
James T. Shipman
Jerry D. Wilson
Charles A. Higgins, Jr.

Waves and Sound

Chapter 6



Waves

• We know that when matter is disturbed, energy 
emanates from the disturbance.  This 
propagation of energy from the disturbance is 
know as a wave.
– We call this transfer of energy wave motion.

• Examples include ocean waves, sound waves, 
electromagnetic waves, and seismic 
(earthquake) waves.
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Audio Link

http://www2.phy.ilstu.edu/~bkc/phy102/waves.mp3


Wave Motion

• Waves transfer energy and generally not matter 
through a variety of mediums.
– The wave form is in motion but not the matter.

• Water waves (liquid) essentially bob you up and 
down but not sideways.

• Earthquakes waves move through the Earth. 
(solid)

• Sound waves travel through the air. (gas)
• Electromagnetic radiation waves travel through 

space. (void)
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Wave Properties

• A disturbance may be a single pulse or shock 
(hammer), or it may be periodic (guitar string).
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Longitudinal  and 
Transverse Waves

• Two types of waves classified on their particle 
motion and wave direction:

• Longitudinal – particle motion and the wave 
velocity are parallel to each other
– Sound is a longitudinal wave.

• Transverse – particle motion is perpendicular to 
the direction of the wave velocity
– Light is an example of a transverse wave.
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Longitudinal & Transverse Waves

Longitudinal
Wave (sound) 

Transverse 
Wave (light)
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Wave Description

• Wavelength (λ) – the distance of one complete wave
• Amplitude – the maximum displacement of any part of 

the wave from its equilibrium position.  The energy 
transmitted by the wave is directly proportional to the 
amplitude squared.
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Wave Characterization

• Frequency ( f ) – the number of oscillations or 
cycles that occur during a given time (1 s)
– The unit usually used to describe frequency is the 

hertz (Hz). 
– One Hz = one cycle per second

• Period (T) – the time it takes for a wave to travel 
a distance of one wavelength

• Frequency and Period are inversely proportional

Section 6.2

• frequency = 1 / period     f =
1
T



Wave Characterization

• Frequency and Period are inversely proportional 
• Frequency = cycles per second

– If a wave has a frequency of  f = 4 Hz, then four full 
wavelengths will pass in one second

• Period = seconds per cycle
– If 4 full wavelengths pass in one second then a 

wavelength passes every ¼ second (T = 1/f = ¼ s)
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Wave Comparison

T= ¼ s

T= 1/8 s
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Wave Speed (v)

• Since speed is distance/time then
• v = λ/T   or   v = λf
•  v = wave speed (m/s)
•  λ = wavelength
•  T = period of wave (s)
•  f = frequency (Hz)
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Calculating 
Wavelengths – Example

• For sound waves with a speed of 344 m/s and 
frequencies of (a) 20 Hz and (b) 20 kHz, what is 
the wavelength of each of these sound waves?

• GIVEN:  v = 344 m/s,     (a) f = 20 Hz,            
(b) f = 20 kHz = 20 x 103 Hz  

• FIND:  λ (wavelength)
• Rearrange formula (v = λf) to solve for λ = v/f

–  λ = v/f  = (344 m/s)/(20 Hz) = 17 m
–  λ = v/f  = (344 m/s)/(20 x 103 Hz) = 0.017 m
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Calculating Frequency
Confidence Exercise

• A sound wave has a speed of 344 m/s and a 
wavelength of 0.500 m.  What is the frequency 
of the wave?

• GIVEN:  v = 344 m/s,  λ = 0.500 m
• FIND:  f (wavelength)
• Rearrange formula (v = λf ) to solve for f = v/λ
• f = v/λ = (344 m/s)/(0.500 m/cycle) = 
• f = 688 cycles/s 
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Electromagnetic Waves

• Consist of vibrating electric and magnetic fields 
that oscillate perpendicular to each other and 
the direction of wave propagation

• The field energy radiates outward at the speed 
of light (c).

•  The speed of all electromagnetic waves (“speed 
of light”) in a vacuum: 
– c = 3.00 x 108 m/s = 1.86 x 105 mi/s
– To a good approximation this is also the speed of 

light in air.
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Electromagnetic (EM) Spectrum

The human eye is only sensitive to a very narrow portion of the 
electromagnetic spectrum (lying between the infrared and 
ultraviolet.)   We call this “light.”
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Computing Radio Wave 
Wavelength Example

• What is the wavelength of the radio waves 
produced by a station with an assigned 
frequency of 600 kHz?

• Convert kHz to Hz:
• f = 600 kHz = 600 x 103 Hz = 6.00 x 105 Hz
• Rearrange equation (c = λf ) and solve for λ
•  λ = c/f = (3.00 x 108 m/s)/(6.00 x 105 Hz)
•  λ  = 0.500 x 103m = 500 m
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Radio Wavelengths:  AM vs. FM

• AM approx. = 800 kHz = 8.00 x 105 Hz
• FM approx. = 90.0 MHz = 9.0 x 107 Hz
• Since λ = c/f , as the denominator ( f ) gets 

bigger the wavelength becomes smaller.
• Therefore, AM wavelengths are longer than FM.
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Visible Light

• Visible light waves have frequencies in the 
range of 1014 Hz.

• Therefore visible light has relatively short 
wavelengths.

•  λ = c/f = (108 m/s)/(1014 Hz) = 10-6 m
• Visible light wavelengths (~10-6 m) are 

approximately one millionth of a meter.
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Visible Light

• Visible light is generally expressed in 
nanometers  (1 nm = 10-9 m) to avoid using 
negative exponents.

• The visible light range extends from 
approximately 400 to 700 nm.
– 4 x 10-7 to 7 x 10-7 m

• The human eye perceives the different 
wavelengths within the visible range as different 
colors.
– The brightness depends on the energy of the wave.
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Sound Waves

• Sound - the propagation of longitudinal waves 
through matter (solid, liquid, or gas)

• The vibration of a tuning fork produces a series 
of compressions (high pressure regions) and 
rarefactions (low pressure regions).

• With continual vibration, a series of high/low 
pressure regions travel outward forming a 
longitudinal sound wave.

Section 6.4

Audio Link

http://www2.phy.ilstu.edu/~bkc/phy102/soundwaves.mp3


Tuning Fork

• As the end of the fork moves outward, it compresses the 
air.  When the fork moves back it produces an area of 
low pressure.
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Sound Spectrum

• Similar to the electromagnetic radiation, sound 
waves also have different frequencies and form 
a spectrum.

• The sound spectrum has relatively few 
frequencies and can be divided into three 
frequency regions:
– Infrasonic,  f < 20 Hz
– Audible, 20 Hz < f < 20 kHz
– Ultrasonic, f > 20 kHz
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Audible Region

• The audible region for 
humans is about 20 Hz to 
20 kHz. 

• Sounds can be heard due 
to the vibration of our 
eardrums caused by the 
sound waves propagating 
disturbance.
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Loudness/Intensity

• Loudness is a relative term.
• The term intensity (I) is quantitative and is a 

measure of the rate of energy transfer through a 
given area .

• Intensity is measured in J/s/m2  or  W/m2.
– The threshold of hearing is around 10-12 W/m2.
– An intensity of about 1 W/m2 is painful to the ear.

• Intensity decreases with distance from the 
source (I α 1/r2).
– This is called an inverse square relation.
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Sound Intensity decreases inversely to the 
square of the distance from source (I α 1/r2).
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Decibel Scale

• Sound Intensity is measured on the decibel 
scale.

• A decibel is 1/10 of a bel.
– The bel (B) is a unit of intensity named in honor of 

Alexander Graham Bell.

• The decibel scale is not linear with respect to 
intensity, therefore when the sound intensity is 
doubled, the dB level is only increased by 3 dB.
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The Decibel 
Scale
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Ultrasound

• Sound waves with frequencies greater than 
20,000 Hz cannot be detected by the human 
ear, although may be detected by some animals 
(for example dog whistles).

• The reflections of ultrasound frequencies are 
used to examine parts of the body, or an unborn 
child – much less risk than using x-rays.

• Also useful in cleaning small hard-to-reach 
recesses – jewelry, lab equipment, etc.
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Bats use the reflections of ultrasound 
for navigation and to locate food.
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Speed of Sound

• The speed of sound depends on the makeup of 
the particular medium that it is passing through.

• The speed of sound in air is considered to be, 
vsound = 344 m/s  or 770 mi/h (at 20oC).
– Approximately 1/3 km/s or 1/5 mi/s

• The velocity of sound increases with increasing 
temperature. (at 0oC = 331 m/s)

• In general the velocity of sound increases as the 
density of the medium increases.  (The speed of 
sound in water is about 4x that in air.)
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Sound

• The speed of light is MUCH faster than the 
speed of sound.   So in many cases we see 
something before we hear it (lightening/thunder, 
echo, etc.).

• A 5 second lapse between seeing lightening and 
hearing the thunder indicates that the lightening 
occur at a distance of approximately 1 mile.
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Computing the λ 
of Ultrasound Example

• What is the λ of a sound wave in air at 20oC with 
a frequency of 22 MHz?

• GIVEN:  vsound = 344 m/s and  f = 22MHz

• CONVERT:  22 MHz = 22 x 106 Hz
• EQUATION:  vsound = λf    λ = v/f

–  λ = (344 m/s)/(22 x 106 Hz) =
–  λ = (344 m/s)/(22 x 106 cycles/s) = 16 x 10-6m
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The Doppler Effect

• The Doppler effect - the apparent change in 
frequency resulting from the relative motion of 
the source and the observer

• As a moving sound source approaches an 
observer, the waves in front are bunched up and 
the waves behind are spread out due to the 
movement of the sound source.

• The observer hears a higher pitch (shorter λ) as 
the sound source approaches and then hears a 
lower pitch (longer λ) as the source departs.
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The Doppler Effect Illustrated

• Approach – the waves are bunched up  higher 
frequency ( f )

• Behind – waves are spread out  lower 
frequency ( f )
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The Doppler Effects – 
all kinds of waves

• A general effect that occurs for all kinds of 
waves – sound, water, electromagnetic

• In the electromagnetic wavelengths the Doppler 
Effect helps us determine the relative motion of 
astronomical bodies.
– ’blue shift’ – a shift to shorter λ as a light source 

approaches the observer
– ’redshift’ – a shift to longer λ as a light source moves 

away from the observer

• These ’shifts’ in λ tell astronomers a great deal 
about relative movements in space. 

Section 6.5



Sonic Boom

• Consider the Doppler Effect as a vehicle moves 
faster and faster.

• The sound waves in front get shorter and 
shorter, until the vehicle reaches the speed of 
sound. (approx. 750 mph – depending on temp.)

• As the jet approaches the speed of sound, 
compressed sound waves and air build up and 
act as a barrier in front of the plane.
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Bow Waves and Sonic Boom

• As a plane exceeds the speed of sound it 
forms a high-pressure shock wave, heard as 
a ’sonic boom.’
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Mini-Sonic Boom – Crack of a Whip

• With the flick of a wrist, a wave pulse travels 
down a tapering whip.

• The speed of the wave pulse increases as the 
whip thins, until the pulse is traveling faster than 
sound.

• The final “crack” is made by air rushing back into 
the area of reduced pressure, created by the 
supersonic final flip of the whip’s tip.
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Standing Waves

• Standing wave – a “stationary” waveform arising 
from the interference of waves traveling in 
opposite directions

• Along a rope/string, for example, waves will 
travel back and forth.
– When these two waves meet they constructively 

“interfere” with each other, forming a combined and 
standing waveform.

Section 6.6



Standing Waves

• Standing 
waves are 
formed only 
when the 
string is 
vibrated at 
particular 
frequencies.
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Resonance

• Resonance  - a wave effect that occurs when an 
object has a natural frequency that corresponds 
to an external frequency.
– Results from a periodic driving force with a frequency 

equal to one of the natural frequencies.

• Common example of resonance:  Pushing a 
swing – the periodic driving force (the push) 
must be at a certain frequency to keep the swing 
going

Section 6.6

Here are two links that do a really nice job with resonance. 
http://www.youtube.com/watch?v=BE827gwnnk4
http://www.youtube.com/watch?v=wvJAgrUBF4w

http://www.youtube.com/watch?v=BE827gwnnk4


Resonance

• When one tuning fork is struck, the other tuning fork of 
the same frequency will also vibrate in resonance.

• The periodic “driving force” here are the sound waves.
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Musical Instruments

• Musical Instruments use standing waves and 
resonance to produce different tones.

• Guitars, violins, and pianos all use standing 
waves to produce tones.

• Stringed instruments are tuned by adjusting the 
tension of the strings.
– Adjustment of the tension changes the frequency at 

which the string vibrates.

• The body of the stringed instrument acts as a 
resonance cavity to amplify the sound.
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Chapter 6 - Important Equations

• f = 1/T  Frequency-Period Relationship
• v = λ/T = λ f   Wave speed
• 3.00 x 108 m/s  Speed of Light

Review
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