Supplemental lecture notes for:
"Introduction to Excel VBA Programming"

Written by:
Paul Nissenson, Ph.D.
Department of Mechanical Engineering
California State Polytechnic University, Pomona

The author (Paul Nissenson) gives the reader permission to use these notes only for instructional purposes or
for personal self-improvement. These notes are not for resale, or any other commercial or promotional

purposes without the author’s explicit consent. If in doubt, contact the author: paul.m.nissenson@gmail.com
Enjoy!

1 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Introduction to the course

In this course, you will learn some of the basics of computer programming using Excel and the programming
language VBA (Visual Basic for Applications).

No computer programming language is perfect for every application. Here are examples of other languages:
e MATLAB is great at manipulating matrices and is very user-friendly.

e Fortran and C are great at number crunching, but are not as user friendly.

e Maple and Mathematica are great at symbolic math and are very user-friendly.

Some advantages of Excel

e Very user-friendly

e Contains many built-in functions

e Already familiar to many students

e Many students own a copy of Excel already

Some advantages of VBA

e |t is a relatively simple language to learn

¢ Allows you to manipulate data in Excel spreadsheets, so you can add functionality to Excel

e Introduces students to object-oriented programming (although we won’t be focusing on this aspect in the
course)

¢ Allows you to create graphical user interfaces, which make programs user-friendly

VBA is a "high-level" language. You will be writing code as text that will be translated into a lower-level
language the computer can understand in order to perform calculations.

Humans are great at thinking about complicated, abstract concepts in which many things are changing at
once. However, computers are only able to execute commands one line at a time. One of the great challenges
of computer programming is taking an abstract concept, such as finding the third largest number in a data set,
and breaking that concept down to a set of commands that will be executed one at a time. If you wanta 5
year old child (who could use a calculator perfectly) to find the third largest number in a data set, what
commands would you give to the child? You have to dumb yourself down in an intelligent manner.

About these notes

These notes were created using Excel 2007 for Windows, but most of the concepts are valid for Excel 2010 for
Windows, Excel 2013 for Windows, and Excel 2011 for Macs as well.

This is the first draft of the notes, so please forgive any minor errors that may exist. If you find errors, please
inform the author at paul.m.nissenson@gmail.com

2 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Topic 1: Introduction to the Excel workbook environment
After starting Excel, you will be presented with a worksheet. Each worksheet consists of many cells. Each cell

has a row number and column letter. For example, cell B3 is in the 3™ row, 2" column. Data can be entered
and manipulated in these cells.

Entering and manipulating data

You can enter data into a cell by selecting a cell, then typing a number in the cell and hitting the Enter key. In
this example, four values are input into cells B2 to E2.

[SUM (0 % & fe| =242

Here are the mathematical operators in Excel:
addition

subtraction

multiplication

division

exponentiation

+

>N % |

X v fo| =Bz
5 D E F

B
=

=B2+2

[sumM
A

U R (W N

In cell B4, type =B2+2 and hit the Enter key (be sure to include the equal sign). The value in B2, which is 3, is
added to 2. The resulting value, 5, is displayed in B4.

Try changing the value in B2 and see what happens to the value in B4.
If you want to store very large or very small numbers, you can use scientific notation.

1.25E5 is equivalentto 1.25*107(+5), or 125000
1.25E-5 is equivalentto 1.25*10%(-5), or 0.0000125

3 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Order of operations

Use the Please Excuse My Dear Aunt Sally rules from algebra.

Parentheses (highest priority)

Exponentiation

Multiplication and Division (same priority, executed left to right)
Addition and Subtraction (same priority, executed left to right)

In C5, type =(C2-3)22/4 - 3 and hit enter. Do you understand why the answer is -2?

UM v (0 % « fe| s(c2-3)r2/a-3
A B C D E F
1
> 3 27
3
4 5
5 F(C2-3)72/4 -3
6

Saving Excel workbooks

You can save the data stored in an excel workbook by typing Ctrl+s or by clicking on the Office button b 2 and
choosing the Save option.

Excel workbooks usually have a .xls or .xlsx extension by default. Later, when we create programs called
macros, we will be saving Excel workbooks with a .xIsm extension.
Relative referencing versus absolute referencing

12 values are input into the worksheet below.

cs - £ | =B1-C1

A B C D E F
1 2 3 4
1 5 -2 -0.2
3 5 0 1

R = T N, B R i S R S T]

The value 1 is located in cell B1 and the value 2 is located in cell C1. We can use this data to perform
calculations by clicking C5 and typing =B1-C1 (make sure that you include the equal sign). This formula takes
the value stored in C1 and subtracts it from the value in B1. The answer, -1, is displayed in C5.

4 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

What happens if we click on C5, then copy (Ctrl+c) and paste (Ctrl+v) the contents of the cell into D6?

| c6 - fe| =B2-C2

I A B C D E F G
1 2 3 4
1 5 -2 -0.2
3 5 0 1

FIE I - T, B - S 9 R Ry]

The value stored in C6 is not B1-C1, but rather B2-C2. What if we copy and paste the contents of C5 into E6?

| E6 - fe| =D2-E2
A B C D E F G

1 1 2 3 4

2 1 5 -2-0.2

3 3 5 0 1

a

5 -1

6 -4 -1.8

7

The value stored in E6 is D2-E2, not B1-C1.
This occurs because Excel is assuming we want to use relative references.

Although we typed =B1+C1 in cell C5, Excel interprets this expression as "take the value 1 column to the left
and 4 rows up, and subtract from that the value in the same column and 4 rows up."” When we copy and paste
C5 into E6, we are copying those instructions.

Relative referencing can be very useful. For example, say you own a bagel shop that sells five items. You know
how much of each item you sold and how much each item costs, and you want to find out how much money
you made per item. Start with the first item (small coffee) and multiply the number of items sold in B2 with
the cost per item in C2 by typing the formula =B2*C2 into cell D2.

| SUM - (3 % & f| =B27C2
A B G D E
1 ltem # Sold profit/unit total profit (pretax) total profit (after tax)
2 Coffee(sm) | 10 | 125 |=B2*C2
3 Coffee (med) 20 1.50
4 Coffee (Lg) 15 2.00
5 Scone 10 1.00
6 Bagel 6 0.75
7
8 tax rate 0.25

5 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Remember that =B2*C2 actually means that you want to take the value in the cell that is 2 columns to the left
and in the same row (B2), and multiply it by the value in the cell that is 1 column to the left and in the same
row (C2).

If you copy D2 and paste the contents into D3, you will obtain the product of the cell that is 2 columns to the
left and in the same row (B3), and multiply it by the value in the cell that is 1 column to the left and in the
same row (C3).

[D3 - fe | =B37C3

A B C D E
1 Item # Sold profit/unit total profit (pretax) total profit (after tax)
2 | Coffee (sm) 10 1.25 12.5
3 Coffee (med) 20 150 | 30|
4 Coffee (Lg) 15 2.00 e
5 Scone 10 1.00
6 Bagel 6 0.75
7
8 tax rate 0.25

In this example, we only have five items we need to calculate the total cost for. Copying and pasting four times
(for D3, D4, D5, and D6) would not take very long. But what if we sold a lot of items in our bagel shop?

We can copy and paste much faster by using the fill handle.
Click the cell you would like to copy (D3) and place the cursor over the lower right corner of that cell. The

cursor should change into a black cross. Click and hold while simultaneously dragging the cursor downward,
filling in all the cells you would like to paste into.

[D3 - fe| =B3*C3

A B C D E
1 ltem # Sold profit/unit total profit (pretax) total profit (after tax)
2 | Coffee (sm) 10 1.25 12.5
3 | Coffee (med) 20 1.50 30
4 | Coffee (Lg) 15 2.00
5 Scone 10 1.00
6 Bagel 6 0.75
7
8 tax rate 0.25

6 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Now we will calculate the total profit after taxes.

[sUM v (0 % « f]={188)"(B2°C2)

A B C D E
1 ltem # Sold profit/unit total profit (pretax) total profit (after tax)
2 | Coffee(sm) | 10 | 125 | 12.5(=(1-B8)*(B2*C2) |
3 Coffee (med) 20 1.50 30
4 | Coffee (Lg) 15 2.00 30
5 Scone 10 1.00 10
6 Bagel 6 0.75 4.5
7
8 tax rate 0.25

Try to copy and paste the E2 to E3. The answer is 30 because the value in B9 is 0.

We need to make sure the value for the tax rate does not change. If you want to use data from a specific row,
column, or cell that never changes, you can use absolute references.

Absolute references require the use a dollar sign ($) in front of the row and/or column. Let’s go back to the
bagel shop problem and see what happens if we use absolute references instead of relative references for the
tax rate.

[UM v (0 X o fe| ={1s888)7(B27C2)

A B C D E
1 ltem # Sold profit/unit total profit (pretax) total profit (after tax)
2 | Coffee(sm) | 10 | 125 | 12.5/=(1-B8)*(B2*C2)| |
3 | Coffee (med) 20 1.50 30
4 | Coffee (Lg) 15 2.00 30
5 Scone 10 1.00 10
6 Bagel 6 0.75 4.5
7
8 tax rate 0.25

Use the fill handle to calculate the total profit per item quickly.

| 22 - i | ={1-3838) *(B2*C2)

A B C D E

1 ltem # Sold profit/unit total profit (pretax) total profit (after tax)

2 Coffee (sm) 10 1.25 125 9.375

3 Coffee (med) 20 1.50 30 22.5

4 Coffee (Lg) 15 2.00 30 22.5

5 Scone 10 1.00 10 7.5

6 Bagel 6 0.75 4.5 3.375

. =
8 tax rate 0.25

7 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

The next example shows how Excel handles a combination of relative and absolute references. 24 values have
been input into the Excel spreadsheet below.

K11 - £
A B C D E F G H
1
2 1 5 9 -2 3 8
3 4 7 2 1 3 1.5
4 7 -1 6 4 1 -3
5 -1 2 4 0 3 3
6
7
8

Type =A2+A3 into cell A7, hit enter, then the copy and paste the contents of A7 into cells A8 and B7.

suM (0 X o £] =A2+A3 B7 - e | =B2+83
A B C D E F G H A B c D E F G H

1 1

2 1 5 9 -2 3 8 2 1 5 El -2 3 8
3 4 7 2 1 3 1.5 3 4 7 2 1 3 1.5
4 7 -1 6 4 1 -3 4 7 -1 6 4 1 -3
5 -1 2 4 0 3 3 5 -1 2 4 0 3 3
6 6

7 =AZ+A3] 7 5| 12|

8 8 11 |

S 9

Remember that we are using relative references. The instructions =A2+A3 mean "take the value stored in the
cell that is in the same column, 5 rows up and add it to the value stored in the cell that is in the same column,
4 rows up." The value stored in B7 is the sum of B2 and B3. The value stored in A8 is the sum of A3 and A4.

Now go to cell C7 and type the statement =$C2+C$3, hit the Enter key, and copy and paste the contents of C7
into cells D7 and C8.

sum v (0 %« fo| =scascs3 D7 - fe | =5C2+D$3
A B C D E F G A B C D E F G

1 1
2 1 5 g 2 3 8 2 1 5 9 -2 3 8
3 4 7 2 1 3 15 3 7 2 1 3 15
4 7 -1 6 4 1 3 4 7 1 6 4 1 -3
5 -1 2 4 0 3 3 5 1 2 4 0 3 3
6 6
7 5 12[=scascsd 7 s 12 1] 1
8 11 [8 11 4
9 9

Here we apply relative and absolute references to columns and rows. The statement =$C2+C$3 means "take
the value stored in column C, 5 rows up and add it by the value stored in the same column, row 3."

The value stored in cell D7 (10) was calculated by adding the value stored in column C, 5 rows up (cell C2,
value is 9) to the value stored in the same column, row 3 (cell D3, value is 1).

8 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

The value stored in cell C8 (4) was calculated by adding the value stored in column C, 5 rows up (cell C3, value
is 2) to the value the value stored in the same column, row 3 (cell C3, value is 5).

Defining cell names

It is often convenient to use symbols to represent cells instead of writing cell addresses. For example, say you
have information about a ball dropping from a building. You know the initial velocity (v0), the gravitational
acceleration (g), and time since the ball was released (t). If you want to calculate the velocity at time t using
the equation vO+g*t, you can use cell addresses.

| suM * (0 X « f|=B3t82°Ba B6 - (fx | -B3+827B4
[A B B D E A B C D E

1 1

2t 5 2 |t 5

3 v0 0 3 |vO 0

4.8 -9.81 ag -9.81

5 5

6 v [-B3+B2*84 6 v [-29.05]

7 T 7 |

8 8

Or you can define names to cells B2, B3, and B4. There are three ways to define a cell name.

Option 1: Select cell B2, click on the Formulas tab at the top of the screen, then click on "Define Name".
Choose the Name of the cell (t), then select OK. Notice that the cell name t refers to =Sheet4!B2. This just
means that cell B2 of Sheet4 contains the value that will be associated with t (On my computer, | created this
example on a worksheet called "Sheet4"). Do not worry about the Scope dropdown menu.

{ p:n .I". H L e b — - filel - Microsoft Excel non-comn
) =
_/ Home Insert Page Layout @ Data Review View Developer
£ = = Define Name ~ Ee]
jr > | 2l (Al B @) - e
L | L I = T o2
Insert AutoSum Recently Financial Logical Text Date n & Math Mare e
B 5 Used ime = Re : Manager ES Create from Selection ||
Function Library Defined Names
| B2 - fe | 5 New Name |i|-g+hj |
A ! i | c D E E 8 MName: t
1] Scope: | TS~ |
2 _t 5_ Comment:
3 |vO 0
4.8 -9.81
5 -
6 |V -49.05 Refers to! | _gheet412B82 =]
7] ([oK)] | Cancel |
e AN
8

Option 2: Right-click on the cell, then select "Name a Range". Give cell B3 the name "v0"

Option 3: Type the cell name into the name box. Give cell B4 the name "g".

9 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

| oy SuMm - K v ﬁr| =vi+g*t B7 - ﬁrl =vO+g*t

A B C D E A B C D E

name box ! !

2 |t 5 2 |t 5

3 w0 0 3 v0 0

1.8 -9.81 4|g -9.81

5 5

6 |V -49.05 6 |V -49.05

7 |=v0+g*t_ 7 | —49.05!

8 8

Some rules about defining names:

e The first character of a name must be a letter, an underscore character (_), or a backslash (\). Remaining
characters in the name can be letters, numbers, periods, and underscore characters.

e You cannot use a cell name (e.g., A3, T23, v1, AC1)

e Names cannot be the same as a cell reference, such as Z$100

e Spaces are not allowed as part of a name. Use the underscore character (_) and period (.) as word
separators, such as, Sales_Tax or First.Quarter

e A name can contain up to 255 characters

e Excel does not distinguish between uppercase and lowercase characters in names. For example, if you
created the name "Sales" and then create another name called "SALES" in the same workbook, Excel
prompts you to choose a unique name.

You can see if a cell has a name associated with it by selecting a cell and looking at the name box. You can see
the expression used in a given cell by selecting a cell and looking at the formula bar.

| gy vo - f;}| 0 | B7 - f:'r| =v0+g*t
A B C D E A B C D
b 1 1

name box R 5 2 |t 5
v [3 |v0 0 formula bar
a.g -9.81 1g -9.81
5 5
6V -49.05 6 |V -49.05
7 -49.05 7 -49.05)
8 8

Excel’s built-in functions

Excel contains many built-in functions. Here are some common math functions:

SIN(x), COS(x), SQRT(x), EXP(x), LN(x), LOG10(x)

Each of these functions take as input an argument (x) and calculates a single value which can be used in a

formula. For example, in the example below, the value of A2 (4) is the argument of the SQRT() function. The
value of SQRT(4), which is 2, is calculated and multiplied by the value stored in A3, which is 6.

10 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

| SUM ~ (% « f| =A3*SQRT(A2) c2 - [f | =A3=sarT(A2)
D E A B c D E

C
A [=A3FsarT(a2)

LS I T R
=)

Al

Note: The arguments of all trigonometric functions (e.g., SIN(), COS(), etc.) must be in radians, not degrees.

There are some functions with multiple arguments. For example, the AVERAGE() function takes as input one or
more arguments and calculates their mean. Multiple arguments are separated by commas.

For example, say | want to calculate the average of cells Al through A5. | could...
(1) Type the values in manually
(2) Type the cell addresses manually

SUM (2 XK v ﬁ| =AVERAGE(1,3,7,9,5) SUM ~(» X v ﬁr| =AVERAGE(A1,A2,A3,A4,A5)

A B C D E F A B C D E F G
1 1 1 1]
2 3 |=AVER;E~:G E(1,3,7,9,5) 2 3])
3 7 3 7

—

4 9 a 9 |:AVERJE_GE{Al,Az,A3,A4,A5}|
5 5 5 5
6 &
7 7

(3) Use the colon operator (:) to select all the values between Al and AS5.

| SUM ~ (* X « fo| =AVERAGE[A1:A5)
. A B c D E F
1 [1.
2 3 5
3 7
4 9 5
5, 5
& |=AVERJ5_GE{A11A5}
7

11 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Plotting

Excel allows you to create many different types of plots very easily. First, we create a table of x values going
from x=0 to x=m in step sizes of m/20. Create a column heading called x (A1), then type 0 in the cell directly
below the heading (A2).

We want the value to x to increase by /20 in each subsequent row. This can be accomplished by clicking on
A3 and typing =A2+PI()/20.

SUM ~ (0 %« F | =A2+p()/20 | A3 - fi | =n2+21()/20
A B C D A B - D

1 X 1 X

2 0 2 0

3 =A2+PI()/20 3 | 0.157

4 I 4

5 5

6 6

7 7

PI() is a built-in function that has no arguments (nothing is put in the parentheses) and returns the value of m,
which is 3.141592653... and so on. Notice that the command =A2+PI()/20 uses relative references. The
command is translated as "take the value in the cell in same column and one row above and add PI()/20 to it."

If we copy the formula in cell A3 and paste it in cell A4, we will obtain the value PI()/20 + PI()/20,

SUM ~ (0 % v £ | =a3+pI()/20 A4 M fe | =A3+p1()/20
A B C D A B C D

1 X 1 X

2 0 2 0

3 0.157 3 | 0.157

4 =A3+PI()/20) 2 | 0314

5 I 5

6 6

7 7

12 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Use the fill handle to calculate the remaining values of x from 0 to m.

A4 - fe | =A3+PI()/20 | A22 | f | =a21+PI1()/20
A B ' D E E = A B C D E F G

1 |x 1 (%

7 0 2 0
3 | 0.157 3 0.157
40314 4 0314
< 1 5 | 0.471
g & | 0.628
- 7 | 0.785
8 B | 0.942
9 9 1.1
10 10| 1.257
11 11| 1.414
12 12 | 1.571
13 13 | 1.728
12 14| 1.885
15 15 | 2.042
= 16| 2.199
= 17 2.356
18 18| 2.513
19 19| 2.67
20 0 2.827
= 212,985
— 2 3.142!
23 23

Now create two more column headings named SIN(X) and COS(X) in B1 and C1. Use the following formulas in
the cells just below the headings (B2 and C2).

| UM (0 % « £]=sINjA2) | SUM + (0 X « fe| =cos(a2)
A B C D A B C D
1 X SIN(X) COS(X) 1 x SIN(X) COS(X)
2 0=sIN(A2) | 2 0 o[zcos(A2)
3 0.157 3 0.157
410314 4| 0314
5 0.471 5 0471
6 | 0.628 6 | 0.628
7 | 0.785 7 | 0.785

The formula in the cell B2 is translated as "take the value in the cell that is 1 column to the left and in the same
row, and use it as the argument for the SIN() function."

The formula in the cell C2 is translated as "take the value in the cell that is 2 columns to the left and in the
same row, and use it as the argument for the COS() function. "

Use the fill handle to calculate sine and cosine of all values of x.

13 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

c22

- |

fe | =CO5(A22)

1 X

2 1]
3 | 0.157
4 0.314
5 0471
6 | 0.628
7 0.785
g | 0.942
] 1.1
10 | 1.257
11 | 1.414
12 | 1.571
13 | 1.728
14 | 1.885
15 | 2.042
16 | 2.199
17 | 2.356
18 | 2.513
18 2.67
20 | 2.827
21| 2.985
22 | 3.142

B
SIN(X)

0
0.15643
0.30902
0.45399
0.58779
0.70711
0.80902
0.89101
0.95106
0.98769

1
0.98769
0.95106
0.89101
0.80902
0.70711
0.58779
0.45399
0.30902
0.15643
1.26-16

C

COS(X)
1
0.9877
0.9511
0.891
0.809
0.7071
0.5878
0.454
0.309
0.1564
6E-17
-0.1564
-0.309
-0.454
-0.5878
-0.7071
-0.809
-0.891
-0.9511
-0.9877
-1

E F

Notice how the value of SIN(A22) and COS(A12) are almost zero. This is because m, like most numbers with
decimals, cannot be stored to an infinite level of precision. But this concept is beyond the scope of the course.
1.2E-16 and 6E-17 are close enough to zero for most applications anyways.

Let’s plot SIN(x) and COS(x) versus x. Highlight the values you want to plot, click on the Insert tab, click on
Scatter, then click on the type of scatter plot you want create.

=it)
—/ Homey Insert Page Layout Formulas Data Review View

14

o=
12
PivotTable Table Picture

Tables

DR ke

Clip Shapes SmartArt | Column Line Pie Bar
Art - - - -

Al

Tlustrations

Charts

Al

-

ﬁr|x

W~ (W e

prm e e e e e e e e e
LR R R - R P RS T R =)

LE]

Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

A

B

C

D E F G H

X
o
0.157
0.314
0.471
0.628
0.785
0.942
1.1
1.257
1.414
1.571
1.728
1.885
2.042
2199
2.356
2.513
2.67
2.827
2,935
3.142

SIN(X)

0
0.15643
0.30902
0.45399
0.58779
0.70711
0.80902
0.89101
0.95106
0.98769

1
0.98769
0.95106
0.89101
0.80902
0.70711
0.58779
0.45399
0.30902
0.15643

1.2E-16

COS{X)
1
0.9877]
0.9511]
0.891
0.809
0.7071]
0.5878|
0.454
0.309
0.1564|
6E-17
-0.1564
-0.309
-0.454
-0.5878
-0.7071
-0.809
-0.891
-0.9511
-0.9877
=il

Highlight values

—

il Al Chart Types...

A chart should appear with a legend.

| Chart2 (> £|

A B C D E F G H 1 J K
1 0x SIN(X) COS[X)] ..
2 0 o 1| | s
3 | 0.157| 0.15643 0.9877
4 | 0.314| 0.30902 0.9511
5 | 0.471| 0.45399 0.891
6
7
8
9

0.628| 0.58779 0.809

0.785| 0.70711 0.7071

0.942| 0.80902 0.5878| .

1.1| 0.89101 0.454|°
10| 1.257| 0.95106 0.309
11| 1.414| 0.98769 0.1564
12| 1.571 1 6E-17
13| 1.728| 0.98769 -0.1564
12| 1.885| 0.95106 -0.309
15| 2.042| 0.89101 -0.454| | 15
16| 2.199| 0.80902 -0.5878| "
17| 2.356| 0.70711 -0.7071
18| 2.513| 0.58779 -0.809
19| 2.67| 0.45399 -0.891
20| 2.827| 0.30902 -0.9511
21| 2.985| 0.15643 -0.9877
22| 3.142] 12616 -1

You can adjust the minimum and maximum values of the x- and y-axes, add a title, add labels to the x and y-
axes, etc... by selecting the Layout tab and choosing various options.

"~—/ Home Insert Page Layout Formulas

Chart Area - \E‘ LF_P

%?/Format Selection

- Picture Shapes Text

&* Reset to Match Style = Box
Current Selection Insert

Review View Develop

Datd Design @ Format

Chart Axis Legend Data Data Axes Gridlines ot Chart Chart
jtle = Titles~ - Labels = Table - - Area~ Wall~ Floor~ Rc

Labels Background

Chart 2 ~(
A B C
10x SIN(X) COS{X)
2 0 0 1[]
3| 0157 0.15643 0.9877
s | 0314 030902 0.9511
5| 0471 045399 0.891
6
B
B
9

0.628 0.58779 0.809 _ Common options
0.785 070711 0.7071

0942 0.80902 0.5878

1.1 0.89101 0.454 °
10| 1.257 0.95106 0.309
11| 1414 0.98769 0.1564
12| 1571 1 6E-17
13| 1.728 0.98769 -0.1564
14| 1.885 0.95106 -0.309
15| 2.042 0.89101 -0.454 | -15
16 2199 0.80902 -0.5878

15 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Topic 2: Introduction to the Visual Basic for Applications (VBA) environment

Excel contains two environments that are able to interact with each other:
(1) The familiar workbook environment that consists of cells, worksheets, and charts
(2) The Visual Basic for Applications environment that allows you to write your own programs (macros) and

create graphical user interfaces.

We will be creating programs called macros using the VBA language. There are a few tasks that we need to
complete before we start learning how to program. The instructions below are for Excel 2007, but the steps

are similar in 2010 and 2013.

Showing the Developer Tab

It will be very convenient in this course to include the Developer tab at the top of the screen because you will
need to access it many times. You can include this ribbon by clicking the Office button in the upper left corner
of the Excel screen, then selecting Excel Options.

s T T

Publish

LS
| Claose

ot i

12

[= = e R [~ R [T e [V Y | R e

v View

Recent Documents

10 6-20-2011 lecture examples = L Eil Ex

Results - NaBrUV_LHS_Data - Feb20_2003 - new 1= | | Source .
Results - MaBrUV_LHS_Data - Jan24_2003 - new =

Results - MaBrUV_LHS_Data - Jan27_2003 - new = 1F
Results - NaBrUV_LHS_Data - Feb13_2003 - new 1=
trapezoidal
Differentiate =
MyFirstWorkbook =
6-20-2011 lecture examples =
6-22-2011 lecture examples =
Project 1 Summer 2011(1) =
cbo box example 8-1-2011(1) =
Project 1 Summer 2011(1) {=1
ME232 (1 Summer 2011 saln

hwla me232 =
finances =

Core gpa compute =

23 Excel Options |)3 Exit Excel |

16 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Under the Popular tab, make sure that Show Developer tab in the Ribbon option is selected.

a9)5 — = S -
Hoay Excel Options £
— Home Insert L = - -
- = 3 Recor Popular N T = 5
=3 3 Use Rei il A ﬁ Change the most popular options in Excel.
bt 5¢ Rel =
Visual Macros Firnutae
Besic i\ Macro § . = :
_Cade Proofing Top options for working with Excel
5 - Save '1‘- Show Mini Toalbar on selection (i
e 4 [7]_Epablet o
vance —
A B J |¥| Show Developertab in the Ribbon i
1 Customize Color scheme:
2 Add-Ins ScreenTip style: | Show feature descriptions in ScreenTips IZI
3 Trust Center Create lists for use in sorts and fill sequences: ‘ Edit Custam Lists...
Resources
4 When creating new workbooks
==t

Setting the security level

You may need to lower the default security level of Excel. This is because you will be creating and running
macros. Some bad people out there have developed malicious macros which can do bad things to your
computer. These macros can be included in Excel files and other Microsoft Office files. Although the macros
you create in this class will be harmless, Excel and other programs often prevent macros from starting when
you open an Excel file. You can override this by doing the following:

Under the Developer tab, click Macro Security and select Disable all macros with notification. Now you will
have the option of enabling macros when you open an Excel file.

e —— —
(Oa)] 9 - = Bookl - Microsoft Excel non-commercial use

Home Insert Page Layout Formulas Data Review View Developer

P *=] Record Macro == % properties ¢ Map Properties [Impo

- Record M = Properti A Import

=2 ﬁ Use Relative References QJView Code 4= Expansion Packs = Export
Visual Macros - Insett Design) Source . . .
Basic Macro Security - Mode @ Run Dialog s Ref a

Code tral Al
c5 Trust Center
A Trusted Publishers
ﬁ Macro Settings
1 Trusted Locations g i :
For macros in documents not in a trusted location:
74 Add-ins = TTmacros withou ificatjon
. @ Disable all macros with notification
3 ActiveX Settings i o
o a a X efff Signed macros
4 Macro Settings) Enable all macros (not recommended; potentially dangerous code can runj
Message Bar o

5 Developer Macro Settings

If you create macros, you must save your excel file with the .xIsm extension, not the usual .xIs or .xIsx
extensions. When saving an Excel file with Macros, click the Office button > Save As > Excel Macro-Enabled

Workbook.

17

Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Examining the VBA Environment

You can access the VBA Environment in two ways:
(1) Selecting the Developer tab, then clicking Visual Basic
(2) Typing Alt+F11.

Review

ta View
~——
é? P Record Macro [f Properties "E,L Map Properties m]mpuﬂ
% =| e =H
= E Use Relative References e @Vim Code = % Expansion Packs ﬁﬂ,. Export
Visual Mgkros . Insert Design . Source @
Basic _ﬁ Macro Security - Mode T Run Dialog E Refresh Data
Code Controls XML
Al i

£ Microsoft Visual Basic - Bookl

[- Home Insert Page Layout Formulas Daf

A

;EIE Edit View Insert Format Debug Run Tools Add-Ins Window Help Type a question for help -

[EE-d s aah 90c» 1 al¥EFF @

I

4
| |Properties - Sheetl

F—T—
Visual Basic
Editor
Alphabetic |Categor|zed|
(tame) ETRRDY

| [Sheeta worksheet

Sheetl
DizplayFPageBre: False
DizplayRightTol Falze
Ef

i Properties
§ Window
Ef

EnableSelection 0 - xNoRestric|
Name Sheetl
Scrollarea

Standardwidth |8.43

fimibale 4 adChnn e

[R[B[R[R[8[3]85]8|6 R [8]R[2]8]e[= N[a]w|s v m

We now have access to the VBA Environment, which consists of three main sections:
e The Project Explorer which contains the components of your project

e The Properties Window which contains the properties of the components

e Visual Basic Editor which contains the programs you write

VBA organizes the code you write in the following manner:

e The programs you create are called macros (sometimes called procedures). A macro is written in as human-
readable text that is compiled into a set of instructions the computer can understand when you execute the
code.

e Macros are contained within modules. Initially, the editor is blank because no modules have been created.

e Modules are grouped together in a project. When a new workbook file is created in Microsoft Excel, a new
VBA project is automatically created and associated with that workbook. Each workbook may contain only
one project.

Let’s create our first macro. First, we need to add a module. In the VBA Environment, click Insert > Module.

You can think of a module as a container that holds one or more macros. A white text editor should open up.
Our code goes into this text editor.

18 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Ry _— e -
B bome | et Bagsiwedt | Formiss | Dete | ewew | wiw [peveiaper | =2 Home Insert Pagelayout Formulas Data Review View | Developer |

| - 3 Record Macra | @ |7 Properties @ T Map Properties [Import [Record Macro #* | &F properties 5} Map Froperties Zfimport
& B {5 Use Relative References = 55l View Code %Y Expansion Packs =] Export 2 [Use Relative References =
In:

¥ Gl view Code | Expansion Packs =] Export

=

Visual Macros sert Desi Source Visual Macros Insert [Design| — Source
Basic Basic _\ Magns TS T '
¥ (T W T e —
A1 [Ele Edt Debug Run ook Addlns Window Help Typesus Al i File Edit View Inset Fomat Debug Bun Jook Adddns Window Help

| n ook NEE e @ [| EE-E s B9 e 0 oa kS @
1 1 | 1 | project NBARTDect x| [(General)] [tedtarations)
2 . 2] oz Bl L
3| % Closs Module = | [5-&F vBAProject (Book1) -~
2 Files; st {1 5 &5 vicrosoft Excel Obje
5| g 5| heet1 (Sheet1)

6 Sheet? (Sheet2) 6 heet2 (Sheet2)
T Sheet3 (Sheet3) 7| heet3 (sheet3)
B Thistiorkbook - Thistorkbook
B 0
o] 3] |
0] 10

1n 1 ——
1 1| | — <
22y 12 X
1 o Hodule1 Modue -

1 14| || Aphebeti | categorized |
5| 15 | Mode 1
U 15|
a7, 17|
18 18|
19 19|
20 20
za 2|
2| 22|
23 23

24 | 24| I

> ¥i] Sheet1 e p— = S|

Alternatively, you could right-click in the Project Explorer window and select Insert Module.

Example: Using macros to put data into the worksheets

Our first macro will store a value in cell A3 in Sheetl and a value in cell B2 in Sheet3. Type the following code
into the text editor and click the run button (the green triangle). Make sure that both Sheets exist or you will
get an error message when running the macro. Alternatively, you could run the macro by typing F5.

Sub firstmacro()
' My First Macro
' Paul Nissenson

Sheets("Sheet1").Select
Range("A3").Select
ActiveCell.Value =5
Sheets("Sheet3").Select
Range("B2").Select
ActiveCell.Value = 62

End Sub

19 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

s Home Insert Page Layout Formulas Data Review View Developer

e & A-q! 1 per sheet

95 2 Microsoft Visual Basic - Bookl - [Modulel (Code)] ' % & =RAEE X
k LE |
Pa'ste 7 Print % File Edit Mew Inset Format Debug Run Tools Add-Ins Window Help -8 %
Clipboard ™ Printing by Le) . @' H % E@da 9 3 :lJ | g -%’j & o:‘; ? (@ | Ln8, Coll5 =
B2 i P%}J‘jé:t-‘h"EAPruject EJ I = =
(General) ﬂ |f|rstmacro ﬂ
A B J Jj ...':: =] Sub firscmacro() =
| | |=-% veaProject (Book1)
1 | B3 Microsoft Excel Obje(|
| -8 Sheet1 (Sheet1) 103
2 | 62) Sheet2 (Sheet) | run button
| L] Sheet3 (Sheet3) |
3 : 48 Thisworkbook Sheets ("Sheetl™) .Select
| B3 Modules = Range ("A3") .Seb.ect
il H ¥ Module1 - ActiveCell.Value = 5
P
5 Sheets ("Sheet3™) .Select
Properties - Modulel 5] Range ("B2") .Select
6 |Modu|e1 Module j BctiveCell .Value = 62
7 Alphabetic]Categorized | End Sub
M]‘ Module 1
8
2
10
11
12
i3 == . o
\
14
W 4 » v Sheetl Sheet2 | Sheet3 ¥J [I—

The number 5 should now be stored in cell A3 of Sheetl and the number 62 should be stored in cell B2 of
Sheet3. Let’s analyze the code.

The macro program begins with,
Sub firstmacro()

The word Sub is short for subroutine "procedure" (another name for a "macro"). Sub procedures are different
from Function procedures, which we will be learning about in Topics 4 and 5. The name of the macro is
firstmacro(). If the program contains arguments (inputs), they would go in the parentheses. This Sub
procedure contains no arguments.

' My First Macro
' Paul Nissenson

Comments are created by using an apostrophe and are automatically made green by the text editor.
Everything after the apostrophe is ignored by the program. It is good programming practice to put
commentary in all programs to help others who may use your code in the future. Additionally, you may wish
to leave reminders to yourself describing what different sections of code do in case you need to revisit
programs long after you write them.

Sheets("Sheetl").Select
Range("A3").Select
ActiveCell.Value =5

We need to tell the program where in the workbook we want to place values. First we select the worksheet
name, then the cell. The first two lines of code tells VBA that you are interested in the worksheet named

20 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

"Sheet1", and the cell "A3" within Sheetl. Cell A3 is now the active cell. The third line assigns the value of 5 to
the active cell.

Note: The equal sigh means the value on the right side is assigned to the item on the left side. It does not
mean "equals." This distinction will become important in Topic 6.

Sheets("Sheet3").Select
Range("B2").Select
ActiveCell.Value = 62

Similarly, the first two lines of code tells VBA you are interested in worksheet "Sheet3", cell B2. The third line
assigns the value of 62 to the active cell.

End Sub

The subroutine procedure (macro) is terminated with the End Sub command.

Variables

Most computer programs require the use of variables to store data temporarily. Variables can be thought of as
containers for numbers or text. They are created when you assign a value to them. Here is a simple example
that uses variables.

Sub main()
a=5
b=2*a+4
a=za+1
b=2*a+4
c="hiall!"

d =c & "Bye!"
End Sub

In the first statement, the variable a is created and the value of 5 is assigned to it. If we use the variable a later
in the code, the value 5 will be put in its place.

In the second statement, the quantity on the right is calculated first, then that value is assigned to the variable
b. Just as in the Excel Workbook Environment, the order of operations must be obeyed. 2 * ais 10, and this is
added to 4. The value 14 is assigned to b.

The third statement is a little tricky. It is nonsense algebraically, but it is very common in computer
programming. Remember, that the right side is evaluated first, then the resulting value is assigned to the
variable on the left. a + 1 is 6, and this value is assigned to a. The variable a now has the value of 6, not 5. The
previous value of a is overwritten and gone forever.

When a is used in the fourth statement, its value is 6. The value of 2 * a + 4 is 16, which is stored in b. The
previous value stored in b (14) is overwritten and gone forever.

21 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

The variables a and b store numbers. Strings, which are groups of one or more text characters, can be stored
in variables too. In the fifth statement, the text hi all! is stored in the variable c. The text you wish to store in
a string variable must be within quotation marks.

You can stitch strings together using the concatenate (&) operator. In the sixth statement, the characters Bye!
are stitched to the end of the string variable ¢, and the resulting string (hi all!Bye!) is stored in d.

Here are some rules for naming variables:

e The name must begin with a letter.

e The name must contain only letters, numbers, and underscores (no other symbols).
e The name cannot be more than 255 characters long.

e The name cannot be a reserved word like Print or Save.

Now let’s use some variables in another example.

Example: Using macros to obtain data from worksheets

The previous example showed how macros can write data to the Workbook Environment. This next example
shows how macros can obtain data from the Workbook Environment to perform calculations.

In worksheet Sheetl, type 6 in cell B3, 7 in cell B4, and 2 in cell B5. Then create a new module and write the
following code.

Sub mathfun()
Sheets("Sheet1").Select

Range("B3").Select
a = ActiveCell.Value
Range("B4").Select
b = ActiveCell.Value
Range("B5").Select
¢ = ActiveCell.Value

summy=a+b
d=a+b/c

Range("A7").Select
ActiveCell.Value = summy
Range("A8").Select
ActiveCell.Value = d

End Sub

22 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Before running the program:
—

Home Insert Paﬂ

= X @ lpersheet_
B 1

Paste 7 Print
Clipboard ™ Printing byJ
BS ~(»

A B |

i B3 Microsoft Excel Objet ~

| Sheet1 (Sheetl)
heet2 (Sheet2)
Sheet3 (sheet3) |

487 ThisWorkbook |~
¢ B3 Modules

Sheets ("Sheetl"™) .Select

Range ("B3") .Select
a = ActiveCell.Value

£ Microsoft Visual Basic - Book - [Module2 (Code)] [N
% File Edit View Inset Format Debug Run Tools Add-Ins Window Help -8 %
R f B 9 on @S| @ i, ca =
Project - VBAProject x| IlGeneral) j Imall!fun ?
3'. Sub mathfun () =

—

Range ("B4") .Select
5 oy Modulel b = ActiveCell.Value
: v Module2 Range ("B5") .Select
7 a |:|”’ B — R © = RotiveCell.Value
Properties - Module2 x| summy = a + b
Module2 Module -1 divey = b / ¢
multy = b * c
Alphabetic ICahegnnzedl d=a+b/c

Iﬂﬁl Module2

Range ("AT") .Select
ActiveCell.Value = summy
Range ("AB") .Select
ActiveCell.Value = divvy
Range ("BS") .Select
ActiveCell.Value = multy
Range ("B11") .Select
LotiveCell.Value = d

End Sub

[Er IO e Y
wNHOUJUO\IU\U‘\J)WNI—‘
|]
1

i e — ————————

After running the program:

= | Home | msent Pagd /2 Microsoft Visual Basic - Bookl - [Module2 (Code)] [e
) 1
j & @ lpersheat_l % Eile Edit View Inset Format Debug Run Tools Add-Ins Window Help -8 X
— & : . . g
Paste 2 Print R % LA~ ou @ Y @ Ins cant =
- Project - VBAProject x
Clipboard 1 Printing byJ -J .) x| ||General) j Imalhfun -
B11 +(» i. Sub mathfun() I
E& licrosoft Excel Objer » —IlE
A B Al] Sheetl (sheet1) Sheets ("Sheetl") .Select L
@ Sheet2 (Sheet2)
1 | Sheet3 (sheet3) | _ Range ("B3") .Select
[-4&] Thisworkbook |~ a = ActiveCell.Value
2 =125 Modules Range ("B4") .Select
3 6 w22 Module1 b = RetiveCell.Value
482 Module2 i Range ("B5") .Select
a4 7 1 IE"' ol c = ActiveCell.Value
5 2 | [Properties - Module2 x| summy = 2 + b
Module2 Module JEa| divvy = b / ¢
(3} multy = b * o
Alphabetic |Cabegorized| d=a+b/c
7 13 Module2
Range ("A7") .S5elect
8 3.5 ActiveCell.Value = summy
Range ("A8") .Select
9 14 ActiveCell.Value = divvy
Range ("BS9") .Select
10 ActiveCell.Value = multy
Range ("B11") .Select
El 9'5. LotiveCell.Value = d
12
End Sub
13
14

Let’s analyze the code.

Sheets("Sheet1").Select
Range("B3").Select

The worksheet "Sheetl" is selected, then cell B3 is selected. This is now the active cell.
a = ActiveCell.Value

The value of the active cell (6) is assigned to the variable a. If we use a in the rest of the code, the value of 6
will put in its place.

23 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Similarly, the value in cell B4 (7) is stored variable b and the value in cell B5 (2) is stored in variable c.

Range("B4").Select
b = ActiveCell.Value
Range("B5").Select
¢ = ActiveCell.Value

Notice we did not need to reselect the worksheet. Once we select a sheet, VBA remains on that sheet until we
select a new sheet. Now the values stored in variables a, b, and ¢ are used to perform some calculations.

summy=a+b

Again, the equals sign does not mean "equals." It means the expression on the right side will be assigned to
the variable on the left side. The quantity a + b is 13, which gets stored in summy.

divwy=b/c
multy=b * c

b / cis 3.5, which gets stored in the variable divvy.
b * cis 14, which get stored in the variable multy.

d=a+b/c

For the variable d, we must calculate a + b / ¢ using the order of operations. b / ¢ is calculated first, then this
value is added to a. 6 + 3.5 is 9.5, which gets stored in d.

Now let’s write the values of summy, divvy, multy, and d to Sheetl. We already have experience with this
from the previous example.

Range("A7").Select
ActiveCell.Value = summy

Our program has already selected Sheetl earlier in the code, so we do not need to reselect it. In cell A7, we
place the value of summy.

Range("A8").Select
ActiveCell.Value = divvy
Range("B9").Select
ActiveCell.Value = multy
Range("B11").Select
ActiveCell.Value = d

Similarly, we place the value stored in the variable divvy in cell A8, the value stored in the variable multy in
cell B9, and the value stored in variable d in cell B11. We terminate the Sub procedure with,

End Sub

24 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Assigning buttons to macros: Making your programs more user-friendly

If your programs are difficult to access or understand, few people will want to use them. An important part of
computer programming is making your programs as user-friendly as possible.

In the previous examples, we have run macros by clicking the run button in the VBA Environment of typing the
F5 key. This requires us to open the VBA Environment, select the correct macro, then run the macro.
Remember that most people do not know VBA, so it would be much nicer if a button could be created on the
worksheet itself.

In the Developer tab in the workbook environment, click Insert then select Button under Form Controls. Click
on the worksheet where you would like the button to be located. Drag the mouse until the button is the
desired size.

-y =]
-~ Home Insert Page Layout Formulas Data Review View Developer " Home Insert Page Layout Formulas Data Review View Developer

ﬂ - 3 Recard Macra Z')" 1% Properties E ties [ERT = P Record Macra =3 L{y‘ % Properties j e Tfimpo
% 2% EL v
= =3 E Use Relative Reference! - Q—J View Code <$_>| Expansion Packs i B =z E@ Use Relative References e . q;J\ﬂew Code i;.j Expansion Packs /&) Expo
Visual Macros Design Souree o, k Visual Macros Insert Design _ Soliee b
Basic _\ Macro Security Mode B Run Dialog f) Basic i\ Maera Security - Mode H RunDialog efre: 3
Code [Form Controls] XML Code Contrals XML
Bs PR Bl c2 - |
ve - 2 =g
i [Aa abl | = G A B C D 3 F G H
ActiveX Controls
5 -
mfF R S
SoAM=%

‘ \ @ |4
e e M)]
=

0|~ R W N
~

[+ SR I~ R 1 R S N S RS T

An Assign Macro box should appear. Click on the macro you want assigned to the button. In this case,
mathfun is the name of the macro. You can change the text on the button by right-clicking on the button and
selecting Edit Text.

When you are finished, click on the button to run the mathfun macro.

Try changing the values in B3, B4, and B5 and clicking the button you just created. Now you don’t have to go
into the VBA environment to run your programs.

Message Boxes: Another way to display output

In some cases it might be more user-friendly to display answers using a pop-up message box instead of writing

them to a cell in a worksheet. Message boxes are created using the MsgBox function. Text placed after
MsgBox will be displayed on the screen and the program will halt until the user closes the message box.

25 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Example: Using message boxes

Write the following macro:
Sub main()
a=12: b=a+1
MsgBox "l like pizza"
MsgBox "ais" & a
End Sub

When this macro is executed, first the variables a and b are assigned the values 12 and 13, respectively. The
first Message Box then appears.

Microsoft Excel [é]

Tlike pizza

The program waits until you close the message box by clicking the OK button or clicking the close button (the X
in the top right corner of the message box). Once you do complete this task, the second MsgBox function is
executed.

Microsoft Excel [é]

aisl2

Note: MsgBox can be used with or without parentheses.
MsgBox "ais" & a is equivalentto MsgBox ("ais " & a)

Another Example: Using message boxes

In Sheet2, type 2 into B2, 3 into B3, and 7.5 into B4.

A B
number 1 2
number 2 3

number 3 | 7.5

L% e R S

26 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Then write the following macro:
Sub inout()
Sheets("Sheet2").Select
Range("B2").Select
nl = ActiveCell.Value
Range("B3").Select
n2 = ActiveCell.Value
Range("B4").Select
n3 = ActiveCell.Value

a=nl+n2
b=n3-n1
c=n3*n2

MsgBox "numberl + number2 =" & a
MsgBox "number3 + numberl =" &b
MsgBoxn3 & "*" & n2 & "=" & ¢
Range("B7").Select: ActiveCell.Value=a+b
End Sub

Let’s analyze the program.

Sheets("Sheet2").Select
Range("B2").Select

nl = ActiveCell.Value
Range("B3").Select

n2 = ActiveCell.Value
Range("B4").Select

n3 = ActiveCell.Value

Sheet? is selected. The value in B2 is assigned to the variable n1, the value in B3 is assigned to variable n2, and
the value in B4 is assigned to the variable n3.

a=nl+n2
b=n3-nl1
c=n3*n2

The variables a, b, and c are calculated using the variables n1, n2, and n3.
MsgBox "numberl + number2 =" & a

When this line of code is executed, a message box appears.

27 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

B4 - £]7s
A B & D E

Micrasoft Excel @

number 1 2

r‘Iumber 2 3 numberl + number2 = 5

number 3 | 7.5|
!

U W N

l

The program halts until you click OK. Once this is done, the second MsgBox function is executed.

MsgBox "number3 + numberl =" &b

B4 - RS
A B C D E

Microsoft Excel ﬁ

number 1 2

number 2 3

number 3 | 7.5!

number3 + numberl = 5.5

L= T B - S 8 B S

Something funny happened here. The value stored in the variable b is n3 - n1. But | accidentally typed
"number3 + numberl" in the MsgBox function instead of "number3 - numberl". Since there are no syntax
errors in my program, no error messages appear. However, the program is not doing what | want it to do.
Errors like this are very common in computer programming and are often difficult to catch.

Once you close the Message Box, the final MsgBox function will be executed.

MsgBoxn3 & "*" & n2 & "=" & ¢

B4 - ﬁr| 5
A B C D
number 1 2
number 2 3 s

_number3| 7.5|

N o v s w N e

Once the last message box is closed, the final command can be executed which outputs the value of a+ b to
cell B2.

Range("B7").Select: ActiveCell.Value=a+b

28 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

B7 - fe| 105

A B C D
1
2 numberl 2
3 number 2 3
4 number3 7.5
5
6
7 10.5

Input Boxes: Another way to obtain input from users

Sometimes it is more user-friendly to ask the user for input interactively using an input box. An input box can
display a message to the user asking for input and obtain one piece of data from the user.

The general syntax for the InputBox function is the following:

variable = InputBox("message you want to send to user") ' Use this for string input
The InputBox function will output a string (text) even if the user inputs a number. Without discussing too
many technical details, | just want you to be aware that computers store the number 5 in a different manner
from the character "5" so we need to be careful about how we handle input from the user. If you want the
user to input a number, it is safer to put the InputBox function within the Val function.

variable = Val(InputBox("message you want to send to user")) ' Use this for numerical input
Note: VBA is very user-friendly and will allow you to omit Val in many situations without any negative
consequences — it will know that you meant to store the number 5 instead of a character "5". But it is
recommended to use Val when you want the user to input numerical data.

Example: Using input boxes

Write the following macro and execute it:
Sub displayRad()

units = InputBox("Enter the units") ' Don’t use Val when the user should enter text
rad = Val(InputBox("Enter the radius length")) ' Use Val when the user should enter a number
MsgBox "The radius is " & rad & units

End Sub

When the first InputBox function is executed, an input box appears. The program is halted until the user
enters a value for the units.

29 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

-

Microsoft Excel

Enter the units

Cancel

ik

In this example, | typed cm into the text field and clicked OK. The string cm is now stored in the variable units.
Next, the second InputBox function is executed.

S -’
Microsoft Excel &J
Enter the radius

In this example, | typed 5 into the text field and clicked OK. This number is stored in the variable rad. Finally,
we display a message to the user using a message box.

Microsoft Excel ﬁ |

The radius is 5em

Absolute references versus relative references in the VBA environment

In the previous examples, we have been using absolute reference when selecting cells. Here is an example of
using absolute references:
Sub info()
Sheets(“Sheet1”).Select
Range("A1").Select
ActiveCell.Value = "Paul Nissenson"
Range("A2").Select
ActiveCell.Value ="ID #"
Range("B3").Select
ActiveCell.Value = "=Sin(PI()/4)"
Range("C5").Select
ActiveCell.Value = 2.134
End Sub

Cell Al is selected, then the string Paul Nissenson is written to that cell.

30 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Next, cell A2 is selected, then the string ID # is written to that cell.

Next, cell B3 is selected, then the string "=Sin(PI()/4)" is written to that cell. Note that this expression will be
evaluated after it is entered into B3, just like if you typed the expression into B3 manually.

Finally, cell C5 is selected, then the number 2.134 is written to that cell.

These four values are written to the exact same four cells regardless of where the cursor starts.

a8 - 7 =3 - fu| 2134
A B G D A B [s D
1 1 Paul Nissenson

> > ID#
3 3 0.7071
7 run the macro p
5 starting in cell A6 5 (2134
7 7
8 8
=) - | [- fo| 2132
A B C D) B C D
1 1 Paul Nissenson
2 2 ID#
3 | 3 0.7071
p run the macro .
starting in cell C3 5 [2124]
[6
7 7
8 8

Often, we want to perform calculations and output information starting at the last cell clicked by the user,
which is the current active cell. This is accomplished using ActiveCell.Offset().Select

The Offset() property has the general form of,
Offset(RowOffset,ColumnOffset)

and shifts the active cell by RowOffset number of rows and ColumnOffset number of columns. For example,
ActiveCell.Offset(3 , -2).Select shifts the active cell by +3 rows and -2 columns. If the active cell were initially
at E10, it would be moved to C13 after that command were executed.

Sub info()

ActiveCell.Value = "Paul Nissenson"
ActiveCell.Offset(1, 0).Select
ActiveCell.Value ="ID #"
ActiveCell.Offset(1, 1).Select
ActiveCell.Value = "=Sin(PI()/4)"
ActiveCell.Offset(2, 1).Select
ActiveCell.Value = 2.134

End Sub

When you click on a cell on a worksheet, it becomes the active cell. For example, if you click on cell A1, Al is
the active cell.

31 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

run the macro
starting in cell A1

=]

A

AL
B C D E F

1 Paul Nissenson
2 ID#

3

I T Y

0.7071

If we run the macro starting in a different active cell, the four values are written to different cells. However,
the distance between the cells is the same regardless of which cell is selected when the macro is run.

(- BRI T I R R

Recording macros

run the macro
starting in cell B3

[T I I T SR

o7

S 2134

Paul Nissenson
[»:3
0.7071

If you have a series of tasks that need to be completed many times, you can record the actions and assigning
them to a shortcut key. In the Developer tab, click Record Macro. A pop-up window will allow you create a

macro name, a shortcut key, and allow you to store your macro in either your personal macro workbook, the
current workbook, or a new workbook. Choosing Personal Macro Workbook will allow you to use the macro

in other workbooks too.

Home Insert Page Layout Formulas Data Review view ((Developer)
ﬁ =€ Record Macro [“T,'l E ?’ % Properties E f Map Properties j’—,][mpc
— —= [UTERErETE References N Eoa G View Code 2| Expansion Packs @ Expo
Visual Macros X Insert Design X Source .
Basic I\ Macro Security - Mode 1 Run Dialog “§ Refresh Data
Code Controls XML
A1 - fe |
A B [. D A E E | r=
~ 4 h
Record Macro l Pl

w0~ R W N

32

Macro name:
Macro4

Shorteut key:
Cirl+5hift+| P

Personal Macro Workbook
R85 New Workbook

This Workbook

Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

In this example, | will call my macro Macro4, assign the shortcut key Ctrl+Shift+P, and store the macro in This
Workbook. After | click on the OK button, all my actions will be recorded and converted into VBA code.

For this simple example, | will create a column of x values and the corresponding SIN(x) values. After | have
completed the task, click the Stop Recording button.

- Home Insert Page Layout Farmulas Data Review View Developer
o = 3 B Properties | 1ZR T Map Propeties [
ﬁ ==Z [Use Reranwe Heferences 7 T Gl View Code E 2 Expansion Packs
Visual Macros . Insert Design X Source __. ~
Basic i\‘l\ﬂacro Security - Mode # Run Dialog "¢ Refresh Dat
Code Controls XML
B7 - Jie | =SIN{A7)
A | B C D E F G
1 X sin(x)
2 0 0
3 1 0.8415
4 2 0.9093
5 3 01411
6 4 -0.757
7 5| -0.959
=
8 oty

You now have a macro that can be run by typing Ctrl+Shift+P on any worksheet in this workbook. This macro
will create two columns of data containing the values of x and SIN(x). Try opening another worksheet and
typing Ctrl+Shift+P.

If you would like to look at the VBA code created for this macro, click on the Macros button in the Developer
tab. You should see the macro you just created. Click on the Edit button to examine the code.

Home Insert Page Layout Formulas Data Review View @9

¥ T Properties = Map Properties [Impc
~| Viiew Code T

Code Controls
I

-
Macro

Macro name:
X sin(x) Macra4
firstmacro
0
0.8415 S
0.9093
0.1411
-0.757

| _0 959' Macros in: | This Workbook
o Descrintion

The VBA code that is automatically generated when recording macros often is more complicated than
necessary. Even so, recording macros can be a great way of learning how to code a certain task in VBA. For
example, if you want to know how to change the text color to red in a particular cell, record a macro while you
perform that task and look the code that is generated.

71

u B~ W NN R o

33 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

By default, the recorded macros use absolute references. Every time you execute your macro, the actions will
be performed on the exact same cells. If you want the macro actions to start acting on cells relative to a cell
that you select, you can click on the Use Relative References button before recording your macro.

'Lj = ﬂRecnrdMacrn

—J Use Relative References
Wisual Macros

Basic I\ Macro Security
Code

Dealing with space issues in VBA

Placing multiple statements on the same line:
Multiple statements can be placed on the same line of code if a colon (:) separates the statements. The
following lines of code

a=34
b=a+3
c=a*b

are equivalent to
a=34:b=a+3:c=a*b
are equivalent to

a=34
b=a+3:c=a*b

Statements on the same line are executed left to right. From now on, | will often use colons to save space in

the notes.

Continuing on the next line:

If you have a long line of code, you can use an underscore to continue onto the next line. The following line of
code

h=10+20/2-6"2*2+(2+5)"2

is equivalent to

h=10+420/2-6/A2%2 _
+(2+5)n2

Note: There is a space between the 2 and underscore.

34 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Topic 3: Data types and built-in functions in VBA

Data Types

Most interesting programs are hundreds or thousands of lines long. As your programs get longer, you increase
the odds of making a silly error that could be undetected by VBA but lead to incorrect results. You can help
prevent these errors by telling VBA which variables you want to exist.

Thus far, we have created variables simply by using them in an expression. For example, the statements,

Height =5
y ="l like pizza!"

create two variables named Height and y. The variable Height contains a number and the variable y contains a
character string. Variables can contain many different types of data such as integers, numbers with decimal
points, character strings, and Boolean values (true/false). When the two statements above are executed,
Height is temporarily given an Integer data type and y is temporarily given a String data type automatically. By
default, VBA will choose a data type for all variables you create, but this could lead to some huge problems.
For example, what would happen if you wanted to change the value stored in Height to 24 later in the
program, but accidentally typed the following statement?

Heigt = 24

VBA would create another Integer variable called Heigt and the variable Height would remain unchanged. The
program would compile fine and you may never realize that you made an error in your code. We can avoid this
problem by using the Option Explicit statement at the top of every module. Option Explicit forces you to
define the data type of all variables manually. For example, try running the following program,

Option Explicit
Sub main()
Height =5

y ="l like pizza!"
Heigt = 24

End Sub

%E\\e Edit Miew [Insert Format Debug Run Tools Add-Ins Window Help
HE-H $aaBma 9 o0 @ S @ L3 Cold

Project - VBAProject x| |(Genera\]
B S o Option Explicit
E-&: VBAProject (file2.xdsm) Sub main()
=55 Microsoft Excel Objects [Height 5
Sheetl (Sheet1) ¥ = "I like pizza!"
Sheet2 (Sheet2) Heigt = 24
Sheet3 (sheet3) End Sub Microsoft Visual Basic l&J
Sheet4 (Sheetq)
: EH] Sheets (Sheets)
i 4] Thisworkbook Compile error:
225 Modules ! 1
482 Module1 WVariable not defined
4% Module2
4% Module3
442 Moduled
% VBAProject (PERSONAL.) ox | 23k ‘
\

you will get an error message stating that the variable Height is not defined. This means that you have not yet
defined (or declared) Height yet. It may seems like an unnecessary burden to declare each variable, but using
35 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Option Explicit is considered good programming practice because it is very easy to make undetectable
mistakes like in the previous example.

After using the Option Explicit statement, we must choose a data type for every variable. Here is a list of

commonly used data types:

Category Type Memory required Min value Max value
(bytes)
Integers | Byte 1 0 255
Integer 2 -32,768 32,767
Long 4 -2,147,483,648 2,147,483,647
Real Single 4 approximately approximately
-3E38 to -1E-45 1E45 to 3E38
Double 8 approximately approximately
-2E308 to -5E-324 | 5E-324 to 2E308
String String (Fixed Length) Variable 0 characters ~64E3 characters
String (Variable Length) | Variable 0 characters ~2E9 characters
Boolean | Boolean 2 False (0) True (1)

For this class, we will often be using Integer/Long, Double, String, and Boolean. Note that each data type has
limits on the data that can be stored in it. For example, you cannot store integers that are larger than 32767 in
a variable that has an Integer data type. These limitations are related to the amount of memory that is
allocated for each data type... these concepts are beyond the scope of the class.

We declare variables by using the Dim statement,
Dim varnamel As typel, varname2 As type2, ...
Let’s declare Height and y in our program,

Option Explicit

Sub main()

Dim Height As Double, y As String
Height =5

y ="l like pizza!"

Heigt = 24

MsgBox Height

End Sub

' Added this line

If we run the program, we will receive an error message because Heigt was never declared.

36 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

% File Edit View Insert Format Debug BRun Tools Add-Ins Window Help

EE-H $ B bon 3 S E T %@ L6 Colll
Project - VBAProject x| |tGeneraI]
8- d i Cption Explicit
o8& VBAProject (file2.xdsm) Sub main()
EI& Microsoft Excel Objects Dim Height A= Double, y A= String
| Sheet1 (Sheet1) Height = 5
Sheet? (Sheet2) y = "I like pizza!"™
Sheet3 (Sheet3) 24 3
Sheet4 (Sheetd) End Sub Micrasoft Visual Basic =5
Sheet5 (Sheets)
Thisworkbook
[EI-§ Modules Compile error:
482 Module1 l b
22 Module2 Variable not defined
&2 Module3

8% Moduled
-8 VBAProject (PERSONALX oK | Help

Change Heigt to Height and rerun the code. The code should run without error.

We can make every module start with Option Explicit by clicking Tools > Options, and check the box that
states Require Variable Declaration.

Format Debug Run Tools Add-Ins Window Help
19 bou @ B2 & EF Y S8 @ L, Coll

Ge Options

Editar l Editor Format] General] Docking]

Code Settings

[V Auto Syntax Chedk [V Auto Indent
?\t Require Variable Dedaration
| - Tab Width: |4
[v Auto DstmeEmbers

Iv¥ Auto Quick Info
[v¥ Auto Data Tips

WASGim A rns Comddiommm

Creating constants

Often it is desirable to create variables whose value never changes. For example, you may want to use the
value of m, the gravitation acceleration, or the height of a building many times in a program. You can protect
these constant variables from accidentally being overwritten using the Const statement when declaring

variables. The general notation for Const is,

Const constantname As Type = value

37 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Example: Creating constants
Write the following program and try to execute it.

Option Explicit

Sub ex1()

Const height As Double = 0.5
Dim width As Double

width =4
height =5 ' Not allowed
End Sub

An error message occurs stating that the constant height cannot be overwritten.

‘:Ganeral] j |€

Cption Explicit

Sukb exl()
Const height As Doubkle = 0.5
Dim width As Double

width = 4 h
5 Microsoft Visual Basic Lth

End Sub

I Compile error:
\

Assignment to constant not permitted

oK Help

Built-in functions in VBA

There are many built-in functions in VBA. The names of the functions are often similar to the names of the
functions used in the Excel Workbook Environment. For example,

Sqr(x) yields the square root of x

Sin(x) yields the sine of x

Log(x) yields the natural log of x

MsgBox creates a message box

To access functions that are used in the workbook environment, you can use

Application.WorksheetFunction.fname()

where fname() is the workbook function you want to access. Most workbook functions are accessible in VBA
using this command.

38 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Topic 4: Modular Programming using Sub procedures

Modular programming is a style of programming where a program is divided into subprograms that are each

responsible for different tasks. There are many reasons for making programs modular:

e Your code will be more organized and it will be easier for others to understand your code. Textbook authors
organize material into chapters for the same reason.

e Modular programming allows multiple people to work on the same program at the same time in parallel.
Each person can develop a different subprogram which will be combined together in a larger program later
on.

e |t is easier to find mistakes and errors in a program that separates tasks into different subprograms.

¢ In many programs you will need to execute the exact same set of commands multiple times. With modular
programming, you only need to write those set of commands once in a single subprogram. This can shorten
your code significantly.

e If you write all your programs in a modular fashion, it will be easy to later reuse procedures in different
programs.

You won’t realize the importance of modular programming until your programs become longer. For now, just
trust me that it is a critical part of programming.

We will discuss two types of subprograms, called procedures, in this course:
(1) Sub (short for subroutine) procedures

(2) Function procedures

A procedure is a series of statements that are grouped together to complete one or more tasks.

General syntax for a Sub procedure
Sub subname (arguments*)
statements*
Exit Sub*
statements*
End Sub
Note: The items with an asterisk are often used, but technically optional.
The Exit Sub statement terminates the Sub procedure when executed and any statements after the Exit Sub
statement will not be executed — it is like those statements did not exist. Exit Sub is usually used in

combination with an If structure (Topic 6) and never by itself.

In Topics 1-3, we created Sub procedures that did not contain arguments and did not use the Exit Sub
statement.

Sub procedures are invoked (or "called") using the Call statement.

Call subname(arguments)

39 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

If a Sub procedure is called in the middle of another program, that other program is halted until the Sub
procedure is completed.
Example: Using a simple Sub procedure

In the following example, there are numbers in cells B2 and B3. We will develop a macro that calculates the
difference of these two numbers and displays the result in B5.

A B C D
1
2 numil 3
3 num2 5
4
5 difference
6

Option Explicit

Sub math()

Dim x As Double, y As Double, ans As Double
Sheets("Sheet1").Select:

Range("B2").Select: x = ActiveCell.Value
Range("B3").Select: y = ActiveCell.Value
ans=x-y

Range("B5").Select: ActiveCell.Value = ans
End Sub

Create a button to run the macro by going to the Developer ribbon and clicking Insert > Button. Select cell B2
and run the macro.

A B C D E

fami Run math() macro
numa2 5

dif‘ference| -2

w

D bW N

We will now change the math() Sub procedure so that the subtraction step will be handled by a separate Sub
procedure. Of course, it is unnecessary to create a Sub procedure for this simple task, but this example is just
designed to introduce you to how Sub procedures work.

40 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Option Explicit

Sub math()

Dim x As Double, y As Double, ans As Double

Sheets("Sheetl").Select:

Range("B2").Select: x = ActiveCell.Value

Range("B3").Select: y = ActiveCell.Value

Call diffy(x, y, ans) ' Changed line of code
Range("B5").Select: ActiveCell.Value = ans

End Sub

Sub diffy(x, y, ans) ' Sub procedure added to program
ans=x-y
End Sub

The diffy() Sub procedure is written after the end of the math() Sub procedure in the same module. Most of
the math() Sub procedure is unchanged.

Sub math()

Dim x As Double, y As Double, ans As Double
Sheets("Sheet1").Select:

Range("B2").Select: x = ActiveCell.Value
Range("B3").Select: y = ActiveCell.Value

As before, the variables x, y, and ans are declared as Double variables. When a variable is given a numerical
data type (Single, Double, Long, etc.), it is given a default value of 0. Then variables x and y are assigned new
values. The diffy() Sub procedure is invoked (or "called") using the Call statement,

Call diffy(x, y, ans)

The math() Sub procedure is halted until diffy() is completed. The diffy() Sub procedure takes 3 arguments as
input. Notice that only variables x and y have been given new values at the time diffy() is called. The variable
ans will obtain a new value in diffy().

Sub diffy(x, y, ans)
ans=x-y
End Sub

When diffy() is called, the memory locations of the variables x, y, and ans in math() are passed to the
variables x, y, and ans in diffy(). As a result:

The first argument in the calling statement is linked with the first argument in the diffy() argument list.

The second argument in the calling statement is linked with the second argument in the diffy() argument list
The last argument in the calling statement is linked with the last argument in the diffy() argument list.

It just so happens that the three arguments in both lists are the same, but they do not have to be.

Call diffy(x, y, ans)

oy

Sub diffy(x, y, ans)

41 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Notice how the variables x, y, and ans did not have to be declared in the diffy() Sub procedure. This is because
they are associated with memory locations that have already been created in the math() Sub procedure. In
fact, you would get an error message if you tried to declare x, y, and ans in diffy().

Often it is useful to write down the current value of each variable in the program. Every time a variable
changes its value, update the list. Here is the status of the arguments when diffy() is called.

In math(), arguments are named: | x y ans
5 0
In diffy(), arguments are named: | x y ans

In diffy(), the value of x-y is assigned to ans. Then the Sub procedure diffy() is terminated. The new values of
X, ¥, and ans are passed back up to math().

Here is the status of the arguments when diffy() is terminated.

In math(), arguments are named: | x y ans
5 -2
In diffy(), arguments are named: | x y ans

Back in math(), the value of ans is put into cell B5 of Sheet1.
Range("B5").Select: ActiveCell.Value = ans

You can use the diffy() Sub procedure in other modules by calling it in the same way as in the math() Sub
procedure,

Call diffy(x, y, ans)

42 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Example: Reusing Sub procedures
Often you will want to create Sub procedures that can be used many times with different argument names.

Option Explicit

Sub math2()

Dim a As Double, b As Double, x As Double, y As Double
Dim ans As Double

a=1:b=2: x=5:y=6

Call addy(a, b, ans)

MsgBoxa & " +" &b & " =" & ans

Call addy(x, y, ans)

MsgBox x & " +" &y & " =" & ans

End Sub

Sub addy(n, m, result)
result=n+m

End Sub

Running this code will produce two message boxes.

Microsoft Excel @ L Microsoft Excel [_J-E‘vh

1+2=3 5+6=11

|

Lo — — i h,

This example introduces a couple new concepts. Let’s analyze the program.

Sub math2()

Dim a As Double, b As Double, x As Double, y As Double
Dim ans As Double

a=1:b=2: x=5:y=6

Variables a, b, x, y, and ans are created and given Double data types. Each variable is initially assigned a
default value of 0, but a, b, x, and y are quickly assigned new values.

Here is the status of the variables in math2() before any Sub procedures are called.

math?2()
a|b | x|y]ans
2| 5|6]|0

43 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Next, addy() is called and three arguments are passed down from math2().
Call addy(a, b, ans)
Sub addy(n, m, result)
The memory location of variable a in math2() is now linked with the variable n in addy().
The memory location of variable b in math2() is now linked with the variable m in addy().
The memory location of variable ans in math2() is now linked with the variable result in addy().

If the value of n, m or result changes in addy(), it will affect the value of a, b, and ans in math2().

Here is the status of the arguments when addy() is first called.

In math2(), arguments are named: | a b ans
2 0
In addy(), arguments are named: | n m | result

In addy(), the value of result (3) is calculated and the Sub procedure is terminated. Here is the status of the
arguments when addy() is terminated.

In math2(), arguments are named: | a b ans
2 3
In addy(), arguments are named: | n m | result

Notice how the value of n and m have not changed in addy(), so a and b retain the same value.
MsgBoxa &"+" &b & " =" & ans

Back in math2(), the MsgBox function is invoked and a message box is displayed on the screen. Next, addy() is
called for the second time.

Call addy(x, y, ans)

Sub addy(n, m, result)
The variable x in math2() is linked with the variable n in addy().
The variable y in math2() is linked with the variable m in addy().

The variable ans in math2() is linked with the variable result in addy().

Here is the status of the arguments when addy() is called the second time.

In math2(), arguments are named: | x y ans
6 3
In addy(), arguments are named: | n m | result

44 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

In addy(), the value of result (11) is calculated and the Sub procedure is terminated. Here is the status of the
arguments when addy() is terminated.

In math2(), arguments are named: | x ans
5 6 11

<

Again, notice how the values of x and y do not change in math2() because n and m do not change in addy().
MsgBoxx & " +" &y & " =" & ans

The MsgBox function is invoked and a message box is displayed on the screen.

Variable scope and variable lifetime

It is easiest to illustrate these two concepts by going through an example, then discussing the results. Create
the following program and execute it.

Option Explicit

Sub main()

Dim a As Double, b As Double, x As Double, y As Double
a=1:b=2: x=5:y=6

MsgBox "Before subby: " & a& " "&b &"" & x&"" &y
Call subby(a, b, x, y)

MsgBox "After subby: " & a&""&b&""&x&"" &y
End Sub

Sub subby(n, m, a, b)

Dim x As Double, y As Double

MsgBox "Start of subby: " & a & " "&b &""&x&"" &y
n=15: m=40: a=100: b=200: x=0.1: y=0.2

MsgBox "End of subby: " & a & " "&b &""&x&"" &y
End Sub

Note: This program does not do anything interesting. It is designed to illustrate the concepts of variable scope
and variable lifetime.

When this program is run, the following Message Boxes appear.

Microsoft Excel (8923 | [Microsoft Excel 3 | icrosoft Excel 3])| Microsoft Excel F5C

Before subby: 1256 Start of subby: 5600 End of subby: 100 200 0.10.2 After subby: 15 40 100 200

Let’s analyze the program.

45 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Sub main()

Dim a As Double, b As Double, x As Double, y As Double
a=1:b=2: x=5:y=6

MsgBox "Before subby: " & a& " "&b &"" & x&"" &y

The variables a, b, x, and y are created and values are assigned to them. The values 1, 2, 5, and 6 are displayed
in the message box.

Here is the status of the variables in main() before any Sub procedures are called.
Variables in main():

a b X
1 2 5 6

<

Next, subby() is called.

Call subby(a, b, x, y)

Sub subby(n, m, a, b)
The variable a in main() is linked to variable n in subby().
The variable b in main() is linked to variable m in subby().
The variable x in main() is linked to variable a in subby().

The variable y in main() is linked to variable b in subby().

Here is the status of the arguments when subby() is called.

In main(), arguments are named: | a b X y
2 6
In subby(), arguments are named: | n m a b

Now we enter subby().

Dim x As Double, y As Double
MsgBox "Start of subby: " & a & " "&b &"" & x&"" &y

The values 5, 6, 0, and 0 appear in the message box. In the table above, a and b in subby() are 5 and 6, but
why are x and y both 0? Where subby() is defined, notice that n, m, a, and b are in the argument list, but x and
y are not in the argument list. This means that the variables x and y are not associated with a pre-existing
memory location and need to be declared using the Dim statement (if we did not declare them, we would get
an error message). This creates locations in memory for x and y. The default value for any newly created
numerical variable is 0.

n=15: m=40: a=100: b=200: x=0.1: y=0.2

The values of n, m, a, b, x, and y are overwritten in subby(). Here is a table showing the current status of all
the variables subby().

46 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Variables in subby():
15140 | 100 | 200 0.1 0.2
n|{m a b X y

MsgBox "End of subby: " & a&"" & b&""&x&"" &y

100 200 0.1 0.2 are displayed on in the message box. The subroutine is terminated and the values of the
arguments in subby() are passed back to the arguments in main().

Here is the status of the arguments when subby() is terminated.

In main(), arguments are named: | a b X y
15 | 40 | 100 | 200
In subby(), arguments are named: | n m a b

After the subby() is terminated, the variables x and y in subby() are terminated as well. Thus variables have a
limited lifetime.

Back in main, we continue on from where subby() was called.

MsgBox "After subby: " & a & " "&b &""&x&"" &y
15 40 100 200 are displayed in the message box.
This example shows that variables by default have local scope. Variables are affected only by commands
within their own procedure. A variable called x in main() can be different from a variable called x in subby(). In
this program, when x was changed in subby() it did not affect the variable x in main().
It is possible to extend the scope of a variable to all procedures in a module or to an entire project by making

global variables, but it is not recommended and | will not be showing your how to do this except when
learning about UserForms (Topic 8). It is consider poorer programming practice to use global variables.

Passing by value vs passing by reference
In all the examples so far, the values of arguments can be changed inside Sub procedures. This is because we

have been passing the variables by reference. However, it is good programming practice to protect variables
that you do not want to change in the Sub procedure just in case you make a mistake in the Sub procedure.

47 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

You can pass variables by value by placing parentheses around the arguments. Let’s re-examine an earlier
example that used a Sub procedure named addy().

Option Explicit

Sub math2()

Dim a As Double, b As Double, x As Double, y As Double
Dim ans As Double

a=1:b=2: x=5:y=6

Call addy((a), (b), ans) ' Parentheses placed around aand b
MsgBoxa & " +" &b & " =" & ans

Call addy((x), (y), ans) ' Parentheses placed around x and y
MsgBox x & " +" &y & " =" & ans

End Sub

Sub addy(n, m, result)
result=n+m

n =1000 ' new line of code
m = 2000 ' new line of code
End Sub

Although two lines of code have been introduced to addy() that change n and m, the values of a, b, x, and y do
not change in math2(). The parentheses have protected those arguments from accidentally being overwritten.

48

Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Topic 5: Function procedures

Sub procedures and Function procedures have many similarities and can be used for the same task. As you get
more experience with computer programming, you will find that both procedures are easier to use for certain
applications.

In general, Sub procedures are useful when you want to calculate new values for one or more arguments,
while Function procedures are useful when you want to calculate a single value which is returned to the
program that called it.

Here is the general syntax for a Function procedure:

Function fname(arguments*) As* Type*
statements*

fname = expression*

Exit Function*

statements*

fname = expression*

End Function

Note: The items with an asterisk are often used, but technically are optional.
The Exit Function statement terminates the Function procedure when executed and any statements after the
Exit Function statement will not be executed. Exit Function is usually used with an If structure (Topic 6) and
never used alone.
Example: Using a simple Function procedure
Write the following program and execute it.

Option Explicit

Sub test1()

Dim a As Double, b As Double, c As Double, d As Double
a=2:b=3:c=-1:

d = funky(a, b, c) ' We do not call funky because it is not a Sub procedure
MsgBox d & " " & funky(c, a, b)
End Sub

Function funky(a, b, c) As Double
funky=a*b+c
End Function

Note: This Function procedure does not do anything useful. The example is designed to show how Function
procedures work.

49 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

After running this program, a message box appears.

-
Microsoft Excel [&J

5

1

k

Let’s analyze the program.

Sub testl()

Dim a As Double, b As Double, c As Double, d As Double
a=2:b=3:c=-1:

d = funky(a, b, c)

The variables a, b, and c are created and assigned values. The variable d also is created and is assigned the
value that results from calculating the function funky() when the arguments are a, b, and c. After funky() is
terminated, a single number replaces funky(a,b,c)
Notice how the Function procedure funky() is invoked in the same manner as built-in functions, such as Sin().
You simply place them in a statement without using the Call statement. The Call statement is only used for
invoking Sub procedures.

d = funky(a, b, c)

Function funky(a, b, c) As Double

Here is the status of the arguments when funky() is invoked.

In test1(), argumentsarenamed: | a | b | ¢

w
1
=

In funky(), argumentsarenamed: | a | b | c

The variable a in test1() is linked with the variable a in funky().

The variable b in test1() is linked with the variable b in funky().

The variable cin test1() is linked with the variable c in funky().

If a, b, or c change values in funky(), these changes will be passed back to a, b, and c in test1() after funky() is
terminated.

funky=a*b+c

The Function procedure name, funky(), is used like a variable that will store a number with a decimal since we
gave it a Double data type. In contrast, you should never assign a value to the name of a Sub procedure.

a * b+ cis 5, and this value is assigned to funky. When the Function procedure is terminated, the updated
values of a, b, and c are passed back to test1() and the number 5 replaces "funky(a, b, c)" in test1(). In this
case a, b, and c in funky() are not changed so a, b, and c in test1() are unchanged.

50 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

The number 5 is assigned to the variable d in test1(). Here is the status of the variables in test1() before
funky() is invoked for the second time.

Variables in main():
a b C d
2 3 -1 5

Back in main(), funky() is invoked again when using the MsgBox function.
MsgBox d & " " & funky(c, a, b)

As stated earlier, wherever a Function procedure is invoked, a value will be put in its place. This means the
message box will display the value of d and funky(c, a, b).

Function funky(a, b, c) As Double

Here are the status of the arguments when funky() is invoked for the second time.

In testl(), argumentsarenamed: | c | a | b

In funky(), argumentsarenamed: | a | b

The variable c in test1() is linked with the variable a in funky().

The variable a in test1() is linked with the variable b in funky().

The variable b in test1() is linked with the variable c in funky().

If ¢, a, or b change values in funky(), these changes will be passed back to a, b, and c in test1() after funky() is
terminated. However, we already saw that the value of the arguments are not changed in funky().

funky=a*b+c

a * b +cis 1, and this value is assigned to funky. When the Function procedure is terminated, the number 1
replaces funky(c,a,b) in test1().

Customized worksheet functions (User-defined functions)

All Function procedures can be invoked in the Excel worksheets too. Let’s say you frequently need to use the
equation for calculating the velocity of an object that is dropped from a building, vO + g*t (Note: This equation
assumes air friction is small).

Three inputs — v0, g, and t — are required to calculate this expression. We can write a Function procedure

named vel that takes as input v0, g, and t from the Excel workbook, calculates the expression, and returns the
value of the expression as output to the Excel workbook.

51 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Enter the values of v0, g, and t on any worksheet.

[=a] [%a] =Y w =] =
[ad
D
=

Assign the name vO0 to cell B2, assign the name g to cell B3, and assign the name t to cell B4. Now open up the
VBA Environment using Alt+F11, create a new module, and type the following code:

Function vel(vO0, g, t) As Double
vel=v0+g*t
End Function

This simple Function procedure, named vel, takes as input three arguments and calculates the value of vO+g*t.
When the function is terminated, the value of vel is passed back to the cell where it is invoked.

Now we can use this Function procedure in our workbook. In some cell in the worksheet, type =vel(vO0,g,t) and
hit the Enter key. The value of vel is calculated based on the inputs v0, g, and t.

suM v (0 %X v f| =velivog) 86 - £ | zvelivo,gt)
A B C D E A B C D E
1 1
2 vO 0 2 VO 0
3 g -9.81 3 g -9.81
4 |t 6 4t 6
5 5
6 =vel(v0,g,t) 6 | -58.86!
7 7

What happens if we accidentally mix up the order of the arguments?

Sum « (0 % ¢] ~veljtgvo) 6 - fe | =vel(t,gv0)
A B C D E A B C D E
1 1
2 \v0 0 2 vO0 0
3 g -9.81 3 g -9.81
4 1t 6 4 1t 6
5 5
6 -58.86|=ve|(t,g,v9) 6 -58.86| 6_|
7 7

There are no error messages, but we get a different answer. When you invoke a function, the value of the first
argument (t, in this last case) is passed to the first argument (v0) in the Function procedure. Similarly, the
value of the second argument (g) in the worksheet is passed to the second argument (g) in the Function

52 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

procedure, and the third argument (v0) in the worksheet is passed to the third argument (t) in the Function
procedure. So the expression v0 + g * t becomes 6 + (-9.81) * 0, or 6.

You can put numbers or cell references in the argument list too.

I SUM (0 X o« fe| =vel(1,3,5) SUM ~ (0 % v | =vel(cs,t,2)
A B C D E A B C D E
1 1
2 vO 0 2 v0 0
3 g 9.81 3 9.81
ot : ot [4
5 5
6 -58.86 6 6 5886 6
7 |=ve|(1,3_,5) 7 16|=veI(C6,t,_2)

Just make sure that you input the correct number of arguments when invoking the Function procedure.

sum (0 X o fe| =vellg) D7 - fe | =vel(gt)
A B C D E A B C D E

1 1
2 vO 0 2 v0 0
3 g -9.81 3 g -9.81
4 1t 6 4 |t 6
5 5
6 -58.86 6 6 -58.86 6
7 16 18 =Ve|(g,t)_ 7 16 %8|'#VALUE[_|

Whoops! | only used two arguments instead of three when invoking the vel() Function procedure and an error
message appears.

53 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Calling procedures within procedures

Most codes used for real-world applications are lengthy and require the use of many procedures. Often
procedures are called within procedures. Here is an example.

Option Explicit

Sub main()

Dim a As Double, b As Double, x As Double, y As Double
a=10: b=11: x=100: y = 200:

Call domath(a, b, x, y)

End Sub

Sub domath(a, b, x, y)

Dim diff As Double

Call calcdiff(x, y, diff)

MsgBox a & "+" & b & "=" & calcadd(a, b)
MsgBox x & "-" & y & "=" & diff

End Sub

Function calcadd(n, m) As Double
calcadd=n+m
End Function

Sub calcdiff(nl1, n2, ans)
ans=nl-n2

End Sub

Note: This program does not do anything useful. It is designed to show you how to use procedures within
procedures.

This code produces two message boxes.

Microsoft E ﬂ Microsoft E ﬂ

10+11=21 100-200=-100

Il Ok

Let’s analyze the program.

Sub main()

Dim a As Double, b As Double, x As Double, y As Double
a=10: b=11: x=100: y = 200:

Call domath(a, b, x, y)

Sub domath(a, b, x, y)

54 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

The variables a, b, x, and y are created in main() and assigned values. The Sub procedure domath() is called
and four arguments are passed down.

Here is the status of the arguments when domath() is called.

In main(), arguments are named: | a b X y
10 | 11 | 100 | 200
In domath(), arguments are named: | a b X y

The Sub procedure domath() must finish before we continue in main(). Inside domath(),

Dim diff As Double
Call calcdiff(x, y, diff)

Sub diffy(n1, n2, ans)
The variable diff was not in the argument list when domath() was called, so it must be created. When diff is
created, it is given a default value of 0. Now another Sub procedure called calcdiff() is called. calcdiff() must

finish before we continue in domath().

Here is the status of the arguments when calcdiff() is called.

In domath(), arguments are named: X y diff
100 200 0
In calcdiff(), arguments are named: nl n2 ans

calcdiff() must finish before we continue in domath(). Inside calcdiff(),
ans=nl-n2

The variable ans is assigned a new value and calcdiff() is terminated. Here is the status of the arguments when
calcdiff() is terminated.

In domath(), arguments are named: X y diff
100 | 200 | -100
In calcdiff(), arguments are named: nl n2 ans

The variable diff now has a new value, but the variables x and y in domath() did not change values because
the variables n1 and n2 in calcdiff() did not get assigned new values.

Here is the status of the variables in domath() after terminating calcdiff().
Variables in domath():

a b X y diff
10 | 11 | 100 | 200 | -100

55 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

After terminating calcdiff(), a message box will appear.
MsgBox a & "+" & b & "=" & calcadd(a, b)

Before we can display the message box, calcadd(a, b) must be evaluated.
Function calcadd(n, m) As Double

Here is status of the arguments when calcadd() is invoked:

In domath(), arguments are named: a b
10 11
In calcadd(), arguments are named: n m

calcadd=n+m

The value of calcadd is calculated (21) and the Function procedure is terminated. The number 21 replaces the
expression calcadd(a, b) in the domath() Sub procedure.

Therefore, a & "+" & b & "=" & calcadd(a, b) becomes 10+11=21.

Also, the value of a and b in domath() do not change since n and m in calcadd() did not change. The last line of
code in domath() is,

MsgBox x & "-" & y & "=" & diff

The values of x, y, and diff are 100, 200, and -100 respectively. Here is the status of the arguments when
domath() is terminated.

In main(), arguments are named: | a b X y
10 | 11 | 100 | 200
In domath(), arguments are named: | a b X y

a, b, x, and y in main() do not change because a, b, x, and y in domath() did not change. After domath() is
terminated, the entire program ends.

56 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Comparing Sub procedures and Function procedures

Here is a table comparing Sub procedures and Function procedures

Sub procedure Function procedure

Can divide code into manageable pieces Same

Can be invoked many times Same

Communicate through arguments Same

Can pass by reference or by value Same

Variables locally defined by default Same

Invoked using Call statement Invoked using name only

Does not return a value where it is invoked | Returns a single value where it is invoked

57 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Topic 6: Selective execution (If structures and Select Case structures)

In most real-life situations, you will perform different tasks based on your current circumstances. For example,
e You will eat only if you are hungry.
e You will shower if you just woke up.

Sometimes there are multiple options available to you. For example,
e At dinner time, you will eat at home unless your friends ask you to go eat at your favorite restaurant.

Sometimes multiple conditions must be met to perform a task. For example,
¢ You will drive to a particular restaurant to eat if you are hungry, you possess a driver’s license, if a car is
available to you, and if you have at least $50 in your bank account or a friend pays for you.

So far our programs have executed every statement (except when Exit Sub and Exit Function were used). But
most of the time, we want our programs to selectively execute statements based on the current

circumstances.

Before we discuss how to perform the selective execution of statements, we first must discuss relational
operators.

Relational Operators

Relational operators allow us to compare two quantities. After comparing the two quantities, either a True or
False will replace the relational expression.

= equal to

<> not equal to

< less than

> greater than

<= less than or equal to

>= greater than or equal to

Note: Unfortunately, VBA uses the same symbol (=) for assighnment and the equal to relational operator. Most
other languages use different symbols.

When you use a relational operator, you ask the question: Is the left quantity the right quantity?
where the blank space is the relational operator. For example,

Option Explicit

Sub main()

Dim a As Double, b As Double
a=5:b=6

MsgBoxa>b

MsgBox 2 * a <> b+50

End Sub

58 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

The first expression asks, is a greater than b? Is 5 greater than 6? The answer is False, which is displayed in a
message box.

The second expression asks, is 2*a not equal to b+50? Is 10 not equal to 56? The answer is True, which is
displayed in a message box.

The answer to a relational expression can be stored in a variable of Boolean data type. The following code will
accomplish the same task as the previous example.

Option Explicit

Sub main()

Dim a As Double, b As Double, c As Boolean, d As Boolean
a=5:b=6

c=a>b

d=2*a<>b+50

MsgBox ¢

MsgBox d

End Sub

Logical Operators

Relational operators allow us to compare alphanumeric quantities. If we want to compare Boolean data, we
can use logical operators. We will discuss three logical operators in the course: And, Or, and Not.

In the following examples, assume the value of a is 5 and the value of variable b is 6.

And are both quantities True?

a<bAndb=6 True And True = True
a>bAndb=6 False And True = False
a<bAndb=7 True And False = False
a>bAndb=7 False And False = False
Or is either quantity True?

a<bOrb=6 True And True = True
a>bOrb=6 False And True = True
a<bOrb=7 True And False = True
a>bOrb=7 False And False = False

Not what is the opposite of the quantity on the right?

Nota<b Not True = False
Nota>bh Not False = True

59 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

If-Then structure

If you want a set of statements to be executed if a test condition is True, you can use an If-Then structure. The
general form of the If-Then structure is the following:

If (test condition) Then

statements executed if test condition is True
End If

Example: Using and If-Then structure
Write the following program and execute it.

Option Explicit

Sub main()

Dim x As Double, y As Double

x=40:y=50

If (x > 10) Then
MsgBox "Inside If structure"
y =300

End If

MsgBox "y=" &y

End Sub

The parentheses around the test condition x> 10 are optional, but they help make the code easier to read.
The two commands inside the If structure,

MsgBox "Inside If structure"
y =300

will get executed only if x> 10 is True when the If-Then structure begins. In this case, x is 40 so those two
commands will get executed. One message box will state Inside If structure and the second message box will
state y = 300.

If-Then-Else structure

If you want a set of statements to be executed if a test condition is True and another set of statements to be
executed if the test condition is False, you can use an If-Then-Else structure. The general form of the If-Then-
Else structure is the following:

If (test condition) Then

statements executed if test condition is True
Else

statements executed if test condition is False
End If

60 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Example: Using If-Then-Else structure
This program will determine whether the user should buy a soda.

Option Explicit
Sub buysoda()
Dim costsoda As Double, x As Double
costsoda = Val(InputBox("What is the cost of the soda?"))
If (costsoda > 0.75) Then
MsgBox "Soda is too expensive"
Else
MsgBox "Buy that soda"
End If
End Sub

A message box will state "Soda is too expensive" if costsoda > 0.75 is True.
A message box will state "Buy that soda" if costsoda > 0.75 is False.

Notice that we do not know which message box will be displayed until the user inputs a value for costsoda.

You may have noticed that the statements inside the If structures are indented 3 or 4 spaces. Although it is not
technically necessary, such indentation is considered good programming practice and | highly recommend that
you do this too. It will make your code much easier to read, especially when you create longer, more
complicated If structures.

If-Then-Elself structure

The If-Then-Else structure only allows us to test one condition. Certain statements will be executed if the test
condition is True, other statements will be executed if the test condition is False. But real-life problems are
more complicated and often require the ability to take multiple actions based on multiple test conditions. For
situations like these, use an If-Then-Elself structure. The general form for this structure is the following:

If (test condition 1) Then
statements if test condition 1 is True
Elself (test condition 2) Then
statements if test condition 2 is True
Elself (test condition 3) Then
statements if test condition 3 is True
Else
statements if none of the test conditions are True
End If

The program proceeds down the list of test conditions until a True test condition is found. Once a True test
condition is found, the statements between the test condition and the next Else If are executed and the
program jumps to the End If, ignoring the remaining test conditions even if some of the remaining test
conditions are true.

61 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Example: Using an If-Then-Elself structure

Let’s say you will eat Top Ramen if you have less than $3, eat at McDonald’s if you have $3-5, eat at Subway if
you have $5-10, and eat at Olive Garden if you have over $10.

Option Explicit
Sub eat()
Dim funds As Double
funds = Val(InputBox("How much money do you have?"))
If (funds > 10) Then
MsgBox "Eat at Olive Garden"
Elself (funds >= 5 And funds < 10) Then
MsgBox "Eat at Panda Express"
Elself (funds >= 3 And funds < 5) Then
MsgBox "Eat at McDonalds"

Elself (funds < 10000) Then ' This test condition is used to explain a concept below
MsgBox "I like Pizza!"

Else
MsgBox "Eat Top Ramen"

End If

End Sub

Run the program and type 9.50 when prompted to enter the amount of money you have.

Microsoft Excel

- 5 1
Microsoft Excel [d_E-J Microzoft Excel [éJ

How much money do you have?
Eat at Panda Express

-

Cancel

=
L \

Let’s analyze this program.

funds = Val(InputBox("How much money do you have?"))
If (funds > 10) Then

The value of funds is obtained from the user (assume the user typed 9.50 in the input box). Then we come to
the first test condition. Is the value of funds greater than 10? Is 9.50 greater than 10? That is False. So the
program skips the following statement,

MsgBox "Eat at Olive Garden"

and then evaluates the second test condition.

Elself (funds >= 5 And funds < 10) Then

62 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Is the value of funds greater than or equal to 5 And is the value of funds less than 107? Is 9.50 greater than or
equal to 5 and is 9.50 less than 10? True And True yields True. So the program executes the following
statement,

MsgBox "Eat at Panda Express"

then the program jumps to the End If, ignoring the other test conditions even though the following test
condition is also True,

Elself (funds < 10000) Then
The statement after this second True test condition is not executed,

MsgBox "I like Pizza!"

Flowcharts

Often it is helpful to visualize a program using flow charts. Here are some of the most common symbols in
flow charts.

:} Terminal: Represents the beginning or end of a program

— Flow lines: Represents the flow of logic

Process: Represents calculations or data manipulation

E Input/Output: Represents data input or output

Q Decision: Represents a comparison that determines which path the program will take

Q Junction: Represents the confluence of flow lines

63 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

The example of an If-Then-Else structure involving the cost of a soda discussed earlier can be represented in

the follow manner:
Start

Input costsoda

costsoda>0.75

\ 4 \ 4
MsgBox MsgBox
"Soda is too expensive" "Buy That Soda"
O
End

Select Case Structure

If you have many test conditions, but they all only require testing the value of one variable or expression, you
may want to use a Select Case structure. The general form of this structure is the following:

Select Case test variable
Case valuelistl
statements if test variable equals anything in valuelist1
Case valuelist2
statements if test variable equals anything in valuelist2

Case Else
statements if test variable does not equal anything in any of the valuelists

End Select

Once a valuelist is encountered that contains the value of the test variable, all subsequent valuelists are
ignored and the program proceeds to the End Select statement.

64 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Example: Using Select Case with a numerical test variable
This program asks a student for the current hour, then tells the student what he or she should do.

Option Explicit
Sub school()
Dim hour As Integer, message As String
hour = Val(InputBox("What is the current hour?"))
Select Case hour
Case 8
message = "Go to School"
Case 9, 10, 11
message = "Pay attention in class"
Case 12 To 15
message = "Lunch time"
Casels > 15
message = "Not at school"
Case Else
message = "Not valid hour"
End Select
MsgBox message
End Sub

After running this code, a message box appears that states "Pay attention in class".

Notice that we can specify possible values for the test variable (hour) in many different ways.
¢ Single values (Case 8)

e Many possible values using commas (Case 9, 10, 11)

e Range of values using the To keyword (Case 12 To 15)

e Open-ended range of values using the Is keyword (Case Is > 15).

65 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Example: Using Select Case with a String test variable

If your test variable is a string, you must put the different cases in double quotes. Here is a program that will ask
the user for their favorite book, then output the author’s name

Option Explicit

Sub favbook()

Dim book As String, author As String

book = InputBox("What is your favorite book?")

book = LCase(book) ' Now book contains lowercase letters only
Select Case book
Case "moby dick" ' All valuelists should contain lowercase letters only

author = "Herman Melville"

Case "war of the worlds", "the time machine"
author = "H. G. Wells"

Case Else
author = "unknown"
End Select
MsgBox "The author is " & author
End Sub

Let’s analyze this code.
book = InputBox("What is your favorite book?")

In this example, let’s assume the user input "The Time Machine". When using strings, it is important to
remember that VBA distinguishes between uppercase and lowercase letters. "The Time Machine" and "THE
TIME MACHINE" are treated differently.

book = LCase(book)

If you are going to be making comparisons with character strings, it is often a good idea to reduce them to all
lowercase or all uppercase letters. LCase() is a built-in function that takes a string as input and outputs the
same string, but lowercase. The output from LCase(book) is whatever string the user input, but in lowercase
letters. So now book contains the string "the time machine".

Select Case book
Case "moby dick"

The value stored in book, which is the string "the time machine", will be compared against different valuelists.
The first case is "moby dick". Since this is different than "the time machine", we move to the next Case.
Case "war of the worlds", "the time machine"
message = "H. G. Wells"

The value stored in book is not equal to "war of the worlds", but is equal to "the time machine". The string "H.
G. Wells" is stored in author, the program jumps to End Select, and the message box displays "H. G. Wells is
the author."

66 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Nested decision structures

It is common to place decision structures within decision structures.

Example: Using nested If structures

A university is trying to promote height diversity by allowing in a higher percentage of students who are

relatively tall or relatively short. However, the school still cares about SAT scores. You get an overall score
based on your height and SAT score. If it is above 100 points, you get into the school.

Male heights Female heights
Greater than 6 feet +10 Greater than 6 feet +25
Between 5 and 6 feet -15 Between 5 and 6 feet -10
Less than 5 feet +20 Less than 5 feet +5

Option Explicit
Sub school()
Dim gender As String, h As Double, sat As Integer, score As Double, msg As String
gender = InputBox("Enter gender, M or F)") : gender = LCase(gender)
h = Val(InputBox("enter height, in feet"))
sat = Val(InputBox("Enter SAT score, 0-2400")) : score =sat/ 20
If (gender = "m") Then ' If the user enters "m", we enter the outer If structure here
If (h > 6) Then
score = score + 10
Elself (h < 5) Then
score = score + 20
Else
score = score - 15
End If
Elself (gender = "f") Then 'If the user enters "f", we enter the outer If structure here
If (h > 6) Then
score = score + 25
Elself (h < 5) Then
score =score +5
Else
score =score - 10
End If
End If
msg = "Your score is " & score & ". "
If (score >= 100) Then
MsgBox msg & "You are in!"
Else
MsgBox msg & "Sorry."
End If
End Sub

Run the program and input your gender, height, and SAT score. Can you predict whether you will get into the
school?

67 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Topic 7: Repetitive Execution (Loops)
The true power of a computer lies in its ability to execute many repetitive statements very quickly.

For example, let’s say we want a computer program to add up all numbers between 1 and 20000. It would
take a human many hours to accomplish this task manually, but a computer program could finish within less
than second. Even if a human could use a mathematical trick to determine the sum quickly, he or she still
would be far slower than a computer. Notice that adding all numbers between 1 and 20000 requires you to
repeat the same set of commands 20000 times: Take a number and add it to a running total, then increase
that number by 1 and repeat.

Another example: Calculate the height of a ball dropped from a building every 0.1 seconds until it hits the
ground. In this case, we would perform the exact same calculations while increasing the time by 0.1 until a
test condition is met.

Loops are used to execute a series of statements one or more times. There are two types of loops in VBA:
(1) For loops and (2) Do loops. Both loops can be used to solve the same problem, but each is better suited for
different tasks as explained below.

For loops

If you want to execute a set of commands a certain number of times, you should use a For loop. The general
format for a For loop is the following:

For var = startval To endval Step delta
statements
Next var

var = counter variable

startval = initial value of var

endval = end of range for var

delta = change in var each loop (sometimes called the "step size")
if delta > 0, loop terminates when var > endval

if delta < 0, loop proceeds when var < endval

By default the step size is set to 1. If you omit Step delta, VBA will assume you meant Step 1.

Before entering the loop, var is assigned the value of startval. We enter the loop if either of the following
conditions are True.

e If delta > 0 And var < endval (most common scenario)

e If delta < 0 And var > endval (not as common)

Assuming we have entered the loop, when the program reaches the Next statement, var is changed by delta.
The new value of var will determine whether we proceed through the loop again.

e If delta > 0 And var < endval, the loop repeats with the new value of var. Otherwise the loop is terminated.
o If delta < 0 And var > endval, the loop repeats with the new value of var. Otherwise the loop is terminated.

68 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Notice that the statements in the loop are indented. Although technically not necessary, it is considered good
programming practice to indent 3 or 4 space because it will help keep your code neat and orderly.

Here is the flowchart for a For loop in which the counter variable is named i and delta > 0:

¢

i = startval

v

—,O

v

? True

statements

¢

i=i+delta

Example: Using a For loop
This program will add all integers from 1 to n.

Option Explicit
Sub loopy()
Dim i As Long, n As Long, sum As Long
Dim avg As Double
n=4: sum=0
Fori=1TonStep 1
sum =sum + i
MsgBox "i=" & i & " sum=" & sum
Next i
avg=sum/n
MsgBox "i=" & i & " sum=" & sum & " average=" & avg
End Sub

After running the code, five message boxes will appear.

Microsoft EX ﬂ Microsoft EX ﬂ Microsoft Ex ﬂ Microsoft EX ﬂ Microsoft Excel ﬂ

i=1 sum=1 i=2 sum=3 i=3 sum=6 i=4 sum=10 i=5 sum=10 average=2.5

Lo || o | =] [

The counter variable i changes from 1to 2 to 3to 4 to 5. When i is assigned the value of 5, which is greater
than endval (4), the loop terminates and statements after the Next i are executed.

69 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

You can have negative steps as well. Let’s redo the example above using a step size of -1.

Option Explicit
Sub loopy()
Dim i As Long, n As Long, sum As Long
Dim avg As Double
n=4: sum=0
Fori=nTo 1 Step-1
sum = sum +i
Next i
avg=sum/n
MsgBox "i=" & i & " sum=" & sum & " average=" & avg
End Sub

| have removed the MsgBox function inside the loop, so only one message box will appear. The value of i
changes from 4 to 3to 2 to 1 to 0. When i is assigned the value 0, which is less than endval (1), the loop is
terminated.

Microsoft Excel ﬂ

=0 sum=10 average==2.5

Notice in both examples | set the running total variable (sum) to 0 before beginning the loop. It is good
programming practice to reset variables that are used for summation to 0 just in case you used them earlier in
the program. For these small examples it is clear that sum was never used prior to the loop, but imagine if the
loop was at the end of a program that is 1000 lines long. Would you be 100% confident that sum is never used
prior to the loop? It is better to be safe than sorry.

Terminating For loops early
If you want to terminate a For loop early when a test condition is met, you can use an Exit For.

If (test condition) Then
Exit For
End If
Or
If (test condition) Then Exit For (This is another way of writing a simple If-Then structure)

70 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Example: Using Exit For to terminate a loop early

Option Explicit

Sub loopy()

Dim i As Integer
Fori=1To 100 Step 2

If (i > 4) Then Exit For ' Breaks loop early if i>4 is True
MsgBox "hi! i=" &ii
Next i
MsgBox "bye! i=" & i
End Sub
ﬂ ﬂ ﬂ
kil i=1 kil i=3 bryal (=5
Ok ik K
Notice that statement MsgBox "hil i=" & i was not executed when i had the value of 5 because the loop was

terminated first.

Note: In all the examples show thus far, var and delta have been integers. However, they do not have to be
integers. Here is a program that is similar to the previous example:

Example: Using non-integer counter variables in a For loops
In this example, the counter variable t is incremented by 0.5 after each iteration.

Option Explicit
Sub loopy()
Dim t As Double
For t =0 To 100 Step 0.5
If (t > 4.2) Then Exit For
MsgBox "Inside For: t=" &t
Next t
MsgBox "Outside For! t="&t
End Sub

Can you predict what the output would be?

71 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Do loops

If you want to terminate a loop when a test condition is met, you should use a Do loop. There are two types of
Do loops: Do While and Do Until. These loops have the following format:

Do While (test condition) Do Until (test condition)
statements statements
Loop Loop

The parentheses around test condition are optional, but can help make your code look neat and organized.

In a Do While loop, the loop is entered if the test condition is True.

After the statements in the loop are executed, the loop checks if the test condition is still True.

o If the test conditions is still True, the loop repeats

o If the test condition is False, the loop is terminated (the loop will repeat while the test condition is True)

In a Do Until loop, the loop is entered if the test condition is False.

After the statements in the loop are executed, the loop checks if the test condition is still False.

o If the test conditions is still False, the loop repeats

o If the test condition is True, the loop is terminated (the loop will repeat until the test condition is True)

The Do While loop has the following flowchart:

¢

statements

.

Loop

The Do Until loop is similar, except the red True and False are switched.

In the examples that follow, | will be using Do While loops instead of Do Until loops. However, you may use
whichever loop you prefer.

Both Do loops and For loops can be used to accomplish the same task. In this next example, a Do While loop is

used to calculate the sum and average of integers between 1 and 4. Note: This task is better suited for a For
loop, but | wanted to start with an example you are familiar with.

72 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Example: Using Do While loop

Option Explicit

Sub loopy()

Dim i As Long, n As Long, sum As Long

Dim avg As Double

sum=0: i=1: n=4

Do While (i <=n)
sum =sum + i
izi+l ' What happens if we switch this line with the previous line? Order matters!
MsgBox "i=" & i & " sum=" & sum

Loop

avg=sum/n

MsgBox "i=" & i & " sum=" & sum & " average=" & avg

End Sub
i=2 sum=1 i=3 sum=3 i=4 sum=t i=5 sum=10 i=5 sum=10 average=2.5

o | o 1| o] o]

If we wanted to do the same task with a Do Until loop, we could replace

Do While (i <=n)
with
Do Until (i > n)

Important: With Do loops, it is necessary to give an initial value to the variable(s) used in the test condition. In
the previous example, the variable i is assigned the value 1.

Additionally, the variable(s) in the test condition should be updated in each iteration of the loop in order to
avoid infinite loops. In the previous example, the variable i is incremented by 1 in each iteration.

Example: Infinite loop

Option Explicit
Sub infiniteloopy()
Dim i As Long, n As Long, sum As Long
sum=0: i=1: n=4
Do Until (i > n)
sum =sum +i
Loop
End Sub

The value of the variable i never changes and the loop would go on forever. You may get lucky and get an
overflow error message if a variable is assigned a number that is too large, but it is possible you will not get an
73 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

error message. If you get stuck in an infinite loop, type the Esc key many times or try Ctrl+PauseBreak. SAVE
YOUR WORK OFTEN in case you get stuck in an infinite loop and Excel crashes.

Going back to the loopy macro, it is easier to use For loops in that particular case because we need to execute
a set of statements a known amount of times. Let’s examine a situation where it is more natural for a test
condition to terminate the loop.

Example: Using Do While loop

Allow the user to input as many numbers as he or she pleases. The program will output the numbers to the
screen in column A, starting from A2. The sum and average will be displayed underneath the values.

Option Explicit
Sub loopy()
Dim count As Integer
Dim sum As Double, num As Double, avg As Double, answer As String
sum =0: count=0
Sheets("Sheetl1").Select: Range("A1").Select
answer = InputBox("Enter a number? (y or n)") ' Need an initial value to enter the loop
Do While (answer ="y")
num = Val(InputBox("Please enter a number"))
sum = sum + hum
count = count +1
ActiveCell.Offset(1,0).Select: ActiveCell.Value = num
answer = InputBox("Enter a number? (y or n)")
Loop
If(count > 0) Then ' Needed to prevent an error message if count is zero
ActiveCell.Offset(2,0).Select: ActiveCell.Value = sum
avg = sum / count
ActiveCell.Offset(1,0).Select: ActiveCell.Value = avg
Else
MsgBox "Cannot calculate avg since no values were input”
End If
End Sub

Here is the program output if | wanted to find the average of 20, 14, and 12.

Microsoft Excel ﬂ Microsoft Excel

i

Enter a number? {y or) Please enter a number 0k,
Canecel | Cancel

74 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Microsoft Excel ﬂ Microsoft Excel ﬂ

Enter a number? {y or) Please erter a number
Cancel | Cancel |

14

IL;-

Microsoft Excel ﬂ Microsoft Excel ﬂ
Enter a number? ¢ or n) Please enter a number
Cancel | Cahcel |
] J12
A B C
1
2 20
3 14
q i o
Enter a number? (y of n) >
6 46
Cancel
4' 7 15.3333
. 8
I 9

Terminating loops early
Do loops can be terminated early with the Exit Do statement,
If (test condition) Then
Exit Do
End If
Or
If (test condition) Then Exit Do

If the test condition is True, the Do loop will be terminated immediately.
If the test condition is False, the loop will continue.

Nested loops

Often it is useful to place loops within loops, especially when using multidimensional arrays (Topic 9). When
using nested loops, the inner loop must begin and end inside the outer loop.

75 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

The following pair of nested loops are okay because the j loop begins and ends inside the i loop.

Fori=1To 2
Forj=7To 5 Step -2
'statements
Next j
Next i

The following pair of nested loops are illegal because the j loop ends outside the i loop.
Fori=1To 2
Forj=7To 5 Step -2
'statements
Next i
Next j

Example: Using nested loops

Option Explicit
Sub loopy()
Dim i As Integer, j As Integer
Fori=1To 2 Step 1
Forj=7To 5 Step -2
MsgBox "i="&i&", j=" &j

Next j

MsgBox "i="&i&", j=" &j
Next i
MsgBox "i="&i&", j=" &j
End Sub

Note: This program does not do anything interesting. It is designed to demonstrate how nested loops work.

Run the program and note the values in the message boxes.

i is initially 1, j is initially 7 then 5 then 3 (which breaks the inner loop).
Theniincreases to 2, j is initially 7 then 5 then 3 (which breaks the inner loop).
Then i increases to 3 (which breaks the outer loop).

So nested loops hold the outer variable (i) constant while cycling through all the values of the inner variable

(j)- Then the outer variable will change by the step size (+1) and the inner variable will again cycle through all
its values.

Loops and Excel spreadsheets
Many VBA programs are required to access a lot of data from an Excel spreadsheet. For example, you could
make a program that obtains test scores from a column in a spreadsheet and then calculates the average of

those scores.

76 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

It is good programming practice to make your programs able to handle a wide variety of situations. Your
program should work if 5, 50, or 500 test scores are listed in the column.

This can be accomplished with the help of the Selection.End().Select command, which moves the active cell
to the edge of the current data block. There are four options that can be inserted into the parentheses.

Selection.End(xIDown).Select
e Selects the last row in the current column of the data block.
e Same as Ctrl + down arrow command in Excel.

Selection.End(xIToRight).Select
e Selects the last column in the current row of the data block.
e Same as Ctrl + right arrow command in Excel.

Selection.End(xIUp).Select
e Selects the first row in the current column of the data block.
e Same as Ctrl + up arrow command in Excel.

Selection.End(xIToLeft).Select
e Selects the first column in the current row of the data block.
e Same as Ctrl + left arrow command in Excel.

Other useful commands are:
ActiveCell.Row — Returns the row number of the current active cell.
ActiveCell.Column — Returns the column number of the current active cell. Column A is 1, column B is 2, etc.

Example: Obtaining data sets from spreadsheets using loops
The test scores of eight students are entered into Excel spreadsheet shown below. We want to create a VBA

macro that will calculate the average (mean) score and place that value in the cell that is two rows below the
last score. Although only eight scores are input, this macro should work for any number of test scores.

A B C

1 ID# Test Score
2 1567654 90
3 1234321 81
4 6787654 87
5 1234986 55
6 3127776 69
7 7654343 98
8 6565634 100
9 6787532 76
10

11 mean

77 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Option Explicit

Sub meanscore()

Dim i As Long, nrow As Long, firstrow As Long
Dim lastrow As Long, totalrows As Long

Dim mean As Double

Sheets("Sheet1").Select

Range("B2").Select ' Start at top of list

firstrow = ActiveCell.Row ' Determine # of first row
Selection.End(xIDown).Select ' Jump to last row in column
lastrow = ActiveCell.Row ' Determine # of last row

totalrows = lastrow - firstrow + 1 ' Calculate total # rows

Range("B2").Select " Jump back to top of list
mean =0
Fori=1To totalrows ' We will add totalrows values

mean = mean + ActiveCell.Value
ActiveCell.Offset(1, 0).Select

' mean = mean + ActiveCell.Offset(i, 0).Value 'A more efficient method than the previous two
' lines.
Next i
mean = mean / totalrows ' We need to jump down one more row.

ActiveCell.Offset(1, 0).Select
ActiveCell.Value = mean
End Sub

When this macro is executed, the mean (85) is placed in the cell that is two rows below the last score. Notice
that the macro will work whether 8, 80, or 800 test scores are input into the Excel workbook.

78

Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Example: Outputting multiple columns of data using loops

Let’s revisit the nested loop example presented earlier in this topic. Instead of displaying the values via
message boxes, we will output the information to a spreadsheet. Column A will contain the values of i, while
column B will contain the values of j.

Option Explicit
Sub loopy()
Dim i As Integer, j As Integer
Sheets("Sheet1").Select
Range("A1").Select: ActiveCell.Value = "i"
Range("B1").Select: ActiveCell.Value = "j"
Fori=1To 2
Forj=7To 5 Step -2
ActiveCell.Offset(1, -1).Select: ActiveCell.Value =i
ActiveCell.Offset(0, 1).Select: ActiveCell.Value = j
Next j
ActiveCell.Offset(1, -1).Select: ActiveCell.Value =i
ActiveCell.Offset(0, 1).Select: ActiveCell.Value = j
Next i
ActiveCell.Offset(1, -1).Select: ActiveCell.Value =i
ActiveCell.Offset(0, 1).Select: ActiveCell.Value = j
End Sub

After running the program, the following values are output to the screen.

A

w o NN R R

lvw)
_U)UJU‘I“-..IUJU'I\.I

O 0 N ok W N e

79 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Topic 8: Custom Dialogue Boxes (UserForms)

Most of the previous lessons have involved concepts that are common to all computer languages. All
languages have variables, Function procedures (usually called functions) and/or Sub procedures (usually called
subroutines), If structures, loops, arrays, and input/output capabilities.

One of the advantages of using VBA is that you can create user-friendly graphical user interfaces easily. These
graphical user interfaces are sometimes called custom dialogue boxes or UserForms.

First go to the Visual Basic Editor. UserForms are created by clicking on Insert > UserForm.

@ Microsoft Visual Basic - Book1

P File Edit Vie o Debug Run Tools

n @ &

Sheet3 (Sheet3)
Thistworkbook

Alternatively, you also can create UserForms by right-clicking in the VBA project window and selecting
UserForm instead of Module.

A blank UserForm named UserForm1 will appear along with a Toolbox palette in the editor. The properties of
the UserForm appear in the Properties Window and an icon for the UserForm appears in the Project Window.

Project - ¥YBAProject

UserForm1

B E &
@ (BookD) Cantrolz I
[=1- YBAProject (Bookl
-5 Microsoft Excel Objects ’T A abl

EH] Sheet1 (Sheet1) Ve 2
Sheet2 (Sheetz) = 0O
BH] Sheets (Sheet) == 5 B E

8]

UserForml UserForm

Alphabetic |Categorized I

UserFarml -
[&Hso00oo
W =Hs00000

0 - frBordersl
UserForm1

0 - FrCycleall
32000

We can customize the UserForm by changing its properties. This UserForm will be used to calculate the speed
of a ball that is dropped from a building, so the UserForm’s name and caption should reflect that. Change
(Name) to SpeedCalc and Caption to Speed Calculator. Notice that the UserForm’s name in the Project
Window and the caption at the top of the UserForm changes.

80 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Project - YBAProject
== N
E-#% vBAProject (Book1) i

5455 Micrasaft Excel Ohjects LIl

Sheetl (Sheebl) B .. oo

Sheet? (SheebZ) B .. .o

Sheet3 (SheebT) B -« oo

peed Calculator

&) Thisworkbook il

E& Farms B

" [@ Speedcalc il

Properties - SpeedCalc B

|5peedl:alc UserFarm 2|
Alphabetic | Categorized |

SpeedCale
e
W =H=00000

peedacule
Note: No spaces are allowed for the UserForm’s (Name) field

Currently, our UserForm is blank. We need to add the following items:

e Areas where the user can enter values for the initial height of the ball, the elapsed time since the ball was
released, and the gravitational acceleration.

e Labels that guide the user to where those three pieces of information should be entered.
e Buttons that will allow the user to execute the program and quit the program.

We can add these items, called controls, using the Toolbox palette.

Tool x|
Eu:untru:ulsl

ITA abl EB EB
I I i
e -
S|

Some common controls are:

Label — Creates text labels that guide the user’s actions

TextBox — Creates a text box that allows the user to input numbers and strings

CommandButton — Creates a button that allows the user to execute commands

CheckBox — Creates a check box that allows the user to select/unselect an item

OptionButton — Creates a list of options that the user can select from. All options are displayed on the
UserForm. This control usually is used when only a few options exist.

ComboBox — Creates a list of options that user can select from. Options are displayed by clicking on a drop-
down menu. This control usually is used when many options exist.

81 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Example: Using TextBoxes, CommandButtons, and Labels in UserForms

In this example, we will make a UserForm that will calculate the velocity of a ball that is dropped from a
building. We first place a Label and TextBox to allow the user to enter the initial height of the ball. Choose
Label from the Toolbox palette, then click-and-drag on the UserForm to create the Label.

Speed Calculator ﬂ Properties - Labell m

|Lahel1 Label B2

Alphabetic | Cateqgorized |

(Mame) Labell ~
Arcelerakor i
AutoSize False

BackColor [&Hs00000r
1 - fmBackstyl
B =Hz000000

The properties of the Label are listed in the Properties Window. You can change the Label’s text by clicking the

Label or by clicking on the Caption property. The font can be changed by clicking on the Font property, then
clicking on the button next to it.

For (RS

Create a TextBox next to the Label by selecting TextBox from the Toolbox palette, then click-and-drag on the
UserForm. We will need to easily differentiate between these TextBox later, so enter a new, descriptive name
for the TextBox in the (Name) field of the Properties Window.

Speed Calculator ﬂ

Properties - InitHeight |4

|InitHeight TextBox - |
Alphabetic Categnrizedl

The Labels and TextBoxes for the other two variables (time elapsed and gravitational acceleration) and the
answer (the speed) will be similar. So we can copy and paste the Label and TextBox that are created three
times using the Ctrl+c and Ctrl+v shortcut. Give the three new TextBoxes new, descriptive names.

82 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Speed Calculator ﬂ

Properties - TimeElapse [

- Enter height oo Speed S

SRR S fovame) — Tmetispze a ||

 Enter time Effffi’ .

- 2 T (GravAccel TextBox

Enter g S AT [
. [irame) Gravaccela |

.. Alphabetic | Categorized |

.. |(Name) Speedins - | |

The TextBox next to Enter time is renamed TimeElapse, the TextBox next to Enter g is renamed GravAccel,
and the TextBox next to Speed is renamed SpeedAns.

Next we add buttons to calculate the velocity and to close the UserForm when we are finished using it. Select
CommandButton from the ToolBox palette and create two command buttons by clicking-and-dragging.

Speed Calculator ﬂ

CommandButtonl L - CommandButtonl

Change the Caption property of the left button to Run and the caption property of the right button to Quit.

Also, change the (Name) property of the left button to RunButton and the (Name) property of the right button
to QuitButton.

Speed Calculator

Properties - RunButton |7 lProperties - QuitButton x|

RunButton CommandButbon | - {DuitButton CommandButtan
| Alphabetic Categurizedl Alphabetic | Cateqorized

*D

arme) R e P
accelerator Accelerator

AukoSize False AukoSize False

EackCalar] aHs000000F BackiColor] aHz000000F
BackStyle 1 - FrnBackskylel Backskyle 1 - FrnBackskyled
Zancel False Zancel False

(Zapkion Run Zaption ik

Let’s try running the UserForm by typing F5 to run the UserForm. Try clicking the Run and Quit buttons and
enter text into the TextBoxes. Nothing happens... we have not told the UserForm what to do when these
actions are taken. We need to provide code that will be executed when the CommandButtons are clicked.

83 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Close the UserForm (click the X in the upper right corner) and go back to the UserForm editor. If you double-
click on an item on the UserForm (Labels, TextBoxes, or command buttons) a code window will appear that
will list a blank Sub procedure for each of item you clicked on. For example, if you click on the controls named
QuitButton, RunButton, and SpeedAns.

|S|)ee1IAns

Private Sub QuitButton Click()

End sSub

Private Sub RunButton Click(}

Fnd sSub

Private Sub SpeedAns Change()

End sSub

In the past, we have created Sub procedures that could be used in other modules if you call them (they were
Public by default). A Private Sub procedure is limited to the module where it is written. Just leave the
"Private" alone and you will be fine.

The RunButton_Click() Sub procedure contains the code that will be executed when RunButton is clicked.

Private Sub RunButton_Click()

Dim vel As Double, g As Double, hO As Double, t As Double, vO as Double

hO = InitHeight.Value

t = TimeElapse.Value

g = GravAccel.Value

v0=0 ' The ball has no initial velocity since it is dropped from a building

' The equation for the height of a ball that is dropped from a building at time t is hO+v0*t+0.5*g*t"2
' The equation for the velocity of a ball that is dropped from a building at time t is vO+g*t

If(hO+v0*t+0.5*g*t~2>0)Then " If the ball is still above ground at time t
vel=v0+g*t

Else ' The ball has hit the ground at time t
vel=0

End If

SpeedAns.Value = vel ' Update the SpeedAns TextBox

End Sub

The values of h, t, and g are obtained from the text boxes with names InitHeight, TimeElapse, and GravAccel.
Next, the code checks to see if the ball would have hit the ground by the time t. If the ball would not have hit
the ground, the velocity is v0 + g * t. If the ball would have hit the ground, the velocity is zero (this program
assumes that the ball does not bounce). Finally, the velocity is output to the SpeedAns TextBox.

84 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

When QuitButton is clicked, we want the UserForm (named SpeedCalc) to disappear from the screen using
the Unload statement.

Private Sub QuitButton_Click()
Unload SpeedCalic
End Sub

Now that we have created the UserForm, we need to create a macro that will show the UserForm to the user.
Insert a new module and insert the following code,

Option Explicit
Sub velocity()
SpeedCalc.Show
End Sub

When the velocity macro is executed, the UserForm named SpeedCalc will appear.

Speed Calculator ﬂ

Enter height Speed
Enter time ’
Enter g

Run [Quit [

Try plugging in values for height, time, and g, the click on the Run button.

Speed Calculator ﬂ Speed Calculator ﬂ

Enter height | 100 Speed Enter height | 100 Speed
2943

Enter time 3 | Enter time 5 ’ 0

Enter g 981 Enter g 981

Run Quit [Run Quit

After you are finished click on the Quit button and the UserForm disappears.

85 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

If you want the UserForm to automatically appear when you open the workbook, you can add an event
handler. Click on ThisWorkbook item in the Project Window. Choose the Workbook option from the drop-

down menu.

Project - YBAProject x

== _ », userforms example.xlsm - ThisWorkbook {Code)

I(Declarmions]

E@ ¥BAProject {userforms € I(Geneml) ;I
- osoft Excel Objects

Sheet1 (Sheet1) fi
Sheet2 (Sheet2)

% | Thistorkbook

SpeedCalc
=425 Modules
gl Modulel

The Workbook_Open() Sub procedure is executed every time the workbook is opened. We want the
SpeedCalc UserForm to open when the workbook is opened, so type SpeedCalc.Show in the Sub procedure.

», userforms example.zlsm - Thisworkbook (Code) JElﬂ
IWOrk book ;l IOpen ;l
Option Explicit

Private Sub Workbook Open ()
SpeedCalc.Show

End Sub

Close and reopen the Excel workbook. The UserForm should open right away.

86 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Example: Using OptionButtons and ComboBoxes in UserForms

The OptionButton and ComboBox controls are used when we want the user to select one option from a set of
options.

Let’s create a UserForm that tells the user the cost of a shirt based on the shirt brand and size. There will be
three brands and five sizes to choose from. The user will choose a shirt brand using an OptionButton control
and a shirt size using a ComboBox control.

Create a new UserForm. Change the (Name) field to ShirtPrice and its Caption field to Shirt Price Calculator.

Add an OptionButton control to the UserForm. Change its (Name) field to Option_Stussy and its caption field
to Stussy.

Shirt Price Calculator ﬂ

Stussy

Add two more OptionButton controls to the UserForm by click on the first OptionButton, then typing Ctrl+c
and Ctrl+v.

Change the (Name) and Caption fields of the second OptionButton to Option_AE and American Eagle.
Change the (Name) and Caption fields of the third OptionButton to Option_AX and Armani Exchange.

Shirt Price Calculator ﬂ

" Stussy
 American Eagle

 Armani Exchange

Frames allow you to combine similar Controls into a single container. This makes the UserForm look nicer and
allows you to move many controls on the UserForm easily. You can place a frame around the three
OptionButton controls by inserting a Frame control into the UserForm and dragging the OptionButton controls
into the Frame control.

87 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Shirt Price Calculator ﬂ

" Stussy

: - © American Eagle

'} © Armani Exchange REREEREEE

Now we want to add a ComboBox control for the shirt sizes. Click on the ComboBox icon in the Toolbox
palette and drag out a ComboBox control on the UserForm. Change the (Name) field of the ComboBox control
to cbo_ShirtSize.

Finally, we will need a TextBox control to display the cost of the shirt. Click on the TextBox icon in the Toolbox
palette and drag out a TextBox control on the UserForm. Change the (Name) field of the TextBox control to
TotalCost. Also, add a Label to tell the user that the TextBox contains the cost of the shirt.

Shirt Price Calculator ﬂ

: " © American Eagle

'} © Armani Exchange -

Now that we have all the controls in place, we need to give instructions to the controls.

The cost of the shirt will depend on both the brand and the shirt size. There will be a cost associated with the
brand and there will be an extra cost associated with the shirt size since larger shirts require more material.
For UserForms that require input from more than one control to calculate the quantity of interest (the cost of
the shirt) it often is convenient to make Public variables that are accessible to all procedures the code
associated with a UserForm. Note: In general, | strongly discourage the use of Public variables except when
creating UserForms. It is considered poor programming practice and is a bit risky for programs with multiple
Sub and Function procedures because it is easy to lose track of which procedure last updated a variable.

88 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Double-click on the UserForm and insert the following VBA code at the very top of the UserForm module.

Option Explicit
Public brandcost As Double, sizecost As Double, totcost As Double

Public variables are declared after Option Explicit outside of a Sub procedure. The Public variable brandcost
stores the cost of shirt due to the brand, sizecost stores the cost of the shirt due to the size, and totcost stores
the total cost of the shirt.

Now we will give options for the shirt size when the user clicks on the ComboBox control. Double-click on the
UserForm and insert the following VBA code.

Private Sub cbo_ShirtSize_DropButtonClick()
cbo_ShirtSize.List = Array("XS", "S", "M", "L", "XL")
End Sub

This Sub procedure is executed whenever the drop down menu is clicked by the user. Inside this Sub
procedure the built-in function named Array() is used to populate the list of options for the user. There are

five shirt sizes.

Add the following Sub procedure which will be executed whenever a new value for the ComboBox is selected.
The new shirt size is obtained and the total cost of the shirt is updated.

Private Sub cbo_ShirtSize_Change()

Select Case (cbo_ShirtSize.Text) 'Access the shirt size
Case "XS"
sizecost=0
Case "S"
sizecost = 2
Case "M"
sizecost=4
Case "L"
sizecost=5
Case "XL"
sizecost =6
End Select
totcost = sizecost + brandcost 'Update the total cost
TotalCost.Value = totcost 'Output the new total cost to the TotalCost TextBox
End Sub

89 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Add the following three Sub procedures to the VBA code that will be executed whenever a new OptionButton
is selected. The new brandcost will be updated, as well as the total cost of the shirt. If you double click on the
OptionButtons, the first and last line of each Sub procedure will be created automatically for you.

Private Sub Option_Stussy_Click()
brandcost = 25

totcost = sizecost + brandcost
TotalCost.Value = totcost

End Sub

Private Sub Option_AE_Click()
brandcost = 35

totcost = sizecost + brandcost
TotalCost.Value = totcost

End Sub

Private Sub Option_AX_Click()
brandcost = 65

totcost = sizecost + brandcost
TotalCost.Value = totcost

End Sub

By using Public variables, we didn’t have to worry about passing the values of sizecost, brandcost, and totcost
to the various Sub procedures. Each Sub procedure knows the value of all three variables at all times.
However, | want to emphasize (for the millionth time) that you usually should avoid using Public variables.

Our UserForm is now ready. Insert a new module and add the following code which loads the UserForm.

Option Explicit
Sub shirt()
ShirtPrice.Show
End Sub

Create a button on a worksheet that runs the shirt() Sub procedure. When the ShirtPrice UserForm appears,
choose some brand and size combinations in the custom dialogue box.

Shirt Price Calculator ﬂ Shirt Price Calculator ﬂ
[

Shirt Brand i
irt Bramds I . ﬂ Shirt Brands

5
 Stussy " Stussy I

© American Eagle

© Armani Exchange «Armani Exchange
’ 30 67
Shirt Price Shirt Price

90 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

If you want the UserForm to be loaded when the workbook is opened, click on ThisWorkbook in the Project
Window, select Workbook from the drop down menu, and type ShirtPrice.Show in the Workbook_Open()
Sub procedure.

Option Explicit

Private Sub Workbook_Open()
ShirtPrice.Show

End Sub

Close and reopen the Excel workbook. The ShirtPrice UserForm should open right away.

91 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Topic 9: Arrays
Many programs require you to store and access a lot of similar data.
For example, say you are required to develop a program that will calculate the x- and y-position of a
cannonball from 0 seconds to 1 second using a time step of 0.1 seconds. If you want to store this data, you
would need to create 22 variables (11 times x 2 coordinates = 22 variables). This is a bit messy. Now imagine

you wanted to store the cannonball’s position every 0.0001 seconds. That would require a lot of variables.

Alternatively, we can create one container, called an array, to store the data. An array is similar to an Excel
worksheet, with each value in an array (called an element) given a specific address.

You can only store values that have the same data type in an array. For example, you may not store both
Strings and numerical data in the same array.

1-D arrays (vectors)

The simplest types of arrays are one-dimensional. You can picture them as one row of boxes with each box
able to store a single value.

You set the number of elements in an array when declaring the array. For example,

Dim a(3) As Double, b(2) As Double
This declaration creates two arrays, a and b. By default, the element numbering system starts at 0 and ends at
the value listed in the array declaration statement. Note: Many other languages also start the element

numbering at 0, while others start the numbering at 1.

Here is how to picture arrays a and b.

a b
0 0 0 0 0 0 0

a(0) a(1) a(2) a(3) b(0) b(1) b(2)

The numbers in parentheses are called the element’s index or subscript number. By default, all elementsin a
numerical array are assigned the value 0.

The first array, called a, contains 4 elements. Four locations are reserved in the computer’s memory for the
array a.

The second array, called b, contains 3 elements. Three locations are reserved in the computer’s memory for
the array b.

92 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

1-D arrays require one number to refer to a specific element. You assign values to the array elements in the
same manner as variables.

b(0) =2 ' b(0) is assigned the value 2

b(1) = b(0) + 3 'b(1) is assigned 2 + 3, or 5

b(1)=b(1) +1 'b(1) is assigned 5+ 1, or 6

i=1 'i will be used as an index number

b(2) = b(i)*b(i-1) ' b(2) is assigned b(1)*b(0), which is 6*2, or 12

' It is common practice to use a variable for the index number when using loops

b
2 6 | 12

b(0) b(1) b(2)

If you try to store a value in a non-existent array element,
b(3) =100
you would get a "Subscript out of range" error message.

If you wish, you can force the lowest array element to be 1 instead of 0 by placing the Option Base 1
statement before the first Sub procedure in a module. | will be including Option Base 1 in many examples.

Option Explicit

Option Base 1

Sub arrayfun()

Dim a(3) As Double, b(2) As Double

Now arrays a and b start with an index of 1 instead of 0. Notice that the size of each array has shrunk by one
element. You can only store three values in a and two values in b.

a b
0 0 0 0 0

a(1) a(2) a(3) b(1) b(2)

Alternatively, you can specify the lower and upper bound of the element numbers using the To keyword. This
is not done often in practice.

Option Explicit
Sub arrayfun()
Dim a(3 To 5) As Double, b(-1 To 1) As Double

a b
0 0 0 0 0 0

a(3) a(4) a(5) b(-1) b(0) b(1)

93 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Loops and arrays naturally go together since loops will allow you to access all of an array’s elements easily.

Example: Using loops and arrays

In this example, we will store the value of i*2 in each array element, where i is the subscript number. For
example, in the 4" element we would store 4 A 2, or 16.

Option Explicit
Sub arrayfun()
Const N As Integer =5
Dim a(N) As Long, i As Long ' The array has 6 elements with subscripts 0, 1, 2, 3, 4, 5.
Fori=0To N
a(i)=in2 ' The loop will access a(0), then a(1), then a(2), ..., and finally a(N)
Next i
MsgBox a(0) & " " & a(1) & " " & a(N)
End Sub

8

0125

Notice how many times the size of the array (N) appears in the program. It is convenient to create a constant
(such as N) for the upper bound of an array as it will allow you to update your entire code by making one small
change.

Multidimensional Arrays (Matrices)

Although in practice 1-D and 2-D arrays will be adequate for 99%+ of everyday applications, VBA arrays can
contain up to 60 dimensions. If you need to go use anything higher than a 3-D array, you likely are not coding
in an efficient manner or are working on a very computationally taxing problem (in which case you probably
should be using a language that is better suited for number-crunching such as Fortran or C).

2-D arrays can be created in the following manner,

Dim c(1, 2) As Integer

This statement creates a 2x3 (2 rows, 3 columns) array named ¢ which stores integers. All elements are
initialized to the value 0. The (row, column) address of each element is shown below.

0,010,102

1,011,112

94 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

We can assign values to each array element by specifying a row number and column number.

c(0,1)=7 ' 7 is assigned to element (0, 1)
c(1,2) =10-¢(0,1) '10 -7 is assigned to element (1, 2)

The previous two statements assign values to elements ¢(0,1) and c(1,2). Here is the updated array.

0 710
0|0 3

If you want to access each element in a 2-D array, you will need to have two nested loops — one loop for the
row index and one loop for the column index. In general, if you have an N-dimensional array, you will need N
loops.

Example: Accessing all elements in a 2-D array

In this example, we will first populate all elements in the array ¢ with values, then we will output those values
to a worksheet.

Option Explicit

Option Base 1

Sub arrayfun()

Const nrow As Integer = 2, ncol As Integer = 3
Dim c(nrow, ncol) As Integer

Dim i As Integer, j As Integer

' Populating all elements with values

Fori=1To nrow ' For each row
Forj=1To ncol ' we proceed through each column in that row
c(i,jJ=i*2+jnr2 ' This is some random equation | thought of
Next j
Next i

' Outputting the values to a worksheet
Sheets("Sheet1").Select
Range("B2").Select
Fori=1To nrow
For j=1To ncol
ActiveCell.Value = c(i, j)

ActiveCell.Offset(0, 1).Select ' We offset one column
Next j
ActiveCell.Offset(1, -ncol).Select ' After the row is finished, go to the beginning of the next row
Next i
End Sub

95 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

After running the program, the following values should appear in Sheet1.
A | B g D E

11
13

—

nun B W N -

Passing arrays to Sub and Function procedures

Arrays can be passed to Sub procedures and Function procedures as arguments. When passing arrays, you
only list the array name in the argument list.

As with variables passed down to procedures, we do not re-declare the arrays in the procedure. The array is
assumed to have the same data type as in the calling procedure.

Example: Passing a 1-D array as an argument
In the following program a 1-D array is assigned values, then the average of those values is calculated.

Option Explicit
Option Base 1

Sub subby()

Const n As Integer =3
Dim A(n) As Double

A(1)=3:A(2)=10:A(3)=2 ' Some random values are assigned to A
MsgBox "The average of A is " & calcavg((A), (n)) 'A and n are passed by value to protect them
End Sub

Function calcavg(A, n) As Double
Dim i As Integer

calcavg=0 "It is good programming practice to set summation entity to 0
Fori=1Ton

calcavg = calcavg + A(i) ' We access each element in A and add it to a running total
Next i
calcavg = calcavg / n ' Calculating the average

End Function

As with variables passed down to procedures, we do not redeclare the arrays in the procedure. The array A is
assumed to have the same data type as in the calling procedure (subby), which is Double.

It is common practice to pass down the array size (n) along with the array.

96 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Example: Passing 2-D arrays as arguments

The following program uses a Sub procedure that takes as input two 2-D arrays and calculates the sum of
those two arrays. When adding two arrays, we add each element separately.

Option Explicit

Option Base 1

Sub subby()

Const nrow As Integer = 2, ncol As Integer = 2

Dim i As Integer, j As Integer

Dim A(nrow, ncol) As Double, B(nrow, ncol) As Double
Dim C(nrow, ncol) As Double

Dim avgval As Double, num As Double

' Assigning some random values to arrays A and B
A(1,1)=2:A(1,2)=3:A(2,1) =10: A(2,2) = 20
B(1,1) = 3: B(1, 2) = 1: B(2, 1) = -2: B(2, 2) =-100

Call addarrays((A), (B), (nrow), (ncol), C) 'A, B, nrow, ncol are passed by value; C is passed by ref.
' The array C is now calculated
Sheets("Sheet1").Select ' Outputting C to Sheetl. Two loops are needed
Range("A1").Select
Fori=1To nrow
For j=1To ncol
ActiveCell.Value = (i, j)
ActiveCell.Offset(0, 1).Select
Next j
ActiveCell.Offset(1, -ncol).Select
Next i
End Sub

Sub addarrays(X, Y, nr, nc, Z) ' Notice that we are using different names for the arrays
Dim i As Integer, j As Integer
Fori=1To nr

Forj=1Tonc

Z(i, j) = X(i, j) + Y(i, j) ' The arrays are added element-by-element

Next j
Next i
End Sub

After the macro is executed, the following information is output to the Excel workbook:

A B C

97 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Dynamic memory allocation: ReDim statement

Previously we assumed that arrays contain a fixed number of elements. But it is possible to create arrays with
a variable number of elements as well (sometimes called "dynamic" arrays). When creating dynamic arrays,
leave the number of elements blank. For example, the following code will create a dynamic array named pig,

Option Explicit
Option Base 1

Sub subby()

Dim pig() As Double

The array pig is given a Double data type, but the number of elements is not determined yet. This is
accomplished using the ReDim statement.

ReDim pig(3) As Double

Now, pig has three elements which can store information. Let’s assign values to those three elements.

pig(1) = 5: pig(2) = 3: pig(3) = -1

Pig |5 |3 |1

(1) (2) (3)

We can change the dimensions of pig by using the ReDim statement again,

ReDim Preserve pig(5) As Double

Pig |5 |3 |-1]0 |0

(1) (2) (3) (4) (5

Now pig has five elements. The new elements (4 and 5) are given a default value of 0. The Preserve keyword
keeps the previous values in the array intact. If Preserve were omitted, elements 1, 2, and 3 would be reset to
0.

If pig is redimensionalized to a smaller number of elements,

ReDim Preserve pig(2) As Double

the values stored in elements 3, 4 and 5 are lost forever, even if pig is redimensionalized back to 5 elements
later in the program.

98 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Another way to create a dynamic array is to declare the array using ReDim.
Option Explicit
Option Base 1
Sub subby()
ReDim f(2) As Double ' Creates a dynamic array with 2 elements

We can change the size later using another ReDim statement.

ReDim Preserve f(10) As Double ' Redimensionalizes f to 10 elements

Records

Arrays only allow you to store data with the same data type (only Double, only String, etc.). Records allow you
to store data with different data types in the same container.

| won’t be showing you how to make Records, but | wanted you to be aware of them.

99 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

Final thoughts for the course

In the past 60 years, computers have become smaller, faster, cheaper, more numerous, and more user-
friendly. In this relatively short period of human history, we have gone from a hand-full of people using a few
giant metal behemoths that weighed many tons, to almost everyone having powerful cell phones that fit
comfortably in their pocket. The trend of smaller, faster, cheaper, more numerous, and more user-friendly
computers likely will continue well into the future.

HOWEVER, the basic building blocks of computer programming — variables, arrays, data types, If structures,
loops, Functions procedures, and other topics you learned about in this course — have existed throughout the
age of computers and will continue to remain a vital part of programming. Every high-level computer language
that is used today (Fortran, C, C++, Java, MATLAB, Python, Mathematica, VBA, etc.) still contains these basic
building blocks.

This 100 page booklet was designed to give you a solid foundation in computer programming. It certainly does
not cover every topic in VBA, but if you understand all the concepts discussed in the booklet, you definitely
have the programming tools necessary to create some really interesting and amazing programs. Good luck!

Additional resources

If you would like to purchase more advanced books on VBA, here are two suggestions:
(1) Excel 2013 Power Programming with VBA by John Walkenbach

This book is quite thick and packed with information.
(2) Excel VBA Programming for Dummies (2nd edition) by John Walkenbach

This book is not as thick and more approachable to the beginner.

Note: | have no affiliation with the author or publisher. | just like his books.

Detailed information about all VBA commands can be found on the Microsoft Developer Network (MSDN)
website. Here is the MSDN page for VBA in Office 2013:
https://msdn.microsoft.com/en-us/library/office/gg264383.aspx

Most of the concepts on that also apply to other versions of Office as well.

100 Supplemental lecture notes for "Introduction to Excel VBA Programming" by Paul Nissenson (2015)

	Introduction
	Topic 1: Introduction to the Excel workbook environment
	Topic 2: Introduction to the Visual Basic for Applications (VBA) environment
	Topic 3: Data types and built‐in functions in VBA
	Topic 4: Modular Programming using Sub procedures
	Topic 5: Function procedures
	Topic 6: Selective execution (If structures and Select Case structures)
	Topic 7: Repetitive Execution (Loops)
	Topic 8: Custom Dialogue Boxes (UserForms)
	Topic 9: Arrays
	Final thoughts for the course
	Additional resources

