

PySide GUI Application
Development

Develop more dynamic and robust GUI applications
using an open source cross-platform UI framework

Venkateshwaran Loganathan

BIRMINGHAM - MUMBAI

PySide GUI Application Development

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1081013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-959-4

www.packtpub.com

Cover Image by Harish Chandramohan (harriskicks@gmail.com)

Credits

Author
Venkateshwaran Loganathan

Reviewers
Oscar Campos

Jibo He

Acquisition Editor
Pramila Balan

Commissioning Editor
Neil Alexander

Technical Editors
Dipika Gaonkar

Mrunmayee Patil

Project Coordinator
Amigya Khurana

Proofreader
Hardip Sidhu

Indexer
Tejal Soni

Graphics
Ronak Dhruv

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

About the Author

Venkateshwaran Loganathan is an eminent software developer who has
been involved in the design, development, and testing of software products for
more than five years. He was introduced to computer programming at the age of
11 with FoxPro and then started to learn and master various computer languages
like C, C++, Perl, Python, node.js, and Unix shell scripting. Fascinated by open
source development, he has contributed to various open source technologies. He is
now working for Cognizant Technology Solutions as an Associate in Technology,
where he has involved himself in research and development for Internet of Things
domain. He is now actively involved in using RFID devices for evolving the Future
of Technology concepts. Before joining Cognizant, he worked at Infosys, Virtusa,
and NuVeda. Starting his career as a Network Developer, he has gained expertise in
various domains like Networking, e-learning, and HealthCare. He has won various
awards and accolades for his work.

He holds a bachelor's degree in Computer Science and Engineering from Anna
University and currently pursuing M.S in software systems from BITS, Pilani.
Apart from programming, he is actively involved in handling various technical
and soft skills classes for the budding engineers and college students. His hobbies
are singing and trekking. He likes to get involved with social media. Visit him
online at http://www.venkateshwaranloganathan.com and write to him at
anandvenkat4@gmail.com.

I am indebted to many. First of all, I would like to thank my mother
Anbuselvi and grandmother Saraswathi for their endless effort and
perseverance in bringing me up to this level. I am thankful to the
entire team of Packt, for accepting my proposal in bringing out a
book of this kind. I would like to specially mention Meeta, Neil, and
Amigya for their valuable guidance throughout the writing of the
manuscript. I would also like to thank Dipika and Mrunmayee for
the efforts they have put in to technically edit the book. I am very
grateful to my technical reviewers, Oscar Campos and Jibo He for
reviewing the manuscript and providing me constructive feedback
in helping me shape the content. I would also like to extend my
sincere gratitude to my professors, Senthil Kumar and Radhika for
guiding me and encouraging me in all my spheres of life. I would
also like to thank my sister Kamala and my aunt Kalavathi for all the
hope and love they have towards me. I would also like to thank all
my friends and brothers as their list is too long to mention here. They
all have been my well-wishers and been helping me in my tough
times. I have missed many people here, but my thanks are always
due for them who directly or indirectly influenced my life.

Above all, thanks to The Almighty for the showers of blessings
on me.

About the Reviewers

Oscar Campos is a senior Python developer in Dublin, Ireland. He has great
experience working with Python and many free software projects and contributions
as well. He is the author of SublimePySide the Sublime Text plugin to work with
PySide. You can take a look at his free software projects on his Github site on
https://github.com/DamnWidget. He works for for Dedsert Ltd. an online
gambling startup company located in south Dublin.

I want to thank my wife Lydia for encouraging me to do this
technical review

Dr. Jibo He is an avid developer using Python, PySide, and Qt. He has over
seven years' experience using Python for his scientific research and entrepreneur
careers. He has used PySide to develop important usability and search engine
optimization software for the company UESEO LLC. He is honored to be the
reviewer of this book, and expects more developers using PySide. He has also
worked on PsychoPy/Python for Social Scientists and MATLAB for Social Scientists.

https://github.com/DamnWidget/SublimePySide
https://github.com/DamnWidget

www.PacktPub.com

Support files, e-books, discount offers,
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers e-book versions of every book published, with PDF and
ePub files available? You can upgrade to the e-book version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the e-book copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and e-books.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: Getting Started with PySide 5

About Python 5
What is PySide? 6
Hello GUI 6
Setting up PySide 7

Installation 7
Windows 8
Mac OS X 8
Linux 8

Building PySide 9
Windows 9
Linux 10

Prerequisites 10
Building PySide 11

Mac OS X 12
Importing PySide objects 12
My first PySide application 13
Exception handling as a practice 15
Summary 18

Chapter 2: Entering through Windows 19
Creating a simple window 19
Creating the application icon 22
Showing a tooltip 26
Adding a button 28
Centering the Window on the screen 30
About box 30
Timers 32

Table of Contents

[ii]

Windows style 35
Summary 36

Chapter 3: Main Windows and Layout Management 37
Creating the main window 38
Status bar 39
Menu bar 43

The central widget 43
Adding a menu bar 44
Adding menus 45

Tool bar 48
Layout management 49

Absolute positioning 49
Layout containers 50
QBoxLayout 51

QHBoxLayout 52
QVBoxLayout 52

QGridLayout 53
QFormLayout 54
QStackedLayout 54

SDI and MDI 55
A simple text editor 55
Summary 60

Chapter 4: Events and Signals 61
Event management 61

Event loop 62
Event processing 63

Reimplementing event handlers 63
Installing event filters 66
Reimplementing the notify() function 67

Signals and slots 67
Drag-and-drop 71
Drawing 74
Graphics and effects 77
Summary 79

Chapter 5: Dialogs and Widgets 81
Built-in dialogs 81

QFileDialog 82
QInputDialog 85
QColorDialog 87
QPrintDialog 89

Custom dialogs 89

Table of Contents

[iii]

Widgets at a glance 91
Basic widgets 92
Advanced widgets 94
Organizer widgets 95

Custom widgets 96
Implementation of MDI 98
Summary 100

Chapter 6: Handling Databases 101
Connecting to the database 101
Executing SQL queries 103

Executing a query 103
Inserting, updating, and deleting records 104
Navigating records 105
Transactions 106

Table and form views 107
QSqlQueryModel 107
QSqlTableModel 107
QSqlRelationalTableModel 108

Table view 108
Form view 111
Viewing relations in table views 114
Summary 115

Appendix: Resources 117
The PySide documentation wiki page 117
API reference manuals 117
Tutorials 117
Community support 118

Index 119

Preface
The aim of this book is to introduce you to developing GUI applications in an easy
way. Python is easy to learn and use and its programs are relatively shorter than
those written in any other programming languages like C++, Java. It is supported by
a large set of dynamic libraries and bindings that make it efficient to develop very
complex applications in an efficient manner. This book will introduce you to user
interface programming and its components. You will be able to develop real time
applications in a shorter time after reading this book.

What this book covers
Chapter 1, Getting Started with PySide, introduces you to GUI programming in general.
This chapter takes you through the introduction of PySide and its installation in
various major operating systems followed by a short introduction to exception
handling in programming. By the end of this chapter, users will know how to install
and use PySide to create GUI applications in Python.

Chapter 2, Entering through Windows, introduces you with all the GUI programming
that revolves around Windows. This chapter explains the basic methods of creating
Windows and adding some functions to it. By the end of this chapter, users familiar
in creating Windows and modify it accordingly.

Chapter 3, Main Windows and Layout Management, extends the previous chapter by
explaining how to create menus and tool bars for a windowed application. This also
explains the layout management policies. A simple text editor is given as an example
at the end of the chapter. By the end of this chapter, readers have an experience of
creating a real time application in PySide.

Chapter 4, Events and Signals, this chapter goes on explaining the signals, various text
and graphic effects, drag-and-drop, and few geometrical diagram shapes. By the end
of this chapter, readers will learn about managing events and various other text and
graphical effects.

Preface

[2]

Chapter 5, Dialogs and Widgets, details the built-in dialog boxes for applications,
introduces how to create customized dialogs, and then take a look at the various
widgets available in PySide. By the end of this chapter, you will learn about creating
your own customized widgets and dialogs.

Chapter 6, Handling Databases, explains how connecting to a database is evident for
almost all applications. This chapter is dedicated to explaining how to connect to a
database and execute queries on it. It also deals with the presentation of data in table
and form views. By the end of this chapter, you will know more about interacting
with databases and viewing data from them.

What you need for this book
To execute the examples provided in this book, you will require a standard installation
of Python v2.6 or later and PySide v1.0.7 or later. A good text editor application like
Sublime Text will also help in writing Python programs in an IDE environment.

Who this book is for
Are you a GUI developer or fascinated by GUI programming? Bored with writing
several lines of code for creating a simple button in GUI? Then, this book is for you.
The book is written for Python programmers to try their hands at GUI programming.
Even if you are new to Python, but have some programming experience with any of
the object oriented languages, you will be able to easily pick up since Python is easy
to learn.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive."

A block of code is set as follows:

 try : suite
 except(exception-1, exception-2, ... , exception-n) as target:
 suite
 except : suite

Preface

[3]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

...
myWindow.setIcon()
myWindow.setIconModes()
myWindow.show()
...

Any command-line input or output is written as follows:

sudo apt-get install python-pyside

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Preface

[4]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If
you come across any illegal copies of our works, in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.PacktPub.com
http://www.PacktPub.com/support
mailto:copyright@packtpub.com

Getting Started with PySide

About Python
Python is a general-purpose, interpreted, object-oriented, high-level programming
language with dynamic semantics. It is one of the most preferred programming
languages by the programmers due to its interpreted nature and elegant syntax.

The success of Python lies in its simple and easy to learn syntax and the support
of a wide variety of modules and packages which encourage program modularity
and code reuse. Being an interpreted language, there is no compilation step which
makes the edit-test-debug cycle incredibly fast paving the way to Rapid Application
Development, the need of the hour. The support of the object-oriented features
and high-level data structures, such as generators and list comprehensions, make
Python a superior language to code small scripting programs to more advanced
game programming.

Python is named after the BBC show "Monty Python's Flying
Circus" and has nothing to do with reptiles. Thus, making
references to Monty Python skits in documentation is
practiced and encouraged.

This book assumes that you have been acquainted with Python and want to test its
capability in creating the GUI applications. However, Python is easy enough to learn
in a week's time. If you know programming, then learning Python is a cakewalk
for you. There are many resources available online and offline covering a wide
range of topics. Being an open source language, Python is also supported by many
programmers around the globe in the IRC system under the tag #python.

Getting Started with PySide

[6]

IRC (Internet Relay Chat) provides a way of communicating
in real time with people all over the world. Many open source
programmers will be available online in the IRC chat under
various channels to help you develop and contribute to the
open source systems.

What is PySide?
Many modern programming languages are backed up by a set of libraries
(commonly referred as toolkits) for creating GUI applications such as Qt, Tcl/Tk,
wxWidgets. PySide is a Python binding of the cross-platform GUI toolkit Qt, and
runs on all platforms supported by Qt including Windows, Mac OS X, and Linux.
It is one of the alternatives used for GUI programming in Python to Tkinter.

PySide combines the advantages of Qt and Python. A PySide programmer has all the
power of Qt, but is able to exploit it with the simplicity of Python. PySide is licensed
under the LGPL Version 2.1 license, allowing both free/open source software and
proprietary software development. PySide is evolving continuously as any other
open source product and you are free to contribute to its development. Some of the
applications such as Matplotlib, PhotoGrabber, Wing IDE, Lucas Chess, Fminer, and
certify the wide spread usage of PySide in the software industry.

The IRC channel for PySide is #pyside at Freenode.

There is some good news for mobile developers. Qt Mobility is a project creating a
new suite of Qt APIs for mobile device functionality. The project "PySide Mobility"
is a set of bindings that allows Python to access Qt Mobility API. So, learning PySide
will also help you in learning mobile development. Come on, let's get started!

Hello GUI
In computing terms, GUI (pronounced "gooey") is used to notify a set of interfaces
with computing systems, that involve user-friendly images rather than boring text
commands. GUI comes as a rescue to the numerous command line interfaces that
have a steep learning curve which requires a lot of dedication. Moreover, GUI
systems make it easy for the end users to fulfill their needs without knowing much
about the underlying commands which are unnecessary for them.

Chapter 1

[7]

Every other application in the modern world is designed with excellent and
interactive graphics to attract the end users. Simplicity and Usability are the two
main ingredients for a successful GUI system. The demanding feature of a GUI is
to allow the user to concentrate on the task at hand. To achieve this, it must make
the interaction between the human and the computer seamless. Therefore, learning
to program in GUI will not only make you a successful developer but also help in
getting some revenue for yourself.

At a very basic level, GUI is seen as a window consisting of the following parts:
controls, menu, layout, and interaction. A GUI is represented as a window on the
screen and contains a number of different controls. Controls can, for example, be
labels, buttons, or textboxes. Under the top frame of the GUI window, a menu bar
is highly likely to be present giving users some choices to control the application.
The top frame can also have buttons for hiding, resizing, or destroying the windows
which are again controls. The controls are positioned in a certain layout which is
very important in a good GUI design. The interaction happens in the way of I/O
devices such as mouse and keyboard. Developing GUI application revolves around
defining and controlling these components and designing the area of interaction
is the most challenging part of all. The correct exploitation of events, listeners, and
handlers will help in developing better GUI applications. Many frameworks have
been developed to support GUI development such as PySide to assist programmers
that make the GUI programming easy and quick. A good user interface design
relates to the user, not the system architecture.

Setting up PySide
This is your first step in this series of learning. PySide is compatible with Python
2.6, Qt 4.6 or their later versions. So, before getting to install PySide, we must make
sure that the minimum version compatibility is achieved. This section will teach you
two ways of installing PySide. One, being the most common and easy way, is using
simple point-and-click installers and package managers. This will install a most stable
version of PySide in your system which you can use comfortably without worrying
too much about the stability. However, if you are an advanced programmer, you may
prefer to build PySide from scratch, from the latest builds available when you are
reading this book. Both these methods are explained here for Windows, Mac OS X,
and Linux systems, and you are free to choose your own setup style.

Installation
This section explains the ways to install PySide on Windows, Linux, and Macintosh
operating systems.

Getting Started with PySide

[8]

Windows
Installation of PySide on Windows is easy with the help of installer. Follow these
steps for setting up PySide on Windows:

1. Get the latest stable package compatible to your operating system
architecture and the Python version installed from the releases page:
http://qt-project.org/wiki/PySide_Binaries_Windows

2. Run the downloaded installer executable which will automatically detect the
Python installation from your system.

3. You are given an option to install PySide on the default path or at the path
of your choice.

4. Click on Next in the subsequent windows, and finally on Finish, PySide is
installed successfully on your system.

Mac OS X
The binaries for MAC OS X installers of PySide are available at:

http://qt-project.org/wiki/PySide_Binaries_MacOSX

Download the latest version compatible with your system and carry out installation
as explained earlier.

You can also choose to install the PySide from the command line with the help of
Homebrew or by using MacPorts. The commands are:

brew install pyside

port-install pyXX-pyside

replacing XX with your Python version

Linux
Installing PySide on a Debian-based system is much easier with the synaptic package
manager. Issuing the following command will fetch and install the latest stable
version available in the aptitude distro:

sudo apt-get install python-pyside

On an RPM based system, you can use the RPM-based distro yum:

yum install python-pyside pyside-tools

Chapter 1

[9]

If you want to make sure that PySide is installed properly
in your system, issue the following commands in the
Python shell environment as shown in the following figure:

import PySide: This should not return any errors

PySide.__version__: This should output something
like 1.1.2

A sample output is given for your reference is shown as follows:

Building PySide
This section explains how to build PySide in Windows, Linux, and Macintosh
operating systems.

Windows
Before starting to build PySide on Windows, ensure that the following prerequisites
are installed:

• Visual Studio Express 2008 (Python 2.6, 2.7, or 3.2) / Visual Studio Express
2010 (Python 3.3). Find results from http://www.microsoft.com/
visualstudio/eng/products/visual-studio-express-products.

• Qt 4.8 libraries for Windows from http://releases.qt-project.org/qt4/
source/qt-win-opensource-4.8.4-vs2008.exe.

• CMake from http://www.cmake.org/cmake/resources/software.html.

Getting Started with PySide

[10]

• Git from http://git-scm.com/download/win.
• Python 2.6, 2.7, 3.2, or 3.3 from http://www.python.org/download/.
• OpenSSL from http://slproweb.com/products/Win32OpenSSL.html

(Optional).

Make sure that Git and CMake executable is set in your system PATH. Now, follow
these steps to start building PySide:

1. Git clone the PySide repository from Github:
c:/> git clone https://github.com/PySide/pyside-setup.git pyside-
setup

2. Change your working directory to "pyside-setup":
c:/> cd pyside-setup

3. Build the installer:
c:\> c:\Python27\python.exe setup.py bdist_wininst --msvc-
version=9.0 --make=c:\Qt\4.8.4\bin\qmake.exe --openssl=c:\
OpenSSL32bit\bin

4. Upon successful installation, the binaries can be found in the
sub-folder "dist":
c:\pyside-setup\dist

On completion of these steps, the PySide should have been successfully built on
your system.

Linux
To build PySide on Linux, the following prerequisites must be available. Check if
you have them already or download them using the following links.

Prerequisites
• CMake >= 2.6.0: http://www.cmake.org/cmake/resources/software.html
• Qt libraries and development headers >= 4.6: http://origin.releases.qt-

project.org/qt4/source/qt-everywhere-opensource-src-4.8.4.tar.gz

• libxml2 and development headers >= 2.6.32: http://www.xmlsoft.org/
downloads.html

• libxslt and development headers >= 1.1.19: http://xmlsoft.org/XSLT/
downloads.html

• Python libraries and development headers >= 2.5: http://www.python.org/
download/

Chapter 1

[11]

Building PySide
PySide is a collection of four interdependent packages API Extractor, Generator
Runner, Shiboken Generator, and Pyside Qt bindings. In order to build PySide, you
have to download and install the packages mentioned previously in that order.

• API Extractor: A set of libraries used by the bindings generator to parse the
header and typesystem files to create an internal representation of the API.
[https://distfiles.macports.org/apiextractor/]

• Generator Runner: Program that controls the bindings generation process
according to the rules given by the user through headers, typesystem
files, and generator frontends. It is dependent on the API Extractor.
[https://distfiles.macports.org/generatorrunner/]

• Shiboken Generator: Plugin that creates the PySide bindings source
files from Qt headers and auxiliary files (typesystems, global.h, and
glue files). It is dependent on Generator Runner and API Extractor.
[https://distfiles.macports.org/py-shiboken/]

• PySide Qt Bindings: Set of typesystem definitions and glue code that
allows generations or a generation of Python Qt binding modules using the
PySide tool chain. It is dependent on Shiboken and Generator Runner.
[http://download.qt-project.org/official_releases/pyside/]

Always make sure that you are downloading the packages mentioned previously
and building them in the same order as mentioned, since each of the packages are
interdependent. Follow these steps to build the packages:

1. Unzip the downloaded packages and change into the package directory:
tar –xvf <package_name>

cd <package_directory>

2. Create a build directory under the package directory and enter that directory:
mkdir build && cd build

3. Make the build using CMake:
cmake .. && make

4. On successful make, build and install the package:
sudo make install

5. Note that you require sudo permissions to install the packages.
6. To update the runtime linker cache, issue the following command:

sudo ldconfig

Getting Started with PySide

[12]

Once you follow these steps in order for each of the packages, the PySide should
have been successfully built on your system.

Mac OS X
Building PySide on a Mac system is the same as building it on Linux, except that Mac
needs XCode-Developer tools to be installed as a prerequisite. The other prerequisites
and building procedures are same as Linux.

If you are installing the libs in a non-default system directory
(other than /usr/local), you might have to update the
DYLD_LIBRARY_PATH by typing the following command:
export DYLD_LIBRARY_PATH=~/my_dir/install/lib

Importing PySide objects
Congratulations on setting up PySide successfully on your system. Now, it's time
to do some real work using PySide. We have set up the PySide and now want to
use it in our application. To do this, you have to import the PySide modules in your
program to access the PySide data and functions. Here, let's learn some basics of
importing modules in your Python program.

There are basically two ways widely followed when importing modules in Python.
First, is to use a direct import <module> statement. This statement will import the
module and create a reference to the module in the current namespace. If you have
to refer to things (functions and data) that are defined in module, you can use
module.function. Second, is to use from module import *. This statement will
import the module and create references in the current namespace to all public
objects defined by that module. In this case, if you have to refer to things that are
defined in module, you can simply use function.

Therefore, in order to use the PySide functions and data in your program you have to
import it by saying either import PySide or from PySide import *. In the former
case, if you have to refer to some function from PySide you have to prefix it with
PySide like PySide.<function_name>. In the latter, you can simply call the function
by <function_name>. Also, note that in the latter statement * can be replaced by
specific functions or objects. The use of * denotes that we are trying to import all the
available functions from that module. Throughout this book, I prefer to use the latter
format except that instead of importing all the modules by *, the specific modules are
imported by their names. This is done to avoid allocating memory for the modules that
we don't use.

Chapter 1

[13]

My first PySide application
Let's get our hands dirty with some real coding now. We are going to learn how
to create our first and traditional "Hello World" application. Have a look at the
code first and we will dissect the program line-by-line for a complete explanation
of what it does. The code might look little strange to you at first but you will gain
understanding as we move through.

Import the necessary modules required
import sys
from PySide.QtCore import Qt
from PySide.QtGui import QApplication, QLabel
Main Function
if __name__ == '__main__':

 # Create the main application
 myApp = QApplication(sys.argv)

 # Create a Label and set its properties
 appLabel = QLabel()
 appLabel.setText("Hello, World!!!\n Look at my first app using
 PySide")
 appLabel.setAlignment(Qt.AlignCenter)
 appLabel.setWindowTitle("My First Application")
 appLabel.setGeometry(300, 300, 250, 175)

 # Show the Label
 appLabel.show()

 # Execute the Application and Exit
 myApp.exec_()
 sys.exit()

Downloading the example code
You can download the example code files for all
Packt books you have purchased from your account
at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

Getting Started with PySide

[14]

On execution, you get an output window as shown in the following screenshot:

Now, let's get into the working of the code. We start with importing the necessary
objects into the program.

The first three in the code snippet import the modules required for the program.
Python is supported with a library of standard modules which are built into the
interpreter and provide access to operations that are not part of the core language.
One such standard module is sys which provides access to some variables and
functions that are used closely by the interpreter. In the preceding program, we
need sys module to pass command line arguments sys.argv as a parameter to the
QApplication class. It contains the list of command line arguments passed to a
Python script. In most of the GUI applications that use PySide, we might have two
classes imported for a basic functionality. They are QtCore and QtGui. The QtCore
module contains functions that handle signals and slots and overall control of the
application whereas QtGui contains methods for creating and modifying various
GUI window components and widgets.

In the main program, we are creating an instance of the QApplication class.
QApplication creates the main event loop, where all events from the window
system and other sources are processed and dispatched. This class is responsible
for an application's initialization, finalization, and session management. It also
handles the events and sets the application's look and feel. It parses the command
line arguments (sys.argv) and sets the internal state accordingly. There should only
be one QApplication object in the whole application even though it creates one or
many windows at any point in time.

Chapter 1

[15]

The QApplication object must be created
before any other objects as this handles the
system-wide and application-wide settings for your
application. It is also advised to create it before any
modification of command line arguments received.

Once the main application instance is created, we move on by creating a QLabel
instance that will display the required message on the screen. This class is used to
display a text or an image. The appearance of the text or image can be controlled
in many ways by the functions provided by this class. The two lines that follow the
instantiation of this class set the text to be displayed and align it in a way that is
centered on the application window.

Since Python is an object-oriented programming language, we take the advantage
of many object-oriented features such as polymorphism, inheritance, object
initialization, and so on. The complete Qt modules are designed in object-oriented
paradigm that supports these features. QLabel is a base class inherited from the
super class QFrame whose parent class is QWidget (the details will be covered in
forthcoming chapters). So, the functions that are available in QWidget and QFrame
are inherited to QLabel. The two functions setWindowTitle and setGeometry are
functions of QWidget which are inherited by the QLabel class. These are used to set
the title of the window and position it on the screen.

Now that all the instantiation and setup is done, we are calling the show function of
the QLabel object to present the label on the screen. It is only at this point that the
label becomes visible to the user on the screen. Finally, we call the exec_() function
of the QApplication object which will enter the Qt main loop and start executing
the Qt code. In reality, this is where the label will be shown to the user but the details
can be safely ignored as of now. Finally, we exit the program by calling sys.exit().

Exception handling as a practice
It is always not possible to foresee all the errors in your programs and deal with
them. Python comes with an excellent feature called Exception Handling to deal
with all the runtime errors. The aim of the book is not to explain about this feature
in detail but to give you some basic ideas so that you can implement it in the code
that you write.

Getting Started with PySide

[16]

In general, the exceptions that are captured while executing a program are handled
by saving the current state of execution in a predefined place and switching the
execution to a specific subroutine known as exception handler. Once they are
handled successfully, the program takes the normal execution flow by using the
saved information. Sometimes, the normal flow may be hindered due to some
exceptions that cannot be resolved transparently. In any case, exception handling
provides a mechanism for the smooth flow of the program altogether.

In Python, the exception handling is carried out in a set of try and except statements.
The try statements consists of a set of suspicious code that we might think cause an
exception. On hitting an exception, the statement control is transferred to except
block where we can have a set of statements that handles the exception and resolves
it for a normal execution of a program. The syntax for the same is as follows:

 try : suite
 except(exception-1, exception-2, ... , exception-n) as target:
 suite
 except : suite

where suite is an indented block of statements. We can also have a set of try, except
block in a try suite. The former except statement provides a specific exception class
which can be matched with exception that is raised. The latter except statement is a
general clause which is used to handle the "catch-all" version. It is always advisable
to write our code in the exception encapsulation.

In the previous example, consider that we have missed to instantiate the appLabel
object. This might cause an exception confronting to a class of exception called
"Name Error". If we don't encapsulate our code within the try block, this raises a
runtime error. However, if we put our code in a try block, an exception can be raised
and handled separately; this will not cause any hindrance to the normal execution of
the program. The following code explains this with the possible output:

Import the necessary modules required
import sys
from PySide.QtCore import *
from PySide.QtGui import *

Main Function
if __name__ == '__main__':

 # Create the main application
 myApp = QApplication(sys.argv)

Chapter 1

[17]

 # Create a Label and set its properties
 try:
 #appLabel = QLabel()
 appLabel.setText("Hello, World!!!\n Look at my first app
 using PySide")
 appLabel.setAlignment(Qt.AlignCenter)
 appLabel.setWindowTitle("My First Application")
 appLabel.setGeometry(300, 300, 250, 175)

 # Show the Label
 appLabel.show()

 # Execute the Application and Exit
 myApp.exec_()
 sys.exit()
 except NameError:
 print("Name Error:", sys.exc_info()[1])
 pass

In the preceding program, if we don't handle the exceptions, the output would be as
shown in the following screenshot:

Getting Started with PySide

[18]

However, if we execute the preceding code, we would not run into any errors as
shown in the following screenshot. Instead, we could have captured the exception
and given some info about it to the user shown as follows:

Hence, it is always advised to implement exception handling as a good practice
in your code.

Summary
The combination of Qt with Python provides flexibility to the Qt developers for
developing GUI programs in a more robust language and also providing a rapid
application development platform available on all major operating systems. We
introduced you to the basics of PySide and its installation procedure on Windows,
Linux, and Mac systems. We went on creating our first application which introduced
the main components of creating a GUI application and the event loop. We have
concluded this chapter with an introduction to exception handling as a best practice.
Moving on, we are set to create some real-time applications in PySide.

Entering through Windows
The main part of any GUI program is to create windows and define functionalities
around it. We will start exploring ways to create windows and customize it in this
chapter and will move on to create a real-time windows application in the
next chapter.

The widget is the center of the user interface. It receives the user inputs from mouse,
keyboard, and other events, of the window system, and paints a representation of
itself on the screen. Every widget is rectangular, and sorted in a Z-order. A widget
is clipped by its parent and by the widgets in front of it. A widget that does not have
a parent is called a window and is always independent. Usually, windows have a
frame and a title bar at the least but it is possible to create them without these by
setting some windows flags. This chapter explains how to create simple windows
using QWidget and also how to create some widely used widgets. The code snippets
that are explained from this chapter onwards will be based on Object-Oriented
Design principles.

Creating a simple window
The QWidget is the base class for all the user interface classes. A widget can be a
top-level widget or a child widget contained in a top-level or parent widget. Now,
let's create a top-level window using QWidget. The constructor of the QWidget class
takes two optional parameters, parent and flags. The parent can be a QWidget
object and flags can be a combination of PySide.QtCore.Qt.WindowFlags.

Import required modules
import sys
import time
from PySide.QtGui import QApplication, QWidget

Entering through Windows

[20]

class SampleWindow(QWidget):
 """ Our main window class
 """

 # Constructor function
 def __init__(self):
 QWidget.__init__(self)
 self.setWindowTitle("Sample Window")
 self.setGeometry(300, 300, 200, 150)
 self.setMinimumHeight(100)
 self.setMinimumWidth(250)
 self.setMaximumHeight(200)
 self.setMaximumWidth(800)

if __name__ == '__main__':
 # Exception Handling
 try:
 myApp = QApplication(sys.argv)
 myWindow = SampleWindow()
 myWindow.show()
 time.sleep(3)
 myWindow.resize(300, 300)
 myWindow.setWindowTitle("Sample Window Resized")
 myWindow.repaint()
 myApp.exec_()
 sys.exit(0)
 except NameError:
 print("Name Error:", sys.exc_info()[1])
 except SystemExit:
 print("Closing Window...")
 except Exception:
 print (sys.exc_info()[1])

In this sample program, we create a window, set its minimum and maximum size
and repaint the window with different dimensions after a short period. If you look
at the code closely, you may analyze that the code follows exception handling
mechanism and object-oriented principles as explained earlier.

Chapter 2

[21]

The main idea in the earlier program is to introduce you with creating classes and
objects and work around them since programming in PySide indirectly implies
programming using OO principles. PySide libraries follow the OO principles and so
do we. Our sample window is instantiated with the class that we have declared for
this purpose. The class SampleWindow is inherited from the PySide.QtGui.QWidget
class. So, all the properties of QWidget can be applied to our SampleWindow class
also. The __init__ function is called the constructor to be shown when an object is
instantiated. While instantiating the object, we also call the constructor function of its
super class for proper instantiation and hence the line QWidget.__init__(self).
The methods that follow this line are all inherited from the QWidget class. The
functions setMinimumHeight, setMinimumWidth set the window to minimum size
and cannot be shrinked further. Similarly, the window cannot be extended beyond the
maximum size specified by the functions setMaximumHeight and setMaximumWidth.

Our main function is encapsulated in a try, catch block to deal with any unexpected
exceptions that may occur. As explained in the previous chapter, every PySide
application must create a main application object. So, we start with creating an object
for the QApplication class. Then, we create an object for our custom defined class
SampleWindow. At this point, the __init__ function is called and all the properties
defined for our sample window are set. We paint the window on the screen by
calling the show function on the SampleWindow object. The lines that follow are just
an example to show that we can repaint the windows with different dimensions at
any point during the execution of the program. So, we hold on (sleep) for 3 seconds,
resize the window and repaint it on the screen. Now, execute the code and have
some fun.

On executing the program, you will be shown a window as shown in the following
image. This window will get resized after 3 seconds. Also, try to resize the window
by dragging its corners. You may notice that the window cannot be shrunk or
expanded beyond the minimum and maximum metrics set in our earlier code. You
might not initially see a window when executing this program on an XWindow
based system such as Linux, because the main application loop has not been called
yet, so none of the objects has been really constructed and buffered out to the
underlying XWindow system.

Entering through Windows

[22]

The following figure is the screenshot of the final output that you will see:

Creating the application icon
We have created our sample window and now we go on customizing it with some
features for our needs. For each customization, we add a new function under the
SampleWindow class in the previous program to define its properties and call that our
main function to apply those properties on the sample window. In this section, we
define an icon to be set on the window that we created. An icon is a small image that
is created to visually emphasize the purpose of the program. It is displayed in the
top-left corner of the application window. The same is also displayed in the taskbar
when the application is minimized. As a prerequisite for this program, you might
need an icon image with the dimensions similar to the image used here (72 X 72).
You can create your own image or download it from the book site if you wish to use
the one used in this program:

Import required modules
import sys
from PySide.QtGui import QApplication, QWidget, QIcon

class SampleWindow(QWidget):
 """ Our main window class
 """
 def __init__(self):
 """ Constructor Function
 """
 QWidget.__init__(self)
 self.setWindowTitle("Icon Sample")
 self.setGeometry(300, 300, 200, 150)

Chapter 2

[23]

 def setIcon(self):
 """ Function to set Icon
 """
 appIcon = QIcon('pyside_logo.png')
 self.setWindowIcon(appIcon)

if __name__ == '__main__':
 # Exception Handling
 try:
 myApp = QApplication(sys.argv)
 myWindow = SampleWindow()
 myWindow.setIcon()
 myWindow.show()
 myApp.exec_()
 sys.exit(0)
 except NameError:
 print("Name Error:", sys.exc_info()[1])
 except SystemExit:
 print("Closing Window...")
 except Exception:
 print(sys.exc_info()[1])

In the preceding program, we have included a class to set the application icon and
we call that function from our main program to set it. Remember to place the image
in the same location as the program. On executing this program, we would get the
output as shown in the following screenshot:

As we have seen the basics of setting an application icon, we move on to explore
more about the PySide.QtGui.QIcon class. This class provides a set of functions
that provides scalable icons in different modes and states. By using this class, we
can create various types of icons differing in their size and mode, say; smaller, larger,
active, and disabled from the set of pixmaps it is given. Such pixmaps are used by
the Qt widgets to show an icon representing a particular action.

Entering through Windows

[24]

The QIcon class has the following different forms of constructors:

QIcon()
QIcon(engine)
QIcon(other)
QIcon(pixmap)
QIcon(filename)

The first form constructs a null icon. The second form takes PySide.QtGui.
QIconEngine as a parameter. This class provides an abstract base class for the QIcon
renderers. Each icon has a corresponding engine that is responsible for drawing the
icon with the requested size, mode, and state. The third form simply copies from
the other QIcon object and it is considered to be the fastest method of all. The fourth
form constructs the icon from the PySide.QtGui.QPixmap class. This class is an
off-screen image representation that can be used as a paint device. A pixmap can be
easily displayed on the screen using PySide.QtGui.QLabel or one of the two button
classes, PySide.QtGui.QPushButton or PySide.QtGui.QToolButton. QLabel has a
pixmap property whereas QPushButton/QToolButton has an icon property. The last
form constructs an icon from the given filename. If filename contains relative path, it
must be relative to the runtime working directory.

Icons are not only used for showing as application icon but also in various places
as tool representation in the toolbars. Consider, we are creating a toolbar in our
application where we display icons to represent functionalities in pictorial form. A
sample toolbar may appear like the one shown in the following screenshot:

Chapter 2

[25]

The QIcon class provides various modes to display the icon by the state it is defined by
using the pixmap function applied to the QIcon class. The syntax of the pixmap function
is PySide.QtGui.QIcon.pixmap(width, height[, mode=Normal[, state=Off]]).
The parameters width and height represents the icon size. The modes can be any of the
following four modes depending on the action:

Constant Description
QIcon.
Normal

Display the pixmap when the user is not interacting with the
icon, but the functionality represented by the icon is available.

QIcon.
Disabled

Display the pixmap when the functionality represented by the
icon is not available.

QIcon.Active
Display the pixmap when the functionality represented by the
icon is available and the user is interacting with the icon, for
example, moving the mouse over it or clicking it.

QIcon.
Selected

Display the pixmap when the item represented by the icon
is selected.

The state parameter can be used to describe the state for which pixmap is intended to
be used. It can take any of the following two values.

Constant Description
QIcon.Off Display the pixmap when the widget is in an "off" state
QIcon.On Display the pixmap when the widget is in an "on" state

The following function will provide you with an example of various modes of icons
that we create from setting the modes in the pixmap function. Add the following
function from the previous program inside the SampleWindow class.

def setIconModes(self):
 myIcon1 = QIcon('pyside_logo.png')
 myLabel1 = QLabel('sample', self)
 pixmap1 = myIcon1.pixmap(50, 50, QIcon.Active, QIcon.On)
 myLabel1.setPixmap(pixmap1)

 myIcon2 = QIcon('pyside_logo.png')
 myLabel2 = QLabel('sample', self)
 pixmap2 = myIcon2.pixmap(50, 50, QIcon.Disabled, QIcon.Off)
 myLabel2.setPixmap(pixmap2)
 myLabel2.move(50, 0)

 myIcon3 = QIcon('pyside_logo.png')
 myLabel3 = QLabel('sample', self)
 pixmap3 = myIcon3.pixmap(50, 50, QIcon.Selected, QIcon.On)
 myLabel3.setPixmap(pixmap3)
 myLabel3.move(100, 0)

Entering through Windows

[26]

Now, add the following line in the main program to call this function:

...
myWindow.setIcon()
myWindow.setIconModes()
myWindow.show()
...

You might have noted a new widget QLabel used in this program. The QLabel widget
is used to provide a text or image display. Running this program will output a window
containing different modes of the same icon as shown in the following screenshot:

Showing a tooltip
Our next customization is to show a tooltip for the different modes of icons shown.
Tooltip is handy when you need to show some help text or information to the users.
Displaying help text for the widgets used in the window is an integral part for any
GUI application. We use the PySide.QtGui.QToolTip class to provide tooltips (also
called balloon help) for any widget. The QToolTip class define the properties of the
tooltip like font, color, rich text display, and so on. As an example, the font properties
can be set as:

QToolTip.setFont(QFont("Decorative", 8, QFont.Bold))

After setting the font, we set the tooltip to the widget by calling the setToolTip()
function provided by the QWidget class:

 myLabel1.setToolTip('Active Icon')

Chapter 2

[27]

The QFont class specifies a font used for drawing the text. By using the functions
provided by this class, we can specify various attributes that our font want to have.
If the font type we specify is not installed or available, Qt will try to use the closest
match available. If a chosen font does not include all the characters that need to
be displayed, QFont will try to find the characters in the nearest equivalent fonts.
When a PySide.QtGui.QPainter draws a character from a font the PySide.QtGui.
QFont will report whether or not it has the character; if it does not, PySide.QtGui.
QPainter will draw an unfilled square.

Modify the previous program as shown in the following code snippet:

def __init__(self):
 QWidget.__init__(self)
 self.setWindowTitle("Icon Sample")
 self.setGeometry(300, 300, 200, 150)
 QToolTip.setFont(QFont("Decorative", 8, QFont.Bold))
 self.setToolTip('Our Main Window')
 ...

def setIconModes(self):
...
 myLabel1.setPixmap(pixmap1)
 myLabel1.setToolTip('Active Icon')
 ...
 myLabel2.move(50, 0)
 myLabel2.setToolTip('Disabled Icon')
 ...
 myLabel3.move(100, 0)
 myLabel3.setToolTip('Selected Icon')

After making the changes, run the program and you can see the tooltip text is
displayed as and when you move over the icon and window. The sample output
is displayed in the following screenshot:

http://srinikom.github.io/pyside-docs/PySide/QtGui/QPainter.html#PySide.QtGui.QPainter
http://srinikom.github.io/pyside-docs/PySide/QtGui/QFont.html#PySide.QtGui.QFont
http://srinikom.github.io/pyside-docs/PySide/QtGui/QFont.html#PySide.QtGui.QFont
http://srinikom.github.io/pyside-docs/PySide/QtGui/QPainter.html#PySide.QtGui.QPainter
http://srinikom.github.io/pyside-docs/PySide/QtGui/QPainter.html#PySide.QtGui.QPainter

Entering through Windows

[28]

Adding a button
The next customization is to add a button to our application. The most common
button used in any GUI is a push or command button. We push (click on) the button
to command the computer to perform some action or answer a decision. Typical
push buttons include OK, Apply, Cancel, Close, Yes, No, and Help. Usually the
push button is rectangular with some label on it. It can also have an optional icon
associated with it. It is also possible to define a shortcut key combination to the
button to which it responds on clicking the key combination.

The button emits a signal when it is activated by any external event, say, mouse
click or by pressing the spacebar or by a keyboard shortcut. A widget may be
associated with this key click event which is executed on receiving this signal and it
is usually called a slot, in Qt. We will learn more about signals and slots in the later
chapters. As for now, be informed that a signal will connect to a slot on emit. There
can also be other signals that are provided on a button like button pressed, button
released, button checked, button down, button enabled, and so on. Apart from a
push button we also have other button types in Qt like QToolButton, QRadioButton,
QCommandLinkButton and QCheckBox will be discussed later.

QPushButton can be instantiated in three ways. It has three constructors with
different signatures. They are:

QPushButton(parent=None)
QPushButton(text, [parent=None])
QPushButton(icon, text, [parent=None])

The parent parameter can be any widget, text is any string or a set of unicode
characters, and icon is a valid QIcon object.

In this example program, we are going to add a button that will close the
application when clicked. We define a button first and will call a function (slot)
when clicked (signal).

 def setButton(self):
 """ Function to add a quit button
 """
 myButton = QPushButton('Quit', self)
 myButton.move(50, 100)
 myButton.clicked.connect(myApp.quit)

Chapter 2

[29]

Add the preceding function to the earlier example class and call the function from
your __main__ conditional block before calling the show() function of myWindow.
The important point here is the clicked.connect() call of the myButton object. The
event clicked connects to the slot myApp.quit() which quits the application. The
slot can be replaced by an excerpt of code or a user defined function which performs
a set of operations.

It is highly likely that the quit button may be pressed by mistake. If the application
is quit without the user's confirmation there is a high chance of it being a mistake.
So, we are going to display a confirmation message to the user on clicking the quit
button. If the user wishes to quit, the application quits or the user can cancel it. The
widely used widget for this purpose is QMessageBox. This is used for providing
a modal dialog box for informing the user or for asking the user a question and
receiving an answer. We will see more in detail about the QMessageBox in Chapter 5,
Dialogs and Widgets. Here, we just create an instance of it and add it to our program.

To do this, create a function as follows:
 def quitApp(self):
 """ Function to confirm a message from the user
 """
 userInfo = QMessageBox.question(self, 'Confirmation',
 "This will quit the application. Do you want to Continue?",
 QMessageBox.Yes | QMessageBox.No)
 if userInfo == QMessageBox.Yes:
 myApp.quit()
 if userInfo == QMessageBox.No:
 pass

Now, change the connect function in the setButton module to call this function on
click of the quit button:

myButton.clicked.connect(self.quitApp)

On executing the program and clicking on the quit button, you will get a confirmation
message for which you can click on Yes or No:

Clicking on Yes will quit the app and clicking on No will do nothing.

Entering through Windows

[30]

Centering the Window on the screen
Many windowed applications will get their importance by the way they are
displayed on the screen. It is better practice for any GUI application to display the
window centered on the screen. There are two advantages of doing this. One is to get
the attention of the user and the other is to adjust with different display formats of
various monitor screens.

There is no straightforward method to center the window by calling a predefined
function of some class. Therefore, we write our own method called center to position
the window center to any screen. The method takes the object it is calling and centers
it with respect to the screen it is displayed:

 def center(self):
 """ Function to center the application
 """
 qRect = self.frameGeometry()
 centerPoint = QDesktopWidget().availableGeometry().center()
 qRect.moveCenter(centerPoint)
 self.move(qRect.topLeft())

In order to do this, first we get the size and location of the window that we want to
be centered. Then, we need to get the center point of the screen. Finally, we will move
the window to the center of the screen. The frameGeometry() function will return a
PySide.QtCore.QRect object which will hold the height, width, top, and left points
of the window. The QDesktopWidget().availableGeometry().center() call will
return the center point of the screen. The next two lines will move the window to
the center point of the screen. Remember to call this function before the myWindow.
show() line to view the settings applied on your window.

About box
Our next customization is to add an about box to our application. An about box is
a dialog box that displays credits and revision information about the application.
It may also include installed version and copyright information. The QMessageBox
class provides a built-in function for this. It has the following signature:

PySide.QtGui.QMessageBox.about(parent, title, text)

http://srinikom.github.io/pyside-docs/PySide/QtCore/QRect.html#PySide.QtCore.QRect
http://srinikom.github.io/pyside-docs/PySide/QtCore/QRect.html#PySide.QtCore.QRect

Chapter 2

[31]

The parent parameter takes any valid QWidget object. The title and text can be
supplied with the Unicode parameter. The about box will have a single button
labeled OK. To explain its working, we will now add a button named About and on
click signal of that button we call a slot which will display the About box to the user.
The code for the same is as follows:

 def setAboutButton(self):
 """ Function to set About Button
 """
 self.aboutButton = QPushButton("About", self)
 self.aboutButton.move(100, 100)
 self.aboutButton.clicked.connect(self.showAbout)

 def showAbout(self):
 """ Function to show About Box
 """
 QMessageBox.about(self.aboutButton, "About PySide",
 "PySide is a cross-platform tool for generating GUI
Programs.")

Call this function from your __main__ block before the myWindow.show() call. On
execution, you will see a window with an added About button. On click of this button,
a separate dialog box is displayed with the heading and content text as given in the
program. You can also note that the window also has the application icon displayed
by default at the side. The sample output is displayed as follows for your reference:

There is one more function provided by the QMessage class that might interest
you. The aboutQt method is called whose signature is given as follows:

 PySide.QtGui.QMessageBox.aboutQt(parent[, title=""])

Entering through Windows

[32]

Calling this function will display a simple message box about Qt, with the given
title and centered over parent. The message will display the version of the Qt that is
currently used by the application. It is useful for displaying information about the
platform you are using in your program. As a learning exercise, try to implement
this on your own and see what its output is.

Timers
Most of the GUI applications are time bound and it is extremely important to use
timers to capture information about the program runtime and other similar tasks.
You might also use timers to generate some event at specified time intervals,
calculate the elapsed time for some action, to implement a countdown timer and so
on. This section of the chapter covers how to create and use timers in our application
and we develop a digital clock application explaining the concept of timers.

The classes that are used for creating this application in Qt are PySide.QtCore.
QTimer and PySide.QtCore.QDateTime. The QTimer class provides high-level
programming interface for timers. It provides repetitive and single-shot timers.
Repetitive timers run continuously and restart at expiry of one time slot. Single-shot
timers will run exactly once and expire after one time slot. A timeout event will occur
at expiry of the given time slot. The timer can be started by issuing a start call to the
QTimer object and can be stopped anywhere in between before the expiry of the time
slot by issuing a stop signal:

 QTimer.start(1000)
 QTimer.stop()

The unit of timer is in milliseconds. The accuracy of timers depends on the underlying
operating system and hardware. Most platforms support a resolution of 1 millisecond
though the accuracy of the timer will not match this and is not guaranteed.

The PySide.QtCore.QDateTime class provides a calendar date and clock time
functions. It is a combination of PySide.QtCore.QDate and PySide.QtCore.QTime
classes. As with any other framework, the QDateTime class provides functions
for comparing datetimes and for manipulation of a datetime. It provides a full set
operator to compare two QDateTime objects where smaller means earlier and larger
means later. The QDateTime can store datetimes both as local and as UTC. The
QDateTime.toUTC() function can be applied is on a QDateTime object to convert the
local time to UTC. This class handles and aware of daylight saving time:

Import required modules
import sys
from PySide.QtCore import QDateTime, QTimer, SIGNAL
from PySide.QtGui import QApplication, QWidget, QLCDNumber

Chapter 2

[33]

class MyTimer(QWidget):
 """ Our Main Window class for Timer
 """
 def __init__(self):
 """ Constructor Function
 """
 QWidget.__init__(self)
 self.setWindowTitle('My Digital Clock')
 timer = QTimer(self)
 self.connect(timer, SIGNAL("timeout()"), self.updtTime)
 self.myTimeDisplay = QLCDNumber(self)
 self.myTimeDisplay.setSegmentStyle(QLCDNumber.Filled)
 self.myTimeDisplay.setDigitCount(8)
 self.myTimeDisplay.resize(500, 150)
 timer.start(1000)

 def updtTime(self):
 """ Function to update current time
 """
 currentTime = QDateTime.currentDateTime().toString('hh:mm:ss')
 self.myTimeDisplay.display(currentTime)

Main Function
if __name__ == '__main__':
 # Exception Handling
 try:
 myApp = QApplication(sys.argv)
 myWindow = MyTimer()
 myWindow.show()
 myApp.exec_()
 sys.exit(0)
 except NameError:
 print("Name Error:", sys.exc_info()[1])
 except SystemExit:
 print("Closing Window...")
 except Exception:
 print(sys.exc_info()[1])

Entering through Windows

[34]

The preceding program will display a digital clock on execution. To display the
time with the precision in seconds we start a timer that times out every second. On
timeout of the timer, we call the updtTime() function which will update the current
time and display it on the screen. In order to display the time in digital format we
have used a special display in this program, which is different from the previous
ones. The PySide.QtGui.QLCDNumber will display a number with LCD like digits
which gives the appearance of a digital clock. The digits/numbers that can be shown
with LCDNumber are 0/O, 1, 2, 3, 4, 5/S, 6, 7, 8, 9/g, minus, decimal point, A, B,
C, D, E, F, h, H, L, o, P, r, u, U, Y, colon, degree sign (which is specified as single
quote in the string) and space. PySide.QtGui.QLCDNumber substitutes spaces for
illegal characters. Using this, we can just output the text/number in any size. The
setSegmentStyle() function sets the style of the QLCDNumber to be displayed, it
could take the following values:

Constant Description
QLCDNumber.Outline Gives raised segments filled with the background color.
QLCDNumber.Filled Gives raised segments filled with the windowText color.
QLCDNumber.Flat Gives flat segments filled with the windowText color.

One more thing to note here is the setDigitCount function which will set the
number of digits to show on the display which defaults to five.

http://srinikom.github.io/pyside-docs/PySide/QtGui/QLCDNumber.html#PySide.QtGui.QLCDNumber

Chapter 2

[35]

Windows style
The PySide application can be executed under different platforms/flavors of
operating systems. The GUI style of each flavor may vary in representing the
application. If you require your application to look good on all platforms, you
have to style your application native to the operating system. Qt contains a set of
style classes that emulate the styles of the different platforms. The abstract class
that performs this in Qt is the PySide.QtGui.QStyle class. The classes that inherit
this class and provide various style options are QCommonStyle, QWindowsStyle,
QPlastiqueStyle, QCleanlooksStyle, QGtkStyle, QMotifStyle, and QCDEStyle.
Qt's built-in widgets uses QStyle to perform nearly all of their drawing, ensuring that
they look exactly like the equivalent native widgets. As an example, the following
screenshot contains the different representation of combobox in eight different styles
under various OS platforms:

By default, Qt will choose the most appropriate style for the user's platform
or desktop environment. The Windows style is the default style under flavors
of Windows, Plastique style for Qt/X11 applications running under KDE, and
cleanlooks is the default under GNOME. These styles use gradients and anti-aliasing
to provide a modern look and feel. The style of the entire application can be set by
using the QApplication.setStyle() function. It can also be specified by the user of
the application, using the –style command line option while running the program.
The command line option overrides the default style.

 python myApp.py -style motif

The setStyle() function can be applied to an individual widget also. You can
call QApplication.setStyle() any time, but by calling it before the constructor,
you ensure that the user's preference, set using the -style command-line option,
is respected.

Entering through Windows

[36]

Summary
In this chapter, we have seen how to create windows application using widgets and
dialogs. We have also seen some customizations that are added to our application
and finished the chapter with creating a digital clock application. We will start to
explore creating main windowed applications in the coming chapters.

Main Windows and
Layout Management

In the previous chapter, we have seen how to create windows using widgets. Most of
the GUI applications that we use today are main window styled applications, which
have a menu bar, toolbars, a status bar, a central widget, and optional dock widgets.
Generally, an application will have a single main window and a collection of dialogs
and widgets for serving the purpose of the application. A main window provides
a framework for building an application's user interface. In this chapter, we shall
discuss the creation of a main window application with its predefined components
and also discuss the layout management in a windowed application.

PySide provides a class named PySide.QtGui.QMainWindow derived from
QWidget, and its related classes for main window management. QMainWindow has
its own layout to which you can add toolbars, menu bar, status bar, dock widgets,
and a central widget. The layout description of a main window is as shown in the
following figure:

Main Windows and Layout Management

[38]

The central widget can be of any standard or custom widgets, say for example,
QTextEdit or a QGraphicsView. Creating a main window without a central widget
is not supported. Moving on, we will examine how to create a main window and will
cover how to add its components one by one.

Creating the main window
As a first step, we will start with creating a main window by subclassing the
QMainWindow class. The QMainWindow class has a constructor function similar to
QWidget class.

PySide.QtGui.QMainWindow([parent=None[,flags=0]])

The parent can be any valid QWidget object and flags can be a valid combination of
Qt.WindowFlags. The following code excerpt explains how to create a main window
application at a very basic level.

Import required modules
import sys, time
from PySide.QtGui import QApplication, QMainWindow

class MainWindow(QMainWindow):
 """ Our Main Window Class
 """

 def __init__(self):
 """ Constructor Fucntion
 """
 QMainWindow.__init__(self)
 self.setWindowTitle("Main Window")
 self.setGeometry(300, 250, 400, 300)

if __name__ == '__main__':
 # Exception Handling
 try:
 myApp = QApplication(sys.argv)
 mainWindow = MainWindow()
 mainWindow.show()
 myApp.exec_()
 sys.exit(0)
 except NameError:
 print("Name Error:", sys.exc_info()[1])
 except SystemExit:
 print("Closing Window...")
 except Exception:
 print(sys.exc_info()[1])

Chapter 3

[39]

This will create a very minimal and a basic main window with no other components
as shown in the following screenshot. In the forthcoming sections, we will see how to
add these components in the main window:

Status bar
A status bar is a horizontal information area usually found at the bottom of windows
in a GUI. Its primary job is to display information about the current status of the
window. A status bar can also be divided into sections, each showing different
information to the users.

In PySide, a status bar can be added to the QMainWindow class by calling the function
QMainWindow.setStatusBar(statusbar). It takes the object of PySide.QtGui.
QStatusBar as a parameter. The properties of the status bar is defined by this class
and an object of this class is returned to set a status bar. Setting this parameter to 0
will remove the status bar from the main window. A status bar can show information
that can fall into any of the following three categories:

• Temporary: Briefly occupies most of the status bar and is mainly used to
explain tool tip texts, menu entries, and so on

• Normal: Occupies a part of the status bar and may be temporarily hidden by
temporary messages, and is used to display the current window information,
page and line numbers and so on

• Permanent: Usually occupies a little space and is used to indicate important
mode information, Caps Lock indicator, spell check info, and so on

http://srinikom.github.io/pyside-docs/PySide/QtGui/QStatusBar.html#PySide.QtGui.QStatusBar

Main Windows and Layout Management

[40]

The current status of the status bar can be retrieved by using the QMainWindow.
statusBar() function. The temporary messages to the status bar can be set
by calling the QStatusBar.showMessage(text[,timeout=0]) function. If a
timeout is set, the message will be cleared after the expiry of specified time in
milliseconds. If there is no timeout, you can clear the message by calling the
QStatusBar.clearMessage() function.

To evident this, we create a method called CreateStatusBar(), which has the
following code snippet:

 def CreateStatusBar(self):
 """ Function to create Status Bar
 """
 self.myStatusBar = QStatusBar()
 self.myStatusBar.showMessage('Ready', 2000)
 self.setStatusBar(self.myStatusBar)

Now call this function, from the main application to set a status bar on the main
window. On executing this code, we could see a status bar appearing on the main
window that will expire after 2 seconds, which is the timeout that we have set. If you
have left the timeout option or set it as 0, the message will appear in the status bar
till another message is called on to overwrite it or till we close the application. The
output window will be as given in the following screenshot.

It is also possible to set a widget in the status bar in addition to the text messages. A
widget like QProgressBar can be added to the status bar to indicate the progress of
a particular action on the main window. The PySide.QtGui.QProgressBar widget
provides a horizontal or vertical progress bar. The progress bar is used to intimate
the user an indication of the progress of an operation and to reassure them that the
application is still running. We shall now see a program that implements this. Make
the changes to the previous program explained as follows:

http://srinikom.github.io/pyside-docs/PySide/QtGui/QProgressBar.html#PySide.QtGui.QProgressBar

Chapter 3

[41]

The setMinimum(minimum) and setMaximum(maximum) functions of PySide.QtGui.
QProgressBar takes an integer value as the value to set the minimum and maximum
possible step values and it will display the percentage of steps that have been
completed when you later give it the current step value. The percentage is calculated
by dividing the progress as follows:

[PySide.QtGui.QProgressBar.value() -PySide.QtGui.QProgressBar.
minimum()]

[PySide.QtGui.QProgressBar.maximum() - PySide.QtGui.QProgressBar.
minimum()]

 def __init__(self):
...
 self.setGeometry(300, 250, 400, 300)
 self.statusLabel = QLabel('Showing Progress')
 self.progressBar = QProgressBar()
 self.progressBar.setMinimum(0)
 self.progressBar.setMaximum(100)
...

As explained, we will now add widgets to the status bar. For this purpose, we have
created two widgets namely, self.statusLabel and self.progressBar of type
QLabel and QProgressBar respectively. The following code creates the status bar
and add these widgets to it:

 def CreateStatusBar(self):
 """ Function to create the status bar
 """
 self.myStatusBar = QStatusBar()
 self.progressBar.setValue(10)
 self.myStatusBar.addWidget(self.statusLabel, 1)
 self.myStatusBar.addWidget(self.progressBar, 2)
 self.setStatusBar(self.myStatusBar)

The function PySide.QtGui.QStatusBar.addWidget(widget[, stretch=0]) takes
two arguments. The first mandatory argument is any valid QWidget object that is to
be added on the status bar and the second optional parameter is used to compute a
suitable size for the given widget as the status bar grows and shrinks. The number
defines the ratio of the status bar that the widget can use. By setting the progress bar's
stretch factor to 2, we ensure that it takes two-third of the total area of the status bar.

http://srinikom.github.io/pyside-docs/PySide/QtGui/QProgressBar.html#PySide.QtGui.PySide.QtGui.QProgressBar.value
http://srinikom.github.io/pyside-docs/PySide/QtGui/QProgressBar.html#PySide.QtGui.PySide.QtGui.QProgressBar.value
http://srinikom.github.io/pyside-docs/PySide/QtGui/QProgressBar.html#PySide.QtGui.PySide.QtGui.QProgressBar.minimum
http://srinikom.github.io/pyside-docs/PySide/QtGui/QProgressBar.html#PySide.QtGui.PySide.QtGui.QProgressBar.maximum
http://srinikom.github.io/pyside-docs/PySide/QtGui/QProgressBar.html#PySide.QtGui.PySide.QtGui.QProgressBar.maximum
http://srinikom.github.io/pyside-docs/PySide/QtGui/QProgressBar.html#PySide.QtGui.PySide.QtGui.QProgressBar.maximum
http://srinikom.github.io/pyside-docs/PySide/QtGui/QProgressBar.html#PySide.QtGui.PySide.QtGui.QProgressBar.minimum

Main Windows and Layout Management

[42]

After adding the widgets to the status bar, we write the following function to show
its working state. This function will show the label as "Showing Progress" till the
progress bar at the right proceeds to completion. The progress bar increments by 10
percent every time till completion after a short sleep for one second. On completion,
the label changes to Ready.

 def ShowProgress(self):
 """ Function to show progress
 """
 while(self.progressBar.value() < self.progressBar.maximum()):
 self.progressBar.setValue(self.progressBar.value() + 10)
 time.sleep(1)
 self.statusLabel.setText('Ready')

Now, modify the code in the main block, as shown in the following information box
and execute the program. You can now see that the status bar has a working progress
bar widget along with a label.

....
 mainWindow = MainWindow()
 mainWindow.CreateStatusBar()
 mainWindow.show()
 mainWindow.ShowProgress()
 myApp.exec_()
....

After making the changes, execute the program and you will see an output window
as shown in the following screenshot:

Chapter 3

[43]

Menu bar
In the systems that use command line interface, the user may be presented with a list
of commands that would be displayed as a help text to the user. The users can then
choose from the list to perform their desired action. In GUI systems, this is replaced
with a set of text and symbols to represent choices. By clicking on the text/symbol,
the user executes the desired action. This collection is called a menu.

A menu bar is a region of a screen or application that consists of a list of pull-down
menu items. A common use of menu bar is to provide convenient access to various
operations such as opening a new or an existing file, save the file, print options,
manipulating data, providing help window, close the application and so on. In this
section, we introduce the concept of adding a menu bar to our application. Before that,
we define the central widget of the application which will aid the usage of menus.

The central widget
As we have seen earlier, the central area of the QMainWindow can be occupied by any
kind of widget. This widget can be any of the following:

• A standard Qt widget such as QTextEdit or QGraphicsView
• A custom widget created using primary widgets
• Plain QWidget with a layout manager, which acts as a parent for many

other widgets
• Multiple widgets with a QSplitter which arranges the widgets horizontally

or vertically
• MDI area which acts as a parent for other MDI windows

In our example, we use QTextEdit as the central widget. The PySide.QtGui.
QTextEdit class provides a widget that is used to edit and display both plain and
rich text formats. QTextEdit is an advanced WYSIWYG viewer/editor supporting
rich text formatting using HTML style tags. It can display text, images, lists, and
tables as well. The rich text support in Qt is designed to provide a fast, portable, and
efficient way to add reasonable online help facilities to applications, and to provide
a basis for rich text editors. The QTextEdit can be both used as a display widget and
an editor. For our purposes, we use it as an editor.

Main Windows and Layout Management

[44]

The following piece of code sets the QTextEdit as the central widget. On calling
this function from main block by using the QApplication object, a text editor will
be set at the central space of our application. The output is shown in the screenshot
following the information box containing the code excerpt:

 def SetupComponents(self):
 """ Setting the central widget
 """
 textEdit = QTextEdit()
 self.setCentralWidget(textEdit)

Adding a menu bar
We will now add the menu bar to our application. We use the class PySide.QtGui.
QMenuBar for creating a menu bar. This class provides a horizontal menu bar to
which the menu items can be added. You don't have to set a layout for menu bar.
Different platforms use different layouts for the menu bar. In Windows system,
the menu bar is usually anchored at the top of a window under the title bar. In the
Macintosh system, the menu bar is usually anchored at the top of the screen. Linux
systems have both these display formats depending on the GUI style. QMenuBar
automatically sets its own geometry to the top of the parent widget and changes it
appropriately whenever the parent is resized.

Chapter 3

[45]

In the main window style applications, we use the PySide.QtGui.QMainWindow.
menuBar() function to create a menu bar. This function will return an empty
menu bar, which has QMainWindow as its parent. If you want all windows in a
Mac application to share a single common menu bar, don't use this function to
create it, because the menu bar created this way will have QMainWindow as its
parent, instead you can create a menu bar with no parent by directly instantiating
the QMenuBar class. The menu bar can also be set in the main window by using the
PySide.QtGui.QMainWindow.setMenuBar(menubar) function, which takes a menu
bar object as its parameter.

Adding menus
Once the menu bar is set, menu list can be added to it. The PySide.QtGui.QMenu
class provides menu widget for use in menu bars, context menus, and other popup
menus. A menu widget is a selection menu. It can be either a pull-down menu in a
menu bar or can be a context menu. Pull-down menus are shown by the menu bar
when the user clicks on the respective item or presses the specified shortcut key.
Context menus are invoked by some special keyboard key or by right-clicking on it.

In the menu bar, we add menus with the function QMenuBar.addMenu(menu). For
the example application, we add three menus namely, File, Edit, and About. Inside
each of these menus, we create two actions each that when triggered by click or a
keyboard shortcut key combination connects to a specified slot. As defined, a menu
consists of a list of action items. The PySide.QtGui.QAction class provides an abstract
user interface action that can be inserted into widgets. Actions are common for a
combination of menu items, tool bars, and keyboard shortcuts. So we create an action
and attach it with different components, which are expected to perform the same
functionality. Usually, when an action is created, it should be added to the relevant
menu and toolbar, then connected to the slot which will perform the action. Actions are
added to the menus with the QMenu.addAction(), QMenu.addActions(), and QMenu.
insertAction() functions. An action is rendered vertically under the menu, and can
have a text label, an optional icon drawn on the left, and a shortcut key sequence.

The following example demonstrates the creation of menu bar in the main window
application. This program is a shortened version of what we will be developing as a
fully working "A Simple Text Editor" application at the end of this chapter.

Import required modules
import sys
from PySide.QtGui import QApplication, QMainWindow, QStatusBar,
QTextEdit, \
 QAction, QIcon, QKeySequence

Main Windows and Layout Management

[46]

class MainWindow(QMainWindow):
 """ Our Main Window class
 """

 def __init__(self):
 """ Constructor Function
 """
 QMainWindow.__init__(self)
 self.setWindowTitle("A Simple Text Editor")
 self.setWindowIcon(QIcon('appicon.png'))
 self.setGeometry(300, 250, 400, 300)

 def SetupComponents(self):
 """ Function to setup status bar, central widget, menu bar
 """
 self.myStatusBar = QStatusBar()
 self.setStatusBar(self.myStatusBar)
 self.myStatusBar.showMessage('Ready', 10000)
 self.textEdit = QTextEdit()
 self.setCentralWidget(self.textEdit)
 self.CreateActions()
 self.CreateMenus()
 self.fileMenu.addAction(self.newAction)
 self.fileMenu.addSeparator()
 self.fileMenu.addAction(self.exitAction)
 self.editMenu.addAction(self.copyAction)
 self.fileMenu.addSeparator()
 self.editMenu.addAction(self.pasteAction)
 self.helpMenu.addAction(self.aboutAction)

 # Slots called when the menu actions are triggered
 def newFile(self):
 self.textEdit.setText('')

 def exitFile(self):
 self.close()

 def aboutHelp(self):
 QMessageBox.about(self, "About Simple Text Editor",
 "This example demonstrates the use "
 "of Menu Bar")

 def CreateActions(self):
 """ Function to create actions for menus
 """
 self.newAction = QAction(QIcon('new.png'), '&New',
 self, shortcut=QKeySequence.New,
 statusTip="Create a New File",
 triggered=self.newFile)

Chapter 3

[47]

 self.exitAction = QAction(QIcon('exit.png'), 'E&xit',
 self, shortcut="Ctrl+Q",
 statusTip="Exit the Application",
 triggered=self.exitFile)
 self.copyAction = QAction(QIcon('copy.png'), 'C&opy',
 self, shortcut="Ctrl+C",
 statusTip="Copy",
 triggered=self.textEdit.copy)
 self.pasteAction = QAction(QIcon('paste.png'), '&Paste',
 self, shortcut="Ctrl+V",
 statusTip="Paste",
 triggered=self.textEdit.paste)
 self.aboutAction = QAction(QIcon('about.png'), 'A&bout',
 self, statusTip="Displays info about text editor",
 triggered=self.aboutHelp)

 # Actual menu bar item creation
 def CreateMenus(self):
 """ Function to create actual menu bar
 """
 self.fileMenu = self.menuBar().addMenu("&File")
 self.editMenu = self.menuBar().addMenu("&Edit")
 self.helpMenu = self.menuBar().addMenu("&Help")

if __name__ == '__main__':
 # Exception Handling
 try:
 #QApplication.setStyle('plastique')
 myApp = QApplication(sys.argv)
 mainWindow = MainWindow()
 mainWindow.SetupComponents()
 mainWindow.show()
 myApp.exec_()
 sys.exit(0)
 except NameError:
 print("Name Error:", sys.exc_info()[1])
 except SystemExit:
 print("Closing Window...")
 except Exception:
 print(sys.exc_info()[1])

In the preceding example, the actions are created in the CreateActions() function.
Each of the menu items are created as separate actions.

self.newAction = QAction(QIcon('new.png'), '&New',
 self, shortcut=QKeySequence.New,
 statusTip="Create a New File",
 triggered=self.newFile)

Main Windows and Layout Management

[48]

The New item under File menu has the action instantiated as preceding code snippet.
The first parameter is the Icon to be displayed on to the left of the menu item. The
next parameter is the name to be displayed. The & represents that the letter followed
by it should be underlined, and can be accessed by pressing the Alt + <letter>
combination as in many other window applications. The third parameter implies the
parent which is the main window here. The fourth and fifth keyword parameters
represent the shortcut key combination for easy access of the menu item and status
tip to be displayed on highlighting the menu item respectively. The shortcut key can
be either a predefined combination by the PySide.QtGui.QKeySequence class or
a valid combination as given by the user. The PySide.QtGui.QKeySequence class
encapsulates a key sequence as used by shortcuts. It defines a combination of keys
that can be used by different operating system platforms. The last parameter defines
the slot to be called when the menu item is triggered, which can be a logical group of
code executing the desired functionality. We define the other actions similar to this.

Once the actions are created, we add these actions to the menu items. The top level
menu bar is created in the CreateMenus() function and the actions of the menu
items are added as follows:

self.fileMenu.addAction(self.newAction)

The menu items can be grouped by adding a separator between the items which is
done as given in the following code line:

self.fileMenu.addSeparator()

Execute the program and witness the working of menus.

Tool bar
A tool bar is a panel of icons associated with actions that are available for easy access
of menus. In PySide, the tool bars are implemented in the PySide.QtGui.QToolBar
class. The toolbar is added to the main window with addToolBar() function. The
tool bar is initially positioned at the top of the window below the menu bar. This can
be adjusted with the QToolBar.setAllowedAreas() function. The tool bar can be set
movable or immovable by setting it with the QToolBar.setMovable() function. The
style and size of the icons can be defined by the underlying platform, which could
also be controlled. When it is resized in a way too small that can hold all the icons, an
extension button will appear which on click expands to all items.

http://srinikom.github.io/pyside-docs/PySide/QtGui/QKeySequence.html#PySide.QtGui.QKeySequence
http://srinikom.github.io/pyside-docs/PySide/QtGui/QKeySequence.html#PySide.QtGui.QKeySequence

Chapter 3

[49]

Toolbar buttons are added by adding actions as seen in the menu bar creation in the
previous section. The same actions can be used in the toolbars too. The following
example demonstrates the creation of toolbar and its usage:

def CreateToolBar(self):
 """ Function to create tool bar
 """
 self.mainToolBar = self.addToolBar('Main')

The actions can be added as follows. These lines should be appended in the
SetupComponents() function after invoking the CreateToolBar() module in
our previous example:

 self.mainToolBar.addAction(self.newAction)
 self.mainToolBar.addSeparator()
 self.mainToolBar.addAction(self.copyAction)
 self.mainToolBar.addAction(self.pasteAction)

Thus, we have seen how to add the discussed components in the main window.

Layout management
A layout can be defined as the sizing, spacing, and placement of content within
a GUI window. It defines the visual structure of a user interface. Effective layout
management would please users by assisting them in locating quickly what the
users wants most from the application, and also helps in making out the differences
between a good informative design and a confusing, puzzled designs of the
application. Therefore, management of layout in a window style application is a
crucial success factor for any GUI application. A good layout must have a priority
focus, smooth flow, logical grouping, relative emphasis, and coordinated alignment.

In PySide, we follow two approaches to layout management. They are as follows:

• Absolute positioning: A crude way of setting the layout manually for each
widget by giving them their position and size

• Layout containers: A way to handle automatic positioning and resize of
widgets by the layout management classes used in Qt

Absolute positioning
Absolute positioning is the most crude and naive form of arranging widgets in the
window. This is achieved by giving a hard-wired position and size to all the widgets
in the window. Usually, we use the widget's move(x, y) function where x and y
are the horizontal and vertical distance, respectively, from the top left corner of the
form to the top left corner of the widget. We have already seen this method of layout
positioning in our previous chapters in positioning the About and Quit buttons.

Main Windows and Layout Management

[50]

This method of layout management is highly discouraged and not effective due to
the following disadvantages:

• Calculating the size and position for each widget manually is a really
cumbersome task

• Resizing the window changes the layout
• It do not respond to style changes
• Internationalization and font changes becomes very difficult as the label text

may overflow or underflow
• May appear completely different in different resolutions

Therefore, it is highly advised to use the layout containers for layout management.
We have already seen examples for this type of layout management.

Layout containers
All widgets can use layouts to manage their children. If these are used in a proper
way, the following functions are achieved:

• Sensible default size for windows
• Positioning of child widgets
• Resize handling
• Automatic updates when contents change including font size, hiding,

removal of widgets, and so on

The container class alienates all the disadvantages discussed in absolute positioning
and is the most widely used layout management system. They are more flexible and
adjusts the layout in accordance with the style of the different platform. We will
look into the commonly used layout containers inherited from the PySide.QtGui.
QLayout class.

• QBoxLayout: It lines up widgets horizontally or vertically
 ° QHBoxLayout: It lines up widgets horizontally
 ° QVBoxLayout: It lines up widgets vertically

• QGridLayout: Lays out widgets in a grid
• QFormLayout: Manages form of input widgets and their label
• QStackedLayout: Stack of widgets where only one widget is visible at a time

We will discuss each of them in little detail.

Chapter 3

[51]

QBoxLayout
The PySide.QtGui.QBoxLayout class takes the space it gets, divides it up into row
of boxes and makes each managed widgets fill one box. The orientation or direction
of the box layout can be either vertical (column wise) or horizontal (row wise). The
direction can take any one of the following values:

• QBoxLayout.LeftToRight: It takes horizontal direction from left to right
• QBoxLayout.RightToLeft: It takes horizontal direction from right to left
• QBoxLayout.TopToBottom: It takes vertical direction from top to bottom
• QBoxLayout.BottomToTop: It takes vertical direction from bottom to top

Each of the filled widgets will get its minimum size at the least and its maximum size
at the most. The extra space is shared between the widgets according to their stretch
factor. The QBoxLayout class can be attached to any of the parent layout as it is not
the top level layout.

The widgets can be added to the QBoxLayout function using following
four functions:

• QBoxLayout.addWidget(): It helps to add widgets
• QBoxLayout.addSpacing(): It creates an empty box for spacing
• QBoxLayout.addStretch(): It creates an empty stretchable box
• QBoxLayout.addLayout(): It adds a box with another layout and define

its stretch factor

The add functions can be replaced with insert functions, for example, QBoxLayout.
insertWidget() to insert a box at a specified position in the layout.

This class also includes two margins. The Pyside.QtGui.QLayout.
setContentsMargins() function sets the width of the outer border on each side of
the widget and PySide.QtGui.QBoxLayout.setSpacing() sets the width between
the neighboring boxes. The default margin spaces differ by the application style.

The most convenient and easy form to use the QBoxLayout class is to instantiate one
of its inherited classes, QVBoxLayout and QHBoxLayout for vertical and horizontal
direction layouts respectively. The following programs will explain the usage of
QVBoxLayout and QHBoxLayout.

Main Windows and Layout Management

[52]

QHBoxLayout
An example for horizontal layout is as follows:

class MainWindow(QWidget):
 """ Our Main Window class
 """
 def __init__(self):
 """ Constructor Function
 """
 QWidget.__init__(self)
 self.setWindowTitle("Horizontal Layout")
 self.setGeometry(300, 250, 400, 300)

 def SetLayout(self):
 """ Function to add buttons and set the layout
 """
 horizontalLayout = QHBoxLayout(self)
 hButton1 = QPushButton('Button 1', self)
 hButton2 = QPushButton('Button 2', self)
 hButton3 = QPushButton('Button 3', self)
 hButton4 = QPushButton('Button 4', self)
 horizontalLayout.addWidget(hButton1)
 horizontalLayout.addWidget(hButton2)
 horizontalLayout.addWidget(hButton3)
 horizontalLayout.addWidget(hButton4)

 self.setLayout(horizontalLayout)

QVBoxLayout
An example for vertical layout is as follows:

def SetLayout(self):
 verticalLayout = QVBoxLayout(self)
 vButton1 = QPushButton('Button 1', self)
 vButton2 = QPushButton('Button 2', self)
 vButton3 = QPushButton('Button 3', self)
 vButton4 = QPushButton('Button 4', self)

 verticalLayout.addWidget(vButton1)
 verticalLayout.addWidget(vButton2)
 verticalLayout.addStretch()
 verticalLayout.addWidget(vButton3)
 verticalLayout.addWidget(vButton4)

 self.setLayout(verticalLayout)

Chapter 3

[53]

QGridLayout
The PySide.QtGui.QGridLayout class takes the space available to it and divides up
into rows and columns and puts each widget it manages into the correct cell. Each
row/column has a minimum width and a stretch factor. The widgets are added into
the grid layout using the addWidget() function and the layout puts it into the correct
cell. It is also possible for a widget to span across multiple rows/columns. The
addItem() and addLayout() methods can also be used to insert widgets or other
layouts into it.

The grid layout also includes two margins as discussed in the box layout. An
example program for the usage of grid layout is as follows.

def SetLayout(self):
 gridLayout = QGridLayout(self)
 gButton1 = QPushButton('Button 1', self)
 gButton2 = QPushButton('Button 2', self)
 gButton3 = QPushButton('Button 3', self)
 gButton4 = QPushButton('Button 4', self)
 gButton5 = QPushButton('Button 5', self)
 gridLayout.addWidget(gButton1, 0, 0)
 gridLayout.addWidget(gButton2, 0, 1)
 gridLayout.addWidget(gButton3, 1, 0, 1, 2)
 gridLayout.addWidget(gButton4, 2, 0)
 gridLayout.addWidget(gButton5, 2, 1)
 self.setLayout(gridLayout)

Main Windows and Layout Management

[54]

QFormLayout
The PySide.QtGui.QFormLayout class is a higher level alternative to basic forms
of layout classes, which lays out its widgets in a two column form. Usually, the left
column consists of label and the right column consists of field widgets such as line
editors, combo box, spin box, and so on.

The form layout can be achieved through grid layout but using it directly on the
form like widgets have the following advantages:

• Adherence to different platform's look and feel
• Support for wrapping long rows, using RowWrapPolicy control
• API for creating label-field pairs
• Support for expanding fields, using FieldGrowthPolicy control

The spacing between the rows of forms can be set using the
setHorizontalSpacing() and setVerticalSpacing() functions of this class.
An example for the form layout is as follows:

def SetLayout(self):
 formLayout = QFormLayout(self)
 labelUsername = QLabel("Username")
 txtUsername = QLineEdit()
 labelPassword = QLabel("Password")
 txtPassword = QLineEdit()
 formLayout.addRow(labelUsername, txtUsername)
 formLayout.addRow(labelPassword, txtPassword)
 self.setLayout(formLayout)

QStackedLayout
The PySide.QtGui.QStackedLayout class lays out a set of child widgets and
shows only one at a time, hiding the others from the user. The layout can be
initially populated with a number of child widgets and later on any one of them
can be selected to be shown to the user depending on the choice in window. There
is no intrinsic way given by the layout itself for the users to select a widget from
the available child widgets. This is achieved through using either QComboBox or
QListWidget widgets. On populating the layout, the child widgets are added
to an internal list and the index is returned by the layout to select child widgets.
The widgets can be inserted and removed using the insertWidget() and
removeWidget() functions respectively.

The implementation of stack layout is left as an exercise for you. The sample
program can be found in the code samples that come along with this book.

Chapter 3

[55]

SDI and MDI
In many GUI applications, we would arrive at a situation to open more than one
document at a time for processing. We would want to design our application to
handle this. This can be achieved by either of the two approaches namely, SDI and
MDI. A Single Document Interface or SDI application implements this by creating
separate windows for each of the documents. This is done by creating a window
subclass that handles everything by itself, including loading, saving, and clean-
up, and so on. Each of the documents will be a clone of the main window having
a separate menu bar, toolbar, and status bar on its own. Each of the main window
instances must be able to act independently. However, there are some disadvantages
to this approach. This approach would consume a lot of resources and would be very
inconvenient to open many windows at a time and keep track of them.

The second approach is to use a Multiple Document Interface or MDI application
where the central widget is instantiated with multiple instances. All these widgets
will be interrelated within the main window and shares the common menu bar,
toolbar, and other components. MDI application will use lesser resources as
compared to SDI applications. The MDI applications are provided with an extra
menu to manage between windows, as shifting between them is not controlled by
the underlying operating system. We will discuss more about SDI and MDI, and its
implementation in Chapter 5, Dialogs and Widgets.

A simple text editor
The following is the implementation of a simple text editor extended from the
previous examples in its building version. This code contains some new features
such as, QFontDialog, QFileDialog, and so on; which are discussed in Chapter 5,
Dialogs and Widgets. Otherwise, the following code is self explanatory:

Import required modules
import sys
from PySide.QtGui import *

class MainWindow(QMainWindow):
 """ Our Main Window class
 """

 def __init__(self, fileName=None):
 """ Constructor Function
 """

Main Windows and Layout Management

[56]

 QMainWindow.__init__(self)
 self.setWindowTitle("A Simple Text Editor")
 self.setWindowIcon(QIcon('appicon.png'))
 self.setGeometry(100, 100, 800, 600)

 self.textEdit = QTextEdit()
 self.setCentralWidget(self.textEdit)
 self.fileName = None

 self.filters = "Text files (*.txt)"

 def SetupComponents(self):
 """ Function to setup status bar, central widget, menu
 bar, tool bar
 """
 self.myStatusBar = QStatusBar()
 self.setStatusBar(self.myStatusBar)
 self.myStatusBar.showMessage('Ready', 10000)

 self.CreateActions()
 self.CreateMenus()
 self.CreateToolBar()
 self.fileMenu.addAction(self.newAction)
 self.fileMenu.addAction(self.openAction)
 self.fileMenu.addAction(self.saveAction)
 self.fileMenu.addSeparator()
 self.fileMenu.addAction(self.exitAction)
 self.editMenu.addAction(self.cutAction)
 self.editMenu.addAction(self.copyAction)
 self.editMenu.addAction(self.pasteAction)
 self.editMenu.addSeparator()
 self.editMenu.addAction(self.undoAction)
 self.editMenu.addAction(self.redoAction)
 self.editMenu.addSeparator()
 self.editMenu.addAction(self.selectAllAction)
 self.formatMenu.addAction(self.fontAction)
 self.helpMenu.addAction(self.aboutAction)
 self.helpMenu.addSeparator()
 self.helpMenu.addAction(self.aboutQtAction)
 self.mainToolBar.addAction(self.newAction)
 self.mainToolBar.addAction(self.openAction)
 self.mainToolBar.addAction(self.saveAction)
 self.mainToolBar.addSeparator()

Chapter 3

[57]

 self.mainToolBar.addAction(self.cutAction)
 self.mainToolBar.addAction(self.copyAction)
 self.mainToolBar.addAction(self.pasteAction)
 self.mainToolBar.addSeparator()
 self.mainToolBar.addAction(self.undoAction)
 self.mainToolBar.addAction(self.redoAction)

 # Slots called when the menu actions are triggered
 def newFile(self):
 self.textEdit.setText('')
 self.fileName = None

 def openFile(self):
 self.fileName, self.filterName =
 QFileDialog.getOpenFileName(self)
 self.textEdit.setText(open(self.fileName).read())

 def saveFile(self):
 if self.fileName == None or self.fileName == '':
 self.fileName, self.filterName =
 QFileDialog.getSaveFileName(self, \
 filter=self.filters)
 if(self.fileName != ''):
 file = open(self.fileName, 'w')
 file.write(self.textEdit.toPlainText())
 self.statusBar().showMessage("File saved", 2000)

 def exitFile(self):
 self.close()

 def fontChange(self):
 (font, ok) = QFontDialog.getFont(QFont("Helvetica
 [Cronyx]", 10), self)
 if ok:
 self.textEdit.setCurrentFont(font)

 def aboutHelp(self):
 QMessageBox.about(self, "About Simple Text Editor",
 "A Simple Text Editor where you can edit and save
 files")

Main Windows and Layout Management

[58]

 def CreateActions(self):
 """ Function to create actions for menus
 """
 self.newAction = QAction(QIcon('new.png'), '&New',
 self, shortcut=QKeySequence.New,
 statusTip="Create a New File",
 triggered=self.newFile)
 self.openAction = QAction(QIcon('open.png'), 'O&pen',
 self, shortcut=QKeySequence.Open,
 statusTip="Open an existing file",
 triggered=self.openFile)
 self.saveAction = QAction(QIcon('save.png'), '&Save',
 self, shortcut=QKeySequence.Save,
 statusTip="Save the current file to
 disk",
 triggered=self.saveFile)
 self.exitAction = QAction(QIcon('exit.png'), 'E&xit',
 self, shortcut="Ctrl+Q",
 statusTip="Exit the Application",
 triggered=self.exitFile)
 self.cutAction = QAction(QIcon('cut.png'), 'C&ut',
 self, shortcut=QKeySequence.Cut,
 statusTip="Cut the current selection to clipboard",
 triggered=self.textEdit.cut)
 self.copyAction = QAction(QIcon('copy.png'), 'C&opy',
 self, shortcut=QKeySequence.Copy,
 statusTip="Copy the current selection to clipboard",
 triggered=self.textEdit.copy)
 self.pasteAction = QAction(QIcon('paste.png'), '&Paste',
 self, shortcut=QKeySequence.Paste,
 statusTip="Paste the clipboard's content in current
 location",
 triggered=self.textEdit.paste)
 self.selectAllAction = QAction(QIcon('selectAll.png'),
 'Select All',
 self, statusTip="Select All",
 triggered=self.textEdit.selectAll)
 self.redoAction = QAction(QIcon('redo.png'),'Redo', self,
 shortcut=QKeySequence.Redo,
 statusTip="Redo previous action",
 triggered=self.textEdit.redo)
 self.undoAction = QAction(QIcon('undo.png'),'Undo', self,
 shortcut=QKeySequence.Undo,
 statusTip="Undo previous action",

Chapter 3

[59]

 triggered=self.textEdit.undo)
 self.fontAction = QAction('F&ont', self,
 statusTip = "Modify font properties",
 triggered = self.fontChange)
 self.aboutAction = QAction(QIcon('about.png'), 'A&bout',
 self, statusTip="Displays info about text editor",
 triggered=self.aboutHelp)
 self.aboutQtAction = QAction("About &Qt", self,
 statusTip="Show the Qt library's About box",
 triggered=qApp.aboutQt)

 def CreateMenus(self):
 self.fileMenu = self.menuBar().addMenu("&File")
 self.editMenu = self.menuBar().addMenu("&Edit")
 self.formatMenu = self.menuBar().addMenu("F&ormat")
 self.helpMenu = self.menuBar().addMenu("&Help")

 def CreateToolBar(self):
 self.mainToolBar = self.addToolBar('Main')

if __name__ == '__main__':
 # Exception Handling
 try:
 myApp = QApplication(sys.argv)
 mainWindow = MainWindow()
 mainWindow.SetupComponents()
 mainWindow.show()
 myApp.exec_()
 sys.exit(0)
 except NameError:
 print("Name Error:", sys.exc_info()[1])
 except SystemExit:
 print("Closing Window...")
 except Exception:
 print(sys.exc_info()[1])

Main Windows and Layout Management

[60]

The sample output of the preceding program is given in the following screenshot:

The preceding example is a very simple text editor performing some basic functions.
We may build upon this example in the coming chapters as and when we discuss
some new features.

Summary
In this chapter, we have seen how to create the most widely used main window
styled applications. We have also learned about the layout management in
applications. We completed the chapter with a real time text editor example.
We may build on this example in coming chapters.

Events and Signals
In the chapters that we have seen so far, we tried out various implementations of
readily available functions are extended by the Qt objects. In this chapter, we will
look into some of the internal implementation working concepts of those functions.
Being an event-driven toolkit, events and event delivery play an important role in
the Qt architecture. We will start this chapter by discussing events and signals, their
implementation, and will go on to discuss handling drag-and-drop events, and
drawing functionalities.

Event management
An event in Qt is an object inherited from the abstract QEvent class which is a
notification of something significant that has happened. Events become more useful
in creating custom widgets on our own. An event can happen either within an
application or as a result of an outside activity that the application needs to know
about. When an event occurs, Qt creates an event object and notifies to the instance
of an QObject class or one of its subclasses through their event() function. Events
can be generated from both inside and outside the application. For instance, the
QKeyEvent and QMouseEvent object represent some kind of keyboard and mouse
interaction and they come from the window manager; the QTimerEvent objects
are sent to QObject when one of its timers fires, and they usually come from the
operating system; the QChildEvent objects are sent to QObject when a child is
added or removed and they come from inside of your Qt application.

Events and Signals

[62]

The users of PySide usually get confused with events and signals. Events and
signals are two parallel mechanisms used to accomplish the same thing. As a general
difference, signals are useful when using a widget, whereas events are useful
when implementing the widget. For example, when we are using a widget like
QPushButton, we are more interested in its clicked() signal than in the low-level
mouse press or key press events that caused the signal to be emitted. But if we are
implementing the QPushButton class, we are more interested in the implementation
of code for mouse and key events. Also, we usually handle events but get notified by
signal emissions.

Event loop
All the events in Qt will go through an event loop. One main key concept to be
noted here is that the events are not delivered as soon as they are generated; instead
they're queued up in an event queue and processed later one-by-one. The event
dispatcher will loop through this queue and dispatch these events to the target
QObject and hence it is called an event loop. Qt's main event loop dispatcher,
QCoreApplication.exec() will fetch the native window system events from the
event queue and will process them, convert them into the QEvent objects, and send it
to their respective target QObject.

A simple event loop can be explained as described in the following pseudocode:

while(application_is_active)
{
 while(event_exists_in_event_queue)
 process_next_event();

 wait_for_more_events();
}

The Qt's main event loop starts with the QCoreApplication::exec() call and this
gets blocked until QCoreApplication::exit() or QCoreApplication::quit()
is called to terminate the loop. The wait_for_more_events() function blocks
until some event is generated. This blocking is not a busy wait blocking and will
not burn the CPU resources. Generally the event loop can be awaken by a window
manager activity, socket activity, timers, or event posted by other threads. All these
activities require a running event loop. It is more important not to block the event
loop because when it is struck, widgets will not update themselves, timers won't fire,
networking communications will slow down and stop. In short, your application will
not respond to any external or internal events and hence it is advised to quickly react
to events and return to the event loop as soon as possible.

Chapter 4

[63]

Event processing
Qt offers five methods to do event processing. They are:

• By re-implementing a specific event handler like keyPressEvent(),
paintEvent()

• By re-implementing the QObject::event() class
• Installing an event filter on a single QObject
• Installing an event filter on the QApplication object
• Subclassing QApplication and re-implementing notify()

Generally, this can be broadly divided into re-implementing event handlers and
installing event filters. We will see each of them in little detail.

Reimplementing event handlers
We can implement the task at hand or control a widget by reimplementing the
virtual event handling functions. The following example will explain how to
reimplement a few most commonly used events, a key press event, a mouse
double-click event, and a window resize event. We will have a look at the code
first and defer the explanation after the code:

Import necessary modules
import sys
from PySide.QtGui import *
from PySide.QtCore import *

Our main widget class
class MyWidget(QWidget):
 # Constructor function
 def __init__(self):
 QWidget.__init__(self)
 self.setWindowTitle("Reimplementing Events")
 self.setGeometry(300, 250, 300, 100)

 self.myLayout = QVBoxLayout()
 self.myLabel = QLabel("Press 'Esc' to close this App")
 self.infoLabel = QLabel()
 self.myLabel.setAlignment(Qt.AlignCenter)
 self.infoLabel.setAlignment(Qt.AlignCenter)
 self.myLayout.addWidget(self.myLabel)
 self.myLayout.addWidget(self.infoLabel)
 self.setLayout(self.myLayout)

Events and Signals

[64]

 # Function reimplementing Key Press, Mouse Click and Resize Events
 def keyPressEvent(self, event):
 if event.key() == Qt.Key_Escape:
 self.close()

 def mouseDoubleClickEvent(self, event):
 self.close()

 def resizeEvent(self, event):
 self.infoLabel.setText("Window Resized to QSize(%d, %d)" % (event.
size().width(), event.size().height()))

if __name__ =='__main__':
 # Exception Handling
 try:
 myApp = QApplication(sys.argv)
 myWidget = MyWidget()
 myWidget.show()
 myApp.exec_()
 sys.exit(0)
 except NameError:
 print("Name Error:", sys.exc_info()[1])
 except SystemExit:
 print("Closing Window...")
 except Exception:
 print(sys.exc_info()[1])

In the preceding code, the keyPressEvent() function reimplements the event
generated as a result of pressing a key. We have implemented in such a way that the
application closes when the Esc key is pressed. On running this code, we would get a
output similar to the one shown in the following screenshot:

The application will be closed if you press the Esc key. The same functionality is
implemented on a mouse double-click event. The third event is a resize event. This
event gets triggered when you try to resize the widget. The second line of text in
the window will show the size of the window in (width, height) format. You could
witness the same on resizing the window.

Chapter 4

[65]

Similar to keyPressEvent(), we could also implement keyReleaseEvent() that
would be triggered on release of the key. Normally, we are not very interested
in the key release events except for the keys where it is important. The specific
keys where the release event holds importance are the modifier keys such as
Ctrl, Shift, and Alt. These keys are called modifier keys and can be accessed using
QKeyEvent::modifiers. For example, the key press of a Ctrl key can be checked
using Qt.ControlModifier. The other modifiers are Qt.ShiftModifier and
Qt.AltModifier. For instance, if we want to check the press event of combination of
Ctrl + PageDown key, we could have the check as:

 if event.key() == Qt.Key_PageDown and
 event.modifiers() == Qt.ControlModifier:
 print("Ctrl+PgDn Key is pressed")

Before any particular key press or mouse click event handler function, say, for
example, keyPressEvent() is called, the widget's event() function is called
first. The event() method may handle the event itself or may delegate the
work to a specific event handler like resizeEvent() or keyPressEvent(). The
implementation of the event() function is very helpful in some special cases like
the Tab key press event. In most cases, the widget with the keyboard focuses the
event() method will call setFocus() on the next widget in the tab order and will
not pass the event to any of the specific handlers. So we might have to re-implement
any specific functionality for the Tab key press event in the event() function. This
behavior of propagating the key press events is the outcome of Qt's Parent-Child
hierarchy. The event gets propagated to its parent or its grand-parent and so on if it
is not handled at any particular level. If the top-level widget also doesn't handle the
event it is safely ignored. The following code shows an example for reimplementing
the event() function:

class MyWidget(QWidget):
 # Constructor function
 def __init__(self):
 QWidget.__init__(self)
 self.setWindowTitle("Reimplementing Events")
 self.setGeometry(300, 250, 300, 100)
 self.myLayout = QVBoxLayout()
 self.myLabel1 = QLabel("Text 1")
 self.myLineEdit1 = QLineEdit()
 self.myLabel2 = QLabel("Text 2")
 self.myLineEdit2 = QLineEdit()
 self.myLabel3 = QLabel("Text 3")
 self.myLineEdit3 = QLineEdit()
 self.myLayout.addWidget(self.myLabel1)
 self.myLayout.addWidget(self.myLineEdit1)

Events and Signals

[66]

 self.myLayout.addWidget(self.myLabel2)
 self.myLayout.addWidget(self.myLineEdit2)
 self.myLayout.addWidget(self.myLabel3)
 self.myLayout.addWidget(self.myLineEdit3)
 self.setLayout(self.myLayout)

 # Function reimplementing event() function
 def event(self, event):
 if event.type()== QEvent.KeyRelease and event.key()== Qt.Key_Tab:
 self.myLineEdit3.setFocus()
 return True
 return QWidget.event(self,event)

In the preceding example, we try to mask the default behavior of the Tab key. If you
haven't implemented the event() function, pressing the Tab key would have set focus
to the next available input widget. You will not be able to detect the Tab key press in
the keyPress() function as described in the previous examples, since the key press is
never passed to them. Instead, we have to implement it in the event() function. If you
execute the preceding code, you would see that every time you press the Tab key the
focus will be set into the third QLineEdit widget of the application. Inside the event()
function, it is more important to return the value from the function. If we have
processed the required operation, True is returned to indicate that the event is handled
successfully, else, we pass the event handling to the parent class's event() function.

Installing event filters
One of the interesting and notable features of Qt's event model is to allow a QObject
instance to monitor the events of another QObject instance before the latter object
is even notified of it. This feature is very useful in constructing custom widgets
comprising of various widgets altogether. Consider that you have a requirement to
implement a feature in an internal application for a customer such that pressing the
Enter key must have to shift the focus to next input widget. One way to approach
the problem is to reimplement the keyPressEvent() function for all the widgets
present in the custom widget. Instead, this can be achieved by reimplementing the
eventFilter() function for the custom widget. If we implement this, the events
will first be passed on to the custom widget's eventFilter() function before being
passed on to the target widget. An example is implemented as follows:

def eventFilter(self, receiver, event):
 if(event.type() == QEvent.MouseButtonPress):
 QMessageBox.information(None,"Filtered Mouse Press Event!!",
 'Mouse Press Detected')
 return True
 return super(MyWidget,self).eventFilter(receiver, event)

Chapter 4

[67]

Remember to return the result of event handling, or pass it on to the parent's
eventFilter() function. To invoke eventFilter(), it has to be registered as
follows in the constructor function:

self.installEventFilter(self)

The event filters can also be implemented for the QApplication as a whole. This is
left as an exercise for you to discover.

Reimplementing the notify() function
The final way of handling events is to reimplement the notify() function of the
QApplication class. This is the only way to get all the events before any of the event
filters discussed previously are notified. The event gets notified to this function first
before it gets passed on to the event filters and specific event functions. The use of
notify() and other event filters are generally discouraged unless it is absolutely
necessary to implement them because handling them at top level might introduce
unwanted results, and we might end up in handling the events that we don't want
to. Instead, use the specific event functions to handle events. The following code
excerpt shows an example of re-implementing the notify() function:

class MyApplication(QApplication):
 def __init__(self, args):
 super(MyApplication, self).__init__(args)

 def notify(self, receiver, event):
 if (event.type() == QEvent.KeyPress):
 QMessageBox.information(None, "Received Key Release EVent", "You
Pressed: "+ event.text())
 return super(MyApplication, self).notify(receiver, event)

Signals and slots
The fundamental part of any GUI program is the communication between the objects.
Signals and slots provide a mechanism to define this communication between the
actions happened and the result proposed for the respective action. Prior to Qt's
modern implementation of signal/slot mechanism, older toolkits achieve this kind
of communication through callbacks. A callback is a pointer to a function, so if you
want a processing function to notify about some event you pass a pointer to another
function (the callback) to the processing function. The processing function then calls
the callback whenever appropriate. This mechanism does not prove useful in the later
advancements due to some flaws in the callback implementation.

Events and Signals

[68]

A signal is an observable event, or at least notification that the event has happened.
A slot is a potential observer, more usually a function that is called. In order to
establish communication between them, we connect a signal to a slot to establish
the desired action. We have already seen the concept of connecting a signal to
a slot in the earlier chapters while designing the text editor application. Those
implementations handle and connect different signals to different objects. However,
we may have different combinations as defined in the bullet points:

• One signal can be connected to many slots
• Many signals can be connected to the same slot
• A signal can be connected to other signals
• Connections can be removed

PySide offers various predefined signals and slots such that we can connect a
predefined signal to a predefined slot and do nothing else to achieve what we want.
However, it is also possible to define our own signals and slots. Whenever a signal
is emitted, Qt will simply throw it away. We can define the slot to catch and notice
the signal that is being emitted. The first code excerpt that follows this text will be
an example for connecting predefined signals to predefined slots and the latter will
discuss the custom user defined signals and slots.

The first example is a simple EMI calculator application that takes the Loan Amount,
Rate of Interest, and Number of Years as its input, and calculates the EMI per month
and displays it to the user. To start with, we set in a layout the components required
for the EMI calculator application. The Amount will be a text input from the user.
The rate of years will be taken from a spin box input or a dial input. A spin box is
a GUI component which has its minimum and maximum value set, and the value
can be modified using the up and down arrow buttons present at its side. The dial
represents a clock like widget whose values can be changed by dragging the arrow.
The Number of Years value is taken by a spin box input or a slider input:

class MyWidget(QWidget):
 def __init__(self):
 QWidget.__init__(self)
 self.amtLabel = QLabel('Loan Amount')
 self.roiLabel = QLabel('Rate of Interest')
 self.yrsLabel = QLabel('No. of Years')
 self.emiLabel = QLabel('EMI per month')
 self.emiValue = QLCDNumber()

 self.emiValue.setSegmentStyle(QLCDNumber.Flat)
 self.emiValue.setFixedSize(QSize(130,30))
 self.emiValue.setDigitCount(8)

Chapter 4

[69]

 self.amtText = QLineEdit('10000')
 self.roiSpin = QSpinBox()
 self.roiSpin.setMinimum(1)
 self.roiSpin.setMaximum(15)
 self.yrsSpin = QSpinBox()
 self.yrsSpin.setMinimum(1)
 self.yrsSpin.setMaximum(20)

 self.roiDial = QDial()
 self.roiDial.setNotchesVisible(True)
 self.roiDial.setMaximum(15)
 self.roiDial.setMinimum(1)
 self.roiDial.setValue(1)
 self.yrsSlide = QSlider(Qt.Horizontal)
 self.yrsSlide.setMaximum(20)
 self.yrsSlide.setMinimum(1)

 self.calculateButton = QPushButton('Calculate EMI')

 self.myGridLayout = QGridLayout()

 self.myGridLayout.addWidget(self.amtLabel, 0, 0)
 self.myGridLayout.addWidget(self.roiLabel, 1, 0)
 self.myGridLayout.addWidget(self.yrsLabel, 2, 0)
 self.myGridLayout.addWidget(self.amtText, 0, 1)
 self.myGridLayout.addWidget(self.roiSpin, 1, 1)
 self.myGridLayout.addWidget(self.yrsSpin, 2, 1)
 self.myGridLayout.addWidget(self.roiDial, 1, 2)
 self.myGridLayout.addWidget(self.yrsSlide, 2, 2)
 self.myGridLayout.addWidget(self.calculateButton, 3, 1)

 self.setLayout(self.myGridLayout)
 self.setWindowTitle("A simple EMI calculator")

Until now, we have set the components that are required for the application. Note
that, the application layout uses a grid layout option. The next set of code is also
defined in the contructor's __init__ function of the MyWidget class which will
connect the different signals to slots. There are different ways by which you can use a
connect function. The code explains the various options available:

 self.roiDial.valueChanged.connect(self.roiSpin.setValue)
 self.connect(self.roiSpin, SIGNAL("valueChanged(int)"), self.
roiDial.setValue)

Events and Signals

[70]

In the first line of the previous code, we connect the valueChanged() signal of roiDial
to call the slot of roiSpin, setValue(). So, if we change the value of roiDial, it emits
a signal that connects to the roiSpin's setValue() function and will set the value
accordingly. Here, we must note that changing either the spin or dial must change
the other value because both represent a single entity. Hence, we induce a second
line which calls roiDial's setValue() slot on changing the roiSpin's value. However,
it is to be noted that the second form of connecting signals to slots is deprecated. It
is given here just for reference and it is strongly discouraged to use this form. The
following two lines of code execute the same for the number of years slider and spin:

 self.yrsSlide.valueChanged.connect(self.yrsSpin.setValue)
 self.connect(self.yrsSpin, SIGNAL("valueChanged(int)"), self.
yrsSlide, SLOT("setValue(int)"))

In order to calculate the EMI value, we connect the clicked signal of the push button
to a function (slot) which calculates the EMI and displays it to the user:

 self.connect(self.calculateButton, SIGNAL("clicked()"), self.
showEMI)

The EMI calculation and display function is given for your reference:

 def showEMI(self):
 loanAmount = float(self.amtText.text())
 rateInterest = float(float (self.roiSpin.value() / 12) / 100)
 noMonths = int(self.yrsSpin.value() * 12)
 emi = (loanAmount * rateInterest) * ((((1 + rateInterest) **
noMonths) / (((1 + rateInterest) ** noMonths) - 1)))
 self.emiValue.display(emi)
 self.myGridLayout.addWidget(self.emiLabel, 4, 0)
 self.myGridLayout.addWidget(self.emiValue, 4, 2)

The sample output of the application is shown in the following screenshot:

Chapter 4

[71]

The EMI calculator application uses the predefined signals, say, for example,
valueChanged(), clicked() and predefined slots, setValue(). However, the
application also uses a user-defined slot showEMI() to calculate the EMI. As with
slots, it is also possible to create a user-defined signal and emit it when required.
The following program is an example for creating and emitting user-defined signals:

import sys
from PySide.QtCore import *

define a new slot that receives and prints a string
def printText(text):
 print(text)

class CustomSignal(QObject):
 # create a new signal
 mySignal = Signal(str)

if __name__ == '__main__':
 try:
 myObject = CustomSignal()
 # connect signal and slot
 myObject.mySignal.connect(printText)
 # emit signal
 myObject.mySignal.emit("Hello, Universe!")
 except Exception:
 print(sys.exc_info()[1])

This is a very simple example of using custom signals. In the CustomSignal class, we
create a signal named mySignal and we emit it in the main function. Also, we define
that on emission of the signal mySignal, the printText() slot would be called.
Many complex signal emissions can be built this way.

Drag-and-drop
There are various ways in which you can transfer data between two objects or
applications. Drag-and-drop is a modern visual technique of transformation of data
between objects. It enables the user to copy and paste very intuitively. The drag-and-
drop is a combination of two events, namely "Dragging and Dropping". The widgets
can serve as drag sites, drop sites, or as both. One of the important factors that we
should take care of is the MIME type of the object that we would drag-or-drop. It is
to ensure that the information can be transferred safely between applications. The
various MIME types supported by Qt include plain text, html text, uri-list text, image
data, and color data. We will explore the Qt classes used for this action and shortly
test with an example.

Events and Signals

[72]

The various classes that are involved in drag-and-drop and their necessary MIME
encoding and decoding are listed in the following table:

Class Description
QDragEnterEvent Provides an event which is sent to a widget when drag and drop

action enters it
QDragLeaveEvent Provides an event which is sent to a widget when drag and drop

action leaves it
QDragMoveEvent Provides an event which is sent to a widget when drag and drop

action is in progress
QDropEvent Provides an event which is sent to a widget when drag and drop

action is completed
QMimeData Provides a container for data that records information about its

MIME type

A drag can be initiated by setting the widget's setDragEnabled() with a Boolean
True value. The dropping functionality can be implemented by re-implementing
the dragMoveEvent() and dropEvent(). As the user drags over the widget,
dragMoveEvent() occur and dropEvent() when the drag event is completed. We
will now see an example for the drag-and-drop events and the working of the code
will be explained in following the code:

class MyWidget(QWidget):
 def __init__(self):
 QWidget.__init__(self)
 self.myListWidget1 = QListWidget()
 self.myListWidget2 = QListWidget()

 self.myListWidget2.setViewMode(QListWidget.IconMode)

 self.myListWidget1.setAcceptDrops(True)
 self.myListWidget1.setDragEnabled(True)

 self.myListWidget2.setAcceptDrops(True)
 self.myListWidget2.setDragEnabled(True)

 self.setGeometry(300, 350, 500, 150)

 self.myLayout = QHBoxLayout()
 self.myLayout.addWidget(self.myListWidget1)
 self.myLayout.addWidget(self.myListWidget2)

Chapter 4

[73]

 l1 = QListWidgetItem(QIcon('blue_bird.png'),"Angry Bird Blue")
 l2 = QListWidgetItem(QIcon('red_bird.png'),"Angry Bird Red")
 l3 = QListWidgetItem(QIcon('green_bird.png'),"Angry Bird Green")
 l4 = QListWidgetItem(QIcon('black_bird.png'),"Angry Bird Black")
 l5 = QListWidgetItem(QIcon('white_bird.png'),"Angry Bird White")

 self.myListWidget1.insertItem(1, l1)
 self.myListWidget1.insertItem(2, l2)
 self.myListWidget1.insertItem(3, l3)
 self.myListWidget1.insertItem(4, l4)
 self.myListWidget1.insertItem(5, l5)

 QListWidgetItem(QIcon('gray_pig.png'), "Grey Pig", self.
myListWidget2)
 QListWidgetItem(QIcon('brown_pig.png'), "Brown Pig", self.
myListWidget2)
 QListWidgetItem(QIcon('green_pig.png'), "Green Pig", self.
myListWidget2)

 self.setWindowTitle('Drag and Drop Example');

 self.setLayout(self.myLayout)

The preceding program on execution will look like the following screenshot:

Both partition of the application has a QListWidget object with some items added
to it. The left side is the default view mode of QListWidget and the right side is
set to icon view mode. Both these widgets support dragging mode as they are set
with setDragEnabled(True). They also accept dropping functionality, as the
setAcceptDrops(True) is set. You can test this by dragging-and-dropping between
the widgets. We can control the behavior of the application by re-implementing the
aforesaid event handler functions.

Events and Signals

[74]

Drawing
The PySide.QtGui.QPainter class performs low-level painting on widgets and
other paint devices. The QPainter class provides all the functions for drawing simple
lines to more complex shapes. This class also provides settings for rendering quality
images and supports clipping. The drawing is usually done within the widget's
paintEvent() function. The drawing functionalities are placed in between the
begin() and end() functions of the QPainter object. The QPainter object is initialized
with the constructor, customized with some set functions, for example, pen style and
brush style, and then the draw function is called. The QPainter.isActive() function
indicates if the painter is active. The QPainter object is activated when QPainter.
begin() is invoked and deactivated on calling QPainter.end().

The various drawings are performed using the QPainter's draw functions.
The QPainter has three important settings that set the appearance of the drawing.
They are:

• Pen: The pen is used for drawing lines and shapes outlines. It takes various
settings for drawing that include color, width, line style, and so on.

• Brush: The brush is used for pattern filling of geometric shapes. The various
settings that a brush can take include color, style, texture, gradient, and so on.

• Font: The font is mainly used for drawing Unicode text. The font settings
include font style, font family, and point size.

The settings for these parameters can be set and modified anytime by calling the
setFont(), setBrush(), and setFont() on QPainter with their respective QPen,
QBrush, or QFont objects.

In this section, we are going to explore the most commonly used drawing shapes.
The following table will give you a gist of the available draw functions of the
QPainter object:

Function Description
drawPoint() Draws a single point at the given position

drawText() Draws the given text within the defined rectangle
drawLine() Draws a line between two point pairs
drawRect() Draws a rectangle by the given rectangle
drawRoundedRect() Draws a rectangle with rounded edges or corners

drawEllipse() Draws an ellipse defined by the given rectangle
drawArc() Draws an arc defined by the given rectangle

Chapter 4

[75]

Function Description
drawPie() Draws a pie defined by the given rectangle
drawChord() Draws a chord defined by the given rectangle

drawPolyline() Draws a polyline defined by the given points
drawPolygon() Draws a polygon defined by the given points
drawConvexPolygon() Draws a convex polygon defined by the given polygon

drawImage() Draws the given Image into the given rectangle
drawPath() Draws the given painter path defined by the QPainterPath
drawPicture() Draws the given picture

All the earlier listed functions take various arguments as their parameters for
different drawing functionalities. Also, all these drawing functions use the current
pen, brush, and text settings to draw the objects. This section is not enough to cover
and discuss all the different types of the drawing functions and hence we would
see a sample program that is self-explanatory and exhibits the different styles
of the listed functions. The complete version of the basic drawing functionality
code can be downloaded from the book's site. Here, we just show the contents of
the paintEvent() function with different drawing shapes. The complete code
is bundled with event handling that we have discussed in the first section of this
chapter and usage of other built-in widgets like Combo-Box that we would discuss
in the next chapter. As of now, it is sufficient for you if you could understand the
reimplementation of event handlers and drawing functions of the program:

def paintEvent(self, event):
 rect = QRect(10, 20, 80, 60)

 startAngle = 30 * 16
 arcLength = 120 * 16

 painter = QPainter()
 painter.begin(self)
 painter.setPen(self.pen)
 painter.setBrush(self.brush)
 if self.shape == PaintArea.Line:
 painter.drawLine(rect.bottomLeft(), rect.topRight())
 elif self.shape == PaintArea.Points:
 painter.drawPoints(PaintArea.points)
 elif self.shape == PaintArea.Polyline:
 painter.drawPolyline(PaintArea.points)
 elif self.shape == PaintArea.Polygon:

Events and Signals

[76]

 painter.drawPolygon(PaintArea.points)
 elif self.shape == PaintArea.Rect:
 painter.drawRect(rect)
 elif self.shape == PaintArea.RoundRect:
 painter.drawRoundRect(rect)
 elif self.shape == PaintArea.Ellipse:
 painter.drawEllipse(rect)
 elif self.shape == PaintArea.Arc:
 painter.drawArc(rect, startAngle, arcLength)
 elif self.shape == PaintArea.Chord:
 painter.drawChord(rect, startAngle, arcLength)
 elif self.shape == PaintArea.Pie:
 painter.drawPie(rect, startAngle, arcLength)
 elif self.shape == PaintArea.Path:
 painter.drawPath(path)
 elif self.shape == PaintArea.Text:
 painter.drawText(rect, QtCore.Qt.AlignCenter, "Basic Drawing
Widget")
 painter.end()

This would produce a window as given in the following screenshot. You can
select from the combo boxes the choice of your drawing and it would be painted
in the application:

Chapter 4

[77]

Graphics and effects
We could create any custom graphics we like by creating a custom widget and by
reimplementing its paint event. This approach is very helpful when we are trying to
create some small graphics like drawing graphs or for drawing basic shapes. In order
to create animations and more complex graphics we will take help from the PySide's
graphics view classes:

• QGraphicsScene: This provides a surface for managing a large number of 2D
graphical items

• QGraphicsItem: This serves as the base class for all graphical items like
ellipse, line, and so on in a graphics scene

• QGraphicsView: This provides a widget for displaying the contents of
a graphics scene

The graphic view classes can be used by first creating a scene represented by a
QGraphicsScene object. Scenes can be associated with the QGraphicsView object to
represent or view on the screen. Items that are represented by the QGraphicsItem
object can be added to the scene. A scene is created, items are added, and visualized
in that order. QGraphicsView can be triggered to visualize a whole scene or only
a part of it by changing the bounding rectangle values. The interactions can
happen by using the mouse or a keyboard. The graphics view translates the mouse
and key events into scene events represented by QGraphicsSceneEvent and
forwarding them to the visualized scene. The custom scene interactions are achieved
by re-implementing the mouse and key event handlers. The most interesting feature
of the graphics views is that we can apply transformations to them, for example,
scaling and rotation. This can be done without changing the original scene's items.

class MyView(QGraphicsView):
 def __init__(self):
 QGraphicsView.__init__(self)

 self.myScene = QGraphicsScene(self)
 self.myItem = QGraphicsEllipseItem(-20, -10, 50, 20)
 self.myScene.addItem(self.myItem)
 self.setScene(self.myScene)

 self.timeLine = QTimeLine(1000)
 self.timeLine.setFrameRange(0, 100)
 self.animate = QGraphicsItemAnimation()
 self.animate.setItem(self.myItem)
 self.animate.setTimeLine(self.timeLine)

Events and Signals

[78]

 self.animate.setPosAt(0, QPointF(0, -10))
 self.animate.setRotationAt(1, 360)

 self.setWindowTitle("A Simple Animation")
 self.timeLine.start()

This program will create an animated ellipse as its output. As discussed, we have
created scene, added items to it, and showed it via the view class. The animation
is supported by the QGraphicsAnimationItem() object. Many more complex
animations can be built on top of this but explaining those is out of the scope of this
book. You can explore by yourself to create more QGrapicsView objects and create
complex animations.

The PySide.QtGui.QGraphicsEffect class serves as the base class for the graphical
effects on an application. With the help of effects, we can alter the appearance of
elements. The graphical effects objects operate between the sources, say, for example,
a pix map item and the destination, the viewport, and render the respective effects
for the image. The various graphical effects that Qt provides are:

• QGrpahicsBlurEffect: It blurs the item by a given radius
• QGraphicsDropShadowEffect: It renders a drop shadow behind the item
• QGraphicsColorizeEffect: It renders the item in shades of any given color
• QGraphicsOpacityEffect: It renders the item with an opacity

All these classes are inherited from the base class QGraphicsEffect. The following
code excerpt shows an example of adding effects to the items:

 self.effect = QGraphicsDropShadowEffect(self)
 self.effect.setBlurRadius(8)
 self.myItem.setGraphicsEffect(self.effect)
 self.myItem.setZValue(1)

When this effect is added, you will notice a shadow in the animated ellipse as shown
in the following screenshot. Similarly, other effects can be added to the items.

Chapter 4

[79]

Summary
This chapter would have been a real roller-coaster ride as we were taken into
some internal depth of the PySide programming. We started with discussing event
handlers and reimplementation techniques to achieve the task at hand. We also
discussed about event filters and re-implementing the notify() function. Unless
absolutely necessary the latter forms of re-implementing events should be avoided to
make an efficient program.

We then explored the very fundamental mechanism to Qt, signals, and slots. The
signals and slots mechanism follow an observer pattern listening and binding to
objects when called. We started with implementing the built-in signals and slots.
Later in this section, we implemented and emitted our own custom signals and also
discussed how to listen to them.

In the latter half, we shifted our focus to diagrams and graphics. Starting with the
drag-and-drop functionality usage, we have also seen various types of QPainter
draw objects. The chapter ended with a brief discussion on graphics and effects. The
examples that are shown in the latter half of the chapter are very basic examples to
help you understand the basic concepts. Much more complex applications can be
designed and it would by itself be a subject matter for a complete book.

Dialogs and Widgets
Any main windowed applications in the GUI are to be supplemented with dialogs
and widgets to present a complete workable and usable application to the users.
Dialogs are those small sized windows with some specific functions that will aid
the users with selecting some options or executing some operations. The most
common examples of dialogs include "File Open" dialog and a "Search Dialog" in
many text/image editing applications, a "Color Chooser" dialog in various paint
applications and so on. In many GUI toolkits, the terms dialogs and widgets are
used interchangeably. As a general difference, the dialogs are the small windows
whose main purpose is to establish a connection between the user and the program.
We normally use dialog boxes to receive an input from the users or to represent
an output or error message to the users. However, the widgets are collections of
building blocks of the applications such as buttons, checkboxes, progress bars, and so
on. This chapter will introduce you to some of the built-in dialogs and widgets that
Qt provides us. Moving on, we will develop a customized "Find" dialog that will add
to the text editor program which we have developed in third chapter. We will also
develop a customized "Analog Clock" widget.

Built-in dialogs
Qt is provided with a rich set of built-in dialogs. They are as follows:

• QFileDialog: It provides the user with a dialog that allows them to select
files or directories

• QErrorMessage: It provides the user with a dialog that displays error
messages

• QColorDialog: It provides the user with a dialog for specifying/choosing
between colors

• QPrintDialog: It provides the user with a dialog that aids in printer and
printing configuration

Dialogs and Widgets

[82]

• QPageSetupDialog: It provides the user with a dialog that manages
configuration for the page-related options on a printer

• QWizard: It provides a dialog framework for wizards
• QProgressDialog: It provides feedback on the progress of a slow operation
• QPrintPreviewDialog: It provides a dialog for previewing and configuring

page layouts for printer output
• QMessageBox: It provides a dialog for displaying some information to

the user
• QInputDialog: It provides a simple convenience dialog to get a single value

from the user
• QFontDialog: It provides a dialog widget for selecting a font

In this section, we would discuss the implementations of some widely used widgets.
A few of the widgets like, QMessageBox, QFontDialog, and QErrorMessage have
already been introduced to you in some of the preceding chapters.

QFileDialog
The PySide.QtGui.QFileDialog class provides a dialog that allows users to select
files or directories. It helps users to traverse the native file system in order to select
one or many files or directory. The easy and best way to create a file dialog is to
use the static functions provided by the QFileDialog class. A sample use of static
function is as follows:

fileName = QFileDialog.getOpenFileName(self, "Open Files", "c:/",
 "Textfiles(*.txt)")

In this example, the file dialog was created using a static function getOpenFileName.
Initially, this function call will create a file dialog with the path mentioned in the
third parameter of the function. The fourth parameter restricts the type of files that
has to be shown in the dialog for opening. The first parameter takes the value of the
parent to the dialog and the second is used to display a title for the dialog. The filters
that are represented in the fourth parameter can take multiple values depending on
the type of files that are to be filtered. Please note that the values must be separated
by a delimiter ";". An example for the filter can look like as shown in the following
code line.

"Images (*.png *.jpg);; Text files (*.txt);; Word
 documents(*.doc)"

Chapter 5

[83]

The following code shows an example for creating the "File" dialog as a menu option.
The program is self-explanatory and is based on the concepts that we have seen in
the third chapter of this book.

import sys
from PySide.QtGui import *

class MyFileDialog(QMainWindow):

 def __init__(self):
 QMainWindow.__init__(self)

 self.textEdit = QTextEdit()
 self.setCentralWidget(self.textEdit)
 self.statusBar()

 openFile = QAction(QIcon('open.png'), 'Open', self)
 openFile.setShortcut('Ctrl+O')
 openFile.setStatusTip('Open new File')
 openFile.triggered.connect(self.showDialog)

 menubar = self.menuBar()
 fileMenu = menubar.addMenu('&File')
 fileMenu.addAction(openFile)

 self.setGeometry(300, 300, 350, 300)
 self.setWindowTitle('Example - File Dialog')
 self.show()

 def showDialog(self):
 fileName, _ = QFileDialog.getOpenFileName(self, "Open Text
 Files", "c:/", "Text files(*.txt)")

 contents = open(fileName, 'r')

 with contents:
 data = contents.read()
 self.textEdit.setText(data)

Dialogs and Widgets

[84]

if __name__ =='__main__':
 # Exception Handling
 try:
 myApp = QApplication(sys.argv)
 myFD = MyFileDialog()
 myFD.show()
 myApp.exec_()
 sys.exit(0)
 except NameError:
 print("Name Error:", sys.exc_info()[1])
 except SystemExit:
 print("Closing Window...")
 except Exception:
 print(sys.exc_info()[1])

If you run this program, you could witness a file open dialog is opened on triggering
the File | Open option in the menu bar.

The file dialog can also be created without using the static functions by directly
creating an instance of the QFileDialog class as explained in the following
code snippet:

 fileDialog = QFileDialog(self)
 fileDialog.setFileMode(QFileDialog.AnyFile)
 fileDialog.setNameFilter("Text files(*.txt)")

The second line of the preceding code sets the mode of the file dialog to AnyFile,
which means that the user can specify a file that doesn't even exist in the file system.
This mode is highly useful when we want to create a "Save As" dialog. The other
modes that the file dialog can take are:

• QFileDialog.ExistingFile: If the user must select an existing file
• QFileDialog.Directory: If the user must select only a directory and

not files
• QFileDialog.ExistingFiles: If the user wants to select more than one file

The third line depicts how to set the filters for the file dialog as explained in the
previous program. Also, the file dialog has two view modes, namely, View and
Detail, where the latter being the default mode. As the name indicates, the list
view just displays the name of the files and directories in a list but the detail mode
enhances it with additional details about the file such as, file size, date modified,
and so on.

Chapter 5

[85]

QInputDialog
The PySide.QtGui.QInputDialog class provide a very easy and convenient dialog
to receive input from the users. The input can be a text string, a number or an item
from the list. A label is provided with the input box to indicate the user what they
have to enter. To enable this, four convenient functions are used:

• QInputDialog.getText(): It receives a text or string from the user
• QInputDialog.getInteger(): It receives an integer value as an input
• QInputDialog.getDouble(): It receives a float value as input with double

precision accuracy
• QInputDialog.getItem(): It receives a particular selectable value from the

list of items

The dialog is provided with two buttons OK and Cancel to accept or reject values
respectively as shown in the following screenshot:

The following code explains the use of various input dialogs:

Import necessary modules
import sys
from PySide.QtGui import *

class MyInputDialog(QWidget):

Dialogs and Widgets

[86]

 def __init__(self):

 QWidget.__init__(self)
 self.myNameButton = QPushButton('Name', self)
 self.myNameButton.clicked.connect(self.showNameDialog)

 self.myAgeButton = QPushButton('Age', self)
 self.myAgeButton.clicked.connect(self.showAgeDialog)

 self.myChoiceButton = QPushButton('Choice', self)
 self.myChoiceButton.clicked.connect(self.showChoiceDialog)

 self.myNameLE = QLineEdit(self)
 self.myAgeLE = QLineEdit(self)
 self.myChoiceLE = QLineEdit(self)

 self.myLayout = QFormLayout()
 self.myLayout.addRow(self.myNameButton, self.myNameLE)
 self.myLayout.addRow(self.myAgeButton, self.myAgeLE)
 self.myLayout.addRow(self.myChoiceButton, self.myChoiceLE)

 self.setLayout(self.myLayout)
 self.setGeometry(300, 300, 290, 150)
 self.setWindowTitle('Input Dialog Example')
 self.show()

 def showNameDialog(self):
 text, ok = QInputDialog.getText(self, 'Input Text Dialog',
 'Enter your name:')

 if ok:
 self.myNameLE.setText(str(text))

 def showAgeDialog(self):
 text, ok = QInputDialog.getInteger(self, 'Input Number Dialog',
 'Enter your age:')

 if ok:
 self.myAgeLE.setText(str(text))

 def showChoiceDialog(self):
 strList = ['Ice Cream', 'Chocolates', 'Milk Shakes']
 text, ok = QInputDialog.getItem(self, 'Input Combo
 Dialog',
 'Enter your choice:', strList)

 if ok:
 self.myChoiceLE.setText(str(text))

Chapter 5

[87]

if __name__ =='__main__':
 # Exception Handling
 try:
 myApp = QApplication(sys.argv)
 myID = MyInputDialog()
 myID.show()
 myApp.exec_()
 sys.exit(0)
 except NameError:
 print("Name Error:", sys.exc_info()[1])
 except SystemExit:
 print("Closing Window...")
 except Exception:
 print(sys.exc_info()[1])

In the preceding code, each button click event is connected to a slot that presents the
user with different input dialogs. The values of the dialogs reflect on the line edit box
after clicking on the OK button. A sample output of the preceding program is given
in the following screenshot for your reference:

QColorDialog
The PySide.QtGui.QColorDialog class provides a dialog for choosing and specifying
colors. The color dialog is mainly used in the paint applications to allow the user to set
the color of the brush or paint an area with a specific color. This dialog can also be used
to set text colors in text based applications. As with the other dialogs, we use a static
function QColorDialog.getColor() to show the dialog and subsequently allow the
user to select a color from the dialog. This dialog can also be used to allow the users to
select the color transparency by passing some additional parameters. It is also possible
to set and remember the custom colors and share them between color dialogs in an
application. The following code is a short example of using the color dialog:

Import necessary modules
import sys
from PySide.QtGui import *

Dialogs and Widgets

[88]

class MyColorDialog(QWidget):

 def __init__(self):
 QWidget.__init__(self)
 myColor = QColor(0, 0, 0)

 self.myButton = QPushButton('Press to Change Color', self)
 self.myButton.move(10, 50)

 self.myButton.clicked.connect(self.showColorDialog)

 self.myFrame = QFrame(self)
 self.myFrame.setStyleSheet("QWidget { background-color: %s }"
 % myColor.name())
 self.myFrame.setGeometry(130, 22, 100, 100)

 self.setGeometry(300, 300, 250, 180)
 self.setWindowTitle('Color Dialog - Example')
 self.show()

 def showColorDialog(self):

 color = QColorDialog.getColor()

 if color.isValid():
 self.myFrame.setStyleSheet("QWidget { background-color: %s
 }"
 % color.name())

if __name__ =='__main__':
 # Exception Handling
 try:
 myApp = QApplication(sys.argv)
 myCD = MyColorDialog()
 myCD.show()
 myApp.exec_()
 sys.exit(0)
 except NameError:
 print("Name Error:", sys.exc_info()[1])
 except SystemExit:
 print("Closing Window...")
 except Exception:
 print(sys.exc_info()[1])

Chapter 5

[89]

The preceding example will show a button, which when clicked shows a color
dialog. The colour can be selected and the same is painted in the frame used for
this purpose.

QPrintDialog
The PySide.QtGui.QPrintDialog class provides a dialog for specifying the user's
printer configuration. The configuration include document-related settings, such as
the paper-size and orientation, type of print, color or grayscale, range of pages, and
number of copies to print. The configuration settings also allows the user to select
the type of printer from the printers available, including any configured network
printers. The QPrintDialog objects are constructed with a PySide.QtGui.QPrinter
object and executed using the exec_() function. The printer dialog uses the native
system of display and configuration. The following example shows a crude way of
creating a print dialog. The refined implementation is left as an exercise for you to
explore. A sample implementation can be downloaded from the code snippets that
come along with this book.

def printDoc(self):
 document = QTextDocument("Sample Page")
 printer = QPrinter()

 myPrintDialog = QPrintDialog(printer, self)
 if myPrintDialog.exec_() != QDialog.Accepted:
 return
 document.print_(printer)

Custom dialogs
We have seen some examples of the built-in dialogs in the previous section. The need
may arise in a real application scenario to define and create a custom dialog based
on the user's requirement. Qt provides the support for creating custom based dialogs
and use it in addition to the various built-in dialogs. In this section, we are going to
explore how to create a custom "Find" dialog for our text editor application that we
have created in Chapter 3, Main Windows and Layout Management. The FindDialog
class is inherited from the QDialog class and defines the properties for implementing
a search function. Once the find dialog functions are defined, it can be added to our
text editor application and the slots are implemented accordingly.

Dialogs and Widgets

[90]

In order to create a find dialog, we must create an outline of how it looks.
The following screenshot is a sample look of how we would want our find
dialog to appear:

This is a very simple find dialog. We would want to capture the text to be searched
by using a line edit dialog. The two checkboxes, Match Case and Search Backward
try to catch the user's choices. The button click events are connected to specific slots
to perform the desired action. We have used the layout concepts introduced to you
in the previous chapter to place the widgets.

class FindDialog(QDialog):

 def __init__(self):
 QDialog.__init__(self)
 self.findLabel = QLabel("Find &What:")
 self.lineEdit = QLineEdit()
 self.findLabel.setBuddy(self.lineEdit)

 self.caseCheckBox = QCheckBox("Match &Case")
 self.backwardCheckBox = QCheckBox("Search &Backward")

 self.findButton = QPushButton("&Find")
 self.findButton.setDefault(True)
 self.closeButton = QPushButton("Close")

 self.topLeftLayout = QHBoxLayout()
 self.topLeftLayout.addWidget(self.findLabel)
 self.topLeftLayout.addWidget(self.lineEdit)

 self.leftLayout = QVBoxLayout()
 self.leftLayout.addLayout(self.topLeftLayout)
 self.leftLayout.addWidget(self.caseCheckBox)
 self.leftLayout.addWidget(self.backwardCheckBox)

Chapter 5

[91]

 self.rightLayout = QVBoxLayout()
 self.rightLayout.addWidget(self.findButton)
 self.rightLayout.addWidget(self.closeButton)
 self.rightLayout.addStretch()

 self.mainLayout = QHBoxLayout()
 self.mainLayout.addLayout(self.leftLayout)
 self.mainLayout.addLayout(self.rightLayout)

 self.findButton.clicked.connect(self.findText)
 self.setWindowTitle("Find")
 self.setLayout(self.mainLayout)
 self.show()

 def findText(self):
 mySearchText = self.lineEdit.text()
 if self.caseCheckBox.isChecked():
 caseSensitivity = Qt.CaseSensitive
 else:
 caseSensitivity = Qt.CaseInsensitive
 if self.backwardCheckBox.isChecked():
 #search functionality goes here...
 print("Backward Find ")
 else:
 #search functionality goes here...
 print("Forward Find")
In order to use this dialog, simply create an instance of
 MyFindDialog that will create a 'find' dialog as shown in the
 below lines of code.
def findDialog(self):
 myFindDialog = FindDialog()
 myFindDialog.exec_()

Thus, we can create and customize dialog according to the needs of our application.

Widgets at a glance
Widgets are the basic building blocks of a Graphical User Interface application, which
are combined or grouped in a way that helps in interaction and manipulation. Qt
comes with a variety of basic and advanced built-in widgets that can be customized to
our own needs. A list of predefined widgets is given in the following tables for your
reference. QWidget is the base class for all the widgets given in the list.

Dialogs and Widgets

[92]

Basic widgets
The basic widgets section contains the list of widgets that are simple and designed
for direct use. The following list contains the available basic widgets, most of which
we have used in the examples that we have seen so far:

Widget Description

QCheckBox Provides an option button that can be switched on or off.
Associated with a text label.

QComboBox Provides a pop-up list and a combined button by optimizing
the space used for providing a list of options.

QCommandLinkButton Provides a Vista style command link button similar to that
of a radio button used to choose between a set of mutually
exclusive options.

QDateEdit Provides a widget for editing dates. It is inherited from
QDateTime.

QDateTimeEdit Provides a widget for editing dates and times by using the
keyboard.

QDial Provides a rounded range control widget similar to the
ones used in speedometer or potentiometer. Several notches
differentiate the main and sub values.

QDoubleSpinBox Provides a spin box widget that takes doubles. Allows to
choose a value by clicking up and down buttons or arrow
keys

QFocusFrame Provides a focus frame which can be outside of a widget's
normal paintable area.

QFontComboBox Provides a combo box widget whose contents are different
font family styles in a alphabetized list.

QLCDNumber Provides a widget that displays the number in LCD like
form.

QLabel Provides an image or text display whose visual appearance
can be configured in various ways. It supports plain text, rich
text, pixmap, movie, or a number.

QLineEdit Provides a one-line text editor used to edit a single line of
text.

QMenu Provides a menu widget(selection menu) for use in menu
bars, context menus, and other pop-up menus.

QProgressBar Provides a progress bar widget that helps to indicate the
users with the completion status of an activity

QPushButton Provides a button that is usually executes a command on
push or click.

http://qt-project.org/doc/qt-4.8/qcheckbox.html
http://qt-project.org/doc/qt-4.8/qcombobox.html
http://qt-project.org/doc/qt-4.8/qcommandlinkbutton.html
http://qt-project.org/doc/qt-4.8/qdateedit.html
http://qt-project.org/doc/qt-4.8/qdatetimeedit.html
http://qt-project.org/doc/qt-4.8/qdial.html
http://qt-project.org/doc/qt-4.8/qdoublespinbox.html
http://qt-project.org/doc/qt-4.8/qfocusframe.html
http://qt-project.org/doc/qt-4.8/qfontcombobox.html
http://qt-project.org/doc/qt-4.8/qlcdnumber.html
http://qt-project.org/doc/qt-4.8/qlabel.html
http://qt-project.org/doc/qt-4.8/qlineedit.html
http://qt-project.org/doc/qt-4.8/qmenu.html
http://qt-project.org/doc/qt-4.8/qprogressbar.html
http://qt-project.org/doc/qt-4.8/qpushbutton.html

Chapter 5

[93]

Widget Description

QCheckBox Provides an option button that can be switched on or off.
Associated with a text label.

QRadioButton Provides a radio button option that can be switched on or off
associated with a text label.

QScrollArea Provides a scrolling view that is used to display the contents
of a child widget within a frame and also provides scroll bars
if the widget exceeds the size of the frame.

QScrollBar Provides a vertical or a horizontal scroll bar that enables
the user to access parts of a document that is larger than the
widget used to display it.

QSizeGrip Provides a standard windows resize handle for resizing top-
level windows.

QSlider Provides a vertical or horizontal slider used for controlling
a bounded value. It lets the user move a slider along a
horizontal or vertical groove.

QSpinBox Provides a spin box widget designed to handle integers and
discrete set of values.

QTabBar Provides a tab bar to be used in tabbed dialogs.
QTabWidget Provides a tab bar and a page area that is used to display

pages related to each tab in a stack of tabbed widgets.
QTimeEdit Provides a widget for editing times inherited by the

QDateTimeEdit widget.
QToolBox Provides a widget that displays a column of tabs one above

the other with the current item displayed below the current
tab.

QToolButton Provides a special quick-access button to specific commands
or options associated with an icon.

http://qt-project.org/doc/qt-4.8/qcheckbox.html
http://qt-project.org/doc/qt-4.8/qradiobutton.html
http://qt-project.org/doc/qt-4.8/qscrollarea.html
http://qt-project.org/doc/qt-4.8/qscrollbar.html
http://qt-project.org/doc/qt-4.8/qsizegrip.html
http://qt-project.org/doc/qt-4.8/qslider.html
http://qt-project.org/doc/qt-4.8/qspinbox.html
http://qt-project.org/doc/qt-4.8/qtabbar.html
http://qt-project.org/doc/qt-4.8/qtabwidget.html
http://qt-project.org/doc/qt-4.8/qtimeedit.html
http://qt-project.org/doc/qt-4.8/qtoolbox.html
http://qt-project.org/doc/qt-4.8/qtoolbutton.html

Dialogs and Widgets

[94]

Advanced widgets
Advanced widgets provide more complex user interface controls, which may be
used in creating various advanced applications. These widgets make the work of
programmers easy by providing us with the most common application features as
widget libraries.

Widget Description

QCalendarWidget Provides a monthly based calendar widget for date
selection initialized with the current month and year.

QColumnView Provides a widget for model/view implementation of a
column view, also referred as cascading list.

QDataWidgetMapper Provides a widget for mapping between a section of a
data model to widgets which is used to create data-aware
widgets.

QDesktopWidget Provides a widget for accessing screen information on
multi-head systems; used for managing the physical screen
space in user's desktop.

QListView Provides a widget to present items stored in a model,
either as a simple non-hierarchical list or a collection of
items.

QTableView Provides a widget to implement a table view that displays
items from a model that represents standard tables.

QTreeView Provides a widget to implement a tree representation of
items from a model that provides standard hierarchical
lists.

QUndoView Provides a widget which displays the list of commands
pushed on to a undo stack that has the most recently
executed commands in order.

QWebView Provides a widget that is used to view and edit
web documents.

Chapter 5

[95]

Organizer widgets
The following widgets are mainly used for organizing and grouping various basic
and primitive widgets into more complex applications and dialogs:

Widget Description

QButtonGroup Provides an abstract container into which button
widgets can be placed.

QGroupBox Provides a group box frame with a title that acts as a
place holder for various other widgets.

QSplitter Provides implementation for a splitter that lets the
user control the size of child widgets by dragging the
boundary between the child widgets.

QSplitterHandle Provides a handle functionality for the splitter to resize
the windows.

QStackedWidget Provides a stack of widgets where only one widget is
available at a time similar to a tab widget.

QTabWidget Provides a stack of tabbed widgets.

We have seen the implementation of few of the built-in widgets given in the
preceding table in our previous chapters. One of the greatest strengths of PySide
lies in the ease of creation of customized widgets. We can group together some of
the basic widgets to create a customized widget on our own. Before we could do
that, we also have several ways to customize a widget to suit our needs. The basic
form of customization is to change the properties of the existing widget. We can
also opt to use stylesheets to customize the widget's appearance and some aspects
of its behavior. In some cases, it is highly likely that we may require a widget that is
different from any of the standard widgets. In those cases, we can subclass QWidget
directly and can completely define the behavior and appearance of the widget
ourselves. In the example that follows this text, we create a customized "Analog
Clock" widget and demonstrate how to create custom widgets.

Dialogs and Widgets

[96]

Custom widgets
In this section we see an implementation of a customized widget.

To start with we define the AnalogClock class inherited from QWidget. We define
two variables that would be used for drawing the hourHand and minuteHand of the
analog clock. Also, we define the colors for the pointers.

class AnalogClock(QWidget):
 hourHand = QPolygon([
 QPoint(7, 8),
 QPoint(-7, 8),
 QPoint(0, -40)
])

 minuteHand = QPolygon([
 QPoint(7, 8),
 QPoint(-7, 8),
 QPoint(0, -70)
])

 hourColor = QColor(255, 0, 127)
 minuteColor = QColor(0, 127, 127, 255)
Next, we define an init function that will start the timer that
 would update the clock on expiry of every minute. It also
 resizes the widget and sets a title for it.
def __init__(self, parent=None):
 QWidget.__init__(self)

 timer = QTimer(self)
 timer.timeout.connect(self.update)
 timer.start(1000)

 self.setWindowTitle("Analog Clock")
 self.resize(200, 200)

The core functionality of the analog clock is defined in the paintEvent() function,
which would be called on update function of the analog clock widget. We call the
QTime.CurrentTime() function to update the current time from the system. The
next set of lines will set the pen properties and draws the minute hand and hour
hand polygons, along with the line indications of the analog clock.

def paintEvent(self, event):
 side = min(self.width(), self.height())
 time = QTime.currentTime()

 painter = QPainter(self)
 painter.setRenderHint(QPainter.Antialiasing)

Chapter 5

[97]

 painter.translate(self.width() / 2, self.height() / 2)
 painter.scale(side / 200.0, side / 200.0)

 painter.setPen(Qt.NoPen)
 painter.setBrush(AnalogClock.hourColor)

 painter.save()
 painter.rotate(30.0 * ((time.hour() + time.minute() /
 60.0)))
 painter.drawConvexPolygon(AnalogClock.hourHand)
 painter.restore()

 painter.setPen(AnalogClock.hourColor)

 for i in range(12):
 painter.drawLine(88, 0, 96, 0)
 painter.rotate(30.0)

 painter.setPen(Qt.NoPen)
 painter.setBrush(AnalogClock.minuteColor)

 painter.save()
 painter.rotate(6.0 * (time.minute() + time.second() /
 60.0))
 painter.drawConvexPolygon(AnalogClock.minuteHand)
 painter.restore()

 painter.setPen(AnalogClock.minuteColor)

 for j in range(60):
 if (j % 5) != 0:
 painter.drawLine(92, 0, 96, 0)
 painter.rotate(6.0)

On running the preceding application, we would see an analog clock widget drawn
as given in the following screenshot:

Dialogs and Widgets

[98]

Implementation of MDI
We have already discussed about the differences between SDI and MDI applications
in Chapter 3, Main Windows and Layout Management. We have seen many
implementations of SDI applications. In this section, we will explore a technique of
creating MDI applications.

A Multiple Document Interface application will be a main windowed application
with their central widgets can be one of PySide.QtGui.QMdiArea or PySide.QtGui.
QWorkSpace widget. They are by itself a widget component, which manages the
central area of main window to arrange the MDI windows in a layout. Sub-windows
can be created and added to the MDI area or a workspace. An example of the MDI
application is as follows:

class MyMDIApp(QMainWindow):

 def __init__(self):
 QMainWindow.__init__(self)

 workspace = QWorkspace()
 workspace.setWindowTitle("Simple WorkSpace Example")

 for i in range(5):
 textEdit = QTextEdit()
 textEdit.setPlainText("Dummy Text " * 100)
 textEdit.setWindowTitle("Document %i" % i)
 workspace.addWindow(textEdit)

 workspace.tile()
 self.setCentralWidget(workspace)

 self.setGeometry(300, 300, 600, 350)
 self.show()

The MDI windows inside a main windowed application can be set in a cascade or tile
layout by default or a customized layout can be specified. The following screenshots
show the two types of layout of the example application:

Chapter 5

[99]

The preceding screenshot shows the placement of windows in a cascaded view. The
following one implements the same example but in a tile view:

Dialogs and Widgets

[100]

Summary
The beauty of any programming language lies in its capability to customize things
for better use other than its rich library of predefined objects. PySide exhibits its
dynamics by allowing the users to explore the variety of predefined dialogs and
widgets and also makes it easier to create and use customized ones. This chapter
has taken you through the various dialogs and widgets and also taught you how
to build them on your own.

Handling Databases
Most of the applications that we use in our day-to-day life have to deal with some
type of stored data that can be used as and when required. Databases help us to
organize this stored data and also provide us some guidelines on how the data
should be structured and presented to the end users. In short, databases are the
organized body of related information. The software controlling the access to
databases and which enables you to create, edit, and maintain them are known as
the Database Management Systems (DBMS). There are numerous DBMS systems
available in the market and each of them are used to suit some specific needs.

The DBMS that we use in this chapter for providing examples is SQLite. As the
name specifies SQLite is a light-weight, public-domain, in-process database system
that is used for local storage in many software applications. This chapter assumes the
familiarity of users with SQL and some knowledge in model/view programming.
The QtSql module of PySide provides a database-independent interface for accessing
SQL databases. So, apart from the initial connection and some other raw SQL syntax,
almost all other queries work with any SQL database.

Connecting to the database
A database connection is represented by the PySide.QtSql.QSqlDatabase class.
This class provides an interface for accessing a database through the connection.
The connection is accomplished through Qt's supported database drivers which
are derived from the PySide.QtSql.QSqlDriver class. The QSqlDriver class is an
abstract base class for accessing specific SQL databases, and should be used with
QSqlDatabase. As with any other PySide feature that supports customization, it is
also possible to create our own SQL drivers by sub-classing the QSqlDriver class
and re-implementing its virtual functions.

Handling Databases

[102]

Before explaining the concept of connecting to databases, we will see the types of
database access provided by PySide. The access is provided at two levels, a high-
level access using QSqlTableModel or QSqlRelationalTableModel, and a low-
level access using QSqlQuery. The former one uses model/view architecture and
provides a high-level interface for reading and writing database records from a table.
The latter one is based on executing and manipulating SQL queries directly on the
QSqlDatabase class. This class can accept DML statements, such as SELECT, INSERT,
UPDATE, and DELETE, as well as DDL statements, such as CREATE, ALTER, and DROP. It
can also be used to execute database-specific commands which are not standard SQL,
for example, SET DATESTYLE=ISO for PostgreSQL.

The connection to the database in an application can take at any point when it
is required to. But, in most of the applications it is done after the creation of the
QApplication object, and before the main form is created or shown. This way, we
can inform users ahead of the unsuccessful connection and thus prevent them from
executing database specific actions that will otherwise go waste. A connection is
created by calling the static QSqlDatabase.addDatabase() function, by giving the
name of the database driver that we want to use and optionally, a connection name.
A database connection is identified by the connection name that we specify and not
by the database name. It is possible for us to create multiple database connections
at a time and differentiate them by the connection name. It is also correct to create
a connection without a name, by making it a default connection. Once a connection
object has been created, we can move on to set other necessary attributes such as,
database's name, username, password, host, and port details, and other connect
options, if necessary. Once this is complete, we can activate the connection to the
database with the help of the QSqlDatabase.open() function call. The following
code presents the series of steps that we have discussed in creating and activating a
connection:

db = QSqlDatabase.addDatabase("QMYSQL")
db.setHostName("testServer")
db.setDatabaseName("sampledb")
db.setUserName("test")
db.setPassword("pass123")
ok = db.open()

In the preceding code, the addDatabase() function can be given an optional second
parameter which specifies the connection name given as follows:

db = QSqlDatabase.addDatabase("QMYSQL", "myConn")

Chapter 6

[103]

However, when using SQLite, it is enough to specify only the database name.
Usually, this will be a filename but it can be the special name ":memory:" to specify
using an in-memory database. When the open() call is executed on the connection,
the file will be created if it does not exist. So, the code for connecting to the SQLite
database using the SQLite driver for PySide, QSQLITE is:

db = QSqlDatabase.addDatabase("QSQLITE")
db.setDatabaseName("test.db")
ok = db.open()

This will create a connection with the SQLite database file test.db. We should take
care of handling the connection errors by checking the return value of the db.open()
function. It is good practice to notify the users upfront about any errors.

Once the connection is established, we can get the list of the tables, its primary
index, and meta-information about the table's fields with their specific functions.
The QSqlDatabase.removeDatabase() function is called with a connection name
to remove a connection.

Executing SQL queries
After the successful connection to the database, we can execute SQL queries to
perform some actions on it. If we don't specify a connection name, the default
connection is taken. The PySide.QtSql.QSqlQuery class provides a means of
executing and manipulating SQL databases.

Executing a query
The SQL query can be executed by creating an QSqlQuery object and calling an
exec_() function on that. As an example, we create a table named employee and
define its columns as follows:

myQuery = QSqlQuery()

myQuery.exec_("""CREATE TABLE employee (id INTEGER PRIMARY KEY
AUTOINCREMENT UNIQUE NOT NULL, first_name CHAR(20) NOT NULL, last_name
CHAR(20), age INT, sex CHAR(1), income FLOAT)""")

This will create a table with six fields namely, id, first_name, last_name, age,
sex, and income. The QSqlQuery constructor accepts an optional parameter, a
QSqlDatabase object that specifies which database connection to use. Since we don't
specify any connection name in the preceding code, the default connection is used.
In case of any errors, the exec_() function returns false and the error details are
available in QSqlQuery.lastError().

Handling Databases

[104]

Inserting, updating, and deleting records
In this section we shall look at the different ways we can perform the DML
commands. A simple form of inserting the values in the table that we have
created in our previous section is given as follows:

myQuery = QSqlQuery()
myQuery.exec_("""INSERT INTO employee (first_name, last_name, age,
sex, income) VALUES ('Alice', 'M', 30, 'F', 5000.00) """)

This would insert a single row in the employee table. This method is easier if we
need to insert a single row into the table. However, if we are required to create many
rows, it is advisable to separate the query from the actual values being used. This
can be achieved with the use of placeholders by binding the values with the columns
in the table. Qt supports two types of placeholder systems, named binding and
positional binding. This way of constructing queries is also called prepared queries.

An example of the named binding is given as follows:

myQuery.prepare("INSERT INTO employee (first_name, last_name, age,
sex, income) VALUES (:first_name, :last_name, :age, :sex, :income)")

for fname, lname, age, sex, income in data:
 myQuery.bindValue(":first_name", fname)
 myQuery.bindValue(":last_name", lname)
 myQuery.bindValue(":age", age)
 myQuery.bindValue(":sex", sex)
 myQuery.bindValue(":income", income)

myQuery.exec_()

You may note that the id column is omitted during the rows in the previous
examples since we have defined it to AUTOINCREMENT values while creating the
table. Now, let's look at the other type of prepared query, positional binding:

myQuery.prepare("INSERT INTO employee (first_name, last_name, age,
sex, income) VALUES (?, ?, ?, ?, ?)")

for fname, lname, age, sex, income in data:
 myQuery.addBindValue(fname)
 myQuery.addBindValue (lname)
 myQuery.addBindValue (age)
 myQuery.addBindValue (sex)
 myQuery.addBindValue (income)

myQuery.exec_()

Chapter 6

[105]

Both the methods works with all database drivers provided by Qt. Prepared queries
improve performance on databases that support them. Otherwise, Qt simulates the
placeholder syntax by preprocessing the query. The actual query that gets executed
can be received by calling the QSqlQuery.executedQuery() function. Also, note that,
you need to call QSqlQuery.prepare() only once and you can call bindValue()
or addBindValue() followed by the exec_() as many times as necessary. Another
advantage of the prepared queries besides performance is that, we can specify
arbitrary values without worrying about loosing the special characters.

QSqlQuery can execute any arbitrary SQL statements like SELECT and INSERT
statements. So, updating and deleting records is as easy as executing the corresponding
queries. For example, we can update a record as shown in the following line:

myQuery.exec_("UPDATE employee SET income=7500.00 WHERE id=5")

Similarly, we can delete a record by:

myQuery.exec_("DELETE FROM employee WHERE id=8")

Successfully executed SQL statements set the query's state to active and can be
retrieved from QSqlQuery.isActive(). Otherwise, it is set to inactive. This method
will return a Boolean value, True or False, depending on the success of the operation.

Navigating records
The next feature that we are about to discuss is how to navigate the records
of the result set of a SELECT query. Navigating the records is performed by the
following functions:

• PySide.QtSql.QSqlQuery.next()

• PySide.QtSql.QSqlQuery.previous()

• PySide.QtSql.QSqlQuery.first()

• PySide.QtSql.QSqlQuery.last()

• PySide.QtSql.QSqlQuery.seek()

These functions help us in iterating back and forth the records. However, if we need
to move only forward through the results, we can set QSqlQuery.setForwardOnly()
which can improve performance, and saves significant amount of memory in some
databases. The QSqlQuery.value() functions takes an integer positional argument,
which returns the value of field index in the current record. The fields are numbered
from left to right using the text of the SELECT statement. For example, in the following
query, field 0 represents the first_name and field 1 represents the last_name:

SELECT first_name. last_name FROM employee

Handling Databases

[106]

Since QSqlQuery.value() takes an index positional argument, it is not advised to
use SELECT * in the query; instead use the column names because we don't know
the order of columns in the SELECT * query.

Let us now look at an example of navigating the records through the result set:

myQuery.exec_("SELECT id, first_name, income FROM employee")
while myQuery.next():
id = myQuery.value(0).toInt()
name = myQuery.vaue(1).toString()
salary = myQuery.value(2).toInt()

In the preceding example, you would have noted that we use the toInt() and
toString() functions to convert the result to specific data type, since all the values
that are returned are of QVariant type which can hold various data types such as int,
string, datetime, and so on.

Before closing the section on executing SQL queries, we will have a look at few more
useful functions that the QSqlQuery class offers.

The QSqlQuery.numRowsAffected() function will return the number of rows that
are affected by the result of an UPDATE or DELETE query. This function returns -1 if
it cannot be determined or the query is not active. In case of SELECT statements, this
function returns undefined, instead we use QSqlQuery.size() that will return the
size of the result set. This function also returns -1 if the size cannot be determined
or if the database does not support reporting information about query sizes or if the
query is not active.

QSqlQuery.finish() will instruct the database driver that no more data will be
fetched from the query until it is re-executed. Usually, we do not call this function
until we want to free some resources such as locks or cursors if you intend to reuse
the query at a later time. Finally, we can call QSqlQuery.at() to retrieve the current
row index.

Transactions
In order to check, if the database driver uses a specific feature, we can use
QSqlDriver.hasFeature() that will return a true or false value accordingly. So, we
can use QSqlDriver.hasFeature(QSqlDriver.Transactions) to identify if the
underlying database engine supports transactions. If the underlying database supports
transactions, we can retrieve the commit and rollback results using the QSqlDatabase.
commit() and QSqlDatabase.rollback() functions respectively. The transaction
can be initiated using the QSqlDatabase.transaction() call. Transactions can be
used to ensure that a complex operation is atomic or to provide a means of canceling
a complex change in the middle.

Chapter 6

[107]

Table and form views
This section is devoted to explaining the representation of data in a form view or a
table view. But, before that we can see some examples of accessing databases through
high-level model classes. The following classes are available in Qt for this purpose:

• QSqlQueryModel: Provides a read-only data model for SQL result sets
• QSqlTableModel: Provides an editable data model for a single database table
• QSqlRelationalTableModel: Provides an editable data model for a single

database table, with foreign key support

Let us view some quick examples of each of these classes.

QSqlQueryModel
This model aims at providing a high-level interface for executing SQL queries and
traversing the result set. This class is built on top of the QSqlQuery class and can be
used to provide data to view classes, for example, QTableView which we are going
to discuss in the forthcoming sections. A sample program using QSqlQueryModel is
as follows:

model = QSqlQueryModel()
model.setQuery("SELECT fname FROM employee")
print("Names of Employee")
while i < model.rowcount() :
 print(model.record(i).value("fname").toString())

In the example shown, we set the query using the model.setQuery() function.
Once the query is set, the QSqlQueryModel.record(int) method is used to get
individual records.

QSqlTableModel
The PySide.QtSql.QSqlTableModel class provides an editable data model for a
single database table. As with QSqlQueryModel, this class also provides a high-level
interface and can be used to provide data to view class. The only difference is that it
allows editing of data which QSqlQueryModel does not support. A sample program
for your reference is as follows:

model = QSqlTableModel()
model.setTable("employee")
model.setFilter("age > 40")
model.setEditStrategy(QSqlTableModel.OnManualSubmit)
model.select()

Handling Databases

[108]

model.removeColumn(0) # to remove the id column
while i < model.rowcount() :
 print(model.record(i))

This works as explained in our previous example. The main difference to note here
is line 4. The QSqlTableModel.setEditStarategy() function describes which
strategy we prefer to use for editing values in the database. The various options that
this function can take are given as follows:

Constant Description
QSqlTableModel.
OnFieldChange The changes to model will be applied immediately to the database.

QSqlTableModel.
OnRowChange

The changes on a row will be applied when the user selects a
different row.

QSqlTableModel.
OnManualSubmit

All changes will be cached in the model until either PySide.
QtSql.QSqlTableModel.submitAll() or PySide.QtSql.
QSqlTableModel.revertAll() is called.

It is to be noted that to prevent inserting partial values on a row into the database,
onFieldChange will behave like onRowChange for newly inserted rows. The
QSqlTableModel.setFilter() function executes the functionality of a WHERE clause in
SQL queries. If the model is already selected and populated, the setFilter() method
will refilter the results. The QSqlTableModel.setRecord() function is used to modify
a row, QSqlTabelModel.removeRows(int) is used to delete rows from the table.

QSqlRelationalTableModel
The PySide.QtSql.QSqlRelationalTableModel class serves the same purpose as
QSqlTableModel with an additional foreign key support. An example of this model
is deferred to last section after discussing the table and form views.

Table view
In the preceding sections we discussed various model classes. Now, we will look at
how to present the data to the users using the QTableView widget. The data source
for the QTableView widget is provided by any of the model classes. The table view is
the most used view format as this represents a virtual representation of the 2D SQL
table structure. We will have a look at the code first, and then discuss its functionality.

import sys
from PySide.QtGui import *
from PySide.QtCore import Qt

http://srinikom.github.io/pyside-docs/PySide/QtSql/QSqlTableModel.html#PySide.QtSql.PySide.QtSql.QSqlTableModel.submitAll
http://srinikom.github.io/pyside-docs/PySide/QtSql/QSqlTableModel.html#PySide.QtSql.PySide.QtSql.QSqlTableModel.submitAll
http://srinikom.github.io/pyside-docs/PySide/QtSql/QSqlTableModel.html#PySide.QtSql.PySide.QtSql.QSqlTableModel.revertAll
http://srinikom.github.io/pyside-docs/PySide/QtSql/QSqlTableModel.html#PySide.QtSql.PySide.QtSql.QSqlTableModel.revertAll

Chapter 6

[109]

from PySide.QtSql import *

def initializeModel(model):
 model.setTable("employee")

 model.setEditStrategy(QSqlTableModel.OnManualSubmit)
 model.select()

 model.setHeaderData(0, Qt.Horizontal, "ID")
 model.setHeaderData(1, Qt.Horizontal, "First Name")
 model.setHeaderData(2, Qt.Horizontal, "Last Name")
 model.setHeaderData(3, Qt.Horizontal, "Age")
 model.setHeaderData(4, Qt.Horizontal, "Gender")
 model.setHeaderData(5, Qt.Horizontal, "Income")

def createView(title, model):
 view = QTableView()
 view.setModel(model)
 view.setWindowTitle(title)
 return view

def createConnection():
 db = QSqlDatabase.addDatabase('QSQLITE')
 db.setDatabaseName('sample.db')

 ok = db.open()

 if not ok:
 return False

 myQuery = QSqlQuery()

 myQuery.exec_("""CREATE TABLE employee (id INTEGER PRIMARY KEY
 AUTOINCREMENT UNIQUE NOT NULL, first_name CHAR(20) NOT NULL,
 last_name CHAR(20), age INT, sex CHAR(1), income FLOAT)""")
 myQuery.exec_("""INSERT INTO employee (first_name, last_name, age,
sex, income)
 VALUES ('Alice', 'A', 30, 'F', 5000.00)""")
 myQuery.exec_("""INSERT INTO employee (first_name, last_name, age,
sex, income)
 VALUES ('Bob', 'B', 31, 'M', 5100.00)""")
 myQuery.exec_("""INSERT INTO employee (first_name, last_name, age,
sex, income)

Handling Databases

[110]

 VALUES ('Caesar', 'C', 32, 'F', 5200.00)""")
 myQuery.exec_("""INSERT INTO employee (first_name, last_name, age,
sex, income)
 VALUES ('Danny', 'D', 34, 'M', 5300.00)""")
 myQuery.exec_("""INSERT INTO employee (first_name, last_name, age,
sex, income)
 VALUES ('Eziekel', 'E', 35, 'F', 5400.00)""")
 return True

if __name__ =='__main__':
 try:
 myApp = QApplication(sys.argv)

 if not createConnection():
 print("Error Connecting to Database")
 sys.exit(1)

 model = QSqlTableModel()
 initializeModel(model)

 view1 = createView("Table Model - Example1", model)
 view2 = createView("Table Model - Example2", model)

 view1.setGeometry(100, 100, 500, 220)
 view2.setGeometry(100, 100, 500, 220)
 view1.show()
 view2.move(view1.x() + view1.width() + 20, view1.y())
 view2.show()
 myApp.exec_()
 sys.exit(0)
 except NameError:
 print("Name Error:", sys.exc_info()[1])
 except SystemExit:
 print("Closing Window...")
 except Exception:
 print(sys.exc_info()[1])

Chapter 6

[111]

At first, we create and establish a database connection and execute the sample data in
the createConnection() function. As discussed, a SQLite connection is created using
the Qt's SQLite driver, QSQLITE. We set the database name in the next line. If the file
exists, the database connection uses it or else creates a new file on the same name. We
check the success of the connection and return false if it is not so. The sample queries
are executed one-by-one in order and a true value is returned indicating the connection
was successful and the data is populated. In the initializeModel() function, we
define the properties of the model and set the display format by specifying its column
headers. The createView() function creates a view, and returns it to the caller
function. On execution, we get two table views as shown in the following screenshot.
Also, note that on editing one view, the other gets updated. However, this does not
update the table since we have set the edit strategy to Manual Submit.

Form view
The form view is useful when you want to traverse the records one-by-one and
perform some modifications to it. In this section, we will see how to create a dialog
form that displays the records one-by-one and also learn about how to add, edit, and
delete records using the form dialog. We will use the same employee table created in
our previous example.

We will not discuss the layout used in this program as our main aim is to discuss the
form view. The model is created using QSqlTableModel and set the sort factor with
the column first_name in the ascending order:

self.model = QSqlTableModel(self)
self.model.setTable("employee")
self.model.setSort(FIRST_NAME, Qt.AscendingOrder)
self.model.select()

Handling Databases

[112]

Next, we set the mapping of the form values with the column using the
QDataWidgetMapper class. This class is used to provide mapping between sections
of a data model to widgets. The addMapping(widget, section) function maps
the widget to the section from the model. The section represents a column if the
orientation is "Horizontal", otherwise represents a row. Finally, the toFirst()
function populates the widget from the data from the first row of the model if the
orientation is "Horizontal", otherwise from the first column.

self.mapper = QDataWidgetMapper(self)
self.mapper.setSubmitPolicy(QDataWidgetMapper.ManualSubmit)
self.mapper.setModel(self.model)
self.mapper.addMapping(firstNameEdit, FIRST_NAME)
self.mapper.addMapping(lastNameEdit, LAST_NAME)
self.mapper.addMapping(ageEdit, AGE)
self.mapper.addMapping(genderEdit, SEX)
self.mapper.addMapping(incomeEdit, INCOME)
self.mapper.toFirst()

Then, we connect the buttons to their respective slots:

self.connect(firstButton, SIGNAL("clicked()"),
 lambda: self.saveRecord(EmployeeForm.FIRST))
self.connect(previousButton, SIGNAL("clicked()"),
 lambda: self.saveRecord(EmployeeForm.PREV))
self.connect(nextButton, SIGNAL("clicked()"),
 lambda: self.saveRecord(EmployeeForm.NEXT))
self.connect(lastButton, SIGNAL("clicked()"),
 lambda: self.saveRecord(EmployeeForm.LAST))
self.connect(addButton, SIGNAL("clicked()"), self.addRecord)
self.connect(deleteButton, SIGNAL("clicked()"),
 self.deleteRecord)
self.connect(quitButton, SIGNAL("clicked()"), self.done)

The slots are defined as follows:

 def done(self, result=None):
 self.mapper.submit()
 QDialog.done(self, True)

 def addRecord(self):
 row = self.model.rowCount()
 self.mapper.submit()
 self.model.insertRow(row)
 self.mapper.setCurrentIndex(row)

Chapter 6

[113]

 def deleteRecord(self):
 row = self.mapper.currentIndex()
 self.model.removeRow(row)
 self.model.submitAll()
 if row + 1 >= self.model.rowCount():
 row = self.model.rowCount() - 1
 self.mapper.setCurrentIndex(row)

 def saveRecord(self, where):
 row = self.mapper.currentIndex()
 self.mapper.submit()
 if where == EmployeeForm.FIRST:
 row = 0
 elif where == EmployeeForm.PREV:
 row = 0 if row <= 1 else row - 1
 elif where == EmployeeForm.NEXT:
 row += 1
 if row >= self.model.rowCount():
 row = self.model.rowCount() - 1
 elif where == EmployeeForm.LAST:
 row = self.model.rowCount() - 1
 self.mapper.setCurrentIndex(row)

The complete program can be downloaded from the code snippets that come along
with this book. On execution, we will be presented with a dialog box as shown, with
which we can add, edit, or delete records:

Handling Databases

[114]

Viewing relations in table views
The main feature of relational database is its ability to relate one or more tables. One
such relating feature is the use of foreign key concept where a primary key of a table
is related to a column in another table. This relation can be easily exhibited using
QRelationalTableModel. In order to explain this, we create three tables that are
connected to each other. The schema is defined as follows:

CREATE TABLE employee (id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT
NULL, name VARCHAR(40) NOT NULL, department INTEGER, branch INTEGER)
CREATE TABLE department (id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE
NOT NULL, name VARCHAR(20) NOT NULL, FOREIGN KEY(id) REFERENCES
employee)
CREATE TABLE branch (id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT
NULL, name VARCHAR(20) NOT NULL, FOREIGN KEY(id) REFERENCES employee)

If we use QSqlTableModel, we will get a view as given in the following screenshot:

By using relational table model, we can reference the department and branch into
their relations as follows:

model.setRelation(2, QSqlRelation("department", "id", "name"));
model.setRelation(3, QSqlRelation("branch", "id", "name"));

Chapter 6

[115]

This code will set the relations of department and branch column to their respective
tables along with the column value that has to be displayed on the view. On setting
the relations, the view will be modified as shown in the following screenshot where
the ID's are resolved into their respective names:

Thus, the relational model is so helpful in exhibiting relational databases.

Summary
Most of the real-time applications have to deal with databases for data storage and
retrieval. Thus, it is more important for a GUI developer to know about database
interaction. Qt is supplemented with many built-in database drivers which we can
use to connect to databases and perform desired operations. Also, with its wide
variety of model and view classes, it becomes very easy for any GUI programmer to
interact with databases.

Resources
This appendix brings to you some resources that are available online for
PySide application development.

The PySide documentation wiki page
The PySide documentation wiki page has a lot of information and links to various
PySide resources. It hosts a number of links to tutorials and reference manuals that a
beginner programmer can start with. It can be accessed at http://qt-project.org/
wiki/Category:LanguageBindings::PySide.

API reference manuals
The API reference manual documents the usage of various available classes for PySide.
The PySide class reference documentation is automatically generated from the original
Qt documentation for C++, and some parts are tuned to fit the Python world.

• PySide 1.0.7 reference: http://srinikom.github.io/pyside-docs/
• PySide 1.1.0 reference: https://deptinfo-ensip.univ-poitiers.fr/ENS/

pyside-docs/index.html

Tutorials
A set of basic and advanced tutorials can be found at this page:
http://qt-project.org/wiki/PySide_Tutorials

Resources

[118]

Community support
Often all open source software is supported through the community forum where
the developers dwell together to help and support others. The various community
supports that are available are given as follows. Developers can contact these forums
to get support for PySide development and contribution:

• Active mailing list: http://lists.qt-project.org/mailman/listinfo/
pyside

• Archive mailing list: http://dir.gmane.org/gmane.comp.lib.qt.pyside
• Forum on Qt-project: http://qt-project.org/forums/viewforum/15/
• Internet relay chat: #pyside channel at https://webchat.freenode.net/

Apart from these resources there are finer examples available at Github for reference.

Index
Symbols
2D SQL table structure 108
#pyside 6
#python tag 5

A
absolute positioning 49
active mailing list

URL 118
addDatabase() function 102
addToolBar() function 48
advanced widgets, Qt

QCalendarWidget 94
QColumnViewQColumnView 94
QDataWidgetMapper 94
QDesktopWidget 94
QListViewQListView 94
QTableViewQTableView 94
QTreeViewQTreeView 94
QUndoViewQUndoView 94
QWebViewQWebView 94

API Extractor 11
API reference manuals, PySide

about 117
PySide 1.0.7 reference 117
PySide 1.1.0 reference 117

application icon
about 22
defining 23-26

aptitude distro 8
archive mailing list

URL 118

B
basic widgets, Qt

QCheckBox 92
QComboBox 92
QCommandLinkButton 92
QDateEdit 92
QDateTimeEdit 92
QDial 92
QDoubleSpinBox 92
QFocusFrame 92
QFontComboBox 92
QLabel 92
QLCDNumber 92
QLineEdit 92
QMenu 92
QProgressBar 92
QPushButton 92
QRadioButton 93
QScrollArea 93
QScrollBar 93
QSizeGrip 93
QSlider 93
QSpinBox 93
QTabBar 93
QTabWidget 93
QTimeEdit 93
QToolBox 93
QToolButton 93

box
adding, to application 30, 31

built-in dialogs, Qt
about 81
QColorDialog 81, 87, 89
QErrorMessage 81
QFileDialog 81-84

[120]

QFontDialog 82
QInputDialog 82, 85, 87
QMessageBox 82
QPageSetupDialog 82
QPrintDialog 81, 89
QPrintPreviewDialog 82
QProgressDialog 82
QWizard 82

button
adding, to application 28, 29

C
callback 67
Central widget 43
classes, drag-and-drop

QDragEnterEvent 72
QDragLeaveEvent 72
QDragMoveEvent 72
QDropEvent 72
QMimeData 72

clearMessage() function 40
CreateActions() function 48
createConnection() function 111
CreateMenus() function 48
CreateToolBar() module 49
createView() function 111
custom dialogs, Qt 89, 91
customized widget

implementing 96

D
database connection

about 101
creating, to application 102, 103

Database Management Systems. See DBMS
databases 101
DBMS 101
dialogs 81
digital clock application

creating 32, 34
documentation wiki page, PySide

URL 117
drag-and-drop

about 71
example 72, 73

drawArc() function 74

drawChord() function 75
drawConvexPolygon() function 75
drawEllipse() function 74
draw functions, QPainter object

drawArc() 74
drawChord() 75
drawConvexPolygon() 75
drawEllipse() 74
drawImage() 75
drawLine() 74
drawPath() 75
drawPicture() 75
drawPie() 75
drawPoint() 74
drawPolygon() 75
drawPolyline() 75
drawRect() 74
drawRoundedRect() 74
drawText() 74

drawImage() function 75
drawing

about 74
functionalities 75, 76

drawing, settings
brush 74
font 74
pen 74

drawLine() function 74
drawPath() function 75
drawPicture() function 75
drawPie() function 75
drawPoint() function 74
drawPolygon() function 75
drawPolyline() function 75
drawRect() function 74
drawRoundedRect() function 74
drawText() function 74

E
effects 78
EMI calculator application

example 68-71
event 61
eventFilter() function 66
event filters

installing 66, 67

[121]

event() function 61
event handlers

re-implementing 63-66
event loop 62
event management

about 61
event loop 62

event() method 65
event processing, Qt

about 63
event filters, installing 66, 67
event handlers, re-implementing 63-66
notify() function, re-implementing 67

exception handler 16
exception handling

about 15
as practice 16-18

executedQuery() function 105

F
Fminer 6
form view 111-113
forum on Qt-project

URL 118
frameGeometry() function 30

G
Generator Runner 11
graphics 77, 78
graphics view classes

QGraphicsItem 77
QGraphicsScene 77
QGraphicsView 77

GUI 6, 7

I
initializeModel() function 111
installation, event filters 66, 67
installation, PySide

on Linux 8, 9
on Mac OSX 8
on Windows 8

Internet relay chat
URL 118

IRC (Internet Relay Chat) 5

K
keyPressEvent() function 64, 65
keyPress() function 66
keyReleaseEvent() function 65

L
layout containers 50
layout management approaches

about 49
absolute positioning 49
layout containers 50

LCDNumber 34
LGPL Version 2.1 license 6
Linux

PySide, building on 10
PySide, installing on 8, 9

Lucas Chess 6

M
Mac OSX

PySide, building on 12
PySide, installing on 8

main window
creating 38, 39

matplotlib 6
MDI

about 55
implementing 98, 99

MDI application
example 98

menu 43
Menu bar

about 43
adding, to application 44
menu list, adding 45, 48

menu list
adding, to menu bar 45, 48

MIME type 71
Multiple Document Interface. See MDI

N
named binding

example 104

[122]

notify() function
re-implementing 67

numRowsAffected() function 106

O
Object Oriented Design principles 19
organizer widgets, Qt

QButtonGroupQButtonGroup 95
QGroupBoxQGroupBox 95
QSplitterHandle 95
QSplitterQSplitter 95
QStackedWidget 95
QTabWidgetQTabWidget 95

P
paintEvent() function 74, 75, 96
PhotoGrabber 6
pixmap function 25
PySide

about 6
API reference manuals 117
community support 118
online resources 117, 118
prerequisites 11
prerequisites, for Linux 10
prerequisites, for Windows 9
setting up 7
URL, for tutorials 117

PySide 1.0.7 reference
URL 117

PySide 1.1.0 reference
URL 117

PySide application 13-15
PySide, building

about 9
on Linux 10
on Mac OSX 12
on Windows 9

PySide, installing
on Linux 8, 9
on Mac OSX 8
on Windows 8

PySide Mobility 6
PySide objects

importing 12

Python 5
Python 2.6 7

Q
QApplication object 15
QBoxLayout.addLayout() 51
QBoxLayout.addSpacing() 51
QBoxLayout.addStretch() 51
QBoxLayout.addWidget() 51
QBoxLayout class 51
QButtonGroupQButtonGroup 95
QCalendarWidget 94
QCheckBox 92
QColorDialog 81, 87, 89
QColumnViewQColumnView 94
QComboBox 92
QCommandLinkButton 92
QDataWidgetMapper 94
QDateEdit 92
QDateTimeEdit 92
QDesktopWidget 94
QDial 92
QDoubleSpinBox 92
QDragEnterEvent class 72
QDragLeaveEvent class 72
QDragMoveEvent class 72
QDropEvent class 72
QErrorMessage 81
QEvent class 61
QFileDialog

about 81-84
modes 84

QFocusFrame 92
QFontComboBox 92
QFontDialog 82
QFormLayout 54
QGraphicsAnimationItem() object 78
QGraphicsColorizeEffect 78
QGraphicsDropShadowEffect 78
QGraphicsItem class 77
QGraphicsOpacityEffect 78
QGraphicsScene class 77
QGraphicsView 38
QGraphicsView class 77
QGridLayout 53
QGroupBoxQGroupBox 95

[123]

QGrpahicsBlurEffect 78
QHBoxLayout 51
QIcon.Active constant 25
QIcon class 24
QIcon.Disabled constant 25
QIcon.Normal constant 25
QIcon.Off constant 25
QIcon.On constant 25
QIcon.Selected constant 25
QInputDialog

about 82, 85, 87
functions 85

QLabel 92
QLCDNumber 92
QLCDNumber.Filled constant 34
QLCDNumber.Flat constant 34
QLCDNumber.Outline constant 34
QLineEdit 92
QListViewQListView 94
QMainWindow class 37-39
QMenu 92
QMessageBox 82
QMimeData class 72
QPageSetupDialog 82
QPainter class 74
QPainter object

drawing functions 74, 75
QPrintDialog 81, 89
QPrintPreviewDialog 82
QProgressBar 92
QProgressDialog 82
QPushButton 92
QRadioButton 93
QScrollArea 93
QScrollBar 93
QSizeGrip 93
QSlider 93
QSpinBox 93
QSplitterHandle 95
QSplitterQSplitter 95
QSqlDatabase class 101
QSqlDriver class 101
QSqlQueryModel class 107
QSqlRelationalTableModel class 107, 108
QSqlTableModel class 107, 108
QSqlTableModel.OnFieldChange

constant 108

QSqlTableModel.OnManualSubmit
constant 108

QSqlTableModel.OnRowChange
constant 108

QStackedLayout 54
QStackedWidget 95
QStyle 35
Qt

about 6, 35
advanced widgets 94
basic widgets 92, 93
built-in dialogs 81-89
custom dialogs 89, 91
event processing 63
organizer widgets 95

Qt 4.6 7
QTabBar 93
QTableViewQTableView 94
QTabWidget 93
QTabWidgetQTabWidget 95
Qt Bindings 11
QTextEdit 38
QTimeEdit 93
Qt Mobility 6
QToolBox 93
QToolButton 93
QTreeViewQTreeView 94
QtSql module 101
Qt.WindowFlags 38
QUndoViewQUndoView 94
QVBoxLayout 52
QWebViewQWebView 94
QWidget 19
QWidget class 38
QWidget object 38
QWizard 82

R
Rapid Application Development 5
records

deleting 104
inserting 104
navigating 105, 106
updating 104

relations
viewing, in table views 114, 115

[124]

removeDatabase() function 103
resizeEvent() function 65

S
screen

Window, centering on 30
SDI 55
setSegmentStyle() function 34
setStyle() function 35
setToolTip() function 26
SetupComponents() function 49
Shiboken Generator 11
signals 67, 68
simple text editor

about 55
implementing 60

simple window
creating 19-21

simplicity 7
Single Document Interface. See SDI
slots 67, 68
SQLite 101
SQL queries

executing 103
records, deleting 104
records, inserting 104
records, navigating 105, 106
records, updating 104
transactions 106

status bar
about 39
normal information 39
overview 40, 41
permanent information 39
temporary information 39

statusBar() function 40
synaptic package manager 8

T
table view

about 108, 111
relations, viewing in 114, 115

Tcl/Tk 6
timers

about 32
using, in application 32, 34

Tkinter 6
tool bar 48, 49
tooltip

displaying 26, 27
transactions 106

U
updtTime() function 34
usability 7

W
widget 19, 81, 91
Window

centering, on screen 30
Windows

PySide, building on 9
PySide, installing on 8

Windows style
application, executing 35

Wing IDE 6
wxWidgets 6
WYSIWYG 43

X
XCode-Developer Tools 12

Z
Z-order 19

Thank you for buying
PySide GUI Application
Development

About Packt Publishing
Packt, pronounced "packed", published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Spring Python 1.1
ISBN: 978-1-84951-066-0 Paperback: 264 pages

Create powerful and versatile Spring Python
applications using pragmatic libraries and
useful abstractions

1. Maximize the use of Spring features in
Python and develop impressive Spring
Python applications.

2. Explore the versatility of Spring Python by
integrating it with frameworks, libraries,
and tools.

3. Discover the non-intrusive Spring way of wiring
together Python components.

4. Packed with hands-on-examples, case studies,
and clear explanations for better understanding.

Python Multimedia
Beginner's Guide
ISBN: 978-1-84951-016-5 Paperback: 292 pages

Learn how to develop multimedia applications using
Python with this practical step-by-step guide

1. Use the Python Imaging Library for digital
image processing.

2. Create exciting 2D cartoon characters using
Pyglet multimedia framework.

3. Create GUI-based audio and video players using
QT Phonon framework.

4. Get to grips with the primer on GStreamer
multimedia framework and use this API for
audio and video processing.

Please check www.PacktPub.com for information on our titles

Expert Python Programming
ISBN: 978-1-84719-494-7 Paperback: 372 pages

Best practices for designing, coding, and distributing
your Python software

1. Learn Python development best practices from
an expert, with detailed coverage of naming
and coding conventions.

2. Apply object-oriented principles, design
patterns, and advanced syntax tricks.

3. Manage your code with distributed
version control.

4. Profile and optimize your code.

Practical Maya Programming
with Python
ISBN: 978-1-84969-472-8 Paperback: 321 pages

Unleash your creativity with Maya and explore its
features through Python

1. Create and customize UIs using standard tools
and libraries.

2. Understand how Maya can leverage advanced
Python features.

3. Make your tools, and Maya itself, fully
automatable.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with PySide
	About Python
	What is PySide?
	Hello GUI
	Setting up PySide
	Installation
	Windows
	Mac OSX
	Linux

	Building PySide
	Windows
	Linux
	Prerequisites
	Building PySide

	Mac OSX

	Importing PySide objects
	My first PySide application
	Exception handling as a practice
	Summary

	Chapter 2: Enter through Windows
	Creating a simple window
	Application icon
	Showing tooltip
	Adding button
	Centering the Window on the screen
	About box
	Timers
	Windows style
	Summary

	Chapter 3: Main Windows and
Layout Management
	Creating the main window
	Status bar
	Menu bar
	The central widget
	Adding menu bar
	Adding menus

	Tool bar
	Layout management
	Absolute positioning
	Layout containers
	QBoxLayout
	QHBoxLayout
	QVBoxLayout

	QGridLayout
	QFormLayout
	QStackedLayout

	SDI and MDI
	A Simple Text Editor
	Summary

	Chapter 4: Events and Signals
	Event management
	Event loop
	Event processing
	Re-implementing event handlers
	Installing event filters
	Reimplementing the notify() function

	Signals and slots
	Drag-and-drop
	Drawing
	Graphics and effects
	Summary

	Chapter 5: Dialogs and Widgets
	Built-in dialogs
	QFileDialog
	QInputDialog
	QColorDialog
	QPrintDialog

	Custom dialogs
	Widgets at a glance
	Basic widgets
	Advanced widgets
	Organizer widgets

	Custom widget
	Implementation of MDI
	Summary

	Chapter 6: Handling Database
	Connecting to the database
	Executing SQL queries
	Executing a query
	Inserting, updating, and deleting records
	Navigating records
	Transactions

	Table and form views
	QSqlQueryModel
	QSqlTableModel
	QSqlRelationalTableModel

	Table view
	Form view
	Viewing relations in table views
	Summary

	Appendix: Resources
	PySide documentation wiki page
	API reference manuals
	Tutorials
	Community support

	Index

