
TEST DE TRAVAUX PRATIQUES DE MECANIQUE Sujet A - durée : 2 heures

La figure 1 ci-dessous représente le schéma d'une expérience réalisée au laboratoire dans laquelle on a utilisé:

- une table horizontale de surface homogène,
- un chariot de masse m = 0.632 Kg, considéré comme un point matériel,
- un ressort R, parfait, de masse négligeable et de constante de raideur K,
- un ressort R_2 parfait, de masse négligeable et de constante de raideur $K_2 = 26 N/m$,
- une sonnette électrique à marteau et une bande de papier pour l'enregistrement.

Elle montre le système à l'instant initial $(t=0\,s)$. On comprime à l'aide du chariot le ressort R_I , lié au support de la sonnette fixé à un des bouts de la table horizontale et on le maintient au repos. Une des extrémités du ressort R_2 est attachée à une butée fixée à l'autre bout de la table. Le ressort R_2 est au repos et sa longueur est ℓ_{o2} . Une bande pour l'enregistrement du mouvement est fixée à l'arrière du chariot.

L'enregistrement du mouvement du chariot est donné à l'échelle 1 au bas de la page. L'intervalle de temps entre deux points successifs est de 0.01 s. Pour l'étude du mouvement, on utilisera un intervalle de temps $\Delta t_e = 0.04$ s.

A) Cinématique :

- 1°) A partir des valeurs des vitesses moyennes calculées sur l'intervalle de temps Δt_e , tracer le graphe de la vitesse instantanée du chariot en fonction du temps. On prendra pour le tracé du graphe les échelles suivantes : 1 cm pour 0.02 s et 1 cm pour 0.1 m/s.
- 2°) Déduire du graphe V(t):
 - les instants ti et ta
 - la distance d.
 - les accélérations a₁ et a₂ du chariot aux instants t₃ = 0.06 s et t₄ = 0.22 s.
- 3°) Représenter aux instants t_3 et t_4 les vecteurs « vitesse » et « accélération » du chariot en utilisant les échelles suivantes :

1 cm pour 2 cm, 1 cm pour 0.5 m/s et 1 cm pour 2 m/s2.

B) Dynamique:

On désignera par \vec{f} la force de frottement due au marteau de la sonnette

- 4°) 4.1 Faire l'inventaire des forces agissant sur le chariot à l'instant t, et représenter les qualitativement. Préciser la nature du mouvement à cet instant.
- 4.2 En prenant $|\vec{f}| = 0.3 N$, déterminer puis calculer de coefficient de frottement dynamique μ_D caractérisant le contact chariot/table.
- 5°) 5.1 Faire l'inventaire des forces agissant sur le chariot à l'instant t_3 et les représenter qualitativement. Préciser la nature du mouvement de l'instant.
 - 5.2 Déterminer puis calculer la valeur de la constante de raideur K1 du ressort R1.
 - C) Energie:
- 6°) 6.1 Déterminer puis calculer l'énergie mécanique totale Ez, du système à l'instant + = +4.
- Déterminer en fonction de la compression maximale Δl_m du ressort R_2 , l'énergie mécanique totale E_{Tf} du système à l'instant $t = t_{f}$
 - 6.2 Calculer le travail des forces non conservatives entre les instants t_4 et t_6
 - 6.3 En déduire la valeur de ∆lm.

P,	٠,		+												A SI MAN SA														
٠.	•	•	٠			•		•			•		•		•		•		•	*:		•		•			•		'
1																							8						
•		٠			•		•				•		•		•		•	3	•		•		•	ĺ		٠		•	
B	•				ŀ																			С					
•		•		•			٠		•0.5	•		•		•		•	•		•	٠٠.	•			٠			***	6	*
С				•				10				8	_									**							
•	٠		•	•	•		•	٠			• •		P _f																

Test de T.P. - janvier 2014 Corrigé et barème du sujet A

1°) Graphe V(t): 4

On enlèvera: ‡ point par grandeur manquante, ‡ point par unité manquante, 🛊 point par axe mal ou non gradué, 1 point si la courbe est décalée en temps.

2°) - L'instant t₁ où le ressort R₁ n'agit plus correspond au début de la phase où a est constante : t₁ = 0.14 s. 0.25

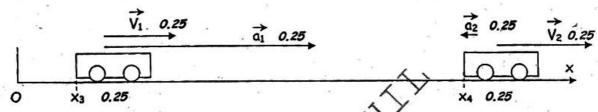
- L'instant où le chariot entre en contact avec le ressort correspond à la fin de la phase où a est constante :

t2 = 0.30 s. 0.25

dx = V(t)dt $\int_{x_1}^{x_2} dx = d = \int_{t_1}^{t_2} V(t) dt$

d = aire délimitée par la droite t=t1, la droite t=t2, l'axe des temps et le graphe V(t). 0.25

d≈ 23.8 cm 0.25


- L'accélération à t3 = 0.06 s: a1 = 13.00 ms-2 0.5

- L'accélération à t4 = 0.22 s : a2 = - 1.00 ms-2 0.5

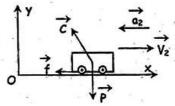
3°) x3 = 3.7 cm 0.25 x4 = 27.55 cm 0.25

 $|\vec{V}_1| = 1.1 \, m/s$

 $|\vec{V}_2| = 1.48 \, m/s \, 0.25$

4°) 4.1 - Inventaire des forces agissant sur le chariot à l'instant t

 $\vec{P} + \vec{C} + \vec{f} = M_C \vec{a}_2$


Le mouvement est rectiligne uniformément décéléré.

4.2 - Projections:

Suivant Ox: $-|\vec{f}| - |\vec{c}_{II}| = -M_c|\vec{a}_2|$ 0.25 0.25

Suivant Oy: $|\vec{c}_{\perp}| - M_c g = 0$

 $\mu_D \approx 0.053$

5°) 5.1 - Inventaire des forces agissant sur le chariot à l'instant t₃:

 $\vec{P} + \vec{C} + \vec{f} + \vec{F}_R = M_c \vec{a}_1 + 0.25$

Le mouvement est rectiligne accélepte, 70.20

5.2- projections :

Suivant Ox: $-|\vec{f}| - |\vec{c}_{II}| + |\vec{F}_R| = M_c |\vec{a}_1|$ 0.25

Suivant Oy: $|\vec{c}_{\perp}| - M_C g = 0$

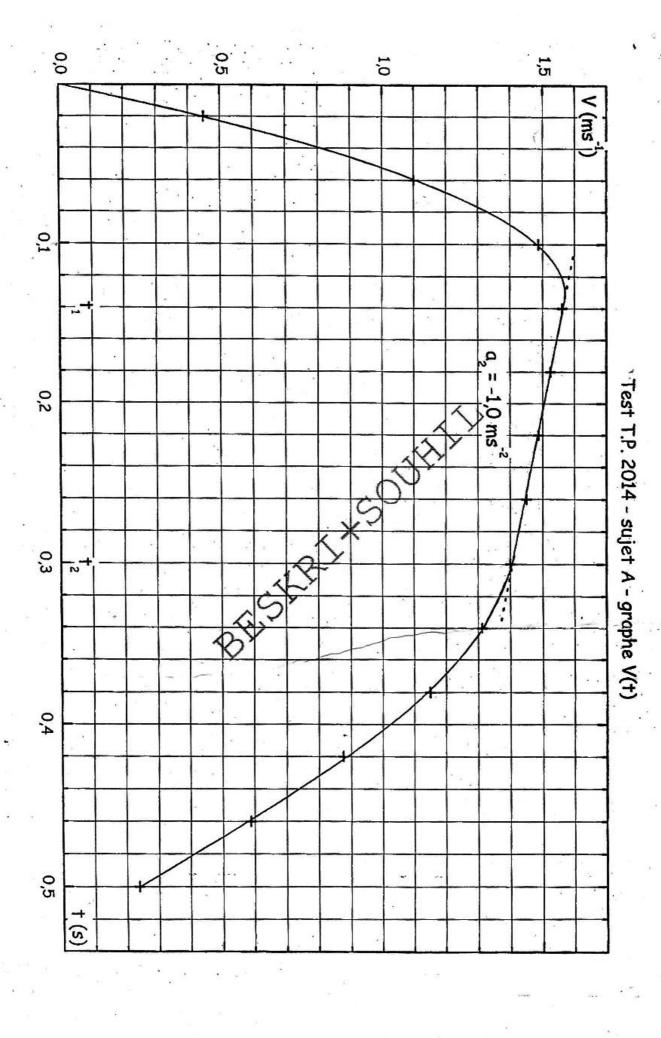
 $|\vec{F}_R| = M_C|\vec{a}_1| + |\vec{f}| + \mu_D M_C g = K_1 \Delta l$

 $K_1 = \frac{M_C|\vec{a}_1| + |\vec{f}| + \mu_D M_C g}{1}$ 0.5

ΔI = 11.80 cm (à partir de l'enregistrement) 0.25

K1 ≈ 75 N/m 0.25

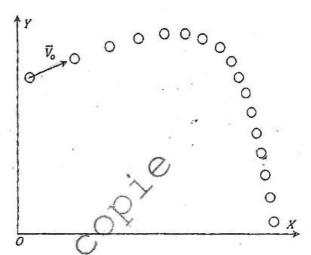
6°) 6.1 - Energie mécanique totale à t = t4 : E_{T4} = E_{C4} = ½ Mc V₄²


ET4 # 0.70 J 0.25

Energie mécanique totale à t = tf: ETf = Epe = \frac{1}{2} K_2 \Delta Im2 0.25

6.2 - Travail de \vec{c} et \vec{f} entre t_4 et $t_5 = W(\vec{c}, \vec{f}) = -(|\vec{f}| + |\vec{c}_{1/2}|) \cdot D$ 0.5 D = 31,40 cm 0.25

W(C,f) = - 0.2 J 0.25 ½ K2 ΔIm2- 0.70 = - 0.20 J 0.25 $6.3 - \Delta E_T = W(\vec{c}, \vec{f})$


ΔI_m= 19.60 cm 0.25

Test de travaux pratiques de mécanique - L1 Sujet a : 02 heures

Une balle de masse $m=60\,g$ est frappée depuis une hauteur h avec une vitesse \vec{V}_o à l'instant $t=0\,s$. Elle suit une trajectoire dans le plan vertical xOy illustrée sur la figure ci-contre. Elle est soumise durant son mouvement à une force de frottement de l'air \vec{f} . Ce travail pratique va permettre de déterminer la forme que prend cette force.

Dans le document joint, sont représentées à l'échelle 1/30 les positions occupées par la balle tous les 1/10 de seconde.

Cinématique:

1°) En prenant un intervalle de temps $\Delta t = 0.1$ s'déterminer les vitesses moyennes de la balle et tracer le graphe donnant l'évolution de sa vitesse instantanée en fonction du temps.

Prendre la feuille de papier millimétré en présentation « portrait » et utiliser la moitié de cette feuille.

Echelles: 1 mpour 0.1 s et 1 cm pour 2 m/s

- 2°) Représenter sur le document, avec l'échelle 1cm pour 2 m/s, et aux points P_1 , P_2 et P_3 les vecteurs « vitesse » \vec{V}_1 , \vec{V}_2 et \vec{V}_3 de la balle respectivement.
- 3°) En prenant un intervalle de temps $\Delta t_c = 0.2s$, déterminer graphiquement aux points P_1 , P_2 et P_3 les modules des accélérations \vec{a}_1 , \vec{a}_2 et \vec{a}_3 de la balle respectivement.

Dynamique:

- 4°) Représenter les vecteurs $m\vec{a}_1$ aux points P_1 , P_2 et P_3 à l'échelle 1 cm pour 0.1 N. En faisant l'inventaire des forces agissant sur la balle en ces points, déterminer graphiquement les modules des forces \vec{f}_1 , \vec{f}_2 et \vec{f}_3 .
- 5°) Sur la deuxième moitié de la feuille de papier millimétré, tracer le graphe donnant l'évolution de $|\vec{f_i}|$ en fonction de V_i^2 .

Echelles: 1 cm pour 2 nf/s et 1 cm pour 0.05 N

6°) Avec ce qui précède, écrire la relation vectorielle qui lie la force \vec{f}_i avec la vitesse \vec{V}_i .

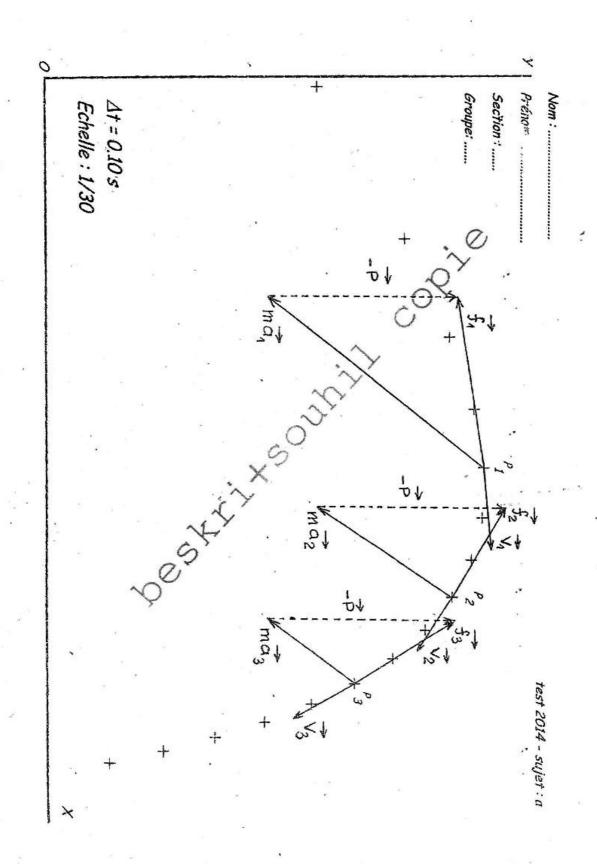
Energie:

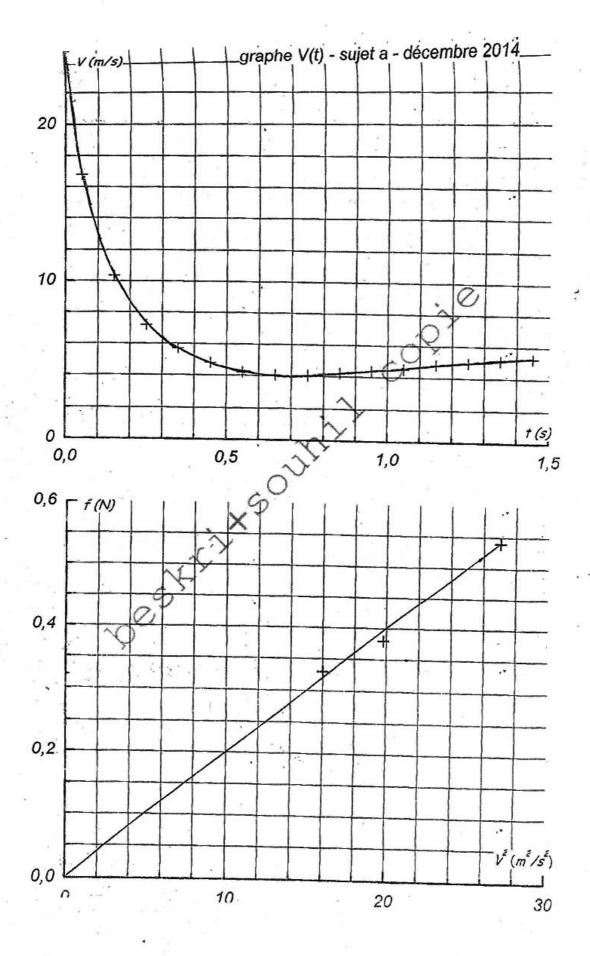
- 7°) Déterminer les énergies totales de la balle E_{70} à l'instant t=0 s et E_{73} au point P_3
- 8°) Comparer Eto et Ets. Expliquer.

1°) graphe V(t): 3.00 On enlèvera: \$\frac{1}{2} point par grandeur manquante, \$\frac{1}{2} point par unité manquante, \$\frac{1}{2} point par axe non gradué, 1 point si la courbe est décalée en temps. 2°) Vecteurs \vec{V}_1 , \vec{V}_2 et \vec{V}_3 : - direction parallèle à la corde entre les points marqués à $t = t_i - 0.1$ s et $t = t_i + 0.1$ s $|\vec{V}_1| = 5.20 \, \text{m/s} \quad |\vec{V}_2| = 4.00 \, \text{m/s} \quad |\vec{V}_3| = 4.45 \, \text{m/s}$ - représentation des vecteurs à l'échelle : 3°) Vecteurs \vec{a}_1, \vec{a}_2 et \vec{a}_3 : $\vec{a}_i(t_i) = \vec{a}_m \ (entre \ t_i - 0.1 \ s \ et \ t_i + 0.1 \ s) = \frac{\Delta \vec{V}_i}{\Delta t_e} = \frac{\vec{V}(t_i + 0.1) - \vec{V}(t_i - 0.1)}{\Delta t_e}$ 16 étant suffisamment petit, on prend les vecteurs « vitesse moyenne » confondus aux vecteurs « déplacement » pour déterminer graphiquement les vecteurs $\Delta \vec{V}_i$. Echelle des vitesses: 1 cm pour 1.5 m/s 0.25 $\Delta \vec{V}_1$; sur le document : 1.95 cm module : 2.92 m/s $\Delta \vec{V}_2$; sur le document : 1.15 cm module : 1.72 m/s 0.50 $\Delta \vec{V}_3$; sur le document : 0.75 cm module : 1.12 m/s 0.50 $m |\vec{a}_2| = 0.51 N$ $m |\vec{a}_3| = 0.34 N$ 4°) - $m |\vec{a}_1| = 0.87 N$ représentation des vecteurs m \(\vec{a}_l : 3 \times 0.25\) - en chaque point de la trajectoire la balle est soumise à son poids \vec{P} et à la force \vec{f}_L . 0.25 2 ème loi de Newton : $\vec{P} + \vec{f}_l = m \vec{a}_l$ 0.25 $|\vec{P}| = m g = 0.06 \times 9.80 = 0.59 N$ - représentation de \vec{P} (direction verticale): 3×0.25 - déduction graphique des vecteurs \vec{f}_i : $\vec{f}_i = m \vec{g}_i^T - \vec{P}$ 3×0.25 $-|\vec{f_1}| = 0.54 \, \text{N}.$ $|\vec{f}_2| = 0.33 \, N$ $|\vec{f}_3| = 0.38 N$ 5°) Graphe $|f_i| = f(V_i^2)$: 1.00 - On enlèvera : 4 point par grandeur manquante, 4 point par unité manquante, 4 point par axe non gradué. 6°) - le graphe nous permet d'écnire : $|f| = k \cdot V^2$ 0.25 -k = 0.02 Kg/m- on peut considérer que les vecteurs $\vec{f_i}$ sont directement opposés aux vecteurs $\vec{V_i}$. 0.25 - relation vectorielle : $\vec{f} = -k V \cdot \vec{V}$ 7°) - énergie totale initiale $E_{To} = E_{co} + E_{pgo}$ - V_o déduite du graphe V(t) après extrapolation. $V_o=25\,m/s$ 0.25 - énergie cinétique $E_{co} = \frac{1}{2} m : V_0^2 = 18.75$ - hauteur $h_0 = 8.35 \times 30 = 2.50 \, \text{m}$ 0.25

- en prenant $E_{pg} = 0$ J au niveau du sol, $E_{pgo} = m.g.h_o = 1.47$ J 0.25

- énergie totale au point P_3 : $E_{T3} = E_{c3} + E_{pg3}$


- énergie cinétique $E_{c3} = \frac{1}{2} m [V_3^2 = 0.59]$

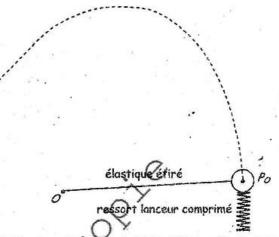

- hauteur $h_3 = 9.55 \times 30 = 2.86 \, \text{m}$

 $-E_{pg3} = m.g.h_3 = 1.68$

 $E_{T3} = 2.27$

 8°) E_{73} est inférieure à E_{70} . Il n'y a pas de conservation de l'énergie totale. La diminution de cette énergie est due au travail de la force \vec{f} entre les deux points. C'est une force non conservative. 0.50

TEST DE TRAVAUX PRATIQUES DE MECANIQUE Sujet b : 2 heures


L'expérience, dont une représentation en vue de dessus est donnée dans la figure ci-contre, a été réalisée sur une table horizontale.

Une sonnette électrique de masse m=106 g est attachée à une des extrémités d'un élastique, l'autre extrémité étant reliée à un point fixe O.

Dans les conditions de l'expérience (allongement faible), cet élastique est considéré comme parfait $(|F_e| = K|\Delta I|)$.

A l'instant initial (t=0s), la sonnette est maintenue au repos au point P_o contre le ressort lanceur, et l'élastique est étiré.

On libère le système et la sonnette décrit une trajectoire illustrée en trait pointillé sur la figure.

L'enregistrement réel de son mouvement est donné à l'échelle 1 sur le document joint et l'intervalle de temps entre deux points successifs est de 0.01 s.

Cinématique :

1°). En prenant un intervalle de temps d'étude $\Delta t_c = 0.04$ s, tracer le graphe donnant l'évolution de la vitesse instantanée de la sonnette en fonction du temps.

Echelles: 1 cm pour 0.10 m/s et 1 cm pour 0.02s

- 2°) Déduire du graphe l'accélération as du mobile dans la dernière phase du mouvement.
- 3°) Déterminer à partir du document l'instant à partir duquel l'élastique va cesser d'agir et sa longueur à vide la
- 4°) Avec l'intervalle de temps 15 et au point P2:
- 4.1 Déterminer graphiquement sur le document l'accélération \vec{a}_2 de la sonnette. Représenter \vec{a}_2 avec l'échelle 1cm pour 1 m/s^2 .
 - 4.2 Représenter le vecteur vitesse \vec{V}_2 du mobile (1 cm pour 0.2 m/s).
- 4.3 Déduire le rayon de courbure ρ_2 de la trajectoire. Marquer le point O_2 centre de la courbure et tracer une portion de la trajectoire autour du point P_2 .
- 5°) Avec l'intervalle de temps Δt et au point P_i déterminer graphiquement sur le document le module de l'accélération \vec{a}_1 de la sonnette.

Dynamique:

- 6°) 6.1- Faire l'inventaire des forces agissant sur la sonnette au point P_3 . Représenter dans un plan vertical ces forces à l'échelle 1 cm pour 0.2 N.
- 6.2 Déduire l'expression et la valeur du coefficient de frottement dynamique 110 caractérisant le contact sonnette-table.
- 7°) 7.1 En représentant le vecteur $m\tilde{a}_1$ à l'échelle 1 cm pour 0.1 N et en faisant l'inventaire des forces agissant sur la sonnette au point P_2 , déterminer le module de la force élastique \tilde{F}_{e_1} du ressort.
- 7.2 Après avoir déterminé l'allongement Δl_1 du ressort, déduire la valeur de sa constante de raideur K

Energie :

- 8°) 8.1 Déterminer aux points P_1 et P_2 les énergies mécaniques totales E_{11} et E_{12} du système.
 - 8.2 Mesurer sur le document la variation d'abscissa cyrviligne 1/2 entre les deux points.
 - 8.3 En déduire le module de la composante parallèle de la force de contact $|\vec{C}_{IJ}|$.

peskriksonnil

test 2014 - sujet : b

Prénom: Мот :

Section: Eroupe:

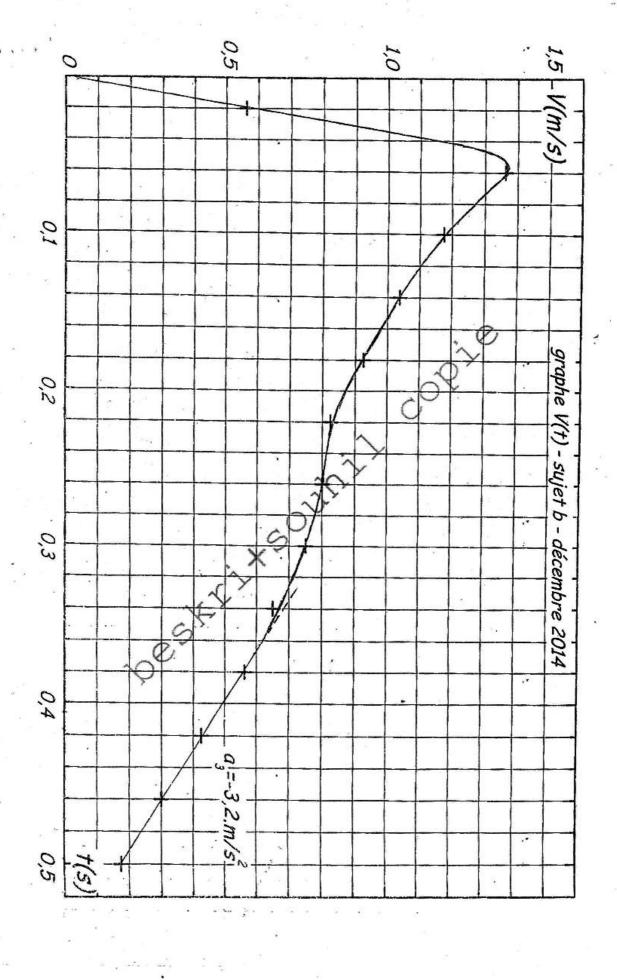
- On enlèvera: $\frac{1}{4}$ point par grandeur manquante, $\frac{1}{4}$ point par unité manquante, 1°) graphe V(t): 4 🛊 point par axe non gradué, 1 point si la courbe est décalée en temps.
- 2°) $a_3 = -3.20 \, \text{m/s}^2 \, 0.50$
- 3°) -t_e est l'instant à partir duquel le mouvement devient rectiligne. $t_e = 0.36 \, s$ 0.25 ...
 - 10 est la longueur de la droite entre 0 et Pe. OPe=15.60 cm 0.25
- $4^{\circ}) \vec{a}_2(t_{P2}) = \vec{a}_m \; (entre \; t_{P2} 0.02 \; s \; et \; t_{P2} + 0.02 \; s) = \frac{\Delta \vec{v}_2}{\Delta t_e} = \frac{\vec{v}(t_{P2} + 0.02) \vec{v}(t_{P2} 0.02)}{\Delta t_e}$
- Ate étant suffisamment petit, on prend les vecteurs « vitesse moyenne » confondus aux vecteurs « déplacement » pour déterminer graphiquement le vecteur $\Delta \vec{V}_2$.
 - Echelle des vitesses : 1 cm pour 0.25 m/s O.25
 - $\Delta \vec{V}_2$; sur le document : 1.25 cm module : 0.31 m/s 0.50

 $|\vec{a}_2| = 7.81 \text{ m/s}^2 = 0.25$

- Représentation de a2 à l'échelle : 0.25
- $-|\vec{V}_{P2}| = 0.89 \text{ m/s}$ 0.25
- Représentation de V_{P2} à l'échelle : 0.25
- Détermination de la composante normale $|\vec{a}_{n2}|$ du vecteur $|\vec{a}_2|$. Tracé de la normale à la trajectoire au point P_2 perpendiculaire au vecteur \vec{V}_{P2} .
 - $-|\vec{a}_{n2}| = 7.25 \, \text{m/s}^2$
 - 0.25
- $\rho_{P2} = 10.92$ cm 0.25
- Point O_2 et tracé de la portion de trajectoire autour de P_2 : O(25 + 0.25)
- 5°) $\Delta \vec{V}_1$; sur le document : 1.30 cm module : 0.32 m/s 0.50
- $|\vec{a}_1| = 8.12 \text{ m/s}^2$ 0.25

0.50 ou 0

- 6°) 6.1 Au point P3 la sonnette est soumise : à son poids \vec{P} et à la force de contact \vec{C} .
 - $\vec{P} + \vec{C} = m\vec{a}_3$


 - $|\vec{P}| = 1.04 \, \text{N}$
 - $m|\vec{a}_3| = 0.34 \, N$
 - $|C_{//}| = m |\vec{a}_3| \cdot 0.25$

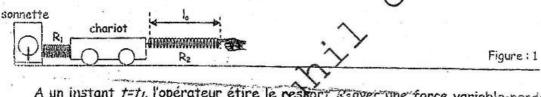
 - $\mu_d = 0.32$ 0.25

7°) 7.1 - $m |\vec{a}_1| = 0.86 N$.

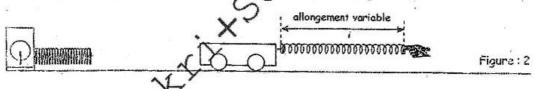
- représentation : 0.25
- Au point P1 la sonnette est soumise à son poids P
- à la force de contact \vec{c} et à la force élastique \vec{F}_{e} .
- $\vec{P} + \vec{C} + \vec{F}_e = m \, \vec{a}_1 \quad 0.25$ $\vec{P} + \vec{C}_{\perp} + \vec{C}_{//} + \vec{F}_e = m \, \vec{a}_1$ $\vec{C}_{//} + \vec{F}_e = m \, \vec{a}_2 \quad 0.25$

- $\vec{P} + \vec{C}_{\perp} = \vec{0} \quad 0.25$ $\vec{F}_{e} = m \, \vec{a}_{1} \vec{C}_{//} \quad 0.25$
- Déduction graphique de Fe :
- $|\vec{F}_e| = 0.80 \, \text{N} \, 0.25$
- $7.2 \Delta l = 4.80 \, cm$ 0.25
- K = ,16.67 N/m 0.25
- 8°) 8.1 énergie totale initiale au point $P_1 \cdot E_{71} = E_{c1} + E_{pe1}$
 - $-V_1 = 1.10 \text{ m/s} 0.25$
 - énergie cinétique $E_{c1} = \frac{1}{2} m \cdot V_1^2 = 64.13 \, m \, J \ 0.25$
 - $-E_{pe1} = \frac{1}{2}K.\Delta l^2 = 19.2 \text{ mJ}$ 0.25
- $E_{T1} = 83.33 \, mJ$
- énergie totale au point $P_3:E_{T3}=E_{c3}$
- $-V_3 = 0.43 \text{ m/s}$ 0.25
- énergie cinétique $E_{c3} = \frac{1}{5} m \cdot V_3^2 = 9.80 \, m \, J$ 0.25
- $8.2 \Delta s = 23.15 cm$
 - 8.3 E_{73} E_{71} = ΔE_{7} = travail entre P_{1} et P_{3} de la composante parallèle de la force de contact \vec{C} . 0.25
 - $\Delta E_{T} = -|\vec{C}_{ff}| \Delta s$ 0.25 $|\vec{C}_{ff}| = 0.33 \, \text{N}$ 0.25

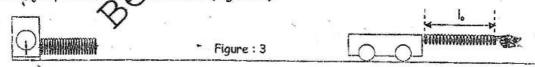
Faculté de Physique


S.T.

Epreuve Finale de Travaux Pratiques de Mécanique (L1) Sujet A - O2 heures -


La figure 1 ci-dessous représente le schéma d'une expérience réalisée au laboratoire dans laquelle on a utilisé:

- une table horizontale de surface homogène,
- un chariot de masse m = 1.30 Kg, considéré comme un point matériel,
- un ressort R1 pour le lancement du chariot,
- un ressort R2 parfait de masse négligeable et de constante de raideur K = 32 N/m,
- une sonnette électrique dont la fréquence de frappe est de 0.01 s.
- une bande de papier pour l'enregistrement.


A l'instant t=0s, le ressort R_1 est comprimé et le chariot est maintenu au repos. On libère le système. Le chariot acquiert, à l'instant $t=t_0$, une vitesse maximale V_0 . Dans cette première phase du mouvement, la seule action de l'opérateur est de maintenir le ressort R_2 en l'air, avec sa longueur à vide I_0 , sans aucune influence sur le mouvement du chariot.

A un instant $t=t_1$, l'opérateur étire le resport R_2 avec une force variable pendant un certain temps et perturbe ainsi le mouvement du chariot (figure 2).

A un instant $t=t_2$ Operateur cesse d'étirer le ressort et lui redonne sa longueur à vide l_0 jusqu'à la fin de pouvement (figure 3).

Le contact entre les roues du chariot en mouvement et le plan est caractérisé par un coefficient de frottement dynamique μ_D . L'enregistrement du mouvement sur la bande de papier est reproduit, par parties, sur le document au verso à l'échelle 1. Les premiers points relatifs à la phase de lancement ont été supprimés. L'enregistrement proposé démarre du point $P_o(x_o, t_o)$.

1°) Prendre un intervalle de temps $\Delta t_e = 0.04$ s'et à partir du calcul des vitesses moyennes tracer le graphe donnant i évolution de la vitesse instántanée V du chariot en fonction de $(t-t_e)$. On prendra pour le tracé du graphe les échelles suivantes :

1 cm pour 0.04 s et 1 cm pour 0.10 m/s.

- les instants (t_1-t_0) et (t_2-t_0) . - la valeur de Vo, - les valeurs de l'accélération du chariot : - a₁ dans la *première phase* du mouvement, - az au point Pz; - 03 dans la dernière phase du mouvement. 3°) 3.1 - Faire l'inventaire des forces agissant sur le charlot dans la première phase du mouvement (on appellera \vec{f} la force de frottement due au marteau de la sonnette). 3.2 - En prenant $|\vec{f}| = 0.3N$, déterminer le coefficient de frottement dynamique μ_0 . 4°) 4.1 - Faire l'inventaire des forces agissant sur le chariot au point P_2 . 4.2 - Déterminer la valeur de la force élastique F_e du ressort ainsi que son allongement 11. 5°) 5.1 - Déterminer les énergies mécaniques totales du système (50). En et Enzaux points Po, P1 et P2 respectivement. 5.2 - Comparer les énergies E_{76} et E_{76} . Retrouver la Valeur du coefficient de frottement dynamique µo. 5.3 - Comparer les énergies E_{TI} et E_{TZ} . Expliqu - Calculer l'énergie perdue par frottements entre l'erfo - Quelle-est, par conséquent, la quantité d'énergie fournie par l'opérateur au système?

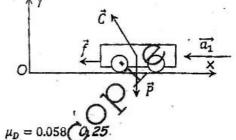
2°) Déduire du graphe V(t-t_o):

Corrigé et barème de l'examen final de travaux pratiques - janvier 2013 Sujet : A

1°) Graphe V(t-to): 4

On enlèvera: ‡ point par grandeur manquante, ‡ point par unité manquante, ‡ point par axe non gradué, 1 point si la courbe est décalée en temps.

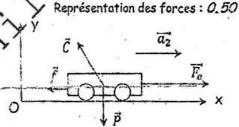
- 2°) t_1 t_0 = 0.26 s 0.25 t_2 t_0 = 0.74 s 0.25 t_0 = 0.83 ms⁻¹ 0.25 t_0 = 0.8 ms⁻² 0.50 t_0 = 4.40 ms⁻² 0.50 t_0 = 0.8 ms⁻² 0.50
- 3°) ...


3.1 - Dans la première phase du mouvement, le chariot est soumis à son poids \vec{P} , la force de contact \vec{C} table/roueset la force de frottement due au marteau de la sonnette \vec{f} . 0.25

 $3.2 - \vec{P} + \vec{C} + \vec{f} = m \vec{a}_1$ 0.25

Projections: suivant Oy: $|\vec{c}_L| - m |\vec{g}| = 0$ 0.25 suivantOx: $-|\vec{f}| - |\vec{c}_{II}| = -m |\vec{a}_1|$ 0.25

 $\mu_D = \frac{|\vec{c}_{1/1}|}{|\vec{c}_{1}|} = \frac{m |\vec{a}_{1}| - |\vec{f}|}{m |\vec{g}|} \quad 0.50$


Représentation des forces : 0.50

4°).

4.1 - Au point P_2 , le chariot est soumis à son poids \vec{P} , la force de contact \vec{C} table/roues, la force de frot tement \vec{f} due au marteau de la sonnette et la force

élastique Fe du ressort. 0.25

 $4.2 - \vec{P} + \vec{C} + \vec{f} + \vec{F}_e = m \, \vec{a}_2 \, 0.25$

Projection suivant $Ox: -|\vec{f}| - |\vec{c}_{ij}| + |\vec{F}_e| = m |\vec{a}_2| 0.25$

 $|\vec{F}_e| = m |\vec{a}_2| + |\vec{f}| + |\vec{C}_{//}| = |\vec{F}_e| = \sqrt{n} |\vec{a}_2| + |\vec{f}| + \mu_D m |\vec{g}| 0.50$

 $|\vec{F}_e| = 6.76 \, N \, 0.25$

 $|\vec{F}_e| = K \Delta l \ 0.25 \quad \Delta l = 20 cm \ 0.25$

5°)5.1 - Energies mécaniques totales :

- au point P_o $V_0^2 = \frac{1}{2} m V_0^2 = 0.45 J$ 0.25

- au point $P_1: E_{T1} = \frac{1}{2} m V_1^2$ $V_1 =$

 $V_{1} = 0.62 \ ms^{-1} \ O.25 \ E_{T1}$

 $E_{T1} = 0.25 J \ \textit{O.25}$

- au point P_2 : $E_{T2} = E_{C2} + E_{pe}$ V_2
 - $V_2 = 1.21 \, ms^{-1} \ O.25$
- $E_{C2} = 0.95 J \ O.25$

 $E_{pe} = \frac{1}{2} K \Delta l^2 E_{pe} = 0.71 J \ O.25$

 $E_{72} = 1.66 J$

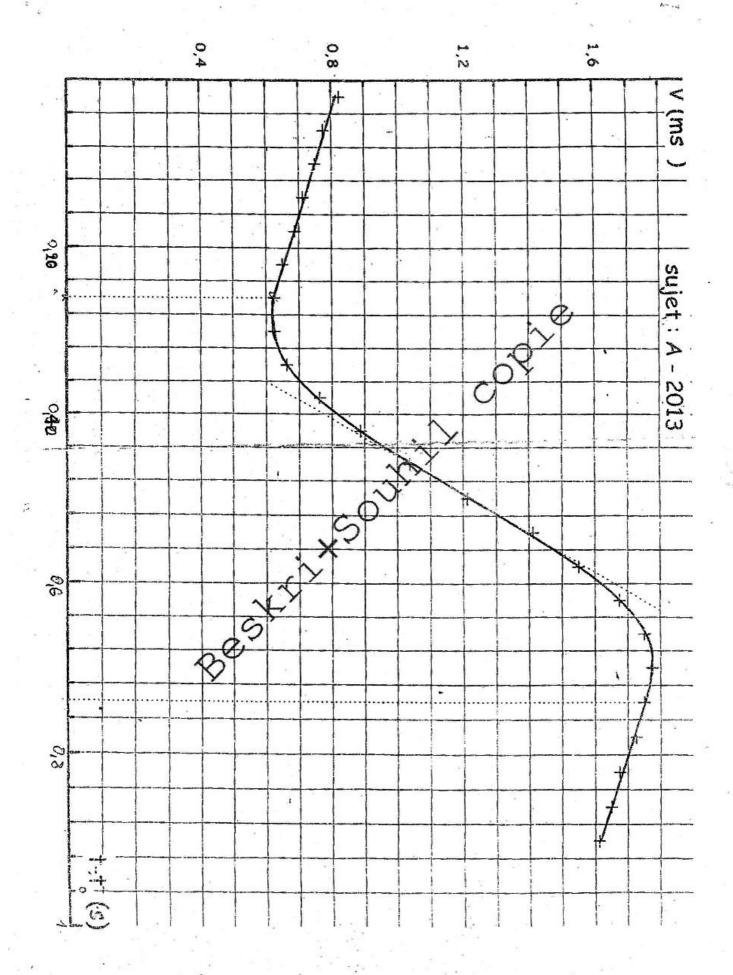
 $5.2 - E_{T1} < E_{T0}$

La perte d'énergie est due au travail de \vec{f} et de $\vec{c}_{//}$ entre les points P₀ et P₁. 0.25

 $E_{T1} - E_{T0} = -0.2 J = -(|\vec{f}| + |\vec{c}_{ff}|) \cdot D_1 \quad 0.25 \quad D_1 = x(t_1) - x(t_0) = 18.9 \text{ cm} \quad 0.25$

 $|\vec{f}| + |\vec{c}_{II}| = 1.06 \, \text{N} \, 0.25 \, \mu_D = 0.059 \, 0.25$

 $5.3 - E_{T2} > E_{T1}$

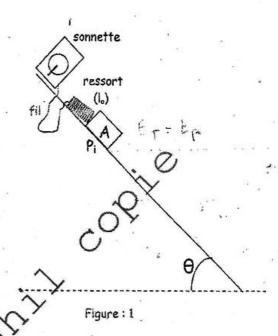

L'opérateur, par le biais du ressort, a apporté de l'énergie au système. 0.25

 E_p = Energie perdue par frottements entre P_1 et P_2 = travail de \vec{f} et de $\vec{c}_{//}$ sur la distance D_2

 $D_2 = x(t_2) - x(t_1) = 19.5 cm$ 0.25

 $E_p = -(|\vec{c}_{//}| + |\vec{f}|) \cdot D_2 = -0.2 \text{ J } 0.25$

Quantité d'énergie fournie par l'opérateur au système : $Q = E_{T2} - E_{71} + |E_p| = 1.61$ 0.50



Epreuve Finale de Travaux Pratiques de Mécanique (L1) Sujet B - 02 heures -

La figure 1 ci-contre représente le schéma d'une expérience réalisée au laboratoire dans laquelle on a utilisé :

- un plan de surface homogène, incliné de 45° par rapport à l'horizontale,
- un corps A de masse m = 1Kg, considéré comme un point matériel,
- un ressort parfait de masse négligeable et de constante de raideur K = 40 N/m,
- une sonnette électrique dont la fréquence de frappe est de 0.01 s.
- une bande de papier pour l'enregistrement.

A l'instant t = 0s, le corps A est maintenu au repos au point P_i . Une des extrémités du ressort, de longueur à vide l_o , est reliée au corps A, et l'autre, au support de la sonnette par l'intermédiaire d'un fil inextensible et de masse négligeable.

On libère le système et le corps glisse sur le plantachné. A un instant t=t, il est au point P_i , le fil est tendu et le ressort va commencer à agir (figure 2). A poursuit son mouvement sur le plan. Le ressort s'étire et à un instant $t=t_2$, il est au point P_2 , sa longueur est l_1 , et le fil se détache instantanément du support de la sonnette (figure 3). A continue son mouvement et sera totalement libéré de l'action du ressort à un instant $t=t_3$. Le contact entre A en mouvement et le plan est caractérisé par un coefficient de frottement dynamique μ_D . L'enregistrement du mouvement sur la bande de papier est reproduit par parties, sur le document au verso à l'échelle I. Les premiers points ont été supprimés. L'enregistrement proposé démarre du point $P_o(x_0, t_0)$. A l'instant $t=t_0$, A se trouve à l'abscisse x_0 et sa vitesse est V_0

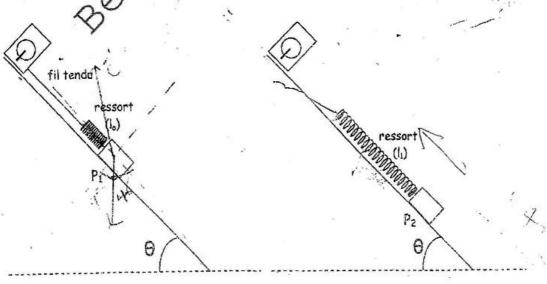


Figure: 2

Figure: 3

1°) Prendre un intervalle de temps $\Delta t_e = 0.04 \, s$ et à partir du calcul des vitesses moyennes tracer le graphe donnant l'évolution de la vitesse instantanée V du corps en fonction de $(t-t_o)$. Utiliser la feuille de papier millimétrée en présentation « paysage », placer l'axe des vitesses à $5 \, cm$ du bord, et prendre pour le tracé du graphe les échelles suivantes :

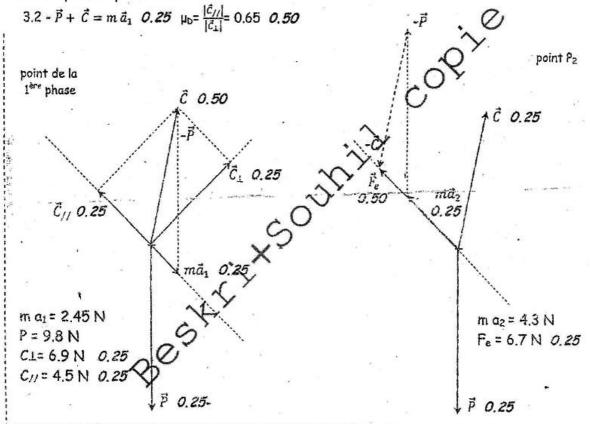
1 cm pour 0.04 s et 1 cm pour 0.05 m/s

- 2°) Déduire du graphe V(t-to):
 - les instants to, ti et ta,
 - les valeurs de Voet xo,
 - les valeurs de l'accélération du corps :
 - as dans la première phase du mouvement,
 - az au point Pz,
 - a3 dans la dernière phase du mouvement.

Dans tout ce qui suit, on négligera la force de frottement due au marteau de la sonnette.

- 3°) 3.1 Faire l'inventaire des forces agissant sur A dans la première phase du mouvement.
- 3.2 En appliquant la deuxième loi de Newton (relation fondamentale de la dynamique) et en représentant les forces avec l'échelle 1 cm pour 2 N, construire <u>oraphiquement</u> la force de contact \bar{c} . En déduire ses composantes parallèle et perpendiculaire puis le coefficient de frottement μ_0
- 4°) 4.1 Faire l'inventaire des forces agissant sur A au point &
- 4.2 En appliquant la deuxième loi de Newton (relation fondamentale de la dynamique) et en représentant les forces avec l'échelle 1 cm pour 2 N sonstruire graphiquement la force élastique \vec{F}_e du ressort. En déduire son allongement.
- 5°) 5.1 En prenant le plan horizontal passant par le point P_2 comme origine des énergies potentielles de gravitation, déterminer aux points P_i et P_2 les énergies totales E_{π} et E_{72} du système.
- 5.2 Comparer E_{77} et E_{72} . Retrouver la valeur du coefficient de frottement dynamique μ_0 .

	27			^	1	/					•										
			₹).	5	2,									:							
P _o (x	(_o , t _o)		-0	,	1														3	Α	
t.t	كال	<	S.	• •	1.	•	•	į	• 0	•	ł	٠	•	•	f	٠	ŧ	•.	٠	i	
			,			*												-			
																			Đ		
A				1								i	1				١		2		,
٠	:. . .	•	-	1		100					20			100	026	200	,	0.7	٦.	27.0	
																				*	
_																					
В	(0)		12								1000				40				- 10		


Corrigé et barème de l'examen final de travaux pratiques - janvier 2013 Sujet : B

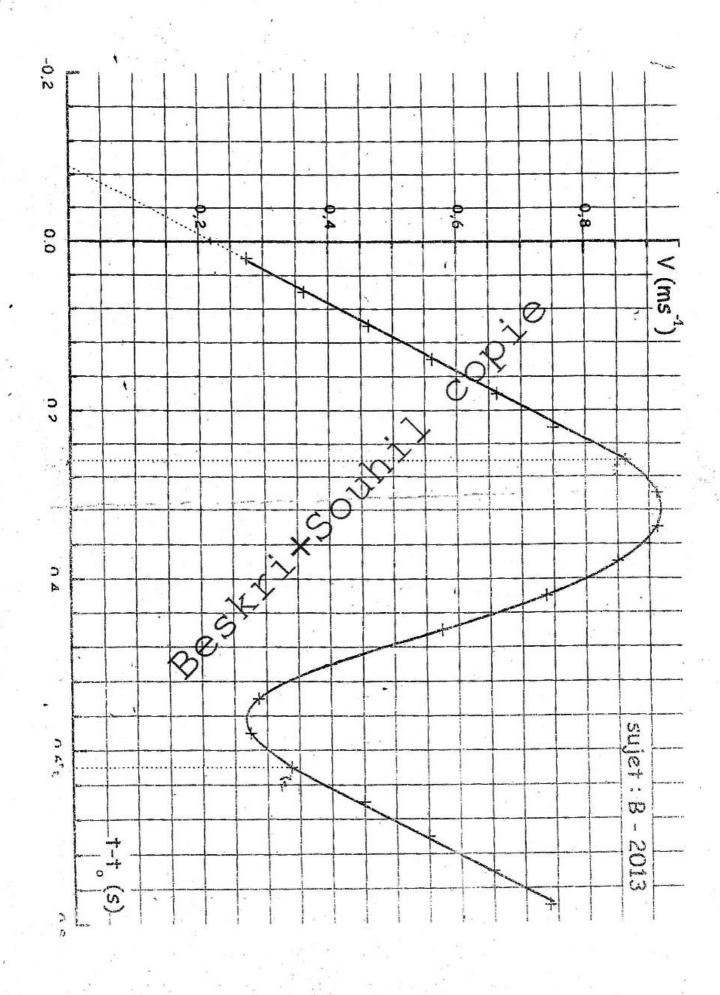
1°) Graphe V(t-to): 4

On enlèvera: ‡ point par grandeur manquante, ‡ point par unité manquante, ‡ point par axe non gradué, 1 point si la courbe est décalée en temps.

2°) t_0 = 0.09 s 0.25 t_1 - t_0 = 0.26 s ou t_1 = 0.35 s 0.25 t_3 - t_0 = 0.62 s ou t_3 = 0.71 s 0.25 t_0 - 0.50 t_0 - 0.50 t_0 - 0.50 t_0 - 0.50 t_0 - 0.50

3°) 3.1 - Dans la première phase du mouvement, le corps A est soumis à son poids \vec{P} et à la force de contact \vec{C} plan/corps A. 0.25

4°) 4.1 - Au point P_2 , le corps est soumis à son poids \vec{P} , la force de contact \vec{C} plan/corps A et la force élastique \vec{F}_e du ressort. 0.25


 $4.2 - \vec{P} + \vec{C} + \vec{F}_e = m\vec{a}_2$ 0.25 $F_e = K.\Delta$ $\Delta l = 16.75 \text{ cm}$ 0.50

5°) 5.1 - Energies mécaniques totales :

- au point P_1 : $E_{T1} = mg h_1$ $h_1 = D \sin \Theta$ 0.25 $D = x(t_2) = 31.5 cm$ 0.25 $E_{T2} = 2.18 \text{ J}$ 0.25 $E_{C2} = 0.16 \text{ J}$ 0.25 $E_{C2} = 0.16 \text{ J}$ 0.25

 $E_{pe} = \frac{1}{2} K \Delta l^2$ $E_{pe} = 0.56 \text{ J} O.25$ $E_{72} = 0.72 \text{ J}$

5.2 - E_{T2} < E_{Ti} La perte d'énergie est due au travail de \tilde{C}_{ij} entre les points P_i et P_2 . 0.25 E_{T2} - E_{Ti} = $-|\tilde{C}_{ij}|$. D 0.25 $|\tilde{C}_{ij}|$ = 4.6 N 0.25 μ_D = 0.66 0.25

