ENCORE 18-05-2023

STAR ACADEMY (+92)-306-4941878

Matric, FSc, A/O Level, MDCAT/NUMS and Supplementary Exams Pep with Dr.Sadaqat Baloch Physics 11TH Past Paper MCQS

Name of student: _____

FBSIE 2019 GROUP-I

	TUSIL	2013 01001 -1							
i) Signals from remo	te control to the device ope	erated by it travel with th	ne speed of:						
A. Light	B. Ultrasonic	C. Supersonic	D. Sound						
Answer: A. L	ight								
ii) The effect produced by the superposition of waves from two coherent sources passing through the									
same region is calle	d:								
A. Diffraction	B. Polarization	C. Refraction	D. Interference						
Answer: D. Interference									
iii) In which of the fo	ollowing processes maximu	m work can be obtained:							
A. Isochoric	B. Isothermal	C. Adiabatic	D. Isobaric						
Answer: B. Isothermal									
iv) Which of the foll	owing may be used as a val	id fo <mark>rmu</mark> la to calculate th	ne speed of ocean waves:						
(v=speed, g=acceler	ation due to gravity, λ=wav	ele <mark>ngth,</mark> p=density, h=de	pth):						
A. gh/λ	B. √(λg)	C. λ/gh	D. pgh						
Answer: B. v	(λg)								
v) In a cricket match	, 500 spectators are counter	<mark>ed one by on</mark> e. How man	y significant figures will be there						
in the final result:									
A. 1	B. 2	C. 3	D. 0						
Answer: C. 3									
vi) A person walks fi	rst 10 km north and 20 km	east. The magnitude of t	he resultant vector is:						
A. 22.36 km	B. 22.46 km	C. 25 23 km	D. 20.36 km						
Answer: A. 2	2.36 km								
vii) For which angle	the equation, A.B = AxE	3 is correct:							
A. 45°	B. 60°	C. 90°	D. 0°						
Answer: A. 4	45°								
viii) When a block of	f wood of mass 2 kg is push	ed along a horizontal fat	surface of a bench, the force of						
friction is 4N. When	the block is pushed along t	he bench with a force of	10N, it moves with a constant:						
A. Speed of 5ms ⁻¹	B. Acceleration of 3ms	² C. Acceleration of 5ms ⁻¹	² D. Speed of 3ms ⁻¹						
Answer: B. A	cceleration of 3 ms ⁻²								
ix) A projectile is thr	own so that it travels a max	ximum range of 100m. H	ow high will it rise:						
A. 400 m	B. 500 m	C. 250 m	D. 25 m						
Answer: D. 2	5 m								
x) One horse power	is equal to:								
A. 746 Joules	B. 746 KW	C. 746 N	D. 746 Watt						
Answer: D. 7	46 Watt								
xi) What is moment	of inertia of a sphere:								
A. (1/2)M ² R	B. (2/5)MR ²	C. (1/2)MR ²	D. MR ²						
Answer: B. (2	2/5)MR ²								
xii) If the earth sudd	lenly stops rotating, the val	ue of 'g' at equator woul	d:						
Matric, FSc, A/O Level, MDCAT/NUMS and Supplementary Exams Prep with Dr.Sadaqat Baloch									

drsadaqat329@gmail.com

C. Increase A. Remain unchanged B. Become Zero D. Decrease **Answer: C.** Increase xiii) A raindrop of radius 'r' falls in the air with a terminal speed v. What should be the terminal speed of raindrop of radius 2r: **C.** 4v_t A. v_t **B.** 2v_t D. $v_t/2$ Answer: C. 4v+ xiv) Bernoulli's equation is based upon law of conservation of: B. Momentum C. Current D. Mass A. Energy Answer: A. Energy xv) The time period of the same pendulum at Karachi and at Murree are related as (T_M =Time period at Murree, T_{k} =Time period at Karachi: C. $2T_{K} = 3T_{M}$ A. $T_{K} > T_{M}$ B. $T_K < T_M$ D. $T_{K} = T_{M}$ Answer: B. T_K < T_M xvi) In an isolated system the total energy of vibrating mass and spring is: B. Low C. High A. Variable D. Constant Answer: **D.** Constant xvii) Which of the following factors has no effect on the speed of sound in a gas: A. Pressure B. Temperature C. Density D. Humidity Answer: A. Pressure FBSIE 2019 GROUP-II i) Which of the following is a pair of SI base units: B. Coulomb, Second D. Newton, Meter A. Ampere, Joule C. Kilogram, Kelvin **Answer:** C. Kilogram, Kelvin ii) 1 km/ 1 Gm = C. 10⁻⁶ m D. 10⁶ m Α. μ B.μm Answer: Α. μ iii) A person walks first 10 km north and 20 km east. Then the magnitude of the resultant vector is: A. 20.36 km B. 22.36 km C. 22.46 km D. 25.23 km B. 22.36 km Answer: (iv) If the scalar product $\overline{A}.\overline{B} = 0$, then which of the following is **NOT** correct? A В С D $\overline{A} \neq 0$ $\overline{A} = 0$ $\overline{A} \neq 0$ *A* ≠ 0 $\overline{B} \neq 0$ $\overline{B} = 0$ $|\overline{B}| \neq 0$ $\overline{B} \neq 0$ $\theta \neq 0^{\circ}$ θ≠0° $\theta = 0^{\circ}$ $\theta \neq 0^{\circ}$ $\cos\theta \neq 0$ $\cos\theta \neq 0$ $\cos\theta \neq 0$ $\cos\theta = 0$ С. **Answer:** v) A car takes 1 hour to travel 100 km along the main road and than ½ hour to travel 20 km along a side road. What is the average speed of the car for the Whole Journey: A. 60 km h⁻¹ B. 70 km h⁻¹ C. 80 km h⁻¹ D. 100 km h⁻¹ C. 80 km h⁻¹ **Answer:**

vi) Rate of change of velocity is called:

A. SpeedB. DistanceC. AccelerationD. DisplacementAnswer:C. Acceleration

vii) An example of a non-conservative force is:

A. Electric force B. Magnetic force C. Gravitational force D. Frictional force Answer: **D. Frictional force** viii) The expression for escape velocity is given by: A. $2g R^2$ B. √(2gR) C. g $R^{2}/2$ D. 2 gR Answer: B. √(2gR) ix) Artificial satellites move around: A. Moon B. Sun C. Stars D. Earth Answer: D. Earth x) What is the moment of inertia of a solid cylinder: B. 1/2 M²R A. MR² C. 2/5 M²R D. 1/2 MR² Answer: D. 1/2 MR² xi) The pressure will be low where the speed of the fluid is: A. Zero B. High C. Low D. Constant Answer: B. High xii) If the period of oscillation of mass (M) suspended from a spring is 2 s. then the period of mass 4M should be: B. 2 s C. 4 s A. 1 s D. 8 s Answer: B. 2 s xiii) In an Isolated system, the total energy of a vibrating mass and spring is: B. Variable C. Low A. Constant D. High Answer: A. Constant xiv) There is no net transfer of energy by particles of medium in: A. Longitudinal wave B. Transverse wave C. Progressive wave D.Stationary wave Answer: **D. Stationary wave** xv) Which of the following factors has no effect on the speed of sound in a gas? B. Pressure C. Temperature D. Density A. Humidity **Answer: B.** Pressure xvi) A real gas can be approximated to an ideal gas at: A. Low density B. High pressure C. High density D. Low temperature Answer: A. Low density xvii) Coloured fringes observed in soap bubbles are the examples of: **B.** Interference C. Polarization D. Reflection A. Diffraction **B. Interference** Answer: FBSIE 2018 GROUP-I i) For an ideal gas, the internal energy is directly proportional to: A. Volume C. Pressure D. Temperature B. Density Answer: **D.** Temperature ii) Thermal pollution is an inevitable consequence of: A. First law of thermodynamics B. Newton's third law C. 2nd law of thermodynamics D. Pascal's law Answer: C. 2nd law of thermodynamics iii) The Prefix one peta is: B. 10¹⁸ C. 10¹⁵ A. 10⁹ D. 10¹² **C. 10**¹⁵ **Answer:** iv) Counter clockwise Torque is: A. Zero B. Infinite C. Negative D. Positive **D.** Positive **Answer:** Matric, FSc, A/O Level, MDCAT/NUMS and Supplementary Exams Prep with Dr.Sadaqat Baloch drsadaqat329@gmail.com 0306-4941878

v)If $\vec{A} = a\hat{i}$	and $\vec{B} = a \hat{j}$	then:						
Α. /	$\dot{A} \cdot \vec{B} = -a$	В.	$\vec{A} \cdot \vec{B} = 0$	С.	$\overrightarrow{A} \cdot \overrightarrow{B}$	$\dot{s} = a$	D.	$\overline{A} \cdot \overline{B} = a^2$
Answer:	R							
vi) The mot	ion and rest a	re.						
A Discrete	F	Random		C Absolute	1	D Relat	ive	
Answer:	D. Relati	ve		e., (550)ate		Differen		
vii) The fue	I consumed by	v a typical re	ncket to nro	vide enougl	n unward f	thrust to o	vercome g	ravity is:
$\Delta = 1.0000$ kg	r to its affice S_1^2		1		1	1000 ת	0kg min ⁻¹	
Answer:	B. 10000	kgs ⁻¹		C. 10000g3		D. 1000		
viii) When t	he angle hetv	veen force a	nd displace	ement is gre	ater than (90° the w	ork done i	
A Negative		R Positive		C Maximu	n	D Zero	on aone i	
Answer:	A. Negat	ive		ermaxima				
ix) Which o	f the following	is non-con	servative f	orce?				
A Flectric f	orce F	B Flastic snr	ing force	C Gravitati	onal force	D Norn	nal force	
Answer:	D. Norm	al force		er erarraa	onur for de	Dinton		
x) SI unit of	angular mom	entum is:						
A. Nm	E	3. Radian		C. Ns		D. Js		
Answer:	D. Js					2.00		
xi) Bernoull	i's equation is	based on t	ne law of co	onservation	of:			
A. Charge	E	B. Momentu	m	C. Mass		D. Ener	gv	
Answer:	D. Energ	v						
xii) If radius	of the drople	t is doubled	l, the termi	na <mark>l veloc</mark> ity	increases:			
A. Four tim	es E	3. Eight time	S	C. Two time	es	D. Thre	e times	
Answer:	A. Four t	imes						
xiii) Tuning	of a radio is a	n example o	of:					
A. Musical I	resonance E	3. Magnetic	resonance	C. Mechani	cal resona	ince	D. Electric	al resonance
Answer:	D. Electr	ical resonar	nce /					
xiv) If a tra	nsverse wave,	, travelling i	n a rare <mark>r</mark> m	edium, is rel	lected fro	m a densei	r medium,	it undergoes
a path diffe	erence of:							
Α. λ/2	E	3.λ		C. λ/8		D. λ/4		
Answer:	Α. λ/2							
xv) A diffra	ction grating	has 5000 lin	es per cm.	Its grating e	lement is:			
A. 2 x 10 ⁻³ cı	m E	3. 0.2 x10⁻³c	m	C. 200 x 10	⁻³ cm	D. 20 x1	L0⁻³cm	
Answer:	B. 0.2 x1	0 ⁻³ cm						
xvi) For ligh	nt of wavelen	gth A throug	gh a lens of	diameter D,	the resolv	ing power/	is given b	y:
A. 1.22 D/λ	E	3. λ/1.22D		C. 1.22 λ/D		D. D/1.2	22λ	
Answer:	D. D/1.2	2λ						
xvi) The Bra	agg equation i	s given as:						
A. 2d sin θ :	=nλ E	3. 2nsin θ =	dλ	C. d sin θ =	nλ	D. n sin	θ =dλ	
Answer:	A. 2d sin	θ = nλ						
			FBSIE 2	2018 GRO	UP-II			
i) The effici	ency of diesel	engine is al	oout:					
A. 30% to 3	5% E	3. 25% to 30	%	C. 45% to 5	0%	D. 35%	to 40%	
Answer:	D. 35% t	o 40%						
ii) The entro	opy of univers	e always:						
A. Increases	s and decreas	es simultan	eously	B. Remains	constant			
C. Increases	S			D. Decrease	es			
Answer:	C. Increa	ses						
Matric, FS	c, A/O Level,	MDCAT/N	UMS and	Supplemen	tary Exan	ns Prep wi	ith Dr.Sad	aqat Baloch
		d	lrsadaqa	t329@gm	ail.com			

iii) One year is equal to: C. 1.41 x 10¹⁷s A. 3.15 x 10⁷s B. 5.4 x 10^4 s D. 8.6 x 10⁴s Answer: A. 3.15 x 10⁷s iv) SI unit of Torque is: C. Js A. Ns B. JC⁻¹ D. Nm Answer: D. Nm v) In case of unit vectors \hat{i}, \hat{j} and \hat{k} . Which of the following is valid? $\hat{i} \times \hat{i} = 1$ $\hat{i} \times \hat{i} = 0$ B C. $\hat{i} \times \hat{i} = -\hat{k}$ Α. $\hat{i} \times \hat{i} = \hat{k}$ D. Answer: С. vi) The change in position of a body from initial position to final position is called: A. Displacement **B.** Acceleration C. Position vector D. Velocity A. Displacement Answer: vii) The notation delta (\triangle) is used to represent a: D. Very small change A. Small change B. Big change C. Zero change Answer: **D. Very small change** viii) 1kWh is equal to: B. 3.6 x 10⁻⁶J C. 3.60 x 10⁹J D. 3.6 x 10⁻⁹ J A. 3.6 x 10⁶J Answer: A. 3.6 x 10⁶J ix) If angle ' θ ' is greater than 90°, the work done is: A. Maximum B, Positive C. Zero D. Negative Answer: **D. Negative** x) Moment of inertia of a thin rod about its length is: $\frac{1}{12}mE^{4}$ $\frac{2}{2}mL^2$ $\frac{1}{12}mL^2$ $\frac{1}{12}mL^3$ Α. Β. C. D. Answer: С. xi) The device used to measure the speed of liquid flow is called: A. Speedometer B. Spectrometer C. Barometer **D.** Venturimeter **Answer:** D. Venturimeter xii) The dimensions of flow rate are: D. $[L^2T^{-1}]$ A. (L⁻¹T⁻³] B. $[L^{-1}T^{-2}]$ C. $[L^{3}T^{-1}]$ Answer: C. $[L^{3}T^{-1}]$ xiii) For 1°C rise in temperature, the speed of sound increases by: D. 6.1 ms⁻¹ A. 0.61 ms⁻¹ B. 0.061 ms⁻¹ C. 61 ms⁻¹ Answer: A. 0.61 ms⁻¹ xiv) To double the period of simple pendulum, its length must be: A. increased two times B. Increased four times C. Decreased by 1/3 D. Decreased by 1/2 **B.** Increased four times Answer: xv) In Michelson's interferometer, a fringe is shifted, each time the mirror is displaced through: D. λ/4 Α. λ B. λ/2 C. λ/8 **B.** λ/2 Answer: xvi) In normal adjustment, the length of astronomical telescope is: A. $1/f_a+f_e$ B. f_e/f_a C. f_a/f_e D. $f_a + f_e$ D. fa+fe **Answer:** Matric, FSc, A/O Level, MDCAT/NUMS and Supplementary Exams Prep with Dr.Sadaqat Baloch

drsadaqat329@gmail.com

xvii) Multimode	step index	x fibre has a core of:		
A. 50 μm	B.	. 1000 μm	C. 0.5 μm	D. 5 μm
Answer:	A. 50 μm			
		FBSIE 2	2017 GROUP-I	
i) The dimensio	ns of Powe	er are:		
A. [MLT ⁻²]	В.	. [MLT ⁻³]	C. [M ² L ² T ⁻²]	D. [ML ² T ⁻³]
Answer:	D. [ML ² T ⁻³	¹]		
ii) The significar	nt figures ir	n 34.678 are:		
A. 4	В.	.3	C. 5	D. 2
Answer:	C. 5			
iii) Two forces a	ire acting to	ogether on an object.	The magnitude of their r	resultant is minimum , when the
angle between	the forces	is:		» /
A. 120°	В.	. 180°	C. 45°	D. 60°
Answer:	B. 180°			
iv) If the scalar	product of	two vectors is 2V3 and	d <mark>the ma</mark> gnitude of their	vector product is 2. The angle
between them	is:			
A. 30°	💛 В.	. 60°	C. 180°	D. 120°
Answer:	A. 30°			
v) A car starts fr	rom rest ar	nd covers a distance of	f 10 <mark>0 m</mark> in one second w	ith uniform acceleration. It's
acceleration is:				
A. 100 m/s ²	В.	. 200 m/s ²	C. 300 m/s ²	D. 50 m/s ²
Answer:	B. 200 m/	's ²		
vi) A ball rolls o	ff the edge	of a table . The horizo	ontal component of the l	call's velocity remains constant
during its entire	e trajectory	v because:		
A. The net force	e acting on	the ball is zero		
B. The ball is no	t acted up	on by a force in the ho	prizontal direction	
C. The ball is ac	ted upon b	y a force the horizonta	al direction	
D. The ball is ac	ted upon b	by a force in the vertica	al direction.	
Answer:	B. The bal	ll is not acted upon by	a force in the horizonta	al direction
vii) Which of th	e following	; is the example of con	servative force?	
A. Tension in th	e string		B. Propulsion force of ro	ocket
C. Gravitational	field		D. Restoring force in co	mpressed spring
Answer:	C. Gravita	tional field		
viii) Any body re	equires	escape ve	locity, to escape from th	e gravitational pull of the mars:
A. 2.4 km/s	В.	. 4.3 km/s	C. 5 km/s	D. 10.4 km/s
Answer:	C. 5 km/s			
ix) In dryer , wa	ter is push	ed out of wet clothes	due to:	
A. Abundance c	of centripet	tal force	B. lack of centripetal for	rce
C. Friction			D. Retarding force	
Answer:	A. Abunda	ance of centripetal for	rce	
x) The SI-unit of	f co-efficier	nt of viscosity is:		
A. kgm ⁻¹ s ⁻¹	В.	. kgm ^{-1s-2}	C. kgm ⁻² s ⁻¹	D. kgm ⁻³ s ⁻²
Answer:	A. kgm ⁻¹ s ⁻	1		
xi) A stone of m	ass 16 kg i	s attached to a string 1	144 m long and is whirle	d in a horizontal circle. The
maximum tensi	on the stri	ng can withstand is 16	N. The maximum veloci	ty of revolution that can be

given to the stone without breaking it, will be:

A. 20 ms ⁻¹	B. 16 ms ⁻¹	C. 14 ms ⁻¹	D. 12 ms ⁻¹						
Answer:	D. 12 ms ⁻¹								
xii) The property of fluid by which its own molecules are attracted is said to be:									
A. Adhesion	B. Cohesion	C. Viscosity	D. Surface Tension						
Answer:	D. Surface Tension								
xiii) A simple p	endulum is moved from	the Earth to the Moon. How d	loes it change the period of						
oscillations? (Acceleration due to gravi	ty on moon=1.6 m/s ⁻²)							
A. The period	is increased by factor V6	B. The period is incre	eased by factor four						
C. The period	s decreased by factor V6	D. The period remain	ns the same						
Answer:	B. The period is increa	sed by factor four							
xiv) Which of	he following conditions i	s best for cooking purpose?							
A. Isobaric	B. Isochoric	C. Adiabatic	D. Isothermal						
Answer:	B. Isochoric								
xv) What wou	d be the efficiency of a C	arnot engin <mark>e op</mark> erating with b	oiling water as one reservoir and a						
freezing mixtu	re of ice and water as the	e other res <mark>ervoir</mark> ?							
A. 27%	B. 67%	C. 12%	D. 100%						
Answer:	A. 27%								
xvi) 🦳									
Power of m	agnifying glasses is	given by:							
	_	d	f(f) D 1.6						
A. f	- <i>р</i> В.	$1+\left(\frac{1}{f}\right)$ C.	$I = \left(\frac{-}{d}\right)$ D. $I \neq ja$						
Answer:	$B_{1} + (d/f)$								
xvii) Optically	active substance are those	se which:							
A. Produce Po	larized Light								
B Products de									
C Rotate the	plane of polarization of n	olarized light							
D Convert a r	lane polarized light into (circulatory polarized light							
Answer:	C. Rotate the plane of	polarization of polarized light							
,		EBSIE 2017 GROUD-II							
i) A cound way	o travailing in air bac au	1031220170000000000000000000000000000000	a valacity of sound is 220 m/s						
I) A Sound wa	re travalling in all flas a w		le velocity of sound is 320 m/s						
	requency of sound: $P_{1} = 2.0 \times 10^{2} \text{ Hz}$	$C_{1} = 0 \times 10^{5} \text{ Hz}$							
		C. 2.0 X10 Hz	D. 2.0 X10 Hz						
All the option	Note.	errect the correct Answer is a							
All the option $2.0 \times 10^4 \text{Hz}$		offect the confect Allswer is .							
ii) Which of th	o following pairs of units	are both derived units? (Mar	k 1)						
A Kilogram A	ngstrom B Ampere De	are both derived diffics: (Mai	D Joule Watt						
A. Kilografii, A	D Joule Watt	gree C. Newton, candela	D. Joule, Wall						
iii) When two	D. Joure, wall	a at right angles to each other	their point of intersection is called:						
A Coordinato	system P Origin		D. Postangular components						
A. COOTUINALE	P Origin	C. COOLUITALE AXIS	D. Rectangular components						
	D. Oligili	f a voctor may be:							
A Infinito			D. Three						
A. minine	A Infinito	C. 1 WO							
Miswel:	safety helmot extende th	a time of collision and docras	5051						
vjiviotorcycle	sarety neimet extends th		353.						

A. Impulse B. Change of collision C. Force acting D. Velocity of Vehicle Answer: **C.** Force acting vi) A brick of mass 2 kg is dropped from a rest position 5 m above the ground. What is its velocity at a height of 3 m above the ground? A. 12.4 m/s B. 6.3 m/s C. 7 m/s D. 1.2 m/s Answer: B. 6.3 m/s _ escape velocity to escape from the gravitational pull of the Venus: vii) Anybody requires B. 2.4 km/s C. 4.3 km/s D. 10.4 km/s A. 5.5 km/s Answer: D. 10.4 km/s viii) One radian is equal to: A. 47.6⁰ B. 34.3⁰ C. 53.7 D. 57.3° D. 57.3⁰ Answer: ix) The Dimensions of co-efficient of viscosity are: A. ML⁻³T⁻² B. ML⁻¹T⁻¹ D. ML⁻²T⁻³ C. ML⁻¹T⁻² B. ML⁻¹T⁻¹ Answer: x) A simple pendulum on earth has period of 6.0 s. What Is the approximate period of this pendulum on the moon where the acceleration due to gravity is roughly 1/6 of earth's gravity: A. 15 s B. 1.0 s C. 36 s D. 2.4 s A. 15 s Answer: xi) The temperature at which a system undergoes a reversible isothermal process without transfer heat is called as: A. Reversible temperature **B.** Critical temperature C. Kelvin temperature D. Absolute zero temperature Answer: **D. Absolute zero temperature** xii) A frictionless heat engine can be 100% efficient only if its exhaust temperature is: A. Zero kelvin B. Equal to its input temperature C. Less than its input temperature D. Freezing point of water Answer: A. Zero kelvin xiii) The limit to which a microscope can be used to resolve details depends on: A. The width of eye piece and Longer Wavelength B. The width of objective and Short Wavelength C. The width of eye piece and Short Wavelength D. The width of objective and Longer Wavelength B. The width of objective and Short Wavelength Answer: xiv) According to Laplace's point of view, sound waves travel in air under the conditions of: A. Isothermal B. Isobaric C. Isochoric D. Adiabatic Answer: **D. Adiabatic** xv) The refractive index of rarer medium with respect to a denser medium is: A. Zero B. 1 C. Greater than 1 D. Smaller than 1 D. Smaller than 1 Answer: xvi) In a reversible cycle, the entropy of the system: A. First increases and then decreases B. Increases C. Decreases D. Does not change Answer: **B.** Increases xvii) A telescope is made of an objective of focal length 20 cm and an eye piece of focal length 5 cm, both are convex lenses. Calculate the angular magnification:

A. 15	B. 4	C. 5	D. 10
Answer:	B. 4		
	FBSIE	2016 GROUP-I	
i) Boltzmann co	nstant k = R/N _A , where R is the g	general gas constant and	N _A is the Avogadro's number.
What is the SI u	nit of k?		-
A. J mol ⁻¹ K ⁻¹	B. J mol K ⁻¹	C. JK	D. JK ⁻¹
Answer:	D. JK ⁻¹		
ii) Which of the	following is the dimensions of a	angular momentum?	
A. [ML ² T ⁻²]	B. [MLT ⁻¹]	C. [MLT ⁻²]	D. [ML ² T ⁻¹]
Answer:	D. [ML ² T ⁻¹]	ARA	
iii) Which of the	following pairs contains one ve	ector and one scalar guar	ntity?
A. Torque, Angu	llar momentum	B. Work, Power	- A
C. Impulse, Toro	que	D. Impulse, Energy	
Answer:	D. Impulse, Energy		
iv) A girl throws	a ball vertically upward with a	velocity of 20 ms ⁻¹ . Ignore	e the air resistance, how long will
it take to fall ba	ck to her hands?		
A. 6 Seconds	B. 2 Seconds	C. 3 Seconds	D. 4 Seconds
Answer:	D. 4 Seconds		
v) Which of the	following quantities is equal to	area under velocity-time	graph?
A. Distance	B. Acceleration	C. Work Done	D. Power
Answer:	A. Distance		
vi) What is equa	al to kilowatt-hour?		
A. 3.6 MJ	Β. 3.6 μJ	C. 3.6 mJ	D. 3.6 kJ
Answer:	A. 3.6 MJ		
vii) A projectile	is thrown with some initial velo	<mark>city. For whic</mark> h pair of an	gles its range is equal?
A. 10°, 80°	B. 10°, 40°	C. 10°, 50°	D. 10°, 70°
Answer:	A. 10°, 80°		
viii) Two vectors	s A and B are enclosing an angle	θ . For which value of θ ,	$A \times B = A.B?$
A. 90°	B. 0°	C. 45°	D. 60°
Answer:	C. 45°		
ix) A hoop of ma	ass "m" rolls down an inclined p	lane of height "h", reach	es the bottom with linear
velocity "v" and	angular velocity " ω ". If friction	is ignored, what is the to	stal energy of the hoop at the
, bottom of inclin	ned plane?	0 ,	
A. mv ²	B. ¼ mv²	C. ½ mv ²	D. ¾ mv²
Answer:	C. ½ mv ²		
x) What is the le	ength of simple pendulum whos	e time period is one seco	ond?
Á. 0.25 m	B. 2.00 m	C. 0.99 m	D. 0.50 m
Answer:	A. 0.25 m		
xi) For a mass s	pring system placed on a smoot	h horizontal surface oscil	lating with amplitude "x _o ". At
what displacem	ent from the mean position its	energy is equal to its elas	stic potential energy?
A. $x_0/4$	B. x _o	C. x ₀ /2	D. $x_0/\sqrt{2}$
Answer:	A. x _o /4		
xii) When two n	otes of frequencies "f1" and "f2'	" are sounded together, I	beats are produced. If $f_1 > f_2$ what
will be the perio	od of beats?	2 <i>i</i>	
A. 1/(f ₁ -f ₂)	B. f ₁ + f ₂	C. $f_1 - f_2$	D. $1/(f_1 - f_2)$
Answer:	C. $f_1 - f_2$		

A. 500 MA B. 50 mA C. 50 MA D. 500 mA Answer: D. 500 mA xiv) A stationary sound waves has series of nodes. The wavelength of the sound wave is " λ ". What is the distance between first and fifth node? A. 2 λ B. $\lambda/4$ C. $\lambda/2$ D. $3\lambda/2$ Answer: A. 2 λ xv) Which of the following expressions does not have the units equal to joule? Where "P" is the linear momentum and "m" is the mass of the object moving with velocity "v". A. Fd B. P ² /2m C. mv ² D. Fv Answer: D. Fv xvi) A converging lens of focal length "f" is used as a magnifying glass. When is the final image formed at infinity? A. f/d B. 1 + (d/f) C. 1 + (f/d) D. d/f Answer: D. d/f xvii) When light of wavelength " λ " is incident on a lens of diameter "D". What is correct expression for
Answer:D. 500 mAxiv) A stationary sound waves has series of nodes. The wavelength of the sound wave is " λ ". What is the distance between first and fifth node?A. 2 λ B. $\lambda/4$ C. $\lambda/2$ D. $3\lambda/2$ Answer:A. 2 λ xv) Which of the following expressions does not have the units equal to joule? Where "P" is the linear momentum and "m" is the mass of the object moving with velocity "v".A. FdB. P²/2mA. FdB. P²/2mC. mv²D. FvAnswer:D. Fvxvi) A converging lens of focal length "f" is used as a magnifying glass. When is the final image formed at infinity?A. f/dB. 1 + (d/f)C. 1 + (f/d)D. d/fAnswer:D. d/fxvii) When light of wavelength " λ " is incident on a lens of diameter "D". What is correct expression for
xiv) A stationary sound waves has series of nodes. The wavelength of the sound wave is " λ ". What is the distance between first and fifth node? A. 2 λ B. $\lambda/4$ C. $\lambda/2$ D. $3\lambda/2$ Answer: A. 2 λ xv) Which of the following expressions does not have the units equal to joule? Where "P" is the linear momentum and "m" is the mass of the object moving with velocity "v". A. Fd B. P ² /2m C. mv ² D. Fv Answer: D. Fv xvi) A converging lens of focal length "f" is used as a magnifying glass. When is the final image formed at infinity? A. f/d B. 1 + (d/f) C. 1 + (f/d) D. d/f Answer: D. d/f xvii) When light of wavelength " λ " is incident on a lens of diameter "D". What is correct expression for
distance between first and fifth node? A. 2λ B. $\lambda/4$ C. $\lambda/2$ D. $3\lambda/2$ Answer: A. 2λ xv) Which of the following expressions does not have the units equal to joule? Where "P" is the linear momentum and "m" is the mass of the object moving with velocity "v". A. Fd B. P ² /2m C. mv ² D. Fv Answer: D. Fv xvi) A converging lens of focal length "f" is used as a magnifying glass. When is the final image formed at infinity? A. f/d B. 1 + (d/f) C. 1 + (f/d) D. d/f Answer: D. d/f xvii) When light of wavelength " λ " is incident on a lens of diameter "D". What is correct expression for
A. 2λ B. $\lambda/4$ C. $\lambda/2$ D. $3\lambda/2$ Answer: A. 2λ xv) Which of the following expressions does not have the units equal to joule? Where "P" is the linear momentum and "m" is the mass of the object moving with velocity "v". A. Fd B. P ² /2m C. mv ² D. Fv Answer: D. Fv xvi) A converging lens of focal length "f" is used as a magnifying glass. When is the final image formed at infinity? A. f/d B. 1 + (d/f) C. 1 + (f/d) D. d/f Answer: D. d/f xvii) When light of wavelength " λ " is incident on a lens of diameter "D". What is correct expression for
Answer:A. 2λ xv) Which of the following expressions does not have the units equal to joule? Where "P" is the linear momentum and "m" is the mass of the object moving with velocity "v".A. FdB. $P^2/2m$ C. mv^2 D. FvAnswer:D. FvAnswer:D. FvA. f/dB. $1 + (d/f)$ C. $1 + (f/d)$ D. d/f Answer:D. d/f A. f/dB. $1 + (d/f)$ C. $1 + (f/d)$ D. d/f Answer:D. d/f Answer:D. d/f
xv) Which of the following expressions does not have the units equal to joule? Where "P" is the linear momentum and "m" is the mass of the object moving with velocity "v". A. Fd B. P ² /2m C. mv ² D. Fv Answer: D. Fv xvi) A converging lens of focal length "f" is used as a magnifying glass. When is the final image formed at infinity? A. f/d B. 1 + (d/f) C. 1 + (f/d) D. d/f Answer: D. d/f xvii) When light of wavelength " λ " is incident on a lens of diameter "D". What is correct expression for
A. Fd B. $P^2/2m$ C. mv^2 D. Fv Answer: D. Fv xvi) A converging lens of focal length "f" is used as a magnifying glass. When is the final image formed at infinity? A. f/d B. 1 + (d/f) C. 1 + (f/d) D. d/f Answer: D. d/f xvii) When light of wavelength " λ " is incident on a lens of diameter "D". What is correct expression for
A. Fu D. Fv Answer: D. Fv xvi) A converging lens of focal length "f" is used as a magnifying glass. When is the final image formed at infinity? A. f/d B. 1 + (d/f) C. 1 + (f/d) D. d/f Answer: D. d/f xvii) When light of wavelength " λ " is incident on a lens of diameter "D". What is correct expression for
xvi) A converging lens of focal length "f" is used as a magnifying glass. When is the final image formed at infinity? A. f/d B. 1 + (d/f) C. 1 + (f/d) D. d/f Answer: D. d/f xvii) When light of wavelength " λ " is incident on a lens of diameter "D". What is correct expression for
infinity? A. f/d B. 1 + (d/f) C. 1 + (f/d) D. d/f Answer: D. d/f xvii) When light of wavelength " λ " is incident on a lens of diameter "D". What is correct expression for
A. f/d B. 1 + (d/f) C. 1 + (f/d) D. d/f Answer: D. d/f xvii) When light of wavelength " λ " is incident on a lens of diameter "D". What is correct expression for
Answer: D. d/f Answer: D. d/f a xvii) When light of wavelength " λ " is incident on a lens of diameter "D". What is correct expression for
xvii) When light of wavelength " λ " is incident on a lens of diameter "D". What is correct expression for
with when light of wavelength x is incident on a lens of diameter D. what is correct expression for
its resolving newer?
Its resolving power? A > (1 > 2)
A. N/1.22D B. 1.22D/N C. 1.22N/D D. D/1.22N
Answer: A. A/1.22D
FBSIE 2016 GROUP-II
(i) For a diatomic gas $\gamma = 1.4$, specific heat at constant volume 'c ' is $\frac{5}{R}$, where 'R' is the gas constant
What is the value of c_{p}' (the specific heat at constant pressure)?
7 7 7 5
A. $\frac{1}{3}R$ B. $\frac{1}{2}R$ C. $\frac{1}{5}R$ D. $\frac{3}{3}R$
Answer: B. 7/2 R
(ii) Amount of heat absorbed by Carnot ongine in 10 turban terrographics in 17 (10) and a superior to the total in the
\mathcal{L}_1 when temperature is $I_1(K)$ and amount of heat rejected
to the sink is Q_2 at temperature T_2 (K). Which of the following relations is correct for its efficiency?
A. $\frac{T_2 - T_1}{T_1}$ B. $\frac{Q_1 - Q_2}{Q_1}$ C. $\frac{Q_2}{Q_1}$ D. $\frac{Q_2 - Q_1}{Q_1}$
Answer: B. $(O_1 - O_2) / O_1$
iii) Which of the following quantities has the dimension as $[ML^2T^{-3}]$?
A. Pressure B. Angular momentum C. Work D. power
Answer: D. power
iv) Which of the following pair contains both the vector quantities?
A. Torque. Angular momentum B. Velocity. Power
C. Work. Accelaration D. Energy. Impulse
Answer: A. Torque. Angular momentum
v) Which is equal to area under force-displacement graph?
A. Work done B. Power C. Acceleration D. Impulse

(vi)	Kinetic	Enei	gy (<i>KE</i>) o	f an obje	ct of ma	ass ' <i>m</i> 'm	noving w	ith velocity	'v' is	$s\frac{1}{2}mv^2$. What will b	e its KE
	when its	s vel	ocity is dou	bled and	l mass i	s halved?	?			2		
	A.	$\frac{1}{2}K$	Œ	В.	2 <i>KE</i>		C.	$\frac{1}{8}KE$		D.	$\frac{1}{4}KE$	
Answer	:	В.	2 K.E		-	A		-				
(vii)	For v	vhic	h value of	θ, \vec{A}	$+\overrightarrow{B} =$	$= \left \vec{A} - \vec{B} \right $? Wh	ere ' $ heta$ ' is	the	angle b	etween 2	\vec{A} and \vec{B}
	Α.	4	45°	В		90°		C.	0°		D.	30°
Answer	:	в.	90 ⁰							V	~	
(viii)	A disc o	of ma	ass ' <i>m</i> ' rolls	down a	n incline	ed plane o	of height	' h ', reache	es the	bottom	with linear v	elocity 'v'
	and ang	gular	velocity 'w	'. What i	s its rota	ational kir	netic ene	rgy, if frictio	on is iç	gnored?		
	A.	$\frac{3}{4}m$	iv ²	В.	mv ²	(C	$\frac{1}{4}mv^2$	D). <u>1</u> 2	$\frac{1}{2}mv^2$	
Answer		D.	1/4 (mv²)									
(ix)	If $'M'$	is th	e mass and	∃ ' <i>R</i> ' is t	he radio	us of the	earth. W	/hat will be	the co	orrect ex	xpression fo	or escape
	velocit	y 'v'	on the sur	face of e	arth?							
	A.	v =	= gR	B.	v = 2	gR	C.	$v = \sqrt{gR}$	2	D.	$v = \sqrt{2g}$	R
<mark>Answer</mark> x) A sim frequer	r: iple pen icv?	D. dulu	v = √2g m having t	ime peri	iod 2.0	seconds	is calleo	d second's	pend	ulum. V	Vhat is its	
A. 2.0H:	Z		B. 4.0	Ηz		C. 0.5	Hz		D. 1.	.0Hz		
Answer (xi)	A mass	C. spri	0.5Hz ng system p	placed or	n a smo	oth horizo	ontal sur	face is osci	llating	y with an	nplitude' x_{o}	'. At what
	displace	emer	nt from the r	mean po	sition, it	s kinetic e	energy is	s twice to th	nat of	its elasti	ic potential e	energy?
	Α.	$\sqrt{2}$	X _o	В.	$\sqrt{3} x_{o}$		C.	$\frac{x_{o}}{\sqrt{2}}$		D.	$\frac{x_{o}}{\sqrt{3}}$	
<mark>Answer</mark> xii) How A. 8	:: v many r	C. naxi	x₀ / √2 mum numł B. 10	pers of b	eats pe	er secono C. 2	d can be	e recognize	d by D. 4	a norma	al ear?	
Answer	:	В.	10									

Focal lengths of objective and eyepiece of a telescope are f_o' and f_e' respectively. What will be its (xiii) length, when it is in the normal adjustment? B. $f_o + f_e$ C. $f_o - f_e$ D. $\frac{f_o}{f}$ J_e A **B.** $f_{o} + f_{e}$ **Answer:** xiv) A stationary sound wave has a series of nodes. The distance between the first and sixth node is 30cm. What is the wavelength of the sound wave? B. 12 cm C. 5.0 cm D. 6.0 cm A. 10 cm Answer: B. 12 cm xv) A 1000 Kg car accelerates from rest to 20ms⁻¹ in 10 seconds. What is the average power delivered to automobile engine? C. 2 kW A. 200 kW B. 2000 kW D. 20 kW Answer: D. 20 kW xvi) In the white light spectrum obtained with the diffraction image of wavelength ' λ_1 ' coincide with the forth order image of second wavelength ' λ_2 '. What is the ratio of two wavelengths λ_1 : λ_2 ? A. 3:4 B. 4:3 C. 2:1 D. 1:2 D. 1:2 Answer: xvii) Which of the following is correct for final image formed by a compound microscope? A. it is virtual, erect and enlarged B. it is virtual, inverted and enlarged C. it is real, inverted and enlarged D. it is real, erect and enlarged Answer: B. it is virtual, inverted and enlarged FBSIE 2015 GROUP-I Light year is the unit of ______ : C. Angular Displacement A. Time B. Distance D. Velocity Answer: **B. Distance** ii) A. j=_ B. A_v C. A_v A. Zero D. A₇ Answer: C. A_v iii) Two forces each of magnitude F act perpendicular to each other. Their resultant vector will have magnitude B. 2F² C. √2 F D. F/√2 A. 2F Answer: C. √2 F iv) A body is moving with a constant velocity of 10 ms⁻¹ in north-west direction. After 3 seconds its acceleration will be _____ B. 20 ms⁻² C. 30 ms⁻² A. 10 ms⁻² D. Zero Answer: D. Zero v) Time taken by projectile to move from its point of projection to the point of maximum height is given by _ $2v_iSin\theta$ Α. B. С. D.

Answer: Β. vi) Maximum range of a projectile is given by _____ Α. В. C. D. Answer: С. vii) 45 rev/min = rad/sec: D. 90 Α. 90 π B. 4.71 C. 0.75 **Answer:** B. 4.71 viii) For which position will the maximum blood pressure in the body have the smallest value? A. Standing upright **B.** Sitting C. Lying horizontally D. Lying inclined Answer: **C.** Lying horizontally ix) What is the total distance travelled by an object moving with simple harmonic motion in a time equal to its time period, if its amplitude is x_o? D. 4 x_o C. 2 x_o A. Zero B. X_o Answer: D. 4 x_o x) The projection of a particle moving in a circle executes simple harmonic motion. Its time period is A. $\omega/2\pi$ B. 2π/ω C. 2πf D. 2πft Answer: **B. 2π/ω** xi) of the light proves that light consists of transverse electromagnetic waves: C. Polarization A. Interference B. Diffraction **D.** Dispersion **C.** Polarization Answer: xii) The distance between the objective and eye-piece of a telescope in normal adjustment is ______: A. $f_o + f_e$ B. f_o/f_e C. f₀ - f_e D. f_e/f_o Answer: A. $f_0 + f_e$ xiii) Nowadays, a new type of optical fibre is being used in which the central core has high refractive index and its density gradually decreases towards the periphery. This type of optical fibre is called: A. Single mode step index fibre B. Multimode step index fibre C. Multimode graded index fibre D. Double step index fibre Answer: C. Multimode graded index fibre xiv) For a geostationary satellite, the orbital radius measured from the centre of the Earth is: A. 36000 km B. 42300 km C. 64000 km D. 72000 km B. 42300 km Answer: xv) If a heat 'Q' is absorbed or rejected by the system at corresponding temperature 'T' when the system is taken through a Carnot cycle and Q₃ is the heat absorbed or rejected by the system when it is at the temperature of triple point of water, then unknown temperature T in kelvin is given by: A. 273 Q/Q₃ B. 273.16 Q₃/Q C. 273.61 Q₃/Q D. 273.16 Q/Q₃ **Answer:** D. 273.16 Q/Q₃ xvi) What is SI unit of entropy?

Matric, FSc, A/O Level, MDCAT/NUMS and Supplementary Exams Prep with Dr.Sadaqat Baloch drsadaqat329@gmail.com

A. J kg⁻¹ K⁻¹ B. J K⁻¹ C. J kg⁻¹ D. J kg K⁻¹ Answer: **B. J K**⁻¹ xvii) Colour printing uses just following four colours to produce the entire range of colours: A. Violet-Magenta-Yellow-Black B. Indigo-Blue-Green-Red C. Black-Yellow-Magenta-Cyan D. Cyan-Magenta-Red-Violet Answer: C. Black-Yellow-Magenta-Cyan FBSIE 2015 GROUP-II i) Steradian is the unit of: A. Plane angle B. Solid angle C. Angular velocity D. Angular acceleration **Answer: B. Solid angle** ii) What are the dimensions of coefficient of viscosity? D. ML⁻¹T⁻¹ A. $ML^{2}T^{-2}$ B. ML²T⁻¹ C. M⁻¹L³T⁻² D. ML⁻¹T⁻¹ Answer: iii) If x - component of a vector (F_x) is positive and its y -component (F_y) is negative and tan⁻¹ (F_y/Fx) = φ then the angle θ which the resultant vector makes with the positive x- axis is given by: $C. \theta = 180^{\circ} + \phi$ A. $\theta = \phi$ B. $\theta = 180^{\circ} - \phi$ D. θ =360° - φ D. θ =360° - φ Answer: ? (vector A. Unit vector k) iv) A.k = $B A_v B. A_v$ A. A_x C. Az D. zero Answer: C. A₇ v) The product of Force and Time is called: B. Linear Momentum C. Angular momentum D. Torque A. Impulse Answer: A. Impulse vi) For which of the following pairs of angles is range of Projectile the same: A. O° and 45° B. 15° and 60° C. 35° and 55° D. 30° and 75° C. 35° and 55° **Answer:** vii) A particle of mass "m" has momentum 'p'. Its kinetic energy is given by: D. (1/2) p²/m A. (1/2)mp B. (1/2) mp² C. $(2p^2)/m$ D. $(1/2) p^2/m$ Answer: viii) What is the commercial unit of electrical energy? C. Kilowatt hour A. Watt B. Kilowatt D. Horse power Answer: C. Kilowatt hour ix) A stone tied to the end of 20 cm long string is whirled in a horizontal circle. If the centripetal acceleration is 9.8 ms⁻², then its angular velocity in rad.s⁻¹ will be: D. 21 A. 0.49 B. 7 C. 14 Answer: **B.** 7 x) The terminal velocity of a fog droplet of radius "r" and density p moving in a fiuid having coefficient of viscosity n is given by: A. $2gr^2\rho/9\eta$ C. 4g/3πηr D. $2\eta r^2/9\rho$ B. mg/6πηrv Answer: A. $2gr^2\rho/9\eta$ N.m⁻²: xi) 1 torr = A. 1.33 B. 13.33 C. 133.3 D. 1.0 Answer: C. 133.3

(xii) The maximum velocity " v_o " of the vibrating mass "m" attached to the end of an elastic spring is given

By:

A.	$\sqrt[x_0]{\frac{m}{k}}$	B	. .	$\frac{k}{m}$	C.	$\sqrt[k]{\frac{k}{m}}$	D.	$\sqrt[n]{\frac{m}{k}}$		
Answer:	B. x₀√(k/m)								
xiii) The periodi	c vibrat	ions of sour	nd betwe	en maximu	m and min	imum l	oudness are cal	ed:		
A. Intensity leve	el	B. Diffracti	ion	C. Bea	its		D. Polarization			
Answer:	C. Beat	ts 🧷								
xiv) Bragg's equ	iation is	given by:								
A. dsinθ =nλ		B. 2dsinθ=	nλ	C. L=n	nλ/2		D. $\Delta y = \lambda L/d$			
Answer: B. $2dsin\theta=n\lambda$										
xv) The equatio	n used l	by Michelso	n to dete	ermine the	speed of li	ght is gi	ven by: c = ?			
A. 16fd		B. 16f/d		C. fd/	16		D. 16d/f			
Answer:	A. 16fc									
xvi) The efficier	ncy of di	esel engine	is about:							
A. 20% to 25%		B. 25% to 3	30%	C. 30%	6 to 35%		D. 35 % to 40 %			
Answer:	D. 35 %	6 to 40 %								
xvii) What is S.I	Unit of	latent heat	of fusion	?						
A. J kgk ⁻¹		B. J kg ⁻¹		C. Jkg	⁻¹ k ⁻¹		D. cal.gm.°C ⁻¹			
Answer:	B. J kg	1								
			FBS	SIE 2014	GROUP-					
i) Light vear is t	he unit	of:								
A. Time		B. Distance	e	C. Lig	nt intensity	,	D. Speed of ligh	it		
Answer:	B. Dist	ance								
ii) The moment	of force	e is called:								
A. Torque		B. Impulse		C. Ana	ular mom	entum	D. Force			
Answer:	A. Toro	ue			,					
iii) If R _x is negat	ive and	R _v compone	ent is pos	itive. the d	irection of	resulta	nt R is:			
$A, \theta = \emptyset$		$B. \theta = 180^{\circ}$	-Ø	C. θ =	180° + Ø		D. 360° - Ø			
Answer:	B. θ = 1	180° - Ø	F		/-					
iv) If the range	of a pro	iectile is hal	f to its m	aximum ra	nge, the ar	ngle of p	proiection is:			
A. 30°		B. θ = 22.5	0	C. 15°	0-7	0 1	D. 45°			
Answer:	C. 15°									
v) The unit of in	npulse i	s:								
A. Newton		B. Joule-se	c	C. Jou	le		D. Newton-sec			
Answer:	D. Nev	vton-sec								
vi) The energy r	eleased	l by burning	1 litre of	f petrol is						
A. 1000 J	0.00000	B. 7 × 10 ⁵		C. 5 ×	10 ⁷ J		D. 4 × 10 ⁵ J			
Answer:	C. 5 × 1	LO ⁷ J	•		10 5		5117 10 5			
vii) The height a	of a geo	stationary s	atellite a	bove the e	uator is:					
A. 6.4×10^{6} m		B. 3.6 x 10	⁷ m	C.36	$\times 10^{-7}$ m		D. 6×10^{24} m			
Answer:	B. 3.6	× 10 ⁷ m		0.0.0			2.0.20 11			
viii)										

The expression for orbital speed of an artificial satellite is _____

xiii) Technique used to study the structure of haemoglobin is:

A. X-rays diffraction Answer: A. X-ra	B. Nev vs diffr	vton's rings action	C. Polarization		D. Interference
xiv) The near point of n	ormal h	numan eye is:			
A. 25 m	B. 250	mm	C. 2.5 cm		D. None of these
Answer: B. 250	mm				
xv) Speed of light in vac	cuum is	:	_		
A. 3 × 10 ⁸ cm/sec	B. 3 ×	10 ¹⁰ cm/sec	C. 3 × 10 ⁸ m/see	С	D. None of these
Answer: C. 3 × 1	.0 ⁸ m/s	ec			
xvi)					
Relationship between ab	solute te	mperature of an ide	eal gas and average	e transna	tional kinetic energy is
	А.	$T = \frac{2}{3k} < \frac{1}{2}mv^2 >$		в.	$T = \frac{3}{2k} < \frac{1}{2}mv^2 >$
	C.	$T = \frac{2k}{3} < \frac{1}{2}mv^2 >$	>	D.	$T = \frac{3k}{2} < \frac{1}{2}mv^2 >$
Answer:					
xvii) The cloud formatic	on in at	mosphere is an e	xample of		
A Isothermal Process	B Adi	abatic Process	C Isobaric Proc	·ess	D. Isochoric Process
Answer: B. Adia	batic P	rocess	e. Isobarie i roc		
		FRSIE			
i) The colid angle of the	cobore				
			C 2 14 Sr		D E72Sr
A. 12.57 SI.	D. 0.20	5 51.	C. 5.14 51.		0. 57.5 31
ii) How would the two	voctors	of the same mag	nitudo havo to h	oriont	ad if they were to be combined
to give a resultant equa	vectors	of the same mag	magnitude?	e onent	ed, if they were to be combined
		ector of the same			D. None of these
A. 50 Answer: D. Non	e of the	020	0.45		D. None of these
iii) A nositive charge na	rticle is	moving in a unif	orm magnetic fie	ald with	constant velocity. Its direction
with respect to the may	onetic f	ield is:	orni magnetie ne		constant velocity. Its uncetion
A 120°			C 30°		D None of these
Answer: B. 0°	D. 0		0.00		
iv) Which of the followi	ng curv	es represents roo	cket motion?		
,	0				VA
YA.					
Δ	r		P	2	
n .					
Z	>t				······································
ν.					¥n /
ſ					
	-			`	
U .			L	J.	>t
¥	>*	:			
Answer: C					

v) A projectile is thrown upward with velocity v_i and angle θ with respect to the horizontal. At what point is its velocity $v_i cos \theta$: A. Initial B. Highest C. Final D. None of these **Answer: B. Highest** vi) The work done to move a body along x-axis is said to be positive, if applied force is in the quadrants: A. I,IV B. II,III C. I,III D. II,IV Answer: **A. I,IV** vii) Moment of inertia of a solid disc is: B. 1/2 mr² A. mr² D. 2/5 mr² C. 3/2 mr² 1/2 mr² Answer: viii) An airline pilot can find his position on the surface of the earth within accuracy of: A. 100 m B. 10 km C. 10 m D. 1 km C. 10 m Answer: ix) The law of conservation of energy is the basis of: B. Bernoulli's equation C. Terminal Velocity D. Equation of continuity A. Stoke's law Answer: **B.** Bernoulli's equation x) In a mass-spring, the angular frequency of a vibrating body is: Α. Β. D. C. Answer: xi) The sharpness of the resonance curve of resonating system depends on (the): A. Damping B. Loss of K.E C. Loss of P.E D. Loss of K.E and P.E **Answer:** A. Damping xii) The speed of sound in water at 20°C is: B. 1483 m/sec C. 315 m/sec D. 972 m/sec A. 332 m/sec Answer: B. 1483 m/sec xiii) Star moving toward the earth show a: B. Blue Shift D. None of these A. Red shift C. White shift **Answer: B. Blue Shift** xiv) The process used to determine the concentration of sugar in the blood is: A. Polarization B. Optical activity C. Glare D. Diffraction Answer: A. Polarization xv) The unit of magnifying power of an instrument is: C. No unit A. Joule B. Watt D. Diopter **Answer:** C. No unit xvi) Critical angle of glass is determined by: A. Huygens principle B. Snell's law C. Law of reflection D. Ohm's law Answer: B. Snell's law xvii) A gas is enclosed in a container having pressure 'P' and volume 'v'. The product of 'P' and 'V' of the gas is: A. Power B. Work C. Force D. Temperature Answer: **B. Work**