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Preface

This laboratorymanual is intended for usewith a two-semester introductory physics course, either calculus-
based or noncalculus-based. For themost part, themanual includes the standard laboratories that have been
used bymany physics departments for years. However, in this edition there are available some laboratories
that use the newer computer-assisted data-taking equipment that has recently become popular. The major
change in the current addition is an attempt to be more concise in the Theory section of each laboratory to
include only what is required to prepare a student to take the needed measurements. As before, the
Instructor’sManual gives examples of the best possible experimental results that are possible for the data for
each laboratory. Complete solutions to all portions of each laboratory are included. All of the laboratories are
written in the same format that is described below in the order in which the sections occur.

O B J E C T I V E S
Each laboratory has a brief description of what subject is to be investigated. The current list of objectives
has been condensed compared to the previous edition.

E Q U I P M E N T
Each laboratory contains a brief list of the equipment needed to perform the laboratory.

T H E O R Y
This section is intended to be a description of the theory underlying the laboratory to be performed,
particularly describing the variables to be measured and the quantities to be determined from the
measurements. In many cases, the theory has been shortened significantly compared to previous editions.

E X P E R I M E N T A L P R O C E D U R E
The procedure given is usually very detailed. It attempts to give very explicit instructions on how to
perform the measurements. The data tables provided include the units in which the measurements are to
be recorded. With few exceptions, SI units are used.
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C A L C U L A T I O N S
Very detailed descriptions of the calculations to be performed are given. When practical, actual data are
recorded in a data table, and calculated quantities are recorded in a calculations table. This is the preferred
option because it emphasizes the distinction between measured quantities and quantities calculated from
the measured quantities. In some cases it is more practical to combine the two into a data and calculations
table. That has been done for some of the laboratories.

Whenever it is feasible, repeatedmeasurements are performed, and the student is asked to determine the
mean and standard error of themeasured quantities. For data that are expected to show a linear relationship
between two variables, a linear least squares fit to the data is required. Students are encouraged to do these
statistical calculations with a spreadsheet program such as Excel. It is also acceptable to do them on a
handheld calculator capable of performing them automatically. Use of the statistical calculations is included
in 35 of the 47 laboratories.

G R A P H S
Any graphs required are specifically described. All linear data are graphed and the least squares fit to the
data is shown on the graph along with the data.

P R E - L A B O R A T O R Y
Each laboratory includes a pre-laboratory assignment that is based upon the laboratory description. We
intend to prepare students to perform the laboratory by having them answer a series of questions about
the theory and working numerical problems related to the calculations in the laboratory. The questions in
the pre-laboratory have been changed somewhat to include more conceptual questions about the theory
behind the laboratory. However, there remains an emphasis on preparing students for the quantitative
processes needed to perform the laboratory.

L A B O R A T O R Y R E P O R T
The laboratory includes the data and calculations tables, a sample calculations section, and a list of
questions. Usually the questions are related to the actual data taken by the student. They attempt to
require the student to think critically about the significance of the data with respect to how well the data
can be said to verify the theoretical concepts that underlie the laboratory.

C O M P U T E R - A S S I S T E D L A B O R A T O R I E S
The Table of Contents lists 10 laboratories, prefaced by a symbol WWW that use computer-assisted data
collection and analysis. DataStudio software and compatible sensors are to be used for these laboratories.
The laboratories are available to purchasers of this manual at www.thomsonedu.com/physics/loyd.
Options for including these computer-assisted laboratories in a customized version of the lab manual are
available through Thomson’s digital library, Textchoice. Visit www.textchoice.com or contact your local
Thomson representative.

C O N T A C T I N F O R M A T I O N F O R A U T H O R
Please contact me at david.loyd@angelo.edu if you find any errors or have any suggestions for improve-
ments in the laboratory manual. I will keep an updated list of errors and suggestions at the Thomson
website.
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General Laboratory
Information

P U R P O S E O F L A B O R A T O R Y
The laboratory provides a unique opportunity to validate physical theories in a quantitative manner.
Laboratory experience demonstrates the limitations in the application of physical theories to real physical
situations. It teaches the role that experimental uncertainty plays in physical measurements and introduces
ways to minimize experimental uncertainty. In general, the purpose of these laboratory exercises is both to
demonstrate some physical principle and to teach techniques of careful measurement.

D A T A - T A K I N G P R O C E D U R E S
Original data should always be recorded directly in the data tables provided. Avoid the habit of recording
the original data on scratch sheets and transferring them to the data tables later.

When working in a group, all partners should contribute to the actual process of taking the measu-
rements. If time and other considerations permit, each partner should perform a separate set of measure-
ments as a check on the procedure. Each partner should record data separately even if only one set of data
is taken by the group.

S I G N I F I C A N T F I G U R E S
The number of significant figures means the number of digits known in some number. The number of
significant figures does not necessarily equal the total digits in the number because zeros are used as place
keepers when digits are not known. For example, in the number 123 there are three significant figures. In
the number 1230, although there are four digits in the number, there are only three significant figures
because the zero is assumed to be merely keeping a place. Similarly, the numbers 0.123 and 0.0123 both
have only three significant figures. The rules for determining the number of significant figures in a
number are:

. The most significant digit is the leftmost nonzero digit. In other words, zeros at the left are never
significant.

. In numbers that contain no decimal point, the rightmost nonzero digit is the least significant digit.

. In numbers that contain a decimal point, the rightmost digit is the least significant digit, regardless of
whether it is zero or nonzero.

. The number of significant digits is found by counting the places from the most significant to the least
significant digit.
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As an example, the numbers in the following list of numbers all have four significant figures. An
explanation for each is given.

. 3456: All four nonzero digits are significant.

. 135700: The two rightmost zeros are not significant because there is no decimal point.

. 0.003043: Zeros at the left are never significant.

. 0.01000: The zero at the left is not significant, but the three zeros at the right are significant because there
is a decimal point.

. 1030.: There is a decimal point, so all four numbers are significant.

. 1.057: Again, there is a decimal point, so all four are significant.

. 0.0002307: Zeros at the left are never significant.

R E A D I N G M E A S U R E M E N T S C A L E S
For themeasurement of any physical quantity such as mass, length, time, temperature, voltage, or current,
some appropriate measuring device must be chosen. Despite the diverse nature of the devices used to
measure the various quantities, they all have in common a measurement scale, and that scale has a
smallest marked scale division. All measurements should be done in the following very specific manner.
All meters and measuring devices should be read by interpolating between the smallest marked scale
division. Generally the most sensible interpolation is to attempt to estimate 10 divisions between the
smallest marked scale division. Consider the section of a meter stick pictured in Figure 1 that shows the
region between 2 cm and 5 cm. The smallest marked scale divisions are 1 mm apart. The location of
the arrow in the figure is to be determined. It is clearly between 3.4 cm and 3.5 cm, and the correct
procedure is to estimate the final place. In this case a reading of 3.45 cm is estimated. For this measurement
the first two digits are certain, but the last digit is estimated. This measurement is said to contain three
significant figures. Much of the data taken in this laboratory will have three significant figures, but
occasionally data may contain four or even five significant figures.

M I S T A K E S O R P E R S O N A L E R R O R S
All measurements are subject to errors. There are three types of errors, which are classified as personal,
systematic, or random. Random errors are sometimes called statistical errors. This section deals with
personal errors. Systematic and random errors will be discussed later. In fact, personal errors are not
really errors in the same sense as the other two types of errors. Instead, they are merely mistakes made by
the experimenter. Mistakes are fundamentally different from the other two types of errors because
mistakes can be completely eliminated if the experimenter is careful. Mistakes can be made either while
taking the data or later in calculations done with the original data. Either type of mistake is bad, but a
mistake made in the data-taking process is probably worse because often it is not discovered until it is too
late to correct it.

The correct attitude toward all data-taking processes is one of skepticism about all the procedures that
are carried out in the laboratory. Essentially, this amounts to assuming that things will go wrong unless

2 3 4 5

Figure 1
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constant attention is given to making sure that no mistakes are made. For every measurement taken, all
aspects of the process must be checked and rechecked. Everyone in the groupmust be convinced that they
know exactly what is supposed to be measured, what the correct procedure is to measure it, and that the
group is making no mistakes in carrying out that procedure.

A C C U R A C Y A N D P R E C I S I O N
The central point to experimental physical science is the measurement of physical quantities. It is assumed
that there exists a true value for any physical quantity, and the measurement process is an attempt to
discover that true value. It is expected that there will be some difference between the true value and the
measured value. The terms accuracy and precision are used to describe different aspects of the difference
between the measured value and the true value of some quantity.

The accuracy of ameasurement is determined by how close the result of themeasurement is to the true
value. For example, in several of the experiments, we will determine a value for the acceleration due to
gravity. For this case, the accuracy of the result is decided by how close it is to the true value of 9.80m/s2.
For many laboratory experiments, the true value of the measured quantity is not known, and we cannot
determine the accuracy of the experiment from the available data.

The precision of a measurement refers essentially to how many digits in the result are significant. It
indicates also how reproducible the results are when measurements of some quantity are repeated. The
smaller the variations of the individual repeated measurements of a quantity, the more precise the quoted
value of the measurement is considered to be. We will elaborate upon and quantify this idea about the
relationship between the size of the variations in the measurements and the precision of the measurement
in a later section on statistical methods.

S Y S T E M A T I C E R R O R S
Systematic errors are errors that tend to be in the same direction for repeated measurements, giving
results that are either consistently above the true value or consistently below the true value. In many cases
such errors are caused by some flaw in the experimental apparatus. For example, a voltmeter could be
incorrectly calibrated in such a way that it consistently gives a reading that is 80% of the true voltage
across its input terminals. It is also possible to have a voltmeter with a zero offset on its scale, which is
assumed for this discussion to be 0.50 volts. In the first case, the error is a constant fraction of the true
value (in this case, 20%), and in the second case, the error is a constant absolute voltage. Either of these is a
systematic error, and the answer to the question of which one is worse depends upon themagnitude of the
voltage to be measured. If the voltage to be measured is l.00 volts, then the meter with absolute error of
0.50 volts causes an error of 50%, whereas the meter with relative error causes an error of 20%. On the
other hand, if the voltage to be measured is l00 volts, the meter with absolute error of 0.50 volts causes
only a 0.5% error, and the other meter still causes a 20% error, or in this case, 20 volts. If this measured
voltage is used to calculate some other quantity, it too will show a systematic error in the results.

A second common type of systematic error is failure to consider all of the variables that are important
in the experiment. In some cases one may be aware that some other factors need to be considered, but
might not have the ability to do so quantitatively. For example, when using an air table to validate
Newton’s Laws, it is common to ignore friction. This is done because friction is assumed to be small, but
also because often there is no easy way to determine its contribution. It is expected, therefore, that
neglecting friction might introduce a systematic error.

For purposes of this laboratory, the concern with systematic errors will usually be twofold—to
attempt to eliminate any obvious systematic errors to the extent possible, and to attempt to identify any
data that show systematic error, and suggest possible reasonable causes for such error.
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R A N D O M E R R O R S
The final class of errors is those that are produced by unpredictable and unknown variations in the total
experimental process even when one does the experiment as carefully as is humanly possible. The
variations caused by an observer’s inability to estimate the last digit the same way every time will
definitely be one contribution. Other variations can be caused by fluctuations in line voltage, temperature
changes, mechanical vibrations, or any of the many physical variations that may be inherent in the
equipment or any other aspect of the measurement process. It is important to realize the following
difference between random errors and personal and systematic errors. In principle all personal and
systematic errors can be eliminated, but there will always remain some random errors in any
measurement. Even in principle the random errors can never be completely eliminated.

Random errors, on the other hand, can be determined in a prescribed way. It has been found
empirically that random errors often are distributed according to a particular statistical distribution
function called the Gauss distribution function, which is also referred to as the normal error function.
Random measurement errors are said to be normally distributed when a histogram of the frequency
distribution of the results of a large number of repeated measurements produces a bell-shaped curve with
a peak at the mean of the measurements. The histogram of the frequency distribution is simply a graph of
the number of times the measurements fall within a certain range versus the measured values.

M E A N A N D S T A N D A R D D E V I A T I O N
Assume a series of repeated measurements is made in which there are no systematic or personal errors,
and thus only random errors are present. Assume that there are nmeasurements made of some quantity x,
and the ith value obtained is xi where i varies from 1 to n. If it is true that the errors are normally
distributed, statistical theory says that the mean is the best approximation to the true value. In formal
mathematical terms, the mean (which has a symbol of x ) is given by the equation

x ¼ 1

n

� �Xn
1

xi ðEq: 1Þ

For example, assume that four measurements are made of some quantity x, and that the four results
are 18.6, 19.3, 17.7, and 20.4. Equation 1 is simply shorthand notation for the averaging process given by

x ¼ ð1=4Þ ð18:6þ 19:3þ 17:7þ 20:4Þ ¼ 19:0 ðEq: 2Þ

It is not surprising that the mean is the best approximation to the true value. It seems intuitively
reasonable. We can prove mathematically that the mean is indeed the proper choice by something called
the principle of least squares, which we state in the following way. The most probable value for some
quantity determined from a series of measurements is that value that minimizes the sum of the squares of
the deviations between the chosen value and the measured values. We can demonstrate that the proper
choice to produce this minimum sum of deviations is simply the mean of the measurements. This idea can
be usefully generalized later for the case of two variables.

Statistical theory, furthermore, states that the precision of the measurement can be determined by
calculating a quantity called the standard deviation from the mean of the measurements. The symbol for
standard deviation from the mean is sn�1, and it is defined by the equation

sn�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
1

xi � x½ �2
s

ðEq: 3Þ
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For the data given, the standard deviation is calculated from Equation 3 to be the following:

sn�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4� 1
ðð18:6� 19:0Þ2 þ ð19:3� 19:0Þ2 þ ð17:7� 19:0Þ2 þ ð20:4� 19:0Þ2Þ

r
¼ 1:1

The quantity sn�1, which is actually called the sample standard deviation, is a measure of the
precision of the measurement in the following statistical sense. It gives the probability that the
measurements fall within a certain range of the measured mean. From the sample standard deviation and
tables of the standard error function, it is possible to determine the probability that the measurements fall
within any desired range about the mean. The common range to be quoted is the range of one standard
deviation as calculated by Equation 3.

Probability theory states that approximately 68.3% of all repeated measurements should fall within a
range of plus or minus sn�1 from the mean. Furthermore, 95.5% of all repeated measurements should
fall within a range of 2sn�1 from the mean. For the example given above, 68.3% should fall in the range
19.0 � 1.1 (from 17.9 to 20.1), and 95.5% should fall in the range 19.0 � 2.2 (from 16.8 to 21.2).

As a final note on the expected distribution for measurements that follow a normal error curve, 99.73%
of all measurements should fall within 3sn�1 of the mean. This implies that if one of the measurements is
3sn�1 or farther from the mean, it is very unlikely that it is a random error. It is much more likely to be the
result of a personal error.

A second issue that can be addressed by these repeated measurements is the precision of the mean.
After all, this is what is really of concern, because the mean is the best estimate of the true value. The
precision of the mean is indicated by a quantity called the standard error. The standard error, which has a
symbol of a, is defined by

a ¼ sn�1ffiffiffi
n

p ðEq: 4Þ

For the example given above with sn�1¼ 1.1 and n¼ 4, the value is a¼ 0.55. The significance of a is
that if several groups of n measurements are made, each producing a value for the mean, 68.3% of the
means should fall in the range 19.0 � 0.6. In other words, there is a 68.3% probability that the true value
lies in this range. Of course, all these statements are valid only if there are no other errors present other
than random errors.

In this laboratory, students will often be asked to make repeated measurements of some quantity and
to determine the mean. Assuming that a represents the uncertainty in the value of the mean, a crucial
question is the appropriate number of significant figures to retain in a. In this laboratory, the convention to
be followed is to retain one significant figure in a and to make the least significant figure in the mean be in
the same decimal place as a. In this context the appropriate procedure is to originally calculate themean and
sn�1 to more significant figures than it is assumed are needed, and then allow the value of a to determine
the significant figures to be retained in the mean. In the example given above, the result should be stated
as 19.0 � 0.6. Notice that as described above, only one significant figure has been retained in a, and the
mean has its least significant digit in the same decimal place as a.

To illustrate how the concepts of the mean and standard error apply to accuracy and precision,
consider the following sets of threemeasurements of the acceleration due to gravitymade by four students
named Alf, Beth, Carl, and Dee. The results for each measurement, the means, the sample standard
deviations sn�1, and the standard errors a are given for each student.

The accuracy of each student’s data is determined by comparing the mean with the true value of 9.80.
Dee’s value of 9.76 is the most accurate, Alf’s value of 9.43 is second, Beth’s value of 9.26 is third, and Carl’s
value of 8.74 is the least accurate. Using the values of the standard errors of the mean as a criterion for
precision, Carl’s value is themost precise, Dee’s is second, Beth’s is third, andAlf’s value is the least precise.

In fact, the situation is not quite so simple as has been presented. There is an interplay between the
concepts of accuracy and precision that we must consider. If a measurement appears to be very accurate,
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but the precision is poor, we do not know if the results are meaningful. Consider Alf’s mean of 9.43, which
differs from the true value of 9.80 by only 0.37, and thus appears to be quite accurate. However, all of his
measurements have large deviations from the true value, andhis standard error is very large. It seemsmuch
more likely, then, that Alf’s mean of 9.43 is due to luck rather than to a careful measurement. In contrast, it
seems likely that Dee’s mean of 9.76 is meaningful because the value of her standard error is small.

Carl’s results are an example of a situation that is common in the interplay between accuracy and
precision. Carl’s precision is extremely high, yet his accuracy is not very good. When a measurement has
high precision but poor accuracy, it is often the sign of a systematic error, and in this case it seems very likely
that Carl has some systematic error in his measurements.

P R O P A G A T I O N O F E R R O R S
Consider the following set of data that was taken bymeasuring the coordinate position d of some object as a
function of time t.

From these data the average speed over each time interval can be calculated. The average speed n over
some time interval Dt during which a distance interval Dd was traveled is given by

n ¼ Dd
Dt

ðEq: 5Þ

For the data of Table 2 there are four intervals for the five data points, and for the first two intervals the
results are:

n1 ¼ 11:97� 7:57

2:00� 1:00
¼ 4:40m=s n2 ¼ 16:58� 11:97

3:00� 2:00
¼ 4:61m=s

The other two intervals give average speeds of 4.42m/s and 4.49m/s. A basic question is onwhat basis
was the decision made to express n1; for example, as 4.40 rather than 4.4 or 4.400?We derive the answer by

Table 1

Alf Beth Carl Dee

Measurement 1 7.83 9.53 8.70 9.72
Measurement 2 11.61 9.38 8.75 9.86
Measurement 3 8.85 8.87 8.77 9.70
Mean 9.43 9.26 8.74 9.76
Standard Deviation 1.96 0.35 0.036 0.087
Standard Error 1 0.2 0.02 0.05

Table 2

d (m) t (s)

7.57 1.00
11.97 2.00
16.58 3.00
21.00 4.00
25.49 5.00
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further extending the rules for significant figures to include calculations. Use the following rules to
determine the number of significant figures to retain at the end of a calculation:

. When adding or subtracting, figures to the right of the last column in which all figures are significant
should be dropped.

. When multiplying or dividing, retain only as many significant figures in the result as are contained in
the least precise quantity in the calculation.

. The last significant figure is increased by 1 if the figure beyond it (which is dropped) is 5 or greater.

These rules apply only to the determination of the number of significant figures in the final result.
In the intermediate steps of a calculation, one more significant figure should be kept than is kept in the
final result.

Consider these examples of addition, multiplication, and division of numbers:

753:1
37:08
0:697
56:3
847:177

753:1
37:1
0:7

56:3
847:2

327:23
� 36:73
12019:158

8:90906
36:73 327:23

Following the above rules for addition strictly implies rewriting each number as shown in the second
addition where the first digit beyond the decimal is the least significant digit. This is true because that
column is the rightmost column in which all digits are significant. Note that one gets the same result if the
numbers are added on the calculator (as done at the left), and then it is noted that the first digit beyond the
decimal is the last one that can be kept. Therefore 847.177 is rounded off to 847.2. A similar process is used
for multiplication and division, as shown in the third and fourth part above. In each case, the result is
rounded to four significant figures because the least significant number in each calculation (36.73) has
only four significant figures. For the multiplication the result is 12020, and for the division it is 8.909.

L I N E A R L E A S T S Q U A R E S F I T S
Often measurements are taken by changing one variable (call it x) and measuring how a second variable
(call it y) changes as a function of the first variable. In many cases of interest it is assumed that there exists
a linear relationship between the two variables. In mathematical terms one can say that the variables obey
an equation of the form

y ¼ mxþ b ðEq: 6Þ

wherem and b are constants. This also implies that if a graph is made with x as the horizontal axis and y as
the vertical axis, it will be a straight line with m equal to the slope (defined as Dy/Dx) and b equal to the y
intercept (the value of y at x¼ 0).

The question is how to best verify that the data do indeed obey Equation 6. One way is to make a
graph of the data, and then try to draw the best straight line possible through the data points. This will
give a qualitative answer to the question, but it is possible to give a quantitative answer to the question by
the process described below.

The measurements are repeated measurements in the sense that they are to be considered together in
the attempt to determine to what extent the data obey Equation 6. It is possible to generalize the idea of
minimizing the sum of squares of the deviations described earlier for the mean and standard deviation to
the present case. The result of the generalization to two-variable linear data is called a linear least squares
fit to the data. It is also sometimes referred to as a linear regression.
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The aim of the process is to determine the values ofm and b that produce the best straight-line fit to the
data. Any choice of values for m and b will produce a straight line, with values of y determined by the
choice of x. For any such straight line (determined by a given m and b) there will be a deviation between
each of the measured y’s and the y’s from the straight-line fit at the value of the measured x’s. The least
squares fit is that m and b for which the sum of the squares of these deviations is a minimum. Statistical
theory states that the appropriate values ofm and b that will produce this minimum sum of squares of the
deviations are given by the following equations:

m ¼
n
Xn
1

xiyi �
Xn
1

xi

 ! Xn
1

yi

 !

n
Xn
1

x2i �
Xn
1

xi

 !2
ðEq: 7Þ

b ¼

Xn
1

yi

 ! Xn
1

x2i

 !
�

Xn
1

xiyi

 ! Xn
1

xi

 !

n
Xn
1

x2i �
Xn
1

xi

 !2
ðEq: 8Þ

Refer again to the data of Table 2 for coordinate position versus time. The question to be answered is
whether or not the data are consistent with constant velocity. If the speed v is constant, the data can be fit
by an equation of the form

d ¼ ntþ do ðEq: 9Þ

Equation 9 is of the form of Equation 6with d corresponding to y, t corresponding to x, v corresponding
tom, and do corresponding to b. Thus vwill be the slope of a graph of d versus t, and dowill be the intercept,
which is the coordinate position at the arbitrarily chosen time t¼ 0.

Calculating some of the individual terms gives:

P
ti ¼ 1:00þ 2:00þ 3:00þ 4:00þ 5:00 ¼ 15:00P ðtiÞ2 ¼ ð1:00Þ2þð2:00Þ2þð3:00Þ2þð4:00Þ2þð5:00Þ2¼ 55:00P
di ¼ 7:57þ 11:97þ 16:58þ 21:00þ 25:49 ¼ 82:61P
tidi ¼ ð1:00Þð7:57Þ þ ð2:00Þð11:97Þ þ ð3:00Þð16:58Þ þ ð4:00Þð21:00Þ þ ð5:00Þð25:49Þ ¼ 292:70P ðdiÞ2 ¼ ð7:57Þ2þð11:97Þ2þð16:58Þ2þð21:00Þ2þð25:49Þ2¼ 1566:22

Using these values in Equations 7 and 8 with the appropriate correspondence of variables gives
v¼ 4.49 and do¼ 3.06. Thus the velocity is determined to be 4.49m/s, and the coordinate at t¼ 0 is found to
be 3.06m.

At this point, the best possible straight-line fit to the data has been determined by the least squares fit
process. A second goal remains, to determine how well the data actually fit the straight line that we have
obtained. Again, we derive a qualitative answer to this question by making a graph of the data and the
straight line and qualitatively judging the agreement between the line and the data.

There is, however, a quantitative measure of howwell the data follow the straight line obtained by the
least squares fit. It is given by the value of a quantity called the correlation coefficient, r. This quantity is a
measure of the fit of the data to a straight line with r¼ 1.000 exactly signifying a perfect correlation, and
r¼ 0 signifying no correlation at all. The equation to calculate r in terms of the general variables x and y is
given by
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r ¼
n
Xn
1

xiyi �
Xn
1

xi

 ! Xn
1

yi

 !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Xn
1

x2i �
Xn
1

xi

 !2
vuut

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Xn
1

y2i �
Xn
1

yi

 !2
vuut

ðEq: 10Þ

Making the substitutions for the variables of the problem of the fit to the displacement versus time by
substituting t for x and d for y in the above equation and using the appropriate numerical values calculated
earlier gives r¼ 0.99998. Thus the data show an almost perfect linear relationship because r is so close to
1.000. In calculations of r keep either three significant figures, or else enough until the last place is not a 9.

When performing a least squares fit to data, particularly when a small number of data points are
involved, there is some tendency to obtain a surprisingly good value for r even for data that do not
appear to be very linear. For those cases, we can determine the significance of a given value of r by
comparing the obtained value of rwith the probability that that value of rwould be obtained for n values
of two variables that are unrelated. A table for such comparisons is given in Appendix I in a table entitled
Correlation Coefficients.

S T A T I S T I C A L C A L C U L A T I O N S
A very high percentage of the laboratories in this course will involve two variables that are linearly
related. These cases usually will require a least squares fit to the data. Although the least squares fit
calculations and mean and standard deviation calculations are not difficult in principle, they are tedious
and time-consuming. The use of a spreadsheet computer program such as Excel is highly recommended.
As an alternative, many handheld calculators have automatic routines built in that allow the calculation of
these quantities simply by inputting the data points one after another. Note that most calculators will
calculate two different standard deviations. The one needed is usually denoted sn�1, and it is the sample
standard deviation. Also available onmost calculators is a quantity that is usually denoted as sn. It applies
to the case when the population is known, and it will never be appropriate for data taken in this
laboratory. Always be sure to choose the quantity sn�1, which is the one defined by Equation 3.

P E R C E N T A G E E R R O R A N D P E R C E N T A G E D I F F E R E N C E
In several of the laboratory exercises, the true value of the quantity being measured will be considered to
be known. In those cases, the accuracy of the experiment will be determined by comparing the
experimental result with the known value. Normally this will be done by calculating the percentage error
of your measurement compared to the given known value. If E stands for the experimental value, and K
stands for the known value, then the percentage error is given by

Percentage error ¼ jE� Kj
K

� 100% ðEq: 11Þ

In other cases we will measure a given quantity by two different methods. There will then be two
different experimental values, E1 and E2, but the true value may not be known. For this case, we will
calculate the percentage difference between the two experimental values. Note that this tells nothing
about the accuracy of the experiment, but will be a measure of the precision. The percentage difference
between the two measurements is defined as

Percentage difference ¼ jE2 � E1j
½E1 þ E2�=2� 100% ðEq: 12Þ

Laboratory n General Laboratory Information 9



P R E P A R I N G G R A P H S
It is helpful to represent data in the form of a graph when interpreting the overall trend of the data. Most
of the graphs for this laboratory will use rectangular Cartesian coordinates. Note that it is customary to
denote the horizontal axis as x and the vertical axis as ywhen developing general equations, as was done
in the development of the equations for a linear least squares fit. However, any two variables can be
plotted against each other.

When preparing a graph, first choose a scale for each of the axes. It is not necessary to choose the same
scale for both axes. In fact, rarely will it be convenient to have the same scale for both axes. Instead, choose
the scale for each axis so that the graph will range over as much of the graph paper as possible, consistent
with a convenient scale. Choose scales that have the smallest divisions of the graph paper equal to
multiples of 2, 5, or 10 units. This makes it much easier to interpolate between the divisions to locate the
data points when graphing.

The student is expected to bring to each laboratory a supply of good quality linear graph paper.
A very good grade of centimeter by centimeter graph paper with one division per millimeter is the best
choice. Do not, for example, ever use 1/4 inch by 1/4 inch sketch paper or other such coarse scaled paper as
graph paper. In some cases special graph paper like semilog or log-log graph paper may be required.

Figure 2 is a graph of the data for displacement versus time from Table 2 for which the least squares fit
was previouslymade.Note that scales for each axis have been chosen, to spread the graph over a reasonable
portion of the page. Also note that because the data have been assumed linear, a straight line has been
drawn through the data points. The straight line is the one obtained from the least squares fit to the data.

For most experiments, the variables will take on only positive values. For that case the scales should
range from zero to greater than the largest value for any data point. For example, in Figure 2 the
displacement is chosen to range from 0 to 30meters because the largest displacement is 25.49, and the time
scale has been chosen to range from 0 to 6 seconds because the largest time is 5.00 seconds. Also note that
the scales should not be suppressed as a means to stretch out the graph. For example, if a set of data
contains ordinates that range from 60 to 90, do not choose a scale that shows only that range. Instead a
scale from 0 to 100 should be chosen, and there is nothing that can be done in that case to make the graph
range over more than about 30% of the graph paper. Scales should always be chosen to increase to the
right of the origin and to increase above the origin.
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Graphs should always have the scales labeled with the name and units of each variable along each
axis. Major scale divisions should be labeled with the appropriate numbers defining the scale. Always
include a title for each graph, keeping in mind that it is customary to state the vertical axis versus the
horizontal axis.

All graphs should be plotted as points with no attempt to connect the data with a smooth curve. Do
not write the coordinates on the graph next to the data point, as is common practice in mathematics
classes. The only time it is appropriate to draw any continuous line to represent the trend of the data is
when it is assumed that the mathematical form of the data is known. In practice, the only time this will be
true will be when linearity is assumed, and in that case, it is appropriate to draw the straight line that has
been obtained by the least squares fitting procedure.
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Measurement of Length

O B J E C T I V E S
o Demonstrate the specific knowledge gained by repeated measurements of the length and width

of a table.

o Apply the statistical concepts of mean, standard deviation from the mean, and standard error to
these measurements.

o Demonstrate propagation of errors by determining the uncertainty in the area calculated from
the measured length and width.

E Q U I P M E N T L I S T
. 2-meter stick

. Laboratory table

T H E O R Y
In this laboratory it is assumed that the uncertainty in the measurement of the length and width of the
table is due to random errors. If this assumption is valid, then the mean of a series of repeated measu-
rements represents the most probable value for the length or width.

Consider the general case in which n measurements of the length and width of the table are made.
Wewill make 10 measurements, so n= 10 for this case, but we will develop equations for the case in which
n can be any chosen value. If Li and Wi stand for the individual measurements of the length and width,
and L and W stand for the mean of those measurements, the equations relating them are

L ¼
� 1
n

�Xn
i

Li W ¼
� 1
n

�Xn
i

Wi ðEq: 1Þ

We get information about the precision of the measurement from the variations of the individual
measurements using the statistical concept of the standard deviation. The values of the standard
deviation from the mean for the length and width of the table, sLn�1 and sWn�1; are given by the equations:

sLn�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
1

ðLi � LÞ2
s

sWn�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
1

ðWi �WÞ2
s

ðEq: 2Þ
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If errors are only random, it should be true that approximately 68.3% of the measurements of length
should fall in the range L � sLn�1; and that approximately 68.3% of the measurements of width should fall
within the range W � sWn�1: Furthermore, 95.5% of the measurements of both length and width should
fall within 2 sn–1 of the mean, and 99.73% should fall within 3 sn–1 of the mean.

The precision of the mean for L and W is given by quantities called the standard error, aL and aW.
These quantities are defined by the following equations:

aL ¼ sLn�1ffiffiffi
n

p aW ¼ sWn�1ffiffiffi
n

p ðEq: 3Þ

The meaning of aL and aW is that, if the errors are only random, there is a 68.3% chance that the true value
of the length lies within the range L� aL and the true value of the width lies within the range W � aW .

An important problem in experimental physics is to determine the uncertainty in some quantity
that is derived by calculations from other directly measured quantities. For this experiment, consider the
area A of the table as calculated from the measured values of the length and width L and W by the
following:

A ¼ L � W ðEq: 4Þ

For the case of an area that is the product of twomeasured quantities, the uncertainty in the area is related
to the uncertainty of the length and width by:

aA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLÞ2ðaWÞ2 þ ðWÞ2ðaLÞ2

q
ðEq: 5Þ

E X P E R I M E N T A L P R O C E D U R E
1. Place the 2-meter stick along the length of the table near the middle of the width and parallel to one

edge of the length. Do not attempt to line up either edge of the table with one end of the meter stick or
with any certain mark on the meter stick.

2. Let X stand for the coordinate position in the length direction. Read the scale on the 2-meter stick that
is aligned with one end of the table and record that measurement in Data and Calculations Table 1 as
X1. Read the scale that is aligned at the other end of the table and record that measurement in Data and
Calculations Table 1 as X2. A 3�5 note card held next to the edge of the table may help to determine
where the 2-meter stick is aligned with the table for each measurement. Note that the stick has
1 millimeter as the smallest marked scale division. Therefore, each coordinate should be estimated to the
nearest 0.1 millimeter (nearest 0.0001 m).

3. Repeat Steps 1 and 2 nine more times for a total of 10 measurements of the length of the table. For each
measurement place the 2-meter stick on the table with no attempt to align either end of the stick or any
particular mark on the stick with either end of the table. Make the measurements at 10 different
places along the width of the table so that any variation in the length of the table is included in the
measurements.

4. Perform Steps 1 through 3 for 10 measurements of the width of the table. Let the coordinate for the
width be given by Y and record the 10 values of Y1 and Y2 in Data and Calculations Table 2. Again
place the stick along the different lines each time, but make no attempt to align any particular mark on
the stick with either edge of the table.
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C A L C U L A T I O N S
1. After all measurements are completed, perform the subtractions of the coordinate positions to

determine the 10 values of the length Li, and the 10 values of widthWi. Record the 10 values of Li and
Wi in the appropriate table.

2. Use Equations 1 to calculate the mean length L and the mean width W and record their values in the
appropriate table. Keep five decimal places in these results. For example, typical values might be
L ¼ 1:37157m and W ¼ 0:76384m.

3. For each measurement of length and width, calculate the values of Li � L andWi �W and record them
in the appropriate table. Then for each value of the length and width, calculate and record the values
of ðLi �LÞ2 and ðWi �WÞ2 in the appropriate table.

4. Perform the summations of the values of ðLi� LÞ2 and the summations of the values of ðWi �WÞ2 and
record them in the appropriate box in the tables.

5. Use the values of the summations of ðLi � LÞ2 and of ðWi �WÞ2 in Equations 2 to calculate the values of
sLn�1 and sWn�1 and record them in the appropriate table.

6. Calculate L� sLn�1; Lþ sLn�1; W � sWn�1; and W þ sWn�1 and record the values in the appropriate table.

7. Use the values of sLn�1 and sWn�1 in Equations 3 to calculate the values of aL and aW and record them in
the appropriate table.

8. Use the values of L andW in Equation 4 to calculate the value of A, the area of the table, and record it
in the appropriate table. Use Equation 5 to calculate the value of aA and record it in the appropriate
table.
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Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section . . . . . . . . . . . . . . . . Date . . . . . . . . . . . . . . . .

1 L A B O R A T O R Y 1 Measurement of Length

P R E - L A B O R A T O R Y A S S I G N M E N T
1. State the number of significant figures in each of the following numbers and explain your answer.

(a) 37.60__________

(b) 0.0130__________

(c) 13000__________

(d) 1.3400__________

2. Perform the indicated operations to the correct number of significant figures using the rules for
significant figures.

(a)
37:60

� 1:23 (b) 6:7 j 8:975 (c)

3:765
þ 1:2
þ 37:21

3–6. Three students named Abe, Barb, and Cal make measurements (in m) of the length of a table
using a meter stick. Each student’s measurements are tabulated in the table below along with the
mean, the standard deviation from the mean, and the standard error of the measurements.

Student L1 L2 L3 L4 L sn–1 a

Abe 1.4717 1.4711 1.4722 1.4715 1.4716 0.00046 0.0002

Barb 1.4753 1.4759 1.4756 1.4749 1.4754 0.00043 0.0002

Cal 1.4719 1.4723 1.4727 1.4705 1.4719 0.00096 0.0005

Note that in each case only one significant figure is kept in the standard error a, and this determines
the number of significant figures in the mean. The actual length of the table is determined by very
sophisticated laser measurement techniques to be 1.4715 m.
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3. State how one determines the accuracy of a measurement. Apply your idea to the measurements
of the three students above and state which of the students has the most accurate measurement.
Why is that your conclusion?

4. Apply Equations 1, 2, and 3 to calculate the mean, standard deviation, and standard error for Abe’s
measurements of length. Confirm that your calculated values are the same as those in the table.
Show your calculations explicitly.

5. State the characteristics of data that indicate a systematic error. Do any of the three students have
data that suggest the possibility of a systematic error? If so, state which student it is, and state how
the data indicate your conclusion.

6. Which student has the best measurement considering both accuracy and precision? State clearly
what the characteristics are of the student’s data on which your answer is based.
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Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section . . . . . . . . . . . . . . . . Date . . . . . . . . . . . . . . . .

Lab Partners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 L A B O R A T O R Y 1 Measurement of Length

L A B O R A T O R Y R E P O R T
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Data and Calculations Table 1 (nearest 0.0001 m, which is 0.1 mm)

Trial X1 (m) X2 (m) Li =X2 –X1 (m) Li � L (m) ðLi � LÞ2 (m2)

Xn
1

ðLi � LÞ2 ¼

L ¼ sLn�1 ¼ L� sLn�1 ¼ Lþ sLn�1 ¼ aL ¼
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S A M P L E C A L C U L A T I O N S
1. L1 ¼ X1

2 �X1
1 ¼

2. W1 ¼ Y1
2 �Y1

1 ¼

3. L ¼ 1

10

X10
1

Li ¼

4. W ¼ 1

10

X10
1

Wi ¼

5. L1 � L ¼
6. ðL1 � LÞ2 ¼
7. W1 �W ¼
8. ðW1 �WÞ2 ¼

9. sLn�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
1

ðLi � LÞ2
s

10. L� sLn�1 ¼
11. Lþ sLn�1 ¼

Data and Calculations Table 2 (nearest 0.0001 m, which is 0.1 mm)

Trial Y1 (m) Y2 (m) Wi=Y2 – Y1 (m) Wi �W (m) ðWi �WÞ2 (m2)

Xn
1

ðWi �WÞ2 ¼

W ¼ sWn�1 ¼ W � sWn�1 ¼ W þ sWn�1 ¼ aW ¼

A ¼ L�W ¼ sA ¼
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12. sWn�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
1

ðWi �WÞ2
s

13. W � sWn�1 ¼
14. W þ sWn�1 ¼
15. A ¼ L�W ¼
16. sA=

Q U E S T I O N S
1. According to statistical theory, 68% of your measurements of the length of the table should fall in

the range from L� sLn�1 to Lþ sLn�1. About 7 of your 10 measurements should fall in this range. What
is the range of these values for your data? From __________m to __________m. How many of your 10
measurements of the length of the table fall in this range? __________? State clearly the extent to which
your data for the length agree with the theory. What is your evidence for your statement?

2. Answer the same question for the width. Range of W � sWn�1 to W þ sWn�1 is from __________m to
__________m. The number of measurements that fall in that range is __________. Do your data for the
width of the table agree with the theory reasonably well? State your evidence for your opinion.

3. According to statistical theory, if any measurement of a given quantity has a deviation greater than
3sn–1 from the mean of that quantity, it is very unlikely that it is statistical variation, but rather is more
likely to be a mistake. Calculate the value of 3sLn�1. Do any of your measurements of length have a
deviation from the mean greater than that value? If so, calculate howmany times larger than sLn�1 it is.
Do any of your measurements of the length appear to be a mistake, and, if so, which ones?

4. For the width measurements calculate 3sWn�1. Do any of your measurements of width have a devi-
ation from the mean greater than that value? If so, calculate how many times larger than sWn�1 it is.
Do any of your measurements of width appear to be a mistake, and, if so, which ones?
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5. If possible, state the accuracy of your measurements of the length and width and give your reasoning.
If this cannot be done, state why it is not possible. If possible, state the precision of your measurement
of the length and width and give your reasoning. If this cannot be done, state why it is not possible.
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Measurement of Density

O B J E C T I V E S
o Determine the mass, length, and diameter of three cylinders of different metals.

o Calculate the density of the cylinders and compare with the accepted values of the density of the
metals.

o Determine the uncertainty in the value of the calculated density caused by the uncertainties in
the measured mass, length, and diameter.

E Q U I P M E N T L I S T
. Three solid cylinders of different metals (aluminum, brass, and iron)

. Vernier calipers

. Laboratory balance and calibrated masses

T H E O R Y
The most general definition of density is mass per unit volume. Density can vary throughout the body if
the mass is not distributed uniformly. If the mass in an object is distributed uniformly throughout the
object, the density r is defined as the total massM divided by the total volume V of the object. In equation
form this is

r ¼ M

V
ðEq: 1Þ

For a cylinder the volume is given by

V ¼ pd2L
4

ðEq: 2Þ

where d is the cylinder diameter, and L is its length. Using Equation 2 in Equation 1 gives

r ¼ 4M

pd2L
ðEq: 3Þ

We will determine the quantities M, d, and L by measuring each of them four times and calculating
the mean and standard error for each quantity. Using the mean of each measured quantity in Equation 3
leads to the best value for the measured density r.
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An important question in experimental physics is how the uncertainty in a quantity calculated from
other measured quantities is related to the uncertainty in those measured quantities. For this laboratory,
the uncertainty in the density (standard error) is related to the standard errors in the mass, length, and
diameter by:

ar ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaM
M

Þ2 þ ðaL
L
Þ2 þ 4ðad

d
Þ2

r
ðEq: 4Þ

The form of this equation is stated here without proof, but it can be derived from the relationship
between the measured quantities and the density described by Equation 3.

We determine the mass of the cylinders with a laboratory balance, which balances the weight of an
unknown mass m against the weight of a known mass mk. Although the balance is between two forces
(the weight of the masses), the scales can be calibrated in terms of mass assuming that the force per unit
mass is the same for both the known and unknown mass. The unknown mass on a pan at the left is
balanced against the sum of all the known masses placed on the right pan plus the mass equivalent of
the permanent sliding mass on the beam. Figure 2-1 shows a picture of a Harvard Trip balance, which has
a calibrated beam along which a permanent sliding mass can be moved in units of 0.1 gram up to
10 grams.

The length and diameter of the metal cylinder will be measured with a vernier caliper. A caliper is
actually any device used to determine thickness, the diameter of an object, or the distance between two
surfaces. Often calipers are in the form of two legs fastened together with a rivet, so they can pivot about
the fastened point. The vernier caliper used in this laboratory consists of a fixed rule that contains one jaw,
and a second jaw with a vernier scale that slides along the fixed rule scale as shown in Figure 2-2.
Vernier is the name given to any scale that aids in interpolating between marked divisions.
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The caliper has marked on the main scale major divisions of 1 cm for which there are both a mark and
a number. On the main scale are also marked 10 divisions, each 1mm apart between the 1 cm divisions.
The 1mm marks are not labeled with a number. This vernier is marked with a scale that, when aligned
with different marks on the fixed rule scale, allows interpolation between the 1mm marks on the fixed
scale to 0.1mm accurately. A vernier caliper can measure distances accurately to the nearest 0.01 cm.

A measurement is made by closing the jaws on some object and noting the position of the zero mark
on the vernier and which one of the vernier marks is aligned with some mark on the fixed rule scale.
This is illustrated in Figure 2-3. The position of the zero mark of the vernier scale gives the first two
significant figures (2.0 cm in Figure 2-3). We derive the interpolation between 2.0 cm and 2.1 cm for this
case from the fact that the sixth mark beyond the vernier zero is best aligned with a mark on the fixed
rule scale. The reading in this example is 2.06 cm.

Before making any measurements, determine whether or not the vernier calipers read zero when
the jaws are closed. If the calipers do not read zero when the jaws are closed, they are said to have a zero
error. A correction is necessary for each measurement performed with the calipers. If the vernier zero is to
the right of the fixed scale zero when the jaws are closed, the zero error is positive. Note the mark on the
vernier scale that is aligned with the fixed scale, and subtract that number of units of 0.01 cm from each
measurement. For example, if the third mark to the right of the vernier zero is aligned with the fixed scale
when the jaws are closed, then each measurement should have 0.03 cm subtracted from it. If the vernier
zero is to the left of the fixed scale zero, then the zero error is negative. In that case, find which vernier
mark is aligned with the fixed scale. Then determine how far to the left of the 10 mark on the vernier scale
the alignment occurs. For example, if the alignment occurs at the 7 mark on the vernier scale, you will
add 0.03 cm to the reading.

E X P E R I M E N T A L P R O C E D U R E
1. Zero the laboratory balance according to directions given by your laboratory instructor.

2. Use the laboratory balance and calibrated masses to determine the mass of each of the three cylinders.
Make four independent measurements for each of the cylinders and record the results in the Data
Table.

3. Make four separate readings of the zero correction for the vernier calipers. Record the four values in
the Data Table. Record the zero correction as positive if the vernier zero is to the right of the fixed scale
zero and record it as negative if the vernier zero is to the left of the fixed scale zero.

4. Use the vernier calipers to measure the lengths of the three cylinders. Make four separate trials of the
measurement of the length of each cylinder. Measure the length at different places on each cylinder for
the four trials to sample any variation in length of the cylinders. Record the results in the Data Table.

5. Use the vernier calipers to measure the diameters of the three cylinders. Make four separate trials of
the measurement of the diameter of each cylinder. Measure the diameter at four different positions
along the length of the cylinders to sample any variation in diameter of the cylinders. Record the
results in the Data Table.C

O
P
Y
R
IG

H
T
ª

2
0
0
8
T
h
o
m
s
o
n
B
ro
o
k
s
/C
o
le

Alignment of
vernier with
fixed scale

Vernier
Zero Mark

2 3

Figure 2-3 Illustration of vernier caliper reading of 2.06 cm.

Laboratory 2 n Measurement of Density 25



C A L C U L A T I O N S
1. Calculate the mean M, the standard deviation sn–1, and the standard error aM for the four

measurements of the mass of each cylinder and record the results in the Data Table. For this and all
subsequent calculations keep one significant figure only for all standard errors, and then keep the
number of decimal places in the mean that coincides with the decimal place of the standard error.

2. Determine the measured length and diameter for each trial by making the appropriate zero correction
to each measurement and then calculating the means L and d, the standard deviations, and the
standard errors aL and ad for each cylinder. Record the results in the Data Table.

3. Use Equation 3 to calculate the density r of each of the cylinders. Use the mean values for the mass,
diameter, and length. Use Equation 4 to calculate the standard error of the density. Record the results
in the Data Table.

4. For purposes of this laboratory, assume that the density of aluminum is 2.70 gram/cm3, the density of
brass is 8.40 gram/cm3, and the density of iron is 7.85 gram/cm3. Calculate the percentage error in
your results for the density of each of these metals.
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2 L A B O R A T O R Y 2 Measurement of Density

P R E - L A B O R A T O R Y A S S I G N M E N T
1. A cylinder has a length of 3.23 cm, a diameter of 1.75 cm, and a mass of 65.3 grams.What is the density

of the cylinder? Based on its density, of what kind of material might it be made? Material is likely to
be: ______________________________ (Show your work.)

2. Figure 2-4 shows a vernier caliper scale set to a particular reading. What is the reading of the scale?
Reading= ______________________________cm

3. The caliper in Figure 2-5 has its jaws closed. If the caliper has a zero error, what is its value? Is it
positive or negative? Error = __________cm
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Figure 2-5 Vernier caliper with its jaws closed. Does it have a zero error?

2 3

Figure 2-4 Example of a reading of a vernier caliper.
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4. A series of four measurements of the mass, length, and diameter are made of a cylinder. The results of
these measurements are:

Mass—20.6, 20.5, 20.6, and 20.4 grams

Length—2.68, 2.67, 2.65, and 2.69 cm

Diameter—1.07, 1.05, 1.06, and 1.05 cm

Find the mean, standard deviation, and standard error for each of the measured quantities and
tabulate them below. Keep only one significant figure in each standard error and then keep decimal
places in the mean to coincide with the standard error.

M ¼ sn�1 ¼ aM ¼

L ¼ sn�1 ¼ aL ¼

d ¼ sn�1 ¼ ad ¼

Calculate the density and the standard error of the density using Equations 3 and 4. Keep only one
significant figure in the standard error and then keep decimal places in the density to coincide with the
standard error.

r ¼ ar ¼

5. Because ar has only one digit, it determines the place of the least significant digit kept in the
calculation of the density. From that information, how many significant figures are there in the
density for the above calculation? State clearly the reasoning for your answer.
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Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section . . . . . . . . . . . . . . . . Date . . . . . . . . . . . . . . . .

Lab Partners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 L A B O R A T O R Y 2 Measurement of Density

L A B O R A T O R Y R E P O R T

Zero Reading of the calipers ______________________________
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Length Data and Calculations Table

L1 (m) L2 (m) L3 (m) L4 (m) L (m) sn–1 (m) aL (m)

Aluminum

Brass

Iron

Mass Data and Calculations Table

M1 (kg) M2 (kg) M3 (kg) M4 (kg) M (kg) sn–1 (kg) aM (kg)

Aluminum

Brass

Iron

Diameter Data and Calculations Table

d1 (m) d2 (m) d3 (m) d4 (m) d (m) sn–1 (m) ad (m)

Aluminum

Brass

Iron
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S A M P L E C A L C U L A T I O N S
1. M ¼
2. sn�1 ¼
3. aM ¼ sn�1ffiffiffi

n
p ¼ sn�1ffiffiffi

4
p ¼

4. r ¼ 4M

pd2L
¼

5. ar ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� aM
M

�2 þ � aL
L

�2 þ 4
� ad
d

�2r
¼

6. Error =r – rknown=

7. %Error ¼ r�rknown
rknown

� 100% ¼

Q U E S T I O N S
1. Consider the uncertainty in the measured value of r to be given by ar. Taking the one decimal place

of ar as the least significant digit in r, how many significant figures are indicated for each of the
measurements of r?

2. What is the accuracy of your determination of the density for each metal? State clearly what quantity
describes the accuracy of your measurements of the density.

Density Data and Calculations Table

rexp (kg/m
3) ar (kg/m

3) rknown (kg/m3) Err (kg/m3) % Error

Aluminum

Brass

Iron
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3. Consider the value of the standard error ar as an indication of the precision of your measurements.
Express the standard error as a percentage of the measured value of the density, and relate it to the
accuracy of each of your measurements.

4. Considering your answers to Question 3, is there evidence for a systematic error in any of your
measurements of the density of any of the metals? State clearly your evidence either for or against the
presence of a systematic error.

5. For the same percentage error in each of the three quantities, mass, diameter, and length, whichwould
contribute the most to the error in the density? (Hint—Consider the form of Equation 4.)
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Force Table and Vector
Addition of Forces

O B J E C T I V E S
o Demonstrate the addition of several vectors to form a resultant vector using a force table.

o Demonstrate the relationship between the resultant of several vectors and the equilibrant of
those vectors.

o Illustrate and practice graphical and analytical solutions for the addition of vectors.

E Q U I P M E N T L I S T
. Force table with pulleys, ring, and string

. Mass holders and slotted masses

. Protractor and compass

T H E O R Y
Physical quantities that can be completely specified by magnitude only are called scalars. Examples of
scalars include temperature, volume, mass, and time intervals. Some physical quantities have both
magnitude and direction. These are called vectors. Examples of vector quantities include spatial dis-
placement, velocity, and force.

Consider the case of several forces with different magnitudes and directions that act at the same point.
The single force, which is equivalent in its effect to the effect produced by the several applied forces, is
called the resultant force. This resultant force can be found theoretically by a special addition process
known as vector addition.

One process of vector addition is by graphical techniques. Figure 3-1(a) shows the case of two vectors,
F1 of magnitude 20.0 N, and F2 of magnitude 30.0 N. A scale of 1.00 cm=10.0N is used, and these vectors
are shown as 2.00 cm and 3.00 cm in length, respectively. The forces are assumed to act at the same point,
but 608 different in direction as shown. Figure 3-1(b) shows the graphical addition process called the
parallelogrammethod. Two lines are constructed, each one parallel to one of the vectors having the length
of that vector as shown. The resultant FR of the vector addition of F1 and F2 is found by constructing the
straight line from the point at the tails of the two vectors to the opposite corner of the parallelogram formed
by the original vectors and the constructed lines. Ameasurement of the length of FR in Figure 3-1(b) shows
it to be 4.35 cm in length, and a measurement of the angle between FR and F1 shows it to be about 378.
Because the scale is 1.00 cm=10.0N, the value of the resultant FR is 43.5N, and it acts in a direction 378with
respect to the direction of F1.
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In the graphical vector addition process known as the polygonmethod one of the vectors is first drawn
to scale. Each successive vector to be added is drawn with its tail starting at the head of the preceding
vector. The resultant vector is the vector drawn from the tail of the first arrow to the head of the last arrow.
Figure 3-1(c) shows this process for the case of only two vectors (for which the polygon method is the
triangle method). The second vector, F2, must be drawn at the proper angle relative to F1 by extending a
line in the direction of F1 and constructing F2 relative to that line. In Figure 3-1(c) the length of FR is 4.35 cm
corresponding to 43.5 N, and it acts at 378 with respect to F1.

The polygon method is illustrated for the case of three vectors in Figure 3-2. Vector F1 is drawn, F2 is
drawn at the proper angle a relative to F1, and F3 is drawn at the proper angle b relative to F2. The resultant
FR is the vector connecting the tail of F1 and the head of F3.

The analytical process of vector addition uses trigonometry to express each vector in terms of its
components projected on the axes of a rectangular coordinate system. Figure 3-3 shows a vector, a coordinate
system superimposed on the vector, and the components jFjcos y and jFjsin y into which the vector is
resolved.When the analytical process formultiple vectors is used, each vector is resolved into components in
thatmanner. The components along each axis are then added algebraically to produce the net components of
the resultant vector along each axis. Those components are at right angles, and themagnitude of the resultant
can be found from the Pythagorean theorem. The case of three vectors, F1, F2, and F3, is shown in Figure 3-4.

60° 37° 37°

(a) (b) (c)

60°

F2 F2
F2

FR � F1 � F2

FR � F1 � F2

F1 F1 F1

Figure 3-1 Illustration of the parallelogram and triangle addition of vectors.

(a) (b)

FR � F1 � F2 � F3

F2

F1 F1

F2

F3

F3

�

���

Figure 3-2 Illustration of the polygon method for vector addition.

(b)(a)

x

y

x

y

(c)

F F F sin�

F cos�

� �

Figure 3-3 Illustration of analytical resolution of a vector.

34 Physics Laboratory Manual n Loyd



C
O
P
Y
R
IG

H
T
ª

2
0
0
8
T
h
o
m
s
o
n
B
ro
o
k
s
/C
o
le

Taking the algebraic sum of each of the components of the three vectors and combining the com-
ponents to find the resultant and its direction leads to the following:

FRx ¼ F1x þ F2x þ F3x ¼ 10:0 cos ð0�Þ þ 15:0 cos ð30�Þ þ 12:0 cos ð135�Þ ¼ 14:5

FRy ¼ F1y þ F2y þ F3y ¼ 10:0 sin ð0�Þ þ 15:0 sin ð30�Þ þ 12:0 sin ð135�Þ ¼ 16:0

jFRj ¼ FR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFRxÞ2 þ ðFRyÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð14:5Þ2 þ ð16:0Þ2

q
¼ 21:6

y ¼ arc tan ðFRy=FRxÞ ¼ arc tan ð16:0=14:5Þ ¼ arc tan ð1:10Þ ¼ 47:7�

The force table (Figure 3-5) provides a force from the gravitational attraction on masses attached to a
ring by a string passing over a pulley. Each force is applied over a separate pulley, and the pulley
positions can be adjusted to any desired position around a circular plate. Experimentally the applied
forces are balanced by the application of a single force that is equal to the magnitude of the resultant of the
applied forces and acts opposite of the resultant. This balancing force (called the equilibrant) is what is
determined by the measurements. The resultant is the same magnitude as the equilibrant and 1808
different in direction.

E X P E R I M E N T A L P R O C E D U R E
Part 1. Two Applied Forces

1. Place a pulley at the 20.08 mark on the force table and place a total of 0.100 kg (including the mass
holder) on the end of the string. Calculate the magnitude of the force (in N) produced by the mass.

12.0
15.0

y y

x x
10.0

(a) (b)

135°

30°

FRy � 16.0

FRx � 14.5

FR � 21.6

Figure 3-4 Illustration of the analytical addition of vectors.
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Assume that g = 9.80 m/s2. Assume three significant figures for this and for all other calculations of
force. Record the value of this force as F1 in Data Table 1.

2. Place a second pulley at the 90.08mark on the force table and place a total of 0.200 kg on the end of the
string. Calculate the force produced and record as F2 in Data Table 1.

3. Determine by trial and error the magnitude of mass needed and the angle at which it must be located
for the ring to be centered on the force table. Jiggle the ring slightly to be sure that this equilibrium
condition is met. Attach all strings to the ring so that they are directed along a line passing through the
center of the ring. All the forces will then act through the point at the center of the table. Record this
value of mass in Data Table 1 in the row labeled Equilibrant FE1.

4. Calculate the force produced (mg) on the experimentally determinedmass. Record themagnitude and
direction of this equilibrant force FE1 in Data Table 1.

5. The resultant FR1 is equal in magnitude to FE1, and its direction is 1808 from FE1. Record the magnitude
of the force FR1, the mass equivalent of this force, and the direction of the force in Data Table 1 in the
row labeled Resultant FR1.

Part 2. Three Applied Forces

1. Place a pulley at 30.08 with 0.150 kg on it, one at 100.08 with 0.200 kg on it, and one at 145.08 with
0.100 kg on it.

2. Calculate the force produced by those masses and record them as F3, F4, and F5 in Data Table 2.

3. Determine the equilibrant force and the resultant force by following a procedure like that in Part 1,
Steps 3 through 5 above. Record the magnitudes of the forces, the associated values of mass, and the
directions in Data Table 2 in the rows labeled FE2 and FR2.

C A L C U L A T I O N S
Part 1. Two Applied Forces

1. Find the resultant of these two applied forces by scaled graphical construction using the parallelogram
method. Use a ruler and protractor to construct vectors with scaled length and direction that represent
F1 and F2. A convenient scale might be 1.00 cm=0.100N. All directions are given relative to the force
table. Account for this in the graphical construction to ensure the proper angle of one vector to
another. Determine the magnitude and direction of the resultant from your graphical solution and
record them in the appropriate section of Calculations Table 1.

2. Use trigonometry to calculate the components of F1 and F2 and record them in the analytical solution
portion of Calculations Table 1. Add the components algebraically and determine the magnitude of
the resultant by the Pythagorean theorem. Determine the angle of the resultant from the arc tan of the
components. Record those results in Calculations Table 1.

3. Calculate the percentage error of the magnitude of the experimental value of FR compared to the
analytical solution for FR. Also calculate the percentage error of the magnitude of the graphical
solution for FR compared to the analytical solution for FR. For each of those comparisons, also calculate
the magnitude of the difference in the angle. Record all values in Calculations Table 1.

Part 2. Three Applied Forces

1. Use the polygon scaled graphical construction method to find the resultant of the three applied forces.
Determine the magnitude and direction of the resultant from your graphical solution and record them
in Calculations Table 2.

2. Use trigonometry to calculate the components of all three forces, the components of the resultant, and
the magnitude and direction of the resultant, and record them all in Calculations Table 2.

3. Make the same error calculations for this problem as described in Step 3 of Part 1 above. Record the
values in Calculations Table 2.
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3 L A B O R A T O R Y 3 Force Table and Vector Addition of Forces

P R E - L A B O R A T O R Y A S S I G N M E N T
1. Scalars are physical quantities that can be completely specified by their ______________________________.

2. A vector quantity is one that has both ______________________________ and ______________________________.

3. Classify each of the following physical quantities as vectors or scalars:

(a) Volume __________

(b) Force __________

(c) Density __________

(d) Velocity __________

(e) Acceleration __________

Answer Questions 4–7 with reference to Figure 3-6 below.

4. If F1 stands for a force vector of magnitude 30.0 N and F2 stands for a force vector of magnitude 40.0 N
acting in the directions shown in Figure 3-6, what are the magnitude and direction of the resultant
obtained by the vector addition of these two vectors using the analytical method? Show your work.

Magnitude = __________N Direction(relative to x axis) = __________degrees

5. What is the equilibrant force that would be needed to compensate for the resultant force of the vectors
F1 and F2 that you calculated in Question 4?

Magnitude= __________N Direction(relative to x axis) = __________degrees
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Figure 3-6 Addition of two force vectors.
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6. Figure 3-6 has been constructed to scale with 1.00 cm=10.0N. Use the parallelogram graphical
method to construct (on Figure 3-6) the resultant vector FR for the addition of F1 and F2. Measure the
length of the resultant vector and record it below. State the force represented by this length. Measure
with a protractor the angle that the resultant makes with the x axis.

Resultant vector length= __________cm

Force represented by this length= __________N

Direction of resultant relative to x axis = __________degrees

7. Use the polygon method of vector addition to construct on the axes below a graphical solution to the
problem in Figure 3-6. Use the scale 1.00 cm=10.0N.

Resultant vector length= __________cm

Force represented by this length= __________N

Direction of resultant relative to x axis = __________degrees

y

x
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L A B O R A T O R Y R E P O R T
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Data Table 1

Force Mass (kg) Force (N) Direction

F1 0.100 20.08

F2 0.200 90.08

Equilibrant FE1

Resultant FR1

Data Table 2

Force Mass (kg) Force (N) Direction

F3 0.150 30.08

F4 0.200 100.08

F5 0.100 145.08

Equilibrant FE2

Resultant FR2

Calculations Table 1

Graphical Solution

Force Mass (kg) Force (N) Direction

F1 0.100 20.08

F2 0.200 90.08

Resultant FR1
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P A R T 1 . E R R O R C A L C U L A T I O N S

Percent Error magnitude Experimental compared to Analytical = __________%

Percent Error magnitude Graphical compared to Analytical = __________%

Absolute Error in angle Experimental compared to Analytical = __________degrees

Absolute Error in angle Graphical compared to Analytical = __________degrees

Analytical Solution

Force Mass (kg) Force (N) Direction x-component y-component

F1 0.100 20.08

F2 0.200 90.08

Resultant FR1

Calculations Table 2

Graphical Solution

Force Mass (kg) Force (N) Direction

F3 0.150 30.08

F4 0.200 100.08

F5 0.100 145.08

Resultant FR2

Analytical Solution

Force Mass (kg) Force (N) Direction x-component y-component

F3 0.150 30.08

F4 0.200 100.08

F5 0.100 145.08

Resultant FR2
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P A R T 2 . E R R O R C A L C U L A T I O N S

Percent Error magnitude Experimental compared to Analytical = __________%

Percent Error magnitude Graphical compared to Analytical = __________%

Absolute Error in angle Experimental compared to Analytical = __________degrees

Absolute Error in angle Graphical compared to Analytical = __________degrees

S A M P L E C A L C U L A T I O N S
1. F=mg =

2. m ¼ F

g
¼

3. Direction FE opposite FR so direction FR=direction FE –1808 =

4. F1x =F1 cos (208) =

5. F1y =F1 sin (208) =

6. FR1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFRxÞ2 þ ðFRyÞ2

q
¼

7. y ¼ tan� 1
Fy
Fx

� 	
¼

8. %Error Exp ¼ jExperimental�Analyticalj
Analytical

� 100% ¼
9. Absolute Err = y (exp) – y (analytical) =

Q U E S T I O N S
1. To determine the force acting on each mass it was assumed that g= 9.80m/sec2. The value of g at the

place where the experiment is performed may be slightly different from that value. State what effect
(if any) it would have on the percentage error calculated for the comparisons. To test your answer to the
question, leave g as a symbol in the calculation of the percentage error.

2. Two forces are applied to the ring of a force table, one at an angle of 20.08, and the other at an angle of
80.08. Regardless of the magnitudes of the forces, choose the correct response below.

The equilibrant will be in the (a) first quadrant (b) second quadrant (c) third quadrant (d) fourth
quadrant (e) cannot tell which quadrant from the available information.
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The resultant will be in the (a) first quadrant (b) second quadrant (c) third quadrant (d) fourth
quadrant (e) cannot tell which quadrant from the available information.

3. Two forces, one of magnitude 2 N and the other of magnitude 3 N, are applied to the ring of a force
table. The directions of both forces are unknown. Which best describes the limitations on R, the
resultant? Explain carefully the basis for your answer.

(a) R# 5 N (b) 2 N#R# 3 N (c) R$ 3 N (d) 1 N#R# 5 N (e) R# 2 N.

4. Suppose the same masses are used for a force table experiment as were used in Part 1, but each pulley
is moved 1808 so that the 0.100 kg mass acts at 2008, and the 0.200 kg mass acts at 2708. What is the
magnitude of the resultant in this case? How does it compare to the resultant in Part 1?

5. Pulleys introduce a possible source of error because of their possible friction. Given that they are a
source of error, why are the pulleys used at all? What is the function of the pulleys?
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Uniformly Accelerated
Motion

O B J E C T I V E S
o Investigate how the displacement of a cart down the inclined plane of an air track is related to

the elapsed time.

o Determine the acceleration of the cart from an analysis of the displacement versus time data.

o Determine an experimental value for g (the acceleration due to gravity) by interpretation of the
cart’s acceleration as a component of g. Compare with the accepted value of g.

E Q U I P M E N T L I S T
. A 5-meter linear air track with a built-in 5-meter scale (If a shorter air track is used the suggested
distances can be modified to fit the air track used.)

. Laboratory timer or stopwatch

. Block to raise the air track to form an inclined plane

T H E O R Y
When an object undergoes one-dimensional uniformly accelerated motion its velocity increases linearly
with time. If it is assumed that the initial velocity of the object is zero at time t= 0, then its velocity v at any
later time t is given by

v ¼ at ðEq: 1Þ

where a is the acceleration, which is constant in magnitude and direction.
Consider a time interval between t= 0 and any later time t. The average velocity v during the time

interval is

v ¼ 0þ v

2
¼ v

2
ðEq: 2Þ

The displacement x of the object during the time interval t is given by

x ¼ vt ¼ vt

2
ðEq: 3Þ
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Substituting Equation 1 for v in Equation 3 gives

x ¼ at2

2
ðEq: 4Þ

Equation 4 states that if an object is released from rest, its displacement is directly proportional to
the square of the elapsed time. Figure 4-1 shows graphs of both x versus t and x versus t2 for uniformly
accelerated motion.

A cart shown in Figure 4-2 is placed on an air track that is raised at one end to form an inclined plane
with an angle of inclination of y. The acceleration due to gravity points directly downward, but can
be resolved into components that are perpendicular and parallel to the plane. The cart moves down
the inclined plane with acceleration a, the component of the acceleration due to gravity g acting down the
plane. In equation form this is:

a ¼ g sin y ðEq: 5Þ

E X P E R I M E N T A L P R O C E D U R E
1. Place a block approximately 10 cm in height under the support at one end of the air track. Measure

the height h of the block to the nearest 0.1mm. Have five members of the class perform this mea-
surement independently and record those five trials in the Data Table.

0
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Figure 4-1 Graphs of displacement versus time and displacement versus the square of the time for uniformly
accelerated motion. The displacement is linear with time squared.

g cos �

g sin �

�

g
d

h

Figure 4-2 Components of g, the acceleration due to gravity on an air track.
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2. Have five members of the class independently measure the distance d between the points of support
of the air track as shown in Figure 4-2. Record the five trials for d in the Data Table.

3. Have one member of the class release the cart from rest at the top of the incline and simultaneously
start a timer. Stop the timer when the cart has traveled 0.250 m down the track. Four other members
of the class should repeat this measurement for a total of five trials at this distance. Record all times in
the Data Table.

4. Repeat Step 3 for distances of 0.500, 0.750, 1.000, 1.500, 2.000, 3.000, and 4.000 m. At each distance have
five different members of the class perform the measurement. Record all times in the Data Table.

C A L C U L A T I O N S
1. Calculate the mean h, the standard deviation, and the standard error ah for the five values of h,

and record these results and all other calculated values in the Calculations Table. Keep only one digit
in all standard errors and keep decimal places in all means that coincide with the decimal place of the
standard error.

2. Calculate the mean d, the standard deviation, and the standard error ad for the five trials of d.

3. Calculate the mean time t, the standard deviation, and the standard error at for the five trials of the
time at each distance.

4. Calculate the square of each of the mean times ðtÞ2 for the eight distances.

5. Perform a linear least squares fit to the data with x as the vertical axis and ðtÞ2 as the horizontal axis.
Determine the values of the slope and correlation coefficient r. In that calculation use (0,0) as one of
the points. From the slope obtained in the least squares fit, calculate the acceleration a of the cart
where a= 2(slope) according to Equation 4.

6. Calculate the value of sin y= h/d using the values of h and d.

7. Use Equation 5 to calculate an experimental value for the acceleration due to gravity ( gexp) from the
measured values of a and sin y.

8. Calculate the percentage error in your value of gexp compared to the accepted value of 9.80 m/sec2.

G R A P H S
1. Construct a graph of the x versus ðtÞ2 data with x as the vertical axis and ðtÞ2 as the horizontal axis.

Show on the graph the straight line from the linear least squares fit.
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4 L A B O R A T O R Y 4 Uniformly Accelerated Motion

P R E - L A B O R A T O R Y A S S I G N M E N T

(a)

(b)

(c)

(d)

The carts pictured above are all moving in a straight line to the right. The pictures were taken 1.00 s apart.
Choose which of the descriptions below matches which pictures.

1. These pictures show a cart that is moving at constant velocity.

(a) (b) (c) (d)

2. These pictures show a cart that has a positive acceleration.

(a) (b) (c) (d)

3. These pictures show a cart that travels at a constant velocity and then has a positive acceleration.

(a) (b) (c) (d)

4. These pictures show a cart that has a negative acceleration.

(a) (b) (c) (d)

5. A cart on a linear air track has a uniform acceleration of 0.172 m/s2. Use Equation 1 to find the velocity
of the cart 4.00 seconds after it is released from rest. Show your work.
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6. How far does the cart in Question 5 travel in 4.00 seconds? Calculate the distance x two ways, first
using Equation 3 and then using Equation 4. Show your work.

7. An air track like the one shown in Figure 4-2 has a block with a height h= 12.0 cm under one support.
The other support is 3.50m away. What is the angle of inclination y? According to Equation 5,
the component of acceleration parallel to the track is a= g sin y where g= 9.80m/s2. For this value of
y what is a? Show your work.
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L A B O R A T O R Y R E P O R T
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Data Table

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

h (m)

d (m)

x (m) t1 (s) t2 (s) t3 (s) t4 (s) t5 (s)

Calculations Tables

h ¼ m sn–1 = m ah= m

d ¼ m sn–1 = m ad= m

sin y ¼ h=d ¼
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S A M P L E C A L C U L A T I O N S
1. a= 2(slope)

2. gexp = a/(sin y) =

3. %error ¼ gexp� g

g
� 100% ¼

Q U E S T I O N S
1. The decimal place of the standard error coincides with the least significant digit and determines

the number of significant figures in the values of h and d. Because these are used to calculate the
experimental value of g, they determine the number of significant figures in your value of g. Howmany
significant figures are in your values of h and d, and how many are in your experimental value of g?

2. Would friction tend to cause your experimental value for g to be greater or less than 9.80 m/sec2?
In which direction is your error for the value for g? Could friction be the cause of your observed error?
State your reasoning.

x (m)

t (s)

sn–1 (s)

at (s)

t
2
(s2)

Slope = a= m/s2 gexp = m/s2 %Err = r=
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3. What was the instantaneous velocity of the cart at x= 4.00 meters assuming your value of the
acceleration a is correct? Show your work.

4. State how well the objectives of this laboratory were met. State your evidence for your opinion.
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Uniformly Accelerated
Motion on the Air Table

O B J E C T I V E S
o Determine the average velocity of a puck on an inclined air table from measured displacements

and time intervals.

o Demonstrate the linear increase in the instantaneous velocity with time for the special case of
constant acceleration, and determine the acceleration by a least squares fit to the velocity versus
time data.

o Determine an experimental value for g (the acceleration due to gravity) by interpretation of the
puck’s acceleration as a component of g.

E Q U I P M E N T L I S T
. Air table with sparktimer, air pump, foot switch, block, and level

. Recording paper and carbon paper

. Meter stick or measuring tape

. Balance and calibrated masses

T H E O R Y
To investigate the one-dimensional motion of a puck on an air table, we choose an arbitrary point near the
beginning of the motion as the origin of the coordinate system. We determine the location of the puck by
the position x of sparks on the recording paper at a constant time interval between the marks on the paper.
If the initial coordinate is xi at some time ti, and its later coordinate is xf at some later time tf, then the
displacement Dx between those coordinates is given by

Dx ¼ xf � xi ðEq: 1Þ

Although displacements are generally vector quantities, for the special case of one-dimensional motion in
one direction, it is sufficient to consider only the magnitude of the displacements. All displacements for
this laboratory will be positive because the puck moves in one direction.
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The average velocity v is given by

v ¼ Dx
Dt

¼ xf � xi
tf � ti

ðEq: 2Þ

The average velocity is defined over some time interval Dt that is finite. The definition of instantaneous
velocity, which is the velocity at some instant of time, is the limit of the average velocity as the time
interval Dt approaches zero. The average acceleration a is the time rate of change of the instantaneous
velocity and is given by

a ¼ Dv
Dt

¼ vf � vi
tf � ti

ðEq: 3Þ

In this laboratory the special case of constant acceleration will be the only case that is considered. When
the initial velocity at t¼ 0 has a value of vo, Equation 3 reduces to

v ¼ vo þ a t ðEq: 4Þ

Equation 4 states that for constant acceleration, the instantaneous velocity increases linearly with time
from its initial value of vo at t¼ 0 to later values of v at any later time t. For constant acceleration there is a
simple relationship between the average velocity and the instantaneous velocity. Because the velocity
increases linearly with time, the average velocity during each time interval is equal to the instantaneous
velocity at the middle of the time interval.

For constant acceleration, a determination of the average velocity as a function of time leads to a
knowledge of the instantaneous velocity as a function of time. Assume that the coordinate position of
some object is measured at fixed time intervals of 0.100 seconds. The average velocity during the interval
from t¼ 0 to t¼ 0.100 seconds would equal the instantaneous velocity at t¼ 0.050 seconds (the middle of
the time interval between t¼ 0 and t¼ 0.100 seconds). Similarly, the average velocity during any chosen
interval is the same as the instantaneous velocity at the middle of that interval.

When the instantaneous velocity is known as a function of time, that data can be fit to Equation 4 by a
linear least squares fit to obtain the initial velocity vo at t¼ 0 and the acceleration a.

The acceleration of an object down an inclined plane is a component of the acceleration due to gravity
g as shown in Figure 5-1. The component of g pointing parallel to the plane causing the acceleration a is

a ¼ g sin y ðEq: 5Þ

If y is known and a is determined experimentally, Equation 5 provides an experimental value for g. If y
and g are assumed known, the expected value for the acceleration a can be determined from Equation 5.

g sin �
d

g cos �
�

g

�

h

Figure 5-1 Components of g, the acceleration due to gravity.
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E X P E R I M E N T A L P R O C E D U R E
1. Read the instruction manual for the air table (Figure 5-2) or obtain instructions from your laboratory

instructor. Become familiar with the operation of the air pump, the sparktimer, and the foot switch.
Do not touch the conducting portions of the puck when the sparktimer is in operation.

2. Level the air table by means of the three adjustable legs until a puck placed near the center of the table
is essentially motionless.

3. Place a small block under the air table single leg to make the table act as an inclined plane. The angle of
the inclined plane is determined by the distance between the air table legs d and the height h of the
block placed under one leg. Choose h to produce an angle of about 58. Measure h and d to the nearest
0.0001meters and record them in the Data Table.

4. Set the sparktimer to a spark rate of 10.0Hertz. This will produce a spark every 0.100 seconds, and Dt
between data points will be 0.100 seconds for all the data. Record this value of Dt in the Data Table.
The values of time for x and for the center of the time interval have been included in the Data Table.

5. Place a piece of carbon paper and a sheet of recording paper on the air table with the recording paper
on top. Place the two pucks on the table. To complete the circuit, both pucks must be attached to the
sparktimer, but one puck can be left at rest at the bottom of the inclined plane. Simultaneously start
the sparktimer and release the other puck from rest at the top of the inclined plane. Allow the puck
to accelerate down the incline while the sparktimer is in operation, but stop the sparktimer as the
puck hits the bottom rail. Release the puckwith no initial velocity. Do not impart any sidewaysmotion
to the puck when releasing it.

6. Once a good spark record has been obtained, choose a point near the beginning of the track as the ori-
gin and label it as x¼ 0. Call the corresponding time t¼ 0. Measure to the nearest 0.0001meters the
displacement from the origin to each data point. Record in the Data Table the values of the coordinate x
for 12 data points. For each data point, the coordinate x is to be measured from the origin to that point.

7. Determine the mass of the puck and record it in the Data Table in kilograms.

C A L C U L A T I O N S
1. Calculate the magnitude of the displacement Dx for each successive set of sparks by taking the

differences between the coordinate values for successive data points. Record the values in the
Calculations Table.

2. Use Equation 2 to calculate the average velocity during each time interval from the values of Dx and
the value of Dt¼ 0.100 s. The average velocity for each interval is equal to the instantaneous velocity atC
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the middle of that interval. Record the instantaneous velocity at the time each velocity occurs in the
Calculations Table.

3. Perform a linear least squares fit with v as the vertical axis and t as the horizontal axis. The slope
obtained by that fit is equal to the acceleration a and the intercept obtained is equal to the initial
velocity vo. Record the acceleration, initial velocity, and correlation coefficient r in the Calculations
Table.

4. Calculate the angle of the incline y from the measured values of h and d using the equation sin y¼ h/d.
Record the value of y in the Calculations Table.

5. Use the value of the acceleration a determined by the least squares fit and the measured value of y
to solve Equation 5 for g. Record this experimental value of g as gexp in the Calculations Table.
Calculate the percentage error for gexp compared to the true value of g¼ 9.80m/s2 and record it in
the Calculations Table.

G R A P H S
1. Make a graph of the data for instantaneous velocity versus time with velocity as the vertical axis and

time as the horizontal axis. Show the data as points. Draw on the graph the straight line that was
obtained by the least squares fit procedure.
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Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section . . . . . . . . . . . . . . . . Date . . . . . . . . . . . . . . . .

5 L A B O R A T O R Y 5 Uniformly Accelerated Motion on the Air Table

P R E - L A B O R A T O R Y A S S I G N M E N T
1. The displacement is (a) always a vector, (b) a vector only if an object is at rest, (c) a vector only if an

object is in motion, (d) always a scalar, (e) a scalar only if an object is in motion.

2. For one-dimensional motion, the instantaneous velocity is always defined as Dx/Dt.

(a) true (b) false

3. The velocity of an object is proportional to elapsed time (a) always, (b) only for positive acceleration,
(c) only for negative acceleration, (d) only for constant acceleration.

4. Suppose that an ideal frictionless inclined plane has an angle of inclination of 5.008with respect to the
horizontal. What is the acceleration of an object sliding down that plane? Assume that the acceleration
due to gravity is g¼ 9.80m/s2. Show your work.

5–7. The data below for the instantaneous velocity v versus the time t were obtained in a student
experiment. Perform a linear least squares fit with v as the vertical axis and t as the horizontal axis.
Determine the intercept (initial velocity vo), slope (acceleration a), and correlation coefficient (r) of
the straight line.

v (m/s) 0.352 0.496 0.655 0.808 0.939 1.073

t (s) 0.200 0.400 0.600 0.800 1.000 1.200

5. Intercept¼ vo¼ _______________m/s

6. Acceleration a¼ _______________m/s2

7. Correlation coefficient r¼ _______________
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8. There are six data points in the Question 7 least squares fit calculation. Statistical theory states that for
six data points there is a 0.1% probability that a value of correlation coefficient r$ 0.974 will be
obtained for uncorrelated data. Compare the value of r obtained in Question 7 to 0.974. State your
conclusion about the probability that these data show that velocity is proportional to time.

9. Assume that the data of Question 5–7 were taken for an inclined plane of angle 4.408. Equation 5 states
that the acceleration down the plane is a¼ g sin y. Use this equation to determine an experimental
value for g from the acceleration a determined in Question 6. Calculate the percentage error between
this experimental value gexp and the true value of 9.80m/s2.

gexp¼ _______________m/s2 Percentage error¼ _______________%
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Data Table

Point t (s) x (m)

0 0.000

1 0.100

2 0.200

3 0.300

4 0.400

5 0.500

6 0.600

7 0.700

8 0.800

9 0.900

10 1.000

11 1.100

12 1.200

Calculations Table

Dx (m) v (m/s) t (s)

0.050

0.150

0.250

0.350

0.450

0.550

0.650

0.750

0.850

0.950

1.050

1.150
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h¼ m a¼ m/s2

d¼ m vo¼ m/s

Dt¼ s y¼ degrees

Mass¼ kg gexp¼ m/s2

r¼ % Error¼

S A M P L E C A L C U L A T I O N S
1. Dt¼1/f¼
2. Dx¼ x2 –x1¼
3. v¼Dx/Dt¼
4. sin y¼ h/d¼
5. y¼ sin–1(h/d)¼
6. tmidpoint¼ (tiþ tiþ1)/2¼
7. gexp¼ a/sin y¼
8. %Error¼ (Exp-Known)/Known� 100%¼

Q U E S T I O N S
1. Suppose a different point had been chosen as the origin for the analysis of the data. Would this change

significantly the value of the acceleration? State carefully your reasoning as to why it would or would
not change.

2. Would choosing a different point as the origin for the analysis change significantly the value of vo, the
initial velocity? State carefully your reasoning as to why it would or would not change.
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3. How long before the time you chose as zero for your analysis was the puck actually released?
(Hint—Consider the time at which v¼ 0 in Equation 4.)

4. There are 12 data points in the linear least squares fit to Equation 4. Statistical theory states that there is
only a 0.1% probability (1 chance in 1000) of achieving a value of r$ 0.823 for 12 data points of
uncorrelated data. State the most complete assessment you can make about how well your data
confirm the theory.
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Kinematics in Two
Dimensions on the Air Table

O B J E C T I V E S
o Investigate the trajectory of a puck on a tilted air table.

o Determine the acceleration ay in the y direction by taking the slope of a graph of the y component
of velocity vy versus time.

o Determine the very slight negative acceleration in the x direction due to friction from the very
slight negative slope of vx versus time.

E Q U I P M E N T L I S T
. Air table with sparktimer, air pump, foot switch, level, and carbon paper

. Recording paper, ruler, square, and protractor

T H E O R Y
In Figure 6-1 an object is launched at an angle y relative to the horizontal (x axis) and moves in a two-
dimensional path. If vo is the magnitude of its velocity, then its initial velocity in the x direction is
vo cos y, and its initial velocity in the y direction is vo sin y. Assuming no friction, there is no acceleration
in the x direction, and the x component of velocity is constant in time. There is an acceleration in the
negative y direction, opposite in direction to the initial y component of velocity. The two equations that
describe the x and y components of velocity vx and vy as a function of time are

vx ¼ vo cos y ðEq: 1Þ

vy ¼ vo sin y� ay t ðEq: 2Þ

In Equation 2 the direction of the acceleration has been shown by the negative sign, and ay stands for the
magnitude of the acceleration.

Assume that values of the x and y coordinates are known for some general two-dimensional motion.
If xi and xf stand for the x coordinate positions at the initial time ti and final time tf, and yi and yf stand for
the y coordinate positions at these same times, then the displacements Dx and Dy during the time interval
Dt are given by
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Dx ¼ xf � xi Dy ¼ yf � yi Dt ¼ tf � ti ðEq: 3Þ

By definition the x and y components of the average velocity during a time interval Dt are given by the
following equations:

vx ¼ Dx
Dt

and vy ¼ Dy
Dt

ðEq: 4Þ

The velocities in Equations 4 are average velocities during a finite time interval Dt, and are not the
same velocities as in Equations 1 and 2, which are instantaneous velocities at some particular time t.
By definition the components of the instantaneous velocities are the limits of Equations 4 as Dt approa-
ches zero.

For the special case of constant acceleration, the average velocity during the time interval Dt is
equal to the instantaneous velocity at the time at the center of the interval Dt. For the other special case
of constant velocity, the average velocity over the interval Dt is equal to the instantaneous velocity at any
time during the time interval. Therefore, for the case being considered the instantaneous velocities at the
center of the interval of time Dt are given by

vx ¼ Dx
Dt

and vy ¼ Dy
Dt

ðEq: 5Þ

In this laboratory we use an air table to approximate a frictionless two-dimensional surface. We tilt
the table to form an inclined plane to produce an acceleration in the negative y direction of a coordinate
system as shown in Figure 6-1. A puck will be launched with an initial velocity having both x and y
components. Measurements of Dx and Dy will allow the determination of vx and vy.

E X P E R I M E N T A L P R O C E D U R E
1. Read the instruction manual for the air table (Figure 6-2) to become familiar with its operation

including the air pump, sparktimer, and foot switch. When the sparktimer is in operation, do not
touch the pucks except by the insulated tubes.

2. Level the table by means of the three adjustable legs until a puck placed near the center of the table is
essentially motionless.

3. Place a block with a height of about 5 cm under the single leg to tilt the table. Place a sheet of recording
paper and a sheet of carbon paper on the table with the recording paper on top.

4. Choose a spark rate of 10.0Hertz, which will produce a spark every 0.100 seconds. Record the value of
Dt¼ 0.100 s in the Data Table.

5. Place the two pucks on the air table. Place one of them at the lower right-hand corner of the table
and leave it there for all of the procedure. Launch the other puck by hand from a point near the lower

vy

vx

vo

y

x
�

v

Figure 6-1 Two-dimensional motion with acceleration in the negative y direction.
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left-hand corner of the table. The puck should move upward and to the right and approach near the
top center of the tilted table, and then move down to the vicinity of the lower right-hand corner.
Several practice launches will probably be necessary to determine the correct launch speed and
direction needed to achieve the desired trajectory.

6. When, after enough practice, you are sure that you can achieve the desired path, launch the puck and
start the sparktimer simultaneously. Stop the sparktimer just before the puck arrives at the lower
right-hand corner. Be sure that there are about 20 or so good data points on the record. Do not remove
the sheet of recording paper after making this measurement! Instead, record a second trace on this same paper to
experimentally determine the vertical (y direction). This vertical trace is obtained by releasing the puck
from a point near the top of the table on the same side of the air table fromwhich the puck is launched.

7. Remove the recording sheet for data analysis. Choose as the origin the lowest point on the trajectory
that comes out clearly and call the corresponding time zero. Label that first point as 0 and then label
the next 15 consecutive data points. Note that the times corresponding to these points are already
given in the Data Table.

8. Draw a straight line through the vertical line formed by the sparktimer trace for the puck falling
vertically. This defines the vertical direction.

9. Construct a straight line that passes through the origin chosen above in Step 7 and parallel to the
vertical line drawn in Step 8. This is the y axis of the coordinate system. Construct a line through the
origin and perpendicular to the y axis. This is the x axis of the coordinate system.

10. Measure the perpendicular distance of each data point from the y axis. Record these values in the Data
Table as the values of the coordinate x.

11. Measure the perpendicular distance of each data point from the x axis. Record these values in the Data
Table as the values of the coordinate y.

C A L C U L A T I O N S
1. Calculate the differences between the successive values of x and y and record them in the Calculations

Table as the values of Dx and Dy. Note that Dy will change in magnitude, and it will become negative
after the puck reaches its maximum height and starts back down.

2. Use Equations 5 to calculate the components of the instantaneous velocity vx and vy and record them
in the Calculations Table. The time at which the instantaneous velocities apply are at the center of
each interval, and those times have already been recorded in the Calculations Table for each interval.

3. Perform a linear least squares fit with vx as the vertical axis and t as the horizontal axis. The slope of
this fit should be very small and negative, and it is equal to the acceleration caused by friction.C
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The intercept is the initial velocity in the x direction (vx)o. Record the values of ax, (vx)o, and r in the
Calculations Table.

4. Perform a linear least squares fit with vy as the vertical axis and time as the horizontal axis. The slope
of this fit is equal to the acceleration in the y direction, and the intercept is the initial velocity in the
y direction (vy)o. Record the values of ay, (vy)o, and r in the Calculations Table.

G R A P H S
1. On one sheet of graph paper, graph both vx and vy as a function of time. Use different symbols for vx

and vy. Because vy can have both positive and negative values, choose the origin of the velocity scale in
the center of the graph paper. Include the straight lines obtained by the least squares fit for each case.
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6 L A B O R A T O R Y 6 Kinematics in Two Dimensions on the Air Table

P R E - L A B O R A T O R Y A S S I G N M E N T

Assume that the projectile motion shown in Figure 6-1 is ideal with no friction. For that assumption,
choose the correct statements about the motion in 1 and 2 below.

1. (a) The value of vx is always positive and decreases very slightly with time. (b) The value of vx changes
from positive to negative with time. (c) The value of vx is always negative and increases very slightly
with time. (d) The value of vx is always positive and is constant with time. (e) The value of vx changes
from negative to positive with time.

2. (a) The value of vy is always positive and decreases very slightly with time. (b) The value of vy changes
from positive to negative with time. (c) The value of vy is always negative and increases very slightly
with time. (d) The value of vy is always positive and is constant with time. (e) The value of vy changes
from negative to positive with time.

Assume now for the projectile motion shown in Figure 6-1 that there is a very small frictional force
acting on the puck. For that assumption, choose the correct statements about the motion in 3 and 4
below.

3. (a) The value of vx is always positive and decreases very slightly with time. (b) The value of vx changes
from positive to negative with time. (c) The value of vx is always negative and increases very slightly
with time. (d) The value of vx is always positive and is constant with time. (e) The value of vx changes
from negative to positive with time.

4. (a) The value of ax is zero. (b) The value of ax is very small and negative. (c) The value of ax is very
small and positive. (d) The value of ax changes from positive to negative. (e) The value of ax changes
from negative to positive.

A particle moves in such a way that its coordinate positions x and y as a function of time are
given by the following table.

x(m) 0.000 0.550 1.100 1.650 2.200 2.750 3.300 3.850 4.400

y(m) 0.000 1.425 2.700 3.825 4.800 5.625 6.300 6.825 7.200

t(s) 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800

Answer the following questions (5 through 7) with respect to these data.
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5. What is the particle’s average velocity in the y direction vy between t¼ 0.200 s and t¼ 0.300 s? What
is vy between t¼ 0.400 s and t¼ 0.500 s?What is vy between t¼ 0.700 s and t¼ 0.800 s? Show yourwork.

6. What is the particle’s average velocity in the x direction vx between t¼ 0.200 s and t¼ 0.300 s? What is
vx between t¼ 0.400 s and t¼ 0.500 s? What is vx between t¼ 0.700 s and t¼ 0.800 s? Show your work.

7. What is the particle’s instantaneous velocity in the y direction vy at t¼ 0.250 s? What is vy at t¼ 0.450 s?
What is vy at t¼ 0.750 s? (Hint—Assume that the average velocity during a time interval is equal to the
instantaneous velocity at the center of the time interval.) Show your work.
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Data Table

t(s) x(m) y(m)

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

1.200

1.300

1.400

1.500

Calculations Table

Dx(m) Dy(m) vx(m/s) vy(m/s) t(s)

0.050

0.150

0.250

0.350

0.450

0.550

0.650

0.750

0.850

0.950

1.050

1.150

1.250

1.350

1.450

69



S A M P L E C A L C U L A T I O N S
1. Dt¼ 1/f¼
2. Dx¼ xnþ1� xn¼
3. Dy¼ ynþ1 � yn¼
4. vx¼Dx/Dt

5. vy¼Dy/Dt

Q U E S T I O N S
1. Suppose a different point had been chosen as the origin for the analysis of the data. In principle would

this significantly change the value of the acceleration ay? State clearly why it would or would not
change the value.

2. Would choosing a different point as the origin for the analysis change significantly the value of the
initial velocity (vy)o? State clearly why it would or would not change.

3. What is the equation for the magnitude of the initial velocity of the puck? Calculate the value of the
initial velocity of the puck.

Dt¼ s

ax¼ m/s2 ay¼ m/s2

(vx)o¼ m/s (vy)o¼ m/s

r¼ r¼
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4. Calculate the ratio of the magnitude of ax to the magnitude of ay.

5. The small negative value of ax is due to friction. If the ratio calculated in Question 4 is 0.02, it would
indicate that friction is about a 2% effect. If the ratio were 0.01 it would indicate that friction is
approximately a 1% effect. Based on your value of that ratio, estimate how large an effect friction was
in your data.
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Coefficient of Friction

O B J E C T I V E S
o Determine ms, the static coefficient of friction, and mk, the kinetic coefficient of friction, by sliding

the block down a board that acts as an inclined plane.

o Determine ms and mk using the board with a pulley mounted on it in a horizontal position and
applying known forces to the block.

o Compare the different values for ms and mk obtained by the two different techniques.

o Demonstrate that the coefficients are independent of the normal force, and that ms>mk.

E Q U I P M E N T L I S T
. Smooth wooden board with pulley attached to one end

. Smooth wooden block (6-inch long 2�4 for example) with hook attached

. Second wooden block of known length to form inclined plane

. String, balance, calibrated masses, mass holder, and slotted masses

T H E O R Y
Friction is a resisting force that acts along the tangent to two surfaces in contact when one body slides or
attempts to slide across another.Normal force is the force that each body exerts on the other body, and it
acts perpendicular to each surface. The frictional force is directly proportional to the normal force.

There are two different kinds of friction. Static friction occurs when two surfaces are still at rest with
respect to each other, but an attempt is being made to cause one of them to slide over the other one. Static
friction arises to oppose any force trying to cause motion tangent to the surfaces. The static frictional force
fs is given by

fs #msN ðEq: 1Þ

whereN stands for the normal force between the two surfaces, and ms is a constant called the coefficient of
static friction. The meaning of Equation 1 is that the static frictional force varies in response to applied
forces from zero up to a maximum value given by the equality in that equation. If the applied force is less
than themaximum, then the frictional force that arises is equal to the applied force, and there is nomotion.
If the applied force is greater than the maximum, the object will begin to move, and static friction
conditions are no longer valid.
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The other kind of friction occurs when two surfaces are moving with respect to each other. It is called
kinetic friction, and it is characterized by a constant mk called the coefficient of kinetic friction. The
kinetic frictional force fk is given by

fk ¼ mk N ðEq: 2Þ

where N is again the normal force. Equation 2 states that the kinetic frictional force is a constant value
any time the object is in motion. In fact, the coefficient of kinetic friction does vary somewhat with
speed. It is assumed for this laboratory that at the slow speeds used, mk does not depend upon speed. To a
good approximation both coefficients are independent of the apparent area of contact between the two
surfaces.

An inclined plane with an angle y that can be adjusted is shown in Figure 7-1. If a block is placed on
the plane, and the angle is slowly increased, the block will begin to slip at some angle. The normal force
N acts perpendicularly to the plane, and a component of the weight of the block mg cos ys acts in the
opposite direction. The block is in equilibrium for motion perpendicular to the plane, and these forces
are equal and

N ¼ mg cos ys ðEq: 3Þ

where ys is the angle at which the block just begins to slip on the inclined plane. Parallel to the plane there
are also two forces. A component of the weight of the block mg sin ys acts down the plane, and the
frictional force fs acts up the plane. At the point where the block just slips, the maximum frictional force is
exerted, and these two forces are equal. In equation form

fs ¼ msN ¼ mg sin ys ðEq: 4Þ

Combining Equations 3 and 4 leads to

ms ¼
mg sin ys

N
¼ mg sin ys

mg cos y2
¼ tan ys ðEq: 5Þ

Equation 5 can be used to determine ms by measuring tan ys when the block just begins to slip on the
inclined plane.

In a similar way the same inclined plane can be used to determine mk. By giving the block a slight push
to get it started, the angle can be determined at which the block slides down the plane at constant velocity.
A push is needed to get it started because generally ms>mk, and the static frictional force is greater than the

mg cos �

mg sin �

N

mg

f

�

�

Figure 7-1 Forces acting on a block on an inclined plane.
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kinetic frictional force. When the block is moving down the plane at constant velocity, the block is in
equilibrium with the vector sum of forces on the block equal to zero. In equation form

N ¼ mg cos yk and fk ¼ mg sin yk ¼ mkN ðEq: 6Þ

Using algebra to combine these equations leads to

mk ¼
mg sin yk

N
¼ mg sin yk

mg cos yk
¼ tan yk ðEq: 7Þ

Equation 7 can be used to determine mk from the angle at which the block slides down the inclined plane at
constant velocity after it has been given a slight push to get it started.

If the inclined board is lowered to the horizontal position, a force can be applied to the block bymeans
of a string running over a pulley and down to a mass as shown in Figure 7-2. For a given block massM1 it
is possible to slowly add mass to M2 until M1 moves. The point at which the block just moves is the last
point that the system is in equilibrium, and it occurs when the maximum static friction is acting. At that
point the following conditions are met:

T ¼ fs T ¼ M2g N ¼ M1g fs ¼ msN ðEq: 8Þ

In these equations T is the tension in the string, and the other symbols are the same as previously defined.
Combining these four equations leads to

fs ¼ M2g ¼ ms N ¼ msM1g ðEq: 9Þ

Using the second and fourth terms above and canceling the common factor of g gives

M2 ¼ msM1 ðEq: 10Þ

Equation 10 can be used to determine ms by finding the minimum mass M2 needed to cause the block of
mass M1 to just move.

The same procedure can also be used to determine the coefficient of kinetic friction. Refer to Figure 7-2
and imagine that fs is replaced by fk for the case when the block is in motion.When the system is moving at
constant velocity it is also in equilibrium, and the following conditions are met:

T ¼ fk T ¼ M2g N ¼ M1g fk ¼ mkN ðEq: 11Þ
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Figure 7-2 Force applied to a block on a horizontal plane.
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Combining these equations leads to

M2 ¼ mkM1 ðEq: 12Þ

Equation 12 can be used to measure mk by finding the value ofM2 needed to causeM1 to move at constant
velocity.

E X P E R I M E N T A L P R O C E D U R E
The Inclined Plane

1. Note which side of the block and which side of the board you are using. Continue to use the same surfaces for all
the measurements made in this laboratory.

2. Place the block with the hook attached with its large surface down on the board and incline the board
until the block just begins to slide on its own. Incline the board by placing the block of known height
(approximately 15.0 cm) under one end of the board. Record the value of the height of the block as Y
(to the nearest 1 mm, which is 0.001 m) in both Data Table 1 and Data Table 2. Move the block of
known height Y toward the line along which the board is resting on the table. This will increase the
angle y as shown in Figure 7-3.

3. When the block on top slides down the board because static friction can no longer hold it in place,
record in Data Table 1 (to the nearest 0.001 m) the value of X, the distance from the pivot line of the
board to the block as shown in Figure 7-3.

4. Repeat Step 3 three more times for a total of four trials with only the block itself on top of the board.
Record the values ofX associated with each of these trials in Data Table 1 in the column labeled 0 mass
added.

5. Using light tape, attach a 0.200 kg mass to the top of the block and repeat the steps above, recording in
Data Table 1 the values of X for the four trials in the column labeled 0.200 kg added.

6. Continue the process adding 0.400 kg and then 0.600 kg, and record the values of X for four trials in
each case in the appropriate column in Data Table 1. The data taken in these first six steps will
determine ms, from the fact that ms¼ tan ys¼Y/X.

7. Repeat all of the procedures above again, but instead of finding the point at which the block begins to
move on its own, find the point at which the block moves at approximately constant speed after it is
given a slight push to begin its motion. There will probably be more variation in the values of X
obtained in this case because it is difficult to determine when the speed is constant. Again start with
the block alone, and then add the same values of mass as above. In each case do four trials and record
the values of X in the appropriate columns in Data Table 2. The data taken in these steps will be used
to determine the coefficient of kinetic friction, mk.

Block of height Y moves
left and increases the angle
� where tan � � Y/X

Y

X

�

Figure 7-3 Geometry to increase y by moving block of height Y.

76 Physics Laboratory Manual n Loyd



Horizontal Plane with Pulley

1. Determine the mass of the block with hook attached using the balance. Record it in Data Table 3 asM1

in the space labeled 0 kg added.

2. Place the board in a horizontal position on the laboratory table with the pulley beyond the edge of the
table as shown in Figure 7-2.

3. Attach a piece of string to the hook in the block. Place it over the pulley and attach the mass holder to
the other end of the string. Be sure that the same surface of the block and board are in contact as in the first
procedure. Add mass to the mass holder to find the minimum mass needed to just cause the block to
move. Record the value as M2 in Data Table 3. Include the 0.050 kilogram mass of the holder in the
total for M2. Repeat the procedure two more times for a total of three trials.

4. Repeat Step 3 but add 0.200 kg to the top of the block. Record the value of the mass of the block plus
0.200 kg as M1. Again determine the minimum mass needed to just cause the mass M1 to move. Do
three trials and record each as M2 in Data Table 3.

5. Continue this process adding 0.400, 0.600, and finally 0.800 kg to the top of the block. In each case take
three trials.

6. Perform a similar set of measurements as just described in Steps 1 through 5, but this time determine
the massM2 needed to keep the block moving at constant velocity after it has been started with a small
push. Again take three trials for each case and use values of M1 beginning with the mass of the block
and increasing in steps of 0.200 kg up to a total addedmass of 0.800 kg. Record the values ofM2 andM1

for all cases in Data Table 4.

C A L C U L A T I O N S
Board as an Inclined Plane

1. For the static friction data calculate the value of the mean X for the four trials of X at each value ofM1

and record them in Calculations Table 1 under the Static section. For each of the values of X in
Calculations Table 1 calculate the value of ms as tan ys¼Y/X and record them in Calculations Table 1
under the Static section. Calculate ms and the standard error ams for the four measurements. Record
those results.

2. For the kinetic friction data calculate the value of the meanX for the four trials ofX at each value ofM1

and record them in Calculations Table 1 under the Kinetic section. For each of the values ofX calculate
the value of mk as tan yk¼Y/X and record them in Calculations Table 1 under the Kinetic section.
Calculate mk and the standard error amk for the four measurements. Record those results.

Horizontal Plane with Pulley

1. Calculate the mean M2 for the three trials of M2 for each of the values of M1 for both the static and
kinetic friction cases. Record these values in Calculations Table 2 along with the value of M1 for each
value of M2 .

2. According to Equation 10 there is a linear relationship betweenM2 andM1. A linear least squares fit to
the static friction values of M2 versus M1 should produce a straight line with a slope of ms. Perform
such a fit withM2 as the vertical axis andM1 as the horizontal axis. Record the value of the slope as ms
in Calculations Table 2 under the Static section. Record the value of r.

3. Equation 12 states that there should also be a linear relationship between M2 and M1 for the kinetic
friction data. Perform a linear least squares fit with M2 as the vertical axis and M1 as the horizontal
axis. Record the value of the slope as mk in Calculations Table 2 under the Kinetic section. Record the
value of r.
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G R A P H S
1. Graph the static friction data for the horizontal plane case with M2 as the vertical axis and M1 as the

horizontal axis. Show the straight line obtained from the fit.

2. Graph the kinetic friction data for the horizontal plane case withM2 as the vertical axis andM1 as the
horizontal axis. Show the straight line obtained from the fit.
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7 L A B O R A T O R Y 7 Coefficient of Friction

P R E - L A B O R A T O R Y A S S I G N M E N T
1. For kinetic friction the direction of the frictional force on a given object is always opposite the direction

of that object’s motion. (a) true (b) false

2. The two coefficients of friction discussed in this laboratory are static (ms) and kinetic (mk). Describe the
conditions under which each kind is appropriate. Generally, which of the two is larger?

3. Suppose a block of mass 25.0 kg rests on a horizontal plane, and the coefficient of static friction
between the surfaces is 0.220. (a) What is the maximum possible static frictional force that could act on
the block? _______________N (b) What is the actual static frictional force that acts on the block if an
external force of 25.0 N acts horizontally on the block? _______________N Assume g¼ 9.80m/s2. Show
your work and explain both answers.

4. To measure the coefficient of kinetic friction by sliding a block down an inclined plane the block must
be in equilibrium. What experimental condition must you try to accomplish that will assure you that
the block is in equilibrium?
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5. A 5.00 kg block rests on a horizontal plane. A force of 10.0 N applied horizontally causes the block to
move horizontally at constant velocity. What is the coefficient of kinetic friction between the block and
the plane? Assume g¼ 9.80m/sec2. Show your work.

6. Both types of coefficient of friction are dimensionless. Why is this true?

7. For either type of coefficient of friction, what is generally assumed about the dependence of the value
of the coefficient on the area of contact between the two surfaces?
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7 L A B O R A T O R Y 7 Coefficient of Friction

L A B O R A T O R Y R E P O R T

Data Table 1 Inclined Plane—Static Friction

Y¼ _______________m

Added Mass 0.000 kg 0.200 kg 0.400 kg 0.600 kg

M1 (kg)

X Trial 1 (m)

X Trial 2 (m)

X Trial 3 (m)

X Trial 4 (m)

Data Table 2 Inclined Plane—Kinetic Friction

Y¼ _______________m

Added Mass 0.000 kg 0.200 kg 0.400 kg 0.600 kg

M1 (kg)

X Trial 1 (m)

X Trial 2 (m)

X Trial 3 (m)

X Trial 4 (m)
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Data Table 3 Horizontal Plane—Static Friction

Added Mass 0.000 kg 0.200 kg 0.400 kg 0.600 kg 0.800 kg

M1 (kg)

M2 Trial 1

M2 Trial 2

M2 Trial 3

Data Table 4 Horizontal Plane—Kinetic Friction

Added Mass 0.000 kg 0.200 kg 0.400 kg 0.600 kg 0.800 kg

M1 (kg)

M2 Trial 1

M2 Trial 2

M2 Trial 3

Calculations Table 1—Inclined Plane

Static

X (m) ms¼Y/X ms ams

Kinetic

X (m) mk ¼Y/X mk amk

Calculations Table 2—Horizontal Plane

Static

M1 (kg) M2 (kg) ms r

Kinetic

M1 (kg) M2 (kg) mk r
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S A M P L E C A L C U L A T I O N S
1. X¼ (X1þX2þX3þX4)/4¼
2. ms¼Y/X¼
3. Percent Difference for m¼

Q U E S T I O N S
1. Discuss the agreement between the two different measured values of ms. Calculate the percentage

difference between them. Percentage difference¼_______________%. Assume that the error in the
horizontal plane value is approximately equal to the standard error for the inclined plane data. Under
the assumption that both values of ms have that same error, do the two values of ms overlap within that
assumed error? State the range of each measurement and quantitatively state the extent to which they
overlap.

2. Answer the same questions as asked in Question 1, but now consider the kinetic friction data.
Percentage difference¼ _______________%.

3. To what extent do your data confirm the expectation that the coefficients of friction, both static and
kinetic, are independent of the normal force?What is the evidence for the inclined plane data?What is
the evidence for the horizontal plane data? Give as quantitative an answer as possible in both cases.

4. Do your data confirm the expectation that ms$ mk? Comment for both values of each coefficient and
state your evidence.
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5. State clearly in your own words what was to be accomplished in this laboratory. To what extent did
your performance of the laboratory accomplish those goals?
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Newton’s Second Law
on the Air Table

O B J E C T I V E S
o Investigate the variation in the acceleration produced when different forces are applied to a fixed

mass.

o Demonstrate that the acceleration is proportional to the applied force.

o Determine the frictional force that acts on the system.

E Q U I P M E N T L I S T
. Air table with pucks, sparktimer, air pump, foot switch, and level

. Carbon paper, recording paper, meter stick or tape

. Pulley, string, laboratory balance, and calibrated masses

T H E O R Y
The relationship between the net force F exerted on a body of mass m and the acceleration a of the body is
Newton’s Second Law.

F ¼ ma ðEq: 1Þ

A mass m1 is shown in Figure 8-1 on a horizontal surface. It is connected to a second mass m2 by a string
running over a pulley. There is tension T in the string connecting the masses. Each mass is subject to
several forces shown in a free body diagram in Figure 8-2. Four forces act on mass m1, but only two of
them lie along the direction of motion of the mass. The weight of m1 and the normal force from the table
are equal in magnitude and opposite in direction and sum to zero. The net force acting on m1 is equal to
T� f and Equation 1 gives

T � f ¼ m1a ðEq: 2Þ

The two forces acting on mass m2 are its weight m2g and the tension T. Because m1 and m2 are connected,
the acceleration of m2 has the same magnitude as the acceleration of m1. In equation form

m2g� T ¼ m2a ðEq: 3Þ
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If Equations 2 and 3 are combined and f added to both sides, the result is

m2g ¼ ðm1 þm2Þaþ f ðEq: 4Þ

Equation 4 assumes that f represents all the friction in the system including the pulley.
We will make a series of measurements varying the applied forcem2gwhile the mass (m1þm2) is kept

constant. We will measure the resulting acceleration a of the masses as a function of the force m2g. The
coordinate position x of the puck as a function of time t will be measured using a sparktimer to mark x at
time intervals of 0.100 seconds. The average velocity v during any time interval Dt is

v ¼ Dx
Dt

ðEq: 5Þ

where Dx is the displacement during the time interval Dt. Because the acceleration is constant, the average
velocity v during time intervalDt is the instantaneous velocity v at the time t at the center ofDt. The equation

v ¼ Dx
Dt

ðEq: 6Þ

gives the instantaneous velocity v at the center of time interval Dt. From the resulting values of v as a
function of time, we will determine the acceleration a.

E X P E R I M E N T A L P R O C E D U R E
1. Read the instruction manual for the air table (Figure 8-3) to become familiar with its operation,

including the air pump, sparktimer, and foot switch. Do not touch the pucks when the sparktimer is in
operation except by the insulated tubes.

N

T

T

f m2

m1g

m2g

m1

Figure 8-2 Free body diagram of the forces on masses m1 and m2.

T

T

gm1

m2

Figure 8-1 Force applied to mass m1 by weight of mass m2.
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2. Level the table by means of the three adjustable legs until a puck placed near the center of the table is
essentially motionless. Place a sheet of carbon paper and a sheet of recording paper on the table with
the recording paper on top.

3. Place one of the pucks in the corner of the table and leave it there for the rest of the procedure. Place
the other puck on a laboratory balance and determine its massmp. Record the value ofmp in kg in Data
and Calculations Table 1.

4. Place the puck for which mass has been determined on the air table. Attach a string to the puck. Run
the string over the pulley as shown in Figure 8-1 and attach a mass of 0.010 kg on the end of the string
to serve as mass m2.

5. Place mass totaling 0.040 kg on top of the puck. The total mass m1þm2 is equal to the puck mass mp

plus the 0.040 kg plus the 0.0100 kg on the end of the string. Record this value (mpþ 0.050 kg) in Data
and Calculations Table 1 as m1þm2.

6. Choose a spark rate of 20.0 Hertz. Release the puck near the edge of the table with zero velocity and
simultaneously start the sparktimer. Stop the sparktimer just before the puck reaches the other side of
the table. Release the puck with no initial velocity.

7. Remove 0.010 kg from the puck and add it to the 0.010 kg on the end of the string so that m2 is now
0.020 kg, butm1þm2 remains the same. Slide the recording paper over slightly, again release the puck
with no initial velocity, and record this trace with the sparktimer.

8. Continue this process, each time shifting 0.010 kg from the puck to the end of the string to produce
traces with values of m2 equal to 0.030, 0.040, and 0.050 kg while the value of m1þm2 remains fixed.
Record all five traces on the same sheet of paper.

9. Choose an origin for each of the five traces and label every other point. This will produce data points
with time intervals of Dt¼ 0.100 seconds. Measure the values of the coordinate position x as a function
of time from t¼ 0 to t¼ 0.600 seconds for each of the traces. Record the values of x in Data and
Calculations Table 1.

C A L C U L A T I O N S
1. Calculate the values of the displacement Dx between successive data points for each of the five traces.

Record the values of Dx in Data and Calculations Table 1.

2. Use Equation 6 to calculate the instantaneous velocity at the times corresponding to the center of the
measured time intervals. Record the values of v at the appropriate instantaneous times in Data and
Calculations Table 1.C
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3. From the values of m2 using g¼ 9.80m/s2, calculate the values m2g for each of the applied forces.
Record the results in Data and Calculations Table 2.

4. Perform a linear least squares fit to each of the five sets of v versus t data with v as the vertical axis and
t as the horizontal axis. Record the values of the slope for each fit as the acceleration a in Data and
Calculations Table 2. Record the values of the intercept of each fit as the initial velocity in the table.
Record the values of the correlation coefficient r in the table.

5. Equation 4 states that a is proportional tom2gwithm1þm2 as the constant of proportionality. Perform
a linear least squares fit with m2g as the vertical axis and a as the horizontal axis. Record in Data and
Calculations Table 2 the slope of the fit as (m1þm2)exp the experimental value for the total mass.
Record in Data and Calculations Table 2 the intercept of the fit as f the friction.

6. Calculate the percentage error in the value of (m1þm2)exp compared to the known value of m1þm2

and record it in Data and Calculations Table 2.

G R A P H S
1. On a single sheet of graph paper plot the data for the v versus t for each of the five cases. Also show on

the graph the straight line obtained by each fit to the data. Use different symbols to label the five
different sets of data.

2. Make a graph of the data for the applied force m2g versus the acceleration a. Also show on the graph
the straight line obtained by the fit to the data.
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8 L A B O R A T O R Y 8 Newton’s Second Law on the Air Table

P R E - L A B O R A T O R Y A S S I G N M E N T
1. A net force of 25.0 N acts on a 6.50-kg object. What is the acceleration of the object? Show your work.

2. In Figures 8-1 and 8-2, what are the two forces acting on mass m1 that must be considered in
determining the acceleration of the mass? Why don’t the other forces have to be considered?

3. Suppose that a 0.450-kg puck (m1) is attached to a 0.0400-kg mass (m2) as shown in Figure 8-1. A
constant frictional force f¼ 0.100N acts on the puck. Solve Equation 4 for the acceleration a. Show your
work.

4. What is the weight (in N) of a mass of 0.050 kg? Show your work.
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The following data for coordinate position x versus time t were taken for a puck that is uniformly

accelerated.

5. Calculate the displacement Dx during each time interval and record each of them in the table above.
Calculate the instantaneous velocity v at the center of each time interval and record each of them in the
table above. Show sample calculations.

6. For the data in the table above perform a linear least squares fit with v the vertical axis and t the
horizontal axis. Record the slope of this fit as the acceleration a of the puck. Record the intercept of the
fit as the initial velocity vo. (This is the calculation that you will do five times in the laboratory.)

a¼ ____________________m/s2

vo¼ ____________________m/s

t (s) 0.000 0.100 0.200 0.300 0.400 0.500 0.600

x (m) 0.000 0.0102 0.0399 0.0896 0.1603 0.2498 0.3607

Dx (m)

v (m/s)

t (s) 0.050 0.150 0.250 0.350 0.450 0.550
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8 L A B O R A T O R Y 8 Newton’s Second Law on the Air Table
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Data and Calculations Table 1

Dt¼ 0.100 s mp¼ kg m1þm2¼ kg

t (s) 0.000 0.100 0.200 0.300 0.400 0.500 0.600

x (m)

m2

.0100
kg

Dx (m)

v (m/s)

t (s) 0.050 0.150 0.250 0.350 0.450 0.550

t (s) 0.000 0.100 0.200 0.300 0.400 0.500 0.600

x (m)

m2

.0200
kg

Dx (m)

v (m/s)

t (s) 0.050 0.150 0.250 0.350 0.450 0.550

t (s) 0.000 0.100 0.200 0.300 0.400 0.500 0.600

x (m)

m2

.0300
kg

Dx (m)

v (m/s)

t (s) 0.050 0.150 0.250 0.350 0.450 0.550
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S A M P L E C A L C U L A T I O N S
1. Dx¼ xf� xi¼
2. v¼Dx/Dt¼
3. m1þm2¼mpþ 0.0500¼
4. %error¼ (E�K)/K� 100%¼

t (s) 0.000 0.100 0.200 0.300 0.400 0.500 0.600

x (m)

m2

.0400
kg

Dx (m)

v (m/s)

t (s) 0.050 0.150 0.250 0.350 0.450 0.550

t (s) 0.000 0.100 0.200 0.300 0.400 0.500 0.600

x (m)

m2

.0500
kg

Dx (m)

v (m/s)

t (s) 0.050 0.150 0.250 0.350 0.450 0.550

Data and Calculations Table 2

Force¼m2g (N)

Acceleration (m/s2)

Initial velocity (m/s)

Correlation Coefficient

f¼ N (m1þm2)exp¼ kg r¼ % error¼
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Q U E S T I O N S
1. Each of your five graphs of v versus t contains six data points. According to statistical theory for six

data points there is only 0.1% probability (1 chance in 1000) that uncorrelated data would give
r$ 0.974. State how your values of r compare to 0.974, and make the best statement you can about the
validity of the correlation of these data.

2. Your graph of applied force versus acceleration contains five data points, and statistical theory
indicates that for five points there is a 1% probability that r$ 0.959 would be obtained for uncorrelated
data. From your value of r make the best statement you can about the validity of the correlation of
your data.

3. What is the ratio of the frictional force f to the applied force m2g for each case? For which of the cases
(if any) is f less than 10% of m2g? Based on this, what is your conclusion about the importance of
friction in your data?

4. Summarize the concepts investigated in this laboratory. What was to be proved, and how confident
are you that your data confirm the theory?
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Newton’s Second Law on
Atwood’s Machine

O B J E C T I V E S
o Investigate the acceleration produced by a series of different forces applied to a fixed mass, and

demonstrate that the acceleration is proportional to the applied force.

o Demonstrate that the constant of proportionality between the acceleration and the applied force
is the mass to which the force is applied.

o Determine the frictional force that acts on the system.

E Q U I P M E N T L I S T
. Atwood’s machine pulley (very low-friction ball-bearing pulley)

. Calibrated slotted masses, slotted mass holders, laboratory balance

. Laboratory timer (capable of measuring to 0.01 s), strong thin nylon string, and meter stick

T H E O R Y
The relationship between the net force F exerted on a mass m and the acceleration a of the mass is
Newton’s Second Law.

F ¼ ma ðEq: 1Þ

The system shown in Figure 9-1 is called an Atwood’s machine. It consists of twomasses at the ends of
a string passing over a pulley. Also shown in the figure is a free-body diagram of the forces. For m2 > m1,
Equation 1 applied to each mass gives

T�m1g ¼ m1a and m2g�T ¼ m2a ðEq: 2Þ

where T is the tension in the string, and a is the magnitude of the acceleration of either mass. Combining
Equations 2 leads to

ðm2 �m1Þg ¼ ðm1 þm2Þa ðEq: 3Þ
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Equation 3 states that a force (m2 � m1)g equal to the difference in the weight of the two masses acts on
the sum of the masses (m1 þ m2) to produce an acceleration a of the system. There will be a frictional
force f in the system that opposes the applied force (m2�m1)g. Including the frictional force but moving
it to the other side of the equation gives

ðm2 �m1Þg ¼ ðm1 þm2Þa þ f ðEq: 4Þ

An Atwood’s machine is shown in Figure 9-2 where m2 > m1, the mass m1 is initially on the floor, and
m2 is released from rest at distance x above the floor at t¼ 0. Successive positions of the two masses are
shown in Figure 9-2 at later times until the final picture showsm2 as it strikes the floor at some time t after
its release. The relationship between the distance x, the acceleration a of the system, and the time t is

x ¼ at2

2
ðEq: 5Þ

T

m1

m2

m1 m2

m1g

m2g

T

T T

Figure 9-1 Atwood’s machine and free-body diagram of the forces on each mass.

m1

m2

m2

x

t � 0 t � t

m1

m1

m2

m2

Figure 9-2 Atwood’s machine as mass m2 falls a distance x in time t.
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Solving Equation 5 for a in terms of the measured quantities x and t gives

a ¼ 2x

t2
ðEq: 6Þ

This laboratory will measure the acceleration for the Atwood’s machine for several different values
of the applied force (m2 � m1)g using a fixed total mass (m1 þ m2). Because the pulley is not massless,
some portion of its mass should be included in the total mass. You will be challenged to discover what
fraction of the pulley’s mass should be included when you analyze the data that you will take in the
laboratory.

E X P E R I M E N T A L P R O C E D U R E
1. Place 1.0000 kg of slotted masses (including a 0.0500 kg mass holder) on each pan of a laboratory

balance. Include five 0.0020 kg masses on one of the pans. If all the masses are accurate, the scale
should be balanced. If the scales are not exactly balanced, add 0.0010 kg slotted masses to whichever
side is needed to produce as perfect a balance as can be obtained. The purpose of this procedure is
to produce two masses that are as nearly equal as possible. Record in the Data Table the sum of all
mass on the balance as (m1 þ m2). Record in the Data Table the mass of the pulley as mp.

2. Place these two collections of slotted masses on mass holders at each end of a string over the pulley.
Place the group of masses that contain the collection of 0.0020 kg masses on the left side (m1) of
the pulley and the other masses on the right (m2).

3. Transfer a 0.0060 kg mass from the left side (m1) to the right side (m2) while holding the system fixed.
This produces a mass difference (m2 � m1) of 0.0120 kg.

4. While one partner holds mass m1 on the floor, another partner should measure the distance x from
the bottom of mass m2 to the floor as shown in Figure 9-2. The height of the pulley above the floor
should be chosen as high as feasible but at least 1.000 m. Record this distance x in the Data Table.
Use this same distance for all measurements.

5. Release mass m1 and simultaneously start the timer. Stop the timer when mass m2 strikes the floor.
Repeat this measurement four more times for a total of five trials with a mass difference (m2 � m1) of
0.0120 kg. Record all times in the Data Table.

6. Repeat Steps 4 and 5 using mass differences (m2 � m1) of 0.0160, 0.0200, 0.0240, 0.0280, and 0.0320 kg
by transferring a mass of 0.0020 kg each time. Make a total of five trials for each mass difference and
record the measured times in the Data Table.

C A L C U L A T I O N S
1. Calculate and record the forces (m2 � m1)g using g¼ 9.800m/s2.

2. Calculate the mean time t and the standard error at for the five measurements of time at each of the
mass differences (m2 � m1). Record those values in the Calculations Table.

3. Use Equation 6 to calculate the acceleration a from x and t for each value of applied force. Record these
values of a in the Calculations Table.

4. Perform a linear least squares fit with the applied force (m2 � m1)g as the vertical axis and the
acceleration a as the horizontal axis. Record in the Calculations Table the slope of the fit as (m1þm2)exp,
the intercept of the fit as f, and the value of the correlation coefficient r.
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G R A P H S
1. Make a graph of the data with the applied force as the vertical axis and the acceleration as the

horizontal axis. Also show on the graph the straight line obtained by the least squares fit to the data.
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9 L A B O R A T O R Y 9 Newton’s Second Law on Atwood’s Machine

P R E - L A B O R A T O R Y A S S I G N M E N T
1. A net force of 3.50N acts on a 2.75 kg object. What is the acceleration of the object? Show your work.

2. Describe the basic concept of the Atwood’s machine. What is the net applied force? What is the mass
to which this net force is applied? Show your work.

3. An Atwood’s machine consists of a 1.060 kg mass and a 1.000 kg mass connected by a string over a
massless and frictionless pulley. Use Equation 3 to find the acceleration of the system. Assume that g
is 9.80 m/s2. Show your work.

4. Suppose that the system in Question 3 has a frictional force of 0.056 N. Use Equation 4 to determine
the acceleration of the system. Show your work.
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The following data were taken with an Atwood’s machine for which the total mass m1þm2 is kept
constant. For each of the values of mass difference (m2�m1) shown in the table, the time for the system
to move x¼ 1.000m was determined.

(m2 � m1) (kg) 0.010 0.020 0.030 0.040 0.050

t (s) 8.30 5.06 3.97 3.37 2.98

a (m/s2)

(m2�m1)g (N)

5. From the data above for x and time t, use Equation 6 to calculate the acceleration for each of the
applied forces and record them in the table above. Show the calculation for the 0.010 kg mass
difference as a sample calculation.

6. From the mass differences (m2 � m1) calculate the applied forces (m2 � m1)g and record them in the
table above. Use a value of 9.80 m/s2 for g. Show the calculation for the 0.010 kg mass difference as a
sample calculation.

7. Perform a linear least squares fit with the applied force as the vertical axis and the acceleration as
the horizontal axis. The slope of the fit is equal to the total mass (m1þm2)exp and the intercept is the
frictional force f. Record those and the value of the correlation coefficient r. (This is the calculation that
will be performed for the data of the laboratory.)

ðm1 þm2Þexp ¼ kg f ¼ N r ¼
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Data Table

(m1þm2)¼ kg mp¼ kg x¼ m

(m2�m1) (kg) t1 (s) t2 (s) t3 (s) t4 (s) t5 (s)

0.012

0.016

0.020

0.024

0.028

0.032

Calculations Table

(m2�m1)g (N) t (s) at (s) a (m/s2)

(m1þm2)exp¼ kg f¼ N r¼
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S A M P L E C A L C U L A T I O N S
1. % Error¼ (E�K)/K� 100%¼

Q U E S T I O N S
1. According to statistical theory for six data points there is only 1% probability (1 chance in 100) that a

value of r� 0.917 and a 0.1% probability (1 chance in 1000) that a value of r� 0.974 would be obtained
for data that are uncorrelated. Based on this idea, what does your value of r indicate for the level of
correlation of your data?

2. Divide the frictional force by the applied force, (m2 � m1)g, for each applied force and express it as a
percentage in the space below. Friction would not be important if these percentages were a few
percent, would be small if they were about 10%, and would be very important if they were 25% or
greater. Make the best possible statement about the importance of friction for your data.

3. Your value of (m1þm2)exp should be greater than your recorded value of (m1þm2) because of the
effect of the pulley. Perform the calculations needed to determine what fraction of the pulley’s mass
appears to be included in your value of (m1þm2)exp. If you were to express that fraction as a whole
number fraction, which of the following would best fit your data? (½ �̂̄ ¼ �̂̇ )

102 Physics Laboratory Manual n Loyd



4. The laboratory instructed you to transfer mass from one side of the pulley to the other side. Why was
this procedure used instead of just adding mass to one side of the pulley to produce a larger force?

5. What concept is this laboratory designed to investigate? Describe the extent to which your data and
analysis validate the concept.
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Torques and Rotational
Equilibrium of a Rigid Body

O B J E C T I V E S
o Apply the conditions for equilibrium of a rigid body to a meter stick pivoted on a knife edge.

o Determine the center of gravity of the meter stick, mass of the meter stick, and mass of an
unknown object by applying known torques.

o For a given applied force needed to produce equilibrium, compare the theoretically predicted
location of the force to an experimentally determined location.

E Q U I P M E N T L I S T
. Meter stick with adjustable knife-edge clamp and support stand

. Laboratory balance and calibrated hooked masses

. Thin nylon thread and unknown mass with hook

T H E O R Y
If a force F acts on a rigid body that is pivoted about some axis, the body tends to rotate about that axis.
The tendency of a force to cause a body to rotate about some axis is measured by a quantity called
torque t. It is defined by

t ¼ Fd\ ðEq: 1Þ

with F the magnitude of the force, and d\ the lever arm of the force. The units of torque are N–m.
Torque caused by a given force must be defined relative to a specific axis of rotation. Figure 10-1 shows
two forces F1 and F2 acting on an arbitrarily shaped body.

The axis of rotation is along a line through O perpendicular to the page. The direction of the line of
action of each force is shown as a dotted line extended in either direction along the force vector. The lever
arm for each force is shown as the perpendicular distance from O to the line of action of the force. In this
case there are two torques t1 and t2 acting on the body given by

t1 ¼ F1d1 and t2 ¼ F2d2 ðEq: 2Þ
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Torques tend either to rotate the body clockwise or counterclockwise about the axis. The convention
in this laboratory will be to consider counterclockwise torques positive and clockwise torques negative.
That convention gives net torque due to F1 and F2 about an axis through O as

tnet ¼ F2d2 � F1d1 ðEq: 3Þ

The net torque tnet will be either counterclockwise, clockwise, or zero depending upon the magnitudes
of F2 d2 and F1d1. A meter stick will be the rigid body to which forces will be applied to produce
mechanical equilibrium. The two conditions that must be satisfied for complete equilibrium of a rigid
body are:

(1) Translational equilibrium is achieved if the vector sum of all the forces acting on the body is zero.

(2) Rotational equilibrium is achieved if the magnitude of
P

tccw (sum of counterclockwise torques) is
equal to the magnitude of

P
tcw (sum of clockwise torques).

The center of gravity of a body is defined as that point through which the sum of all the torques due to
all the differential elements of mass of the body is zero. If the gravitational field is uniform throughout
the body, the center of gravity and the center of mass are the same point. A uniform and symmetric
meter stick has its center of gravity at the 0.500m (50.0 cm) mark. Any meter stick will probably be close
to uniform and symmetric, and its center of gravity will be close to the 0.500m mark.

A meter stick with a knife-edge clamp on a support stand is shown in Figure 10-2. The mass of the
meter stick is mo, and three other masses m1, m2, and m3 are shown hung from the meter stick.
The masses produce forces where they are placed equal to the weight of the masses m1g, m2g, and m3g.
The support exerts a force FS directed upward at the point of the support. The weight of the meter stick
mog is exerted at the center of gravity of the meter stick xg.

The meter stick in Figure 10-2 is in equilibrium. Forces in the upward direction are positive, and
forces in the downward direction are negative. Take torques about an axis perpendicular to the page

F1

O
d1

d2

F2

Figure 10-1 Lever arms about the point O for two forces acting on a body.

20

d1

d2 d0

m0

d3

10

m1

30 40 50 60 70 80 90

m2 m3

Figure 10-2 Meter stick balanced at point not the center of gravity. There are torques from the three applied
masses and from the meter stick mass at the center of gravity.
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through the point of support xo. The lever arm for each mass is di ¼ jxi � xoj with xi the position of the ith
mass. The two conditions for equilibrium give

P
F ¼ 0 leads to FS �m1g�m2g�m3g�mog ¼ 0 ðEq: 4Þ

P
tccw �P tcw ¼ 0 leads to m1gd1 þm2gd2 �mogdo �m3gd3 ¼ 0 ðEq: 5Þ

The following is a numerical example of the arrangement in Figure 10-2. The mass of the meter
stick is mo¼ 0.120 kg, and masses m1¼ 0.150 kg and m2¼ 0.200 kg are placed as in the figure. The point
of support is at the 0.400m mark. What value of mass m3 must be placed at the 1.000m mark to put the
system in equilibrium, and what is the resulting support force FS? The solution is given by:

P
tccw �P tcw ¼ 0 is ð0:150Þgð0:350Þ þ ð0:200Þgð0:200Þ � ð0:120Þgð0:100Þ �m3gð0:600Þ ¼ 0

which reduces to 0.0525þ 0.0400� 0.0120¼m3 (0.600)

Solving the above equation gives m3 ¼ 0:0805

0:600
¼ 0:134 kg

P
F ¼ 0 gives FS ¼ ðm1gþm2gþm3gþmogÞ ¼ ð0:150þ 0:200þ 0:134þ 0:120Þð9:80Þ ¼ 5:92N

In the numerical example, the value of m3 was determined for torques about an axis through the
point of support. When the conditions of complete equilibrium have been met for some specific axis, the sum of
torques about any axis is then ensured to be zero. To confirm this for the numerical example given above,
take torques about the axis perpendicular to the page through the left end of the meter stick. The masses
m1, m2, m3, and mo exert clockwise torques, and the force FS exerts the only counterclockwise torque.
Calculating those values gives

tcw ¼ ½ð0:150Þð0:050Þ þ ð0:200Þð0:200Þ þ ð0:120Þð0:500Þ þ ð0:134Þð1:00Þ�½9:80� ¼ 2:37Nm

tccw ¼ ½ðFSÞ0:400� ¼ ð5:92Þð0:400Þ ¼ 2:37Nm

In this laboratory, attention will be directed to satisfying the conditions of rotational equilibrium.
The support force FS will always act through the support position. If the support position is chosen as
the axis for torques, FS will not contribute to the torque because it will have a zero lever arm. When the
rotational equilibrium conditions are met, the value of the support force FS will ensure translational
equilibrium as well.

E X P E R I M E N T A L P R O C E D U R E
Part 1. Torque due to Two Known Forces

1. Remove the knife-edge clamp from the meter stick. Use the laboratory balance to determine the mass
of the meter stick. Record it in the Meter Stick Data Table.

2. Place the knife-edge clamp on the meter stick and place it on the support. Adjust the position of
the clamp until the best balance is achieved. Record the position of the knife-edge clamp as xg in the
Meter Stick Data Table.

3. With the meter stick supported at xg, place a mass m1¼ 0.100 kg at the 0.100m mark. Determine and
record in Data and Calculations Table 1 the position x2 at which a mass m2¼ 0.200 kg balances the
meter stick. Use a small loop of nylon thread to hang the hooked masses at a given position. It may
prove helpful to use a very small piece of tape to hold the thread at the desired position.
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4. Calculate the lever arm for each force di ¼ jxg � xijwhere xi is the position of the ith mass. With the
support at the position xg, the meter stick mass has zero lever arm and contributes no torque. Record
the values of d1 and d2 in Data and Calculations Table 1.

5. Calculate and record in Data and Calculations Table 1 the value of the torques. The only counter-
clockwise torque is due to m1 and

P
tccw¼m1gd1. The only clockwise torque is due to m2 andP

tcw¼m2gd2. Use a value of 9.80m/s2 for g for these and all other calculations.

6. Calculate the percentage difference between
P

tccw and
P

tcw and record it in Data and Calculations
Table 1.

Part 2. Torque due to Three Known Forces

1. Support the meter stick at xg. Place m1¼ 0.100 kg at 0.100m, and m2¼ 0.200 kg at 0.750m. Determine
the position x3 at which m3¼ 0.050 kg balances the system. Record the value of x3 in Data and
Calculations Table 2.

2. The meter stick mass mo makes no contribution to the torque. Calculate the lever arm for each of the
masses and record the values in Data and Calculations Table 2. (di ¼ jxg � xij)

3. Calculate the values of
P

tccw and
P

tcw and record them in Data and Calculations Table 2.

4. Calculate the percentage difference between
P

tccw and
P

tcw and record it in Data and Calculations
Table 2.

Part 3. Determination of the Meter Stick Mass by Torques

1. Place a mass m1¼ 0.200 kg at the 0.100m position. Loosen the knife-edge clamp and slide the meter
stick in the clamp until the torque exerted by m1g is balanced by the torque of the meter stick weight
acting at xg. When the best balance is achieved, tighten the clamp. The position at which the meter
stick is supported is xo. Record xo in Data and Calculations Table 3.

2. The values of the lever arms are given by d1 ¼ jx1 � xoj and do ¼ jxg � xoj. Calculate and record the
values of d1 and do in Data and Calculations Table 3.

3. For these conditions,
P

tccw¼m1gd1 and
P

tcw¼mogdo where mo stands for the assumed unknown
mass of the meter stick. Equating the two torques gives mo¼m1(d1/do). Calculate and record in Data
and Calculations Table 3 this value as (mo)exp.

4. Calculate and record in Data and Calculations Table 3 the percentage error in (mo)exp compared to the
meter stick mass determined by the laboratory balance.

Part 4. Comparison of Experimental and Theoretical Determinations of the Location of an
Applied Force

1. Adjust the knife-edge clamp to the 0.400m mark. Place m1¼ 0.050 kg at 0.050m, m2¼ 0.300 kg at
0.300m, and m3¼ 0.200 kg at 0.700m as shown in Figure 10-3. With the meter stick supported at the
0.400m mark, determine the position at which massm4¼ 0.100 kg balances the meter stick. Record this

2010

m1

30 40

??

50 60 70 80 90

m2

m4

m3

Figure 10-3 The location of mass m4 needed to place the system in equilibrium is to be determined both
experimentally and theoretically, and then compared.
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position as x4 in Data and Calculations Table 4 and use this value of x4 to calculate the lever arm d4 and
record it in Data and Calculations Table 4 as (d4)exp.

2. In the space provided in Data and Calculations Table 4, write the equation for the rotational
equilibrium with counterclockwise torques positive and clockwise torques negative. Use m1, m2, m3,
and m4 as the symbols for the appropriate mass, and d1, d2, d3, and d4 as the symbols for the lever
arms. Include the contribution from the meter stick mass mo acting at the center of gravity of the
meter stick xg.

3. In the equation, treat the lever arm d4 of mass m4 as unknown and all the other quantities as known.
Solve the equation to obtain a value for d4 and record that result in Data and Calculations Table 4 as
(d4)theo.

4. Calculate the percentage error in (d4)exp compared to (d4)theo and record it in Data and Calculations
Table 4.

Part 5. Determination of an Unknown Mass by Torques

1. Use an experimental arrangement with the meter stick that is similar to those that we have used thus
far to devise a method to determine the mass of an unknown mass. Describe carefully the procedure
that is followed. Use at least one known mass and state its value and location on the meter stick.
Write an equation that describes the equilibrium of the system treating the mass as unknown.
Include a sketch of the experimental arrangement showing the position of all masses known and
unknown. Construct your own Data and Calculations Table 5 listing all the relevant quantities.

2. Use the laboratory balance to determine the value of the unknown mass. Calculate the percentage
error in your experimental value of the unknownmass compared to that obtained using the laboratory
balance.
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10 L A B O R A T O R Y 1 0 Torques and Rotational Equilibrium of a Rigid Body

P R E - L A B O R A T O R Y A S S I G N M E N T
1. State a definition of torque and give an equation for torque. Define the terms in the equation.

2. What are the conditions for equilibrium of a rigid body? State in words and equation form and define
the terms of the equations.

3. For the meter stick shown in Figure 10-4, the force F1 10.0N acts at 10.0 cm. What is the magnitude
of the torque due to F1 about an axis through point A perpendicular to the page? Is it clockwise, or is
it counterclockwise? Show your work and give correct units.
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20

F1 � 10.0 N F2 � 15.0 N

10

A B

30 40 50 60 70 80 90

Figure 10-4 Meter stick with two forces F1 and F2 acting at points shown.
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4. In Figure 10-4 the force F2¼ 15.0N acts at the point 70.0 cm. What is the magnitude of the torque due
to F2 about an axis through point B and perpendicular to the page? Is the torque clockwise, or is it
counterclockwise? Show your work and give correct units.

5. For the meter stick in Figure 10-4, what is the magnitude of the net torque due to both forces F1 and
F2 about an axis perpendicular to the page through point A? Is it clockwise or counterclockwise?
Show your work.

6. In Figure 10-5 if mass m1¼ 0.100 kg acts at 20.0 cm, what is the value of mass m2 that must be placed
at the position 70.0 cm shown to put the system in equilibrium?Write the equation for

P
tccw¼P tcw

with the mass m2 as unknown and solve for m2. Assume that the meter stick is uniform and
symmetric. Show your work.

2010 30 40 50 60 70 80 90

m1 m2

Figure 10-5 Meter stick with forces applied by hanging two masses m1 and m2.
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10 L A B O R A T O R Y 1 0 Torques and Rotational Equilibrium of a Rigid Body

L A B O R A T O R Y R E P O R T

Data and Calculations Table 3

Support Position xo ¼ m

Mass (kg) Position (m) Lever arm (m) (mo)exp¼ kg % Error

m1¼ 0.200 x1¼ 0.100 d1¼

mo¼ xg do¼
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Meter Stick Data Table

mo ¼ kg xg ¼ m

Data and Calculations Table 1

Mass (kg) Position (m) Lever arm (m) Torque (N�m) % Difference

m1¼ 0.100 x1¼ 0.100 d1¼ tccw¼

m2¼ 0.200 x2¼ d2¼ tcw¼

Data and Calculations Table 2

Mass (kg) Position (m) Lever arm (m) Torque (N�m) % Difference

m1¼ 0.100 x1¼ 0.100 d1¼ tccw¼
m2¼ 0.200 x2¼ 0.750 d2¼

m3¼ 0.050 x3¼ d3¼ tcw¼
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Data and Calculations Table 4

Support Position xo¼ 0.400m

Mass (kg) Position (m) Lever Arm (m) Equation for the Torque

m1¼ 0.050 x1¼ 0.050 d1¼

m2¼ 0.300 x2¼ 0.300 d2¼

m3¼ 0.200 x3¼ 0.700 d3¼ Solving equation for d4 gives
(d4)theo ¼ m

m4¼ 0.100 x4¼ (d4)exp¼

mo¼ xg¼ do¼

Data and Calculations Table 5
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S A M P L E C A L C U L A T I O N S
1. di ¼ jxi� xoj ¼

2.
P

tccw¼

3.
P

tcw¼

4. % Diff torques ¼ jtccw � tcwj=
�
0:5ðtccw þ tcwÞ

�� 100% ¼

5. (mo)exp¼m1(d1/do)¼

6. % Error for ðmoÞexp ¼ jE�Kj=K� 100% ¼

7. (d4)theo ¼

8. % Error for ðd4Þtheo ¼ jE�Kj=K� 100% ¼

9. Calculation for mexp in Part 5¼

10. % Error for mexp ¼ jE�Kj=K� 100% ¼

Q U E S T I O N S
1. Consider the percentage difference between the

P
tccw and the

P
tcw for the first two parts of the

laboratory when known forces are balanced. A difference of 0.5% or less is excellent, a difference of
1.0% or less is good, and a difference of 2% or less is acceptable. Based on these criteria, describe your
results for the first two parts of the laboratory and defend your statement.

2. Using the same criteria as in Question 1 for the percentage differences, describe your results for
the determination of mass of the meter stick in Part 3 of the laboratory and for the determination
of the lever arm of the mass m4 in Part 4 of the laboratory.

C
O
P
Y
R
IG

H
T
ª

2
0
0
8
T
h
o
m
s
o
n
B
ro
o
k
s
/C
o
le

Laboratory 10 n Torques and Rotational Equilibrium of a Rigid Body 115



3. In all of the experimental arrangements the mass of the knife-edge clamp is ignored. Is this an
approximation because its mass is small, or is there some reason it makes no contribution to the
torque? State your reasoning clearly.

4. Suppose an experimental arrangement like the one in Part 2 has mass m1¼ 0.200 kg at the 0.100-m
mark and a mass m2¼ 0.100 kg at the 0.750-m mark. Can the system be put in equilibrium by a
0.050-kg mass? If it can be done, state where it would be placed. If it cannot be done, state why not.

5. In Part 1 of the laboratory, what is the value of the force Fs with which the support pushes upward on
the meter stick?

6. For the equilibrium conditions established in Part 4 of the laboratory, calculate the counterclockwise
and clockwise torques about an axis perpendicular to the page through a point at the left end of the
meter stick. Calculate the percentage difference between the net counterclockwise torque and the net
clockwise torque.
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Conservation of Energy
on the Air Table

O B J E C T I V E S
o Determine the value of the spring constant k for two springs.

o Investigate how the speed, kinetic energy, and total spring potential energy of a puck on a
horizontal air table vary with time.

o Evaluate the extent to which the total mechanical energy (sum of kinetic energy plus spring
potential energy) is constant as a function of position of the puck.

E Q U I P M E N T L I S T
. Air table, sparktimer, air pump, foot switch, carbon paper, and recording paper

. Level, two springs, two spring clamps, and a double hook for the puck

. Meter stick, pulley, string, calibrated masses, and laboratory balance

T H E O R Y
The force F exerted by a spring as it is elongated from its natural length xo to some greater length x is
given by

F ¼ �kðx� xoÞ ðEq: 1Þ

where k is a constant called the spring constant. The spring constant is defined as the force per unit
elongation and has units of N/m. The value of k will be different for each spring depending upon the
spring material properties and how tightly the spring is wound. The value of k for a spring is determined
by measuring the elongation caused by a known force.

The force exerted by a spring is an example of a class of forces known as conservative forces. A con-
servative force is one for which a potential energy function can be defined. For a spring force the potential
energy U is given by

U ¼ ½ kðx� xoÞ2 ðEq: 2Þ

Physics Laboratory Manual n Loyd L A B O R A T O R Y 11
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AmassM attached to the end of a spring will change speed V as the force of the spring varies. At any
instant when the mass M has speed V, it has a kinetic energy K given by

K ¼ ½ MV2 ðEq: 3Þ

The sum of the potential and kinetic energies is equal to the total energy E. In an isolated system where
only conservative forces are present, the total energy E is a constant throughout the motion. This is the
principle of conservation of mechanical energy. In equation form the total energy E is given by

E ¼ ½ MV2 þ½ kðx� xoÞ2 ðEq: 4Þ

In this laboratory a puck on an air table will move under the influence of two springs arranged so
that they pull in opposite directions on the puck. We will determine the spring constants k1 and k2 of the
two springs. We will determine the position of the puck as a function of time with sparktimer mea-
surements. At each position of the puck along its recorded path, the speed of the puck and the elongation
of each spring will be determined. From these measurements we will determine the kinetic energy K, the
spring potential energyU, and the total energy E at each point. A graph of the total energy E as a function
of position will show the extent to which the total energy remains constant.

E X P E R I M E N T A L P R O C E D U R E
Spring Constants

1. Place a sheet of carbon paper and a sheet of recording paper on the table with the recording paper
on top. Label one of the springs as spring #1, and use it in the arrangement described in Figure 11-1.
Place enoughmassm on the end of the string to elongate the spring slightly and place it under tension.
A value for m of 0.020 kg should be about the right choice for the initial value. Record the value of m
in Data and Calculations Table 1.With the puck at rest and the spring under tension, mark the position
of the puck with a short burst of the sparktimer.

2. To find a convenient range for the mass needed, apply enough mass to extend the spring about
0.300m. This will be themaximummass neededwith other trials at intermediate values. For six values
of mass in the range 0.020 kg to the mass required to extend the spring 0.300 m, record the position of
the puck by a short burst of the sparktimer. Record the six values of m used in Data and Calculations
Table 1.

m

String Puck Spring

Spring
Clamp

Sparktimer

Figure 11-1 Air table arrangement for measuring the spring constant k.

118 Physics Laboratory Manual n Loyd



3. Remove the recording paper from the table and draw a straight line through the points obtained
from the sparktimer bursts. Arbitrarily choose an origin and measure the distance from the origin to
each point. Record these values as x in Data and Calculations Table 1.

4. Label the second spring as spring #2 and repeat Steps 1 through 3 for the second spring.

Energy Conservation

1. Place the double hook on the puck and measure the mass of the puck plus the hook using the
laboratory balance. Record this value as Mp in Data and Calculations Table 2.

2. Measure the unstretched length of each of the two springs and record them in Data and Calculations
Table 2 as Lo1 and Lo2.

3. Level the air table and on the table place a sheet of carbon paper and a sheet of recording paper
with the recording paper on top. Attach the leads to both of the pucks and place one of the pucks in
one corner of the table, where it will remain.

4. Place the two spring clamps on opposite sides of the table. Attach the two springs to opposite ends of
the double hook on the puck. Attach the other end of each spring to one of the spring clamps.

5. Release the puck so it moves in an elliptical trajectory as shown in Figure 11-2. A second condition is
that the two springs must both be under stretched tension at all times during the motion. Launch the puck for
several trial runs to be sure that both conditions are satisfied.

6. On the recording paper mark the position of the two spring clamps and indicate which spring is
attached to which clamp. A small piece of paper must be taped to the recording paper to include the
location of the spring clamps.

7. Set the sparktimer to 20.0Hz and record the trajectory of the puck. Note the location of the initial
position of the puck.
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2 17

18

3
4

5

Spring
Clamp

Spring
Clamp

1011

9

8

7

13

12
k1

k2

16

15

14

L2

L1

1

Figure 11-2 Sparktimer record produced by the elliptical motion of puck on an air table under the influence of
two springs clamped on opposite sides of the table.
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8. Choose a point near the beginning of the puck’s motion (but not the very first point). Circle that point
and label it as 1. Continue in the direction of the puck’s motion, circle every other point, and number
them consecutively up to at least 15 (Figure 11-2).

9. For each circled point measure the distance from the point to each spring clamp. These are the lengths
L1 and L2 of the springs at that point as illustrated for the point labeled 12 in Figure 11-2. Record them
in Data and Calculations Table 2.

10. At each numbered pointmeasure the distance between the preceding uncircled point and the next uncircled
point as illustrated in Figure 11-3. This gives the average displacement of the puck during the time
interval Dt¼ 0.100 s including 0.050 s before and 0.050 s after the point. For each circled point record
this distance as Ds in Data and Calculations Table 2. If the path has sharp curvature, measure Ds as the
distance from uncircled to circled to uncircled points as shown in the right-hand side of Figure 11-3.

C A L C U L A T I O N S
Spring Constants

1. For each applied mass m calculate the force mg using g¼ 9.80 m/s2 and record it in Data and
Calculations Table 1.

2. Perform a linear least squares fit to the data for each spring with the force as the vertical axis and x
as the horizontal axis. Record the slope of those fits as the spring constants k1 and k2 in Data and
Calculations Table 1 and Data and Calculations Table 2. Record the values of the correlation
coefficient r for each of the fits in Data and Calculations Table 1.

Energy Conservation

1. Input the values of Mp, k1, k2, Lo1, Lo2, L1, L2, and Ds into the Excel spreadsheet template Lab 11
Calculations. This template is available atwww.thomsonedu.com/physics/loyd. The spreadsheetwill
calculate V¼Ds/Dt and K¼½ Mp V2 for each point. It will also calculate U¼½ k1 jL1�Lo1j2 þ ½ k2
jL2–Lo2j2 and E¼KþU for each point. Record all the values calculated by the spreadsheet in Data and
Calculations Table 2.

G R A P H S
1. Use a single sheet of linear graph paper to make a graph that has energy units on the vertical scale

and position numbers (1 through 15) on the horizontal scale. Use different symbols for each and graph
the kinetic energy K, the total spring potential energy U, and the total mechanical energy E as a
function of position number. Do not suppress the energy scale. Show the whole range of energy from
zero to slightly greater than E.

�s1

�s � �s1 � �s2 �s � �s1 � �s2

�s2

�s1 �s2

Figure 11-3 Illustrating calculation of Dswhen path is sharply curved at the right, as opposed to the case when
the path is essentially straight, as shown at the left.
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11 L A B O R A T O R Y 1 1 Conservation of Energy on the Air Table

P R E - L A B O R A T O R Y A S S I G N M E N T
1. What is the definition, both in words and equation form, of the spring constant k? What are the units

of k?

2. What is the equation for the spring potential energy of a spring? Define all terms used in the equation.

3. What is the principle of conservation of mechanical energy applied to a massm attached to a spring of
spring constant k? State it in words and equation form and define all terms used.

4. What kinds of forces conserve mechanical energy? Is mechanical energy conserved if frictional forces
are present?
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5. A spring has a spring constant k¼ 2.75N/m. It has an unstretched length of 0.100 m. What is its spring
potential energy when the spring is stretched to a length of 0.170 m? Show your work.

6. A spring is stretched by applying mass m over a pulley to the spring as shown in Figure 11-1.
The position of the end of the spring as a function of the applied mass is determined, and the data
given below are obtained. Find the spring constant k by performing a linear least squares fit with F as
the vertical axis and x as the horizontal axis. Record the slope as k.

m (kg) 0.020 0.040 0.060 0.080 0.100 0.120

x (m) 0.000 0.049 0.100 0.151 0.201 0.249

F (N)

k¼ _________________________N/m Intcp¼ _________________________N r¼_________________________

7. A 2.00 kg mass moves under the force of a spring with a spring constant of k¼ 5.65N/m. At one
instant of time the mass has a speed of 4.75 m/s when the spring has a displacement from equilibrium
of 1.557 m. What is the speed of the mass at a later time when the spring displacement from
equilibrium is 0.857 m? (Hint—Use the conservation of mechanical energy.) Show your work.
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Data and Calculations Table 1

Spring 1 k1¼ N/m

Point m (kg) mg (N) x (m)

1

2

3

4

5

6

r¼

Spring 2 k2¼ N/m

Point m (kg) mg (N) x (m)

1

2

3

4

5

6

r¼
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S A M P L E C A L C U L A T I O N S
1. F¼mg¼
2. Velocity¼V¼Ds/Dt¼
3. K¼½ MpV

2¼
4. U¼½ k1 jL1�Lo1j2þ½ k2 jL2�Lo2j2¼
5. E¼KþU¼

Data and Calculations Table 2

Mp¼ kg k1¼ N/m k2¼ N/m Lo1¼ m Lo2¼ m

Point L1 (m) L2 (m) Ds (m) V (m/s) K (J) U (J) E (J)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
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Q U E S T I O N S
1. Calculate the mean and standard error for the 15 values for the total energy E. Divide the standard

error by the mean, and express the ratio as a percentage. Use this calculation as evidence for your
statement of how constant are your values of E.

2. Although your values of E should be fairly constant, they normally show a slight decrease from
beginning to end of the data caused by friction. Calculate the decrease in E from the first to last point.
Also calculate the total path lengthof thepuckby summing the values ofDs. Divide the loss in energyby
the total path length, which is the force of friction. What is the friction for your data? Show your work.

3. In the determination of the spring constant k the origin from which the position x was measured was
chosen arbitrarily. Would choosing another point for the origin significantly change the value
obtained for k? State clearly the reasoning for your answer.

4. Summarize in your own words the physical theory that this laboratory is supposed to demonstrate.
Do your results support the theory? Consider the variations in the values of U, K, and E to support
your answer.
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Conservation of Spring
and Gravitational
Potential Energy

O B J E C T I V E S
o Determine the value of the spring constant k for a spring.

o Investigate the change in gravitational energy DUg¼mg(xf� xi) and the change in spring
potential energy DUk ¼ ð½Þkðx2f�x2i Þ for a mass suspended from the spring.

o Evaluate the extent to which the changes in energy are equal as the mass oscillates.

E Q U I P M E N T L I S T
. Spring in the form of a truncated cone made of spring brass with a spring constant of about 10N/m.
(Available from Central Scientific Co. If another spring is used, appropriate adjustments should be
made in the masses and distances used.)

. Set of calibrated hooked masses

. Table clamp, right angle clamps, support rods, meter stick

T H E O R Y
When a spring is stretched or compressed a distance x from its equilibrium length, the spring exerts a
restoring force F. The equation relating the force F and the displacement x is

F ¼ �kx ðEq: 1Þ

and k is a constant called the spring constant with unitsN/m. The negative sign in Equation 1 indicates
that the restoring force direction is opposite the displacement.

When a spring is compressed or stretched by x it has stored energy called spring potential energy
given by Uk¼½ kx2. When the spring is stretched from a displacement of x1 to a displacement of x2 the
change in spring energy is equal to the work done on the spring (Figure 12-1).

Work ¼ DUk ¼ ½ kðx22 � x21Þ ðEq: 2Þ

Physics Laboratory Manual n Loyd L A B O R A T O R Y 12

C
O
P
Y
R
IG

H
T
ª

2
0
0
8
T
h
o
m
s
o
n
B
ro
o
k
s
/C
o
le

127

ª 2008 Thomson Brooks/Cole, a part of TheThomson Corporation.Thomson, the Star logo, and Brooks/Cole are trademarks used herein under license. ALL RIGHTSRESERVED.No part of this work
covered by the copyright hereonmay be reproduced or used in any form or by any meansçgraphic, electronic, ormechanical, including photocopying, recording, taping,web distribution, information
storage and retrieval systems,or in any othermannerçwithout the written permission of the publisher.



A spring with spring constant k is supported at the top by a rigid support and allowed to hang
vertically. The vertical position at which the lower end of the spring hangs is the zero of the coordinate x.
A hooked mass m is placed by hand on the end of the spring, and the mass is slowly lowered by hand.
The mass will extend the spring by an amount xo when the hand is removed as shown in Figure 12-1.

The mass is raised and supported by hand with the lower end of the spring at position x1 above
position xo as shown in Figure 12-1. The mass is now released and allowed to fall under the influence
of the spring and the earth’s gravitational force. The mass will fall to its lowest point with displacement
x2 and then rebound and oscillate.

The gravitational potential energy relative to any horizontal plane is mgx where x is the distance
above the plane. The total mechanical energy of the system is the sum of kinetic energy, spring potential
energy, and gravitational potential energy. Consider the total mechanical energy at x1 and x2. At each
of these points the kinetic energy is zero, and the total mechanical energy is the sum of the spring
potential energy and the gravitational potential energy. The center of mass of m is distance d below the
lower end of the spring, and the gravitational potential energy zero is the same as the equilibrium point of
the spring. The equation for the sum of spring energy and gravitational energy is

½ kx21 �mgðx1 þ dÞ ¼ ½ kx22 �mgðx2 þ dÞ ðEq: 3Þ

or ½ kx21 �mgx1 ¼ ½ kx22 �mgx2 ðEq: 4Þ

Both gravitational potential energy terms are negative because the mass is below the reference point for
both positions. Equation 4 can be rewritten as

mgðx2 � x1Þ ¼ ½ kðx22 � x21Þ ðEq: 5Þ

Equation 5 states that the change in gravitational energy between points 1 and 2 is equal to the change in
spring potential energy between those points because the kinetic energy is zero at both points 1 and 2.
This laboratory will consist of a series of measurements that will test the validity of Equation 5.

E X P E R I M E N T A L P R O C E D U R E
Spring Constant

1. Use appropriate clamps and rods to provide a horizontal rod sticking out beyond the table as shown
in Figure 12-2. Hang the spring on the horizontal rod, and attach it to the rod with a piece of tape.

m

m

x � 0

x0
x1

m

x2

Figure 12-1 Positions of a mass m on a spring in the earth’s gravitational field.
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Arrange a clamp for the meter stick so that it can be supported from the floor as shown. Adjust the
height of the meter stick until the zero mark of the meter stick is aligned with the bottom of the
hanging spring as shown.

2. Place a hooked mass m of 0.1000 kg on the end of the spring. Slowly lower the mass m until it
hangs at rest in equilibrium when released. Carefully read the position of the lower end of the
spring on the meter stick scale. Record the value of the mass m and the value of the displacement x
in Data Table 1.

3. Repeat Step 2, placing in succession 0.2000, 0.3000, 0.4000, and 0.5000 kg on the spring and mea-
suring the displacement x of the spring. Record all values of m and x in Data Table 1. Record x to the
nearest 0.1mm.

Energy Conservation

1. Check that the lower end of the spring is still precisely at the zero mark. Adjust the meter stick if
necessary. Hang a 0.5000 kg mass on the end of the spring and support it with your hand with the
lower end of the spring precisely at the 0.2500mmark. Record 0.2500 as x1, and record the value of the
mass in Data Table 2. Release the mass and mark the lowest point of the lower end of the spring.
Release the mass several times until you have accurately located the lowest point of the motion. It may
be easier to note the lowest position of the mass itself, and then hold the mass at that position to
determine the position of the lower end of the spring. Record the distance as x2 in Data Table 2.

2. Repeat Step 1 for x1 values of 0.3000, 0.3500, and 0.4000m. Measure the value of x2 for each of these
values of x1 and record the values of x1 and x2 in Data Table 2.

3. Check that the lower end of the spring is still precisely at the zero mark. Adjust the meter stick if
necessary. Use a mass of 0.5000 kg and pull the mass down by hand until the lower end of the spring
is precisely at the 0.7500m mark. Record 0.7500m as x2 in Data Table 3. Release the mass and
determine how high it rises. The position of the lower end of the spring when the mass is at its
highest point is x1. Again release the mass several times to accurately determine the value of x1.
Record the value of x1 and the value of the mass in Data Table 3.C
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Figure 12-2 Spring supported by table clamp and meter stick aligned with the lower end of the spring. Mass
placed on the end of the spring caused displacement x of the spring.
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4. Repeat Step 3 for x2 values of 0.7000, 0.6500, and 0.6000m. Measure the value of x1 for each of these
values of x2 and record the values of x1 and x2 in Data Table 3.

C A L C U L A T I O N S
Spring Constant

1. Calculate the force mg for each mass and record the values in Calculations Table 1. Use the value
of 9.800m/s2 for g.

2. Perform a linear least squares fit with mg as the vertical axis and x as the horizontal axis. Record the
slope in Calculations Table 1 as the spring constant k and record r the correlation coefficient.

Energy Conservation

1. For each of the four measurements of the falling mass in Data Table 2, calculate the change in the
gravitational potential energy DUg where DUg¼mg(x2� x1). Calculate the change in spring potential
energy DUk where DUk ¼ ð1=2Þkðx22 � x21Þ. Record the results in Calculations Table 2.

2. Calculate the percentage differences between DUg and DUk for each case of Step 1 and record them in
Calculations Table 2.

3. For each of the four measurements of the rising mass in Data Table 3, calculate the change in
gravitational potential energy DUg and the change in spring potential energy DUk. Record the results
in Calculations Table 3.

4. Calculate the percentage differences between DUg and DUk for each case of Step 3 and record them in
Calculations Table 3.

G R A P H S
1. Graph the data from Calculations Table 1 for force mg versus displacement x with mg as the ver-

tical axis and x as the horizontal axis. Also show on the graph the straight line obtained from the fit
to the data.
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12 L A B O R A T O R Y 1 2 Conservation of Spring and Gravitational
Potential Energy

P R E - L A B O R A T O R Y A S S I G N M E N T
1. A spring has a spring constant of k¼ 7.50N/m. If the spring is displaced 0.550m from its equilibrium

position, what is the force that the spring exerts? Assume for this and for all other questions in the pre-
laboratory that g¼ 9.80m/s2. Show your work.

2. A spring of spring constant k¼ 8.25N/m is displaced from equilibrium by a distance of 0.150m.
What is the stored energy in the form of spring potential energy? Show your work.

3. A spring of spring constant k¼ 12.5N/m is hung vertically. A 0.500 kg mass is then suspended from
the spring. What is the displacement of the end of the spring due to the weight of the 0.500 kg mass?
Show your work.

4. A mass of 0.400 kg is raised by a vertical distance of 0.450m in the earth’s gravitational field. What is
the change in its gravitational potential energy? Show your work.
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5. A spring of spring constant k¼ 8.75N/m is hung vertically from a rigid support. A mass of 0.500 kg
is placed on the end of the spring and supported by hand at a point so that the displacement of the
spring is 0.250m. The mass is suddenly released and allowed to fall. At the lowest position of the
mass what is the displacement of the spring from its equilibrium position? (Hint—Apply Equation 5
with x1¼ 0.250m and x2 the unknown. This will lead to a quadratic equation with one of the solu-
tions the unknown x2, and the other solution the original 0.250m displacement.) Show your work.

6. The laboratory is based on the assumption that at the two points of the motion being considered,
the mass is at rest. What kind of energy does not need to be included under these experimental
conditions?
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Data Table 1

m (kg) x (m)

Calculations Table 1

mg (N) k (N/m) r

Data Table 2

x1 (m) x2 (m) m (kg)

Calculations Table 2

mg (x2� x1) (J) 1=2 k (x22 � x21) (J) % Diff
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S A M P L E C A L C U L A T I O N S
1. mg¼
2. mg(x2� x1)¼
3. 1=2 kðx22 � x21Þ ¼
4. % Diff¼ 2(E1�E2)/(E1þE2)� 100%¼

Q U E S T I O N S
1. For five data points, statistical theory states that there is only 0.1% probability that a value of r ‡ 0.992

would be obtained for uncorrelated data. Based on your value of r, make the best statement you can
about the extent to which your data indicate that the force and displacement are linear.

2. Describe the extent to which your data indicate that mechanical energy is conserved in this laboratory.
Consider the percentage differences in the energy changes in Data Table 2 and Data Table 3 in your
answer.

Data Table 3

x1 (m) x2 (m) m (kg)

Calculations Table 3

mg (x2� x1) (J) 1=2 k (x22 � x21) (J) % Diff
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3. Examine your data in Data Table 2 and in Data Table 3. For the data with the smallest percentage
difference, compare the total energy at each point. Calculate the sum UkþUg at x1 as ½kx21�mgx1.
Calculate that sum at x2 as ½kx22�mgx2. Do you expect them to agree reasonably well? Explain why
they should or should not be the same.

4. Consider the same data as used in Question 3. Calculate the value of x halfway between x1 and x2.
Calculate UkþUg¼½kx2�mgx for that point. Do you expect them to agree with the energy
calculated in Question 3? If they agree reasonably well, explain why they do. If they do not agree,
explain why they do not agree.
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The Ballistic Pendulum and
Projectile Motion

O B J E C T I V E S
o Investigate how the initial velocity of a ball fired into a ballistic pendulum is related to the initial

velocity with which the pendulum plus ball moves after the collision.

o Investigate the kinetic energy loss in the collision of the ball with the pendulum.

o Determine the initial velocity of the ball by firing it as a projectile and compare it with the velocity
determined by the collision.

E Q U I P M E N T L I S T
. Ballistic pendulum apparatus with projectile ball

. Laboratory balance and calibrated masses

. Meter stick, plain paper, carbon paper, and masking tape

T H E O R Y
Ballistic Pendulum

The principle of conservation of momentum states that the total momentum of a system of particles
remains constant if there are no external forces acting on the system. Collision processes are good
examples of this concept. In this laboratory we will use a ballistic pendulum to measure the velocity of a
ball projected by a spring gun. Figure 13-1 shows a ball of mass m moving initially in the horizontal
direction with speed vxo that then strikes a pendulum designed to catch the ball. The pendulum of massM
catches the ball and swings about pivot point O to some maximum height y2 above its original height y1.
The system of ball plus pendulum rises a vertical distance of y2� y1 as a result of the process.

Momentum is conserved because the only forces acting on the ball and the pendulum in the direction
of motion are the forces of the collision. The two particles stick together after the collision and move with
the same velocity V. A collision where particles stick together is called a completely inelastic collision.
The equation for conservation of momentum is

mvxo ¼ ðmþMÞV ðEq: 1Þ

Physics Laboratory Manual n Loyd L A B O R A T O R Y 13

C
O
P
Y
R
IG

H
T
ª

2
0
0
8
T
h
o
m
s
o
n
B
ro
o
k
s
/C
o
le

137

ª 2008 Thomson Brooks/Cole, a part of TheThomson Corporation.Thomson, the Star logo, and Brooks/Cole are trademarks used herein under license. ALL RIGHTSRESERVED.No part of this work
covered by the copyright hereonmay be reproduced or used in any form or by any meansçgraphic, electronic, ormechanical, including photocopying, recording, taping,web distribution, information
storage and retrieval systems,or in any othermannerçwithout the written permission of the publisher.



The collision does not conserve mechanical energy, but mechanical energy is conserved as the ball plus
pendulum swings up along the arc. The kinetic energy immediately after the collision is converted into
gravitational potential energy. In equation form

½ðmþMÞV2 ¼ ðmþMÞgðy2 � y1Þ ðEq: 2Þ

Solving for V gives

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gðy2 � y1Þ

q
ðEq: 3Þ

Solving Equation 1 for the initial velocity of the ball gives

vxo ¼ mþM

m

� 	
V ðEq: 4Þ

Ameasurement of y2� y1 used in Equation 3 gives a value of V to be used in Equation 4 to determine vxo.

Projectile Motion

If the pendulum is raised and the pawl is placed in one of the notches on the track, the ball can now travel
a horizontal distance X while it falls a vertical distance Y as shown in Figure 13-2.

The original velocity of the ball is completely in the x direction with no y component. The acceleration
due to gravity in the y direction is the only acceleration of the ball. The horizontal displacement X and the
vertical displacement Y as a function of time t after the ball is launched are

X ¼ vxo t ðEq: 5Þ

Y ¼ ½ gt2 ðEq: 6Þ

Equation 6 has been written with positive displacements down in the same direction as g. Combining
Equations 5 and 6 to eliminate time t gives vxo in terms of X and Y as

M
V

O

y1

y2m

Before Collision After Collision

vxo

Figure 13-1 Ballistic pendulum of mass M before and after collision with ball of mass m.
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vxo ¼ Xffiffiffiffiffiffiffiffiffiffi
2Y=g

p ðEq: 7Þ

Equation 7 can be used to determine the initial velocity vxo by firing the projectile from a known height Y
and measuring the value of X that results.

The velocity in the y direction is initially zero. As the projectile falls under the influence of gravity, it
acquires a velocity in the y direction given by

Vy ¼ g t ¼ g
ffiffiffiffiffiffiffiffiffiffi
2Y=g

q
¼

ffiffiffiffiffiffiffiffi
2gY

p
ðEq: 8Þ

E X P E R I M E N T A L P R O C E D U R E
Ballistic Pendulum

1. Slide the projectile ball (which has a hole in it) onto the rod of the spring gun (Figure 13-3). When the
ball is in the pendulum, be careful when removing it. The spring that catches the ball in the pendulum
can be easily broken. With the ball on the rod, cock the gun by pushing against the ball until the latch

Y
Note that Y
is measured
from the bottom
of the ball to the floor

Floor

X

Table

Figure 13-2 Motion of the ball moving horizontal distance X while free falling height Y.
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catches. Be very careful not to get your hand caught in the spring gun mechanism. Fire the gun several times
to see how it operates. There are two common problems. If the ball does not catch in the pendulum
bob, the spring in the bob should be adjusted or replaced. If the pawl that is designed to catch on the
notched track does not engage, the pendulum suspension should be adjusted by means of the screws
at the suspension points.

2. A sharp curved point on the side of the pendulum (or on somemodels a dot) marks the center of mass
of the pendulum-ball system. Let the pendulum bob hang vertically and measure the distance y1, the
center of mass point above the base of the gun (Figure 13-1). Record the value of y1 in Data Table 1.

3. Fire the ball into the stationary pendulumwhile it hangs freely at rest. The pendulumwill catch the ball,
swing up, and then lodge in the notched track. Record in Data Table 1 the position number, p, at which
the pawl on the pendulum catches on the track. Measure the distance y2 of the center of mass point
above the base of the apparatus (Figure 13-1) and record it in Data Table 1. Repeat this procedure four
more times for a total of five trials, recording the position p andmeasuring the distance y2 for each trial.

4. Loosen the screws holding the pendulum in its support and remove the pendulum consisting of the
rod and the bob. Determine the mass of the pendulum (bob and rod) using a laboratory balance.
Record the pendulum mass as M in Data Table 1. Determine the projectile ball mass and record it in
Data Table 1 as m.

Projectile Motion

In the following procedure, be extremely careful not to fire the ball when anyone is in a position to be struck by the
ball. Serious injury could result.

1. Raise the pendulum and secure it so that the ball can be fired under it.

2. Place the apparatus near the front edge of the laboratory table so that the ball will strike the floor
before it strikes a wall or any other object. The gun must be fired each time from the same position
relative to the table. It may be necessary to clamp the apparatus to the table. Place a piece of heavy
cardboard or some other object in a position to catch the ball after it strikes the floor but before it
strikes a wall. Do not allow the ball to strike a wall because it will likely damage it.Make several test firings
to locate the approximate place where the ball will land on the floor.

3. Place a sheet of white paper on the floor approximately centered where test firings have landed. Place
a piece of carbon paper over the white paper so that the ball striking the carbon paper will leave a dot
on the white paper. Tape both of the papers to the floor.

4. Place the ball on the rod of the spring gun. The vertical distance Y that the ball will fall is the distance
from the bottom of the ball to the floor as shown in Figure 13-2. Measure this distance to the nearest
0.1 mm and record it in Data Table 2 as Y.

5. Fire the ball five times onto the same sheet of paper. Place the ball on the rod and measure the
horizontal distance X to the nearest 0.1mm from the center of the ball to the center of each dot on
the paper. Record these five values of X in Data Table 2.

C A L C U L A T I O N S
Ballistic Pendulum

1. Calculate the distance y2� y1 that the ball plus pendulum rises for each trial. Record these values and
all other calculations in this section in Calculations Table 1.

2. From Equation 3 calculate the velocity V for each of the five trials.

3. From Equation 4 calculate the initial speed vxo for the five trials.

4. Calculate the mean vxo and the standard error av of the five values of vxo.
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Projectile Motion

1. Use Equation 7 to calculate the value of vxo for each of the five values ofX. Use a value of g¼ 9.80m/s2.
Record these values in Calculations Table 2.

2. Calculate the mean vxo and the standard error av of the five values of vxo. Record them in Calculations
Table 2.
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13 L A B O R A T O R Y 1 3 The Ballistic Pendulum and Projectile Motion

P R E - L A B O R A T O R Y A S S I G N M E N T
1. What are the conditions under which the total momentum of a system of particles is conserved?

2. What kind of collision conserves kinetic energy?

3. What kind of collision does not conserve kinetic energy? What kind of collision results in the
maximum loss of kinetic energy?

4. A ball of mass 0.075 kg is fired horizontally into a ballistic pendulum as shown in Figure 13-1. The
pendulum mass is 0.350 kg. The ball is caught in the pendulum, and the center of mass of the system
rises a vertical distance of 0.145m in the earth’s gravitational field. What was the original speed of the
ball? Assume that g¼ 9.80m/s2. Show your work.
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5. How much kinetic energy was lost in the collision of Question 4? Show your work.

6. A projectile is fired in the earth’s gravitational field with a horizontal velocity of v¼ 9.00m/s. How far
does it go in the horizontal direction in 0.550 s? Show your work.

7. How far does the projectile of Question 6 fall in the vertical direction in 0.550 s? Show your work.

8. A projectile is launched in the horizontal direction. It travels 2.050m horizontally while it falls 0.450m
vertically, and it then strikes the floor. How long is the projectile in the air? Show your work.

9. What was the original velocity of the projectile described in Question 8? Show your work.

144 Physics Laboratory Manual n Loyd



Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section . . . . . . . . . . . . . . . . Date . . . . . . . . . . . . . . . .

Lab Partners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13 L A B O R A T O R Y 1 3 The Ballistic Pendulum and Projectile Motion

L A B O R A T O R Y R E P O R T

C
O
P
Y
R
IG

H
T
ª

2
0
0
8
T
h
o
m
s
o
n
B
ro
o
k
s
/C
o
le

Data Table 1

Trial p y2 (m)

1

2

3

4

5

m¼ kg M¼ kg y1¼ m

Calculations Table 1

y2� y1 (m) V (m/s) vxo (m/s)

vxo ¼ m=s av¼ m/s

Data Table 2

Trial X (m)

1

2

3

4

5

Y¼ m

Calculations Table 2

vxo (m/s)

vxo ¼ m=s av¼ m/s
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S A M P L E C A L C U L A T I O N S
1. y2� y1¼

2. V ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gðy2�y1Þ

p ¼

3. (Ballistic pendulum) vxo ¼ mþM

m

� 	
V

4. ðProjectilemotionÞ ¼ vxo ¼ Xffiffiffiffiffiffiffiffiffiffiffi
2Y=g

p

Q U E S T I O N S
1. Compare the two different values of vxo. Calculate the difference and the percentage difference

between them. State whether the twomeasurements agree within the combined standard errors of the
two values of vxo.

2. Can you make any statement about the accuracy of the two values of vxo? Are either of these values
more precise than the other? State clearly the basis for your answer in each case.

3. Calculate the loss in kinetic energy when the ball collides with the pendulum as the difference
between ½mv2xo (the kinetic energy before) and ½ (mþM)V2 (the kinetic energy immediately after the
collision).

4. What is the fractional loss in kinetic energy? Calculate by dividing the loss calculated in Question 3 by
the original kinetic energy.
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5. Calculate the ratioM/(mþM) for the values of m andM in Data Table 1. Compare this ratio with the
ratio calculated in Question 4. Express the fractional loss of kinetic energy in symbol form and use
equations from the lab to show it should equal M/(mþM).

6. It was assumed that the ball fired as a projectile moved exactly in the horizontal direction. If it moved
at some small angle y to the horizontal, the correct equation would be ð4:90X2=v2oÞtan2y�X tan yþ
ðYþ 4:90X2=v2oÞ ¼ 0 with the initial velocity labeled vo. Use the value of vo from the ballistic pendulum
measurement and the measured X and Y in the equation and solve for the angle y. If the ball was fired
at angle y to the horizontal it would account for the difference in the two measured values of vo. The
equation is a quadratic in tan y and Y is negative in the equation. Is the y you found small enough that
it is plausible that the projectile might deviate that much from horizontal?
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Conservation of Momentum
on the Air Track

O B J E C T I V E S
o Determine the total momentum of two gliders on an air track before and after they collide.

o Evaluate the extent to which the total momentum of the system before the collision is equal to the
total momentum of the system after the collision.

E Q U I P M E N T L I S T
. Air track, air blower, three gliders (two approximately equal in mass), rubber band puck launcher,
meter stick (if air track does not have marked scale)

. Four laboratory timers, laboratory balance and calibrated masses, masking tape

T H E O R Y
The momentum of a mass m moving with a velocity v is

p ¼ mv ðEq: 1Þ

Momentum is a vector quantity because it is the product of a scalar (m) with a vector (v). Forces exerted
between particles of a system are called internal forces, and they cannot change the momentum of the
system. The total momentum of the system can change only if external forces act on the system.

Momentum is conserved in a collision between two objects because the forces that the objects exert on
each other are internal to the system. If p1

i and p2
i stand for the initial momenta of two particles, and p1

f

and p2
f stand for their final momenta after the collision, then

p1
i þ p2

i ¼ p1
f þ p2

f ðEq: 2Þ

Equation 2 implies that each of the vector components of momentum is conserved. For the linear air
track a collision is one-dimensional, and the vectors are specified by writing momenta to the right as
positive and momenta to the left as negative. Friction on the gliders of the air track will be an external
force, and friction must be negligible if Equation 2 is to be valid in this laboratory.

We will determine the constant velocities of two gliders before the collision and after the collision.
A velocity will be determined bymeasuring the elapsed time for the glider to travel some known distance.
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We will arrange the collisions to take place in the center of the air track, with a fixed path length required
on either side. A 5-meter air track is ideal for performing this experiment, but a shorter air track can be
used. We will investigate three different collisions. We will arrange them so that a glider that has a
different velocity before and after the collision moves in opposite directions before and after the collision.

E X P E R I M E N T A L P R O C E D U R E
1. Determine the mass of the three gliders m1, m2, andm3. The mass of m1 should be essentially the same

as m2, and m3 should be greater than m1. Record the values of the masses in Data Table Mass and
Distance.

2. Use pieces of tape to mark a fixed path length on either side of the center of the track. Leave room in the
center of the track for the collision to occur. Leave a distance slightly longer than the sum of the lengths
of the gliders. Use as much of the remaining track on either side of the center as possible for the marked
paths. Figure 14-1 shows how the marker tape should be placed at positions 1, 2, 3, and 4 to define
the distances of the collision region. Place the tape low enough on the air track for the gliders to clear
the tape as they move. Measure the distance between 1 and 2 and record it in Data Table Mass and
Distanceasd12.Measure thedistancebetween3and4andrecord it inDataTableMassandDistanceasd34.

3. Collisions I and II involve the collision of a moving glider with a glider at rest. For them, attempt to
repeat the collision several times at the same initial velocity. With practice the rubber band glider
launcher can launch the glider with the same velocity (Figure 14-2). Launch a glider five or six times,
starting a timer as the glider is released, and stopping the timer when the glider has gone the length of
the track.With practice the time for the glider to go the length of the track should vary by nomore than
0.1 s from the average.

4. Collision I (Figure 14-3) This collision will be between gliders m1 and m2, which have essentially the
same mass, with m2 initially at rest in the center of the track. Glider m1 will collide with m2 and
essentially stop, and m2 will move in the direction m1 was moving before the collision. Launch glider
m1, start a timer as it passes point 1, and stop the timer when it passes point 2. After the collision, start a
second timer when glider m2 passes point 3 and stop this timer when it passes point 4. Record in Data
Table Collision I the time intervals as Dt12 and Dt34. Repeat this procedure four more times for a total of
five trials. To the extent possible launch the glider m1 with the same velocity each time.

5. Collision II (Figure 14-3) This collision will be between gliderm1 and gliderm3 with gliderm3 initially
at rest. Becausem3 >m1, gliderm1 will rebound after the collision and move back past point 2 and then
point 1. Launch gliderm1 and start one timerwhenm1 passes point 1 and stop the timerwhenm1 passes
point 2. This is the time Dt12. After the collision m1 will rebound, and m3 will move in the original
direction of themotion ofm1 . A second timer is used tomeasure the elapsed time for gliderm3 between
points 3 and 4 (timeDt34), and a third timer is used tomeasure the elapsed time for gliderm1 as it moves
back past points 2 and then 1 (time Dt21). Record these three time intervals in Data Table Collision II.
Repeat this procedure four more times for a total of five trials. To the extent possible, launch the glider
m1 with the same velocity every time.

6. Collision III (Figure 14-3) This collision will be between gliders m1 and m3 launched from opposite
ends of the air track with velocities directed toward the center of the air track. Launch m1 andm3 with

321 4

Figure 14-1 Air track with paths 1–2 and 3–4 marked on either side of the center.
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the rubber band launchers and give m1 about 30% greater speed than m3. Thus m1 must be launched
after m3 for them to collide at the center of the track. Both gliders will rebound after the collision and
reverse direction. Two timers are used to measure the time intervals Dt12 and Dt21 for m1 as it moves
toward the center and rebounds. Two other timers are used to measure the time intervals Dt43 and Dt34
form3 as it moves toward the center and then rebounds. Record the values of the four time intervals in
Data Table Collision III. Repeat the procedure four more times for a total of five trials. To the extent
possible launch m1 at approximately the same speed each time and launch m3 at approximately the
same speed each time.

C A L C U L A T I O N S
1. Calculate the velocities v from v¼ d/Dt for each of the measured time intervals and distances.

Let velocities to the right be positive and velocities to the left be negative. Record these values and
all other calculated quantities in Calculations Tables Collision I, Collision II, and Collision III.

2. Calculate the momentum for each of the gliders before and after the collision using Equation 1.
Let momenta to the right be positive and momenta to the left be negative.C
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Glider Launcher

Air Track

Rubber Band

Figure 14-2 Rubber band glider launcher to assure repeated launches at the same velocity.

Collision I

Collision II

Collision III

Before After

Before After

At rest

At rest

Before

1

1

21 1 2

3 1 3

1 22

After

At rest

Figure 14-3 Motion of the gliders in Collisions I, II, and III.

Laboratory 14 n Conservation of Momentum on the Air Track 151



3. For Collision I compare the percentage difference of the momentum of the first glider before the
collision to the momentum of the second glider after the collision.

4. For Collisions II and III, calculate the total momentum of both gliders before and the total momentum
of both gliders after the collision. Then calculate the percentage difference in the total momentum
before the collision and the total momentum after the collision.

(Instead of using hand timers the laboratory can be done with photogates to more accurately measure the time
intervals with the appropriate changes in procedures.)
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14 L A B O R A T O R Y 1 4 Conservation of Momentum on the Air Track

P R E - L A B O R A T O R Y A S S I G N M E N T
1. What is the definition of momentum?

2. What conditions must be satisfied for momentum to be conserved?

3. Two pieces of tape are placed a distance 1.50 m apart on an air track. A 0.350 kg glider on the air
track takes time Dt¼ 1.30 s to move between the two pieces of tape. What is the velocity of the glider?
What is its momentum? Show your work.

4. A glider of massm1¼ 0.350 kgmoves with a velocity of 0.850m/s to the right on an air track. It collides
with a glider of mass m2¼ 0.350 kg at rest. Glider m1 stops, and m2 moves in the direction that m1 was
traveling. What is the velocity of m2? Show your work.
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5. An air track glider of massm1¼ 0.200 kgmoving at 0.750 m/s to the right collides with a glider of mass
m2¼ 0.400 kg at rest. Ifm1 rebounds and moves to the left with a speed of 0.250 m/s, what is the speed
and direction of m2 after the collision? (Hint—Momentum is a vector quantity, and direction is
indicated by the sign of the momentum.) Show your work.

6. For the collision in Question 5, calculate the original kinetic energy of the system before the collision.
Calculate the total kinetic energy after the collision. What happened to the lost energy? Show
your work.

7. An air track glider of mass m1¼ 0.300 kg moving at a speed of 0.800 m/s to the right collides with a
glider of mass m2¼ 0.300 kg moving at a speed of 0.400 m/s in the opposite direction. After the
collisionm1 rebounds at speed 0.200 m/s to the left. After the collision, what is the speed and direction
of m2? Show your work.
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Data Table Mass and Distance

m1 (kg) m2 (kg) m3 (kg) d12 (m) d34 (m)

Data Table Collision I

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

m1 Before Dt12 (s)

m2 After Dt34 (s)

Calculations Table Collision I

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

m1 Before v1 (m/s)

p1 (kg�m/s)

m2 After v2 (m/s)

p2 (kg�m/s)

% Difference p1 and p2
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Data Table Collision II

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

m1 Before Dt12 (s)

m1 After Dt21 (s)

m2 After Dt34 (s)

Calculations Table Collision II

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

m1 Before v1i ðm=sÞ

p1
iðkg�m=sÞ

m1 After v1
f ðm=sÞ

p1
fðkg�m=sÞ

m3 After v3f ðm=sÞ

p3
fðkg�m=sÞ

After ¼ p1
f þ p3

f ¼

% Diff

Data Table Collision III

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

m1 Before Dt12 (s)

m3 Before Dt43 (s)

m1 After Dt21 (s)

m3 After Dt34 (s)
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S A M P L E C A L C U L A T I O N S
1. v1¼ d12/Dt12¼
2. p1¼ (m1)(v1)¼
3. Total p ðbeforeÞ ¼ p1

i þ p3
i ¼

4. % Difference¼
5. Ki ¼ ½m1ðv1iÞ2 þ½m2ðv2iÞ2 ¼
6. DK¼Kf�Ki¼
7. % Lost¼DK/Ki� 100%¼

Q U E S T I O N S
1. Consider the percentage differences between the total momentum before the collision and the total

momentum after the collision for the various trials of Collisions I, II, and III. If they are less than 10%
they are good evidence that momentum is conserved, and if they are less than 5% they are very good
evidence. To what extent do your data indicate that momentum is conserved?

C
O
P
Y
R
IG

H
T
ª

2
0
0
8
T
h
o
m
s
o
n
B
ro
o
k
s
/C
o
le

Calculations Table Collision III

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

m1 Before v1i ðm=sÞ

p1
iðkg�m=sÞ

m3 Before v3i ðm=sÞ

P3
iðkg�m=sÞ

m1 After v1f ðm=sÞ

p1
fðkg�m=sÞ

m3 After v3f ðm=sÞ

p3
fðkg�m=sÞ

p1
i þ p3

i ¼

p1
f þ p3

f ¼

% Diff

Laboratory 14 n Conservation of Momentum on the Air Track 157



2. For each of the Collisions I, II, and III, consider the one trial that has the smallest percentage difference
and calculate Ki, Kf, DK, and the % Lost for that trial. What happens to the lost energy?

Collision I Trial Ki ¼ Kf ¼ DK ¼ %Lost ¼
Collision II Trial Ki ¼ Kf ¼ DK ¼ %Lost ¼
Collision III Trial Ki ¼ Kf ¼ DK ¼ %Lost ¼

3. Is the kinetic energy approximately conserved for any of the collisions that you calculated? If so, state
which one or ones and give your evidence.
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Conservation of Momentum
on the Air Table

O B J E C T I V E S
o Determine the velocities and momenta of pucks on an air table before and after several different

two-dimensional collisions.

o Impose a coordinate system on each collision to resolve the momenta into components and
evaluate the extent to which momentum is conserved for each component.

E Q U I P M E N T L I S T
. Air table with pucks, sparktimer, air pump, foot switch, lead weights, Velcro collars, and level

. Carbon paper, recording paper, meter stick or ruler, protractor, and square

T H E O R Y
The momentum of an object of mass m moving with a velocity v is

p ¼ mv ðEq: 1Þ

Momentum is a vector quantity because it is the product of a scalar (m) with a vector (v). For a system of
particles the total momentum of the system is constant if there are no external forces acting on the system.
The forces exerted between particles of the system are called internal forces, and they cannot change the
momentum of the system.

Momentum is conserved in collisions between two objects because the forces that the objects exert on
each other are internal to the system. If p1

i and p2
i are the initial momenta of two particles, and p1

f and p2
f

are their final momenta after the collision, then

p1
i þ p2

i ¼ p1
f þ p2

f ðEq: 2Þ

A collision where particles stick together is called a completely inelastic collision. Such a collision will
result in the maximum possible loss of kinetic energy.
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Figure 15-1 shows amassm1 with velocity v1 and amassm2 with velocity v2 that collide at the origin of
a coordinate system. After the collision they have velocities v3 and v4. For that collision with coordinates as
shown, the equations that represent the conservation of momentum are

x direction m1v1cos y1 þm2v2cos y2 ¼ m2v4cos y4 þm1v3cos y3 ðEq: 3Þ

y direction m1v1sin y1 þm2v2sin y2 ¼ m1v3sin y3 þm2v4sin y4 ðEq: 4Þ

Wewill use collisions on the air table to investigate this general case and several simpler special cases.
Simplified collisions occur when m1¼m2, when one of the masses is originally at rest, and when the
collision is head-on with all motion along a single line.

E X P E R I M E N T A L P R O C E D U R E
1. Unless you have prior experience with the air table (Figure 15-2) read the instruction manual for the

air table to become familiar with its operation including the air pump, sparktimer, and foot switch. Be
careful not to touch the pucks except by the insulated tubes when the sparktimer is in operation.

2. Level the air table with the three adjustable legs until a puck placed near the center of the table is
essentially motionless. It is especially critical to have the table as level as possible for these collision events
because several of the collisions are to be made with one of the pucks initially at rest.

3. Set the sparktimer to 20.0Hz. Perform each of the four collisions described below. Start the sparktimer
after the pucks are launched, and stop it before the pucks collide with the edge of the table. Friction
will cause the experimental results to disagree with the theory, and the effect is larger for low speeds.
For best results the pucks should move as fast as reasonable. However, it is possible to damage the
glass tops of the tables if the pucks are thrown too fast. Be very careful not to damage the air table. Consult
your instructor for advice about the speed of the pucks. Use the same sheet of carbon paper for all
measurements, but use a new sheet of recording paper for each collision.

4. Collision I Use a laboratory balance to determine the mass of two pucks that are approximately the
same mass and record in the Data Table. Label one puck #1 and the other #2. Launch puck 1 from near
one corner so that it strikes puck 2, which is at rest near the center of the table. The collision should
not be head-on. The pucks should move at a large angle relative to each other after the collision.

v2 (before)
v4 (after)

v3 (after)

m1 (after)

m2 (after)

m1 (before)

m2 (before)

�x
v1 (before)

�1

�2

�3

�4

Figure 15-1 Collision between mass m1 and m2, both with an initial velocity.
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Before removing the recording paper, label each sparktimer track with the puck number and the
direction that each puckmoved before and after the collision. Label each collision before removing the
recording paper from the table. Label this recording as Collision I, and set it aside for future analysis.

5. Collision II Use the same pucks as Collision I, but launch them both at the same time from adjacent
corners of the table so they collide at the center at an angle of about 908. Label the tracks in the manner
described above. Label it as Collision II, and set it aside for future analysis.

6. Collision III Use the same procedure as Collision II but use masses that are not equal. Use puck 1 as
it is. Place several of the lead weights that fit over the pucks to increase the mass of puck 2. Determine
the mass of puck 2 with the lead on it, and record the results in the Data Table. Launch the pucks from
adjacent corners so they collide near the center. Label the tracks and recording paper as above, and set
the paper aside for future analysis.

7. Collision IV Remove the lead from puck 2. Place Velcro collars on each of the pucks. Determine the
mass of each puck, and record it in the Data Table. With Velcro collars the pucks will stick together,
and the collision will be completely inelastic. Launch the two pucks of approximately equal mass from
adjacent corners of the table so they collide near the center. It might be necessary to try this several
times. When the pucks stick together they might have a tendency to rotate about a common center of
mass as they move together. Instead, it is necessary that after the collision the trace shows the
combined pucks making parallel tracks as they move together. That is evidence that no rotation is
occurring. It may take several traces to achieve parallel tracks. Label the acceptable recording, and set
it aside for future analysis.

8. For each collision determine the displacement Ds along the four tracks that represent the motion of the
pucks before and after the collision. Measure the Ds of the puck for four spark intervals or Dt¼ 0.200 s.
Be sure that the appropriate Ds is associated with each of the pucks both before and after the collision.
Record all displacements Ds in the Data Tables.

9. For each of the collisions draw an x coordinate axis on the recording paper. This is an arbitrary choice,
but it will save work to choose the þx direction to be the direction of the initial motion of one of the
pucks. That puck would then initially have only an x component, with y component zero. Determine
the components for the other puck before the collision, and for both the pucks after the collision, by
finding the angle their tracks make with the þx axis. This process is illustrated in Figure 15-3. The þx
axis has been chosen to be in the direction of the initial motion of puck 1. The other angles are then
determined by the angle each puck’s motion makes with the þx axis. The x components are given by
the cosine and the y components by the sine.

For each of the four collisions draw theþx axis through the points of the initial motion of puck 1 in the
direction of its motion. Using a protractor, carefully measure the angle of the other three tracks with theC
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x axis and record the values of those angles in the Data Tables. With this choice of þx axis, y1 will be zero
for all of the collisions.

C A L C U L A T I O N S
1. For the four collisions calculate each velocity as v¼Ds/Dt, before and after the collision, from the

values of Ds in the Data Tables and Dt¼ 0.200 s. Record the values of the velocities as v1, v2, v3, and v4
in the Calculations Tables.

2. For each of the four collisions calculate the x component and the y component of the momentum for
each puck before and after the collision. The equations for the momentum components are given by

p2x ¼ m2v2cos y2 and p2y ¼ m2v2sin y2 ðEq: 5Þ

with the equations written using v2 as an example. The extension of Equations 5 for the other velo-
cities should be clear. Calculate the components for each of the collisions and record them in the
Calculations Tables. With the angles defined as in Figure 15-3, the sign of each component will be
determined by the sign of the sine or cosine function.

3. Calculate the sum of the momentum for each component for each puck and record the results in the
Calculations Tables.

�y

�x
�4

�3

�2

Puck 2 before
Puck 1 before

Puck 2 after

Puck 1 after

Figure 15-3 Example of how to determine the components of each momentum.
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15 L A B O R A T O R Y 1 5 Conservation of Momentum on the Air Table

P R E - L A B O R A T O R Y A S S I G N M E N T
1. What is the definition of momentum?

2. What conditions must be satisfied for momentum to be conserved?

3. A particle of mass m1¼ 0.350 kg has speed v1¼ 0.135m/s at a direction of 53.08 above the þx axis as
shown in Figure 15-4. What is the magnitude of the particle’s momentum? Show your work.

4. What is the x component, and what is the y component of the momentum of the particle shown in
Figure 15-4? Show your work.
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�y

v1

m1

53.0°
�x

Figure 15-4 Particle of mass m1 moving at speed v1 53.08 relative to þx axis.
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5. A particle of mass m1¼ 1.000 kg moves at speed v1¼ 0.500m/s as shown in Figure 15-5(a). It collides
with a particle of massm2¼ 2.000 kg at rest at the origin. What is the total momentum of the system in
the x direction before the collision?What is the total momentum of the system in the y direction before
the collision? Show your work.

6. Figure 15-5(b) shows that after the collision m1 moves with speed v3 at an angle y3¼ 315.08 with
respect to the x axis, and m2 moves with a speed v4 at an angle y4¼ 30.08 with respect to the x axis.
Write an expression for the total momentum of the system in the x direction and another expression
for the total momentum in the y direction after the collision in terms of the symbols m1, m2, v3, v4, and
the angles y3 and y4.

7. Equate the expression for the x component in Question 6 to the value of the x component in
Question 5. Equate the expression for the y component in Question 6 to the value of the y component
in Question 5. In the resulting two equations v3 and v4 are the only two unknowns. Solve the two
equations for v3 and v4. Show your work.

�x

�y

m1 m2

v1
�x

�y

m2

m1

v4

v3

30°

45°

(a) (b)

Figure 15-5 Particle of mass m1 at speed v1 collides with a particle of mass m2 at rest.

164 Physics Laboratory Manual n Loyd



Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section . . . . . . . . . . . . . . . . Date . . . . . . . . . . . . . . . .
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15 L A B O R A T O R Y 1 5 Conservation of Momentum on the Air Table

L A B O R A T O R Y R E P O R T
(Record all masses in kg, all displacements in m, all velocities inm/s, and all momenta in kg-m/s.)
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Data Table Collision I

m1 m2 Ds1 Ds2 Ds3 Ds4 y1 y2 y3 y4

Calculations Table Collision I

v1 v2 p1x p1y p2x p2y p1xþ p2x p1yþ p2y

v3 v4 p3x p3y p4x p4y p3xþ p4x p3yþ p4y

Data Table Collision II

m1 m2 Ds1 Ds2 Ds3 Ds4 y1 y2 y3 y4

Calculations Table Collision II

v1 v2 p1x p1y p2x p2y p1xþ p2x p1yþ p2y

v3 v4 p3x p3y p4x p4y p3xþ p4x p3yþ p4y
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S A M P L E C A L C U L A T I O N S
1. vi¼Dsi/D t¼
2. pi¼mi vi¼
3. pix¼ pi cos yi¼
4. piy¼ pi sin yi¼
5. %Diff x ¼ ððp3x þ p4xÞ�ðp1x þ p2xÞÞ=ð½ðp1x þ p2x þ p3x þ p4xÞÞ � 100% ¼

6. p1ðinitialÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1x þ p2xÞ2 þ ðp1y þ p2yÞ2

q
¼

7. %Diff= pðinitialÞ ¼ ððp3x þ p4xÞ�ðp1x þ p2xÞÞ=ðpðinitialÞÞ � 100% ¼
8. K¼½mv2¼
9. DK¼Kf�Ki ¼
10. %LossK¼DK/K� 100%¼

Data Table Collision III

m1 m2 Ds1 Ds2 Ds3 Ds4 y1 y2 y3 y4

Calculations Table Collision III

v1 v2 p1x p1y p2x p2y p1xþ p2x p1yþ p2y

v3 v4 p3x p3y p4x p4y p3xþ p4x p3yþ p4y

Calculations Table Collision IV

v1 v2 p1x p1y p2x p2y p1xþ p2x p1yþ p2y

v3 v4 p3x p3y p4x p4y p3xþ p4x p3yþ p4y

Data Table Collision IV

m1 m2 Ds1 Ds2 Ds3 Ds4 y1 y2 y3 y4
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Q U E S T I O N S
1. In each collision, if momentum is conserved the total x component before the collision (p1xþ p2x)

should equal the total x component after the collision (p3xþ p4x). Similarly the y component p1yþ p2y
should equal p3yþ p4y. Calculate and record the percentage differences between these quantities.
The y component of Collision I is zero.

2. If the percentage differences above are less than 15% it is considered good confirmation of
conservation of momentum because frictional forces are likely significant for the data. Do your data
show good confirmation of conservation of momentum?

3. For each collision, the magnitude of the total initial momentum is given by the quantityffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1x þ p2xÞ2 þ ðp1y þ p2yÞ2

q
. Calculate that quantity for each of the four collisions and record the

results below.

4. Divide the difference between each component before and after the collision by the value of pint

calculated in Question 3 and express it as a percentage. The smaller the value of this quantity, the
better the data are consistent with momentum conservation.
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Collision I x– comp % diff¼ ____________________
Collision II x– comp % diff¼ ____________________ y– comp % diff¼ ____________________
Collision III x– comp % diff¼ ____________________ y– comp % diff¼ ____________________
Collision IV x– comp % diff¼ ____________________ y– comp % diff¼ ____________________

Collision I pint¼ _______________ Collision II pint¼ _______________

Collision III pint¼ _______________ Collision IV pint¼ _______________

Collision I x– comp % diff/pint¼ _______________ y– comp % diff/pint¼ _______________

Collision II x– comp % diff/pint¼ _______________ y– comp % diff/pint¼ _______________

Collision III x– comp % diff/pint¼ _______________ y– comp % diff/pint¼ _______________

Collision IV x– comp % diff/pint¼ _______________ y– comp % diff/pint¼ _______________
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Centripetal Acceleration
of an Object in Circular
Motion

O B J E C T I V E S
o Investigate how the period T of an object that rotates in a circle is related to themass of the objectM,

speed v, and radius R of the circle.

o Determine the centripetal force F as the force required to stretch a spring.

E Q U I P M E N T L I S T
. Hand-operated centripetal force apparatus (The device described is available from Sargent-Welch
Scientific Company.)

. Laboratory balance, calibrated slotted masses, mass holder, laboratory timer, and metal ruler

T H E O R Y
An object moving in a circle at constant speed has a velocity vector that is always tangent to the circle.
The direction of the velocity is continuously changing. The object is accelerated because acceleration is
by definition a change in velocity per unit time. Figure 16-1 shows the velocity vector at points around the
circle for an object moving in a circle at constant speed. The lengths of the vectors are the same because
the speed is constant, and the direction of the vectors indicates the direction of the velocity at that point.
Also shown in Figure 16-1 are the velocity vectors vi and vf at two times ti and tf. In the third part of the
figure is the vector difference Dv¼ vf� vi indicating that the change in velocity Dv always points toward
the center of the circle. The acceleration a is

a ¼ Dv=Dt ðEq: 1Þ

The acceleration a is in the direction of Dv. It points toward the center of the circle and has magnitude

a ¼ v2=R ðEq: 2Þ
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By Newton’s second law the centripetal force F and the centripetal acceleration a are related by F¼Ma
where M is the mass of the object moving in a circle at speed v. Using Equation 2 gives

F ¼ mv2=R ðEq: 3Þ

The time for one complete revolution around the circle is the period T, which is related to the speed v by
the expression

v ¼ ð2pRÞ=T ðEq: 4Þ

The centripetal force apparatus has a mass bob with a pointed tip at the bottom suspended from a
horizontal rotatingbar. Thebobhasa springhookedbetween the side of theboband the central rotating shaft.
The spring provides a horizontal centripetal forcewhen the bob rotates in a horizontal plane. The bob rotates
at a fixed radius R from the central rotating shaft when the tip of the bob passes over a pointer located at
distance R from the central rotating shaft. For the spring used, mass M will rotate at radius R for only one
rotation period T. Figure 16-2(a) shows the system rotating at the period necessary to rotate at radius R.
The period T will be measured for a given R and M. Equation 4 allows a determination of v, and using
that value in Equation 3 allows determination of F. This will be referred to as Ftheo for the theoretical value of
the force.

The force the spring exerts on the bob when it is rotating at distance R depends on the amount the
spring is stretched under those conditions. This force can be measured by determining the force needed to
stretch the spring the same amount when the apparatus is not rotating. Figure 16-2(b) shows a string
attached to the other side of the bob with slotted masses applied over a pulley. The weight of the total
mass needed to stretch the spring until the tip of the bob is aligned with the pointer is the experimental
value of the centripetal force F. This will be referred to as Fexp.

v v

v i
vf

vf

�v i

�v

v

Figure 16-1 Velocity vectors for circular motion at constant speed. Vectors at two times ti and t close together
and the change in velocity Dv pointing toward the center of the circle.

R

(a)

R

(b)

Figure 16-2 (a) Centripetal force apparatus rotating. (b) Determination of the centripetal force by measuring
the force needed to stretch the spring under static conditions.
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E X P E R I M E N T A L P R O C E D U R E
1. Detach the bob from its support strings, remove the spring, and determine its mass. Record this value

as mb in the Data Table.

2. Hang the bob from the cross arm by its support strings (Figure 16-3). Adjust the position of the pointer
to its closest position to the rotating shaft for the minimum value of R. Loosen the screw holding the
cross arm in the rotating shaft and adjust its position until the tip of the bob is precisely above the tip of
the pointer. The tip of the bob should be about 1 mm above the pointer. Measure the distance from the
center of the pointer to the center of the rotating shaft. Record this value as R in the Data Table.

3. Attach the spring to the bob and to the rotating shaft. Rotate the system as shown in Figure 16-2(a) by
twirling the rotating shaft between the thumb and first finger of your hand. The bob will pass over the
pointer at radius R for only one rotation period T. Continue to rotate the apparatus by hand while
keeping the rotation speed as constant as possible, and at the same time ensuring that the bob passes
over the pointer on each rotation. At this rotation rate measure the time for 25 complete revolutions
of the bob and record it in the Data Table as Time 1. Repeat this process two more times, recording
the two other measurements of the time for 25 revolutions as Time 2 and Time 3. Record in the Data
Table the value of the rotating mass as mb for this part of the procedure.

4. With the system not rotating, measure directly the centripetal force by attaching a string to the side of
the bob opposite the spring. Apply slotted weights over the pulley as shown in Figure 16-2(b) until the
tip of the bob is just above the tip of the pointer. Let ma stand for the total mass needed to stretch the
spring by the proper amount. Record in the Data Table the value of ma needed to stretch the spring to
the pointer at position R.

5. Repeat Steps 3 and 4 above using the same R but using two other values of rotating mass. First, add a
0.050 kg slotted mass to the bob. Then remove the 0.050 kg mass and add a 0.100 kg slotted mass. In
each case, place the slotted mass with the open end pointed outward, and secure it with the knurled
nut on the bob. Record the results of the measurements for rotating mass values of mbþ 0.050 kg and
mbþ 0.100 kg in the Data Table.

6. Perform themeasurements with the rotatingmassmrot again equal tomb, but use three new values ofR
differing by about 1 cm. Each time R is to be changed, remove the spring from the bob, and position
the pointer 1 cm further from the rotating shaft. Then adjust the cross arm so that the bob is above the
pointer. Perform the measurements of Steps 2–4 for the three values of R and record all results in the
Data Table.
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C A L C U L A T I O N S
1. Calculate the mean of the three trials of the time for 25 complete revolutions, and record it in the

Calculations Table as Time. Divide the value of Time by 25, and record the result in the Calculations
Table as the period T.

2. Use Equation 4 to calculate v from the measured values of R and T, and record the results in the
Calculations Table.

3. Use Equation 3 to calculate the theoretical value for the centripetal force from the values ofM, v, andR.
Record the results in the Calculations Table as Ftheo.

4. Calculate the experimental value for the centripetal force as ma g from the values of ma. Use a value of
9.80 m/s2 for g. Record the results in the Calculations Table as Fexp.

5. Calculate the percentage difference between the values of Ftheo and Fexp. Record the results in the
Calculations Table.
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16 L A B O R A T O R Y 1 6 Centripetal Acceleration of an Object in
Circular Motion

P R E - L A B O R A T O R Y A S S I G N M E N T
1. If a particle moves in a circle of radius R at constant speed v its acceleration is (a) directed toward

the center of the circle (b) equal to v2/R (c) because the direction of the velocity vector changes
continuously (d) all of the above are true.

2. If a particle moves in a circle of radius R¼ 1.35m at a constant speed of v¼ 6.70 m/s, what is the
magnitude and direction of its centripetal acceleration?

3. If the mass of the particle in Question 2 is 0.350 kg, what is the magnitude and direction of the
centripetal force on it? Show your work.

4. A 0.500 kg particle moves in a circle of radius R¼ 0.150m at constant speed. The time for 20 complete
revolutions is 31.7 s. What is the period T of the motion? What is the speed of the particle? Show your
work.
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5. What is the centripetal acceleration of the particle in Question 4? What is the centripetal force on the
particle? Show your work.

6. For the apparatus used in this laboratory the centripetal force is the same for a fixed radius R of
rotation. Why is that statement true for this apparatus? (Hint—What provides the centripetal force on
the rotating mass for this apparatus?)

7. A mass of 0.450 kg rotates at constant speed with a period of 1.45 s at a radius R of 0.140m in the
apparatus used in this laboratory. What is the rotation period for a mass of 0.550 kg at the same
radius? Show your work.
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16 L A B O R A T O R Y 1 6 Centripetal Acceleration of an Object in
Circular Motion

L A B O R A T O R Y R E P O R T
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Data Table (mb¼ _______________kg)

mrot (kg) R (m) Time 1 (s) Time 2 (s) Time 3 (s) ma (kg)

Calculations Table

mrot (kg) R (m) Time (s) T (s) v (m/s) Ftheo (N) Fexp (N) %Diff
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S A M P L E C A L C U L A T I O N S
1. Time¼
2. T¼Time/25¼
3. v¼ (2pR)/T¼
4. Ftheo¼mv2/R¼
5. Fexp¼ma g¼
6. %Diff¼

Q U E S T I O N S
1. Do your results confirm the theoretical relationship for the centripetal acceleration given by F¼Mv2/R?

Consider the agreement between Ftheo and Fexp to answer this question. Explain your reasoning.

2. Because the centripetal force is provided by a spring for this apparatus, the centripetal force at a
given distance R is fixed by the spring constant of the spring. Therefore, Mv2 should be constant for
a given radius R. Calculate the quantity Mv2 for the four data points taken at the same radius R.
Describe the agreement of those values.

3. Equation 3 can be written in the form v2¼ (1/M)FR. For a constant value of M this would imply that
the quantity v2 should be proportional to the quantity FR with the reciprocal of the mass as the
constant of proportionality. For your data points with the samemass, perform a linear least squares fit
with v2 as the vertical axis and FR as the horizontal axis. Use the values of Fexp to calculate FR.
Compare the slope of the fit to the reciprocal of the mass. Record the correlation coefficient r.
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4. Suppose that a spring with a larger spring constant was used in this same apparatus. If a given mass
were rotated at the same radius at which it had been rotated with the original spring, would the new
period of rotation using the new spring be greater, or would it be less than the period of rotation using
the original spring? Explain your reasoning.
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Moment of Inertia and
Rotational Motion

O B J E C T I V E S
o Investigate the dependence of angular acceleration a of a cylinder on applied torque t.
o Determine the moment of inertia I of the cylinder from the slope of applied torque t versus

angular acceleration a and compare the experimental value with a theoretical calculation of the
moment of inertia.

E Q U I P M E N T L I S T
. Rotational inertia apparatus (wheel and axle with hub and tripping platform)

. Meter stick, string, mass holder, slotted masses, timer, laboratory balance, vernier calipers, and large
calipers

T H E O R Y
For linear motion, Newton’s second law F¼ma describes the relationship between the applied force F, the
mass m of an object, and its acceleration a. Force is the cause of the acceleration, and mass is a measure of
the tendency of an object to resist a change in its linear translational motion.

For rotational motion of some object about a fixed axis, an equivalent description for the relationship
between the applied torque t, the moment of inertia I, and the angular acceleration a of the object is
given by

t ¼ Ia ðEq: 1Þ

Torque t is the cause of the angular acceleration a, and themoment of inertia I is a measure of the tendency
of a body to resist a change in its rotational motion.

The moment of inertia I of a rigid body depends upon the mass of the body and the way in which
the mass is distributed relative to the axis of rotation. A thin solid cylinder is shown in Figure 17-1. Three
arbitrarily chosen elements of mass m1, m2, and m3 are shown located at distances r1, r2, and r3 from the
rotation axis AB. Their contribution to the moment of inertia is m1r1

2þm2r2
2þm3r3

2. The total moment
of inertia is

I ¼
XN
i¼1

mir
2
i ðEq: 2Þ
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whereN is arbitrarily chosen, but must be large enough so that each element of mass approximates a point
mass. Equation 2 is the general definition of the moment of inertia about a particular axis for any object.
For a solid cylinder of radius R and total mass M, the results are

I ¼ ½MR2 ðEq: 3Þ

It is not necessary to know the thickness of the cylinder to calculate the moment of inertia.
In this laboratory, a wheel and axle with a small hub will be caused to rotate by a torque. The torque

is produced by the weight of a mass m on a string wrapped around the hub as shown in Figure 17-2.
The massmmoves linearly downward as the cylinder rotates about its fixed axis. The two forces acting on
the massm are the weight mg and the tension T in the string. Applying Newton’s second law to the linear
motion of the mass gives

mg� T ¼ ma or T ¼ mðg� aÞ ðEq: 4Þ

The force producing the torque is the tension in the string T, and the lever arm of the force is the radius of
the hub r or

t ¼ Tr ðEq: 5Þ

A

B

m1

m2

m3

r1

r2
r3

Figure 17-1 Elements of mass contributing to the moment of inertia of a cylinder.

m

T

x

R
gM

r

m

T

R

M

r

Figure 17-2 Motion of mass m as it moves linearly x and rotates a cylinder.
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The mass m is released from rest, accelerates for a distance x, and then strikes the floor as shown in
Figure 17-2. It moves the distance x in time t. The acceleration a is related to x and t by

a ¼ 2x=t2 ðEq: 6Þ

The linear and angular accelerations are related by

a ¼ a=r ðEq: 7Þ

The relationships described abovewill be used in this laboratory to determine the angular acceleration
a produced by different values of torque t applied to the moment of inertia I of the wheel. The moment
of inertia of the wheel will be determined theoretically by treating the system as a simple cylinder. This
is a good approximation because the hub is hollow and made of a lightweight material, and its mass
contributes very little to the moment of inertia of the system.

E X P E R I M E N T A L P R O C E D U R E
1. Determine the values of the total mass of the wheelM, the radius of the wheel R, and the radius of the

small hub r. The mass M may be stamped on the wheel, or else it may be available from your
instructor. Record the values of M, R, and r in the Data Table.

2. The wheel and axle systemmay already be mounted on the wall in a permanent position. If not, clamp
the system to the laboratory table with the wheel hanging over the edge of the table and the rotation
axis horizontal. Use thick, rigid rods tomake the system as vibration-free as possible. Thewheel should
bemounted above the floor high enough that themasswill travel at least 1m and preferablymore. The
longer distance gives longer time intervals, which can be measured with greater precision.

3. The apparatus has a small tripping platform on which the mass holder on the end of the string rests
before it is released. Measure the distance from the top of this platform to the floor and record it in the
Data Table as x.

4. Make a small loop in each end of a string that is long enough to wrap around the hub several times
and still touch the floor. Place one loop on the peg of the wheel hub and wrap the string around
the hub. On the loop at the other end of the string place a 0.0500 kg mass holder, and put it on
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the platform. Release the tripping platform and simultaneously start a timer. Stop the timer when the
mass holder strikes the floor. Make sure that themass holder is resting on the platformwith no slack in
the string when it is released. Record the value of the time t in the Data Table. Using this value of m,
repeat this process three more times for a total of four trials.

5. Repeat the procedure in Step 4 for a series of different values of the massm on the string. Add 0.050 kg
each time to produce values of m of 0.1000, 0.1500, 0.2000, 0.2500, and 0.3000 kg. Perform four trials
with each value of m. Record all the values of m and t in the Data Table.

C A L C U L A T I O N S
1. Use the values of the mass of the wheel M and the radius of the wheel R in Equation 3 to calculate a

theoretical value of I the moment of inertia. Record this value as Itheo in the Calculations Table.

2. Calculate the mean t and standard error for the repeated trials of the time for each mass. Record the
values of t and the values of the standard error in the Calculations Table. (Note: To avoid confusionwith
the angular acceleration, the standard error is noted in that table as Std Err instead of its usual symbol a.)

3. Using the values of t in Equation 6, calculate the acceleration a for each value of m. Record the values
of a in the Calculations Table.

4. Use the values of acceleration determined above in Equation 7 to calculate the angular acceleration a
for each value ofm.Note that the units of a are rad/s2. Record the values of a in the Calculations Table.

5. Use the values of acceleration determined above in Equation 4 to calculate the tension in the string T
for each value of m. Record these values of T in the Calculations Table.

6. Use the values of T in Equation 5 to calculate the value of the torque t for each value of m. Record the
values of t in the Calculations Table.

7. Perform a linear least squares fit with t as the vertical axis and a as the horizontal axis. Record the
slope as Iexp the experimental value for the moment of inertia, the intercept as tf the frictional torque
acting on the wheel, and r the correlation coefficient.

G R A P H S
1. Graph the data for t versus a with t as the vertical axis and a as the horizontal axis. Also show on the

graph the straight line that was obtained by the fit to the data.
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17 L A B O R A T O R Y 1 7 Moment of Inertia and Rotational Motion

P R E - L A B O R A T O R Y A S S I G N M E N T
1. What equation is the rotational equivalent of Newton’s second law? Give the meaning of each symbol

and state which rotational quantities are analogous to which linear quantities.

2. What equation defines moment of inertia? Define the terms used in the equation.

3. What is the moment of inertia of a solid cylinder of radius R¼ 0.0950 m, thickness t¼ 0.015 m, and
total mass M¼ 3.565 kg? Show your work.

4. A mass hung on a string that is wrapped around an axle on a wheel produces a tension in the string
of 5.65 N. The axle has a radius of 0.045 m. The wheel has a mass of 4.000 kg and a radius of 0.125 m.
What is the torque produced by the tension on the axle? Show your work.
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5. The mass in Question 4 has an acceleration of 0.655 m/s2. What is the angular acceleration a of the
system? Show your work.

6. In the experimental procedure, why is a path length longer than 1 m suggested for the motion of the
mass on the string?

7. The following data were taken with a system like the one described in this laboratory. The path length
of the falling mass was x ¼ 1.434 m, and the radius of the hub around which the string was wrapped
was r¼ 0.040 m. For the values of massm on the string listed, the times to accelerate the distance x are
given in the table. Use these data to calculate the values for the acceleration a, the tensionT, the torque t,
and the angular acceleration a. Perform a linear least squares fit with t as the vertical axis and a as the
horizontal axis. Record the slope as I the moment of inertia, the intercept as tf the frictional torque, and
the correlation coefficient r.

m (kg) t (s) a (m/s2) T (N) t (N�m) a (rad/s2)

0.050 10.60

0.100 7.40

0.150 6.10

0.200 5.20

0.250 4.60

0.300 4.20

I¼ _______________kg�m2

tf¼ _______________N�m

r¼ _______________
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Data Table

M¼ kg R¼ m r¼ m x¼ m

m (kg) t1 (s) t2 (s) t3 (s) t4 (s)

Calculations Table

t (s) Std Err (s) a (m/s2) T (N) t (N�m) a (rad/s2)

I theo¼ kg�m2 I exp¼ kg�m2 tf¼ N�m r¼
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S A M P L E C A L C U L A T I O N S
1. Itheo¼½ MR2¼
2. a¼ 2x/(t)2¼
3. T¼m(g� a)¼

Q U E S T I O N S
1. Calculate the percentage error of the experimental value Iexp compared to the theoretical value Itheo.

Comment on the accuracy of your experimental results based on this comparison.

2. For six data points, statistical theory states that there is a 0.1% probability (1 chance in 1000) of
obtaining a value of r ‡ 0.974 for uncorrelated data. What does your value of r imply about the
agreement of your data with the theory?

3. Would there be any advantage to using a smaller mass m than was used in the laboratory? What
would be the disadvantage of doing that?
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4. Would there be any advantage to using a larger massm than was used in the laboratory? What would
be the disadvantage of doing that?

5. What amount of mass placed on the string would produce a torque equal to the value of the frictional
torque tf?
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Archimedes’ Principle

O B J E C T I V E S
o Apply Archimedes’ principle to measurements of specific gravity.

o Determine the specific gravity of several metal objects that are denser than water, a cork that is
less dense than water, and a liquid (alcohol).

E Q U I P M E N T L I S T
. Laboratory balance, calibrated masses, 1000 mL beaker, string, alcohol

. Metal cylinders, and cork or piece of wood (to serve as unknowns)

T H E O R Y
If the mass of an object is distributed uniformly, its density ro is defined as the mass m of the object
divided by its volume V. In equation form this is

ro ¼ m=V ðEq: 1Þ

The SI units for density are kg/m3. Other commonly used units for density are the cgs system units g/cm3.
The specific gravity is defined as the ratio of the density of an object to the density of water rw. The
equation for the specific gravity is given by

Specific gravity ¼ SG ¼ ro=rw ðEq: 2Þ

Specific gravity is a dimensionless quantity because it is the ratio of two densities. The density of water
in the cgs system is 1.000 g/cm3, and densities in that system are numerically equal to the specific gravity
SG. Water has a density of 1000 kg/m3, and densities in the SI system are equal to SG� 103.

Archimedes’ principle states that an object placed in a fluid experiences an upward buoyant force
equal to the weight of fluid displaced by the object. The principle applies to both liquids and gases.
In this laboratory, we will examine the application of the principle to liquids. An object floats if its
density is less than the density of the liquid in which it is placed. It sinks in the liquid until it displaces
a weight of liquid equal to its own weight. The object is in equilibrium because its weight acts down-
ward and a buoyant force acts upward. An object with density greater than the liquid in which it is
placed will sink to the bottom of the liquid. It experiences an upward buoyant force equal to the weight
of the displaced fluid, but that is less than the weight of the object, and it sinks.
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For objects with a density greater than the density of water, Archimedes’ principle allows a simple
determination of the specific gravity of the object. Consider an object that is tied to a string and submer-
ged in water with the string attached beneath the arm of a laboratory balance as shown in Figure 18-1.
Also in the figure is a free-body diagram of the forces acting on the submerged object. If B stands for
the buoyant force on the object, W is the weight of the object, and W1 is the tension in the string, the
following is true at equilibrium

BþW1 ¼ W ðEq: 3Þ

The quantity W1 is the apparent weight read by the laboratory balance in Figure 18-1. By Archimedes’
principle, the buoyant force is the weight of displaced water. This can be written as

B ¼ mwg ¼ rwVwg ¼ rwVog ðEq: 4Þ

with mw the mass of the displaced water, and Vw and Vo the volumes of the displaced water and the
object. The last step in Equation 4 is true because the object sinks and displaces water equal to its volume,
and therefore Vw¼Vo. Using Equations 3 and 4 with W¼mg and W1¼m1g gives

W1 ¼ W � B ¼ mg� rwVwg ¼ roVog� rwVog ðEq: 5Þ

W

W �W1
¼ mg

mg�m1g
¼ roVog

roVog� ðroVog� rwVogÞ ¼
ro
rw

ðEq: 6Þ

SG ¼ ro
rw

¼ m

m�m1
ðEq: 7Þ

This laboratory will use Equation 7 to determine the specific gravity of several metals with densities
greater than that of water.

To use Archimedes’ principle to determine the specific gravity of an object that floats, the object
must be submerged by attaching a lead weight to the object. Figure 18-2(a) shows the lead weight in
water and the object in air, and the balance reading is W1. In Figure 18-2(b) both the object and the
lead weight are below the water, and the balance reads W2. By analysis similar to that used to derive
Equation 7, it can be shown that the specific gravity of an object that floats in water is given by

SG ¼ W

W1 �W2
¼ mg

m1g�m2g
¼ m

m1 �m2
ðEq: 8Þ

Tension in String is W1

Water

Beaker

Unknown

B
W1

W

Figure 18-1 Determining the apparent mass of an object with density greater than water.
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In Equation 8 m is the mass of the object, m1 is the apparent mass with the object in air and the lead
weight submerged in water, and m2 is the apparent mass with the object and the lead weight both
submerged in water.

The specific gravity of a liquid can be determined by measuring the mass of some object m, the
apparent mass of the object submerged in water mw, and the apparent mass of the object submerged in
the liquid mL. It is assumed that the object sinks in both liquids. By similar analysis as used to derive
Equation 7, it can be shown that the specific gravity of the liquid is given by

SGðliquidÞ ¼m�mL

m�mw
ðEq: 9Þ

E X P E R I M E N T A L P R O C E D U R E
Object Density Greater than Water

1. Use the laboratory balance to determine the mass of each of the two unknown metal cylinders.
Record these values as m in Data Table 1. The unknowns should have their metal type stamped on
them, or else ask your instructor for the metal type of the unknowns. Record the metal of the
unknowns in Calculations Table 1.

2. Place a clamp on the laboratory table and screw a threaded rod in the clamp. Slide the rod into the
hole designed for that purpose in the base of the laboratory balance. Adjust the height of the balance
above the table to allow the 1000mL beaker to fit under the balance. Fill the beaker about three-fourths
full of water.

3. Tie a piece of light string or thread around one of the unknowns and suspend it from one of the slots
in the left arm underneath the balance. Determine the apparent mass with the unknown suspended
completely below the surface of the water. Be sure that the unknown is not touching the side of the
beaker or is in any way supported by anything other than the string. Record the mass reading of
the balance as m1 in Data Table 1.

4. Repeat Steps 1 through 3 for the second unknown.

5. From Appendix II obtain the known SG of the metal for each of the unknowns and record those
values in Data Table 1.

Object Density Less than Water

1. Using the laboratory balance, determine the mass of the cork and record it as m in Data Table 2.

2. Determine the apparent mass with the cork suspended in air and a lead weight tied below submerged
in water as shown in Figure 18-2(a). Record that value as m1 in Data Table 2.

C
O
P
Y
R
IG

H
T
ª

2
0
0
8
T
h
o
m
s
o
n
B
ro
o
k
s
/C
o
le

W1

W W

W2

Bs

Ws

W

B
W2

W1

Ws

Ws Ws

W

Bs

0

(a) (b)

Figure 18-2 Forces acting on an object held submerged by a lead weight.
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3. Determine the apparent mass with both the cork and the lead weight submerged in water as shown
in Figure 18-2(b). Record that value as m2 in Data Table 2.

Liquid Unknown

1. Use one of the unknown metal cylinders from the original procedure. Its mass m and its apparent
mass in water have already been determined. Record those values in Data Table 3.

2. Use a very clean beaker and fill it about three-fourths full of alcohol. Determine the apparent mass of
the metal cylinder in alcohol. Record it as mL in Data Table 3. Return the alcohol to its container
when you have finished with it. Be very careful not to have any spark or flame near the alcohol.

3. Repeat Steps 1 and 2 for the other unknown metal.

4. From Appendix II determine the known value of the specific gravity of alcohol and record it in Data
Table 3.

C A L C U L A T I O N S
Density Greater than Water

1. Use Equation 7 to calculate the SG for each of the unknowns. Record the experimental values of the
specific gravity in Calculations Table 1.

2. Calculate the percentage error in your value of the SG for each of the unknowns compared to the
known values. Record them in Calculations Table 1.

Density Less than Water

1. Use Equation 8 to calculate the specific gravity SG for the cork and record it in Calculations Table 2.

Liquid Unknown

1. Use Equation 9 to determine the specific gravity of the alcohol for the two trials with the different
metals. Record those values in Calculations Table 3.

2. Calculate the percentage error in each of the two measurements of the specific gravity of alcohol.
Record the results in Calculations Table 3.
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P R E - L A B O R A T O R Y A S S I G N M E N T
1. What is the definition of density? What are its units?

2. What is specific gravity? What are its units?

3. State Archimedes’ principle.

4. The buoyant force on an object placed in a liquid is (a) always equal to the volume of the liquid
displaced (b) always equal to the weight of the object (c) always equal to the weight of the liquid
displaced (d) always less than the volume of the liquid displaced.

5. An object that sinks in water displaces a volume of water (a) equal to the object’s weight (b) equal to
the object’s volume (c) less than the object’s volume (d) greater than the object’s weight.
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6. An object that sinks in water has a mass in air of 0.0675 kg. Its apparent mass when submerged in
water, as in Figure 18-1, is 0.0424 kg. What is the specific gravity SG of the object? Considering
the densities given in Appendix II, of what material is the object probably made? Show your work.

7. A piece of wood that floats on water has a mass of 0.0175 kg. A lead weight is tied to the wood, and
the apparent mass with the wood in air and the lead weight submerged in water is 0.0765 kg.
The apparent mass with both the wood and the lead weight both submerged in water is 0.0452 kg.
What is the specific gravity of the wood? Show your work.

8. An object has a mass in air of 0.0832 kg, apparent mass in water of 0.0673 kg, and apparent mass
in another liquid of 0.0718 kg. What is the specific gravity of the other liquid? Show your work.
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Calculations Table 1

SG ¼ m

m�m1
% Error

Data Table 1

Metal Known SG m (kg) m1 (kg)

Calculations Table 2

SG ¼ m

m1�m2

Data Table 2

m (kg) m1 (kg) m2 (kg)

Calculations Table 3

SG ¼ m�mL

m�mw
% Error

Data Table 3

Metal m (kg) mw (kg) mL (kg)

Known SG of Alcohol¼
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S A M P L E C A L C U L A T I O N S
1. SG¼m/(m�m1)¼
2. SG¼m/(m1�m2)¼
3. SG¼ (m�mL)/(m�mw)

4. % Error¼ jE�Kj/K� (100%)¼

Q U E S T I O N S
1. Do your data indicate that Archimedes’ principle is valid? State clearly the evidence for your answer.

2. An object with a specific gravity of 0.900 is placed in a liquid with a specific gravity of 0.900. Describe
if the object will sink, float, or behave in some other way.

3. An object with a specific gravity of 0.850 is placed in water. What fraction of the object is below the
surface of the water?

4. Consider a swimmerwho swims first in a freshwater lake, and then swims in the ocean. Is the buoyant
force on her the same in both cases? If the buoyant force is different for the two cases, state which one
is greater and why.
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The Pendulum—
Approximate Simple
Harmonic Motion

O B J E C T I V E S
o Investigate the dependence of the period T of a pendulum on the length L and the mass M of

the bob.

o Demonstrate that the period T of a pendulum depends slightly on the angular amplitude of the
oscillation for large angles, but that the dependence is negligible for small angular amplitude of
oscillation.

o Determine an experimental value of the acceleration due to gravity g by comparing themeasured
period of a pendulum with the theoretical prediction.

E Q U I P M E N T L I S T
. Pendulum clamp, string, and calibrated hooked masses, laboratory timer

. Protractor and meter stick

T H E O R Y
A mass M moving in one dimension is said to exhibit simple harmonic motion if its displacement x
from some equilibrium position is described by a single sine or cosine function. This happens when the
particle is subjected to a force F directly proportional to the magnitude of the displacement and directed
toward the equilibrium position. In equation form this is

F ¼ �kx ðEq: 1Þ

The period T of the motion is the time for one complete oscillation, and it is determined by the mass M
and the constant k. The equation that describes the dependence of T on M and k is

T ¼ 2p

ffiffiffiffiffi
M

k

r
ðEq: 2Þ
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A pendulum does not exactly satisfy the conditions for simple harmonic motion, but it approximates
them under certain conditions. An ideal pendulum is a point mass M on one end of a massless string
with the other end fixed as shown in Figure 19-1. The motion of the system takes place in a vertical plane
when the mass M is released from an initial angle y with respect to the vertical.

The downwardweight of the pendulum can be resolved into two components as shown in Figure 19-1.
The component Mg cos y equals the magnitude of the tension N in the string. The component Mg sin y
acts tangent to the arc along which the mass M moves. This component provides the force that drives
the system. In equation form the force F along the direction of motion is

F ¼ �Mg sin y ðEq: 3Þ

For small values of the initial angle y, we can use the approximation sin y& tan y& x/L in Equation 3,
which gives

F ¼ �Mg

L
x ðEq: 4Þ

Although Equation 4 is an approximation, it is of the form of Equation 1 with k¼Mg/L. Using that value of
k in Equation 2 gives

T ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffi
M

Mg=L

s
¼ 2p

ffiffiffi
L

g

s
ðEq: 5Þ

Equation 5 predicts that the period T of a simple pendulum is independent of the mass M and the
angular amplitude y and depends only on the length L of the pendulum.

The exact solution to the period of a simple pendulum without making the small angle approxi-
mation leads to an infinite series of terms, with each successive term becoming smaller. Equation 6 gives
the first three terms in the series. They are sufficient to determine the very slight dependence of the
period T on the angular amplitude of the motion.

T ¼ 2p

ffiffiffi
L

g

s
1þ 1=4 sin2ðy=2Þ þ 9=64 sin4ðy=2Þ þ � � � �
 � ðEq: 6Þ

For an ideal pendulum with no friction, the motion repeats indefinitely with no reduction in the
amplitude as time goes on. For a real pendulum there will always be some friction, and the amplitude of
the motion decreases slowly with time. However, for small initial amplitudes, the change in the period

L

M
Mg sin �

�

Mg

x

Mg cos �

Figure 19-1 Force components acting on the mass bob of a simple pendulum.
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as the amplitude decreases is negligible. This fact is the basis for the pendulum clock. Pendulum clocks, in
one form or another, have been used for more than 300 years. For more than 100 years, clockmakers have
built extremely accurate clocks by successfully employing devices to compensate for small changes in the
length of the pendulum caused by temperature variations.

E X P E R I M E N T A L P R O C E D U R E
Length

1. The dependence of T on the length of the pendulum will be determined with a fixed mass and fixed
angular amplitude. Place a 0.2000 kg hooked calibratedmass on a string with a loop in one end. Adjust
the position at which the other end of the string is clamped in the pendulum clamp until the distance
from the point of support to the center of mass of the hooked mass is 1.0000 m. The length L of each
pendulum is from the point of support to the center of mass of the bob. The center of mass of the
hookedmasses will usually not be in the center because the hookedmasses are not solid at the bottom.
Estimate howmuch this tends to raise the position of the center of mass andmark the estimated center
of mass on each hooked mass.

2. Displace the pendulum 5.08 from the vertical and release it.Measure the timeDt for 10 complete periods
of motion and record that value in Data Table 1. It is best to set the pendulum inmotion, and then begin
the timer as it reaches themaximumdisplacement, counting 10 round trips back to that position. Repeat
this process twomore times for a total of three trials with this same length. The pendulum shouldmove
in a plane as it swings. If the mass moves in an elliptical path, it will lead to error.

3. Repeat the procedure of Step 2, using the same mass and an angle of 5.08 for pendulum lengths of
0.8000, 0.6000, 0.5000, 0.3000, 0.2000, and 0.1000meters. Do three trials at each length. The length of the
pendulum is from the point of support to the center of mass of the hooked mass.

Mass

1. The dependence of T on M will be determined with the length L and amplitude y held constant.
Place a 0.0500 kg mass on the end of the string and adjust the point of support of the string until
the pendulum length is 1.0000 m. Displace the mass 5.08 and release it. Measure the time Dt for
10 complete periods of the motion and record it in Data Table 2. Repeat the procedure two more
times for a total of three trials.

2. Keep the length constant at L¼ 1.0000 m and repeat the procedure above for M of 0.1000, 0.2000,
and 0.5000 kg. Because L is from the point of support to the center of mass, you will need to make
slight adjustments in the string length to keep L constant for the different masses.

Amplitude

1. The dependence of T on amplitude of the motion will be determined with L and M constant.
Construct a pendulum with L¼ 1.000 m and M¼ 0.200 kg. Measure the time Dt for 10 complete
periods with amplitude 5.08. Repeat two more times for a total of three trials at this amplitude. Record
all results in Data Table 3.

2. Repeat the procedure above for amplitudes of 10.08, 20.08, 30.08, and 45.08. Do three trials for each
amplitude and record the results in Data Table 3.

C A L C U L A T I O N S
Length

1. Calculate the mean Dt and standard error at of the three trials for each of the lengths. Record those
results in Calculations Table 1.
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2. Calculate the period T from T ¼ Dt=10 and record it in Calculations Table 1.

3. According to Equation 5 the period T should be proportional to
ffiffiffi
L

p
. For each of the values of L

calculate
ffiffiffi
L

p
and record the results in Calculations Table 1. Perform a linear least squares fit with T

as the vertical axis and
ffiffiffi
L

p
as the horizontal axis. By Equation 5 the slope of this fit should equal 2p=

ffiffiffi
g

p
.

Equate the slope determined from the fit to 2p=
ffiffiffi
g

p
, treating g as unknown. Solve this equation for g and

record that value as gexp in Calculations Table 1. Also record the value of the correlation coefficient r
for the fit.

Mass

1. Calculate the mean Dt and standard error at of the three trials for each of the masses. Record those
results in Calculations Table 2.

2. Calculate the period T from T ¼ Dt=10 and record in Calculations Table 2.

Amplitude

1. Calculate the mean Dt and standard error at for the three trials at each amplitude. Record the results in
Calculations Table 3.

2. Calculate T ¼ Dt=10 and record the results in Calculations Table 3 as Texp.

3. Equation 6 is the theoretical prediction for how the period T should depend on the amplitude.
Use L¼ 1.000 m and M¼ 0.200 kg in Equation 6 to calculate the T predicted for the values of y.
Record them in Calculations Table 3 as Ttheo.

4. For the experimental values of the period Texp calculate the ratio of the period at the other angles to
the period at y¼ 5.08. Call this ratio

�
TexpðyÞ=Texpð5:0�Þ

�
. Record these values in Calculations Table 3.

5. For the theoretical values of the period Ttheo calculate the ratio of the period at the other angles to the
period at y¼ 5.08. Call this ratio

�
TtheoðyÞ=Ttheoð5:0�Þ

�
. Record these values in Calculations Table 3.

G R A P H S
1. Consider the data for the dependence of the period T on the length L. Graph the period T as the

vertical axis and
ffiffiffi
L

p
as the horizontal axis. Also show on the graph the straight line obtained by

the linear fit to the data.

2. Consider the data for the dependence of the period T on the mass M. Graph the period T as the
vertical axis and the mass M as the horizontal axis.
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P R E - L A B O R A T O R Y A S S I G N M E N T
1. What is the requirement for a force to produce simple harmonic motion?

2. A particle of mass M¼ 1.35 kg is subject to a force F¼�0.850 x, where x is the displacement of
the particle from equilibrium. The units of force F are Newtons, and the units of x are meters. What
is the period T of its motion? Show your work.

3. A simple pendulum of length L¼ 0.800 m has a mass M¼ 0.250 kg. What is the tension in the string
when it is at an angle y¼ 12.58? Show your work.

4. In Question 3, what is the component of the weight of M that is directed along the arc of the motion
of M? Show your work.
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5. What is the period T of the motion of the pendulum in Question 3? Assume that the period is
independent of y. Show your work.

6. What would be the period T of the pendulum in Question 3 if L was unchanged but M¼ 0.500 kg?
Assume that the period is independent of y. Show your work.

7. Determine the period T of the pendulum in Question 3 if everything else stays the same, but y¼ 45.08.
Do not assume that the period is independent of y. Show your work.
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L A B O R A T O R Y R E P O R T

Data and Calculations Table 1

L (m) Dt1 (s) Dt2 (s) Dt3 (s) Dt (s) at (s) T (s)
ffiffiffi
L

p
(
ffiffiffiffiffi
m

p
)

1.0000

0.8000

0.6000

0.5000

0.3000

0.2000

0.1000

Slope¼ gexp¼ m/s2 r¼

Data and Calculations Table 2

M (kg) Dt1 (s) Dt2 (s) Dt3 (s) Dt (s) at (s) T (s)

0.0500

0.1000

0.2000

0.5000
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Data and Calculations Table 3

y Dt1 (s) Dt2 (s) Dt3 (s) Dt (s) at (s) Texp (s) Ttheo (s)
TexpðyÞ
Texpð5�Þ

TtheoðyÞ
Ttheoð5�Þ

5.08

10.08

20.08

30.08

45.08

S A M P L E C A L C U L A T I O N S
1. Texp ¼ Dt=10 ¼
2.

ffiffiffi
L

p ¼
3. gexp ¼ 4p2=ðslopeÞ2 ¼
4. Ttheo¼

Q U E S T I O N S
1. In general, what is the precision of the measurements of T? Answer this question by considering

what percentage is at of Dt for the measurements as a whole.

2. Do your data confirm the expected dependence of the period T on the length L of a pendulum?
Consider the correlation coefficient r for the least squares fit in your answer.

3. Comment on the accuracy of your experimental value for the acceleration due to gravity g.
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4. What does the theory predict for the shape of the graph of period T versus M? Do your data confirm
this expectation? Calculate the mean and standard error of the periods for the four masses and
comment on how this relates to mass independence of T.

5. Do your measured values for the period T as a function of the amplitude y confirm the theoretical
predictions? State clearly what is expected and what your data show.

6. The values of T were determined by measuring the time for 10 periods. Why is the time for more
than one period measured? If there is an advantage to measuring for 10 periods, why not measure for
1000 periods?
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Simple Harmonic Motion—
Mass on a Spring

O B J E C T I V E S
o Directly determine the spring constant k of a spring by measuring the elongation versus applied

force.

o Determine the spring constant k from measurements of the period T of oscillation for different
values of mass.

o Investigate the dependence of the period T of oscillation of a mass on a spring on the value of the
mass and on the amplitude of the motion.

E Q U I P M E N T L I S T
. Spring, masking tape, laboratory timer, meter stick, table clamps, and rods

. Right-angle clamps, laboratory balance, and calibrated hooked masses

T H E O R Y
Amass that experiences a restoring force proportional to its displacement from an equilibrium position is
said to obey Hooke’s law. In equation form this relationship can be expressed as

F ¼ �ky ðEq: 1Þ

where k is a constant with dimensions of N/m. The negative sign indicates that the force is in the opposite
direction of the displacement. If a spring exerts the force, the constant k is the spring constant.

A force described by Equation 1 will produce an oscillatory motion called simple harmonic motion
because it can be described by a single sine or cosine function of time. A mass displaced from its
equilibrium position by some value A, and then released, will oscillate about the equilibrium position.
Its displacement y from the equilibrium position will range between y¼A and y¼�A with A called the
amplitude of the motion. For the initial conditions described above, the displacement y as a function of
time t is given by

y ¼ A cosðotþ fÞ ðEq: 2Þ
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with angular frequency o related to the frequency f and the period T by

o ¼
ffiffiffiffiffi
k

M

r
o ¼ 2pf T ¼ 1=f T ¼ 2p

ffiffiffiffiffi
M

k

r
ðEq: 3Þ

AmassM placed on the end of a spring hangs vertically as shown in Figure 20-1. The original equilibrium
position of the lower end of the spring is shown in Figure 20-1(a). The position of the lower end of the spring
when the mass is applied, shown in Figure 20-1(b), can be considered as the new equilibrium position.
In Figure 20-1(c) the mass is pulled down to a displacement A from this new equilibrium position. When
released, the mass will oscillate with amplitude A and period T given above.

Equation 3 for the period is strictly true only if the spring is massless. For real springs with finite mass,
a fraction of the spring massms must be included along with the massM. If C stands for the fraction of the
spring mass to be included, the period is

T ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mþ Cms

k

r
ðEq: 4Þ

You will be challenged to discover what fraction C of the spring mass should be included from your
analysis of the data that you will take in the laboratory.

E X P E R I M E N T A L P R O C E D U R E
Spring Constant

1. Attach the table clamp to the edge of the laboratory table and screw a threaded rod into the clamp
vertically as shown in Figure 20-2. Place a right-angle clamp on the vertical rod and extend a hori-
zontal rod from the right-angle clamp. Hang the spring on the horizontal rod and attach it to the
horizontal rod with a piece of tape. Screw a threaded vertical rod into a support stand, which rests on
the floor. Place a right-angle clamp on the vertical rod and place a meter stick in the clamp so that the
meter stick stands vertically. Adjust the height of the clamp on the vertical rod until the zero mark of
the meter stick is aligned with the bottom of the hanging spring as shown in Figure 20-2.

2. Place a hooked massM of 0.050 kg on the end of the spring. Slowly lower the massM until it hangs at
rest in equilibriumwhen released. Carefully read the position of the lower end of the spring on the meter

M

A � y � y0 � Amplitude
     of the motion

y0 y

Original
Equilibrium

Position

(c)(b)(a)

New
Equilibrium

Position

M

Figure 20-1 New equilibrium position with mass M placed on a spring.
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stick scale. Record the value of the mass M and the value of the displacement x in Data and
Calculations Table 1.

3. Repeat Step 2, placing in succession 0.100, 0.200, 0.300, 0.400, and 0.500 kg on the spring and
measuring the displacement y of the spring. Record all values of M and y in Data and Calculations
Table 1.

Amplitude Variation

1. We will investigate dependence of the period T on the amplitude A for a fixed mass of 0.500 kg. Place
the mass on the end of the spring and slowly lower the mass until it hangs at rest when released.
Record this position of the lower end of the spring as yo.

2. Displace the mass downward to y¼ yoþ 0.0200m as shown in Figure 20-1, which will produce
A¼ 0.0200 m. Release the mass, and let it oscillate. Measure the time for 10 complete periods and
record it in Data Table 2 as Dt. Repeat the procedure two more times for a total of three trials at this
amplitude.

3. Repeat Step 2 above for A of 0.0400, 0.0600, 0.0800, 0.1000, and 0.1200m. Make three trials for each
amplitude and measure the time for 10 periods for each trial. Record all results in Data Table 2.

Mass Variation

1. Place a hooked mass of 0.050 kg on the spring and let it hang at rest. Displace the mass 0.0500 m below
the equilibrium (A¼ 0.0500m), release it, and let the system oscillate. Measure the time for 10 periods
of the motion and record it in Data Table 3 as Dt. Repeat the procedure two more times for a total of
three trials with this mass.

2. Repeat the procedure of Step 1 with the same A for values of the mass M of 0.100, 0.200, 0.300, 0.400,
and 0.500 kg. Perform three trials of the time for 10 periods for eachmass and record the results in Data
Table 3.

3. Determine the mass of the spring ms and record it in Data Table 3.C
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y

M

Table

Figure 20-2 Arrangement to measure displacement of spring caused by mass M.
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C A L C U L A T I O N S
Spring Constant

1. Calculate the force Mg for each mass and record the values in Data and Calculations Table 1. Use the
value of 9.80m/s2 for g.

2. Perform a linear least squares fit to the data with Mg as the vertical axis and y as the horizontal axis.
Record in Data and Calculations Table 1 the slope of the fit as the spring constant k and the correlation
coefficient r.

Amplitude Variation

1. Calculate the mean Dt and standard error at of the three trials for each amplitude. Record the results in
Calculations Table 2.

2. Calculate the period T from T¼Dt/10. Record the results in Calculations Table 2.

Mass Variation

1. Calculate the mean Dt and standard error at for the three trials for each mass. Record the results in
Calculations Table 3.

2. Calculate the period T from T¼Dt/10. Record the results in Calculations Table 3.

3. If both sides of Equation 4 are squared the result is

T2 ¼ 4p2

k
ðMþ CmsÞ ðEq: 5Þ

4. Equation 5 states that T2 is proportional to M with 4p2/k as the slope and 4p2Cms/k as the intercept.
Calculate and record the values of T2 in Calculations Table 3. Perform a linear least squares fit with T2

as the vertical axis and M as the horizontal axis. Record the values of the slope, intercept, and r in
Calculations Table 3.

5. Equate the value of the slope determined in Step 4 to 4p2/k and solve for the value of k in the resulting
equation. Record this value of k in Calculations Table 3.

6. Calculate the percentage difference between the value of k determined in Step 5 and the value of k
determined earlier and record it in Calculations Table 3.

7. Equate the value of the intercept determined in Step 4 to 4p2Cms/k and solve for the value of C in the
resulting equation. In the equation, use the value of k determined in Step 5. Record the value C in
Calculations Table 3.

G R A P H S
1. Graph the data from Calculations Table 1 for force Mg versus displacement y with Mg as the vertical

axis and y as the horizontal axis. Show on the graph the straight line obtained from the fit to the data.

2. Graph the data fromCalculations Table 2 for the period T versus the amplitudeAwith T as the vertical
axis and A as the horizontal axis.

3. Graph T2 versus M with T2 as the vertical axis and M as the horizontal axis. Also show on the graph
the straight line obtained from the linear least squares fit to the data.
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20 L A B O R A T O R Y 2 0 Simple Harmonic Motion—Mass on a Spring

P R E - L A B O R A T O R Y A S S I G N M E N T
1. Describe in words and give an equation for the kind of force that produces simple harmonic motion.

2. Other than the type of force that produces it, what characterizes simple harmonic motion?

3. A spring has a spring constant k¼ 8.75 N/m. If the spring is displaced 0.150 m from its equilibrium
position, what is the force that the spring exerts? Show your work.

4. A spring of constant k¼ 11.75 N/m is hung vertically. A 0.500 kg mass is suspended from the spring.
What is the displacement of the end of the spring due to the weight of the 0.500 kg mass? Show your
work.
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5. A spring with a mass on the end of it hangs in equilibrium a distance of 0.4200 m above the floor. The
mass is pulled down a distance 0.0600m below the original position, released, and allowed to
oscillate. How high above the floor is the mass at the highest point in its oscillation? Show your work.

6. Amassless spring has a spring constant of k¼ 7.85 N/m. A massM¼ 0.425 kg is placed on the spring,
and it is allowed to oscillate. What is the period T of oscillation? Show your work.

7. Amassless spring of k¼ 6.45N/m has a massM¼ 0.300 kg on the end of the spring. The mass is pulled
down 0.0500m and released. What is the period T of the oscillation?What is the period T if the mass is
pulled down 0.1000m and released? State clearly the reasoning for your answer.
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L A B O R A T O R Y R E P O R T
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Data and Calculations Table 1

M (kg) Mg (N) y (m) k (N/m) r

0.050

0.100

0.200

0.300

0.400

0.500

Data and Calculations Table 2 yo¼ _______________ m

A (m) Dt1 (s) Dt2 (s) Dt3 (s) Dt (s) at (s) T (s)

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200
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S A M P L E C A L C U L A T I O N S
1. Mg¼
2. T¼Dt/10

3. T2¼
4. k¼ 4p2/(Slope)

5. C¼ k(Intercept)/(4p2ms)¼

Q U E S T I O N S
1. Do the data for the displacement of the spring y versus the applied force Mg indicate that the spring

constant is constant for this range of forces? State clearly the evidence for your answer.

2. How is the period T expected to depend upon the amplitude A? State how your data do or do not
confirm this expectation.

Data and Calculations Table 3 ms¼ _______________kg

M (kg) Dt1 (s) Dt2 (s) Dt3 (s) Dt (s) at (s) T (s) T2 (s2)

0.050

0.100

0.200

0.300

0.400

0.500

Slope ¼ Intercept¼ r¼

k¼ N/m C¼ %Diff¼
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3. Consider the value you obtained for C. If you express that fraction as a whole number fraction, which
of the following would best fit your data? (½ �̂̄ ¼ �̂̇ )

4. Calculate T predicted by Equation 3 forM¼ 0.050 kg. Calculate T predicted by Equation 4with the same
M and your value of C. What is the percentage difference between these two values of T? Do the
same calculations for M¼ 0.500 kg. For which case are the percentage differences greater and why
are they greater?

5. The determination of T was done by measuring for 10 periods. Why was the time for more than one
period measured? If there is an advantage to measuring for 10 periods, why not measure for 1000
periods?
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Standing Waves on a String

O B J E C T I V E S
o Demonstrate formation of standing waves on a string from the interference of traveling waves

traveling in opposite directions.

o Determine the tension T in the string required to produce standing waves.

o Investigate the relationship between tension T and the wavelength l of the wave.

o Determine an experimental value for the frequency f of the wave and compare it to the known
value of 120Hz.

E Q U I P M E N T L I S T
. String vibrator (60Hz AC), string, clamps, pulley, support rods, meter stick

. Mass holder, slotted masses

. Laboratory balance capable of measuring to 0.00001 kg (one for class)

T H E O R Y
Waves are one means by which energy can be transported. Waves on a string are an example of transverse
waves. These are waves in which individual particles of the medium (in this case the string) move
perpendicular or transverse to energy moving along the string. In Figure 21-1 a string tied to a vibrator at
one end passes over a pulley, and the weight of masses on the other end provides tension T in the string.
The vibrator moves up and down at a frequency f, which causes a wave of that same frequency to
propagate down the string. The vibrator used in this laboratory is driven by an electromagnet at a fre-
quency of 60Hz, but because the electromagnet attracts the steel blade twice in each cycle, the vibrator
frequency is 120Hz.

The point at which the string passes over the pulley is a fixed point, and the wave is reflected from that
point. Thus the string is a medium in which two waves of the same speed, frequency, and wavelength
travel in the opposite direction. These two waves will interfere with each other to produce a standing
wave when the proper relationship exists between the string length L and the wavelength l of the wave.
When a standing wave is produced, its characteristic features are the existence of nodes and antinodes
at points along the string. A node N is a point for which there is no displacement of the string from its
equilibrium position. An antinode A is a point on the string for which the amplitude of vibration is a
maximum at all times. To form a standing wave a node must occur at each end of the string, and an
antinode must occur between each node. The distance between nodes is l/2 or one-half of a wavelength
of the wave. In terms of the string length L, a standing wave is possible when
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L ¼ n ðl=2Þ where n ¼ 1; 2; 3; 4; ::::: ðEq: 1Þ

Figure 21-2 shows the first four standing waves that are possible. From the figure it is clear that n is the
number of segments of half wavelengths in each standingwave. Solving Equation 1 for the possible values
of the wavelength l gives

l ¼ 2L=n where n ¼ 1; 2; 3; 4; :::::: ðEq: 2Þ

Because the frequency is fixed at 120Hz, each different standing wave will have a different wave
speed V. The wave speed is determined by the string tension T and the string mass per unit length r.
The relationship between these quantities is given by

V ¼
ffiffiffiffi
T

r

s
ðEq: 3Þ

The frequency, wavelength, and speed are related by V¼ fl. Using that and the speed V from Equation 3
gives

l ¼ 1

f

ffiffiffiffi
T

r

s
ðEq: 4Þ

The experimental arrangement differs slightly from the ideal situation because the node at the
vibrator end of the string is moving up and down rather than being fixed in space. This effect means that
the wavelength is somewhat difficult to define. For example, in the case n¼ 2 the node will not be exactly
in the center of the string, and each of the segments will be slightly different in length. The effect decreases

L

m

Figure 21-1 Experimental arrangement of vibrator, pulley, and masses.

n � 1 n � 2

n � 3 n � 4

Figure 21-2 First four standing waves for waves in a string.
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with each addition to the number of segments. One way to account for this effect is to determine the
wavelength using only those segments that do not include the vibrator. Because it is somewhat difficult
to locate the nodes precisely, there is usually less error involved if we assume that each wavelength is the
total length of the string divided by the number of segments. That is the assumption we will make in this
laboratory.

E X P E R I M E N T A L P R O C E D U R E
1. Themass per unit length of the string should be determined by the class as a whole. Carefullymeasure

a 1.0000m length of the type string to be used. Measure the mass of the string ms to the nearest
0.00001 kg. From these data find r and record it in the Data Table.

2. Clamp the vibrator and the pulley at opposite ends of the laboratory table approximately 1.5 m apart
if the table will allow that. Tie one end of a piece of string to the vibrator and make a loop in the other
end that hangs over the pulley as shown in Figure 21-1. Place a 0.0500 kg mass holder on the loop.

3. Measure the length of the string from the tip of the vibrator to the point where the string touches the
pulley and record this as string length L in the Data Table.

4. Plug in the vibrator and place on the mass holder the mass required to produce a standing wave that
corresponds to n¼ 3 in Figure 21-2. Do not attempt the modes with n¼ 1 and n¼ 2 because they
require such high string tension that the string is likely to break. To determine the mass needed to
produce a particular standing wave, it will help to pull down slightly or lift up slightly on the mass
holder to determine if mass needs to be added or subtracted. Determine to the nearest 0.001 kg the
mass needed to produce the largest possible amplitude of vibration with n¼ 3. Record the value of
the mass M in the Data Table for n¼ 3.

5. Remove mass and determine to the nearest 0.001 kg the mass needed to produce the largest amplitude
with n¼ 4 and record that mass value in the Data Table.

6. Continue the process of removing mass to produce standing waves for the cases of n¼ 5, 6, 7, 8, and 9.
In each case n refers to the number of segments into which the string length is divided. For each case
determine the mass needed (to the nearest 0.001 kg) to produce the largest amplitude. Record all
values of mass in the Data Table.

C A L C U L A T I O N S
1. Use the value of L in Equation 2 to calculate the wavelength l for each of the standing waves n¼ 3

through n¼ 9 and record the results in the Calculations Table.

2. From themeasured values ofM calculate the tension T¼Mgwith g¼ 9.80 m/s2. Record the values of T
in the Calculations Table.

3. Calculate the values of
ffiffiffiffi
T

p
for each of the values of T and record them in the Calculations Table.

Note that when taking the square root, generally an extra significant figure is allowed in the value
of the square root. For example, if a measured tension T were 7.83, then the recorded value of

ffiffiffiffi
T

p
should be 2.798.

4. According to Equation 4, l should be proportional to
ffiffiffiffi
T

p
with 1=f

ffiffiffi
r

p
as the constant of pro-

portionality. Perform a linear least squares fit with l as the vertical axis and
ffiffiffiffi
T

p
as the horizontal

axis. Record the slope of the fit in the Calculations Table. Equate the slope to 1=f
ffiffiffi
r

p
treating f as an

unknown. Use the known value of r to solve the resulting equation for f. Record that value of the
frequency as fexp in the Calculations Table. Also record the value of r the correlation coefficient in
the Calculations Table.

5. Calculate and record the percentage error of fexp compared to the known value of the frequency
f¼ 120Hz.C
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21 L A B O R A T O R Y 2 1 Standing Waves on a String

P R E - L A B O R A T O R Y A S S I G N M E N T
1. What is the name given to a point on a vibrating string at which the displacement is always zero?

What is the name given to a point at which the displacement is always a maximum?

2. What are the conditions (with respect to the points of zero amplitude and maximum amplitude) that
must hold to produce a standing wave on a vibrating string?

3. How is the length of the string L related to the wavelength l for standing waves?

4. What is the longest possible wavelength l for a standing wave in terms of the string length L? Show
your work.
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5. An arrangement like that shown in Figure 21-1 has a frequency of f¼ 120Hz. The length of the string
from the vibrator to the point where the string touches the top of the pulley is 1.200 m. What is the
wavelength l of the standing wave corresponding to the third resonant mode of the system? Show
your work.

6. What is the velocity of the wave for the same system described in Question 5, but for the case of the
fifth resonant mode? Show your work.

7. Suppose that the system described in Question 5 has string with a mass density r equal to
2.95� 10�4 kg/m. What is the tension T in the string for the second resonant mode? Show your work.
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21 L A B O R A T O R Y 2 1 Standing Waves on a String

L A B O R A T O R Y R E P O R T

S A M P L E C A L C U L A T I O N S
1. l¼ (2L)/n¼
2. T¼Mg¼
3.

ffiffiffiffi
T

p ¼
4. fexp ¼ 1=ð ffiffiffi

r
p

slopeÞ ¼
5. % Error¼ jE�Kj/K (100%)¼

6. (Question 3) f ¼ 1

l

ffiffiffiffi
T

r

s
¼
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Data Table

n M (kg)

3

4

5

6

7

8

9

r¼ kg/m L¼ m

Calculations Table

T¼Mg (N) l (m)
ffiffiffiffi
T

p ð ffiffiffiffiffi
N

p Þ

Slope¼ r¼

fexp¼ Hz % Error¼
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Q U E S T I O N S
1. What is the accuracy of your experimental value for the frequency? State clearly the basis for your

answer.

2. For the way in which the data were analyzed, the precision of the measurement would be related to
the uncertainty of the measured slope. Instead, use each measurement of T and l to calculate an
independent value for the frequency f. Calculate the seven values of the frequency using the equation
f ¼ ð1=lÞ ffiffiffiffiffiffiffi

T=r
p

. Calculate the mean and standard error of those seven values of the frequency and use
that to comment on the precision of the measurements of f.

3. Calculate the velocity for the n¼ 2 and for the n¼ 8 standing wave.

4. Calculate the tension T that would be required to produce the n¼ 1 standing wave in your string. Test
a piece of the string with that much force and describe the results. In particular, does that much force
break the string?

5. Suppose that the string stretched significantly as the tension was increased. Howwould that affect the
value of r for the string? Howwould that affect the results, andwould it cause an error in the direction
of your observed experimental error?
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Speed of Sound—Resonance
Tube

O B J E C T I V E S
o Determine the effective length of a closed tube at which resonance occurs for several tuning forks.

o Determine the wavelength of the standing wave from the effective length of the resonance tube
for each tuning fork.

o Determine the speed of sound from themeasuredwavelengths and known tuning fork frequencies
and compare with the accepted value.

E Q U I P M E N T L I S T
. Resonance tubes (with length scale marked on the tube)

. Tuning forks (range 500 to 1040Hz) and rubber hammer

. Thermometer (one for the class)

T H E O R Y
Traveling waves of speed V, frequency f, and wavelength l are described by

V ¼ fl ðEq: 1Þ

We can determine the speed of a traveling wave for known frequency and wavelength from Equation 1.
It is difficult to measure the properties of a traveling wave directly. When two waves of exactly the same
speed, frequency, and wavelength travel in opposite directions in the same region, they produce standing
waves. These standing waves can be measured easily.

This laboratory uses a device called a resonance tube to produce standing waves from the sound
waves emitted from a tuning fork. The can shown in Figure 22-1 contains water, and the level of the water
in the tube can be varied as the can is moved up and down. The water acts as the closed end of the tube,
and changing the water level changes the effective length of the resonance tube.

A tuning fork, clamped just above the open end of the tube, is struck with a rubber hammer.
Sound waves travel down the tube and are reflected when they strike the water. Standing waves are
produced by these traveling waves going in both directions inside the tube. The waves reflected from the
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closed end of the tube undergo a phase change of 1808, and are completely out of phase with the incident
waves. Therefore, the combined amplitude of the incident and reflected waves must be zero at the closed
end of the tube. A point in space with wave amplitude zero at all times is called a node N. From similar
considerations of the relative phase between the incident and reflected waves, at the open end of the tube
the wave amplitude must be a maximum at all times. Such a point is called an antinode A. The speed of
sound is fixed, and, for a given tuning fork, the frequency is fixed. Therefore, the resonance conditions can
be satisfied for only certain specific lengths of the tube.

Figure 22-2 illustrates the necessary relationship between the length of the tube and the wavelength of
the wave for the first four resonances of the tube. Sound waves are a type of wave known as longitudinal.
The amplitude of a soundwave is determined by pressure variations in the air along the direction of wave
motion. The sound waves in the figure are pictured as if they were transverse waves for ease of
representation. The resonances are pictured from left to right as they are encountered when the level
of the water in the tube is lowered, increasing the effective length of the tube. The distances L1, L2, L3, and
L4 refer to the distance from the top of the tube to the water level for the first four resonances. The locations
of the nodes N and antinodes A are shown for each of these resonances. In the first resonance there is a
single node and antinode. Each successive resonance adds an additional node and antinode. The distance
between a node and the next antinode is one-fourth wavelength (1/4 l). The distance between nodes is
one-half wavelength (1/2 l).

The location of several of the resonances for each tuning fork will be determined experimentally.
If the situation were ideal, the following relationships would be implied by Figure 22-2 for the first four
resonances shown.

L1 ¼ 1=4 l L2 ¼ 3=4 l L3 ¼ 5=4 l L4 ¼ 7=4 l ðEq: 2Þ
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Examine Figure 22-2 carefully to be sure that you understand how the relationships given in Equations 2
are implied by the figure.

The relationships given in Equations 2 are not valid for a real resonance tube because the point at which
the upper antinode actually occurs is just outside the end of the tube. The exact location depends upon the
diameter of the tube. Equations 2 are not directly useful to determine the wavelength l of the wave.

The end effect is the same for each of the resonances and will cancel if differences between the
locations of the individual resonances are considered. Considering the differences between adjacent
resonances gives the following

L2 � L1 ¼ L3 � L2 ¼ L4 � L3 ¼ l=2 ðEq: 3Þ

Equations 3 determine the wavelength, and the frequency of the tuning fork is known. Equation 1 then
allows determination of the speed of sound.

If Equations 3 are used and the results are then averaged, it would amount to taking the sum of twice
the three differences and then dividing by three. In that process, all but the first and last resonance
positions cancel from the calculation. In effect, one might as well have not measured the middle two
resonances. There is nothing incorrect about such a procedure, but it loses some of the information
contained in the data. This shows that there is often more than one way to analyze data, but often one
technique gives more information than the others.

All the data contribute to the result if each wavelength is computed, not from the adjacent differences,
but from the differences between each resonance and the first resonance. The resulting equations for the
wavelength are given below. A subscript has been placed on the wavelength, but it is still understood
that each of the wavelengths, l1, l2, and l3, refer to the same wavelength calculated from three different
sets of resonances. The equations are

l1 ¼ 2ðL2 � L1Þ l2 ¼ ðL3 � L1Þ l3 ¼ 2=3ðL4 � L1Þ ðEq: 4Þ

The speed of sound in air has a slight linear dependence on the air temperature for a limited range
of temperature. The speed of sound VT at a temperature of T8 C will be determined from

VT ¼ ð331:5þ 0:607TÞm=s ðEq: 5Þ

where T is the temperature in 8C.
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Figure 22-2 Nodes and antinodes of first four resonances of a tube closed at one end.
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E X P E R I M E N T A L P R O C E D U R E
Note carefully that tuning forks should be struck only with the rubber hammer. Take care to ensure that neither the
hammer nor a vibrating tuning fork comes into contact with the tube.

1. Measure the room temperature of the air and record it in Data Table 1.

2. Adjust the water level until the can is essentially empty when the tube is almost full. The water level
in the tube should come to at least within 0.050m of the open end of the tube. It may be necessary to
remove some water from the can when the water level is near the bottom of the tube.

3. Clamp a tuning fork above the top of the tube, and one partner should strike it repeatedly with the
rubber hammer. Keep the fork vibrating continuously with a large amplitude. With the tuning
fork vibrating, another partner should slowly lower the water level from the top while listening for a
resonance. The sound will be very loud when a resonance is achieved. Try to measure the position of
each resonance to the nearest millimeter. Raise and lower the water level several times to produce
three trials for the measured position of the first resonance and record the values in Data Table 2.
Record the frequency of the tuning fork in Data Table 2.

4. Repeat the procedure in Step 3 to locate as many other resonances as possible. Depending upon the
frequency of the tuning fork, either three or four resonances should be attainable. Record in Data
Table 2 the location of resonances that are attained.

5. Use a second tuning fork of different frequency and repeat Steps 1 through 4. Record in Data Table 3
the frequency of the tuning fork and the position of as many resonances as are attained.

C A L C U L A T I O N S
1. Use Equation 5 to calculate the accepted value of the speed of sound from the measured room

temperature. Record it in Data Table 1.

2. Calculate the mean and standard error of the three trials for the location of each of the resonances.
Record each of the means and standard errors in Calculations Tables 2 and 3.

3. Use Equations 4 to calculate the wavelengths that are appropriate. If four resonances were found, then
all three values of l can be determined. If only the first three resonances were measured, then only
two values of l can be determined. If this is the case, just leave the Calculations Table blank at the
appropriate position. Use the mean values of the lengths to calculate the wavelengths.

4. Calculate the mean and standard error for the number of independent wavelengthsmeasured for each
tuning fork. Record those values in the Calculations Tables as l and al.

5. From the values of l and the known values of the tuning fork frequencies, calculate the experimental
value for V, the speed of sound.

6. Calculate the percentage error of the experimental values of V compared to the accepted value of the
speed of sound in Data Table 1.

228 Physics Laboratory Manual n Loyd



Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section . . . . . . . . . . . . . . . . Date . . . . . . . . . . . . . . . .

22 L A B O R A T O R Y 2 2 Speed of Sound—Resonance Tube

P R E - L A B O R A T O R Y A S S I G N M E N T
1. What is the equation that relates the speed V, the frequency f, and the wavelength l of a wave?

2. How are standing waves produced?

3. What name is given to a point in space where the wave amplitude is zero at all times?

4. What name is given to a point in space where the wave amplitude is a maximum at all times?
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5. What are the conditions that must be satisfied to produce a standing wave in a tube open at one end
and closed at the other end?

6. For an ideal resonance tube an antinode occurs at the open end of the tube. What property of real
resonance tubes slightly alters the position of this antinode?

7. A student using a tuning fork of frequency 512Hz observes that the speed of sound is 340m/s.What is
the wavelength of this sound wave? Show your work.

8. A student using a resonance tube determines that three resonances occur at distances of L1¼ 0.172m,
L2¼ 0.529m, and L3¼ 0.884m below the open end of the tube. The frequency of the tuning fork used is
480Hz. What is the average speed of sound from these data? Show your work.
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Data Table 1

Room Temperature¼ 8C Speed of sound¼ m/s

Data Table 2

Frequency Fork One¼ Hz

L1 (m) L2 (m) L3 (m) L4 (m)

Data Table 3

Frequency Fork Two¼ Hz

L1 (m) L2 (m) L3 (m) L4 (m)

Calculations Table 2

L1 ¼ m L2 ¼ m L3 ¼ m L4 ¼ m

aL1¼ m aL2¼ m aL3¼ m aL4¼ m

l1¼ 2(L2� L1)¼ m l2¼ (L3� L1)¼ m l3¼ 2/3(L4� L1)¼ m

l ¼ m al¼ m V ¼ fl ¼ m=s % Err¼

Calculations Table 3

L1 ¼ m L2 ¼ m L3 ¼ m L4 ¼ m

aL1¼ m aL2¼ m aL3¼ m aL4¼ m

l1¼ 2(L2� L1)¼ m l2¼ (L3� L1)¼ m l3¼ 2/3(L4� L1)¼ m

l ¼ m al= m V ¼ fl ¼ m=s % Err¼
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S A M P L E C A L C U L A T I O N S
1. Speed Sound¼ 331.5þ 0.607 T¼
2. l1¼ 2(L2� L1)¼
3. l2¼ (L3�L1)¼
4. l3¼ 2/3(L4� L1)¼
5. V ¼ fl ¼
6. % Error¼ jE�Kj/K (100%)¼

Q U E S T I O N S
1. What is the accuracy of each of your measurements of the speed of sound? State clearly the evidence

for your answer.

2. What is the precision of each of your measurements of the speed of sound? State clearly the evidence
for your answer.

3. Equations 2 provide a means to determine the end correction for the tube. Using the value of l
for the first tuning fork, calculate values for L1 and L2 from those equations. They should be larger
than the measured values of L1 and L2 by an amount equal to the end correction. Repeat the
calculation for the second tuning fork. Compare these values for the end correction and comment on
the consistency of the results.
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4. Suppose that the temperature had been 10 8C higher than the value measured for the room tempe-
rature. How much would that have changed the measured value of L2� L1 for each tuning fork?
Would L2� L1 be larger or smaller at this higher temperature?

5. Draw a figure showing the fifth resonance in a tube closed at one end. Show also how the length of
the tube L5 is related to the wavelength l.
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Specific Heat of Metals

O B J E C T I V E S
o Demonstrate the heat exchange within a calorimeter.

o Determine the specific heat of two samples of different metals.

E Q U I P M E N T L I S T
. Calorimeter and stirrer, steam generator, Bunsen burner, or electric heating plate

. Metal shot (two different kinds of metal)

. Two thermometers (preferably one 0–1008C and the other 0–508C) and glycerin

T H E O R Y
Two objects at different temperatures, placed in thermal contact with each other, exchange thermal energy
until they are in thermal equilibrium at the same temperature. The exchanged thermal energy is known
as heat. The temperature change that each object experiences is determined by the mass and specific heat
of each object. The specific heat c is the amount of heat per unit mass required to change the temperature
by one degree. The units used in this laboratory for specific heat are cal/g–C8. The heat or thermal energy
change for any object in the system can be written as

Heat ¼ Thermal energy change ¼ McDT ðEq: 1Þ

where M is mass in grams, c is specific heat in cal/g–C8, and DT is the temperature change in C8. The
units of the thermal energy change or heat will be calories. In an ideal experimental arrangement designed
to investigate this concept, all exchanges of heat are among the objects of the system. In real systems, heat
losses from the system or gains into the system are held to aminimum. A device that produces a thermally
isolated environment to maximize heat exchanges inside the system is called a calorimeter. The calo-
rimeter used in this laboratory consists of two metal cups held apart by a plastic ring that produces an
insulating air space between the cups. The cups also have an insulating plastic top that contains a hole into
which the stirrer is placed, and a rubber stopper with a hole into which a thermometer is placed. A picture
of a calorimeter is shown in Figure 23-1.

Metal shot will be heated to the temperature of steam in a steam generator and then placed into a
calorimeter containing water near room temperature. The metal shot will lose heat, and that heat will be
gained by the water, the calorimeter cup, and the stirrer in the calorimeter. The stirrer is used to mix the
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system to ensure that all parts of the system quickly come to thermal equilibrium. In equation form, the
statement that the heat lost by the metal shot equals the heat gained by the other parts of the system is

MmcmðTm � TeÞ ¼ MwcwðTe � ToÞ þMcalccalðTe � ToÞ þMscsðTe � ToÞ ðEq: 2Þ

where theM’s are masses and the c’s are specific heats. The subscripts are m for metal, w for water, cal for
calorimeter, and s for stirrer. The initial temperature of themetal shot is Tm, the original temperature of the
water, cup, and stirrer is To, and the final equilibrium temperature of the system is Te.

E X P E R I M E N T A L P R O C E D U R E
1. Place about 250 g of one kind of metal shot into the cup that is designed to fit into the steam generator.

2. Fill the steam generator about one-half full of water. Keep the water level below the bottom of the cup
that is placed in the generator. The cup should be heated by steam from the water. Use whatever
means of heating is provided (Bunsen burner or electric heating plate) to heat the generator.

3. Place a thermometer that reads 0–1008C into the metal shot. If the thermometer is a mercury ther-
mometer, be very careful not to break the bulb as you work it down into the shot. Place paper or some
other insulation around the top of the cup to keep the outside air from cooling the top layer of shot.

4. While the shot is heating, determine the mass of the inner calorimeter cup and the stirrer separately
and record their mass in the Data Table. Obtain from your instructor the values for ccal and cs, the
specific heats of the calorimeter cup and the stirrer, and record them in the Data Table.

5. Place about 100 g of water in the inner calorimeter cup and determine the combined mass of the cup,
stirrer, and water. Determine the mass of the water by subtraction and record it in the Data Table. The
initial temperature of the water should ideally be a few degrees below the room temperature. This will
tend to compensate for interaction with the air.

6. Assemble the calorimeter, placing the second thermometer in the rubber stopper. Use glycerin on the
thermometer so that it may be easily slipped into the hole in the stopper. If using a glass thermometer,
be extremely careful. If the thermometer breaks, you can cut yourself severely. Stir the water slowly to be sure
that all parts of the system are in equilibrium. Record the temperature of the water, calorimeter, and
stirrer as To in the Data Table. Take this reading for To just prior to performing Step 8 below.
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7. Take the temperature of the metal shot every few minutes. Move the bulb around carefully in the shot
to be sure all parts are in equilibrium. The temperature should rise and then level off at essentially the
boiling point of water. This will probably be a few degrees below 1008C depending upon the local
elevation above sea level. Record the value (to the nearest 0.18) of the maximum temperature as Tm in
the Data Table.

8. Remove the thermometer from the shot and quickly transfer the shot to thewater in the inner calorimeter
cup. It is very important not to splash water out of the cup in this process. This can easily happen when
removing the insulating plastic cover or when placing the shot in the water.

9. Place the insulating cover back on the calorimeter and slowly stir the water while watching the ther-
mometer in the calorimeter.When themaximum temperature is reached, record its value (to the nearest
0.18) as the equilibrium temperature Te.

10. Remove the inner calorimeter cup and determine the mass of the cup, stirrer, water, and metal shot.
Record that value in the Data Table. Determine the mass of the shot used by subtraction and record
that value in the Data Table.

11. Discard the water but do not lose any of the shot. Place the wet shot on paper towels, spread it out, and
allow the shot to dry. Before leaving the laboratory andwhen the shot is completely dry, return it to its
proper container. Be careful not to mix the two kinds of metal shot.

12. From Appendix II, determine the known value of the specific heat for the type of metal of the shot and
record it in the Data Table.

13. Repeat all of the above procedure for a second type of metal shot.

C A L C U L A T I O N S
1. In Equation 2 all of the variables are known except for the specific heat of the metal shot. Solve

Equation 2 for the specific heat of the metal shot and record that value as the experimental value in the
Calculations Table.

2. Calculate the percentage error between your experimental value and the known value of the specific
heat for each type of metal.
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23 L A B O R A T O R Y 2 3 Specific Heat of Metals

P R E - L A B O R A T O R Y A S S I G N M E N T
1. What is the definition of specific heat?

2. What is the name for a device that provides a thermally isolated environment in which substances
exchange heat?

A heated piece of metal at a temperature T1 is placed into a calorimeter containing water and a stirrer.
The temperature of the calorimeter, water, and stirrer is initially T2 where T1 >T2. The system is stirred
continuously until it comes to equilibrium at a temperature of T3. Answer Questions 3–5 concerning
what happens.

3. The final equilibrium temperature of the system is such that

(a) T3 >T1 >T2 (b) T1 <T2 <T3 (c) T1 <T3 <T2 (d) T1 >T3 >T2

4. The heat lost by the metal DQm and the heat gained by the calorimeter system DQc obey which of the
following relationships?

(a) DQm>DQc (b) DQm<DQc (c) DQm¼DQc
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5. What is the purpose of stirring the system continuously?

6. A 350 g piece of metal is at an initial temperature of 22.08C. It absorbs 1000 cal of thermal energy, and
its final temperature is 45.08C. What is the specific heat of the metal? Show your work.

7. A 250.0 g sample of metal shot is heated to a temperature of 98.08C. It is placed in 100.0 g of water in a
brass calorimeter cup with a brass stirrer. The total mass of the cup and the stirrer is 50.0 g. The initial
temperature of the water, stirrer, and calorimeter cup is 20.08C. The final equilibrium temperature
of the system is 30.08C. What is the specific heat of the metal sample? (The specific heat of brass is
0.092 cal/g–C8.) Show your work.
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23 L A B O R A T O R Y 2 3 Specific Heat of Metals

L A B O R A T O R Y R E P O R T

Data Table

Mass Cup¼ g Mass Stirrer¼ g

Metal
CupþH2O
þ Stirrer

Cupþ Stirrer
þH2Oþ Shot H2O Shot To Tm Te

g g g g 8C 8C 8C

g g g g 8C 8C 8C

Calculations Table

Metal Known Specific Heat Measured Specific Heat Percentage Error

Cal/g–C8 Cal/g–C8

Cal/g–C8 Cal/g–C8

S A M P L E C A L C U L A T I O N S
1. MWater¼MCupþ StirrerþWater�Mcup�Mstirrer¼
2. Mshot¼Mcupþ stirrerþwaterþ shot�Mcupþ stirrerþwater¼
3. cm¼ [Mwcw(Te�To)þMccc(Te�To)þMscs(Te�To)]/Mm(Tm�Te)]

4. % Error¼ (jE�Kj/K)(100%)¼
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Q U E S T I O N S
1. What is the accuracy of your results for the specific heats of themetals? Can you suggest any change in

the original temperature of the metal that would improve the results?

2. Can youmake a quantitative statement about the precision of your results? If you canmake a statement
about the precision, do so. If you cannot make any statement about the precision, suggest what
measurements would allow you to do so.

3. Suppose the shot were wet and thus included some water at the same temperature as the shot when
it was placed in the calorimeter. How would this affect the results?

4. What would the change in temperature of the water have been if 200 g of water had been used with
each of the samples?Would this have tended to improve the results, tended tomake the results worse,
or tended to have no effect on the results?
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Linear Thermal Expansion

O B J E C T I V E S
o Demonstrate that for the same temperature change the thermal expansion depends upon the

type of metal.

o Determine the value of the linear coefficient of thermal expansion a for several metals and
compare the results to known values.

E Q U I P M E N T L I S T
. Linear expansion apparatus consisting of steam jacket containing a metal rod

. Steam generator, rubber tubing, and beaker to catch steam condensation

. Bunsen burner and stand, or electric heating plate

. Meter stick, thermometer (0–1008C)

. Ohmmeter if using micrometer screw-type indicator

T H E O R Y
Most materials expand as their temperature increases. The expansion depends not upon the heat input,
but rather upon the temperature change. Temperature expansion occurs in three dimensions, but we will
investigate only one dimensional change in the length of a rod.

A metal rod of some initial length Lo at some initial temperature To is heated to some temperature T1.
The length of the rod will increase to a new length L1. The change in length of the rod DL¼ L1� Lo is found
to be proportional to the original length of the rod Lo and to the change in the temperature DT where
DT¼T1�To. In equation form the result is

DL ¼ aLo DT ðEq: 1Þ

where a is a constant called the linear coefficient of thermal expansion. Solving Equation 1 for the
constant a gives

a ¼ DL
LoDT

¼ L1 � Lo
LoDT

ðEq: 2Þ

From Equation 2 it is clear that a is the fractional change in length per unit change in the temperature.
Because the fractional change in length DL/Lo has no dimensions, the units of a are (C8)�1. Strictly
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speaking, a varies slightly with temperature. However, over the range of temperature used in this
laboratory, we can assume a to be approximately constant.

The apparatus to be used in this laboratory is shown in Figure 24-1. It consists of a steam jacket
containing a metal rod about 0.60m long. The jacket is held by supports at either end. One of the end
supports has a thumbscrew to keep that end of the rod fixed. The other end support contains an indicator
to measure the change in length of the rod.

There are two types of indicators. One has amicrometer screwwith a rotary dial of 100 divisions. Each
division is 0.01mm, and one complete turn of the dial is equivalent to a linear translation of 1mm. Some
micrometer screw indicators have a set of binding posts on each end support. We can use them to
construct an electrical circuit to indicate when the micrometer screw makes contact with the rod. When
using a micrometer screw-type indicator, remember to back the screw away from the rod before the rod is
allowed to expand, to prevent damage to the micrometer screw.

The second type of indicator contains a plunger-activated dial that reads directly in 0.01mm. One
complete revolution of the dial corresponds to 1mm linear displacement with a total of 3.5mm
displacement possible. When using this type of indicator, contact is made with the rod, and the rod is
allowed to expand against the plunger, which always remains in contact with the rod.

E X P E R I M E N T A L P R O C E D U R E
Linear Thermal Expansion

1. Remove the rod from the steam jacket andmeasure the length of the rodwith ameter stick. Measure to
the nearest 0.001m and record this length as Lo in the Data Table.

2. Replace the rod in the steam jacket and secure the jacket in the support ends. If using a device that has
binding posts, connect the leads from an ohmmeter to each of the binding posts. Even if the apparatus
does not have binding posts, you can use the ohmmeter to make contact with the end supports when
taking a measurement.

3. Use a one-hole rubber stopper to place a thermometer in the opening provided for that purpose.
The opening is in the center of the steam jacket. The thermometer bulb should just barely touch the
rod. If the apparatus has been standing unused for several hours or more, record the temperature after
the thermometer is in contact with the rod. If the steam jacket has been heated recently, run cool water

Steam Generator

Steam
Outlet

Beaker
Steam Inlet Thermometer

Indicator DialSteam Jacket

Sample Rod

Figure 24-1 Experimental arrangement for thermal expansion apparatus.
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through the jacket until the entire system is at equilibrium at a temperature near room temperature.
Record the temperature (to the nearest 0.18) in the Data Table as To. Adjust the indicator dial until
contact is made with the rod. If using the micrometer-type device, contact is indicated by the
ohmmeter. Record the indicator dial setting as Do in the Data Table.

4. If using the micrometer-type indicator, back the screw out several turns at this time. If using the
plunger-type indicator, leave it in contact with the rod. It is extremely critical that there be no disturbance
of the rod between this reading and the final reading after the rod has been heated.

5. Connect the steam supply to the steam jacket with a rubber hose. At the other end of the jacket,
connect a hose from the steam outlet to a beaker to catch the steam condensation. Pass steam through
the jacket for several minutes and monitor the temperature of the rod. When the temperature reaches
its maximum value, record the temperature (to the nearest 0.18) as T1.

6. If using the plunger-type indicator, simply read the value on the indicator dial. If using the
micrometer screw-type device, turn the screw in until it touches the rod as indicated by the ohmmeter.
Record the reading as D1 in the Data Table.

7. Repeat Steps 1 through 6 for other rods of a different metal. Be extremely careful not to burn yourself
on the heated steam jacket. Before beginning the procedure, run cool water through the apparatus
until the new rod and jacket are in equilibrium near room temperature.

8. From Appendix II, determine the known value of a for each of the rods measured and record them in
the Data Table.

C A L C U L A T I O N S
Linear Thermal Expansion

1. Calculate the increase in length DL for each rod from DL¼D1�Do and record each of them in the
Calculations Table.

2. Calculate the increase in temperature DT for each rod from DT¼T1�To and record each of them in the
Calculations Table.

3. Use Equation 2 to calculate the linear coefficient of thermal expansion a for each rod and record each
of them in the Calculations Table.

4. Calculate the percentage error for each experimental value of a compared to the known value. Record
them in the Calculations Table.
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P R E - L A B O R A T O R Y A S S I G N M E N T
1. An object undergoes a change in length DL because of a change in its temperature. What are the three

factors on which this change in length depends?

2. What are the units for the linear thermal coefficient of expansion a?

3. Most materials expand when the temperature is raised. What can you conclude about a for a material
that contracts when its temperature is raised?

4. A copper rod has a length of 1.117m when its temperature is 22.08C. If the temperature of the rod is
raised to 275.08C, what is the new length of the rod? [The value of a for copper is 16.8� 10�6 (C8)�1.]
Show your work.
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5. Iron rails are used to build a railroad track. If each rail is 10.000m long when it is placed in the track at
a temperature of 20.08C, how much space must be left between the rails so that they just touch each
other when the temperature is 40.08C? [The value of a for iron is 11.4� 10 (C8)�1.] Show your work.

6. A rod in a steam jacket is measured to have a length of 0.600m at a temperature of 22.08C. Steam is
then passed through the jacket for several minutes until the rod is at a temperature of 98.08C.
The increase in the length of the rod is measured by a micrometer screw arrangement to be 1.19mm.
What is the linear thermal coefficient of expansion a for the rod? Show your work.

7. Considering the value of a found for the rod in Question 6, from what kind of metal is it probably
made?
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L A B O R A T O R Y R E P O R T

S A M P L E C A L C U L A T I O N S
1. DL¼D1�Do¼
2. DT¼T1�To¼
3. a ¼ DL

LoDT
¼

4. jE�Kj/K (100%)¼
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Data Table

Metal Known a (C8)�1 Lo (m) To (8C) T1 (8C) Do (m) D1 (m)

Calculations Table

Metal DL (m) DT (C8) aexp (C8)�1 % Error
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Q U E S T I O N S
1. What is the accuracy of your measurements of a? State clearly the basis for your answer.

2. We could measure the change in length DL with more accuracy if it were larger. We could do this by
heating the rod directly with a Bunsen burner to a temperature considerably higher than 1008C.
Would that be a reasonable alternative? In what way is the steam heat a more workable technique?

3. The original length Lo of the rod was measured only to the nearest 1mm. Does this cause a significant
error in the final result? If so, why does it? If not, why does it not?

4. Would the measured value of a have been the same or different if lengths were determined in inches
instead of meters? State clearly the basis for your answer.

5. A brass washer has an inside diameter of 2.000 cm and an outside diameter of 3.000 cm at 20.08C.
A solid rod of aluminum has a diameter of 2.000 cm at 20.08C and just fits inside the washer as
shown in Figure 24-2. Both the washer and aluminum rod are raised to a temperature of 150.08C.
Will the rod still fit inside the washer? If so, how much smaller is the rod than the opening in the
washer? If not, how much larger is the rod than the opening in the washer? Show your work.

Figure 24-2 Brass washer on an aluminum rod.
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The Ideal Gas Law

O B J E C T I V E S
o Demonstrate that the pressure P of a gas at a fixed temperature is proportional to the quantity

(1/V) where V is the gas volume.

o Demonstrate that the volume V of a gas at a fixed pressure is proportional to the temperature T
of the gas.

o Determineanexperimentalvalue for the constant that relatesCelsius temperatureTC to theabsolute
temperature T and compare the experimental value for this constant with its known value of
273.15.

E Q U I P M E N T L I S T
. Gas law apparatus, Vaseline or stopcock grease, and string

. Thermometer (0–1008C) and vernier calipers

. 600mL beaker and tongs to fit the beaker

. Masses to allow application of up to 6 kg in 1 kg increments

. Electric heating plate or Bunsen burner (If a Bunsen burner is used, a stand to hold beaker while it is
heated is also needed.)

. One large container of ice for the class

T H E O R Y
Consider a gas containing Nmolecules confined to a volume V, at a pressure P, and temperature T. In the
most general case, all of these quantities vary over awide range, and the equation of state that relates them is
very complex. If only gases at low density are considered, the equation of state is greatly simplified. A gas
that satisfies these conditions is referred to as an ideal gas. Although there are no true ideal gases, most real
gases approximate an ideal gas near room temperature and atmospheric pressure. The ideal gas law is

PV ¼ NkBT ðEq: 1Þ

The SI units of pressure P are N/m2, and the SI units of volumeV are m3. The constant kB¼ 1.38� 10�23 J/K
is called Boltzmann’s constant. In Equation 1 the Kelvin temperature scale must be used. The relationship
between temperature in Celsius TC and the Kelvin temperature T is
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T ¼ TC þ 273:15 ðEq: 2Þ

In this laboratory, we will verify Equation 1 in two different ways. Consider first the case of a fixed
amount of gas (thus N is constant) at some given constant temperature. Under these conditions the
quantity NkBT is a constant designated as C1. In terms of C1 Equation 1 can be rewritten as

P ¼ C1ð1=VÞ ðEq: 3Þ

Consider the apparatus shown in Figure 25-1. The apparatus can be constructed from a large plastic
syringe (either 35 cc or 60 cc volume) marked in 1 cc increments. The needle is removed, and the end of the
syringe is melted closed (airtight). The outer cylinder of the syringe is mounted on a small wooden support.
A small flat wooden platform is attached to the top of the plunger. These devices can be constructed easily
and cheaply. They are also available from Pasco Scientific without the wooden support.

The sliding rubber seal of the syringe allows a fixed amount of gas in the cylinder to vary in volume V
as the pressure P is changed. Total pressure P is from the atmospheric pressure Pa and any additional
pressure called the gauge pressure Pg. In Figure 25-1(b) the gauge pressure is the weightMg placed on the
platform of the plunger per unit area A of the cylinder. This is

Pg ¼ F=A ¼ Mg=A ðEq: 4Þ

Using PgþPa for P in Equation 3 gives

Pg ¼ C1ð1=VÞ � Pa ðEq: 5Þ

Equation 5 states that there is a linear relationship between the gauge pressure Pg and the quantity 1/V
with C1 as the slope and�Pa as the intercept. This aspect of the ideal gas law is known as Boyle’s law.
In the first part of the laboratory the volume V of a gas sample will be measured as a function of the gauge
pressure Pg. Experimental values for C1 and Pa will then be obtained from a fit of the data to Equation 5.

(a) (b)

Figure 25-1 Syringe with needle removed and end closed. The sliding seal allows a fixed amount of air to
change volume as pressure or temperature is changed.
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Consider now the case of a fixed amount of gas at some constant pressure P. Under these conditions
the quantityNkB/P is a constant designated as C2. In terms of the constant C2 and the Celsius temperature
TC, Equation 1 can be rewritten as

V ¼ C2 TC þ C2 ð273:15Þ ðEq: 6Þ

Equation 6 states that there is a linear relationship between the gas volume V and the temperature TCwith
C2 as the slope, and C2 (273.15) as the intercept. This aspect of the ideal gas law is essentially the law of
Charles and Gay-Lussac. In the second part of the laboratory we will measure the volume of a sample
of gas as a function of the temperature TC. Wewill obtain experimental values forC2 andC2 (273.15) by a fit
of the data to Equation 6. Examination of Equation 6 shows that

K ¼ Intercept

Slope
¼ 273:15 ðEq: 7Þ

From Equation 7 we can obtain an experimental value for K from the intercept and slope of the fit to the
volume versus temperature data. The negative of the value for the constant (�K) is an experimental value
for absolute zero on the Celsius scale.

E X P E R I M E N T A L P R O C E D U R E
Constant Temperature

1. Pull the plunger from the syringe and place a short length of string into the cylinder with a loose end
hanging out. Put a thin coat of Vaseline or stopcock grease on the rubber tip of the plunger. Replace
the plunger in the syringe. The string allows a small air leak to adjust the volume of air trapped by the
plunger. Adjust the volume of air to 25 cc if using the 35 cc syringe, and 45 cc if using the 60 cc syringe.
Then withdraw the string. (1 cc¼ 1 cm3¼ 1� 10�6m3)

2. Place the support block of the syringe across the opening of the beaker as shown in Figure 25-1 and
place mass M on the plunger platform. Use values for M from 1kg to 6 kg in increments of 1 kg.
Determine the volume of the gas trapped in the syringe for each value ofM. To determine the volume
accurately, push down slightly on the plunger and allow the plunger to spring back before taking each
measurement of volume. Record the values of V for each M in Data Table 1.

3. Use the vernier calipers to determine the inside diameter D of the syringe cylinder and record it in
Data Table 1.

4. Determine the temperature TC of the room air and record it in Data Table 1.

5. Standard atmospheric pressure at sea level is 1.013� 105 N/m2. Determine the present local barometric
pressure in these units and record that value in Data Table 1.

Constant Pressure

1. Using a string as before, adjust the volume V of the syringe to 25 cc if using the 35 cc syringe, and 45 cc
if using the 60 cc syringe.

2. Place tap water in the beaker and place the syringe support on the beaker. The syringe cylinder should
be almost completely immersed in the water. Place a 2 kg mass on the plunger platform. Place the
beaker in a position to be heated and bring the water to a boil. The beaker must be securely supported while
being heated. Allow at least 5 minutes after the water begins to boil for the air in the syringe to come to
equilibrium with the boiling water. Measure the volume V and the temperature of the water TC.
Record them in Data Table 2.
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3. Remove the 2 kg mass from the plunger. Use the beaker tongs to carefully remove the beaker from the
source of heat and set it on the laboratory table. Replace the 2 kgmass on the plunger. Add small pieces
of ice to the water and stir the mixture after each addition of ice until all the ice melts. Monitor the
temperature of the water at all times. Determine the volumeV of the syringe for water temperatures of
about 758C, 508C, and 258C. For each temperature at which the volume is determined, there should be
no ice in thewater when the volume ismeasured. Allow a fewminutes at each temperature to establish
equilibrium between thewater and the air in the syringe. Record the volumeV and the temperature TC

(to the nearest 0.18C) in Data Table 2.

4. For the final temperature add enough ice until ice and water are at equilibrium near 08C. Some water
may have to be discarded. Allow at least five minutes for the air in the syringe to come to equilibrium
with the ice and water and record the volume V of the trapped air and the temperature TC (to the
nearest 0.18C) in Data Table 2.

C A L C U L A T I O N S
Constant Temperature

1. Calculate the cross-sectional area A of the syringe from the measured diameter D of the cylinder
where A¼ pD2/4 and record in Calculations Table 1.

2. Calculate the force F¼Mg with g¼ 9.80m/s2 for each mass M and record in Calculations Table 1.

3. Use Equation 4 to calculate gauge pressure Pg for each value of F and record in Calculations Table 1.

4. For each value of V calculate the quantity 1/V and record in Calculations Table 1.

5. Perform a linear least squares fit with Pg as the vertical axis and 1/V as the horizontal axis. Record the
slope as C1, the negative of the intercept as (Pa)exp, and r the correlation coefficient in Calculations
Table 1.

6. Calculate the percentage error for the value of (Pa)exp compared to the current atmospheric pressure
and record the results in Calculations Table 1.

Constant Pressure

1. Perform a linear least squares fit with V as the vertical axis and TC as the horizontal axis. Record the
slope, intercept, and correlation coefficient of the fit in Calculations Table 2.

2. Use Equation 7 to calculate an experimental value of the constant K from the slope and intercept of the
fit. Record this value as Kexp in Calculations Table 2.

3. Calculate the percentage error in the value of Kexp compared to the known value for K,which is 273.15.
Record this percentage error in Calculations Table 2.

G R A P H S
1. Make a graph of the data in Calculations Table 1 with Pg as the vertical axis and 1/V as the horizontal

axis. Also show on the graph the straight line obtained by the linear least squares fit to the data.

2. Make a graph of the data in Calculations Table 2 withV as the vertical axis and T as the horizontal axis.
Choose a scale from approximately�3008C to 1008C that will allow the data to be extrapolated back
to V¼ 0. Also show on the graph the straight line obtained from the fit to the data extrapolated to
V¼ 0.
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25 L A B O R A T O R Y 2 5 The Ideal Gas Law

P R E - L A B O R A T O R Y A S S I G N M E N T
1. What is the ideal gas law?

2. What are the conditions under which a real gas approximately obeys the ideal gas law?

3. What are the SI units for pressure and volume? What is the value of Boltzmann’s constant kB?

4. Which temperature scale must always be used in the ideal gas law?
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5. The temperature in a room is measured to be TC¼ 24.58C. What is the Kelvin temperature of the
room? Show your work.

6. If the volume of the room in Question 5 is 50.0 m3, and the pressure is 1.013� 105N/m2, what is the
value of N, the number of molecules in the room? Show your work.

7. A gas at constant temperature has a volume of 25.0 m3 and the pressure of the gas is 1.50� 105N/m2.
What is the volume of the gas if the pressure of the gas is increased to 2.50� 105N/m2 while the
temperature remains fixed? Is this an example of Boyle’s law or Charles’ law? Show your work.

8. A gas at constant pressure has a volume of 35.0 m3, and its temperature is 20.08C.What is its volume if
its temperature is raised to 100.08C at the same pressure? Is this an example of Boyle’s law or Charles’
law? Show your work.
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L A B O R A T O R Y R E P O R T

C
O
P
Y
R
IG

H
T
ª

2
0
0
8
T
h
o
m
s
o
n
B
ro
o
k
s
/C
o
le

Data Table 1

M (kg) V (m3)

D¼ m

TC¼ 8C

Pa¼ N/m2

Calculations Table 1

F (N) Pg (N/m3) 1/V (m�3)

A¼ m2 r¼

C1¼ N�m (Pa)exp¼ N/m2

Percentage error¼

Data Table 2

TC (8C) V (m3)

Calculations Table 2

Slope¼ m3/C8

Intercept¼ m3

r¼

Kexp¼

Percentage error¼
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S A M P L E C A L C U L A T I O N S
1. F¼Mg¼
2. A¼ pD2/4¼
3. Pg¼Mg/A¼
4. 1/V¼
5. Kexp¼�(Intercept)/(Slope)¼
6. %Error¼ jK�Ej/K� (100%)¼

Q U E S T I O N S
1. Howwell do your data confirm the ideal gas law? State your answer to this question as quantitatively

as possible.

2. What is the accuracy of your value of (Pa)exp compared to the actual atmospheric pressure?

3. What is the accuracy of your value for K?

4. Consider the value of the constant C1 in Calculations Table 1. It should be equal to NkBT. Equate the
measured value of C1 to NkBT and solve the resulting equation for N, the number of molecules in the
syringe when the temperature was held constant.

5. Consider the value of the slope in Calculations Table 2. It should be equal to NkB/P. Equate the
measured value of the slope to NkB/P and solve for N, the number of molecules in the syringe when
the pressure was held constant. Remember that the value of Pg for this part of the laboratory was
caused by the 2.00 kg mass. Use the known value of the atmospheric pressure Pa.
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Equipotentials and Electric
Fields

O B J E C T I V E S
o Investigate the location and shape of equipotential surfaces near oppositely charged electrodes

and construct electric field lines perpendicular to the equipotentials.

o Compare experimentally determined electric field lines with known patterns for line charge, two
line charges of opposite sign, and parallel plates.

o Determine the dependence of the magnitude of E on distance from a line of charge.

E Q U I P M E N T L I S T
. Corkboard and push pins to attach power supply and voltmeter to electrodes

. Carbon-impregnated resistance paper with a grid

. Conducting paint or conducting pen (either silver-based or carbon-based)

. Direct current power supply (20V, low current)

. High impedance voltmeter (preferably digital)

T H E O R Y
Consider two electrodes of arbitrary shape some distance apart carrying equal and opposite charges.
A potential difference of 20V exists between the electrodes with the negative electrode at zero and the
positive electrode at þ20V. In the space surrounding these electrodes, there are points at the same
potential. There will be some points with potentialþ10V. There will be other points with potentialþ15V,
and still other points with potentialþ5V. In three dimensions all points with the same potential will form
a surface. In fact, there will exist an infinite number of surfaces because the 20V total potential difference
can be divided into an infinite number of steps. Each surface with the same value of potential (voltage) is
called an equipotential surface. In this laboratory we will determine the equipotentials associated with a
few often used electrode configurations.

In addition to equipotential surfaces in the region around charged electrodes there is also present
an electric field. By definition the electric field is a vector field that can be represented by lines drawn
from the positively charged electrode to the negatively charged electrode. The direction of the electric
field line at any point in space is the direction of the force that would be exerted on a positive test charge
placed at that point in space. To ensure that the test charge does not disturb the other charges, the test
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charge must be small. In fact, in the exact definition, the limit must be taken as the test charge approaches
zero. The magnitude of the electric field is the force per unit charge on the positive test charge as the
magnitude of the test charge approaches zero. The units of electric field are N/C. The number of field lines
per unit area at a given point is a measure of the magnitude of the electric field. Thus a region where there
are a large number of lines per unit area is a region of large electric field.

The geometrical relationship that electric field lines have with equipotential surfaces is that electric
field lines are everywhere perpendicular to the equipotential surfaces. Electrodes themselves are equi-
potential surfaces, so electric field lines must intersect electrodes perpendicularly. This is a helpful guide
to determine the shape of electric fields around an electrode arrangement.

For two points separated by a very small distance Dxwith potential difference DV between the points,
the electric field E is

E ¼ �DV
Dx

ðEq: 1Þ

Equation 1 shows that another proper unit for the electric field is V/m. Because the electrodes on the
carbon paper are limited to two dimensions, they represent a slice taken through a real three-dimensional
electrode configuration. Therefore, the equipotentials mapped in this laboratory will be lines rather than
surfaces. Any two-dimensional electrode arrangement can be produced by drawing the desired elec-
trode shape on the carbon paper with a conducting pen and then attaching a direct current power
supply between the electrodes. We will choose the electrode to which the negative terminal of the
power supply is attached to be the zero of potential, and will take all measurements relative to that
electrode. We will use a voltmeter to find the points on the paper in the region of the electrodes that are
at some given value of potential. When enough points are located to establish the shape of the equipo-
tential, the equipotential line can be constructed by joining the points with a smooth curve. The student
must decide the number of data points needed to establish the shape.

E X P E R I M E N T A L P R O C E D U R E
1. Use a conductive ink pen to draw the three electrode configurations shown in Figure 26-2. Note the

following cautions: (a) Place the conductive paper on a hard surface, not on the corkboard to draw
the electrodes. (b) Make sure that the ink flows smoothly and evenly when drawing electrodes, and
that a solid line is obtained.
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2. Draw the three electrode configurations pictured in Figure 26-2 and described below. For each
configuration use one clean sheet of carbon paper and arrange the electrodes as nearly centered on the
paper as possible to avoid edge effects. (a) Line of charge perpendicular to the paper and guard
cylinder of radius 9.0 cm—draw a small dot at the center of the paper and then draw a circle of radius
9.0 cm centered on the dot. Be sure the dot is centered on one of the grid markings. (b) Two lines of
opposite charge perpendicular to the paper—draw two small dots 9.0 cm apart symmetrically located
on the paper. (c) Parallel plate capacitor—draw two straight lines 16.0 cm long and 5.0 cm apart
symmetrically located on the paper.

3. For each electrode configuration in turn, place metal push pins in the electrodes and connect the
two leads from the power supply to the pins. For the parallel plate and two-line charge configuration
there is symmetry, and the assignment of which electrode is negative and which is positive is
arbitrary. For the line charge and guard ring, choose the dot as positive and the circle as negative.

4. In each case, set the potential difference between the electrodes to be 20.0V. Connect the voltmeter
between the electrodes with the negative voltmeter lead connected to the negative power supply
output, and the positive voltmeter lead connected to the positive power supply output. Once the
20.0V is set it should remain fixed.

5. For each electrode configuration, make sure that all connections are secure and that the push pins
are pressed firmly into the corkboard to ensure good contact with the electrodes. To check that the
electrodes themselves have the proper conductivity, connect one lead of the voltmeter to one of
the electrode push pins, and then using the other lead of the voltmeter as a probe, touch it to various
parts of the same electrode. For all properly conductive electrodes, the maximum voltage between any
two points on the same electrode should be less than 0.2V.

6. Determine the equipotentials by connecting the negative voltmeter lead to the electrode push pin that is
connected to the negative output of the power supply. As illustrated in Figure 26-3, the other voltmeter
lead then serves as a probe, and it is used tomeasure the potential at any point on the paper by touching
the probe to the paper at that point. Be sure that the probe used has a sharp point, and that the probe
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(a) (b) (c)

5 cm

9 cm 16 cm

Figure 26-2 Electrode configurations to be mapped.

Power SupplyVoltmeter
Probe

�

�

�

�

Figure 26-3 Power supply and voltmeter connections for mapping equipotentials.
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is held perpendicular to the paper so that only the point of the probe touches the paper. A given
equipotential line (for example, the 10.0V equipotential) ismapped bymoving the probe around to find
the points at which the voltmeter reading is 10.0V, and then connecting these points to produce a
smooth curve or line. For each equipotential, obtain enough points to clearly define the shape of that
equipotential line.

7. Use the procedure in Step 6 to map in pencil the following equipotential lines for each electrode
configuration:

(a) Line charge—15.0, 10.0, 6.50, 4.50, 3.50, 2.50, 1.50, and 0.75V.

(b) Two line charges—16.0, 13.0, 11.5, 10.0, 8.50, 7.00, and 4.00V.

(c) Parallel plates—4.00, 8.00, 12.0, and 16.0V.

8. Electric field lines were stated to be everywhere perpendicular to equipotential surfaces. Because
our electrodes are confined to the plane of the paper, the equipotentials are lines, but it is true that
the electric field lines are everywhere perpendicular to these equipotential lines. For each set of
electrodes, draw a set of lines that are perpendicular to the measured equipotential lines. These are
the electric field lines. Place arrows on them to indicate direction from positive to negative charge.
Distinguish them from the equipotential lines, either by dotting the lines or by drawing them in a
different color.

9. Make the following measurements for the electrode configuration of the line of charge. Measure the
change in potential at the distances r from the line of charge listed in the Data Table. Tape the two
voltmeter probes together with a small piece of insulating material holding the points of the probes
apart at a fixed distance, Dx, of about 0.0030m. Place the probes symmetrically about the grid
positions on the paper at the values listed in the Data Table so that the gap between the probes is
centered on each value of r in turn. It is critical that the gap be as precisely centered on each r as
possible. Record the values of DV and the value of Dx in the Data Table.

C A L C U L A T I O N S
1. For the measurements made in Step 9 above, calculate the approximate value of E at each point as

DV/Dx. Record these values of E in the Calculations Table.

2. Perform a linear least squares fit to this data with E as the vertical axis and 1/r as the horizontal axis.
Record the slope, intercept, and correlation coefficient r in the Calculations Table.

G R A P H S
1. Construct accurate drawings on 1 cm by 1 cm graph paper showing the electrodes and your measured

equipotentials and electric field lines for each electrode configuration.

2. Make a graph of the data for E versus 1/r for the line charge data. Also show on the graph the straight
line obtained in the least squares fit.
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26 L A B O R A T O R Y 2 6 Equipotentials and Electric Fields

P R E - L A B O R A T O R Y A S S I G N M E N T
1. Electric field lines are drawn (a) from positive charges to negative charges (b) from negative charges to

positive charges (c) from the largest charge to the smallest charge (d) from the smallest charge to the
largest charge.

2. The points where the potential is the same (in three-dimensional space) have the same voltage.
(a) True (b) False

3. The points where the potential is the same (in three-dimensional space) lie on a surface. (a) True
(b) False

4. The relationship between the direction of the electric field lines and the equipotential surfaces is
(a) field lines are everywhere parallel to surfaces (b) field lines always intersect each other (c) field
lines are everywhere perpendicular to surfaces (d) field lines always make angles between 08 and 908
with surfaces.

5. Why are the measured equipotentials lines instead of surfaces for this laboratory?

6. If two electrodes have a source of potential difference of 100V connected to them, how many
equipotential surfaces exist in the space between them?

7. Why is it important to center the electrodes on the resistance paper for this laboratory?
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8. In the performance of this laboratory, what is the recommended maximum allowed potential
difference from one end of an electrode to the other end?

9. On what basis are you to decide how many points to measure for each equipotential for a given
electrode configuration?
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26 L A B O R A T O R Y 2 6 Equipotentials and Electric Fields

L A B O R A T O R Y R E P O R T

S A M P L E C A L C U L A T I O N S
1. E¼DV/Dx¼
2. 1/r¼
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Data Table

r (m) DV (V)

0.0150

0.0200

0.0300

0.0400

0.0500

0.0600

0.0700

0.0800

Dx¼ m

Calculations Table

E ¼ �DV
Dx

ðV=mÞ 1/r (m�1)

Slope¼ Intercept¼ r¼
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Q U E S T I O N S
1. Although the magnitudes of the equipotentials and electric fields for electrode configurations (a) and

(b) are consistent with interpretation of those arrangements as line charges, the shapes of the
equipotentials and electric field lines are the same as those for a point charge and a dipole charge.
Compare your graphs with those in your textbook for a point charge and a dipole. Comment on their
similarities and differences, if any.

2. According to theory, the electric field E for a line of charge should be proportional to 1/r where r is
the distance from the line of charge. Considering the graph of the data and the value of the correlation
coefficient, comment on whether or not your data for the line of charge confirms this dependence.

3. Examine your data for the dipole. Point A in Figure 26-4 is halfway between the positive electrode
and the 16.00V equipotential, point C is halfway between the negative electrode and 4.00V, and B
is halfway between the 8.50V and 11.50V equipotentials. Measure the values of Dx indicated below
and calculate the E¼DV/Dx at A, B, and C.

A DV¼ 4.00 Dx¼distance from center of þ to 16.0V¼ __________ EA¼ __________

B DV¼ 3.00 Dx¼distance from 8.50 to 11.50 equipotentials¼ __________ EB¼ __________

C DV¼ 4.00 Dx¼distance center of negative to 4.00V¼ __________ EC¼ __________

4. Are the results for the E field at these points A, B, and C in the preceding question consistent with
what you would expect for the relative values at these points? State your reasoning.

A B C� �

Figure 26-4 Point A near positive electrode, C near negative electrode, and B at center.
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5. According to theory, the E field in the region between the parallel plates should be constant. Calculate
the E field from Equation 1 at points A, B, and C defined by Figure 26-5 below using the same process
as in Question 3.

EA ¼ V=m EB ¼ V=m EC ¼ V=m

Are the values for the E field at points A, B, and C consistent with the theory within the experimental
uncertainty? State your reasoning.
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Positive

Negative

C

Figure 26-5 Point A near negative electrode displaced from the center, C near the positive electrode displaced
in the other direction, and B at center in the middle.
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Capacitance Measurement
with a Ballistic
Galvanometer

O B J E C T I V E S
o Determine the deflection of a ballistic galvanometer for several capacitors of known capacitance

charged to a known voltage.

o Demonstrate that for a fixed voltage the galvanometer deflection is proportional to the capaci-
tance of each capacitor.

o Determine the capacitance of unknown capacitors from galvanometer deflection.

o Experimentally determine the capacitance of series and parallel combinations of capacitors and
compare the results with theoretical predictions.

E Q U I P M E N T L I S T
. Ballistic galvanometer, support stand, telescope, and scale

. Direct current power supply (0–20 V), direct current voltmeter (0–20 V)

. Five or six known capacitors in range 0.5–3.0 mF (can be in form of decade box)

. Three capacitors to serve as unknowns (1–2 mF), switch (single pole, double throw)

T H E O R Y
Figure 27-1 shows a capacitor of capacitance Cwith a voltageV across the plates. The figure illustrates the
fact that a capacitor, with a charge of Q, has a charge of þQ on one plate and –Q on the other plate.
Therefore, the net charge on a capacitor is always zero. The relationship between capacitance C, voltageV,
and charge Q is

C ¼ Q

V
ðEq: 1Þ

The units of capacitance (Coulomb/Volt) have been given the name farad with symbol F.
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In Figure 27-2 three capacitors C1, C2, and C3 are shown connected in parallel to a battery of voltage V.
Let Q1, Q2, and Q3 stand for the charges on the capacitors, and let V1, V2, and V3 stand for the voltage
across the capacitors. There exists an equivalent capacitance Ce with voltage Ve and charge Qe that would
have the same effect in a circuit as the three parallel capacitors. For parallel combination of C1, C2, and C3

we can demonstrate that the following relationships hold.

V ¼ Ve ¼ V1 ¼ V2 ¼ V3 ðEq: 2Þ

Qe ¼ Q1 þQ2 þQ3 ðEq: 3Þ

Ce ¼ C1 þ C2 þ C3 ðEq: 4Þ

Equation 4 states that for capacitors in parallel the equivalent capacitance is simply the sum of the
individual capacitances. The extension of Equation 4 to the case of any number of capacitors in parallel
should be clear.

Three capacitors C1, C2, and C3 are shown connected in series in Figure 27-3. Again let Q1, Q2, and Q3

stand for the charges on the three capacitors, and let V1, V2, and V3 stand for the voltage across the three
capacitors. For the case of series connection if Ce is the equivalent capacitance,Qe is its charge, and Ve is its
voltage, the following relationships hold.

Qe ¼ Q1 ¼ Q2 ¼ Q3 ðEq: 5Þ

V ¼ Ve ¼ V1 þ V2 þ V3 ðEq: 6Þ
1

Ce
¼ 1

C1
þ 1

C2
þ 1

C3
ðEq: 7Þ

The extension of Equation 7 to the case of any number of capacitors in series should be clear.
A current is a flow of charge Q in some time interval Dt. A galvanometer is a device for detecting a

current. In most cases galvanometers are designed to respond to the current itself Q/Dt. A ballistic
galvanometer is designed to detect the total charge Q that flows through the galvanometer during some
very short time interval Dt. A galvanometer acts as a ballistic galvanometer when the time constant of its
motion is large compared to the time Dt during which the charge Q flows.

We will performmeasurements with a ballistic galvanometer with a total deflection, when a chargeQ
is passed through the galvanometer, that is proportional to themagnitude of the chargeQ. In this laboratory,

�Q1
C1

�Q1

�Q2 �Q2

�Q3�Q3

V

C2

C3

�Qe �Qe

Ce

V

Equivalent to

Figure 27-2 Circuit diagram for three capacitors in parallel.

�Q �Q

Figure 27-1 Capacitor with charge Q has þQ on one plate and �Q on the other.
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several capacitors of known capacitance will be charged to the same voltage. When they are discharged
through the ballistic galvanometer, the deflection produced provides a calibration of the galvanometer
deflection in terms of the capacitance.

A sketch of the experimental arrangement for a ballistic pendulum is shown in Figure 27-4. The deflec-
tion of the coil in the galvanometer is read on a scale in front of the device by a telescope as reflected from a
plane mirror on the coil.

E X P E R I M E N T A L P R O C E D U R E
Calibration

1. Do not touch the galvanometer until given explicit instructions to do so by the instructor. The gold
suspensions in the galvanometers are delicate and expensive. The galvanometer may have already
been set up and adjusted by the instructor. When given permission, proceed to the next step.

2. Construct the circuit shown in Figure 27-5 using the known capacitor with the largest value. Adjust
the telescope to focus on the scale. You can adjust the angle of the telescope to align with the scale.
Note that the scale is labeled red on one side of zero and black on the other side.
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�Q3

C3

�Q3�Q2

C2

�Q2�Q1

C1

�Q1

V

�Qe �Qe

Ce

V

Equivalent to

Figure 27-3 Circuit diagram for three capacitors in series.

Telescope
Scale

Coil N

S

Magnet

Figure 27-4 Experimental arrangement for the ballistic galvanometer.

VoltmeterPower Supply

Gal C

S

AB

�

�

�

�

Figure 27-5 Circuit diagram to charge C and then discharge it through galvanometer.
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3. Using the largest known capacitor, charge the capacitor to some known voltage by throwing switch S
to position A. Discharge the capacitor through the galvanometer by throwing the switch to position B.
Adjust the voltage applied to the capacitor until it produces approximately 90% deflection for this
capacitor. Record that value of voltage as V in Data and Calculations Tables 1 and 2. Make all mea-
surements with this voltage.

4. Measure the deflection for each of the known capacitors when they have been charged with voltage V
and then discharged through the galvanometer. Perform three trials for each capacitor. Record the
values of the deflection D and the known value of each capacitor in Data and Calculations Table 1.

Unknown Capacitance

1. Label the three unknown capacitors C1, C2, and C3. For each of the unknown capacitors, determine the
deflectionof thegalvanometerwhen theyhavebeen charged tovoltageVand thendischarged through the
galvanometer. Perform three trials for each capacitor. Record the value of the deflection D for each trial.

2. Connect capacitorsC1 andC2 in parallel and place them in the circuit in the position ofC in Figure 27-5.
Determine the deflectionwhen the combination is chargedwith voltageV and then discharged through
the galvanometer. Record the deflections in Data and Calculations Table 2. Repeat with capacitors
C2 and C3 in parallel.

3. Connect capacitors C1 and C2 in series and place them in the circuit in the position of capacitor C
in Figure 27-5. Determine the deflection when the combination is charged with voltage V and then
discharged through the galvanometer. Record the deflections in Data and Calculations Table 2. Repeat
with capacitors C2 and C3 in series.

C A L C U L A T I O N S
Calibration

1. Calculate the mean D and standard error aD for the three trials for each capacitor and record them in
Data and Calculations Table 1.

2. Perform a linear least squares fit to the data with the C as the vertical axis andD as the horizontal axis.
Record the slope K, the intercept I, and the correlation coefficient r in Data and Calculations Table 1.

Unknown Capacitance

1. Calculate the mean D and standard error aD for each of the three trials. Record them in Data and
Calculations Table 2.

2. For the individual capacitors, the series combinations, and the parallel combinations, calculate the
experimental values for the capacitance from Cexp ¼ KDþ I where K is the slope and I is the intercept
of the least squares fit. The slope K has units of mF/deflection, and the intercept has units of mF. Record
these values of the experimental capacitance in Data and Calculations Table 2.

3. Calculate a theoretical value for the series and parallel combinations of the capacitors using
Equations 4 and 7. In the calculations, use the measured values for the individual capacitors. Record
these theoretical values for the series and parallel combinations in Data and Calculations Table 2 in the
appropriate places.

4. Calculate the percentage difference between the experimental and theoretical values for the series and
parallel combinations and record them in Data and Calculations Table 2.

G R A P H S
1. Make a graph with the capacitance C as the vertical axis and the deflection D as the horizontal axis.

Also show on the graph the straight line obtained by the linear least squares fit to the data.
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27 L A B O R A T O R Y 2 7 Capacitance Measurement with a Ballistic
Galvanometer

P R E - L A B O R A T O R Y A S S I G N M E N T
1. What is the definition of capacitance?

2. What are the units of capacitance?

3. A capacitor is said to have a charge of 10 mC.What is the charge on the positively charged plate? What
is the charge on the negatively charged plate?

4. A 1.50 mF capacitor has a voltage across the plates of 6.00 V. What is the charge on the capacitor? Show
your work.
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5. Which of the following are true for three capacitors C1, C2, and C3 in parallel with a battery of voltage
V? More than one answer may be true.

(a) V¼V1¼V2¼V3 (b) Qe¼Q1¼Q2¼Q3 (c) Qe¼Q1 þ Q2 þ Q3 (d) V¼V1 þ V2 þ V3

6. Which of the following are true for three capacitors C1, C2, and C3 in series with a battery of voltage V?
More than one answer may be true.

(a) V¼V1¼V2¼V3 (b) Qe¼Q1¼Q2¼Q3 (c) Qe¼Q1 þ Q2 þ Q3 (d) V¼V1 þ V2 þ V3

7. Three capacitors of capacitance 5.00 mF, 8.00 mF, and 11.00 mF are connected in parallel. What is the
equivalent capacitance of the combination? Show your work.

8. Three capacitors of capacitance 5.00 mF, 8.00 mF, and 11.00 mF are connected in series. What is the
equivalent capacitance of the combination? Show your work.
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27 L A B O R A T O R Y 2 7 Capacitance Measurement with a Ballistic
Galvanometer

L A B O R A T O R Y R E P O R T

Data and Calculations Table 1

C (mF) D1 D2 D3 D aD

V¼ volts K¼ mF/defl I¼ mF r¼

Data and Calculations Table 2

Capacitor D1 D2 D3 D aD Cexp Ctheo % Diff

C1

C2

C3

C1 & C2 Parallel

C2 & C3 Parallel

C1 & C2 Series

C2 & C3 Series

V¼ volts
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S A M P L E C A L C U L A T I O N S
1. Cexp ¼ KDþ I ¼
2. (Parallel) Ctheo¼C1þC2¼
3. (Series) (1/Ctheo)¼ (1/C1)þ (1/C2)¼
4. % Diff¼
5. % Error (if actual values for unknown are given)¼

Q U E S T I O N S
1. What is the precision of your measurements of the unknown capacitors? State clearly the basis for

your answer.

2. If possible, obtain values for the unknown capacitors. Determine the accuracy of your measurements
of the capacitance if these values are available.

3. Based on the precision and accuracy of your results, is there any evidence for a systematic error in the
measurements? State clearly the basis for your answer.

4. How well do your data confirm the theoretical equations for the parallel combination of capacitors?
Answer the question as quantitatively as possible.
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5. How well do your data confirm the theoretical equation for the series combination of capacitors?
Answer the question as quantitatively as possible.

6. Suppose that you were given an unknown capacitor with a value of about twice as large as the largest
known capacitor that you measured. What simple change in the procedure would allow you to
determine an approximate value for its capacitance using the value for K that you have already
determined?
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Measurement of Electrical
Resistance and Ohm’s Law

O B J E C T I V E S
o Define the concept of electrical resistance using measurements of the voltage across and current

in a wire coil.

o Investigate the dependence of the resistance on the length, cross-sectional area, and resistivity of
the wire.

o Investigate the equivalent resistance of series and parallel resistors.

E Q U I P M E N T L I S T
. Resistance coils (standard set available from Sargent-Welch or Central Scientific consisting of 10m and
20m length of copper and German silver wire)

. Direct current ammeter (0–2A), direct current voltmeter (0–30V, preferably digital readout)

. Direct current power supply (0–20V at 1A)

T H E O R Y
If a voltageV is applied across an element in an electrical circuit, the current I in the element is determined
by a quantity known as the resistance R. The relationship between these three quantities serves as a
definition of resistance.

R ¼ V

I
ðEq: 1Þ

The units of resistance are volt/ampere, which are given the name ohm. The symbol for ohm is O. Some
circuit elements obey a relationship known asOhm’s Law. For these elements the quantity R is a constant
for different values of V. If a circuit element obeys Ohm’s Law, when the voltage V is varied the current I
will also vary, but the ratio V/I should remain constant. In this laboratory we will perform measurements
on five coils ofwire to investigate if they obeyOhm’s Law.We alsowill determine the resistance of the coils.

The resistance of any object to electrical current is a function of the material from which it is con-
structed, the length, the cross-sectional area, and the temperature of the object. At constant temperature
the resistance R is given by
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R ¼ r
L

A
ðEq: 2Þ

where R is the resistance (O), L is the length (m), A is the cross-sectional area (m2), and r is a constant
dependent upon the material called the resistivity (O�m). Actually r is a function of temperature, and if
the temperature of the coils of wire rises as a result of the current in them, this may be a source of error.

Circuit elements in an electrical circuit can be connected in series or parallel. Three resistors (R1, R2,
and R3) are connected in series as shown in Figure 28-1. For resistors in series the current is the same for all
the resistors, but the voltage drop across each resistor is different. For resistors in series the equivalent
resistance Re of the three resistors is given by

Re ¼ R1 þ R2 þ R3 ðEq: 3Þ

The same three resistors are shown connected in parallel in Figure 28-2. For resistors in parallel
the current is different in each resistor, but the voltage across each resistor is the same. In this case the
equivalent resistance Re of the three resistors in terms of the individual resistors is given by

1

Re
¼ 1

R1
þ 1

R2
þ 1

R3
ðEq: 4Þ

One of the objectives of this laboratory will be to observe the behavior of resistors in series and parallel.

E X P E R I M E N T A L P R O C E D U R E
1. Connect the ammeter A, the voltmeterV, and the power supply PS to the first resistor as shown

in Figure 28-3. The basic circuit is the power supply in series with a resistor. To measure the current in
the resistor, the ammeter is placed in series. To measure the voltage across the resistor, the voltmeter
is placed in parallel.

2. Vary the current through resistor R1 in steps of 0.250A up to 1.000A. For each specified value of the
current, measure the voltage across the resistor and record the values in Data Table 1. The resistors
will heat up andmay be damaged by allowing current in them for long periods of time.Measurements
should be made quickly at each value of the current. APPLY VOLTAGE ONLY WHEN DATA ARE
BEING TAKEN.

3. Repeat Step 2 for each of the five resistors. For each resistor the ammeter must be in series with that
resistor and the power supply, and the voltmeter must be in parallel with the resistor. Record all
values in Data Table 1.

4. Connect the first four resistors in series to measure the equivalent resistance of the combination. Use
two values of current, 0.500A and 1.000A, and measure the value of the voltage for each of these
values of current. Record the voltage in Data Table 2.

R1 R2 R3

Figure 28-1 Resistors in series.

R1 R2 R3

Figure 28-2 Resistors in parallel.
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5. Measure the voltage across the combination of R2, R3, and R4 in series for currents of 0.500A and
1.000A and record the values in Data Table 2.

6. Connect R1 and R2 in parallel as shown in Figure 28-4 andmeasure the voltage across the combination
for current values of 0.500 A and 1.000 A and record in Data Table 2.

7. Connect R1 and R3 in parallel as shown in Figure 28-5 and measure the voltage for current values of
0.500 A and 1.000 A and record in Data Table 2.

8. Connect R2 and R3 in parallel and perform the same measurements as described in Steps 6 and 7.
Record the results in Data Table 2.
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R3R2

Power Supply

Ammeter
R1 R4 R5

� �

� �

�
�

Figure 28-3 Measurement of current and voltage for resistor R1.

R2R1 Power
Supply

Ammeter

� �

� �

� �

Figure 28-4 Resistors R1 and R2 in parallel.

� �

� �

R3R2R1 Power
Supply

Ammeter

� �

Figure 28-5 Resistors R1 and R3 in parallel.
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C A L C U L A T I O N S
1. The first four coils are made of copper with resistivity of r¼ 1.72� 10�8 O–m. The fifth coil is made of

an alloy called German silver with resistivity of r¼ 28.0� 10�8 O–m. The first, second, and fifth coils
are 10.0m long, and the third and fourth coils are 20.0m long. The diameters of the first, third, and
fifth coils are 0.0006439m, and the diameters of the second and fourth coils are 0.0003211m. Use these
values in Equation 2 to calculate the value of the resistance for each of the five coils and record the
results in Calculations Table 1 as the theoretical values for the resistance Rtheo.

2. If Equation 1 is solved for V, the result is V¼ IR. There is a linear relationship between the voltage and
the current, and the slope of V versus I will be the resistance R. Perform a linear least squares fit to
the data in Data Table 1 with V as the vertical axis and I as the horizontal axis. Record in Calculations
Table 1 the slope of the fit for each resistor as the experimental value for the resistance Rexp. Also
record the value of the correlation coefficient r for each of the fits.

3. Calculate the percentage error in the values of Rexp compared to the values ofRtheo for the five resistors
and record the results in Calculations Table 1.

4. For the data of Data Table 2 calculate the values of the equivalent resistance for the various series and
parallel combinations listed in the table as the value of the measured voltage divided by the
appropriate current. Calculate and record the mean of the two trials as ðReÞexp in Calculations Table 2.

5. Equations 3 and 4 give the theoretical expressions for equivalent resistance for series and parallel
combinations of resistance. Calculate a theoretical value for the equivalent resistance for each series
and parallel combination measured in Data Table 2. For the values of the individual resistances
R1, R2, and R3 in Equation 3 and 4, use the experimental values determined from the fit to the data on
the individual resistors. Record this theoretical value for the equivalent resistance in each case as
(Re)theo in Calculations Table 2.

6. Calculate the percentage difference between the values of ðReÞexp and (Re)theo for each of the series and
parallel combinations measured and record the results in Calculations Table 2.

G R A P H S
1. Construct graphs of the data in Data Table 1 with V as the vertical axis and I as the horizontal axis.

Use only one piece of graph paper for all five resistors, making five small graphs on that one sheet.
Choose different scales for each graph if needed, but make the five graphs as large as possible while
still fitting on one page. Also show on each small graph the straight line for the linear least squares fit.
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P R E - L A B O R A T O R Y A S S I G N M E N T
1. Three resistors R1, R2, and R3 are connected in series with R1 <R2 <R3. Choose all correct answers

below. The total resistance of the combination is (a) less than R1, (b) less than R3, (c) greater than R3,
(d) greater than 3 R3, (e) equal to R1þR2þR3.

2. Two resistors R1 and R2 are connected in parallel with R1 <R2. Choose all correct answers below. The
total resistance of the combination is (a) less than R1, (b) less than R2, (c) greater than R2, (d) greater
than 2 R2, (e) equal to (R1R2)/(R1þR2).

3. A wire of length L1 and diameter d1 has resistance R1. A second wire of the same material has length
L2¼ 2 L1 and diameter d2¼ 2 d1. The resistance of wire two is R2. Choose the correct value for R2.
(a) R2¼R1, (b) R2¼ 2R1, (c) R2¼½R1, (d) R2¼ 4R1.

4. If a circuit element carries a current of 3.71 A, and the voltage drop across the element is 8.69V, what is
the resistance of the circuit element? Show your work.

R¼ ____________________ O

5. A resistor is known to obey Ohm’s Law. When there is a current of 1.72 A in the resistor, it has
a voltage drop across its terminals of 7.35V. If a voltage of 12.0V is applied across the resistor, what
is the current in the resistor? Show your work.

I¼ ____________________ A
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6. The resistivity of copper is 1.72� 10�8 O–m. A copper wire is 15.0m long, and the wire diameter is
0.0500 cm. What is the resistance of the wire? Show your work.

R¼ ____________________ O

7. Awire of cross-sectional area 5.00� 10�6 m2 has a resistance of 1.75 O. What is the resistance of a wire
of the same material and length as the first wire, but with a cross-sectional area of 8.75� 10�6 m2?
Show your work.

R¼ ____________________ O

8. Three resistors of resistance 20.0O, 30.0O, and 40.0O are connected in series. What is their equivalent
resistance? Show your work.

R¼ ____________________ O

9. Three resistors of resistance 15.0O, 25.0O, and 35.0O are connected in parallel. What is their
equivalent resistance? Show your work.

R¼ ____________________ O
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L A B O R A T O R Y R E P O R T
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Data Table 1

I (A) VR1 (V) VR2 (V) VR3 (V) VR4 (V) VR5 (V)

0.250

0.500

0.750

1.000

Calculations Table 1

R1 R2 R3 R4 R5

Rtheo

Rexp

r

% Error Rexp
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S A M P L E C A L C U L A T I O N S
1. Rtheo¼rL/A¼
2. (Re)exp¼V/I¼
3. % Error¼
4. (Series) (Re)theo¼R1þR2þR3þR4¼
5. (Parallel) (Re)theo¼ (1)/(1/R1þ 1/R2)¼
6. % Difference¼

Calculations Table 2

Combination (Re)exp
1 (O) (Re)exp

2 (O) ðReÞexp (O) (Re)theo (O) % Diff

R1 R2 R3 R4 Series

R2 R3 R4 Series

R1 R2 Parallel

R1 R3 Parallel

R2 R3 Parallel

Data Table 2

Combination I (A) V (V) I (A) V (V)

R1 R2 R3 R4 Series 0.500 1.000

R2 R3 R4 Series 0.500 1.000

R1 R2 Parallel 0.500 1.000

R1 R3 Parallel 0.500 1.000

R2 R3 Parallel 0.500 1.000
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Q U E S T I O N S
1. Do the individual resistors you havemeasured obey Ohm’s Law? In answering this question, consider

the least squares fits and the graphs you have made for each resistor. Remember that linear behavior
of V versus I is the proof of ohmic behavior.

2. Evaluate the agreement between the theoretical values for the individual resistances and the expe-
rimental values.

3. Does your agreement between the experimental and theoretical values of the series combinations of
resistors support Equation 3 as the model for series combination of resistors? The agreement is not
expected to be perfect, but you are to determine if the agreement is reasonable within the expected
experimental uncertainty.

4. Evaluate the agreement between the experimental and theoretical values of the parallel combinations
of resistors. Do the results support Equation 4 as the model for the parallel combination of resistors
within the expected experimental uncertainty?

5. The first and second coils have the same length, and the third and fourth coils have the same length.
They differ only in the cross-sectional area. According to theory, what should be the ratio of the
resistance of the second coil to the first and the fourth coil to the third? Calculate these ratios for your
experimental results and compare the agreement with the expected ratio.
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6. The first and third coils have the same cross-sectional area, and the second and fourth coils have the
same cross-sectional area. They differ only in length. According to theory, what should be the ratio of
the resistance of the third coil to the first and the fourth coil to the second? Calculate these ratios for
your experimental results and compare the agreement with the expected ratio.
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Wheatstone Bridge

O B J E C T I V E S
o Investigate the principles of operation of a slide-wire formWheatstone bridge and determine the

resistance of several unknown resistors.

o Demonstrate the standard color code used to specify the value of commercially available
resistors.

E Q U I P M E N T L I S T
. Slide-wire Wheatstone bridge, decade resistance box (1000O), galvanometer

. Switch with 10 kO resistor in parallel, direct current power supply

. Five color-coded resistors (in range 100 to 1000O) to serve as unknowns

. Assortment of circuit wires, multimeter with resistance scale

T H E O R Y
Consider a circuit that contains three resistors with values that are both known and adjustable, an
unknown resistance, a power supply, and a galvanometer connected as shown in Figure 29-1. Current I
from the power supply divides at junction J. The current in R1 is I1, and the current in R3 is I2, where
I¼ I1þ I2. By experimentally varying the values of the resistances, a condition (known as the balance
condition) can be achieved where there is no current in the galvanometer G. This circuit is known as a
Wheatstone bridge.

When there is no current in the galvanometer, the current in R1 must go through R2, and both resistors
have current of I1. Similarly, when the balance condition holds, the current through R4 must be the same
as the current through R3, and thus it is equal to I2.

When there is no current in the galvanometer, there is no potential difference between points A and B,
so these points are at the same potential. The change in potential from point J to point B (VJB) is equal to
the potential change from point J to point A (VJA), and

VJA ¼ I1R1 ¼ VJB ¼ I2R3 and thus I1R1 ¼ I2R3 ðEq: 1Þ

Similarly, the potential change across R2 (VAK) is the same as the potential change across R4 (VBK) so that

VAK ¼ I1R2 ¼ VBK ¼ I2R4 and thus I1R2 ¼ I2R4 ðEq: 2Þ
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If Equation 1 is divided by Equation 2, the currents cancel, and it follows that

R1

R2
¼ R3

R4
ðEq: 3Þ

When a balance condition has been experimentally achieved, Equation 3 determines the value of an
unknown resistance if three of the four values of resistance are known.

In this laboratory we will use a slide-wire form of theWheatstone bridge shown in Figure 29-2. In that
bridge, resistances R3 and R4 are replaced by a uniform wire between the points J and K, which has a
sliding contact key at point B. Because the wire is of uniform cross-section, the resistance of the two
portions of wire JB and BK are proportional to their lengths. The ratio of their lengths, JB/BK, is equal to the
ratio of their resistances R3/R4. If R1 is an unknown resistance RU, and R2 is a known variable resistor RK,
Equation 3 becomes

RU

RK
¼ JB

BK
or solving for RU; RU ¼ RK

JB

BK
ðEq: 4Þ

The 10 kO resistor and switch S in series with the galvanometer are designed to protect the galvanometer.
Be sure that you are aware of their proper function as described in the procedure before completing the
connection of the power supply to the circuit.

I2 I2

R2R1

G
I IJ K

A

B

Power Supply

R3 R4

I1I1

Figure 29-1 Wheatstone bridge circuit.

RU RKG

J

0 cm 100 cm

B K

10k�S

Power Supply

Figure 29-2 Slide-wire form of the Wheatstone bridge.
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For resistors routinely used in electronic instrumentation, resistance is coded by a series of colored
bands on the resistor. The key to the resistor color coding system is given in Table 29-1 above. The four
bands are placed with three equally spaced bands close to one end of the resistor followed by a space,
and then a fourth band. The first two bands are the first two digits in the value of the resistor, and the
third band gives the exponent of the power of 10 to be multiplied by the first two digits. Thus a resistor
with its first three bands labeled Yellow-Violet-Red has a value of 47� 102O, or 4700O.

E X P E R I M E N T A L P R O C E D U R E
1. Use the resistor code table to read the nominal values of the five unknown resistors and record them

in Data Table 1. Record the smallest value as Unknown #1, and then the remaining ones in increasing
order.

2. Adjust the power supply voltage to 1.50V. Leave the power supply fixed at this value for all the
measurements. All measurements should be made with this same voltage, which has been chosen so
that the currents in all resistors of the circuit will be small. This ensures that there is no heating of the
resistors. Any significant heating of the resistors could cause differential increases in resistance and
would lead to errors.

3. Place the first unknown resistor in the Wheatstone bridge circuit in the position of RU in the circuit of
Figure 29-2. Place the resistance box in the position of RK in Figure 29-2 and choose a value for RK

approximately equal to the nominal value that you read from the resistor code for this unknown
resistor. Record the value of RK in Data Table 1. (The value of RK should be given to one place beyond
the last digit of the resistance box because the uncertainty is not in the last digit set on the box, but
in the digit beyond that. For example, if a resistance is set on the resistance box as 153O, it should
be recorded as 153.0O because there is clearly not one unit of uncertainty in the 3.)
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Table 29-1 Resistor Color Code.

First Two Bands Third Band Fourth Band

Color Digits Color Exponent Color Precision

Black 0 Black 0 Colorless 20%
Brown 1 Brown 1 Silver 10%
Red 2 Red 2 Gold 5%
Orange 3 Orange 3
Yellow 4 Yellow 4
Green 5 Green 5
Blue 6 Blue 6
Violet 7 Violet 7
Gray 8 Silver �2
White 9 Gold �1

Precision
Exponent

First Digit
Second Digit
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4. The 10 kO resistor and switch S in series with the galvanometer are designed to protect the
galvanometer from excessive current. Be sure that each attempt to find a balance condition starts with
switch S open. This places the resistor in series with the galvanometer and limits the current.

5. With switch S open, move the sliding contact at B until a balance is achieved—i.e., zero current in the
galvanometer. This is a rough balance.

6. With the system at rough balance, close switch S to achieve maximum sensitivity at the final balance
condition. Balance is the point where there is no deflection of the meter, which may not be at zero of
the meter if the galvanometer has a zero offset. Record in Data Table 1 the values of JB and BK, the
length of the two sections of wire at balance. The Wheatstone bridge has 1mm as the smallest marked
division. Therefore, measurements of JB and BK should be made to the nearest 0.1mm.

7. Using the same unknown resistor, repeat Steps 3 through 6 above with two other values of RK, one
value approximately 10% greater than the original RK, and one value approximately 10% less than the
original RK.

8. Repeat Steps 3 through 7 for each of the other four unknown resistors.

9. Use the resistance scale on a multimeter to measure the value of each of the five unknown resistors
and record those values in Data Table 2.

C A L C U L A T I O N S
1. Calculate and record the three measured values for each of the five unknown resistors in the

Calculations Table.

2. Calculate and record the mean and standard error for the three measurements of each of the five
resistors.
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29 L A B O R A T O R Y 2 9 Wheatstone Bridge

P R E - L A B O R A T O R Y A S S I G N M E N T
1. When the Wheatstone bridge in Figure 29-1 is balanced, which of the following statements are true?

(More than one may be true.) (a) There is no current in the unknown resistor. (b) There is no current in
the galvanometer. (c) There is no voltage drop across the galvanometer. (d) The currents in R1 and R3

are the same. (e) The currents in R1 and R2 are the same. (f) The voltage across R1 and R3 is the same.
(g) The voltage across R1 and R2 is the same.

2. The slide-wire form of the Wheatstone bridge makes use of the fact that (a) the resistance of a wire is
equal to its length (b) the resistance of a wire is proportional to its cross-sectional area (c) the resistance
of a wire is proportional to its length (d) the resistance of a wire is inversely proportional to its length.

3. A slide-wire Wheatstone bridge is used in the configuration shown in Figure 29-2 with the known
resistor positioned as shown and equal to 10.00O. The balance point is found to be at the position
of 35.7 cm for the scale as shown in the figure. What is the value of the unknown resistance RU?
Show your work.

RU ¼ �

4. Does the measurement of resistance using the Wheatstone bridge depend upon the value of the
power supply voltage used? If it does, explain why, and if it does not, then explain why not.

5. What is the purpose of the 10 kO resistor in parallel with the switch that is in series with the
galvanometer in Figure 29-2?
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6. A resistor is coded as shown below. What is the nominal value of the resistor, and what is the
precision of this value?

Green

Blue

Orange

Silver
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L A B O R A T O R Y R E P O R T
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Data Table 1

RK (O) JB (cm) BK (cm)

Unknown #1

Coded Value

( O)

Unknown #2

Coded Value

( O)

Unknown #3

Coded Value

( O)

Unknown #4

Coded Value

( O)

Unknown #5

Coded Value

( O)

Calculations Table 1

RU (O) RU (O) aRU (O)
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S A M P L E C A L C U L A T I O N S
1. BK ¼ 100:00� JB ¼

2. RU ¼ RK
JB

BK
¼

Q U E S T I O N S
1. Assume there is an uncertainty of� 0.03 cm in locating the position B of the contact on the slide wire.

What percentage error does this introduce in the determination of JB/BK and thus the measured
value of resistance when B is at 50 cm? What percentage error results when B is at 10 cm?

2. Keeping in mind your answers to Question 1, why were the values of the known resistor chosen to
be about equal to and�10% on either side of the coded value for the unknown?

3. Compare each of yourWheatstone bridge values of the five unknown resistors with its coded value by
calculating the percentage error assuming the coded values as correct. State the precision of the
resistors based on the resistor color coding.

#1—Error¼ ____________% #2—Error¼ ____________% #3—Error¼ ____________%

#4—Error¼ ____________% #5—Error¼ ____________% Precision¼ ____________%

Are the percentage errors of the measurements within the precision of the resistors?

Data Table 2

Unknown # 1 2 3 4 5

Resistance
(O)
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4. Compare yourWheatstone bridge values of the five unknown resistors with the values in Data Table 2
determined by using the resistance meter. Calculate the percentage errors for each resistor assuming
Data Table 2 as correct. For each resistor, is the agreement better or worse than the agreement with the
coded values?

#1—Error¼ ____________% #2—Error¼ ____________% #3—Error¼ ____________%

#4—Error¼ ____________% #5—Error¼ ____________%

5. Express the values of the standard error for each of the five unknown resistors as a percentage of the
mean value.

#1 % std err¼ ____________% #2 % std err¼ ____________% #3 % std err¼ ____________%

#4 % std err¼ ____________% #5 % std err¼ ____________%

6. Considering the stated precision of the coded values and the various comparisons that have been
done above, state whether or not your Wheatstone bridge measurements of these resistors represent
more reliable values for the actual values of these resistors than the coded values. Be very specific
about the facts upon which your opinion is based.
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Bridge Measurement
of Capacitance

O B J E C T I V E S
o Determine the capacitance of several unknown capacitors by establishing balance in a bridge

circuit.

o Experimentally determine the capacitance of series and parallel combinations of capacitors and
compare the results with theoretical predictions.

E Q U I P M E N T L I S T
. Capacitor of accurately known value (in the range 0.5–1mF)
. Three capacitors of unknown value (in the range 0.2–3mF)
. Two decade resistance boxes (1000O and 10,000O)
. Sine wave generator (variable frequency, 5V peak to peak amplitude)

. Alternating current voltmeter (digital readout, capable of measuring high frequency)

T H E O R Y
A capacitor is a circuit element that consists of two conducting surfaces separated by an insulating
material called a dielectric. When an alternating current of frequency f exists in a capacitor, the measure of
opposition to that current is a quantity called the capacitive reactance XC. The potential difference across
the capacitor is given by IXC where I is the current in the capacitor. Thus XC plays a role for alternating
current that is analogous to the role played by resistors for direct current. This quantity depends on the
angular frequency o¼ 2pf and on the capacitance C and is given by XC¼ 1/oC. In this laboratory we will
construct an alternating current bridge circuit with two capacitors and two resistors. When the bridge is
balanced, the ratio of the value of the two capacitive reactances is equal to the ratio of the value of the two
resistors. If the value of the ratio of the resistors and the value of one capacitor is known, the capacitance of
the other capacitor can be determined.

Consider the circuit shown in Figure 30-1, which is a form of alternating current bridge. A capacitor of
unknown value CU and a capacitor of known value CK are in the circuit along with resistors R1 and R2.
A sine wave generator is applied between points A andD in the circuit. If an alternating current voltmeter
between points B and C reads zero, the bridge is balanced and VBC¼ 0. If VBC is zero, then points B and C
are at the same potential, and that means that the potential difference VAB between points A and B is the
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same as VAC between points A and C. Writing the potential differences in terms of the currents and the
capacitive reactances gives

VAB ¼ I1
1

oCU

� 	
¼ VAC ¼ I2

1

oCK

� 	
ðEq: 1Þ

With the balance condition satisfied, the current in the resistor R1 is I1, the same as that in CU. It is also
true that the current in the resistor R2 is I2, the same as that in CK, and that the potential differences VBD

and VCD are equal. Writing these statements in terms of the currents and the resistances gives

VBD ¼ I1R1 ¼ VCD ¼ I2R2 ðEq: 2Þ

If Equations 1 and 2 are each solved for the ratio of the currents I1/I2, the result is

I1
I2

¼ oCU

oCK
¼ R2

R1
ðEq: 3Þ

Solving Equation 3 for the unknown capacitance CU gives

CU ¼ CK
R2

R1
ðEq: 4Þ

Equation 4 shows that if the value of CK is known, a capacitor of unknown capacitance CU can be
determined by experimentally varying the ratio of the resistances until the ratio R2/R1 is found for which
the bridge is in balance. Note that Equation 4 is independent of the frequency f, and that the currents I1
and I2 do not need to be determined.

Figure 30-2 shows two capacitors of capacitance C1 and C2 in parallel. They are equivalent to a single
capacitance Ce. The expression for this equivalent capacitance Ce in terms of the capacitances C1 and C2 is

Ce ¼ C1 þ C2 ðEq: 5Þ

Figure 30-3 shows two capacitors of capacitance C1 and C2 in series. They are equivalent to a single
capacitance Ce given by the expression

1

Ce
¼ 1

C1
þ 1

C2
ðEq: 6Þ

CU

I1

I2

I1

I2
CK

R1

B

A D

C

Sine Wave Generator

AC Voltmeter

R2

Figure 30-1 Alternating current bridge with two capacitors and two resistors.
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In this laboratory wewill determine the capacitance of several capacitors with unknown capacitance by
placing them ina bridgeof the type shown inFigure 30-1. In addition, series andparallel combinations of two
capacitors at a time will be determined and compared with the theoretical predictions of Equations 5 and 6.

E X P E R I M E N T A L P R O C E D U R E
1. Label the unknown capacitors as C1, C2, and C3. Record the value of the known capacitor as CK in the

Data Table.

2. Construct the circuit shown in Figure 30-1 with capacitor C1 in the position of CU and the known
capacitor in the position of CK. Place the 1000O resistance box set to value of 1000O in the position
of R1. Place the 10,000O resistance box in the position of R2. Record the value of R1 in the Data Table.

3. Plug in the sine wave generator and place the output of the generator between points A andD. Turn it
up to maximum amplitude and set the frequency to 1000 Hz.

4. Place the voltmeter between points B and C in the circuit. Adjust the value of R2 until the minimum
voltage is read between points B and C. Record the value of R2 that produces the minimum in the Data
Table.

5. Repeat Steps 2 through 4 for the other two unknown capacitors C2 and C3.

6. Repeat Steps 2 through 4 for the following parallel combinations of capacitors placed in the position of
CU in the circuit in Figure 30-1: (a) C1 and C2 in parallel; (b) C2 and C3 in parallel.

7. Repeat Steps 2 through 4 for the following series combinations of capacitors placed in the position of
CU in the circuit in Figure 30-1: (a) C1 and C2 in series; (b) C2 and C3 in series.

C A L C U L A T I O N S
1. Use Equation 4 to calculate the experimental values for the unknown capacitors and for the series and

parallel combinations. Record the results as Cexp in the Calculations Table.

2. Use Equations 5 and 6 to calculate the theoretical equivalent capacitance for the series and parallel
combinations corresponding to the measured series and parallel combinations. Use the experimen-
tally determined values for the capacitance of capacitors C1, C2, and C3 in the calculations. Record
those results as Ctheo in the Calculations Table.

3. Calculate the percentage error of the experimental values of the series and parallel combinations
compared to the theoretical values for those quantities. Record the results in the Calculations Table.
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Figure 30-2 Two capacitors in parallel.

C1 C2

Figure 30-3 Two capacitors in series.
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30 L A B O R A T O R Y 3 0 Bridge Measurement of Capacitance

P R E - L A B O R A T O R Y A S S I G N M E N T
1. Define capacitive reactance.

2. Describe the role that capacitive reactance of a capacitor plays when there is an alternating current in
the capacitor.

Consider the circuit diagram of Figure 30-1 for Questions 3–7. Mark as true or false the statements

concerning the conditions that hold when the bridge is balanced.

3. VAB¼VBD and VAC¼VCD (a) true (b) false

4. VBC¼ 0 (a) true (b) false

5. VAB¼VCD and VAC¼VBD (a) true (b) false

6. VAB¼VAC and VBD¼VCD (a) true (b) false

7. The balance condition for the bridge is different for different frequencies. (a) true (b) false
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8. A bridge like the one shown in Figure 30-1 is balanced. The known capacitor CK has a capacitance
of 1.17mF. The value of R1 is 1000O, and the value of R2 is 525O. What is the value of the unknown
capacitor CU? Show your work.

9. A 3.75mF capacitor is in series with a 6.85mF capacitor. What is the equivalent capacitance Ce of the
combination? Show your work.

10. A 5.75 mF capacitor is in parallel with a 3.82 mF capacitor. What is the equivalent capacitance Ce of the
combination? Show your work.
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30 L A B O R A T O R Y 3 0 Bridge Measurement of Capacitance

L A B O R A T O R Y R E P O R T

S A M P L E C A L C U L A T I O N S
1. Cexp ¼ CK

R2

R1
2. (Parallel) Ctheo¼C1þC2¼
3. (Series) Ctheo¼ (1)/(1/C1þ 1/C2)

4. %Error¼
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Data and Calculations Table

Capacitor R2 (O) Cexp (mF) Ctheo (mF) % Error

C1

C2

C3

C1&C2 in parallel

C2&C3 in parallel

C1&C2 in series

C2&C3 in series

CK¼ mF R1¼ O
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Q U E S T I O N S
1. To what extent do your data confirm the theoretical equation for the parallel combination of

capacitors? State your answer as quantitatively as possible.

2. To what extent do your data confirm the theoretical equation for the series combination of capacitors?
State your answer as quantitatively as possible.

3. The laboratory procedure instructs you to use the maximum amplitude of the sine wave generator.
How would it affect the results if one-half the amplitude were used instead?

4. Suppose the bridge is rearranged into the form shown in Figure 30-4. What is the balance condition for
this bridge?

5. Your lab instructor may have accurate values for your unknown capacitors or perhaps can make
available to you a capacitance meter that will allow you to obtain a value for them. If you can obtain a
reliable value for thecapacitanceof theunknowns, calculate thepercentage error inyourmeasurements.

CU

R1

CK

B

A D

C

Sine Wave Generator

R2

AC Voltmeter

Figure 30-4 Different arrangement of the alternating current bridge.

306 Physics Laboratory Manual n Loyd



Voltmeters and Ammeters

O B J E C T I V E S
o Determine the internal resistance Rg and current sensitivity K of a galvanometer.

o Construct a voltmeter and an ammeter by placing the appropriate values of resistance in series
and parallel with the galvanometer.

o Compare the accuracy of the constructed voltmeter and ammeter with a standard voltmeter and
a standard ammeter.

E Q U I P M E N T L I S T
. Power supply (0–20V direct current), galvanometer (D’Arsonal type, zero centered)

. Resistance box (variable in steps of 10O between 2500O and 3500O)

. A resistor of about 330O (either a 1% resistor or provide a resistance meter)

. Digital voltmeter (0–20V direct current), digital ammeter (0–1.00A direct current)

. Spool of #28 copper wire (one for the class), assorted leads

T H E O R Y
Galvanometer Characteristics

TheD’Arsonal galvanometers used in this laboratory are based upon the fact that a wire coil in the presence
of a magnetic field experiences a torque when there is a current in the coil. This torque is exerted against a
spring, and the deflection of a pointer attached to the coil is proportional to the current in the galvanometer.

Because the coil has a fixed resistance Rg, the deflection of the pointer will also be proportional to the
voltage across the terminals of the galvanometer. Therefore, a galvanometer can be calibrated to serve as
either a voltmeter or an ammeter.

A galvanometer is characterized by its resistance Rg and a constant K called the current sensitivity. K is
the amount of current needed to deflect the galvanometer one scale division. It is expressed in units ofA/div.
BothRg andK are taken to beunknown for the galvanometers used in the laboratory.Wewill determine them
by a series of measurements described in a later section.

Conversion of the Galvanometer into a Voltmeter

The galvanometer deflects full scale for a value of current given by Ig¼KN where N is the number of scale
divisions. The voltage Vg across the galvanometer terminals that produces a full-scale deflection is given
by Vg¼ Ig Rg¼KN Rg. If it is desired to measure a larger voltage than Vg, it is necessary to place a resistor
RV in series with the galvanometer so that most of the voltage is across RV and the rest across the galvano-
meter. Figure 31-1 illustrates this idea.
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If a voltage of VFS between terminals 1 and 2 in Figure 31-1 results in a current in the galvanometer equal
to KN, then the series combination of RV and the galvanometer acts as a voltmeter of full-scale voltageVFS.
In equation form this is

I ¼ KN ¼ VFS

RV þ Rg
ðEq: 1Þ

Solving Equation 1 for RV leads to the following expression:

RV ¼ VFS

KN
� Rg ðEq: 2Þ

Equation 2 can be used to solve for the value of RV needed to turn a galvanometer of given K, N, and Rg

into a voltmeter of full-scale voltage VFS.
Because a voltmeter must be connected into a circuit in parallel, it will alter the original circuit as little

as possible when it has as high a resistance as possible. The ideal voltmeter, therefore, has infinite
resistance.

Conversion of the Galvanometer into an Ammeter

The galvanometer deflects full scale when the current is Ig¼KN. If it is desired to measure a larger current
than Ig, it is necessary to place a small shunt resistance RA in parallel with the galvanometer to divert part
of the current away from the galvanometer as shown in Figure 31-2. The current I comes in at terminal 1
and divides at the junction. The current in the galvanometer is Ig, and IA is the current in the shunt resistor
where I¼ Igþ IA. Because Rg and RA are in parallel, they have the same voltage across them or in equation
form, Ig Rg¼ IA RA. Combining the two previous equations and assuming I¼ IFS when Ig¼KN gives

RA ¼ KNRg

IFS � KN
ðEq: 3Þ

Equation 3 can be used to calculate the value of the resistor RA needed to cause the parallel combination
shown in Figure 31-2 to be an ammeter with a full-scale current of IFS.

Because an ammeter must be connected into a circuit in series, it will alter the original circuit as
little as possible when it has as low a resistance as possible. The ideal ammeter therefore has zero
resistance.

GRgRv

1 2

Voltmeter

Figure 31-1 Combination of galvanometer and series resistor forms a voltmeter.

Rg

1 2
Ammeter

RA

Figure 31-2 Galvanometer and shunt resistor in parallel form an ammeter.

308 Physics Laboratory Manual n Loyd



E X P E R I M E N T A L P R O C E D U R E
Determine Rg and K

1. Connect the galvanometer, power supply, and decade resistance box in series, and then connect the
voltmeter in parallel with the power supply as shown in Figure 31-3. Set the resistance box R1 to a
value of 2500O and adjust the power supply voltage carefully until the galvanometer deflects full
scale. Record the voltmeter reading as V and the number of large divisions into which the scale is
divided as N in Data and Calculations Table 1.

2. A resistor in parallel with a device is called a shunt resistor because it diverts part of the current that
was originally going through the device. Use a composition resistor with a value of approximately
330O as a shunt resistor. Use the ohmmeter to measure an accurate value for the shunt resistor Rs and
record it in Data and Calculations Table 1.With the power supply voltage set exactly as above, connect
Rs in parallel with the galvanometer (Figure 31-4). The deflection of the galvanometer will now be less
than full scale.

3. Leave the power supply voltage set and adjust the value of the resistance box to a somewhat lower
value needed to cause the galvanometer to again deflect full scale. Make small adjustments and watch
carefully so that the galvanometer does not deflect beyond full scale. A large abrupt decrease in the
value of the resistance box could divert enough current through the galvanometer to damage it.
Record the value of the resistance box setting that gives a full-scale deflection as R2 in Data and
Calculations Table 1.
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PS

G

Voltmeter

R1

Rg

Figure 31-3 Original circuit.

G

R2

Rg

Rs

PS

Voltmeter

Figure 31-4 Original circuit plus shunt.
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4. Turn the power supply to zero and remove the shunt resistor. The circuit is again like Figure 31-3; but
now select a value of 3000O for R1, the resistance box, and repeat the procedure described in Step 1.
Record the value of V needed to produce a full-scale deflection for this resistance in Data and
Calculations Table 1.

5. Repeat Steps 2 and 3 above, inserting the same shunt resistorRs. Determine the value ofR2 needed to pro-
duce a full-scale deflectionwith the shunt resistor in place, and record it inData andCalculations Table 1.

6. Turn the power supply to zero and remove the shunt resistor. Set the resistance box to a value of
R1¼ 3500O and repeat Steps 1, 2, and 3, recording the values ofV andR2 inData andCalculations Table 1.

Galvanometer into a Voltmeter

1. Complete the Calculations section of this laboratory to determine the values of K and Rg.

2. Calculate the value of RV needed to turn your galvanometer into a voltmeter that reads full-scale
deflection for 5.00V (VFS¼ 5.00 V). In this calculation use the mean values of K and Rg from Data and
Calculations Table 1. Record this value of RV in Data and Calculations Table 2.

3. Connect one side of the galvanometer to one side of the resistance box set to the value of RV. Between
the other terminals of the galvanometer and the resistance box is what we will call the experimental
voltmeter that reads 5.00V full scale.

4. Compare the experimental voltmeter with the standard voltmeter by connecting them in parallel
across the output of the power supply as shown in Figure 31-5. Turn the power supply up slowly until
the experimental voltmeter reads exactly 1.00V and record the value read by the standard voltmeter at
this point. Make this same comparison at 2.00, 3.00, 4.00, and 5.00V as read on the experimental
voltmeter and record all results in Data and Calculations Table 2.

5. Following the steps in 1 through 3, calculate the value of RV needed to make a voltmeter of 10.0V full-
scale deflection. Construct such a voltmeter and compare it to the standard voltmeter at 2.00, 4.00, 6.00,
8.00, and 10.00 V. Record all the results in Data and Calculations Table 2.

6. Following the same procedure, construct a voltmeter that reads 15.0V full scale and compare it with the
standard voltmeter at 3.00, 6.00, 9.00, 12.0, and15.0V.Record the results inData andCalculations Table 2.

7. Calculate the percentage error of the experimental voltmeter readings compared to the standard
voltmeter and record the results in Data and Calculations Table 2.

Galvanometer into an Ammeter

1. Calculate the value of RA needed to turn your galvanometer into an ammeter that reads 1.00 A full
scale. For values of Rg and K use the mean value in Data and Calculations Table 1. Record the value of
RA in Data and Calculations Table 3.

2. Number 28 copper wire has a resistance of 0.00213O/cm. Calculate the length of #28 copper wire
needed to have a resistance equal to RA. Record that value in Data and Calculations Table 3.

3. Cut a piece of #28 copper wire a few centimeters longer than the length calculated in Step 2. If the wire
being used has an insulating coating, cut away a few centimeters on each end of the wire. Attach the

Experimental
Voltmeter

Power Supply

� �

Standard
Voltmeter

Figure 31-5 Experimental and standard voltmeter in parallel with power supply.
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wire between the posts of the galvanometer so that the length of wire between where one end touches
one post and the other end touches the other post is equal to the length calculated in Step 2. At the
same time that the wire is attached between the posts, attach a short lead to each galvanometer post as
shown in Figure 31-6. The two loose ends of the two leads are now an ammeter that reads 1.00 A full
scale. Refer to it as the experimental ammeter.

4. After making sure that the power supply is turned completely to zero, place the experimental
ammeter in series with a standard ammeter and with the power supply. Very slowly turn the supply
up until the experimental ammeter reads 0.200 A. Record the reading of the standard ammeter in Data
and Calculations Table 3. Continue this process, comparing the experimental ammeter to the standard
ammeter at 0.400, 0.600, 0.800, and 1.000 A.

5. Calculate the percentage errors of the experimental ammeter readings compared to the standard
ammeter readings and record the results in Data and Calculations Table 3.

C A L C U L A T I O N S
Rg and K

1. By applying Ohm’s Law to the circuits in Figure 31-3 and Figure 31-4 when the applied voltage V is
the same and the galvanometer is at full-scale deflection in both cases, it can be shown that the
resistance of the galvanometer Rg is given by

Rg ¼ Rs

R2
ðR1 � R2Þ ðEq: 4Þ

Calculate the three values of Rg determined by the three trials in Data and Calculations Table 1. Also
calculate the mean Rg and standard error aRg for these measurements. Record all calculated values in
Data and Calculations Table 1.

2. The constant K is defined as the current needed to produce a deflection of one scale division, and
the deflection in the above procedure was N scale divisions. Ohm’s Law applied to the circuit of
Figure 31-3 leads to the following:

K ¼ V

NðR1 þ RgÞ ðEq: 5Þ

DetermineK the galvanometer current sensitivity from the values ofV andR1 in Data andCalculations
Table 1 and the calculated values of Rg in Data and Calculations Table 1. For each calculation of K,
use the value of Rg determined from the V and R1 being used to calculate K. Also calculate the mean
K and standard error aK for the three values of K. Record all calculated quantities in Data and
Calculations Table 1.C
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LeadLead

Figure 31-6 Galvanometer with #28 copper wire shunt resistor.
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P R E - L A B O R A T O R Y A S S I G N M E N T
1. Describe the principle on which the operation of a D’Arsonal type galvanometer is based.

2. A galvanometer has (a) a meter deflection proportional to the current in the galvanometer (b) a meter
deflection proportional to the voltage across the galvanometer (c) a fixed resistance (d) all of the above
are true.

3. The galvanometer constant K is (a) the current for full-scale deflection (units A) (b) the current for
deflection of one scale division (units A/div) (c) the total current times the number of scale divisions
(units A/div) (d) the reciprocal of the galvanometer resistance Rg (units 1/A).

4. In the procedure for determination of Rg and K when the shunt resistor RS is placed in parallel with
the galvanometer, what happens to galvanometer deflection, and why does it happen?

5. To construct a voltmeter of a given full-scale deflection from a galvanometer, the appropriate resis-
tance must be placed in (a) series (b) parallel with the galvanometer.

6. To construct an ammeter of a given full-scale deflection from a galvanometer, the appropriate resis-
tance must be placed in (a) series (b) parallel with the galvanometer.

C
O
P
Y
R
IG

H
T
ª

2
0
0
8
T
h
o
m
s
o
n
B
ro
o
k
s
/C
o
le

313



7. A galvanometer has Rg¼ 150O and K¼ 0.750� 10�4 A/div. The galvanometer has five divisions for
a full-scale reading (i.e., N¼ 5). What value of resistance is needed, and how must it be connected to
the galvanometer to form a full-scale voltmeter of 20.0 V? Show your work.

8. To form the galvanometer of Question 7 into an ammeter of 2.50 A full scale, what value of resistance
is needed, and how must it be connected? Show your work.

9. Tomeasure voltage, a voltmeter is placed in a circuit in (a) series (b) parallel. The resistance of an ideal
voltmeter is ____________________.

10. To measure the current, an ammeter is placed in a circuit in (a) series (b) parallel. The resistance of an
ideal ammeter is ____________________.
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Data and Calculations Table 1

R1 (O) V (V) R2 (O) Rg (O) K (A/div) Rg (O) aRg (O) K (A/div) aK (A/div)

N¼ Rs¼ O

Data and Calculations Table 2

VFS¼ 5.00 V

RV¼ O

Experimental 1.00 V 2.00V 3.00V 4.00V 5.00V

Standard V V V V V

% Error

VFS¼ 10.00 V

RV¼ O

Experimental 2.00V 4.00V 6.00V 8.00V 10.0V

Standard V V V V V

% Error

VFS¼ 15.00V

RV¼ O

Experimental 3.00V 6.00V 9.00V 12.0V 15.0V

Standard V V V V V

% Error
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S A M P L E C A L C U L A T I O N S
1. Rg¼ (Rs/R2)(R1�R2)¼
2. K¼ (V)/(N(R1þRg))¼
3. RV¼ (VFS/KN)�Rg¼
4. RA¼ (KN Rg)/(IFS�KN)¼
5. Length of wire¼
6. % Error¼

Q U E S T I O N S
1. Considering the standard error of your measurements, comment on the precision of your measure-

ments of Rg and K. Express the standard error as a percentage of the mean.

2. Consider the 5V experimental voltmeter. Does it tend to read too high or too low compared to the
standard voltmeter?

3. Presumably a different value of RV would give better agreement between the 5V experimental
voltmeter and the standard voltmeter. Would RV need to be a larger or smaller resistance? Explain
your answer.

Data and Calculations Table 3

IFS¼ 1.00 A RA¼ O Length RA¼ cm

Experimental 0.200 A 0.400 A 0.600 A 0.800 A 1.000 A

Standard A A A A A

% Error
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4. Does the experimental ammeter tend to read too high or too low?

5. Presumably by a change in the value of RA, the experimental voltmeter could be made to show better
agreement with the standard ammeter. Does RA need to be a larger or smaller resistance to accomplish
this? Explain your answer.

EXTRA CREDIT QUESTION. It is stated in the laboratory instructions that the same voltage V is
applied to both circuits in Figure 31-3 and Figure 31-4, and that the galvanometer deflects full scale in
both cases. Thus the galvanometer current is Ig¼KN for both circuits. In Figure 31-4 let the current in
Rs be called Is. From the application of Ohm’s Law to these circuits, derive the expression given as
Equation 1 for Rg.
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Potentiometer and
Voltmeter Measurements
of the emf of a Dry Cell

O B J E C T I V E S
o Investigate the principles of operation of a potentiometer.

o Compare the emf of dry cells determined by a potentiometer with the emf measured by
a voltmeter.

o Determine the internal resistance of a dry cell.

E Q U I P M E N T L I S T
. Slide-wire potentiometer, galvanometer, standard cell

. Single-pole (single-throw) switch with a 10 kO resistor in parallel

. Single-pole (double-throw) switch, dry cells (with emfs in range 1.5 to 1.3V)

. Direct current power supply (voltage and current determined by form of potentiometer)

. Voltmeter (resistance at least 10MO), student-type voltmeter (resistance� 3 kO)

. Decade resistance box (100 kO maximum), assorted connecting leads, tap key

T H E O R Y
Part 1. Dry Cell Characteristics

A new dry cell produces an electromotive force (emf) between 1.50 and 1.60V with an internal resistance
in the range of a fraction to a few ohms. The symbol for emf is e, and the symbol for internal resistance is
Ri. The voltage that appears across the dry cell terminals when the dry cell is providing current I to a
circuit is called the terminal voltage V. It is given by

V ¼ e� I Ri ðEq: 1Þ

When current flows, the terminal voltage is always less than the emf of a cell by the amount of the voltage
drop across Ri. If no current is provided by the cell, its terminal voltage equals its emf (V¼ e if I¼ 0).
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A resistor (Figure 32-1) placed across the terminals of a dry cell is called a load resistor RL. The current
drawn from the dry cell in this case is determined by the values of RL and Ri. The terminal voltage is the
voltage between the dry cell terminals. It is given by

V ¼ e
RL

Ri þ RL

� 	
ðEq: 2Þ

As a dry cell ages, its emf decreases, and its internal resistance increases. A very old dry cell might
have, for example, an emf of only 1.30V and an internal resistance of several thousand ohms. When Ri

becomes this large, it means that for any significant current drawn from the cell, most of the voltage drop
occurs across the internal resistance. As a result, the terminal voltage of the cell becomes very small, and
the cell is essentially nonfunctional.

Part 2. Voltmeter Measurements

When a voltmeter is placed across the terminals of a dry cell, the input resistance of the voltmeter is
effectively a load resistor. The voltage measured by the voltmeter is essentially the same as that given by
Equation 2 with RL replaced in that equation by RV, the voltmeter resistance. The equation that results is

V ¼ e
RV

Ri þ RV

� 	
ðEq: 3Þ

The value of RV is strongly dependent upon the quality of the voltmeter. A typical student voltmeter used
in this laboratory might have RV as low as 3000 O. If such a meter is used to measure the terminal voltage
of a ‘‘good’’ dry cell with Ri of the order of 1O, the terminal voltage would be (3000/3001)¼ 0.9997 of
the emf. For many purposes this would be an acceptable estimate of the emf. On the other hand, if this
same voltmeter were used to measure the terminal voltage of a cell with Ri of 5000 O, the terminal voltage
would be (3000)/(8000)¼ 0.375 of the emf. Clearly this is not a useful estimate of the emf.

A typical value of RV for a modern voltmeter of good quality might be in the range of 10 to 20 MO.
For such a voltmeter, the terminal voltage measured for both of the dry cells described above would be an
extremely good approximation to the true emf.

Part 3. Measurements with a Potentiometer

The potentiometer is a device that compares a source of known emf to an unknown emf. The unknown
emf is placed in the circuit in the opposite direction to a known voltage difference. The unknown emf is
balanced against the known potential difference when there is no current in the unknown emf. The true
emf is determined because there is no voltage drop across the internal resistance.

Figure 32-2 schematically shows the wiring of a simple slide-wire potentiometer. It consists of a wire
(fromA to B) of uniform cross-sectional area throughwhich a constant current is maintained by the power
supply. Because the wire is uniform in cross-sectional area, the potential change along the length from

RL

R i

�

1
Load Resistor

Dry
Cell

2

Figure 32-1 Dry cell with a load resistance.
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A to B is proportional to the length of the wire. Switch S1 allows either cell eS or eU to be connected in
parallel with a portion of the wire AB. The cell designated eS is a standard cell for which the emf is
accurately known, and eU stands for the cell of unknown emf that is to be determined.

The current in the wire AB is chosen to be large enough so that the potential change from A to B is
greater than either eU or eS. With switch S1 set so that eS is in the circuit, the slider can be moved along the
wire until the point C is located where the voltage drop from A to C is exactly equal to eS. We accomplish
this experimentally by finding the point C for which there is no current in the galvanometer that is in
series with eS. After throwing switch S1 to the other position, which places eU in the circuit, a new point D
is found where the voltage drop from A to D is equal to eU. Again, this point is found experimentally by
finding the point where there is no current in the galvanometer. Because the potential drop along the wire
is proportional to the length of the wire, a ratio exists between the lengths of the wire, AD and AC, and the
two emfs. This can be expressed as

eU ¼ eS
AD

AC

� 	
ðEq: 4Þ

The potentiometer can be made more accurate if its total length is extended by including additional
coils of wire each of the same length (Figure 32-3). We will give specific instructions below for making
measurements with a potentiometer of this type, which has a slide wire 1 m in length and 15 other 1 m
coils of wire in series with the slide wire. There is a banana-plug receptacle at the junction of each coil
of wire, so that any number of the 15 coils of wire can be incorporated in the circuit along with the
chosen length of the slide wire. The potentiometer is designed to be standardized to ensure that each
meter of wire has a voltage drop of 0.100V. Thus the maximum emf that can be measured with this
standardization is 1.600V.

��

��

�U

��
�S

S1

S2

A

Power Supply

10 k�

B
C

G

Figure 32-2 Simple slide-wire potentiometer.
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E X P E R I M E N T A L P R O C E D U R E
Dry Cell emf by Potentiometer

1. Before making any measurements with the potentiometer, note that special care is required in the use
of the standard cell. The cell should remain upright at all times and never be allowed to turn on its
side or upside down. Be certain that the cell is placed in the circuit with the correct polarity, and
that during initial adjustment, the 10 kO resistor is placed in series with the standard cell by having
switch S2 open. This serves to limit the current drawn from the standard cell.

2. The circuit diagram for the potentiometer described here is shown in Figure 32-4. Connect the circuit
as shown, but have the circuit approved by your instructor before the power supply is turned on.
(Note that the circuit diagram below and the detailed procedure given below apply to a 16 m long potentiometer
with provisions to calibrate it directly in volts. If another type of potentiometer is provided, consult your
instructor for specific instructions in its use.)

3. Following the steps detailed below for standardizing and using the potentiometer, measure the emf
of three unknown dry cells. The three unknown dry cells should include one that is new and one that
is old. For each unknown cell, make three independent measurements by standardizing the potentio-
meter and then measuring the emf of the cell three separate times.

4. Procedure to standardize the potentiometer:

(a) Throw switch S1 to the standard cell position.

(b) Adjust the position of the banana plug and the slider until the total corresponds to the emf of the
standard cell used. For example, if the standard cell has an emf of 1.0566V, place the plug in
position 1.0 and the slider at a length of 56.6 cm.

(c) With switch S2 open, press and release the slider key, noting the galvanometer deflection. Adjust
the power supply for minimum galvanometer deflection when the slider key is pressed.

(d) Close switch S2 and press and release the slider key, noting the galvanometer deflection. Adjust
the power supply for zero galvanometer deflection when the slider key is pressed.

(e) The potentiometer has now been standardized to 0.1000V per meter of wire. The power supply
should remain fixed at its setting for any measurements taken with this standardization.

�U

�S

10 k�

Bat �

Emf �Bat �

Power Supply

S2

S1
G

Figure 32-4 Slide-wire potentiometer with 16 m total wire length.
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5. Procedure to measure an unknown emf:
(a) Throw switch S1 to unknown emf position.

(b) With switch S2 open, touch the slider key, noting the galvanometer deflection.

(c) Move the traveling plug and the slider position until the point is found that gives the minimum
galvanometer deflection when the slider key is pressed.

(d) Close switch S2, and then move the slider until the point is found that gives zero galvanometer
deflection when the slider key is pressed.

(e) Read the value of the unknown emf as the position of the traveling plug plus the slider position.
For example, if the plug is at 1.4 and the slider at 35.5 cm, the emf of the unknown cell is 1.4355V.

Dry Cell Voltage by Voltmeter

1. Use a voltmeter with an internal resistance of the order of 10MO to measure the terminal voltage of
each of your unknown dry cells in turn. Record the values in Data Table 2 under the column labeled
High Resistance Voltmeter.

2. Use a student-type low resistance voltmeter to measure the terminal voltage of each of the unknown
dry cells. Record the values in the Data Table under the column labeled Low Resistance Voltmeter.

Internal Resistance of a Dry Cell

1. Place the terminals of the high resistance voltmeter across the terminals of the dry cell with the lowest
emf as measured by the potentiometer. Note the value of the voltmeter reading, which should be
essentially the same as determined earlier by the potentiometer.

2. Set a decade resistance box with a 10 kO decade to the maximum value of 100 kO. Place the decade
resistance box in parallel with the voltmeter and the dry cell with a tap key as shown in Figure 32-5.
The resistance box is serving as a load resistor, and the voltmeter now reads the terminal voltage of
the cell when the tap key is momentarily pressed. Just touch the key momentarily and read the voltmeter at
that instant. If the key is left pressed for any length of time, it will drain the cell as it provides current for the load
resistor, thus making the results meaningless.

3. Touch the tap key and note the value of the terminal voltage for 100 kO load resistor. If there is at least
a 5% decrease in the voltmeter reading below the original emf of the cell, record this value of the
terminal voltage and the value of 100 kO for the load resistance in Data Table 3. If the voltmeter
reading does not fall by at least 5% when the 100 kO resistor is placed across the cell, lower the decade
resistance box value and touch the tap key again to read the terminal voltage. When the terminal
voltage is approximately 5% less than the cell emf, record the value of the load resistance and the
terminal voltage in Data Table 3.

4. Continue this process of lowering the resistance box while noting the terminal voltage for values of the
terminal voltage that are about 10% and then about 15% less than the emf of the cell. Record the exact
value of the terminal voltage and the load resistance that gives that terminal voltage in Data Table 3.
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Normally Open

Voltmeter

Figure 32-5 Circuit to measure internal resistance of the dry cell.
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C A L C U L A T I O N S
Dry Cell emf by Potentiometer

1. Calculate the mean and standard error of the three determinations of the emf for each unknown dry
cell and record them in Calculations Table 1.

Dry Cell Voltage by Voltmeter

1. Calculate the percentage error in the values of the terminal voltage measured with the high resistance
voltmeter compared to the emf determined with the potentiometer, assuming the potentiometer
values as correct. Use the mean values for potentiometer values of emf. Record the percentage errors
in Calculations Table 2.

2. Repeat the calculations in Step 1 for the terminal voltage values measured with the low resistance
voltmeter. Record the results in Calculations Table 2.

Internal Resistance of a Dry Cell

1. Equation 2 relates the terminal voltage of a dry cell to its emf, internal resistance, and load resistance.
Using the data in Data Table 3 for the terminal voltage versus the load resistance, solve Equation 3 for
the internal resistance and determine a value for the internal resistance from each of the three values of
load resistance and terminal voltage. Record the values of Ri in Calculations Table 3.
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32 L A B O R A T O R Y 3 2 Potentiometer and Voltmeter Measurements of the
emf of a Dry Cell

P R E - L A B O R A T O R Y A S S I G N M E N T
1. What is the emf and the internal resistance of a typical new dry cell? What might be typical values for

the emf and internal resistance of a very old dry cell?

2. A dry cell has an emf of 1.48V and an internal resistance of 1.11O. What is its terminal voltage when it
is connected to a load resistance of 25.00 O? Show your work.

3. Avoltmeter can be used tomeasure the terminal voltage of a dry cell. What determines whether or not
this terminal voltage is a good approximation to the emf of the cell?

4. Upon what experimental condition is the operation of a potentiometer based, and what advantage
does this experimental condition produce for the measurement of the emf?
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5. In a measurement using a potentiometer, a known emf and an unknown emf are compared to the
voltage drop (a) across a voltmeter (b) across a galvanometer (c) along a wire of uniform cross-section
(d) across a power supply of fixed voltage.

6. A dry cell has an emf of 1.35V and an internal resistance of 2000 O. What will be its terminal voltage
when measured with a voltmeter whose input resistance is 10,000 O? Show your work.

7. What will be the terminal voltage of the dry cell of Question 6 when measured with a voltmeter of
input resistance 10 MO? Show your work.

8. When the potentiometer described in this laboratory has been properly standardized, to what emf
does 1.0000 m of wire correspond?

9. An unknown emf is measured with a properly standardized potentiometer of the type described
in this laboratory. It balances when the traveling plug is at position 1.3, and the slider is 95.7 cm. What
is the emf of the dry cell? Show your work.
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Data Table 1

Unknown emf Trial 1 (V) Trial 2 (V) Trial 3 (V)

#

#

#

Calculations Table 1

emf (V) aemf (V)

Data Table 2

Unknown emf
High Resistance
Voltmeter (V)

Low Resistance
Voltmeter (V)

#

#

#

Calculations Table 2

% Error High
R Meter

% Error Low
R Meter

Data Table 3

e Load Resistor RL (O) Terminal Voltage (V)

Calculations Table 3

Ri (O)
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S A M P L E C A L C U L A T I O N S
1. % Error¼
2. Ri¼ (e RL/V)�RL¼

Q U E S T I O N S
1. Consider themean values of the emf of each cell as determined by the potentiometer. Comment on the

precision of the measurements.

2. What can you say about the accuracy of these same measurements discussed in Question 1? What is
the major factor controlling the accuracy of these measurements?

3. Consider the percentage differences in Calculations Table 2. Are the high resistance voltmeter
readings a reasonable estimate of the emf?

4. Are there significant differences between the high resistance voltmeter measurements and the low
resistance voltmeter measurements? Can you conclude anything about the internal resistance of any
of the unknown dry cells from these data? State what you can about the internal resistance of each
unknown dry cell.

5. The idea that a dry cell can be represented as a pure emf in series with a pure resistance Ri is a model.
If that model is accurate for the dry cell for which you determined Ri in Calculations Table 3, the value
of Ri should be approximately the same for the three determinations. Comment on the extent to which
such a model seems appropriate to your measurements of the dry cell.
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The RC Time Constant

O B J E C T I V E S
o Investigate the time needed to discharge a capacitor in an RC circuit.

o Measure the voltage across a resistor as a function of time in an RC circuit as a means to
determine the RC time constant.

o Determine the value of an unknown capacitor and resistor from the measurements.

E Q U I P M E N T L I S T
. Voltmeter (at least 10 MO resistance-digital readout), laboratory timer

. Direct current power supply (20V), high quality unknown capacitor (5–10 mF)

. Unknown resistor (approximately 10 MO), single-pole (double-throw) switch

. Assorted connecting leads

T H E O R Y
Consider the circuit shown in Figure 33-1 consisting of a capacitor C, a resistor R, a source of emf ", and
a switch S. If the switch S is thrown to point A at time t¼ 0 when the capacitor is initially uncharged,
charge begins to flow in the series circuit consisting of ", R, and C, and it flows until the capacitor is fully
charged. The current I has an initial value of "/R and decreases exponentially with time. The charge Q
on the capacitor begins at zero and increases exponentially with time until it becomes equal to C". The
equations that describe those events are

Q ¼ C" ð1� e�t=RCÞ and I ¼ "=R e�t=RC ðEq: 1Þ

The quantity RC is called the time constant of the circuit, and it has units of seconds if R is in ohms and C
is in farads. After a period of time that is long compared to the time constant RC, the charge Q is equal to
C", and the current in the circuit is zero.

If switch S is now thrown to position B, the capacitor discharges through the resistor. The charge on
the capacitor and the current in the circuit both decay exponentially while the capacitor is discharging.
The equations that describe the discharging process are

Q ¼ C" e�t=RC and I ¼ "=R e�t=RC ðEq: 2Þ
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The current in the discharging case will be in the opposite direction from the current in the charging case,
but the magnitude of the current is the same in both cases.

Consider the circuit shown in Figure 33-2 consisting of a power supply of emf ", a capacitor C, a switch
S, and a voltmeter with an input resistance of R. If initially the switch S is closed, the capacitor is charged
almost immediately to ", the voltage of the power supply. When the switch is opened, the capacitor
discharges through the resistance of the meter Rwith a time constant given by RC. With the switch open,
the only elements in the circuit are the capacitor C and the voltmeter resistance R, and thus the voltage
across the capacitor is equal to the voltage across the voltmeter. It is given by

V ¼ " e�t=RC ðEq: 3Þ

Rearranging and taking the natural log of both sides of the equation gives

Inð"=VÞ ¼ ð1=RCÞt ðEq: 4Þ

If the voltage across the capacitor is determined as a function of time, a graph of ln("/V) versus twill give a
straight line with a slope of (1/RC). Thus RC can be determined, and if R the voltmeter resistance is known,
then C can be determined.

If an unknown resistor is placed in parallel with the voltmeter, it produces a circuit like that shown in
Figure 33-3. The capacitor can again be charged and then discharged, but now the time constant will be
equal to RtCwhere Rt is the parallel combination of R and RU. If the relationship between R, RU, and Rt is
solved for RU, the result is

RU ¼ RRt

R� Rt
ðEq: 5Þ

Therefore, a measurement of the capacitor voltage as a function of time will produce a dependence
like that given by Equation 4, except that the slope of the straight line will be (1/RtC). Thus if C is
known and RtC is found from the slope, then Rt can be determined. Using Equation 5, RU can be found
from R and Rt.

� � �
S Power Supply

Capacitor

Voltmeter

C

R

Figure 33-2 An RC circuit using a voltmeter as the resistance.

�

CA

B

R

Figure 33-1 Simple series RC circuit.
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E X P E R I M E N T A L P R O C E D U R E
Unknown Capacitance

1. Construct a circuit such as the one in Figure 33-2 using the capacitor supplied, the voltmeter, and the
power supply. Have the circuit approved by your instructor before turning on any power. Obtain
from your instructor the value of the input resistance of the voltmeter and record it in Data and
Calculations Table 1 as R.

2. Close the switch, and adjust the power supply emf " as read on the voltmeter to the value chosen by
your instructor. Record the value of " in Data and Calculations Table 1.

3. Open the switch and simultaneously start the timer.

4. The voltmeter reading will fall as the capacitor discharges. Let the timer run continuously, and for
eight predetermined values of the voltage, record the time t at which the voltmeter reads these
voltages. A convenient choice for voltages at which to measure t would be increments of 10%. For
example, if "¼ 20.0 V, then use voltage of 18.0, 16.0, 14.0, etc. Record the voltage V and times t in Data
and Calculations Table 1.

5. Repeat Steps 2 through 4 two more times for Trials 2 and 3.

Unknown Resistance

1. Construct a circuit such as the one in Figure 33-3 using the same capacitor used in the last circuit and
the unknown resistor supplied. Close the switch and adjust the power supply voltage to the same
value used in the last procedure.

2. Repeat Steps 2 through 5 of the procedure above, and record all values in the appropriate places in
Data and Calculations Table 2.

C A L C U L A T I O N S
Unknown Capacitance

1. Calculate the values of ln("/V) and record them in Data and Calculations Table 1.

2. Calculate the mean t and the standard error at for the three trials of t at each voltage and record them
in Data and Calculations Table 1.

3. Perform a linear least squares fit of the data with ln("/V) as the vertical axis and t as the horizontal axis.

4. Record the value of the slope in Data and Calculations Table 1.C
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Figure 33-3 RC circuit using voltmeter and RU in parallel.
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5. Calculate RC as the reciprocal of the slope. Record the value of RC in Data and Calculations Table 1.

6. Use the value of RC and the value of R to calculate the value of the unknown capacitor C and record it
in Data and Calculations Table 1.

Unknown Resistance

1. Calculate the values of ln("/V) and record the values in Data and Calculations Table 2.

2. Calculate the mean t and the standard error at for the three trials of t at each voltage and record them
in Data and Calculations Table 2.

3. Perform a linear least squares fit of the data with ln("/V) as the vertical axis and t as the horizontal axis.

4. Record the value of the slope in Data and Calculations Table 2.

5. Calculate the value of RtC as the reciprocal of the slope. Record the value of RtC in Data and
Calculations Table 2.

6. Using the value of the capacitance C determined in the first procedure and the value of RtC, calculate
the value of Rt and record it in Data and Calculations Table 2.

7. Calculate the value of the unknown resistance RU from the values of Rt and R. Record the value of RU

in Data and Calculations Table 2.

G R A P H S
1. For the data from Data and Calculations Table 1 graph the quantity ln("/V) as the vertical axis and t as

the horizontal axis. Also show on the graph the straight line obtained from the linear least squares fit
to the data.

2. For the data fromData and Calculations Table 2, graph the quantity ln("/V) as the vertical axis and t as
the horizontal axis. Also show on the graph the straight line obtained from the linear least squares fit
to the data.
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33 L A B O R A T O R Y 3 3 The RC Time Constant

P R E - L A B O R A T O R Y A S S I G N M E N T
1. In a circuit such as the one in Figure 33-1 with the capacitor initially uncharged, the switch S is thrown

to position A at t¼ 0. The charge on the capacitor (a) is initially zero and finally C" (b) is constant at a
value of C" (c) is initially C" and finally zero (d) is always less than "/R.

2. In a circuit such as the one in Figure 33-1 with the capacitor initially uncharged, the switch S is thrown
to position A at t¼ 0. The current in the circuit is (a) initially zero and finally "/R (b) constant at a value
of "/R (c) equal to C" (d) initially "/R and finally zero.

3. In a circuit such as the one in Figure 33-2 the switch S is first closed to charge the capacitor, and then it
is opened at t¼ 0. The expression V¼ " e�t/RC gives the value of (a) the voltage on the capacitor but
not the voltmeter (b) the voltage on the voltmeter but not the capacitor (c) both the voltage on the
capacitor and the voltage on the voltmeter, which are the same (d) the charge on the capacitor.

4. For a circuit such as the one in Figure 33-1, what are the equations for the charge Q and the current I
as functions of time when the capacitor is charging?

Q ¼ I ¼

5. For a circuit such as the one in Figure 33-1, what are the equations for the charge Q and the current I
as functions of time when the capacitor is discharging?

Q ¼ I ¼

6. If a 5.00 mF capacitor and a 3.50 MO resistor form a series RC circuit, what is the RC time constant?
Give proper units for RC and show your work.

RC ¼

C
O
P
Y
R
IG

H
T
ª

2
0
0
8
T
h
o
m
s
o
n
B
ro
o
k
s
/C
o
le

333



7. Assume that a 10.0 mF capacitor, a battery of emf "¼ 12.0V, and a voltmeter of 10.0 MO input
impedance are used in a circuit such as that in Figure 33-2. The switch S is first closed, and then the
switch is opened. What is the reading on the voltmeter 35.0 s after the switch is opened? Show your
work.

V ¼ V

8. Assume that a circuit is constructed such as the one shown in Figure 33-3 with a capacitor of 5.00 mF, a
battery of 24.0 V, a voltmeter of input impedance 12.0 MO, and a resistor RU¼ 10.0 MO. If the switch is
first closed and then opened, what is the voltmeter reading 25.0 s after the switch is opened? Show
your work.

V ¼ V

9. In the measurement of the voltage as a function of time performed in this laboratory, the voltage is
measured at fixed time intervals. (a) true (b) false
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Data and Calculations Table 1

V (V) t1 (s) t2 (s) t3 (s) ln("/V) t (s) at (s)

"¼ V R¼ O r¼ Intercept¼

Slope¼ s�1 RC¼ s C¼ F
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S A M P L E C A L C U L A T I O N S
1. ln("/V)¼
2. RC¼ 1/slope¼
3. C¼RC/R¼
4. Rt¼RtC/C¼
5. RU¼ (RtR)/(R�Rt)¼

Q U E S T I O N S
1. Evaluate the linearity of each of the graphs. Do they confirm the linear dependence between the two

variables that is predicted by the theory?

2. Ask your instructor for the values of the unknown capacitor and resistor. Calculate the percentage
error of your measurement compared to the values provided. On this basis, evaluate the accuracy of
your measurement of the capacitance and resistance.

Data and Calculations Table 2

V (V) t1 (s) t2 (s) t3 (s) ln("/V) t (s) at (s)

"¼ V R¼ O r¼ Intercept¼

Slope¼ s�1 RtC¼ s Rt¼ O RU¼ O
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3. Show that RC has units of seconds if R is in O and C is in F.

4. A capacitor of 5.60 mF and a 4.57 MO resistor form a series RC circuit. If the capacitor is initially
charged to 25.0 V, how long does it take for the voltage on the capacitor to reach 10.0 V? Show your
work.
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Kirchhoff’s Rules

O B J E C T I V E S
o Investigate what type of circuit to which Kirchhoff’s rules must be applied.

o Apply Kirchhoff’s rules to several circuits, solve for the currents in the circuit, and compare the
theoretical values predicted by Kirchhoff’s rules to measured values.

E Q U I P M E N T L I S T
. Direct current voltmeter (digital, 0–20 V), direct current ammeter (digital, 0–1000 mA)

. Two sources of emf (direct current power supplies, up to 12 V)

. Three or four resistors or resistor boxes (range 500–1000O)

. Digital ohmmeter (one for the class), connecting wires

T H E O R Y
Consider the circuit in Figure 34-1. The circuit is labeled with all of the currents. The 2O resistor, 8O
resistor, and 12V power supply have current I1, the 6O resistor has current I2, and the 3O resistor has
current I3. This circuit is called a single-loop circuit because it can be reduced to a single resistor in series
with the power supply. The 6O resistor and the 3O resistor are in parallel with an equivalent resistance
of 2O. That equivalent 2O resistance is in series with the 12V power supply and the other two resistors,
reducing the circuit to a single-loop circuit. The total resistance across the 12V power supply is 12O and
its current is therefore I1¼ 1A. Applying Ohm’s law to the remaining part of the circuit gives I2¼ 1/3A
and I3¼ 2/3A.

Consider now the circuit of Figure 34-2. This laboratory is concerned with the fundamental difference
between circuits of the type depicted in Figure 34-1 and circuits of the type depicted in Figure 34-2. The
circuit in Figure 34-2 cannot be reduced to a single-loop circuit, but instead is called a multi-loop circuit.
Before analyzing this circuit, first we will define some terms. A point at which at least three possible
current paths intersect is defined as a junction. For example, points A and B in Figure 34-2 are junctions.
A closed loop is any path that starts at some point in a circuit and passes through elements of the circuit (in
this case resistors and power supplies), and then arrives back at the same point without passing through
any circuit element more than once. By this definition there are three loops in the circuit of Figure 34-2:
(1) starting at B, going through the 10V power supply toA, and then down through the 20V power supply
back toB, (2) starting atB, up through the 20V power supply, and then around the outside through the 10O
resistor and back toB, (3) completely around the outside part of the circuit. One can traverse a loop in either
of two directions, but regardless of which direction is chosen, the resulting equations are equivalent.

Physics Laboratory Manual n Loyd L A B O R A T O R Y 34

C
O
P
Y
R
IG

H
T
ª

2
0
0
8
T
h
o
m
s
o
n
B
ro
o
k
s
/C
o
le

339

ª 2008 Thomson Brooks/Cole, a part of TheThomson Corporation.Thomson, the Star logo, and Brooks/Cole are trademarks used herein under license. ALL RIGHTSRESERVED.No part of this work
covered by the copyright hereonmay be reproduced or used in any form or by any meansçgraphic, electronic, ormechanical, including photocopying, recording, taping,web distribution, information
storage and retrieval systems,or in any othermannerçwithout the written permission of the publisher.



The solution for the currents in a multi-loop circuit uses two rules developed by Gustav Robert
Kirchhoff. The first of these rules is called Kirchhoff’s current rule (KCR). It can be stated in the follo-
wing way:

KCR—The sum of currents into a junction¼ the sum of currents out of the junction.

This rule actually amounts to a statement of conservation of charge. In effect it states that charge does not
accumulate at any point in the circuit. The second rule is called Kirchhoff’s voltage rule (KVR). It can be
stated as:

KVR—The algebraic sum of the voltage changes around any closed loop is zero.

This rule is essentially a statement of the conservation of energy, which recognizes that the energy
provided by the power supplies is absorbed by the resistors.

In a multi-loop circuit the values of the resistors and the power supplies are known. It is necessary to
determine how many independent currents are in the circuit, to label them, and then to assign a direction
to each current. Application of Kirchhoff’s rules to the circuits, treating the assigned currents as
unknowns, will produce as many independent equations as there are unknown currents. Solving those
equations will determine the values of the currents.

In the application of KVR to a circuit, take care to assign the proper sign to a voltage change across a
particular element. The value of the voltage change across an emf e can be eitherþe or�e depending upon
which direction it is traversed in the loop. If the emf is traversed from the (�) terminal to the (þ) terminal,
the change in voltage isþe. However, when going from the (þ) terminal to the (�) terminal, the change in

�
(12 V)

I2

I3

I1

R3
(2 �)

R1 (6 �)

R2 (3 �)

R4 (8 �)

I1I1

Figure 34-1 Single-loop circuit.

I1 I3
A

B

R1 (2 �)

R4 (10 �)

(20 V) �2

R3 (5 �)

I1 I3

R2 (3 �)

I3

�1 (10 V)

I1 I2
�

��

�

�

�

�

�

� �

� �

Figure 34-2 Multi-loop circuit.
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voltage is�e. In the laboratory we will measure the terminal voltage of the sources of emf. Wewill assume
that those values approximate the emf.

When a resistor R with an assumed current I is traversed in the loop in the same direction as the
current, the voltage change is�IR. If the resistor is traversed in the direction opposite that of the current,
the voltage change is þIR. The sign of the voltage change across an emf is not affected by the direction
of the current in the emf. The sign of the voltage change across a resistor is completely determined by the
current direction.

Consider the application of Kirchhoff’s rules to the multi-loop circuit of Figure 34-2. At the junction A
currents I1 and I2 go into the junction, current I3 goes out of the junction, and KCR states

I1 þ I2 ¼ I3 ðEq: 1Þ

It might appear that applying KCR to the junction Bwould produce an additional useful equation, but in
fact it would result in an equation that is identical to Equation 1.

Applying KVR to the loop that starts at B, goes through the 10V power supply to A, and then down
through the 20V power supply back to B, gives the following equation with values of the resistances
included.

�R2 I1 þ "1 �R1 I1 þ "2 þ R3 I2 ¼ 0 or �3 I1 þ 10� 2 I1 þ 20þ 5 I2 ¼ 0 ðEq: 2Þ

The signs used in Equation 2 and the circuit diagrams are consistent with the description given above for
determining the signs of voltage changes. Applying KVR to the loop that starts at B and goes clockwise
around the right side of the circuit gives

�R3 I2 � "2 �R4 I3 ¼ 0 or �5 I2 � 20� 10 I3 ¼ 0 ðEq: 3Þ

Equations 1, 2, and 3 are the three needed equations for the three unknowns I1, I2, and I3. The solution of
these equations gives values for the currents of I1¼ 2.800A, I2¼�3.200A, and I3¼�0.400A. The currents
I2 and I3 are negative. This indicates that the original assumption of direction for these two currents was
incorrect. The interpretation of the solution is that there is a current of 2.800 A in the direction indicated in
the figure for I1, a current of 3.200 A in a direction opposite to that indicated in Figure 34-2 for I2, and a
current of 0.400 A in a direction opposite to that indicated for I3. This is a general feature of solutions using
Kirchhoff’s rules. Even if the original assumption of the direction of a current is wrong, the solution of the
equations leads to the correct understanding of the proper direction by virtue of the sign of the current.

E X P E R I M E N T A L P R O C E D U R E
1. If using resistance boxes, choose R1¼ 500O, R2¼ 750O, and R3¼ 1000O, but if using standard

resistors, choose values as close as possible to the values listed and use the ohmmeter to measure the
value of the resistors. Record those values in Data Table 1.

2. Using twopower supplies and the resistorsR1,R2, andR3, construct a circuit like that shown inFigure 34-3
with e1¼ 10.0V and e2¼ 5.00V.

3. Measure the currents I1, I2, and I3. Assuming that only one ammeter is available, the currents will have
to be measured one at a time by placing the ammeter in the positions shown in the circuit diagram as a
circle. Note that placing the ammeter in the circuit with the polarity shown in the circuit diagram will
give positive readings when the current is in the direction assumed. If a modern digital ammeter is
used for the measurements, the ammeter will give a positive reading if the current is in the direction
assumed, and will give a negative reading if the current is in the opposite direction. If an ammeter is
used that properly deflects in only one direction, the meter could be damaged if the current is in the
opposite direction from that assumed. In this case, bring the voltage of the power supplies up slowly
to see that the meter deflects in the proper direction.C
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4. Measure the emfs e1 and e2 with a voltmeter and record those values in Data Table 1. The terminal
voltages of the power supplies are assumed to approximate the emfs.

5. Construct the circuit of Figure 34-4, which also has two power supplies but has four resistors. Choose
values of e1¼ 5V, e2¼ 10V, R1¼ 1000O, R2¼ 800O, R3¼ 600O, and R4¼ 500O, or values as close to
those as possible. Determine and record in Data Table 2 the values of the resistors, the four currents,
and the emf of the power supplies.

C A L C U L A T I O N S
1. Apply Kirchhoff’s rules to the circuit of Figure 34-3 for the actual values used in the circuit. Three

equations in the three currents I1, I2, and I3 will result. One equation will be a KCR equation, and two
will be KVR equations. Record those three equations in the appropriate place in Calculations Table 1.

2. Solve the three equations for the values of I1, I2, and I3 and record the values in Calculations Table 1.

3. Calculate the percentage error of the experimental values of the current compared to the theoretical
values for each of the currents and record in Calculations Table 1.

4. Apply Kirchhoff’s rules to the circuit of Figure 34-4 with the actual values that were used in your
circuit. Four equations in the four currents I1, I2, I3, and I4 will result. One equation will be a KCR
equation, and three will be KVR equations. Record the four equations in the appropriate place in
Calculations Table 2.

5. Solve the four equations that you have written for the values of I1, I2, I3, and I4. Record those values in
Calculations Table 2.

6. Calculate the percentage error of the experimental values of the current compared to the theoretical
values for each of the currents and record in Calculations Table 2.

R1 (500 �)

R3 (1000 �)

R2 (750 �)

�2 (5.00 V)

I3�1 (10.0 V) I2

I1

A A
A

Figure 34-3 Experimental multi-loop circuit with three unknown currents.

R4 (500 �)

�2 (10.0 V)

R3 (600 �)

I4

I3 A

A

�1 (5.00 V)

R1 (1000 �)
I1

A

R2 (800 �)I2

A

Figure 34-4 Experimental multi-loop circuit with four unknown currents.
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34 L A B O R A T O R Y 3 4 Kirchhoff’s Rules

P R E - L A B O R A T O R Y A S S I G N M E N T
1. Consider the circuit in Figure 34-5. Choose any of the following statements about the circuit that are

true. More than one may be correct. (a) It is a single-loop circuit. (b) It is a multi-loop circuit.
(c) Assuming R1 and R2 were known, the currents could be determined, but only if Kirchhoff’s rules
were used. (d) Assuming R1 and R2 were known, the currents could be determined without the use of
Kirchhoff’s rules.

2. In the circuit of Figure 34-5, if I1¼ 2.00A and I2¼ 0.75A, what is the value of I3?

For questions 3 and 4, assume that the value of R1 and R2 in Figure 34-5 are both 4.00O.

3. What is the equivalent resistance of the circuit?
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Figure 34-5 Circuit for Questions 1 to 4.
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4. What is the current in the 5.00O resistor?

5. Consider the circuit of Figure 34-6. Apply Kirchhoff’s rules to the circuit and write three equations in
terms of known circuit elements and the unknown currents shown in the figure.

6. Solve the three equations that you wrote in Question 5 for the values of the currents.

7. If any of the current values obtained in the solution to Question 6 are negative, explain the significance
of a negative value for a current.

I1 I3

5.00 �

�

�

�

�

15.0 �

15.0 V

10.0 �

10.0 V

I2

Figure 34-6 Multi-loop circuit.
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L A B O R A T O R Y R E P O R T

C
O
P
Y
R
IG

H
T
ª

2
0
0
8
T
h
o
m
s
o
n
B
ro
o
k
s
/C
o
le

Data Table 1

Power Supply Voltages

"1 ¼ V

"2 ¼ V

Resistor Values (O)
Experimental Current

(mA)

R1¼ I1¼

R2¼ I2¼

R3¼ I3¼

Calculations Table 1

Kirchhoff’s rules for the circuit

(1) KCR—

(2) KVR1—

(3) KVR2—

Theoretical Current
(mA)

% Error Experimental to
Theoretical Current

I1¼

I2¼

I3¼

Data Table 2

Power Supply Voltages

"1 ¼ V

"2 ¼ V

Resistor Values (O)
Experimental Current

(mA)

R1¼ I1¼

R2¼ I2¼

R3¼ I3¼

R4¼ I4¼

Calculations Table 2

Kirchhoff’s rules for the circuit

(1) KCR—

(2) KVR1—

(3) KVR2—

(4) KVR3—

Theoretical Current
(mA)

% Error Experimental to
Theoretical Current

I1¼

I2¼

I3¼

I4¼
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S A M P L E C A L C U L A T I O N S
1. KCR, KVR1, and KVR2 provide three equations to be solved for I1, I2, and I3 for first circuit.

2. KCR, KVR1, KVR2, and KVR3 provide four equations to be solved for I1, I2, I3, and I4 for second
circuit.

Q U E S T I O N S
1. In Figure 34-3, state the equation that relates the currents I1, I2, and I3. Calculate the percentage

difference between the experimental values of the two sides of the equation.

2. In Figure 34-4, state the equation that relates the currents I1, I2, I3, and I4. Calculate the percentage
difference between the experimental values of the two sides of the equation.

3. Are the experimental values of the currents for the entire laboratory generally larger or smaller than
the theoretical values expected for the currents?
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4. An ideal ammeter has zero resistance. Real ammeters have small but finite resistance.Would ammeter
resistance cause an error in the proper direction to account for the direction of your error indicated in
Question 3? State your reasoning.

5. The connecting wires in the experiment are assumed to have no resistance, but in fact have a finite
resistance. Would this error be in the proper direction to account for the direction of the error stated in
your answer to Question 3? State your reasoning.
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Magnetic Induction
of a Current Carrying
Long Straight Wire

O B J E C T I V E S
o Use a compass to determine the direction of the B field surrounding a current carrying long

straight wire to confirm that it is consistent with the right-hand rule.

o Determine the induced voltage in a small inductor coil placed near the long straight wire as a
relative measurement of the B field.

o Demonstrate that the magnitude of the B field surrounding a long straight wire decreases as 1/r
where r is the perpendicular distance from the wire.

E Q U I P M E N T L I S T
. Direct current power supply (low voltage, 2 A), direct current ammeter (2A)

. Sine wave generator (variable frequency up to 100 kHz, 5 V peak to peak)

. Alternating current digital voltmeter (frequencies up to 100 kHz)

. 100-mH inductor coil (length� 1 cm and inside diameter� 1 cm)

. Small compass, long straight wire apparatus (Consists of a frame on which a continuous strand of wire
is wrapped for 10 loops. The 10 strands are taped together over a length of approximately 40 cm to
approximate a wire with a current having 10 times the current as in a single strand of the wire. The
apparatus can be placedwith the long straight section parallel to the laboratory table or perpendicular to
the table.)

T H E O R Y
When a current I exists in an infinitely long straight wire, the lines of magnetic induction B are con-
centric circles surrounding the wire. At a perpendicular distance r from the wire, the B field is tangent to
the circle as shown in Figure 35-1. The direction of the current I is perpendicular to the plane of the
page and directed out of the page. The direction of the current is by definition the direction that positive
charge would flow. The magnitude of the B field as a function of I and r is given by
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B ¼ moI
2p r

ðEq: 1Þ

where mo¼ 4p� 10�7 weber/amp-m, I is in amperes, and r is in meters. The units of B are weber/m2, which
has been given the name Tesla.

The direction of the B field relative to the current direction is given by the following right-hand rule.
If the thumb of the right hand points in the direction of the current, the four fingers of the right hand curl
in the direction of the B field. This rule assumes that the B field forms circles, and the rule determines only
in which direction to take the tangent to the circles as shown in Figure 35-1. In Figure 35-1 the lengths of
the B vectors are shorter for the larger circles, which shows that the B field decreases with distance from
the wire as predicted by Equation 1.

In a strict sense, the above statements apply only to an infinitely long straight wire. In this laboratory,
the straight portion of the wire is of some finite length L. For measurements made at the center of the
wire length within a perpendicular distance of L/4 from the wire, the finite wire will approximate an
infinite wire. If the current in the long straight wire is constant in time, the B field created by that current
will be constant in time. The direction of the B field will be determined by observing the effect of the
B field on a small compass placed in the vicinity of the long straight wire.

If the current in the long straight wire is an alternating current produced by a sine wave generator,
the B field surrounding the wire will also vary with time. If a small coil of self-inductance 100 mH is
placed next to the wire, an alternating voltage will be induced in the coil, according to Faraday’s law of
induction. The induced voltage in the coil is proportional to the rate of change of the magnetic flux
through the coil, and hence to the magnitude of the time-varying B field. The quantity actually measured
is an alternating electric voltage, but its magnitude is proportional to the B field and will be taken to be a
relative measurement of the B field at different distances from the wire.

E X P E R I M E N T A L P R O C E D U R E
Direction of the B Field

1. Connect the circuit shown in Figure 35-2 using the direct current power supply and the direct current
ammeter. Arrange the long wire apparatus so that the outside long wire is in a horizontal plane along
a north-south axis. Ask your instructor the direction of north in the laboratory room. Arrange the wire
so that the direction of the current is from north to south. Determine the direction of the current by
tracing the wires from the (þ) terminal of the power supply. Have the circuit approved by your
instructor to ensure that the current is in the proper direction.

2. Turn on the power supply and turn up the voltage until a current of 2.00 A is read on the ammeter.
Do not exceed a current of 2.00 A.

3. Place the compass in the middle of the long wire section directly above the wire as close to the wire
as possible. State the direction (north, south, east, northeast, etc.) that the compass needle points.
Record your answer in Data Table 1.

B Field

Current
Carrying Wire

Figure 35-1 B field near a wire carrying current out of the page.
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4. Repeat Step 3 with the compass immediately below the long wire section.

5. Stand the long wire apparatus on its end so that the current in the outside long wire is vertically
downward. Place the compass next to the wire at the four positions indicated by the open circles in
Figure 35-6 in the Laboratory Report section. The 	 represents the downward current viewed from
above. In the open circles that represent the four compass positions, draw an arrow showing the
direction that the compass needle points.

B Field as a Function of Distance

1. Connect the circuit shown in Figure 35-3 using the long wire apparatus and the sine wave generator.
Turn the generator to maximum amplitude. Stand the long wire apparatus on its end so that the
outside long wire is vertical. Place in the apparatus the platform that serves to hold the inductor coil.

2. Connect the inductor coil to the digital voltmeter. Twist the leads about 10 to 15 times before
connecting them between the inductor coil and the voltmeter. This is extremely important because it
will minimize the voltage that is induced in the leads themselves, and will ensure that the voltage
induced is in the inductor coil. Place the inductor coil on the platform as shown in Figure 35-4. The axis
of the inductor coil should be perpendicular to an imaginary line that is perpendicular to the
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Power Supply

Direction of Current in Long Wire

A

Figure 35-2 Long wire apparatus connected to direct current supply.

Platform

Sine Wave
GeneratorLong Wire

Figure 35-3 Long wire apparatus connected to the sine wave generator.

1

Current (Perpendicular to page)

Coil Axis

r3

r2

r1

Figure 35-4 View looking down from above. Current alternates in and out of the page.
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current-carrying wire (shown as the dotted line labeled 1 in the figure). The inductor coil is shown at
three different distances r1, r2, and r3 from the wire. At each position of the inductor coil shown, the B
field will alternate in opposite directions along the axis of the coil. The coil is chosen to be short
(� 1 cm) and of small cross-section (diameter� 1 cm) because for that choice, the B field direction is
approximately along the coil axis and is approximately uniform over the cross-section of the coil.

3. The amplitude of the induced voltage on the digital voltmeter will depend upon the frequency of
the generator. With the inductor about 3 cm from the wire, with its axis positioned as shown in
Figure 35-5, vary the generator frequency until the maximum voltage is read on the digital volt-
meter. Make all measurements at this frequency.

4. Measure the voltage induced in the inductor coil as a function of r, the distance from the center of
the coil to the center of the wire. Take data from r¼ 3.0 cm to r¼ 9.0 cm in increments of 1 cm. Data are
not taken for r less than 3 cm because at distances close to the wire, the B field is extremely non-
uniform over the coil cross-section. Record the values of the voltage as trial one in Data and
Calculations Table 2 under the column labeled B1. If this was actually the B field, the units would be
Tesla. The measured quantity is a voltage that is proportional to B, so no units are stated.

5. Repeat Step 4 two more times measuring the induced voltage at each r. Record the values of trials
two and three in Data and Calculations Table 2 under B2 and B3.

C A L C U L A T I O N S
1. Calculate the mean and standard error for the three trials of B and record them as B and aB in Data

and Calculations Table 2.

2. Calculate the percent standard error at each point by calculating aB=B and expressing it as a
percentage. Record the values in Data and Calculations Table 2.

3. Calculate the value of 1/r for each of the values of r and record them in Data and Calculations Table 2.

4. Perform a linear least squares fit to the data of B versus 1/r with B as the vertical axis and 1/r as the
horizontal axis. Record the value of the slope, the intercept, and the correlation coefficient.

G R A P H S
1. Make a graph of the data with B as the vertical axis and 1/r as the horizontal axis. Also show on the

graph the straight line obtained from the least squares fit.

Figure 35-5 Homemade long wire apparatus with inductor coil in position.
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35 L A B O R A T O R Y 3 5 Magnetic Induction of a Current Carrying
Long Straight Wire

P R E - L A B O R A T O R Y A S S I G N M E N T
1. State the right-hand rule that relates the direction of the B field near a long straight wire to the

direction of the current in the wire.

2. The direction of current is defined to be the direction in which _______________ charges would flow.

3. State the equation that relates the magnitude of the B field near a long straight wire to the current I
in the wire and the distance r from the wire.

B ¼

4. There is a current of 10.0 A in a long straight wire. What is the magnitude of the B field 5.00 cm from
the wire? Show your work.

5. When a current that is constant in time passes through a wire, the B field that is produced around the
wire is (a) time varying (b) constant in time (c) negative (d) zero.
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6. Why are measurements using the inductor coil not taken close to the wire? In other words, why do the
measurements start 3.00 cm away from the wire?

7. If an inductor coil is placed near a long wire carrying a current that is constant in time, the voltage
induced in the coil is (a) positive (b) negative (c) zero (d) nonzero.
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L A B O R A T O R Y R E P O R T
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Figure 35-6 Indicate the compass direction at the positions shown.

Data Table 1

With compass above the wire, compass direction¼

With compass below the wire, compass direction¼

Data and Calculations Table 2

r (cm) B1 B2 B3 1/r (cm�1) B aB % aB

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Slope¼ Intercept¼ Corr. Coeff.¼
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S A M P L E C A L C U L A T I O N S
1. 1/r¼

Q U E S T I O N S
1. Describe the reasoning used to apply the right-hand rule to the situations in Data Table 1, what is

predicted, and how your results do or do not agree with those predictions.

2. Evaluate the precision of the measurements of the induced voltage as a function of distance from the
wire. Consider the percentage standard error of the measurements in your evaluation.

3. State the extent to which your measurements confirm the expectation that B is proportional to 1/r.
Give the evidence for your evaluation of this question.

4. When the direct current is 2.00 A in a single wire of the bundle of 10 wires, the total current in the
bundle of wire that approximates the long straight wire is 20.0 A. What is the magnitude of the B field
3.00 cm from this long straight wire carrying a current of 20.0 A? What is the magnitude of the
B field 9.00 cm from the wire carrying 20.0 A?
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5. A constant current is in a long straight wire in the plane of the paper in the direction shown below
by the arrow. Point X is in the plane of the paper above the wire, and point Y is in the plane of the
paper but below the wire. What is the direction of the B field at point X? What is the direction of the
B field at point Y?

Y

X

Direction at X¼ ____________________________________________________________

Direction at Y¼ ____________________________________________________________
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Alternating Current
LR Circuits

O B J E C T I V E S
o Investigate the phase angle of a generator current relative to the generator voltage.

o Demonstrate that real inductors consist of both inductance and resistance, and that they can be
represented by a pure inductor L in series with a pure resistance r.

o Determine the value of L and r for an unknown inductor.

E Q U I P M E N T L I S T
. Sine wave generator (variable frequency, 5 V peak to peak amplitude), resistance box

. A 100-mH inductor (resistance� 350 O to serve as an unknown)

. Alternating current voltmeter (digital readout, high frequency capability), compass, protractor

T H E O R Y
Consider the two circuits shown in Figure 36-1 in which a sine wave generator of frequency f is connected
separately to resistor R and then to a pure inductance L. The generator is assumed to have a maximum
voltage of V and will thus produce a maximum voltage of V across the resistor in circuit (a). It will also
produce a maximum voltage of V across the inductor in circuit (b). The voltage across the resistor is
related to the current by a relationship like that for direct current circuits, which is

VR ¼ IR ðEq: 1Þ

If L is the inductance (units H) and o¼ 2pf is the angular frequency of the generator in rad/s, then the
following relationship exists between the voltage VL and the current I

VL ¼ IoL ðEq: 2Þ

The quantity oL is called the inductive reactance, and it has units of O.
When an alternating current or voltage is measured in the laboratory on a meter, the number read for

the current or voltage must be a time-averaged value. Meters are normally calibrated so that they respond
to the root-mean-square value of the current or voltage. A root-mean-square value of voltage is designated
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asVrms. The relationship betweenVrms andV the maximum voltage isVrms¼ 0.707V. In this laboratory only
voltage will be measured, and all the measurements will be rms values.

Also shown in Figure 36-1 below each circuit is a graph of the current and voltage across the element
for one full period. The graph for the case of the resistor indicates that the resistor current IR and the
resistor voltage VR are in phase. For the inductor, the graph shows that the inductor current IL and
the inductor voltage VL are 908 out of phase, with the voltage leading the current by 908.

Shown at the bottom of Figure 36-1 is a diagram called a phasor diagram. Its purpose is also to show the
phase relationship. The phasors are vectors drawn with length proportional to the value of the represen-
ted quantity, and they are assumed to be rotating counterclockwise with the frequency of the generator.
At any time, a projection of one of the rotating vectors on the y axis is the instantaneous value of that
quantity. Because the resistor current and voltage are in phase, the phasors are in the same direction. For the
inductor, the vector representing the inductor voltage is 908 ahead of the vector representing the current.

Consider now the circuit obtained by placing a pure inductance L having no resistance and a resistor
R in series with a sine wave generator of voltage V shown in Figure 36-2.

V R V L

IR
VR

VL

IRVR

(a)

IL

VL

(b)

IL

Figure 36-1 Generator and resistor and generator and inductor. Phase relationships between the voltage and
current and phasor diagrams of the phase relationships.

V VL

VR

V

�R

L

Figure 36-2 Series circuit of resistor and inductor and associated phasor diagram.
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For this circuit, the current I is the same at every instant of time in all three circuit elements. Also given
in Figure 36-2 is a phasor diagram in which only the voltages are shown. The phasor representing the
current (which is not shown) would be in the direction of the phasor labeled VR because the current and
the resistor voltage are in phase. Note that the inductor voltage VL is 908 ahead of the resistor voltage VR,
and the generator voltage is angle f ahead of VR. This phasor diagram shows that the generator voltage V
is the vector sum of VR and VL. In equation form the phasor diagram states

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

L þ V2
R

q
ðEq: 3Þ

The phasor diagram shows that the phase angle f is related to the voltages VL and VR, and thus to the
resistance R and oL through Equations 1 and 2. The relationship is given by

tanf ¼ VL

VR
¼ oL

R
ðEq: 4Þ

Note that Equation 4 is strictly valid only for a pure inductor that has no resistance. Real inductors have
both an inductance L and an internal resistance r, and can be represented by a pure inductance L in series
with a pure resistance r. In Figure 36-3 a real inductor is shown in series with a resistor R and a generator
of voltage V. The voltage between points A and B is the generator voltage V, and the voltage between
A and C is the resistor voltage VR. Between the points B and C is the combined voltage across the
inductance L and the internal resistance r. This voltage will be referred to asVind. There is some voltageVL

across L, and some voltage Vr across r. However, there can be no direct measurement of VL or Vr. The only
quantity that can be measured is Vind, which is the vector sum of VL and Vr. A phasor diagram for the
circuit is also shown in Figure 36-3.
Applying the law of cosines to the triangle formed by V, VR, and Vind leads to

cosf ¼ V2 þ V2
R � V2

ind

2VVR
ðEq: 5Þ

The phasor diagram in Figure 36-3 shows that voltages VL and Vr can be determined from V, VR, and f by

VL ¼ Vsinf and Vr ¼ Vcosf� VR ðEq: 6Þ

The current I is the same in all the elements of the circuit, and it can be related to the voltage across each
element by the following equations:

VL ¼ IoL VR ¼ IR Vr ¼ Ir ðEq: 7Þ
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V

Vind

VL

VR Vr
A

R

L

r

C

B

�

V

Figure 36-3 Series circuit of inductor with inductance L and internal resistance r, a resistor R, and a generator
of voltage V. Also shown is the phasor diagram of the voltages.
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With f, VL, and Vr determined from Equations 5 and 6, Equations 7 can be used to solve for oL and r by
eliminating I to get

oL ¼ R
VL

VR
r ¼ R

Vr

VR
ðEq: 8Þ

E X P E R I M E N T A L P R O C E D U R E
1. Connect the inductor in series with the sine wave generator and a resistance box to form a circuit

like that of Figure 36-3. Set the generator to maximum voltage and a frequency of 800 Hz. Set the
resistance box to a value of 400 O and record that value as R and the frequency f in the Data Table.

2. Using the alternating current voltage scale on the voltmeter, measure the generator voltage V, the
inductor voltage Vind, and the resistor voltage VR. Record these values in the Data Table.

3. Repeat Steps 1 and 2 for R of 600, 800, and 1000. Even though the voltage setting is left at the maximum
setting, the generator output might change slightly in response to the changes in R. Therefore, be sure
to measure all three voltages for each value of R.

4. Make careful note of the particular inductor used and the values of L and r determined. You may
need to identify it and use it again in other laboratory exercises.

C A L C U L A T I O N S
1. From the known value of the frequency f, calculate and record in the Calculations Table the value of

the angular frequency o (o¼ 2pf ).

2. Use the appropriate equations to calculate cosf, f, VL, Vr, oL, r, and L for each of the four cases.
Record all values in the Calculations Table.

3. Calculate the mean and standard errors for the four values of r and the four values of L and record
them in the Calculations Table as r, L, ar, and aL.

G R A P H S
1. Construct to scale a phasor diagram like the one shown in Figure 36-4 for each of the four cases.

Use one sheet of graph paper and make four separate diagrams on the one sheet of paper. Choose a
scale (for example, 1.00 V/cm) so that the diagrams are as large as possible, but that each one fits on
one-fourth of the sheet of paper. First construct a vector along the x axis with a length scaled to the
magnitude ofVR, as shown in Figure 36-4. Use a compass to construct an arc from the end of VRwith a

Arc Vind

Arc V

VR

V

Vind

VR

�

V
Vind

Vr

VL

VR

�

(a) (b) (c)

Figure 36-4 Phasor diagram construction.
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radius the length of the scaled value of Vind. Finally, construct an arc from the beginning of VR with
a radius the length of the scaled value of V. The intersection of the two arcs is the intersection of Vind

and V, and those two vectors can then be drawn in their proper direction as shown in part (b) of the
figure. Finally, VL and Vr can be constructed as shown in part (c) of the figure by dropping a
perpendicular from the intersection of the arcs to the x axis and extending a vector from the end of VR.
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36 L A B O R A T O R Y 3 6 Alternating Current LR Circuits

P R E - L A B O R A T O R Y A S S I G N M E N T
1. For a resistor in a series alternating current circuit, the phase relationship between the current in

the resistor and the voltage across the resistor is (a) the current leads the voltage by 908 (b) the voltage
leads the current by 908 (c) the current is in phase with the voltage (d) the current is at some phase
angle f relative to the voltage (f is dependent on the circuit parameters).

2. For an inductor in a series alternating current circuit, the phase relationship between the current in
the inductor and the voltage across the inductor is (a) the current leads the voltage by 908 (b) the
voltage leads the current by 908 (c) the current is in phase with the voltage (d) the current is at some
phase angle f relative to the voltage (f is dependent on the circuit parameters).

3. For a generator in a series alternating current circuit, the phase relationship between the generator
voltage and the current in the generator is (a) the current leads the voltage by 908 (b) the voltage leads
the current by 908 (c) the current is in phase with the voltage (d) the current is at some phase angle f
relative to the voltage (f is dependent on the circuit parameters).

4. If a generator has a maximum voltage of 5.00 V, what is the root-mean-square voltage of the
generator? Show your work.

Vrms ¼ V

5. A 2.50 mH inductor has an rms voltage of 15.0 V across it at a frequency f¼ 200Hz. What is the rms
current in the inductor? Show your work.

Irms ¼ A
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6. A pure inductor L and a pure resistor R are in series with a generator of voltage V. The voltage across
the inductor is VL¼ 10.0V. The voltage across the resistor is 15.0 V. What is the voltage V of the
generator? Show your work.

V ¼ V

7. A 500 O resistor and a real inductor with a pure inductance of L and an internal resistance of r are in
series with a generator with a voltage of V¼ 10.0V and an angular frequency of o¼ 1000 rad/s.
The voltage across the real inductor is measured to be 4.73 V, and the voltage across the 500 O resistor
is measured to be 6.57 V. What is the value of L and r? (Hint—This is the measurement to be per-
formed in this laboratory exercise. Use the appropriate equation to find f, then the appropriate
equations to find VL and Vr, and then the appropriate equations to find oL and r. Finally, find L from
the known value of o.) Show your work.
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Data Table

f¼ Hz

R (O)

V (V)

Vind (V)

VR (V)

Calculations Table

o¼ 2pf¼ rad/s

cosf

f (degrees)

VL (V)

Vr (V)

oL (O)

r (O)

L (H)

r ¼ O ar¼ O L ¼ H aL¼ H
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S A M P L E C A L C U L A T I O N S
1. o¼ 2pf¼
2. cosf ¼ V2 þ V2

R �V2
ind

2VVR
¼

3. f¼ cos�1(cosf)¼
4. VL¼V sinf¼
5. Vr¼V cosf�VR¼
6. oL¼ (R)(VL)/VR¼
7. r¼ (R)(Vr)/VR¼
8. L¼ (oL)/(o)¼

Q U E S T I O N S
1. Comment on the precision of your measurement of L and r. State the evidence for your comments.

2. Examine the phasor diagrams that you have constructed. Using a protractor, measure the angle
f of the constructed triangle of V, VR, and Vind. Compare it with the calculated value of f for each
of the phasor diagrams. Calculate the percentage error in the value of f from the diagram compared to
the calculated value.

3. If your inductor was used in a series circuit with a resistance of R¼ 10,000O and a generator of
o¼ 100,000 rad/s, what would be the phase angle f? (Hint—The resistance of the inductor would be
negligible.)

4. Consider the circuit that you measured with R¼ 600 O. Calculate the value of the current from each of
the three Equations 7 and compare their agreement.
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Alternating Current RC
and LCR Circuits

O B J E C T I V E S
o Investigate the phase relationship between the voltage across the resistor VR and the voltage

across the capacitor VC in an RC circuit.

o Determine the value of the capacitance of a capacitor in an RC circuit.

o Investigate the phase relationships among the voltages across the resistor, the capacitor, and the
inductor in an LCR circuit.

E Q U I P M E N T L I S T
. Sine wave generator (variable frequency, 5 V peak to peak amplitude), resistance box

. A 100-mH inductor of known L and r, 1.00-mF capacitor, compass, protractor

. Alternating current voltmeter (digital readout, capable of measuring high frequency)

. (This laboratory assumes that either Laboratory 36 has previously been performed, and that the values of the
inductance (L) and resistance (r) for that inductor coil have been recorded and retained, or else an inductor with
accurate known values of L and r is provided.)

T H E O R Y
RC Circuit

A series circuit consisting of a capacitor C, a resistor R, and a sine wave generator of frequency f is shown
in Figure 37-1. Also shown in the figure is a phasor diagram for the generator voltageV, the voltage across
the resistor VR, and the capacitor voltage VC. It is assumed that all voltages discussed in this laboratory
are root-mean-square values. The voltages VR and VC are 908 out of phase, and the voltages V, VR, and VC

form a right triangle as shown in Figure 37-1. Therefore, the equation relating the magnitudes of the
measured voltages in an RC circuit is

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

C þ V2
R

q
ðEq: 1Þ

Note that Equation 1 is valid for only a pure capacitor with no resistive component. If measurements on
a real capacitor show agreement with Equation 1, it would indicate that the capacitor has no significant
resistive component.
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In an RC circuit the current I is the same in each element of the circuit, and the relationships between
the voltage and the current for the resistor and capacitor are

VR ¼ I R and VC ¼ Ið1=oCÞ ðEq: 2Þ

The quantity 1/oC is called the capacitive reactance, and it has units of ohms. If the current is eliminated
between the two equations in 2, an equation for C is given by

C ¼ 1

oR

� 	
VR

VC

� 	
ðEq: 3Þ

Thus a value for the capacitance of an unknown capacitor can be determined from Equation 3 if o and R
are known and VR and VC are measured.

LCR Circuit

Consider a series LCR circuit shown in Figure 37-2 with a generator of voltageV, a resistorR, a capacitorC,
and an inductor having inductance L and resistance r. Note that the capacitor is assumed to have no
resistance. Also shown in Figure 37-2 is the phasor diagram for the voltages V, VR, VC, VL, and Vr. The
figure shows that VL and VC are 1808 out of phase, and VR and Vr are in phase. The quantities VL�VC, V,
and VRþVr form a right triangle and

V VC

VR

V

C

R

(a) (b)

�

Figure 37-1 RC circuit and the phasor diagram for the voltage across each element.

VC

Vind

V

C

R

Lr

Gen VR VL � VC

VL

VC
VR

V

Vr

�

(a) (b)

Figure 37-2 LCR circuit with voltmeter in the four positions to measure voltage across each element of the
circuit. Also shown is a phasor diagram of all the relevant voltages.
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V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVL � VCÞ2 þ ðVR þ VrÞ2

q
ðEq: 4Þ

It is not possible to measure either VL or Vr directly. The only voltage associated with the inductor that
can be measured experimentally is shown in Figure 37-2 as Vind, and it is the vector sum of the voltages
VL and Vr. The relationship between Vind, VL, and Vr is shown in Figure 37-3. The figure shows that
the voltages Vind, VL, and Vr obey the relationship

V2
ind ¼ V2

L þ V2
r ðEq: 5Þ

The current I is the same in each element of the circuit, and VL and Vr can be expressed as

VL ¼ I ðoLÞ and Vr ¼ I r ðEq: 6Þ

The quantity oL is called the inductive reactance. It has units of ohms. If Equations 5 and 6 are combined,
and the current I is eliminated, it can be shown that

VL ¼ Vind
oLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðoLÞ2 þ r2
q and Vr ¼ Vind

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðoLÞ2 þ r2

q ðEq: 7Þ

Assuming that o, L, and r are known, Equation 7 can be used to determine VL and Vr if Vind is measured.
These values of VL and Vr combined with measured values of VR and VC can be used in Equation 4 to
verify the relationship between these quantities and the measured generator voltage V.

E X P E R I M E N T A L P R O C E D U R E
RC Circuit

1. Connect the capacitor provided in series with the sine wave generator and a resistance box to form a
circuit like that shown in Figure 37-1. Set the generator output to maximum voltage and set the
frequency to 250Hz. Record the value of f in Data Table 1. Set the resistance box to a value of 300 O
and record that value as R in Data Table 1.

2. Use the alternating voltage scale on the voltmeter to measure and record in the Data Table the
generator voltage V, the capacitor voltage VC, and the voltage across the resistor VR.

3. Repeat the above procedure for three other cases using R¼ 500, 700, and 900 O. The generator output
might change slightly in response to changes in R. Therefore, measure all three voltages for each value
of R.

4. Obtain a value for the capacitance of your capacitor from your instructor. Record this known value as
Ck in Data Table 1.C
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Figure 37-3 Phasor diagram for the voltages across the components of the inductor.
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LCR Circuit

1. Construct a series LCR circuit like the one shown inFigure 37-2using the same capacitor usedpreviously,
an inductor for which the values of L and r are known, a resistance box, and the sine wave generator.
Record the values of L and r in Data Table 2.

2. Set the generator output to maximum voltage and set the frequency to 800Hz. Set the resistance box
to a value of 200 O. Record the values of f and R in Data Table 2.

3. Using the alternating voltage scale on the voltmeter, measure the generator voltage V, the capacitor
voltage VC, the resistor voltage VR, and the inductor voltage Vind. Record these values in Data Table 2.

4. Repeat the procedure of Steps 1 through 3 with the generator frequency set to f¼ 600Hz and the
resistance box set to R¼ 200O.

5. Repeat the procedure of Steps 1 through 3 two more times, once with R¼ 300O and f¼ 600Hz, and
again with R¼ 300O and f¼ 800Hz.

C A L C U L A T I O N S
RC Circuit

1. From the known value of the frequency f, calculate the value of the angular frequency o¼ 2pf. Record
the value of o in Calculations Table 1.

2. Calculate the quantity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

C þ V2
R

q
for each case and record the values in Calculations Table 1. Calculate

the percentage error in each of these values compared to the measured values of the generator voltage
and record them in Calculations Table 1.

3. Calculate the values of C from the measured values of VR and VC for each value of R. Record each
value of C in Calculations Table 1. Calculate the mean C and the standard error aC for the four values
of C and record them in Calculations Table 1.

4. Calculate the percentage error in the value of C compared to the known value of the capacitance Ck.

LCR Circuit

1. From the known value of f for each case, calculate the angular frequency o¼ 2pf and record the
values in Calculations Table 2.

2. Calculate the four values of VL and Vr and record them in Calculations Table 2.

3. Calculate and record in Calculations Table 2 the four values of VL�VC and VRþVr.

4. For each of the four cases calculate and record in Calculations Table 2 the value of the quantityffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVL�VCÞ2 þ ðVR þ VrÞ2

q
:

5. Calculate the percentage error in the quantity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVL�VCÞ2 þ ðVR þ VrÞ2

q
compared to the measured

value of the generator voltage V. Record the values of those percentage errors in Calculations Table 2.
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37 L A B O R A T O R Y 3 7 Alternating Current RC and LCR Circuits

P R E - L A B O R A T O R Y A S S I G N M E N T
1. In a series RC circuit such as the one in Figure 37-1, the following phase relationship exists between

the generator voltage V, the capacitor voltage VC, and the resistor voltage VR. (a) V and VR are in
phase,VC lagsVR by 908 (b)VC andVR are at angle f,V leadsVC by 908 (c)VC lagsVR by 908,V lagsVR

by angle f (d) VR lags VC by f, VC leads V by 908.

2. If a series RC circuit hasVR¼ 12.6V andVC¼ 10.7V, the generator voltagemust be (a) 12.6 V (b) 23.3 V
(c) 1.9 V (d) 16.5 V. Show your work.

3. A series RC circuit has o¼ 2000 rad/s and R¼ 300O. The voltage VC is measured to be 4.76 V, and VR

is measured to be 6.78 V. What is the value of C? Show your work. (a) 2.37 mF (b) 5.00 mF (c) 1.17 mF
(d) 4.67 mF.

4. A series RC circuit of R¼ 500O and C¼ 3.00mF is measured to have VR¼ 8.07V and VC¼ 6.68V. What
is the current I, and what is the value of o the angular frequency? Show your work.

I ¼ A o¼ rad=s
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5. A series LCR circuit consists of an inductor of inductance L and resistance r, a capacitor C, a resistor
R, and a generator of voltage V. Mark as true or false the following statements concerning the relative
phase of V, VL, Vr, VC, and VR.

_____ 1. Vr and VR are in phase.

_____ 2. VL leads VC by 908.

_____ 3. V is at angle f relative to VR.

_____ 4. VL�VC is in phase with Vr.

_____ 5. VC lags VR by 908.

6. Measurements on the circuit described in Question 5 give VL¼ 10.76V, VC¼ 5.68V, VR¼ 6.32V, and
Vr¼ 3.75V. What is the generator voltage V? Show your work.

V ¼ V

7. An inductor with L¼ 150mH and r¼ 200O is in series with a capacitor, a resistor, and a generator of
o¼ 1000 rad/s. The voltage across the inductor Vind is measured to be 10.87V, VR is measured to
be 4.65V, and VC is measured to be 5.96V. What is the generator voltage V? (Hint—This is the
measurement to be performed in this laboratory for LCR circuits. Use the appropriate equations to
find VL and Vr, and then use them and the values of VR and VC to calculateV.)
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Data Table 1

f¼ Hz Ck¼ mF

R (O)

VC (V)

VR (V)

V (V)

Calculations Table 1

o¼ rad/s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

C þ V2
R

q
% Error

C (mF)

C¼ mF aC¼ mF % Error C¼
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S A M P L E C A L C U L A T I O N S
1. o ¼ 2pf¼
2. V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

C þ V2
R

q
¼

3. C ¼ (1/oR)(VR/VC)¼
4. VL ¼ ðVindÞ oL=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðoLÞ2 þ r2

q� 	
¼

5. Vr ¼ ðVindÞ r=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðoLÞ2 þ r2

q� 	
¼

6. V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVL�VCÞ2 þ ðVR þ VrÞ2

q
¼

Calculations Table 2

o (rad/s)

VL (V)

Vr (V)

(VL�VC) (V)

(VRþVr) (V)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVL�VCÞ2 þ ðVR�VrÞ2

q
ðVÞ

% Error compared to V

Data Table 2

r¼ O L¼ H C¼ mF

f (Hz)

R (O)

V (V)

Vind (V)

VC (V)

VR (V)
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Q U E S T I O N S
1. Comment on the agreement between the measured generator voltage V and the quantity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

C þ V2
R

q
for the RC circuit data.

2. Do your results for Question 1 confirm that the capacitor has no resistance? State specifically how the
data either do or do not confirm this expectation.

3. State carefully your evaluation of the precision of your measurements of the value of the capacitor
in the RC circuit. State the evidence for your opinion.

4. Considering the given value of Ck as the true value, comment on the accuracy of your measurements
of the capacitance.

5. Comment on the agreement between the measured generator voltage V and the quantityffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVL�VCÞ2 þ ðVR þ VrÞ2

q
in the LCR circuit.
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6. Do your results confirm the phasor diagram of Figure 37-2 as a correct model for the addition of the
voltages in an LCR circuit? State why they do or do not confirm this model.
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Oscilloscope Measurements

O B J E C T I V E S
o Investigate the fundamental principles and practical operation of the oscilloscope using signals

from a function generator.

o Measure sine and other waveform signals of varying voltage and frequency.

o Compare voltage measurements with the oscilloscope to voltage measurements using an alter-
nating current voltmeter.

E Q U I P M E N T L I S T
. Oscilloscope (typical direct current to 20Mhz), alternating current voltmeter (high frequency capability)

. Function generator (sine wave plus additional wave form such as a square wave or triangular wave),
appropriate connecting wires (BNC to banana plug)

T H E O R Y
The fundamental working part of an oscilloscope is a device called a cathode-ray tube (CRT). Its com-
ponents include a heated filament to emit a beam of electrons, a series of electrodes to accelerate, focus,
and control the intensity of the emitted electrons, two pairs of deflection plates that deflect the electron
beam when there is a voltage between the plates (one pair for deflection in the horizontal direction and
one pair for deflection in the vertical direction), and a fluorescent screen that emits a visible spot of light
at the point where the beam of electrons strikes the screen. Together the heated filament and series of
electrodes are called an electron gun. The electron gun and deflecting plates are arranged linearly inside
an evacuated glass tube, and the fluorescent screen coats the glass tube at the opposite end of the tube
from the electron gun as shown in Figure 38-1.

When there is no voltage between either pair of deflection plates, the electron beamwill travel straight
down the evacuated tube and strike the center of the fluorescent screen.When a constant voltage is applied
between either the horizontal or vertical deflection plates, the beamwill be displaced by a constant amount
on the fluorescent screen in either the horizontal (x) or vertical (y) direction. The direction of the displa-
cement depends upon the sign of the voltage, and the magnitude of the displacement is proportional to
the voltage. If a time-varying voltage is applied to either set of deflecting plates, the displacement of the
beam will vary with time as the applied voltage varies with time, and the electron beam spot will move
on the screen as a function of time. When the beam strikes the screen the phosphor glow persists for
approximately 0.1 s.
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We can deflect the electron beam in the horizontal (x) direction to represent a time scale by applying a
time-varying sawtooth voltage waveform as shown in Figure 38-2.

When a voltage of that waveform and of the appropriatemaximumvoltage is applied to the horizontal
plates, the beam spot will sweep across the fluorescent screen once each time the voltage linearly increases
from its minimum up to its maximum. At the end of the sweep of the beam across the screen, the beam
returns to the left of the screen. The time this takes will equal the period T of the sawtooth waveform.
Because this waveform sweeps the beam across the screen, it is commonly called the sweep generator.

If the period T of the sweep generator is 1 s, the beamwill clearly be recognizable as a spot thatmoves at
constant speed across the tube face. If the period is as short as 0.1 s, the beam is no longer recognizable as a
spot, but instead appears to be a somewhat pulsating line. This is because of the persistence of the phosphor,
which causes the trace to still be glowing from one pass of the beamwhen another pass of the beam begins.
For periods T of 0.01 s or less, the beam is moving across the screen so often that the persistence of the
phosphor makes the trace appear as a steady line.

The oscilloscope is designed so that a series of specific sweep generator periods can be applied to the
horizontal plates by selecting the position of a multiposition switch. The width of oscilloscope screen is
fixed, usually 10 cm. Each different choice of period T represents a specific time per length of scale
division in the horizontal direction. Typically these are chosen to decrease in a series of scales that are in
the ratio 2:1:0.5. For a typical student-type oscilloscope, the time scales would be 19 settings ranging
from 0.2 s/cm to 0.2ms/cm. Because the screen is 10 cm wide, there is a factor of 10 between the period T
and the time scale. If the period of the sweep generator is 10ms, the time scale is 1ms/cm. Time t¼ 0 is
assumed to occur at the left of the screen, and time is assumed to increase to the right.

In the vertical direction the screen is typically smaller, usually about 8 cm total. The vertical input is
calibrated directly in volts. The input voltage scale is also variable by the choice of a multiposition switch
that selects the appropriate amplification of the input voltage over some chosen voltage range. The typical
range of possible voltage scales is from 5V/cm to 5mV/cm. This choice of voltage scales allows a range of
input voltages to be displayed with deflections on the oscilloscope screen that are large enough to be
easily visible. For the choices stated, the maximum voltage that can be displayed on the screen is 20V.
The voltage can be either positive or negative polarity, so the vertical scale has its zero in the center of the
screen to display both positive and negative voltages.

Brightness Focus

Vertical
Deflection
Plates

Accelerating
Electrode

Electron Gun

Horizontal
Deflection
Plates

Fluorescent
Screen

Figure 38-1 Cathode-ray tube.
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Figure 38-2 Sawtooth voltage waveform.
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The most common use of the oscilloscope is to use the time scale provided by the sweep generator to
display the time variation of a voltage signal that is applied to the vertical plates. Usually this is some specific
waveform that is repeatedwith a fixed frequency. For example, if a simple sinewave voltage is applied to the
vertical plates, a display of the voltage versus time will be directly displayed on the oscilloscope screen as a
sinewave trace of the beamwith amaximum amplitude proportional to themaximumvoltage of the signal,
and with a period on the time scale of the oscilloscope that is equal to the period of the signal. If the voltage
waveform applied to the vertical plates is a more complex waveform, the resulting trace on the screen will
represent the shape of that complex waveform.

The discussion so far has ignored one important point, which involves the means to coordinate the
starting time of the sweep generator with the starting point of the voltage signal that is to be displayed.
We accomplish this by using some waveform as a ‘‘trigger’’ to start the sweep generator. The triggering
waveform can be the same signal that is input to the vertical plates for analysis, a secondary external signal,
or the 60Hz line voltage. When the signal itself is used as the trigger for the sweep generator, the signal
is observed on the oscilloscope as a steady display that is constant in time because the sweep generator is
initiated at the same point on the repetitive vertical signal for each pass of the sweep generator. On most
oscilloscopes this is referred to as internal triggering. That is the mode we will use in this laboratory.

E X P E R I M E N T A L P R O C E D U R E
The procedure refers to the Hitachi model V-212 in Figure 38-3. It is a typical student oscilloscope. If using
another oscilloscope, refer to the instruction manual for the corresponding settings and controls.

In several of the instructions below, you are asked to draw what is on the oscilloscope display on the
grids provided. In each of those cases, assume that the VOLTS/DIV and TIME/DIV are properly calibrated,
and fill in the blank given for the values of VOLTS/DIV and TIME/DIV for the exercise associated with
each set of grids. On the vertical scale 0V is labeled. Label the full-scale voltage both positive and negative.
The time scale is labeled with 0 s. Label the value of the full-scale time on the horizontal axis. Do this for
each grid.

1. Turn on the power to the oscilloscope and let it come to thermal equilibrium for at least 10 minutes.
Set the oscilloscope mode setting to CH1, the trigger source to INT, the trigger level to zero (center of
range), trigger SLOPE toþ (level knob pushed in), trigger MODE to AUTO, the INT TRIG to CH1, and
CH1 to AC.C
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Figure 38-3 The Hitachi model V-212 oscilloscope.
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2. Set the TIME/DIV control to 1ms/DIV, the SWP VAR control rotated fully clockwise to the CAL
position, the VOLTS/DIV control to 1 V/DIV, and the VAR (PULL� 5 GAIN) control rotated fully
clockwise to the CAL position.

3. Turn on the power to the function generator and let it come to thermal equilibrium for at least
10 minutes. Select a sine wave voltage, set the frequency f¼ 100Hz, and connect the output of the
function generator to the CH1 INPUT of the oscilloscope. Adjust the amplitude control of the function
generator to zero. Adjust the VERTICAL POSITION control of the oscilloscope until the flat trace is
exactly on the center line of the vertical display.

4. (a) Adjust the amplitude control of the function generator until the display on the oscilloscope is full-
scale positive on the positive part of the cycle and full-scale negative on the negative part of the cycle.
In the laboratory report section, carefully draw on the grid labeled 1Awhat is displayed on the screen.
(b) Leaving all other parameters fixed, set the VOLT/DIV control to 2V/DIV, and draw on the grid
labeled 1Bwhat is nowdisplayedon the screen. (c) Leaving all otherparameters fixed, set theVOLT/DIV
control to 5V/DIV, and draw on the grid labeled 1C what is now displayed on the screen.

5. (a) Leaving all other parameters fixed, set the VOLT/DIV control to 1 V/DIV, and select f¼ 200Hz from
the function generator. Draw on the grid labeled 2Awhat is nowdisplayed on the screen. (b) Leaving all
other parameters fixed, select f¼ 400Hz from the function generator, and draw on the grid labeled 2B
what is now displayed on the screen. (c) Leaving all other parameters fixed, select f¼ 600Hz from the
function generator, and draw on the grid labeled 2C what is now displayed on the screen.

6. (a) Leaving all other parameters fixed, set the VOLT/DIV control to 1 V/DIV, the TIME/DIV control to
2ms/DIV, and select f¼ 100Hz from the function generator. Note that the trigger slope control is still
set at (þ). Draw on the grid labeled 3A what is now displayed on the screen. (b) Leaving all other
parameters fixed, pull out the trigger level control that sets the trigger slope to (�). Draw on the grid
labeled 3B what is now displayed on the screen.

7. (a) Leaving all other parameters fixed, push in the trigger level control that sets the trigger slope to (þ),
and the trigger level is still set at zero. Draw on the grid label 4A what is now displayed on the screen.
(b) Leaving all other parameters fixed, slowly turn the trigger level control clockwise, increasing
the trigger level. Increase it only so long as the display remains triggered.At themaximum level that the
display is triggered, draw on the grid labeled 4B what is displayed on the screen. (c) Leaving all other
parameters fixed, slowly turn the trigger level control counterclockwise, decreasing the trigger level.
Decrease it only so long as the display remains triggered. At the minimum level that the display is
triggered, draw on the grid labeled 4C what is displayed on the screen.

8. Push the trigger level control in for (þ) slope and turn the level back to zero. Set the TIME/DIV to
2ms/DIV and set the function generator to a sine wave of f¼ 100Hz. Use the alternating current
voltmeter to set the output of the function generator to 1.00V as read on the voltmeter. Input this sine
wave to the oscil-loscope andmeasure the peak voltage of the sine wave. Tomeasure the peak voltage of
the sine wave, you are free to adjust the VOLT/DIV control to give the most accurate measurement
possible. Generally this means adjusting the scale for as large a deflection as possible. Record the peak
voltage of the sine wave as read from the oscilloscope in Data Table 1. Complete all themeasurements in
DataTable 1 from1.00V to 5.00V. For eachvoltage, set the output from the generator using the voltmeter,
and then read the voltage from the oscilloscope, each time choosing the VOLT/DIV that will allow the
most accurate reading from the oscilloscope.

9. Set the function generator to output a triangular wave with f¼ 1000Hz, and the TIME/DIV on the
oscilloscope to 1ms/DIV. Use the alternating current voltmeter to set the output of the function
generator to 1.00V as read on the voltmeter. Input this triangular wave to the oscilloscope andmeasure
the peak voltage of the wave. Proceed as instructed for the sine wave above, this time measuring the
voltages between 1.00V and 5.00V as read on the voltmeter. Record the results in Data Table 2.
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10. The goal of this laboratory is to introduce students to the oscilloscope. Now simply experiment for
yourself with the features of the oscilloscope. Input as many different frequencies and waveforms as
time allows and attempt to learn everything you can about the operation of the oscilloscope by simply
trying different settings of all of the oscilloscope controls.

C A L C U L A T I O N S
1. Perform a linear least squares fit to the data in Data Table 1 with the peak voltage read on the oscillo-

scope as the horizontal axis and the voltage as read on the voltmeter as the vertical axis. Determine the
slope, the intercept, and the correlation coefficient. Record those values in Calculations Table 1.

2. Performa linear least squares fit to thedata inDataTable 2with thepeakvoltage readon theoscilloscope
as the horizontal axis and the voltage as read on the voltmeter as the vertical axis. Determine the slope,
the intercept, and the correlation coefficient. Record those values in Calculations Table 2.
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38 L A B O R A T O R Y 3 8 Oscilloscope Measurements

P R E - L A B O R A T O R Y A S S I G N M E N T
1. Describe the components that make up the electron gun in a cathode-ray tube.

2. Describe the voltage waveform that produces a linear time scale when applied to the horizontal plates
of a cathode-ray tube.

3. When the electron beam strikes the fluorescent screen, the phosphor glow that results has persistence.
Approximately how long does the glow persist?

4. A function generator outputs a sine wave of f¼ 200Hz. It is input to an oscilloscope set at 1ms/DIV.
How many complete cycles of the sine wave are displayed on the oscilloscope? (Hint—The period of
the sine wave T is related to the frequency f of the wave by T¼ 1/f, and there are 10 divisions on the
time display of the oscilloscope.)
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5. A typical student oscilloscope on its least sensitive calibrated scale can display a voltage up to a
maximum of approximately (a) 1V (b) 5V (c) 20V (d) 200V.

6. A typical student oscilloscope on its most sensitive calibrated scale can display a voltage down to a
minimum of approximately (a) 1mV (b) 5mV (c) 20V (d) 200mV.

7. A sawtooth wave with a period of 100ms is applied to an oscilloscope with a screen 10 cm wide.
What time is represented by 1 cm on the screen?
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38 L A B O R A T O R Y 3 8 Oscilloscope Measurements

L A B O R A T O R Y R E P O R T

1A. TIME/DIV= __________ 1B. TIME/DIV=__________ 1C. TIME/DIV=__________

1A. VOLTS/DIV=__________ 1B. VOLTS/DIV=__________ 1C. VOLTS/DIV=__________

0 V

0 s

0 V

0 s

0 V

0 s

2A. TIME/DIV= __________ 2B. TIME/DIV=__________ 2C. TIME/DIV=__________

2A. VOLTS/DIV=__________ 2B. VOLTS/DIV=__________ 2C. VOLTS/DIV=__________

0 V

0 s

0 V

0 s

0 V

0 s

3A. TIME/DIV= __________ 3B. TIME/DIV=__________

3A. VOLTS/DIV=__________ 3B. VOLTS/DIV=__________

0 V

0 s

0 V

0 s
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4A. TIME/DIV=__________ 4B. TIME/DIV=__________ 4C. TIME/DIV=__________

4A. VOLTS/DIV=__________ 4B. VOLTS/DIV=__________ 4C. VOLTS/DIV=__________

0 V

0 s

0 V

0 s

0 V

0 s

S A M P L E C A L C U L A T I O N S

None

Q U E S T I O N S
1. In the grid labeled 2A, howmany complete cycles are sketched in your figure? From your sketch, what

is the period of the wave? Using this period, calculate the frequency of the wave for this sketch. Is it in
agreement with the frequency used for this part of the experiment?

Data Table 1

Voltmeter (V) Oscilloscope (V)

1.00

2.00

3.00

4.00

5.00

Data Table 2

Voltmeter (V) Oscilloscope (V)

1.00

2.00

3.00

4.00

5.00

Calculations Table 1

Intercept¼

Slope¼

r¼

Calculations Table 2

Intercept¼

Slope¼

r¼
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2. In your own words, explain why these two sketches in 3A and 3B appear as they do. They both have
the trigger level zero, but one has a positive trigger slope and the other has a negative trigger slope.

3. Explain the appearance of sketches 4A, 4B, and 4C. They all have a positive trigger slope, but the
trigger level of 4A is zero, the trigger level of 4B is positive, and the trigger level of 4C is negative.

4. For a sine wave, an alternating current voltmeter measures a root-mean-square value that is 0.707 of
the peak value of the sine wave. Therefore the peak value measured on the oscilloscope should be
1/.707, or 1.414 times the voltmeter readings. The slope of the data in Data Table 1 that you calculated
and recorded in Calculations Table 1 should be approximately 1.414. Calculate the percentage error
between your slope for these data and 1.414.

5. For a triangular wave, an alternating current voltmeter measures a root-mean-square value that is
0.576 of the peak value of the triangular wave. Therefore the peak value measured on the oscilloscope
should be 1/.576, or 1.736 times the voltmeter readings. The slope of the data in Data Table 2 that you
calculated and recorded in Calculations Table 2 should be approximately 1.736. Calculate the
percentage error between your slope for these data and 1.736.

6. An oscilloscope is set on a TIME/DIV setting of 50ms. There are 10 divisions on the time scale. A sine
wave on the oscilloscope display has exactly three full cycles of the sine wave that fit on the 10
divisions. What is the frequency of the wave?
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Joule Heating of a Resistor

O B J E C T I V E S
o Investigate the dependence of the rise in temperature on the electrical energy input when an

electric coil is immersed in water in a calorimeter.

o Determine an experimental value for the quantity commonly known as the mechanical
equivalent of heat (MEH) and compare that value to the known value.

E Q U I P M E N T L I S T
. Immersion heater coil to fit standard calorimeter, calorimeter, thermometer

. Direct current power supply (5A at 6 V), ammeter (0–5A), voltmeter (0–10 V)

. Laboratory timer, laboratory balance, calibrated masses

T H E O R Y
When a resistor of resistance R has a current I at voltage V the power absorbed in the resistor is

P ¼ I2R ¼ V2=R ¼ V I ðEq: 1Þ

Power is energy per unit time, and if the power P is constant, the energy U delivered in time t is given by

U ¼ Pt ðEq: 2Þ

Substituting Equation 1 into Equation 2 gives the following expression for the electrical energy

U ¼ VI t ðEq: 3Þ

When a resistor absorbs electrical energy, it dissipates this energy in the form of heat Q. If the resistor is
placed in a calorimeter, the amount of heat produced can be measured when it is absorbed in the
calorimeter. Consider the experimental arrangement shown in Figure 39-1 in which a resistor coil (also
called an immersion heater) is immersed in the water in a calorimeter. The heatQ produced in the resistor
is absorbed by the water, the calorimeter cup, and the resistor coil itself. This heat Q produces a rise in
temperature DT. The heat Q is related to DT by

Q ¼ ðmwcw þmccc þmrcrÞDT ðEq: 4Þ

Physics Laboratory Manual n Loyd L A B O R A T O R Y 39
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where each m and c are the masses and specific heats of the water, the calorimeter, and the resistor. Let
mc stand for the sum of the product of mass and specific heat for the three objects that absorb the heat.
In those terms the heat Q is given by the following:

Q ¼ mcDT ðEq: 5Þ

The electrical energy absorbed in the resistor is completely converted to heat. The equality of those two
energies is expressed as

UðJÞ ¼ MEHðJ=calÞQðcalÞ ðEq: 6Þ

where MEH represents the conversion from joules to calories. Using the expression for U and Q from
Equations 3 and 5 in Equation 6 leads to

VItðJÞ ¼ MEHðJ=calÞmcDTðcalÞ ðEq: 7Þ

If a fixed current and voltage are applied to the resistor in a calorimeter, and the temperature rise DT is
measured as a function of the time t, Equation 7 predicts that a graph with VIt(J) as the vertical axis and
mc DT (cal) as the horizontal axis should produce a straight line with MEH as the slope.

E X P E R I M E N T A L P R O C E D U R E
1. Determine the mass mc of the calorimeter cup and record it in the Data Table. Obtain from your

instructor the specific heat of the calorimeter cup cc, themass of the resistor coilmr, and its specific heat
cr, and record them in the Data Table.

2. Place enough water in the calorimeter cup to completely immerse the resistor coil. The water
temperature should be a few degrees below room temperature. Be sure that the coil is completely
covered by the water, but do not use any more water than is necessary. Determine the mass of the

Ammeter
0–5 A Thermometer

Calorimeter Cup

Water

Immersion Heater

Power Supply
0–6 V

Voltmeter
0–10 V�

� �

�
��

�

Figure 39-1 Experimental arrangement and circuit diagram for the calorimetric measurement of the heat
produced in an immersion heater by an electrical current.
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water plus the calorimeter cup and record it in the Data Table. Determine the mass of the water by
subtraction and record it as mw in the Data Table.

3. Place the immersion heater in the calorimeter cup and construct the circuit shown in Figure 39-1.
Check again that the immersion heater is below the water level. If it is not, add some more water and
determine the mass of the water again.

4. Turn on the power supply and adjust the current between 4.0 and 5.0 A. Do this quickly and then turn
off the supply with the output level still adjusted to the setting that produced the desired current.
Do not allow the supply to stay on long enough to heat the water appreciably. Stir the system several
minutes to allow it to come to equilibrium.

5. Determine the initial temperature Ti and record it in the Data Table. Estimate the thermometer
readings to the nearest 0.1 C8 for all temperature measurements.

6. With the power supply still set to the output level required to produce 4.0 A, turn on the power supply
and simultaneously start the laboratory timer. Record the initial values of the current I and the voltage
V in the Data Table. Let the timer run continuously and stir the system often. Measure and record
the temperature T, the current I, and the voltage V every 60 s for 8 minutes. Record all data in the
Data Table.

C A L C U L A T I O N S
1. Calculate the quantity mc where mc¼mwcwþmcccþmrcr and record it in the Calculations Table.

2. Calculate the temperature rise DT above the initial temperature Ti from DT¼T�Ti for each of the
measured values of T and record the results in the Calculations Table.

3. Calculate the quantity mc DT for each case and record the results in the Calculations Table.

4. For eachmeasurement of the voltageV and current I, calculate the productVI and record the results in
the Calculations Table.

5. Calculate the mean VI and standard error aVI for the values of VI and record the results in the
Calculations Table.

6. Calculate the quantity VI t for each time t and record the results in the Calculations Table.

7. Perform a linear least squares fit to the data with VI t as the vertical axis and mc DT as the horizontal
axis. Determine the slopeMEHexp, the intercept A, and the correlation coefficient r and record them in
the Calculations Table.

8. Calculate the percentage error in the value of MEHexp compared to the known value of MEH
¼ 4.186 J/cal.

G R A P H S
1. Graph the data with VI t as the vertical axis and mc DT as the horizontal axis. Also show on the graph

the straight line obtained from the linear least squares fit.
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39 L A B O R A T O R Y 3 9 Joule Heating of a Resistor

P R E - L A B O R A T O R Y A S S I G N M E N T
1. What is the equation for the power P dissipated by a resistor of resistance R, current I, and voltage V?

2. What is the constant ratio between electrical energy (in joules) when it is converted completely to heat
(in calories)? This is commonly referred to as the mechanical equivalent of heat (MEH).

3. A resistor has a current of 3.75 Awhen its voltage is 6.75 V.What is the resistance of the resistor?What
power does it dissipate? Show your work.

4. A resistor has a resistance of 1.50O and a voltage of 6.00 V across it. What is the current in the resistor?
What power does it dissipate? Show your work.
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5. If the resistor in Question 4 is immersed in water, how much energy does it deliver to the water in
350 s? Express your answer in joules and in calories. Show your work.

6. A resistor has a voltage of 6.65 V and a current of 4.45 A. It is placed in a calorimeter containing 200 g
of water at 24.08C. The calorimeter is aluminum (specific heat¼ 0.220 cal/g–C8), and its mass is 60.0 g.
The heat capacity of the resistor itself is negligible. What is the temperature of the system 500 s later
if all the electrical energy goes into heating the water and the calorimeter? Show your work.
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L A B O R A T O R Y R E P O R T
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Data Table

Mass calorimeterþwater g Ti¼ 8C

Mass calorimeter g c of calorimeter¼ cal/g�C8

Mass water g c of water cal/g�C8

Mass resistor coil g c of resistor coil cal/g�C8

t (s) V (V) I (A) T (8C)

0

60

120

180

240

300

360

420

480
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S A M P L E C A L C U L A T I O N S
1. mw¼ (mcþmw)� (mc)¼
2. mc¼mwcwþmcccþmrcr¼
3. DT¼T�Ti¼
4. mc DT¼
5. VI t¼
6. % Error MEHexp¼

Q U E S T I O N S
1. When the electrical power input is approximately constant, the temperature rise of the system should

be proportional to the elapsed time. Do your data confirm this expectation? State the evidence for
your answer.

Calculations Table

DT (C8) mcDT (cal) VI (W) VIt (J)

mc¼mwcwþmcccþmrcr¼ cal/C8

VI ¼ W aVI¼ W

MEHexp¼ J/cal A¼ J r¼

Percentage Error in MEHexp¼ %
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2. What is the accuracy of your experimental value for MEH? State your evidence.

3. How long from the original starting time would it have taken to achieve a temperature of 50.08C with
the experimental arrangement you used? Show your work.

4. Assuming that one used the same heating coil and that its resistance did not change, howmuchwould
the power be increased if the voltage were increased by 50%? Show your work.

5. Suppose that the samemass of some liquid other than water were used in the calorimeter. If the liquid
had a specific heat of 0.25 cal/g�C8would that tend to improve the results, make them worse, or have
no effect on the results? Explain clearly the reasoning behind your answer.
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Reflection and Refraction
with the Ray Box

O B J E C T I V E S
o Investigate for reflection from a plane surface, the dependence of the angle of reflection on the

angle of incidence.

o Investigate refraction of rays from air into a transparent plastic medium.

o Determine the index of refraction of a plastic prism from direct measurement of incident and
refracted angles of a light ray.

o Investigate the focal properties of spherical reflecting and refracting surfaces.

E Q U I P M E N T L I S T
. Ray box, 60.08 prism, plano-convex lens, circular metal reflecting surfaces

. Converging lens, diverging lens, protractor, straightedge, compass

. Sharp hard-lead pencil, black tape, several sheets of white paper

T H E O R Y
Reflection

The reflection of light from a plane surface is described by the law of reflection, which states that the
angle of incidence yi is equal to the angle of reflection yr.

The angles are measured with respect to a line perpendicular to the surface. Reflection from a plane
mirror or a plane piece of glass are examples of the law of reflection.

In Figure 40-1(a) several incident rays and reflected rays are shown for a plane surface. The angle of
incidence yi is seen to be equal to the angle of reflection yr.

Refraction

In general, light rays incident on a plane interface will be partially reflected and partially transmitted into
the second medium. The transmitted ray undergoes a change in direction because the speed of light is
different for different media. The ray is said to be refracted. This is illustrated in Figure 40-1(b). The angle
of incidence is y1, and the angle of refraction is y2.

The speed of light in a vacuum is c (� 3.00� 108m/s), the maximum possible speed of light. For any
material the speed of light is v where v £ c. A quantity called the index of refraction n for any medium is

Physics Laboratory Manual n Loyd L A B O R A T O R Y 40

C
O
P
Y
R
IG

H
T
ª

2
0
0
8
T
h
o
m
s
o
n
B
ro
o
k
s
/C
o
le

401

ª 2008 Thomson Brooks/Cole, a part of TheThomson Corporation.Thomson, the Star logo, and Brooks/Cole are trademarks used herein under license. ALL RIGHTSRESERVED.No part of this work
covered by the copyright hereonmay be reproduced or used in any form or by any meansçgraphic, electronic, ormechanical, including photocopying, recording, taping,web distribution, information
storage and retrieval systems,or in any othermannerçwithout the written permission of the publisher.



defined by n¼ c/v. Because v £ c, the only allowed values of n are n ‡ 1. The relationship (Snell’s law)
between the angle of incidence y1 and the refracted angle y2 is

n1 sin y1 ¼ n2 sin y2 ðEq: 1Þ

When n1 >n2, Equation 1 implies that y1 < y2. This states that a ray going from a medium of a given
index of refraction to one of a smaller index of refraction is bent away from the normal. If n1 < n2 then
y1 > y2, and a ray going into a medium of larger index of refraction is bent toward the normal.

Focal Properties of Reflection and Refraction

Descriptions of the focal properties of reflection from spherical mirrors are shown in Figure 40-2. When
reflection takes place from a concave spherical surface, incident parallel rays are converging and come to
an approximate focus point. If R is the radius of curvature of the spherical surface, the focal point is a
distance f (called the focal length) from the vertex of the spherical mirror where f¼R/2. Incident parallel
rays on a convex spherical mirror are diverging, but they appear to have come from a point. The distance
from the vertex of the mirror to that point is called the focal length, and its magnitude is given by f¼R/2.
The focal length is positive for a concave converging mirror and negative for a convex diverging mirror.

Reflection at Plane Surface Refraction at Plane Surface

n1 sin �1 � n2 sin �2

Ray 1 Ray 1

Ray 3 Ray 3

Normal
to Surface

Normal
to Surface

Ray 2 Ray 2

Reflecting Surface

n2 �2

n1 �1

(a) (b)

Figure 40-1 Illustration of reflection and refraction of light rays at a plane surface.

f

R

f

R

Concave Converging
Spherical Mirror

Convex Diverging
Spherical Mirror

(a) (b)

Figure 40-2 The focal properties of spherical mirrors for incident parallel rays.
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E X P E R I M E N T A L P R O C E D U R E
Reflection

1. Use black tape to cover all of the slits from the ray box—except the central slit—to produce a single ray
to examine reflection and refraction from a plane surface.

2. Place the 60.08 prism on a piece of white paper in the position shown in Figure 40-3(a). Draw a straight
line along the face of the prism and place a small dot in the center of the line as shown.

3. Place the ray box about 0.15m away from the prism and adjust the single ray to strike the plane surface
at the position of the dot at an angle of incidence estimated to be about 608. With a straightedge, draw a
straight line in the direction of the incident ray and one in the direction of the reflected ray. This will
produce the lines shown in Figure 40-3(b). Repeat this process two more times, once for an incident
ray of about 458 and once for an incident ray of about 308 to produce the lines shown in Figure 40-3(c).

4. At the point of the dot construct a perpendicular to the face of the prism. Extend all six of the lines
showing the ray directions until they intersect at the point of the dot to produce the lines shown in
Figure 40-3(d). Use a protractor to measure the incident angles and reflected angles for each of the
rays. Record all these angles (to the nearest 0.18) in the Data Table.

Refraction

1. Place the prism on the paper as shown in Figure 40-4(a). Draw straight lines on the paper along two
adjacent faces of the prism as shown in part (b) of the figure.

2. Place the ray box about 0.15m away from the prism. Adjust the direction of the ray box so that the
incident ray strikes one face of the prism at an angle of about 508 to a line drawn normally (90 degrees)
to the prism face. Use a straightedge to draw a line in the direction of the incident ray and one in the
direction of the refracted ray as shown in Figure 40-4(b) and Figure 40-5.
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(a)

1 in 1 out 1 in
2 in

3 in

1 in
2 in

3 in3 out
2 out

1 out

3 out
2 out

1 out

(b) (c) (d)

Figure 40-3 Tracing incident and reflected rays from a plane surface.

Refracted ray Incident ray

Lines drawn at
faces of the prism

(b)(a)

Figure 40-4 Refraction of a ray incident on one face of a 608 prism.
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3. Using a separate sheet of paper for each ray, repeat Steps 1 and 2 for two other rays, one incident at an
angleof about 608with respect to thenormal and theother incident at about 708with respect to thenormal.

4. Construct the lines tracing the path of each of the incident rays through the prism in the order of the
steps shown in Figure 40-5. This will produce a figure from which the angles y1, y2, y3, and y4 can be
determinedwith a protractor. Measure these angles for each of the three cases and record the values of
all four angles (to the nearest 0.18) in the Data Table.

Focal Properties of Reflection and Refraction

1. Remove the black tape from the ray box slits. Place the plastic plano-convex lens next to the slits to
produce five parallel rays from the ray box. The lens may have to be rotated just slightly to produce
the best set of parallel rays.

2. Place the circular metal reflector on a piece of white paper and trace its outline on the paper. Place the
ray box about 0.15m away on the concave side of the reflector. Align the five parallel rays with
the center of the reflector to produce a pattern like the one in Figure 40-2(a). Make a tracing of this
pattern, and from it, measure the focal length of the concave reflector. Record it in theData Table as fcon.

3. Turn the reflector around and repeat Step 2 on another piece of paper with the reflector now acting as
a convex mirror. Trace the pattern, which should look like that of Figure 40-2(b). Extend the reflected
rays back to the point from which they appear to come. Measure the focal length and record it in the
Data Table as fdiv.

4. Using a compass, construct a circular arc that is the same radius of curvature as the reflector. Record in
the Data Table the radius of that constructed circle as R, the radius of curvature of the reflector.

5. Place the plastic converging and diverging lenses on separate pieces of paper and trace the ray pattern
produced by the parallel beam of rays from the ray box. Patterns like those of Figure 40-3 should be
observed. Measure the focal length of the converging lens and record it in the Data Table as fcon.
Measure the diverging lens focal length and record it in the Data Table as fdiv.

C A L C U L A T I O N S
Reflection

1. Calculate the difference jyi � yrj between the measured values of the incident and reflected angles for
each of the three rays and record them in the Calculations Table.

Refraction

1. According to Snell’s law, at the first surface (1) sin y1¼ n sin y2. The value of n¼ 1 has been used for air,
and n is the index of refraction of the prism. At the second surface, the equation is n sin y3¼ (1) sin y4.
Solving these two equations for n gives

n ¼ sin y1
sin y2

and n ¼ sin y4
sin y3

ðEq: 2Þ

These lines may have
to be extended some
distance in either
direction in order to
measure the angles
with a protractor.

(a) (b) (c)

�4

�2�3

�1

Figure 40-5 Step-by-step process to trace the rays and determine the four angles.
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2. Use these two equations to calculate two values of n for each of the incident rays. These are not
independent measurements because the errors made in drawing the rays to determine the angle tend
to produce two values of n with compensating errors. Take the average of the two values calculated
by Equation 2 as a single measurement and record in the Calculations Table the average value of n for
each ray.

3. Calculate the mean n and standard error an for the three measurements of n and record them in the
Calculations Table.

Focal Properties of Reflection and Refraction

1. Calculate the percentage difference between the value of fcon and the value of fdiv for the reflector.

2. According to theory, the value of the focal length for the reflector should be equal to R/2. Calculate
the percentage difference between the measured value of R/2 and the focal lengths fcon and fdiv for the
reflector.

C
O
P
Y
R
IG

H
T
ª

2
0
0
8
T
h
o
m
s
o
n
B
ro
o
k
s
/C
o
le

Figure 40-6 Ray box showing focus of incident parallel rays.
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40 L A B O R A T O R Y 4 0 Reflection and Refraction with the Ray Box

P R E - L A B O R A T O R Y A S S I G N M E N T
1. Define the index of refraction.

2. State the law of reflection. Use a diagram to define the angles involved.

3. State Snell’s law. Define terms and angles using a diagram.

4. A light ray is incident on a plane interface between two media. The ray makes an incident angle with
the normal of 25.08 in a medium of n¼ 1.25. What is the angle that the refracted ray makes with the
normal if the second medium has n¼ 1.55? Show your work.
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5. A 60.08 prism has an index of refraction of 1.45 as shown below. A ray is incident as shown at an angle
of 60.08 to the normal of one of the prism faces. Trace the ray on through the prism and find the angles
y2, y3, and y4 as defined in the laboratory instructions. Show your work.

n � 1.00
60°

60°

n � 1.00

n � 1.45
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L A B O R A T O R Y R E P O R T
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Data Table

Reflection

Ray yi yr

Calculations Table

Angle Difference

Refraction

Ray y1 y2 y3 y4 n n an

Mirrors

f (cm) R (cm)

Concave fcon

Convex fdiv

% Diff of f % Diff of R/2

Lenses

f (cm)

Converging Lens

Diverging Lens
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S A M P L E C A L C U L A T I O N S
1. Angle Difference¼ jyi � yrj ¼
2. n ¼ ½

sin y1
sin y2

þ sin y4
sin y3

� 	
¼

3. % Diff between fcon and fdiv¼
4. % Diff between f and R/2¼

Q U E S T I O N S
1. Are your data consistent with the law of reflection? State your answer as quantitatively as possible.

2. State as quantitatively as possible the precision of your value for n, the index of refraction of the prism.

3. State how your data for the prism are evidence for the validity of Snell’s law.

4. How well do your data for the focal lengths of the concave and convex mirror agree with the
expectation that f¼R/2? State your answer as quantitatively as possible.

5. Using the value of n determined for the prism, find the speed of light in the prism.
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6. Inside the prism the wavelength of the light must change as well as the speed. Is a given wavelength
longer or shorter inside the prism? Consider specifically light with a wavelength of 500 nm in air.
What is the wavelength of this light inside the prism?
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Focal Length of Lenses

O B J E C T I V E S
o Investigate the properties of converging and diverging lenses.

o Determine the focal length of converging lenses both by a real image of a distant object and by
finite object and image distances.

o Determine the focal length of a diverging lens by using it in combination with a converging lens
to form a real image.

E Q U I P M E N T L I S T
. Optical bench, holders for lenses, a screen to form images, meter stick, tape

. Lamp with object on face (illuminated object), three lenses (f�þ20,þ10,�30 cm)

T H E O R Y
When a beam of light rays parallel to the central axis of a lens is incident upon a converging lens,
the rays are brought together at a point called the focal point of the lens. The distance from the center
of the lens to the focal point is called f the focal length of the lens, and it is a positive quantity for a
converging lens. When a parallel beam of light rays is incident upon a diverging lens the rays diverge
as they leave the lens; however, if the paths of the outgoing rays are traced backward, the rays appear
to have emerged from a point called the focal point of the lens. The distance from the center of the
lens to the focal point is called the focal length f of the lens, and it is a negative quantity for a diverging
lens. In Figure 41-1 two common types of lenses are pictured. In general, a lens is converging or
diverging depending upon the curvature of its surfaces. In Figure 41-1 the radii of curvature of the
surfaces of the two lenses are denoted as R1 and R2. The relationship that determines the focal length f in
terms of the radii of curvature and the index of refraction n of the glass of the lens is called the lens
makers equation. It is

1

f
¼ ðn� 1Þ 1

R1
� 1

R2

� 	
ðEq: 1Þ

For the converging lens shown in Figure 41-1(a) the radius R1 is positive and the radius R2 is negative, but
for the diverging lens of part (b), the radius R1 is negative and the radius R2 is positive. The signs of these
radii are determined according to a sign convention that is described in all elementary textbooks.
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As an example, consider a double convex lens like the one shown in part Figure 41-1(a) made from
glass of index of refraction 1.60 with radii of curvature R1 and R2 of magnitude 20.0 and 30.0 cm,
respectively. According to the sign convention given above, that would mean R1¼þ20.0 cm and
R2¼�30.0 cm. Putting those values into Equation 1 gives a value for the focal length f of þ20.0 cm.

Essentially, Equation 1 indicates that a lens that is thicker in the middle than at the edges is
converging, and a lens that is thinner in the middle than at the edges is diverging. A lens can be classified
as converging or diverging merely by taking it between one’s fingers to see if it is thicker at the center of
the lens than it is at the edge of the lens.

Lenses are used to form images of objects. There are two possible kinds of images. The first type,
called a real image, is one that can be focused on a screen. For a real image, light actually passes through
the points at which the image is formed. The second type of image is called a virtual image; light does not
actually pass through the points at which the image is formed, and the image cannot be focused on a
screen. Diverging lenses can form only virtual images, but converging lenses can form either real images
or virtual images. If an object is farther from a converging lens than its focal length, a real image is formed.
If the object is closer to a converging lens than the focal length, the image formed is a virtual one.
Whenever a virtual image is formed, ultimately it will serve as the object for some other lens system to
form a real image. Often the other lens system is the human eye, and the real image is formed on the retina
of the eye.

In the process of image formation, the distance from an object to the lens is called the object distance p,
and the distance of the image from the lens is called the image distance q. The relationship between the
object distance p, the image distance q, and the focal length of the lens f is

1

p
þ 1

q
¼ 1

f
ðEq: 2Þ

Equation 2 is valid both for converging (positive f ) and for diverging (negative f ) lenses. Normally the
object distance is considered positive. In that case a positive value for the image distance means that
the image is on the opposite side of the lens from the object, and the image is real. A negative value for the
image distance means that the image is on the same side of the lens as the object, and that the image is
virtual.

If a lens is used to form an image of a very distant object, then the object distance p is very large. For
that case, the term 1/p in Equation 2 is negligible compared to the other terms 1/q and 1/f in that equation.
For the case of a very distant object, Equation (2) becomes

(a)

R1 R2

(b)

f

R1
R2

f

Figure 41-1 Ray diagram for converging and diverging lenses showing the definition of the focal length for
both the converging case and the diverging case.
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1

q
¼ 1

f
ðEq: 3Þ

For this case, the image distance is equal to the focal length. This provides a quick and accurate way to
determine the focal length of a converging lens, but it is only applicable to a converging lens because the
image must be focused on a screen. A diverging lens cannot form a real image, and this technique will not
work directly for a diverging lens.

If two lenses with focal lengths of f1 and f2 are placed in contact, the combination of the two in contact
acts as a single lens of effective focal length fe. The effective focal length of the two lenses in contact fe is
related to the individual focal lengths of the lenses f1 and f2 by

1

fe
¼ 1

f1
þ 1

f2
ðEq: 4Þ

Equation 4 is valid for any combination of converging and diverging lenses. If the individual lenses f1 and f2
are converging, then the effective focal length fe will also be converging. If one of the lenses is converging
and the other is diverging, then the effective focal length can be either converging or diverging depending
upon the values of f1 and f2. If the converging lens has a smaller magnitude than the diverging lens, then
the effective focal length will be converging. We can use this fact to determine the focal length of an
unknown diverging lens if it is used in combination with a converging lens with a focal length short
enough to produce a converging combination.

E X P E R I M E N T A L P R O C E D U R E
Focal Length of a Single Lens

1. Place one of the three lenses in a lens holder on the optical bench and place the screen in its holder on
the optical bench. Place the optical bench in front of a window in the laboratory and point the bench
toward some distant object. Adjust the distance from the lens to the screen until a sharp, real image
of the distant object is formed on the screen. You will be able to form such an image for only two of
the three lenses. This experimental arrangement satisfies the conditions of Equation 3. The measured
image distance is equal to the focal length of the lens. Record these measured image distances in Data
Table 1 as the focal length of the two lenses for which the method works. Call the lens with the longest
focal lengthA, the onewith the shortest focal length B, and the one forwhich no image can be formedC.

2. Place lens B in the lens holder on the optical bench and use the lampwith the object painted on its face
as an object. For various distances p of the object from the lens, move the screen until a sharp real
image is formed on the screen. For each value of pmeasure the image distance q from the screen to the
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Figure 41-2 Optical bench with object, lens, and screen on which a real image is formed.
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lens. Make sure that the lens, the object, and the screen are at the center of their respective holders. Try
values for p of 20, 30, 40, and 50 cm, determining the value of q for each case. If these values of p do not
work for your lens, try other values until you find four values that differ by at least 5 cm. Record the
values for p and q in Data Table 2.

Focal Length of Lenses in Combination

1. Place lens A and lens B in contact using masking tape to hold the edges of the two lenses parallel.
Measure the focal length of the combination fAB both by the very distant object method and by the
finite object method. For the finite object method, just use one value of the object distance p and
determine the image distance q. Record the results for both methods in Data and Calculations Table 3.

2. Place lens B and lens C in contact, using masking tape to hold the edges of the two lenses parallel.
Repeat the measurements described in Step 1 above for these lenses in combination. Record the results
in Data and Calculations Table 4.

C A L C U L A T I O N S
Focal Length of a Single Lens

1. Using Equation 2, calculate the values of the focal length f for each of the four pairs of objects and
image distances p and q. Record them in Calculations Table 2.

2. Calculate the mean f and the standard error af for the four values for the focal length f and record them
in Calculations Table 2.

3. The mean f represents the measurement of the focal length of lens B using finite object distances.
Compute the percentage difference between f and the value determined using essentially infinite
object distance in Data Table 1. Record the percentage difference between the two measurements in
Calculations Table 2.

Focal Length of Lenses in Combination

1. From the data for lenses A and B, calculate the value of fAB from the values of p and q. Record that
value of fAB in Calculations Table 3. Also record in that table the value of fAB determined by the very
distant object method.

2. Calculate the average of the two values for fAB determined above. This average value of fAB is the
experimental value for the combination of these two lenses.

3. Using Equation 4, calculate a theoretical value expected for the combination of lenses A and B. Use the
values determined in Data Table 1 by the distant object method for the values of fA and fB in the
calculation. Record this value as (fAB)theo in Data and Calculations Table 3.

4. Calculate the percentage difference between the experimental value and the theoretical value for fAB.
Record it in Data and Calculations Table 3.

5. From the data for lenses B and C, calculate the value of fBC from the values of p and q. Record that value
of fBC in Data and Calculations Table 4. Also record in that table the value of fBC determined by the
very distant object method.

6. Calculate the average of the two values for fBC determined above. This average value is the
experimental value for the combination of these two lenses.

7. Using the average value of fBC determined in Step 6 and the value of fB from Data Table 1 for the focal
length of B, calculate the value of fC, the focal length of lens C using Equation 4. Record the value of fC
in Data and Calculations Table 4.
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P R E - L A B O R A T O R Y A S S I G N M E N T
1. Mark the following statements about lenses as true or false.

_____a. Incident parallel light rays converge if the lens’s focal length is negative.

_____b. If the path of converging light rays is traced backward, the rays appear to come from a point
called the focal point.

_____c. A double convex lens has a negative focal length.

_____d. The focal length of a lens is always positive.

2. A double convex lens is made from glass with an index of refraction of n¼ 1.50. The magnitudes of its
radii of curvature R1 and R2 are 10.0 cm and 15.0 cm, respectively. What is the focal length of the lens?
Show your work.

f ¼ cm

3. What is a real image? What is a virtual image?

4. For a diverging lens, state what kinds of images can be formed and the conditions under which those
images can be formed.
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5. For a converging lens, state what kinds of images can be formed and the conditions under which those
images can be formed.

6. A lens has a focal length of f¼þ10.0 cm. If an object is placed 30.0 cm from the lens, where is the
image formed? Is the image real or virtual? Show your work.

7. An object is 16.0 cm from a lens. A real image is formed 24.0 cm from the lens. What is the focal length
of the lens? Show your work.

8. One lens has a focal length of þ15.0 cm. A second lens of focal length þ20.0 cm is placed in contact
with the first lens. What is the equivalent focal length of the combination of lenses? Show your work.

9. Two lenses are in contact. One of the lenses has a focal length of þ10.0 cm when used alone. When the
two are in combination, an object 20.0 cm away from the lenses forms a real image 40.0 cm away from
the lenses. What is the focal length of the second lens? Show your work.
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L A B O R A T O R Y R E P O R T

Data Table 1

Lens Image Distance (cm) Focal Length (cm)

A fA¼

B fB¼

Data Table 2

p (cm) q (cm)

Calculations Table 2

fB (cm) fB (cm) af (cm) % Diff

Data and Calculations Table 3 (Lenses A & B)

q (p¼1) p q fAB p¼1 fAB p & q fAB fAB theo % Diff

Data and Calculations Table 4 (Lenses B & C)

q (p¼1) p q fBC p¼1 fBC p & q fBC fC
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S A M P L E C A L C U L A T I O N S
1. f ¼ pq

pþ q
¼

2. fAB ¼ ðfAB1 þ fAB2Þ=2 ¼
3. (fAB)theo¼ (fA) (fB)/(fAþ fB)¼
4. fC¼ (fB)(fBC)/(fB� fBC)¼

Q U E S T I O N S
1. Why is it not possible to form a real image with lens C alone?

2. Take lens C between your thumb and index finger. Is it thinner or thicker at the center of the lens than
at the edge? Take lens B between your thumb and index finger. Is it thinner or thicker at the center of
the lens than at the edge? From this information alone, what can you conclude about lenses C and B?

3. Consider the percentage difference between the two measurements of the focal length of lens B.
Express af as a percentage of f : Is the percentage difference between the two measurements less than
the percentage standard error?

4. Compare the agreement between the experimental and theoretical values of fAB the focal length of
lenses A and B combined. Do these data suggest that Equation 4 is a valid model for the equivalent
focal length of two lenses in contact?

5. If lens A and lens C were used in contact, could they produce a real image? State clearly the basis for
your answer. You will need to do a calculation.
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Diffraction Grating Measurement
of the Wavelength of Light

O B J E C T I V E S
o Investigate the difference between continuous and discrete spectra.

o Investigate the characteristic spectra of individual gaseous elements.

o Determine the average line spacing for a diffraction grating assuming mercury wavelengths as
known, and use it to determine the wavelengths of helium.

E Q U I P M E N T L I S T
. Optical bench, diffraction grating (600 lines/mm replica grating)

. Spectrum tube power supply, mercury and helium discharge tubes

. Meter stick and slit arrangement, incandescent lightbulb (15 watt)

T H E O R Y
When light is separated into its componentwavelengths, the resulting array of colors is called a spectrum.
If a light source produces all the colors of visible light, it is called a continuous spectrum. Generally, such
sources of light are produced by heated solid metal filaments. An ordinary incandescent lightbulb with
a tungsten filament produces a continuous spectrum.

Some light sources produce discrete wavelengths of light, and the spectrum appears as mostly dark
with a few discrete lines of color at the wavelengths emitted by the source. Such light is produced by hot
discharges of gas of a single chemical element, and the wavelengths of light emitted are characteristic
of the electronic structure of that element. The spectrum is called a discrete spectrum or a line spectrum.
The term line spectrum is used because the images produced usually are images of a narrow slit that is
illuminated by the light source.

We can use severalmethods to separate light into its componentwavelengths and produce a spectrum.
This laboratory will use a diffraction grating to produce spectra from an incandescent lightbulb and from
gas discharge tubes of mercury and helium. A transmission diffraction grating is a piece of transparent
material ruledwith a large number of equally spaced parallel lines. The distance between the lines is called
the grating spacing d, and it is usually only a few times as large as a typical wavelength of visible light.
The range of visible light wavelengths is from approximately 4� 10�7m to 7� 10�7m. It is customary to
express the wavelength of light in units of nm (10�9 m). In those units the range of visible light is from
400nm to 700 nm. A typical grating spacing d is in the range 1000 nm to 2000 nm.
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The wavelengths of light determine the color of the light seen by the human eye. Starting from short
wavelengths and going to long wavelengths, the order of colors is violet, blue, green, yellow, orange, and
red. The actual range of the visible spectrum is somewhat different for individuals, and there may be a
distinct difference in the ability of two laboratory partners to see the wavelengths at either end of the
spectrum. It is often very difficult for some people to see the very short wavelengths.

Light rays that strike the transparent portion of the grating between the ruled lines will pass through
the grating at all angles with respect to their original path. When deviated rays from adjacent rulings on
the grating are in phase, an image of the source will be formed. This condition is satisfied when the
adjacent rays differ in path length by an integral number of wavelengths of the light. Thus for a given
wavelength l a series of images will appear at angles ym that satisfy the equation

m l ¼ d sin ym ðEq: 1Þ

withm an integer. The first value of y is y1 whenm¼ 1, the second is y2 whenm¼ 2. Figure 42-1 shows that
the limit to the values of ywill be at y¼ 908. This is referred to as the number of orders that can be seen and
is determined by d and l. Although it will be possible to see both first-order (m¼ 1) and second-order
(m¼ 2) for the experimental arrangement used in this laboratory, measurements will be made only on the
first-order images.

The experimental arrangement is shown in Figure 42-2. The discharge tube light source is viewed
through the grating as shown. The distance L from the grating to the slit is chosen at a convenient fixed

d

d sin�1

�1

d

d

Figure 42-1 Ray diagram for the conditions of the first-order diffraction image.

Grating

Eye

Optical Bench

Meter Stick

Slit

Light
Source

Image

D

�

L

Figure 42-2 Arrangement of the diffraction grating, slit, light source, and optical bench.
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value. The different wavelengths of the source will produce a first-order image at different angles
and thus at different distances D from the slit as defined by Figure 42-2. We determine the angle y
corresponding to each wavelength by measuring D with L known.

If l and m are known, we can determine d from Equation 1. First, a mercury light source will be used
and its wavelengths given. A series of measurements will accurately determine the value of the grating
spacing d. In the second part of the laboratory using this value of d for the grating, we will determine the
wavelengths of a helium source.

E X P E R I M E N T A L P R O C E D U R E
1. Set up the experimental arrangement shown in Figure 42-2. Place the slit near one end of the optical

bench just above the meter stick, which is held by the same holder that holds the slit. The meter stick
should be perpendicular to the axis of the optical bench and should be level. The zero of the meter
stick should be to the left with the markings increasing to the right. The slit should be at the 50.00 cm
mark on the meter stick just above the meter stick so that its images can be located easily relative to a
mark on the meter stick. Place the grating some distance L away from the slit with the plane of the
grating perpendicular to the axis of the optical bench. Record the value (to the nearest 1 mm) of L in
Data Table 1 and take all the data at this same value of L.

2. Use extreme caution with the discharge tube power supply. It produces 5000 V and sufficient current to make it
potentially lethal. Do not touch the supply electrodes while the supply is turned on. With the power supply
turned off and unplugged, place the mercury discharge tube into the electrode receptacles. Place the
supply behind the slit with the discharge tube as close to the slit as possible. It may be necessary to
place a block under the power supply to adjust the height of the discharge tube. The narrow portion
of the discharge tube (which is the most intense) must be at the height of the slit.

3. Now turn on the power supply. Do not accidentally touch the power supply electrodes while making the
following adjustments. While one partner looks through the grating directly at the slit, the other partner
should make very fine adjustments in the position of the power supply to place the bright narrow
portion of the discharge tube in alignment with the slit. Proper alignment is achieved when the slit
is as bright as possible as seen by the person looking through the grating directly at the slit. It is
extremely critical that the light source is positioned so that the slit is as bright as possible. The slightest
movement of the light source relative to the slit after this adjustment has beenmademay severely alter
the brightness of the images seen.

4. Look through the grating to the right and left of the slit. Just above the meter stick there should appear
a series of images of the slit in various colors. It may be necessary to rotate the grating in its holder to
place the images in the horizontal. The images may originally appear at any angle to the horizontal up
to the extreme case of 908, in which case they would be in the vertical. Rotate the grating until the
images are horizontal and just above the meter stick.

5. In Data and Calculations Table 1 are listed seven wavelengths of mercury that should be prominent.
They are listed in the order of increasing wavelength. They should appear in this order with the
smallest wavelength at the smallest angle. Try to match the images that you see with the wavelengths
given. It may be difficult to identify all seven of the lines. In particular, many people have difficulty
seeing the violet lines clearly. While looking through the grating, locate the position of the first-order
images that are to the right of the optical bench above the meter stick. One partner should locate the
position of a given line by having the other partner move a small pointer (for example, a pencil point)
along the meter stick until the pointer is in line with a given image. It may be helpful to use the
small 15-watt light source to illuminate the meter stick to read the position once it has been located.
Record (to the nearest 1 mm) the position PR of each of the seven wavelengths in Data and
Calculations Table 1.

6. Repeat the process for the images on the left of the optical bench that correspond to the seven wave-
lengths. Record (to the nearest 1 mm) the position PL of each image in Data and Calculations Table 1.
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7. Turn off the power supply and allow the discharge tube to cool. With the power supply turned off,
remove the mercury discharge tube and replace it with the helium discharge tube. Position the power
supply with the discharge tube alignedwith the slit. Turn on the power supply and adjust the position
of the supply for maximum brightness.

8. In Data and Calculations Table 2 are listed eight wavelengths of helium that should be visible. Again
try to match the images that you see with the wavelengths given. Perform the same procedure as done
above for mercury, measuring the positions PR and PL of each image on the right and the left. Record
(to the nearest 1 mm) the data in Data and Calculations Table 2.

9. Place the 15-watt lightbulb behind the slit and observe the continuous spectrum. Locate the positions
PR and PL of the following parts of the spectrum: (a) the shortest wavelength visible (b) the division
between blue and green (c) the division between green and yellow (d) the division between yellow
and orange (e) the division between orange and red (f ) the longest wavelength visible. Record (to the
nearest 1 mm) the position of these points in Data and Calculations Table 3.

C A L C U L A T I O N S
1. Calculate the distance DR from the slit to each image on the right (DR¼PR� 50.0) and calculate the

distanceDL from the slit to each image on the left (DL¼ 50.0�PL) for the mercury data in Data Table 1.
Calculate the average distanceD ¼ ðDR þDLÞ=2 and calculate tan y ¼ D=L, y, and sin y for each image.
Record (to three significant figures) those values in Data and Calculations Table 1.

2. Each of the measurements for mercury is an independent measurement for d the grating spacing.
Use Equation 1 to calculate the seven values of d, and record them (to four significant figures) in Data
and Calculations Table 1. Calculate the mean d and the standard error ad for d and record them in
Data and Calculations Table 1.

3. Calculate the values ofDR,DL, andD for the helium data and use them to calculate tan y ¼ D=L, y, and
sin y for each image. Use those values of sin y and d in Equation 1 to calculate the wavelengths of
helium. Record all values (to three significant figures) in Data and Calculations Table 2.

4. From the data for the continuous spectrum, determine the wavelength that corresponds to the various
points in the spectrum that were located. Calculate and record all the information called for in Data
and Calculations Table 3.
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42 L A B O R A T O R Y 4 2 Diffraction Grating Measurement of the Wavelength
of Light

P R E - L A B O R A T O R Y A S S I G N M E N T
1. What is a continuous spectrum? What is a discrete spectrum?

2. What kind of light sources produce each type of spectrum?

3. The wavelengths produced by a hot gas of helium (a) form a discrete spectrum (b) form a line
spectrum (c) are characteristic of the electronic structure of helium (d) all of the above are true.

4. A diffraction grating has a grating spacing of d¼ 1500nm. It is used with light of wavelength 500 nm.
At what angle will the first-order diffraction image be seen? Show your work.

5. For a given wavelength l and a diffraction grating of spacing d (a) an image is formed at only one
angle (b) at least two orders are always seen (c) the number of orders seen can be any number and
depends on d and l (d) there can never be more than four orders seen.

6. The grating used in this laboratory (a) can produce only images in the horizontal (b) must be rotated in
its holder until it produces the desired horizontal pattern (c) produces images only in the vertical
direction (d) produces images only to the left of the slit.
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7. A diffraction grating with d¼ 2000nm is used with a mercury discharge tube. At what angle will the
first-order blue-green wavelength of mercury appear? What other orders can be seen, and at what
angle will they appear? Show your work.

8. The diffraction grating of Question 7 is used at a distance L¼ 50.0 cm from the slit. What is the distance
D from the slit to the first-order image for the blue-green wavelength of mercury? Show your work.

9. What is the voltage and current of the spectrum tube power supply?
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42 L A B O R A T O R Y 4 2 Diffraction Grating Measurement of the Wavelength
of Light

L A B O R A T O R Y R E P O R T
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Data and Calculations Table 1 (Mercury Spectrum)

Colors l (nm) PR (cm) PL (cm) DR (cm) DL (cm) D (cm) tan y y sin y d (nm)

Violet 404.7

Violet 407.8

Blue 435.8

Blu-Gr 491.6

Green 546.1

Yellow 577.0

Yellow 579.0

L¼ cm d ¼ nm ad¼ nm
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S A M P L E C A L C U L A T I O N S
1. DR¼PR� 50.0 ¼ and DL¼ 50.0�PL¼
2. D ¼ ðDR þDLÞ=2 ¼
3. tan y ¼ D=L ¼ and y ¼ tan�1ðyÞ ¼
4. sin y ¼
5. d¼ l/sin y ¼
6. l ¼ d sin y ¼

Data and Calculations Table 2 (Helium Spectrum)

Colors l (nm) PR (cm) PL (cm) DR (cm) DL (cm) D (cm) tan y y sin y l (nm)

Blue 438.8

Blue 447.1

Blue 471.3

Blu-Gr 492.2

Green 501.5

Yellow 587.6

Red 667.8

Red 706.5

Data and Calculations Table 3 (Continuous Spectrum)

Portion of Spectrum PR (cm) PL (cm) D (cm) tan y y sin y l (nm)

Shortest Wavelength

Division Blue and Green

Division Green and Yellow

Division Yellow and Orange

Division Orange and Red

Longest Wavelength
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Q U E S T I O N S
1. Comment on the precision of your measurement of d.

2. List the accepted values of the eight wavelengths of helium below. Beside each one, show the
percentage error in your measured values compared to these values including the sign of the error.
Comment on the accuracy of your measurements.

3. If all the errors in Question 2 are of the same sign, it might be evidence of a systematic error. Based on
this criterion, do your data show evidence of a systematic error? State your evidence for or against a
systematic error.

4. If the grating had exactly 600 lines/mm, d would be 1667nm. Use that value of d with the values of
sin y in Table 2 to recalculate the wavelengths for helium. Are their percentage differences from the
accepted values better or worse than in Question 2? Show your work.

5. Hydrogen has known emission lines of wavelength 656.3 nm and 434.1 nm. At what distance D away
from the slitwould each of these lines be observed in your experimental arrangement? Showyourwork.
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Bohr Theory of Hydrogen—
The Rydberg Constant

O B J E C T I V E S
o Investigate how well the visible light wavelengths of hydrogen predicted by the Bohr theory

agree with experimental values.

o Determine an experimental value for the Rydberg constant from a fit of the measured values of
hydrogen wavelengths to the form of the Balmer equation.

E Q U I P M E N T L I S T
. Spectrometer, diffraction grating in holder (600 lines/mm or better)

. Hydrogen gas discharge tube, mercury discharge tube

. Power supply for the discharge tubes

T H E O R Y
The spectrum from a hot gas of an element consists of discrete wavelengths that are characteristic of the
element. In 1885, in an attempt to understand these spectra, Johann Balmer published an empirical
relationship that described the visible spectrum of hydrogen. Although Balmer published the relationship
in a somewhat different form, the modern equivalent is

1

l
¼ RH

1

22
� 1

n2

� 	
n ¼ 3; 4; 5; 6::::: ðEq: 1Þ

where RH¼ 1.097� 107 m�1 is a constant called the Rydberg constant, l stands for the wavelength, and n
is an integer that takes on successive values greater than 2. In 1913 Neils Bohr was able to derive the
Balmer relationship by making a series of revolutionary postulates. The Bohr theory was historically of
great importance in the developments that eventually led to modern quantum theory. In his attempts to
explain the spectrum of hydrogen, Bohr was influenced by several recently developed theories. He
incorporated concepts from the quantum theory of Max Planck, from the photon description of light by
Albert Einstein, and from the nuclear theory of the atom suggested by Ernest Rutherford’s a-particle
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scattering from gold. The central ideas of Bohr’s theory are contained in a series of four postulates that are
stated below.

(1) The electron moves in circular orbits of radius rn around the nucleus under the influence of the
Coulomb force between the negative electron and the positive nucleus.

(2) The electron of mass m can only have velocity vn and orbits of radius rn that satisfy the relationship
mvnrn¼ nh/2p where h¼ 6.626� 10�34 J–s and n¼ 1, 2, 3, 4, . . .1.

(3) In an allowed orbit the electron does not radiate energy. The atom is stable in these orbits, and this is
called a stationary state. This postulate was a radical departure from classical physics. Classical
electromagnetic theory predicts that an electron moving in a circle is accelerated and must radiate
electromagnetic energy continuously.

(4) The atom radiates energy only when an electron makes a transition from one allowed orbit to another
allowed orbit. If Ei and Ef stand for the energies of the initial and final stationary states, the energy
radiated by the atom is in the formof a photonof energy hf¼Ei�Efwhere f is the frequency of the photon.

With these postulates it is possible to derive an expression for the energy of the stationary states. They are
given by

En ¼ � me4

8"2oh
2

� 	
1

n2
with n ¼ 1; 2; 3; 4; : : : :1 ðEq: 2Þ

This expression for allowed energies can be used to obtain values for 1/l predicted by the Bohr theory.
The transitions that produce photons that correspond to the first four visible Balmer wavelengths are
those from the states n¼ 3, 4, 5, 6, down to the n¼ 2 state. They are

1

l
¼ me4

8"2och
3

1

22
� 1

n2

� 	
with n ¼ 3; 4; 5; and 6 ðEq: 3Þ

Bohr showed that the value of the constantme4=8"2och
3 was in excellent agreement with the value of the

Rydberg constant in Balmer’s formula. This is striking confirmation of the validity of the Bohr theory of
hydrogen.

The four wavelengths of the visible hydrogen spectrum that are easily seen and measured are in
excellent agreement with the first four wavelengths predicted by Equation 3. This will be demonstrated by
measuring the value of l for those four wavelengths and performing a linear least squares fit with 1/l as
the vertical axis and the quantity (1/22�1/n2) as the horizontal axis with n¼ 3, 4, 5, and 6. The slope of the
fit is an experimental value of the Rydberg constant RH. The correlation coefficient of the least squares fit is
a measure of the agreement of Bohr theory with the data.

Figure 43-1 Spectrometer that can be used with a prism or with a diffraction grating.
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The wavelengths will be measured with a diffraction grating spectrometer shown in Figure 43-1.
Images of the slit for different wavelengths will appear in the first order at angles y given by

l ¼ d siny ðEq: 4Þ

Initially, the grating spacing d will be assumed to be unknown, and the wavelengths of mercury will be
considered as known. Measurements of the angles at which the mercury spectrum occur can then be used
to determine d from Equation 4. Using that value of d, measurements of the angles at which the hydrogen
wavelengths occur will allow the determination of those wavelengths.

E X P E R I M E N T A L P R O C E D U R E
1. Place the diffraction grating (in its holder) on the spectrometer table as shown in Figure 43-2. Place the

mercury spectrum tube between the electrodes of the spectrum tube power supply.DONOT TOUCH
THE HIGH VOLTAGE ELECTRODES WHILE THE POWER SUPPLY IS ON. IT PROVIDES A
VOLTAGE OF 5000 V.

2. Turn on the power supply and place the spectrum tube as close to the slit in the collimator tube as is
possible. Rotate the telescope tube of the spectrometer until it is directly in line with the collimator
tube. Adjust the slit in the collimator and the eyepiece of the telescope until a sharp image of the slit is
obtained. The vertical crosshair of the telescope must also be in focus and in the center of the slit.

3. Rotate the telescope tube to the left or right until images of the spectral lines for mercury are located.
The wavelengths of the mercury spectrum with the relative intensities in parentheses are: violet
4.047� 10�7m (1800), blue 4.358� 10�7m (4000), blue-green 4.916� 10�7m (80), green 5.461�
10�7m (1100), yellow 5.770� 10�7m (240), yellow 5.790� 10�7m (380). Rotate the telescope tube to
the other side to be sure that all the lines can be located. This is just a preliminary check to be sure that
all the lines are visible. It may not be possible to resolve the two yellow lines. If not, just assume one
line at 5.780� 10�7 m. It is extremely important that the grating is never moved after it is originally positioned.

4. If the spectrometer has a vernier scale capable of reading to one minute of arc, measure to the nearest
one minute of arc the angle at which each wavelength of mercury occurs on both sides of 1808. Consult
your instructor for directions in the use of the vernier scale. If the spectrometer does not have a
vernier, estimate the angles with as much precision as possible. See Figure 43-2 for a description of
yR and yL. Record the two angles for each of the wavelengths in Data and Calculations Table 1.

5. Without moving the diffraction grating, turn off the spectrum tube power supply. Carefully remove
the mercury tube and replace it with the hydrogen tube. Turn on the supply and place the hydrogen
tube as close to the slit as possible. AGAIN, BE VERY CAREFUL NOT TO TOUCH THE HIGH
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Figure 43-2 Experimental arrangement for the diffraction grating spectrometer.
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VOLTAGE ELECTRODES WHILE MAKING THESE ADJUSTMENTS IN THE POSITION OF THE
SUPPLY. Rotate the telescope tube back to 1808 and carefully adjust the position of the hydrogen tube
until a sharp image of the slit is seen directly through the grating. Everything should be in focus from
the mercury measurements, and it should just be necessary to place the hydrogen tube in the correct
position to give the brightest image. At all times be extremely careful not to move the grating.

6. Carefully measure with as much precision as possible the angle at which the first four wavelengths of
the visible hydrogen spectrum occur on both sides of 1808. In order of increasing wavelength they are
violet, blue, blue-green, and red. Record the two angles for each of the wavelengths in Data Table 2.

C A L C U L A T I O N S
1. For the mercury data in Data Table 1, calculate and record the diffraction angle y for each wavelength

from y¼ jyR� yLj/2. For each value of y calculate a value for the grating spacing d using Equation 4.
Calculate the mean of those values d and standard error ad. Record all calculated values in Data and
Calculations Table 1.

2. For the hydrogen data in Data Table 2 calculate the diffraction angle y¼ jyR� yLj/2 and record those
values in Calculations Table 2. Use those values and the value of d to calculate values of the hydrogen
wavelengths lexp and values for 1/lexp and record them in Calculations Table 2.

3. For each of the hydrogen wavelengths and its associated value of n, calculate the quantity (1/4–1/n2)
and record the results in Calculations Table 2.

4. Perform a linear least squares fit with 1/lexp as the vertical axis and (1/4–1/n2) as the horizontal axis.
Record the slope as (RH)exp, the intercept I, and the correlation coefficient r in Calculations Table 2.

5. Calculate the percentage errors for each of the experimental values of the hydrogen wavelengths and
record them in Calculations Table 2.

6. Calculate the percentage error for the experimental value of the Rydberg constant (RH)exp compared
to the known value of 1.097� 107 m�1. Record the results in Calculations Table 2.

G R A P H S
1. Make a graph with the experimental values 1/lexp as the vertical axis and (1/4�1/n2) as the horizontal

axis. Also show on the graph the straight line obtained from the linear least squares fit to the data.
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43 L A B O R A T O R Y 4 3 Bohr Theory of Hydrogen—The Rydberg Constant

P R E - L A B O R A T O R Y A S S I G N M E N T
1. State the Balmer formula for the wavelengths of the visible light spectrum of hydrogen.

2. Using the Balmer formula, calculate the first four wavelengths of the spectrum corresponding to n¼ 3,
4, 5, and 6. Show your work.

3. Describe the possible orbits of an electron in a hydrogen atom that are allowed by the Bohr theory.

4. What is a stationary state of the atom in Bohr theory?
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5. State Bohr’s postulate about the frequency f of light emitted when an electron makes a transition from
a state of energy Ei to one of Ef.

6. In the Bohr theory, the Rydberg constant is equal tome4=8"2och
3. Using accepted values for the constants

m, e, "o, c, and h, calculate the value of the Rydberg constant. Show your work.

7. A diffraction grating has a grating constant of d¼ 1.500� 10�6m. At what angle y will the first-order
image of light of wavelength 5.555� 10�7 m appear? Show your work.
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Data and Calculations Table 1 (Mercury Spectrum)

Colors l (10�7 m) yR (degree) yL (degree) y (degree) d (10�7 m) d (10�7 m) ad (10
�7 m)

Violet 4.047

Blue 4.358

Blue-Green 4.916

Green 5.461

Yellow 5.770

Yellow 5.790

Data Table 2 (Hydrogen Spectrum)

Colors l (10�7 m) n yR (degree) yL (degree)

Violet 4.102 6

Blue 4.341 5

Blue-Green 4.861 4

Red 6.563 3
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S A M P L E C A L C U L A T I O N S
1. y¼ jyR� yLj/2¼
2. d¼ l/sin y¼
3. lexp ¼ d siny ¼
4. %Error lexp¼
5. 1/lexp¼
6. 1/4� 1/n2¼
7. %Error (RH)exp¼

Q U E S T I O N S
1. Comment on the accuracy of your experimental value for the Rydberg constant RH.

2. Comment on the accuracy of your experimental values for the wavelengths of hydrogen compared to
the known values.

Calculations Table 2 (Hydrogen Spectrum)

n y (degree) lexp (m) 1/lexp (m�1) 1/4� 1/n2 % Error l

6

5

4

3

(RH)exp¼ I¼ r¼

Percentage Error in (RH)exp¼
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3. State the precision of your determination of the value of the grating spacing d. State clearly the basis
for your answer.

4. Calculate the percentage error of your experimental values of the four wavelengths of hydrogen
compared to the Balmer wavelengths you calculated in Question 2 of the Pre-Laboratory.

5. Using the Balmer formula (Equation 1), calculate the n¼ 7 wavelength for the hydrogen spectrum.
Why was this wavelength not observed in the laboratory?
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Simulated Radioactive
Decay Using Dice ‘‘Nuclei’’

O B J E C T I V E S
o Investigate the analogy between the decay of dice ‘‘nuclei’’ and radioactive nuclei.

o Demonstrate that both the number N and activity A of ‘‘nuclei’’ decrease exponentially.

o Determine experimental and theoretical values of the decay probability constant l and the half-
life for the dice ‘‘nuclei.’’

E Q U I P M E N T L I S T
. 20-sided dice to simulate radioactive nuclei

. Three-cycle semilog graph paper

T H E O R Y
One of the most noticeable differences between the classical physics known prior to l900 and the modern
physics since that time is the increased role that probability plays in modern physical theories. The exact
behavior of many physical systems cannot be predicted in advance. Many situations involve a very large
number of particles inwhich the behavior of any one particle is not predictable, but the average behavior of
the collection of particles is quite predictable. One example is a sample of radioactive nuclei that emits
alpha, beta, or gamma radiation. It is not possible to predict when any one radioactive nucleus will decay
and emit a particle. However, because any reasonable sample of radioactive material contains such a large
number of nuclei (at least 1012 nuclei), it is possible to predict the average rate of decaywith highprobability.

A basic concept of radioactive decay is that the probability of decay for each radioactive nucleus is
constant. In other words, there are a predictable number of decays per second even though it is not
possible to predict which nuclei among the sample will decay. A quantity called the decay constant l
characterizes this concept. It is the probability of decay per unit time for one radioactive nucleus. Because
l is constant, it is possible to predict the rate of decay for a radioactive sample. The value of the constant l
is different for each radioactive nuclide.

Consider a sample ofN radioactive nuclei with a decay constant of l. The rate of decay of these nuclei
dN/dt is related to l and N by the equation

dN

dt
¼ �lN ðEq: 1Þ
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The negative sign in the equationmeans that dN/dt is negative because the number of radioactive nuclei is
decreasing. The number of radioactive nuclei at t¼ 0 is designated as No. The question of interest is how
many radioactive nuclei N are there at some later time t. The solution is found by rearranging Equation 1
and integrating it, subject to the condition that N¼No at t¼ 0. The result of that procedure is

N ¼ Noe
�lt ðEq: 2Þ

Equation 2 states that the number of nucleiN at some later time t decreases exponentially from the original
numberNo that are originally present. The quantity lN is the number of decays per second, and it is called
the activity A of the sample. It can be shown that it obeys the equation

A ¼ Aoe
�lt ðEq: 3Þ

Equations 2 and 3 state that both N and A decay exponentially with the same exponential factor. For
measurements made on real radioactive nuclei, the activity A is usually all that can be measured.

The time it takes forNo to be reduced toNo/2, and the time it takes forAo to be reduced toAo/2, are the
same. It is called the half-life T1/2 of the decay. It is related to l by

T1=2 ¼ lnð2Þ
l

¼ 0:693

l
ðEq: 4Þ

Figure 44-1 shows two graphs of activity of a radioactive sample versus time, one semilog and the
other linear. The laboratory to be performed does not involve the decay of real radioactive nuclei. Instead
it is designed to illustrate the concepts described above by a simulated decay of dice ‘‘nuclei.’’ In the
laboratory, radioactive nuclei are simulated by a collection of 160 dice with 20 faces. Two of the 20 faces of
each die are marked with a dot. The dice are shaken and thrown, and a dice ‘‘nucleus’’ has decayed if a
marked face is up after the throw. In this simulation, the decay constant l is equal to the probability of
a marked face coming up, which is 2 out of 20. Thus the theoretical decay constant l is 0.100. For the
analogy, each throw of the dice is one unit of time.
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Figure 44-1 Graph of activity versus time on semilog and on linear scales.
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A unique aspect of this simulation laboratory is that measurements can be taken on both the number
remaining N and the number that decay. The number that decay is analogous to the activity A. For real
radioactive nuclei, N cannot be measured directly but is inferred from measurements of A, the activity.

E X P E R I M E N T A L P R O C E D U R E
1. Place all 160 of the dice in the square plastic tray provided with the dice. Place the clear plastic cover

over the dice and shake them vigorously. Remove all dice that come to rest with a marked face up.
Remove only those that have a marked face that points directly upward. Record in Data and
Calculations Table 1 the number of dice that decay (are removed) on the first throw of the dice. Also
record the number of dice that remain after the ones that decay are removed.

2. Place the cover on the dice and shake the remaining dice vigorously. Remove the dice that come to rest
with a marked face up on the second throw. Record in Data and Calculations Table 1 the number of
dice removed on the second throw, and also record the number of dice that remain after the ones that
decay are removed.

3. Continue this process of shaking the dice, removing the ones that have a marked face up, and
recording the number of dice removed and the number of dice left for each throw. Continue this
procedure for a total of 20 throws of the dice, or until all of the dice have been removed.

4. Each experimental group should record its data on the blackboard so that the class results can be
plotted as a set of data with better statistics. Sum the total number of dice thrown originally for the
entire class and sum the number removed at each throw of the dice. Record this class data in Data
Table 2.

G R A P H S
1. On three-cycle semilog graph paper provided by the instructor, graph the results. Plot N the number

of ‘‘nuclei’’ remaining on the log scale versus the number of throws on the linear scale, using� as a
symbol. On the same piece of graph paper, plot the activityA (number removed each throw) on the log
scale versus the number of throws on the linear scale, usingþ for a symbol.

2. On a second piece of three-cycle semilog graph paper, graph the class data for N and A. With better
statistics, these curves should be smoother than the individual data.

3. If the dice behaved exactly according to the theory described, all of the graphs described above would
fall on a straight line on the semilog plot. The data for N will most likely show this trend better than
the data for A.

4. For the individual data and the class data, draw a straight line that best fits the data. Do this for bothN
and A.

C A L C U L A T I O N S
1. For each of the 20 shakes of the dice, calculate the ratio of the number of dice removed after a given

throw to the number shaken for that throw. In the simulation the number of dice removed is A, the
activity, and the number shaken isN, the number of radioactive nuclei. Thus these ratios amount to an
experimental value for l. Note carefully that this ratio must be calculated with data from two different
rows in Data and Calculations Table 1. For example, the number of dice thrown on the fourth throw is
listed as the number of dice remaining after the third throw. Thus the ratio is calculated with the
number removed on each row to the number remaining in the preceding row. Record these 20 values
as lexp in Data and Calculations Table 1.C
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2. Calculate the mean of these 20 values for lexp and record it in Calculations Table 2 as lexp.

3. The theoretical value of l is 0.100. Record this value in Calculations Table 2 as ltheo.

4. Calculate the percentage error in the value of lexp compared to ltheo. Record this percentage error in
Calculations Table 2.

5. Calculate the theoretical half-life from Equation 4 using the value of l¼ 0.100. Record that value in
Calculations Table 2 as (T1/2)theo. For purposes of this calculation consider a fractional throw as
possible.

6. Consider the straight line drawn through the data points of your individual data forN versus number
of throws. The experimental half-life is the number of throws needed to go from any point on the line
to one-half that value. Determine the number of throws needed to go from 120 to 60 on the straight line
through your data. Record that number in Calculations Table 2 as (T1/2)exp. For purposes of this
determination, consider a fractional throw as possible.

7. Calculate the percentage error in the value (T1/2)exp compared to the value of (T1/2)theo. Record that
percentage error in Calculations Table 2.
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Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section . . . . . . . . . . . . . . . . Date . . . . . . . . . . . . . . . .

44 L A B O R A T O R Y 4 4 Simulated Radioactive Decay Using Dice ‘‘Nuclei’’

P R E - L A B O R A T O R Y A S S I G N M E N T
1. A typical sample of radioactive material would contain as a lower limit approximately how many

nuclei? (a) 1000 (b) 106 (c) 1012 (d) 1023

2. The theory of radioactive decay can predict when each of the radioactive nuclei in a sample will decay.
(a) True (b) False

3. State the definition of the decay constant l. What are its units?

4. For the simulation of a radioactive decay using 20-sided dice, what are the analogous quantities to the
real quantities listed below?

undecayed nucleus—

decayed nucleus—

time—

decay constant—

5. What quantity can be measured for the simulation laboratory that cannot normally be directly
measured in a true radioactive decay laboratory?
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6. A radioactive decay process has a decay constant l¼ 1.50� 10�4 sec�1. There are 5.00� 1012 radio-
active nuclei in the sample at t¼ 0. How many radioactive nuclei are present in the sample one hour
later? Show your work.

7. For the radioactive sample described in Question 6, what is the activity A (in decays per second)
at t¼ 0? What is the activity one hour later? Show your work.

8. What is the half-life of the radioactive sample described in Question 6? Show your work.
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Data and Calculations Table 1

Throw Removed (A) Remaining (N)

lexp
0 0 160

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Data Table 2

Removed (A) Remaining (N)

0

(Continued)
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S A M P L E C A L C U L A T I O N S
1. lexp¼ (# removed)/(# thrown)¼
2. lexp ¼ ðsumof 20 lexpÞ=20 ¼
3. (T1/2)theo¼ (0.693)/(l theo)¼
4. ðT1/2Þexp ¼ ð0:693Þ=ðlexpÞ ¼
5. %Error l¼
6. %Error T1/2¼

Q U E S T I O N S
1. Do your data forN as a function of the number of throws give a reasonably straight line? Would a line

with the same slope as you drew through the N versus number of throws fit reasonably well through
the A versus number of throws plot?

2. Comment on the agreement between your experimental value for l and the theoretical value for l.

Throw Removed (A) Remaining (N) lexp

17

18

19

20

Removed (A) Remaining (N)

(Continued)

Calculations Table 2

ltheo¼ lexp ¼ %Error¼

(T1/2)theo¼ (T1/2)exp¼ %Error¼
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3. Comment on the agreement between your experimental value for the half-life and the theoretical
value of the half-life.

4. Are the graphs for the class data smoother and more nearly a straight line than your individual data?
Would you expect this to be true, and if so, why?

5. Calculate the half-life from the class data graph. Compare it to the theoretical value for the half-life.
Would you expect it to show better agreement, and if so, why?
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Geiger Counter Measurement
of the Half-Life of 137Ba

O B J E C T I V E S
o Measure the count rate versus voltage for a Geiger counter to determine its appropriate operating

voltage.

o Measure the activity of 137Ba as a function of time to determine its half-life.

E Q U I P M E N T L I S T
. Geiger counter, scaler, timer, 90Sr beta radiation source

. Minigenerator that produces 137Ba from the decay of a parent nuclide of 137Cs

. Disposable plachet (very thin small metal plate to contain a radioactive sample)

. Three-cycle semilog graph paper

T H E O R Y
A basic concept of radioactive decay is that the probability of decay for each radioactive nucleus is
constant. In other words, there are a predictable number of decays per second even though it is not
possible to predict which nuclei among the sample will decay. A quantity called the decay constant l
characterizes this concept. It is the probability of decay per unit time for one radioactive nucleus. Because
l is constant, it is possible to predict the rate of decay for a radioactive sample. The value of the constant l
is different for each radioactive nuclide.

Consider a sample ofN radioactive nuclei with a decay constant of l. The rate of decay of these nuclei
dN/dt is related to l and N by the equation

dN

dt
¼ �lN ðEq: 1Þ

The negative sign in the equationmeans that dN/dt is negative because the number of radioactive nuclei is
decreasing. The number of radioactive nuclei at t¼ 0 is designated as No. The question of interest is how
many radioactive nuclei N are there at some later time t. The solution is found by rearranging Equation 1
and integrating it, subject to the condition that N¼No at t¼ 0. The result of that procedure is

N ¼ Noe
�lt ðEq: 2Þ
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Equation 2 states that the number of nucleiN at some later time t decreases exponentially from the original
numberNo that are originally present. The quantity lN is the number of decays per second, and it is called
the activity A of the sample. It can be shown that it obeys the equation

A ¼ Aoe
�lt ðEq: 3Þ

Equations 2 and 3 state that both N and A decay exponentially with the same exponential factor. The time
it takes for No to be reduced to No/2, and the time it takes for Ao to be reduced to Ao/2, are the same. It is
called the half-life T1/2 of the decay. It is related to l by

T1=2 ¼ lnð2Þ
l

¼ 0:693

l
ðEq: 4Þ

To study these radioactive processes,wemust detect the presence of these particles that are the product
of the decay.We can build devices in many forms to accomplish the detection, but they all would have one
feature in common. Every practical device that detects radiation allows the particles to interact withmatter,
and then uses that interaction as the basis for detection. The particular device wewill use in this laboratory
is called aGeiger counter. It consists of a tube in which the incident particle interacts, and a scaling circuit
to count the pulses of electricity produced. A diagram of a Geiger tube is shown in Figure 45-1.

TheGeiger tube is a smallmetal cylinderwith a thin self-supportingwire along the axis of the cylinder.
The wire is insulated from the cylinder. The cylindrical wall of the tube serves as the negative electrode
(cathode), and the wire along the axis is the positive electrode (anode). At the entrance end of the tube
there is a thin ‘‘window’’ formed by a very thin piece of fragile mica. Inside the counter is a special gas
mixture that is ionized by any radiation that penetrates the ‘‘window.’’

In operation, a voltage is applied across the electrodes. The particular voltage for each tube must be
determined experimentally. The applied voltage creates a large electric field in the tube, and the field is
especially large in the region near the central wire. When radiation passes through the window and
ionizes the gas, the large electric field causes an acceleration of the free electrons. These accelerated
electrons cause additional ionizations that create an ‘‘avalanche’’ effect. The total number of ion-electron
pairs created by a single incident particle is of the order of one million.

The electrons are moremobile and drift toward the positive central wire. When they arrive at the wire,
their negative charge causes the voltage of the wire to be lowered, and this sudden drop in voltage creates
a pulse that is counted by the electronic circuitry. Each pulse counted signifies the passage of a particle
through the counter. The ions then recombine with electrons, leaving the gas neutral again and ready for
the passage of another particle. The whole process takes a time of the order of 300 ms, and during that time
period if another particle goes through the counter, it may not be counted. Thus one disadvantage of
Geiger counters is this ‘‘dead time’’ during which counts may be missed. This is a negligible effect unless
the count rate is very high.

The count rate of a Geiger counter is a function of the voltage applied across the electrodes. Therefore,
the counter should be operated in a region where the rate at which the count rate changes with voltage is a

Cathode

Anode
Window

Incident
Radiation

Voltage applied
between the anode
and cathode

Figure 45-1 Diagram of the essential elements of a Geiger tube.
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minimum. This is accomplished experimentally by measuring the count rate of some fixed source of
radiation as a function of the voltage applied to the tube. A graph of the count rate versus the voltage will
be made from the data and the operating point will be chosen to be some voltage where the count rate
versus voltage curve is as nearly flat as possible. This is referred to as the plateau region.

The counter needs a minimum voltage to produce pulses at all. Both this minimum voltage and the
operating voltage are quite variable and depend upon the dimensions of the Geiger tube, and on the
particular gas used in the tube. Therefore, the exact nature of the count rate versus voltage curve depends
on the particular tube used. In general, the student-type Geiger tubes used in most undergraduate
laboratories operate at about 500 V and do not have a very flat count rate versus voltage curve anywhere.
Thus it is difficult to identify much of a plateau region. Typically, research-grade Geiger tubes operate in
the neighborhood of 1000 V, and they have a much flatter count rate versus voltage curve. A typical count
rate versus voltage curve for a student-type Geiger tube is shown in Figure 45-2.

E X P E R I M E N T A L P R O C E D U R E
Count Rate Versus Voltage to Determine Operating Voltage

1. All Geiger tubes have a maximum permissible operating voltage above which they are subject to
breakdown. This may permanently damage the tube. Consult your instructor or the instruction
manual for the specific maximum voltage of the particular Geiger tube used. Do not ever exceed this
maximum voltage. Before plugging in the power cord of your instrument, make sure that the high
voltage control is turned to the minimum setting.

2. Place the 90Sr b source about 2 or 3 cm from the window of the Geiger tube. Once the source is
positioned, take all the measurements for this procedure without changing the position of the source
relative to the detector.

3. Turn on the power to the instrument, reset the scaler to zero, and start the counter in a continuous
count mode with the high voltage still set to a minimum. Slowly increase the high voltage setting until
counts begin to register on the scaler. Leave the voltage at this setting for which the Geiger tube just
begins to count. This is called the threshold voltage.

4. Reset the scaler to zero, start the counter, and let it count for 1 minute. Repeat this procedure twomore
times for a total of three 1-minute counts at this voltage setting. Record the voltage and the three
values of the count in Data Table 1.

5. Raise the high voltage setting by 50 V, repeat Step 4 at this new high voltage setting and record the
high voltage and the counts for these three trials.

6. Continue this process up to the maximum permissible voltage of the Geiger tube. Be sure to obtain the
proper maximum voltage for your tube either from your instructor or from the instruction manual for
the instrument.C
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Figure 45-2 Typical count rate versus voltage for a Geiger tube.
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Half-life of 137Ba

1. The graph of count rate versus voltage should be similar in shape to Figure 45-2. The operating point
of the tube should be chosen to be just beyond the shoulder on the relatively flat portion of the graph.
That region is shown by an arrow in Figure 45-2. If the graph of your data does not look like you
expect, consult your instructor for help in picking the proper operating voltage for your Geiger
counter. Make all the measurements in this procedure at the same voltage once it is determined.

2. With no radioactive source near the Geiger tube, reset the scaler to zero and count the background for
2 minutes. The activity will be determined by counting for 15.0 s intervals. Divide the number of
counts obtained in 2 minutes by eight to obtain an average background count rate for 15.0 seconds.
Record that background rate in Data Table 2.

3. The 137Ba isotope must be prepared at the time of its use because it has such a short half-life. The
Minigenerator contains 137Cs, which decays with a 30-year half-life to produce 137Ba as a daughter
product. A saline solution of HCl is used to wash out the 137Ba that has established equilibrium with
the 137Cs. The 137Ba is created in an excited state and decays to the ground state of 137Ba by gamma-ray
emission with a half-life of less than 3 minutes.

4. Your instructor will prepare the sample when you are ready to count. Very carefully review all
of the remaining steps of the procedure so that you will be ready to begin counting the sample immediately
after it is prepared.

5. Set the scaler to the stop position and reset the scaler to zero.

6. As quickly as possible after you receive your sample, place the plachet containing the sample as close
to the Geiger tube window as possible, to obtain the maximum counting rate.

7. As quickly as possible, start the scaler in the continuous count mode and start the external timer
simultaneously. Do not ever stop the timer. Let it run continuously for the rest of this procedure.

8. When the timer reaches 15.0 seconds, stop the scaler. Record the counts obtained during the interval
0–15.0 seconds in the appropriate place in Data Table 2.

9. During the time interval when the timer reads between 15.0 and 30.0 s elapsed time, reset the scaler to
zero and wait for the next counting period.

10. Start the scaler when the timer reads 30.0 s and stop the counter when the timer reads 45.0 s. Record
the counts obtained in the interval 30.0–45.0 s in the appropriate place in Data Table 2.

11. Continue this process, letting the timer run continuously and alternately counting for a 15.0-s interval
and resetting and waiting a 15.0-s interval until Data Table 2 is completed. If a mistake is made on one
of the counting periods, just skip it and start at the next counting period.

C A L C U L A T I O N S
Count Rate Versus Voltage

1. Calculate the mean C and standard error aC for the three trials of the count at each voltage. Calculate
the square root of the mean count

ffiffiffiffi
C

p
at each voltage. Record all calculated values in Calculations

Table 1.

2. On linear graph paper plot the mean count rate C (counts/min) versus voltage to produce a graph like
the one shown in Figure 45-2.

Half-life of 137Ba

1. Each count period is 15.0 s long, during which time the activity changes continuously. For each of
the counting periods, subtract the average background count for 15.0 s from the count in that time
period. Divide that result for each period by 15.0 s and record it as the activity A in counts/s at the
appropriate place in Calculations Table 2. This is actually the average activity during each 15.0-s
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time interval, but it will be assumed that it approximates the instantaneous activity at the middle
of each time interval.

2. Calculate the quantities (Ao/A) and ln (Ao/A) for each of the activities in Data Table 2 whereAo is taken
to be the activity at t¼ 0.

3. The quantity ln (Ao/A) should vary linearly with t the time, and the slope should be equal to the
disintegration constant l. Perform a linear least squares fit of the data in Calculations Table 2 with
ln (Ao/A) as the vertical axis and t the time as the horizontal. Record the value of the slope as the
disintegration constant l in Calculations Table 2.

4. Using Equation 4, calculate the experimental value of the half-life of 137Ba from the experimental value
of the disintegration constant l.

G R A P H S
Half-life of 137Ba

1. On three-cycle semilog graph paper, plot the activity in counts/second versus the time in seconds,
using the log scale for the activity and the linear scale for time. Graph each activity at the time
corresponding to the middle of the time interval as given in Calculations Table 2.
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45 L A B O R A T O R Y 4 5 Geiger Counter Measurement of the Half-Life of 137Ba

P R E - L A B O R A T O R Y A S S I G N M E N T
1. For the isotope of the element nickel 28

63Ni give the number of protons Z, the number of neutrons N,
and the mass number A.

2. Show that Equation 3 in the laboratory can be expressed in the form ln(Ao/A)¼ lt. This is the form
used to fit the data in the laboratory.

3. What is the basis for the detection of the particles from any radioactive decay?

4. The inside of a Geiger tube is filled with a (a) gas (b) liquid (c) solid (d) plasma.

5. The pulse that is counted in a Geiger tube is caused by a (a) rise in voltage from ions arriving at the
anode (b) drop in the voltage from ions arriving at the anode (c) rise in voltage from electrons arriving
at the anode (d) drop in voltage from electrons arriving at the anode.

6. In a Geiger tube the total time taken to create a pulse and then let the electrons recombinewith the ions
to again form a neutral state is about (a) 1 ms (b) 30 ms (c) 300 ms (d) 10,000 ms.
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7. A typical operating voltage for a Geiger counter is about (a) 5 V (b) 50 V (c) 500 V (d) 5000 V.

8. In this laboratory the half-life of 137Ba will be determined by measuring (a) the number of atoms left
as a function of time (b) the activity that is constant (c) the activity that decreases as a function of time
(d) the activity that increases as a function of time.
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L A B O R A T O R Y R E P O R T
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Voltage Count 1 Count 2 Count 3

Calculations Table 1

C aC
ffiffiffiffi
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S A M P L E C A L C U L A T I O N S
1. Background (15 s)¼Total counts/8¼
2. A¼ (Counts�Background)/(15)¼
3. (Ao/A)¼
4. ln (Ao/A)¼
5. T1/2¼

Calculations Table 2

Background count for 15 s¼

A (cts/s) (Ao/A) ln(Ao/A) t (s)

7.5

37.5

67.5

97.5

127.5

157.5

187.5

217.5

247.5

277.5

307.5

337.5

367.5

l¼ s�1 T1/2¼ s

Data Table 2

Background 2 minutes¼

Count Period Counts

0–15 s

30–45 s

60–75 s

90–105 s

120–135 s

150–165 s

180–195 s

210–225 s

240– 255 s

270–285 s

300–315 s

330–345 s

360–375 s
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Q U E S T I O N S
1. For the count rate versus voltage data consider the standard error aC and the square root of the mean

count
ffiffiffiffi
C

p
. According to nuclear statistical theory, those quantities should be approximately equal.

Calculate the percentage difference between them.

2. State the threshold voltage (voltage at which the counter begins to operate) for your Geiger tube.

3. On the semilog graph of the activity of 137Ba, draw the best straight line that you can through the data
points. From the straight line determine the half-life of the sample. Indicate exactly which points on
the straight line are used to determine the half-life.

4. The accepted half-life of 137Ba is 2.6 min. Calculate the percentage error of each of your determinations
of this half-life. Show your work.

5. A physics professor purchased a 137Cs source in September 1990, which had an activity of 2.00� 105

disintegrations per second at that time. What is the activity of that source today? (The half-life of 137Cs
is 30.2 years.) Show your work.
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Nuclear Counting Statistics

O B J E C T I V E S
o Investigate the counts from a radioactive source for 50 measurements under conditions in which

the count rate should be approximately constant.

o Determine the standard deviation from the mean and standard error of the counts.

o Investigate how well the observed distribution of counts compares to that predicted by the
normal distribution.

o Investigate whether or not
ffiffiffiffi
C

p
approximates the standard deviation from the mean.

E Q U I P M E N T L I S T
. Geiger counter (single unit containing Geiger tube, power supply, timer, and scaler)

. Long-lived radioactive source (such as 137Cs or 60Co)

T H E O R Y
If all other sources of error are removed from a nuclear counting experiment, there remains an uncertainty
due to the random nature of the nuclear decay process. It is assumed that there exists some true mean
value of the count, which shall be designated as m. But we emphasize, do not assume that there is a true
value for any individual count Ci. Although m is assumed to exist, it can never be known exactly. Instead,
one can approach knowledge of the true mean m by a large number of observations. It can be shown that
the best approximation to the true mean m is the mean C, which is given by

C ¼ ð1=nÞ
Xn
i¼1

Ci ðEq: 1Þ

where Ci stands for the ith value of the count obtained in n trials. The standard deviation from the mean
sn�1 and the standard error a are defined in the usual manner as

sn�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ð1=n� 1ÞðC� CiÞ2
s

and a ¼ sn�1ffiffiffi
n

p ðEq: 2Þ

These equations have been applied to essentially all of the measurements in this laboratory manual.
In many of the cases where these ideas have been applied, they are somewhat questionable because the
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random errors are not necessarily the determining factor. For nuclear counting experiments, usually the
random errors are the limiting factor, and these concepts generally do apply strictly to suchmeasurements.

The way in which the measurements Ci are distributed around the mean C depends upon the
statistical distribution. The binomial distribution is the fundamental law for the statistics of all random
events including radioactive decay. Calculations are difficult with this distribution, and it is often
approximated by another integral distribution called the Poisson distribution. For cases of m greater than
20, both the binomial and the Poisson distribution can be approximated by the normal distribution. It
has the advantage that it deals with continuous variables, and thus calculations are much easier with the
normal distribution. For most nuclear counting problems of interest, the normal distribution predicts
the same results for nuclear counting that have been assumed for measurements in general.
Approximately 68.3% of the measured values of Ci should fall within C� sn�1, and approximately
95.5% of the measured values of Ci should fall within C� 2 sn�1.

There is one statistical idea valid for nuclear counting experiments that is not true for measurements
in general. For any given single measurement of the count C in a nuclear counting experiment, an
approximation to the standard deviation from the mean sn�1 is given by

sn�1 �
ffiffiffiffi
C

p
ðEq: 3Þ

For a series of repeated trials of a given count, the most accurate determination is given by C� a.
If only a single measurement of the count is made, the most accurate statement that can be made is
given by C� ffiffiffiffi

C
p

.
In this laboratory, we will take a series of measurements of the same count to determine the distri-

bution of the measurements about the mean. In addition, we will investigate the validity of Equation 3.

E X P E R I M E N T A L P R O C E D U R E
1. Consult your instructor for the operating voltage of the Geiger counter and set the Geiger counter to

the proper operating voltage. Place a long-lived radioactive isotope on whichever counting shelf is
necessary to produce between 500 and 700 counts in a 30 s counting period. For best results, the Geiger
counter should have preset timing capabilities. If it does not and a laboratory timer is used, it would
improve the timing precision if 60 s counting intervals are used. For whatever time is counted,
between 500 and 700 counts should be recorded.
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2. Repeat the count for a total of 50 trials. Make no changes whatsoever in the experimental arrangement
for these 50 trials. Record each count in the Data Table. Do not make any background subtraction.
Simply record the total count for each counting period.

C A L C U L A T I O N S
1. Calculate the mean count C, the standard deviation from the mean sn�1, and the standard error a for

the 50 trials of the count and record the results in the Calculations Table.

2. For each count Ci calculate jCi�Cj=sn�1 and record the results in the Calculations Table.

3. Determine what percentage of the counts Ci are further from C than sn�1 by counting the number of
times a value of jCi�Cj=sn�1 > 1 occurs. Express this number divided by 50 as a percentage. Count
the number of times that jCi�Cj=sn�1 > 2 occurs. Express this number divided by 50 as a percentage.
Record these results in the Calculations Table.

4. Calculate
ffiffiffiffi
C

p
and record its value in the Calculations Table.

G R A P H S
1. Construct a histogram of your data on linear graph paper. Consider the range of the data and

arbitrarily divide the range into about 15 segments. For counts in the range used, this should give
intervals of 8 or 10 counts. An example of some data is displayed in this manner in Figure 46-2. The
mean of the data is 659 with sn�1¼ 27, and an interval of 10 has been chosen.
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Figure 46-2 Histogram of 50 repeated counts with mean of 659.
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46 L A B O R A T O R Y 4 6 Nuclear Counting Statistics

P R E - L A B O R A T O R Y A S S I G N M E N T
1. For nuclear counting experiments no true value of a given count is assumed. What quantity is

assumed to have a true value?

2. What is the exact statistical distribution function that describes the statistics of nuclear counting
experiments?

3. What statistical distribution function approximates nuclear counting statistics and is used because it
deals with continuous variables? For what values of the true mean m is this distribution valid?

4. In a nuclear counting experiment a single measurement of C counts is obtained. What is the approxi-
mate value for sn�1 for the count C?
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5. According to the normal distribution function,when a given count is repeated 30 times, approximately
how many of the results should fall in the range C� sn�1? How many should fall in the range
C� 2sn�1?

6. A single count of a radioactive nucleus is made, and the result is 927 counts. What is the approximate
value of sn�1?

7. A set of 10 repeated measurements of the count from a given radioactive sample was taken. The
results were: 633, 666, 599, 651, 654, 690, 660, 659, 664, and 612. What is the mean count C? What is the
value of sn�1? What is the value of a? Which of the counts fall outside C� sn�1? Is this approximately
the number of cases expected? Show your work.

8. For the data in Question 7, is
ffiffiffiffi
C

p
approximately equal to sn�1? Calculate the percentage difference

between the two. Show your work.
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Data Table

i Ci

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

i Ci

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Calculations Table

i jCi�Cj=sn�1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

i jCi�Cj=sn�1

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

(Continued)
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S A M P L E C A L C U L A T I O N S
1. jCi�Cj=sn�1 ¼
2.

ffiffiffiffi
C

p
¼

3. % trial > sn�1 from mean¼
4. % trial > 2 sn�1 from mean¼

Q U E S T I O N S
1. Consider the shape of the histogram of your data. Does it show the expected distribution relative to

the mean of the data?

i Ci

35

36

37

38

39

40

41

42

i Ci

43

44

45

46

47

48

49

50

i jCi�Cj=sn�1

35

36

37

38

39

40

41

42

i jCi�Cj=sn�1

43

44

45

46

47

48

49

50

C¼ sn�1¼

a¼
ffiffiffiffi
C

p
¼

% trial >sn�1 from mean¼

% trial > 2 sn�1 from mean¼

(Continued)
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2. Compare the percentage of trials that have jCi�Cj=sn�1 > 1 with that predicted by the normal
distribution. Compare the percentage of trials that have jCi�Cj=sn�1 > 2 with that predicted by the
normal distribution.

3. What is the most accurate statement that you can make about the count from the sample based upon
the data that you have taken?

4. Calculate the percentage difference between
ffiffiffiffi
C

p
and sn�1. Do the results confirm the expectations of

Equation 3?
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Absorption of Beta and
Gamma Rays

O B J E C T I V E S
o Investigate the difference in relative absorption by different types of materials for different kinds

of radiation.

o Determine the absorption coefficient m for gamma radiation in lead.

E Q U I P M E N T L I S T
. Geiger counter (single unit with Geiger tube, power supply, timer, and scaler)

. Absorber set (lead and polyethylene), two-cycle semilog graph paper

. Gamma source (60Co, for example), beta source (90Sr, for example)

T H E O R Y
Three different particles are emitted in the three types of natural radioactivity. In a-decay the emitted
particle is a twice-ionized helium atom called an alpha particle. In b-decay the emitted particle is
an electron or positron. For c-decay the emitted particle is a high-energy photon. The different nature
of these particles accounts for the differences in their relative absorption in matter. The most important
characteristics that determine the interactions are the charge and the mass of the particles. Because they
are charged and have large mass, alpha particles interact very strongly, lose energy in a series of
interactions, and do not travel far in matter. For a typical a-decay the particle will not penetrate the thin
window of a Geiger counter. Therefore we will use no a-decay sources in this laboratory.

Because the g-ray photons have no mass or charge, they interact with matter in a fundamentally
different way than charged particles interact. They interact less strongly with matter, and as a result are
the most penetrating type of radiation. They require a greater thickness of material to be completely
absorbed. Gamma rays interact with matter by the photoelectric effect, the Compton effect, and by
positron-electron pair production. In each of these processes a photon is effectively completely removed
from the beam in a single process, if it interacts at all. The consequence of this fact, that photons either do
not interact at all or else are completely removed by an interaction, means that g-ray intensity decreases
exponentially with absorber thickness. Photons are the only particles from natural radioactivity to interact
in this manner, and are the only ones to show an exact exponential decrease in matter.
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It is found experimentally that when a beam of g-rays of intensity I is incident on matter of thickness
Dx, the change in intensity DI of the beam as it passes through the matter is proportional to the thick-
ness Dx and to the incident intensity I. In equation form this is

DI ¼ �mI Dx ðEq: 1Þ

where m is a constant of proportionality called the absorption coefficient. The constant m has dimensions
of inverse length and is commonly expressed in cm�1. If the limit is taken so that the finite changes become
differential, Equation 1 can then be integrated to give

I ¼ Ioe
�mx ðEq: 2Þ

which is the characteristic exponential absorption described earlier. The term Io is the intensity at
thickness x¼ 0, and I is the intensity at thickness x. Equation 2 can be rewritten in the form

lnðIo=IÞ ¼ mx ðEq: 3Þ

Equation 3 states that the quantity ln(Io/I) should be proportional to x with m as the constant of pro-
portionality. This relationshipwill be used to determine m. The relationship applies only to a source of pure
g-rays. The 60Co source emits both g-rays and b-rays, but the b-rays will be absorbed first, and the g-rays
that are left can be assumed to be a pure source of g-rays.

The absorption of b-rays is completely different from the absorption of g-rays. Beta rays are either
electrons or positrons. In either case, they are charged particles withmass equal to themass of the electron.
As charged particles, they tend to lose their energy gradually in a series of collisions with the electrons in
the atoms of the absorbingmaterial. Generally each collision results in a relatively small energy loss, and a
large number of collisions are necessary before all the energy of the incident b-ray is lost. As a consequence
of the nature of this process, a beam of electrons, all of which have the same initial energy, has a definite
range in a given type of absorber. Therefore, electrons do not exhibit absorption that is an exponential
function of the thickness of the absorber.

The situation for the case of natural b-rays is complicated because not all of the betas have the same
energy. Betas from a b-ray source have a spectrum of energy ranging from almost zero up to some
maximum energy characteristic of the isotope. If an absorption experiment is performed for the spectrum
of energies that is present for any b-ray emitter, often the intensity does in fact decrease in a nearly
exponential manner. This is simply a fortuitous result of the combined effects of the initial energy

Figure 47-1 Geiger counter and set of standard absorbers described in procedure.
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distribution, of back scattering into the detector, and of the true range-energy relationship. We will
performmeasurements on the absorption of b-rays from a 90Sr source that we can assume to be a pure beta
source.

E X P E R I M E N T A L P R O C E D U R E
Gamma Absorption

1. Consult your instructor for the operating voltage of the Geiger counter and set the Geiger counter to
the proper operating voltage. Once it is set, leave the voltage unchanged for the rest of the laboratory.
Place the 60Co source in the third shelf position and place the empty absorber holder in the second
shelf position. Be sure that the source is not moved during the rest of the procedure. For best results,
let the Geiger tube stabilize for at least 10 min before proceeding.

2. Reset the scaler to zero and determine intensity I (the number of counts) from the source with no
absorber in the holder. Count for a period of 60 s.

3. Using lead absorbers, determine the intensity I (counts) in a 60 s period for the following values of
absorber thickness: 0.079, 0.159. 0.318, 0.635, and 0.953 cm. These choices assume the use of a standard
set of absorbers 1/32, 1/16, 1/8, and 1/4 inch thick. Any known values of thickness that cover the stated
range are satisfactory. Record in Data Table 1 the results of the count for each absorber and the thick-
ness of the absorber.

4. Using polyethylene absorbers, determine the intensity I (counts) in a 60 s period for the following
values of absorber thickness: 0.051, 0.076, 0.159, 0.318, 0.635, 0.953, and 1.27 cm. Again a standard set of
absorbers is assumed, but any known values of thickness that cover the range are satisfactory. Record
in Data Table 2 the count for each absorber and the thickness of the absorber.

Beta Absorption

1. Remove the 60Co source and place a 90Sr b-ray source in the third shelf position. With the empty
absorber holder in the second shelf position, determine the number of counts in 60 s and record the
results in Data Tables 3 and 4.

2. Using lead absorbers, determine the number of counts in 60 s for the following values of absorber
thickness: 0.079, 0.159, 0.318, 0.635, and 0.953 cm.

3. Using the polyethylene absorbers, determine the number of counts in 60 s for the following values of
thickness: 0.010, 0.020, 0.051, 0.076, 0.159, 0.318, and 0.635 cm.

C A L C U L A T I O N S
1. Although the 60Co source has been referred to as a g-ray source, it also has some beta activity. In the

data takenwith the lead absorber, the betas from 60Co are completely absorbed by the first thickness of
lead used. The rest of the data for count versus absorber thickness represents the absorption of g-rays
alone. Let the count for the 0.079 cm thick lead absorber represent the initial intensity Io of g-rays alone.
Record that intensity in the Calculations Table as Io. Calculate the increase in thickness that each
absorber represents relative to the first absorber. Call this increase in thickness x1 where x1¼ x� 0.079.
For each of the absorbers beyond the first, record the values of I and x1 in Calculations Table 1.

2. According to Equation 3, the quantity ln(Io/I) should be proportional to x1 for the assumption
made in defining x1 above. Perform a linear least squares fit with ln(Io/I) as the vertical axis and x1
as the horizontal axis. Record the slope as m and record the correlation coefficient r in Calculations
Table 1.C
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G R A P H S
1. On semilog graph paper, graph the intensity (counts) versus x for the 60Co data from Data Tables 1

and 2. Use the linear scale for x. According to the theory, the part of the intensity due to g-rays should
be linear on this semilog plot. This means that the linear portion will occur only after the b-rays are
absorbed. For the lead absorbers, this will occur after the first absorber. For the polyethylene absor-
bers, it will take several of the absorbers to remove the b-rays. A typical set of data for 60Co using lead
absorbers is shown in Figure 47-2. Note that the zero absorption is not on the straight line because of
the b-ray contribution. The line is not a fit to the data, but simply a line drawn by hand.

2. On semilog graph paper, graph the intensity (counts) versus x for the 90Sr data for betas on poly-
ethylene fromData Table 4. Although it is only an approximation, these data may be somewhat linear.

400
0 0.2 0.4

Thickness of Lead Absorber (cm)
0.6 0.8 1.0

600

800

1000

2000

3000

�
-R

ay
 In

te
ns

ity
 (

co
un

ts
)

Figure 47-2 Typical data for 60Co using lead absorbers.
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47 L A B O R A T O R Y 4 7 Absorption of Beta and Gamma Rays

P R E - L A B O R A T O R Y A S S I G N M E N T
1. What are the names of the three types of natural radioactivity? Describe the nature of the particle

produced in each.

2. Which kind of nuclear radiation undergoes a true exponential absorption as a function of absorber
thickness? What property of its interaction with matter causes this to happen?

3. Which kind of natural radioactivity produces particles with a continuous spectrum of energy?

4. Which type of natural radioactivity produces particles that penetrate matter the least? What charac-
teristics of these particles cause them to be stopped in less matter?
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5. State the form of the equation for the absorption of g-rays in matter. Define all the terms used in the
equation.

6. What type of radiation is the most penetrating? What properties of the particles from this radiation
cause them to penetrate matter so well?

7. Apure g-ray source has a count rate of 5000 counts in oneminute with no absorber between the source
and the detector. An absorber of thickness 0.375 cm is placed between the source and the detector.
The number of counts in the detector in 1 minute is now 3245. What is the absorption coefficient m of
the material? Show your work.

8. In the experimental arrangement of Question 7, if an additional 0.235 cm of the same material is
placed between the detector and source, what is now the count in 1 minute? Show your work.
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Data Table 1 g-rays on Lead

x (cm) I (counts)

0

Data Table 3 b-rays on Lead

x (cm) I (counts)

0

Data Table 2 g-rays on Polyethylene

x (cm) I (counts)

0

Data Table 4 b-rays on Polyethylene

x (cm) I (counts)

0
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Calculations Table 1

Io¼ counts

x (cm) I (counts) x1 (cm) ln(Io/I)

m¼ (cm�1) r¼

S A M P L E C A L C U L A T I O N S
1. x1¼ x� 0.079¼
2. ln(Io/I)¼

Q U E S T I O N S
1. For the semilog graph of the data of Table 1, at what thickness are all the betas absorbed? After the

betas are absorbed, does the graph of absorption of gammas show only a linear behavior?

2. For the semilog graph of the data from Data Table 2, does the absorption of the betas take place over
several absorbers? At what thickness are all of the betas absorbed? After the betas are absorbed, does
the graph of absorption of gammas show only a linear behavior?
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3. Comment on the data in Data Table 3 for the intensity of 90Sr radiation versus the thickness of lead
absorber. What is your conclusion about the absorption of betas in lead?

4. Comment on the semilog graph of the data from Data Table 4 for the intensity of 90Sr radiation versus
thickness of polyethylene absorber. Is the graph approximately linear? If it is not linear over the whole
range, is it at least linear over some portion of the range?

5. For gammas of the approximate energy of the 60Co gammas in lead, the approximate value of the
absorption coefficient is m¼ 0.65 cm�1. Considering this as the accepted value, calculate the accuracy
of your measurement of m.
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Correlation Coefficients*

This table shows the probability of obtaining a given correlation coefficient r for two variables for which
there is in fact no correlation. This probability is a strong function of the number of data points n. As an
illustration of the table, consider the case of n¼ 12. There is a 10% probability of obtaining a value of
r� 0.497, a 2% probability of obtaining a value of r� 0.658, and a 0.1% probability of obtaining a value of
r� 0.823 for data for which no actual correlation exists. For many cases in the laboratory manual, you will
take data that produce values of r greater than the 0.1% probability for the particular value of n. In those
cases, one can conclude that the data are very strong evidence for a linear relationship between the variables.
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*This table is adapted from Table VI of Fisher and Yates, Statistical Tables for Biological, Agricultural, and Medical
Research, published by Oliver & Boyd, Ltd., Edinburgh, by permission of the authors and publishers.

Probability (%)

n 10 5 2 1 0.1

3 0.988 0.997 0.999 1.000 1.000

4 0.900 0.950 0.980 0.990 0.999

5 0.805 0.878 0.934 0.959 0.992

6 0.729 0.811 0.882 0.917 0.974

7 0.669 0.754 0.833 0.874 0.951

8 0.621 0.707 0.789 0.834 0.925

9 0.582 0.666 0.750 0.798 0.898

10 0.549 0.632 0.716 0.765 0.872

11 0.521 0.602 0.685 0.735 0.847

12 0.497 0.576 0.658 0.708 0.823

15 0.441 0.514 0.592 0.641 0.760

20 0.378 0.444 0.516 0.561 0.679
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Properties of Materials
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Table II A Density of Substances (kg/m3)

Substance Density Substance Density

Aluminum 2.7� 103 Cork 0.22� 0.26� 103

Brass 8.4� 103 Oak wood 0.60� 0.90� 103

Copper 8.9� 103 Maple wood 0.62� 0.75� 103

Gold 19.3� 103 Pine wood 0.35� 0.50� 103

Iron 7.85� 103 Alcohol, ethyl 0.79� 103

Lead 11.3� 103 Alcohol, methyl 0.81� 103

Nickel 8.7� 103 Mercury 13.6� 103

Steel 7.8� 103 Pure water 1.000� 103

Zinc 7.1� 103 Sea water 1.025� 103

Table II B Specific Heats (Calories/gram�C8)

Substance Specific Heat Substance Specific Heat

Aluminum 0.22 Mercury 0.033

Brass 0.092 Steel 0.12

Copper 0.093 Tin 0.054

Iron 0.11 Water 1.000

Lead 0.031 Zinc 0.093
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Table II C Thermal Coefficients of Expansion (C8)�1

Substance a Substance a

Aluminum 24� 10�6 Brass and bronze 19� 10�6

Copper 17� 10�6 Lead 29� 10�6

Pyrex glass 3.2� 10�6 Ordinary glass 9� 10�6

Steel 11� 10�6 Concrete 12� 10�6

Gold 14� 10�6 Tin 27� 10�6

Table II D Resistivities and Temperature Coefficients

Substance Resistivity(O�m) Temperature Coefficient (C8)�1

Aluminum 2.82� 10�8 3.9� 10�3

Copper 1.72� 10�8 3.9� 10�3

Silver 1.59� 10�8 3.8� 10�3

Gold 2.44� 10�8 3.4� 10�3

Nickel-silver 33� 10�8 0.4� 10�3

Tungsten 5.6� 10�8 4.5� 10�3

Iron 10� 10�8 5.0� 10�3

Lead 22� 10�8 3.9� 10�3

Carbon 3.5� 10�5 �0.5� 10�3
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Some Physical Constants

Quantity Symbol Valueb

Atomic mass unit u 1.660 538 73 (13)� 10�27 kg
931.494 013 (37) MeV/c2

Avogadro’s number NA 6.022 141 99 (47)� 1023 particles/mol

Bohr magneton mB ¼ eh

2me
9.274 008 99 (37)� 10�24 J/T

Bohr radius a0 ¼ h2

mee2ke
5.291 772 083 (19)� 10�11m

Boltzmann’s constant kB ¼ R

NA
1.380 650 3 (24)� 10�23 J/K

Compton wavelength lC ¼ h

mec
2.426 310 215 (18)� 10�12m

Coulomb constant ke ¼ 1

4p�0
8.987 551 788 . . .� 109N�m2/C2 (exact)

Deuteron mass md 3.343 583 09 (26)� 10�27 kg
2.013 553 212 71 (35) u

Electron mass me 9.109 381 88 (72)� 10�31 kg
5.485 799 110 (12)� 10�4 u
0.510 998 902 (21) MeV/c2

Electron volt eV 1.602 176 462 (63)� 10�19 J

Elementary charge e 1.602 176 462 (63)� 10�19 C

Gas constant R 8.314 472 (15) J/K �mol

Gravitational constant G 6.673 (10)� 10�11N �m2/kg2
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Quantity Symbol Valueb

Josephson frequency–voltage
ratio

2e

h
4.835 978 98 (19)� 1014Hz/V

Magnetic flux quantum �0 ¼ h

2e
2.067 833 636 (81)� 10�15 T �m2

Neutron mass mn 1.674 927 16 (13)� 10�27 kg
1.008 664 915 78 (55) u
939.565 330 (38) MeV/c2

Nuclear magneton mn ¼ eh

2mp
5.050 783 17 (20)� 10�27 J/T

Permeability of free space m0 4p� 10�7 T �m/A (exact)

Permittivity of free space �0 ¼ 1

m0c2
8.854 187 817 . . .� 10�12 C2/
N �m2 (exact)

Planck’s constant h

h ¼ h

2p

6.626 068 76 (52)� 10�34 J � s
1.054 571 596 (82)� 10�34 J � s

Proton mass mp 1.672 621 58 (13)� 10�27 kg
1.007 276 466 88 (13) u
938.271 998 (38) MeV/c2

Rydberg constant RH 1.097 373 156 854 9 (83)� 107m�1

Speed of light in vaccum c 2.997 924 58� 108m/s (exact)

aThese constant are the values recommended in 1998 by CODATA, based on a least-squares adjustment of data
from different measurements. For a more complete list, see P. J. Mohr and B. N. Taylor, Rev. Mod. Phys. 72:351,
2000.

bThe numbers in parentheses for the values above represent the uncertainties of the last two digits.
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Solar System Data

Body Mass (kg) Mean Radius (m) Period (s) Distance from the Sun (m)

Mercury 3.18� 1023 2.43� 106 7.60� 106 5.79� 1010

Venus 4.88� 1024 6.06� 106 1.94� 107 1.08� 1011

Earth 5.98� 1024 6.37� 106 3.156� 107 1.496� 1011

Mars 6.42� 1023 3.37� 106 5.94� 107 2.28� 1011

Jupiter 1.90� 1027 6.99� 107 3.74� 108 7.78� 1011

Saturn 5.68� 1026 5.85� 107 9.35� 108 1.43� 1012

Uranus 8.68� 1025 2.33� 107 2.64� 109 2.87� 1012

Neptune 1.03� 1026 2.21� 107 5.22� 109 4.50� 1012

Pluto �1.4� 1022 �1.5� 106 7.82� 109 5.91� 1012

Moon 7.36� 1022 1.74� 106 — —

Sun 1.991� 1030 6.96� 108 — —

Physical Data Often Used

Average Earth-Moon distance 3.84� 108m

Average Earth-Sun distance 1,496� 1011m

Average radius of the Earth 6.37� 106m

Density of air (208C and 1 atm) 1.20 kt/m3

Density of water (208C and 1 atm) 1.00� 103 kg/m3

Free-fall acceleration 9.80 m/s2

Mass of the Earth 5.98� 1024 kg

Mass of the Moon 7.36� 1022 kg

Mass of the Sun 1.99� 1030 kg

Standard atmospheric pressure 1.013� 105 Pa
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Some Prefixes for Powers of Ten

Power Prefix Abbreviation Power Prefix Abbreviation

10�24 yocto y 101 deka da

10�21 zepto z 102 hecto h

10�18 atto a 103 kilo k

10�15 femto f 106 mega M

10�12 pico p 109 giga G

10�9 nano n 1012 tera T

10�6 micro m 1015 peta P

10�3 milli m 1018 exa E

10�2 centi c 1021 zetta Z

10�1 deci d 1024 yotta Y
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Standard Abbreviations and Symbols for Units

Symbol Unit Symbol Unit

A ampere K kelvin

u atomic mass unit kg kilogram

atm atmophere kmol kilomole

Btu British thermal unit L liter

C coulomb lb pound

8C degree Celsius ly light-year

cal calorie m meter

d day min minute

eV electron volt mol mole

8F degree Fahrenheit N newton

F farad Pa pascal

ft foot rad radian

G gauss rev revolution

g gram s second

H henry T tesla

h hour V volt

hp horsepower W watt

Hz hertz Wb weber

in. inch yr year

J joule O ohm
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Mathematical Symbols Used in the Text and Their Meaning

Symbol Meaning

¼ is equal to


 is defined as

= is not equal to

/ is proportional to

� is on the order of

> is greater than

< is less than

>>(<<) is much greater (less) than

� is approximately equal to

Dx the change in x

XN
i¼1

xi the sum of all quantities xi from x ¼ 1 to i ¼ N

jxj the magnitude of x (always a nonnegative quantity)

Dx ! 0 Dx approaches zero

dx

dt
the derivative of x with respect to t

qx
qt

the partial derivative of x with respect to tR
integral
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Conversions

Length

1 in.¼ 2.54 cm (exact)

1m¼ 39.37 in.¼ 3.281 ft

1 ft¼ 0.304 8m

12 in.¼ 1 ft

3 ft¼ 1 yd

1 yd¼ 0.914 4m

1km¼ 0.621mi

1mi¼ 1.609 km

1mi¼ 5 280 ft

1 mm¼ 10�6m¼ 103 nm

1 ligh-tyear¼ 9.461� 1015m

Area

1m2¼ 104cm2¼ 10.76 ft2

1 ft2¼ 0.092 9m2¼ 144 in.2

1 in.2¼ 6.452 cm2

Volume

1m3¼ 106cm3¼ 6.102� 104 in.3

1 ft3¼ 1.728 in.3¼ 2.83� 10�2m3

1L¼ 1 000 cm3¼ 1.057 6 qt¼ 0.035 3 ft3

1 ft3¼ 7.481 gal¼ 28.32 L¼ 2.832� 10�2m3

1 gal¼ 3.786L¼ 231 in.3

Mass

100 kg¼ 1 t (metric ton)

1 slug¼ 14.59 kg

1u¼ 1.66� 10�27 kg¼ 931.5MeV/c2

Force

1N¼ 0.224 8 lb

1 lb¼ 4.448N

Velocity

1mi/h¼ 1.47 ft/s¼ 0.447m/s¼ 1.61 km/h

1m/s¼ 100 cm/s¼ 3.281 ft/s

1mi/min¼ 60mi/h¼ 88 ft/s

Acceleration

1m/s2¼ 3.28 ft/s2¼ 100 cm/s2

1 ft/s2¼ 0.304 8m/s2¼ 30.48 cm/s2

Pressure

1 bar¼ 105N/m2¼ 14.50 lb/in.2

1 atm¼ 760mmHg¼ 76.0 cmHg

1 atm¼ 14.7 lb/in.2¼ 1.013� 105N/m2

1Pa¼ 1N/m2¼ 1.45� 10�4 lb/in.2

Time

1 yr¼ 365 days¼ 3.16� 107s

1 day¼ 24 h¼ 1.44� 103min¼ 8.64� 104 s

Energy

1 J¼ 0.738 ft � lb
1 cal¼ 4.186 J

1 Btu¼ 252 cal¼ 1.054� 103 J

1 eV¼ 1.6� 10�19 J

1 kWh¼ 3.60� 106 J

Power

1 hp¼ 550 ft�lb/s¼ 0.746 kW

1W¼ 1 J/s¼ 0.738 ft � lb/s
1 Btu/h¼ 0.293W

Some Approximations Useful for Estimation Problems

1m� 1 yd

1 kg� 2 lb

1N � 1
4 lb

1 L � 1
4 gal

1m/s� 2mi/h

1 yr� p� 107s

60mi/h� 100 ft/s

1 km � 1
2 mi
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The Greek Alphabet

Alpha A a Iota I i Rho P r

Beta B b Kappa K k Sigma S s

Gamma G g Lambda L l Tau T t

Delta D d Mu M m Upsilon � u

Epsilon E E Nu N n Phi F f

Zeta Z z Xi X x Chi X w

Eta H Z Omicron O o Psi C c

Theta Y y Pi P p Omega O o
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