’0(6\ UNIVERSITY OF TORCNTO o\$
4\%\ Faculty of Arts and Science @
'?V¢ April 2018 Examinations GJQ/Q\
o P CSC148H1S \3?
% Duration — 3 hours R
No aids allowed.
Student Number: | | | 1 b 4
Last Name;
First Name:

Do not turn this page until you have received the signal to start.
(In the meantime, please fill out the identification section above,

and read the instructions below.)

This exam consists of 7 questions on 16 pages (including this one).
When you receive the signal to start, please make sure that your copy
of the exam is complete. ‘

Please answer questions in the space provided. If you need additional
space, clearly indicate on the question page where to find your answer.

You will earn 20% for any question you leave blank or write “I cannot
answer this question” on. You might earn substantial part marks for
writing down the outline of a solution and indicating which steps are
missing. You may use helper functions, if you wish, provided you define
them on this paper.

You must achieve 40% of the marks on this final exam to pass this
course.

There is a Python API at the end of this exam.

Good Luck!

Total Pages = 16 Page 1

#1:
#2:
#3:
4
5:
6:
T

TOTAL:

/12
__J1o
— /8
— /8
— /5
— /5

/8

/54

CONT'D...

CSC 148H1 FINAL Exam April 2018

Question 1. [12 marxs)
Write the output printed by the following programs.

Part (a) [3 MARKS]

def foo(k: list) ~> None:
k.append(k.append (1))

if __name__ == ’__main__’:
q = [0]
foolq)
print(q)

Please write the output in the space below:

Part (b) [3 MARKS]

def bar(list_: list) -> None:
bigger list = {J
for item in list._:
bigger _list.append(item + 100)
list_, bigger_list = bigger_list, list.

if __name__ == ?__main__’:
list_ = [1, 2, 3]
bar(list_)

print(list_)

Please write the output in the space below:

Student #:, . . Page 2 of 16 CONT'D...

CSC 148H1

Part (¢) [3 MARKS]

FiNnaAL ExaMm

April 2018

Circle the complexity class that best characterizes the run-time of function big oh if 1ist. is a list with
n elements. Write a brief explanation of your conclusion.

e(1)

def method(list_: 1ist) -> None:

for i in range(len(list_)):
print(list_{il)

def big_oh(list_: list) -> None:

for i in list_:
method(list_)

Part (d) [3 MARKsS]

O(lgn)

e(n)

©(n?)

e(2")

Circle the complexity class that best characterizes function mystery given the run times listed for various

inputs. Write a brief explanation of your conclusion.

(1) O(lgn) ©(n) 8(n?)
function call | run time
mystery(2) | 0.01 seconds
mystery(22) | 0.02 seconds
mystery(2%) | 0.03 seconds
mystery(2%) | 0.04 seconds
mystery(2®) | 0.05 seconds
mystery(2°%) | 0.06 seconds
mystery(27) | 0.07 seconds

Student #: ., . . | Page 3 of 16

e(2")

CONT'D...

CSC 148H1 FINAL EXAM April 2018

Question 2. [10 MARKs]

Priority queues remove items based on a priority scheme, and not necessarily according to the order they
were added. If queue items are all comparable, we can remove them smallest first or largest first. Recall
the public interface for standard FIFO class Queue:

add(object) : Add object. at the back of the queue.
remove(): Remove and return the object at the front of the queue.

is_empty(): Return whether this queue is empty or not.
Extend class Queue with a subclass PriorityQueue that adds two new methods:

remove_ largest(): Remove and return an element that is greater than or equal to all the other elements.
Assume the queue is not empty and that all elements are comparable.

remove.smallest(): Remove and return an element that is less than or equal to all other elements.
Assume the queue is not empty and that all elements are comparable.

Declare subclass PriorityQueue, along with an appropriate docstring, and define and document any

necessary methods. You may not import any other modules. Documentation includes type annotations,

and a method description, but no examples are required. «
Hint: You can't assume anything about the private, underlying, implementation of class Queue, for example

you don’t know whether it uses a list, a linked list, or a dictionary for its internal storage. However, you can

certainly combine the three public methods of Queue with other built-in Python data types to implement

your methods.

from cscl48_queue import Queue

Student #: _ . . Page 4 of 16 ‘ CONT'D. ..

CSC 148H1 FinaL Exam April 2018

This page is left mainly blank, for things that don’t fit elsewhere.

Studenmt #: . . . Page 5 of 16 CONT'D. ..

CSC148H1 FivaL BExam

Question 3. [6 mMaRks]

Read the declaration of class LinkedListNode and its __str__ method below.

April 2018

On the next page, we had written a solution to partition that was working, but unfortunately our solution
got put through the laundry, resulting in some unreadable parts. Replace the underlines with Python code

that makes it work. Do not create any new LinkedListNodes or change any value attributes.

Hint: Read the comments carefully, and draw diagrams.

LinkedListNode class

from typing import Union, Tuple

class LinkedListNode:

Han

Node to be used in linked list

Attributes ===

next_ - successor to this LinkedListNode
value - data represented by this LinkedListNode

i

next_: Union(["LinkedListNode'", None]

def

def

__init__(self, value: object,
next_: Union["LinkedListNode", Nonel=None) -> None:

Wil

Create LinkedListNode self with data value and successor next

>>> LinkedListNode (5).value

5

>>>» LinkedListNode(5) .next_ is None
True

mu

self.value, self.next._ = value, next_

_.str__(self) -> str:

W

Return a user-friendly representation of this LinkedListNode.

»>> n = LinkedListNode(5, LinkedListNode(7))

>>> print{(n)

5 -> 7 =>]

"wnu

self_str = "{} ->".format(self.value)

current_node = self.next_

while current_node is not None:
self_str += " {} ->".format(current_node.value)
current_node = current_node.next._

return self_str + "

Student #: ., ., ., . oo, Page 6 of 16

CONT'D..,

CSC 148H1 FINAL ExAM April 2018

def partition{ink: LinkedListNode, pivet: LinkedListNode) -> Tuple{LinkedListNode, LinkedListNode]:
Han
Use pivot to return (inkl, 1nk2), where 1lnkl is the first in a chain of all nodes from lnk that
have values smaller than the value of pivot, and Ink2 is the first in a chain of all nodes from
1nk that have values that are not smaller than the value of pivot, but are not pivot itself.
0f course; lnkl or lnk2 are set to None if there are no nodes that belong in them.

Assume 1lnk is the first in a non-empty chain of nodes containing integer values, one of which is pivot.

>>> Ink = LinkedListNode(0, LinkedListNode(l, LinkedListNode(2)}))
>»>> Ink = LinkedListNode(-2, LinkedListNode(-1, 1nk))

>>> pivot = lpk.next_.next_

>>> (1nk1, 1nk2) = partition(ink, pivot)

>>> print(lnk1l)

-1 -> =2 =>|

>>> print(Ink2)

2 => 1 ->}

start 1lnkl and lnk2 as empty

Inkl = Ink2 =
start with lnk

current_node =

walk along lnk’s nodes until the end

while

save reference to following node

next_node =

if we have a node with value less than pivot’s value add it to nodes headed by lnki
if current_node.value < pivot.value:

, lnkl = lnki, -

if we have a node, other than pivot, with value at least as great as pivot’s value, add it to
nodes headed by 1nk2
elif current_node is not pivot:

,» lnk2 = 1lnk2,
update node to visit
return (lnkl, 1nk2)
Studenmt #: , , . . . Page 7 of 16 CONT'D...

CSC148H1 FinaL Exam April 2018

Question 4. [8 marxs]

Read the declaration of class Tree on page 14. Then implement function odd_average below. Hint: You
may find helper functions useful.

def odd_average(t: Tree) -> float:

nwun

Return the average of the odd values in t, 0 if none are odd.
Assume all nodes have integer values.

>>> t2 = Tree(2, [Tree(5), Tree(6)})
>>> £3 = Tree(3, [Tree(7)1)

> t = Tree(1, [t2, t3, Tree(4)])
>>> odd_average(t)

4.0

>>> odd_average (Tree(2))

0.0

WD

Student #: Page 8 of 16 CONT'D. ..

CSC 148H1 FINAL EXAM April 2018

This page is left mainly blank, for things that don't fit elsewhere.

Student #: . ., . ., o . Page 9 of 16 CONT'D. ..

CSC 148H1 FinaL ExaMm April 2018

- Question 5. [5 maRxs]

Read the declaration of BTNode and its _.repr_. method on page 14. Use them to implement function
mutate below — do not use any other methods or functions associated with BTNode.

Hint: This function mutates (changes) the tree, so a list comprehension is probably not a suitable tool.
You may wan} to draw a diagram of BTNode t in the docstring example.

def mutate(t: Union[BTNode, Nonel, depth: int) => None:
nwan
Change tree t by swapping the children of each node that has data
that is less than its depth. If the data is greater than or
equal to its depth, replace the data by the sum of the data and
the depth.

Assume all data are ints.

>>> t = BTNode(0, BTNode(0, BTNode(2), BTNode(3)), BINode(1))

>>> mutate(t, 0)

>>> repr(t)

'BTNode (0, BTNode(0, BTNode(5, None, None), BTNode(4, None, None)), BTNode(2, None, None))’

(IRIRT]

Studenmt #:, , . Page 10 of 16 CONT'D...

CSC 148H1 FiNnaL ExaMm © April 2018

This page is left mainly blank, for things that don't fit elsewhere.

Student #:, , . . . Page 11 of 16 CONT'D...

CSC148H1 ‘ FINAL ExAM April 2018

Question 6. [5 marks]

Implement function freeze list below. You may not import any modules; in particular you may not use
deepcopy().

def freeze_list(list_; list) -> list:
"U" Return a new list equivalent to list_ but where
every list contained in list_ ‘is replaced by a new,
equivalent, list object.

>> my_list = [1, (2, 3, (411, &I
>>> pew_list = freeze_list(my_list)

>>> my_list == nevw_list

True

>>> my_list is new_list

False

>>> my_list{1} is new_list[1]

False)

>>> my_list[1][2] is new_list(1](2]
False

[IEIRY

Student #:, , . . .o Page 12 of 16 CONT'D. ..

CSC148H1 FiNaL ExaMm April 2018

Question 7. [8 MARKs]

Our hash_table.py example developed in class used a python list self.table to store small sub-lists
(called buckets) containing tuples of the form (key, value). We inserted new (key, value) tuples by
calculating hash(key) % len(self.table) to find the index of the correct sub-list, and then appended
the tuple to the sub-list. If the number of (key, value) tuples exceeds 0.7 times the length of self.table,
we double the length of self.table and re-insert all (key, value) tuples.

Assume that a hash table begins with self.table having length 2. When it's empty, self.table it looks
like this:

(., m

Suppose our hash function produces these remarkably short results for the following strings:

>>> hash("how")

1

>>> hash("now")

6

>>> ‘hash("brown")
3

>>> hash("cow")

9

First, we insert key/value tuples ("how", "adverb") and ("now", "adverb"), so self.table looks like
this:

[0}, {("how", “adverb™], [("now", "adverb")], [J]

In the space below, show what self.table will look like if we next insert ("brown", "adjective") and
("cow", "noun").

Total Marks = 54

Student #: o, o Page 13 of 16 END OF EXaM

CSC 148H1 FINAL ExaMm

Tree class

class Tree:

nun

A bare-bones Tree ADT that identifies the root with the entire tree.

m=m

Attributes ===

value - value of root node
children - root nodes of children

o

value: object
children: List["Tree"]l

def

.-init__(self, value: object, children: List["Tree"]=None) ~-> None:

Hnn

Create Tree self with content value and 0 or more children
R IN]

self.value = value

copy children if not None

self.children = children{:] if children is not None else [T

BTNode class

class BTNode:
“""*Binary Tree node.

===

Attributes ===

data - data this node represents
Yeft = left child
right - right child

W

data: object
left: Union["BTNode", None]
right: Union["BTNode", Nonel

def

def

-.init__(self, data: object,
left: Union["BTNode", None]=None,
right: Union["BINode", None]l=None) ~-> None:
"% Create BTNode (self) with data and children left and right.

An empty BTNode is represented by None.

win

self.data, self.left, self.right = data, left, right

_.repr__(self) -> str:
wun Represent BTNode (self) as a string that can be evaluated to
produce an equivalent BTNode.

>>> BTNode(1, BINode(2), BTNode(3))
BTNode(1, BTNode(2, None, None), BTNode(3, None, None))

wu

return 'BTNode({}, {}, {})'.format(self.data, repr(self.left), repr(self.rightj)

Student #:, , . . o Page 14 of 16

April 2018

END oF EXxaM

CSC148H1 FINAL EXAM April 2018

Short Python function/method descriptions, and classes

~.builtins_.:

len(x) -> integer
Return the length of the list, tuple, dict, or string x.

max{L) -> value
Return the largest value in L.

min{L) -> wvalue
Return the smallest value in L.

range([start), stop, [step]) -> list of integers
Return a list containing the integers starting with start and
ending with stop - 1 with step specifying the amount to increment
(or decrement). If start is not specified, the list starts at 0.
If step is not specified, the values are incremented by 1.

sum(L) ~> number
Returns the sum of the numbers in L.

dict:

D{k] -> value

Return the value associated with the key k in D.
k in 4 -> boolean

Return True if k is a key in D and False otherwise.
D.get(k) -> value

Return D{k] if k in D, otherwise return None.
D.keys() ~> list of keys

Return the keys of D.
D.values() => list of values

Return the values associated with the keys of D.
D.items() -> list of (key, value) pairs

Return the (key, value) pairs of D, as 2-tuples.

float:
float(x) -> floating point number
Convert a string or number to a floating point number, if
possible.

int:
int{x) -> integer
Convert a string or number to an integer, if possible. A floating
point argument will be truncated towards zero.

list:
x in L => boolean
Return True if x is in L and False otherwise.
L.append(x) -> None
Append x to the end of list L.
L1.extend(L2)
Append the items in list L2 to the end of list L1.
L.index(value) -> integer
Return the lowest index of value in L,

Student #: . , . . . Page 15 of 16 END OF EXaAM

CSC 148H1 FIiNaL BExawm

L.insert(index, x)

Insert x at position index.
L.popQ)

Remove and return the last item from L.
L.pop(i)

Remove and return L[i]
L.remove(value)

Remove the first occurrence of value from L.
L.soxt()

Sort ‘the list in ascending order.

Module random:
randint(a, b)
Return random integer in range fa, b}, including both end points.

str:
x in s -> boolean
Return True if x is in s and False otherwise.
str(x) -> string
Convert an object into its string representation, if possible.
S.count(subf, start[, end]]) -> int
Return the number of non-overlapping occurrences of substring sub
in string S[start:end]. Optional arguments start .and end are
interpreted as in slice notation.
S.find(sub[,i]) -> integer
Return the lowest index in 8 (starting at S{il, if i is given)
where the string sub is found or -1 if sub does not occur in S.
S.split([sep]) ~-> list of strings
Return a list of the words in §, using string sep as the separator
and any whitespace string if sep is not specified.

set:
{t, 2, 3,1, 3} -> {1, 2, 3}
s.add(...)
Add an element to a set
{1, 2, 3}.union({2, 4}) -> {1, 2, 3, 4}
{1, 2, 3}.intersection({2, 4}) =-> {2}
set()
Create a new empty set object
x in s
True iff x is an element of s

list comprehension:
[<expression with x> for x in <list or other iterable>]

functional if:
<expression 1> if <boolean condition> else <expression 2>
-> <expression 1> if the boolean condition is True,
otherwise <expression 2>

Student #:, ., . oo Page 16 of 16

April 2018

END Or ExAM

