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INTRODUCTION xvii

    INTRODUCTION   

  This book is written for people who want to understand 
 contemporary philosophy. My aim is to introduce readers to some of 
the technical ideas assumed in present-day philosophical writing. 
Once students of philosophy get past explicitly introductory texts, 
they fi nd that a certain level of technical sophistication is taken for 
granted. They will encounter references to denumerability, modal 
scope distinctions, Bayesian conditionalization, logical completeness, 
and many similar notions. Yet often there will be nothing in their edu-
cation designed to explain these ideas to them. 

 What follows is designed as a remedy. I aim to introduce a range of 
technical ideas without assuming any prior knowledge. For the most 
part, existing explanations of these ideas are only to be found in the 
later chapters of advanced texts on mathematical logic, probability 
theory, and the like. I think that this is a bad thing. The technical ideas 
that matter to philosophy can be grasped perfectly well without hav-
ing to plough through a lot of irrelevant and often boring details. 

 When I explained the idea of this book to one of my more technical 
colleagues, he complained ‘But you’re just picking all the plums!’ 
Exactly. I want readers of this book to enjoy the juicy fruit that are 
normally available only to specialists. 

 Some will think that a book like this can only be a bluffers’ guide, 
encouraging its readers to bandy technical terms that they cannot 
possibly understand. I can only ask such sceptics to read on. I think 
that I explain everything properly. Of course, I have omitted some 
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issues that would have been worth exploring in a longer book. And 
I have skated over some points of controversy, failing to mention 
alternatives to some of my assertions. But I don’t think that this mat-
ters. The information needed to grasp basic technical ideas doesn’t 
generally require acquaintance with every last detail. (In those cases 
where I have skipped over matters of controversy, I have used the ‘Fur-
ther Reading’ at the end of each chapter to point readers towards alter-
native views.) 

 The book contains four sections, each of three chapters. The fi rst 
section is about sets and numbers, starting with the membership rela-
tion and ending with the generalized continuum hypothesis. The sec-
ond is about analyticity, a prioricity, and necessity. The third is about 
probability, outlining the difference between objective and subjective 
probability and exploring aspects of conditionalization and correla-
tion. The fourth deals with metalogic, focusing on the contrast 
between syntax and semantics, and fi nishing with a sketch of Gödel’s 
theorem. The Table of Contents above gives more information about 
the topics covered. 

 The material in this book started off as a ten-week course for fi rst-
year students of philosophy at King’s College London. However, it has 
now rather outgrown this origin. I have added a number of extra top-
ics that became accessible once basic ideas had been explained. More-
over, some of these new topics are likely to be challenging for fi rst-year 
students. While the book could still in principle be used for a fi rst-year 
course, it now undoubtedly contains too much for one term. It would 
need to be a longer course, or some of the material would have to be 
omitted. (I currently omit  Chapter  3   and most of  Chapter  11   from my 
fi rst-year course.) If the whole book were to be covered in a normal-
length course, it would work better for more advanced undergradu-
ates or fi rst-year Master’s students. 

 Many philosophy undergraduates do an elementary logic course 
covering the basic mechanics of propositional and predicate logic. 
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I have long felt that the time spent on these courses could be better 
used exploring the kind of material covered in this book. It is very 
doubtful that elementary logic courses do anything to improve argu-
mentative skills. Nor are they normally any good for introducing 
 metalogical ideas. (Indeed they often concentrate on techniques—
like ‘semantic tableaux’—which positively obscure the distinction 
between syntax and semantics.) 

 Perhaps elementary logic courses do more good than I suppose. In 
any case, this book is not intended as a replacement for such courses, 
but as a complement. It would be well suited to students who have 
already done a standard introductory logic course. Not that I presup-
pose any prior familiarity with logic. When I started writing the book, 
I thought I may need to. (My original King’s College students did my 
course after a term’s elementary logic.) But interestingly this didn’t 
prove necessary. The skills acquired in introductory logic turned out 
to be largely inessential to the things I wanted to explain. Some prior 
acquaintance with logic certainly won’t hurt, especially in the fi nal 
chapters on metalogic, but it is by no means essential. 

 As the above remarks indicate, this book should be suitable for stu-
dents doing university courses in philosophy. In line with this, ‘Further 
Reading’ and ‘Exercises’ are given at the ends of chapters. However, 
I rather hope that my readership will not be restricted to university 
students. As I have said, nothing in what follows presumes any prior 
expertise. And in my judgement all the issues I discuss are intrinsically 
interesting, and often downright fascinating. I would like to think that 
this book can be read with pleasure and profi t by anybody who is curi-
ous about the technical infrastructure of contemporary philosophy.     
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NAIVE SETS AND R USSELL ’S PAR ADOX 3

                              1  

      1.1   Sets   

 Here is how philosophers and mathematicians think of sets. If you 
have some things––people, cars, trees, numbers, countries, any sort 
of things––then there is also a  further  thing, the  set  containing those 
things. 

 So, if we start with Margaret Thatcher, Tony Blair, and Albert Einstein, 
for example, we then have the set containing these three, namely: 
{Margaret Thatcher, Tony Blair, Albert Einstein}. Or if we start with 
London, Jane Austen, the number 3, and Iceland, we then have: 
 {London, Jane Austen, 3, Iceland}. 

 Similarly, if we start with all the cars in London, we have the set 
{x:  x is a car in London}. (Read this as: the set of xs such that x is a car 
in London.) Or if we start with all the countries in Europe, we then 
have {x: x is a country in Europe}. 

 Note how we can specify a set by listing all its members, as in the 
fi rst two examples above, or by specifying a property that picks out all 
its members, as in the second two. 

 In the former examples, we are using the  extensive notation  for a set. 
We name the set by naming the members in turn inside squiggly 

Naive Sets and Russell’s Paradox   
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brackets. {Margaret Thatcher, Tony Blair, Albert Einstein}. {London, 
Jane Austen, 3, Iceland}. 

 In the latter examples we are using the  intensive notation  for a set. We 
name the set by specifying a feature common to all its members inside 
squiggly brackets. {x: x is a car in London}. {x: x is a country in 
Europe}. 

 Sometimes we can name a set in both ways: {John, Paul, George, 
Ringo}, {x: x is a Beatle}. Note that these aren’t two different sets, just 
two different ways of naming the same set.   

     1.2   Membership and the Axiom 
of Extensionality   

 We say that a set  contains  its  members , and the members  belong  to the set. 
If S is a set and m belongs to it, we write ‘m ∈ S’. ∈ is the  membership
relation . 

 The nature of a set depends on nothing more than its members. If 
A and B are sets, then they are the same set if and only if they have 
the same members. More formally we can write:

  For any sets A, B: A = B iff    1    (for any x)(x ∈ A iff x ∈ B).   

 This principle is known as the  axiom of extensionality . It makes it explicit 
when two sets are the same––just in case they have the same mem-
bers. At the end of the chapter we will meet another axiom––the 
axiom of comprehension ––that makes it explicit what sets there are in 
the fi rst place. 

 Together these two axioms constitute  naive   set   theory . 
 (An ‘axiom’ is a basic assumption of a theory. A theory can 

be viewed as all the statements that follow by logic from its 

1   Philosophers and mathematicians use ‘iff’ as a handy abbreviation for ‘if and 
only if’.  
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 axioms. We shall look at axioms and theories in more detail in 
 Chapter  12  .)  

     1.3   Unions, Intersections, and the Empty Set   

 The  union  of sets A and B is the set which contains everything that 
belongs to  either  A  or  B or both. We write A � B.

So {Margaret Thatcher, Tony Blair, Madonna} � { Jane Austen, Tony 
Blair,  Iceland} = {Margaret Thatcher, Tony Blair, Madonna, Jane 
Austen, Iceland}. 

 The  intersection  of sets A and B is the set which contains everything 
that belongs to  both  A  and  B. We write A � B.

So {Margaret Thatcher, Tony Blair, Madonna} � {Jane Austen, Tony 
Blair, Iceland} = {Tony Blair}. 

 There is also an  empty   set , a set which exists but has no members. We 
write {}, or Ø.  

    Box  1  The Reality of  Sets   

 Do sets really exist? Do we really want to allow that in  addition to Margaret 

Thatcher, Tony Blair, and Albert Einstein, there is an  extra  thing, the set {Mar-

garet Thatcher, Tony Blair, Albert Einstein}? Where is this extra thing located? 

Does it make any difference to anything else? Certainly some philosophers 

deny the existence of sets, and view them as nothing but useful fi ctions 

made up by mathematicians. However, we can put such doubts to one side 

for present purposes. Think of this chapter as exploring the properties that 

sets  would  have,  if  they existed. Even if you are sceptical about sets, you will 

do well to understand what you are objecting to. Know thine enemy. 
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     1.4   Subsets   

 If A is a set, then B is a  subset  of A if and only if all the members of B are 
also members of A. We write B � A. 

 So {Margaret Thatcher, Tony Blair} and {Tony Blair, Jane Austen, 
Iceland} are both subsets of {Margaret Thatcher, Tony Blair, Madonna, 
Jane Austen, Iceland}. 

 The ‘singleton set’ {Margaret Thatcher} is also a subset of this set. 
This is the set whose only member is Margaret Thatcher. Be careful 
not to muddle up this singleton subset with Margaret Thatcher her-
self. Margaret Thatcher is a person, not a set. 

 Note that every set is a subset of itself. (We specified above that 
B is a subset of A if all the members of B are also members of A. 
Well, given any set A, all the members of A are certainly members 
of A.) 

 If B is a subset of A other than A itself we say it is a  proper  subset, and 
write B � A. 

 The empty set is a subset of every set. (This might seem a bit arbi-
trary.  Is  every member of the empty set also a member of every other 
set, in line with the above defi nition of a subset? Since the empty set 
doesn’t have any members, it is not obvious whether this is true. 
Still, let us agree to understand the defi nition of a subset in this way. 
Things work out more neatly if we count the empty set as a subset of 
every set.)  

     1.5   Members versus Subsets   

 As we saw above, being a member is  not  the same as being a subset. 
Subsets of A are extra  sets , each of which contain some members of A, 
and as such are not normally members of A themselves. 
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 Even so, in certain cases a subset of a set  can  also be a member of 
that set. 

 This is possible because sets can have other sets as their members. 
Remember that sets are things in their own right, and that any things 
can enter into sets. So sets, along with ordinary objects, can be mem-
bers of other sets. 

 To illustrate how one set can be a member of another, suppose we 
start with the people Elvis Presley and John Lennon, plus the sets 
{Margaret Thatcher, Tony Blair} and {Albert Einstein, Stephen Hawk-
ing}. Then there will be another set which has just those things as 
members, namely: 

  {Elvis Presley, John Lennon, {Margaret Thatcher, Tony Blair}, {Albert 

 Einstein, Stephen Hawking}}.   

 Note how this set has both people and sets as members. 
 We can now see how it is possible for a subset of a set to be a mem-

ber of that same set. For example, consider this set A:

  {Ringo Starr, Paul McCartney, {Margaret Thatcher, Tony Blair}, {Ringo Starr, 

Paul McCartney}}.   

 The set {Ringo Starr, Paul McCartney} is a member of A––namely, the 
last-named member. But it is also a subset of A, because both its mem-
bers are members of the set A––namely, the fi rst two members of A. 

 Note that {Ringo Starr, Paul McCartney} is not a member of A because
it is a subset of A. For it to be a subset, all that is required is that its 
members are members of A. It is a further fact that it is itself a member 
of A. 

 To drive the point home, consider this set B: 

  {Ringo Starr, Paul McCartney, {Margaret Thatcher, Tony Blair}}.   

 Now {Ringo Starr, Paul McCartney} is a subset of B, but not a mem-
ber of B.  
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     1.6   Power Sets   

 The set {Ann, Bob} has 4 subsets: 

  Ø, {Ann}, {Bob}, {Ann, Bob}.   

 The set {Ann, Bob, Clio} has 8 subsets: 

  Ø, {Ann}, {Bob}, {Clio}, {Ann, Bob}, {Ann, Clio}, {Bob, Clio}, {Ann, Bob, Clio}.   

 The set {Ann, Bob, Clio, Dai} has 16 subsets: 

  Ø, {Ann}, {Bob}, {Clio}, {Dai}, {Ann, Bob}, {Ann, Clio}, {Ann, Dai}, {Bob, 

Clio}, {Bob, Dai}, {Clio, Dai}, {Ann ,Bob , Clio}, {Ann, Bob, Dai}, {Ann, Clio, 

Dai}, {Bob ,Clio, Dai}, {Ann, Bob, Clio, Dai}.   

 In general, any set with n members has 2 n  subsets. 
 To see why this should be so, imagine that you place the n members 

of some set A in a row, and that you then form a subset by going 
though these n members in turn deciding whether or not to include 
each in the subset. So you have two choices for the fi rst member––in 
or out. And for each of these you have two choices for the second 
member––in or out. And for each of these four pairs of initial choices 
you have two choices for the third member… 

 So there are 2 n  ways of forming a subset B. For each of the n mem-
bers of the original set, you have a two-way yes–no option of whether 
to include it in your subset. ( See Box  2.  )  

 The set of all subsets of a set is called its  power  set. So the power set 
of a set with n members always has 2 n  members. 

 So, as above, the power set of {Ann, Bob, Clio} is the 2 3 -membered 
set {Ø, {Ann}, {Bob}, {Clio}, {Ann, Bob}, {Ann, Clio}, {Bob, Clio}, {Ann, 
Bob, Clio}}. 

 (Note how none of this would come out so nicely if we didn’t count 
the empty set Ø as a subset of every set.)  
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     1.7   The Axiom of Comprehension   

 The ‘axiom of extensionality’ told us when two sets are the same––
they have just the same members. 

 But how many sets are there in the fi rst place? So far we have been 
assuming that, for any condition, there will be a set of things satisfying 
that condition. 

 The assumption that there exists a set for every condition can be 
made explicit as the  axiom of comprehension :

  For any condition C, there exists a set A such that (for any x)(x ∈ A iff x 

satisfi es C).   

    Box  2  The Size of  Power Sets   

 Imagine that m 
1
 , m 

2
 ,…, m 

n
  are the n members of our original set A, and that 

we want to form a subset S of this set. We then have n successive yes–no 

choices of whether to include these members in S, giving us altogether 2 n  

ways of forming S.    

.

.

.

.

.

.

.

.

.

.

.

.

No
Yes
No
Yes

No
Yes
No
Yes
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No
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 You might be wondering why I am being so pedantic as to make this 
assumption explicit. Is it not obvious that there is a set of things 
 satisfying any given condition? For example, if the condition is being 
red, then we have the set {x: x is red}; if the condition is being a Euro-
pean country, then we have the set {x: x is a European country}; if the 
condition is being Margaret Thatcher or Tony Blair, then we have the set 
{Margaret Thatcher, Tony Blair}; and so on. What could be more 
obvious? 

 However, far from being obvious, the axiom of comprehension 
cannot possibly be true. The idea that there is a set for every condition 
quickly leads to contradiction.  

     1.8   Russell’s Set   

 Given that sets can themselves be members of sets, there is nothing to 
stop some sets being members of themselves. The set of all sets with 
more than one member is a member of itself, for instance––for this set 
will certainly have more than one member, and so it will be a member 
of itself. 

 The set of all things which are not buses, say, will similarly be a member 
of itself––since it is a set and therefore not a bus. 

 Many other sets, of course, will not be members of themselves. For 
example, the set of all sets with only one member will not be a member of 
itself––for this set will have many members and so not belong to itself. 
Or again, the set of all buses will not be a member of itself––for this will 
be a set and not a bus and so again not belong to itself. 

 Now consider the condition: is not a member of itself.
 According to the axiom of comprehension, there must be a set 

 corresponding to this condition, namely, R = {x: x not-∈ x}. R will 
contain precisely those things that are not members of themselves. 
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 However, as Bertrand Russell fi rst showed in 1901, the assumption 
that R exists generates an inconsistency. For we can prove both that R 
is a member of itself and that it is not.  

     1.9   Russell’s Paradox   

 First let us prove that R is a member of itself.

   (a)  Assume R is not a member of itself. 

  (b)  But then, since R contains all sets that are not members of themselves, 

it is a member of itself. 

  (c)  So we have contradicted our assumption (a). 

  (d)  So ‘by reductio ad aburdum’ we can conclude that (a) is false and R is 

a member of itself.   

 (A proof ‘by reductio ad absurdum’ is where you conclude that 
some temporary assumption made for the sake of the argument–
–here (a)–must be false since its truth would imply a contradic-
tion. ‘Reductio ad absurdum’ is simply Latin for ‘reduction to 
 absurdity’.) 

 Now we can similarly prove that R is not a member of itself.

   (a´)  Assume R is a member of itself. 

  (b´)  But then, since R contains only sets that are not members of them-

selves, it is not a member of itself. 

  (c´)  So we have contradicted our assumption (a´). 

  (d´)  So ‘by reductio’ we can conclude that (a´) is false and R is not a 

member of itself.   

 We have now proved both (d) that R is a member of itself and (d´) that 
R is not a member of itself. Something has gone badly wrong. This is 
Russell’s paradox. 
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 ( Just to keep things straight, don’t confuse the fi nal  contradiction 
between the conclusions (d) and (d´) with the earlier  contradictions 
encountered in the course of proving (d) and (d´). The latter were merely 
consequences of the temporary assumptions (a) and (a´) respectively, 
and were used to conclude that (a) and (a´) must be false—since they 
led to contradiction. But the contradiction between (d) and (d´) isn’t a 
result of some temporary assumption made for the sake of the argu-
ment. Rather it is forced on us by the existence of R, which in turn 
follows from the axiom of comprehension.)  

     1.10   Barbers and Sets   

 It will be helpful to compare Russell’s paradox with the ‘paradox of 
the barber’. 

 You tell me that there is a barber who shaves all and only those who do not 
shave themselves. I wonder whether he shaves himself. And so I reason:

   (a)  Assume he does not shave himself. 

  (b)  But then he does shave himself (he shaves all those who do not shave 

themselves…). 

  (c)  So we have contradicted our assumption (a). 

  (d)  So ‘by reductio’ we conclude that he does shave himself.   

 And:

   (a´)  Assume he does shave himself. 

  (b´)  But then he does not shave himself (he shaves only those who do 

not shave themselves…). 

  (c´)  So we have contradicted our assumption (a´). 

  (d´)  So ‘by reductio’ we conclude that he does  not  shave himself.   

 Your claim about the barber has led to a contradiction. But in this case 
it is clear enough how to react. The contradiction shows that there can 
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be no such barber. You are full of nonsense. Your claim has been 
reduced to absurdity. Despite what you say, there can’t be a barber 
who shaves all and only those who do not shave themselves. 

 Now, at fi rst pass, Russell’s paradox calls for the same response. 
There can’t be a set of all things which are not members of them-
selves, for the assumption that such a set exists leads to a contradic-
tion. But the trouble in this case is that we can’t just leave it at that. For 
the assumption that there is a set of all things which are not members 
of themselves isn’t just some spurious claim made in idle conversa-
tion, like your story about the barber. It is an inescapable conse-
quence of what looked like an obvious assumption about sets, 
namely, the assumption that there is a set corresponding to every 
condition. If we are to reject the set of all things which are not mem-
bers of themselves, we have no choice but to give up this axiom of 
comprehension. 

 Russell’s paradox arises because sets are things and so the axiom of 
comprehension––there is a set corresponding to every condition on 
things––also applies to conditions on sets. But the set we get from a 
condition on sets will depend on what sets are available as candidate 
members to start with––which is precisely what the axiom of com-
prehensions was supposed to tell us. What we have seen is that this 
implicit circularity is not only worrisome but vicious in the sense that 
it generates contradictions.  

     1.11   Alternatives to Naive Set Theory   

 It is common to refer to the axioms of extensionality and comprehen-
sion as together comprising ‘naive set theory’. Certainly these two 
assumptions seem to capture the intuitive notion of a set. Sets are 
defi ned by their members (extensionality) and there is a set for any 
characterizable plurality of things (comprehension). 
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 But Russell’s paradox shows that naive set theory is too naive. 
In particular, it shows that naive set theory contradicts itself. 
Some  philosophers take this to be further evidence against the 
 reality of sets. But most mathematicians and logicians respond 
by seeking to replace the intuitive notion of a set by a more 
sophisticated understanding which is free of inconsistency. This 
improved understanding must somehow avoid positing a set of all 
things that are not members of themselves, otherwise inconsist-
ency will inevitably return. So modern set theories all modify the 
axiom of comprehension in one way or another so as to limit the 
range of admissible sets. We needn’t go into details. From now on 
I shall simply assume that talk of sets has somehow been made 
consistent.    

    Box  3  Russell’s Bombshell   

 In 1902, just as he was putting the fi nishing touches to the second volume 

of his Basic Laws of Arithmetic, the great German logician Gottlob Frege 

received a letter from Bertrand Russell about the set of all things that are 

not members of themselves. In an Appendix to the volume Frege said 

‘A scientist can hardly meet with anything more undesirable than to have 

the foundations give way just as the work is fi nished. I was put in this posi-

tion by a letter from Mr Bertrand Russell when the work was nearly 

through the press.’ In fact Frege himself never found a satisfactory way of 

dealing with Russell’s paradox. But subsequent mathematicians and logi-

cians, including Russell himself, have developed a number of different ways 

of avoiding it. 
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      further reading   

 Eric Steinhart’s  More Precisely: The Math You Need To Do Philosophy  (Broadview 
Press 2009) is a useful introductory complement to the present book. The fi rst 
two chapters deal with basic set theory in rather more detail than I have. 

 Michael Potter’s  Set Theory and its Philosophy  (Oxford University Press 2004) is an 
advanced philosophical introduction to the material covered in the fi rst three 
chapters of this book. 

 Mary Tiles’  Philosophy of Set Theory; An Historical Introduction to Cantor’s Paradise
(Dover Books 2004) covers much of the same ground.    

     exercises   

        1.  What is the union of the following pairs of sets? 

    (a)   {Abe, Bertha}, {Bertha, Carl}  
   (b)  {2, 5, 7, 11, 13}, {1, 5, 11, 13}  
   (c)  {x: x is a child aged 7–12}, {x: x is a child aged 10–15}  
   (d)  {France, Germany, Italy}, {Germany, Italy}  
   (e)  {France, Germany, Italy}, {India, China}  
   (f)  {x: lives in Germany}, {x: x lives in Europe}  
   (g)  {x: x lives in China}, {x: lives in Europe}  
   (h)  {x: x weighs more than 10 kilos}, {x: x weighs more than 7 kilos}    

   2.  What is the intersection of each of the above pairs of sets?  

   3.  List all the subsets of the following sets. 

    (a)  {Abe, Bertha}  
   (b)  {7, 8, 9}    

   4.  Give the power sets of the following sets. 

    (a)  {1, 7}  
   (b)  {London, Manchester, Birmingham}    
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   5.  Consider the set {1, 2, 3, 7, 8}.     

 Which of the following items are (a) members, (b) subsets, or (c) neither? 

  2, {7, 8}, {2, 3}, {}, 3, {1, 2, 3, {7,8}}  

     6.  Consider the set {1, 2, 3, {7, 8}, {2, 3}}.     

 Which of the following items are (a) members, (b) subsets, or (c) neither?

  2, {7, 8}, {2, 3}, {}, 3, {1, 2, 3, {7, 8}}  

     7.  (A): ‘This sentence is false.’     

 Show carefully that this statement leads to a contradiction. (Hint: fi rst 
assume that (A) is true, then assume that it is not true.)                 
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                          2  

      2.1   Some Infi nite Sets   

 Some sets have infi nitely many members. 
 Think of the set of all the New Year’s Eves from here to eternity. 
 Or if you don’t believe in eternity, think of the set of all the spatial 

points between London and New York. (Since there will always be 
another point between any two distinct such points, there will be no 
end of them.) 

 Again, think of the set of all grammatical English sentences. (Since 
there is no word limit on the length of English sentences, we can 
always go on making longer sentences from shorter ones by such 
devices as adding ‘John said that’ to the beginning, or putting ‘and 
then they had tea.’ at the end.) 

 These are slightly messy examples. If you want a nice clean exam-
ple of an infi nite set, simply take the set of all the natural numbers, 
{0, 1, 2, 3, . . .}. 

 While we are on numbers, take care not to confuse numbers with 
the numerals  that name them. (See  Boxes  4  and  5  .) Numerals are  words
like ‘one’ and ‘two’ or  symbols  like ‘1’ and ‘2’. Numbers are the more 
abstract things that these numerals name. The English word ‘two’ is a 

Infi nite Sets   
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 Philosophers are very fussy (because they often need to be) about distin-

guishing words from the things that they refer to. If you want to talk about 

the word rather than the thing, you must put the word in quotes to form a 

name of that word itself. Here are some examples that illustrate this 

device.

  London contains ten million people, but ‘London’ contains six letters. 

 Jack is an unpopular person, but ‘Jack’ is a popular name. 

 Seven is an odd number, but ‘seven’ is an English word—a numeral. 

 {John, Paul, George, Ringo} is the same set as {x: x is a Beatle}, but ‘{John, Paul, 

George, Ringo}’ and ‘{x: x is a Beatle}’ are two different names for that set.   

 On the left-hand side of these examples we  use  the names, on the right we 

 mention  them. 

    Box 4  Use and Mention    

different word from the French word ‘deux’, but they both name the 
same number. Again, the Arabic ‘2’ is a different symbol from the 
Roman ‘II’ but they also both name the same number. Numerals are 
signs used in specifi c representation systems. Numbers themselves 
are timeless entities that transcend the perspective of any given  system 
of representation. (See  Box  6  .)     

     2.2   Different Kinds of Numbers   

 The most basic numbers are the  natural numbers : 0, 1, 2, 3, . . . 
 If we add the negative whole numbers to the natural numbers, then 

we get the  integers : . . . -3, -2, -1, 0, 1, 2, 3 . . . 
 In addition to the integers, we also want to recognize various kinds 

of intermediate numbers, numbers that fall between the integers. 
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 The simplest are the  rational numbers , namely those that can be 
expressed as fractions of the form p/q, where p and q are integers. 

 But we also need to recognize further numbers that are not 
rational. 

 For example, √2 is not rational. There is no way to express √2 in 
the form p/q where p and q are integers. (See  Box  7  .)  

 Similarly, π (the ratio of a circle’s circumference to its diameter) is 
not rational. It cannot be expressed as p/q with integral p and q either. 

 Many other numbers are similarly irrational. 
 The  real  numbers comprise both the rational and irrational 

numbers. 
 Any real number can be represented by an infi nitely long decimal 

expansion: e.g. 23.17564839 . . . 

    cat cat   

  Question . How many words were there in the previous line?  Answer . One 

word  type , but two  tokens  of that type. 

 The term “ ‘cat’ ” can refer either to the type word or to some specifi c 

token of it. 

 Thus:  ‘cat’ occurs often in children’s stories . Here I use “ ‘cat’ ” to refer to a 

word type. 

 But now consider :  the fi rst ‘cat’ at the beginning of this Box could have 

been written with a capital letter . Here I use “ ‘cat’ ” to refer to a specifi c token 

of the relevant type. 

 (Note how I have to use double quotes—“ ‘cat’ ”—to  mention  the  name  of 

the original word, that is, the name that we formed by putting that original word 

in single quotes.)  

    Box 5  Types and Tokens    
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 In this format, we can distinguish the rational numbers from the 
irrational ones by the fact that the rational numbers will eventually 
display some recurring sequence of digits. So for example, 1/11 is 
0.090909 . . . and 2/7 is 0.285714285714285714 . . . (See the Exercises for 
some hints about how to show that the rational numbers are just those 
whose decimal expansions recur.)  

     2.3   Two Senses of ‘More’   

 Here is a good question. Are there more natural numbers than even 
numbers? 

 In one obvious sense the answer must be yes. The set of even 
 numbers {0, 2, 4, 6, . . .} is a  proper   subset  of the set of natural numbers 
{0, 1, 2, 3, . . .}. The latter set contains all the members of the former set 
and then some. There are plenty of natural numbers that aren’t even, 
but no even numbers that aren’t natural. 

 As with sets, it is possible to doubt whether numbers really exist. If they 

are outside space and time, and have no causal impact on anything, do we 

really need to believe in them? Some philosophers are indeed inclined to 

dismiss numbers, along with sets, as no more than useful fi ctions. But, as 

before, we can bypass this issue here, and think of ourselves as exploring 

what properties numbers  would  have,  if  they existed. Even those who are 

suspicious of numbers will do well to understand their workings, so to 

speak. 

    Box 6  The Reality of  Numbers    



INFINITE SETS 21

 Suppose (for the sake of a ‘reductio ad absurdum’ proof) that √2  is  rational 

and so can be represented as p/q, where p and q are integers, and suppose 

further that p and q have no common factors, that is, that all cancelling has 

been done. Then it follows:

  √2 = p/q 

 2 = p 2 /q 2  

 2q 2  = p 2    

 So p must be an even number (since its square is an even number). So, for 

some integer r, p must be 2r. So

  p 2  = 4r 2    

 And, since we already know that 2q 2  = p 2 , it follows that

  q 2  = 2r 2    

 So q must be an even number too. But now q and p are both even, which 

contradicts the supposition that √2 is rational and represented as p/q 

with no common factors. So by reductio we can conclude that √2 is 

irrational. 

 When the Greeks fi rst discovered that √2 is irrational, it freaked them 

out. They knew from Pythagoras’ theorem that √2 is the length of the 

hypotenuse of a right-angled triangle whose other sides are each of length 

1. But the irrationality of √2 means that there can be no unit of length that 

will fi t exactly q times into these short sides and p times into the hypote-

nuse (for if there were, then √2 would equal p/q). To the Greeks, this seemed 

to contradict the very idea of length. It is said that the Greek mathemati-

cians who fi rst proved the irrationality of √2 tried to keep their discovery a 

secret. 

    Box 7  √2 is Irrational    



22 SETS AND NUMBER S

 But in a different sense the answer is no. The even numbers can be 
paired up one-to-one  with the naturals. In this sense there are just as 
many even numbers as natural numbers.   

0 2 4 6 8 . . .

0 1 2 3 4 . . .

 This mapping gives a unique even number for every natural number, 
and vice versa. 

 There is no contradiction here. We can distinguish two senses in 
which set A can contain ‘more members’ than set B. In the fi rst sense 
(call it the ‘subset’ sense), it simply means that B is a proper subset of 
A. In the second sense (the ‘pairing’ sense), it means rather that any 
attempt to pair the members of A one-to-one with those of B will 
leave some members of A unpaired. 

 There are more natural numbers than even numbers in the subset 
sense, but not in the pairing sense—for the pairing illustrated above 
succeeds in matching every natural number with its own even number. 

 When we are dealing with fi nite sets, the two senses of ‘more’ coin-
cide. If a fi nite set B is a proper subset of fi nite set A, then the As can’t 
all be paired up one-to-one with the Bs, for there won’t be enough 
Bs—any attempted pairing will leave some extra As unpaired. 

 But with infi nite sets, B can be a proper subset of A, and still be 
paired up one-to-one with the As—for now the Bs won’t automat-
ically run out before we get to the end of the As. 

 This is in fact a defi ning characteristic of infi nite sets. The members 
of any infi nite set, but of no fi nite set, can be paired up one-to-one 
with the members of some of its proper subsets.  

     2.4   Denumerability   

 The odd numbers can also be paired one-to-one with the natural numbers.   



INFINITE SETS 23

1 3 5 7 9 . . .

0 1 2 3 4 . . .

 So can the squared whole numbers.   

0 1 4 9 16 . . .

0 1 2 3 4 . . .

 And all the integers.   

0 -1 +1 -2 +2 . . .

0 1 2 3 4 . . .

 What about the rational numbers? At fi rst sight it might seem that 
there are too many. There really are an awful lot. In particular, given 
any two rational numbers, however close together, there will always 
be another rational number in between them. (Mathematicians call 
this property ‘density’.) You might think that this would block any 
attempt to line them up with the natural numbers. 

 Surprisingly, however, the rational numbers can also be paired 
up one-to-one with the natural numbers. To see this, consider the 
following grid. It clearly contains all the rational numbers. And the 
arrows indicate a systematic way of going through the grid in 
sequence and thereby placing the rational numbers in a numerical 
order.   1    

1   A little complication. If we list the rational numbers as in the diagram below, 
any given rational number will recur in different guises at different points in 
the list. For example, we will not only have 1/2, but later on 2/4, 3/6, and so 
on. Since these are all the same rational number, just written in different 
ways, our list won’t really pair each rational number with a  unique  natural 
number. The remedy is to complicate the listing procedure a bit––before 
writing down the n th  rational number, check that it hasn’t already occurred in 
the list, and throw it away if it has.  
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 Whenever the members of a set can be paired one-to-one with the 
natural numbers, we say the set is  denumerable . A denumerable set is 
one that can be placed in a numerical list. A numerical list, if you think 
about it, just  is  a pairing of the listed items with the natural numbers—
the fi rst in the list with 1, the second with 2, and so on.  

     2.5   More Denumerable Sets   

 Many unruly-looking sets can be shown to be denumerable. 
 Take the set of all rectangles with rational length and breadth, for 

example. Each of these is defi ned by two rational numbers. Given that 
we can place all the rational numbers themselves in a numerical list, 
by the grid trick above, we can thus equate each of these pairs of 
rational numbers with a pair of  natural  numbers. And then we can 
apply the grid technique once more, to place these pairs of natural 
numbers themselves in a numerical list. This will then amount to a 
numerical list of the rectangles we started with. 

1/1 2/1 3/1 4/1

1/2 2/2 3/2 4/2

1/3 2/3 3/3 4/3

1/4 2/4 3/4

5/1

5/2

1/5 2/5

6/1 …

…

…

…

…

…
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 Or take the set of all English sentences. To place these in a numer-
ical list, consider all fi nitely long strings of English letters (counting a 
space as a 27 th  letter). Now order the one-letter strings alphabetically, 
then the two-letter strings, and so on. Now go through the resulting 
list and throw away all the strings which don’t make sense as English 
sentences. You’ll be left with a numerical list of English sentences. 

 There are many similar examples of denumerable sets.  

     2.6   The Non-Denumerability 
of the Real Numbers   

 We have just seen that many complicated-looking infi nite sets turn 
out to be denumerable. Does this hold for all infi nite sets? Our sur-
prising success at pairing the rational numbers and other unpromis-
ing-looking sets with the natural numbers might make you think that 
a similar trick can be pulled with all infi nite sets. But that would be a 
mistake. The  real   numbers  cannot be paired one-to-one with the natu-
ral numbers. They are  non -denumerable. Indeed the reals between 0 
and 1, or in any fi nite interval, are non-denumerable. 

 To show this, suppose (for the sake of another reductio argument) 
that the reals between 0 and 1  were  denumerable. Then they could be 
paired up with the natural numbers in some way. To illustrate,  suppose 
the pairing starts as in the list below. (This is just for illustration—the 
argument will work whatever the pairing.)   

1 0.123456…

2 0.234567…

3 0.987654…

4 0.976543…

 Now construct a new number according to the following rule: make 
the fi rst digit one more than the fi rst digit of the fi rst number in this 
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list, the second digit one more than the second digit of the second 
number, the third digit one more than the third digit of the third 
number, and so on . . . (using 0 as ‘one more than 9’ whenever the n th

digit in the n th  number is 9). 

0 . 2 4 0 2 …1 0 . 1 2 3 6 5 6 …

2 0 . 2 3 4 5 6 7 …

3 0 . 7 8 9 0 1 2 …

4 0 . 8 9 0  1 2 3 …

5 …

+ 1

 So, given our supposed initial listing of the reals, our new number will 
be 0.2402 . . . And note that this new number  can’t be anywhere in the 
original list , since it differs from the fi rst number in the fi rst digit, from 
the second in the second digit, and so on. 2

 This is Cantor’s famous diagonal argument. It shows that there are 
more real numbers than natural numbers  even in the one-to-one pairing 

2   There is a little complication in this diagonal proof too. Some real numbers 
have two decimal representations. Consider for example 0.999 . . . = 3 x 0.333 . . . = 
3 x 1/3 = 1. This shows that 0.999 . . . and 1 . . . are the same real number written in 
different ways. And this might make you worry that Cantor’s argument only 
proves that there is a ‘diagonal  representation ’ that isn’t in the original list of deci-
mal representations , not that there is a real  number  that isn’t among the  numbers
named by that list––for maybe the ‘diagonal representation’ is just an alternative 
name for one of the numbers already listed. 

 Well, it would be interesting enough to know that the set of decimal repre-
sentations is itself non-denumerable, even if the real numbers themselves 
aren’t. But in any case it is easy enough to tighten the proof so as to plug this 
hole. One of the Exercises at the end of  Chapter  3   covers this.  
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sense  of ‘more’. If you try to pair up the reals with the naturals you will 
always have some real number left over. Given any supposed listing of 
the reals, it is always possible to construct another real number that 
isn’t in that list.      

     2.7   The Abundance of the Real Numbers   

 The reals are very abundant indeed. To get some feel for this, recall 
that the real numbers are represented by  infi nitely  long decimal strings, 
including strings that display no recurring patterns. The other entities 
we have been dealing with (rational numbers, sentences, …) can all be 
represented in fi nite terms. This doesn’t stop there being infi nitely 
many rational numbers or sentences—fi nite representations can get 
longer and longer. But once we switch to  infi nitely  long strings of digits, 
we are dealing with a quite different order of plurality. 

 The example of the reals shows that infi nite sets come in different 
sizes. There is the size shared by all the denumerable sets. But the real 
numbers are bigger again. In the next chapter we shall explore the way 
in which different infi nite sets can have different sizes in this way.   



28 SETS AND NUMBER S

      further reading   

Numbers: A Very Short Introduction  by Peter Higgins (Oxford University Press 
2011) explains the different kinds of numbers. 

 The last two chapters of Eric Steinhart’s  More Precisely: The Math You Need To Do 
Philosophy  (Broadview Press 2009) deal with infi nite sets and the variety of infi n-
ite numbers. 

An Introduction to the Philosophy of Mathematics  by Mark Colyvan (Cambridge Uni-
versity Press 2012) is a short and punchy introduction to the philosophical 
issues raised by numbers and mathematical objects. 

 James Robert Brown’s  Philosophy of Mathematics: An Introduction to a World of 
Proofs and Pictures  (Routledge 1999) is another lively introduction to this area.    

     exercises   

       1.  Write a sentence that both uses and mentions the word ‘philosophy’. 
Write a sentence that both uses and mentions some other word. Say 
where in the two sentences the relevant words are used and where 
mentioned.  

   2.  7 7 
 How many token numerals are on the previous line? How many type 

numerals?
 How many natural numbers are less than 10? How many  Arabic type 

numerals are written with one digit?  

   3.  Show how all the integral multiples of 5 (positive and negative) can be 
paired one-to-one with the natural numbers.  

   4.  Which of the following are subsets of the natural numbers? 

    (a)  the squares of the natural numbers  
   (b)  the square roots of the natural numbers  
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   (c)  the positive whole numbers less than 10 million  
   (d)  the rational numbers    

   5*.   Show that any rational number p/q, with p and q integers, will have a 
decimal expansion that eventually recurs. (Hint: think about what will 
happen as you generate the decimal expansion by dividing q into p.)  

   6*.   Show that any decimal number that terminates with a recurring part is 
equal to some rational number. (Hint: fi rst separate the recurring part, 
then multiply it by 10  k , where k is the number of digits in the recurring 
part, then see what happens when you subtract the original recurring 
part from this number.)     

 (*Exercises with starred numerals are more diffi cult.)     
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                              3  

      3.1   Some Harder Stuff   

 This chapter will be a bit harder. 
 I regard the issues covered so far as something every educated per-

son should know about. (Maybe my expectations are a bit high––but 
you get the idea.) 

 The subject matter of this chapter, however, will be rather more 
esoteric. I shall explain some points relating to different kinds of infi n-
ities. This is not the kind of thing that is normally covered in an intro-
ductory philosophy book. 

 Still, it seems a pity not to go a bit further, now that we have come 
this far. The material in this chapter is philosophically intriguing, and 
easy enough to explain in the light of the last two chapters.  

     3.2   The Numerical Size of Sets   

 Let us start by thinking about the numerical size of sets, in the sense of 
how many members they have. (Mathematicians speak here of the 
 ‘ cardinality ’ of sets, but I shall stick to the more familiar ‘numerical size’.) 

Orders of Infi nity   
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 In the last chapter we paid attention to ways in which the members 
of different sets can be paired up one-to-one. In effect, these pairing 
relationships determine the numerical size of sets. Two sets have the 
same  number  of members just in case their respective members can be 
paired up one-to-one. 

 This is obvious with fi nite sets. Two fi nite sets can be paired up one-to-
one if and only if they have the same number of members. Indeed we can 
think of the natural numbers precisely as ways of characterizing the 
pairing properties of fi nite sets. Suppose we group the fi nite sets by 
whether their members can be paired up one-to-one. So fi rst we have the 
empty set, then all the sets with a single member, then all the sets with a 
pair of members, and so on. We can then think of the natural num-
bers––0, 1, 2, . . .––as entities which characterize the common numerical 
size of the sets in each of these groups. So the number 0 represents the 
size of the empty set, the number 1 the size of all the single-membered 
sets, the number 2 the size of all the sets with a pair of members, . . . , the 
number 8 the size of all the eight-membered sets, and so on. 

 Now let us extend this kind of thinking to infi nite sets. Suppose we 
group the infi nite sets by seeing whether their members can be paired 
up one-to-one. So all the denumerable sets will be in one group, for 
example, and all the sets that can be paired with the real numbers 
between 0 and 1 in another. Then we can think of all the sets in such a 
grouping as having the same number of members. So there will be 
one ‘infi nite number’ that characterizes the denumerable sets, and a 
distinct and bigger ‘infi nite number’ that characterizes the real num-
bers between 0 and 1. 

 If asked, most people would probably say that all infi nite sets have 
the same number of members––infi nitely many. What more is there 
to say about the size of sets which outrun any fi nite numbering? 
 However, the non-denumerability of the reals has shown us that this 
reaction is too quick. Given that the real numbers between 0 and 1 
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cannot be paired up with the natural numbers, we have no choice but 
to recognize at least two infi nite numbers. There is the infi nite number 
that characterizes the denumerable sets, and the distinct and bigger 
 infi nite number that characterizes all the sets whose members can be 
paired up with the real numbers. 

 In fact we shall see soon enough that there are many more infi nite 
numbers than just these two. Once you start generating infi nite num-
bers it is hard to stop.  

     3.3   The Reals and the Power Set 
of the Natural Numbers   

 It is not hard to show that the set of  real numbers between 0 and 1   has the 
same numerical size as the set of  all subsets of the natural numbers  (the 
‘power set’ of the natural numbers, in the terminology introduced in 
 Chapter  1  ). 

 To see why, suppose we write the real numbers between 0 and 1 in 
binary notation––e.g.  0.1100101   . . . (Binary notation is simply an 
alternative way of representing numbers, using powers of 2 where 
our familiar decimal notation uses powers of 10.  See Box  8  .) Then 
we can view each real number as a  recipe  for constructing a subset of 
the natural numbers: put 0 in the subset just in case there is a ‘ 1  ’ in the 
fi rst digit of the binary expression; put 1 in the subset just in case there 
is a ‘ 1  ’ in the second digit of the binary expression; . . . put n in the subset 
just in case there is a ‘ 1  ’ in the (n+1) th  digit of the binary expression; . . . 

 This construction demonstrates that each real number between 
0 and 1 can be taken uniquely to determine a subset of the natural 
numbers. And similarly each subset of the natural numbers 
uniquely determines a real number between 0 and 1 ( . . . put a ‘ 1  ’ for 
the (n+1) th  digit of the binary expression just in case n is in the 
 subset . . .). ( See Box  8  .)  
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    Box 8   The Real Numbers and the Power Set of  the Natural Numbers   

  Ordinary decimal notation represents numbers as sums of multiples of 

powers of 10. So for example: 

   107.25 = (1 x 10 2 ) + (0 x 10 1 ) + (7 x 10 0 ) + (2 x 10 -1 ) + (5 x 10 -2 )   

 Binary notation does the same thing but uses powers of 2 in place of 

 powers of 10. So for example in binary notation the decimally represented 

107.25 comes out as: 

    1101011.01   = (1 x 2 6 ) + (1 x 2 5 ) + (0 x 2 4 ) + (1 x 2 3 ) + (0 x 2 2 ) + 

(1 x 2 1 ) + (1 x 2 0 ) + (0 x 2 -1 ) + (1 x 2 -2 ) = 64 + 32 + 8 + 2 + 1 + 1/4   

 Note how binary numerals are always strings of nothing but ‘ 1  ’s and ‘ 0  ’s 

(since multiplying by 2 moves you to the next higher power of 2). 

 So any real number between 0 and 1 can be represented as a (possibly 

infi nite) string of ‘ 1  ’s and ‘ 0  ’s, for example: 

   0.100111001010…   

 And this string can then be used as a recipe for constructing a subset of the 

natural numbers, by including a natural number in the subset iff its matching 

binary digit is a ‘ 1  ’:   

 Conversely, any subset of the natural numbers can be used as a recipe 

for constructing a binary numeral between 0 and 1, by putting ‘ 1  ’s in the 

binary string in just those places that correspond to numbers in the 

subset.  

  The natural numbers:  0   1   2   3   4   5   6   7   8…  

  Our binary string:   1      0      0      1      1      1      0      0      1…   

  The resulting subset:  {0,   3,   4,   5,   8…}  
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 So the  real numbers between 0 and 1   and  the power set of the natural num-
bers  can be paired up one-to-one, and in this sense comprise sets of the 
same numerical size. (I shall drop the qualifi cation ‘between 0 and 1’ 
henceforth, given that the set of  all  real numbers can be shown to have 
the same numerical size as the set of real numbers between 0 and 1. 
I leave this as an Exercise.) 

 Suppose we give the name ‘infi nity 0 ’ to the numerical size of the 
natural numbers and other denumerable sets, in recognition of the 
fact that this is the smallest of the infi nite numbers. 

 Now recall that any fi nite set with n members has a power set with 
2n  members––there are 2 n  ways of making subsets if we have n mem-
bers to play with. 

 Given this, it would seem natural to write the numerical size of the 
power set of the natural numbers as 2 infi nity0 . 

 And by this convention the numerical size of the real numbers will 
also be 2 infi nity0 , since they are the same numerical size as the power set 
of the natural numbers.   1

1    Don’t worry too much about whether it makes sense to raise 2 to the power 
of infi nity 

0 —that is, to multiply 2 by itself infi nity 0  times. For our present 
purposes it will be enough to treat ‘2infi nity0 ’ as nothing more than a usefully 
mnemonic symbol for the numerical size of the power set of the natural 
numbers. 

 Still, for what it is worth, there is a natural way to do arithmetic with 
 infi nite numbers, and in this arithmetic we do fi nd that: 

 2 x infi nity 
0
  = infi nity 

0
  and 

 infi nity 
0
  x infi nity 

0
  = infi nity 

0
  

  but  

 2 infi nity0  > infi nity 
0
 .  
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     3.4   The Continuum Hypothesis   

 We know that 2 infi nity0 is a distinct and bigger number than infi nity 0 . 
Where 2 infi nity0  enumerates the real numbers, infi nity 0  enumerates the 
natural numbers, and Cantor’s diagonal argument showed us that 
the numerical size of the real numbers outruns that of the natural 
numbers. 

 But here is an interesting question. Is 2 infi nity0  the  next   biggest  infi nite 
number after infi nity 0 ? 

 There is no guarantee, if you think about it, that this should be so. 
Maybe there is a kind of infi nite set which is intermediate in size 
between the natural numbers and the real numbers. This would be a 
set that is too big to be paired up with the natural numbers, but too 
small for all the real numbers to be paired up with it. If this were so, 
then the numerical size of this set would be an infi nite number that 
came between infi nity 0  and 2 infi nity0 . 

 Suppose we adopt the convention that ‘infi nity 1 ’ names the next 
biggest infi nite number after infi nity 0 , ‘infi nity 2 ’ the next, and so on, 
for as long as we need to go on. (Mathematicians use ‘ℵ0 ’, ‘ℵ1 ’,… for 
this sequence––pronounced ‘aleph-zero’, ‘aleph-one’, . . . But let us 
stick to a convention that is easier to follow.) 

 Our question was whether 2 infi nity0  is the next biggest infi nite number 
after infi nity 0 . This can now be posed as the question of whether 
2infi nity0  equals infi nity 1 , or whether it is a distinct and larger infi nite 
number. 

 The claim that 2 infi nity0  is the same as infi nity 1  is the famous ‘ contin-
uum hypothesis ’. (It is so-called because the real numbers––which are 
of size 2 infi nity0 , remember––are often thought of as representing a 
continuous arrangement of points along a line. The ‘continuum 
hypothesis’ is thus the hypothesis that the number of such points is 
the next  largest infi nite number after the number of the natural 
numbers.) 
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 Amazingly, standard set theory fails to decide this question. Both 
the continuum hypothesis  and  its denial are consistent with the rest of 
set theory. 

 This is very strange. Standard set theory allows us to construct 
 infi nite sets as big as the natural numbers, and also ones as big as the 
real numbers. But it doesn’t say whether or not there are any that are 
in-between in size. 

 I didn’t go into any details at the end of  Chapter  1   about the ways in 
which mathematicians have sought to improve on the failings of naive 
set theory. But they have devised a number of alternative axiomatic 
systems that aim to capture the essential features of sets. Yet none of 
these systems decides the continuum hypothesis. If sets really existed, 
you would expect there to be a fact of the matter here, and for axio-
matic set theory to tell us what it is. The independence of the con-
tinuum hypothesis from axiomatic set theory adds weight to the 
philosophical case against the reality of sets. 

 (The discovery that the continuum hypothesis is left undecided by 
standard set theory came relatively late. In 1940 Kurt Gödel showed 
that the continuum hypothesis itself is consistent with set theory, and 
in 1963 Paul Cohen showed that the  denial  of this hypothesis is also 
consistent with set theory.)  

     3.5   An Infi nity of Infi nities   

 There is an infi nity of different infi nite numbers. 
 This follows from the fact that the power set of any set S is always of 

larger numerical size than the set S itself. 
 This ‘power set theorem’ can be proved by a generalized version 

of Cantor’s diagonal argument. It shows that any attempt to pair the 
members of the power set of any set S with the members of S itself 
will inevitably omit some members of the power set. There are 
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    Box 9  The Power Set Theorem   

  Take any set S and its power set P(S). We want to show that there is no 

way of pairing the members of P(S) with those of S itself. 

 Suppose (for the sake of yet another reductio argument) that there is 

such a pairing.   

 Now form a new subset K of S by going through all S’s members one by 

one and sticking them in this new subset just in case they are  not  in the 

subset they are paired with. (So the new subset K contains  a  just in case  a  

does  not  belong to L, and  b  just in case  b  does  not  belong to M, and so 

on.) 

 This new set K will now be a subset of our original S which is  different  from 

each of the subsets that were initially lined up with members of S. 

 To see that our constructed K must differ from each of the subsets that 

were initially lined up with members of S, note that K differs from L 

with respect to  a  (it contains  a  if and only if L doesn’t contain it), and 

differs from M with respect to  b  (it contains  b  if and only if M doesn’t 

contain it), . . . and in general differs from each of the subsets originally 

paired with the members of S with respect to just that member of S 

which that subset was originally paired with. 

 So we have derived a contradiction from the supposition that there is a 

way of pairing  all  the subsets of S with members of S itself.  There can be 

no such pairing. 

 (If this reminds you of the ‘diagonal’ argument from the last chapter, so it 

should––we’ve just applied the same trick to subsets that we there applied to 

decimally represented numbers.) 

  Members of S:   a    b    c   …  

  Members of P(S):  L  M  N  …  
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always too many subsets of S to be paired with the members of 
S itself. ( See Box  9  .)  

 So, just as the power set of the natural numbers is bigger in size 
than the natural numbers themselves, so also is the power set of  that
set bigger again, and so on. 

 This guarantees that we have an infi nite sequence of infi nite num-
bers, each bigger than the one before. These numbers represent the 
numerical sizes of the sequence of sets generated from the natural 
numbers by repeatedly taking power sets. 

 In line with our earlier convention, it is natural to call these 
numbers ‘infinity0  ’, ‘2 infinity0 ’, ‘2 2infinity0 ’, and so on. The rationale for 
this convention, as before, is that any set with n members has 2 n

subsets.  

     3.6   The Generalized Continuum Hypothesis   

 To repeat, the sequence of numbers infi nity0  , 2 infi nity0 , 2 2infi nity0 , . . . enu-
merates the sequence of sets generated by repeatedly taking power 
sets of the natural numbers. 

 Now, analogously to our earlier question of whether or not 2 infi nity0

is the same as infi nity 1  (the continuum hypothesis), we can ask how 
this sequence of numbers 2 infi nity0 , 2 2infi nity0 , . . . relates to the sequence 
infi nity 1 , infi nity 2 ,… Remember that this latter sequence is simply the 
sequence of  all  infi nite numbers after infi nity 0  arranged in ascending 
order. 

 The ‘ generalized  continuum hypothesis’ states that these two 
sequences coincide throughout. That is, the  generalized  continuum 
hypothesis asserts that the sequence infi nity 0 , 2 infi nity0 , 2 2infi nity0 , . . . 
comprises all the infi nite numbers. There are no infi nite numerical 
sizes in between those generated by repeatedly taking power sets of 
the  natural numbers. All infi nite sets can be paired up one-to-one 
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with one of the power sets generated in this way. (Compare the way 
that the simple continuum hypothesis said that 2 infi nity0  coincided with 
infi nity 1  and thus that there is no infi nite numerical size in between 
those of the natural numbers and their power set.) 

 Again, the generalized continuum hypothesis isn’t decided by the 
standard set theory.   
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      further reading   

 The last two chapters of Eric Steinhart’s  More Precisely: The Math You Need To Do 
Philosophy  cover the material of this chapter in more detail. 

Set Theory and the Continuum Problem  by Raymond Smullyan and Mervyn Fitting 
(Dover revised edition 2010) goes deeper into a lot of the mathematics covered 
in this chapter. 

 Adrian Moore’s  The Infi nite  (Routledge 1990) deals with some of the philosoph-
ical issues raised by the notion of infi nity.    

     exercises   

        1.   (a)  How many Arabic type numerals are there? 
   (b)  How many pairs of Arabic type numerals are there? 
   (c)  How many infi nitely long strings of Arabic type numerals are there?  

   2.   Suppose I have a numerical list of all the rational numbers in decimal 
representation. Why can’t I use Cantor’s diagonal argument to show 
that the rationals are non-denumerable?  

   3.   Tighten Cantor’s diagonal proof to deal with the problem of alternative 
decimal representations for the same real number. (Hint: we only get 
alternative decimal representations when one representation ends with 
infi nitely many nines and the other with infi nitely many zeros.)  
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   4.   In the text I said that the possibility of representing the real numbers 
between 0 and 1 in binary form demonstrates that each such number 
‘can be taken uniquely to determine a subset of the natural numbers’. 
But in fact this demonstration is not immediate. What is the 
complication?  

   5* .  Show that all the real numbers can be paired one-to-one with the reals 
between 0 and 1.           
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        4  

Kinds of Truths   

      4.1   Three Distinctions among Truths   

 There are three interesting ways to divide up the class of true state-
ments. A lot of philosophy depends on the relationships between 
these divisions. 

 We can distinguish:

  the  analytic  truths from the  synthetic  ones 

 the  a priori  truths from the  a posteriori  ones 

 the  necessary  truths from the  contingent  ones.   

 The fi rst distinction is  semantic ––to do with the meanings of words; 
the second is  epistemological ––to do with knowledge; and the third is 
metaphysical ––to do with the nature of things.  

     4.2   Analytic and Synthetic   

 Analytic truths are true by defi nition. Their truth is guaranteed by the 
meanings of the words used to state them. 

 Here are some examples of analytic truths. All triangles have three 
sides. A vixen is a female fox. If John is Jane’s brother, she is his sister. 
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 The truth of these statements falls out of the meanings of the words 
they contain––‘triangles’, ‘sides’, ‘vixen’, ‘female’, ‘fox’, ‘brother’, ‘sister’. 
The meanings of these words suffi ce to ensure that the statements are 
true. 

Synthetic  truths are those which are not analytic. Their truth depends 
not just on the meanings of words, but also on the actual facts. 

 Here are some examples of synthetic truths. Blackbirds eat worms. 
Bristol is west of Manchester. The sun has eight planets. 

 The truth of these statements isn’t just a matter of meanings, but 
also of how the non-linguistic world is arranged.  

     4.3   A Priori and A Posteriori   

 This distinction is to do with kinds of knowledge rather than the 
meanings of words. 

 A true statement is  a priori  if it can be  known  prior to experience of the 
facts. In principle, you can fi gure out an a priori truth just by sitting in 
an armchair with your eyes shut and thinking hard. 

 The most obvious examples of a priori truths are analytic truths. 
Anybody who understands the statement  triangles have three sides  won’t 
need to examine any physical triangles to know that this statement 
is true. 

 (In a moment we shall consider whether any  other  truths apart from 
analytic ones can be known a priori.) 

 A true statement is  a   posteriori  if it can only be known as a result of 
relevant experiences.  Blackbirds eat worms  is an example of an a posteri-
ori truth. There is no way of fi nding out that this statement is true 
without making observations. 

 Note that the requirement for a truth to be a priori is that it  can  be 
known prior to experience, not that it  must  be known in this way. 
I might fi nd out that  7 x 6 = 42   by looking at a few actual squares made 
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of seven rows of six pebbles each, counting the total number of peb-
bles, and inferring the general pattern. But even so this is still an a pri-
ori truth, because I  could  have worked it out in my head without 
making any observations. 

 One last point about a priority. The idea is not that an a priori state-
ment can be known prior to  any  experience whatsoever––for some 
experience may be necessary in order to understand the statement 
in the fi rst place. Rather the requirement is that, once you have 
enough experience to understand the statement, you don’t need any 
further  experience to know that it is true. For example, you may need 
some experience of the world to acquire such concepts as  triangle  and 
side . But anyone who has acquired these concepts can thereby know 
triangles have three sides  without any further investigation. By contrast, 
someone can possess the concepts  blackbird  and  worm  but still not be 
in a position to know that  blackbirds eat worms .  

     4.4   Synthetic A Prioris   

 Let us leave the third distinction, between necessary and contingent 
truths, to one side for the minute. First we need to think about the 
relationship between our fi rst two distinctions, analytic/synthetic 
and a priori/a posteriori. 

 Remember that the fi rst distinction is  semantic ––to do with the defi -
nitions of words. The second is  epistemological ––to do with acquisition 
of knowledge. It’s not to be taken for granted that these two distinc-
tions line up together. 

 Above I said that analytic truths provided the most obvious exam-
ples of a priori truths. And in general we can see that  any  analytic state-
ment can be known a priori: if the truth of some statement is guaranteed 
by the meanings of the words it contains, then someone who grasps 
those meanings will be in a position to work out that it is true. 
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 But are analytic truths the  only  statements that can be known a pri-
ori? Or does the realm of things that can be known a priori extend into 
the synthetic truths? In short, are there any  synthetic   a priori  truths? 

 Many philosophers have thought that there were. Here are some 
examples of statements that they have thought to be both synthetic 
and a priori:  all triangles contain 180° ,  every event has a cause ,  nothing can be 
both red and green all over . 

 (The traditional ‘rationalists’––Descartes, Spinoza, Leibniz––are 
often said to be distinguished from the ‘empiricists’––Locke, Berke-
ley, Hume––by their belief in synthetic a priori knowledge. But take 
this with a pinch of salt. While it is certainly true that synthetic a priori 
knowledge was more important to the Continental rationalists than 
to the British empiricists, the latter group by no means rejected all 
examples of this category.) 

 Perhaps geometry provides the most plausible examples of synthetic 
a priori knowledge. Consider the statement that  all triangles  contain 180° . 
This certainly seems to be a synthetic statement. After all, it tells us that 
if you cut off the three corners of a paper triangle, and then arrange 
them together, they will make a nice straight line. (See  diagram below.) 
This looks like a substantial fact about the world, not something 
 guaranteed by defi nition. How could a mere defi nition make the pieces 
of paper line up so neatly?   

γ

α

α

β

β

γ
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 But at the same time it looks as if we can prove this statement a pri-
ori, by means of the familiar schoolbook demonstration. (See  Box  10  .) 
And this proof seems to tell us beforehand what will happen when we 
cut out the corners and arrange them together––that is, the proof 
seems to enable us to know a substantial synthetic fact prior to any 
experience of the result.    

     4.5   How is Synthetic A Priori 
Knowledge Possible?   

 Here is a question. How can we possibly know a statement to be true 
prior to experience, if the concepts used to frame it leave it open that 
it might be false? The truth of such a synthetic statement will depend 
on the actual facts, as well as on the concepts involved. But how can 
we know what these facts are, prior to any experience of them? 

 Before the eighteenth century all philosophers would have had a 
ready answer. God told us––or, as they would have put it, He has 
endowed us with a ‘natural light of reason’ which enables us to iden-
tify certain basic truths prior to experience. 

 That is how we can know the truths of geometry and other such 
fundamental principles a priori. God has arranged our minds to make 
these things apparent to us. 

 Since the middle of the eighteenth century this answer has ceased 
to be acceptable among mainstream philosophers, even those who 
believe in God. As a result, synthetic a priori knowledge has become a 
problematic category for modern philosophy. 

 At the end of the eighteenth century Immanuel Kant offered a novel 
defence of synthetic a priori knowledge, arguing that certain assump-
tions, such as the principles of geometry, must be true of any world which 
we can experience. But the details of his arguments are not convincing, 
and in any case his approach arguably requires an idealist metaphysics 
which equates the world itself with the world as we experience it. 
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 In more recent times a number of thinkers have appealed to biologic al 
natural selection to account for synthetic a priori knowledge. Even if 
God hasn’t shaped our minds so as to make certain truths a priori appar-
ent to us, perhaps our biological history has done the job instead. 

 But there is an obvious diffi culty with this biological suggestion. 
Maybe our biological history predisposes us strongly to certain 
assumptions about the world. But are these innate assumptions  know-
ledge ? The trouble is that natural selection is an unreliable informant. 
It instils beliefs that are practically useful in helping us to survive, but 
these need not always be true. (For example, humans are arguably 
innately inclined to believe that physical objects will stop moving 
unless pushed, in contradiction to modern physics.) 

 In this respect, natural selection differs from God. Traditional phil-
osophers could be confi dent that a benevolent God would instil noth-
ing but truths in us (‘God is no deceiver’ averred Descartes). But the 
practically useful assumptions bequeathed to us by natural selection 
can’t be taken for granted until they have been subject to further a 
posteriori investigation. 

 All in all, I myself am inclined to reject the category of synthetic a 
priori knowledge and hold that our fi rst two distinctions––analytic/
synthetic and a priori/a posteriori––line up together. If something can 
be known a priori, it must be analytic. 

 Still, not all contemporary philosophers would agree. The issues 
are complex and deserve more discussion. But this would take us too 
far afi eld here. Fortunately, nothing in what follows will hinge on my 
rejection of synthetic a priori knowledge.  

     4.6   Pure and Applied Geometry   

 If we do reject synthetic a priori knowledge, what about the earlier 
example of  all triangles contain 180° ? That certainly looked like a good 
case of synthetic a priori knowledge. 
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   To show a priori that the angles of any triangle add to 180º, fi rst draw a 

line through C parallel to the line AB. Then note that the two angles 

labelled β must be equal, as they are alternate angles made when the line 

CB intersects two parallel lines; and the two angles labelled α must also be 

equal, as they are corresponding angles made when the line CA intersects 

two parallel lines. So the three angles inside the triangle must equal the 

three juxtaposed angles at point C, which together form a straight line, and 

so sum to 180º. 

 (Don’t be distracted by the visual illustration of this proof. This doesn’t 

mean that the theorem depended on visual experience and was there-

fore a posteriori. Your visual experience of the illustration played no 

essential role in your understanding the proof. You didn’t measure the 

angles in the illustration and use this to fi nd out that they added to two 

180º. Rather the diagram just helped you follow the proof. In principle you 

could have understood it while sitting in an armchair and concentrating 

with your eyes shut.) 

    Box 10  An A Priori Demonstration that the Angles of  a Triangle add 

to 180°    

A

B

C
α α

β

βγ

 However modern physics suggests that this statement, far from 
being knowable a priori, is not even true. Actual space is ‘bent’ in such 
a way that straight lines, defi ned as the shortest distance between two 
points, can form triangles whose internal angles do not sum to 180°. 
(Our earlier ‘proof’ hinged on the assumption that there is always a 
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single line parallel to another given line through any given point, and 
that the corresponding and alternate angles made by a line cutting 
these two parallel lines will be equal. But this assumption need not 
hold in a ‘bent’ physical space. See Box 11.)  

 Some readers might object to this argument against a priori 
geometry, on the grounds that lines in a bent physical space are not 
really  straight . Over two thousand years ago Euclid laid down a set 
of axioms for geometry. (See  Box  12  .) These specifi ed a number of 
properties of points and straight lines, including the postulate that 
there is always a single line parallel to another given line through 
any given point. If you stick to these axioms, then the shortest dis-
tances between two points in bent spaces will not count as ‘straight’, 
since they do not satisfy this ‘parallel postulate’. By the same coin, if 
you do stick to Euclid’s axioms, then you can continue to be sure 
that all triangles made of  Euclidean  straight lines will contain 180°, 
since by defi nition Euclidean straight lines do satisfy the parallel 
postulate, and our earlier proof that triangles will contain 180° can 
be retained.  

 However, while this line of thought does yield a kind of a priori geo-
metrical knowledge, this knowledge has now ceased to be  synthetic . 
The problem is that, if you insist that nothing will count as a ‘straight 
line’ unless it satisfies the axioms of Euclidean geometry, you 
thereby render all the claims of Euclidean geometry analytic matters 
of defi nition, including such theorems as that triangles will contain 
180°. 

 We can distinguish between two ways of understanding geometry. 
Applied  geometry is in effect a scientifi c theory of real physical space. 
Here we start by specifying how terms like ‘point’ and ‘straight line’ 
refer to items in the real world, and in particular specify that straight 
lines are the shortest distances between points in real physical space. 
Once we have defi ned our terms in this way, it is then a synthetic 
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    Box 11  ‘Bent’ Space    

   The geometry of the surface of a sphere offers a two- dimensional ana-

logue for the way three-dimensional space can be bent. Note how straight 

lines (the shortest distances between two points) on the surface of a 

sphere will be curved, and how no two of these lines will be parallel in the 

sense of never meeting. As a result, our earlier proof does not apply, and 

triangles on the surface of a sphere can contain more than 180º. For 

example, the angles in the illustrated triangle add up to three right angles, 

that is, to 270º. 

 Of course, we have illustrated the idea of bent space by considering 

the two-dimensional surface of a sphere existing inside normal three-

dimensional space in which straight lines still behave as traditionally sup-

posed. But now simply imagine that straight lines in three-dimensional 

space behave like the ones on the surface of the sphere. (Which in fact is 

roughly what they do, though the distortions are normally too small to be 

noticed.) 
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 question whether ‘straight lines’ so understood satisfy the axioms of 
Euclidean geometry, and consequently whether all triangles contain 
180°. But this synthetic question cannot be answered a priori. We need 
a posteriori experience of the world, in the form of scientifi c measure-
ment and experimental results, to tell whether real space is Euclidean. 
And indeed the a posteriori answer to this question turns out to be 
‘no’––modern physics tells us that real space does not satisfy the axi-
oms of Euclidean geometry. 

 Alternatively, we can treat geometry as a purely mathematical con-
struction, with no implications about the structure of physical space. 
In this kind of  pure  geometry, we start by specifying the axioms some-
thing must satisfy by defi nition to count as a ‘point’ or ‘straight line’—
but leave it quite open whether or not real space contains entities of 
that kind. It can then become a matter of defi nition that ‘straight lines’ 
satisfy the parallel postulate and that all ‘triangles’ contain 180°. And 
this defi n itional knowledge will now be available a priori––but only 
because it is analytic. Geometry so understood is no longer giving us 
substantial information about the real world, since its ‘straight lines’ 
are no longer guaranteed to correspond to anything in real space. 
Rather its claims are simply consequences of the way it has defi ned its 
terms. 

 So, whichever way we turn it, geometry fails to deliver any syn-
thetic a priori knowledge. We can treat geometry as a pure mathe-
matical theory, in which case it will be a priori, but only because it is 
analytic. Or we can treat it as an applied physical theory, in which 
case it will be synthetic, but now something that can only be decided 
a posteriori.   



KINDS OF TR UTHS 55

 Euclid lived in Alexandria during the reign of Ptolemy I (323–283 BC). In his 

classic textbook the  Elements  he deduced many principles of geometry 

from fi ve axioms. 

      Axiom 1.  There is a straight line through any two points.  

   Axiom 2.  Any straight line can be extended indefi nitely.  

   Axiom 3.   Given any line segment starting at any point, there is a circle with 

that point as centre and that line segment as radius.  

   Axiom 4.  All right angles are equal.  

   Axiom 5.   There is always a single line parallel to another given line through any 

given point (where ‘parallel’ means that the two lines never meet).     

 The fi fth axiom is the interesting one. (In fact Euclid himself gave a slightly 

more complicated version of this axiom.) From the start mathematicians 

were uneasy with this fi fth axiom––‘the parallel postulate’––as it seemed 

less obvious than the others. For over two thousand years they sought to 

show that it followed from the other axioms. Finally in the nineteenth cen-

tury they realized that it isn’t in fact required by the other axioms, and 

indeed that ‘non-Euclidean’ geometries can be defi ned by combining the 

fi rst four axioms with alternatives to Euclid’s parallel postulate. 

    Box 12  Euclid’s Axioms    
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      further reading   

 In the 1950s the American philosopher W.V.O. Quine mounted an infl uential 
attack on the analytic–synthetic distinction in his paper ‘Two Dogmas of 
Empiricism’ (reprinted in his collection From a Logical Point of View, Harvard 
University Press second edition 1980). 

 Quine’s attack and other aspects of the distinction are explored in Georges 
Rey’s internet Stanford Encyclopedia of Philosophy entry on ‘The Analytic–
Synthetic Distinction’: < http://plato.stanford.edu/entries/analytic-synthetic >. 

 There is also a useful Stanford Encyclopedia entry on ‘A Priori Knowledge and 
Justifi cation’ by Bruce Russell, which among other things discusses recent 
attempts to defend synthetic a priori knowledge: < http://plato.stanford.edu/
entries/apriori >. 

Rationalism, Empiricism and Pragmatism by Bruce Aune (Random House 1970) is a 
helpful introduction to the historical division between rationalists and 
empiricists. 

 Chapter 6 of  Mathematics: A Very Short Introduction  by Timothy Gowers (Oxford 
University Press 2002) introduces the basic ideas of non-Euclidean geometry.    

     exercises   

       1.  Give three clear examples of analytic statements, and three of synthetic 
statements.  

   2.  Which of these would you say was analytic and which synthetic? (In some 
cases the answer is indeterminate.) 

    (a)  Vixens are female foxes.  
   (b)  Leaves contain chlorophyll.  
   (c)  All spinsters are unmarried.  
   (d)  Blood transports oxygen.  
   (e)  Silkworms eat mulberry leaves.  
   (f )  Energy is always conserved.  

http://plato.stanford.edu/entries/analytic-synthetic
http://plato.stanford.edu/entries/apriori
http://plato.stanford.edu/entries/apriori
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   (g)  Bicycles have two wheels.  
   (h)  All atoms contain nuclei.    

   3.  Explain briefl y the difference between being synthetic and being a 
posteriori.  

   4.  There are obviously some synthetic a posteriori and analytic a priori 
statements, and some philosophers have defended synthetic a priori 
statements. What, if anything, is wrong with the idea of an analytic a 
posteriori statement?  

   5.  Give two examples of statements that have been thought to be examples 
of synthetic a priori truths.  

   6.  Suppose, for the sake of the argument, that the genes bequeathed to us 
by natural selection ensure that babies are born believing that  physical 
objects don’t just disappear spontaneously . Which of the following, if any, 
are good reasons for denying that the italicized statement is synthetic a 
 priori knowledge? 

    (a)  The statement is a matter of defi nition.  
   (b)  The babies have acquired their belief from experience.  
   (c)  Natural selection instils plenty of false beliefs in humans.                  
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                            5  

      5.1   Necessity and Contingency   

 In the last chapter I said that there are three distinctions among 
truths––analytic/synthetic, a priori/a posteriori, necessary/contingent. 
And I discussed the fi rst two at length. Let us now consider the last 
distinction.

  A true statement is  necessary  if it could not have been false. 

 A true statement is  contingent  if it could have been false.   

 At fi rst sight it may be unclear why this contrast is any different from the 
a priori/a posteriori distinction. What can it mean to say that a state-
ment ‘could  not  have been false’, apart from saying that there was no 
room for experience to disprove it because it is a priori? And what can it 
mean to say that a statement ‘ could  have been false’, apart from that it 
would have proved false if the evidence had turned out differently? 

 Certainly many philosophers have agreed that ‘necessary’ means 
nothing but ‘a priori’ and ‘contingent’ nothing but ‘a posteriori’. (If 
you look in the Index to A.J. Ayer’s infl uential  Language Truth and Logic , 
1936, the entry under ‘necessary propositions’ simply reads ‘see a pri-
ori propositions’.) 

Possible Worlds   
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 However, this confl ation of the two distinctions is now widely rejected. 
Over the last few decades, nearly all contemporary philosophers have 
been persuaded by Saul Kripke’s book  Naming and Necessity  that the  meta-
physical  distinction between necessary and contingent is different from 
the epistemological  distinction between a priori and a posteriori. 

 According to Kripke, not all necessities are a priori––there are also 
some  a posteriori necessities . And not all contingencies are a posteriori–
–there are also some  contingent a prioris . 

 I shall say a lot more about necessity and contingency in this chap-
ter and the next. But let me start by illustrating Kripke’s claims that the 
necessary/contingent and a priori/a posteriori distinctions can come 
apart, by offering some simple examples of  a posteriori necessities  and 
contingent a prioris .  

     5.2   A Posteriori Necessities   

 First for some a posteriori necessities. 
 My parents were Owen and Constance Papineau. Could I have had 

different parents? Surely not. A person with different parents would not 
have been me. So it is necessary that  David Papineau’s parents were Owen and 
Constance Papineau . But this statement is surely not a priori. You need evi-
dence to know who my parents were. It’s not something you can fi nd out 
just by thinking. So that’s one example of an a posteriori necessity. 

 Here is another.  Hydrogen is made of atoms containing one electron . This is 
surely necessary too.  Hydrogen  couldn’t have had a different atomic struc-
ture. Anything with a different atomic structure wouldn’t be hydrogen. 
But this statement too is obviously a posteriori. Physicists didn’t fi gure 
out the structure of hydrogen by sitting in an armchair. They needed to 
perform a great number of detailed experiments and observations. 

 Perhaps the most obvious examples of a posteriori necessities are 
simple identities involving proper names.  Marilyn Monroe is Norma 
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Jeane Baker . This again is necessary. Marilyn Monroe couldn’t not have 
been Norma Jeane Baker. That would require her somehow not to 
have been herself, which would be absurd. But  Marilyn Monroe is Norma 
Jeane Baker  is not a priori. Somebody could understand this statement 
perfectly well and yet not know it is true. (Imagine someone who grew 
up with Norma Jeane but lost touch with her, and had heard of Mari-
lyn Monroe but not seen any of the fi lms.)  

     5.3   A Priori Contingencies   

 Now for the converse category of a priori contingencies. 
 Kripke’s own example involved the platinum rod in Paris that once 

defi ned the metre as a unit of length. He pointed out that, given this 
defi nition, it was a priori that  the Paris platinum rod is one metre long . We 
could know this without further ado, given that the rod provided the 
standard for determining what a metre is. But at the same time this 
statement seems contingent. That selfsame rod might well have been 
shorter than a metre, if its manufacturer had chosen to make it so. 

 If there seems an element of trickery about this example, here is 
another example that makes it clearer what is going on. 

 Suppose we are discussing the history of inventions, and are par-
ticularly interested in what kind of person might have invented the 
zip. But we get bored having to say ‘the inventor of the zip’ all the 
time, so we adopt the name ‘Julius’ to refer to the inventor of the zip, 
whoever he or she might have been. Now given this convention, the 
statement that  Julius invented the zip (assuming it had a single inventor1)  is 

1   The qualifi cation ‘assuming it had a single inventor’ is to cover such possibili-
ties as that a team invented it, or perhaps it happened by chance. I’m going to 
drop the qualifi cation henceforth in the interests of simplicity––it makes no 
difference to the argument. (The example of Julius is due to the Oxford phil-
osopher Gareth Evans (1946–1980).)
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surely a priori. We don’t need to investigate the world to make sure 
that it was Julius who invented the zip. 

 The statement that  Julius invented the zip  may be a priori, but it is 
surely not necessary. Julius might have been dropped on his head 
when little, and grown up too stupid to invent the zip. Or an unhappy 
love affair might have made him join the French Foreign Legion before 
he made his breakthrough. The statement that  Julius invented the zip
could well have been false, if things had turned out differently. So this 
statement is both a priori and contingent.  

     5.4   Possibility and Necessity   

 It will be helpful to bring in the idea of a statement being  possible . 
A statement is possible if it  might  be true. 

 Both true statements and false statements can be possible. In this 
sense, both  David Papineau is a philosopher  and  David Papineau is a lawyer
are possible. The fi rst is true and the second false, but neither is ruled 
out by the nature of things. I could have been a lawyer, if my life had 
taken a different course. 

 Possibility can then be contrasted with necessity. A necessary state-
ment is one which  has  to be true. It couldn’t be false. For example,  seven 
is a prime number . There are no circumstances in which this statement 
would be false. 

 I started this chapter by drawing a contrast between necessary and 
contingent  truths . A contingent truth is a true statement that is not 
necessarily true. 

 The contrast between necessity and possibility is different. A state-
ment can be possible without being true. The necessity/possibility 
contrast thus marks a division among  all  statements, rather than just 
among the  true  statements. 

 (In terms of possibility, a contingent truth can thus be defi ned as a 
statement which is true but could possibly have been false.) 
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 Necessity and possibility have a neat relationship. A statement is 
necessary if and only if its negation is not possible. That is: necessarily 
p  iff  not  possibly  not-p . 

 It works the other way round too. A statement is possible iff its 
negation is not necessary. That is: possibly  p  iff  not  necessarily 
not-p . 

 Logicians use the symbol ‘□’ (called ‘box’) for  necessarily , and ◊’
(‘diamond’) for  possibly . 

 Then we can write:

  □ p iff not ◊ not-p   

 and 

  ◊ p iff not □ not-p.   

 (If you’d like help remembering which is which, think of the box as 
solid, stable, it couldn’t be different; the diamond by contrast is bal-
anced on its tip, and so could go either way.)  

     5.5   Possible Worlds   

 It helps to think of these matters in terms of ‘possible worlds’. 
 A possible world is a fully specifi c way the world might be. Imagine 

a world which is just as detailed as the actual world, but which differs 
from the actual world in various respects. 

 In this context ‘world’ means the whole universe, not just the 
planet Earth. Other possible worlds aren’t faraway planets within 
the actual universe. Rather they are alternative universes, with their 
own space and time. Many of them will contain their own stars 
and planets and so on––though some of them won’t have stars and 
planets at all. 
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 So there are (many) possible worlds where it is true that  David 
Papineau is a lawyer , or that  donkeys talk  or that  the sun has twenty plan-
ets  or even that  there is no force of gravity  or that  the whole universe is 
nothing but mud and telepathic worms are the only intelligent life . (See 
 Box  13  ).   

     5.6   Necessity and Possibility in terms 
of Worlds   

 It is easy to explain necessity and possibility in terms of truth at 
 possible worlds:

  Necessarily p iff p is true at  all  possible worlds 

 Possibly p iff p is true at  at least one  possible world   

 Note how neatly this way of understanding necessity and possibility 
explains our two earlier equivalences. 

   (I)  Necessarily p iff not possibly not-p.   

 In terms of possible worlds, the left-hand side of this equivalence 
now means  p is true at all possible worlds  and the right-hand side means 
there are no possible worlds where not-p is true . The equivalence is now 
obvious. 

 And similarly with:

   (II)  Possibly p iff not necessarily not-p.   

 The left-hand side now means  p is true at at least one possible world  and the 
right-hand side means  it’s not the case that not-p is true at all possible worlds . 
Again the equivalence is obvious.  
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     5.7   Constraints on Possible Worlds   

 It would be nice to be more specific about which worlds are 
possible. 

 As  Box  13   explains, possible worlds aren’t constrained to respect 
ordinary scientifi c principles or anything like that. There are possi-
ble worlds containing nothing but two dragons fi ghting for fi ve 
minutes. 

 However, possible worlds do obey some constraints. 
 For a start, there are no possible worlds which violate logic or 

defi nitions. 
 So there are no possible worlds where it is true that  the earth has a 

moon and does not have a moon  or that  all cats are black and some are not 
black  or that  triangles have four sides  or that  John is both taller and shorter 
than Jim . These worlds would be inconsistent with logic or defi n-
itions. (What about the possible worlds where it is true that  Julius 
does not invent the zip ––because he was dropped on his head when 
little, say? Aren’t they ruled out by logic and defi nitions, if Julius is 
defi ned as the inventor of the zip? I’ll come back to this in the next 
chapter.) 

 In addition to restrictions that derive from logic and defi nitions, 
possible worlds must also respect the  essential   properties  of things, such 
as facts of identity, origin, and constitution, even when these are not 
required by logic or defi nitions. 

 So there are no possible worlds where it is true that  Marilyn Monroe 
is not Norma Jeane Baker  (a fact of identity) or that  David Papineau has 
parents other than Owen and Constance  (a fact of origin) or that  hydrogen is 
made of atoms with two electrons  (a fact of constitution). These worlds 
may not be ruled out by logic or defi nitions, but they are not ‘ meta-
physically ’ possible. They are inconsistent with the nature of the en tities 
at issue.  
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    Box 13   The Reality of  Possible Worlds   

  Do other possible worlds really exist? 

 Some scientists argue that quantum mechanics and cosmology pro-

vide evidence for other ‘branches of reality’ apart from the one we live in. 

But these scientifi cally motivated alternative universes are different from 

the philosophers’ ‘possible worlds’. There are far fewer of them and they 

are all constrained by the actual laws of physics. Scientists speak of them 

as together comprising the one actual ‘multiverse’. 

 The ‘possible worlds’ of the philosophers, by contrast, include a far wider 

range of alternatives, including worlds with different scientifi c laws and dis-

parate origins, and indeed worlds which display no order at all. In this sense 

there are ‘possible worlds’, for example, which contain nothing but two 

dragons fi ghting for fi ve minutes. 

 The American philosopher David Lewis (1941–2001) was a full-

blooded realist about all these possible worlds. According to Lewis, all 

possible worlds are just as real and concrete as the actual world. The 

only sense in which this world is ‘actual’ is that it is the one we happen 

to be in. 

 Most philosophers, however, regard this view as untenable, and deny 

that other possible worlds have the same kind of reality as the actual world. 

Some equate possible worlds with sets of statements or with rearrange-

ments of actual objects and properties. Others regard them as useful 

fi ctions. 

 Still, whatever view we take of possible worlds, it is uncontroversial that 

talking about them can be a great help in understanding the structure of 

necessity and possibility.  
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     5.8   Essential Properties   

 I said that possible worlds must respect the essential properties of 
things. Some properties of things are  essential , others are  accidental . 

 I am only accidentally a philosopher and only accidentally live in 
London. I might have been a lawyer living in Los Angeles. 

 But I am essentially the child of Owen and Constance Papineau. 
If you posit a being with different parents, it cannot be me. Similarly, 
I am essentially a human being. I could not have been a fi sh or even a 
chimpanzee. A being of a different species would not be me. 

 Again, hydrogen essentially has atoms with one electron, but is 
only accidentally used to make bombs, and Marilyn Monroe is 
essentially identical to Norma Jeane Baker, but is only accidentally a 
fi lm star. 

 Statements ascribing essential properties to things are neces-
sary truths. It is necessary that  David Papineau is the child of Owen and 
Constance Papineau , and necessary that  David Papineau is a human 
being . 

 Note however that the necessity of these statements does not make 
me  a necessary being. It is certainly possible that I might have failed to 
exist––suppose, for example, that my parents had never met each 
other. I am a contingent being, not a necessary one––I exist, but might 
not have. 

 Necessities like  David Papineau is a human being  show that we need to 
be a bit careful about our earlier equation of necessity with ‘truth at 
all possible worlds’. After all, the statement that  David Papineau is a 
human being  won’t be true at those possible worlds where it is false 
that I exist. 

 The best way to deal with this is to recognize that necessary truths 
ascribing essential properties to contingent beings are implicitly con-
ditional. If you think about it, what is really necessary is that  if David 
Papineau exists, then he is a human being , not that  David Papineau (exists and) 
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is a human being . As we have seen, the latter claim could easily have 
been false––for example, if my parents had never met.  

     5.9   The Nature of Necessity   

 By now some readers might be starting to feel suspicious of the whole 
apparatus of necessity and possibility. Who makes the rules about 
what is necessary and what is merely possible? Why are my parents 
and my species necessary to me, but not my being a philosopher and 
my location? More generally, what does it really  mean  to say that some 
truths are necessary and others only contingent? 

 This is a deep and diffi cult subject, about which it is hard to say 
anything without being controversial. Indeed there are philosophers 
who would dispute some of the examples of essential properties I have 
given so far. I shall return to this issue at the end of the next chapter. 
But at this stage it may be helpful to make some brief general 
remarks. 

 Modal claims––that is, claims about what is necessary and 
 possible—are arguably grounded in our practice of reasoning about 
 non-actual scenarios. It is very common, outside philosophy as much 
as within it, to think about how things would be if reality were differ-
ent in various respects. Such thinking is important in many ways––in 
constructing plans, in ascribing responsibility, in learning from expe-
rience, and so on. Would a reduction in taxes cause infl ation? Could 
Bush have invaded Iraq without Tony Blair’s support? Would Johnny 
have got better if he hadn’t taken the pills? Could life have evolved if 
there had been no force of gravity? (In  Chapter  8   we shall look briefl y 
at the ‘subjunctive conditional’ statements which play a central role in 
this kind of reasoning.) 

 Now, we can think of modal facts as constraints governing reason-
ing about non-actual scenarios. Necessary facts are those which  must
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be respected in such reasoning. Possible facts are those which  may  be 
entertained in such reasoning. (Thus it makes sense to consider what 
would have happened to me if I had studied law, but not what would 
have happened to me if I had been a fi sh or conceived by different 
parents.) 

 This might not tell us very much about modal facts, without some 
further account of non-actual reasoning. (What is such reasoning 
about , after all?) But at least we can say this much: modal facts mark 
out the limits of the space we explore in non-actual reasoning. This 
kind of reasoning deals with scenarios that are not actual, but it draws 
the line at scenarios that are not possible.  

     5.10   Different Kinds of Possibility   

 Isn’t it impossible that a donkey should talk, or that pigs should fl y, or 
that a human being should run a mile in one minute? 

 But this is only true in a different sense of impossibility. Possible 
worlds where donkeys talk, or pigs fl y, or humans run one-minute 
miles, are not ruled out by logic or defi nitions or the essential proper-
ties of things. So, for all that has been said so far, these things are pos-
sible. When people say that these things are impossible, what they 
mean is rather that they are not  naturally  possible. 

 We can understand ‘natural possibility’ as requiring possibility  plus
consistency with the laws of nature. (Think of the laws of nature as the 
general truths that science aims to uncover.) Talking donkeys, fl ying 
pigs, and one-minute miles are not naturally possible because they are 
inconsistent with the actual laws of nature. But they are possible in an 
absolute sense, because there are possible worlds where different laws 
of nature do allow such things. 

 In line with this, we can defi ne the  naturally   possible  worlds as those abso-
lutely possible worlds where the actual laws of nature obtain. A naturally 
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possible statement is then one which is true at at least one naturally pos-
sible world, and a naturally necessary statement is one which is true at all 
naturally possible worlds. Trivially, then, the laws of nature themselves 
are naturally necessary, even if they are not absolutely necessary. 

 Just as we can defi ne ‘natural possibility’ as absolute possibility plus 
consistency with the laws of nature, so we can defi ne ‘geographical 
possibility’ as absolute possibility plus consistency with the truths of 
geography, ‘moral possibility’ as absolute possibility plus consistency 
with the truths of morality, and so on. 

 In what follows these narrower kinds of possibility will not be at 
issue. From now on all talk of possibility and necessity should be 
understood as referring to absolute possibility and necessity.   
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      further reading   

 Modern work on necessity and possibility starts with Saul Kripke’s book 
Naming and Necessity  (Blackwell 1980). (In fact the main text was published a 
decade earlier in article form, after two of Kripke’s colleagues transcribed three 
lectures he delivered without notes at Princeton in 1970. The book simply adds 
an Introduction to the transcript of the lectures.) 

Naming and Necessity  is itself very readable. For an overview and some criticisms of 
Kripke’s views, see  Kripke  by Christopher Hughes (Oxford University Press 2004). 

 David Lewis’ realism about possible worlds is explained and defended in his 
On the Plurality of Worlds  (Blackwell 1986).    

     exercises   

       1.  Which of these truths are necessary and which contingent? 

    (a)  All triangles have three sides.  
   (b)  There are no snakes in Ireland.  
   (c)  Water is H 2 O.  
   (d)  My car is blue.  
   (e)  My car is blue or not blue.  
   (f)  George Eliot is Mary Ann Evans.  
   (g)  David Papineau is a philosopher.  
   (h)  George Eliot wrote  Middlemarch .    

   2.  Give an example of (a) an a posteriori necessity, (b) an a priori necessity, 
(c) an a priori contingency, (d) an a posteriori contingency.  

   3.  Which of the following fall into which of the four categories specifi ed in 
question 2? 

    (a)  Squares have four sides.  
   (b)  David Papineau lives in London.  
   (c)  Cary Grant is Archie Leach.  
   (d)  The Paris platinum rod is one metre long.  
   (e)  Prince Charles is the son of Queen Elizabeth and Prince Philip.  
   (f)  It is raining or it is not raining.  
   (g)  Julius (as defi ned in section 5.3) invented the zip.  
   (h)  London is the capital of Great Britain.    
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   4.  Which of these implications are correct? (In each case explain your 
answer in terms of what the fi rst and second clauses respectively require 
of the possible worlds p is true in.) 

    (a)  If p is necessary, it is possible.  
   (b)  If p is possible, it is necessary.  
   (c)  If p is necessary, it is not possible.  
   (d)  If p is true, it is possible.  
   (e)  If p is false, it is possible.  
   (f)  If p is not necessary, it not possible.  
   (g)  If p is not possible, not-p is necessary.    

   5.  For each of the following impossibilities, say whether they are ruled 
out (i) by logic and defi nitions or (ii) by the essential properties of 
things. 

    (a)  Some birds fl y and all birds don’t fl y.  
   (b)  Water is sodium chloride.  
   (c)  Archie Leach is not Cary Grant.  
   (d)   David Papineau has parents other than Owen and Constance 

Papineau.  
   (e)  It is raining and it is not raining.  
   (f)  Some squares have three sides.    

   6.  For each of the following false statements, say whether it is (i) naturally 
possible, (ii) absolutely but not naturally possible, (iii) neither. 

    (a)  Some birds fl y and all birds don’t fl y.  
   (b)  Tony Curtis is Kirk Douglas.  
   (c)  Some pigs fl y.  
   (d)  Hydrogen atoms contain two electrons.  
   (e)  David Papineau is a lawyer.  
   (f)  The earth revolves once an hour.  
   (g)  David Papineau has run ten miles in under ten hours.  

   (h)  David Papineau has run ten miles in under ten minutes.             
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                            6  

      6.1   Two Readings of Statements of Necessity   

 Consider a statement like   

     (1)  The inventor of the zip necessarily invented the zip.       

 This can be read two ways. 

       (2)  It is necessary that the inventor of the zip invented the zip.       

 This says that, in any possible world, the person who invented the zip, 
whoever that might be, invented the zip. (2) is true. It would violate 
logic for there to be a world within which the person who invented the 
zip did not invent the zip.

       (3)  The inventor of the zip necessarily invented the zip.       

 Now we are focusing on the actual inventor of the zip, the person who 
happened to invent the zip in the actual world. The question is whether 
he or she necessarily invented the zip. It is clear that the answer is neg-
ative. The actual inventor of the zip could well have been dropped on 
his or her head as a child, say, and so grown up too stupid to invent the 
zip, or gone off to join the French Foreign Legion. Whoever invented 

Naming and Necessity   
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the zip, it was not essential to their nature that they did so. It is quite 
possible that the actual inventor of the zip should have failed to invent 
the zip.  

     6.2   Scope Distinctions   

 This kind of ambiguity is called a  scope  distinction. 
 Consider the statement  every girl loves a sailor . 
 This can be read either as saying 

  For every girl, there is a sailor (possibly different for each girl) whom that 

girl loves,   

 or as

  There is a certain sailor whom every girl loves.   

 In more explicitly logical notation, the contrast is between

  (For each girl x)(there exists a sailor y such that)(x loves y),   

 and

  (There exists a sailor y such that)(for each girl x)(x loves y).   

 In the fi rst case we say that the expression ‘(For each)’ has  wide scope
and the expression ‘(there exists)’ has  narrow scope . In the second case 
this is reversed. 

 Now return to our two readings of  the inventor of the zip necessarily 
invented the zip . 

 The fi rst was

       (2)  It is necessary that the inventor of the zip invented the zip.       

 In more explicit notation:

  (Necessarily)(the inventor of the zip)(invented the zip)   
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 So here we can say that the prefi x ‘(Necessarily)’ has wide scope, while 
the description ‘(the inventor of the zip)’ has narrow scope. 

 The other reading was 

       (3)  The inventor of the zip necessarily invented the zip.       

 More explicitly: 

  (The inventor of the zip)(necessarily)(invented the zip).   

 Now it is the description ‘(The inventor of the zip)’ that has wide scope, 
while the prefi x ‘(necessarily)’ has narrow scope.  

     6.3   Julius and the Inventor of the Zip   

 Attentive readers may be puzzled at this point. Recall the name ‘Julius’ 
from the last chapter defi ned as ‘the inventor of the zip’. I said there 
that  Julius invented the zip  is clearly contingent (given that Julius could 
have been dropped on his head when little …). That is, I said that this 
statement is defi nitely false:

       (4)  Julius necessarily invented the zip.       

 But––and this is the puzzle––how come this is defi nitely false, rather 
than ambiguous between a true and false reading? I started this chap-
ter by observing that the statement (1)–– the inventor of the zip necessarily 
invented the zip ––is ambiguous between a true and false reading. But 
surely (4) and (1) must mean the same. After all ‘Julius’ was explicitly 
defi ned as ‘the inventor of the zip’. So, given that (1) is ambiguous, why 
isn’t (4) similarly ambiguous? But, on the face of it, (4) is indeed defi -
nitely false, not ambiguous. 

 However, there is a difference between (4) and (1). Even though ‘Julius’ 
was defi ned as the inventor of the zip, so to speak, it remains the case that 
‘Julius’ is a  proper   name , where ‘the inventor of the zip’ is a  description . 
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 And this difference explains why (4) is defi nitely false, while (1) is 
ambiguous. The fact that ‘Julius’ is a proper name  forces  us to read (4) 
as about the person who invented the zip in the actual world, and so 
as akin to the reading of (1) in which ‘the inventor of the zip’ has wide 
scope and ‘necessarily’ has narrow scope. While (1)–– the inventor of the 
zip necessarily invented the zip ––can be read in two ways, depending on 
whether we ascribe a wide or narrow scope to ‘necessarily’, (4)–– Julius 
necessarily invented the zip ––can only be understood one way, as saying 
(falsely) of Julius that he or she necessarily invented the zip.  

     6.4   Rigid Designators   

 Proper names are terms for people, places, and other important 
objects—like ‘David Papineau’, ‘London’, ‘Titanic’, and so on. They are 
typically written with capital letters, and their function is to pick out some 
individual, rather than to convey descriptive information about it. 

 This is why in modal statements they always work like descriptions 
with wide scope. (A  modal  statement is any statement saying that some-
thing is necessary or possible.) We cannot help but understand modal 
statements made using proper names as fi rst identifying some object 
and then saying what is necessary or possible about  it . (And this remains 
the case even when, as with ‘Julius’, the proper name has explicitly been 
attached to its bearer with the help of some description.) 

 Words that always work like this in modal statements are called 
‘rigid designators ’. Proper names are the most obvious examples of 
rigid designators. But there are arguably other species of this genus. 
In particular, many philosophers think that names of scientifi c cate-
gories––like ‘hydrogen’, ‘water’, ‘tiger’, and so on––are also rigid 
designators. 

 It is sometimes said that ‘rigid designators have their referents nec-
essarily’. But this can be confusing. The idea is not that the  word  ‘David 
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Papineau’ necessarily names me. That is obvious false––I could easily 
have been given a different name. 

 Rather the idea is that the name ‘David Papineau’ (as used in the 
actual world) picks out a certain actual individual (namely me) and in 
modal statements must still be understood as talking about that same 
individual and saying what is necessary or possible about  it .  

     6.5   The Causal Theory of Reference   

 The idea of rigid designation was introduced by Saul Kripke in the 
book  Naming and Necessity  mentioned earlier. Part of the purpose of 
the book was to show that proper names are rigid designators. But 
Kripke also defended another view about proper names––normally 
referred to as the ‘causal theory of reference’ (though Kripke himself 
never claimed that this view added up to a ‘theory’). 

 We need to be careful not to muddle up this causal theory with the 
thesis that proper names are rigid designators. 

 The ‘causal theory of reference’ is a theory of how names get related 
to their bearers in the actual world. It is opposed to the more trad-
itional ‘description theory’, according to which a name refers to what-
ever entity satisfi es the descriptions people associate with the name. 
(To illustrate the description theory, take the name ‘Ferdinand Magel-
lan’; nearly everybody associates this name fi rst and foremost with 
the description ‘the fi rst man to circumnavigate the globe’; so accord-
ing to the description theory the name ‘Ferdinand Magellan’ refers to 
whomever was that fi rst circumnavigator.) 

 Kripke argued that the description theory gives the wrong account of 
how proper names get their references fi xed. Names don’t normally get 
hooked on to their bearers by being associated with a set of descrip-
tions. It’s much simpler. There is some original occasion where the indi-
vidual in question is fi rst named (most obviously, the baptism of a 
child). Thereafter the name spreads through the community. As a result, 
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all those who later use the name will be referring to the individual origin-
ally dubbed with it, even if those later users lack descriptive knowledge 
of that individual. (The ‘causal’ in ‘the causal theory of reference’ alludes 
to the way the name spreads  causally  though the community, with later 
users acquiring the name through causal contact with earlier users.) 

 This is not the place to adjudicate between the description and 
causal theories of reference. Kripke makes a strong case for the latter, 
but not all philosophers are convinced. (To get a sense of Kripke’s 
case, note that Ferdinand Magellan didn’t in fact circumnavigate the 
globe, having got himself killed when he was half-way round. How-
ever, if the description theory were correct, it’s not clear how what 
I have just said could be true.)  

     6.6   Rigidity and the Causal Theory   

 The point I want to stress here is that the causal theory of reference is 
not the same as the doctrine that proper names are rigid designators. 
The former is a thesis about the way names get attached to their bear-
ers in the actual world. The latter is a thesis about the way that names 
behave in modal statements. The two theses are distinct. 

 This point is made graphic by the example of ‘Julius’. If you think 
about it, ‘Julius’ is a name that is cooked up to fi t the description the-
ory of reference. The description theory is true of ‘Julius’, even if it is 
false of other proper names. But this does not stop ‘Julius’ being a rigid 
designator. In any modal statement it must still be read as referring to 
the actual  inventor of the zip and saying what is necessary or possible 
about that person . So ‘Julius’’s status as a rigid designator does not 
depend on its conforming to the causal theory of reference. It just fol-
lows from the fact that ‘Julius’ is a proper name. 

 The example of ‘Julius’ shows how proper names could be rigid 
designators  even   if  the description theory of reference were true. Rigid 
designation doesn’t require the causal theory of reference. 
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 However, there is arguably a connection between rigid designation 
and the theory of reference in the other direction. Even if rigid desig-
nation doesn’t require the causal theory of reference, maybe the causal 
theory of reference requires rigid designation. 

 A referring term is  non-rigid  if what it refers to at different possible 
worlds is independent of what it refers to at the actual world. So, for 
example, the explicit description ‘the fi rst mammal on the moon’ 
can be read as referring to whichever mammal was fi rst on the moon 
in different possible worlds. When we are considering the actual 
world, it refers to Neil Armstrong. But when we consider the possi-
bility where the Russians send their original space dog to the moon 
and not just into orbit, it refers to that dog. And in general, in consid-
ering any possible world, the description can be read as referring to 
whatever mammal was fi rst on the moon in that world. 

 Note how this kind of non-rigid reference requires that the refer-
ring term in question has some descriptive content that can be satis-
fi ed by different objects in different possible worlds. Without such a 
descriptive content, there wouldn’t be any question of understanding 
the term as referring to whatever satisfi es some given description in 
different possible worlds. 

 So, if proper names have their references fi xed causally, and not by 
association with descriptions, it is hard to see how they  could  behave 
in this non-rigid way. They have no option, so to speak, but to refer 
rigidly, in all modal contexts, to the thing that they name in the actual 
world.  

     6.7   De Dicto and De Re   

 In the last chapter I noted that there are two kinds of limits to possibil-
ity. First there is the requirement that possible worlds should respect 
logic and defi nitions: there are no possible worlds that are logically 
contradictory. Second there is the requirement that possible worlds 
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should respect the essential properties of things: it is not possible that 
things should lack their essential properties. 

 Corresponding to these two limits are two kinds of modal state-
ments. There are ‘ de   dicto ’ modal statements, which answer to the 
requirements of logic and defi nitions, and there are ‘ de   re ’ modal state-
ments, which are concerned with whether specifi c things have certain 
properties essentially or not. 

De   dicto  modal statements are thus ones which contain no rigid des-
ignators, and in which the ‘necessarily’ or ‘possibly’ prefi x takes wide 
scope. Examples of this category include: 

  (Necessarily)(the fi rst mammal on the moon)(was human) 

 (Possibly)(the cleverest girl)(has the richest parents) 

 (Necessarily)(the inventor of the zip)(invented the zip) 

 (Possibly)(there is a triangle with four sides).   

 Statements like these are traditionally called ‘ de dicto ’––of the word––
because the truth or falsity of these statements hinges on the descrip-
tions involved, and not on what those descriptions refer to in the 
actual world. 

De   re  modal statements, by contrast, are those in which the ‘neces-
sarily’ or ‘possibly’ prefi x takes narrow scope, or which contain rigid 
designators. Examples of this category include:

  (The fi rst mammal on the moon)(necessarily)(was human) 

 (The inventor of the zip)(possibly)(did not invent the zip) 

 Necessarily Julius invented the zip 

 Possibly David Papineau is the son of Franklin and Eleanor Roosevelt.   

 Statements like these are traditionally called ‘ de re ’––of the thing–– 
because now we are focussing on some specifi c thing in the actual 
world, and asking whether  it  necessarily or possibly has some prop-
erty, however that thing might be described.  
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     6.8   Necessary and A Priori Again   

 As long as we stick to de dicto statements, then we can expect necessity 
and a priority to line up together. For a de dicto necessary statement to 
be true, all possible worlds must conform to some purely descriptive 
requirement. But how could this be so, unless the descriptive require-
ment were guaranteed to be true by logic and defi nitions? So in such 
cases the statement will be knowable a priori. (Consider, for instance, 
such requirements as that  the inventor of the zip invented the zip , or that 
either the earth has a moon or it doesn’t , or that  triangles have three sides  . . . ) 

 But once we switch to de re statements, then necessity and a prior-
ity can come apart. This is the source of Kripke’s examples of a priori 
contingencies and a posteriori necessities. 

 Let us fi rst consider a priori contingencies. These arise when we 
identify the relevant entity in a way that makes it a priori that it has 
some accidental property. For example, it is a priori that the inventor of 
the zip, and indeed Julius, invented the zip. But inventing the zip is not 
a necessary property of that person. 

 Now take a posteriori necessities. These arise when we identify 
something in a way that makes it a posteriori that it has some essential
property. For example, it is a posteriori that the fi rst mammal on 
the moon was human, or that David Papineau is the son of Owen 
and Constance Papineau. But membership of the human species is 
necessary to the fi rst mammal on the moon (namely, Neil Arm-
strong), and similarly my parenthood is necessary to me. 

 Of course, we can also identify things in a way that makes it a pos-
teriori that they have an accidental property (David Papineau is a phil-
osopher) and a priori that they have an essential property (the fi rst 
human on the moon was human). The point is that the accidentality 
or essentiality of a property ascribed to some entity is independent of 
whether or not we identify that entity in a way that makes it a priori 
that it possesses that property. 
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 We can now clear up a question left hanging earlier. Why is there a 
possible world where it is true that  Julius did not invent the zip ? This state-
ment is a priori contradictory––its falsity is guaranteed by the defi n-
ition of ‘Julius’. So shouldn’t any such possibility be ruled out? 

 Well, there is certainly no possible world in which somebody both 
does and doesn’t invent the zip. That would contradict logic. But that’s 
not the kind of possibility required to make it true that  Julius  did not 
invent the zip. And there is no contradiction in this latter possibility, 
precisely because it is perfectly possible that Julius lack the property 
of inventing the zip, even though we happen to use this accidental 
property to identify him or her in this world. 

 Look at it like this. Even though we identify Julius in this world as 
the person who invented the zip, we throw away this information, so 
to speak, when we consider the possible world where it is true that he 
or she doesn’t invent the zip. The way we identify Julius in this world a 
priori guarantees the actual-world truth of  Julius invented the zip . But 
because this accidental fact about Julius isn’t carried over to other 
possible worlds, there can be some where it is false that Julius invented 
the zip.  

     6.9   A Limit to Scepticism about 
A Posteriori Necessity   

 I have taken it throughout this chapter and the last that there is a dis-
tinction between accidental and essential properties of things. My 
parentage is essential to me, but not my profession. Its atomic struc-
ture is essential to hydrogen, but not the fact that it can be used to 
make bombs. 

 However, I have said little about the basis for this distinction, 
beyond my brief remarks at the end of the last chapter about reason-
ing about non-actual scenarios. 
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 Some philosophers are unsure about the distinction between 
essential and the accidental properties, and accordingly tend to be 
uneasy about examples of a posteriori necessities. So a common 
response to such examples of a posteriori necessity as  David Papineau’s 
parents are Owen and Constance Papineau  or  hydrogen is made of atoms con-
taining one electron  is to query whether their parents really are necessary 
to humans, or whether atomic structure really is necessary to chem-
ical elements. 

 (Imagine a being like me, with just the same genetic make-up, but 
where my conception involved people other than Owen and Con-
stance. Why wouldn’t that be a world in which  David   Papineau  had dif-
ferent parents? Or imagine a world otherwise like ours but where 
subatomic structure didn’t involve electrons orbiting nuclei. Why 
wouldn’t that be a world where  hydrogen  isn’t made of atoms contain-
ing one electron?) 

 However, there are limits to this kind of scepticism about a posteri-
ori necessity. While there is perhaps room for doubt about the neces-
sity of parentage and atomic constitution, it is very hard to deny that 
true identity claims made using different proper names are a posteri-
ori necessities. 

 Consider this argument.

   (1)  Necessarily Norma Jeane Baker = Norma Jeane Baker.  

   (2)  Since proper names are rigid designators, this is a de re claim about 

the actual Norma Jeane Baker, saying that she necessarily has the prop-

erty of being identical to Norma Jeane Baker.  

   (3)  But Norma Jeane Baker = Marilyn Monroe.  

   (4)  So, by the Indiscernibility of Identicals (see  Box  14  ), every property of 

Norma Jeane Baker is a property of Marilyn Monroe and vice versa.  
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   (5)  So in particular, Marilyn Monroe must share with Norma Jeane Baker 

the property identifi ed in (2), of being necessarily identical to Norma 

Jeane Baker.  

   (6)  So necessarily Marilyn Monroe = Norma Jeane Baker.      

 And this last claim then gives us an a posteriori necessity, since it is 
certainly not a priori that Marilyn Monroe is identical to Norma Jeane 
Baker. 

 Clearly this argument can be repeated, with any true identity state-
ment involving two different names, to make a case that any such 
statement is necessary and a posteriori. 

 Note how this argument for a posteriori necessities only carries 
force with identity claims, and not with other putative examples of de 
re essential truths like claims about origin or constitution. This is 
because the fi rst premise would be contentious if it involved some 
claim about origin or constitution. 

 Thus suppose that we started a version of the above argument 
with:

       (7)  Necessarily Norma Jeane Baker is the child of Norma Jeane Baker’s 

parents       

 and then proceeded as before to conclude with the putative a posteri-
ori necessity that

       (8)  Necessarily Marilyn Monroe is the child of Norma Jeane Baker’s 

parents.       

 The trouble with this latter argument is that sceptics will query (7) by 
questioning whether parenthood is really a de re necessary property. 

 By contrast, there seems little room to query the original premise 
(1), that necessarily Norma Jeane Baker = Norma Jeane Baker.   
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    Box 14   The Indiscernibility of  Identicals and the Identity of  Indiscernibles  

The principle of the Indiscernibility of Identicals says that if two things are 

identical they must share all their properties:  

  (For all things x, y)(if x = y, then (for all properties F )(x has F iff y has F))   

 This Indiscernibility of Identicals must be distinguished from its converse, the 

Identity of Indiscernibles. The latter principle says that if two things share all 

their properties, then they must be identical:

  (For all things x, y)(if (for all properties F)(x has F iff y has F ), then x = y)   

There is no dispute about the former Indiscernibility of Identicals. A thing is 

what it is. If it has some property, then it has that property, however it is 

named. A rose by any other name would smell as sweet.  

 The Identity of Indiscernibles is far more controversial.  Note that when 

it comes to evaluating this disputable thesis, it matters what counts as a 

property. If we include facts about what objects you are identical to among 

your relevant properties, then the Identity of Indiscernibles is indeed trivially 

true. Any  a  and  b  will automatically have distinct ‘properties’, in that the fi rst 

but not the second will be  identical to a , while the second but not the fi rst 

will be  identical to b , which makes it automatic that in order to be different 

you must be ’discernible’. 

 However, if we exclude such ‘identity properties’, then the Indiscernibility 

of Identicals becomes a substantial thesis, and indeed a very doubtful one. 

As the philosopher Max Black once asked, could there not be a universe 

which contained nothing but two perfect spheres of the same size, which 

would thus share all their properties yet remain distinct?   
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      further reading   

 The fi rst resource for rigid designation and the causal view of reference is once 
more Kripke’s own  Naming and Necessity  (Blackwell 1980). 

 There is a useful entry on theories of reference by Marga Reimer in the Stanford 
Encyclopedia of Philosophy: < http://plato.stanford.edu/entries/reference >. 

 The Stanford Encyclopedia entry on essential and accidental properties by Ter-
esa Robertson is also helpful: < http://plato.stanford.edu/entries/essential-
accidental >. 

 Penelope Mackie’s  How Things Might Have Been: Individuals, Kinds, and Essential 
Properties  (Oxford University Press 2006) goes into greater detail on this topic. 

 Chapter 5 of Mark Sainsbury’s  Logical Forms  (Blackwell second edition 2001) 
contains a great deal of useful material on modality, including a discussion of 
the distinction between  de   re  and  de   dicto  claims. 

 David Lewis’  On the Plurality of Worlds  (Blackwell 1986) is again relevant. It should 
be noted that Lewis’ full-blooded realism about possible worlds makes some 
room for him to reject the argument from the Indiscernibility of Identicals in 
section 6.9.    

     exercises   

       1.  Show how the following statements are ambiguous by using brackets to 
write two unambiguous sentences that gives a plausible reading of each. 

    (a)  Every boy hates a teacher.  
   (b)  A teacher hates every boy.  
   (c)  Necessarily the fi rst mammal on the moon was human.  
   (d)   Necessarily the tallest person in Britain is shorter than no one in 

Britain.  
   (e)   The head of the King’s College London philosophy department 

might not have been head of the King’s College London philosophy 
department.  

   (f)  The inventor of the zip couldn’t not have invented the zip.    

http://plato.stanford.edu/entries/reference
http://plato.stanford.edu/entries/essentialaccidental
http://plato.stanford.edu/entries/essentialaccidental
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   2.  For each of your last four answers to the previous question, say which of 
your two readings is true and which false. (For this and the following 
exercises, put to one side any doubts you may have about the examples 
of de re necessities used in this chapter.)  

   3.  Which of these are ‘de re’ statements, and which ‘de dicto’? 

    (a)  (The inventor of the zip) (might not have invented the zip).  
   (b)   (It might have been the case that) (the inventor of the zip did not 

invent the zip).  
   (c)   (It might have been the case that) (Julius did not invent the zip)––

[where ‘Julius’ is again defi ned as in section 5.3].  
   (d)  (Necessarily) (the fi rst mammal on the moon was human).  
   (e)  (Necessarily) (Neil Armstrong was human).  
   (f)  (The fi rst mammal on the moon) (was necessarily human).    

   4.  Which of the statements in question 3 are true and which false?  

   5.  Which of these truths are necessary and which contingent? 

    (a)  Archie Leach = Cary Grant.  
   (b)  Cary Grant = Cary Grant.  
   (c)  David Papineau is a philosopher.  
   (d)  Julius [defi ned as before] invented the zip.  
   (e)  David Papineau’s parents were Owen and Constance Papineau.  
   (f)   The parents of the oldest son of Owen and Constance Papineau were 

Owen and Constance Papineau.  
   (g)  Holland is The Netherlands.  
   (h)  Holland is the netherlands.    

   6.  Which of the truths in question 5 are a priori and which a posteriori?          



                          Part III 

THE NATURE AND USES OF PROBABILITY   
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         7  

      7.1   Probabilities of Propositions   

 Given any proposition p, then we can speak of the probability of p. 
 For example: the probability that the next card from this pack will 

be an ace, that this radium atom will decay before the year 3612, that 
Johnny will go to the party, that it will rain tomorrow, . . . 

 I shall write Pr(p) for the probability of p.  

     7.2   Kolmogorov’s Axioms   

 In a moment I shall consider what it might mean to say that a certain 
proposition has a certain probability. 

 But before that we can note some basic arithmetical constraints. If a 
way of attaching numbers Pr(p) to propositions p is to count as an ascrip-
tion of probabilities, it must at least observe the following requirements.

     (1)  For any p, 0 ≤ Pr(p) ≤ 1    

   (2)  If p is certain, Pr(p) = 1    

   (3)  If p and q are incompatible, P(p or q) = Pr(p) + Pr(q)     

Kinds of Probability   
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 These are known as Kolmogorov’s axioms, and were originally laid 
out by the great Russian mathematician Andrey Kolmogorov 
(1903–1987). 

 The axioms are simple enough. To illustrate, Pr(Johnny goes to the 
party) is a number between 0 and 1; if it is certain that Johnny will go 
to the party, then Pr(Johnny goes to the party) = 1; and if Johnny can’t 
go both to the party and the football match, then Pr(Johnny goes to 
the party  or  the football march) = Pr(Johnny goes to the party) + 
Pr(Johnny goes to the football match).  

     7.3   Some Consequences   

 One immediate consequence of Kolmogorov’s axioms is:

     (4)  Pr(not-p) = 1 – Pr(p)     

 To see why (4) follows from the axioms, note that p and not-p are 
incompatible, so by (3) 

  P(p or not-p) = Pr(p) + Pr(not-p).   

 But (p or not-p) is certain, so by (2) 

  Pr(p or not-p) = 1.   

 The result follows by comparing the right-hand sides of these last two 
equations. 

 Here is another useful consequence. In general, whether or not p 
and q are incompatible:

     (5)  Pr(p or q) = Pr(p) + Pr(q) – Pr(p and q).     

 Here ‘p or q’ should be understood as ‘p and/or q’, not as ‘p or q but not 
both’. (‘Or’ will be understood in this sense throughout the book. 
Logicians call this the ‘inclusive’ sense, as opposed to the ‘exclusive’ 
sense of ‘p or q but not both’.) 
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 In this inclusive sense, it will be true that  Johnny goes to the party  or 
wears a tie  if he does either on its own and also if he does both, by going 
to the party in a tie. And so understood Pr(Johnny goes to the party or 
wears a tie) = Pr(Johnny goes to the party) + Pr(Johnny wears a tie) – 
Pr(Johnny goes to the party  and  wears a tie). 

 It is possible to show that (5) follows from Kolmogorov’s axioms, 
but the proof is somewhat laborious, so I shall leave it as an Exercise. 

 It is much easier to see why (5) must be true by inspecting a Venn 
diagram. When we look at the diagram, we see that simply adding 
Pr(p) to Pr(q) would count Pr(p and q) twice––so to get Pr(p or q) we 
need to correct by subtracting a Pr(p and q). ( See Box  15  .)   

     7.4   Joint Probabilities   

 The equivalence (5) told us that

  Pr(p or q) = Pr(p) + Pr(q) – Pr(p and q).   

 However, there is no general rule for the size of Pr(q and p), nor 
therefore for how much we need to take away from the sum of 
Pr(p) and Pr(q) to get Pr(p or q). It depends on how much the Venn 
diagrams for p and q overlap with each other. In our example, it 
depends on how likely it is that Johnny will both go to the party 
and  wear a tie. 

 We shall consider such joint probabilities––Pr(p and q)––in more 
detail in the next two chapters, when we discuss conditional probabil-
ities and probabilistic independence. But we can usefully make some 
initial points here. 

 In some cases, Pr(p and q) will be zero, namely, when p and q are 
incompatible––their Venn diagrams don’t overlap at all––and then 
Pr(p or q) will be the simple sum of Pr(p) and Pr(q), as in Kolmogorov’s 
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third axiom. This would be the case in our example if there is no way 
that Johnny would go to the party in a tie.    

 But in other cases p and q need not be incompatible, and then Pr(p and 
q) will be a positive number. 

 In the extreme case, p will entail q, or q entail p. (For example, 
Johnny’s going to the party may  require  him to wear a tie.) 

 If p entails q, then the Venn diagram for p is  inside  that for q, so

  Pr(p and q) = Pr(p)   

 and 

  Pr(p or q) = Pr(q).   

p q

p q



KINDS OF PROBABIL ITY 93

    Box 15  Venn Diagrams   

    This ‘Venn diagram’ shows why     Pr(p or q) = Pr(p) + Pr(q) – Pr(p and q).   

p q

p & q

 In a Venn diagram we take the points in a plane to represent possible worlds, 

and so can use sets of points to represent sets of possible worlds, and in 

particular to represent all those possible worlds where some proposition p 

is true. The areas of these spaces can then be used to represent the prob-

abilities of the relevant propositions. (Note here how it is possible to equate 

a proposition with the set of possible worlds where it is true. This equiva-

lence is widely used in philosophy.) 

 In the above diagram the proposition  p or q  corresponds to the points 

which are either in the area labelled p, or in the area labelled q, or in both. 

And the proposition  p and q   corresponds to the points which are in both 

the area labelled p  and  in the area labelled q––that is, the cross-hatched 

area. 

 It is easy to see that, if we tried to work out the area corresponding to 

 p or q  by simply adding the area for p to that for q, we would count the 

cross-hatched area twice. So to get the right answer we need to correct by 

subtracting the cross-hatched area.  
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   In our example, if Johnny’s going to the party requires him to wear a 
tie, then the Venn diagram for Johnny’s going to the party will be 
inside the one for his wearing a tie, so 

  Pr( Johnny goes to the party  and  wears a tie) = Pr( Johnny goes to the 

party)   

 and therefore 

  Pr(Johnny goes to the party  or  wears a tie) = Pr(Johnny wears a tie).   

 If q entails p, then the Venn diagram for q is inside that for p, and these 
results are reversed. 

 So Pr(p and q) can sometimes equal Pr(p) and sometime equal Pr(q) 
(when p entails q or when q entails p respectively). 

 But note that Pr(p and q) can never  exceed  either of these numbers. 
Pr( Johnny goes to the party  and  wears a tie) can’t be greater than 
either Pr( Johnny goes to the party) or Pr(Johnny wears a tie). 

 Sometimes it is easy to forget this. ( See Box  16  .) But you shouldn’t. 
Two things both happening (p  and  q) can never be more likely than 
either one happening on its own.   

     7.5   Subjective and Objective Probabilities   

 There are two quite different ways of interpreting probability state-
ments––that is, of understanding what it means when we attach 
numbers between 0 and 1 to propositions in such a way as to satisfy 
Kolmogorov’s axioms of probability. 

 We can understand such statements either as reports about  subjec-
tive  probabilities or as reports about  objective  probabilities. 

 Subjective probabilities measure the extent to which  agents   expect
outcomes. Objective probability measures the  real   tendencies  for those 
outcomes to occur.  
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     7.6   Subjective Probability   

 Imagine that you are going out for a short walk, and you take both 
your sunglasses and your umbrella. Do you believe it is going to 
rain? 

    Box 16  Linda the Feminist Bank Teller   

  Let me tell you about Linda. She is 31 years old, single, outspoken, and very 

bright. She did an undergraduate degree in phil osophy. As a student, she 

was deeply concerned with issues of discrimination and social justice, and 

also participated in anti-nuclear demonstrations. 

 Now, which of these propositions is more probable? 

        (A)  Linda is a bank teller.  

   (B)  Linda is a bank teller and is active in the feminist movement.       

 It is very natural to choose (B). When the psychologists Daniel Kahneman 

and Amos Tversky tested people on this question, they found that about 9 

out of 10 chose (B). Indeed, when they tested doctoral students in the deci-

sion science  programme at Stanford Business School, a group with an inten-

sive training in probability and statistical theory, they still found that over 8 

out of 10 chose (B). 

 Yet (B) cannot be the right answer.  Two things cannot be more likely than 

one. After all, in every situation where Linda is a bank teller  and  a feminist, 

she will also be a bank teller, and in addition there will be situations where 

she is a bank teller without being a feminist. 

 Something about the Linda story confuses our thinking.   (If you’re not 

convinced that (B) is wrong, it might be helpful to think in terms of money. 

Suppose you are going to win £100 for a correct answer.  Would you rather 

commit yourself to (A) or to (B)?)  
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 Well, you aren’t certain it  is  going to rain––otherwise why take 
your sunglasses? 

 But you aren’t certain that it is  not  going to rain either––otherwise 
why take your umbrella? 

 In a case like this, it seems natural to say that you have a certain 
degree of belief  in the proposition  it will rain , and that this can be repre-
sented by some number between 0 and 1. (If you were certain it will 
not rain, then your degree of belief would be 0, and if you were certain 
it will rain, then your degree of belief would be 1.) 

 Alternative names for these degrees of belief are ‘subjective pro-
babilities’ or ‘personal probabilities’ or ‘credences’.  

     7.7   Action, Utility, and Subjective Probability   

 We can think of degrees of belief as manifesting themselves in choices 
of actions (as when you took both your umbrella and your sunglasses 
in the example above). In general, the greater degree of belief an agent 
attaches to some proposition p, the more that agent will be inclined to 
perform actions that will bring good results  if p . 

 The easiest way to connect degrees of belief with choice of actions is 
to focus on  betting  behaviour. Given some proposition p, ask yourself 
how much you would be prepared to pay for a bet that will pay £1  if p . 
(For example, how much are you prepared to pay to win £1  if Johnny 
comes to the party ?) The fraction of £1 that you are prepared to stake plaus-
ibly measures your degree of belief in p. You’ll be prepared to bet 50p 
if your degree of belief is 0.5, but only 10p if your degree of belief is 0.1. 

 Maybe you don’t think of yourself as much of a gambler. But note 
that pretty much any action can be construed as a gamble. When you 
cross the road, this is presumably because your degree of belief that 
you will get to the other side (a good result) is very much bigger than 
your degree of belief that you will be run over (a very bad result). 
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 Many philosophers and economists hold that, in general, when 
someone performs an action, this is because the  expected   utility  of that 
action is greater than that of the alternative actions available. The idea 
here is that the agent is concerned about certain outcomes (getting to 
the other side, being run over) whose importance can be measured by 
some positive or negative number––its ‘ utility ’. And the  expected   utility
of an action is then the sum of those utilities each multiplied by the 
agent’s degree of belief that the action will lead to that outcome. 

 Thus suppose the utility of getting to the other side is plus 10, and 
your degree of belief that crossing the road will lead to this is 0.9999; 
and the utility of being run over is minus 10,000, and your degree of 
belief for this is 0.0001. Then the expected utility of crossing the road 
will be:

  (10 x 0.9999) + (–10,000 x 0.0001) = 9.999 – 1 = 8.999   

 and this may well be higher than the expected utility of the alternative 
actions currently open to you. 

 Of course all this is at best a kind of idealization. In truth, there isn’t 
really a precise answer to the question of exactly how much I believe 
p, for every proposition p. There are plenty of propositions that I have 
never thought of, and even among those I have thought of are many to 
which I have a pretty fuzzy attitude. Nor is it very realistic to suppose 
that I can attach numbers to all the things I care about. Still, perhaps 
we can go along with the idealization in order to simplify the argu-
ments that follow. (Compare the way in which engineers simplify their 
calculations by assuming that everyday objects like a block of con-
crete have precise masses, even though in truth it will always be a bit 
vague whether some of the molecules on the surface are attached to 
the block or not.) 

 So I shall assume henceforth that for any person X, at any time t, 
and any proposition p, there will be a number between 0 and 1 that 
represents X’s degrees of belief at time t in proposition p.  
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     7.8   Dutch Books   

 I said that degrees of belief or subjective probabilities offer one way of 
interpreting probability statements––that is, one way of attaching 
numbers between 0 and 1 to propositions in such a way as to satisfy 
the axioms of probability. 

 However, as yet I haven’t really shown this, for I haven’t yet shown 
that degrees of belief do satisfy the axioms of probability. 

 And in fact there is no guarantee that they will. Nothing in psych-
ology rules out the possibility that an agent at a time might attach  a 
degree of belief 0.6 to the proposition  it will rain  and simultaneously a 
degree of belief 0.6 to the proposition  it won’t rain , thus violating the 
immediate implication of the probability axioms that Pr(p) = 1 – 
Pr(not-p). (Maybe the agent wasn’t thinking very hard, and somehow 
managed to take a positive view of both these propositions at the 
same time.) 

 However, there is an argument that any  rational  degrees of belief 
must conform to the axioms of probability, even if  actual  degrees of 
belief don’t always do so. 

 The argument is that anybody whose degrees of belief violate the 
axioms of probability can have a ‘ Dutch Book ’ made against them. 
A Dutch Book is a set of bets which are  guaranteed to win whatever happens . 

 By way of illustration, consider the person who believes  it will rain  to 
degree 0.6 and also believes  it won’t rain  to degree 0.6. Well, this person 
will happily pay 60p to win £1 on its raining, and also happily pay 60p 
to win £1 on its  not  raining. But anybody who makes this pair of bets 
will certainly lose whatever happens, because they will have paid out 
£1.20 in total and will only win £1 whether it rains or not. 

 It is not hard to prove that a Dutch Book can be made against you if 
and only if your degrees of belief fail to satisfy the axioms of probability. 

 (The subject in the above illustration got into trouble because of 
degrees of belief in p and not-p which added to more than 1. This might 
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make it seem safe to have degrees of belief that add to  less  than 1. How-
ever, in that case you could be induced to bet  against  both p and not-p 
in a way that is guaranteed to lose.) 

 Since it seems clearly irrational to adopt attitudes that can make it 
certain that you will incur a loss, it follows that any rational agent will 
have degrees of belief that do conform to the probability calculus. 
(Such agents are called ‘coherent’; those whose degrees of belief vio-
late the axioms are ‘incoherent’.) ( See Box  17  .)  

 Note that there is nothing in this ‘Dutch Book Argument’ to specify 
what  degrees of belief you should have, beyond requiring that they 
must conform to the probability axioms. You can be coherent by hav-
ing a subjective probability of 0.6 for  it will rain  and of 0.4 for  it won’t 
rain . But you could equally achieve coherence by attaching 0.8 and 0.2 
to these two propositions, or 0.15 and 0.85, or any other combination 
of numbers that add up to 1. 

 The ‘Dutch Book Argument’ requires coherence, but beyond that 
leaves it to subjective opinion which particular degrees of belief you 
should adopt.  

     7.9   Objective Probability   

 Objective probabilities are quite different from subjective ones. They 
are out in the world, not in people’s heads. They quantify the objective 
tendencies for certain kinds of results to happen. These tendencies 
would still have existed even if agents with subjective probabilities 
had never evolved. 

 The clearest examples of objective probabilities come from the 
quantum mechanics of subatomic processes. Certain events at this 
level are absolutely unpredictable. Take any radium atom. It may decay 
in a given time interval or it may not. There is no difference between 
those atoms that decay and those that don’t. All that can be said is that 
each such atom has a certain objective probability of decaying in a 
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given interval. (If the interval is 1602 years––the ‘half-life’ of a radium 
atom––then there is 0.5 probability of decay in that time.) 

 It is helpful to think of objective probabilities in terms of   frequencies . 
If the probability of a single radium atom decaying within its half-life 
is 0.5, then about 50% of any sequence of radium atoms will decay in 
that time. 

 (But don’t be too quick to  equate  objective probabilities with fre-
quencies. There are many philosophical pitfalls in the way of any such 
equation, most centrally the fact that the observed frequency in any 
sequence of events won’t generally correspond  exactly  to the underly-
ing probability. Note how I was careful to say above that ‘ about  50% of 
any sequence of radium atoms will decay in that time’––not that 
exactly 50% will.) 

 There are plenty of objective probabilities outside the subatomic 
world (though perhaps they all depend in some way on quantum 
probabilities). For example, the probability that any human embryo 
will be male is slightly over 0.5. The probability that males in the 
United States will develop pancreatic cancer in their lifetime is 0.0138. 
The probability that an ace will be dealt fi rst from a well-shuffl ed pack 
is 1/13. And so on. 

 The ultimate nature of objective probability is a matter of philo-
sophical controversy. But we need not enter into this here. The basic 
point is that objective probabilities are genuine features of the exter-
nal world, distinct from subjective degrees of belief.   
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    Box 17  Bookmakers and Dutch Books   

  A good bookmaker aims to make a Dutch Book against the punters. The 

bookie wants to induce the punters to make a set of bets that will turn a 

profi t for the bookie whichever horse wins. 

 For instance, in a two-horse race between Aramis and Balthazar, the 

bookie will be guaranteed a profi t whichever horse wins if £100 has been 

staked on Aramis at evens, and £120 on Balthazar at 2-1 on. (‘Evens’ means 

that you stake £1 to win £1, and ‘2-1 on’ means you stake £2 to win £1.)  

These bets mean that the bookie will make £20 if Aramis wins (the £120 

stake on Balthzar less the £100 payout on Aramis) and £40 if Balthazar wins 

(the £100 stake on Aramis less the £60 paid out on Balthazar). 

 This doesn’t necessarily mean that any individual punter is irrational. The 

bookie can pull this trick because different punters will sometimes attach 

different subjective probabilities to the same outcome. In this sense the 

punters  taken collectively  will violate the axioms of probability. But this 

doesn’t mean that any individual punter has ‘incoherent’ degrees of belief. 

 But you will be irrational if the bookie can make a Dutch Book against 

you all  on your own . If you yourself put £100 on Aramis at evens, and  also  put 

£120 on Balthasar at 2-1 on, then this indicates that you personally have a 

degree of belief in Aramis winning of at least 1/2 and in Aramis  not  winning 

of at least 2/3. Now the bookie is not only sure to win, but you individually 

are sure to lose.  
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      further reading   

 Two of my old teachers have written excellent philosophical introductions to 
probability:  

An Introduction to Probability and Inductive Logic  by Ian Hacking (Cambridge 
 University Press 2001). 

Probability: A Philosophical Introduction  by D. H. Mellor (Routledge 2005). 

 The Stanford Encyclopedia entry by Alan Hayek is a thorough discussion of the 
different ‘interpretations of probability’: < http://plato.stanford.edu/entries/
probability-interpret >. 

 Daniel Kahneman’s  Thinking, Fast and Slow  (Allen Lane 2011) explains how 
humans are very prone to mistakes in probabilistic reasoning.    

     exercises   

        1.  If I draw one card from a well-shuffl ed pack, what is the probability of: 

    (a)  a heart  
   (b)  a king  
   (c)  an honour (A, K, Q, J, 10)  
   (d)  not a heart  
   (e)  an honour and a heart  
   (f)  a heart or a spade  
   (g)  a heart and a spade?    

   2.  If I toss a fair coin four times, what is the probability that I get: 

    (a)  four heads;  (b)  zero heads;  (c)  one head;  (d)  three heads? 

  Hint: there are 16 equiprobable outcomes for the four-toss sequence.    

   3.  If I roll two fair dice, what is the probability that they sum to: 

    (a)  4;  (b)  7;  (c)  12;  (d)  an odd number;  (e)  less than 5;  (f)  either less than 5 
or 9;  (g)  either less than 5 or an even number? 

 Hint: there are 36 equiprobable ways the dice can land.    

http://plato.stanford.edu/entries/probability-interpret
http://plato.stanford.edu/entries/probability-interpret
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   4.   If Pr(Johnny at party) = 0.4 and Pr(Jenny at party) = 0.8 and Pr(Johnny 
and Jenny at party) = 0.3, what is the probability that 

    (a)  Jenny won’t be there  
   (b)  at least one of them will be there  
   (c)  Jenny will be there but not Johnny?    

   5.   Suppose that you can either go to the beach or to watch the test match. 
The beach has an intrinsic utility of plus 10, and the cricket of plus 15. 
But there is a 0.5 chance that you will get sunburnt (utility of minus 10) 
at the beach, where there is only a 0.3 chance of getting sunburnt at the 
cricket. Also, there is a 0.2 chance you will see Jill (plus 20) at the beach, 
but only a 0.05 chance you will see her at the cricket. Which option has 
the greater expected utility?  

  6*. Show algebraically how the equation     

  Pr(p or q) = Pr(p) + Pr(q) – Pr(p and q) 

 follows from Kolmogorov’s axioms.   (Hint: note that 

   (p or q) is logically equivalent to ((p & not-q) or (q))

and that

p is logically equivalent ((p & q) or (p & not-q))   

 and that the pairs of propositions within the brackets on the right-hand 
sides are incompatible.)             
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                              8  

      8.1   The Principal Principle   

 The last chapter ended with the contrast between subjective and 
objective probabilities. Some readers might have wondered how they 
are related. 

 Not every proposition to which agents attach subjective degrees of 
belief will also have an objective probability. You might well have a 
certain expectation of Johnny going to the party, say, or of Aramis 
winning the 3.30 at Kempton Park, even if there is no good sense in 
which these propositions have any objective probability. 

 But in other cases agents do attach subjective degrees of belief to 
propositions that also have an objective probability––for example, 
that a given atom will decay in some interval, or that a given embryo 
will be male, or that the next card drawn from a well-shuffl ed pack 
will be an ace. 

 Now, there is no guarantee in such cases that the agent’s subjective 
probability will correspond to the objective probability. You might 
expect  an ace to degree 1/2, even though its objective probability is 
only 1/4. 

Constraints on Credence   
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 But even so there is something obvious to say about the relation 
between subjective and objective probability in such cases––namely

   The Principal Principle:  

 An agent’s subjective probabilities  ought  to match the objective probabili-

ties, even if in fact they don’t.   

 The term ‘Principal Principle’ was originally coined by David Lewis 
(the same philosopher who was a realist about possible worlds) for his 
 version of the idea that subjective probabilities ought to match objec-
tive probabilities. He adopted this name because he thought that this 
idea is fundamental to our understanding of both objective and 
 subjective probability. 

 In fact my Principal Principle above is only a rough approximation 
to Lewis’ more carefully formulated principle. But it will do for present 
purposes. 

 Remember that the ‘Dutch Book Argument’ allowed rational 
agents a great deal of freedom about the choice of subjective prob-
abilities––the only constraint was that subjective probabilities should 
conform to the axioms of probability. The Principal Principle imposes 
a further constraint on rational agents––when objective probabil-
ities exist, you should do what you can to make your subjective prob-
abilities match them. 

 The Principal Principle is obviously sensible. If you are to make the 
right choices, your subjective expectations had better not diverge from 
the objective probabilities. You will make bad bets if you have a high 
degree of belief that an ace will be dealt, when in fact the objective 
probability is only 1/4. 

 Curiously, even though conformity to the Principal Principle is 
obviously a good idea, the status of this principle is a matter of 
 controversy. Some philosophers think it can be justifi ed by appeal to 
more basic facts. But others doubt that any such justifi cation is possi-
ble, and view it as itself a fundamental principle of rationality.  



106 THE NATURE AND USES OF PROBABIL ITY

     8.2   Conditional Probability   

 The  conditional probability  of p given q, Pr(p/q), is the probability to 
ascribe to p on the assumption that q. 

 It is measured by: 

  (1) Pr(p/q) = Pr(p & q)/Pr(q).   

 (In Venn diagram terms, think: the area of q that is also p––that is, the 
cross-hatched area as a proportion of the area for q.)    
 So, for example, we might have the conditional probability that a 
throw of a fair die will show an even number, given that it shows a 
higher number than three. We can write this Pr(even/over three), and 
measure it by: 

   Pr(even  and  over three)/ Pr(over three).   

 This fraction represents the probability of an even result among 
the results that are higher than three––and is equal to 2/3, since 
the probability of a result (four or six) that is even  and  over three is 
2/6, while the probability of  any  result over three (four, fi ve, or six) 
is 1/2.  

p q

p & q
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     8.3   Updating Degrees of 
Belief––Conditionalization   

 Now that we have introduced conditional probabilities, we can explain 
a further constraint governing rational degrees of belief. So far we 
have seen how the ‘Dutch Book Argument’ implies that rational 
degrees of belief must be  coherent  (that is, satisfy the axioms of prob-
ability), and how the Principal Principle implies that they must  match 
objective probabilities  when these are available. The further constraint is 
that rational agents should ‘ conditionalize ’ whenever they gain new 
information. 

 Suppose that you have rational degrees of belief as follows:

  Pr(Johnny goes to the party) = 1/2 

 Pr(Johnny goes to the party/Jane goes to the party) = 2/3.  

 Now you learn for sure that Jane is going to the party. What should 
your degree of belief in Johnny’s going now be? 

 The answer is obvious enough––2/3. If it was right to think before-
hand that the conditional probability of  Johnny going/on the assumption 
Jane goes  is 2/3, and if now it turns out that Jane  is  going, then it must be 

Johnny goes
Jane goes

Johnny and Jane go

2/3 1/3
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right to think that the unconditional probability of Johnny has 
increased to 2/3. 

 Think of it in Venn diagram terms. You now know you are  inside  the 
area of the Venn diagram for Jane’s going, so to speak. And you have 
already decided that the proportion of this area that covers Johnny 
going is 2/3. So it must now be rational for you to have an unconditional 
degree of belief in Johnny going of 2/3. 

 Changing your degrees of belief in this way is called ‘ conditionalization ’. 
Let us thus formulate

   The Principle of Conditionalization:  

 If your  old  conditional degree of belief Pr 
old

 (p/q) equals k, and you come to 

know q, you should set your  new  degree of belief in p, Pr 
new

 (p), equal to k.   

 Note that q here needs to be understood as representing  everything  you 
come to know. The principle doesn’t work if q is only  part  of your new 
knowledge. 

 Thus suppose that in the above example you learn not only that 
Jane is going to the party but also that she will be accompanied by Jill. 
And suppose that you had always thought that there was almost no 
chance that Johnny would go if  both  Jane and Jill did. (You had a very 
low original conditional probability Pr old (Johnny goes/Jane  and  Jill go) 
even though your original Pr old (Johnny goes/Jane goes) was 2/3.) 

 While it is still true that you have learned that  Jane will go , it is no 
longer a good idea to attach a 2/3 probability to Johnny going, just on 
the grounds that your Pr old (Johnny goes/Jane goes) = 2/3. And this is 
precisely because you have learned  more  than that Jane will go to the 
party. You now know not just that you are inside Jane’s Venn diagram, 
so to speak, but more specifi cally that you are inside that bit of it where 
Jill also goes to the party. And the proportion of  that  area where Johnny 
goes too is very small. 

 It is generally agreed  that  the Principle of Conditionalization is valid. 
But, just as with the Principal Principle, there is no agreement about 
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why  it is valid. As before, some philosophers think it is a basic principle 
of rationality, while others think that it can be justifi ed by further 
considerations. 

 Note in this connection that the Principle of Conditionalization is 
not  simply a consequence of the Dutch Book Argument for coherence. 
That earlier argument showed that the axioms of probability must be 
respected by all the degrees of belief you adopt  at any given time . But the 
Principle of Conditionalization concerns the way you should  change
your degrees of belief  over time  in response to evidence, substituting 
your old degrees of belief Pr old (— ) by new ones Pr new (— ). 

 You will satisfy the Dutch Book Argument as long as your old 
Prold (— )s and your new Pr new (— )s are each separately coherent. The 
Principle of Conditionalization places a further constraint on the how 
these two sets of degrees of belief are related.  

     8.4   Bayes’ Theorem   

 There is a simple probability equation that casts some useful light on 
the workings of conditionalization:

  (2) Pr(h/e) = Pr(h) x Pr(e/h)/Pr(e).   

 This equation, which you can check follows very quickly from the 
equation (1) for conditional probability, is known as  Bayes’ Theorem , 
after the eighteenth-century English clergyman who fi rst proved it. 

 To see the signifi cance of this equation, consider some case where 
you gain some evidence e and are concerned with its bearing on some 
hypothesis h. According to the Principle of Conditionalization, you 
should adopt a new Pr new (h) that is equal to your old conditional 
Prold (h/e). But Bayes’ Theorem tells us that Pr old (h/e) is equal to Pr old (h) x 
Prold (e/h)/Pr old (e). So we can see that the two together imply that 

  (3) Pr 
new

 (h) = Pr 
old

 (h) x Pr 
old

 (e/h)/Pr 
old

 (e).   
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 We can view this as a recipe for transforming your old degree of belief in 
h to a new one when your learn e––multiply your Pr old (h) by the factor on 
the right-hand side. This tells you that you should increase your degree of 
belief in h to just the extent that Pr old (e/h) exceeded Pr old (e)––that is, to just 
the extent that e was to be expected given h but not to be expected 
 otherwise. 

 So viewed, (3) seems eminently sensible. The hypothesis h is  confi rmed 
if it successfully predicts something that would otherwise be unexpected. 

 In addition to thus explaining why a hypothesis gains more credibility 
from the verifi cation of  surprising  rather than unsurprising consequences, 
Bayes’ Theorem also illuminates a wide range of other quirks and puzzles 
about the way evidence confi rms hypotheses. 

 For example, (3) explains why it is a mistake to ignore the prior prob-
ability of h in assessing how probable it is shown to be by e. (This surpris-
ingly common mistake is known as the ‘base rate fallacy’.  See Box  18  .)  

 Because of the signifi cance of Bayes’ theorem, the term ‘ Bayesian ’ is 
often found in discussions of probability. However, this term has no 
very defi nite meaning. It is probably most often used to refer to any 
view that takes subjective degrees of belief seriously and holds that 
they are subject to some rational principles. But sometimes it is used 
more precisely, to refer specifi cally to the idea that degrees of belief 
should be updated according to the Principle of Conditionalization.  

     8.5   Conditional Probabilities 
and Conditional Statements   

 A conditional probability Pr(q/p) is the probability of q  on the assumption
that p. 

 Some readers might have wondered how such conditional probabil-
ities relate to  conditional statements  of the form  if p, then q.  (For example:  if 
Jane goes to the party, then Johnny will go too .) 
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 After all, doesn’t a conditional statement amount to something like 
stating q  on the assumption  that p? And given this, shouldn’t we expect 
the probability of the conditional statement Pr(if p, then q) to be equal 
to the conditional probability Pr(q/p)? 

 As it happens, this is a horribly complicated topic. 
 An initial diffi culty is that there are different kinds of conditional 

statement. In a moment I shall distinguish between  material ,  indicative , 
and subjunctive  conditionals. And even after we have distinguished 
them, it is not obvious how to understand them. While material con-
ditionals are clear enough, the analysis of indicative and subjunctive 
conditionals is hugely controversial. 

 It would take us too far afi eld to analyse these constructions 
 properly here. My aim in the brief remainder of this chapter will sim-
ply be to show you why we need to recognize different kinds of 
conditionals. 

 What about the question with which I started this section––is the 
probability of a conditional statement Pr(if p, then q) equal to the 
conditional probability Pr(q/p)? Here I can do no more than simply 
tell you that this simple equation doesn’t work for  any  kind of 
 conditional ‘if . . ., then’ statement––which is not to deny that there 
are important connections between conditional statements and 
conditional probabilities.  

     8.6   Material Conditionals   

 If you have done an elementary logic course, you will have been intro-
duced to a construction, normally written ‘p→q’, which is defi ned as 
being true as long as it is not the case that p is true and q is false. 

 This is the ‘material conditional’. 
 Given its defi nition, it is easy to see that ‘p→q’ is equivalent to ‘not-

(p and not-q)’ or again to ‘either not-p or q’. 
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 It is normal in elementary logic courses to read ‘p→q’ as ‘if p, then q’. 
 And indeed the material conditional does have strong similarities 

with everyday claims of the form ‘if p, then q’. In particular, it shares 
the feature that, when you add knowledge of p to them, then you can 
infer q. Just as p together with ‘if p, then q’ implies q, so does p together 
with ‘p→q’. (This is an immediate consequence of the defi nition of 
‘p→q’ given above––you can check it as an exercise.) 

 Given the similarities, there is no great harm in reading ‘p→q’ as 
equivalent to everyday claims of the form ‘if p, then q’ when exploring 
elementary logic. But there are strong reasons to doubt that the two 
constructions are really the same. 

 Note that ‘p→q’ is guaranteed to be true whenever p is false, whatever 
q says, and also to be true whenever q is true, whatever p says. (Remember, 
‘p→q’ is true as long as it is not both the case that p is true and q is false.) 

 So ‘David Papineau goes to Antigua in November → the gold price 
rises in December’ is guaranteed to be true, as long as I do not go to 
Antigua in November. 

 Similarly ‘Cesc Fabregas plays for Arsenal → Hugh Grant lives in 
 London’ is guaranteed to be true, simply in virtue of Hugh Grant  living 
in London. 

 Now, as we shall see in a moment, the everyday construction ‘if . . ., 
then . . .’ can be used to make two different kinds of claim––‘indicative’ 
and ‘subjunctive’ conditional claims. But we can already see reasons 
why the material conditional ‘p→q’ must differ from both of these. 
In ordinary English, any claim of the form ‘if p, then q’ requires some 
connection  between p and q, not just the falsity of the antecedent p or 
the truth of the consequent q. 

 So, on any reading of the English construction ‘if . . ., then . . .’, my 
not going to Antigua in November isn’t enough to ensure the truth of 
‘if  David Papineau goes to Antigua in November,  then  the gold price 
will rise in December’––for there may be no connection between my 
November location and the December gold price. 
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    Box 18  The Base Rate Fallacy   

  You are worried about a kind of cancer (h) which is present in 1% of people 

like you. There is a simple test which invariably detects the cancer, though it 

does give a false positive result in 10% of people without it. You take the 

test, and get a positive result (e).  What now is the probability you have the 

cancer? 

 Well, you might think that, since the test is only 10% unreliable, the 

answer must be 90%.  But that would be quite wrong. There is still little 

more than a 9% probability of cancer. 

 To see why, recall that, once you discover e, you should set your new 

Pr 
new 

(h) equal to your old Pr 
old

 (h/e). And Bayes’ Theorem tells you to com-

pute this by multiplying your old Pr 
old

 (h) by Pr 
old

 (e/h)/Pr 
old

 (e). 

 Two of these terms are easy. Pr 
old

 (h) was given as 1%, and Pr 
old

 (e/h) is 1, 

since the test invariably detects the cancer. Pr 
old

 (e) is a bit messier : what is 

the probability of a positive result for a person taken at random? Well, the 

1% of cancer sufferers will defi nitely give positive results, and the 99% of 

non-sufferers will give 10% false positives––which sums to 10.9%. So 

Pr 
old

 (h) x Pr 
old

 (e/h)/Pr 
old

 (e) = 0.01 x 1/0.109 ≈ 0.0917. So you should set 

your Pr 
new

 (h) to just over 9%. 

 Think of it like this. If 1,000 people take the test, 10 will give a positive 

result because they have the cancer––but 99 healthy people will give false 

positives. So a bad result still leaves you with only a 10/109 ≈ 0.0917 prob-

ability of cancer. 

 The tendency to overestimate the signifi cance of such tests is called the 

‘base rate fallacy’, because it is due to ignoring the low ‘base rate’ or initial 

probability of having the cancer. It is disturbingly common in everyday life.  
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 And similarly Hugh Grant’s living in London isn’t enough to ensure 
the truth of ‘ if  Cesc Fabregas plays for Arsenal,  then  Hugh Grant lives in 
London’––for Cesc Fabregas’ employment may have nothing to do 
with Hugh Grant’s residence. 

 Given these differences, it seems clear that the material conditional 
works differently from any version of the everyday construction ‘if 
p, then q’. (Indeed, we might feel that ‘material  conditional ’ is something 
of a misnomer, given its marked difference from any everyday ‘if 
p, then q’.)   1

     8.7   Indicative and Subjunctive Conditionals   

 Consider this pair of claims.

  (4) ‘If Oswald didn’t kill Kennedy, then someone else did.’   

 This claim is obviously true. There is no doubt that President Kennedy 
was killed by somebody. If Lee Harvey Oswald wasn’t in fact the guilty 
party, then some else must have done it.

  (5) ‘If Oswald hadn’t killed Kennedy, then someone else would have.’   

 This claim is very doubtful. The Warren Commission investigated the 
matter very thoroughly and concluded that Oswald was working 
alone. In their view, if Oswald’s plans had somehow been frustrated, 
then Kennedy would not have been killed––that is, they concluded 
that (5) is false. 

 Since (4) is clearly true and (5) very likely false, they must mean 
 different things. 

1    I should note that there are a few philosophers who maintain that the indicative 
version of the everyday ‘if p, then q’ is at bottom no different from the mate-
rial conditional, and that the apparent discrepancies can be explained away. 
But this is very much a minority position. 
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 But note that  both  claims are of the form ‘if p, then q’ and both have 
the same  antecedent p––Oswald not killing Kennedy––and the  same
consequent q––someone else killing Kennedy. 

 The only difference between the two claims is that (4) is in the 
indicative  mood (‘ . . . didn’t kill . . . did.’) while (5) is in the  subjunctive
mood (‘. . . hadn’t killed . . . would have’). 

 Accordingly, claims like (4) are called indicative conditionals and 
claims like (5) subjunctive conditionals. 

 (Sometimes subjunctive conditionals are called ‘counterfactual’ on 
the grounds that they imply the falsity of their antecedents. But this 
terminology can be misleading, given that plenty of indicative condi-
tionals also have antecedents that are pretty sure to be false––(4) would 
be a case in point.)  

     8.8   Rational and Metaphysical Changes   

 Let me say a bit more about the difference between indicative and 
subjunctive conditionals. (I can only scratch the surface here. The 
analysis of these constructions is hugely controversial, with a litera-
ture stretching to thousands and thousands of articles. There are 
philosophers who spend their whole lives working on conditionals––
indeed there are phil osophers who work only on indicative condi-
tionals, and others who work only on subjunctive conditionals.) 

 Indicative conditionals are to do with rational changes of belief. 
They tell us what we should believe on learning the antecedent p. 

 Subjunctive conditionals are to do with metaphysical alternatives. 
They tell us what difference p would have made to the course of 
history. 

 To illustrate how indicative conditionals work, suppose that some-
one whom you trust whispers in your ear that Lee Harvey Oswald 
defi nitely didn’t kill President Kennedy. What should you now think? 
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Well, you know full well that Kennedy was assassinated, and your new 
information doesn’t contradict this. So the obvious conclusion is that 
there was a different assassin. Thus: ‘If Oswald didn’t kill Kennedy, 
then someone else did.’ 

 Now take the corresponding subjunctive conditional. The question 
now is the difference it would have made to history had Oswald not 
killed Kennedy, not how such information should impact on your 
beliefs. And to this question the obvious answer (assuming the War-
ren Commission was right) is that Kennedy would not have been 
assassinated. Thus: ‘If Oswald hadn’t killed Kennedy, then no one else 
would have.’ 

 When we evaluate indicative conditionals, we add p to  all  our cur-
rent beliefs, make the minimum adjustments needed to accommodate 
it, and consider whether q still follows. 

 But when we evaluate subjunctive conditionals, we proceed differ-
ently. We fi rst remove from our current beliefs all those whose truth is 
a causal consequence of not-p––and only then do we add p with mini-
mal adjustments and consider whether q follows. Since we are con-
cerned with the impact p would have on the course of history, we 
don’t want to reason on the basis of facts that would have been caus-
ally altered if p had obtained. 

 That’s why we don’t hold onto Kennedy’s assassination when we 
make the  subjunctive  assumption ‘if Oswald hadn’t killed Kennedy . . .’. 
Removing Oswald’s killing Kennedy removes the cause of Kennedy’s 
assassination. 

 By contrast, we  do  hold onto Kennedy’s assassination when we 
make the  indicative  assumption ‘if Oswald didn’t kill Kennedy . . .’. Since 
we are sure that Kennedy actually was killed, we hang onto this infor-
mation in evaluating the indicative conditional.   
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      further reading   

 Colin Howson and Peter Urbach’s  Scientifi c Reasoning: The Bayesian Approach
(Open Court second edition 1993) shows how ‘Bayesianism’ illuminates many 
aspects of scientifi c reasoning. 

 Paul Horwich’s  Probability and Evidence  (Cambridge University Press 1982) covers 
much of the same ground. 

 There is a useful Stanford Encyclopedia entry on Bayesian thinking by William 
Talbott:  <http://plato.stanford.edu/entries/epistemology-bayesian >. 

A Philosophical Guide to Conditionals  (Oxford University Press 2003) by Jonathan 
Bennett is a masterly introduction to this complex topic. 

 Mark Sainsbury’s  Logical Forms  (Blackwell second edition 2001) contains 
much useful material about conditionals and their connection with 
probabilities. 

 See also  <http://plato.stanford.edu/entries/conditionals > by Dorothy Edgington.    

     exercises   

        1.  If Pr(wind) = 0.6, Pr(rain) = 0.5, and Pr(wind and rain) = 0.4, what is 
Pr(wind/rain), and what is Pr(rain/wind)?  

   2.  If I draw one card from a well-shuffl ed pack, what is the conditional 
probability of: 

    (a)  a court cart (A, K, Q, J) given a heart  
   (b)  a court card given not a heart  
   (c)  a heart given a court card  
   (d)  not a heart given a court card  
   (e)  an even number given a non-court card  
   (f)  an odd number given a non-court card  
   (g)  an even number given a court card?    

   3.  Suppose you have good reason to hold that Pr(h) = 0.1, Pr(e) = 0.2, and Pr(e/h) 
is 0.8. Then you learn e. What probability should you now attach to h?  

http://plato.stanford.edu/entries/epistemology-bayesian
http://plato.stanford.edu/entries/conditionals
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   4.  You have a 10% degree of belief that a coin is not fair but has a 75% bias in 
favour of Heads. You toss it twice and see two Heads. What now should 
be your degree of belief that it is fair?  

   5.  Which of these conditionals are indicative and which subjunctive? 

    (a)    If you have visited the moon, then you have forgotten being there.  
   (b)    If you had visited the moon, then you would have forgotten being there.  
   (c)     If the British Prime Minister in 2012 were a woman, she would be in 

disguise.  
   (d)   If the British Prime Minister in 2012 is a woman, she is in disguise.  
   (e)   If you have eaten arsenic, then you are dead now.  
   (f)    If you had eaten arsenic, then you would be dead now.  
   (g)    If the foundations of Buckingham Palace had crumbled to dust, this 

wouldn’t have made it collapse.  
   (h)    If the foundations of Buckingham Palace have crumbled to dust, this 

hasn’t made it collapse.    

   6.  Which of the conditionals in the last question are true, and which false?              
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                              9  

      9.1   Probabilistic Independence   

 We say that p is  probabilistically   independent  of q when Pr(p/q) = Pr(p). 
 In such a case, the probability of p on the assumption that q is no 

different from the probability of p in general. Assuming q doesn’t 
alter the probability of p. 

 To illustrate, take the propositions that a card drawn from a pack 
will be an  honour  (10, Jack, Queen, King, or Ace) and that it will be a 
heart . The former is probabilistically independent of the latter. An 
honour is no more nor less likely on the assumption that the card is a 
heart than it is anyway. 

 Let us check the arithmetic. Pr(honour/heart) is Pr(honour  and
heart)—which is 5/52—divided by Pr(heart)—which is 1/4. So 
Pr(honour/heart) is 5/13, which is just the same as Pr(honour) itself. As 
I said, getting a heart doesn’t make it any more or less likely that you 
will get an honour. 

 Note that p is probabilistically independent of q just in case 

  (1) Pr(p and q) = Pr(p)Pr(q).   

 (To see why, remember that 

Correlations and Causes   
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  Pr(p/q) = Pr(p and q)/Pr(q).   

 So, if 

  Pr(p/q) = Pr(p) (that is, p is probabilistically independent of q)   

 then 

  Pr(p and q) = Pr(p)Pr(q),   

 and vice versa.) 
 Probabilistic independence thus means that p and q don’t occur 

together any more (or less) often than you would expect given their 
separate probabilities of occurrence. 

 We also now see that probabilistic independence is symmetrical. If 
p is probabilistically independent of q, then q is probabilistically inde-
pendent of p. 

 In our example, we have already seen that getting an honour is 
probabilistically independent of getting a heart. The probability of an 
honour isn’t altered by getting a heart—it’s 5/13 either way. 

 So by the same coin, getting a heart must be independent of getting 
an honour—and if you think for a second you’ll see that the probabil-
ity of a heart is indeed not altered by getting an honour—it’s 1/4 either 
way. 

 Just as getting a heart doesn’t make it any more or less likely that 
you will get an honour, so getting an honour doesn’t make it any more 
or less likely that you will get a heart. 

 We see that when two results are independent, neither gives any 
information about the other.  

     9.2   Probabilistic Dependence   

 When Pr(p and q) > Pr(p)Pr(q), then we say p and q are  positively prob-
abilistically dependent . 
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 This is equivalent to the requirements that 

  Pr(p/q) > Pr(p)   

 or that

  Pr(q/p) > Pr(q).   

 In such cases q makes p more likely than it would be otherwise, and p 
makes q more likely than it would be otherwise. 

 So for example, getting an honour and getting a 9-or-a-10 are posi-
tively probabilistically dependent. The probability of having both (by 
getting a 10) is 1/13, which is greater than the product of the probabil-
ities of getting an honour (5/13) and getting a 9-or-10 (2/13). 

 When Pr(p and q) < Pr(p)Pr(q)—equivalently Pr(p/q) < Pr(p) or Pr(q/p) 
< Pr(q)—then we say p and q are  negatively probabilistically dependent . 

 Getting an honour and getting an even numbered card (2, 4, 6, 8, or 
10) are negatively probabilistically dependent. The probability of get-
ting both these results (you need a 10 again) is 1/13—which is  less  than 
the product of the probabilities of getting an honour (5/13) and getting 
an even-numbered card (1/2).  

     9.3   Correlation   

 We speak of correlations when we study the objective probabilistic 
dependencies between distinct properties of individuals. The individ-
uals might be people, places, countries, cars, stars, cows, . . . pretty 
much anything whatever. If we were studying people, our properties 
might be gender, alcohol consumption, and heart disease, say. If we 
were studying cows, our properties might be diet, breed, weight, and 
fertility. And so on. 

 Suppose we represent the properties of interest in some such case 
as F, G, H, . . . We can then use Pr(F), Pr(G), Pr(H), . . . to represent the 
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objective probability that any given individual will have property F, G, 
H, . . . respectively. 

 If in such a case F and G are positively probabilistically dependent—
Pr(F/G) > Pr(F)—then we can say that F and G are  correlated . 

 A correlation between F and G thus means that F occurs more often 
in the presence of G than otherwise (and vice versa). For example, we 
might fi nd that in people heart disease (H) and drinking alcohol (A)
are correlated—Pr(H/A) > Pr(H). This tells us that the probability of 
heart disease among the alcohol drinkers is higher than in the popula-
tion in general.   1

     9.4   Causation and Correlation   

 We’re often told that correlation doesn’t prove causation. And that’s 
true enough—a craving for ice cream is correlated among women with 
giving birth some months later, but the craving doesn’t cause the birth. 

 In this case, the correlation isn’t due to the craving causing the birth, 
or vice versa, but to the presence of a common cause for both events—
namely, pregnancy. The craving is thus a  symptom  of the impending 
birth, but not its cause. 

 Still, even if correlation doesn’t always mean causation, because of 
the possibility of common causes, it is arguable that correlation 
between two properties does mean that  either  one causes another  or
they have a common cause. 

 To have a correlation without any such causal explanation would be 
an absurd general coincidence. Once-off coincidences are only to be 

1    Statistic textbooks will normally give a more complicated defi nition of cor-
relation, to deal with quantitative properties like weight as well as on-off 
qualitative properties like gender. But we can ignore quantitative properties 
here, since they do not affect the basic philosophical points.  
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expected. Sometimes Jill and Jane will happen to fi nd themselves wear-
ing the same colour dress just by chance. But if this turns out to be a 
regular pattern, then it calls for explanation. (Either Jill is copying Jane, 
or Jane is copying Jill, or they are both infl uenced by the same fashion 
advice.) 

 If we accept that a correlation between two properties does indeed 
imply that either one is causing the other or that they have a common 
cause, then we can use this to help us infer causation from correlation. 
In particular, if we can rule out the possibility of a common cause, 
then we  can  infer a direct causal connection.  

     9.5   Screening Off   

 Interestingly, common causes have a distinctive probabilistic profi le. 
They typically ‘ screen off  ’ the correlation between their joint effects, in 
the sense that this correlation disappears when we ‘ control for the com-
mon cause ’. This allows us to identify common causes from probabilis-
tic patterns, and thereby tell whether or not correlations signify causal 
connections. 

 Let me explain this more slowly. Take the craving–birth correlation 
again. ‘Controlling for the common cause’ means looking separately 

P

C B

correlation screened off

causes causes
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at cases where women are pregnant and where they are not. And, 
when we do this, the ‘correlation disappears’ in the sense that, in cases 
where women are pregnant, the craving for ice cream doesn’t now 
make a subsequent birth any  more  likely, and similarly in cases where 
women are  not  pregnant. Once we take pregnancy into account, the 
craving can be seen to make no further difference to the probability of 
a birth. In this sense, pregnancy ‘ screens off ’ the correlation between 
cravings and births.    
 In symbols, there is an initial correlation between craving (C) and 
birth (B)

  Pr(B/C) > Pr(B)   

 but this correlation, represented by the dotted line in Diagram 12, is 
‘screened off ’ by pregnancy (P) in the sense that:

  Pr(B/C  and  P) = Pr(B/P)   

 and 

  Pr(B/C  and  not-P) = Pr(B/not-P).   

 Once we know that the craving–birth correlation is ‘screened off’ by 
the prior pregnancy in this way, we can infer that there is no causal 
link between them, and that they are joint effects of pregnancy.  

     9.6   Spurious Correlations   

 Of course, we didn’t  need  the probabilistic data from the last section to 
tell us that cravings for ice cream don’t cause births. This knowledge is 
already part of common sense. But in other cases it is precisely such 
probabilistic data that enable us to fi nd out what is causing what. 

 To go back to our earlier example, suppose we fi nd that there is a 
correlation between heart disease (H) and alcohol consumption (A). 
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  Pr(H/A) > Pr(H)   

 This might make us think that alcohol consumption causes heart dis-
ease. But now suppose that it turns out that gender screens off this 
correlation—the correlation disappears when we look separately at 
females (F) and males (not-F).

  Pr(H/A  and  F) = Pr(H/F)   

 and 

  Pr(H/A  and  not-F) = Pr(H/not-F).   

 This would show that the initial correlation was misleading. Alcohol 
consumption turns out not to be a genuine cause of heart disease. The 
two properties are only correlated because gender is a common cause 
of both. Heart disease tends to be found with alcohol consumption 
only because being male conduces both to heart disease and to alco-
hol consumption. (Note that this is just an illustration—I make no 
claims about its medical accuracy.) 

 In such a case the original correlation is said to be ‘ spurious ’. This doesn’t 
mean it is not a real correlation. It is—it is still true that heart disease is 
more common among the drinkers. But the correlation is spurious in 
that it doesn’t correspond to any direct causal connection—rather the 
two correlated properties are joint effects of a common cause. 

 In cases of spurious correlation the common cause is often referred 
to as a ‘confounding’ property.  

     9.7   Randomized Experiments   

 If we fi nd that some initial correlation between F and G is screened off by 
some earlier confounding property E, then we can be confi dent that F and 
G do not infl uence each other, but are joint effects of the common cause 
E, as in the pregnancy and heart disease examples just considered. 
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 However, if we fi nd that some particular earlier E does  not  screen off 
a correlation between F and G, then we can’t immediately infer that G 
does  cause F, or vice versa. For there may yet be other common causes 
we haven’t yet identifi ed. 

 For example, suppose that the heart disease/alcohol consumption 
correlation turned out  not  to be screened off by gender. We couldn’t 
immediately conclude that alcohol  is  a cause of heart disease. For it 
may yet be that they are both joint effects of some other ‘confounding’ 
property, such as income level, or stress, or anything else—and then 
drinking would again only be a symptom of this underlying cause, 
and not itself responsible for heart disease. 

 The hard way to show that alcohol really is a cause of heart disease 
is to survey the population and check all the confounding properties 
that could possibly be responsible for a spurious correlation and show 
that none of them screens off the association. 

 But there is an easier way to show that one property is really a cause 
of another. Suppose we are able to perform a ‘ randomized experiment ’. 
The idea here is not to look at correlations in the population at large, 
but rather to pick out a sample of individuals, and arrange randomly 
for some to have the putative cause and some not. 

 The point of such a randomized experiment is to ensure that any 
correlation between the putative cause and effect  does  indicate a causal 
connection. This works because the randomization ensures that the 
putative cause is no longer itself systematically correlated with  any
other properties that exert a causal infl uence on the putative effect 
(such as gender, or income level, or stress, . . . , or  anything  else). So a 
remaining correlation between the putative cause and effect must 
mean that they really are causally connected. 

 So, for example, we might take a sample of people, and constrain 
some of them picked at random to drink alcohol and the rest to 
abstain, in the interests of fi nding out whether the former group devel-
ops more heart disease. Now, of course in this particular case there are 
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obvious practical and ethical barriers to such an experiment. But in 
other cases it will be feasible. 

 Thus suppose we want to make sure that the correlation between 
some medical treatment and recovery from the relevant disease isn’t 
just a spurious result of the treatment being available only to more affl u-
ent sufferers, say, or to some other confounding property. The standard 
solution is to perform a ‘ randomized clinical trial ’ by taking a group of suf-
ferers and giving the treatment only to a subgroup chosen at random. 
Many medical experts feel that such randomized trials are the only good 
way to ascertain the effi cacy of medical treatments. ( See  Box 19  .)   

     9.8   Survey Research   

 Randomization is a very good way of demonstrating causation. But it 
is a mistake, notwithstanding the opinion of many in the medical 
establishment, to suppose that it is the  only  way. Sometimes it is simply 
not possible, for ethical or practical reasons, to conduct a randomized 
trial. Then we have to fi nd out about causes the hard way. We need 
laboriously to survey the overall population and gather data on the 
correlation between putative cause and effect within subgroups of the 
population divided by gender, and income level, and stress, . . . and all 
the other things that could possibly be producing a spurious correl-
ation. If none of these screens off the correlation, then this will give us 
reason to suppose that it refl ects a causal connection. 

 Perhaps we can never be absolutely sure we have checked through 
every possible confounding factor. But sometimes we can be very 
confi dent. We will do well to remember the example of smoking and 
lung cancer. When the correlation between the two was fi rst noticed, 
the cigarette companies were quick to suggest that it might be spuri-
ous, produced by some common cause like social class, or air pollu-
tion, or genetic factors, or . . . 
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 Now, there was no question of testing this by a randomized trial. 
(This would have been obviously unethical—you can’t take a sample 
of children and force half of them chosen at random to be smokers.) 
But this doesn’t mean we don’t now know that smoking causes can-
cer. And the way we found out was precisely by surveying all the 
remotely plausible confounding factors, and showing that none of 
them in fact screens off the smoking–cancer correlation.  

     9.9   Simpson’s Paradox   

 Screening off occurs when a common cause is responsible for a positive 
correlation between two properties even though there is no direct causal 
connection between them. The lack of a causal connection is exposed 
by the correlation  disappearing  when we control for the common cause. 

 There can also be cases where a common cause produces a positive 
correlation between two properties even though one is in reality a 
negative  causal infl uence on the other. When we control for the 
 common cause the correlation is  reversed , and what at fi rst looked like 
a positive cause turns out to have the opposite effect. 

 Take once more the positive correlation between heart disease (H) 
and alcohol consumption (A) which initially made it seem that drinking 
causes heart disease. We earlier supposed that when we controlled for 
gender and divided the population into females (F) and males (not-F), the 
correlation would disappear. But now imagine that controlling for 
gender actually reverses the correlation—that  within  each gender there 
is less  heart disease among the drinkers than the rest.

  Pr(H/A  and  F) < Pr(H/F)   

 and 

  Pr(F/A  and  not-F) < Pr(H/not-F).   
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    Box 19  The Logic of  Randomized Trials   

  In a ‘randomized clinical trial’ of a medical treatment we take a sample of 

patients with some ailment and divide them into two groups at random.  The 

‘treatment’ group is given the treatment and the ‘control’ group is not. We 

then observe whether the recovery rate in the treatment group is signifi -

cantly higher than in the control group. 

 The rationale for such trials is to eliminate the danger of spurious cor-

relations. In the wider world, perhaps young people, who are likely to 

recover anyway, are receiving the treatment more often than old people, 

and this is creating the impression that the treatment aids recovery.  By 

randomizing the treatment, we forcibly decorrelate it from any such con-

founding causes as patient age. 

 Of course, if a treatment does appear effi cacious in a particular trial, this 

could still be due to  statistical fl uctuations . Perhaps by luck the treatment 

group contained more people who were going to recover anyway.  How-

ever, this statistical danger is present in any attempt to infer underlying pat-

terns from fi nite samples, whether or not randomization is involved.  And 

the standard remedy for this statistical danger is to use bigger samples to 

diminish the probability of misleading fl uctuations. 

 But note that bigger samples are no guard against systematically con-

founding causes. Suppose that age does indeed infl uence both recovery and 

who gets the treatment. Simply getting bigger samples from the population 

at large isn’t going to make this confounding infl uence go away. 

 Randomization guards against hidden confounding causes. Big samples 

guard against statistical fl uctuations. Both help to ensure that our inferences 

are secure.  
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 This would indicate that drinking actually does something to  prevent
heart disease, and only seems initially to cause it because it is more 
prevalent among men who are prone to heart disease anyway. 

 This kind of correlation reversal is widely referred to as ‘ Simpson’s 
paradox ’. But in fact there is nothing terribly paradoxical about such 
examples. They are quite analogous to ordinary screening off. In both 
cases, some property appears initially to be a positive cause only 
because it is itself positively associated with the real cause. The only 
difference is that in ordinary cases of screening off the putative cause 
has no real infl uence at all, whereas in examples of Simpson’s ‘para-
dox’ it is actually a negative cause.   
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      further reading   

 Judea Pearl’s  Causality: Models, Reasoning and Inference  (Cambridge University 
Press 2000) is a detailed study of the relationship between causes and 
correlations. 

 There is a useful section on ‘Causal Modelling’ in Christopher Hitchcock’s 
Stanford Encyclopedia entry on Probabilistic Causation:  <http://plato.stanford.
edu/entries/causation-probabilistic >. 

 There is also a Stanford Encyclopedia entry specifi cally on Simpson’s Paradox 
by Gary Malinas and John Bigelow:  <http://plato.stanford.edu/entries/paradox-
simpson >. 

 John Worrall offers an informative critical discussion of the logic of rand-
omized trials in ‘Why There’s No Cause to Randomize’,  The British Journal for the 
Philosophy of Science 2007 .    

     exercises   

        1.  When a fair die is thrown, what is the conditional probability of: 

    (a)  an even number, given a number less than three  
   (b)  an odd number, given an number greater than three  
   (c)  a number greater than three, given an odd number  
   (d)  a number greater than two, given an even number  
   (e)  a number greater than or equal to two, given a multiple of three  
   (f)  a multiple of three, given an even number?    

   2.  For each of (a)–(f ) in question 1, say whether the two results are inde-
pendent, positively dependent, or negatively dependent.  

   3.  Which is the odd one out? 

    (a)  Pr(p/q) > Pr(p)  
   (b)  Pr(p&q) > Pr(p)Pr(q)  
   (c)  Pr(not-p/q) > Pr(not-p)  
   (d)  Pr(not-p & not-q) > Pr(not-p)Pr(not-q)    

http://plato.stanford.edu/entries/causation-probabilistic
http://plato.stanford.edu/entries/causation-probabilistic
http://plato.stanford.edu/entries/paradoxsimpson
http://plato.stanford.edu/entries/paradoxsimpson
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   4.  Specify that p and q are probabilistically positively dependent in six 
 different ways.  

   5.  Suppose that the probability of having diabetes (D), being male (M), and 
being unemployed (U) are given by 

  Prob (D) = 0.05 

 Prob (M) = 0.60 

 Prob (U) = 0.30              

  And suppose that 

  Prob (D&M) = 0.024 

 Prob (U&D) = 0.018 

 Prob (U&M) = 0.18   

   For each of these last three pairs of properties, say whether the two 
properties are positively dependent, negatively dependent, or independ-
ent. For each of the pairs, work out the conditional probability of the 
fi rst given the second.

     6.  Suppose that research shows that Pr(nose cancer/smoking) = 0.3 while 
Pr(nose cancer) = 0.1. 

    Research also shows that: 

  Pr(nose cancer/smoking & city-dwelling) = Pr(nose cancer/city-dwelling) 

= 0.4 

and

Pr(nose cancer/smoking & country-dwelling) = Pr(nose cancer/country-

dwelling) = 0.05.         

  What does all this indicate about the causes of nose cancer?

     7.  Suppose that research in the State University of Euphoria shows that 
Pr(successful entrance application/male) = 0.4 while Pr(successful 
entrance application/female) = 0.3.     
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   Suppose also that the University deals separately with entrance 
 applications to the Arts and Science Faculties, and that further research 
shows that: 

  Pr(successful entrance application/male & Arts) = 0.2 while Pr(successful 

entrance application/female & Arts) = 0.25 

 and 

 Pr(successful entrance application/male & Science) = 0.5 while 

Pr(successful entrance application/female & Science) = 0.6   

  What does all this indicate about the factors influencing application 
success?           



This page intentionally left blank 



                          Part IV 

LOGICS AND THEORIES   



This page intentionally left blank 



• • • • •

SYNTAX AND SEMANTICS 137

         10  

      10.1   Validity   

 Logic is to do with  arguments . 
 An argument starts with some statements—the  premises —and then 

takes us via a series of steps to another statement—the  conclusion . 
 Arguments are designed to expand our knowledge. If you already 

know the premises, then a good argument will lead you to knowledge 
of the conclusion too. 

 Given this function, what we want of an argument is that the truth 
of its premises should  guarantee  the truth of its conclusion. An argu-
ment satisfying this desideratum is called  valid . 

 Note that the validity of an argument doesn’t require that the 
premises and conclusion actually be true—only that the conclusion 
must be true  if  the premises are true. 

 For example, consider this argument:

  All Australians like cricket 

 Mel Gibson is Australian 

 ––––––––– 

 Mel Gibson likes cricket   

Syntax and Semantics   
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 Now, you might wonder whether the premises and conclusion of this 
argument are in fact true. But you don’t need to settle this to know 
that the argument is valid. You can see that the premises guarantee 
the conclusion all right—in that the conclusion would be true  if  the 
premises were—independently of whether these statements actually 
are true. 

 It is not the job of an argument, so to speak, to check that its premises 
are true. That comes from outside the argument. The argument is 
solely concerned with the move  from  the premises  to  the conclusion, 
and it will have played its part as long as the truth of the former guar-
antees the truth of the latter.  

     10.2   Logic and Metalogic   

 We can regard logic as a skill, something we can be better or worse at. 
In this sense good logicians are people who are sensitive to the differ-
ence between valid arguments and invalid ones, and who go in for 
valid argumentation themselves. Some elementary logic courses are 
designed to improve this kind of skill. They aim to turn their students 
into valid arguers. 

 So construed, logic has no special subject matter. It is a generic skill 
that can be used—and should be used—in any area of thought. It is 
good for engineers and lawyers to be good logicians in this sense, as 
well as philosophers. 

 But we can also regard logic as an object of study. We can think 
about  different ways of arguing validly, and analyse their workings. 
When we do this we are doing  metalogic . 

 Metalogic, unlike logic, has a quite specifi c subject matter—the 
workings of logical arguments. Metalogic is of great interest to phil-
osophers and mathematicians, but not necessarily to lawyers and 
chemists. 
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 When philosophers and mathematicians talk about a ‘good log ic-
ian’, they are likely to mean someone who knows a lot of metalogic—
knows a lot  about  logical arguments—and not just someone who is 
good at arguing logically. 

 This chapter and the next two will contain some metalogic. This 
won’t be designed to improve your argumentative skills. Rather my 
aim will be to introduce you to some philosophically interesting facts 
about logical arguments.  

     10.3   Different Kinds of Logic   

 We can classify logical arguments according to the way their validity 
depends on the meaning of certain logical constructions. 

 In studying  propositional  logic, we are concerned with arguments 
whose validity depends on the meanings of the ‘ truth-functional 
 connectives ’—‘not’, ‘and’, ‘or’, and so on. 

 In studying  predicate  logic, we are further concerned with arguments 
whose validity depends on the meanings of the ‘ quantifi ers ’—‘for all 
x , . . . ’ and ‘there is an x such that , . . . ’.

 Other branches of logic, such as ‘second-order logic’ and ‘modal 
logic’, involve arguments whose validity depends on the meaning of 
yet further constructions.  

     10.4   Truth-Functional Connectives   

 Let us stick to propositional logic for the moment. We shall consider 
some of the other branches of logic in the next chapter. 

 The ‘truth-functional connectives’ of propositional logic are spe-
cifi cally those words that can be used to make new sentences out of 
old ones in such a way that the truth or falsity of the new sentences is 
entirely determined by the truth and falsity of the old ones. 
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 So given any sentence p,  ‘not’-p  can be defi ned as a new sentence 
which is true if and only if p is false. 

 Similarly, given any two sentences p, q,  p-‘and’-q  can be defi ned as a 
new sentence which is true if and only if p is true and q is true. 

 Again,  p-‘or’-q  (with ‘or’ understood as ‘and/or’) can be defi ned as a 
new sentence which is true if and only if at least one of p and q is 
true. 

 And I will say that  p-‘→’-q  can be defi ned as a new sentence which is 
true if and only if either p is false or q is true. (This is the material con-
ditional discussed at the end of  chapter  8    . I’ll come back to this one in a 
second.) 

 I have given these defi nitions in words, but they can be made graphic 
by the ‘ truth tables ’ that will be familiar to anyone who has done an 
elementary logic course. These truth tables illustrate directly how the 
truth values of the relevant complex sentences depend on the truth 
values of their constituents. ( See Box  20.  )  

 ‘Not’, ‘and’, ‘or’, and ‘→’ aren’t the only truth-functional connec-
tives, but they are enough for our purposes. 

 I have just offered ‘ defi nitions ’ of the words ‘not’, ‘and’, and so on. But 
of course it’s not up to me to  choose  their meanings. They are already 
words of English with a life of their own, so to speak. So it is a substan-
tial question whether the defi nitions I have offered are faithful to the 
meanings they already have. 

 And indeed there are respects in which the relevant English words 
do have connotations which go beyond the above defi nitions. Still, it 
will not hurt to ignore that here in the interests of simplicity. 

 The one exception is with the connective I have written as p-‘→’-q. 
It is normal in introductions to logic to equate this with the English 
construction ‘if p, then q’. But, as I explained in  chapter  8    , there is a 
quite substantial divergence between the logicians’ p-‘→’-q and the 
ordinary language ‘if p, then q’. In recognition of this, I shall stick to 
the artifi cial ‘→’ in this chapter.  
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  p  ‘not’-p  

  T  F  

  F  T  

  p  q  p-‘and’-q  

  T  T  T  

  T  F  F  

  F  T  F  

  F  F  F  
        

  p  q  p-‘or’-q  

  T  T  T  

  T  F  T  

  F  T  T  

  F  F  F  

  p  q  p-‘→’-q  

  T  T  T  

  T  F  F  

  F  T  T  

  F  F  T  

 The truth tables for ‘not’, ‘and’, ‘or’, and ‘→’ show graphically how the truth 

values of the complex sentences we can make using these words depend 

on the truth values of their constituent sentences.   

    Box 20   Truth Tables    
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     10.5   Syntax and Semantics   

 A central aim of metalogic is to construct a precise analysis of  logical 
consequence —the relationship that some sentences (the premises) have 
to another (the conclusion) when the latter follows validly from the 
former. 

 One thing that makes metalogic interesting is that there are two dif-
ferent ways of thinking about logical consequence— syntactically  and 
semantically . 

 When we analyse logical consequence  syntactically , we think of 
argumentation as governed by a system of rules for moving between 
sentences of certain forms. One sentence is the logical consequence 
of some others if the rules allow you to construct a ‘proof’ in the sense 
of a sequence of legitimate moves that take you from the premises to 
the conclusion. From this syntactic perspective, the meanings of the 
sentences do not matter. Argumentation is viewed as nothing more 
than a  game  governed by certain  rules  for manipulating strings of 
symbols. 

 The  semantic  perspective, by contrast, attends to meanings rather 
than moves. Now we think of sentences not just as strings of sym-
bols, but as meaningful statements which make claims that are 
true or false. And this allows us to view one sentence as a logical 
consequence of others just in case their meanings are so related 
that the former sentence must be true if the latter are. From the 
semantic perspective, logical consequence is nothing to do with 
argumentative  moves . It’s simply a matter of all circumstances in 
which the premises are true being ones in which the conclusion is 
true too. 

 In the next two sections I shall illustrate these two different ways 
of understanding logical consequence in the case of propositional 
logic.  
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     10.6   Syntactic Consequence   

 So let us fi rst view propositional logic syntactically, as a game with 
certain rules. The most natural way to specify the rules is to list a set of 
rules of inference . Each rule of inference will allow you to move from 
sentences of certain forms to another sentence of a related form. 

 For example, here are two nice simple rules:

  Given any two sentences p, q, you can move to p-‘and’-q 

 Given any sentence of the form p-‘and’-q, you can move to p (and simi-

larly to q)   

 We can give a similar pair of rules for each of our other truth-func-
tional connectives, the fi rst of which allow us to move  from  sentences 
without the connective  to  sentences containing it (an ‘ introduction ’ rule) 
and the other which allows us to move  from  sentences containing the 
connective  to  sentences without it (an ‘ elimination ’ rule). ( See Box  21.  )  

 Once we have specifi ed a set of rules of inference, we can then defi ne 
a proof . A proof is a way of moving by steps from a set of premises to a 
conclusion using the rules of inference. More formally, a  proof  consists 
of an initial set of sentences given as  premises , followed by a sequence 
of sentences each of which can be reached by the rules of inference 
from the premises plus other sentences earlier in the sequence. The 
last sentence in such a sequence is the  conclusion . ( See Box  22.  )  

 This now gives us enough to defi ne a syntactic notion of logical con-
sequence for propositional logic. A sentence j is a syntactic consequence 
of a set of sentences K in propositional logic if there is a proof with 
premises K and conclusion j. 

 In such a case we write K├PROP  j, and we say that j is  provable  from K 
in propositional logic. 

 If we can prove j from zero premises, we write├PROP  j and say that j 
is provable  simpliciter, or that j is a  theorem  of propositional logic. 
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     10.7   Semantic Consequence   

 Note how nothing in the syntactic approach to propositional logic 
just outlined appeals to the meanings of sentences. From the 

   ‘And’ Introduction 

 Given p, q, move to p-‘and’-q 

 ‘And’ Elimination 

 Given p-‘and’-q, move to p (or to q) 

 ‘Or’ Introduction 

 Given p (or given q), move to p-‘or’-q 

 ‘Or’ Elimination 

 Given p-‘or’-q, p-‘→’-r , q-‘→’-r, move to ‘r’ 

 Reductio Ad Absurdum (‘Not’ Introduction) 

 Given p-‘→’-q, p-‘→’-not-q, move to ‘not’-p 

 Double ‘Not’ Elimination 

 Given ‘not’-‘not’-p, move to p. 

 Modus Ponens (‘→’ Elimination) 

 Given p, p-‘→’-q, move to q. 

 Conditional Proof (‘→’ Introduction) 

 If assuming p allows you to move via this set of Inferential Rules to q, then you can 

move to p-‘→’-q without assuming p.   

    Box 21   Inference Rules for Propositional Logic     

 (If you are puzzled about how anything can be proved from zero 
premises, have a look at the rule of Conditional Proof in the  Box  21     
below.)  
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 syntactic perspective, the sentences may just as well be meaning-
less marks, and the inference rules may as well just specify the 
allowed moves in some arbitrary game. 

 But of course sentences aren’t just meaningless marks—they 
express propositions which are true or false. To take this into account 
is to view the sentences  semantically . 

 I have already explained, in section 10.4 above, how the truth-
functional connectives can be viewed as devices which function to 
generate complex sentences whose  truth values  (their truth or falsity) 
are determined  by the  truth values  of their constituents. This gives us a 
semantic  understanding of sentences involving truth-functional con-
nectives. We see how the truth values of these sentences depend on 
the truth values of their simpler parts. 

 Here is a proof of ‘not’-p from p-‘→’-q and ‘not’-q. 

    (1)  Premise p-‘→’-q 

  (2)  Premise ‘not’-q   

 Suppose we now  assume  p 

   We were given ‘not’-q as a premise 

 So  assuming  that  p  allows us to move to ‘not’-q. 

 So without assuming  p  we can move, via  ‘→’ Introduction , to   

     (3)   p-‘→’-‘not’ -q   

 And from (1) and (3) we can move to 

    (4)   ‘not’-p by ‘Not’ Introduction.   

    Box 22  An Example of  a Syntactic Proof     
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 Once we are armed with this semantic grasp of the truth-functional 
connectives, we can approach the issue of logical consequence from a 
semantic rather than a syntactic perspective. Instead of asking whether 
we can  move  from some sentences to another via the specifi ed rules of 
inferences, we can simply ask whether their meanings are so related 
that the latter  must   be true  if the former  are   true . 

 So, for example, suppose we are interested in whether some  sentence 
‘not’-p is a logical consequence of p-‘→’-q and ‘not’-q. Then we can 
 easily see, by attending to the relevant truth tables, that the conclusion 
must indeed be true if the premises are. ( See Box  23.  )  

 This illustrates the semantic notion of logical consequence for 
propositional logic. A sentence j is a semantic consequence of a set of 
sentences K in propositional logic just in case the defi nitions of the 
truth-functional connectives ensure that j must be true whenever the 
sentences in K are all true. 

 In such cases we write K╞PROP  j, and we say that j is a  semantic  conse-
quence of K in propositional logic. 

 If j must be true whatever is the case, then we write╞PROP  j, and we 
say that j is a propositional  logical truth . 

 For example any sentence of the form p-‘or’-‘not’-p is a proposi-
tional logical truth. The semantic defi nitions of ‘or’ and ‘not’ ensure 
that any such sentence is true whatever p says. 

 Now that we have explained and contrasted the syntactic and 
semantic notions of logical consequence, we can ask about their rela-
tionship to each other. That will be the subject of the next chapter.       
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 The following truth table shows that ‘not’-p is a semantic consequence of 

p-‘→’-q and ‘not’-q: the bottom row represents the only case where p-‘→’-q 

and ‘not’-q are both true—and in that row ‘not’-p is also true   

    Box 23  An Example of  Semantic Consequence    

  p  q  p-‘→’-q  ‘not’-q  ‘not’-p  

  T  T  T  F  F  

  T  F  F  T  F  

  F  T  T  F  T  

  F  F  T  T  T  
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      further reading   

 There are many excellent elementary logic textbooks, including Wilfried Hodges’ 
Logic  (Penguin 2  nd  edition 2001) and   Paul Tomassi’s  Logic  (Routledge 1999). 

 The elementary book that pays most attention to metalogical issues is still the 
classic  Beginning Logic  by E.J. Lemmon (Nelson 1965). 

The Logic Manual  by Volker Halbach (Oxford University Press 2010) also has a 
usefully metalogical slant.    

     exercises   

        1.  Give examples of valid arguments with: 

    (a)  true premises and true conclusion  
   (b)  false premises and false conclusion  
   (c)  false premises and true conclusion       

  Why haven’t I asked for an example with true premises and false 
conclusion?

     2.  Use truth tables to show that the following are logically true: p-‘or’-‘not’-
p; ‘not’-(p-‘and’-‘not’-p); (p-‘and’-‘not’-p-)‘→’-q.  

   3.  Which of the following claims are true? (Indicate your reasons for your 
answer.) 

    (a)  ‘not’-(p-‘and’-‘not’-q), ‘not’-p ╞ q  
   (b)  ╞ ((p-‘or’-‘not’-q)-‘and’-q)-‘→’-p
   (c)  ├ p-‘→’-(p-‘or’-q)  
   (d)  ├ p-‘→’-(p-‘and’-q)    

   4.  State three rules of inference from propositional logic and use the truth 
tables for the connectives involved to show that their conclusions must 
be true if their premises are.  

   5.  Use the defi nitions of K ╞ PROP  q and ╞PROP  q and the truth table for ‘→’ to 
explain why: p ╞PROP  q if and only if ╞PROP  p → q.                    
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                              11  

      11.1   Soundness and Completeness   

 At the end of the last chapter I outlined two quite different ways of 
characterizing logical consequence in propositional logic. The syn-
tactic characterization paid no attention to the meanings of sen-
tences—it was only concerned with whether you can move from 
some sentences to others via the rules of inference. Conversely, the 
semantic characterization paid no attention to the rules of inference—
it was only concerned with whether the meanings of sentences are 
related in such a way that the truth of some guarantees the truth of 
others. 

 Given this, we can ask how the two characterizations are related. 
 In particular, we can ask whether every case of syntactic conse-

quence is also a case of semantic consequence. That is, can we con-
struct proofs  only  in cases where the truth of the premises in fact 
guarantees the truth of the conclusion? If this is so, we say that the 
syntactic rules of inference are  sound . 

 Conversely, we can ask whether every case of semantic conse-
quence is also a case of syntactic consequence. That is, can we con-
struct a proof in  every  case where the truth of the premises guarantees 

Soundness and Completeness   
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the truth of the conclusion? If this is so, we say that the syntactic rules 
of inference are  complete . 

 In asking whether the rules of inference are sound, we are asking 
whether they are good ways of moving from premises to conclusions. 
Rules of inference that were  not  sound would allow us to construct 
‘proofs’ whose conclusions were not guaranteed by their premises. 

 In asking whether the rules of inference are complete, we are asking 
whether they cover  all  the good ways of moving from premises to 
conclusions. Do they license a proof in  every  case where the truth of 
some sentences guarantees the truth of another? Rules of inference 
that were  not  complete would  not  allow us to construct proofs of some 
sentences whose truth  was  guaranteed by that of other sentences.  

     11.2   Proving Soundness and Completeness   

 As it happens, the rules of inference given above for propositional 
logic are both sound and complete. 

 It is easy enough to show that these rules of inference are  sound . 
 To establish soundness, we fi rst go through the rules of inference 

in turn and appeal to the semantic defi nitions of the relevant con-
nectives to show that none of them can take us from truths to 
falsehoods. 

 So, for example, consider our fi rst rule of inference, ‘And’ Introduc-
tion, which says  given p, q, move to p-‘and’-q . Since the semantic defi n-
ition of ‘and’ tells us that p-‘and’-q is true just in case both p and q are 
true, we can see that this rule must take us to a true conclusion when-
ever its premises are true. 

 It is straightforward to show that all the propositional rules of infer-
ence must similarly have true conclusions if their premises are true. 

 Since a proof in propositional logic is a sequence of sentences gen-
erated from a set of premises by repeatedly applying these rules of 
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inference, it now follows that any such propositional proof must itself 
have a true conclusion if its premises are true—given that no rule of 
inference can take us from truths to falsehoods, repeatedly applying 
the rules of inference must keep us on the track of truth if we start 
there. And this then establishes soundness—if one sentence is a syn-
tactic consequence of some others (that is, it is provable from them), 
then it must be a semantic consequence too (that is, its truth must be 
guaranteed by their truth). 

 Establishing the  completeness  of the rules of inference is harder. 
 Now we need to show, not that provability implies semantic conse-

quence, but that semantic consequence implies provability—that is, 
that  some  proof exists whenever the truth of one sentence is ensured 
by the truth of some others. There are various ways of showing this, 
but they are all a bit complicated. If you are interested in following this 
up, I refer you to the Further Reading at the end of the chapter.  

     11.3   Refl ections on Circularity   

 When we consider whether the propositional rules of inference are 
sound and complete, we are in effect  evaluating  them. We are seeing 
how far they are well designed for valid argumentation. Do they 
indeed serve their basic function of leading us from truths to truths? 

 Thus, in asking whether the rules are sound, we are checking that 
they license proofs  only  when the truth of the premises in fact guar-
antees the truth of the conclusion. And in asking whether they are 
complete, we are checking whether they  always  license proofs in 
such cases. 

 It is a bit weird, if you think about it, that we can evaluate our rules 
of inference in this way. 

 After all, the rules of inference listed earlier were not some random 
set of procedures pulled out of a hat. While I invited you to view them 
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as the rules in a meaningless game, they weren’t in truth selected 
 haphazardly. Rather they were designed to capture the way that sens-
ible people argue. That is, they were a summary of the best practice of 
‘good logicians’—in the earlier sense of people with good argumenta-
tive skills. 

 But how then was it possible to ‘evaluate’ these rules by considering 
their soundness and completeness? After all, when we show that the 
rules are sound and complete, we are simply  arguing  that they have 
certain good qualities. That is, we are  using  normal rules of inference 
to conclude that those selfsame rules are good ones. (In the last sec-
tion I didn’t actually display detailed demonstrations of propositional 
soundness and completeness, but simply indicated how they might be 
given. However, if we did examine the details of such demonstrations, 
they would undoubtedly appeal to rules like Reductio ad Absurdum, 
Modus Ponens, and so on at various points.) 

 However, this would then seem to mean we are evaluating normal 
argumentative skills by appeal to those selfsame argumentative skills. 
How could this circular exercise be of any signifi cance? 

 But look at it like this. When we adopt the syntactic perspective, 
and lay out the rules of inference, we are viewing logic from the inside, 
so to speak. We are describing the internal structure of our argumen-
tative practice, by specifying the kinds of transitions between sen-
tences that we engage in when we argue. 

 But when we adopt the semantic perspective we stand back and 
view this argumentative practice from the outside. Now sentences are 
not just positions in an argumentative game, but items which report 
on the real world, and so are either true or false. This external perspec-
tive then allows us to assess how far our argumentative practice is 
indeed well suited to moving us from truths to truths. 

 This exercise can be genuinely illuminating. We can see that our 
rules of inference are not just arbitrary conventions adopted by soci-
ety, like holding your fork in your left hand. Rather there is a very good 
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reason to use these rules of inference. Their premises and conclusions 
are semantically related in ways that ensure their conclusions are true 
if their premises are. 

 This is not to deny that there is some element of circularity involved 
in demonstrations of soundness or completeness. We are indeed  using
our argumentative skills—our rules of inference—in carrying out 
these demonstrations. And this means that there is no question of 
using them to  persuade  people who lack these skills that they ought to 
acquire them. Somebody who doesn’t already engage in the relevant 
rules of inference won’t be moved by a demonstration that they are 
good rules of inference. 

 But this doesn’t mean that these demonstrations have no signifi -
cance for those of us who do possess normal argumentative skills. On 
the contrary, they enable us to understand  why  it is good to reason in 
line with our rules of inference. 

 For instance, consider ‘modus ponens’, the rule that licenses moves 
from p and p-‘→’-q to conclusion q. Note that you could  practice  this rule 
without ever having thought  about  it. In particular you might never have 
asked yourself why it is a good thing to go in for. Moreover, once you do 
ask this question, you may not immediately see how to answer it. 

 But attention to the semantic defi nition of ‘→’ allows a genuinely 
informative answer. p-‘→’-q is true as long as either p is false or q is 
true. So the only way p-‘→’-q can be true when p is true is for q to be 
true too. So modus ponens, in taking us from p and p-‘→’-q to q, can 
never take us from truths to a falsehood.  That’s  why it is a good idea to 
conform to this rule.  

     11.4   Predicate Logic   

 Let us go back to an example from the beginning of the last chapter 
(now rewritten a bit more formally):
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  (For all x)(x is Australian → x likes cricket) 

 Mel Gibson is Australian 

 –––––––– 

 Mel Gibson likes cricket   

 As I said, this is a valid argument. But its validity isn’t just a matter of 
truth-functional connectives. It also depends on the way that the 
argument involves  universal quantifi cation —‘(For all x)(. . .)’. 

 Here is another example.

  John is tall 

 John is fat 

 –––––––– 

 (There is an x such that)(x is tall and fat)   

 Here the validity of the argument depends on its use of  existential
quantifi cation —‘(There is an x such that)(. . .)’. 

 Predicate logic is concerned with arguments whose validity depends 
on universal and existential quantifi cation, as well as on the truth-
functional connectives. (We can think of predicate logic as  including
propositional logic but adding some further structure.) 

 Just as with propositional logic, we can analyse logical consequence 
in predicate logic both  syntactically  and  semantically .  

     11.5   Predicate Syntax   

 To get a syntactic account of logical consequence for predicate logic, 
we need to add some extra rules of inference for the quantifi ers to 
those for the truth-functional connectives. In particular, we need 
introduction and elimination rules for both the universal and existen-
tial quantifi er. 

 These are a bit messy to state precisely, so let me just give the 
 general idea. 
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 To understand the elimination rule for universal quantifi cation, 
note that what goes for everything goes for any particular thing. 
A rough version of the rule is thus:

  Given a condition  F  and a name  a , you can move from ‘(For all x)(x is  F )’ 

to ‘ a  is  F  ’.   

 To understand the introduction rule for existential quantifi cation, 
note that what goes for a particular thing goes for something. A rough 
version of the rule is thus:

  Given a condition  F  and a name  a , you can move from ‘ a  is  F  ’ to ‘(  There 

is an x such that)(x is  F  )’.   

 The other two rules are a bit harder to grasp. The introduction rule for 
universal quantifi cation says that:

  If, given some condition  F , you can prove ‘ a  is  F ’ whatever name  a  is used, 

then you can move to ‘(For all x)(x is  F  )’.

(The idea is that a condition must apply to everything if there is a proof 
which can show it applies to any particular thing.)   

 And the elimination rule for existential quantifi cation says that: 

  You can move from ‘(  There is an x such that)(x is  F  )’ to a sentence p, just 

in case p can be proved from ‘a is  F  ’ whatever name  a  is used.

(The idea is that if p follows from an arbitrary object’s satisfying a 
 condition  F , then it must follow from  something  satisfying  F .)   

 Once we have specified a set of rules of inference, we can define 
notions of proof and syntactic consequence for predicate logic 
just as we did for propositional logic. A sentence j is a syntactic 
consequence of a set of sentences K in predicate logic just in case 
there is a proof in predicate logic with premises K and conclusion j. 
In such a case we write K �PRED  j, and we say that j is  provable  from K 
in predicate logic. And if we can prove j from zero premises, we 
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write �PRED  j and say that j is  provable  simpliciter, or that j is a  theorem
of predicate logic.  

     11.6   Predicate Semantics   

 Just as the syntax for predicate logic expands the syntax for 
 propositional logic, so does its semantics expand propositional 
semantics. In the last chapter we saw how the truth values of 
 sentences with truth-functional structure depend on the semantic 
values of their parts. Predicate semantics adds to this propositional 
semantics a further explanation of how the truth values of sen-
tences with  quantifi cational  structure similarly depend on the seman-
tic values of their parts. 

 To achieve this, we suppose that there is some set of objects at issue 
when we say ‘(For all x)( . . . )’ or ‘(There is an x)( . . . )’. This set is called 
‘the domain of discourse’. We then further suppose that all names 
refer to some object in this domain, and that all predicates are associ-
ated with some subset of this domain. 

 We can then say that, given any name  a  and predicate  F , a sentence 
of the form ‘ a  is  F ’ will be true just in case the object named by  a  is a 
member of the set associated with  F . 

 And we can also say that any sentence of the form ‘(For all x)(x is  F )’ 
will be true just in case everything in the domain of discourse is in the 
set associated with  F . 

 Similarly, any sentence of the form ‘(There is an x)(x is  F )’ will be 
true just in case something in the domain of discourse is in the set 
associated with  F . 

 (I am here skating over some technicalities that arise from the fact 
that quantifi ed sentences can involve  complex  conditions constructed 
by applying truth-functional connectives to  predicates , whereas so far 
we have only dealt with the semantic contribution of truth-functional 



SOUNDNESS AND COMPLETENESS 157

connectives to complex  sentences . But the above is already enough to 
give the general idea of predicate semantics.) 

 Again, once we are armed with a semantics for predicate logic, we 
can defi ne a notion of semantic consequence for predicate logic just as 
we did for propositional logic. A sentence j is a semantic consequence 
of a set of sentences K in predicate logic just in case the semantics for 
predicate logic ensures that j must be true whenever the sentences in 
K are all true. In such cases we write K �PRED  j, and we say that j is a 
semantic  consequence of K in predicate logic. And if the semantics 
ensures that j will be true whatever is the case, then we write �PRED  j, 
and we say that j is a  logical truth  in predicate logic.  

     11.7   Predicate Logic—Soundness 
and Completeness   

 Just as with propositional logic, predicate logic can be shown to be 
both sound and complete. It can be proved that every case of syntactic 
consequence is also a case of semantic consequence—so predicate 
logic is sound—and that every case of semantic consequence is also a 
case of syntactic consequence—so predicate logic is complete. 

 The proof of soundness for predicate logic is straightforward, 
but the proof of completeness for predicate logic takes us beyond 
the bounds of elementary metalogic. It was fi rst proved by Kurt 
Gödel in 1929.  

     11.8   Predicate Logic—Undecidability   

 Even though predicate logic shares the properties of soundness and 
completeness with propositional logic, there is a different respect in 
which it is rather less tractable than propositional logic. Where prop-
ositional logic is ‘ decidable ’, predicate logic is not. 
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 Focus on the semantic notion of a logical truth explained earlier—a 
sentence that is guaranteed to be true whatever is the case. For exam-
ple, any sentence of the form ‘p or not-p’ is a logical truth in propos-
itional logic. And any sentence of the form ‘(For all x)(not-( F x and 
not- F x))’ is a logical truth in predicate logic. 

 Now, there is an effective procedure for deciding whether or not 
any given sentence is a logical truth of propositional logic. If you have 
done an elementary logic course, you will have learnt how to apply 
‘truth table’ or ‘semantic tableaux’ tests for propositional logical truth. 
These procedures are essentially mechanical. You could use them to 
program a computer to tell whether or not any given sentence is a 
propositional logical truth. 

 However, there is no such effective procedure for predicate logical 
truth. There is no mechanical way of telling in a fi nite time whether or 
not any given sentence is a logical truth of predicate logic. 

 This might seem odd. After all, there is a mechanical way of mak-
ing a list of all the predicate logical truths. (You could set a computer 
to start constructing proofs by applying the rules of inference of 
predicate logic in some systematic order. This would then generate 
an infi nite list of all the proofs, from which we could derive an infi -
nite list of all the theorems of predicate logic, that is, all the sentences 
that are provable from zero premises. And since predicate logic is 
sound and complete, all and only the logical truths are theorems.   1

So this would give us a mechanically generated infi nite list of all the 
logical truths.) 

 But a mechanically generated infi nite list of all the logical truths 
does not amount to a procedure for telling  whether or not  any given 

1    I earlier defi ned soundness and completeness in terms of relations between 
syntactic and logical  consequence . But we can also say that a logic is  sound  if all 
its theorems  are  logical truths , and  complete  if all its  logical truths  are  theorems . The 
proof of the equivalence of these two pairs of defi nitions is not diffi cult but 
too messy to give here.  
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sentence p is a logical truth. You could of course start running through 
the list to see if p is there, but this procedure is not guaranteed to pro-
duce a result. True, if p  is  a logical truth, then you are sure to fi nd this 
out by going down the list—after some fi nite time you are guaranteed 
to come to it. But if p is  not  a logical truth then going down the list 
won’t tell you anything—for you will never be in a position to tell 
whether p is yet further down the list or just not there at all. 

 It would be different if we had an infi nite list of both the logical 
truths  and  of the sentences which are  not  logical truths. For then we 
could run down both lists and be sure to fi nd any given sentence on 
one of them after some fi nite time. However, there is no way to gener-
ate a list of all the  non -logical-truths of predicate logic, in the way we 
can generate a list of the logical truths. 

 In cases like this, logicians say that the set of predicate logical truths 
is ‘ recursively enumerable ’ but not ‘ recursive ’. The set is  recursively   enumerable
because there is a mechanical procedure for producing a list of its mem-
bers. But it is not  recursive  because there is no mechanical procedure for 
deciding whether or not any given item is a member. (‘Recursive’ in this 
context can be understood as equivalent to ‘programmable’.) 

 The points made above imply that, for any set S, if both S  and  the set 
of things that are not in S are recursively enumerable, then S will be 
recursive.  

     11.9   Second-Order Logic   

 So far we have seen that both propositional logic and predicate logic 
are sound and complete. This might make you think that any logical 
system will be similarly sound and complete. However, this would be 
wrong.  Second-order  logic is not complete. 

 Second-order logic is concerned with arguments that involve 
‘quantifi cation over properties’. 
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 Consider this argument. 

   Bill has every property that Anne has 

 Anne is wise 

 –––––––– 

 Bill is wise   

 Or, a bit more formally 

   (For all Ø)(Anne is Ø → Bill is Ø) 

 Anne is wise 

 –––––––– 

 Bill is wise   

 Again, consider this argument 

   Anne is tall 

 Bill is tall 

 –––––––– 

 There is a property that both Anne and Bill have   

 which  can in turn be symbolized as 

   Anne is tall 

 Bill is tall 

 –––––––– 

 (There is a Ø such that)(Anne is Ø and Bill is Ø)   

 These look like valid arguments all right. But note that they are not 
captured by predicate logic. Predicate logic is concerned with ‘fi rst-
order’ existential and universal quantifi cation over  objects —items 
named in the subject position of simple sentences, like  Anne  in ‘Anne 
is tall’. But predicate logic does not deal with ‘second-order’ quantifi -
cation over  properties . 

 So while predicate logic licenses the inference from 
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  Anne is tall   

 to

  (There is an x such that)(x is tall)   

 it does not recognize the inference from 

  Anne is tall   

 to

  (There is a Ø such that)(Anne is Ø).   

 This last inference involves second-order  existential  quantifi cation—
that is, claims of the form ‘(There is a Ø such that)( . . . )’. We also saw 
above an example of second-order  universal  quantifi cation—that is, a 
claim of the form ‘(For all Ø)( . . . )’.  

     11.10   The Incompleteness 
of Second-Order Logic   

 If we want to formalize second-order logic, we will need to add a syn-
tax and semantics for the second-order quantifi ers to the syntax and 
semantics already given for predicate logic. That is, we will need to 
specify a set of rules of inference for the second-order quantifi ers. 
And we will need to explain how the truth values of sentences involv-
ing second-order quantifi ers are determined by the semantic values of 
their parts. 

 Now, it is indeed possible to do this, roughly analogously to the way 
I explained how it is done for fi rst-order existential and universal 
quantifi cation above. (For example, you want a syntactic rule of infer-
ence that allows you to go from ‘ a  is  F ’ to ‘(There is a Ø such that)( a  is 
Ø)’. And semantically we can specify that sentences of this latter form 
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are true just in case there is some subset of the domain of discourse to 
which  a  belongs. And so on.) 

 However, when we do specify a syntax and semantics along these 
lines, we don’t end up with a set of rules of inference that is both sound 
and complete for second-order logic. Given the natural way of speci-
fying a semantics for second-order quantifi cation,  no  set of rules of 
inference can be both sound and complete. If we stick to rules that are 
sound—that is, will only take us from truths to truths—then they will 
inevitably fail to capture all cases of semantic consequence—there 
will be some sentences whose truth is guaranteed by other sentences 
but which cannot be reached from those others via the rules of 
inference. 

 The trouble is that the sentences whose truth is guaranteed by 
 second-order semantics will always outrun those that are syntacti-
cally provable. 

 We saw in section 11.8, on the undecidability of predicate logic, that 
we can recursively enumerate the theorems of predicate logic, in the 
sense of sentences provable from zero premises. (We just program a 
computer to start applying the rules of inference in some systematic 
order.) In fact this works for any specifi ed set of rules of inference. 
Since a computer could be programmed to apply any set of rules of 
inference in a systematic order, the theorems that they generate will be 
recursively enumerable. 

 However, the logical truths guaranteed by the standard semantics 
for second-order logic are  not  recursively enumerable. This means
that there must be some that are not theorems.   
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      further reading   

 Lemmon’s  Beginning Logic  (Nelson 1965) contains proofs of soundness and 
completeness for propositional logic. 

 Geoffrey Hunter’s  Metalogic  (University of California Press new edition 1992) is 
an excellent introduction by a philosopher to the meta-theory of fi rst-order 
logic. 

Computability and Logic  by George Boolos and Richard Jeffrey (Cambridge 
 University Press 1974) covers a great deal of metalogical ground from the 
 perspective of computability theory. 

 Michael Dummett’s ‘The Justifi cation of Deduction’ (reprinted in his  The Logical 
Basis of Metaphysics , Harvard University Press 1989) is the classic discussion of 
the circularity issues raised in section 11.3.    

     exercises   

   There are no Exercises for this chapter.        
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                              12  

      12.1   Theories   

 In the last two chapters I discussed logic. Logic is to do with  question 
of validity, to do with some sentences  following  from others. It tells 
us that we can believe certain sentences  if  we believe others. But it is 
not logic’s job to tell us which sentences to believe in the fi rst 
place. 

Theories  contrast with logic in this respect. Where logic aims at 
validity, theories aim at  truth . A good theory is one whose sentences 
are true. So a good theory tells us that certain sentences are to be 
believed. 

 Different theories concern different aspects of the world. So, for 
example, Newton’s theory concerns the way that forces infl uence the 
motion of physical objects, genetic theory concerns the mechanisms 
of heredity in organisms, Euclidean geometry concerns the size and 
shape of regions of space, Peano’s theory concerns the natural num-
bers, and so on. 

 A theory will employ a  vocabulary  of non-logical terms to refer to its 
subject matter. So, for example, the vocabulary of Euclidean geometry 
will include ‘point’, ‘line’, ‘distance’, and ‘angle’. 

Theories and Gödel’s Theorem   
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 One way to formulate a theory is to specify a set of sentences as  axi-
oms . The theory then consists of all the sentences that follow by logic 
from those axioms. We call these sentences the  theorems  of the theory. 

 I shall assume henceforth that the logic in question here is fi rst-
order predicate logic. 

 (When I say ‘follow by that logic’, do I mean syntactic or semantic 
consequence? ├PRED  or ╞PRED ? Given that our logic is predicate logic, it 
doesn’t matter. Predicate logic is both sound and complete, so we will 
get exactly the same set of theorems either way.) 

 Not all theories are actually formalized in this precise axiomatic 
way. You would be hard put to fi nd an axiomatic version of contem-
porary genetic theory, say. But a number of theories of interest to 
mathematicians and logicians have well-known axiomatizations, 
including Euclid’s axiomatization of geometry given in  Chapter  4     and 
Peano’s postulates for arithmetic. (See Box 24.)   

     12.2   Syntax and Semantics for Theories   

 Just as with logics, we can view axiomatic theories both syntactically 
and semantically. 

 When we view theories syntactically, we regard the theorems as 
nothing more than strings of meaningless marks arranged in specifi c 
ways. 

 But when we view theories semantically we interpret the sentences 
as having defi nite meanings. Not only do we assign meanings to the 
logical terms like ‘not’, ‘or’, and ‘(for all x)(. . . .)’, as in the last chapter. 
We also interpret the non-logical vocabulary as referring to defi nite 
entities in the real world. (So, for example, such non-logical vocabu-
lary would include ‘force’ and ‘mass’ in Newtonian theory, ‘gene’ and 
‘chromosone’ in genetic theory, ‘line’ and ‘angle’ in Euclidean  geometry, 
and ‘zero’ and ‘successor’ in Peano’s arithmetic.)       
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 In the last chapter, adding semantics to syntax allowed us to ask 
whether logical systems were  sound  and whether they were  complete . 

 With theories we can ask a similar pair of questions. We can ask 
whether theories are  sound  and whether they are  complete . 

 But watch out—soundness and completeness for theories is differ-
ent from soundness and completeness for logical systems. With log-
ics these notions were focussed on the relation between syntax and 
semantic   consequence . With theories they are focussed on the relation 
between syntax and  truth . 

 Thus, in asking whether a theory is sound, we ask whether it includes 
as theorems  only  sentences which are  true . A theory would fail on this 
score if it included as theorems some sentences that were false. 

 And in asking whether a theory is complete, we ask whether it 
includes as theorems  all  the  true  sentences that can be stated in its 
vocabulary. A theory would fail on this score if its theorems omitted 
some truths about its subject matter. 

 While these notions are now focussed on truth rather than  logical 
consequence, note the analogy with the earlier defi nition for logics. 
With both theories and logics soundness requires that the syntax of 
the system do  only  what it should. And again in both cases com-
pleteness requires that the syntax of the system do  everything  that it 
should.  

     12.3   Theoretical Completeness   

 As I have just explained, completeness for theories is a semantic 
 matter. Does the theory cover  all  the relevant truths? But somewhat 
curiously this semantic completeness has a purely ‘internal’ 
 manifestation which we can specify without bringing in truth. If a 
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theory is semantically complete, then for any sentence p that can be 
stated in its vocabulary, either p or ‘not’-p will be a theorem. 

 To see why, note that for any sentence p, one of p and ‘not’-p will 
always be true. But if a theory is complete, then its theorems cover all 
the relevant truths. So one of p and ‘not’-p must be a theorem. 

 Sometimes the property of having either p or ‘not’-p as a theorem 
for any p is called ‘ syntactic  completeness’. This is in recognition of the 
fact that this property can be specifi ed entirely in terms of the kind of 
sentences  that the theory contains and does not require us to mention 
truth. By contrast, the property of having all truths as theorems is 
called  semantic  completeness. 

    Box 24    Peano’s Postulates    

  The following fi ve postulates about the natural numbers were proposed as 

the basis of arithmetic at the end of the nineteenth century by the Italian 

mathematician Giuseppe Peano (1858–1932). 

    Postulate 1.  0 is a natural number 

  Postulate 2.  To each natural number n there corresponds a second natural number, called the 

successor of n. 

  Postulate 3.  For all n, 0 is not the successor of n. 

  Postulate 4.  If the successor of n = the successor of m, then n = m. 

  Postulate 5.  If a set S of natural numbers contains 0 and the  successor of every number it contains, 

then it contains all the natural numbers.   

 Together these postulates determine the structure of the natural numbers: 

0 is the least natural number, distinct natural numbers have distinct succes-

sors, and all the natural numbers are generated by starting with 0 and suc-

cessively taking  successors, so to speak.  
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 I have just explained that syntactic completeness is necessary for 
semantic completeness. If a theory includes all the truths, then it must 
have p or ‘not’-p as a theorem for any relevant p. But of course syntac-
tic completeness is not  suffi cient  for semantic completeness. A theory 
could be radically wrong and yet take a defi nite view on every ques-
tion that can be raised in its vocabulary. (In the extreme case, imagine 
a theory that included p as a theorem for every p that was  false , and 
‘not’-p as a theorem for every p that was true.)  

     12.4   Completeness for Theories versus 
Completeness for Logics   

 I originally defi ned completeness for a logic as the requirement that 
every semantic consequence is a syntactic consequence (that is, if 
K╞ j then K├ j). But as I later observed ( Chapter  11  , footnote 1) it can 
alternatively be defi ned as the requirement that every logical truth is 
a theorem in the sense of being provable from zero premises (if╞ j 
then├ j). 

 The latter formulation better enables us to appreciate some  important 
differences between completeness for theories and completeness for 
logics. In both cases, completeness is loosely speaking a matter of all 
the sentences with the right semantic property being theorems. But in 
the case of theories, this comes out as all the  true  sentences being theo-
rems, while in the case of logics, this comes out as all the  logically true
sentences being theorems (that is, provable from nothing). 

 This is why there is nothing in the case of logics analogous to the 
internal syntactic completeness which manifests semantic complete-
ness in the case of theories. We can’t say that if a logic is complete, 
then either p or ‘not’-p must be a theorem (in the way that if a theory 
is complete, then p or ‘not’-p must be a theorem). And this is because 
a complete logic succeeds in capturing  logical  truth, not truth per se, 
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and there is no requirement that either p or ‘not’-p must always be 
logically true, in the way that either p or ‘not’-p must always be true. 

 Plenty of sentences are such that neither they nor their negations 
are logically true. Take the sentence ‘David Papineau has been to Mos-
cow’. Either this sentence or ‘David Papineau has not been to Moscow’ 
must be true, because one must represent the world correctly. But nei-
ther has to be  logically  true. Logical truth is not just being true, but 
being  guaranteed  to be true. And while one of ‘David Papineau has been 
to Moscow’ and ‘David Papineau has not been to Moscow’ must indeed
be true, neither one of them is  guaranteed  to be true.  

     12.5   Gödel’s Theorem Stated   

 Gödel’s theorem (more precisely, ‘Gödel’s fi rst incompleteness 
 theorem’) shows that  no  sound theory for arithmetic can be complete. 

 For example, take the theory that has Peano’s postulates as axi-
oms. Assume it is sound—that is, that it contains no falsehoods. 
Gödel showed that there is then a true sentence that can be stated in 
the language of arithmetic, but which cannot be proved from Peano’s 
postulates (or from any other reasonable attempt to axiomatize 
arithmetic). 

 This is a very striking result. It tells us that no sound axiomatic the-
ory can capture all the truths of arithmetic. However many truths are 
captured by the axioms, there will always be some that escape. 

 In fact Gödel himself didn’t just prove that no  sound  theory for arith-
metic can be complete, but the interestingly stronger result that no 
consistent  theory for arithmetic can be complete.   1    (His result is stronger 

1    More precisely, he originally proved that no arithmetical theory with a 
 property called ‘ω-consistency’ can be complete, which isn’t quite as strong 
as proving that no consistent arithmetical theory can be complete.  
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because soundness implies consistency, but consistency does not 
require soundness.) However, the proof sketched below for the weaker 
thesis avoids some tiresome technicalities, while still conveying the 
essential features of Gödel’s original construction.  

     12.6   A Sketch of Gödel’s Proof   

 To prove the theorem, we start by ‘Gödel numbering’ all the sentences 
that can be formulated within the vocabulary of Peano’s theory of arith-
metic. (See Box 25.) Gödel showed how to construct a system that will 
associate a unique natural number with any such sentence. The Gödel 
numbers thus serve as labels for the theory’s sentences. (Different systems 
of Gödel numbering can be constructed, using different numbers as labels 
for the sentences. Let us assume that we have fi xed on one such system.) 

 Gödel also showed how to associate a unique number with every 
sequence  of sentences. (We will be interested in sequences of sentences 
because some such sequences will constitute  proofs  of their last mem-
bers from Peano’s axioms using predicate logic rules of inference.)  

 Given our system of Gödel-numbering, this  syntactic  relation of 
proof will be mirrored by a  numerical  relation between numbers—let 
us symbolize this as  m PRF n —which holds just in case  m  is the Gödel 
number of a sequence that proves the sentence whose Gödel number 
is n . Given this, we can think of the numerical relation  PRF  as  encoding
the syntactic relation of proof. 

 While  PRF  encodes the syntactic relation of proof, we should also 
hold in mind that  PRF  is an ordinary relation between numbers. For 
example, given some specifi c system of Gödel numbering, it might 
come out that the sequence numbered by  m  proves the sentence num-
bered by  n  if and only if  m7 = n    –  13    . (Of course, in any actual case it will 
be far more complicated than that. But the point remains that  PRF  will 
be some such ordinary numerical relation.) 
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 Now, Gödel showed that this numerical relation  PRF  can itself be 
represented within the formal language of arithmetic. Within this 
language we can write down sentences ‘m PRF n’ which will be true if 
and only if the number  m  bears  PRF  to the number  n . (This is where 
most of the hard work comes in his proof.) 

 Consider now any arithmetic sentence of this form: 

  K: ‘(There is no x such that)(x PRF k)’.   

 In effect, K ‘ says ’ that the sentence with Gödel number  k  is unprovable. 
K will be true if and only if there is no sequence which proves the sen-
tence with Gödel number  k . 

 Of course, K doesn’t strictly say that some sentence is unprovable. 
K is in the fi rst instance an ordinary arithmetical claim. (Sticking with 
the illustration above, K comes out as ‘(There is no x such that)(x7 = k   – 13)’).
Still, we can happily view K as  encoding  the unprovability of the sen-
tence with Gödel number  k , given that K will be true if and only if this 
sentence is indeed unprovable. 

 Now we do something clever. Since sentences of the form K are at 
bottom just ordinary sentences of arithmetic, they themselves have 
Gödel numbers. Using this fact, Gödel showed that we can fi nd some 
specifi c sentence of this form where  k  is the Gödel number of  that   sen-
tence   itself . We shall call this our ‘Gödel sentence’ and abbreviate it as G. 

 So G is the sentence 

  G: ‘(There is no x such that)(x PRF g)’   

 where  g  is the Gödel number of that same sentence. 
 Observe that G ‘says’ of itself  I am not provable . More precisely, 

observe that G is an arithmetical sentence that will be true if and only 
if there is no proof of that sentence itself. 

 The result now quickly follows. If G is true if and only if it has no 
proof, there are only two possibilities. G is true and it has no proof. 
Or G is  false  and it  does  have a proof. But the latter possibility is 
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ruled out by our assumption of soundness—a sound theory 
 contains no falsehoods. So the only option left is that G is a 
true sentence that is not provable in our theory. Quod erat 
demonstrandum. 

 To drive the point home, remember that the Gödel sentence isn’t 
some esoteric philosophical claim. It’s just a sentence of arithmetic. 
Thus, reverting to our earlier illustration, it could be the sentence 
‘(There is no x such that)(x7 = 17,546    – 13)’ where 17,546 is the Gödel 
number of that very sentence. 

 And what we have done is fi gured out, by attending to our system of 
Gödel numbering, that this numerical sentence is true if and only if it 
has no proof. Which means that, if arithmetic is sound, then this 
straightforward arithmetic sentence must be unprovable and true—
for the only alternative is for it to be provable and false, which would 
violate the soundness or arithmetic.  

     12.7   The Inescapability of Gödel’s Theorem   

 Let us recapitulate. We started with a formal theory—Peano’s arith-
metic—designed to capture all the truths of arithmetic. And we have 
shown that it doesn’t. There is some ordinary arithmetic truth that 
does not follow from Peano’s axioms.   2

 You might feel that this refl ects badly on Peano’s particular set of 
axioms, rather than on the idea of formalized arithmetic as such. Isn’t 
the obvious moral that Peano’s axioms are too weak, and that we need 
to beef them up by adding some more axioms? In particular, what 

2    All right—we only showed this on the assumption that arithmetic is sound. 
But I shall drop this qualifi cation from now on. No one seriously doubts that 
Peano’s arithmetic is sound. Just look at the axioms. The problem is that they 
don’t generate enough truths, not that they generate some falsehoods.  
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    Box 25   A System of  Gödel Numbering    

  Suppose we have a list of all the basic words and symbols in our language 

of arithmetic and that there are less than one hundred of them. Then we 

could use the list to associate each word or symbol with a unique pair of 

digits. For instance, the list might pair the words and symbols on the left with 

the pairs of digits on the right: 

   ‘0’   07 

 ‘successor’   65 

 ‘not’ 13 

 ‘the’ 75 

 ‘is’ 24 

 ‘n’ 03 

 ‘for’ 88 

 ‘all’ 25 

 ‘of ’ 42 

 ‘,’ 23   

 Then we could associate a unique number with every sentence of arithme-

tic by simply concatenating in order the pair of digits associated with words 

and symbols in the sentence. 

 So for example the sentence 

   ‘For all n, 0 is not the successor of n’   

 would get the number 

   8825032307241375654203.   

 It is clear that this system will give each sentence its own natural number. 

Given any natural number, we can read off from its decimal representation 

what string of symbols (if any) it determines. 

 To associate a unique number with any  sequence  of sentences, we need 

to take a bit of care. If we simply string together the decimal representations 

of the Gödel numbers of the sentences in the sequence, then different 

sequences of related sentences could possibly end up with the same 

number. However, if we put double zeros—00s—between the decimal rep-

resentations of the Gödel numbers of the sentences in the sequence, then 

each sequence of sentences will be sure to have its own natural number.  
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about simply adding G itself as an axiom? That would fi x the 
 unprovability all right. 

 But adding extra axioms won’t make the incompleteness go away. 
To see why, note that the proof sketched above didn’t depend on the 
details of Peano’s theory. Rather it appealed to a general recipe which 
will work for any formal theory of arithmetic: number its sentences, 
construct a Gödel sentence as above, and so on. 

 The only point where the content of Peano’s theory really mattered 
was where Gödel showed that the relation  PRF  could be represented 
within that theory. So Gödel’s proof will apply to  any  formal theory of 
arithmetic that is powerful enough to represent this relation. That is 
why adding axioms won’t make the incompleteness go away. System-
atically adding axioms to a theory won’t make it less powerful in this 
respect. If Peano’s theory is strong enough to represent  PRF , then so is 
Peano’s theory plus G. 

 Of course, if we add our original G above to Peano’s axioms, we 
won’t have a theory with  that  G as a Gödel sentence. That G will now 
trivially be provable. But Gödel’s procedure guarantees that there will 
now be some further sentence G new  that is true but doesn’t follow even 
from the augmented axioms. (If you are wondering  why  we now get a 
new  G new  out of Gödel’s procedure, note that, even if we keep the same 
system of Gödel numbering, the addition of our original G as an axiom 
will change the relation of  PRF , and so lead to a different Gödel 
sentence.)  

     12.8   Meta-Theorizing   

 Here is an obvious puzzle about Gödel’s theorem. On the one hand 
the theorem shows that a certain sentence is  not   provable . Yet at the 
same time the theorem shows that this sentence is true—that is, the 



THEOR IES AND GÖDEL’S THEOREM 175

theorem itself  proves  that sentence. Doesn’t this take away with 
one hand what it gives with the other? However can you prove a sen-
tence in the course of showing it is not provable? 

 To sort this out we need to distinguish carefully between our  object
theory  and our  meta - theory . 

 Any given version of Gödel’s theorem will focus on some specifi c 
formal theory of arithmetic like Peano’s theory. This is our object the-
ory. The language of this theory (the  object   language ) refers to numbers 
and their arithmetic relations but nothing else. 

 When we say the Gödel sentence is  not   provable , we mean it is not a 
theorem of this object theory. It cannot be logically derived from the 
axioms of the object theory. 

 Our  meta-theory  is the theory within which we prove Gödel’s 
 theorem itself. The language of this theory (the  meta-language ) talks 
about more than numbers. In particular, it also talks  about  the object 
theory, and specifi cally about the syntax and semantics of the sen-
tences it contains. We now  mention  the terminology that the object 
theory merely  uses . So now we can talk, not just about numbers, but 
also about the sentences of the object language—and crucially about 
whether those sentences are true or not. Our meta-theory thus  enables 
us to stand outside the object theory, as it were, and assess its success 
in describing its subject matter. 

 When, in the course of Gödel’s theorem, we establish that G is true 
and so  prove  it, we are proving it within this meta-theory. 

 This is why there is nothing contradictory about Gödel’s theorem. 
It shows us that G is not provable within the  object theory , and at the 
same time proves it within the  meta-theory . 

 It is pretty amazing that a sentence that is unprovable within Peano’s 
theory, say, can be proved simply by adding to Peano’s theory the abil-
ity to talk about the truth of its own sentences. But while this may be 
amazing, it is not contradictory. 
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 Observe now how the move to a meta-theory does not allow us to 
escape the limitations imposed by Gödel’s theorem, any more than 
just adding G as an axiom did. Just as adding G as an axiom gave rise to 
a new unprovable Gödel sentence, so does the move to a meta-
theory. 

 True, by moving to a meta-theory we can prove our original G. But 
that meta-theory could itself be laid out as a formal system, and 
Gödel’s procedure could then be applied to  that  system, and it would 
then generate some new true G meta  that can’t be proved within the 
meta-theory. 

 True, we would now be working within a meta-meta-theory, and 
this last application of Gödel’s procedure would now also prove our 
new G meta  within this meta-meta-theory. But that meta-meta-theory 
too could be formalized and Gödelized to generate a yet further true 
Gmeta-meta  that it can’t prove. And so on. 

 It is an interesting question exactly what moral to draw from all this. 
 Gödel’s theorem certainly shows that 

  (For all sound theories T)(there is some true sentence s such that T 

doesn’t prove s)   

 But it would be a mistake to infer from this that

  (There is a true sentence s such that)(for all sound theories T)(T does 

not prove s).   

 Even if every girl loves her own sailor, this doesn’t mean that there is 
some particular sailor beloved by all girls. Similarly, even if every the-
ory has its own unprovable truth, this doesn’t mean that there is some 
particular truth that isn’t provable in any theory.   
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      further reading   

Gödel’s Proof  (New York University press revised edition 2001) by Ernst Nagel 
and James R. Newman, originally published in 1958, is a classic introduction 
but now somewhat dated. 

 Peter Smith’s  An Introduction to Gödel’s Theorems  (Cambridge University Press 
2007) is a detailed study written by a philosopher. 

 Roger Penrose’s  Shadows of the Mind  (Oxford University Press 1994) explains 
Gödel’s theorem in detail and then attempts to infer that the human brain is not 
a computer. 

 Douglas Hofstadter’s  Gödel, Escher, Bach: The Eternal Golden Braid  (Basic Books 
1979) also contains much interesting material on Gödel’s theorem.    

     exercises   

   There are no Exercises for this chapter.         
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       SOLUTIONS TO EXERCISES                     

      1.  (a) {Abe, Bertha, Carl}; (b) {1, 2, 5, 7, 11, 13}; (c) {x: x is a child aged 7–15}; 
(d) {France, Germany, Italy}; (e) {France, Germany, Italy, India, China}; (f) {x: 
lives in Europe}; (g) {x: x lives in China or Europe}; (h) {x: x weighs more than 
7 kilos}.  

   2.  (a) {Bertha}; (b) {5, 11, 13}; (c) {x: x is a child aged 10–12}; (d) {Germany, 
Italy}; (e) Ø; (f) {x: lives in Germany}; (g) Ø; (h) {x: x weighs more than 10 
kilos}.  

   3.  (a) Ø, {Abe}, {Bertha}, {Abe, Bertha}; (b) Ø, {7}, {8}, {9}, {7, 8}, {7, 9}, {8, 9}, 
{7, 8, 9}.  

   4.  (a) {Ø, {1}, {7}, {1, 7,}}; (b) {Ø, {London}, {Manchester}, {Birmingham}, 
 {London, Manchester}, {London, Birmingham}, {Manchester, Birmingham}, 
{London, Manchester, Birmingham}}.  

   5.  (a) members: 2, 3; (b) subsets: {7,8}, {2,3}, Ø; (c) neither members nor subsets: 
{1, 2, 3, {7, 8}}.  

   6.  (a) members: 2, {7,8}, {2,3}, 3; (b) subsets: {2,3}, Ø, {1, 2, 3, {7,8}}; (c) neither 
members nor subsets: none.  

   7.  Suppose (A) is true; but then, given what it says, it must be false; so, by 
reductio,  (A) is not true . Suppose (A) is not true; but then, given what it 
says, it must be true; so, by reductio,  (A) is true . The two italicized claims 
comprise a contradiction.      

     Chapter 1      
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    Chapter 2      

      1.  Example: Philosophy students know how to spell ‘philosophy’. Example: 
John didn’t like being called ‘John’. In both examples the relevant word is 
used fi rst and mentioned second.  

   2.  2; 1; 10; 10.  

   3.  For example:

  0   +5   -5   +10   -10   … 

 0   1    2    3    4    …    

   4.  (a) and (c).  

   5  *. Look what happens when we divide 9 by 7, say 7|9.0000… 

  7 into 9 goes  1  , remainder 2; 

 7 into 20 goes  2  , remainder 6; 

 7 into 60 goes  8   remainder 4; 

 7 into 40 goes  5  , remainder 5; 

 7 into 50 goes  7  , remainder 1; 

 7 into 10 goes  1  , remainder 3; 

 7 into 30 goes  4  , remainder 2; 

 7 into 20 goes  2  , remainder 6              

 —and now we have started recurring and so have the answer 
1.285714285 . . . 
  In general, when we do a long-division computation q|p.0000 . . ., there will 
be at most q distinct ‘remainders’. And so once we are past the decimal point 
the answers will start repeating after at most q steps.

     6  *.  Consider for example 9.25126126126 . . . Take the ‘recurring part’ r = 
0.00126126126… Multiply by 10  3  to get 1.26126126 . . . Subtracting r from this 
leaves 1.26. So (10  3  – 1)r = 1.26, and r = 126/999 = 14/111. Adding this to 9 
25/100 gives 9 167/444. In general, multiply the ‘recurring part’ r of any 
recurring decimal by 10  k , where k is the number of digits in the recurring 
part, subtract the original recurring part to get a non-recurring answer for 
(10  k  – 1)r, and proceed as above.      
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    Chapter 3      

      1.  (a) infi nity 0 ; (b) infi nity 0 ; (c) 2  infi nity0 .  

   2.  Given any numerical list of decimal representations of all the rational num-
bers, you can certainly use Cantor’s trick to construct a decimal representa-
tion that is not in that list. But you can’t assume that this represents a  rational
number. (Indeed, we know, since the rationals are denumerable, that it  can’t
represent a rational number. An interesting further exercise is to understand 
directly why the construction can’t yield a recurring decimal.  See <http://
www.mathpages.com/home/kmath371.htm >.)  

   3.  If we construct our new decimal representation, not by adding ‘1’ to the n th  digit 
of the n th  number in the list, so to speak, but say by putting ‘6’ if the n th  digit of the 
nth  number is ‘7’, and ‘7’ otherwise––then we can be sure that our new decimal 
representation doesn’t end in an infi nite strings of nines or zeros, and so that it 
uniquely determines a real number not represented in the original list.  

   4.  The complication is that some real numbers have two binary representa-
tions, just as they have two decimal representations: thus in binary notation 
0.01111 . . . = 0.1000 . . .  To make sure that each real number determines a  unique
subset of the natural numbers, we need to specify that in such cases we use 
just one of the two representations, say the one ending in all zeros.  

   5  *. A geometrical demonstration. Imagine bending the line segment from 0 to 
1 into a semicircle with centre P. Then the rays projecting from P though the 
semicircle will pair up the points on the semicircle with the points on any 
infi nitely long straight line parallel to the base of the semicircle. 

    An algebraic demonstration. The function (1/x) – 2 pairs up the points 
between 0 and 1/2 with the positive real numbers, and the function 2 – (1/(x –
(1/2))) pairs the points between 1/2 and 1 with the negative real numbers.        

    Chapter 4      

      1.  Some examples of analytic statements:  all squares have four sides;   all women are 
female ;  if John is taller than Jim, then Jim is shorter than John.

http://www.mathpages.com/home/kmath371.htm
http://www.mathpages.com/home/kmath371.htm
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   Some examples of synthetic statements:  there are no wild tigers in Africa;   the 
Pope has been to Wembley stadium ;  copper conducts electricity .    

   2.  I’d say that (a), (c), and (g) are analytic, (b), (d), and (e) are synthetic, and that 
it’s indeterminate which (f) and (h) are.  

   3.  Syntheticity is a matter of meaning––a synthetic statement is one whose 
truth isn’t guaranteed by the meanings of its terms. A posteriority is to do 
with knowledge––an a posteriori statement can only be known as a result of 
relevant experiences.  

   4.  If a statement is analytic then its truth is guaranteed by the meanings of its 
terms; so someone who understands those terms will be in a position to know 
it without any further experiences—which means it is not a posteriori.  

   5.  Some examples of claims that have been thought to be synthetic a priori:  every 
event has a cause ;  nothing can be red and green all over  ;  if a is heavier than b, and b 
heavier than c, then a is heavier than c ;… plus the claims of Euclidean geometry.  

   6.  The claim at issue isn’t (a) a matter of defi nition. Nor, if babies are born with 
the belief, is it (b) acquired from experience. But natural selection’s ability to 
instil false beliefs as well as true ones is arguably a good reason for denying 
this belief the status of knowledge.      

    Chapter 5      

      1.  Necessary: (a), (c), (e), (f); contingent: (b), (d), (g), (h).  

   2.  An a posteriori necessity:  Marilyn Monroe = Norma Jeane Baker . An a priori 
necessity:  Triangles have three sides . An a priori contingency:  Julius (as defi ned in 
section 5.3) invented the zip . An a posteriori contingency:  David Papineau is a 
philosopher .  

   3.  (c) and (e) are posteriori necessities; (a) and (f ) are a priori necessities; (d) and 
(g) are a priori contingencies; (b) and (h) are a posteriori contingencies.  

   4.      (a) is correct, because p’s truth in all possible worlds implies its truth in at 
least one.  
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  (b)  is incorrect, because p’s truth in one possible world does not imply its 
truth in all.  

  (c)  is incorrect, because p’s truth in all possible worlds does not imply it is 
not true in any.  

  (d)  is correct, because p’s truth in the actual world implies its truth in at least 
one.  

  (e)  is incorrect, because p’s falsity in the actual world does not imply its 
truth in at least one.  

  (f )  is incorrect, because p’s falsity in at least one possible world does not 
imply it is false in all.  

  (g)  is correct, because p’s falsity in all possible worlds implies not-p is true in 
all possible worlds.    

   5.  (a), (e), and (f ) are ruled out by logic and defi nitions; (b), (c), and (d) are ruled 
out by the essential properties of things.  

   6.  (e), and (g) are naturally possible; (c), (f ), and (h) are absolutely but not 
 naturally possible; (a), (b), and (d) are neither.      

    Chapter 6      

      1.  [NB these are not the only way of phrasing these alternative readings.] 
(a) (For each boy x)(there exists a teacher y such that)( x hates y), and (There 
exists a teacher y such that)(for every boy x)(x hates y); (b) (There exists a 
teacher x such that)(for every boy y)(x hates y) and (For each boy y)(there 
exists a teacher x such that)(x hates y); (c) (Necessarily)(the fi rst mammal on 
the moon)(was human) and (The fi rst mammal on the moon)(necessarily)
(was human); (d) (Necessarily)(the tallest person in Britain) (is shorter than 
no one in Britain) and (The tallest person in Britain)(is necessarily)(shorter 
than no one in Britain); (e) (It might not have been that)(the head of the 
King’s College London philosophy department is)(head of the King’s College 
London philosophy department) and (The head of the King’s College  London 
philosophy department)(might not have been)(head of the King’s College 
London philosophy department); (f) (It is not possible that)(the inventor of 
the zip)(did not invent the zip) and (The inventor of the zip)(couldn’t  possibly 
not have)(not invented the zip).  
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   2.  (c) fi rst false, second true; (d) fi rst true, second false; (e) fi rst false, second 
true; (f ) fi rst true, second false.  

   3.  (a) de re; (b) de dicto; (c) de re; (d) de dicto; (e) de re; (f ) de re.  

   4.  (a) true; (b) false; (c) true; (d) false; (e) true; (f ) true.  

   5.  (a) necessary; (b) necessary; (c) contingent; (d) contingent; (e) necessary; (f ) 
necessary; (g) necessary; (h) contingent [Holland could have been a higher-
lying country].  

   6.  (a) a posteriori; (b) a priori; (c) a posteriori; (d) a priori; (e) a posteriori; (f ) a 
priori; (g) a posteriori; (h) a posteriori.      

    Chapter 7      

      1.  (a) 1/4; (b) 1/13; (c) 5/13; (d) 3/4; (e) 5/52; (f ) 1/2; (g) 0.  

   2.  (a) 1/16; (b) 1/16; (c) 4/16; (c) 4/16.  

   3.  (a) 1/12; (b) 1/6; (c) 1/36; (d) 1/2; (e) 1/6; (f ) 5/18; (g) 5/9.  

   4.  (a) 0.2 ; (b) 0.9; (c) 0.5.  

   5.  Beach’s expected utility = (1 x 10) + (0.5 x -10) + (0.2 x 20) = 10 – 5 + 4 = 9.  
  Cricket’s expected utility = (1 x 15) + (0.3 x -10) + (0.05 x 20) = 15 – 3 + 1 = 13.  

   6  *. Since 

  (p or q) is logically equivalent to ((p & not-q) or (q))       

 and the propositions within the bracket on the right-hand side are 
 incompatible, Kolmogorov’s third axiom implies

  (A) Pr(p or q) = Pr(p & not-q) + Pr (q).   

 And since

  p is logically equivalent to ((p & q) or (p & not-q))   

 and the propositions within the bracket on the right-hand side are again 
incompatible, the third axiom also implies 
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  Pr(p) = Pr(p & q) + Pr(p & not-q)   

 and hence

  (B) Pr(p & not-q) = Pr(p) – Pr(p & q).   

 (A) and (B) together give

  Pr(p or q) = Pr(p) + Pr(q) – Pr(p & q).    

    Chapter 8      

      1.  Pr(wind/rain) = 4/5; Pr(rain/wind) = 2/3.  

   2.  (a) 4/13; (b) 4/13; (c) 1/4; (d) 3/4; (e) 5/9; (f ) 4/9; (g) 0.  

   3.  0.4 (= Pr old (h/e) = Pr old (h) x Pr old (e/h)/Pr old (e)).  

   4.  0.2 (If h is the hypothesis that the coin is biased 75% in favour of Heads, and 
e the evidence that it landed Heads twice, Pr old (h) = 0.1, Pr old (e/h) = 9/16, Pr old (e) 
= Pr old (e/h)Pr old (h) + Pr old (e/not-h)Prold(not-h) = (9/16 x 0.1) + (1/4 x 0.9) = 9/32. 
So Pr 

old (h/e) = 0.1 x 9/16 ÷ 9/32 = 0.2.)  

   5.  (a) indicative; (b) subjunctive; (c) subjunctive; (d) indicative; (e) indicative; 
(f) subjunctive; (g) subjunctive; (h) indicative.  

   6.  (a) true; (b) false; (c) false; (d) true; (e) false; (f ) true; (g) (probably) false; 
(h) true.      

    Chapter 9      

      1.  (a) 1/2; (b) 1/3; (c) 1/3; (d) 2/3; (e) 1; (f ) 1/3.  

   2.  (a) independent; (b) negatively dependent; (c) negatively dependent; (d) inde-
pendent; (e) positively dependent; (f ) independent.  

   3.  (c) is the odd one out, as it specifi es that p and q are negatively dependent, 
where the other inequalities specify that they are positively dependent.  
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   4.  Here are sixteen different ways of specifying that p and q are positively 
dependent: 

  Pr(p/q) > Pr(p), Pr(p/q) > Pr(p/not-q), Pr(q/p) > Pr(q), Pr(q/p) > Pr(q/not-p), 

Pr(p & q) > Pr(p)Pr(q); Pr(not-p/not-q) > Pr(not-p), Pr(not-p/not-q) > 

Pr(not-p/q), Pr(not-q/not-p) > Pr(not-q), Pr(not-q/not-p) > Pr(not-q/p), 

Pr(not-q & not-p) > Pr(not-p)Pr(not-q); Pr(p/not-q) < Pr(p), Pr(not-q/p) < 

Pr(not-q), Pr(p & not-q) < Pr(p)Pr(not-q); Pr(q/not-p) < Pr(q), Pr(not-p/q) < 

Pr(not-p), Pr(q & not-p) < Pr(q)Pr(not-p).    

   5.  D&M are negatively dependent; U&D are positively dependent; U&M are 
independent. Pr(D/M) = 0.04, Pr(U/D) = 0.36, Pr(U/M) = 0.30.  

   6.  While the initial probabilities are a prima facie indication that smoking 
causes nose cancer, the second set of probabilities shows that location 
‘screens off’ the cancer/smoking association, which suggests that smoking 
itself has no causal infl uence on cancer.  

   7.  While the initial probabilities are a prima facie indication that the admis-
sions process favours men, the second set of probabilities shows that within 
each faculty females turn out to be more successful than men. This suggests 
that faculty is infl uencing both gender of applicants and entrance success, 
and that the lower overall proportion of successful female applicants is due 
to their disproportionate representation in the more competitive Arts 
entrance competition, even though within both faculties the admissions 
process actually favours women. This is a case of Simpson’s paradox.      

    Chapter 10      

      1.  Example of (a): all men are mortal, Socrates is a man––so, Socrates is mortal. 
Example of (b): all men are bald, Meryl Streep is a man––so, Meryl Streep is 
bald. Example of (c): all women run fast, Usain Bolt is a woman––so, Usain 
Bolt runs fast.
 Since a valid argument is one where the truth of the premises guarantees 
the truth of the conclusion, a valid argument can’t have true premises and a 
false conclusion.  
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  p  ‘not’-p  p-‘and’-‘not’-p  ‘not’-(p-‘and’-

‘not’-p)  

  T  F  F  T  

  F  T  F  T  

  p  q   ‘not’ -p  p- ‘and’ -‘not’-p  (p-‘and’-‘not’-

p)- ‘→’ -q  

  T  T  F  F  T  

  T  F  F  F  T  

  F  T  T  F  T  

  F  F  T  F  T  

  p   ‘not’ -p  p- ‘  or  ’ -‘not’-p  

  T  F  T  

  F  T  T  

      3.  (a) false; (b) true; (c) true; (d) false. (The fi rst two answers can be shown via 
truth tables, and the last two by attending to the proof rules for the relevant 
connectives.)  

   4.  Let me illustrate just for Reductio Ad Absurdum (‘Not’ Introduction). The rule 
says: given p-‘→’-q, p-‘→’-not-q, move to ‘not’-p. The table below shows that in 
all cases where the former statements are both true, the latter will be true too.    

  p  q  ‘not’-q  p-‘→’-q  p-‘→’-

‘not’-q 

 ‘not’-p  

  T  T  F  T  F  F  

  T  F  T  F  T  F  

  F  T  F  T  T  T  

  F  F  T  T  T  T  

   2.            
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   5.  The truth table for ‘→’ says that p-‘→’-q is true as long as it’s not the case that 
p is true and q is false. p ╞

PROP  q means that q is semantically guaranteed to 
be true whenever p is, which semantically guarantees the truth of p-‘→’-q––
that is, ╞PROP  p → q. Conversely, if ╞PROP  p → q, it’s semantically guaranteed 
not to be the case that p is true and q is false––that is, p ╞PROP  q.          
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