Solid surfaces  915

surface. When the pressure is reduced to 0.1 mPa (as in a sim-

ple vacuum system) the collision flux falls to about 1018 m−2 s−1, 

corresponding to one hit per surface atom in each 0.1 s. Even 

that is too frequent in most experiments, and in ultrahigh 

vacuum (UHV) techniques pressures as low as 0.1 μPa (when 

ZW = 1015 m−2 s−1) are reached on a routine basis and as low as 

1 nPa (when ZW = 1013 m−2 s−1) are reached with special care. 

These collision fluxes correspond to each surface atom being 

hit once every 105 to 106 s, or about once a day.

(a) Microscopy
The basic approach of illuminating a small area of a sample 

and collecting light with a microscope has been used for many 

years to image small specimens. However, the resolution of a 

microscope, the minimum distance between two objects that 

leads to two distinct images, is on the order of the wavelength 

of the electromagnetic radiation being used. Therefore, con-

ventional microscopes employing visible light have resolutions 

in the micrometre range and are blind to features on a scale of 

nanometres.

One technique that is often used to image nanometre-sized 

objects is electron microscopy, in which a beam of electrons with 

a well-defined de Broglie wavelength (Topic 4) replaces the lamp 

found in traditional light microscopes. Instead of glass or quartz 

lenses, magnetic fields are used to focus the beam. In transmis-

sion electron microscopy (TEM), the electron beam passes 

through the specimen and the image is collected on a screen. In 

scanning electron microscopy (SEM), electrons scattered back 

from a small irradiated area of the sample are detected and the 

electrical signal is sent to a video screen. An image of the surface 

is then obtained by scanning the electron beam across the sample.

As in traditional light microscopy, the wavelength of and the 

ability to focus the incident beam—in this case a beam of elec-

trons—govern the resolution. Electron wavelengths in typical 

electron microscopes can be as short as 10 pm, but it is not pos-

sible to focus electrons well with magnetic lenses and in prac-

tice typical resolutions of TEM and SEM instruments are about 

2 nm and 50 nm, respectively. It follows that electron micro-

scopes cannot resolve individual atoms (which have diam-

eters of about 0.2 nm). Furthermore, only particular kinds of 

samples can be observed under certain conditions. The meas-

urements must be conducted under high vacuum. For TEM 

observations, the samples must be very thin cross-sections of a 

specimen and SEM observations must be made on dry samples.

Scanning probe microscopy (SPM) is a collection of tech-

niques that can be used to visualize and manipulate objects 

as small as atoms on surfaces. One version of SPM is scan-

ning tunnelling microscopy (STM), in which a platinum–

rhodium or tungsten needle is scanned across the surface of a 

conducting solid. When the tip of the needle is brought very 

close to the surface, electrons tunnel across the intervening 

space (Fig. 95.4). In the ‘constant-current mode’ of operation, 

the stylus moves up and down corresponding to the form of 

the surface, and the topography of the surface, including any 

adsorbates, can therefore be mapped on an atomic scale. The 

vertical motion of the stylus is achieved by fixing it to a piezo-

electric cylinder, which contracts or expands according to the 

potential difference it experiences. In the ‘constant-z mode’, the 

vertical position of the stylus is held constant and the current 

is monitored. Because the tunnelling probability is very sensi-

tive to the size of the gap, the microscope can detect tiny, atom-

scale variations in the height of the surface.

Figure 95.5 shows an example of the kind of image obtained 

with a surface, in this case of gallium arsenide that has been 

modified by addition of caesium atoms. Each ‘bump’ on the 

surface corresponds to an atom. In a further variation of the 

STM technique, the tip may be used to nudge single atoms 

around on the surface, making possible the fabrication of com-

plex and yet very tiny nanometre-sized materials and devices.

In atomic force microscopy (AFM), a sharpened tip attached 

to a cantilever is scanned across the surface. The force exerted 

by the surface and any molecules attached to it pushes or pulls 

on the tip and deflects the cantilever (Fig. 95.6). The deflection 

is monitored by using a laser beam. Because no current needs 

Scan

Tunnelling
current

Figure 95.4 A scanning tunnelling microscope makes use of 
the current of electrons that tunnel between the surface and 
the tip. That current is very sensitive to the distance of the tip 
above the surface.

Figure 95.5 An STM image of caesium atoms on a gallium 
arsenide surface.
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916 20 Processes on solid surfaces

to pass between the sample and the probe, the technique can be 

applied to non-conducting surfaces and to liquid samples.

Two modes of operation of AFM are common. In ‘contact 

mode’, or ‘constant-force mode’, the force between the tip and 

surface is held constant and the tip makes contact with the sur-

face. This mode of operation can damage fragile samples on the 

surface. In ‘non-contact’ or ‘tapping mode’, the tip bounces up 

and down with a specified frequency and never quite touches 

the surface. The amplitude of the tip’s oscillation changes when 

it passes over a species adsorbed on the surface.

Figure 95.7 demonstrates the power of AFM, which shows 

germanium nanowires on a silicon surface. The wires are about 

2 nm high, 10–32 nm wide, and 10–600 nm long.

(b) Ionization techniques
The chemical composition of a surface can be determined by a 

variety of ionization techniques. The same techniques can be 

used to detect any remaining contamination after cleaning and 

to detect layers of material adsorbed later in the experiment.

One technique is photoemission spectroscopy, a deriva-

tive of the photoelectric effect (Topic 4), in which X-rays (for 

XPS) or hard (short-wavelength) ultraviolet (for UPS) ionizing 

radiation is used, giving rise to ejected electrons from adsorbed 

species. The kinetic energies of the electrons ejected from their 

orbitals are measured and the pattern of energies is a finger-

print of the material present (Fig. 95.8). UPS, which examines 

electrons ejected from valence shells, is also used to establish 

the bonding characteristics and the details of valence-shell 

electronic structures of substances on the surface. Its useful-

ness is its ability to reveal which orbitals of the adsorbate are 

involved in the bond to the substrate.

A very important technique, which is widely used in the 

micro electronics industry, is Auger electron spectroscopy (AES). 

The Auger effect (pronounced oh-zhey) is the emission of a sec-

ond electron after high-energy radiation has expelled another. 

The first electron to depart leaves a hole in a low-lying orbital, 

and an upper electron falls into it. The energy this transition 

releases may result either in the generation of radiation, which 

is called X-ray fluorescence (Fig. 95.9a), or in the ejection of 

another electron (Fig. 95.9b). The latter is the ‘secondary elec-

tron’ of the Auger effect. The energies of the secondary elec-

trons are characteristic of the material present, so the Auger 

effect effectively takes a fingerprint of the sample. In practice, 

the Auger spectrum is normally obtained by irradiating the 

Brief illustration 95.3 A UPS spectrum

The principal difference between the photoemission results 

on free benzene and benzene adsorbed on palladium is in 

the energies of the π electrons. This difference is interpreted 

as meaning that the C6H6 molecules lie parallel to the surface 

and are attached to it by their π orbitals.

Self-test 95.3 When adsorbed to palladium, pyridine (C6H5N) 

stands almost perpendicular to the surface. Suggest a mode of 

attachment of the molecule to palladium atoms on the surface.

Answer: Data are consistent with a σ bond formed  

by the nitrogen lone pair

Probe

CantileverLaser
beam

Surface

Figure 95.6 In atomic force microscopy, a laser beam is used to 
monitor the tiny changes in position of a probe as it is attracted 
to or repelled by atoms on a surface.

Binding energy/eV
80 100 120

Au

Hg

Figure 95.8 The X-ray photoelectron emission spectrum of a 
sample of gold contaminated with a surface layer of mercury 
(M.W. Roberts and C.S. McKee, Chemistry of the metal–gas 

interface, Oxford University Press (1978)).

Figure 95.7 Germanium nanowires fabricated on to a silicon 
surface by molecular beam epitaxy. (Reproduced with 
permission from T. Ogino, et al., Acc. Chem. Res. 32, 447 (1999).)
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95 Solid surfaces  917

sample with an electron beam of energy in the range 1–5 keV 

rather than electromagnetic radiation. In scanning Auger 

electron microscopy (SAM), the finely focused electron beam 

is scanned over the surface and a map of composition is com-

piled; the resolution can reach below about 50 nm.

Diffusion characteristics of an adsorbate can be examined 

by using STM to follow the change in surface characteristics 

or by field-ionization microscopy (FIM), which portrays the 

electrical characteristics of a surface by using the ionization of 

noble gas atoms to probe the surface (Fig. 95.10). An individual 

atom is imaged and the temperature is raised, and then lowered 

after a definite interval. A new image is then recorded, and the 

new position of the atom measured (Fig. 95.11). A sequence of 

images shows that the atom makes a random walk across the 

surface, and the diffusion coefficient, D, can be inferred from 

the mean distance, d, travelled in an interval τ by using the two-

dimensional random walk expression d = (Dτ)1/2. The value of 

D for different crystal planes at different temperatures can be 

determined directly in this way, and the activation energy for 

Brief illustration 95.4 Diffusion coefficients

Typical values for W atoms on tungsten have Ea,diff in the 

range 57–87 kJ mol−1 and D0 ≈ 3.8 × 10−11 m2 s−1. It follows from 

eqn 95.3 that at 800 K the diffusion coefficient varies approxi-

mately from

D = × × × ×−
( . ) . /( . )3 8 10 11 2 1 5 7 10 8 3145 8004 1 1 1− − − − − −

m s e Jmol JK mol K

== ×7 2 10 15 2 1. − −m s

to

D = × ×− − − × ×− − − −
( . ) . /( . )3 8 10 11 2 1 8 7 10 8 3145 8004 1 1 1

m s e Jmol JK mol K

== × − −7 9 10 17 2 1. m s

Self-test 95.4 For CO on tungsten, the activation energy falls 

from 144 kJ mol−1 at low surface coverage to 88 kJ mol−1 when 

the coverage is high. Calculate the ratio Dhigh/Dlow of diffusion 

coefficients at 800 K.
Answer: 4.5 × 103

migration over each plane obtained from the Arrhenius-like 

expression

D D E RT= −
0e a diff, /

where Ea,diff is the activation energy for diffusion and D0 is the 

diffusion coefficient in the limit of infinite temperature.

(c) Diffraction techniques

A useful technique for determining the arrangement of the 

atoms close to the surface is low-energy electron diffraction 

(LEED). This technique is like X-ray diffraction (Topic 37) but 

uses the wave character of electrons, and the sample is now the 

Primary
electron

Photon

Secondary
electron

(a) (b)

Figure 95.9 When an electron is expelled from a solid (a) an 
electron of higher energy may fall into the vacated orbital 
and emit an X-ray photon to produce X-ray fluorescence. 
Alternatively (b) the electron falling into the orbital may give 
up its energy to another electron, which is ejected in the 
Auger effect.

He

He+

Figure 95.10 The events leading to an FIM image of a surface. 
The He atom migrates across the surface until it is ionized at an 
exposed atom, when it is pulled off by the externally applied 
potential. (The bouncing motion is due to the intermolecular 
potential, not gravity!)

Figure 95.11 FIM micrographs showing the migration of Re 
atoms on rhenium during 3 s intervals at 375 K. (Photographs 
provided by Professor G. Ehrlich.)

(95.3)

Temperature 
dependence 
of the diffusion 
coefficient
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918 20 Processes on solid surfaces

surface of a solid. The use of low-energy electrons (with ener-

gies in the range 10–200 eV, corresponding to wavelengths in 

the range 100–400 pm) ensures that the diffraction is caused 

only by atoms on and close to the surface. The experimental 

arrangement is shown in Fig. 95.12, and typical LEED patterns, 

obtained by photographing the fluorescent screen through the 

viewing port, are shown in Fig. 95.13.

Observations using LEED show that the surface of a crystal 

rarely has exactly the same form as a slice through the bulk. As 

a general rule, it is found that metal surfaces are simply trunca-

tions of the bulk lattice, but the distance between the top layer 

of atoms and the one below is contracted by around 5 per cent. 

Semiconductors generally have surfaces reconstructed to a 

depth of several layers. Reconstruction occurs in ionic solids. 

For example, in lithium fluoride the Li+ and F− ions close to 

the surface apparently lie on slightly different planes. An actual 

example of the detail that can now be obtained from refined 

LEED techniques is shown in Fig. 95.14 for CH3C− adsorbed 

on a (111) plane of rhodium.

Example 95.1 Interpreting a LEED pattern

The LEED pattern from a clean (110) face of palladium is 

shown in (a) below. The reconstructed surface gives a LEED 

pattern shown as (b). What can be inferred about the structure 

of the surface?

(a) (b)

 

Method Recall from Bragg’s law (Topic 37, λ = 2d sin θ) that, 

for a given wavelength, the greater the separation d of the lay-

ers, the smaller is the scattering angle (so that 2d sin θ remains 

constant). It follows that, in terms of the LEED pattern, the 

farther apart the atoms responsible for the pattern, the closer 

the spots appear in the pattern. Twice the separation between 

the atoms corresponds to half the separation between the 

spots, and vice versa. Therefore, inspect the two patterns and 

identify how the new pattern relates to the old.

Answer The horizontal separation between spots is unchanged, 

which indicates that the atoms remain in the same position in 

that dimension when reconstruction occurs. (Reconstruction 

refers to processes by which atoms on the surface achieve their 

equilibrium structures, which may differ from those of atoms 

in the bulk since surface and bulk atoms experience different 

forces.) However, the vertical spacing is halved, which suggests 

that the atoms are twice as far apart in that direction as they are 

in the unreconstructed surface.

Self-test 95.5 Sketch the LEED pattern for a surface that differs 

from that shown in (a) above by tripling the vertical separation.

Answer: 

Viewing
port

Grids

Phosphor
screen

Electron
gun

Insulator

Sample

Figure 95.12 A schematic diagram of the apparatus used for a 
LEED experiment. The electrons diffracted by the surface layers 
are detected by the fluorescence they cause on the phosphor 
screen.

(a) (b)

Figure 95.13 LEED photographs of (a) a clean platinum surface 
and (b) after its exposure to propyne, CH3C≡CH. (Photographs 
provided by Professor G.A. Somorjai.)

148 pm

12 pm

130 pm

Figure 95.14 The structure of a surface close to the point 
of attachment of CH3C− to the (110) surface of rhodium at 
300 K and the changes in positions of the metal atoms that 
accompany chemisorption.
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95 Solid surfaces  919

The presence of terraces, steps, and kinks in a surface shows 

up in LEED patterns, and their surface density (the number 

of defects in a region divided by the area of the region) can 

be estimated. Three examples of how steps and kinks affect 

the pattern are shown in Fig. 95.15. The samples used were 

obtained by cleaving a crystal at different angles to a plane of 

atoms. Only terraces are produced when the cut is parallel to 

the plane, and the density of steps increases as the angle of the 

cut increases. The observation of additional structure in the 

LEED patterns, rather than blurring, shows that the steps are 

arrayed regularly.

(d) The determination of adsorption 
and desorption rates
Among the principal techniques for measuring rates of pro-

cesses on surfaces are flow methods. A common technique 

monitors the rates of flow of gas into and out of the system: the 

difference is the rate of gas uptake by the sample. Integration of 

this rate then gives the fractional coverage at any stage. In flash 

desorption the sample is suddenly heated (electrically) and the 

resulting rise of pressure is interpreted in terms of the amount 

of adsorbate originally on the sample. The interpretation may 

be confused by the desorption of a compound (for example, 

WO3 from oxygen on tungsten).

Gravimetry, in which the sample is weighed on a micro-

balance during the experiment, can also be used. A common 

instrument for gravimetric measurements is the quartz crys-

tal microbalance (QCM), in which the mass of a sample laid 

on the surface of a quartz crystal is related to changes in the 

latter’s mechanical properties. The key principle behind the 

operation of a QCM is the ability of a quartz crystal to vibrate 

at a characteristic frequency when an oscillating electric field 

is applied. The vibrational frequency decreases when material 

is spread over the surface of the crystal and the change in fre-

quency is proportional to the mass of material. Masses as small 

as a few nanograms can be measured reliably in this way.

Second harmonic generation (SHG) is very important 

for the study of all types of surfaces, including thin films and 

 liquid–gas interfaces. Second harmonic generation is the con-

version of an intense, pulsed laser beam to radiation with twice 

its initial frequency as it passes through a material. In addition 

to a number of crystals, surfaces are also suitable materials for 

SHG. For example, adsorption of gas molecules on to a surface 

alters the intensity of the SHG signal, allowing for characteriza-

tion of physical and chemical processes. Because pulsed lasers 

are the excitation sources, time-resolved measurements of the 

kinetics and dynamics of surface processes are possible over 

timescales as short as femtoseconds.

Surface plasmon resonance (SPR) is a very sensitive tech-

nique now used routinely to measure the kinetics and ther-

modynamics of surface processes. An SPR instrument detects 

changes in the optical properties of a surface as it changes as a 

result of adsorption or desorption. Here we focus on its use in 

the study of interactions between biopolymers.

The mobility of delocalized valence electrons accounts for 

the electrical conductivity of metals and these mobile electrons 

form a plasma, a dense gas of charged particles. Bombardment 

of the plasma by light or an electron beam can cause transient 

changes in the distribution of electrons, with some regions 

becoming slightly more dense than others. Coulomb repulsion 

in the regions of high density causes electrons to move away 

from each other, so lowering their density. The resulting oscil-

lations in electron density, called plasmons, can be excited both 

in the bulk and on the surface of a metal. Plasmons in the bulk 

may be visualized as waves that propagate through the solid. 

A surface plasmon also propagates away from the surface, but 

the amplitude of the wave, also called an evanescent wave, 

decreases sharply with distance from the surface.

Surface plasmon resonance is the absorption of energy from 

an incident beam of electromagnetic radiation by surface plas-

mons. Absorption, or ‘resonance’, can be observed with appro-

priate choice of the wavelength and angle of incidence of the 

excitation beam. It is common practice to use a monochro-

matic beam and to vary the angle of incidence, φ (Fig. 95.16). 

The beam passes through a prism that strikes one side of a thin 

film of gold or silver. The angle corresponding to light absorp-

tion depends on the refractive index of the medium in direct 

contact with the opposing side of the metallic film. This varia-

tion of the resonance angle with the state of the surface arises 

from the ability of the evanescent wave to interact with mate-

rial a short distance away from the surface. For example, chang-

ing the identity and quantity of material on the surface changes 

the resonance angle. Hence, SPR can be used in the study of the 

(a)

(b)

(c)

Figure 95.15 LEED patterns may be used to assess the 
defect density of a surface. The photographs correspond to a 
platinum surface with (a) low defect density, (b) regular steps 
separated by about six atoms, and (c) regular steps with kinks. 
(Photographs provided by Professor G.A. Samorjai.)
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920 20 Processes on solid surfaces

binding of molecules to a surface or the binding of ligands to a 

biopolymer attached to the surface; this interaction mimics the 

biological recognition processes that occur in cells. Examples of 

complexes amenable to analysis include antibody–antigen and 

protein–DNA interactions. The most important advantage of 

SPR analysis is its sensitivity: it is possible to measure the depo-

sition of nanograms of material on to a surface. The main disad-

vantage of the technique is its requirement for immobilization 

of at least one of the components of the system under study.

Example 95.2 Interpreting data from SPR analysis

Consider the association of two polymers, A and B, to form the 

complex AB. In a typical SPR analysis experiment, a stream of 

solution containing a known concentration of A flows above 

the surface to which B is chemisorbed. Then the time depend-

ence of the surface plasmon resonance signal, with intensity 

R ∝ [AB], is monitored until the system reaches equilibrium 

and the signal intensity is Req. Write an expression that relates 

the value of Req to the equilibrium constant K for the process 

A + B � AB.

Method Follow the procedures shown in Topic 84 for relating 

kinetic data to equilibrium parameters. Begin by letting kon 

and koff be the rate constants for formation and dissociation of 

the AB complex; note that they have different units. Then the 

equilibrium constant K is

K
k

k
c= ×on

off

<

where c< = 1 mol dm−3. As always, it is useful to make reason-

able approximations, and in this case we assume that the flow 

rate of A is sufficiently high that at all times [A] = a0 is essen-

tially constant.

Answer The concentration of the complex AB varies with  

time as

d AB

d
A B ABon off

[ ]
[ ][ ][ ]

t
k k= −

with [A] = a0 and, from mass balance, [B] = b0 − [AB], where 

b0 is the total concentration of B. The maximum value that R 

can have is Rmax ∝ b0, which would be measured if all B mol-

ecules were complexed with A. With R ∝ [AB], it follows that 

[B] ∝ Rmax − R, and

d

d on max off

R

t
k a R R k R= − −0( )  (95.4)

At equilibrium R = Req and dR/dt = 0, and after some algebra 

(see Self-test 95.6), it follows that

R R
C

C
C a k keq max on off/= + =

1 0( )  (95.5)

Hence, the value of K = kon/koff × c < can be obtained from 

measurements of Req for a series of a0.

Self-test 95.6 Provide the missing steps in the derivation of 

eqn 95.5 from eqn 95.4.

Checklist of concepts

☐ 1. Adsorption is the attachment of molecules to a sur-

face; the substance that adsorbs is the adsorbate and the 

underlying material is the adsorbent or substrate. The 

reverse of adsorption is desorption.

☐ 2. Surface defects play an important role in surface growth 

and catalysis.

☐ 3. Techniques for studying surfaces include scanning 

electron microscopy (SEM), scanning probe micros-

copy (SPM), field-ionization microscopy (FIM), pho-

toemission spectroscopy, Auger electron spectroscopy 

(AES), low-energy electron diffraction (LEED), flash 

desorption, gravimetry, second harmonic generation 

(SHG), and surface plasmon resonance (SPR).

Flow direction

Au or Ag film

Prism

To detectorFrom source

In
te

n
si

ty

Angle, φ

φ

Figure 95.16 The experimental arrangement for the 
observation of surface plasmon resonance, as explained  
in the text.
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95 Solid surfaces  921

Checklist of equations

Property Equation Comment Equation number

Collision flux ZW = p/(2πmkT)1/2 KMT 95.1

Fractional coverage θ = (number of adsorption sites occupied)/(number of adsorption sites available) Definition 95.2
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TOPIC 96

Adsorption and desorption

Here we consider the extent to which a solid surface is covered 

and the variation of the extent of coverage with pressure and 

temperature. For simplicity, we consider only gas/solid sys-

tems. We use this material in Topic 97 to discuss how surfaces 

affect the rate and course of chemical change by acting as the 

site of catalysis.

96.1 Adsorption isotherms

In adsorption (Topic 95) the free gas and the adsorbed gas are 

in dynamic equilibrium, and the fractional coverage, θ, of the 

surface (eqn 95.2) depends on the pressure of the overlying 

gas. The variation of θ with pressure at a chosen temperature is 

called the adsorption isotherm.

(a) The Langmuir isotherm
The simplest physically plausible isotherm is based on three 

assumptions:

Adsorption cannot proceed beyond monolayer coverage.

All sites are equivalent and the surface is uniform (that 

is, the surface is perfectly flat on a microscopic scale).

The ability of a molecule to adsorb at a given site is 

independent of the occupation of neighbouring sites 

(that is, there are no interactions between adsorbed 

molecules).

The dynamic equilibrium is

A(g) M(surface) AM(surface)+ �

with rate constants ka for adsorption and kd for desorption. The 

rate of change of the surface coverage, dθ/dt, due to adsorption 

is proportional to the partial pressure p of A and the number of 

vacant sites N(1 − θ), where N is the total number of sites:

d

d a

θ θ
t

k pN= −( )1
 

 Rate of adsorption  (96.1a)

Contents

96.1 Adsorption isotherms 922

(a) The Langmuir isotherm 922

Example 96.1: Using the Langmuir isotherm 923

(b) The isosteric enthalpy of adsorption 924

Example 96.2: Measuring the isosteric enthalpy  

of adsorption 925

(c) The BET isotherm 925

Example 96.3: Using the BET isotherm 927

96.2 The rates of adsorption and desorption 927

(a) The precursor state 928

Brief illustration 96.1: The rate of activated  

adsorption 928

(b) Adsorption and desorption at the  
molecular level 928

Brief illustration 96.2: Residence half-lives 929

(c) Mobility on surfaces 930

Checklist of concepts 930

Checklist of equations 930

 ➤ Why do you need to know this material?
To understand how surfaces can affect the rates of 
chemical reactions, you need to know how to assess the 
extent of surface coverage and the factors that determine 
the rates at which molecules attach to and detach from 
solid surfaces.

 ➤ What is the key idea?
The extent of coverage of a solid surface by molecules 
can be measured and expressed by simple mathematical 
expressions.

 ➤ What do you need to know already?
You need to be familiar with the basic ideas of chemical 
kinetics (Topics 82–84), the Arrhenius equation (Topic 85), 
the manipulation of reaction mechanisms into rate laws 
(Topic 86), and the structure and coverage of surfaces 
(Topic 95).
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96 Adsorption and desorption  923

The rate of change of θ due to desorption is proportional to the 

number of adsorbed species, Nθ:

d

d d

θ θ
t

k N= −
 

 Rate of desorption  (96.1b)

At equilibrium there is no net change (that is, the sum of 

these two rates is zero), and solving for θ gives the Langmuir 

isotherm:

θ α
α α= + =p

p

k

k1
a

d  
 Langmuir isotherm  (96.2)

where the dimensions of α are 1/pressure.

For adsorption with dissociation, the rate of adsorption is 

proportional to the pressure and to the probability that both 

atoms will find sites, which is proportional to the square of the 

number of vacant sites,

d

d a

θ θ
t

k p N= −{ ( )}1 2

 
(96.3a)

The rate of desorption is proportional to the frequency of 

encounters of atoms on the surface, and is therefore second-

order in the number of atoms present:

d

d d

θ θ
t

k N= − ( )2

 
(96.3b)

The condition for no net change leads to the isotherm

θ α
α

=
+
( )

( )

/

/

p

p

1 2

1 21

The surface coverage now depends more weakly on pressure 

than for non-dissociative adsorption.

The shapes of the Langmuir isotherms with and without 

dissociation are shown in Figs 96.2 and 96.3. The fractional 

Langmuir isotherm for 
adsorption with dissociation

(96.4)

Example 96.1 Using the Langmuir isotherm

The data given below are for the adsorption of CO on char-

coal at 273 K. Confirm that they fit the Langmuir isotherm, 

and find the constant α and the volume corresponding to 

complete coverage. In each case V has been corrected to 1 atm 

(101.325 kPa).

Method From eqn 96.2,

α θ θ αp p+ =

With θ = V/V∞ (eqn 95.2), where V∞ is the volume correspond-

ing to complete coverage, this expression can be rearranged 

into

p

V

p

V V
= +

∞ ∞

1

α

Hence, a plot of p/V against p should give a straight line of 

slope 1/V∞ and intercept 1/αV∞.

Answer The data for the plot are as follows:

The points are plotted in Fig. 96.1.The (least-squares) slope is 

0.009 00, so V∞ = 111 cm3. The intercept at p = 0 is 1.20, so

α =
×

= × − −1

111 1 20
7 51 10

3 3
3 1

( ) ( . )
.

cm kPa cm
kPa

p/kPa 13.3 26.7 40.0 53.3 66.7 80.0 93.3

(p/kPa)/(V/cm3) 1.30 1.44 1.57 1.69 1.81 1.92 2.02

p/kPa 13.3 26.7 40.0 53.3 66.7 80.0 93.3

V/cm3 10.2 18.6 25.5 31.5 36.9 41.6 46.1

Self-test 96.1 Repeat the calculation for the following data:

Answer: 128 cm3, 6.69 × 10−3 kPa−1

p/kPa 13.3 26.7 40.0 53.3 66.7 80.0 93.3

V/cm3 10.3 19.3 27.3 34.1 40.0 45.5 48.0

2.2

1.8

1.4

1.0
0 20 40 60 80 100

p/kPa

(p
/k

Pa
)/

(V
/c

m
3 )

Figure 96.1 The plot of the data in Example 96.1. As 
illustrated here, the Langmuir isotherm predicts that 
a straight line should be obtained when p/V is plotted 
against p.

Atkins09819.indb   923 9/11/2013   8:52:55 AM



924 20 Processes on solid surfaces

coverage increases with increasing pressure, and approaches 1 

only at very high pressure, when the gas is forced on to every 

available site of the surface.

(b) The isosteric enthalpy of adsorption

The Langmuir isotherm is different for different tempera-

tures. Because its form depends on the value of α, that 

parameter depends on the temperature. As we show in the 

following Justification, the temperature dependence of α can 

be used to determine the isosteric enthalpy of adsorption, 

ΔadH<, the standard enthalpy of adsorption at a fixed surface 

coverage:

∂
∂

ln( ) adα

θ

p

T

H

RT

< <⎛
⎝⎜

⎞
⎠⎟

= Δ
2

 

 Isosteric enthalpy of adsorption  (96.5)
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Figure 96.2 The Langmuir isotherm for dissociative 
adsorption, X2(g) → 2 X(surface), for different values of α.
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Figure 96.3 The Langmuir isotherm for non-dissociative 
adsorption for different values of α.

Justification 96.1 The isosteric enthalpy of adsorption

According to the Arrhenius equation (Topic 85), the rate con-

stants ka and kd may be written as

k A k AE RT E RT
a ad d dese ea ad a des= =− −, ,/ /

where Ea,ad and Ea,des are, respectively, the activation energies 

of adsorption and desorption. It follows from eqn 96.2 that

α = = =
−

−
− −(k

k

A

A

A

A

E RT

E RT

E Ea

d

ad

des

ad

des

e

e
e

a ad

a des

a ad a des

,

,

, ,

/

/
))/RT

From Fig. 96.4 we see that ΔadH< = Ead− Edes. It follows that

α = −A

A
H RTad

des

e adΔ < /

Before manipulating this expression further, we need to pay 

attention to units, noting that α has dimensions of 1/pres-

sure. To render both sides of the equation unitless, we multiply 

through by the standard pressure p < :

αp A

A
p H RT< < <= −ad

des

e adΔ /

Now we can write

ln( ) lnαp A

A
p

H

RT
< <

<

= ⎛
⎝⎜

⎞
⎠⎟

−ad

des

adΔ

Because the term (Aad/Ades)p < does not depend on tempera-

ture, differentiation of this expression with respect to T using 

d(1/T)/dT = −1/T2, and treating ΔadH< as independent of tem-

perature, while keeping the surface coverage constant, gives 

eqn 96.5.

Free
particle

Chemisorbed
species

Physisorbed
species

Location

E
n

er
g

y

Ea,ad

Ea,des

ΔadH 

<

Figure 96.4 The reaction profile for adsorption (the 
process from left to right along the reaction coordinate) 
and desorption (the process from right to left). Note that 
ΔadH< = Ea,ad − Ea,des.
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96 Adsorption and desorption  925

Two assumptions of the Langmuir isotherm are the inde-

pendence and equivalence of the adsorption sites. Deviations 

from the isotherm can often be traced to the failure of these 

assumptions. For example, the enthalpy of adsorption often 

becomes less negative as θ increases, which suggests that the 

energetically most favourable sites are occupied first. Also, sub-

strate–substrate interactions on the surface can be important. 

A number of isotherms have been developed to deal with cases 

where deviations from the Langmuir isotherm are important.

(c) The BET isotherm
If the initial adsorbed layer can act as a substrate for further (for 

example, physical) adsorption, then, instead of the isotherm 

levelling off to some saturated value at high pressures, it can be 

expected to rise indefinitely. The most widely used isotherm 

dealing with multilayer adsorption was derived by Stephen 

Brunauer, Paul Emmett, and Edward Teller and is called the 

BET isotherm:

V

V

cz

z c z
z

p

pmon

with= − − − =
( ){ ( ) } *1 1 1

 

 BET isotherm  (96.6)

In this expression, which is obtained in the following 

Justification, p* is the vapour pressure above a layer of adsorb-

ate that is more than one molecule thick and which resem-

bles a pure bulk liquid, Vmon is the volume corresponding 

Example 96.2 Measuring the isosteric enthalpy of 
adsorption

The data below show the pressures of CO needed for the vol-

ume of adsorption (corrected to 1 atm and 0 °C) to be 10.0 cm3, 

using the same sample as in Example 96.1. In this case, there is 

no dissociation. Calculate the adsorption enthalpy at this sur-

face coverage.

Method The Langmuir isotherm for adsorption without dis-

sociation (eqn 96.2), can be rearranged to

α θ
θp = −1

which is a constant when θ is constant. Again we need to 

guard against problems with units as we manipulate expres-

sions, and in this case it will prove useful to multiply and 

divide the left-hand side of the expression above by p < , then 

rearrange it to

( )( )αp p p< </ constant=

and, using ln xy = ln x + ln y, to

ln / ln ln / constant{( )( )} ( ) ( )ap p p ap p p< < < <= + =

It follows from eqn 96.5 that

∂ ( )
∂

⎛

⎝
⎜

⎞

⎠
⎟ = −

∂ ( )
∂

⎛

⎝
⎜

⎞

⎠
⎟ = −

ln /
ad

p p

T

p

T

H

RT

< < <

θ θ

αln Δ
2

With d(1/T)/dT = −1/T2, this expression rearranges to

∂ ( )⎛

⎝
⎜

⎞

⎠
⎟ =

ln /

/
ad

p p

T

H

R

< <

∂( )1
θ

Δ

Therefore, a plot of ln (p/p <) against 1/T should be a straight 

line of slope ΔadH</R.

Answer With p < = 1 bar = 102 kPa, we draw up the following 

table:

The points are plotted in Fig. 96.5. The slope (of the least-

squares fitted line) is −0.904, so

Δad K kJ molH R< = − × = −× −( ). .0 904 10 7 523 1

T/K 200 210 220 230 240 250

p/kPa 4.00 4.95 6.03 7.20 8.47 9.85

T/K 200 210 220 230 240 250

103/(T/K) 5.00 4.76 4.55 4.35 4.17 4.00

(p/p<) × 102 4.00 4.95 6.03 7.20 8.47 9.85

ln(p/p<) −3.22 −3.01 −2.81 −2.63 −2.47 −2.32

Self-test 96.2 Repeat the calculation using the following data:

Answer: −9.0 kJ mol−1

T/K 200 210 220 230 240 250

p/kPa 4.32 5.59 7.07 8.80 10.67 12.80
ln

(p
/p

<
)

4.0 4.2 4.4 4.6 4.8 5.0
103/(T/K)

–3.5

–2.5

–2.0

–3.0

Figure 96.5 The isosteric enthalpy of adsorption can be 
obtained from the slope of the plot of ln(p/p <) against 1/T, 
where p is the pressure needed to achieve the specified 
surface coverage. The data used are from Example 96.2.
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926 20 Processes on solid surfaces

to monolayer coverage, and c is a constant which is large 

when the enthalpy of desorption from a monolayer is large 

compared with the enthalpy of vaporization of the liquid 

adsorbate:

c H H RT= −e des vap( )/Δ Δ< <

 (96.7)

Figure 96.6 illustrates the shapes of BET isotherms. They rise 

indefinitely as the pressure is increased because there is no limit 

to the amount of material that may condense when multilayer 

coverage is possible. A BET isotherm is not accurate at all pres-

sures, but it is widely used in industry to determine the surface 

areas of solids.

Justification 96.2 The BET isotherm

We suppose that at equilibrium a fraction θ0 of the surface 

sites are unoccupied, a fraction θ1 is covered by a monolayer, 

a fraction θ2 is covered by a bilayer, and so on. The number of 

adsorbed molecules is therefore

N N= + + +sites( )θ θ θ1 2 32 3 �

where Nsites is the total number of sites. We now follow the 

derivation that led to the Langmuir isotherm (eqn 96.2) but 

allow for different rates of desorption from the substrate and 

the various layers:

and so on. We now suppose that once a monolayer has been 

formed, all the rate constants involving adsorption and 

desorption from the physisorbed layers are the same, and 

write these equations as

k p k

k k p p

k p k

a d,0

a,0 d,0

a d,1

 so

/

 s

,

,

,

( )

,

0 0 1

1 0 0 0

1 1 2

θ θ
θ θ α θ
θ θ

=
= =
= oo

/ /a,1 d,1 a,0 d,0 a,1 d,1

a,

θ θ θ α θα2 1
2

0 0 1
2

0= = =( ) ( / )( )k k p k k k k p p

k 11 d,1

a,1 d,1 a,0 d,0 a,1 d,1

 so

/ / /

p k

k k p k k k k p

θ θ
θ θ

2 3

3 2
2

=
= =

,

( ) ( )( ) 33
0 0

3
01

2θ α θα= p

and so on, with α0 = ka,0/kd,0 and α1 = ka,1/kd,1 the ratios of rate 

constants for adsorption to the substrate and an overlayer, 

respectively. Now, because θ0 + θ1 + θ2 + … = 1, it follows that

θ α θ α α θ α α θ

θ α θ α α α
0 0 0

2
0 1

2 3
0

0 0 1
2 2 01 1

+ + + +

+ + + + = +=

p p p

p p p

0 1 0

0 1

�

�{ }
pp

p

p p

p

1

1

1

1
0

0

−
⎧
⎨
⎩

⎫
⎬
⎭

= − +
−

⎧
⎨
⎩

⎫
⎬
⎭

α θ

α α
α θ1 0

1

We have used 1 + x + x2 + … = 1/(1 − x). Then, because this 

expression is equal to 1,

θ α
α α0

1

1 0

1

1
= −

− −
p

p( )

In a similar way, we can write the number of adsorbed species as

N N p N p

N p p p

= + +

= + + +

sites sites

sites

α α α θ

α

θ

θ α α

0 0 0 1
2

0

0 0 1 1
2 2

2

1 2 3

�

( ��)
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=
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N p

p
sitesα θ

α
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1
21

In this case, we have used 1 + 2x + 3x2 + … = 1/(1 − x)2. By com-

bining the last two expressions, we obtain

N
N p

p

p

p

N p

p
=

−
× −

− − =
− − −

sites sitesα α
α

α
α α α α

0

1
2

1

1 0

0

1 11

1

1 1 1( ) ( ) ( ) ( αα0)p{ }

The ratio N/Nsites is equal to the ratio V/Vmon, where V is 

the total volume adsorbed and Vmon the volume adsorbed 

had there been complete monolayer coverage. The term 

α1 = ka,1/kd,1 can be interpreted as the (reciprocal of the) equi-

librium constant for condensation and evaporation from the 

adsorbed layers, and hence can be equated with the recip-

rocal of the vapour pressure p* of the liquid phase of the 

adsorbing substance. It follows that α1 = 1/p*. With z = p/p*, 

and c = α0/α1, the last equation becomes

V

V

p

p p p p

cz

z c zmon / / /
= − − − = − − −

α
α α

0

0 11 1 1 1 1 1( *){ ( ) *} ( ){ ( ) }

as in eqn 96.6.

The same model leads to eqn 96.7. As in Justification 96.1, the 

ratio α is related to the enthalpy of adsorption. So we can write

5

4

3

2

1

0

V
/V

m
o

n

0 0.2 0.80.4 0.6
z = p/p*

1
10

100

1000

Figure 96.6 Plots of the BET isotherm for different values of 
c. The value of V/Vmon rises indefinitely because the adsorbate 
may condense on the covered substrate surface.

First layer: Rate of adsorption = Nka,0pθ0 Rate of desorption = Nkd,0θ1

At equilibrium ka,0pθ0 = kd,0θ1

Second layer: Rate of adsorption= Nka,1pθ1 Rate of desorption = Nkd,1θ2

At equilibrium ka,1pθ1 = kd,1θ2

Third layer: Rate of adsorption = Nka,2pθ2 Rate of desorption = Nkd,2θ3

At equilibrium ka,2pθ2 = kd,2θ3
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96 Adsorption and desorption  927

When c ≫ 1, the BET isotherm takes the simpler form

V

V zmon

= −
1

1  

 BET isotherm when c ≫ 1  (96.8)

This expression is applicable to unreactive gases on polar 

surfaces, for which c ≈ 102 because ΔdesH
< is then signifi-

cantly greater than ΔvapH< (eqn 96.7). The BET isotherm fits 

experimental observations moderately well over restricted 

pressure ranges, but it errs by underestimating the extent of 

adsorption at low pressures and by overestimating it at high 

pressures.

Different isotherms agree with experiment more or less 

well over restricted ranges of pressure, but they remain largely 

empirical. Empirical, however, does not mean useless for, if 

the parameters of a reasonably reliable isotherm are known, 

reasonably reliable results can be obtained for the extent of 

surface coverage under various conditions. This kind of infor-

mation is essential for any discussion of heterogeneous cataly-

sis (Topic 97).

96.2 The rates of adsorption and 
desorption

We have noted that adsorption and desorption are activated 

processes, in the sense that they have an activation energy and 

follow Arrhenius behaviour. Now we are ready to look more 

α0 = =−A

A

A

A
H RT H RTad

des

/ ad

des

e ead desΔ Δ< < /

where we have used ΔdesH
< = −ΔadH< . We handle desorption 

from a bilayer differently because adsorbate–adsorbate inter-

actions (not surface–adsorbate interactions) are disrupted. 

Again modelling desorption from a bilayer as vaporization of 

a liquid, we use ΔvapH< = −ΔadH< and write

α1 = =−A

A

A

A
H RT H RTad

des

ad

des

e ead vapΔ Δ< </ /

The ratio c then becomes

c
H RT

H RT

H H RT= = = −( )α
α

0

1

e

e
e

des

vap

des vap

Δ

Δ
Δ Δ

<

<

< <
/

/

/

as in eqn 96.7.

Example 96.3 Using the BET isotherm

The data below relate to the adsorption of N2 on rutile (TiO2) 

at 75 K. Confirm that they fit a BET isotherm in the range of 

pressures reported, and determine Vmon and c.

At 75 K, p* = 76.0 kPa. The volumes have been corrected to 1.00 

atm and 273 K and refer to 1.00 g of substrate.

Method Equation 96.6 can be reorganized into

z

z V cV

c z

cV( )

( )

1

1 1

− = + −
mon mon

It follows that (c − 1)/cVmon can be obtained from the slope of 

a plot of the expression on the left against z, and cVmon can be 

found from the intercept at z = 0. The results can then be com-

bined to give c and Vmon.

Answer We draw up the following table:

These points are plotted in Fig. 96.7. The least-squares best line 

has an intercept at 0.0398, so

1
3 98 10 6 3

cVmon

mm= × − −.

The slope of the line is 1.23 × 10−2, so

c

cV

− = × × × = ×− − − − −1
1 23 10 10 10 1 23 102 3 4 3 3 3

mon

mm mm( . ) .

The solutions of these equations are c = 310 and Vmon = 811 mm3. 

At 1.00 atm and 273 K, 811 mm3 corresponds to 3.6 × 10−5 mol, 

p/kPa 0.160 1.87 6.11 11.67 17.02 21.92 27.29

V/mm3 601 720 822 935 1046 1146 1254

p/kPa 0.160 1.87 6.11 11.67 17.02 21.92 27.29

103z 2.11 24.6 80.4 154 224 288 359

104z/((1 − z) 
(V/mm3))

0.035 0.350 1.06 1.95 2.76 3.53 4.47

or 2.2 × 1019 atoms. Because each atom occupies an area of 

about 0.16 nm2, the surface area of the sample is about 3.5 m2.

Self-test 96.3 Repeat the calculation for the following data:

Answer: 370; 615 cm3

0
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3

4
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1000z

10
4 z

/{
(1

 –
 z

)(
V

/m
m

3 )
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Figure 96.7 The BET isotherm can be tested, and the 
parameters determined, by plotting z/(1 − z)V against 
z = p/p*. The data are from Example 96.3.

p/kPa 0.160 1.87 6.11 11.67 17.02 21.92 27.29

V/cm3 235 559 649 719 790 860 950
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928 20 Processes on solid surfaces

closely at the origin of the activation energy in these processes, 

with a special focus on chemisorption.

(a) The precursor state
Figure 96.8 shows how the potential energy of a molecule var-

ies with its distance from the substrate surface. As the molecule 

approaches the surface its energy falls as it becomes phys-

isorbed into the precursor state for chemisorption (see Topic 

95). Dissociation into fragments often takes place as a molecule 

moves into its chemisorbed state, and, after an initial increase 

of energy as the bonds stretch, there is a sharp decrease as the 

adsorbate–substrate bonds reach their full strength. Even if 

the molecule does not fragment, there is likely to be an initial 

increase of potential energy as the molecule approaches the 

surface and the bonds adjust.

In most cases, therefore, we can expect there to be a poten-

tial energy barrier separating the precursor and chemisorbed 

states. This barrier, though, might be low, and might not rise 

above the energy of a distant, stationary particle (as in Fig. 

96.8a). In this case, chemisorption is not an activated process 

and can be expected to be rapid. Many gas adsorptions on clean 

metals appear to be non-activated. In some cases, however, the 

barrier rises above the zero axis (as in Fig. 96.8b); such chem-

isorptions are activated and slower than the non-activated kind. 

An example is H2 on copper, which has an activation energy in 

the region of 20–40 kJ mol−1.

One point that emerges from this discussion is that rates 

are not good criteria for distinguishing between physisorp-

tion and chemisorption. Chemisorption can be fast if the 

activation energy is small or zero, but it may be slow if the 

activation energy is large. Physisorption is usually fast, but it 

can appear to be slow if adsorption is taking place on a porous 

medium.

(b) Adsorption and desorption at the 
molecular level
The rate at which a surface is covered by adsorbate depends on 

the ability of the substrate to dissipate the energy of the incoming 

particle as thermal motion as it crashes on to the surface. If the 

energy is not dissipated quickly, the particle migrates over the sur-

face until a vibration expels it into the overlying gas or it reaches 

an edge. The proportion of collisions with the surface that suc-

cessfully lead to adsorption is called the sticking probability, s:

s =
rate of adsorption of particles by the surface

rate of collision of pparticles with the surface

The denominator can be calculated from the kinetic model, 

and the numerator can be measured by observing the rate of 

change of pressure.

Values of s vary widely. For example, at room temperature CO 

has s in the range 0.1–1.0 for several d-metal surfaces, but for N2 

on rhenium s < 10−2, indicating that more than a hundred colli-

sions are needed before one molecule sticks successfully. Beam 

studies on specific crystal planes show a pronounced specificity: 

for N2 on tungsten, s ranges from 0.74 on the (320) faces down 

to less than 0.01 on the (110) faces at room temperature. The 

sticking probability decreases as the surface coverage increases 

(Fig. 96.9). A simple assumption is that s is proportional to 1 − θ, 

the fraction uncovered, and it is common to write

s s= −( )1 0θ

where s0 is the sticking probability on a perfectly clean surface. 

The results in the illustration do not fit this expression because 

Brief illustration 96.1 The rate of activated adsorption

Consider two adsorption experiments for hydrogen on dif-

ferent faces of a copper crystal. In one, Face 1, the activation 

energy is 28 kJ mol−1 and on the other, Face 2, the activation 

energy is 33 kJ mol−1. The ratio of the rates of chemisorption 

on equal areas of the two faces at 250 K is

Rate( )

Rate( )

e

e
e

a ads

a ads

a ads
1

2

1

2

1= =
−

−
− −A

A

E RT

E RT

E
,

,

,

( )

( )

( )
/

/

EE RTa ads

e J mol J K mol K

, ( ) /

/( . ) ( )

2

5 10 8 314 2503 1 1 1

11

{ }

× ×= =− − −

We have assumed that the A factor is the same for each face.

Self-test 96.4 What are the relative rates when the tempera-

ture is increased to 300 K?

Answer: 7

(96.10)Commonly used form of 
the sticking probability

Sticking 
probability

(96.9)Definition

D(A–A) D(A–A)

C C

Ea

P P

Po
te

n
ti

al
 e

n
er

g
y

Precursor
state

Precursor
state

Distance from surface(a) (b)

Figure 96.8 The potential energy profiles for the dissociative 
chemisorption of an A2 molecule. In each case, P is the 
enthalpy of (non-dissociative) physisorption and C that for 
chemisorption (at T = 0). The relative locations of the curves 
determine whether the chemisorption is (a) not activated or 
(b) activated.
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96 Adsorption and desorption  929

they show that s remains close to s0 until the coverage has risen 

to about 6 × 1013 molecules cm−2, and then falls steeply. The 

explanation is probably that the colliding molecule does not 

enter the chemisorbed state at once, but moves over the surface 

until it encounters an empty site.

Desorption is always activated because the particles have to 

be lifted from the foot of a potential well. A physisorbed parti-

cle vibrates in its shallow potential well, and might shake itself 

off the surface after a short time. As we saw in Justification 96.1, 

the temperature dependence of the first-order rate of departure 

is given by k A E RT
d e a des= − , / , with Ea,des the activation energy for 

desorption. Therefore, the half-life for remaining on the surface 

has a temperature dependence

t
k A

E RT
1 2 0 0

2 2
/

/ln ln
,= = =

d

e a desτ τ
 

 Residence half-life  (96.11)

Note the positive sign in the exponent: the greater the activa-

tion energy for desorption, the larger the residence half-life.

The desorption activation energy can be measured in sev-

eral ways. However, we must be guarded in its interpretation 

because it often depends on the fractional coverage, and so 

may change as desorption proceeds. Moreover, the transfer 

of concepts such as ‘reaction order’ and ‘rate constant’ from 

bulk studies to surfaces is hazardous, and there are few exam-

ples of strictly first-order or second-order desorption kinet-

ics (just as there are few integral-order reactions in the gas 

phase too).

If we disregard these complications, one way of measur-

ing the desorption activation energy is to monitor the rate of 

increase in pressure when the sample is maintained at a series 

of temperatures, and to attempt to make an Arrhenius plot. A 

more sophisticated technique is temperature-programmed 

desorption (TPD) or thermal desorption spectroscopy (TDS). 

The basic observation is a surge in desorption rate (as moni-

tored by a mass spectrometer) when the temperature is raised 

linearly to the temperature at which desorption occurs rapidly, 

but once the desorption has occurred there is no more adsorb-

ate to escape from the surface, so the desorption flux falls again 

as the temperature continues to rise. The TPD spectrum, the 

plot of desorption flux against temperature, therefore shows a 

peak, the location of which depends on the desorption activa-

tion energy. There are three maxima in the example shown in 

Fig. 96.10, indicating the presence of three sites with different 

activation energies.

In many cases only a single activation energy (and a single 

peak in the TPD spectrum) is observed. When several peaks 

are observed they might correspond to adsorption on differ-

ent crystal planes or to multilayer adsorption. For instance, 

Cd atoms on tungsten show two activation energies, one of 

18 kJ mol−1 and the other of 90 kJ mol−1. The explanation is 

that the more tightly bound Cd atoms are attached directly 

to the substrate, and the less strongly bound are in a layer 

Brief illustration 96.2 Residence half-lives

If we suppose that 1/τ0 is approximately the same as the vibra-

tional frequency of the weak particle–surface bond (about 1012 

Hz) and Ed ≈ 25 kJ mol−1, then residence half-lives of around 

10 ns are predicted at room temperature. Lifetimes close to 1 s 

are obtained only by lowering the temperature to about 100 K. 

For chemisorption, with Ed = 100 kJ mol−1 and guessing that 

τ0 = 10−14 s (because the adsorbate–substrate bond is quite 

stiff), we expect a residence half-life of about 3 × 103 s (about 

an hour) at room temperature, decreasing to 1 s at about 350 K.

Self-test 96.5 For how long on average would an atom remain 

on a surface at 800 K if its desorption activation energy is 200 

kJ mol−1? Take τ0 = 0.10 ps.

Answer: t1/2 = 1.3 s
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Figure 96.9 The sticking probability of N2 on various faces of a 
tungsten crystal and its dependence on surface coverage. Note 
the very low sticking probability for the (110) and (111) faces. 
(Data provided by Professor D.A. King.)
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Figure 96.10 The flash desorption spectrum of H2 on the (100) 
face of tungsten. The three peaks indicate the presence of 
three sites with different adsorption enthalpies and therefore 
different desorption activation energies (P.W. Tamm and L.D. 
Schmidt, J. Chem. Phys. 51, 5352 (1969)).
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930 20 Processes on solid surfaces

(or layers) above the primary overlayer. Another example of 

a system showing two desorption activation energies is CO 

on tungsten, the values being 120 kJ mol−1 and 300 kJ mol−1. 

The explanation is believed to be the existence of two types of 

metal–adsorbate binding site, one involving a simple MeCO 

bond, the other adsorption with dissociation into individually 

adsorbed C and O atoms.

(c) Mobility on surfaces
A further aspect of the strength of the interactions between 

adsorbate and substrate is the mobility of the adsorbate. 

Mobility is often a vital feature of a catalyst’s activity, because 

a catalyst might be impotent if the reactant molecules adsorb 

so strongly that they cannot migrate. The activation energy 

for diffusion over a surface need not be the same as for des-

orption because the particles may be able to move through 

valleys between potential peaks without leaving the surface 

completely. In general, the activation energy for migration is 

about 10–20 per cent of the energy of the surface–adsorbate 

bond, but the actual value depends on the extent of coverage. 

The defect structure of the sample (which depends on the tem-

perature) may also play a dominant role because the adsorbed 

molecules might find it easier to skip across a terrace than to 

roll along the foot of a step, and these molecules might become 

trapped in vacancies in an otherwise flat terrace. Diffusion may 

also be easier across one crystal face than another, and so the 

surface mobility depends on which lattice planes are exposed.

Checklist of concepts

☐ 1. An adsorption isotherm is the variation of the surface 

coverage θ with pressure at a chosen temperature.

☐ 2. Examples of adsorption isotherms include the 

Langmuir and BET isotherms.

☐ 3. The sticking probability is the proportion of collisions 

with the surface that successfully lead to adsorption.

☐ 4. Desorption is an activated process; the desorp-

tion activation energy is measured by temperature-

programmed desorption or thermal desorption 

spectroscopy.

☐ 5. The mobility of adsorbates on a surface is dominated by 

diffusion.

Checklist of equations

Property Equation Comment Equation number

Langmuir isotherm: 
(a) without dissociation
(b) with dissociation

θ = αp/(1 + αp)
θ = (αp)1/2/{1 + (αp)1/2}

Independent and equivalent sites,  
monolayer coverage 96.2

96.4

Isosteric enthalpy of adsorption (∂ ln(αp<)/∂T)θ = ΔadH</RT2 96.5

BET isotherm V/Vmon = cz/(1 − z){1 − (1 – c)z},

z p p c
H H RT= = −( )/ e des vap

*,
/Δ Δ< <

Multilayer adsorption 96.6–96.7

Sticking probability s = (1 − θ)s0 Approximate form 96.10
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TOPIC 97

Heterogeneous catalysis

A heterogeneous catalyst is a catalyst in a different phase from 

the reaction mixture. For example, the hydrogenation of ethene 

to ethane, a gas-phase reaction, is accelerated in the presence 

of a solid catalyst such as palladium, platinum, or nickel. The 

metal provides a surface to which the reactants bind; this bind-

ing facilitates encounters between reactants and increases the 

rate of the reaction. This Topic is an exploration of catalytic 

activity on surfaces, building on the concepts developed in 

Topic 96.

97.1 Mechanisms of heterogeneous 
catalysis

Many catalysts depend on co-adsorption, the adsorption of 

two or more species. One consequence of the presence of a 

second species may be the modification of the electronic struc-

ture at the surface of a metal. For instance, partial coverage of 

d-metal surfaces by alkali metals has a pronounced effect on the 

electron distribution at the surface and reduces the work func-

tion of the metal (the energy needed to remove an electron; see 

Topic 4). Such modifiers can act as promoters (to enhance the 

action of catalysts) or as poisons (to inhibit catalytic action).

Figure 97.1 shows the potential energy curve for a reac-

tion influenced by the action of a heterogeneous catalyst. 

Differences between Fig. 97.1 and Fig. 92.1 arise from the fact 

that heterogeneous catalysis normally depends on at least one 

reactant being adsorbed (usually chemisorbed) and modi-

fied to an active phase in which it readily undergoes reaction, 

and desorption of products. Modification of the reactant often 

takes the form of a fragmentation of the reactant molecules. In 

practice, the active phase is dispersed as very small particles 

of linear dimension less than 2 nm on a porous oxide support. 

Shape-selective catalysts, such as the zeolites, which have a 

pore size that can distinguish shapes and sizes at a molecular 

scale, have high internal specific surface areas, in the range of 

100–500 m2 g−1.

Mechanisms of reactions catalysed by surfaces can be treated 

quantitatively by using the techniques of Topic 86 and the 

adsorption isotherms developed in Topic 96. Here we explore 

some simple mechanisms that can give significant insight into 

surface-catalysed reactions.

Contents

97.1 Mechanisms of heterogeneous catalysis 931

(a) Unimolecular reactions 932

Brief illustration 97.1: Surface-catalysed  

unimolecular decomposition 932

(b) The Langmuir–Hinshelwood mechanism 932

Example 97.1: Writing a rate law based on the  

Langmuir–Hinshelwood mechanism 932

(c) The Eley–Rideal mechanism 933

Brief illustration 97.2: The Eley–Rideal mechanism 933

97.2 Catalytic activity at surfaces 933

Brief illustration 97.3: Trends in chemisorption  

abilities 934

Checklist of concepts 934

Checklist of equations 934

 ➤ Why do we need to know this material?
Catalysis is at the heart of the chemical industry, and an 
understanding of the concepts is essential for developing 
new catalysts.

 ➤ What is the key idea?
In heterogeneous catalysis, the pathway for lowering 
the activation energy of a reaction commonly involves 
chemisorption of one or more reactants.

 ➤ What do we need to know already?
Catalysis is introduced in Topics 85 and 92. This Topic builds 
on the discussion of reaction mechanisms (Topic 86), the 
Arrhenius equation (Topic 85), and adsorption isotherms 
(Topic 96).

Atkins09819.indb   931 9/11/2013   8:53:46 AM



932 20 Processes on solid surfaces

(a) Unimolecular reactions
The rate law of a surface-catalysed unimolecular reaction, such 

as the decomposition of a substance on a surface, can be writ-

ten in terms of an adsorption isotherm if the rate is supposed 

to be proportional to the surface coverage. For example, if θ is 

given by the Langmuir isotherm (eqn 96.2), we would write

v= = +k
k p

pr
rθ α
α1  

(97.1)

where p is the pressure of the adsorbing substance.

(b) The Langmuir–Hinshelwood mechanism
In the Langmuir–Hinshelwood mechanism (LH mechanism) 

of surface-catalysed reactions, the reaction takes place by 

encounters between molecular fragments and atoms adsorbed 

on the surface. We therefore expect the rate law to be second-

order in the extent of surface coverage:

A  B P r A B+ → =v k θ θ  

Insertion of the appropriate isotherms for A and B then 

gives the reaction rate in terms of the partial pressures of the 

reactants.

 (97.2)
Langmuir–Hinshelwood 
rate law

Uncatalysed
reaction

Catalysed
reaction
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n
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n
er

g
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Reaction coordinate

Figure 97.1 The reaction profile for catalysed and uncatalysed 
reactions. The catalysed reaction path includes activation 
energies for adsorption and desorption as well as an overall 
lower activation energy for the process.

Brief illustration 97.1 Surface-catalysed unimolecular 
decomposition

Consider the decomposition of phosphine (PH3) on tungsten, 

which is first-order at low pressures. We can use eqn 97.1 to 

account for this observation. When the pressure is so low that 

αp � 1, we can neglect αp in the denominator of eqn 97.1 and 

obtain v = krαp. The decomposition is predicted to be first-

order, as observed experimentally.

Self-test 97.1 Write a rate law for the decomposition of PH3 on 

tungsten at high pressures.

Answer: v = kr; the reaction is zeroth-order at high pressures

Example 97.1 Writing a rate law based on the 
Langmuir–Hinshelwood mechanism

Consider a reaction A + B → P in which A and B follow 

Langmuir isotherms and adsorb without dissociation. Devise 

a rate law that is consistent with the Langmuir–Hinshelwood 

mechanism.

Method Begin by following the procedures outlined in Topic 

96 for the derivation of the Langmuir isotherm to write 

expressions for θA and θB, the fractional coverages of A and 

B, respectively. However, note that, unlike the simple situation 

in Topic 96, two species compete for the same sites on the sur-

face. Then, use equation 97.2 to express the rate law.

Answer Because two species compete for sites on the surface, 

the number of vacant sites is equal to N(1 − θA − θB), where N is 

the total number of sites. It follows from eqns 96.1a and 96.1b 

that the rates of adsorption and desorption are given by

Rate of adsorption of A 1

Rate of desorptio

a A A A B= − −k p N, ( )θ θ
nn of A 

Rate of adsorption of B 1

R

d A A

a B B A B

=
= − −

k N

k p N

,

, ( )

θ
θ θ

aate of desorption of B d B B= k N, θ

At equilibrium, the rates of adsorption and desorption 

for each  species are equal, and, with αA = ka,A/kd,A and 

αB = ka,B/kd,B, it follows that

α θ θ θ
α θ θ θ

A A A B A

B B A B B

1  

1  

p

p

( )

( )

− − =
− − =

Solving this system of equations (see Self-test 97.2) gives

θ α
α α θ α

α αA
A A

A A B B
B

B B

A A B B

= + + = + +
p

p p

p

p p1 1
 

(97.3)

It follows from eqn 97.2 that the rate law is

v=
+ +
k p p

p p
r A B A B

A A B B

α α
α α( )1 2

 
(97.4)

The parameters α in the isotherms and the rate constant kr 

are all temperature-dependent, so the overall temperature 

dependence of the rate may be strongly non-Arrhenius (in the 

sense that the reaction rate is unlikely to be proportional to 
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97 Heterogeneous catalysis  933

(c) The Eley–Rideal mechanism

In the Eley–Rideal mechanism (ER mechanism) of a surface-

catalysed reaction, a gas-phase molecule collides with another 

molecule already adsorbed on the surface. The rate of forma-

tion of product is expected to be proportional to the partial 

pressure, pB, of the non-adsorbed gas B and the extent of sur-

face coverage, θA, of the adsorbed gas A. It follows that the rate 

law should be

A  B P r B A+ → =v k p θ
 

 Eley–Rideal rate law  (97.5)

The rate constant, kr, might be much larger than for the uncata-

lysed gas-phase reaction because the reaction on the surface 

has a low activation energy and the adsorption itself is often not 

activated.

If we know the adsorption isotherm for A, we can express 

the rate law in terms of its partial pressure, pA. For example, 

consider a reaction A + B → P. If the adsorption of A follows a 

Langmuir isotherm in the pressure range of interest, then the 

rate law would be

v= +
k p p

p
r A B

A

α
α1  

(97.6)

Almost all thermal surface-catalysed reactions are thought 

to take place by the LH mechanism, but a number of reac-

tions with an ER mechanism have also been identified from 

molecular beam investigations. For example, the reaction 

between H(g) and D(ad) to form HD(g) is thought to be by an 

ER mechanism involving the direct collision and pick-up of the 

adsorbed D atom by the incident H atom. However, the two 

mechanisms should really be thought of as ideal limits, and all 

reactions lie somewhere between the two and show features of 

each one.

97.2 Catalytic activity at surfaces

It has become possible to investigate how the catalytic activity 

of a surface depends on its structure as well as its composition. 

For instance, the cleavage of CeH and HeH bonds appears to 

depend on the presence of steps and kinks, and a terrace often 

has only minimal catalytic activity. The reaction H2 + D2 →  

2 HD has been studied in detail. For this reaction, terrace sites 

are inactive but one molecule in ten reacts when it strikes a step. 

Although the step itself might be the important feature, it may 

be that the presence of the step merely exposes a more reactive 

crystal face (the step face itself). Likewise, the dehydrogenation 

of hexane to hexene depends strongly on the kink density, and 

it appears that kinks are needed to cleave CeC bonds. These 

observations suggest a reason why even small amounts of 

impurities may poison a catalyst: they are likely to attach to step 

and kink sites, and so impair the activity of the catalyst entirely. 

A constructive outcome is that the extent of dehydrogenation 

may be controlled relative to other types of reactions by seeking 

impurities that adsorb at kinks and act as specific poisons.

The activity of a catalyst depends on the strength of chemi-

sorption, as indicated by the ‘volcano’ curve in Fig. 97.2 (which 

is so-called on account of its general shape). To be active, the 

catalyst should be extensively covered by adsorbate, which is 

Brief illustration 97.2 The Eley–Rideal mechanism

According to eqn 97.6, when the partial pressure of A is high 

(in the sense αpA � 1) there is almost complete surface cover-

age, and the rate is equal to krpB. Now the rate-determining 

step is the collision of B with the adsorbed fragments. When 

the pressure of A is low (αpA � 1), perhaps because of its reac-

tion, the rate is equal to krαpApB; now the extent of surface 

coverage is important in the determination of the rate.

Self-test 97.3 Rewrite eqn 97.6 for cases where A is a diatomic 

molecule that adsorbs as atoms.

Answer: v= +k p p pr B A A/( )( ) ( )/ /α α1 2 1 21
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Figure 97.2 A volcano curve of catalytic activity arises because, 
although the reactants must adsorb reasonably strongly, they 
must not adsorb so strongly that they are immobilized. The 
lower curve refers to the first series of d-block metals, the 
upper curve to the second and third series of d-block metals. 
The group numbers relate to the periodic table inside the 
back cover.

e a /−E RT ). The LH mechanism is dominant for the catalytic oxi-

dation of CO to CO2.

Self-test 97.2 Provide the missing steps in the derivation of 

eqn 97.3.
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934 20 Processes on solid surfaces

the case if chemisorption is strong. On the other hand, if the 

strength of the substrate–adsorbate bond becomes too great, 

the activity declines either because the other reactant mol-

ecules cannot react with the adsorbate or because the adsorb-

ate molecules are immobilized on the surface. This pattern of 

behaviour suggests that the activity of a catalyst should initially 

increase with strength of adsorption (as measured, for instance, 

by the isosteric enthalpy of adsorption, Topic 96) and then 

decline, and that the most active catalysts should be those lying 

near the summit of the volcano. Most active metals are those 

that lie close to the middle of the d block. Many metals are suit-

able for adsorbing gases, and some trends are summarized in 

Table 97.1.

Checklist of concepts

☐ 1. A heterogeneous catalyst is a catalyst in a different 

phase from the reaction mixture.

☐ 2. In the Langmuir–Hinshelwood mechanism of surface-

catalysed reactions, the reaction takes place by encoun-

ters between molecular fragments and atoms adsorbed 

on the surface.

☐ 3. In the Eley–Rideal mechanism of a surface-catalysed 

reaction, a gas-phase molecule collides with another 

molecule already adsorbed on the surface.

☐ 4. The activity of a catalyst depends on the strength of 

chemisorption.

Checklist of equations

Property Equation Comment Equation number

Langmuir−Hinshelwood mechanism v= + +k p p p pr A B A B A A B B/α α α α( )1 2 Langmuir isotherm for adsorption of A and B; 
competitive adsorption

97.4

Eley–Rideal mechanism v= +k p p pr A B A/α α( )1 Langmuir isotherm for adsorption of A 97.6

Table 97.1 Chemisorption abilities*

O2 C2H2 C2H4 CO H2 CO2 N2

Ti, Cr, Mo, Fe + + + + + + +

Ni, Co + + + + + + −

Pd, Pt + + + + + − −

Mn, Cu + + + + ± − −

Al, Au + + + − − − −

Li, Na, K + + − − − − −

Mg, Ag, Zn, Pb + − − − − − −

* +, Strong chemisorption; ±, chemisorption; −, no chemisorption.

Brief illustration 97.3 Trends in chemisorption abilities

We see from Table 97.1 that for a number of metals the general 

order of adsorption strengths decreases along the series O2, 

C2H2, C2H4, CO, H2, CO2, N2. Some of these molecules adsorb 

dissociatively (for example, H2). Elements from the d block, 

such as iron, titanium, and chromium, show a strong activity 

towards all these gases, but manganese and copper are unable 

to adsorb N2 and CO2. Metals towards the left of the periodic 

table (for example, magnesium) can adsorb (and, in fact, react 

with) only the most active gas (O2).

Self-test 97.4 Why is iron a good catalyst for the formation of 

ammonia from N2(g) and H2(g)?

Answer: See Fig. 97.2 and Table 97.1
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Exercises and problems  935

Focus 20 on Processes on solid surfaces

Topic 95 Solid surfaces

Discussion questions
95.1 (a) Distinguish between a step and a terrace. (b) Describe how steps and 

terraces can be formed by dislocations.

95.2 Drawing from knowledge you have acquired through the text, describe 

the advantages and limitations of each of the microscopy, diffraction, and 

scattering techniques designated by the acronyms AFM, FIM, LEED, SAM, 

SEM, and STM.

Exercises
95.1(a) Calculate the frequency of molecular collisions per square centimetre 

of surface in a vessel containing (i) hydrogen, (ii) propane at 25 °C when the 

pressure is 0.10 μTorr.

95.1(b) Calculate the frequency of molecular collisions per square centimetre 

of surface in a vessel containing (i) nitrogen, (ii) methane at 25 °C when the 

pressure is 10.0 Pa. Repeat the calculations for a pressure of 0.150 μTorr.

95.2(a) What pressure of argon gas is required to produce a collision rate of 

4.5 × 1020 s−1 at 425 K on a circular surface of diameter 1.5 mm?

95.2(b) What pressure of nitrogen gas is required to produce a collision rate of 

5.00 × 1019 s−1 at 525 K on a circular surface of diameter 2.0 mm?

Problems
95.1 The movement of atoms and ions on a surface depends on their ability 

to leave one position and stick to another, and therefore on the energy 

changes that occur. As an illustration, consider a two-dimensional square 

lattice of univalent positive and negative ions separated by 200 pm, and 

consider a cation on the upper terrace of this array. Calculate, by direct 

summation, its Coulombic interaction when it is in an empty lattice point 

directly above an anion. Now consider a high step in the same lattice, and 

let the cation move into the corner formed by the step and the terrace. 

Calculate the Coulombic energy for this position, and decide on the likely 

settling point for the cation.

95.2 In a study of the catalytic properties of a titanium surface it was necessary 

to maintain the surface free from contamination. Calculate the collision 

frequency per square centimetre of surface made by O2 molecules at (a) 

100 kPa, (b) 1.00 Pa and 300 K. Estimate the number of collisions made with a 

single surface atom in each second. The conclusions underline the importance 

of working at very low pressures (much lower than 1 Pa, in fact) in order to 

study the properties of uncontaminated surfaces. Take the nearest neighbour 

distance as 291 pm.

95.3 Nickel is face-centred cubic with a unit cell of side 352 pm. What is the 

number of atoms per square centimetre exposed on a surface formed by 

(a) (100), (b) (110), (c) (111) planes? Calculate the frequency of molecular 

collisions per surface atom in a vessel containing (a) hydrogen, (b) propane at 

25 °C when the pressure is (i) 100 Pa, (ii) 0.10 μTorr.

95.4 The LEED pattern from a clean, unreconstructed (110) face of a metal is 

shown below. Sketch the LEED pattern for a surface that was reconstructed by 

tripling the horizontal separation between the atoms.

95.5 Figure F20.1 shows the time dependence of the surface plasmon 

resonance signal, R. Adsorption leads to an increase in R until an equilibrium 

value, Req, is obtained. Desorption causes a decrease in R. Develop 

expressions for R(t) that apply to the adsorption and desorption parts of the 

curve in Fig. F20.1.
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Figure F20.1 The time dependence of the surface plasmon resonance 
signal R.
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Topic 96 Adsorption and desorption

Discussion question
96.1 Distinguish between the Langmuir and BET adsorption isotherms, and 

indicate when and why they are likely to be appropriate.

Exercises
96.1(a) The volume of oxygen gas at 0 °C and 104 kPa adsorbed on the surface 

of 1.00 g of a sample of silica at 0 °C was 0.286 cm3 at 145.4 Torr and 1.443 cm3 

at 760 Torr. What is the value of Vmon?

96.1(b) The volume of gas at 20 °C and 1.00 bar adsorbed on the surface of 

1.50 g of a sample of silica at 0 °C was 1.42 cm3 at 56.4 kPa and 2.77 cm3 at 

108 kPa. What is the value of Vmon?

96.2(a) The enthalpy of adsorption of CO on a surface is found to be 

−120 kJ mol−1. Estimate the mean lifetime of a CO molecule on the surface at 

400 K.

96.2(b) The enthalpy of adsorption of ammonia on a nickel surface is found 

to be −155 kJ mol−1. Estimate the mean lifetime of an NH3 molecule on the 

surface at 500 K.

96.3(a) A certain solid sample adsorbs 0.44 mg of CO when the pressure of the 

gas is 26.0 kPa and the temperature is 300 K. The mass of gas adsorbed when 

the pressure is 3.0 kPa and the temperature is 300 K is 0.19 mg. The Langmuir 

isotherm is known to describe the adsorption. Find the fractional coverage of 

the surface at the two pressures.

96.3(b) A certain solid sample adsorbs 0.63 mg of CO when the pressure of the 

gas is 36.0 kPa and the temperature is 300 K. The mass of gas adsorbed when 

the pressure is 4.0 kPa and the temperature is 300 K is 0.21 mg. The Langmuir 

isotherm is known to describe the adsorption. Find the fractional coverage of 

the surface at the two pressures.

96.4(a) The adsorption of a gas is described by the Langmuir isotherm with 

α = 0.75 kPa−1 at 25 °C. Calculate the pressure at which the fractional surface 

coverage is (a) 0.15, (b) 0.95.

96.4(b) The adsorption of a gas is described by the Langmuir isotherm with 

α = 0.548 kPa−1 at 25 °C. Calculate the pressure at which the fractional surface 

coverage is (a) 0.20, (b) 0.75.

96.5(a) A solid in contact with a gas at 12 kPa and 25 °C adsorbs 2.5 mg of the 

gas and obeys the Langmuir isotherm. The enthalpy change when 1.00 mmol 

of the adsorbed gas is desorbed is +10.2 J. What is the equilibrium pressure for 

the adsorption of 2.5 mg of gas at 40 °C?

96.5(b) A solid in contact with a gas at 8.86 kPa and 25 °C adsorbs 4.67 mg 

of the gas and obeys the Langmuir isotherm. The enthalpy change when 

1.00 mmol of the adsorbed gas is desorbed is +12.2 J. What is the equilibrium 

pressure for the adsorption of the same mass of gas at 45 °C?

96.6(a) Nitrogen gas adsorbed on charcoal to the extent of 0.921 cm3 g−1 at 

490 kPa and 190 K, but at 250 K the same amount of adsorption was achieved 

only when the pressure was increased to 3.2 MPa. What is the enthalpy of 

adsorption of nitrogen on charcoal?

96.6(b) Nitrogen gas adsorbed on a surface to the extent of 1.242 cm3 g−1 at 

350 kPa and 180 K, but at 240 K the same amount of adsorption was achieved 

only when the pressure was increased to 1.02 MPa. What is the enthalpy of 

adsorption of nitrogen on the surface?

96.7(a) In an experiment on the adsorption of oxygen on tungsten it was found 

that the same volume of oxygen was desorbed in 27 min at 1856 K and 2.0 min 

at 1978 K. What is the activation energy of desorption? How long would it 

take for the same amount to desorb at (a) 298 K, (b) 3000 K?

96.7(b) In an experiment on the adsorption of ethene on iron it was found 

that the same volume of the gas was desorbed in 1856 s at 873 K and 8.44 s at 

1012 K. What is the activation energy of desorption? How long would it take 

for the same amount of ethene to desorb at (a) 298 K, (b) 1500 K?

96.8(a) The average time for which an oxygen atom remains adsorbed to a 

tungsten surface is 0.36 s at 2548 K and 3.49 s at 2362 K. What is the activation 

energy for chemisorption?

96.8(b) The average time for which a hydrogen atom remains adsorbed on a 

manganese surface is 35 per cent shorter at 1000 K than at 600 K. What is the 

activation energy for chemisorption?

96.9(a) For how long on average would an H atom remain on a surface at 

400 K if its desorption activation energy is (a) 15 kJ mol−1, (b) 150 kJ mol−1? 

Take τ0 = 0.10 ps. For how long on average would the same atoms remain at 

1000 K?

96.9(b) For how long on average would an atom remain on a surface at 

298 K if its desorption activation energy is (a) 20 kJ mol−1, (b) 200 kJ mol−1? 

Take τ0 = 0.12 ps. For how long on average would the same atoms remain at 

800 K?

96.10(a) Hydrogen iodide is very strongly adsorbed on gold but only slightly 

adsorbed on platinum. Assume the adsorption follows the Langmuir isotherm 

and predict the order of the HI decomposition reaction on each of the two 

metal surfaces.

96.10(b) Suppose it is known that ozone adsorbs on a particular surface 

in accord with a Langmuir isotherm. How could you use the pressure 

dependence of the fractional coverage to distinguish between adsorption 

(a) without dissociation, (b) with dissociation into O + O2, (c) with 

dissociation into O + O + O?

Problems
96.1 Use mathematical software, a spreadsheet, or the Living graphs (labelled 
LG) on the website of this book to solve the following problems:

(a)LG Use eqn 96.2 to generate a family of curves showing the dependence of 

1/θ on 1/p for several values of α.

(b)LG Use eqn 96.4 to generate a family of curves showing the dependence 

of 1/θ on 1/p for several values of α. On the basis of your results from parts 

(a) and (b), discuss how plots of 1/θ against 1/p can be used to distinguish 

between adsorption with and without dissociation.
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(c)LG Use eqn 96.6 to generate a family of curves showing the dependence of 

zVmon/(1 − z)V on z for different values of c.

96.2 The data below are for the chemisorption of hydrogen on copper powder 

at 25 °C. Confirm that they fit the Langmuir isotherm at low coverages. Then 

find the value of α for the adsorption equilibrium and the adsorption volume 

corresponding to complete coverage.

96.3 The data for the adsorption of ammonia on barium fluoride are reported 

below. Confirm that they fit a BET isotherm and find values of c and Vmon.

(a) θ = 0 °C, p* = 429.6 kPa:

(b) θ = 18.6 °C, p* = 819.7 kPa:

96.4 The following data have been obtained for the adsorption of H2 on the 

surface of 1.00 g of copper at 0 °C. The volume of H2 below is the volume that 

the gas would occupy at STP (0 °C and 1 atm).

Determine the volume of H2 necessary to form a monolayer and estimate 

the surface area of the copper sample. The density of liquid hydrogen is 

0.708 g cm−3.

96.5‡ M.-G. Olivier and R. Jadot (J. Chem. Eng. Data 42, 230 (1997)) studied 

the adsorption of butane on silica gel. They report the following amounts of 

absorption (in moles per kilogram of silica gel) at 303 K:

Fit these data to a Langmuir isotherm, and determine the value of n that 

corresponds to complete coverage and the constant α.

96.6 The designers of a new industrial plant wanted to use a catalyst code-

named CR-1 in a step involving the fluorination of butadiene. As a first step 

in the investigation they determined the form of the adsorption isotherm. The 

volume of butadiene adsorbed per gram of CR-1 at 15 °C varied with pressure 

as given below. Is the Langmuir isotherm suitable at this pressure?

Investigate whether the BET isotherm gives a better description of the 

adsorption of butadiene on CR-1. At 15 °C, p*(butadiene) = 200 kPa. Find Vmon 

and c.

96.7‡ C. Huang and W.P. Cheng (J. Colloid Interface Sci. 188, 270 (1997)) 

examined the adsorption of the hexacyanoferrate(III) ion, [Fe(CN)6]
3–, 

on γ-Al2O3 from aqueous solution. They modelled the adsorption with a 

modified Langmuir isotherm, obtaining the following values of K at pH = 6.5:

Determine the isosteric enthalpy of adsorption, ΔadsH
<, at this pH. The 

researchers also reported ΔadsS
< = +146 J mol−1 K−1 under these conditions. 

Determine ΔadsG
<.

96.8‡ In a study relevant to automobile catalytic converters, C.E. Wartnaby, 

et al. (J. Phys. Chem. 100, 12483 (1996)) measured the enthalpy of adsorption 

of CO, NO, and O2 on initially clean platinum (110) surfaces. They report 

ΔadsH
< for NO to be −160 kJ mol−1. How much more strongly adsorbed is NO 

at 500 °C than at 400 °C?

96.9‡ The removal or recovery of volatile organic compounds (VOCs) from 

exhaust gas streams is an important process in environmental engineering. 

Activated carbon has long been used as an adsorbent in this process, but the 

presence of moisture in the stream reduces its effectiveness. M.-S. Chou and 

J.-H. Chiou (J. Envir. Engrg. ASCE 123, 437(1997)) have studied the effect of 

moisture content on the adsorption capacities of granular activated carbon 

(GAC) for normal hexane and cyclohexane in air streams. From their data for 

dry streams containing cyclohexane, shown in the table below, they conclude 

that GAC obeys a Langmuir-type model in which θVOC,RH=0 = abcVOC/(1+ bcVOC),  

where θ = mVOC/mGAC, RH denotes relative humidity, a is the maximum 

adsorption capacity, b is an affinity parameter, and p is the abundance in 

parts per million (ppm). The following table gives values of θVOC, RH=0 for 

cyclohexane:

(a) By linear regression of 1/θVOC, RH=0 against 1/cVOC, test the goodness of fit 

and determine values of a and b. (b) The parameters a and b can be related to 

ΔadsH, the enthalpy of adsorption, and ΔbH, the difference in activation energy 

for adsorption and desorption of the VOC molecules, through Arrhenius-type 

equations of the form a = kaexp(−ΔadsH/RT) and b = kbexp(−ΔbH/RT). Test 

the goodness of fit of the data to these equations and obtain values for ka, kb, 

ΔadsH, and ΔbH. (c) What interpretation might you give to ka and kb?

p/Pa 25 129 253 540 1000 1593

V/cm3 0.042 0.163 0.221 0.321 0.411 0.471

p/kPa 14.0 37.6 65.6 79.2 82.7 100.7 106.4

V/cm3 11.1 13.5 14.9 16.0 15.5 17.3 16.5

p/kPa 5.3 8.4 14.4 29.2 62.1 74.0 80.1 102.0

V/cm3 9.2 9.8 10.3 11.3 12.9 13.1 13.4 14.1

p/atm 0.050 0.100 0.150 0.200 0.250

V/cm3 23.8 13.3 8.70 6.80 5.71

p/kPa 31.00 38.22 53.03 76.38 101.97

n/(mol kg−1) 1.00 1.17 1.54 2.04 2.49

p/kPa 130.47 165.06 182.41 205.75 219.91

n/(mol kg−1) 2.90 3.22 3.30 3.35 3.36

p/kPa 13.3 26.7 40.0 53.3 66.7 80.0

V/cm3 17.9 33.0 47.0 60.8 75.3 91.3

T/K 283 298 308 318

10−11α 2.642 2.078 1.286 1.085

c/ppm 33.6 °C 41.5 °C 57.4 °C 76.4 °C 99 °C

200 0.080 0.069 0.052 0.042 0.027

500 0.093 0.083 0.072 0.056 0.042

1000 0.101 0.088 0.076 0.063 0.045

2000 0.105 0.092 0.083 0.068 0.052

3000 0.112 0.102 0.087 0.072 0.058

‡ These problems were supplied by Charles Trapp and Carmen Giunta.
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Topic 97 Heterogeneous catalysis

Discussion questions
97.1 Describe the essential features of the Langmuir–Hinshelwood and Eley–

Rideal mechanisms for surface-catalysed reactions.

97.2 Account for the dependence of catalytic activity of a surface on the 

strength of chemisorption, as shown in Fig. 96.8.

Exercises
97.1(a) A monolayer of N2 molecules is adsorbed on the surface of 1.00 g of an 

Fe/Al2O3 catalyst at 77 K, the boiling point of liquid nitrogen. Upon warming, 

the nitrogen occupies 3.86 cm3 at 0 °C and 760 Torr. What is the surface area 

of the catalyst?

97.1(b) A monolayer of CO molecules is adsorbed on the surface of 1.00 g 

of an Fe/Al2O3 catalyst at 77 K, the boiling point of liquid nitrogen. Upon 

warming, the carbon monoxide occupies 3.75 cm3 at 0 °C and 1.00 bar. What is 

the surface area of the catalyst?

Problem
97.1 In some catalytic reactions the products may adsorb more strongly than 

the reacting gas. This is the case, for instance, in the catalytic decomposition of 

ammonia on platinum at 1000 °C. As a first step in examining the kinetics of this 

type of process, show that the rate of ammonia decomposition should follow

d

d

NH
c

NH

H

p

t
k

p

p
3 3

2

= −
 

in the limit of very strong adsorption of hydrogen. Start by showing that 

when a gas J adsorbs very strongly, and its pressure is pJ, that the fraction of 

uncovered sites is approximately 1/KpJ. Solve the rate equation for the catalytic 

decomposition of NH3 on platinum and show that a plot of F(t) = (1/t) ln(p/p0)  

against G(t) = (p − p0)/t, where p is the pressure of ammonia, should give a 

straight line from which kc can be determined. Check the rate law on the basis 

of the data below, and find kc for the reaction.

Integrated activities

F20.1 Although the attractive van der Waals interaction between individual 

molecules varies as R−6, the interaction of a molecule with a nearby solid (a 

homogeneous collection of molecules) varies as R−3, where R is its vertical 

distance above the surface. Confirm this assertion. Calculate the interaction 

energy between an Ar atom and the surface of solid argon on the basis of a 

Lennard-Jones (6,12) potential. Estimate the equilibrium distance of an atom 

above the surface.

F20.2 Electron microscopes can obtain images with several hundredfold 

higher resolution than optical microscopes because of the short wavelength 

obtainable from a beam of electrons. For electrons moving at speeds close to 

c, the speed of light, the expression for the de Broglie wavelength (eqn 4.6, 

λ = h/p) needs to be corrected for relativistic effects:

λ =

+
⎛

⎝⎜
⎞

⎠⎟
⎧
⎨
⎪
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⎫
⎬
⎪
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h

m eV
eV

m c
2 1

2 2

1 2

e
e

/

 

where c is the speed of light in vacuum and V is the potential difference 

through which the electrons are accelerated. (a) Use the expression above to 

calculate the de Broglie wavelength of electrons accelerated through 50 kV. 

(b) Is the relativistic correction important?

F20.3 The forces measured by AFM arise primarily from interactions 

between electrons of the stylus and on the surface. To get an idea of the 

magnitudes of these forces, calculate the force acting between two electrons 

separated by 2.0 nm. To calculate the force between the electrons, use F =  

−dV/dr, where V is their mutual Coulombic potential energy and r is their 

separation.

F20.4 To appreciate the distance dependence of the tunnelling current in 

scanning tunnelling microscopy, suppose that the electron in the gap between 

sample and needle has an energy 2.0 eV smaller than the barrier height. By 

what factor would the current drop if the needle is moved from L1 = 0.50 nm 

to L2 = 0.60 nm from the surface?

t/s 0 30 60 100 160 200 250

p/kPa 13.3 11.7 11.2 10.7 10.3 9.9 9.6
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PART 1 Common integrals

Algebraic functions
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PART 2 Quantum numbers and operators

A. Common quantum numbers

B. Common operators in quantum mechanics

Symbol Name or significance Values

n (n1, n2, … in higher dimensions ) State of particle in a box. Principal quantum number of a 
hydrogenic atom

1, 2, … ∞

v Vibrational quantum number of a harmonic oscillator, a diatomic 
molecule, or a normal mode of a polyatomic molecule

0, 1, 2, … ∞

l Orbital angular momentum quantum number 0, 1, 2, …; 
in an atom, terminates at n − 1

ml Magnetic quantum number 0, ±1, ±2, … ±l

s Spin quantum number of electron 1
2

ms Spin magnetic quantum number of electron ± 1
2

j, mj Angular momenta in general Integers or half-integers;
mj = j, j – 1, …, –j

L, ML Total orbital angular momentum quantum numbers L = l1 + l2, l1 + l2 – 1, …, |l1 – l2|; ML = L, L – 1, …, –L

S, MS Total spin angular momentum quantum numbers S = s1 + s2, s1 + s2 – 1, …, |s1 – s2|; MS = S, S – 1, …, –S

J, MJ Total angular momentum quantum numbers
Angular momentum quantum numbers of a rigid rotor

J = L + S, L + S – 1, …, |L – S|; MJ = J, J – 1, …, –J
J = 0, 1, 2, …;
MJ = 0, ±1, …, ±J

K Quantum number for the component of angular momentum on 
the principal axis of a rigid rotor

0, ±1, …, ±J; for a linear rotor, K b 0

λ Quantum number for the component of the orbital angular 
momentum of an electron on the axis of a linear molecule

0, ±1, ±2, …

Λ Quantum number for the component of the total orbital angular 
momentum of electrons on the axis of a linear molecule

0, ±1, ±2, …

Σ Quantum number for the component of the total electron spin S of 
electrons on the axis of a linear molecule

S, S – 1, S – 2, …, –S

Ω Quantum number for the component of the total angular 
momentum of electrons on the axis of a linear molecule

Λ + Σ

I, mI Nuclear spin quantum numbers Integers or half-integers;
mI = I, I – 1, …, –I

Observable Operator Representation*

Energy H� (hamiltonian) H
m

V� �= − ∇ +2
2

2

Kinetic energy E�k E
m

�k = − ∇2
2

2

Potential energy V� V V� = ×( )r

Position (x-, y-, z-components) x y z q� � � �, , ;  in general q q� = ×

Radial distance r� �r r= ×

(continued)
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Observable Operator Representation*

Linear momentum (x-, y-, z-components) p p p px y z q� � � �, ;,  in general p
qq� = ∂

∂

i

Square of linear momentum p p p px y z� � � �2 2 2 2= + + p�2 2 2= − ∇

Electric dipole moment (x-, y-, z-components) μ μ μ μ� � � �x y z q, , ; in general μ�q eq= − ×

Orbital angular momentum l� l r p r� � � = × = ×∇
i

;

 

l z� = ∂
∂


i φ

Square of magnitude of the orbital angular momentum l l l lx y z� � � �2 2 2 2= + + l�2 2 2= − Λ

Square of magnitude of the spin angular momentum and its z-component s sz�2 ,

Energy of a magnetic moment μ in a magnetic field B H� �= − μ⋅B

Nuclear magnetic moment μ� �=γ N I

Spin magnetic moment μ� �=γ e s

* In the ‘position representation’, in which the position operators have a simple multiplicative form.
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PART 3 Units

Table 1.1 Some common units

Physical quantity Name of unit Symbol for unit Value*

Time minute min 60 s

hour h 3600 s

day d 86 400 s

year a 31 556 952 s

Length ångström Å 10−10 m

Volume litre L, l 1 dm3

Mass tonne t 103 kg

Pressure bar bar 105 Pa

atmosphere atm 101.325 kPa

Energy electronvolt eV 1.602 177 33 × 10−19 J
96.485 31 kJ mol−1

* All values are exact, except for the definition of 1 eV, which depends on the measured value of e, and the year, which is not 

a constant and depends on a variety of astronomical assumptions.

Table 1.2 Common SI prefixes

Prefix y z a f p n μ m c d

Name yocto zepto atto femto pico nano micro milli centi deci

Factor 10−24 10−21 10−18 10−15 10−12 10−9 10−6 10−3 10−2 10−1

Prefix da h k M G T P E Z Y

Name deca hecto kilo mega giga tera peta exa zeta yotta

Factor 10 102 103 106 109 1012 1015 1018 1021 1024

Table 1.3 The SI base units

Physical quantity Symbol for quantity Base unit

Length l metre, m

Mass m kilogram, kg

Time t second, s

Electric current I ampere, A

Thermodynamic temperature T kelvin, K

Amount of substance n mole, mol

Luminous intensity Iv candela, cd

Table 1.4 A selection of derived units

Physical quantity Derived unit* Name of derived unit

Force 1 kg m s−2 newton, N

Pressure 1 kg m−1 s−2

1 N m−2

pascal, Pa

Energy 1 kg m2 s−2

1 N m
1 Pa m3

joule, J

Power 1 kg m2 s−3

1 J s−1

watt, W

* Equivalent definitions in terms of derived units are given following the definition in terms of base units.
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PART 4 Data

The following is a directory of all tables in the text; those 

included in this Resource section are marked with an asterisk. 

The remainder will be found on the pages indicated. These 

tables reproduce and expand the data given in the short tables 

in the text, and follow their numbering. Standard states refer to 

a pressure of p<= 1 bar. The general references are as follows:

AIP: D.E. Gray (ed.), American Institute of Physics 

handbook. McGraw-Hill, New York (1972).

E: J. Emsley, The elements. Oxford University Press, Oxford 

(1991).

HCP: D.R. Lide (ed.), Handbook of chemistry and physics. 

CRC Press, Boca Raton (2000).

JL: A.M. James and M.P. Lord, Macmillan’s chemical and 

physical data. Macmillan, London (1992).

KL: G.W.C. Kaye and T.H. Laby (ed.), Tables of physical and 

chemical constants. Longman, London (1973).

LR: G.N. Lewis and M. Randall, revised by K.S. Pitzer and 

L. Brewer, Thermodynamics. McGraw-Hill, New York 

(1961).

NBS: NBS tables of chemical thermodynamic properties, 

published as J. Phys. Chem. Reference Data, 11, 

Supplement 2 (1982).

RS: R.A. Robinson and R.H. Stokes, Electrolyte solutions, 

Butterworth, London (1959).

TDOC: J.B. Pedley, J.D. Naylor, and S.P. Kirby, 

Thermochemical data of organic compounds. Chapman & 

Hall, London (1986).

Table 0.1* Physical properties of selected materials (945)

Table 0.2* Masses and natural abundances of selected nuclides 

(946)

Table 2.1 Analogies between rotation and translation (11)

Table 6.1 The Schrödinger equation (48)

Table 8.1 Constraints of the uncertainty principle (60)

Table 12.1 The Hermite polynomials Hv(y) (95)

Table 12.2 The error function (99)

Table 14.1 The spherical harmonics (114)

Table 17.1 Hydrogenic radial wavefunctions (155)

Table 18.1 Hydrogenic atomic orbitals (164)

Table 19.1* Effective nuclear charge (174)

Table 20.1 Atomic radii of main-group elements (179)

Table 20.2* First and second ionization energies (179)

Table 20.3* Electron affinities (180)

Table 22.1 Some hybridization schemes (207)

Table 24.1* Bond lengths (221)

Table 24.2* Bond dissociation energies (221)

Table 25.1* Pauling electronegativities (226)

Table 31.1 Symmetry operations and symmetry elements (275)

Table 31.2 The notation for point groups (277)

Table 32.1* The C2v character table (287)

Table 32.2* The C3v character table (288)

Table 34.1* Magnitudes of dipole moments and polarizabil-

ity volumes (306)

Table 35.1 Interaction potential energies (314)

Table 35.2* Lennard-Jones parameters for the (12,6) poten-

tial (318)

Table 36.1* Second virial coefficients (322)

Table 36.2* Boyle temperatures of gases (323)

Table 36.3* van der Waals parameters (324)

Table 36.4 Selected equations of state (325)

Table 36.5* Critical constants of gases (326)

Table 37.1 The seven crystal systems (332)

Table 38.1 The crystal structures of some elements (344)

Table 38.2* Ionic radii (348)

Table 38.3 Madelung constants (349)

Table 38.4* Lattice enthalpies at 298 K (350)

Table 39.1* Magnetic susceptibilities at 298 K (358)

Table 41.1 Moments of inertia (389)

Table 43.1* Properties of diatomic molecules (409)

Table 44.1* Typical vibrational wavenumbers (418)

Table 45.1* Colour, wavelength, frequency, and energy of light 

(423)
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Table 45.2* Absorption characteristics of some groups and 

molecules (429)

Table 46.1 Characteristics of laser radiation and their chemi-

cal applications (437)

Table 47.1 Nuclear constitution and the nuclear spin quan-

tum number (458)

Table 47.2* Nuclear spin properties (458)

Table 50.1* Hyperfine coupling constants for atoms (490)

Table 52.1* Rotational and vibrational temperatures (512)

Table 52.2* Symmetry numbers (513)

Table 55.1 Varieties of work (545)

Table 56.1* Temperature variation of molar heat capacities 

(554)

Table 56.2* Inversion temperatures, normal freezing and boil-

ing points, and Joule–Thomson coefficients at 1 atm and 

298 K (557)

Table 57.1 Enthalpies of transition (564)

Table 57.2* Standard enthalpies of fusion and vaporization at 

the transition temperature (564)

Table 57.3* Standard enthalpies of formation and combus-

tion of organic compounds at 298 K (566)

Table 57.4* Standard enthalpies of formation of inorganic 

compounds at 298 K (566)

Table 58.1* Expansion coefficients and isothermal compress-

ibilities at 298 K (572)

Table 62.1* Standard entropies (and temperatures) of phase 

transitions (617)

Table 62.2* The standard entropies of vaporization of liq-

uids (617)

Table 63.1* Standard Third-Law entropies at 298 K (623)

Table 65.1* Standard Gibbs energies of formation at 298 K (634)

Table 66.1 The Maxwell relations (639)

Table 70.1* Henry’s law constants for gases in water at 

298 K (684)

Table 72.1 Activities and standard states (696)

Table 72.2 Ionic strength and molality (701)

Table 72.3* Mean activity coefficients in water at 298 K (701)

Table 76.1 Varieties of electrode (733) 

Table 77.1* Standard potentials at 298 K (741)

Table 77.2 The electrochemical series of the metals (743)

Table 78.1* Collision cross-sections (763)

Table 79.1* Transport properties of gases at 1 atm (768)

Table 80.1* Viscosities of liquids at 298 K (775)

Table 80.2* Ionic mobilities in water at 298 K (777)

Table 81.1* Diffusion coefficients at 298 K (786)

Table 83.1* Kinetic data for first-order reactions (807)

Table 83.2* Kinetic data for second-order reactions (808)

Table 83.3 Integrated rate laws (810)

Table 85.1* Arrhenius parameters (817)

Table 87.1* Arrhenius parameters for gas-phase reactions (840)

Table 88.1* Arrhenius parameters for reactions in solution (844)

Table 93.1 Examples of photochemical processes (890)

Table 93.2 Common photophysical processes (890)

Table 93.3 Values of R0 for some donor − acceptor pairs (895)

Table 95.1* Maximum observed standard enthalpies of phys-

isorption at 298 K (914)

Table 95.2* Standard enthalpies of chemisorption at 298 K (914)

Table 97.1 Chemisorption abilities (934)

Table 0.1 Physical properties of selected materials

ρ/(g cm−3) 
at 293 K†

Tf/K Tb/K ρ/(g cm−3) 
at 293 K†

Tf/K Tb/K

Elements Inorganic compounds

Aluminium(s) 2.698 933.5 2740 CaCO3(s, calcite) 2.71 1612 1171d

Argon(g) 1.381 83.8 87.3 CuSO4
.5H2O(s) 2.284 383(–H2O) 423(–5H2O)

Boron(s) 2.340 2573 3931 HBr(g) 2.77 184.3 206.4

Bromine(l) 3.123 265.9 331.9 HCl(g) 1.187 159.0 191.1

Carbon(s, gr) 2.260 3700s HI(g) 2.85 222.4 237.8

Carbon(s, d) 3.513 H2O(l) 0.997 273.2 373.2

(continued)
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Table 0.1 (Continued)

ρ/(g cm−3) 
at 293 K†

Tf/K Tb/K ρ/(g cm−3) 
at 293 K†

Tf/K Tb/K

Elements (continued) Inorganic compounds (continued)

Chlorine(g) 1.507 172.2 239.2 D2O(l) 1.104 277.0 374.6

Copper(s) 8.960 1357 2840 NH3(g) 0.817 195.4 238.8

Fluorine(g) 1.108 53.5 85.0 KBr(s) 2.750 1003 1708

Gold(s) 19.320 1338 3080 KCl(s) 1.984 1049 1773s

Helium(g) 0.125 4.22 NaCl(s) 2.165 1074 1686

Hydrogen(g) 0.071 14.0 20.3 H2SO4(l) 1.841 283.5 611.2

Iodine(s) 4.930 386.7 457.5

Iron(s) 7.874 1808 3023 Organic compounds

Krypton(g) 2.413 116.6 120.8 Acetaldehyde, CH3CHO(l) 0.788 152 293

Lead(s) 11.350 600.6 2013 Acetic acid, CH3COOH(l) 1.049 289.8 391

Lithium(s) 0.534 453.7 1620 Acetone, (CH3)2CO(l) 0.787 178 329

Magnesium(s) 1.738 922.0 1363 Aniline, C6H5NH2(l) 1.026 267 457

Mercury(l) 13.546 234.3 629.7 Anthracene, C14H10(s) 1.243 490 615

Neon(g) 1.207 24.5 27.1 Benzene, C6H6(l) 0.879 278.6 353.2

Nitrogen(g) 0.880 63.3 77.4 Carbon tetrachloride, CCl4(l) 1.63 250 349.9

Oxygen(g) 1.140 54.8 90.2 Chloroform, CHCl3(l) 1.499 209.6 334

Phosphorus(s, α) 1.820 317.3 553 Ethanol, C2H5OH(l) 0.789 156 351.4

Potassium(s) 0.862 336.8 1047 Formaldehyde, HCHO(g) 181 254.0

Silver(s) 10.500 1235 2485 Glucose, C6H12O6(s) 1.544 415

Sodium(s) 0.971 371.0 1156 Methane, CH4(g) 90.6 111.6

Sulfur(s, α) 2.070 386.0 717.8 Methanol, CH3OH(l) 0.791 179.2 337.6

Uranium(s) 18.950 1406 4018 Naphthalene, C10H8(s) 1.145 353.4 491

Xenon(g) 2.939 161.3 166.1 Octane, C8H18(l) 0.703 216.4 398.8

Zinc(s) 7.133 692.7 1180 Phenol, C6H5OH(s) 1.073 314.1 455.0

Sucrose, C12H22O11(s) 1.588 457d

d: decomposes; s: sublimes; Data: AIP, E, HCP, KL. † For gases, at their boiling points.

Table 0.2 Masses and natural abundances of selected nuclides

Nuclide m/mu Abundance/%

H 1H 1.0078 99.985

2H 2.0140 0.015

He 3He 3.0160 0.000 13

4He 4.0026 100

Li 6Li 6.0151 7.42

7Li 7.0160 92.58

B 10B 10.0129 19.78

11B 11.0093 80.22

C 12C 12* 98.89

13C 13.0034 1.11

N 14N 14.0031 99.63

15N 15.0001 0.37

O 16O 15.9949 99.76

17O 16.9991 0.037

18O 17.9992 0.204

F 19F 18.9984 100

P 31P 30.9738 100

S 32S 31.9721 95.0

33S 32.9715 0.76
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Table 19.1 Effective nuclear charge, Zeff = Z − σ

H He

1s 1 1.6875

Li Be B C N O F Ne

1s 2.6906 3.6848 4.6795 5.6727 6.6651 7.6579 8.6501 9.6421

2s 1.2792 1.9120 2.5762 3.2166 3.8474 4.4916 5.1276 5.7584

2p 2.4214 3.1358 3.8340 4.4532 5.1000 5.7584

Na Mg Al Si P S Cl Ar

1s 10.6259 11.6089 12.5910 13.5745 14.5578 15.5409 16.5239 17.5075

2s  6.5714  7.3920  8.3736  9.0200  9.8250 10.6288 11.4304 12.2304

2p  6.8018  7.8258  8.9634  9.9450 10.9612 11.9770 12.9932 14.0082

3s  2.5074  3.3075  4.1172  4.9032  5.6418  6.3669  7.0683  7.7568

3p  4.0656  4.2852  4.8864  5.4819  6.1161  6.7641

Data: E. Clementi and D.L. Raimondi, Atomic screening constants from SCF functions.

IBM Res. Note NJ-27 (1963). J. Chem. Phys. 38, 2686 (1963).

Table 20.2 First and second ionization energies, I/(kJ mol−1)

H He

1312.0 2372.3

5250.4

Li Be B C N O F Ne

513.3 899.4 800.6 1086.2 1402.3 1313.9 1681 2080.6

7298.0 1757.1 2427 2352 2856.1 3388.2 3374 3952.2

Na Mg Al Si P S Cl Ar

495.8 737.7 577.4 786.5 1011.7 999.6 1251.1 1520.4

4562.4 1450.7 1816.6 1577.1 1903.2 2251 2297 2665.2

2744.6 2912

K Ca Ga Ge As Se Br Kr

418.8 589.7 578.8 762.1 947.0 940.9 1139.9 1350.7

3051.4 1145 1979 1537 1798 2044 2104 2350

2963 2735

Rb Sr In Sn Sb Te I Xe

403.0 549.5 558.3 708.6 833.7 869.2 1008.4 1170.4

2632 1064.2 1820.6 1411.8 1794 1795 1845.9 2046

2704 2943.0 2443

Cs Ba Tl Pb Bi Po At Rn

375.5 502.8 589.3 715.5 703.2 812 930 1037

2420 965.1 1971.0 1450.4 1610

2878 3081.5 2466

Data: E.

Table 0.2 (Continued)

Nuclide m/mu Abundance/%

34S 33.9679 4.22

Cl 35Cl 34.9688 75.53

37Cl 36.9651 24.4

Br 79Br 78.9183 50.54

81Br 80.9163 49.46

I 127I 126.9045 100

* Exact value.
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Table 20.3 Electron affinities, Eea/(kJ mol−1)

H He

72.8 −21

Li Be B C N O F Ne

59.8 ≤0 23 122.5 −7  141 322 −29

−844

Na Mg Al Si P S Cl Ar

52.9 ≤0 44 133.6 71.7  200.4 348.7 −35

−532

K Ca Ga Ge As Se Br Kr

48.3 2.37 36 116 77 195.0 324.5 −39

Rb Sr In Sn Sb Te I Xe

46.9 5.03 34 121 101 190.2 295.3 −41

Cs Ba Tl Pb Bi Po At Rn

45.5 13.95 30 35.2 101 186 270 −41

Data: E.

Table 24.1 Bond lengths, Re/pm

(a) Bond lengths in specific molecules

Br2 228.3

Cl2 198.75

CO 112.81

F2 141.78

H2
+ 106

H2 74.138

HBr 141.44

HCl 127.45

HF 91.680

HI 160.92

N2 109.76

O2 120.75

(b) Mean bond lengths from covalent radii*

H 37

C 77(1) N  74(1) O  66(1) F  64

67(2)  65(2)  57(2)

60(3)

Si 118 P 110 S 104(1) Cl  99

 95(2)

Ge 122 As 121 Se 104 Br 114

Sb 141 Te 137 I 133

* Values are for single bonds except where indicated otherwise (values in parentheses). The length 

of an A − B covalent bond (of given order) is the sum of the corresponding covalent radii.
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Table 24.2b Mean bond enthalpies, ΔH<(A–B)/(kJ mol−1)*

H C N O F Cl Br I S P Si

H 436

C 412 348(i)

612(ii)

838(iii)

518(a)

N 388 305(i) 163(i)

613(ii) 409(ii)

890(iii) 946(iii)

O 463 360(i) 157 146(i)

743(ii) 497(ii)

F 565 484 270 185 155

Cl 431 338 200 203 254 242

Br 366 276 219 193

I 299 238 210 178 151

S 338 259 496 250 212 264

P 322 201

Si 318 374 466 226

* Mean bond enthalpies are such a crude measure of bond strength that they need not be distinguished from dissociation energies.

(i) Single bond, (ii) double bond, (iii) triple bond, (a) aromatic.

Data: HCP and L. Pauling, The nature of the chemical bond. Cornell University Press (1960).

Table 24.2a Bond dissociation enthalpies, ΔH<(A–B)/(kJ mol−1) at 298 K*

Diatomic molecules

H–H 436 F–F  155 Cl–Cl 242 Br–Br 193 I–I 151

O = O 497 C = O 1076 N ≡ N 945

H–O 428 H–F  565 H–Cl 431 H–Br 366 H–I 299

Polyatomic molecules

H–CH3 435 H–NH2 460 H–OH 492 H–C6H5 469

H3C–CH3 368 H2C = CH2 720 HC ≡ CH 962

HO–CH3 377 Cl–CH3 352 Br–CH3 293 I–CH3 237

O = CO 531 HO–OH 213 O2N–NO2  54

* To a good approximation bond dissociation enthalpies and dissociation energies are related by ΔH D RT< = +e
3
2

 with D De = +0
1
2

ω . 

For precise values of D0 for diatomic molecules, see Table 43.1.

Data: HCP, KL.
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Table 25.1 Pauling (italics) and Mulliken electronegativities

H He

2.20

3.06

Li Be B C N O F Ne

0.98 1.57 2.04 2.55 3.04 3.44 3.98

1.28 1.99 1.83 2.67 3.08 3.22 4.43 4.60

Na Mg Al Si P S Cl Ar

0.93 1.31 1.61 1.90 2.19 2.58 3.16

1.21 1.63 1.37 2.03 2.39 2.65 3.54 3.36

K Ca Ga Ge As Se Br Kr

0.82 1.00 1.81 2.01 2.18 2.55 2.96 3.0

1.03 1.30 1.34 1.95 2.26 2.51 3.24 2.98

Rb Sr In Sn Sb Te I Xe

0.82 0.95 1.78 1.96 2.05 2.10 2.66 2.6

0.99 1.21 1.30 1.83 2.06 2.34 2.88 2.59

Cs Ba Tl Pb Bi

0.79 0.89 2.04 2.33 2.02

Data: Pauling values: A.L. Allred, J. Inorg. Nucl. Chem. 17, 215 (1961); L.C. Allen and J.E. Huheey, ibid., 42, 

1523 (1980). Mulliken values: L.C. Allen, J. Am. Chem. Soc. 111, 9003 (1989). The Mulliken values have been 

scaled to the range of the Pauling values.

Table 34.1 Magnitudes of dipole moments (μ), polarizabilities (α), and 
polarizability volumes (α′)

μ/(10−30 C m) μ/D α′/(10−30 m3) α/(10−40 J−1 C2 m2)

Ar 0 0 1.66 1.85

C2H5OH 5.64 1.69

C6H5CH3 1.20 0.36

C6H6 0 0 10.4 11.6

CCl4 0 0 10.3 11.7

CH2Cl2 5.24 1.57 6.80 7.57

CH3Cl 6.24 1.87 4.53 5.04

CH3OH 5.70 1.71 3.23 3.59

CH4 0 0 2.60 2.89

CHCl3 3.37 1.01 8.50 9.46

CO 0.390 0.117 1.98 2.20

CO2 0 0 2.63 2.93

H2 0 0 0.819 0.911

H2O 6.17 1.85 1.48 1.65

HBr 2.67 0.80 3.61 4.01

HCl 3.60 1.08 2.63 2.93

He 0 0 0.20 0.22

HF 6.37 1.91 0.51 0.57

HI 1.40 0.42 5.45 6.06

N2 0 0 1.77 1.97

NH3 4.90 1.47 2.22 2.47

1,2-C6H4(CH3)2 2.07 0.62

Data: HCP and C.J.F. Böttcher and P. Bordewijk, Theory of electric polarization. Elsevier, Amsterdam 

(1978).
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Table 35.2 Lennard-Jones (12,6) potential parameters

(ε/k)/K r0/pm

Ar 111.84 362.3

C2H2 209.11 463.5

C2H4 200.78 458.9

C2H6 216.12 478.2

C6H6 377.46 617.4

CCl4 378.86 624.1

Cl2 296.27 448.5

CO2 201.71 444.4

F2 104.29 357.1

Kr 154.87 389.5

N2  91.85 391.9

O2 113.27 365.4

Xe 213.96 426.0

Source: F. Cuadros, I. Cachadiña, and W. Ahamuda, Molec. Engineering 6, 

319 (1996).

Table 36.1 Second virial coefficients, B/(cm3 mol−1)

100 K 273 K 373 K 600 K

Air −167.3 −13.5 3.4 19.0

Ar −187.0 −21.7 −4.2 11.9

CH4 −53.6 −21.2 8.1

CO2 −142 −72.2 −12.4

H2   −2.0 13.7 15.6

He   11.4 12.0 11.3 10.4

Kr −62.9 −28.7 1.7

N2 −160.0 −10.5 6.2 21.7

Ne   −6.0 10.4 12.3 13.8

O2 −197.5 −22.0 −3.7 12.9

Xe −153.7 −81.7 −19.6

Data: AIP, JL. The values relate to the expansion in eqn 36.4b of Topic 36; convert 

to eqn 36.4a using B′ = B/RT.

For Ar at 273 K, C =1200 cm6 mol−1.

Table 36.2 Boyle temperatures 
of gases

TB/K

Ar 411.5

CH4 510.0

CO2 714.8

H2 110.0

He  22.64

Kr 575.0

N2 327.2

Ne 122.1

O2 405.9

Xe 768.0

Data: AIP, KL.

Table 36.3 van der Waals parameters

a/(atm dm6 mol−2) b/(10−2 dm3 mol−1) a/(atm dm6 mol−2) b/(10−2 dm3 mol−1)

Ar 1.337 3.20 H2S 4.484 4.34

C2H4 4.552 5.82 He 0.0341 2.38

C2H6 5.507 6.51 Kr 5.125 1.06

C6H6 18.57 11.93 N2 1.352 3.87

CH4 2.273 4.31 Ne 0.205 1.67

Cl2 6.260 5.42 NH3 4.169 3.71

CO 1.453 3.95 O2 1.364 3.19

CO2 3.610 4.29 SO2 6.775 5.68

H2 0.2420 2.65 Xe 4.137 5.16

H2O 5.464 3.05

Data: HCP.
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Table 36.5 Critical constants of gases

pc/atm Vc/(cm3 mol−1) Tc/K

Ar 48.0 75.3 150.7

Br2 102 135 584

C2H4 50.50 124 283.1

C2H6 48.20 148 305.4

C6H6 48.6 260 562.7

CH4 45.6 98.7 190.6

Cl2 76.1 124 417.2

CO2 72.9 94.0 304.2

F2 55 144

H2 12.8 34.99 33.23

H2O 218.3 55.3 647.4

HBr 84.0 363.0

HCl 81.5 81.0 324.7

He 2.26 57.8 5.2

HI 80.8 423.2

Kr 54.27 92.24 209.39

N2 33.54 90.10 126.3

Ne 26.86 41.74 44.44

O2 50.14 78.0 154.8

Xe 58.0 118.8 289.75

Table 38.2 Ionic radii, r/pm*

Li+(4) Be2+(4) B3+(4) N3− O2−(6) F−(6)

59 27 12 171 140 133

Na+(6) Mg2+(6) Al3+(6) P3− S2−(6) Cl−(6)

102 72 53 212 184 181

K+(6) Ca2+(6) Ga3+(6) As3−(6) Se2−(6) Br−(6)

138 100 62 222 198 196

Rb+(6) Sr2+(6) In3+(6) Te2−(6) I−(6)

149 116 79 221 220

Cs+(6) Ba2+(6) Tl3+(6)

167 136 88

d-block elements (high-spin ions)

Sc3+(6) Ti4+(6) Cr3+(6) Mn3+(6) Fe2+(6) Co3+(6) Cu2+(6) Zn2+(6)

73 60 61 65 63 61 73 75

* Numbers in parentheses are the coordination numbers of the ions. Values for ions without a coordination number stated are 

estimates.

Data: R.D. Shannon and C.T. Prewitt, Acta Cryst. B25, 925 (1969).
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Table 38.4 Lattice enthalpies, ΔHL
</(kJ mol−1) at 298 K

F Cl Br I

Halides

Li 1037 852 815 761

Na 926 787 752 705

K 821 717 689 649

Rb 789 695 668 632

Cs 750 676 654 620

Ag 969 912 900 886

Be 3017

Mg 2524

Ca 2255

Sr 2153

Oxides

MgO 3850 CaO 3461 SrO 3283 BaO 3114

Sulfides

MgS 3406 CaS 3119 SrS 2974 BaS 2832

Entries refer to MX(s) → M+(g) + X−(g).

Data: Principally D. Cubicciotti, et al., J. Chem. Phys. 31, 1646 (1959).

Table 39.1 Magnetic susceptibilities at 298 K

χ/10−6 χm/(10−10 m3 mol−1)

H2O(l) −9.02 −1.63

C6H6(l) −8.8 −7.8

C6H12(l) −10.2 −11.1

CCl4(l) −5.4 −5.2

NaCl(s) −16 −3.8

Cu(s) −9.7 −0.69

S(rhombic) −12.6 −1.95

Hg(l) −28.4 −4.21

Al(s) +20.7 +2.07

Pt(s) +267.3 +24.25

Na(s) +8.48 +2.01

K(s) +5.94 +2.61

CuSO4 . 5H2O(s) +167 +183

MnSO4 . 4H2O(s) +1859 +1835

NiSO4 . 7H2O(s) +355 +503

FeSO4(s) +3743 +1558

Source: Principally HCP, with χm = χVm= χρ/M.
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Table 43.1 Properties of diatomic molecules

�� / cm−1 θV/K �B / cm−1 θR/K Re/pm kf/(N m−1) Do/(kJ mol−1) σ
1

2H+ 2321.8 3341 29.8 42.9 106 160 255.8 2

1H2 4400.39 6332 60.864 87.6 74.138 574.9 432.1 2

2H2 3118.46 4487 30.442 43.8 74.154 577.0 439.6 2

1H19F 4138.32 5955 20.956 30.2 91.680 965.7 564.4 1

1H35Cl 2990.95 4304 10.593 15.2 127.45 516.3 427.7 1

1H81Br 2648.98 3812 8.465 12.2 141.44 411.5 362.7 1

1H127I 2308.09 3321 6.511 9.37 160.92 313.8 294.9 1

14N2 2358.07 3393 1.9987 2.88 109.76 2293.8 941.7 2

16O2 1580.36 2274 1.4457 2.08 120.75 1176.8 493.5 2

19F2 891.8 1283 0.8828 1.27 141.78 445.1 154.4 2

35Cl2 559.71 805 0.2441 0.351 198.75 322.7 239.3 2

12C16O 2170.21 3122 1.9313 2.78 112.81 1903.17 1071.8 1

79Br81Br 323.2 465 0.0809 0.116 283.3 245.9 190.2 1

Data: AIP.

Table 44.1 Typical vibrational 
wavenumbers, ��/cm 1−

C–H stretch 2850–2960

C–H bend 1340–1465

C–C stretch, bend  700–1250

C = C stretch 1620–1680

C ̂  C stretch 2100–2260

O–H stretch 3590–3650

H-bonds 3200–3570

C = O stretch 1640–1780

C ≡ N stretch 2215–2275

N–H stretch 3200–3500

C–F stretch 1000–1400

C–Cl stretch  600–800

C–Br stretch  500–600

C–I stretch  500

CO3
2− 1410–1450

NO3
− 1350–1420

NO2
− 1230–1250

SO4
2− 1080–1130

Silicates  900–1100

Data: L.J. Bellamy, The infrared spectra of complex 

molecules. Chapman and Hall (1975).  Advances in 

infrared group frequencies. Chapman and Hall (1968).

Table 45.1 Colour, wavelength, frequency, and energy of light

Colour λ/nm ν/(1014 Hz) �� /(104 cm−1) E/eV E/(kJ mol−1)

Infrared >1000 <3.00 <1.00 <1.24 <120

Red  700 4.28 1.43 1.77 171

Orange  620 4.84 1.61 2.00 193

Yellow  580 5.17 1.72 2.14 206

Green  530 5.66 1.89 2.34 226

Blue  470 6.38 2.13 2.64 254

Violet  420 7.14 2.38 2.95 285

Ultraviolet <400 >7.5 >2.5 >3.10 >300

Data: J.G. Calvert and J.N. Pitts, Photochemistry. Wiley, New York (1966).
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Table 45.2 Absorption characteristics of some groups and molecules

Group ��max/(104 cm−1) λmax/nm ε/(dm3 mol−1 cm−1)

C = C (π* ← π) 6.10 163 1.5 × 104

  5.73 174 5.5 × 103

C = O (π* ← n) 3.7–3.5 270–290 10–20

–N = N– 2.9 350 15

  >3.9 <260 Strong

–NO2 3.6 280 10

  4.8 210 1.0 × 104

C6H5– 3.9 255 200

  5.0 200 6.3 × 103

  5.5 180 1.0 × 105

[Cu(OH2)6]
2+(aq) 1.2 810 10

[Cu(NH3)4]
2+(aq) 1.7 600 50

H2O (π* ← n) 6.0 167 7.0 × 103

Table 47.2 Nuclear spin properties

Nuclide Natural  
abundance, %

Spin, I Magnetic  
Moment, μ/μN

g-value γ /(107 T−1s−1) NMR frequency 
at 1 T, �/MHz

1n*   1
2

−1.9130 −3.8260 −18.324 29.164

1H 99.9844 1
2

2.792 85 5.5857 26.752 42.576

2H 0.0156 1 0.857 44 0.857 44 4.1067 6.536

3H*   1
2

2.978 96 −4.2553 −20.380 45.414

10B 19.6 3 1.8006 0.6002 2.875 4.575

11B 80.4 3
2

2.6886 1.7923 8.5841 13.663

13C 1.108 1
2

0.7024 1.4046 6.7272 10.708

14N 99.635 1 0.403 56 0.403 56 1.9328 3.078

17O 0.037 5
2

−1.893 79 −0.7572 −3.627 5.774

19F 100 1
2

2.628 87 5.2567 25.177 40.077

31P 100 1
2

1.1316 2.2634 10.840 17.251

33S 0.74 3
2

0.6438 0.4289 2.054 3.272

35Cl 75.4 3
2

0.8219 0.5479 2.624 4.176

37Cl 24.6 3
2

0.6841 0.4561 2.184 3.476

* Radioactive.

μ is the magnetic moment of the spin state with the largest value of mI: μ = gIμNI and μN is the nuclear magneton (see inside front cover).

Data: KL and HCP.
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Table 50.1 Hyperfine coupling constants for atoms, 
a/mT

Nuclide Spin Isotropic  
coupling

Anisotropic  
coupling

1H 1
2

  50.8(1s)  

2H 1    7.8(1s)  

13C 1
2

 113.0(2s)   6.6(2p)

14N 1   55.2(2s)   4.8(2p)

19F
1
2 1720(2s) 108.4(2p)

31P
1
2  364(3s)  20.6(3p)

35Cl
3
2  168(3s)  10.0(3p)

37Cl
3
2  140(3s)   8.4(3p)

Data: P.W. Atkins and M.C.R. Symons, The structure of inorganic 

radicals. Elsevier, Amsterdam (1967).

Table 52.1 Rotational and vibrational temperatures: 
see Table 43.1

Table 52.2 Symmetry numbers: see Table 43.1

Table 56.1 Temperature variation of molar heat capacities†

a b/(10−3 K−1) c/(105 K2)

Monatomic gases

20.78 0 0

Other gases

Br2 37.32 0.50 −1.26

Cl2 37.03 0.67 −2.85

CO2 44.22 8.79 −8.62

F2 34.56 2.51 −3.51

H2 27.28 3.26 0.50

I2 37.40 0.59 −0.71

N2 28.58 3.77 −0.50

NH3 29.75 25.1 −1.55

O2 29.96 4.18 −1.67

Liquids (from melting to boiling)

C10H8, naphthalene 79.5 0.4075 0

I2 80.33 0 0

H2O 75.29 0 0

Solids

Al 20.67 12.38 0

C (graphite) 16.86 4.77 −8.54

C10H8, naphthalene −110 936 0

Cu 22.64 6.28 0

I2 40.12 49.79 0

NaCl 45.94 16.32 0

Pb 22.13 11.72 0.96

†For Cp,m/(J K−1 mol−1) = a + bT + c/T2.

Source: Mostly LR.
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Table 56.2 Inversion temperatures, normal freezing and boiling 
points, and Joule–Thomson coefficients at 1 atm and 298 K

TI/K Tf/K Tb/K μ/(K atm−1)

Air 603     0.189 at 50 °C

Argon 723 83.8 87.3  

Carbon dioxide 1500 194.7s   1.11 at 300 K

Helium 40   4.22 −0.062

Hydrogen 202 14.0 20.3 −0.03

Krypton 1090 116.6 120.8  

Methane 968 90.6 111.6  

Neon 231 24.5 27.1  

Nitrogen 621 63.3 77.4 0.27

Oxygen 764 54.8 90.2 0.31

s: sublimes.

Data: AIP, JL, and M.W. Zemansky, Heat and thermodynamics. McGraw-Hill, New York (1957).

Table 57.2 Standard enthalpies of fusion and vaporization at the transition temperature, Δtrs H</(kJ mol−1)

Tf/K Fusion Tb/K Vaporization Tf/K Fusion Tb/K Vaporization

Elements Inorganic compounds

Ag 1234 11.30 2436 250.6 CO2 217.0 8.33 194.6 25.23s

Ar 83.81 1.188 87.29 6.506 CS2 161.2 4.39 319.4 26.74

Br2 265.9 10.57 332.4 29.45 H2O 273.15 6.008 373.15 40.656

Cl2 172.1 6.41 239.1 20.41 44.016 at 298 K

F2 53.6 0.26 85.0 3.16 H2S 187.6 2.377 212.8 18.67

H2 13.96 0.117 20.38 0.916 H2SO4 283.5 2.56

He 3.5 0.021 4.22 0.084 NH3 195.4 5.652 239.7 23.35

Hg 234.3 2.292 629.7 59.30

I2 386.8 15.52 458.4 41.80

Organic compounds

N2 63.15 0.719 77.35 5.586 CH4 90.68 0.941 111.7 8.18

Na 371.0 2.601 1156 98.01 CCl4 250.3 2.47 349.9 30.00

O2 54.36 0.444 90.18 6.820 C2H6 89.85 2.86 184.6 14.7

Xe 161 2.30 165 12.6 C6H6 278.61 10.59 353.2 30.8

K 336.4 2.35 1031 80.23 C6H14 178 13.08 342.1 28.85

C10H8 354 18.80 490.9 51.51

CH3OH 175.2 3.16 337.2 35.27

37.99 at 298 K

C2H5OH 158.7 4.60 352 43.5

Data: AIP; s denotes sublimation.
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Table 57.3 Thermodynamic data for organic compounds at 298 K

M/(g mol−1) ΔfH
</(kJ mol−1) ΔfG

</(kJ mol−1) Sm
1 1/(JK mol< − − ) Cp,m

1 1/(JK mol )< − − ΔcH
</(kJ mol−1)

C(s) (graphite) 12.011 0 0 5.740 8.527 −393.51

C(s) (diamond) 12.011 +1.895 +2.900 2.377 6.113 −395.40

CO2(g) 44.040 −393.51 −394.36 213.74 37.11

Hydrocarbons

CH4(g), methane 16.04 −74.81 −50.72 186.26 35.31 −890

CH3(g), methyl 15.04 +145.69 +147.92 194.2 38.70  

C2H2(g), ethyne 26.04 +226.73 +209.20 200.94 43.93 −1300

C2H4(g), ethene 28.05 +52.26 +68.15 219.56 43.56 −1411

C2H6(g), ethane 30.07 −84.68 −32.82 229.60 52.63 −1560

C3H6(g), propene 42.08 +20.42 +62.78 267.05 63.89 −2058

C3H6(g), cyclopropane 42.08 +53.30 +104.45 237.55 55.94 −2091

C3H8(g), propane 44.10 −103.85 −23.49 269.91 73.5 −2220

C4H8(g), 1-butene 56.11 −0.13 +71.39 305.71 85.65 −2717

C4H8(g), cis-2-butene 56.11 −6.99 +65.95 300.94 78.91 −2710

C4H8(g), trans-2-butene 56.11 −11.17 +63.06 296.59 87.82 −2707

C4H10(g), butane 58.13 −126.15 −17.03 310.23 97.45 −2878

C5H12(g), pentane 72.15 −146.44 −8.20 348.40 120.2 −3537

C5H12(l) 72.15 −173.1        

C6H6(l), benzene 78.12 +49.0 +124.3 173.3 136.1 −3268

C6H6(g) 78.12 +82.93 +129.72 269.31 81.67 −3302

C6H12(l), cyclohexane 84.16 −156 +26.8 204.4 156.5 −3920

C6H14(l), hexane 86.18 −198.7   204.3   −4163

C6H5CH3(g), methylbenzene 
(toluene)

92.14 +50.0 +122.0 320.7 103.6 −3953

C7H16(l), heptane 100.21 −224.4 +1.0 328.6 224.3  

C8H18(l), octane 114.23 −249.9 +6.4 361.1   −5471

C8H18(l), iso-octane 114.23 −255.1       −5461

C10H8(s), naphthalene 128.18 +78.53       −5157

Alcohols and phenols

CH3OH(l), methanol 32.04 −238.66 −166.27 126.8 81.6 −726

CH3OH(g) 32.04 −200.66 −161.96 239.81 43.89 −764

C2H5OH(l), ethanol 46.07 −277.69 −174.78 160.7 111.46 −1368

C2H5OH(g) 46.07 −235.10 −168.49 282.70 65.44 −1409

C6H5OH(s), phenol 94.12 −165.0 −50.9 146.0 −3054

Carboxylic acids, hydroxy acids, and esters

HCOOH(l), formic 46.03 −424.72 −361.35 128.95 99.04 −255

CH3COOH(l), acetic 60.05 −484.5 −389.9 159.8 124.3 −875

CH3COOH(aq) 60.05 −485.76 −396.46 178.7

CH CO aq3 2
−( ) 59.05 −486.01 −369.31 +86.6† −6.3

(COOH)2(s), oxalic 90.04 −827.2 117 −254

C6H5COOH(s), benzoic 122.13 −385.1 −245.3 167.6 146.8 −3227

CH3CH(OH)COOH(s), lactic 90.08 −694.0 −1344

CH3COOC2H5(l), ethyl acetate 88.11 −479.0 −332.7 259.4 170.1 −2231
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Table 57.3 (Continued)

M/(g mol−1) ΔfH
</(kJ mol−1) ΔfG

</(kJ mol−1) Sm
1 1/(JK mol< − − ) Cp,m

1 1/(JK mol )< − − ΔcH
</(kJ mol−1)

Alkanals and alkanones

HCHO(g), methanal 30.03 −108.57 −102.53 218.77 35.40 −571

CH3CHO(l), ethanal 44.05 −192.30 −128.12 160.2 −1166

CH3CHO(g) 44.05 −166.19 −128.86 250.3 57.3 −1192

CH3COCH3(l), propanone 58.08 −248.1 −155.4 200.4 124.7 −1790

Sugars

C6H12O6(s), α-d-glucose 180.16 −1274 −2808

C6H12O6(s), β-d-glucose 180.16 −1268 −910 212

C6H12O6(s), β-d-fructose 180.16 −1266 −2810

C12H22O11(s), sucrose 342.30 −2222 −1543 360.2 −5645

Nitrogen compounds

CO(NH2)2(s), urea 60.06 −333.51 −197.33 104.60 93.14 −632

CH3NH2(g), methylamine 31.06 −22.97 +32.16 243.41 53.1 −1085

C6H5NH2(l), aniline 93.13 +31.1 −3393

CH2(NH2)COOH(s), glycine 75.07 −532.9 −373.4 103.5 99.2 −969

Data: NBS, TDOC. † Standard entropies of ions may be either positive or negative because the values are relative to the entropy of the hydrogen ion.

Table 57.4 Thermodynamic data for elements and inorganic compounds at 298 K

M/(g mol−1) ΔfH
</(kJ mol−1) ΔfG

</(kJ mol−1) Sm
1 1/(JK mol< − − )† Cp,m

1 1/(JK mol )< − −

Aluminium (aluminum)

Al(s) 26.98 0 0 28.33 24.35

Al(l) 26.98 +10.56 +7.20 39.55 24.21

Al(g) 26.98 +326.4 +285.7 164.54 21.38

Al3+(g) 26.98 +5483.17

Al3+(aq) 26.98 −531 −485 −321.7

Al2O3(s, α) 101.96 −1675.7 −1582.3 50.92 79.04

AlCl3(s) 133.24 −704.2 −628.8 110.67 91.84

Argon

Ar(g) 39.95 0 0 154.84 20.786

Antimony

Sb(s) 121.75 0 0 45.69 25.23

SbH3(g) 124.77 +145.11 +147.75 232.78 41.05

Arsenic

As(s, α) 74.92 0 0 35.1 24.64

As(g) 74.92 +302.5 +261.0 174.21 20.79

As4(g) 299.69 +143.9 +92.4 314

AsH3(g) 77.95 +66.44 +68.93 222.78 38.07

Barium

Ba(s) 137.34 0 0 62.8 28.07

Ba(g) 137.34 +180 +146 170.24 20.79

Ba2+(aq) 137.34 −537.64 −560.77 +9.6

BaO(s) 153.34 −553.5 −525.1 70.43 47.78

BaCl2(s) 208.25 −858.6 −810.4 123.68 75.14

(continued)

Atkins09819.indb   959 9/11/2013   8:55:34 AM



960 Resource section

Table 57.4 (Continued)

M/(g mol−1) ΔfH
</(kJ mol−1) ΔfG

</(kJ mol−1) Sm
1 1/(JK mol< − − )† Cp,m

1 1/(JK mol )< − −

Beryllium

Be(s) 9.01 0 0 9.50 16.44

Be(g) 9.01 +324.3 +286.6 136.27 20.79

Bismuth

Bi(s) 208.98 0 0 56.74 25.52

Bi(g) 208.98 +207.1 +168.2 187.00 20.79

Bromine

Br2(l) 159.82 0 0 152.23 75.689

Br2(g) 159.82 +30.907 +3.110 245.46 36.02

Br(g) 79.91 +111.88 +82.396 175.02 20.786

Br−(g) 79.91 −219.07

Br−(aq) 79.91 −121.55 −103.96 +82.4 −141.8

HBr(g) 90.92 −36.40 −53.45 198.70 29.142

Cadmium

Cd(s, γ) 112.40 0 0 51.76 25.98

Cd(g) 112.40 +112.01 +77.41 167.75 20.79

Cd2+(aq) 112.40 −75.90 −77.612 −73.2

CdO(s) 128.40 −258.2 −228.4 54.8 43.43

CdCO3(s) 172.41 −750.6 −669.4 92.5

Caesium (cesium)

Cs(s) 132.91 0 0 85.23 32.17

Cs(g) 132.91 +76.06 +49.12 175.60 20.79

Cs+(aq) 132.91 −258.28 −292.02 +133.05 −10.5

Calcium

Ca(s) 40.08 0 0 41.42 25.31

Ca(g) 40.08 +178.2 +144.3 154.88 20.786

Ca2+(aq) 40.08 −542.83 −553.58 −53.1

CaO(s) 56.08 −635.09 −604.03 39.75 42.80

CaCO3(s) (calcite) 100.09 −1206.9 −1128.8 92.9 81.88

CaCO3(s) (aragonite) 100.09 −1207.1 −1127.8 88.7 81.25

CaF2(s) 78.08 −1219.6 −1167.3 68.87 67.03

CaCl2(s) 110.99 −795.8 −748.1 104.6 72.59

CaBr2(s) 199.90 −682.8 −663.6 130

Carbon (for ‘organic’ compounds of carbon, see Table 57.3)

C(s) (graphite) 12.011 0 0 5.740 8.527

C(s) (diamond) 12.011 +1.895 +2.900 2.377 6.113

C(g) 12.011 +716.68 +671.26 158.10 20.838

C2(g) 24.022 +831.90 +775.89 199.42 43.21

CO(g) 28.011 −110.53 −137.17 197.67 29.14

CO2(g) 44.010 −393.51 −394.36 213.74 37.11

CO2(aq) 44.010 −413.80 −385.98 117.6

H2CO3(aq) 62.03 −699.65 −623.08 187.4

HCO aq3
−( ) 61.02 −691.99 −586.77 +91.2

CO aq3
2−( ) 60.01 −677.14 −527.81 −56.9

Atkins09819.indb   960 9/11/2013   8:55:35 AM

www.ebook3000.com

http://www.ebook3000.org


PART 4 Data  961

Table 57.4 (Continued)

M/(g mol−1) ΔfH
</(kJ mol−1) ΔfG

</(kJ mol−1) Sm
1 1/(JK mol< − − )† Cp,m

1 1/(JK mol )< − −

Carbon (for ‘organic’ compounds of carbon, see Table 57.3) (continued)

CCl4(l) 153.82 −135.44 −65.21 216.40 131.75

CS2(l) 76.14 +89.70 +65.27 151.34 75.7

HCN(g) 27.03 +135.1 +124.7 201.78 35.86

HCN(l) 27.03 +108.87 +124.97 112.84 70.63

CN−(aq) 26.02 +150.6 +172.4 +94.1

Chlorine

Cl2(g) 70.91 0 0 223.07 33.91

Cl(g) 35.45 +121.68 +105.68 165.20 21.840

Cl−(g) 34.45 −233.13

Cl−(aq) 35.45 −167.16 −131.23 +56.5 −136.4

HCl(g) 36.46 −92.31 −95.30 186.91 29.12

HCl(aq) 36.46 −167.16 −131.23 56.5 −136.4

Chromium

Cr(s) 52.00 0 0 23.77 23.35

Cr(g) 52.00 +396.6 +351.8 174.50 20.79

CrO aq4
2−( ) 115.99 −881.15 −727.75 +50.21

Cr O aq2 7
2−( ) 215.99 −1490.3 −1301.1 +261.9

Copper

Cu(s) 63.54 0 0 33.150 24.44

Cu(g) 63.54 +338.32 +298.58 166.38 20.79

Cu+(aq) 63.54 +71.67 +49.98 +40.6

Cu2+(aq) 63.54 +64.77 +65.49 −99.6

Cu2O(s) 143.08 −168.6 −146.0 93.14 63.64

CuO(s) 79.54 −157.3 −129.7 42.63 42.30

CuSO4(s) 159.60 −771.36 −661.8 109 100.0

CuSO4·H2O(s) 177.62 −1085.8 −918.11 146.0 134

CuSO4·5H2O(s) 249.68 −2279.7 −1879.7 300.4 280

Deuterium

D2(g) 4.028 0 0 144.96 29.20

HD(g) 3.022 +0.318 −1.464 143.80 29.196

D2O(g) 20.028 −249.20 −234.54 198.34 34.27

D2O(l) 20.028 −294.60 −243.44 75.94 84.35

HDO(g) 19.022 −245.30 −233.11 199.51 33.81

HDO(l) 19.022 −289.89 −241.86 79.29

Fluorine

F2(g) 38.00 0 0 202.78 31.30

F(g) 19.00 +78.99 +61.91 158.75 22.74

F−(aq) 19.00 −332.63 −278.79 −13.8 −106.7

HF(g) 20.01 −271.1 −273.2 173.78 29.13

Gold

Au(s) 196.97 0 0 47.40 25.42

Au(g) 196.97 +366.1 +326.3 180.50 20.79

Helium

He(g) 4.003 0 0 126.15 20.786

(continued)

Atkins09819.indb   961 9/11/2013   8:55:37 AM



962 Resource section

Table 57.4 (Continued)

M/(g mol−1) ΔfH
</(kJ mol−1) ΔfG

</(kJ mol−1) Sm
1 1/(JK mol< − − )† Cp,m

1 1/(JK mol )< − −

Hydrogen (see also deuterium)

H2(g) 2.016 0 0 130.684 28.824

H(g) 1.008 +217.97 +203.25 114.71 20.784

H+(aq) 1.008 0 0 0 0

H+(g) 1.008 +1536.20

H2O(s) 18.015 37.99

H2O(l) 18.015 −285.83 −237.13 69.91 75.291

H2O(g) 18.015 −241.82 −228.57 188.83 33.58

H2O2(l) 34.015 −187.78 −120.35 109.6 89.1

Iodine

I2(s) 253.81 0 0 116.135 54.44

I2(g) 253.81 +62.44 +19.33 260.69 36.90

I(g) 126.90 +106.84 +70.25 180.79 20.786

I−(aq) 126.90 −55.19 −51.57 +111.3 −142.3

HI(g) 127.91 +26.48 +1.70 206.59 29.158

Iron

Fe(s) 55.85 0 0 27.28 25.10

Fe(g) 55.85 +416.3 +370.7 180.49 25.68

Fe2+(aq) 55.85 −89.1 −78.90 −137.7

Fe3+(aq) 55.85 −48.5 −4.7 −315.9

Fe3O4(s) (magnetite) 231.54 −1118.4 −1015.4 146.4 143.43

Fe2O3(s) (haematite) 159.69 −824.2 −742.2 87.40 103.85

FeS(s, α) 87.91 −100.0 −100.4 60.29 50.54

FeS2(s) 119.98 −178.2 −166.9 52.93 62.17

Krypton

Kr(g) 83.80 0 0 164.08 20.786

Lead

Pb(s) 207.19 0 0 64.81 26.44

Pb(g) 207.19 +195.0 +161.9 175.37 20.79

Pb2+(aq) 207.19 −1.7 −24.43 +10.5

PbO(s, yellow) 223.19 −217.32 −187.89 68.70 45.77

PbO(s, red) 223.19 −218.99 −188.93 66.5 45.81

PbO2(s) 239.19 −277.4 −217.33 68.6 64.64

Lithium

Li(s) 6.94 0 0 29.12 24.77

Li(g) 6.94 +159.37 +126.66 138.77 20.79

Li+(aq) 6.94 −278.49 −293.31 +13.4 68.6

Magnesium

Mg(s) 24.31 0 0 32.68 24.89

Mg(g) 24.31 +147.70 +113.10 148.65 20.786

Mg2+(aq) 24.31 −466.85 −454.8 −138.1

MgO(s) 40.31 −601.70 −569.43 26.94 37.15

MgCO3(s) 84.32 −1095.8 −1012.1 65.7 75.52

MgCl2(s) 95.22 −641.32 −591.79 89.62 71.38
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Table 57.4 (Continued)

M/(g mol−1) ΔfH
</(kJ mol−1) ΔfG

</(kJ mol−1) Sm
1 1/(JK mol< − − )† Cp,m

1 1/(JK mol )< − −

Mercury

Hg(l) 200.59 0 0 76.02 27.983

Hg(g) 200.59 +61.32 +31.82 174.96 20.786

Hg2+(aq) 200.59 +171.1 +164.40 −32.2

Hg aq2
2+ ( ) 401.18 +172.4 +153.52 +84.5

HgO(s) 216.59 −90.83 −58.54 70.29 44.06

Hg2Cl2(s) 472.09 −265.22 −210.75 192.5 102

HgCl2(s) 271.50 −224.3 −178.6 146.0

HgS(s, black) 232.65 −53.6 −47.7 88.3

Neon

Ne(g) 20.18 0 0 146.33 20.786

Nitrogen

N2(g) 28.013 0 0 191.61 29.125

N(g) 14.007 +472.70 +455.56 153.30 20.786

NO(g) 30.01 +90.25 +86.55 210.76 29.844

N2O(g) 44.01 +82.05 +104.20 219.85 38.45

NO2(g) 46.01 +33.18 +51.31 240.06 37.20

N2O4(g) 92.1 +9.16 +97.89 304.29 77.28

N2O5(s) 108.01 −43.1 +113.9 178.2 143.1

N2O5(g) 108.01 +11.3 +115.1 355.7 84.5

HNO3(l) 63.01 −174.10 −80.71 155.60 109.87

HNO3(aq) 63.01 −207.36 −111.25 146.4 −86.6

NO aq3
−( ) 62.01 −205.0 −108.74 +146.4 −86.6

NH3(g) 17.03 −46.11 −16.45 192.45 35.06

NH3(aq) 17.03 −80.29 −26.50 111.3

NH aq4
+ ( ) 18.04 −132.51 −79.31 +113.4 79.9

NH2OH(s) 33.03 −114.2

HN3(l) 43.03 +264.0 +327.3 140.6 43.68

HN3(g) 43.03 +294.1 +328.1 238.97 98.87

N2H4(l) 32.05 +50.63 +149.43 121.21 139.3

NH4NO3(s) 80.04 −365.56 −183.87 151.08 84.1

NH4Cl(s) 53.49 −314.43 −202.87 94.6

Oxygen

O2(g) 31.999 0 0 205.138 29.355

O(g) 15.999 +249.17 +231.73 161.06 21.912

O3(g) 47.998 +142.7 +163.2 238.93 39.20

OH−(aq) 17.007 −229.99 −157.24 −10.75 −148.5

Phosphorus

P(s, wh) 30.97 0 0 41.09 23.840

P(g) 30.97 +314.64 +278.25 163.19 20.786

P2(g) 61.95 +144.3 +103.7 218.13 32.05

P4(g) 123.90 +58.91 +24.44 279.98 67.15

PH3(g) 34.00 +5.4 +13.4 210.23 37.11

PCl3(g) 137.33 −287.0 −267.8 311.78 71.84

(continued)
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Table 57.4 (Continued)

M/(g mol−1) ΔfH
</(kJ mol−1) ΔfG

</(kJ mol−1) Sm
1 1/(JK mol< − − )† Cp,m

1 1/(JK mol )< − −

Phosphorus (continued)

PCl3(l) 137.33 −319.7 −272.3 217.1

PCl5(g) 208.24 −374.9 −305.0 364.6 112.8

PCl5(s) 208.24 −443.5

H3PO3(s) 82.00 −964.4

H3PO3(aq) 82.00 −964.8

H3PO4(s) 94.97 −1279.0 −1119.1 110.50 106.06

H3PO4(l) 94.97 −1266.9

H3PO4(aq) 94.97 −1277.4 −1018.7 −222

PO ( )4
3− aq 94.97 −1277.4 −1018.7 −221.8

P4O10(s) 283.89 −2984.0 −2697.0 228.86 211.71

P4O6(s) 219.89 −1640.1

Potassium

K(s) 39.10 0 0 64.18 29.58

K(g) 39.10 +89.24 +60.59 160.336 20.786

K+(g) 39.10 +514.26

K+(aq) 39.10 −252.38 −283.27 +102.5 21.8

KOH(s) 56.11 −424.76 −379.08 78.9 64.9

KF(s) 58.10 −576.27 −537.75 66.57 49.04

KCl(s) 74.56 −436.75 −409.14 82.59 51.30

KBr(s) 119.01 −393.80 −380.66 95.90 52.30

Kl(s) 166.01 −327.90 −324.89 106.32 52.93

Silicon

Si(s) 28.09 0 0 18.83 20.00

Si(g) 28.09 +455.6 +411.3 167.97 22.25

SiO2(s, α) 60.09 −910.94 −856.64 41.84 44.43

Silver

Ag(s) 107.87 0 0 42.55 25.351

Ag(g) 107.87 +284.55 +245.65 173.00 20.79

Ag+(aq) 107.87 +105.58 +77.11 +72.68 21.8

AgBr(s) 187.78 −100.37 −96.90 107.1 52.38

AgCl(s) 143.32 −127.07 −109.79 96.2 50.79

Ag2O(s) 231.74 −31.05 −11.20 121.3 65.86

AgNO3(s) 169.88 −129.39 −33.41 140.92 93.05

Sodium

Na(s) 22.99 0 0 51.21 28.24

Na(g) 22.99 +107.32 +76.76 153.71 20.79

Na+(aq) 22.99 −240.12 −261.91 +59.0 46.4

NaOH(s) 40.00 −425.61 −379.49 64.46 59.54

NaCl(s) 58.44 −411.15 −384.14 72.13 50.50

NaBr(s) 102.90 −361.06 −348.98 86.82 51.38

NaI(s) 149.89 −287.78 −286.06 98.53 52.09
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Table 57.4 (Continued)

M/(g mol−1) ΔfH
</(kJ mol−1) ΔfG

</(kJ mol−1) Sm
1 1/(JK mol< − − )† Cp,m

1 1/(JK mol )< − −

Sulfur

S(s, α) (rhombic) 32.06 0 0 31.80 22.64

S(s, β) (monoclinic) 32.06 +0.33 +0.1 32.6 23.6

S(g) 32.06 +278.81 +238.25 167.82 23.673

S2(g) 64.13 +128.37 +79.30 228.18 32.47

S2−(aq) 32.06 +33.1 +85.8 −14.6

SO2(g) 64.06 −296.83 −300.19 248.22 39.87

SO3(g) 80.06 −395.72 −371.06 256.76 50.67

H2SO4(l) 98.08 −813.99 −690.00 156.90 138.9

H2SO4(aq) 98.08 −909.27 −744.53 20.1 −293

SO4
2−(aq) 96.06 −909.27 −744.53 +20.1 −293

HSO aq4
−( ) 97.07 −887.34 −755.91 +131.8 −84

H2S(g) 34.08 −20.63 −33.56 205.79 34.23

H2S(aq) 34.08 −39.7 −27.83 121

HS−(aq) 33.072 −17.6 +12.08 +62.08

SF6(g) 146.05 −1209 −1105.3 291.82 97.28

Tin

Sn(s, β) 118.69 0 0 51.55 26.99

Sn(g) 118.69 +302.1 +267.3 168.49 20.26

Sn2+(aq) 118.69 −8.8 −27.2 −17

SnO(s) 134.69 −285.8 −256.9 56.5 44.31

SnO2(s) 150.69 −580.7 −519.6 52.3 52.59

Xenon

Xe(g) 131.30 0 0 169.68 20.786

Zinc

Zn(s) 65.37 0 0 41.63 25.40

Zn(g) 65.37 +130.73 +95.14 160.98 20.79

Zn2+(aq) 65.37 −153.89 −147.06 −112.1 46

ZnO(s) 81.37 −348.28 −318.30 43.64 40.25

Source: NBS. † Standard entropies of ions may be either positive or negative because the values are relative to the entropy of the hydrogen ion.
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Table 58.1 Expansion coefficients, α, and isothermal 
compressibilities, κT

α/(10−4 K−1) κT /(10−6 atm−1)

Liquids

Benzene 12.4 92.1

Carbon tetrachloride 12.4 90.5

Ethanol 11.2 76.8

Mercury 1.82 38.7

Water 2.1 49.6

Solids

Copper 0.501 0.735

Diamond 0.030 0.187

Iron 0.354 0.589

Lead 0.861 2.21

The values refer to 20 °C.

Data: AIP(α), KL(κT).

Table 62.1 Standard entropies (and temperatures) of 
phase transitions, ΔtrsS</(J K−1 mol−1)

Fusion (at Tf) Vaporization (at Tb)

Ar 14.17 (at 83.8 K) 74.53 (at 87.3 K)

Br2 39.76 (at 265.9 K) 88.61 (at 332.4 K)

C6H6 38.00 (at 278.6 K) 87.19 (at 353.2 K)

CH3COOH 40.4 (at 289.8 K) 61.9 (at 391.4 K)

CH3OH 18.03 (at 175.2 K) 104.6 (at 337.2 K)

Cl2 37.22 (at 172.1 K) 85.38 (at 239.0 K)

H2 8.38 (at 14.0 K) 44.96 (at 20.38 K)

H2O 22.00 (at 273.2 K) 109.1 (at 373.2 K)

H2S 12.67 (at 187.6 K) 87.75 (at 212.0 K)

He 4.8 (at 1.8 K and 30 bar) 19.9 (at 4.22 K)

N2 11.39 (at 63.2 K) 75.22 (at 77.4 K)

NH3 28.93 (at 195.4 K) 97.41 (at 239.73 K)

O2 8.17 (at 54.4 K) 75.63 (at 90.2 K)

Data: AIP.

Table 62.2 The standard enthalpies and entropies of vaporization of 
liquids at their normal boiling point

ΔvapH</(kJ mol−1) θb/°C ΔvapS</(J K−1 mol−1)

Benzene 30.8 80.1 +87.2

Carbon disulfide 26.74 46.25 +83.7

Carbon tetrachloride 30.00 76.7 +85.8

Cyclohexane 30.1 80.7 +85.1

Decane 38.75 174 +86.7

Dimethyl ether 21.51 −23 +86

Ethanol 38.6 78.3 +110.0

Hydrogen sulfide 18.7 −60.4 +87.9

Mercury 59.3 356.6 +94.2

Methane 8.18 −161.5 +73.2

Methanol 35.21 65.0 +104.1

Water 40.7 100.0 +109.1

Data: JL.

Table 63.1 Standard Third-Law entropies at 298 K: see Tables 
57.3 and 57.4

Table 65.1 Standard Gibbs energies of formation at 298 K: 
see Tables 57.3 and 57.4

Table 70.1 Henry’s law constants for 
gases at 298 K, K/(kPa kg mol−1)

Water Benzene

CH4 7.55 × 104 44.4 × 103

CO2 3.01 × 103 8.90 × 102

H2 1.28 × 105 2.79 × 104

N2 1.56 × 105 1.87 × 104

O2 7.92 × 104

Data: converted from R.J. Silbey and R.A. Alberty, 

Physical chemistry. Wiley, New York (2001).
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Table 72.3 Mean activity coefficients in water at 298 K

b/b< HCl KCl CaCl2 H2SO4 LaCl3 In2(SO4)3

0.001 0.966 0.966 0.888 0.830 0.790

0.005 0.929 0.927 0.789 0.639 0.636 0.16

0.01 0.905 0.902 0.732 0.544 0.560 0.11

0.05 0.830 0.816 0.584 0.340 0.388 0.035

0.10 0.798 0.770 0.524 0.266 0.356 0.025

0.50 0.769 0.652 0.510 0.155 0.303 0.014

1.00 0.811 0.607 0.725 0.131 0.387

2.00 1.011 0.577 1.554 0.125 0.954

Data: RS, HCP, and S. Glasstone, Introduction to electrochemistry. Van Nostrand (1942).

(continued)

Reduction half-reaction E</V

Strongly oxidizing

H4XeO6 + 2 H+ + 2 e− → XeO3 + 3 H2O +3.0

F2 + 2 e−→ 2F− +2.87

O3 + 2 H+ + 2 e− → O2 + H2O +2.07

S O 2 e 2 SO2 8
2

4
2− − −+ → +2.05

Ag2+ + e− → Ag+ +1.98

Co3+ + e− → Co2+ +1.81

H2O2 + 2 H+ + 2 e− → 2 H2O +1.78

Au+ + e− → Au +1.69

Pb4+ + 2 e− → Pb2+ +1.67

2 HClO + 2 H+ + 2 e−→ Cl2 + 2 H2O +1.63

Ce4+ + e− → Ce3+ +1.61

2 HBrO + 2 H+ + 2 e−→ Br2 + 2 H2O +1.60

MnO 8 H 5e Mn 4 H O4
2

2
− + + → ++ − + +1.51

Mn3+ + e− → Mn2+ +1.51

Au3+ + 3 e− → Au +1.40

Cl2 + 2 e−→ 2 Cl− +1.36

Cr O 14 H 6 e 2 Cr 7 H O2
2 3

27
− + + → ++ − + +1.33

O3 + H2O + 2 e− → O2 + 2 OH− +1.24

O2 + 4 H++ 4 e− → 2 H2O +1.23

ClO 2 H 2 e ClO H O24 3
− + − −+ + → + +1.23

MnO2 + 4 H+ + 2 e− → Mn2+ + 2 H2O +1.23

Pt2+ + 2 e− → Pt +1.20

Br2 + 2 e−→ 2Br− +1.09

Pu4+ + e− → Pu3+ +0.97

NO 4 H 3 e NO 2 H O23
− + −+ + → + +0.96

2 Hg 2 e Hg2 2+ − ++ → 2 +0.92

ClO− + H2O + 2 e− → Cl− + 2 OH− +0.89

Table 77.1A Standard potentials at 298 K. (a) In electrochemical order

Reduction half-reaction E</V

Hg2+ + 2 e− → Hg +0.86

NO 2H e NO H O23 2
− + −+ + → + +0.80

Ag+ + e− → Ag +0.80

Hg 2 e 2 Hg2
2
+ −+ → +0.79

AgF + e− → Ag + F− +0.78

Fe3+ + e− → Fe2+ +0.77

BrO− + H2O + 2 e− → Br− + 2 OH− +0.76

Hg SO 2 e 2 Hg SO2 4
2+ → +−
4
− +0.62

MnO 2 H O 2 e MnO 4 OH2
2 24

− −+ + → +− +0.60

MnO e MnO2
4 4
− −+ → − +0.56

I2 + 2 e−→ 2 I− +0.54

I 2 e 3 I3
− − −+ → +0.53

Cu+ + e− → Cu +0.52

NiOOH + H2O + e− → Ni(OH)2 + OH− +0.49

Ag CrO 2 e 2 Ag CrO2 4
2+ → +−
4
− +0.45

O2 + 2 H2O + 4 e− → 4 OH− +0.40

ClO H O 2 e ClO 2OH24 3
− − − −+ + → + +0.36

[Fe(CN)6]
3− + e− → [Fe(CN)6]

4− +0.36

Cu2+ + 2 e− → Cu +0.34

Hg2Cl2 + 2 e−→ 2 Hg + 2 Cl− +0.27

AgCl + e− → Ag + Cl− +0.22

Bi3+ + 3 e− → Bi +0.20

Cu2+ + e− → Cu+ +0.16

Sn4+ + 2 e− → Sn2+ +0.15

NO H O 2 e NO 2 OH23 2
− − − −+ + → + +0.10

AgBr + e− → Ag + Br− +0.0713

Ti4+ + e− → Ti3+  0.00

2 H+ + 2 e− → H2 0, by definition
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Reduction half-reaction E</V

Ag+ + e− → Ag +0.80

Ag2+ + e− → Ag+ +1.98

AgBr + e− → Ag + Br− +0.0713

AgCl + e− → Ag + Cl− +0.22

Ag CrO 2 e 2Ag CrO2 4
2+ → +−
4
− +0.45

AgF + e− → Ag + F− +0.78

AgI + e− → Ag + I− −0.15

Al3+ + 3 e− → Al −1.66

Au+ + e− → Au +1.69

Au3+ + 3 e− → Au +1.40

Ba2+ + 2 e− → Ba −2.91

Be2+ + 2 e− → Be −1.85

Bi3+ + 3 e− → Bi +0.20

Br2 + 2 e−→ 2Br− +1.09

BrO− + H2O + 2 e− → Br− + 2 OH− +0.76

Reduction half-reaction E</V

Fe3+ + 3 e− → Fe −0.04

O H O 2 e HO OH2 2 2+ + → +− −− −0.08

Pb2+ + 2 e− → Pb −0.13

In+ + e− → In −0.14

Sn2+ + 2 e− → Sn −0.14

AgI + e− → Ag + I− −0.15

Ni2+ + 2 e− → Ni −0.23

V3+ + e− → V2+ −0.26

Co2+ + 2 e− → Co −0.28

In3+ + 3 e− → In −0.34

Tl+ + e− → Tl −0.34

PbSO 2 e Pb SO4 4
2+ → +− − −0.36

Ti3+ + e− → Ti2+ −0.37

Cd2+ + 2 e− → Cd −0.40

In2+ + e− → In+ −0.40

Cr3+ + e− → Cr2+ −0.41

Fe2+ + 2 e− → Fe −0.44

In3+ + 2 e− → In+ −0.44

S + 2 e− → S2− −0.48

In3+ + e− → In2+ −0.49

O e O2 + →− −
2 −0.56

U4+ + e− → U3+ −0.61

Cr3+ + 3 e− → Cr −0.74

Table 77.1 (Continued)

Reduction half-reaction E</V

Zn2+ + 2 e− → Zn −0.76

Cd(OH) e Cd OH2 2 2+ → +− − −0.81

2 H2O + 2 e−→ H2 + 2 OH− −0.83

Cr2+ + 2e− → Cr −0.91

Mn2+ + 2 e− → Mn −1.18

V2+ + 2 e− → V −1.19

Ti2+ + 2 e− → Ti −1.63

Al3+ + 3 e− → Al −1.66

U3+ + 3 e− → U −1.79

Be2+ + 2 e− → Be −1.85

Sc3+ + 3 e− → Sc −2.09

Mg2+ + 2 e− → Mg −2.36

Ce3+ + 3 e− → Ce −2.48

La3+ + 3 e− → La −2.52

Na+ + e− → Na −2.71

Ca2+ + 2 e− → Ca −2.87

Sr2+ + 2 e− → Sr −2.89

Ba2+ + 2 e− → Ba −2.91

Ra2+ + 2 e− → Ra −2.92

Cs+ + e− → Cs −2.92

Rb+ + e− → Rb −2.93

K+ + e− → K −2.93

Li+ + e− → Li −3.05

Strongly reducing

Table 77.1 Standard potentials at 298 K. (b) In alphabetical order

Reduction half-reaction E</V

Ca2+ + 2 e− → Ca −2.87

Cd(OH)2 + 2 e−→ Cd + 2 OH− −0.81

Cd2+ + 2 e− → Cd −0.40

Ce3+ + 3 e− → Ce −2.48

Ce4+ + e− → Ce3+ +1.61

Cl2 + 2 e−→ 2 Cl− +1.36

ClO− + H2O + 2 e− → Cl− + 2 OH− +0.89

ClO 2 H 2 e ClO H O24 3
− + − −+ + → + +1.23

ClO H O 2 e ClO 2 OH2 34
− − −+ + → +− +0.36

Co2+ + 2 e− → Co −0.28

Co3+ + e− → Co2+ +1.81

Cr2+ + 2 e− → Cr −0.91

Cr O 14 H 6 e 2 Cr 7H O2
2 3

27
− + + → ++ − + +1.33

Cr3+ + 3 e− → Cr −0.74

Cr3+ + e− → Cr2+ −0.41
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Table 77.1 (Continued)

Reduction half-reaction E</V

Cs+ + e− → Cs −2.92

Cu+ + e− → Cu +0.52

Cu2+ + 2 e− → Cu +0.34

Cu2+ + e− → Cu+ +0.16

F2 + 2 e−→ 2F− +2.87

Fe2+ + 2 e− → Fe −0.44

Fe3+ + 3 e− → Fe −0.04

Fe3+ + e− → Fe2+ +0.77

[Fe(CN)6]
3− + e− → [Fe(CN)6]

4− +0.36

2 H+ + 2 e− → H2 0, by definition

2 H2O + 2 e−→ H2 + 2 OH− −0.83

2 HBrO + 2 H+ + 2 e−→ Br2 + 2 H2O +1.60

2 HClO + 2 H+ + 2 e−→ Cl2 + 2 H2O +1.63

H2O2 + 2 H++ 2 e− → 2 H2O +1.78

H4XeO6 + 2 H++ 2 e− → XeO3+ 3 H2O +3.0

Hg 2 e 2 Hg2
2
+ −+ → +0.79

Hg2Cl2 + 2 e−→ 2 Hg + 2 Cl− +0.27

Hg2+ + 2 e− → Hg +0.86

2 Hg 2 e Hg2 2+ − ++ → 2
+0.92

Hg SO 2 e 2 Hg SO2 4
2+ → +−
4
− +0.62

I2 + 2 e−→ 2 I− +0.54

I 2 e 3 I3
− − −+ → +0.53

In+ + e− → In −0.14

In2+ + e− → In+ −0.40

In3+ + 2 e− → In+ −0.44

In3+ + 3 e− → In −0.34

In3+ + e− → In2+ −0.49

K+ + e− → K −2.93

La3+ + 3 e− → La −2.52

Li+ + e− → Li −3.05

Mg2+ + 2 e− → Mg −2.36

Mn2+ + 2 e− → Mn −1.18

Mn3+ + e− → Mn2+ +1.51

MnO2 + 4 H++ 2 e− → Mn2+ + 2 H2O +1.23

MnO 8 H 5 e Mn 4H O2 2
4 2
− + + → ++ − + +1.51

MnO e MnO2
4 4
− −+ → − +0.56

Reduction half-reaction E</V

MnO 2 H O 2 e MnO 4 OH2
2 24

− + + → +− − +0.60

Na+ + e− → Na −2.71

Ni2+ + 2 e− → Ni −0.23

NiOOH + H2O + e− → Ni(OH)2 + OH− +0.49

NO 2 H e NO H O2 23
− + −+ + → + +0.80

NO 4 H 3 e NO 2 H O23
− + −+ + → + +0.96

NO H O 2 e NO 2 OH23 2
− − − −+ + → + +0.10

O2 + 2 H2O + 4 e− → 4 OH− +0.40

O2 + 4 H++ 4 e− → 2 H2O +1.23

O e O2 + →− −
2 −0.56

O H O 2 e HO OH2 2+ + → +− − −
2 −0.08

O3 + 2 H++ 2 e− → O2+ H2O +2.07

O3 + H2O + 2 e− → O2 + 2 OH− +1.24

Pb2+ + 2 e− → Pb −0.13

Pb4+ + 2 e− → Pb2+ +1.67

PbSO 2 e Pb SO4
2+ → +−
4
− −0.36

Pt2+ + 2 e− → Pt +1.20

Pu4+ + e− → Pu3+ +0.97

Ra2+ + 2 e− → Ra −2.92

Rb+ + e− → Rb −2.93

S + 2 e− → S2− −0.48

S O 2e 2 SO2
2 2
8 4
− − −+ → +2.05

Sc3+ + 3 e− → Sc −2.09

Sn2+ + 2 e− → Sn −0.14

Sn4+ + 2 e− → Sn2+ +0.15

Sr2+ + 2 e− → Sr −2.89

Ti2+ + 2 e− → Ti −1.63

Ti3+ + e− → Ti2+ −0.37

Ti4+ + e− → Ti3+  0.00

Tl+ + e− → Tl −0.34

U3+ + 3 e− → U −1.79

U4+ + e− → U3+ −0.61

V2+ + 2 e− → V −1.19

V3+ + e− → V2+ −0.26

Zn2+ + 2 e− → Zn −0.76
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Table 78.1 Collision cross-
sections, σ/nm2

Ar 0.36

C2H4 0.64

C6H6 0.88

CH4 0.46

Cl2 0.93

CO2 0.52

H2 0.27

He 0.21

N2 0.43

Ne 0.24

O2 0.40

SO2 0.58

Data: KL.

Table 79.1 Transport properties of gases at 1 atm

κ/(mW K−1 m−1) η/μP

273 K 273 K 293 K

Air 24.1 173 182

Ar 16.3 210 223

C2H4 16.4 97 103

CH4 30.2 103 110

Cl2 7.9 123 132

CO2 14.5 136 147

H2 168.2 84 88

He 144.2 187 196

Kr 8.7 234 250

N2 24.0 166 176

Ne 46.5 298 313

O2 24.5 195 204

Xe 5.2 212 228

Data: KL.

Table 80.1 Viscosities of liquids at 298 K, η/(10−3 kg m−1 s−1)

Benzene 0.601

Carbon tetrachloride 0.880

Ethanol 1.06

Mercury 1.55

Methanol 0.553

Pentane 0.224

Sulfuric acid 27

Water† 0.891

† The viscosity of water over its entire liquid range is represented with less than 1 per 

cent error by the expression log(η20/η) = A/B,

A = 1.370 23(t − 20) + 8.36 × 10−4(t − 20)2 B = 109 + t t = θ/°C

Convert kg m−1 s−1 to centipoise (cP) by multiplying by 103 (so η ≈ 1 cP for water).

Data: AIP, KL.

Table 80.2 Ionic mobilities in water at 298 K, u/(10−8 m2 s−1 V−1)

Cations Anions

Ag+ 6.24 Br− 8.09

Ca2+ 6.17 CH CO3 2
− 4.24

Cu2+ 5.56 Cl− 7.91

H+ 36.23 CO3
2− 7.46

K+ 7.62 F− 5.70

Li+ 4.01 [Fe(CN)6]
3− 10.5

Na+ 5.19 [Fe(CN)6]
4− 11.4

NH4
+ 7.63 I− 7.96

[N(CH3)4]
+ 4.65 NO3

− 7.40

Rb+ 7.92 OH− 20.64

Zn2+ 5.47 SO4
2− 8.29

Data: Principally Table 80.1 and u = λ/zF.
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Table 81.1 Diffusion coefficients at 298 K, D/(10−9 m2 s−1)

Molecules in liquids Ions in water

I2 in hexane 4.05 H2 in CCl4(l) 9.75 K+ 1.96 Br− 2.08

 in benzene 2.13 N2 in CCl4(l) 3.42 H+ 9.31 Cl− 2.03

CCl4 in heptane 3.17 O2 in CCl4(l) 3.82 Li+ 1.03 F− 1.46

Glycine in water 1.055 Ar in CCl4(l) 3.63 Na+ 1.33 I− 2.05

Dextrose in water 0.673 CH4 in CCl4(l) 2.89 OH− 5.03

Sucrose in water 0.5216 H2O in water 2.26

CH3OH in water 1.58

C2H5OH in water 1.24

Data: AIP.

Table 83.1 Kinetic data for first-order reactions

Phase θ/°C κr/s
−1 t1/2

2 N2O5→ 4 NO2 + O2 g 25 3.38 × 10−5 5.70 h

HNO3(l) 25 1.47 × 10−6 131 h

Br2(l) 25 4.27 × 10−5 4.51 h

C2H6 → 2 CH3 g 700 5.36 × 10−4 21.6 min

Cyclopropane → propene g 500 6.71 × 10−4 17.2 min

CH3N2CH3→ C2H6 + N2 g 327 3.4 × 10−4 34 min

Sucrose → glucose + fructose aq(H+) 25 6.0 × 10−5 3.2 h

g: High pressure gas-phase limit.

Data: Principally K.J. Laidler, Chemical kinetics. Harper & Row, New York (1987); M.J. Pilling and P.W. Seakins, Reaction kinetics. Oxford University Press, Oxford (1995); 

J. Nicholas, Chemical kinetics. Harper & Row, New York (1976). See also JL.

Table 83.2 Kinetic data for second-order reactions

Phase θ/°C kr/(dm3 mol−1 s−1)

2 NOBr → 2 NO + Br2 g 10 0.80

2 NO2 → 2 NO + O2 g 300 0.54

H2 + I2 → 2 HI g 400 2.42 × 10−2

D2 + HCl → DH + DCl g 600 0.141

2 I → I2 g 23 7 × 109

hexane 50 1.8 × 1010

CH3Cl + CH3O
− methanol 20 2.29 × 10−6

CH3Br + CH3O
− methanol 20 9.23 × 10−6

H+ + OH− → H2O water 25 1.35 × 1011

ice −10 8.6 × 1012

Data: Principally K.J. Laidler, Chemical kinetics. Harper & Row, New York (1987); M.J. Pilling and P.W. Seakins, Reaction kinetics. Oxford University Press, Oxford (1995); 

J. Nicholas, Chemical kinetics. Harper & Row, New York (1976).
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Table 85.1 Arrhenius parameters

First-order reactions A/s−1 Ea/(kJ mol−1)

Cyclopropane → propene 1.58 × 1015 272

CH3NC → CH3CN 3.98 × 1013 160

cis-CHD = CHD → trans-CHD = CHD 3.16 × 1012 256

Cyclobutane → 2 C2H4 3.98 × 1013 261

C2H5I → C2H4 + HI 2.51 × 1017 209

C2H6 → 2 CH3 2.51 × 107 384

2 N2O5 → 4 NO2 + O2 4.94 × 1013 103.4

N2O → N2 + O 7.94 × 1011 250

C2H5 → C2H4 + H 1.0 × 1013 167

Second-order, gas-phase A/(dm3 mol−1 s−1) Ea/(kJ mol−1)

O + N2 → NO + N 1 × 1011 315

OH + H2 → H2O + H 8 × 1010 42

Cl + H2 → HCl + H 8 × 1010 23

2 CH3 → C2H6 2 × 1010 ca.0

NO + Cl2 → NOCl + Cl 4.0 × 109 85

SO + O2 → SO2 + O 3 × 108 27

CH3 + C2H6 → CH4 + C2H5 2 × 108 44

C6H5 + H2 → C6H6 + H 1 × 108 ca.25

Second-order, solution A/(dm3 mol−1 s−1) Ea/(kJ mol−1)

C2H5ONa + CH3I in ethanol 2.42 × 1011 81.6

C2H5Br + OH− in water 4.30 × 1011 89.5

C2H5I + C2H5O
− in ethanol 1.49 × 1011 86.6

C2H5Br + OH− in ethanol 4.30 × 1011 89.5

CO2 + OH− in water 1.5 × 1010 38

CH I S O in water3 2+ −
3
2 2.19 × 1012 78.7

Sucrose + H2O in acidic water
(CH3)3CCl solvolysis

1.50 × 1015 107.9

 in water 7.1 × 1016 100

 in methanol 2.3 × 1013 107

 in ethanol 3.0 × 1013 112

 in acetic acid 4.3 × 1013 111

 in chloroform 1.4 × 104 45

C6H5NH2 + C6H5COCH2Br in benzene 91 34

Data: Principally J. Nicholas, Chemical kinetics. Harper & Row, New York (1976) and A.A. Frost and R.G. Pearson, Kinetics 

and mechanism. Wiley, New York (1961).
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Table 87.1 Arrhenius parameters for gas-phase reactions

A/(dm3 mol−1 s−1)

Experiment Theory Ea/(kJ mol−1) P

2 NOCl → 2 NO + Cl2 9.4 × 109 5.9 × 1010 102.0 0.16

2 NO2 → 2 NO + O2 2.0 × 109 4.0 × 1010 111.0 5.0 × 10−2

2 ClO → Cl2 + O2 6.3 × 107 2.5 × 1010 0.0 2.5 × 10−3

H2 + C2H4 → C2H6 1.24 × 106 7.4 × 1011 180 1.7 × 10−6

K + Br2 → KBr + Br 1.0 × 1012 2.1 × 1011 0.0 4.8

Data: Principally M.J. Pilling and P.W. Seakins, Reaction kinetics. Oxford University Press, Oxford (1995).

Table 88.1 Arrhenius parameters for reactions in solution. See Table 85.1.

Table 95.2 Standard enthalpies of chemisorption, ΔadH</(kJ mol−1) at 298 K

Adsorbate Adsorbent (substrate)

Ti Ta Nb W Cr Mo Mn Fe Co Ni Rh Pt

H2 −188 −188 −167 −71 −134 −117

N2 −586 −293

O2 −720 −494 −293

CO −640 −192 −176

CO2 −682 −703 −552 −456 −339 −372 −222 −225 −146 −184

NH3 −301 −188 −155

C2H4 −577 −427 −427 −285 −243 −209

Data: D.O. Haywood and B.M.W. Trapnell, Chemisorption. Butterworth (1964).

Table 95.1 Maximum observed standard enthalpies of physisorption, 
ΔadH</(kJ mol−1) at 298 K

C2H2 −38 H2 −84

C2H4 −34 H2O −59

CH4 −21 N2 −21

Cl2 −36 NH3 −38

CO −25 O2 −21

CO2 −25

Data: D.O. Haywood and B.M.W. Trapnell, Chemisorption. Butterworth (1964).
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The groups C1, Cs, Ci

The groups Cnv

The groups Dn

C1, 1 E h = 1

A 1

Cs= Ch, m E σh h = 2

A′ 1 1 x, y, Rz x2, y2, z2, xy

A″ 1 −1 z, Rx, Ry yz, zx

Ci = S2, 1 E i h = 2

Ag 1 1 Rx, Ry, Rz x2, y2, z2, xy, yz, zx,

Au 1 −1 x, y, z

C2v, 2mm E C2 σv ′σ v h = 4

A1 1 1 1 1 z, z2, x2, y2

A2 1 1 −1 −1 xy Rz

B1 1 −1 1 −1 x, zx Ry

B2 1 −1 −1 1 y, yz Rx

C3v, 3m E 2C3 3σv h = 6

A1 1 1 1 z, z2, x2 + y2

A2 1 1 −1 Rz

E 2 −1 0 (x, y), (xy, x2 − y2) (yz, zx) (Rx, Ry)

C4v, 4mm E C2 2C4 2σv 2σd h = 8

A1 1 1 1 1 1 z, z2, x2 + y2

A2 1 1 1 −1 −1 Rz

B1 1 1 −1 1 −1 x2 − y2

B2 1 1 −1 −1 1 xy

E 2 −2 0 0 0 (x, y), (yz, zx) (Rx, Ry)

C5v E 2C5 2 5
2C 5σv h = 10, α = 72°

A1 1 1 1 1 z, z2, x2 + y2

A2 1 1 1 −1 Rz

E1 2 2 cos α 2 cos 2α 0 (x, y), (yz, zx) (Rx, Ry)

E2 2 2 cos 2α 2 cos α 0 (xy, x2− y2)

C6v, 6mm E C2 2C3 2C6 3σd 3σv h = 12

A1 1 1 1 1 1 1 z, z2, x2 + y2

A2 1 1 1 1 −1 −1 Rz

B1 1 −1 1 −1 −1 1

B2 1 −1 1 −1 1 −1

E1 2 −2 −1 1 0 0 (x, y), (yz, zx) (Rx, Ry)

E2 2 2 −1 −1 0 0 (xy, x2− y2)

C∞v E 2Cφ† ∞σv h = ∞

A1(Σ+) 1 1 1 z, z2, x2 + y2

A2(Σ−) 1 1 −1 Rz

E1(Π) 2 2 cos φ 0 (x, y), (yz, zx) (Rx, Ry)

E2(Δ) 2 2 cos 2φ 0 (xy, x2− y2)

⋮ ⋮ ⋮ ⋮

† There is only one member of this class if φ = π.

D2, 222 E Cz
2 C

y
2 C x

2 h = 4

A1 1 1 1 1 x2, y2, z2

B1 1 1 −1 −1 z, xy Rz

B2 1 −1 1 −1 y, zx Ry

B3 1 −1 −1 1 x, yz Rx

D3, 32 E 2C3 3 2C ′ h = 6

A1 1 1 1 z2, x2 + y2

A2 1 1 −1 z Rz

E 2 −1 0 (x, y), (yz, zx), (xy, x2 − y2) (Rx, Ry)

D4, 422 E C2 2C4 2 2C ′ 2 2C ″ h = 8

A1 1 1 1 1 1 z2, x2 + y2

A2 1 1 1 −1 −1 z Rz

B1 1 1 −1 1 −1 x2 − y2

B2 1 1 −1 −1 1 xy

E 2 −2 0 0 0 (x, y), (yz, zx) (Rx, Ry)
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The groups Dnh

D3 h, 62m E σh 2C3 2S3 3 2C ′ 3σv h = 12

′A1 1 1 1 1 1 1 z2, x2 + y2

′A2 1 1 1 1 −1 −1 Rz

′′A1 1 −1 1 −1 1 −1

′′A2 1 −1 1 −1 −1 1 z

E′ 2 2 −1 −1 0 0 (x, y), (xy, x2 − y2)

E″ 2 −2 −1 1 0 0 (yz, zx) (Rx, Ry)

D4 h, 
4/mmm

E 2C4 C2 2 2′C 2 2′′C i 2S4 σh 2σv 2σd h = 16

A1 g 1 1 1 1 1 1 1 1 1 1 x2+ y2, z2

A2 g 1 1 1 −1 −1 1 1 1 −1 −1 Rz

B1 g 1 −1 1 1 −1 1 −1 1 1 −1 x2 − y2

B2 g 1 −1 1 −1 1 1 −1 1 −1 1 xy

Eg 2 0 −2 0 0 2 0 −2 0 0 (yz, zx) (Rx, Ry)

A1u 1 1 1 1 1 −1 −1 −1 −1 −1

A2u 1 1 1 −1 −1 −1 −1 −1 1 1 z

B1u 1 −1 1 1 −1 −1 1 −1 −1 1

B2u 1 −1 1 −1 1 −1 1 −1 1 −1

Eu 2 0 −2 0 0 −2 0 2 0 0 (x, y)

D5 h E 2C5 2 5
2C 5C2 σh 2S5 2 5

3S 5σv h = 20 α = 72°

′A1 1 1 1 1 1 1 1 1 x2+ y2, z2

′A2 1 1 1 −1 1 1 1 −1 Rz

′E1 2 2 cos α 2 cos 2α 0 2 2 cos α 2 cos 2α 0 (x, y)

′E2 2 2 cos 2α 2 cos α 0 2 2 cos 2α 2 cos α 0 (x2 − y2, xy)

′′A1 1 1 1 1 −1 −1 −1 −1

′′A22 1 1 1 −1 −1 −1 −1 1 z

′′E1 2 2 cos α 2 cos 2α 0 −2 −2 cos α −2 cos 2α 0 (yz, zx) (Rx, Ry)

′′E2 2 2 cos 2α 2 cos α 0 −2 −2 cos 2α −2 cos α 0

D∞h E 2Cφ … ∞σv i 2S∞ … ∞ ′C2 h = ∞

A1 g ( )Σg
+ 1 1 … 1 1 1 … 1 z2, x2 + y2

A1u u( )Σ+
1 1 … 1 −1 −1 … −1 z

A2g g( )Σ− 1 1 … −1 1 1 … −1 Rz

A2u u( )Σ− 1 1 … −1 −1 −1 … 1

E1 g(Πg) 2 2 cos φ … 0 2 −2 cos φ … 0 (yz, zx) (Rx, Ry)

E1u(Πu) 2 2 cos φ … 0 −2 2 cos φ … 0 (x, y)

E2 g(Δg) 2 2 cos 2φ … 0 2 2 cos 2φ … 0 (xy, x2− y2)

E2u(Δu) 2 2 cos 2φ … 0 −2 −2 cos 2φ … 0

⋮ ⋮ ⋮ … ⋮ ⋮ ⋮ … ⋮
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The cubic groups

The icosahedral group

Td, 43m E 8C3 3C2 6σd 6S4 h = 24

A1 1 1 1 1 1 x2+ y2 + z2

A2 1 1 1 −1 −1

E 2 −1 2 0 0 (3z2 − r2, x2− y2)

T1 3 0 −1 −1 1 (Rx, Ry, Rz)

T2 3 0 −1 1 −1 (x, y, z), (xy, yz, zx)

Oh, m3m E 8C3 6C2 6C4 3 ( )2 4
2C C= i 6S4 8S6 3σh 6σd h = 48

A1 g 1 1 1 1 1 1 1 1 1 1 x2+ y2 + z2

A2 g 1 1 −1 −1 1 1 −1 1 1 −1

Eg 2 −1 0 0 2 2 0 −1 2 0 (2z2 − x2 − y2, x2− y2)

T1 g 3 0 −1 1 −1 3 1 0 −1 −1 (Rx, Ry, Rz)

T2 g 3 0 1 −1 −1 3 −1 0 −1 1 (xy, yz, zx)

A1u 1 1 1 1 1 −1 −1 −1 −1 −1

A2u 1 1 −1 −1 1 −1 1 −1 −1 1

Eu 2 −1 0 0 2 −2 0 1 −2 0

T1u 3 0 −1 1 −1 −3 −1 0 1 1 (x, y, z)

T2u 3 0 1 −1 −1 −3 1 0 1 −1

I E 12C5 12 5
2C 20C3 15C2 h = 60

A 1 1 1 1 1 x2+ y2 + z2

T1 3 1
2

1 5( )+ 1
2

1 5( )− 0 −1 (x, y, z) (Rx, Ry, Rz)

T2 3 1
2

1 5( )− 1
2

1 5( )+ 0 −1

G 4 −1 −1 1 0

H 5 0 0 −1 1 (2z2 − x2 − y2, x2− y2, xy, yz, zx)

Further information: P.W. Atkins, M.S. Child, and C.S.G. Phillips, Tables for group theory. Oxford University Press, Oxford (1970). In this source, which is available on the web 

(see p. x for more details), other character tables such as D2, D4, D2d, D3d, and D5d can be found.
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A
ab initio method, 251

absolute value, 43, 128

absorbance, 381

absorption, 892

absorption spectroscopy, 377

abstraction, 890

acceleration, 10

acceleration of free fall, 12

acceptor band, 356

accidental degeneracy, 90

accommodation, 913

acenaphthalene, 263

achiral molecule, 281

actinide, see actinoid

actinoid, 3

activated complex, 818, 849

observation, 852

activated-complex theory, 848

activation-controlled limit, 844

activation energy, 100, 817, 838

negative, 826

activation parameters, 853

activity, 694

conventions, 696

activity coefficient, 695

determination, 743

addition reaction,

adenosine triphosphate (ATP), 721

adiabat, 578

adiabatic bomb calorimeter, 560

adiabatic change

molecular interpretation, 578

adiabatic container, 542

adiabatic process, 576

adsorbate, 912

adsorbent, 912

adsorption, 912

adsorption isotherm, 922

adsorption rate, 919

AES (Auger electron spectroscopy), 

916

AFM (atomic force microscopy),  

318, 915

alanine, 282

alkali metal, 3

alkaline earth metal, 3

allene, 279

allowed transition, 142

alpha spin, 170

AM1 (Austin model 1), 249

amide group, 305

ammonia

inversion, 85

VB description, 204

amount, 5

amount of substance, 5

ampere, 14

amplitude, 19

angular (bent) molecule, 4

angular momentum, 10, 103, 109

commutator, 115

hydrogenic atom, 156

operators, 115

quantization, 108

quantum number, 113

angular node, 114

angular velocity, 10

anharmonic oscillator, 409

anharmonicity constant, 409

anion, 3

anion configuration, 178

anode, 734

anthracene, 263

antibonding orbital, 213

antiferromagnetic phase, 359

antifreeze, 688

anti-Stokes lines, 401

anti-Stokes radiation, 384

antisymmetric stretch, 416

aperiodic crystal, 331

area under curve, 29

aromatic stability, 246

array detector, 378

Arrhenius equation, 816

Arrhenius parameters, 840

thermodynamic, 853

associated Laguerre polynomial, 155

asymmetric rotor, 390

asymmetric top, 391

asymptotic solutions, 154

atom, 2

atomic force microscopy (AFM),  

318, 915

atomic number, 2

atomic orbital, 2, 155, 160

atomic radius, 178

atomic weight, 5

ATP (adenosine triphosphate), 721

attractions, 321

attractive surface, 864

Aufbau principle, 176

Auger effect, 916

Auger electron spectroscopy (AES), 

916

Austin model 1 (AM1), 249

average speed, 17

Avogadro’s constant, 5

Avogadro’s principle, 7

AX system, 470

AX2 and AX3 spectra, 471

Axilrod–Teller formula, 317

axis of symmetry, 275, 331

azeotrope, 666

azimuth, 107, 112

azulene, 263

B
Balmer series, 181

band, 346

band gap, 347, 355

band head, 429

band structure, 345

bar, 5

barometric formula, 531

basis set, 245

beam splitter, 379

Beer–Lambert law, 381

bell curve, 538

bent molecule, 4

benzene

breathing mode, 417

Hückel description, 246

symmetry elements, 275

VB description, 205

benzene radical ion, 462, 489

Bernouilli trial, 535

Berthelot equation, 325

BET isotherm, 925

beta spin, 170

bimolecular reaction, 821

binomial coefficient, 535

binomial expansion, 535

biological standard state, 720

black-body radiation, 34

block (of periodic table), 3

block-diagonal matrix, 286

body-centred unit cell, 332

Bohr frequency condition, 36,  

181, 377

Bohr radius, 155

boiling, 660

boiling point elevation, 688

boiling temperature, 660

Boltzmann, L., 599

Boltzmann constant, 16

Boltzmann distribution, 16, 501

Boltzmann formula, 600

bond, 3

bond dissociation energy, 221

bond length, 201, 221

bond order, 220

bond stretching, work of, 11

bond torsion, 100

bonding orbital, 211

Born, M., 43

Born equation, 636

Born–Haber cycle, 350

Born interpretation, 43

Born–Mayer equation, 349

Born–Oppenheimer approximation,  

201

boron trifluoride, 279

Bose–Einstein statistics, 527

boson, 171

bouncing ball, 596

bound state, 154

boundary conditions, 75

boundary surface, 162

Boyle temperature, 323

Boyle’s law, 7

Boys, S.F., 245

Brackett series, 181

Bragg, W. and L., 335

Bragg method, 335

Bragg’s law, 336

Bravais lattice, 332

Brillouin’s theorem, 254

Brunauer, S., 925

buckminsterfullerene, 281

building-up principle

atoms, 176

molecules, 216

bulk matter, 5

butadiene, MO description, 233

C
caesium chloride structure, 347

cage effect, 843

calorie, 12

calorimeter, 560

calorimeter constant, 561

calorimetry, 560

camphor, 363

canonical ensemble, 524

canonical partition function, 525

capillary technique, 786

carbon, special role, 180

carbon dioxide

isotherms, 322

normal modes, 416

phase diagram, 661, 675

carbonyl group chromophore, 431

Carnot cycle, 609

carotene, 78, 384

catalyst, 819, 881, 931

catalytic activity, 933

catalytic constant, 884

catalytic efficiency, 884

cathode, 734

cation, 3

cation configuration, 178

cavity characteristics, 438

CCD (charge-coupled device), 380

ccp (cubic close-packed), 344

cell convention, 735, 740
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cell potential, 736

temperature dependence, 744

cell reaction, 736

Celsius scale, 6

centre of inversion, 276

centrifugal distortion, 394

centrifugal distortion constant, 394

centrifugal effect, hydrogenic atom, 

154

ceramic, 360

cesium, see caesium

character, 286

character and degeneracy, 288

character table, 287

charge-coupled device (CCD), 380

charge–dipole interaction, 310

charge number, 13

Charles’s law, 7

chemical amount, 5

chemical bond, 3

chemical exchange, 474

chemical kinetics, 799

chemical potential, 658, 672, 673

chemical equilibrium, 716

equilibrium criterion, 673

mean ionic, 700

pressure dependence, 675

solute, 695

solvent, 683, 694

temperature dependence, 674

thermodynamic force, 782

chemical potential (metal), 354

chemical quench flow method, 801

chemical shift, 465

chemisorption, 914

chemisorption ability, 934

chemistry, 1

chiral molecule, 281

chirality, 281

chlorophyll spectrum, 423

chromophore, 429

CI (configuration interaction), 252

circularly polarized wave, 21

Clapeyron equation, 676

class, 284

classical mechanics, 9, 33

Clausius–Clapeyron equation, 677

Clausius inequality, 612

Clebsch–Gordan series, 183

close-packed, 343

closed shell, 172

closed system, 541

CNDO (complete neglect of 

differential overlap), 249

co-adsorption, 931

coefficient of thermal conductivity, 768

coefficient of viscosity, 769

coherence, 439

cohesive energy density, 364

colatitude, 112

colligative property, 687

collision cross-section, 763, 837

collision density, 837

collision diameter, 763

collision flux, 764, 913

collision frequency, 763

collision-induced emission, 890

collision theory, 836

collisional deactivation, 386, 890, 894

collisional lifetime, 386

colour, 423

combination band, 418

combination difference, 411

commutator, 61

angular momentum, 115

competitive inhibition, 885

complementarity, 59

complementary observables, 61, 109

complete neglect of differential overlap 

(CNDO), 249

complete shell, 172

complex conjugate, 43, 128

complex number, 43, 128

complex plane, 128

components of vector, 195

compressibility, 572

compression factor, 321

concentration cell, 734

conductance, 775, 776

conduction (electrical), 354

conduction band, 355

conductivity, 776

configuration, 2

configuration (system), 499

configuration integral, 328, 528

configuration interaction (CI), 251, 252

configuration state function (CSF), 252

conjugated polyene, 232, 264

consecutive reactions, 822

consolute temperature, 667

constant

anharmonicity, 409

Avogadro’s, 5

Boltzmann’s, 16

calorimeter, 561

catalytic, 884

centrifugal distortion, 394

critical, 326

dielectric, 13, 310

force, 92, 406

Henry’s law, 684

Madelung, 349

Michaelis, 882

Planck’s, 35

rotational, 391

Rydberg, 157, 181

scalar coupling, 469

shielding, 173

shielding (NMR), 464, 466

spin–orbit coupling, 186

constituent, 658

constraints, 502

constraints on the wavefunction, 45

constructive interference (bonding),  

211

contact interaction, 473, 490

continuous distribution, 537

continuous-wave EPR (CW-EPR), 462

contour diagram, 862

convection, 785

convergence, 28

convolution theorem, 373

Cooper pair, 360

coordination number, 344

coordination number (ions), 347

core, 174

core hamiltonian, 240

coronene, 108, 299

correlation analysis, 854

correlation energy, 253

correlation spectroscopy (COSY), 483

correspondence principle, 77

cosine law, 196

cosmic ray, 21

COSY (correlation spectroscopy), 483

Coulomb integral, 227

Coulomb operator, 240

Coulomb potential, 13

Coulomb potential energy, 12

Coulomb’s law, 309

covalent compound, 3

covalent solid, 343

critical constants, 326

critical field, 360

critical point, 326

critical pressure, 326

critical solution temperature, 667

critical temperature, 326

critical volume, 326

cross peaks, 483

cross-relation, 908

cross-section, 763

differential scattering, 858

crossed molecular beams, 860

crystal diode, 380

crystal structure, 330

crystal structure of elements, 344

crystal system, 331

crystallographic point group, 277

CSF (configuration state function), 252

cubic close-packed (ccp), 344

cubic groups, 280

cubic unit cell, 331

cumulative reaction probability, 866

current, 14, 561

curvature, 27, 49

CW-EPR (continuous-wave EPR), 462

cyclic boundary condition, 107, 111

cyclobutadiene, 246

cyclooctatetraene, 264

cylindrical coordinates, 106, 107

D
d orbital, 165

Dalton’s law, 7

Daniell cell, 735

Davies equation, 701

Davisson, C., 39

Davisson–Germer experiment, 39

de Broglie, L., 39

de Broglie relation, 39, 75, 105

debye, 303

Debye, P., 303

Debye equation, 362

Debye formula, 586, 651

Debye–Hückel limiting law, 700, 854

Debye–Hückel theory, 700

Debye T3 law, 586, 621

definite integral, 29

degeneracy, 89, 288

degree of dissociation, 729

degree of freedom, 658

delocalization energy, 246

delta scale, 465

density functional theory (DFT), 256

density of states, 34, 354, 526

depolarization ratio, 419

depolarized line, 419

derivative, 27

derived unit, 6

deshielded nucleus, 465

desorption rate, 919, 929

destructive interference, 20

detector, 380

determinant, 270

deuteration, 100

deuterium lamp, 378

DFT (density functional theory), 256

diagonal matrix, 270

diagonal peaks, 483

diamagnetic, 357

diamagnetic contribution, 466

diamond, 351

diaphragm technique, 786

diathermic container, 542

dichlorobenzene, 305

dielectric constant, 13, 310

Dieterici equation, 325

differential, 589

differential equation, 69

differential overlap, 249

differential scanning calorimetry 

(DSC), 562

differential scattering cross-section, 

858

differentiation, 27

diffraction, 335

diffraction (of particles), 39

diffraction grating, 378

diffusion

Fick’s first law, 767

reaction, 844

statistical view, 787

surface, 917

thermodynamic view, 782

diffusion coefficient, 768, 917

KMT, 769

viscosity dependence, 780

diffusion-controlled limit, 844

diffusion equation, 784, 846

dihedral mirror plane, 275

dihelium, 217

dimension of group, 285

dioxygen, 423

dipolar field, 468

dipole, 305

dipole–dipole interaction, 311, 490

dipole–induced dipole interaction,  

314

dipole moment, 303

addition, 304

direct method, 340

direct product, 293

direct product decomposition, 293

direct sum, 286, 293

dispersion interaction, 315

dissociation, 890

dissociation and adsorption, 923

dissociation energy, 201, 221

dissociation equilibrium, 729

dissociation limit, 436
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distillation, 666

distinguishable molecules, 527

divergence, 28

D lines, 187

d-metal complex, 429

d-orbital occupation, 177

Dogonadze, R.R., 899

donor band, 356

dopant, 355

Doppler broadening, 385

Doppler effect, 385

double bond, 3

double bond chromophore, 431

double integral, 30

double-well potential, 85

drift speed, 777

dry ice, 662

DSC (differential scanning 

calorimetry), 562

duality, 39

Dubosq colorimeter, 444

duplet, 3

dynamic equilibrium, 15

E
Eadie–Hofstee plot, 906

Eckart potential barrier, 83

effect

Doppler, 385

Joule–Thomson, 555

Kerr, 441

kinetic salt, 855

Meissner, 360

nuclear Overhauser, 481

optical Kerr, 441

photoelectric, 37

salting-in, 710

Zeeman, 193

effective mass, 93, 406

effective nuclear charge, 173

effective potential energy, 153

effective transverse relaxation time, 

481

efficiency

Carnot, 610

catalytic, 884

energy transfer, 895

effusion, 765

Ehrenfest classification, 659

eigenfunction, 50

eigenvalue, 50, 271

eigenvalue equation, 50, 271

eigenvector, 271

Einstein, A., 37

Einstein coefficients, 143

Einstein formula, 651

Einstein relation, 779

Einstein–Smoluchowski equation, 788

elastic collision, 757

electric current, 14, 561

electric dipole, 4, 303

electric dipole moment, 5, 303

electric field, 13

electrical heating, 561

electrochemical cell, 733

electrochemical series, 743

electrode, 733

electrode concentration cell, 734

electrolyte, 734

electrolyte concentration cell, 734

electrolyte solution, 775

electrolytic cell, 734

electromagnetic field, 20

electromagnetic spectrum, 21

electromotive force (emf), 736

electron affinity, 180

electron correlation, 241, 251

electron density, 256

electron density (X-ray), 337

electron diffraction, 39, 341

electron microscopy, 915

electron pairing, 203

electron paramagnetic resonance 

(EPR), 461, 487

electron scattering factor, 341

electron spin energy, 522

electron spin resonance (ESR), 461, 487

electron transfer, 890, 894, 898

electronegativity, 225

electronic configuration, 2

electronic mean energy, 521

electronic partition function, 515

electronic transitions, 422

electronvolt, 13

elementary reaction, 821

Eley–Rideal (ER) mechanism, 933

emf (electromotive force), 736

emission spectroscopy, 377, 383

Emmett, P., 925

encounter pair, 843

endergonic reaction, 720

endothermic process, 542

energy, 12, 542

harmonic oscillator, 93

hydrogenic atom, 156

molecular vibration, 406

particle in a box, 76

particle on a ring, 106

particle on a sphere, 115

rotational, 391

spherical well, 533

three-dimensional square well, 90

two-dimensional square well, 88

zero-point, 78

energy density of radiation, 143

energy level, 15

energy pooling, 890

energy quantization, 35

energy requirement, 838

energy–time uncertainty, 143

energy transfer, 890, 894

enhancement factor, 482

ensemble, 524

enthalpy, 14, 552

dependence on temperature, 553

heat transaction, 553

mixing, 681, 684

enthalpy of activation, 853

enthalpy of adsorption, 924

enthalpy of chemisorption, 914

entropy, 14, 597

electronic contribution, 605

heating, 617

measurement, 620

mixing, 681, 684

partition function, 601

phase transition, 616

reaction, 624

residual, 622

rotational contribution, 603

spin contribution, 606

state function, 608

statistical definition, 600

surroundings, 613

thermodynamic definition, 608

translational contribution, 602

vibrational contribution, 604

entropy of activation, 853

enzyme, 881

enzyme inhibition, 885

EPR (electron paramagnetic 

resonance), 461, 487

EPR spectrometer, 462

equal a priori probabilities, 498

equation

Arrhenius, 816

Berthelot, 325

Born, 636

Born–Mayer, 349

Clapeyron, 676

Clausuis–Clapeyron, 677

Davies, 701

Debye, 362

Dieterici, 325

differential, 69

diffusion, 784, 846

eigenvalue, 50, 271

Einstein–Smoluchowski, 788

Eyring, 851

fundamental, 639

generalized diffusion, 785

Gibbs–Duhem, 673

Gibbs–Helmholtz, 642

Hartree–Fock, 240

Karplus, 472, 493

Kohn–Sham, 257

linear differential, 69

Margules, 698

material balance, 846

McConnell, 490

Michaelis–Menten, 882

Nernst, 738

Nernst–Einstein, 779

osmotic virial, 690

partial differential, 69

perfect gas, 7

phenomenological, 767

radial wave, 152

Roothaan, 242

Sackur–Tetrode, 602

Schrödinger, 47, 92, 106, 112, 

140, 406

secular, 227, 243

simultaneous, 271

of state, 320

Stern–Volmer, 893

Stokes–Einstein, 779

thermodynamic, 640

van der Waals, 323, 328, 528

van ’t Hoff (isochore), 730

van ’t Hoff (osmotic), 689

virial, 322

Wierl, 341

equation of state, 320, 325

statistical basis, 328

thermodynamic, 640

equilibrium, 15

approach to, 812

chemical, 716

mechanical, 546

thermal, 546

thermodynamic criterion, 673

equilibrium bond length, 201

equilibrium constant, 719

cell potential, 738

pressure dependence, 728

rate contants, 812

standard potentials, 744

statistical interpretation, 723

temperature dependence, 730

equipartition theorem, 17, 518

ER (Eley–Rideal) mechanism, 933

error function, 98

ESR (electron spin resonance),  

461, 487

essential symmetries, 331

ethane

symmetry elements, 279

vibrations, 417

ethanol, FID, 479

ethene

VB description, 206

ethyne

VB description, 207

Euler chain relation, 589

Euler’s formula, 43, 128

eutectic, 668

evanescent wave, 919

exact differential, 590

excess enthalpy, 697

excess entropy, 696

excess function, 696

exchange–correlation energy, 257

exchange–correlation potential, 257

exchange operator, 241

excluded volume, 324

exclusion rule, 419

exergonic reaction, 720

exothermic process, 542

exp-6 potential energy, 318

expansion coefficient, 571

expansion work, 544

expectation value, 54

extended Debye–Hückel law, 702

extensive property, 5

extent of reaction, 716

extinction coefficient, 381

extrinsic semiconductor, 355

Eyring equation, 851

F
face-centred cubic (fcc), 344

face-centred unit cell, 332

far infrared, 21

fcc (face-centred cubic), 344

femtosecond chemistry, 852

Fermi contact interaction, 473, 490

Fermi–Dirac distribution, 354

Fermi–Dirac statistics, 527

Fermi energy, 354
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Fermi level, 347

fermion, 171

ferrocene, 278

ferromagnetism, 359

Fick’s first law, 767, 783

Fick’s second law, 784

FID (free-induction decay), 478

field-ionization microscopy  

(FIM), 917

FIM (field-ionization microscopy), 917

fine structure

atomic spectra, 187

fine structure (NMR), 469

first derivative, 27

first ionization energy, 179

First Law of thermodynamics, 14, 544

first-order correction to energy, 133

first-order correction to the 

wavefunction, 133

first-order phase transition, 659

flame calorimeter, 561

flash desorption, 919, 929

flash photolysis, 801

flow method, 800

fluctuations, 526, 574

fluorescence, 433, 890, 892

quantum yield, 892

quenching, 893

fluorescence resonance energy transfer 

(FRET), 896

fluorescence spectroscopy, 383

fluorine, MO description, 220

flux, 767

Fock, V., 174, 240

Fock matrix, 248

Fock operator, 240

forbidden transition, 142

force, 9

force between molecules, 318

force constant, 11, 92, 406

force field, 418

formula unit, 3

Förster theory, 895

forward bias, 356

four-circle diffractometer, 335

four-level laser, 437

Fourier series, 371

Fourier synthesis, 339

Fourier transform, 372

Fourier-transform EPR (FT-EPR), 462

Fourier-transform NMR (FT-NMR), 

476

Fourier transform techniques, 378

fractional coverage, 914

fractional distillation, 666

Franck–Condon factor, 427

Franck–Condon principle, 426, 899

free energy, 15

free expansion, 546

free-induction decay (FID), 478

free motion, 73

freeze–quench method, 801

freezing point depression, 688

freezing temperature, 661

frequency, 19

FRET (fluorescence resonance energy 

transfer), 896

frictional retarding force, 777

frontier orbitals, 232

FT-EPR (Fourier-transform EPR), 462

FT-NMR (Fourier-transform NMR),  

476

full CI, 252

full rotation group, 281

functional, 256

functional derivative, 257

fundamental charge, 2

fundamental equation of 

thermodynamics, 639

fundamental transition, 408

furan, 297

G
g,u symmetry, 214

g-value, 461, 488

galvanic cell, 734

gamma-ray, 21

gas, 5

gas constant, 6, 320

gas discharge lamp, 378

Gaussian distribution, 537

Gaussian distribution function, 538

Gaussian function, 94

Gaussian-type orbital (GTO), 245

general solution, 69

generalized diffusion equation, 785

gerade, 424

gerade symmetry, 214

Gerlach, W., 117, 170

Germer, L., 39

Gibbs–Duhem equation, 673

Gibbs energy, 15, 626

electron transfer, 901

ionic solution, 699

maximum non-expansion  

work, 628

mixing, 684, 697

partial molar, 672

properties, 640

variation with pressure, 641, 643

variation with temperature, 641

Gibbs energy of activation, 853

Gibbs energy of mixing, 679

Gibbs energy of reaction, 716

Gibbs–Helmholtz equation, 642

Gibbs phase rule, 658

glacier advance, 662

glancing angle, 336

globar, 378

globular protein, 703

glycine, 282

Gouy balance, 358

gradient, 197

Graham’s law, 765

grand canonical ensemble, 524

graphene, 351

graphite, 351

gravimetry, 919

gross selection rule, 142

Grotrian diagram, 183

Grotthuss mechanism, 778

ground state, hydrogenic atom, 161

group, 3

group defined, 283

group theory, 283

GTO (Gaussian-type orbital), 245

Gunn diode, 378

Gunn oscillator, 462

H
haem, 124, 125, 300, 895

haemerythrin, 453

half-life, 807, 808

desorption, 929

half-reaction, 734

Hall, G.G., 242

halogen, 3

hamiltonian

hydrogen molecule-ion, 209

hydrogenic atom, 151

polyatomic molecule, 238

spin, 458, 496

hamiltonian operator, 48

Hanes plot, 906

hard-sphere potential energy, 317, 528

harmonic motion, 11, 92

harmonic oscillator

classical, 11

energy levels, 93

heat capacity, 574

properties, 97

transition rate, 142

wavefunctions, 94

harmonic wave, 19

Harned cell, 741

harpoon mechanism, 840

Hartree, D.R., 174, 240

Hartree–Fock equations, 240

Hartree–Fock procedure, 174

Hartree–Fock self-consistent field 

(HF-SCF), 174, 241

hcp (hexagonally close-packed), 344

heat, 543

molecular interpretation, 550

heat capacity, 14

constant pressure, 553

constant volume, 549, 571

Debye formula, 651

dissociation, 576

Einstein formula, 651

harmonic oscillator, 574

low temperature, 621

molecular basis, 572

perfect gas relation, 554

relation between, 587

rotational contribution, 575

T 3 law, 621

two-level system, 574

vibrational contribution, 575

heat transaction, 548

Heisenberg, W., 60

Heisenberg uncertainty principle, 60

helium-3, 663

helium-4, 662

helium, phase diagram, 662

Helmholtz energy, 625

maximum work, 627

properties, 644

statistical basis, 626

heme, see haem

Henry’s law, 684, 695

Henry’s law constant, 684

Hermann–Mauguin system, 277

Hermite polynomial, 94

Hermitian operator, 51

orthogonal eigenfunctions, 55

hermiticity, 51

Hess’s law, 565

heterogeneity index, 692

heterogeneous catalyst, 881, 931

heteronuclear diatomic molecule, 224

hexagonally close packed (hcp), 344

HF-SCF (Hartree–Fock self-consistent 

field), 174, 241

highest occupied molecular orbital 

(HOMO), 232

high-temperature superconductor 

(HTSC), 360

Hinshelwood, C., 876

HMO (Hückel molecular orbital) 

theory, 248

Hohenberg, P., 256

Hohenberg–Kohn theorem, 257

hole conduction, 355

HOMO (highest occupied molecular 

orbital), 232

homogeneous catalyst, 881

homonuclear diatomic molecule, 216

horizontal mirror plane, 275

HTSC (high-temperature 

superconductor), 360

Hückel approximation, 232

Hückel method, metals, 345

Hückel molecular orbital (HMO) 

theory, 248

Humphreys series, 190

Hund, F., 185

Hund’s maximum multiplicity rule,  

177

Hund’s rules, 185

Hush, N.S., 899

hybrid orbital, 205

hybridization, 205

hybridization and coupling constant, 472

hybridization schemes, 207

hydration half-life, 778

hydrodynamic flow, 857

hydrodynamic radius, 778

hydrogen

DFT description, 258

ortho- and para-, 403

hydrogen bond, 315

hydrogen bromide PES, 222

hydrogen fluoride

electron density, 224

MO description, 228, 229

hydrogen ion

entropy, 623

Gibbs energy, 635

hydrogen molecule

MO description, 216

VB description, 202

hydrogen molecule-ion, 210

hydrogen peroxide, 278

hydrogen spectrum, 181

hydrogenic atom, 150
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hydrogenic atomic orbital, 160

hyperbolic function, 84

hyperfine coupling constant, 488

hyperfine structure (EPR), 488

hyperpolarizability, 306

I
IC (internal conversion), 435, 890, 892

ice, 662

ice structure, 351

icosahedral group, 280

ideal–dilute solution, 684

ideal gas, see perfect gas

ideal solution, 683

ideal versus perfect, 686

identity operation, 276

impact parameter, 859

improper rotation, 276

improper rotation axis, 276

indefinite integral, 29

independent migration of ions law, 776

indistinguishable molecules, 527

INDO (intermediate neglect of 

differential overlap), 249

induced dipole–induced dipole 

interaction, 315

induced fit model, 882

induction period, 823

infrared active, 407

symmetry analysis, 420

infrared chemiluminescence, 860

infrared inactive, 407

infrared spectroscopy, 407

inhibition, 885

inhomogeneous broadening, 481

initial rates, method of, 804

inner transition metal, 3

instantaneous configuration, 499

insulator, 353

integral notation (AB|CD), 244

integrated absorption coefficient, 382

integrated rate law, 806

integrating factor, 591

integration, 28

integration by parts, 29

intensive property, 5

interference, 20

interferogram, 379

intermediate neglect of differential 

overlap (INDO), 249

internal conversion (IC), 435, 890, 892

internal energy, 14, 543

general changes, 570

heat transaction, 548

properties, 639

temperature dependence, 549

internal pressure, 327, 528, 571

International system (point group),  

277

intersystem crossing (ISC), 435,  

890, 892

intrinsic semiconductor, 355

invariant integral, 291

inverse (complex number), 128

inverse Fourier transform, 372

inverse matrix, 271

inversion, 276

inversion doubling, 85, 98

inversion symmetry, 214, 424

inversion temperature, 557

inverted region, 902

ion configuration, 178

ion reactions, 854

ionic atmosphere, 700

ionic compound, 3

ionic conductance, 776

ionic–covalent resonance, 204

ionic mobility, 777, 778

ionic radius, 348

ionic solid, 343, 347

ionic solution, Gibbs energy, 699

ionic strength, 700

ionization, 890

ionization energy, 179

hydrogenic atom, 158

irreducible representation  

(irrep), 286

irrep (irreducible representation), 286

irreversible change, 546

ISC (intersystem crossing), 435,  

890, 892

isenthalpic process, 556

isobaric calorimeter, 561

isobaric heat capacity, 553

isochoric heat capacity, 549

isolated system, 542

isomerization, 890

isopleth, 664

isosteric enthalpy of adsorption, 924

isotherm, 322, 922

isothermal compressibility, 572

isothermal expansion, 547

entropy, 615

isothermal Joule–Thomson coefficient, 

556

isotopic substitution, 399

iteration procedure, 244, 258

J
Jablonski diagram, 435

jj-coupling, 185

Joule, J., 555

Joule–Thomson coefficient, 555

Joule–Thomson effect, 555

K
K quantum number, 392

Karplus equation, 472, 493

Kassel, L.S., 878

Keesom interaction, 313

Kekulé structure, 205

Kelvin, Lord, 555

Kelvin scale, 6

Kelvin statement, 596

Kerr effect, 441

Kerr lens, 441

Kevlar, 363

kilogram, 5

kinetic control, 827

kinetic energy, 12

kinetic energy density, 791

kinetic energy operator, 49

kinetic isotope effect, 100

kinetic-molecular theory (KMT),  

16, 757

kinetic salt effect, 855

kinetic theory of gases, 757

kink, 913

Kirchhoff ’s law, 568

klystron, 462

KMT (kinetic-molecular theory), 757

Knudsen method, 765

Kohlrausch’s law, 776

Kohn, W., 238, 256, 257

Kohn–Sham equation, 257

Kohn–Sham orbital, 257

Koopmans’ theorem, 221

Kronecker delta, 55, 270

L
Lagrange method, 502

Laguerre polynomial, 155

Lamb formula, 466

lambda line, 662

Langmuir–Hinshelwood (LH) 

mechanism, 932

Langmuir isotherm, 923, 932

lanthanide, see lanthanoid

lanthanide contraction, 179

lanthanoid, 3

Laplace operator, 48

Laplacian, 112, 197

Laporte selection rule, 425

Larmor precession frequency, 459

laser action, 436

laser characteristics, 437

laser-induced fluorescence, 860

laser light scattering, 445

lattice energy, 348

lattice enthalpy, 350

lattice plane, 333

lattice plane separation, 334

lattice point, 330

law

Beer–Lambert, 381

Boyle’s, 7

Charles’s, 7

Coulomb’s, 309

Dalton’s, 7

Debye T 3, 621

Debye–Hückel limiting, 700, 854

Fick’s first, 767, 783

Fick’s second, 784

First, 14, 544

Henry’s, 684, 695

Hess’s, 565

independent migration of ions, 776

Kirchhoff ’s, 568

Kohlrausch’s, 776

limiting, 7, 320, 700

Newton’s, 10

Ohm’s, 561

Raoult’s, 683, 695

Rayleigh–Jeans, 34

Second, 15, 596

Stokes’s, 777

Third, 622

Wien’s, 34

law of cosines, 196

LCAO (linear combination of atomic 

orbitals), 210

Le Chatelier’s principle, 729

LEED (low-energy electron 

diffraction), 917

Lennard-Jones potential energy, 318

level (of term), 186

lever rule, 665

Levich, V.G., 899

Lewis structure, 3

LFER (linear free energy relation), 854

LH (Langmuir–Hinshelwood) 

mechanism, 932

lifetime, 143

lifetime broadening, 143, 386

ligand-field splitting parameter, 430

ligand-to-metal charge transfer 

(LMCT), 431

limiting law, 7, 320, 700

limiting molar conductivity, 776

Linde refrigerator, 558

Lindemann, F., 876

Lindemann–Hinshelwood 

mechanism, 876 , 932

line coalescence, 474

linear combination, 53

linear combination of atomic orbitals 

(LCAO), 210

linear combination of degenerate 

wavefunctions, 164

linear differential equation, 69

linear free energy relation  

(LFER), 854

linear molecule, 4

linear momentum, 9

operator, 49

linear rotor, 390, 393

partition function, 511

lines of force, 357

Lineweaver–Burk plot, 883

linewidth, 385

liquid, 5

mixing, 682

liquid junction potential, 735

liquid–liquid system, 667

liquid–solid system, 668

liquid–vapour system, 664

lithium configuration, 172

LMCT (ligand-to-metal charge 

transfer), 431

local contribution, 466

lock-and-key model, 882

London, F., 315

London formula, 315

London interaction, 315

lone pair, 4

longitudinal relaxation time, 479

Lorentzian function, 494

low-energy electron diffraction 

(LEED), 917

lowest unoccupied molecular orbital 

(LUMO), 232

lumiflavin, 100

LUMO (lowest unoccupied molecular 

orbital), 232
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lustre, 356

Lyman series, 181

M
Maclaurin series, 28

Madelung constant, 349

magic-angle spinning, 485

magnetic field strength, 357

magnetic quantum number, 113

magnetic resonance, 457

magnetic resonance imaging (MRI), 

492

magnetic susceptibility, 357, 467

magnetically ordered lattice, 341

magnetizability, 370

magnetization, 357

magnetization vector, 477

magnetogyric ratio, 461

magnitude of vector, 195

MALDI (matrix-assisted laser 

desorption/ionization), 452

MALDI-TOF, 452

many-body perturbation theory, 253

many-electron atom, 150, 169

Marcus, R.A., 878, 894, 899

Marcus cross-relation, 908

Marcus theory, 894, 899

Margules equations, 698

maser, 86

mass, 5

mass density, 5

mass number, 2

material-balance equation, 846

matrix, 270

matrix addition, 270

matrix-assisted laser desorption/

ionization (MALDI), 452

matrix diagonalization, Hückel 

method, 233

matrix representation, 285

matrix subtraction, 270

maximum multiplicity, 185

maximum non-expansion work, 628

maximum velocity, 882

maximum work, 627

Maxwell–Boltzmann distribution,  

17, 760

Maxwell construction, 325

Maxwell relation, 639

McConnell equation, 490

mean activity coefficient, 699

mean displacement, 787, 788

mean electronic energy, 521

mean energy, 517, 526

mean free path, 764

mean radius, 162

mean rotational energy, 519

mean speed, 17

mean translational energy, 518

mean value, 761

mean vibrational energy, 520

mechanical equilibrium, 546

mechanism of reaction, 821

Meissner effect, 360

melting temperature, 661

meso-tartaric acid, 278

metal, 3

metal-to-ligand charge transfer 

(MLCT), 431

metallic conductor, 353

metallic solid, 343

metalloid, 3

metastable excited state, 437

methane

normal modes, 420

partial charges, 306

symmetry elements, 276

metre, 5

Michaelis constant, 882

Michaelis–Menten equation, 882

Michaelis–Menten mechanism, 882

Michelson interferometer, 378

microcanonical ensemble, 524

microscopy, 915

microwave spectroscopy, 396

microwaves, 21

Mie potential energy, 317

Miller indices, 333

MINDO (modified intermediate 

neglect of differential overlap),  

249

minimal basis set, 245

mirror plane, 275

mixed inhibition, 886

mixing

enthalpy, 681

role in equilibrium, 717

statistical thermodynamics, 682

mixing entropy, 681

MLCT (metal-to-ligand charge 

transfer), 431

MNDO (modified neglect of 

differential overlap), 249

mobility, 777

mode locking, 440

modified intermediate neglect of 

differential overlap (MINDO),  

249

modified neglect of differential overlap 

(MNDO), 249

modulus, 43, 128

modulus notation, 62

molality, 680

molar absorption coefficient, 381

molar concentration, 6

molar conductivity, 776, 778

molar heat capacity, 14, 553

molar mass, 5

molar mass average, 691

mole, 5

mole fraction, 680

molecular beam, 857

molecular dynamics, 99

molecular flow, 858

molecular integral, 212, 249

molecular mass, 5

molecular modelling, 567

molecular orbital

hydrogen molecule-ion, 210

polyatomic molecule, 231

molecular orbital energy level 

diagram, 216

molecular orbital (MO) theory, 209

molecular potential energy curve,  

201, 212

molecular shape, 4

molecular solid, 343

molecular speed, 759

molecularity, 821

Møller, C., 253

Møller–Plesset perturbation theory 

(MPPT), 253

molten globular protein, 703

moment of inertia, 10, 104, 388

momentum operator, 49

monochromatic radiation, 378

monochromator, 378

monoclinic unit cell, 331

monodisperse, 691

monopole, 305

Morse potential energy, 409

most probable radius, 167

most probable speed, 762

motion in three dimensions, 90

motion in two dimensions, 87

MP2, MP3, MP4, 254

MPI (multiphoton ionization), 860

MPPT (Møller–Plesset perturbation 

theory), 253

MRI (magnetic resonance imaging), 

492

Mulliken, R., 226

Mulliken electronegativity, 226

multiphoton ionization (MPI), 860

multiphoton process, 426

multiple integral, 30

multiplicity, 184

multivariate calculus, 589

N
n-fold rotation, 275

n-to-pi* transition, 431

n-type semiconductivity, 355

naphthalene, symmetry elements, 276

natural linewidth, 386

NDDO (neglect of diatomic 

differential overlap), 249

near infrared, 21

nearly free-electron approximation, 

345

Néel temperature, 359

negative activation energy, 826

negative temperature, 587

neglect of diatomic differential overlap 

(NDDO), 249

neighbouring group contribution, 

466, 467

neodymium laser, 438

neon configuration, 177

Nernst–Einstein equation, 779

Nernst equation, 738

Nernst filament, 378

Nernst heat theorem, 622

neutron, 2

neutron diffraction, 341

Newton, I., 33

Newtonian flow, 768

Newton’s second law of motion, 10

nitric oxide, 515

nitrogen

MO description, 220

PES, 222

VB description, 203

NMR (nuclear magnetic resonance), 

457

NMR intensity, 459

NMR spectrometer, 459

noble gas, 3

node, 76

NOE (nuclear Overhauser  

effect), 481

NOE enhancement factor, 482

NOESY (nuclear Overhauser effect 

spectroscopy), 483

non-competitive inhibition, 886

non-expansion work, 545

nonlinear rotor, partition  

function, 511

non-metal, 3

non-radiative decay, 433

normal boiling point, 660

normal distribution function, 538

normal freezing point, 661

normal mode, 416

symmetry analysis, 419

normal transition temperature, 616

normal Zeeman effect, 194

normalization, 44

normalization constant, 44

nuclear g-factor, 458

nuclear magnetic resonance (NMR), 

457

nuclear magnetogyric ratio, 458

nuclear magneton, 458

nuclear model, 2

nuclear Overhauser effect (NOE), 481

nuclear Overhauser effect 

spectroscopy (NOESY), 483

nuclear spin, 457

nuclear spin quantum number, 457

nuclear statistics, 402

nucleon, 2

nucleon number, 2

number-average molar mass, 691

number of moles, 5

O
O branch, 412

observable, 48

observed lifetime, 892

octahedral group, 280

octahedral molecule, 4

octet, 3

octet expansion, 4

octupole, 305

off-diagonal peaks, 483

ohm, 775

Ohm’s law, 561

one-dimensional random walk, 787

open system, 541

operator, 48

angular momentum, 108

linear momentum, 49

position, 49

optical activity, 281

optical density, 382

optical Kerr effect, 441

orbital, 160

orbital approximation, 169
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orbital energy, 225

orbital notation, 214

orbital overlap, 294

order of group, 287

orthogonality, 55

ortho-hydrogen, 403

orthonormal, 55

orthorhombic lattice, 334

oscillating perturbation, 140

osmometry, 690

osmosis, 688

osmotic coefficient, 710

osmotic pressure, 689

osmotic virial coefficient, 690

osmotic virial equation, 690

Otto cycle, 648

overall order, 803

overlap and symmetry, 292, 294

overlap density, 211

overlap integral, 212, 218, 262, 294

overtone, 410

oxidation, 734

oxidation number, 3

oxidation state, 3

oxidizing agent, 734

oxocuprate superconductor, 360

oxygen molecule, 423

MO description, 220

transitions, 425

P
p band, 346

P branch, 410, 428

p–n junction, 356

p orbital, 163

p-type semiconductivity, 355

packing fraction, 344

paired electrons, 171

pairwise distance directed Gaussian 

(PDDG), 249

parabolic potential energy, 92, 406

para-hydrogen, 403

parallel band, 417

paramagnetic, 357

paramagnetic contribution, 466

parity, 424

partial charge, 4, 224, 304, 309

partial derivative, 27, 589

partial differential equation, 69

partial molar Gibbs energy, 672

partial molar volume, 670

partial pressure, 7

partially miscible liquids, 667, 694

particle in a box, 74

particle in a three-dimensional  

well, 90

particle on a plane, 87

particle on a ring, 103

particle on a sphere, 111

particular solution, 69

partition function, 506, 518

canonical, 525

electronic, 515

entropy, 601

equilibrium constant, 723

factorization, 508

Gibbs energy, 626

Helmholtz energy, 626

interpretation, 508

linear rotor, 511

nonlinear rotor, 511

rate constant, 866

rotation, 510

spin, 522

translation, 509

two-level system, 507

uniform ladder, 507

vibration, 514

partition function density, 866

pascal, 5

Pascal’s triangle, 471, 489

Patterson synthesis, 339

Pauling, L., 225

Pauli exclusion principle, 171, 402

Pauli matrices, 298

Pauli principle, 171, 203, 402

Pauling electronegativity, 225

PDDG (pairwise distance directed 

Gaussian), 249

PDI (polydispersity index), 692

penetration, 173

peptide group, 268

perfect gas, 6, 320

adiabatic expansion, 576

entropy of expansion, 615

mixing, 679, 681

pressure and speed, 758

relation between U and H, 562

viscosity, 771

perfect gas equation, 7

perfect versus ideal, 686

period 2 diatomics, MO description, 

219

periodic crystal, 330

periodic table, 3

periodicity, 178

permanent dipole moment, 303

permittivity, 13, 310

perpendicular band, 417

perpetual motion machine, 544

perturbation theory, 132

PES (photoelectron spectroscopy), 221

phase, 19, 657

phase boundary, 657, 675

phase diagram, 657

two-component, 664

phase equilibrium, 674

phase problem, 339

phase rule, 658

phase-sensitive detection, 462

phase transition, 657

entropy, 616

phenanthrene, 263, 300

phenomenological equation, 767

phenylalanine, 363

phosphorescence, 433, 890

phosphorus pentachloride, 279

photochemical process, 889

photochemistry, 889

photodiode, 380

photoelectric effect, 37

photoelectron, 221

photoelectron spectroscopy (PES), 221

photoemission spectroscopy, 916

photomultiplier tube (PMT), 38, 380

photon, 36

photostationary state, 834

physical chemistry, 1

physical quantity, 6

physisorption, 913

pi bond, 203

pi-bond formation energy, 246

pi-electron binding energy, 234

pi orbital, 218

pi-to-pi* transition, 431

Planck, M., 34

Planck distribution, 35, 143

Planck’s constant, 35

plane polarized wave, 21

plasmon, 919

Plazcek–Teller relation, 453

Plesset, M.S., 253

PM3, 249

PMT (photomultiplier tube), 38, 380

point dipole, 310

point group, 276

point group notation, 277

poise, 774

poison (catalyst), 933

Poisson distribution, 536

polar bond, 4, 224

polar form (complex number), 128

polar molecule, 4, 303

symmetry aspects, 281

polarity

symmetry aspects, 304

polarizability, 306, 399

polarizability volume, 306

polarization mechanism, 473

polarization mechanism (EPR), 491

polarized line, 419

polyatomic molecule, MO description, 

231

polychromatic radiation, 378

polychromator, 378

polydisperse, 691

polydispersity index (PDI), 692

polyelectronic atom, 150

polyene, 232, 264

polymorph, 662

polytype, 343

Pople, J., 238

population, 15, 501, 508

population difference, electron spin, 

462

population inversion, 437

porphine, 300

position operator, 49

positronium, 193

Postulate I, 42

Postulate II, 44

Postulate II′, 43

Postulate III, 47, 49, 61

Postulate IV, 50, 51

Postulate V, 54

potential, 13

potential energy, 12

molecular interaction, 321

potential energy barrier, 80

potential energy curve, 201, 212

potential energy of ionic crystal, 349

potential energy surface, 201, 861

power, 12

power (electric), 14

precession, 459

precursor state, 928

predissociation, 436

pre-equilibrium, 826

pre-exponential factor, 816

pressure, 5

KMT, 758

pressure–composition diagram, 664

pressure jump, 814

primary absorption, 890

primary kinetic isotope effect, 100

primary quantum yield, 891

primitive unit cell, 331, 332

principal quantum number, 2, 155

principle

Aufbau, 176

Avogadro’s, 7

building-up, 176, 216

correspondence, 77

Franck–Condon, 426, 899

Le Chatelier’s, 729

Pauli, 171, 203, 402

Pauli exclusion, 171, 402

uncertainty, 60

variation, 204, 226

probability amplitude, 43

probability density, 43

probability theory, 535

projection operator, 294

promotion, 205

proton, 2

pseudofirst-order reaction, 804

pulse, 90, 478

pulse techniques, 476

pulsed laser, 439

pumping (laser), 437

pyran, 297

pyroelectric device, 380

Q
Q branch, 410, 412, 428

Q-switching, 439

QCM (quartz crystal microbalance), 

919

QSSA (quasi-steady-state 

approximation), 823

quadrupole, 305

quantization, 15

angular momentum, 108

energy, 35

quantum number

angular momentum, 113

particle in a box, 76

principal, 2, 155

spin, 170

spin magnetic, 170

total angular momentum, 185

total orbital angular momentum, 

183

total spin, 184

vibrational, 93

quantum oscillation, 860

quantum yield, 891

quartz crystal microbalance (QCM),  

919

quasicrystal, 331
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quasi-steady-state approximation 

(QSSA), 823

quenching, 893

quenching method, 801

quinoline, 278

R
R branch, 411, 428

radial distribution function, 166

radial node, 155

radial wave equation, 152

radiation sources, 378

radiative decay, 433

radio waves, 21

radius ratio, 347

rainbow angle, 860

rainbow scattering, 860

Raman activity, symmetry  

analysis, 421

Raman spectroscopy, 377, 383

Ramsperger, H.C., 878

random walk, 537, 787

Rankine scale, 23

Raoult, F., 683

Raoult’s law, 683, 695

rate constant, 802

diffusion, 845

electron transfer, 899

equilibrium constant, 812

partition function, 866

state-to-state, 861

structureless particles, 851

temperature dependence, 817

transition-state theory, 851

rate-determining step (RDS), 825

rate law, 802

surface process, 933

rate of adsorption, 919

rate of consumption, 801

rate of desorption, 919

rate of formation, 801

rate of reaction, 801

Rayleigh, Lord, 34

Rayleigh–Jeans law, 34

Rayleigh line, 401

Rayleigh radiation, 384

RDS (rate-determining step), 825

reaction coordinate, 818, 848

reaction enthalpy, 564

temperature dependence, 567

reaction Gibbs energy, 716, 718

cell potential, 736

reaction order, 803

reaction product imaging, 861

reaction quotient, 717, 718, 734

reaction rate, 801

reactive cross-section, 840

real gas, 322

real solution, 694

real-time analysis, 800

rearrangement, 890

reconstruction, 918

rectangular potential energy barrier, 80

redox reaction, 734

reduced mass, 151, 406

reducing agent, 734

reductant, 734

reduction, 734

reduction of representation, 286

reference state, 565

refinement (X-ray), 340

reflection, 275

reflection (X-ray), 336

refractive index, 20

regular solution, 697

relative mean speed, 762

relative molecular mass, 5

relative permittivity, 310

relaxation, 813

relaxation time, 480

REMPI (resonant multiphoton 

ionization), 861

reorganization energy, 894, 901

representation, 285

representative, 285

repulsions, 321

repulsive surface, 864

residual entropy, 622

resistance, 775

resonance, 3, 203, 457

resonance condition, 461

resonance energy transfer, 894

resonance hybrid, 204

resonance integral, 227

resonance Raman spectroscopy, 384

resonant mode, 438

resonant multiphoton ionization, 861

retarding force, 777

retinal, 896

reverse bias, 356

reversible change, 546

Rice, O.K., 878

Rice–Ramsperger–Kassel (RRK) 

model, 878

right-hand rule, 196

ring current, 468

rock salt structure, 347

root mean square displacement, 787

root mean square speed, 759

Roothaan, C.C.J., 242

Roothaan equations, 242

rotating frame, 477

rotation, 103

rotation and translation analogies, 11

rotational constant, 391

rotational degeneracy, 393

rotational energy levels, 391

rotational mean energy, 519

rotational partition function, 510

rotational Raman spectroscopy, 399

rotational structure, 428

rotational subgroup, 532

rotational temperature, 512

rotational term, 391

RRK (Rice–Ramsperger–Kassel) 

model, 878

RRKM model, 878

ruby laser, 438

rule

exclusion, 419

phase, 658

Trouton’s, 617

Russell–Saunders coupling, 185

ruthenocene, 278

Rydberg, J., 181

Rydberg atom, 194

Rydberg constant, 157, 181

Rydberg expression, 181

S
s band, 346

S branch, 412

s orbital, 161

Sackur–Tetrode equation, 602

saddle point, 863

SALC (symmetry-adapted linear 

combination), 294

salt bridge, 734

salt on roads, 688

salting-in effect, 710

SAM (scanning Auger electron 

microscopy), 917

Sayre probability relation, 340

scalar coupling constant, 469

scalar physical property, 195

scalar product, 195

scanning Auger electron microscopy 

(SAM), 917

scanning electron microscopy (SEM), 

915

scanning probe microscopy (SPM), 

915

scattered radiation, 377

scattering factor, 337

scattering intensity, 858

SCF (self-consistent field) calculation, 

174, 241

Schoenflies system, 277

Schrödinger, E., 47

Schrödinger equation

hydrogenic atom, 151

particle on a ring, 106

particle on a sphere, 112

vibration, 92, 406

second derivative, 27

second harmonic generation (SHG),  

919

second ionization energy, 179

second law of motion, 10

Second Law of thermodynamics, 15, 

596, 597

second-order correction to the energy,  

134

second-order phase transition, 660

secondary kinetic isotope effect, 100

secular determinant, 228, 243

secular equations, 227, 243

selection rule, 142

electronic transitions, 425

hydrogenic atom, 182

many-electron atom, 187

molecular vibration, 407

polyatomic vibrations, 417

rotational, 396

rotational Raman, 400

symmetry aspects, 295

vibrational Raman, 412

self-consistent field (SCF) calculation, 

174, 241

SEM (scanning electron microscopy), 

915

semiconductor, 353, 355

optical properties, 357

semi-empirical method, 248

separation of variables, 70, 87,  

113, 151

series expansion, 28

Sham, L.J., 257

shape, 4

shape-selective catalyst, 931

shell, 2, 160

SHG (second harmonic generation), 

919

shielded nucleus, 465

shielding, 173

shielding constant, 173, 466

shielding constant (NMR), 464

SI (Système international), 6

side-centred unit cell, 332

sigma bond, 202

sigma orbital, 210

similarity transformation, 272

simple distillation, 666

simultaneous equations, 271

single bond, 3

singlet, 184

singly excited determinant, 251

skimmer, 858

Slater determinant, 240, 251

Slater-type orbital (STO), 245

sodium D lines, 187

solid, 5

solid-state NMR, 484

solute activity, 695

solvent activity, 694

solvent contribution, 466, 469

sp hybrid orbital, 207

sp2 hybrid orbital, 206

sp3 hybrid orbital, 205

space lattice, 330

space quantization, 116

spatial coherence, 439

specific heat capacity, 14

specific selection rule, 142

spectral density of states, 34

spectral series, 181

spectrometer, 378

spectroscopic transition, 142

spectroscopy, 36, 377

speed, 9

speed of light, 20

sphalerite, 348

spherical harmonics, 113, 152

spherical polar coordinates, 112, 151

spherical rotor, 390

spherical top, 391

spherical well energy levels, 533

spin, 170

spin-½ nucleus, 459

spin correlation, 177

spin density, 490

spin hamiltonian, 458, 496

spin–lattice relaxation time, 480

spin magnetic quantum number, 170

spin–orbit coupling, 186

spin–orbit coupling constant, 186

spin paramagnetism, 358

spin partition function, 522

spin quantum number, 170

spin relaxation, 479
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spin–spin coupling, 472

spin–spin relaxation time, 480

spinorbital, 240

SPM (scanning probe microscopy), 

915

spontaneous change, 15, 595, 625

Gibbs criterion, 626

Helmholtz criterion, 626

spontaneous emission, 144

SPR (surface plasmon resonance), 919

square-integrable, 44

square modulus, 43, 128

square-planar molecule, 4

square wave, 371

SQUID (superconducting quantum 
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standard boiling point, 660
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standard deviation, 535
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of fusion, 563

of reaction, 564

table of, 564

of transition, 563
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standard (Third-Law) entropy, 623

standard freezing point, 661
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standard potential, 741

combining, 742

standard pressure, 6

standard reaction entropy, 624

standard state, 563
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Stark effect, 398

Stark modulation, 382

state function, 544, 608

state-to-state rate constant, 861

stationary state, 139

steady-state approximation, 823
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steric factor, 840, 878

entropy of activation, 853

steric requirement, 840
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Stern–Volmer equation, 893

Stern–Volmer plot, 893

sticking probability, 928

stimulated absorption, 143
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Stirling’s approximation, 537

STO (Slater-type orbital), 245

Stokes–Einstein equation, 779

Stokes lines, 401

Stokes radiation, 384

Stokes’s law, 777
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structure factor, 337

structure refinement, 340
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sublimation vapour pressure, 660

subshell, 2, 160

substitution (for integration), 29
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sulfur dioxide spectrum, 36

Sun interior, 791

Sun surface temperature, 34

superconducting quantum 

interference device (SQUID), 358

superconductor, 353, 360

supercritical fluid, 326

superfluid, 662

superposition, 54, 59

supersonic jet, 858

supersonic nozzle, 858

surface defect, 913

surface growth, 913

surface mobility, 930

surface plasmon resonance (SPR), 919

surroundings, 541

symmetric rotor, 390, 392

symmetric stretch, 416

symmetric top, 391

symmetry-adapted linear combination 

(SALC), 294

symmetry axis, 275

symmetry element, 275, 331

symmetry number, 512, 532

symmetry operation, 275, 331

symmetry species, 287

synchrotron radiation, 378

synchrotron storage ring, 378

system, 541

T
Taylor series, 28

TDS (thermal desorption 

spectroscopy), 929

Teller, E., 925

TEM (transmission electron 

microscopy), 915

temperature, 6, 501

temperature–composition diagram, 

665

temperature-independent 

paramagnetism (TIP), 359

temperature jump, 813

temperature-programmed desorption 

(TPD), 929

temporal coherence, 439

term symbol

atomic, 183

molecules, 423

terrace, 913

tetrahedral group, 280

tetrahedral molecule, 4

tetramethylsilane (TMS), 465

tetraphenylmethane, 280

theorem

Brillouin’s, 254

convolution, 373

equipartition, 17, 518

Hohenberg–Kohn, 257

Koopmans’, 221

Nernst heat, 622

virial, 163

theory

activated complex, 848

Debye–Hückel, 700

density functional, 256

Hückel, 248

kinetic molecular, 16, 757

Marcus, 899

molecular orbital (MO), 209

perturbation, 132

transition-state, 848

valence-bond (VB), 201

thermal conduction, 770

thermal conductivity, 768

thermal de Broglie wavelength, 509

thermal desorption spectroscopy 

(TDS), 929

thermal equilibrium, 546

thermal motion, 543

thermal neutron, 341

thermal wavelength, 509

thermochemistry, 560

thermodynamic control, 827

thermodynamic equation of state, 640

thermodynamic equilibrium constant, 

719

thermodynamic force, 783

thermodynamic limit, 525

thermodynamic temperature, 6, 612

thermodynamics, 14, 541

thermogram, 563

Third Law of thermodynamics, 622

Third-Law entropy, 623

Thomson, G., 39

Thomson, W., 555

three-body interaction, 317

three-level laser, 437

tight-binding approximation, 345

time constant, 807

time-dependent perturbation theory, 

132, 139

time-dependent Schrödinger equation, 

140

time-dependent wavefunction, 42

time-independent perturbation theory, 

132

time-independent Schrödinger 

equation, 47

time-independent wavefunction, 42

time-resolved spectroscopy, 383

TIP (temperature-independent 

paramagnetism), 359

TMS (tetramethylsilane), 465

torque, 11

total angular momentum, 185

total angular momentum quantum 

number, 185

total energy, 12

total interaction, 317

total orbital angular momentum 

quantum number, 183

total rate of absorption, 143

total spin angular momentum 

quantum number, 184

TPD (temperature-programmed 

desorption), 929

trajectory, 10, 12

transition, 139

transition dipole moment, 142, 182, 

295, 397, 407, 425

transition intensity, rotational, 397

transition metal, 3

transition probability, 81, 140

transition rate, 140

transition state, 849

transition-state theory, 848

transition temperature, 616

translation, 73

translation and rotation analogies, 11

translation in two dimensions, 87

translational contribution, 518

translational partition function, 509

transmission coefficient, 850

transmission electron microscopy 

(TEM), 915

transmittance, 381

transport property, 767

transpose matrix, 270

transverse relaxation time, 480

trial wavefunction, 204

triclinic unit cell, 331

volume, 366

trigonal-bipyramidal molecule, 4

trigonal-planar molecule, 4

triple bond, 3

triple point, 6, 661

triplet, 184

Trouton’s rule, 617

tumbling, 418

tunnelling, 80, 899

tunnelling (harmonic oscillator), 98

turnover frequency, 884

two-dimensional NMR, 483

two-dimensional square well, 87

two-electron integral, 249

two-fluid model, 663

two-level system , 518

heat capacity, 574

Type I and II superconductors, 360

U
u,g symmetry, 214

ubiquitin, 563

ultrahigh vacuum, 915

ultraviolet catastrophe, 34

ultraviolet photoelectron spectroscopy 

(UPS), 222, 916

ultraviolet radiation, 21

unbound state, 156

uncertainty principle, 60

energy–time, 143

uncompetitive inhibition, 885

undetermined multiplier, 502

ungerade, 424

ungerade symmetry, 214

uniform electron gas, 257

unimolecular reaction, 821, 876

unit, 6

unit cell, 331

unit matrix, 270

unit vector, 195

UPS (ultraviolet photoelectron 

spectroscopy), 222, 916

V
vacuum permittivity, 13

vacuum ultraviolet, 21
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valence band, 355

valence-bond (VB) theory, 201

valence shell, 3

valence-shell electron pair repulsion 

(VSEPR) theory, 4

valence state, 226

van der Waals, J.D., 323

van der Waals equation, 323, 328,  

528

van der Waals interactions, 309

van der Waals isotherms, 325

van der Waals’ loops, 325

van der Waals molecule, 860

van der Waals parameters, 323

vanishing integral, 291

van ’t Hoff equation

equilibrium, 730

osmosis, 689

vapour pressure, 326, 660

determination, 765

regular solution, 698

vapour pressure lowering, 687

variance, 535, 658

variation principle, 204, 226

vector, 195

vector addition, 195

vector differentiation, 197

vector model, 117

vector multiplication, 195

vector physical property, 195

vector product, 196

vector representation of angular 

momentum, 109

vector subtraction, 195

velocity, 9

velocity selector, 761, 858

vertical mirror plane, 275

vertical transition, 426

vibration, 92

vibration–rotation term, 410

vibrational mean energy, 520

vibrational partition function, 514

vibrational progression, 426

vibrational quantum number, 93

vibrational Raman spectra, 412, 419

vibrational structure, 422, 426

vibrational temperature, 512

vibrational term, 407

vibronic transition, 425

virial coefficient, 322

virial equation, 322

virial theorem, 163

virtual orbital, 251

viscosity, 768

liquid, 774

perfect gas, 771

temperature dependence, 775

visible light, 21

volcano curve, 933

volt, 13

voltaic cell, 734

volume, 5

volume magnetic susceptibility, 357

VSEPR (valence-shell electron pair 

repulsion) theory, 4

W
water

molecular cluster, 860

normal modes, 417

phase diagram, 662

residual entropy, 622

symmetry elements, 275

VB description, 204

water–ethanol mixture, 670

watt, 12

wave, 19

wave–particle duality, 39

wavefunction, 42

harmonic oscillator, 94

hydrogenic atom, 152, 155

particle in a box, 76

particle on a ring, 106

three-dimensional square well, 90

two-dimensional square well, 88

valence-bond (VB), 202

wavelength, 19

wavenumber, 20

wavepacket, 59

weight (configuration), 499, 600

weight-average molar mass, 691

Wien’s displacement law, 34

Wierl equation, 341

work, 11, 542

constant pressure, 546

extension, 545

varieties, 545

work function, 37

wrinkle, Nature’s abhorrence  

of a, 785

X
xenon discharge lamp, 378

XPS (X-ray photoelectron 

spectroscopy), 916

X-ray, 21

X-ray crystallography, 335

X-ray fluorescence, 916

X-ray photoelectron spectroscopy 

(XPS), 916

Y
YAG (yttrium aluminium garnet), 438

yttrium aluminium garnet (YAG), 438

Z
Zeeman effect, 193

zero-order reaction, 803

zero-point energy, 78, 93

zinc blende (sphalerite), 348
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