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Preface

Over the last few years, several research areas have witnessed important progress
through the unexpected collaboration of statistical physicists, computer scientists, and
information theorists. This dialogue between scientific disciplines has not been without
difficulties, as each field has its own objectives and rules of behaviour. Nonetheless,
there is increasing consensus that a common ground exists and that it can be fruitful.
This book aims at making this common ground more widely accessible, through a
unified approach to a selection of important research problems that have benefited
from this convergence.

Historically, information theory and statistical physics have been deeply linked
since Shannon, sixty years ago, used entropy to quantify the information content of
a message. A few decades before, entropy had been the cornerstone of Boltzmann’s
statistical mechanics. However, the two topics separated and developed in different di-
rections. Nowadays most statistical physicists know very little of information theory,
and most information theosists know very little of statistical physics. This is particu-
larly unfortunate, as recent progress on core problems in both fields has been bringing
these two roads closer over the last two decades. In parallel, there has been growing
interest in applying probabilistic concepts in computer science, both in devising and in
analysing new algorithms. Statistical physicists have started to apply to this field the
non-rigorous techniques they had developed to study disordered systems. Conversely,
they have become progressively aware of the powerful computational techniques in-
vented by computer scientists and applied them in large scale simulations.

In statistical physics, the last quarter of the twentieth century has seen the emer-
gence of a new topic. The main focus until then had been on ‘ordered’ materials:
crystals in which atoms vibrate around equilibrium positions arranged in a periodic
lattice, or liquids and gases in which the density of particles is uniform. In the 1970s,
the interest in strongly disordered systems started to grow, through studies of spin
glasses, structural glasses, polymer networks, etc. The reasons for this development
were the incredible richness of behaviour in these systems and their many applications
in materials science, and also the variety of conceptual problems which are involved in
the understanding of these behaviours. Statistical physics deals with the collective be-
havior of many interacting components. With disordered systems, it started to study
collective behaviour of systems in which all of the components are heterogeneous.
This opened the way to the study of a wealth of problems outside of physics, where
heterogeneity is common currency.

Some of the most spectacular recent progress in information theory concerns error-
correcting codes. More than fifty years after Shannon’s theorems, efficient codes have
now been found which approach Shannon’s theoretical limit. Turbo codes and low-
density parity-check (LDPC) codes have allowed large improvements in error cor-
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rection. One of the main ingredients of these schemes is message-passing decoding
strategies, such as the celebrated ‘belief propagation’ algorithm. These approaches
are intimately related to the mean-field theories of disordered systems developed in
statistical physics.

Probability plays an important role in theoretical computer science, from random-
ized algorithms to probabilistic combinatorics. Random ensembles of computational
problems are studied as a way to model real-world situations, to test existing al-
gorithms, or to develop new ones. In such studies one generally defines a family of
instances and endows it with a probability measure, in the same way as one defines a
family of samples in the case of spin glasses or LDPC codes. The discovery that the
hardest-to-solve instances, with all existing algorithms, lie close to a phase transition
boundary spurred a lot of interest. Phase transitions, or threshold phenomena, are
actually found in all of these three fields, and play a central role in each of them.
Predicting and understanding them analytically is a major challenge. It can also im-
pact the design of efficient algorithms. Statistical physics suggests that the reason for
the hardness of random constraint satisfaction problems close to phase transitions is a
structural one: it hinges on the existence of a glass transition, a structural change in the
geometry of the set of solutions. This understanding has opened up new algorithmic
perspectives.

In order to emphasize the real convergence of interest and methods in all of these
fields, we have adopted a unified approach. This book is structured in five large parts,
focusing on topics of increasing complexity. Each part typically contains three chapters
that present some core topics in each of the disciplines of information theory, statistical
physics, and combinatorial optimization. The topics in each part have a common
mathematical structure, which is developed in additional chapters serving as bridges.

• Part I (Chapters 1–4) contains introductory chapters to each of the three disci-
plines and some common probabilistic tools.

• Part II (Chapters 5–8) deals with problems in which independence plays an im-
portant role: the random energy model, the random code ensemble, and number
partitioning. Thanks to the independence of random variables, classical techniques
can be applied successfully to these problems. The part ends with a description
of the replica method.

• Part III (Chapters 9–13) describes ensembles of problems on graphs: satisfiability,
low-density parity-check codes, and spin glasses. Factor graphs and statistical
inference provide a common language.

• Part IV (chapters 14–17) explains belief propagation and the related ‘replica-
symmetric’ cavity method. These can be thought of as approaches to studying
systems of correlated random variables on large graphs, when the correlations
decay fast enough with distance. The part shows the success of this approach
with three problems: decoding, assignment, and ferromagnets.

• Part V (Chapters 18–22) is dedicated to an important consequence of long-range
correlations, namely the proliferation of pure states and ‘replica symmetry break-
ing’. It starts with the simpler problem of random linear equations with Boolean
variables, and then develops the general approach and applies it to satisfiability
and coding. The final chapter reviews some open problems.
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At the end of each chapter, a section of notes provides pointers to the literature. The
notation and symbols are summarized in Appendix A. The definitions of new concepts
are signalled by boldfaced fonts, both in the text and in the index. The book contains
many examples and exercises of various difficulty, which are signalled by a light grey
background. They are an important part of the book.

As the book develops, we venture into progressively less well-understood topics.
In particular, the number of mathematically proved statements decreases and we rely
on heuristic or intuitive explanations in some places. We have put special effort into
distinguishing what has been proved from what has not, and into presenting the latter
as clearly and as sharply as we could. We hope that this will stimulate the interest
and contributions of mathematically minded readers, rather than alienate them.

This is a graduate-level book, intended to be useful to any student or researcher
who wants to study and understand the main concepts and methods in this common
research domain. The introductory chapters help to set up the common language, and
the book should thus be understandable by any graduate student in science with some
standard background in mathematics (probability, linear algebra, and calculus).

Our choice of presenting a selection of problems in some detail has left aside a
number of other interesting topics and applications. Some of them are of direct com-
mon interest in information, physics, and computation, for instance source coding,
multiple-input multiple-output communication, and learning and inference in neural
networks. But the concepts and techniques studied in this book also have applications
in a broader range of ‘complex systems’ studies, ranging from neurobiology, or sys-
tems biology, to economics and the social sciences. A few introductory pointers to the
literature are provided in the Notes of Chapter 22.

The critical reading and the many comments of Heiko Bauke, Alfredo Braun-
stein, John Eduardo Realpe Gomez, Florent Krzakala, Frauke Liers, Stephan Mertens,
Elchanan Mossel, Sewoong Oh, Lenka Zdeborová, have been very useful. We are grate-
ful to them for their feedback. We have also been stimulated by the kind encour-
agements of Amir Dembo, Persi Diaconis, James Martin, Balaji Prabhakar, Federico
Ricci-Tersenghi, Bart Selman and Rüdiger Urbanke, and the discreet attention and
steady support of Sonke Adlung, from Oxford University Press.

This book is dedicated to Fanny, Mathias, Isabelle, Claudia, and Ivana.

Marc Mézard and Andrea Montanari, December 2008
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Introduction to information theory

This chapter introduces some of the basic concepts of information theory, as well as
the definitions and notation of probability theory that will be used throughout the
book. The notion of entropy, which is fundamental to the whole topic of this book, is
introduced here. We also present two major questions of information theory, those of
data compression and error correction, and state Shannon’s theorems.

Sec. 1.1 introduces the basic notations in probability. The notion of entropy, and
the entropy rate of a sequence are discussed in Sections 1.2 and 1.3. A very important
concept in information theory is the mutual information of two random variables,
which is introduced in Section 1.4. Then we move to the two main aspects of the
theory, the compression of data, in Sec. 1.5, and the transmission of data in, Sec. 1.6.

1.1 Random variables

The main object of this book will be the behaviour of large sets of discrete random
variables. A discrete random variable X is completely defined1 by the set of values
it can take, X , which we assume to be a finite set, and its probability distribution
{pX(x)}x∈X . The value pX(x) is the probability that the random variable X takes the
value x. The probability distribution pX : X → [0, 1] is a non-negative function that
satisfies the normalization condition∑

x∈X

pX(x) = 1 . (1.1)

We shall denote by P(A) the probability of an event A ⊆ X , so that pX(x) = P(X =
x). To lighten the notation, when there is no ambiguity, we shall use p(x) to denote
pX(x).

If f(X) is a real-valued function of the random variable X, the expectation value
of f(X), which we shall also call the average of f , is denoted by

E f =
∑
x∈X

pX(x)f(x) . (1.2)

While our main focus will be on random variables taking values in finite spaces,
we shall sometimes make use of continuous random variables taking values in
Rd or in some smooth finite-dimensional manifold. The probability measure for an

1In probabilistic jargon (which we shall avoid hereafter), we take the probability space
(X , P(X ), pX), where P(X ) is the σ-field of the parts of X and pX =

P
x∈X pX(x) δx.
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‘infinitesimal element’ dx will be denoted by dpX(x). Each time when pX admits a
density (with respect to the Lebesgue measure), we shall use the notation pX(x) for
the value of this density at the point x. The total probability P(X ∈ A) that the
variable X takes a value in some (measurable) set A ⊆ X is given by the integral

P(X ∈ A) =

∫
x∈A

dpX(x) =

∫
I(x ∈ A) dpX(x) , (1.3)

where the second form uses the indicator function I(s) of a logical statement s,
which is defined to be equal to 1 if the statement s is true, and equal to 0 if the
statement is false.

The expectation value E f(X) and the variance Var f(X) of a real-valued function
f(x) are given by

E f(X) =

∫
f(x) dpX(x) , Var f(X) = E{f(X)2} − {E f(X)}2

. (1.4)

Sometimes, we may write EXf(X) to specify the variable to be integrated over. We
shall often use the shorthand pdf for the probability density function pX(x).

Example 1.1 A fair die with M faces has X = {1, 2, . . . ,M} and p(i) = 1/M for
all i ∈ {1, . . . , M}. The average of x is E X = (1 + · · · + M)/M = (M + 1)/2.

Example 1.2 Gaussian variable. A continuous variable X ∈ R has a Gaussian
distribution of mean m and variance σ2 if its probability density is

p(x) =
1√
2πσ

exp

(
− [x − m]2

2σ2

)
. (1.5)

We have EX = m and E(X − m)2 = σ2.

Appendix A contains some definitions and notation for the random variables that
we shall encounter most frequently

The notation of this chapter refers mainly to discrete variables. Most of the ex-
pressions can be transposed to the case of continuous variables by replacing sums

∑
x

by integrals and interpreting p(x) as a probability density.

Exercise 1.1 Jensen’s inequality. Let X be a random variable taking values in a set X ⊆ R

and let f be a convex function (i.e. a function such that ∀x, y and ∀α ∈ [0, 1]: f(αx + (1 −
α)y) ≤ αf(x) + (1 − α)f(y)). Then

Ef(X) ≥ f(EX) . (1.6)

Supposing for simplicity that X is a finite set with |X | = n, prove this equality by recursion
on n.
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1.2 Entropy

The entropy HX of a discrete random variable X with probability distribution p(x)
is defined as

HX ≡ −
∑
x∈X

p(x) log2 p(x) = E log2

[
1

p(X)

]
, (1.7)

where we define, by continuity, 0 log2 0 = 0. We shall also use the notation H(p) when-
ever we want to stress the dependence of the entropy upon the probability distribution
of X.

In this chapter, we use the logarithm to base 2, which is well adapted to digital
communication, and the entropy is then expressed in bits. In other contexts, and
in particular in statistical physics, one uses the natural logarithm (with base e ≈
2.7182818) instead. It is sometimes said that, in this case, entropy is measured in
nats. In fact, the two definitions differ by a global multiplicative constant, which
amounts to a change of units. When there is no ambiguity, we shall use H instead of
HX .

Intuitively, the entropy HX is a measure of the uncertainty of the random variable
X. One can think of it as the missing information: the larger the entropy, the less a
priori information one has on the value of the random variable. It roughly coincides
with the logarithm of the number of typical values that the variable can take, as the
following examples show.

Example 1.3 A fair coin has two values with equal probability. Its entropy is 1 bit.

Example 1.4 Imagine throwing M fair coins: the number of all possible outcomes
is 2M . The entropy equals M bits.

Example 1.5 A fair die with M faces has entropy log2 M .

Example 1.6 Bernoulli process. A Bernoulli random variable X can take values
0, 1 with probabilities p(0) = q, p(1) = 1 − q. Its entropy is

HX = −q log2 q − (1 − q) log2(1 − q) , (1.8)

which is plotted as a function of q in Fig. 1.1. This entropy vanishes when q = 0 or
q = 1 because the outcome is certain; it is maximal at q = 1/2, when the uncertainty
of the outcome is maximal.

Since Bernoulli variables are ubiquitous, it is convenient to introduce the function
H(q) ≡ −q log q − (1 − q) log(1 − q) for their entropy.
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Fig. 1.1 The entropy H(q) of a binary variable with p(X = 0) = q and p(X = 1) = 1 − q,

plotted versus q.

Exercise 1.2 An unfair die with four faces and p(1) = 1/2, p(2) = 1/4, p(3) = p(4) = 1/8
has entropy H = 7/4, smaller than that of the corresponding fair die.

Exercise 1.3 DNA is built from a sequence of bases which are of four types, A, T, G, C.
In the natural DNA of primates, the four bases have nearly the same frequency, and the
entropy per base, if one makes the simplifying assumption of independence of the various
bases, is H = − log2(1/4) = 2. In some genuses of bacteria, one can have big differences
in concentrations: for example, p(G) = p(C) = 0.38, p(A) = p(T ) = 0.12, giving a smaller
entropy H ≈ 1.79.

Exercise 1.4 In some intuitive way, the entropy of a random variable is related to the
‘risk’ or ‘surprise’ which is associated with it. Let us see how these notions can be made
more precise.

Consider a gambler who bets on a sequence of Bernoulli random variables Xt ∈ {0, 1},
t ∈ {0, 1, 2, . . . }, with mean EXt = p. Imagine he knows the distribution of the Xt’s and,
at time t, he bets a fraction w(1) = p of his money on 1 and a fraction w(0) = (1 − p) on
0. He loses whatever is put on the wrong number, while he doubles whatever has been put
on the right one. Define the average doubling rate of his wealth at time t as

Wt =
1

t
E log2

(
tY

t′=1

2w(Xt′)

)
. (1.9)

It is easy to prove that the expected doubling rate EWt is related to the entropy of Xt:
EWt = 1 −H(p). In other words, it is easier to make money out of predictable events.
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Another notion that is directly related to entropy is the Kullback–Leibler (KL)
divergence between two probability distributions p(x) and q(x) over the same finite
space X . This is defined as

D(q||p) ≡
∑
x∈X

q(x) log
q(x)

p(x)
, (1.10)

where we adopt the conventions 0 log 0 = 0 and 0 log(0/0) = 0. It is easy to show that
(i) D(q||p) is convex in q(x); (ii) D(q||p) ≥ 0; and (iii) D(q||p) > 0 unless q(x) ≡ p(x).
The last two properties derive from the concavity of the logarithm (i.e. the fact that
the function − log x is convex) and Jensen’s inequality (eqn (1.6)): if E denotes the
expectation with respect to the distribution q(x), then −D(q||p) = E log[p(x)/q(x)] ≤
log E[p(x)/q(x)] = 0. The KL divergence D(q||p) thus looks like a distance between
the probability distributions q and p, although it is not symmetric.

The importance of the entropy, and its use as a measure of information, derives
from the following properties:

1. HX ≥ 0.

2. HX = 0 if and only if the random variable X is certain, which means that X
takes one value with probability one.

3. Among all probability distributions on a set X with M elements, H is maximum
when all events x are equiprobable, with p(x) = 1/M . The entropy is then HX =
log2 M . To prove this statement, note that if X has M elements, then the KL
divergence D(p||p) between p(x) and the uniform distribution p(x) = 1/M is
D(p||p) = log2 M −H(p). The statement is a direct consequence of the properties
of the KL divergence.

4. If X and Y are two independent random variables, meaning that pX,Y (x, y) =
pX(x)pY (y), the total entropy of the pair X,Y is equal to HX + HY :

HX,Y = −
∑
x,y

pX,Y (x, y) log2 pX,Y (x, y)

= −
∑
x,y

pX,Y (x, y) (log2 pX(x) + log2 pY (y)) = HX + HY . (1.11)

5. For any pair of random variables, one has in general HX,Y ≤ HX + HY , and this
result is immediately generalizable to n variables. (The proof can be obtained
by using the positivity of the KL divergence D(p1||p2), where p1 = pX,Y and
p2 = pXpY .)

6. Additivity for composite events. Take a finite set of events X , and decompose it
into X = X1∪X2, where X1∩X2 = ∅. Denote by q1 =

∑
x∈X1

p(x) the probability
of X1, and denote by q2 the probability of X2. For each x ∈ X1, define as usual
the conditional probability of x, given that x ∈ X1, by r1(x) = p(x)/q1 and
define r2(x) similarly as the conditional probability of x, given that x ∈ X2.
The total entropy can then be written as the sum of two contributions HX =
−∑x∈X p(x) log2 p(x) = H(q) + H̃(q, r), where
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H(q) = −q1 log2 q1 − q2 log2 q2 (1.12)

H̃(q, r) = −q1

∑
x∈X1

r1(x) log2 r1(x) − q2

∑
x∈X1

r2(x) log2 r2(x) . (1.13)

The proof is straightforward and is done by substituting the laws r1 and r2 by
their definitions. This property can be interpreted as the fact that the average
information associated with the choice of an event x is additive, being the sum
of the information H(q) associated to a choice of subset, and the information

H̃(q, r) associated with the choice of the event inside the subset (weighted by the
probability of the subset). This is the main property of the entropy, which justifies
its use as a measure of information. In fact, this is a simple example of the chain
rule for conditional entropy, which will be illustrated further in Sec. 1.4.

Conversely, these properties, together with appropriate hypotheses of continuity
and monotonicity, can be used to define the entropy axiomatically.

1.3 Sequences of random variables and their entropy rate

In many situations of interest, one deals with a random process which generates se-
quences of random variables {Xt}t∈N, each of them taking values in the same finite
space X . We denote by PN (x1, . . . , xN ) the joint probability distribution of the first
N variables. If A ⊂ {1, . . . , N} is a subset of indices, we denote by A its complement
A = {1, . . . , N} \ A and use the notation xA = {xi, i ∈ A} and xA = {xi, i ∈ A} (the
set subscript will be dropped whenever it is clear from the context). The marginal
distribution of the variables in A is obtained by summing PN over the variables in
A:

PA(xA) =
∑
xA

PN (x1, . . . , xN ) . (1.14)

Example 1.7 The simplest case is when the Xt’s are independent. This means that
PN (x1, . . . , xN ) = p1(x1)p2(x2) . . . pN (xN ). If all the distributions pi are identical,
equal to p, the variables are independent identically distributed, and abbrevi-
ated as i.i.d. The joint distribution is

PN (x1, . . . , xN ) =

N∏
t=1

p(xi) . (1.15)
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Example 1.8 The sequence {Xt}t∈N is said to be a Markov chain if

PN (x1, . . . , xN ) = p1(x1)
N−1∏
t=1

w(xt → xt+1) . (1.16)

Here {p1(x)}x∈X is called the initial state, and the {w(x → y)}x,y∈X are the
transition probabilities of the chain. The transition probabilities must be non-
negative and normalized:∑

y∈X

w(x → y) = 1 , for any x ∈ X . (1.17)

When we have a sequence of random variables generated by a process, it is intu-
itively clear that the entropy grows with the number N of variables. This intuition
suggests that we should define the entropy rate of a sequence xN ≡ {Xt}t∈N as

hX = lim
N→∞

HXN
/N , (1.18)

if the limit exists. The following examples should convince the reader that the above
definition is meaningful.

Example 1.9 If the Xt’s are i.i.d. random variables with distribution {p(x)}x∈X ,
the additivity of entropy implies

hX = H(p) = −
∑
x∈X

p(x) log p(x) . (1.19)

Example 1.10 Let {Xt}t∈N be a Markov chain with initial state {p1(x)}x∈X and
transition probabilities {w(x → y)}x,y∈X . Call {pt(x)}x∈X the marginal distribution
of Xt and assume the following limit to exist independently of the initial condition:

p∗(x) = lim
t→∞

pt(x) . (1.20)

As we shall see in Chapter 4, this indeed turns out to be true under quite mild
hypotheses on the transition probabilities {w(x → y)}x,y∈X . It is then easy to show
that

hX = −
∑

x,y∈X

p∗(x)w(x → y) log w(x → y) . (1.21)



�� Introduction to information theory

If you imagine, for instance, that a text in English is generated by picking letters
randomly from the alphabet X , with empirically determined transition probabilities
w(x → y), then eqn (1.21) gives a rough estimate of the entropy of English.

A more realistic model can be obtained using a Markov chain with memory. This
means that each new letter xt+1 depends on the past through the values of the k
previous letters xt, xt−1, . . . , xt−k+1. Its conditional distribution is given by the tran-
sition probabilities w(xt, xt−1, . . . , xt−k+1 → xt+1). Computing the corresponding
entropy rate is easy. For k = 4, one obtains an entropy of 2.8 bits per letter, much
smaller than the trivial upper bound log2 27 (there are 26 letters, plus the space
symbol), but many words so generated are still not correct English words. Better
estimates of the entropy of English, obtained through guessing experiments, give a
number around 1.3.

1.4 Correlated variables and mutual information

Given two random variables X and Y taking values in X and Y, we denote their
joint probability distribution as pX,Y (x, y), which is abbreviated as p(x, y), and we
denote the conditional probability distribution for the variable y, given x, as pY |X(y|x),
abbreviated as p(y|x). The reader should be familiar with the classical Bayes’ theorem

p(y|x) = p(x, y)/p(x) . (1.22)

When the random variables X and Y are independent, p(y|x) is independent of x.
When the variables are dependent, it is interesting to have a measure of their degree
of dependence: how much information does one obtain about the value of y if one
knows x? The notions of conditional entropy and mutual information will answer this
question.

We define the conditional entropy HY |X as the entropy of the law p(y|x), aver-
aged over x:

HY |X ≡ −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log2 p(y|x) . (1.23)

The joint entropy HX,Y ≡ −
∑

x∈X ,y∈Y p(x, y) log2 p(x, y) of the pair of variables x, y
can be written as the entropy of x plus the conditional entropy of y given x, an identity
known as the chain rule:

HX,Y = HX + HY |X . (1.24)

In the simple case, where the two variables are independent, HY |X = HY , and
HX,Y = HX + HY . One way to measure the correlation of the two variables is to use
the mutual information IX,Y , which is defined as

IX,Y ≡
∑

x∈X ,y∈Y

p(x, y) log2

p(x, y)

p(x)p(y)
. (1.25)

It is related to the conditional entropies by

IX,Y = HY − HY |X = HX − HX|Y . (1.26)

This shows that the mutual information IX,Y measures the reduction in the uncertainty
of x due to the knowledge of y, and is symmetric in x, y.
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Proposition 1.11 IX,Y ≥ 0. Moreover, IX,Y = 0 if and only if X and Y are inde-
pendent variables.

Proof Write IX,Y = Ex,y − log2{p(x)p(y)/p(x, y)}. Consider the random variable
u = (x, y) with probability distribution p(x, y). As the function − log( · ) is convex,
one can apply Jensen’s inequality (eqn (1.6)). This gives the result IX,Y ≥ 0 �

Exercise 1.5 A large group of friends plays the following game (‘telephone without ca-
bles’). The person number zero chooses a number X0 ∈ {0, 1} with equal probability and
communicates it to the person number one without letting the others hear, and so on. The
first person communicates the number to the second person, without letting anyone else
hear. Call Xn the number communicated from the n-th to the (n + 1)-th person. Assume
that, at each step a person may become confused and communicate the wrong number with
probability p. How much information does the n-th person have about the choice of the
first person?

We can quantify this information through IX0,Xn ≡ In. Show that In = 1−H(pn) with
pn given by 1 − 2pn = (1 − 2p)n. In particular, as n → ∞,

In =
(1 − 2p)2n

2 log 2

ˆ
1 + O((1 − 2p)2n)

˜
. (1.27)

The ‘knowledge’ about the original choice decreases exponentially along the chain.

Mutual information is degraded when data is transmitted or processed. This is
quantified as follows

Proposition 1.12 Data-processing inequality. Consider a Markov chain X →
Y → Z (so that the joint probability of the three variables can be written as p1(x)w2(x →
y)w3(y → z)). Then IX,Z ≤ IX,Y . In particular, if we apply this result to the case where
Z is a function of Y , Z = f(Y ), we find that applying f degrades the information:
IX,f(Y ) ≤ IX,Y .

Proof We introduce the mutual information of two variables conditioned on a third
one: IX,Y |Z = HX|Z − HX|(Y Z). The mutual information between a variable X and a
pair of variables (Y Z) can be decomposed using the following chain rule: IX,(Y Z) =
IX,Z + IX,Y |Z = IX,Y + IX,Z|Y . If we have a Markov chain X → Y → Z, X and Z
are independent when we condition on the value of Y , and therefore IX,Z|Y = 0. The
result follows from the fact that IX,Y |Z ≥ 0. �

The conditional entropy also provides a lower bound on the probability of guessing
a random variable. Suppose you want to guess the value of the random variable X, but
you observe only the random variable Y (which can be thought of as a noisy version of

X). From Y , you compute a function X̂ = g(Y ), which is your estimate for X. What
is the probability Pe that you guessed incorrectly? Intuitively, if X and Y are strongly
correlated, one can expect that Pe is small, whereas it increases for less well-correlated
variables. This is quantified as follows.

Proposition 1.13 Fano’s inequality. Consider a random variable X taking values
in the alphabet X , and the Markov chain X → Y → X̂, where X̂ = g(Y ) is an estimate
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for the value of X. Define the probability of making an error as Pe = P(X̂ = X). This
is bounded from below as follows:

H(Pe) + Pe log2(|X | − 1) ≥ H(X|Y ) . (1.28)

Proof Define a random variable E = I(X̂ = X), equal to 0 if X̂ = X and to 1
otherwise, and decompose the conditional entropy HX,E|Y using the chain rule in two
ways: HX,E|Y = HX|Y + HE|X,Y = HE|Y + HX|E,Y . Then notice that (i) HE|X,Y = 0
(because E is a function of X and Y ); (ii) HE|Y ≤ HE = H(Pe) and (iii) HX|E,Y =
(1 − Pe)HX|E=0,Y + PeHX|E=1,Y = PeHX|E=1,Y ≤ Pe log2(|X | − 1). �

Exercise 1.6 Suppose that X can take k values, and that its distribution is p(1) = 1− p,
p(x) = p/(k−1) for x ≥ 2. If X and Y are independent, what is the value of the right-hand
side of Fano’s inequality? Assuming that 1− p > p

k−1
, what is the best guess one can make

about the value of X? What is the probability of error? Show that Fano’s inequality holds
as an equality in this case.

1.5 Data compression

Imagine an information source which generates a sequence of symbols X = {X1, . . . ,
XN} taking values in a finite alphabet X . We assume a probabilistic model for the
source, meaning that the Xi are random variables. We want to store the information
contained in a given realization x = {x1 . . . xN} of the source in the most compact
way.

This is the basic problem of source coding. Apart from being an issue of the ut-
most practical interest, it is a very instructive subject. It in fact allows us to formalize
in a concrete fashion the intuitions of ‘information’ and ‘uncertainty’ which are asso-
ciated with the definition of entropy. Since entropy will play a crucial role throughout
the book, we present here a little detour into source coding.

1.5.1 Codewords

We first need to formalize what is meant by ‘storing the information’. We define a
source code for the random variable X to be a mapping w which associates with any
possible information sequence in XN a string in a reference alphabet, which we shall
assume to be {0, 1}:

w : XN→ {0, 1}∗

x �→ w(x) . (1.29)

Here we have used the convention of denoting by {0, 1}∗ the set of binary strings of
arbitrary length. Any binary string which is in the image of w is called a codeword.

Often, the sequence of symbols X1 . . . XN is a part of a longer stream. The com-
pression of this stream is realized in three steps. First, the stream is broken into blocks
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of length N . Then, each block is encoded separately using w. Finally, the codewords
are glued together to form a new (hopefully more compact) stream. If the original
stream consists of the blocks x(1), x(2), . . . , x(r), the output of the encoding process
will be the concatenation of w(x(1)), . . . , w(x(r)). In general, there is more than one
way of parsing this concatenation into codewords, which may cause troubles when one
wants to recover the compressed data. We shall therefore require the code w to be such
that any concatenation of codewords can be parsed unambiguously. The mappings w
satisfying this property are called uniquely decodable codes.

Unique decodability is certainly satisfied if, for any x, x′ ∈ XN , w(x) is not a
prefix of w(x′) (see Fig. 1.2). In such a case the code is said to be instantaneous.
Hereafter, we shall focus on instantaneous codes, since they are both practical and
slightly simpler to analyse.

Now that we have specified how to store information, namely using a source code,
it is useful to introduce a figure of merit for source codes. If lw(x) is the length of the
string w(x), the average length of the code is

L(w) =
∑

x∈XN

p(x) lw(x) . (1.30)

Example 1.14 Take N = 1, and consider a random variable X which takes values
in X = {1, 2, . . . , 8} with probabilities p(1) = 1/2, p(2) = 1/4, p(3) = 1/8, p(4) =
1/16, p(5) = 1/32, p(6) = 1/64, p(7) = 1/128, and p(8) = 1/128. Consider the two
codes w1 and w2 defined by the table below:

x p(x) w1(x) w2(x)
1 1/2 000 0
2 1/4 001 10
3 1/8 010 110
4 1/16 011 1110
5 1/32 100 11110
6 1/64 101 111110
7 1/128 110 1111110
8 1/128 111 11111110

(1.31)

These two codes are instantaneous. For instance, looking at the code w2, the encoded
string 10001101110010 can be parsed in only one way, since each symbol 0 ends a
codeword. It thus corresponds to the sequence x1 = 2, x2 = 1, x3 = 1, x4 = 3, x5 =
4, x6 = 1, x7 = 2. The average length of code w1 is L(w1) = 3, and the average
length of code w2 is L(w2) = 247/128. Notice that w2 achieves a shorter average
length because it assigns the shortest codeword (namely 0) to the most probable
symbol (i.e. x = 1).
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Fig. 1.2 An instantaneous source code: each codeword is assigned to a node in a binary tree

in such a way that none of them is the ancestor of another one. Here, the four codewords are

framed.

Example 1.15 A useful graphical representation of a source code can be obtained
by drawing a binary tree and associating each codeword with the corresponding node
in the tree. In Fig. 1.2, we represent a source code with |XN | = 4 in this way. It
is quite easy to recognize that the code is indeed instantaneous. The codewords,
which are framed, are such that no codeword is the ancestor of any other codeword
in the tree. Given a sequence of codewords, parsing is immediate. For instance, the
sequence 00111000101001 can be parsed only into 001, 11, 000, 101, 001.

1.5.2 Optimal compression and entropy

Suppose that you have a ‘complete probabilistic characterization’ of the source you
want to compress. What is the ‘best code’ w for this source?

This problem was solved (to a large extent) by Shannon in his celebrated 1948
paper, by connecting the best achievable average length to the entropy of the source.
Following Shannon, we assume that we know the probability distribution of the source
p(x). Moreover, we interpret ‘best code’ as ‘code with the shortest average length’.

Theorem 1.16 Let L∗
N be the shortest average length achievable by an instantaneous

code for the variable X = {X1, . . . , XN}, which has entropy HX . Then:

1. For any N ≥ 1
HX ≤ L∗

N ≤ HX + 1 . (1.32)

2. If the source has a finite entropy rate h = limN→∞ HX/N , then

lim
N→∞

1

N
L∗

N = h . (1.33)

Proof The basic idea of the proof of eqn (1.32) is that if the codewords were too
short, the code would not be instantaneous. Kraft’s inequality makes this simple
remark more precise. For any instantaneous code w, the lengths lw(x) satisfy∑

x∈XN

2−lw(x) ≤ 1 . (1.34)
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This fact is easily proved by representing the set of codewords as a set of leaves on
a binary tree (see Fig. 1.2). Let LM be the length of the longest codeword . Consider
the set of all the 2LM possible vertices in the binary tree at the generation LM ; let
us call them the ‘descendants’. If the information x is associated with a codeword
at generation l (i.e. lw(x) = l), there can be no other codewords in the branch of
the tree rooted at this codeword, because the code is instantaneous. We ‘erase’ the
corresponding 2LM−l descendants, which cannot be codewords. The subsets of erased
descendants associated with each codeword are not overlapping. Therefore the total
number of erased descendants,

∑
x 2LM−lw(x), must be less than or equal to the total

number of descendants, 2LM . This establishes Kraft’s inequality.
Conversely, for any set of lengths {l(x)}x∈XN which satisfy Kraft’s inequality

(1.34), there exists at least one code whose codewords have lengths {l(x)}x∈XN . A
possible construction is obtained as follows. Consider the smallest length l(x) and
take the first allowed binary sequence of length l(x) to be the codeword for x. Repeat
this operation with the next shortest length and so on, until all the codewords have
been exhausted. It is easy to show that this procedure is successful if eqn (1.34) is
satisfied.

The problem is therefore reduced to finding the set of codeword lengths l(x) = l∗(x)
which minimize the average length L =

∑
x p(x)l(x) subject to Kraft’s inequality

(1.34). Supposing first that l(x) can take arbitrary non-negative real values, this is
easily done with Lagrange multipliers, and leads to l(x) = − log2 p(x). This set of
optimal lengths, which in general cannot be realized because some of the l(x) are not
integers, gives an average length equal to the entropy HX . It implies the lower bound
in eqn (1.32). In order to build a real code with integer lengths, we use

l∗(x) = �− log2 p(x)� . (1.35)

Such a code satisfies Kraft’s inequality, and its average length is less than or equal
than HX + 1, proving the upper bound in eqn (1.32).

The second part of the theorem is a straightforward consequence of the first part.
�

The code that we have constructed in the proof is often called a Shannon code.
For long strings (N � 1), it is close to optimal. However, it has no reason to be optimal
in general. For instance, if only one p(x) is very small, it will assign x to a very long
codeword, while shorter codewords are available. It is interesting to know that, for a
given source {X1, . . . , XN}, there exists an explicit construction of the optimal code,
called Huffman’s code.

At first sight, it may appear that Theorem 1.16, together with the construction
of Shannon codes, completely solves the source coding problem. Unhappily, this is far
from true, as the following arguments show.

From a computational point of view, the encoding procedure described above is un-
practical when N is large. One can build the code once for all, and store it somewhere,
but this requires Θ(|X |N ) memory. On the other hand, one could reconstruct the code
every time a string required to be encoded, but this takes Θ(|X |N ) operations. One
can use the same code and be a little smarter in the encoding procedure, but this
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does not yield a big improvement. (The symbol Θ means ‘of the order of’; the precise
definition is given in Appendix A.)

From a practical point of view, the construction of a Shannon code requires an
accurate knowledge of the probabilistic law of the source. Suppose now that you want
to compress the complete works of Shakespeare. It is exceedingly difficult to construct
a good model for the source ‘Shakespeare’. Even worse, when you will finally have
such a model, it will be of little use for compressing Dante or Racine.

Happily, source coding has made tremendous progresses in both directions in the
last half-century. However, in this book, we shall focus on another crucial aspect of
information theory, the transmission of information.

1.6 Data transmission

We have just seen how to encode information in a string of symbols (we used bits, but
any finite alphabet is equally good). Suppose now that we want to communicate this
string. When the string is transmitted, it may be corrupted by noise, which depends
on the physical device used for the transmission. One can reduce this problem by
adding redundancy to the string. This redundancy is to be used to correct some of
the transmission errors, in the same way as redundancy in the English language could
be used to correct some of the typos in this book. This is the domain of channel
coding. A central result in information theory, again due to Shannon’s pioneering
work of 1948, relates the level of redundancy to the maximal level of noise that can
be tolerated for error-free transmission. As in source coding, entropy again plays a
key role in this result. This is not surprising, in view of the duality between the two
problems. In data compression, one wants to reduce the redundancy of the data, and
the entropy gives a measure of the ultimate possible reduction. In data transmission,
one wants to add some well-tailored redundancy to the data.

1.6.1 Communication channels

A typical flowchart of a communication system is shown in Fig. 1.3. It applies to
situations as diverse as communication between the earth and a satellite, cellular
phones, and storage within the hard disk of a computer. Alice wants to send a message
m to Bob. Let us assume that m is an M -bit sequence. This message is first encoded
into a longer one, an N -bit message denoted by x, with N > M , where the added
bits will provide the redundancy used to correct transmission errors. The encoder is a
map from {0, 1}M to {0, 1}N . The encoded message is sent through a communication
channel. The output of the channel is a message y. In the case of a noiseless channel,
one would simply have y = x. In the case of a realistic channel, y is in general a
string of symbols different from x. Note that y is not necessarily a string of bits.
The channel is described by a transition probability Q(y|x). This is the probability
that the received signal is y, conditional on the transmitted signal being x. Different
physical channels are described by different functions Q(y|x). The decoder takes the
message y and deduces from it an estimate m′ of the sent message.
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Fig. 1.3 Typical flowchart of a communication device.

Exercise 1.7 Consider the following example of a channel with insertions. When a bit x
is fed into the channel, either x or x0 is received with equal probability 1/2. Suppose that
you send the string 111110. The string 1111100 will be received with probability 2 · 1/64
(the same output can be produced by an error in either the fifth or the sixth digit). Notice
that the output of this channel is a bit string which is always longer than or equal in length
to the transmitted string.

A simple code for this channel is easily constructed: use the string 100 for each 0 in the
original message and 1100 for each 1. Then, for instance, we have the encoding

01101 
→ 100110011001001100 . (1.36)

The reader is invited to define a decoding algorithm and verify its effectiveness.

Hereafter, we shall consider memoryless channels. In this case, for any input
x = (x1, ..., xN ), the output message is a string of N letters y = (y1, ..., yN ) from
an alphabet Y � yi (not necessarily binary). In a memoryless channel, the noise acts
independently on each bit of the input. This means that the conditional probability
Q(y|x) factorizes, i.e.

Q(y|x) =

N∏
i=1

Q(yi|xi) , (1.37)

and the transition probability Q(yi|xi) is independent og i.

Example 1.17 Binary symmetric channel (BSC). The input xi and the output
yi are both in {0, 1}. The channel is characterized by one number, the probability p
that the channel output is different from the input, called the crossover (or flip)
probability. It is customary to represent this type of channel by the diagram on the
left of Fig. 1.4.

Example 1.18 Binary erasure channel (BEC). In this case some of the input
bits are erased instead of being corrupted: xi is still in {0, 1}, but yi now belongs
to {0, 1, ∗}, where ∗ means that the symbol has been erased. In the symmetric case,
this channel is described by a single number, the probability ε that a bit is erased,
see Fig. 1.4, middle.



�� Introduction to information theory

0 0

11

00

11

*

0 0

11
1 − ε

ε

ε

1 − ε

1 − p

p

p

1 − p

1 − p

p

1

Fig. 1.4 Three communication channels. Left : the binary symmetric channel. An error in the

transmission, in which the output bit is the opposite of the input one, occurs with probability

p. Middle: the binary erasure channel. An error in the transmission, signaled by the output ∗,
occurs with probability ε. Right : the Z channel. An error occurs with probability p whenever

a 1 is transmitted.

Example 1.19 Z channel. In this case the output alphabet is again {0, 1}. Now,
however, a 0 is always transmitted correctly, whereas a 1 becomes a 0 with probability
p. The name of this channel comes from its graphical representation: see Fig. 1.4,
right.

A very important characteristic of a channel is the channel capacity C. This is
defined in terms of the mutual information IX,Y of the variables X (the bit which was
sent) and Y (the signal which was received), through

C = max
p(x)

IX,Y = max
p(x)

∑
x∈X ,y∈Y

p(x, y) log2

p(x, y)

p(x)p(y)
. (1.38)

We recall that in our case p(x, y) = p(x)Q(y|x), and IX,Y measures the reduction
in the uncertainty of x due to the knowledge of y. The capacity C gives a measure of
how faithful a channel can be. If the output of the channel is pure noise, x and y are
uncorrelated and C = 0. At the other extreme if y = f(x) is known for sure, given
x, then C = max{p(x)} H(p) = 1 bit (for binary inputs). The reason for our interest
in the capacity will become clear in Section 1.6.3 with Shannon’s coding theorem,
which shows that C characterizes the amount of information which can be transmitted
faithfully through a channel.

Example 1.20 Consider a binary symmetric channel with flip probability p. Let us
call the probability that the source sends x = 0 q, and the probability of x = 1 1−q.
It is easy to show that the mutual information in eqn (1.38) is maximized when zeros
and ones are transmitted with equal probability (i.e. when q = 1/2).

Using eqn (1.38), we get C = 1 − H(p) bits, where H(p) is the entropy of a
Bernoulli process with parameter p (plotted in Fig. 1.1).

Example 1.21 Consider now a binary erasure channel with error probability ε. The
same argument as above applies. It is therefore easy to obtain C = 1 − ε.
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Exercise 1.8 Compute the capacity of a Z channel.

1.6.2 Error-correcting codes

We need one last ingredient in order to have a complete definition of the channel coding
problem: the behaviour of the information source. We shall assume that the source
produces a sequence of uncorrelated, unbiased bits. This may seem at first a very
crude model for any real information source. Surprisingly, Shannon’s source–channel
separation theorem ensures that there is indeed no loss of generality in treating this
case.

The sequence of bits produced by the source is divided into blocks m1,m2,m3, . . .
of length M . The encoding is a mapping from {0, 1}M � m to {0, 1}N , with N ≥ M .
Each possible M -bit message m is mapped to a codeword x(m), which can be seen
as a point in the N -dimensional unit hypercube. The codeword length N is also called
the block length. There are 2M codewords, and the set of all possible codewords is
called the codebook. When a message is transmitted, the corresponding codeword x is
corrupted to y ∈ YN with probability Q(y|x) =

∏N
i=1 Q(yi|xi). The output alphabet Y

depends on the channel. The decoder is a mapping from YN to {0, 1}M which takes
the received message y ∈ YN and maps it to one of the possible original messages

m′ = d(y) ∈ {0, 1}M .
An error-correcting code is defined by a pair of functions, the encoding x(m)

and the decoding d(y). The ratio

R =
M

N
(1.39)

of the original number of bits to the transmitted number of bits is called the rate of
the code. The rate is a measure of the redundancy of the code. The smaller the rate,
the more redundancy is added to the code, and the more errors one should be able to
correct.

The block error probability of a code on an input message m, denoted by
PB(m), is the probability that the decoded message differs from the message which
was sent:

PB(m) =
∑

y

Q(y|x(m)) I(d(y) = m) . (1.40)

Knowing the error probability for each possible transmitted message amounts to an
exceedingly detailed characterization of the performance of the code. One can therefore
introduce a maximal block error probability as

Pmax
B ≡ max

m∈{0,1}M
PB(m) . (1.41)

This corresponds to characterizing the code by its ‘worst case’ performances. A more
optimistic point of view corresponds to averaging over the input messages. Since we
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have assumed all of them to be equiprobable, we introduce the average block error
probability, defined as

Pav
B ≡ 1

2M

∑
m∈{0,1}M

PB(m) . (1.42)

Since this is a very common figure of merit for error-correcting codes, we shall call it
simply the block error probability, and use the symbol PB without further specification
hereafter.

Example 1.22 Repetition code. Consider a BSC which transmits a wrong bit
with probability p. A simple code consists in repeating each bit k times, with k odd.
Formally, we have M = 1, N = k, and

x(0) = 000 . . . 00︸ ︷︷ ︸
k

, (1.43)

x(1) = 111 . . . 11︸ ︷︷ ︸
k

. (1.44)

This code has rate R = M/N = 1/k. For instance, with k = 3, the original stream
0110001 is encoded as 000111111000000000111. A possible decoder consists in pars-
ing the received sequence into groups of k bits, and finding the message m′ using a
majority rule among the k bits. In our example with k = 3, if the received group
of three bits is 111 or 110 or any permutation, the corresponding input bit is as-
signed to 1, otherwise it is assigned to 0. For instance, if the channel output is
000101111011000010111, this decoder returns 0111001.

Exercise 1.9 The k-repetition code corrects up to �k/2 errors per group of k bits. Show
that the block error probability for general k is

PB =

kX
r=�k/2�

„
k
r

«
(1 − p)k−rpr . (1.45)

Note that, for any finite k and p > 0, PB is strictly positive. In order to have PB → 0, we
must consider k → ∞. Since the rate is 1/k, the price to pay for a vanishing block error
probability is a vanishing communication rate!

Happily, however, we shall see that much better codes exist.

1.6.3 The channel coding theorem

Consider a communication channel whose capacity (eqn (1.38)) is C. In his seminal
1948 paper, Shannon proved the following theorem.

Theorem 1.23 For every rate R < C, there exists a sequence of codes {CN}, of
block length N , rate RN , and block error probability PB,N , such that RN → R and
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PB,N → 0 as N → ∞. Conversely, if, for a sequence of codes {CN}, one has RN → R
and PB,N → 0 as N → ∞, then R < C.

In practice, for long messages (i.e. large N), reliable communication is possible if
and only if the communication rate remains below the channel capacity. The direct
part of the proof will be given in Sec. 6.4 using the random code ensemble. We shall
not give a full proof of the converse part in general, but only in the case of a BSC,
in Sec. 6.5.2. Here we confine ourselves to some qualitative comments and provide the
intuitive idea underlying this theorem.

First of all, the result is rather surprising when one meets it for the first time.
As we saw in the example of repetition codes above, simple-minded codes typically
have a positive error probability for any non-vanishing noise level. Shannon’s theorem
establishes that it is possible to achieve a vanishing error probability while keeping
the communication rate bounded away from zero.

One can get an intuitive understanding of the role of the capacity through a quali-
tative argument, which uses the fact that a random variable with entropy H ‘typically’
takes 2H values. For a given codeword x(m) ∈ {0, 1}N , the channel output y is a ran-

dom variable with an entropy Hy|x = NHy|x. There exist about 2NHy|x such outputs.

For perfect decoding, one needs a decoding function d(y) that maps each of them to

the original message m. Globally, the typical number of possible outputs is 2NHy , and
therefore one can distinguish at most 2N(Hy−Hy|x) codewords. In order to have a van-
ishing maximal error probability, one needs to be able to send all of the 2M = 2NR

codewords. This is possible only if R < Hy − Hy|x ≤ C.

Notes

There are many textbooks that provide introductions to probability and to information
theory. A classic probability textbook is Feller (1968). For a more recent reference see
Durrett (1995). The original Shannon paper (Shannon, 1948) is universally recognized
as the foundation of information theory. A very nice modern introduction to the subject
is the book by Cover and Thomas (1991). The reader may find in there a description
of Huffman codes, which we did not treat in the present Chapter, as well as more
advanced topics in source coding.

We did not show that the six properties listed in Section 1.2 in fact provide an al-
ternative (axiomatic) definition of entropy. The interested reader is referred to Csiszár
abd Körner (1981). An advanced book on information theory with much space devoted
to coding theory is Gallager (1968). The recent and very rich book by MacKay (2002)
discusses the relations with statistical inference and machine learning.

The information-theoretic definition of entropy has been used in many contexts. It
can be taken as a founding concept in statistical mechanics. This approach, pioneered
by Jaynes (1957), is discussed by Balian (1992).
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2

Statistical physics and probability
theory

One of the greatest achievements of science has been to realize that matter is made
out of a small number of simple elementary components. This result seems to be in
striking contrast to our experience. Both at a simply perceptual level and with more
refined scientific experience, we come into touch with an ever-growing variety of states
of matter with disparate properties. The ambitious purpose of statistical physics (and,
more generally, of a large branch of condensed matter physics) is to understand this
variety. It aims at explaining how complex behaviours can emerge when large numbers
of identical elementary components are allowed to interact.

We have, for instance, experience of water in three different states (solid, liquid and
gaseous). Water molecules and their interactions do not change when passing from one
state to the other. Understanding how the same interactions can result in qualitatively
different macroscopic states, and what governs the change of state, is a central topic
of statistical physics.

The foundations of statistical physics rely on two important steps. The first one
consists in passing from the deterministic laws of physics, such as Newton’s laws, to
a probabilistic description. The idea is that a precise knowledge of the motion of each
molecule in a macroscopic system is inessential to an understanding of the system
as a whole: instead, one can postulate that the microscopic dynamics, because of its
chaoticity, allows a purely probabilistic description. The detailed justification of this
basic step has been achieved in only a small number of concrete cases. Here we shall
bypass any attempt at such a justification: we directly adopt a purely probabilistic
point of view, as a basic postulate of statistical physics.

The second step starts from the probabilistic description and recovers determin-
ism at a macroscopic level by some sort of law of large numbers. We all know that
water boils at 100o C (at atmospheric pressure) and that its density (at 25o C and
atmospheric pressure) is 1 g/cm3. The regularity of these phenomena is not related
to the deterministic laws which rule the motions of water molecules. It is instead a
consequence of the fact that, because of the large number of particles involved in
any macroscopic system, fluctuations are ‘averaged out’. We shall discuss this kind of
phenomenon in Section 2.4 and, more mathematically, in Chapter 4.

The purpose of this chapter is to introduce the most basic concepts of this disci-
pline for an audience of non-physicists with a mathematical background. We adopt
a somewhat restrictive point of view, which keeps to classical (as opposed to quan-
tum) statistical physics, and basically describes it as a branch of probability the-
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ory (Sections 2.1–2.3). In Section 2.4 we focus on large systems, and stress that the
statistical-physics approach becomes particularly meaningful in this regime. Theoret-
ical statistical physics often deals with highly idealized mathematical models of real
materials. The most interesting (and challenging) task is in fact to understand the
qualitative behaviour of such systems. With this aim, one can discard any ‘irrelevant’
microscopic detail from the mathematical description of the model. In Section 2.5, the
study of ferromagnetism through the introduction of the Ising model gives an exam-
ple of this modelling procedure. Compared with the case of Ising ferromagnets, the
theoretical understanding of spin glasses is much less developed. Section 2.6 presents
a rapid preview of this fascinating subject.

2.1 The Boltzmann distribution

The basic ingredients for a probabilistic description of a physical system are:

• A space of configurations X . One should think of x ∈ X as giving a complete
microscopic determination of the state of the system under consideration. We are
not interested in defining the most general mathematical structure for X such
that a statistical-physics formalism can be constructed. Throughout this book
we shall in fact consider only two very simple types of configuration spaces: (i)
finite sets, and (ii) smooth, compact, finite-dimensional manifolds. If the system
contains N ‘particles’, the configuration space is a product space:

XN = X × · · · × X︸ ︷︷ ︸
N

. (2.1)

The configuration of the system has the form x = (x1, . . . , xN ). Each coordinate
xi ∈ X is meant to represent the state (position, orientation, etc.) of one of the
particles. Except for a few examples, we shall focus on configuration spaces of type
(i). We shall therefore adopt a discrete-space notation for X . The generalization
to continuous configuration spaces is in most cases intuitively clear (although it
may present some technical difficulties).

• A set of observables, which are real-valued functions on the configuration space
O : x �→ O(x). If X is a manifold, we shall limit ourselves to observables which
are smooth functions of the configuration x. Observables are physical quantities
which can be measured through an experiment (at least in principle).

• Out of all the observables, a special role is played by the energy function E(x).
When the system is an N -particle system, the energy function generally takes the
form of sums of terms involving few particles. An energy function of the form

E(x) =

N∑
i=1

Ei(xi) (2.2)

corresponds to a non-interacting system. An energy of the form

E(x) =
∑

i1,...,ik

Ei1,...,ik
(xi1 , . . . , xik

) (2.3)

is called a k-body interaction. In general, the energy will contain some pieces
involving k-body interactions, with k ∈ {1, 2, . . . ,K}. An important feature of
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real physical systems is that K is never a large number (usually K = 2 or 3),
even when the number of particles N is very large. The same property holds for
all measurable observables. However, for the general mathematical formulation
which we shall use here, the energy can be any real-valued function on X .

Once the configuration space X and the energy function are fixed, the probability
µβ(x) for the system to be found in the configuration x is given by the Boltzmann
distribution:

µβ(x) =
1

Z(β)
e−βE(x) , Z(β) =

∑
x∈X

e−βE(x) . (2.4)

The real parameter T = 1/β is the temperature (and β is referred to as the inverse
temperature). Note that the temperature is usually defined as T = 1/(kBβ), where the
value of kB, Boltzmann’s constant, depends on the unit of measure for the temperature.
Here we adopt the simple choice kB = 1. The normalization constant Z(β) is called the
partition function. Notice that eqn (2.4) indeed defines the density of the Boltzmann
distribution with respect to some reference measure. The reference measure is usually
the counting measure if X is discrete or the Lebesgue measure if X is continuous. It
is customary to denote the expectation value with respect to the Boltzmann measure
by angle brackets: the expectation value 〈O(x)〉 of an observable O(x), also called its
Boltzmann average, is given by

〈O〉 =
∑
x∈X

µβ(x)O(x) =
1

Z(β)

∑
x∈X

e−βE(x)O(x) . (2.5)

Example 2.1 One intrinsic property of elementary particles is their spin. For ‘spin-
1/2’ particles, the spin σ takes only two values: σ = ±1. A localized spin-1/2 particle,
whose only degree of freedom is the spin, is described by X = {+1,−1}, and is called
an Ising spin. The energy of the spin in a state σ ∈ X in a magnetic field B is

E(σ) = −B σ . (2.6)

The Boltzmann probability of finding the spin in the state σ is

µβ(σ) =
1

Z(β)
e−βE(σ) Z(β) = e−βB + eβB = 2 cosh(βB) . (2.7)

The average value of the spin, called the magnetization, is

〈σ〉 =
∑

σ∈{1,−1}

µβ(σ) σ = tanh(βB) . (2.8)

At high temperatures, T � |B|, the magnetization is small. At low temperatures,
the magnetization its close to its maximal value: 〈σ〉 = 1 if B > 0. Section 2.5
will discuss the behaviour of many Ising spins, with some more complicated energy
functions.
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Example 2.2 Some spin variables can have a larger space of possible values. For
instance, a Potts spin with q states takes values in X = {1, 2, . . . , q}. In the presence
of a magnetic field of intensity h pointing in the direction r ∈ {1, . . . , q}, the energy
of the Potts spin is

E(σ) = −B I(σ = r) . (2.9)

In this case, the average value of the spin in the direction of the field is

〈I(σ = r)〉 =
exp(βB)

exp(βB) + (q − 1)
. (2.10)

Example 2.3 Let us consider a single water molecule inside a closed container: for
instance, inside a bottle. A water molecule H2O is already a complicated object, but
in a first approximation, we can neglect its structure and model the molecule as a
point inside the bottle. The space of configurations then reduces to

X = BOTTLE ⊂ R3 , (2.11)

where we have denoted by BOTTLE the region of R3 delimited by the container. Note
that this description is not very accurate at a microscopic level.

The description of the precise form of the bottle can be quite complex. On the
other hand, it is a good approximation to assume that all positions of the molecule
are equiprobable: the energy is independent of the particle’s position x ∈ BOTTLE.
One then has:

µ(x) =
1

Z
, Z = |X | , (2.12)

and the Boltzmann average of the particle’s position, 〈x〉, is the barycentre of the
bottle.

Example 2.4 In assuming that all the configurations in the previous example are
equiprobable, we neglected the effect of gravity on the water molecule. In the presence
of gravity our water molecule at position x has an energy

E(x) = w h(x) , (2.13)
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where h(x) is the height corresponding to the position x and w is a positive con-
stant, determined by terrestrial attraction, which is proportional to the mass of the
molecule. Given two positions x and y in the bottle, the ratio of the probabilities to
find the particle at these positions is

µβ(x)

µβ(y)
= exp{−βw[h(x) − h(y)]} . (2.14)

For a water molecule at a room temperature of 20o C (T = 293 K), one has βw ≈ 7×
10−5 m−1. Given a point x at the bottom of the bottle and y at a height of 20 cm, the
probability to find a water molecule ‘near’ x is approximately 1.000014 times larger
than the probability to find it ‘near’ y. For a tobacco-mosaic virus, which is about
2 × 106 times heavier than a water molecule, the ratio is µβ(x)/µβ(y) ≈ 1.4 × 1012,
which is very large. For a grain of sand, the ratio is so large that one never observes
the grain floating at around y. Note that, while these ratios of probability densities
are easy to compute, the partition function and therefore the absolute values of the
probability densities can be much more complicated to estimate, and depend on the
shape of the bottle.

Example 2.5 In many important cases, we are given the space of configurations X
and a stochastic dynamics defined on it. The most interesting probability distribution
for such a system is the stationary state µst(x) (we assume that it is unique). For the
sake of simplicity, we can consider a finite space X and a discrete-time Markov chain
with transition probabilities {w(x → y)} (in Chapter 4 we shall recall some basic
definitions concerning Markov chains). It happens sometimes that the transition
rates satisfy, for any pair of configurations x, y ∈ X , the relation

f(x)w(x → y) = f(y)w(y → x) , (2.15)

for some positive function f(x). As we shall see in Chapter 4, when this condition,
called detailed balance, is satisfied (together with a few other technical conditions),
the stationary state has the Boltzmann form (2.4) with e−βE(x) = f(x).

Exercise 2.1 As a particular realization of the above example, consider an 8×8 chessboard
and a special piece sitting on it. At any time step, the piece will stay still (with probability
1/2) or move randomly to one of the neighbouring positions (with probability 1/2). Does
this process satisfy the condition (2.15)? Which positions on the chessboard have lower and
higher ‘energy’? Compute the partition function.

From a purely probabilistic point of view, one can wonder why one bothers to
decompose the distribution µβ(x) into the two factors e−βE(x) and 1/Z(β). Of course
the motivations for writing the Boltzmann factor e−βE(x) in exponential form come
essentially from physics, where one knows (either exactly or to within some level
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of approximation) the form of the energy. This also justifies the use of the inverse
temperature β (after all, one could always redefine the energy function in such a way
as to set β = 1).

However, even if we adopt a mathematical viewpoint, and if we are interested
in only a particular distribution µ(x) which corresponds to a particular value of the
temperature, it is often illuminating to embed it into a one-parameter family as is done
in the Boltzmann expression (2.4). Indeed, eqn (2.4) interpolates smoothly between
several interesting situations. As β → 0 (high-temperature limit), one recovers the
uniform probability distribution

lim
β→0

µβ(x) =
1

|X | . (2.16)

Both the probabilities µβ(x) and the expectation values 〈O(x)〉 of the observables
can be expressed as convergent Taylor expansions around β = 0. For small β the
Boltzmann distribution can be seen as a ‘softening’ of the original distribution.

In the limit β → ∞ (low-temperature limit), the Boltzmann distribution con-
centrates on the global maxima of the original distribution. More precisely, a config-
uration x0 ∈ X such that E(x) ≥ E(x0) for any x ∈ X is called a ground state.
The minimum value of the energy E0 = E(x0) is called the ground state energy.
We shall denote the set of ground states by X0. It is elementary to show that, for a
discrete configuration space,

lim
β→∞

µβ(x) =
1

|X0|
I(x ∈ X0) , (2.17)

where I(x ∈ X0) = 1 if x ∈ X0 and I(x ∈ X0) = 0 otherwise. The above behaviour
is summarized in physicists’ jargon by saying that, at low temperature, ‘low energy
configurations dominate’ the behaviour of the system.

2.2 Thermodynamic potentials

Several properties of the Boltzmann distribution (eqn (2.4)) are conveniently summa-
rized through the thermodynamic potentials. These are functions of the temperature
1/β and of the various parameters defining the energy E(x). The most important
thermodynamic potential is the free energy

F (β) = − 1

β
log Z(β) , (2.18)

where Z(β) is the partition function already defined in eqn (2.4). The factor −1/β
in eqn (2.18) is due essentially to historical reasons. In calculations, it is often more
convenient to use the free entropy1 Φ(β) = −βF (β) = log Z(β).

1Unlike the other potentials, there is no universally accepted name for Φ(β); however, because this
potential is very useful, we have adopted the name ‘free entropy’ for it.
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Two more thermodynamic potentials are derived from the free energy: the internal
energy U(β) and the canonical entropy S(β):

U(β) =
∂

∂β
(βF (β)) , S(β) = β2 ∂F (β)

∂β
. (2.19)

By direct computation, one obtains the following identities concerning the potentials
defined so far:

F (β) = U(β) − 1

β
S(β) = − 1

β
Φ(β) , (2.20)

U(β) = 〈E(x)〉 , (2.21)

S(β) = −
∑

x

µβ(x) log µβ(x) , (2.22)

−∂2

∂β2
(βF (β)) = 〈E(x)2〉 − 〈E(x)〉2 . (2.23)

For discrete X , eqn (2.22) can be rephrased by saying that the canonical entropy is
the Shannon entropy of the Boltzmann distribution, as we defined it in Chapter 1.
This implies that S(β) ≥ 0. Equation (2.23) implies that the free entropy is a convex
function of the temperature. Finally, eqn (2.21) justifies the name ‘internal energy’ for
U(β).

In order to have some intuition of the content of these definitions, let us reconsider
the high- and low-temperature limits already treated in the previous section. In the
high-temperature limit, β → 0, one finds

F (β) = − 1

β
log |X | + 〈E(x)〉0 + Θ(β) , (2.24)

U(β) = 〈E(x)〉0 + Θ(β) , (2.25)

S(β) = log |X | + Θ(β) . (2.26)

(Recall that Θ stands for ‘of the order of-’; see Appendix A.) The interpretation of
these formulae is straightforward. At high temperature, the system can be found in
any possible configuration with similar probabilities (the probabilities being exactly
equal when β = 0). The entropy counts the number of possible configurations. The
internal energy is just the average value of the energy over the configurations with
uniform probability.

While the high-temperature expansions (2.24)–(2.26) have the same form for both
a discrete and a continuous configuration space X , in the low-temperature case we
must be more careful. If X is finite, we can meaningfully define the energy gap
∆E > 0 as follows (recall that we have denoted by E0 the ground-state energy):

∆E = min{E(y) − E0 : y ∈ X\X0} . (2.27)

With this definition, we get

F (β) = E0 −
1

β
log |X0| + Θ(e−β∆E) , (2.28)

E(β) = E0 + Θ(e−β∆E) , (2.29)

S(β) = log |X0| + Θ(e−β∆E) . (2.30)
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Fig. 2.1 Thermodynamic potentials for a two-level system with ε1 = −1 and ε2 = +1 as a

function of the temperature T = 1/β.

The interpretation is that, at low temperature, the system is found with equal prob-
ability in any of the ground states, and nowhere else. Once again, the entropy counts
the number of available configurations, and the internal energy is the average of their
energies (which coincide with that of the ground state).

Exercise 2.2 A two-level system. This is the simplest non-trivial example: X = {1, 2},
E(1) = ε1, E(2) = ε2. Without loss of generality, we assume ε1 < ε2. This example can
be used as a mathematical model for many physical systems, such as the spin-1/2 particle
discussed above.

Derive the following results for the thermodynamic potentials (where ∆ = ε2 − ε1 is the
energy gap):

F (β) = ε1 − 1

β
log(1 + e−β∆) , (2.31)

U(β) = ε1 +
e−β∆

1 + e−β∆
∆ , (2.32)

S(β) =
e−β∆

1 + e−β∆
β∆ + log(1 + e−β∆) . (2.33)

The behaviour of these functions is presented in Fig. 2.1. The reader can work out the
asymptotics, and check the general high- and low-temperature behaviour given above.

Exercise 2.3 We return to the example of the previous section: one water molecule, mod-
elled as a point, in a bottle. We consider the case of a cylindrical bottle of base B ⊂ R2

(surface area |B|) and height d.
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Using the energy function in eqn (2.13), derive the following explicit expressions for the
thermodynamic potentials:

F (β) = − 1

β
log |B| − 1

β
log

1 − e−βwd

βw
, (2.34)

U(β) =
1

β
− wd

eβwd − 1
, (2.35)

S(β) = log |Bd| + 1 − βwd

eβwd − 1
− log

„
βwd

1 − e−βwd

«
. (2.36)

Note that the internal-energy formula can be used to compute the average height of the

molecule 〈h(x)〉 = U(β)/w. This is a consequence of the definition of the energy (see

eqn (2.13)) and of eqn (2.21). If we plug in the correct constant w, we can find that the

average height falls below 49.99% of the height of the bottle d = 20 cm only when the

temperature is below 3.2 K.

Exercise 2.4 Using eqns (2.34)–(2.36), derive the low-temperature expansions

F (β) = − 1

β
log

„ |B|
βw

«
+ Θ(e−βwd) , (2.37)

U(β) =
1

β
+ Θ(e−βwd) , (2.38)

S(β) = log

„ |B|e
βw

«
+ Θ(e−βwd) . (2.39)

In this case X is continuous, and the energy has no gap. Nevertheless, these results can
be understood as follows: at low temperature, the molecule is confined to a layer of height
of order 1/(βw) above the bottom of the bottle. It therefore occupies a volume of size
|B|/(βw). Its entropy is approximately given by the logarithm of such a volume.

Exercise 2.5 Let us reconsider the above example and assume the bottle to have a different
shape, for instance a sphere of radius R. In this case it is difficult to compute explicit expres-
sions for the thermodynamic potentials, but one can easily compute the low-temperature
expansions. For the entropy, one gets at large β

S(β) = log

„
2πe2R

β2w2

«
+ Θ(1/β) . (2.40)

The reader should try to understand the difference between this result and eqn (2.39)
and provide an intuitive explanation, as in the previous example. Physicists say that the
low-temperature thermodynamic potentials reveal the ‘low-energy structure’ of the system.
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2.3 The fluctuation–dissipation relations

It often happens that the energy function depends smoothly upon some real param-
eters. These can be related to the experimental conditions under which a physical
system is studied, or to some fundamental physical quantity. For instance, the energy
of a water molecule in a gravitational field (see eqn (2.13)) depends upon the weight
w of the molecule itself. Although this is a constant number in the physical world, it
is useful, in the theoretical treatment, to consider it as an adjustable parameter.

It is therefore interesting to consider an energy function Eλ(x) which depends
smoothly upon some parameter λ and admits the following Taylor expansion in the
neighbourhood of λ = λ0:

Eλ(x) = Eλ0(x) + (λ − λ0)
∂E

∂λ

∣∣∣∣
λ0

(x) + O((λ − λ0)
2) . (2.41)

The dependence of the free energy and of other thermodynamic potentials upon λ
in the neighbourhood of λ0 is easily related to the explicit dependence of the energy
function itself. Let us consider the partition function, and expand it to first order in
λ − λ0:

Z(λ) =
∑

x

exp

(
−β

[
Eλ0(x) + (λ − λ0)

∂E

∂λ

∣∣∣∣
λ0

(x) + O((λ − λ0)
2)

])

= Z(λ0)

[
1 − β(λ − λ0)

〈
∂E

∂λ

∣∣∣∣
λ0

〉
0

+ O((λ − λ0)
2)

]
, (2.42)

where we have denoted by 〈·〉0 the expectation with respect to the Boltzmann distri-
bution at λ = λ0.

This shows that the free entropy behaves as

∂Φ

∂λ

∣∣∣∣
λ0

= −β

〈
∂E

∂λ

∣∣∣∣
λ0

〉
0

, (2.43)

One can also consider the λ dependence of the expectation value of a generic observable
A(x). Using again the Taylor expansion, one finds that

∂〈A〉λ
∂λ

∣∣∣∣
λ0

= −β

〈
A ;

∂E

∂λ

∣∣∣∣
λ0

〉
0

. (2.44)

where we have denoted by 〈A;B〉 the connected correlation function: 〈A;B〉 =
〈AB〉 − 〈A〉〈B〉. A particular example of this relation was given in eqn (2.23).

The result (2.44) has important practical consequences and many generalizations.
Imagine you have an experimental apparatus that allows you to tune some parameter
λ (for instance the pressure of a gas, or the magnetic or electric field acting on some
material) and to monitor the value of an observable A(x) (the volume of the gas,
or the polarization or magnetization of the material). The quantity on the left-hand
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side of eqn (2.44) is the response of the system to an infinitesimal variation of the
tunable parameter. On the right-hand side, we find some correlation function within
the ‘unperturbed’ system. One possible application is to measure correlations within
a system by monitoring its response to an external perturbation. The relation (2.44)
between a correlation and a response is called the fluctuation–dissipation theorem.

2.4 The thermodynamic limit

The main purpose of statistical physics is to understand the macroscopic behaviour of
a large number, N � 1, of simple components (atoms, molecules, etc.) when they are
brought together.

To be concrete, let us consider a few drops of water in a bottle. A configuration of
the system is given by the positions and orientations of all the H2O molecules inside
the bottle. In this case X is the set of positions and orientations of a single molecule,
and N is typically of order 1023 (more precisely, 18 g of water contains approximately
6 × 1023 molecules). The sheer magnitude of such a number leads physicists to focus
on the N → ∞ limit, also called the thermodynamic limit.

As shown by the examples below, for large N , the thermodynamic potentials are
often proportional to N . One is thus led to introduce the intensive thermodynamic
potentials as follows. Let us denote by FN (β), UN (β), and SN (β) the free energy,
internal energy, and canonical entropy, respectively. for a system with N ‘particles’.
The free energy density is defined by

f(β) = lim
N→∞

FN (β)/N , (2.45)

if the limit exists, which is usually the case (at least if the forces between particles
decrease fast enough at large distance). One defines analogously the energy density
u(β) and the entropy density s(β).

The free energy FN (β), is, quite generally, an analytic function of β in a neigh-
bourhood of the real β axis. This is a consequence of the fact that Z(β) is analytic
throughout the entire β plane, and strictly positive for real β’s. A question of great
interest is whether analyticity is preserved in the thermodynamic limit (2.45), under
the assumption that the limit exists. Whenever the free energy density f(β) is non-
analytic, one says that a phase transition occurs. Since the free entropy density
φ(β) = −βf(β) is convex, the free energy density is necessarily continuous whenever
it exists.

In the simplest cases, the non-analyticities occur at isolated points. Let βc be such
a point. Two particular types of singularities occur frequently:

• The free energy density is continuous, but its derivative with respect to β is
discontinuous at βc. This singularity is called a first-order phase transition.

• The free energy and its first derivative are continuous, but the second derivative
is discontinuous at βc. This is called a second-order phase transition.

Higher-order phase transitions can be defined as well, along the same lines.
Apart from being interesting mathematical phenomena, phase transitions corre-

spond to qualitative changes in the underlying physical system. For instance, the
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transition from water to vapor at 100 oC at normal atmospheric pressure is modelled
mathematically as a first-order phase transition in the above sense. A great part of
this book will be devoted to the study of phase transitions in many different systems,
where the interacting ‘particles’ can be very diverse objects such as bits of information
or occupation numbers on the vertices of a graph.

When N grows, the volume of the configuration space increases exponentially:
|XN | = |X |N . Of course, not all of the configurations are equally important under
the Boltzmann distribution: the lowest-energy configurations have greater probability.
What is important is therefore the number of configurations at a given energy. This
information is encoded in the energy spectrum of the system,

N∆(E) = |Ω∆(E)| , Ω∆(E) ≡ {x ∈ XN : E ≤ E(x) < E + ∆} . (2.46)

In many systems of interest, the energy spectrum diverges exponentially as N → ∞, if
the energy is scaled linearly with N . More precisely, there exists a function s(e) such
that, given two numbers e and δ > 0,

lim
N→∞

1

N
logNNδ(Ne) = sup

e′∈[e,e+δ]

s(e′) . (2.47)

The function s(e) is called the microcanonical entropy density. The statement
(2.47) is often rewritten in the more compact form

N∆(E)
.
=N exp

[
Ns

(
E

N

)]
. (2.48)

The notation AN
.
=N BN will be used throughout the book to denote that two quanti-

ties AN and BN (which behave exponentially in N) are equal to leading exponential
order, meaning limN→∞(1/N) log(AN/BN ) = 0. We shall often use

.
= without an in-

dex when there is no ambiguity about the large variable N .
The microcanonical entropy density s(e) conveys a great amount of information

about the system. Furthermore, it is directly related to the intensive thermodynamic
potentials through a fundamental relation

Proposition 2.6 If the microcanonical entropy density (2.47) exists for any e and if
the limit in eqn (2.47) is uniform in e, then the free entropy density (2.45) exists and
is given by

φ(β) = max
e

[s(e) − βe] . (2.49)

If the maximum of s(e)−βe is unique, then the internal-energy density equals arg max[s(e)−
βe].

Proof The basic idea is to write the partition function as

ZN (β)
.
=

∞∑
k=−∞

N∆(k∆) e−β∆ .
=

∫
exp{Ns(e) − Nβe} de , (2.50)

and to evaluate the last integral by the saddle point method. The reader will find
references in the Notes section at the end of this chapter. �
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Example 2.7 Let us consider N identical two-level systems, i.e. XN = X ×· · ·×X ,
with X = {1, 2}. We take the energy to be the sum of the single-system energies:
E(x) = Esingle(x1) + · · · + Esingle(xN ), with xi ∈ X . As in the previous section, we
set Esingle(1) = ε1, Esingle(2) = ε2 > ε1, and ∆ = ε2 − ε1.

The energy spectrum of this model is quite simple. For any energy E = Nε1+n∆,
there are

(
N
n

)
configurations x with E(x) = E. Therefore, using the definition (2.47),

we get

s(e) = H
(

e − ε1
∆

)
. (2.51)

Equation (2.49) can now be used to get

f(β) = ε1 −
1

β
log(1 + e−β∆) , (2.52)

which agrees with the result obtained directly from the definition (2.18).

The great attention paid by physicists to the thermodynamic limit is extremely well
justified by the huge number of degrees of freedom involved in a macroscopic piece
of matter. Let us stress that the interest of the thermodynamic limit is more general
than these huge numbers might suggest. First of all, it often happens that fairly small
systems are well approximated by the thermodynamic limit. This is extremely impor-
tant for numerical simulations of physical systems: one cannot, of course, simulate 1023

molecules on a computer! Even the cases in which the thermodynamic limit is not a
good approximation are often fruitfully analysed as violations of this limit. Finally,
the insight gained from analysing the N → ∞ limit is always crucial in understanding
moderate-size systems.

2.5 Ferromagnets and Ising models

Magnetic materials contain molecules with a magnetic moment, a three-dimensional
vector which tends to align with the magnetic field felt by the molecule. Moreover,
the magnetic moments of two different molecules interact with each other. Quantum
mechanics plays an important role in magnetism. Because of quantum effects, the space
of possible configurations of a magnetic moment becomes discrete. Quantum effects
are also the origin of the ‘exchange interaction’ between magnetic moments. In many
materials, the effect of the exchange interaction is such that the energy is lower when
two moments align. While the behaviour of a single magnetic moment in an external
field is qualitatively simple, when we consider a bunch of interacting moments, the
problem is much richer, and exhibits remarkable collective phenomena.

A simple mathematical model for such materials is the Ising model. This describes
the magnetic moments by Ising spins localized at the vertices of a certain region of a
d-dimensional cubic lattice. To keep things simple, let us consider a region L which is a
cube of side L: L = {1, . . . , L}d. On each site i ∈ L, there is an Ising spin σi ∈ {+1,−1}
(see Fig. 2.2).
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Fig. 2.2 A configuration of a two-dimensional Ising model with L = 5. There is an Ising spin

σi on each vertex i, shown by an arrow pointing up if σi = +1 and pointing down if σi = −1.

The energy (2.53) is given by the sum of two types of contributions: (i) a term −σiσj for each

edge (ij) of the graph, such that the energy is minimized when the two neighbouring spins σi

and σj point in the same direction; and (ii) a term −Bσi for each site i, due to the coupling

to an external magnetic field. The configuration depicted here has an energy −8 + 9B.

A configuration σ = (σ1 . . . σN ) of the system is given by assigning the values of all
the spins in the system. Therefore, the space of configurations XN = {+1,−1}L has
the form (2.1), with X = {+1,−1} and N = Ld.

The definition of a ferromagnetic Ising model is completed by the definition of the
energy function. A configuration σ has an energy

E(σ) = −
∑
(ij)

σiσj − B
∑
i∈L

σi , (2.53)

where the sum over (ij) runs over all the (unordered) pairs of sites i, j ∈ L which are
nearest neighbours. The real number B measures the applied external magnetic field.

Determining the free energy density f(β) in the thermodynamic limit for this
model is a non-trivial task. The model was invented by Wilhem Lenz in the early
1920s, who assigned the task of analysing it to his student Ernst Ising. In his thesis
of 1924, Ising solved the d = 1 case and showed the absence of phase transitions.
In 1948, Lars Onsager brilliantly solved the d = 2 case, exhibiting the first soluble
‘finite-dimensional’ model with a second-order phase transition. In higher dimensions,
the problem is unsolved, although many important features of the solution are well
understood.

Before embarking on any calculations, let us discuss some qualitative properties of
this model. Two limiting cases are easily understood. At infinite temperature, β = 0,
the energy (2.53) no longer matters and the Boltzmann distribution weights all the
configurations with the same factor 2−N . We have therefore an assembly of completely
independent spins. At zero temperature, β → ∞, the Boltzmann distribution concen-



Ferromagnets and Ising models ��

trates onto the ground state(s). If there is no magnetic field, i.e. B = 0, there are
two degenerate ground states: the configuration σ(+) with all the spins pointing up,
σi = +1, and the configuration σ(−) with all the spins pointing down, σi = −1. If the
magnetic field is set to some non-zero value, one of the two configuration dominates:
σ(+) if B > 0 and σ(−) if B < 0.

Notice that the reaction of the system to the external magnetic field B is quite
different in the two cases. To see this fact, define a ‘rescaled’ magnetic field x = βB
and take the limits β → 0 and β → ∞ keeping x fixed. The expected value of any spin
in L, in the two limits, is

〈σi〉 =

{
tanh(x) for β → ,
tanh(Nx) for β → ∞ .

(2.54)

Each spin reacts independently for β → 0. In contrast, they react as a whole as β → ∞:
one says that the response is cooperative.

A useful quantity for describing the response of the system to the external field is
the average magnetization,

MN (β,B) =
1

N

∑
i∈L

〈σi〉 . (2.55)

Because of the symmetry between the up and down directions, MN (β,B) is an odd
function of B. In particular, MN (β, 0) = 0. A cooperative response can be emphasized
by considering the spontaneous magnetization

M+(β) = lim
B→0+

lim
N→∞

MN (β,B) . (2.56)

It is important to understand that a non-zero spontaneous magnetization can appear
only in an infinite system: the order of the limits in eqn (2.56) is crucial. Our analysis so
far has shown that a spontaneous magnetization exists at β = ∞: M+(∞) = 1. On the
other hand, M+(0) = 0. It can be shown that the spontaneous magnetization M+(β)
is always zero in a high temperature phase defined by β < βc(d) (such a phase is called
paramagnetic). In one dimension (d = 1), we shall show below that βc(1) = ∞. The
spontaneous magnetization is always zero, except at zero temperature (β = ∞): one
speaks of a zero-temperature phase transition. In dimensions d ≥ 2, βc(d) is finite,
and M+(β) becomes non-zero in the ferromagnetic phase , i.e. for β > βc: a phase
transition takes place at β = βc. The temperature Tc = 1/βc is called the critical
temperature. In the following, we shall discuss the d = 1 case, and a variant of the
model, called the Curie–Weiss model, where each spin interacts with all the other ones:
this is the simplest model which exhibits a finite-temperature phase transition.

2.5.1 The one-dimensional case

The d = 1 case has the advantage of being simple to solve. We want to compute the
partition function (2.4) for a system of N spins with energy E(σ) = −

∑N−1
i=1 σiσi+1−

B
∑N

i=1 σi. We shall use the transfer matrix method, which belongs to the general
dynamic programming strategy familiar to computer scientists.
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We introduce a partial partition function, where the configurations of all spins
σ1,. . . , σp have been summed over, at fixed σp+1:

zp(β,B, σp+1) ≡
∑

σ1,...,σp

exp

[
β

p∑
i=1

σiσi+1 + βB

p∑
i=1

σi

]
. (2.57)

The partition function (2.4) is given by ZN (β,B) =
∑

σN
zN−1(β,B, σN ) exp(βBσN ).

Obviously, zp satisfies the recursion relation

zp(β,B, σp+1) =
∑

σp=±1

T (σp+1, σp)zp−1(β,B, σp) (2.58)

where we have defined the transfer matrix T (σ, σ′) = exp [βσσ′ + βBσ′]. This is the
2 × 2 matrix

T =

(
eβ+βB e−β−βB

e−β+βB eβ−βB

)
(2.59)

Introducing the two-component vectors ψL =

(
exp(βB)

exp(−βB)

)
and ψR =

(
1
1

)
, and the

standard scalar product between vectors (a, b) = a1b1 + a2b2, the partition function
can be written in matrix form:

ZN (β,B) = (ψL, TN−1ψR) . (2.60)

Let us call the eigenvalues of T λ1, λ2, and the corresponding eigenvectors ψ1, ψ2. It
is easy to realize that ψ1, ψ2 can be chosen to be linearly independent, and hence ψR

can be decomposed as ψR = u1ψ1 + u2ψ2. The partition function is then expressed as

ZN (β,B) = u1 (ψL, ψ1) λN−1
1 + u2 (ψL, ψ2) λN−1

2 . (2.61)

The diagonalization of the matrix T gives

λ1,2 = eβ cosh(βB) ±
√

e2β sinh2 βB + e−2β . (2.62)

For β finite, in the large-N limit, the partition function is dominated by the largest
eigenvalue λ1, and the free-entropy density is given by φ = log λ1:

φ(β,B) = log

[
eβ cosh(βB) +

√
e2β sinh2 βB + e−2β

]
. (2.63)

Using the same transfer matrix technique, we can compute expectation values of
observables. For instance, the expected value of a given spin is

〈σi〉 =
1

ZN (β,B)
(ψL, T i−1σ̂TN−iψR) , (2.64)

where σ̂ is the following matrix:
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Fig. 2.3 The average magnetization of the one-dimensional Ising model, as a function of the

magnetic field B, at inverse temperatures β = 0.5, 1, 1.5.

σ̂ =

(
1 0
0 −1

)
. (2.65)

Averaging over the position i, one can compute the average magnetization MN (β,B).
In the thermodynamic limit, we get

lim
N→∞

MN (β,B) =
sinhβB√

sinh2 βh + e−4β
=

1

β

∂φ

∂B
(β,B) . (2.66)

Both the free energy and the average magnetization turn out to be analytic func-
tions of β and B for β < ∞. In particular the spontaneous magnetization vanishes at
any non-zero temperature:

M+(β) = 0 , ∀β < ∞ . (2.67)

In Fig. 2.3, we plot the average magnetization M(β,B) ≡ limN→∞ MN (β,B) as a
function of the applied magnetic field B for various values of the temperature β. The
curves become steeper and steeper as β increases. This statement can be made more
quantitative by computing the susceptibility associated with the average magneti-
zation,

χM (β) =
∂M

∂h
(β, 0) = β e2β . (2.68)

This result can be interpreted as follows. A single spin in a field has a susceptibility
χ(β) = β. If we consider N spins constrained to take the same value, the corresponding
susceptibility will be Nβ, as in eqn (2.54). In the present case, the system behaves as
if the spins were grouped into blocks of χM (β)/β spins each. The spins in each group
are constrained to take the same value, while spins belonging to different blocks are
independent.

This qualitative interpretation can be given further support by computing a cor-
relation function.



�� Statistical physics and probability theory

Exercise 2.6 Consider the one-dimensional Ising model in zero field, B = 0. Show that
when δN < i < j < (1 − δ)N , the correlation function 〈σiσj〉 is, in the large-N limit,

〈σiσj〉 = e−|i−j|/ξ(β) + Θ(e−αN ) , (2.69)

where ξ(β) = −1/ log tanh β.
[Hint: You can either use the general transfer matrix formalism or, more simply, use the

identity eβσiσi+1 = cosh β(1 + σiσi+1 tanh β).]

Note that, in eqn (2.69), ξ(β) gives the typical distance below which two spins in the
system are well correlated. For this reason, it is usually called the correlation length
of the model. This correlation length increases as the temperature decreases: spins
become correlated at larger and larger distances. The result (2.69) is clearly consistent
with our interpretation of the susceptibility. In particular, as β → ∞, ξ(β) ≈ e2β/2
and χM (β) ≈ 2βξ(β).

The connection between correlation length and susceptibility is very general and
can be understood as a consequence of the fluctuation–dissipation theorem (2.44):

χM (β) = βN

〈(
1

N

N∑
i=1

σi

)
;

(
1

N

N∑
i=1

σi

)〉

=
β

N

N∑
i,j=1

〈σi ; σj〉 =
β

N

N∑
i,j=1

〈σiσj〉 , (2.70)

where the last equality comes from the fact that 〈σi〉 = 0 when B = 0. Using eqn
(2.69), we get

χM (β) = β

+∞∑
i=−∞

e−|i|/ξ(β) + Θ(e−αN ) . (2.71)

It is therefore evident that a large susceptibility must correspond to a large correlation
length.

2.5.2 The Curie–Weiss model

The exact solution of the one-dimensional model led Ising to think that there could not
be a phase transition for any dimension. Some thirty years earlier, a qualitative theory
of ferromagnetism had been put forward by Pierre Curie. Such a theory assumed the
existence of a phase transition at a non-zero temperature Tc (the ‘Curie point’) and
a non-vanishing spontaneous magnetization for T < Tc. The dilemma was eventually
solved by Onsager’s solution of the two-dimensional model.

Curie’s theory is realized exactly within a rather abstract model: the Curie–Weiss
model. We shall present it here as one of the simplest solvable models with a finite-
temperature phase transition. Once again, we have N Ising spins σi ∈ {±1}, and a
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configuration is given by σ = (σ1, . . . , σN ). However, the spins no longer sit on a d-
dimensional lattice: they all interact in pairs. The energy function, in the presence of
a magnetic field B, is given by

E(σ) = − 1

N

∑
(ij)

σiσj − B

N∑
i=1

σi , (2.72)

where the sum over (ij) runs over all of the N(N − 1)/2 couples of spins. Notice the
peculiar 1/N scaling in front of the exchange term. The exact solution presented below
shows that this is the only choice which yields a non-trivial free energy density in the
thermodynamic limit. This can be easily understood intuitively as follows. The sum
over (ij) involves Θ(N2) terms of order Θ(1). In order to get an energy function that
scales as N , we need to put a coefficient 1/N in front.

In adopting the energy function (2.72), we gave up an attempt to describe any
finite-dimensional geometrical structure. This is a severe simplification, but has the
advantage of making the model exactly soluble. The Curie–Weiss model is the first
example of a large family: the mean-field models. We shall explore many instances
of this family throughout the book.

A possible approach to the computation of the partition function consists in ob-
serving that the energy function can be written in terms of a simple observable, the
instantaneous (or empirical) magnetization,

m(σ) =
1

N

N∑
i=1

σi . (2.73)

Notice that this is a function of the configuration σ, and should not be confused with its
expected value, the average magnetization (see eqn (2.55)). It is a ‘simple’ observable
because it is equal to a sum of observables depending upon a single spin.

We can write the energy of a configuration in terms of its instantaneous magneti-
zation:

E(σ) =
1

2
N − 1

2
Nm(σ)2 − NB m(σ) . (2.74)

This implies the following formula for the partition function:

ZN (β,B) = e−Nβ/2
∑
m

NN (m) exp

{
Nβ

2
m2 + NβBm

}
, (2.75)

where the sum over m runs over all of the possible instantaneous magnetizations of
N Ising spins: m = −1 + 2k/N with 0 ≤ k ≤ N , where k is an integer number, and
NN (m) is the number of configurations that have a given instantaneous magnetization
m. This is a binomial coefficient whose large-N behaviour can be expressed in terms
of the entropy function of Bernoulli variables:

NN (m) =

(
N

N(1 + m)/2

)
.
= exp

[
N H

(
1 + m

2

)]
. (2.76)
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To leading exponential order in N , the partition function can thus be written as

ZN (β,B)
.
=

∫ +1

−1

eNφmf (m;β,B) dm, (2.77)

where we have defined

φmf(m;β,B) = −β

2
(1 − m2) + βBm + H

(
1 + m

2

)
. (2.78)

The integral in eqn (2.77) is easily evaluated by the Laplace method, to get the final
result for the free energy density

φ(β,B) = max
m∈[−1,+1]

φmf(m;β,B) . (2.79)

One can see that the maximum is obtained away from the boundary points, so that
the corresponding m must be a stationary point of φmf(m;β,B), which satisfies the
saddle point equation ∂φmf(m;β,B)/∂m = 0:

m∗ = tanh(βm∗ + βB) . (2.80)

In the above derivation, we were slightly sloppy in two steps: substituting the
binomial coefficient by its asymptotic form, and changing the sum over m into an
integral. The mathematically minded reader is invited to show that these passages are
indeed correct.

With a little more work, the above method can be extended to expectation values
of observables. Let us consider, for instance, the average magnetization M(β,B). It
can be easily shown that, whenever the maximum of φmf(m;β,B) over m is non-
degenerate,

M(β,B) ≡ lim
N→∞

〈m(σ)〉 = m∗(β,B) ≡ arg max
m

φmf(m;β,B) . (2.81)

We can now examine the implications that can be drawn from Eqs. (2.79) and
(2.80). Let us consider first the B = 0 case (see Fig. 2.4). The function φmf(m;β, 0)
is symmetric in m. For 0 ≤ β ≤ 1 ≡ βc, it is also concave and achieves its unique
maximum at m∗(β) = 0. For β > 1, m = 0 remains a stationary point but becomes a
local minimum, and the function develops two degenerate global maxima at m±(β),
with m+(β) = −m−(β) > 0. These two maxima bifurcate continuously from m = 0
at β = βc.

A phase transition takes place at βc. Its meaning can be understood by computing
the expectation value of the spins. Notice that the energy function (2.72) is sym-
metric under a spin-flip transformation which maps σi → −σi for all i. Therefore
〈σi〉 = 〈(−σi)〉 = 0, and the average magnetization vanishes, i.e. M(β, 0) = 0. On
the other hand, the spontaneous magnetization, defined in eqn (2.56), is zero in the
paramagnetic phase, i.e. for β < βc, and equal to m+(β) in the ferromagnetic phase
for β > βc. The physical interpretation of this phase is the following: for any finite N ,
the pdf of the instantaneous magnetization m(σ) has two symmetric peaks, at m±(β),
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Fig. 2.4 Left : the function φmf(m; β, B = 0) plotted versus m, for β = 0.7, 0.9, 1.1, 1.3 (from

top to bottom). For β < βc = 1, there is a unique maximum at m = 0; for β < βc = 1, there

are two degenerate maxima at two symmetric values ±m+(β). Right : the values of m which

maximize φmf(m; β, B = 0), plotted versus β. The phase transition at βc = 1 is signalled by

a bifurcation.

which become sharper and sharper as N increases. Any external perturbation which
breaks the symmetry between the peaks, for instance a small positive magnetic field
B, favours one peak with respect to the other one, and therefore the system develops
a spontaneous magnetization. Let us stress that the occurrence of a phase transition
is a property of systems in the thermodynamic limit N → ∞.

In physical magnets, symmetry breaking can arise, for instance, from impurities,
subtle effects of dipolar interactions together with the shape of the magnet, or an
external magnetic field. The result is that at low enough temperatures some systems,
the ferromagnets, develop a spontaneous magnetization. If a magnet made of iron is
heated, its magnetization disappears at a critical temperature Tc = 1/βc ≈ 770 o C.
The Curie Weiss model is a simple solvable case exhibiting this phase transition.

Exercise 2.7 Compute the expansions of m+(β) and of φ(β, B = 0) near β = βc, and
show that the transition is of second order. Compute the low-temperature behaviour of the
spontaneous magnetization.

Exercise 2.8 Inhomogeneous Ising chain. The one-dimensional Ising problem does not
have a finite-temperature phase transition, as long as the interactions are short-range and
translationally invariant. On the other hand, if the couplings in the Ising chain grow fast
enough at large distance, one can have a phase transition. This is not a very realistic model
from the point of view of physics, but it is useful as a solvable example of a phase transition.
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Consider a chain of Ising spins σ0, σ1, . . . , σN with energy E(σ) = −PN−1
n=0 Jnσnσn+1.

Suppose that the coupling constants Jn form a positive, monotonically increasing sequence,
growing logarithmically. More precisely, we assume that limn→∞ Jn/ log n = 1. Denote by
〈 · 〉+ and 〈 · 〉− the expectation value with respect to the Boltzmann probability distribution
when the spin σN is fixed at σN = +1 and −1, respectively.

(a) Show that, for any n ∈ {0, . . . , N − 1}, the magnetization is 〈σn〉± =
QN−1

p=n tanh(βJp)

(b) Show that the critical inverse temperature βc = 1/2 separates two regimes, such that
for β < βc, one has limN→∞〈σn〉+ = limN→∞〈σn〉− = 0, and for β > βc, one has
limN→∞〈σn〉± = ±M(β), with M(β) > 0.

Notice that in this case, the role of the symmetry-breaking field is played by the choice of

boundary condition.

2.6 The Ising spin glass

In real magnetic materials, localized magnetic moments are subject to several sources
of interaction. Apart from the exchange interaction mentioned in the previous section,
they may interact through intermediate conduction electrons, for instance. As a result,
depending on the material considered, their interaction can be either ferromagnetic
(their energy is minimized when they are parallel) or antiferromagnetic (their energy
is minimized when they point opposite to each other). Spin glasses are a family of
materials whose magnetic properties are particularly complex. They can be produced
by diluting a small fraction of a magnetic transition metal such as manganese into
a noble metal such as copper in a ratio, say, of 1 : 100. In such an alloy, magnetic
moments are localized at manganese atoms, which are placed at random positions
in a copper background. Depending on the distance between two manganese atoms,
the net interaction between their magnetic moments can be either ferromagnetic or
antiferromagnetic.

The Edwards–Anderson model is a widely accepted mathematical abstraction
of these physical systems. Once again, the basic degrees of freedom are Ising spins
σi ∈ {−1,+1} sitting on the vertices of a d-dimensional cubic lattice L = {1, . . . , L}d,
i ∈ L. The configuration space is therefore {−1,+1}L. As in the ferromagnetic Ising
model, the energy function reads

E(σ) = −
∑
(ij)

Jijσiσj − B
∑
i∈L

σi , (2.82)

where
∑

(ij) runs over each edge of the lattice. Unlike the case of the Ising ferromag-

net, however, a different coupling constant Jij is now associated with each edge (ij),
and its sign can be positive or negative. The interaction between spins σi and σj is
ferromagnetic if Jij > 0 and antiferromagnetic if Jij < 0.

A pictorial representation of this energy function is given in Fig. 2.5. The Boltz-
mann distribution is given by
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Fig. 2.5 A configuration of a two-dimensional Edwards–Anderson model with L = 5. Spins

are coupled by two types of interactions: ferromagnetic (Jij = +1), indicated by a contin-

uous line, and antiferromagnetic (Jij = −1), indicated by a dashed line. The energy of the

configuration shown here is −14 − 7h.

µβ(σ) =
1

Z(β)
exp

⎧⎨⎩β
∑
(ij)

Jijσiσj + βB
∑
i∈L

σi

⎫⎬⎭ , (2.83)

Z(β) =
∑

σ

exp

⎧⎨⎩β
∑
(ij)

Jijσiσj + βB
∑
i∈L

σi

⎫⎬⎭ . (2.84)

It is important to notice that the couplings {Jij} play a completely different role
from the spins {σi}. The couplings are just parameters involved in the definition of
the energy function, like the magnetic field B, and they are not summed over when
computing the partition function. In principle, for any particular sample of a magnetic
material, one should estimate experimentally the values of the Jij ’s and then compute
the partition function. We could have made explicit the dependence of the partition
function and of Boltzmann distribution on the couplings by using notation such as
Z(β,B; {Jij}), µβ,B;{Jij}(σ). However, when these explicit mentions are not necessary,
we prefer to keep to lighter notation.

The present understanding of the Edwards–Anderson model is much poorer than
for the ferromagnetic models introduced in the previous section. The basic reason for
this difference is frustration, which is illustrated in Fig. 2.6 for an L = 2, d = 2
model (a model consisting of just four spins).

A spin glass is frustrated whenever there exist local constraints that are in conflict,
meaning that it is not possible to satisfy all of them simultaneously. In the Edwards–
Anderson model, a plaquette is the name given to a group of four neighbouring spins
forming a square (i.e. a cycle of length four). A plaquette is frustrated if and only if
the product of the Jij ’s along all four edges of the plaquette is negative. As shown in
Fig. 2.6, it is then impossible to minimize simultaneously all of the four local energy
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Fig. 2.6 Four configurations of a small Edwards–Anderson model: continuous lines indicate

ferromagnetic interactions (Jij = +1), and dashed lines indicate antiferromagnetic interac-

tions (Jij = −1). In zero magnetic field (B = 0), the four configurations are degenerate and

have energy E = −2. The double bar indicates an unsatisfied interaction. Notice that there

is no configuration with a lower energy. This system is frustrated since it is impossible to

satisfy simultaneously all constraints.

terms associated with each edge. In a spin glass, the presence of a finite density of
frustrated plaquettes generates a very complicated energy landscape. The resulting
effect of all the interactions is not obtained by ‘summing’ the effects of each of them
separately, but is the outcome of a complex interplay. The ground state spin configura-
tion (the one satisfying the largest possible number of interactions) is difficult to find:
it cannot be guessed on symmetry grounds. It is also frequent to find in a spin glass
a configuration which is very different from the ground state but has an energy very
close to the ground state energy. We shall explore these and related issues throughout
the book.

Notes

There are many good introductory textbooks on statistical physics and thermodynam-
ics, for instance Reif (1965) and Huang (1987). Going towards more advanced texts, we
can suggest the books by Ma (1985) and Parisi (1988). A more mathematically minded
presentation can be found in the books by Gallavotti (1999) and Ruelle (1999). The
reader will find there a proof of Proposition 2.6.

The two-dimensional Ising model in a vanishing external field can also be solved
by a transfer matrix technique: see for instance Baxter (1982). The transfer matrix,
which links one column of the lattice to the next, is a 2L×2L matrix, and its dimension
diverges exponentially with the lattice size L. Finding its largest eigenvalue is therefore
a complicated task. No one has found the solution so far for B = 0.

Spin glasses will be a recurring theme in this book, and more will be said about
them in the following chapters. An introduction to this subject from a physicist’s point
of view is provided by the book by Fischer and Hertz (1993) and the review by Binder
and Young (1986). The concept of frustration was introduced by Toulouse (1977).



3

Introduction to combinatorial
optimization

This chapter provides an elementary introduction to some basic concepts in theoretical
computer science. Which computational tasks can/cannot be accomplished efficiently
by a computer? How much resources (time, memory, etc.) are needed for solving a spe-
cific problem? What is the performance of a specific solution method (an algorithm),
and, whenever more than one method is available, which one is preferable? Are some
problems intrinsically harder than others? These are some of the questions one would
like to answer.

One large family of computational problems is formed by combinatorial optimiza-
tion problems. These consist in finding an element of a finite set which maximizes (or
minimizes) an easy-to-evaluate objective function. Several features make such problems
particularly interesting. First of all, most of the time they are equivalent to decision
problems (questions which require a yes/no answer), which is the most fundamen-
tal class of problems within computational-complexity theory. Second, optimization
problems are ubiquitous both in applications and in the pure sciences. In particular,
there exist some evident connections both with statistical mechanics and with coding
theory. Finally, they form a very large and well-studied family, and therefore an ideal
context for understanding some advanced issues. One should, however, keep in mind
that computation is more than just combinatorial optimization. A larger family, which
we shall also discuss later on, contains the counting problems: one wants to count how
many elements of a finite set have some easy-to-check property. There are also other
important families of computational problems that we shall not address at all, such as
continuous optimization problems.

The study of combinatorial optimization is introduced in Section 3.1 through the
simple example of the minimum spanning tree. This section also contains the basic
definitions of graph theory that we shall use throughout the book. General definitions
and terminology are given in Section 3.2. These definitions are illustrated further in
Section 3.3 with several additional examples. Section 3.4 provides an informal intro-
duction to some basic concepts in computational complexity: we define the classes P
and NP, and the notion of NP-completeness. As mentioned above, combinatorial op-
timization problems often appear bothe in the pure sciences and in applications. The
examples of statistical physics and coding are briefly discussed in Sections 3.5 and 3.6.
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Fig. 3.1 This graph has seven vertices (labelled a to g) and 10 edges. The ‘cost’ of each

edge is indicated next to it. In the minimum-spanning-tree problem, one seeks a loop-free

subgraph of minimum cost connecting all vertices.

3.1 A first example: The minimum spanning tree

The minimum-spanning-tree problem is easily stated and may appear in many practi-
cal applications. Suppose, for instance, you have a collection of computers in a building.
You may want to connect them pairwise in such a way that the resulting network is
connected and the amount of cable used is a minimum.

3.1.1 Definition and basics of graph theory

A mathematical abstraction of the above practical problem requires a few basic defi-
nitions from graph theory. A graph is a set V of vertices, labelled by {1, 2, . . . , |V|},
together with a set E of edges connecting them: G = (V, E). The vertex set can be
any finite set but one often takes the set of the first |V| integers V = {1, 2, . . . , |V|}.
The edges are simply unordered pairs of distinct vertices E ⊆ V × V. For instance, an
edge joining vertices i and j is identified by e = (i, j). A weighted graph is a graph
where a cost (a real number) is associated with every edge. The degree of a vertex
is the number of edges connected to it. A path between two vertices i and j is a set
of edges {(j, i2); (i2, i3); (i3, i4); . . . ; (ir−1, ir); (ir, j)} ⊆ E . A graph is connected if,
for every pair of vertices, there is a path which connects them. A completely con-
nected graph, or complete graph, also called a clique, is a graph where all of the
|V|(|V| − 1)/2 edges are present. A cycle is a path starting and ending on the same
vertex. A tree is a connected graph without cycles.

Consider the graph in Fig. 3.1. You are asked to find a tree (a subset of the edges
forming a cycle-free subgraph) such that any two vertices are connected by exactly one
path (in this case the tree is said to be ‘spanning’). To find such a subgraph is an easy
task. The edges {(a, b); (b, c); (c, d); (b, g); (d, e)}, for instance, do the job. However in
our problem a cost is associated with each edge. The cost of a subgraph is assumed to
be equal to the sum of the costs of its edges, and you want to minimize it. This is a
non-trivial problem.

In general, an instance of the minimum-spanning-tree (MST) problem is given
by a connected weighted graph (where each edge e has a cost w(e) ∈ R). The optimiza-
tion problem consists in finding a spanning tree with minimum cost. What one seeks
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is an algorithm which, given an instance of the MST problem, outputs the spanning
tree with lowest cost.

3.1.2 An efficient algorithm

The simple-minded approach would consist in enumerating all the spanning trees for
the given graph, and comparing their weights. However, the number of spanning trees
grows very rapidly with the size of the graph. Consider, as an example, the complete
graph on N vertices. The number of spanning trees of such a graph is, according to
the Cayley formula, NN−2. Even if the cost of any such tree were evaluated in 10−3 s,
it would take two years to find the MST of an N = 12 graph, and half a century for
N = 13. At the other extreme, if the graph is very simple, it may contain only a small
number of spanning trees, a single one in the extreme case where the graph is itself
a tree. Nevertheless, in most of the interesting examples, the situation is nearly as
dramatic as in the complete-graph case.

A much better algorithm can be obtained from the following theorem

Theorem 3.1 Let U ⊂ V be a proper subset of the vertex set V (such that neither U
nor V\U is empty). Consider the subset F of edges which connect a vertex in U to a
vertex in V\U , and let e ∈ F be an edge of lowest cost in this subset: w(e) ≤ w(e′)
for any e′ ∈ F . If there are several such edges, e can be any one of them. There exists
then a minimum spanning tree which contains e.

Proof Consider an MST T , and suppose that it does not contain the edge e mentioned
in the statement of the theorem. This edge is such that e = (i, j), with i ∈ U and
j ∈ V\U . The spanning tree T must contain a path between i and j. This path
contains at least one edge f connecting a vertex in U to a vertex in V\U , and f is
distinct from e. Now consider the subgraph T ′ built from T by removing the edge f
and adding the edge e. We leave to the reader the exercise of showing that T ′ is a
spanning tree. If we denote by E(T ) the cost of tree T , E(T ′) = E(T ) + w(e)−w(f).
Since T is an MST, E(T ′) ≥ E(T ). On the other hand, e has the minimum cost within
F , and hence w(e) ≤ w(f). Therefore w(e) = w(f) and T ′ is an MST containing e. �

This result allows one to construct a minimum spanning tree of G incrementally.
One starts from a single vertex. At each step a new edge is added to the tree, where
the cost of this edge is minimum among all the edges connecting the already existing
tree with the remaining vertices. After N −1 iterations, the tree will be spanning. The
pseudo-code for this algorithm is as follows.

MST algorithm (graph G = (V, E), weight function w : E → R+)
1: Set U := {1}, T := ∅ and E = 0;
2: while V\U is not empty:
3: Let F := {e = (i, j) ∈ E such that i ∈ U , j ∈ V\U};
4: Find e∗ = (i∗, j∗) := arg mine∈F{w(e)};
5: Set U := U ∪ j∗, T := T ∪ e∗, and E := E + w(e∗);
6: end
7: return the spanning tree T and its cost E.
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Fig. 3.2 A minimum spanning tree for the graph defined in Fig. 3.1. The cost of this tree is

E = 17.

Exercise 3.1 Write a code for this algorithm, and find an MST for the problem described
in Fig. 3.1. A solution is given in Fig. 3.2.

Exercise 3.2 Show explicitly that the algorithm MST always outputs a minimum spanning
tree.

Theorem 3.1 establishes that, for any U ⊂ V and any lowest-cost edge e among the ones
connecting U to V\U , there exists an MST containing e. This does not guarantee, however,
that when two different sets U1 and U2 and the corresponding lowest-cost edges e1 and e2

are considered, there exists an MST containing both e1 and e2. The above algorithm works
by constructing a sequence of such U ’s and adding to the tree the corresponding lowest-
weight edges. It is therefore not obvious a priori that it will output an MST (unless this is
unique).

Let us analyse the number of elementary operations required by the algorithm to
construct a spanning tree on a graph with N vertices. By ‘elementary operation’ we
mean comparisons, sums, multiplications, etc., all of them counting as one operation.
Of course, the number of such operations depends on the graph, but we can find
a simple upper bound by considering the completely connected graph. Most of the
operations in the above algorithm are comparisons of edge weights for finding e∗ in
step 4. In order to identify e∗, one has to scan at most |U| × |V\U| = |U| × (N − |U|)
edges connecting U to V\U . Since |U| = 1 at the beginning and is augmented by one
element at each iteration of the cycle 2–6, the number of comparisons is bounded from
above by

∑N
U=0 U(N − U) ≤ N3/6.1 This is an example of a polynomial algorithm,

whose computing time grows like a power of the number of vertices. The insight gained
from the above theorem provides an algorithm which is much better than the naive
one, at least when N is large.

1The algorithm can easily be improved by keeping an ordered list of the edges already encountered
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Exercise 3.3 Suppose you are given a weighted graph (V, E) in which the weights are all
different, and the edges are ordered in such a way that their weights form an increasing
sequence w(e1) < w(e2) < w(e3) < · · · . Another graph with the same (V, E) has different
weights w′(e), but they are also increasing in the same sequence, i.e. w′(e1) < w′(e2) <
w′(e3) < · · · . Show that the MST is the same in these two graphs.

3.2 General definitions

The MST problem is an example of a combinatorial optimization problem. This
is defined by a set of possible instances. An instance of the MST problem is defined by
a connected weighted graph. In general, an instance of a combinatorial optimization
problem is described by a finite set X of allowed configurations, and a cost function
E defined on this set and taking values in R. The optimization problem consists in
finding the optimal configuration C ∈ X , namely the configuration with the smallest
cost E(C). Any set of such instances defines a combinatorial optimization problem.
For a particular instance of the MST problem, the space of configurations X is simply
the set of spanning trees on the given graph, and the cost function associated with
each spanning tree is the sum of the costs of its edges.

We shall say that an algorithm solves an optimization problem if, for every instance
of the optimization problem, it gives the optimal configuration or if it computes its
cost. In all the problems which we shall discuss, there is a ‘natural’ measure of the size
of the problem N (typically the number of variables used to define a configuration,
such as the number of edges of the graph in the MST problem), and the number of
configurations scales, at large N like cN or, in some cases, even faster, for example like
N ! or NN . Notice that, quite generally, evaluating the cost function of a particular
configuration is an easy task. The difficulty of solving the combinatorial optimization
problem therefore comes essentially from the size of the configuration space.

It is generally accepted practice to estimate the complexity of an algorithm by the
number of ‘elementary operations’ required to solve the problem. Usually one focuses
on the asymptotic behaviour of this quantity as N → ∞. It is obviously of great
practical interest to construct algorithms whose complexity is as small as possible.

One can solve a combinatorial optimization problem at several levels of refinement.
Usually, one distinguishes three types of problems:

• The optimization problem: Find an optimal configuration C∗.

• The evaluation problem: Determine the cost E(C∗) of an optimal configuration.

• The decision problem: Answer the question ‘Is there a configuration of cost less
than a given value E0?’

3.3 More examples

The general setting described in the previous section includes a large variety of prob-
lems of both practical and theoretical interest. In the following, we shall provide a few
selected examples.
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3.3.1 Eulerian circuit

One of the oldest documented examples goes back to the eighteenth century. The old
city of Königsberg had seven bridges (see Fig. 3.3), and its inhabitants were wondering
whether it was possible to cross each of these bridges once and get back home. This can
be generalized and translated into graph-theoretic language as the following decision
problem. We define a multigraph exactly like a graph except for the fact that two
given vertices can be connected by several edges. The problem consists in finding
whether there is there a circuit which goes through all edges of the graph only once,
and returns to its starting point. Such a circuit is now called an Eulerian circuit,
because this problem was solved by Euler in 1736, when he proved the following nice
theorem. As for ordinary graphs, we define the degree of a vertex as the number of
edges which have the vertex as an end-point.

Theorem 3.2 Given a connected multigraph, there exists an Eulerian circuit if and
only if every vertex has even degree.

This theorem directly provides an algorithm for the decision problem whose complexity
grows linearly with the number of vertices of the graph: just go through all the vertices
of the graph and check their degree.

Exercise 3.4 Show that if an Eulerian circuit exists, the degrees are necessarily even.
Proving the inverse implication is more difficult. A possible approach consists in showing

the following slightly stronger result. If all the vertices of a connected graph G have even
degree except for i and j, then there exists a path from i to j that visits each edge in G
once. This can be proved by induction on the number of vertices.

[Hint: Start from i and take a step along the edge (i, i′). Show that it is possible to
choose i′ in such a way that the residual graph G\(i, i′) is connected.]

3.3.2 Hamiltonian cycle

More than a century after Euler’s theorem, the great scientist Sir William Hamilton
introduced in 1859 a game called the icosian game. In its generalized form, it basically
asks whether there exists, in a graph, a Hamiltonian cycle, that is a path that
goes once through every vertex of the graph, and gets back to its starting point.
This is another decision problem, and, at first sight, it seems very similar to the
Eulerian circuit. However, it turns out to be much more complicated. The best existing
algorithms for determining the existence of a Hamiltonian cycle in a given graph run
in a time which grows exponentially with the number of vertices N . Moreover, the
theory of computational complexity, which we shall describe in Section 3.4, strongly
suggests that this problem is in fact intrinsically difficult.

3.3.3 Travelling salesman problem

Given a complete graph with N points, and the distances dij between all pairs of points
1 ≤ i < j ≤ N , the famous travelling salesman problem (TSP) is an optimization
problem: find a Hamiltonian cycle of minimum total length. One can consider the case
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Fig. 3.3 Left : a map of the old city of Königsberg, with its seven bridges, as drawn in Euler’s

paper of 1736. The problem is whether one can walk through the city, crossing each bridge

exactly once, and get back home. Right : a graph summarizing the problem. The vertices

A, B, C, D are the various areas of land separated by a river; an edge exists between two

vertices whenever there is a bridge. The problem is to make a closed circuit on this graph,

going exactly once through every edge.

where the points are in a portion of the plane, and the distances are Euclidean distances
(we then speak of a Euclidean TSP), but of course the problem can be stated more
generally, with dij representing general costs, which are not necessarily distances. As
for the Hamiltonian cycle problem, the best algorithms known so far for the TSP have
a running time which grows exponentially with N at large N . Nevertheless, Euclidean
problems with thousands of points can be solved.

3.3.4 Assignment

Given N persons and N jobs, and a matrix Cij giving the affinity of person i for job j,
the assignment problem consists in finding the assignment of the jobs to the persons
(an exact one-to-one correspondence between jobs and persons) which maximizes the
total affinity. A configuration is characterized by a permutation of the N indices (there
are thus N ! configurations), and the cost of a permutation π is

∑
i Ciπ(i). This is an

example of a polynomial problem: there exist algorithms that solve it in a time growing
like N3.

3.3.5 Satisfiability

In the satisfiability problem, one has to find the values of N Boolean variables
xi ∈ {T, F} which satisfy a set of logical constraints. Since each variable can be either
true or false, the space of configurations has a size |X | = 2N . Each logical constraint,
called in this context a clause, takes a special form: it is a logical OR (for which we use
the symbol ∨) of some variables or their negations. For instance x1 ∨ x2 is a 2-clause
(a ‘2-clause’ is a clause of length 2, i.e. one which involves exactly two variables),
which is satisfied if either x1 = T or x2 = F , or both. Analogously, x1 ∨ x2 ∨ x3

is a 3-clause, which is satisfied by all configurations of the three variables except
x1 = x2 = T , x3 = F . The problem is to determine whether there exists a configuration



�� Introduction to combinatorial optimization

which satisfies all constraints (a decision problem), or to find the configuration which
minimizes the number of violated constraints (an optimization problem). The K-
satisfiability (or ‘K-SAT’) problem is the restriction of the satisfiability problem
to the case where all clauses have length K. In 2-satisfiability, the decision problem
is easy: there exists an algorithm that runs in a time growing linearly with N . For
K-satisfiability, and therefore also for the general satisfiability problem, all known
algorithms that solve the decision problem run in a time which grows exponentially
with N .

3.3.6 Colouring and vertex covering

Given a graph and an integer q, the well-known q-colouring problem asks if it is
possible to colour the vertices of the graph using q colours, in such a way that two
vertices connected by an edge have different colours. In the same spirit, the vertex-
covering problem asks if it is possible to cover the vertices with ‘pebbles’, using the
smallest possible number of pebbles, in such a way that every edge of the graph has
at least one of its two end-points covered by a pebble.

3.3.7 Number partitioning

Number partitioning is an example which does not come from graph theory. An
instance of the problem consists in a set S of N integers S = {x1, . . . , xN}. A con-
figuration is a partition of these numbers into two groups A and S \ A . Is there a
partition such that

∑
i∈A xi =

∑
i∈S\A xi?

3.4 Elements of the theory of computational complexity

One of the main branches of theoretical computer science aims at constructing an in-
trinsic theory of computational complexity. One would like, for instance, to establish
which problems are harder than others. By ‘harder problem’, we mean a problem that
takes a longer running time to be solved. In order to discuss rigorously the compu-
tational complexity of a problem, however, we would need to define a precise model
of computation (introducing, for instance, Turing machines). This would take us too
far. We shall instead evaluate the running time of an algorithm in terms of ‘elemen-
tary operations’: comparisons, sums, multiplications, etc. This informal approach is
essentially correct as long as the size of the operands remains uniformly bounded.

3.4.1 The worst-case scenario

As we already mentioned in Section 3.2, a combinatorial optimization problem is
defined by the set of its possible instances. Given an algorithm that solves the problem,
its running time will vary from instance to instance, even if the ‘size’ of the instance is
fixed. How should we quantify the overall hardness of the problem? A crucial choice in
computational-complexity theory consists in considering the ‘worst’ instance (i.e. the
one which takes the longest time to be solved) out of all instances of the same size.

This choice has two advantages: (i) it allows one to construct a ‘universal’ theory;
and (ii) once the worst-case running time of a given algorithm has been estimated,
this provides a performance guarantee for any instance of the problem.
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3.4.2 Polynomial or not?

A second crucial choice consists in classifying algorithms into two classes. (i) Poly-
nomial, if the running time is bounded from above by a fixed polynomial in the size
of the instance. In mathematical terms, let TN be the number of operations required
for solving an instance of size N in the worst case. The algorithm is polynomial when
there exists a constant k such that TN = O(Nk). (ii) Super-polynomial, if no such
upper bound exists. This is, for instance, the case if the time grows exponentially
with the size of the instance (we shall call algorithms of this type exponential), i.e.
TN = Θ(kN ) for some constant k > 1.

Example 3.3 In Section 3.1.2, we were able to show that the running time of the
MST algorithm is bounded from above by N3, where N is the number of vertices in
the graph. This implies that such an algorithm is polynomial.

Notice that we have not given a precise definition of the ‘size’ of a problem. One may
wonder whether, by changing the definition, a particular problem could be classified
both as polynomial and as super-polynomial. Consider, for instance, the assignment
problem with 2N points. One can define the size as being N , or 2N , or even N2

which is the number of possible person–job pairs. The last definition would be rele-
vant if one were to count, for instance, the number of entries in the person–job cost
matrix. However, all of these ‘natural’ definitions of size are polynomial functions of
the others. Therefore the choice of one or another of these definitions does not affect
the classification of an algorithm as polynomial or super-polynomial. We shall discard
other definitions (such as eN or N !) as ‘unnatural’, without further ado. The reader
can convince him/herself of this for each of the examples of the previous Section.

3.4.3 Optimization, evaluation, and decision

In order to get a feeling for their relative levels of difficulty, let us come back for a
while to the three types of optimization problem defined in Section 3.2, and study
which one is the hardest.

Clearly, if the cost of any configuration can be computed in polynomial time, the
evaluation problem is not harder than the optimization problem: if one can find the
optimal configuration in polynomial time, one can also compute its cost in polynomial
time. The decision problem (deciding whether there exists a configuration with a cost
smaller than a given E0) is not harder than the evaluation problem. So the order of
increasing difficulty is decision, evaluation, optimization.

However, in many cases where the costs take discrete values, the evaluation problem
is not harder than the decision problem, in the following sense. Suppose that we
have a polynomial algorithm that solves the decision problem, and that the costs
of all configurations can be scaled so as to be integers in an interval [0, Emax] of
length Emax = exp{O(Nk)} for some k > 0. An algorithm that solves the decision
problem can be used to solve the evaluation problem by dichotomy. One first takes
E0 = Emax/2. If there exists a configuration of energy smaller than E0, one iterates
taking E0 to be the centre of the interval [0, Emax/2]. In the opposite case, one iterates
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taking E0 to be the centre of the interval [Emax/2, Emax]. Clearly, this procedure finds
the cost of the optimal configuration(s) in a time which is also polynomial.

3.4.4 Polynomial reduction

One would like to compare the levels of difficulty of various decision problems. The
notion of polynomial reduction formalizes the sentence ‘not harder than’ which we
have used so far, and helps us to obtain a classification of decision problems.

Roughly speaking, we say that a problem B is not harder than A if any efficient
algorithm for A (if such an algorithm exists) could be used as a subroutine of an
algorithm that solves B efficiently. More precisely, given two decision problems A and
B, one says that B is polynomially reducible to A if the following conditions hold:

1. There exists a mapping R which transforms any instance I of problem B into an
instance R(I) of problem A, such that the solution (yes/no) of the instance R(I)
of A gives the solution (yes/no) of the instance I of B.

2. The mapping I �→ R(I) can be computed in a time which is polynomial in the
size of I.

3. The size of R(I) is polynomial in the size of I. This is in fact a consequence of
the previous assumptions, but there is no harm in stating it explicitly.

A mapping R that satisfies the above requirements is called a polynomial reduction.
Constructing a polynomial reduction between two problems is an important achieve-
ment, since it effectively reduces their study to the study of just one of them. Suppose
for instance that we have a polynomial algorithm AlgA for solving A. A polynomial
reduction of B to A can then be used for to construct a polynomial algorithm for
solving B. Given an instance I of B, the algorithm just computes R(I), feeds it into
AlgA, and outputs the output of AlgA. Since the size of R(I) is polynomial in the size
of I, the resulting algorithm for B is still polynomial.

Let us work out an explicit example. We shall show that the problem of the exis-
tence of a Hamiltonian cycle in a graph is polynomially reducible to the satisfiability
problem.

Example 3.4 An instance of the Hamiltonian cycle problem is a graph with N
vertices, labelled by i ∈ {1, . . . , N}. If there exists a Hamiltonian cycle in the graph,
it can be characterized by N2 Boolean variables xri ∈ {0, 1}, where xri = 1 if
vertex number i is the r-th vertex in the cycle, and xri = 0 otherwise (one can
take, for instance, x11 = 1). We shall now write down a number of constraints that
the variables xri must satisfy in order for a Hamiltonian cycle to exist, and ensure
that these constraints take the form of the clauses used in the satisfiability problem
(identifying x = 1 as true and x = 0 as false):
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• Each vertex i ∈ {1, . . . , N} must belong to the cycle: this can be written as the
clause x1i ∨ x2i ∨ · · · ∨ xNi, which is satisfied only if at least one of the numbers
x1i, x2i, . . . , xNi equals one.

• For every r ∈ {1, . . . , N}, one vertex must be the r-th visited vertex in the cycle:
xr1 ∨ xr2 ∨ · · · ∨ xrN .

• Each vertex i ∈ {1, . . . , N} must be visited only once. This can be implemented
through the N(N − 1)/2 clauses x̄rj ∨ x̄sj , for 1 ≤ r < s ≤ N .

• For every r ∈ {1, . . . , N}, there must be only one r-th visited vertex in the
cycle. This can be implemented through the N(N − 1)/2 clauses xri ∨ xrj , for
1 ≤ i < j ≤ N .

• If two vertices i < j are not connected by an edge of the graph, these vertices
should not appear consecutively in the list of vertices belonging to the cycle.
Therefore we add, for every such pair and for every r ∈ {1, . . . , N}, the clauses
xri ∨ x(r+1)j and xrj ∨ x(r+1)i (with the ‘cyclic’ convention N + 1 = 1).

It is straightforward to show that the size of the satisfiability problem constructed
in this way is polynomial in the size of the Hamiltonian cycle problem. We leave it
as an exercise to show that the set of all the above clauses is a sufficient set: if the
N2 variables satisfy all the above constraints, they describe a Hamiltonian cycle.

3.4.5 Complexity classes

Let us continue to focus on decision problems. The classification of these problems
with respect to polynomiality is as follows:

• Class P. These are the polynomial problems, which can be solved by an algo-
rithm running in polynomial time. An example (see Section 3.1) is the decision
version of the minimum-spanning-tree problem (which asks for a yes/no answer
to the following question: given a graph with costs on the edges, and a number
E0, is there a spanning tree with total cost less than E0?).

• Class NP. This is the class of non-deterministic polynomial problems, which
can be solved in polynomial time by a ‘non-deterministic’ algorithm. Roughly
speaking, such an algorithm can run in parallel on an arbitrarily large number
of processors. We shall not explain this notion in detail here, but rather use an
alternative, equivalent characterization. We say that a problem is in the class NP
if there exists a ‘short’ certificate which allows one to check a ‘yes’ answer to the
problem. A short certificate means a certificate that can be checked in polynomial
time.
A polynomial problem such as the MST problem described above is automatically
in NP, and so P ⊆ NP. The decision version of the TSP is also in NP: if there is a
TSP tour with cost smaller than E0, the short certificate is simple: just give the
tour, and its cost can be computed in linear time, allowing one to check that it
is smaller than E0. The satisfiability problem also belongs to NP: a certificate is
obtained from the assignment of variables satisfying all clauses. Checking that all
clauses are satisfied is linear in the number of clauses, taken here as the size of the
system. In fact, there are many important problems in the class NP, with a broad
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spectrum of applications ranging from routing to scheduling, chip verification,
and protein folding.

• Class NP-complete. These are the hardest problems in the class NP. A problem
is NP-complete if (i) it is in NP, and (ii) any other problem in NP can be
polynomially reduced to it, using the notion of polynomial reduction defined in
Section 3.4.4. If A is NP-complete, then for any other problem B in NP, there is
a polynomial reduction that maps B to A. In other words, if we had a polynomial
algorithm to solve A, then all the problems in the broad class NP could be solved
in polynomial time.

It is not a priori obvious whether there exist any NP-complete problems. A major
achievement of the theory of computational complexity is the following theorem, ob-
tained by Cook in 1971.

Theorem 3.5 The satisfiability problem is NP-complete.

We shall not give the proof of the theorem here. Let us just mention that the sat-
isfiability problem has a very universal structure (an example of which was shown
above, in the polynomial reduction of the Hamiltonian cycle problem to satisfiability).
A clause is built as a logical OR (denoted by ∨) of some variables or their negations.
A set of several clauses to be satisfied simultaneously is the logical AND (denoted by
∧) of those clauses. Therefore a satisfiability problem is written in general in the form
(a1∨a2∨ . . . )∧ (b1∨b2∨ . . . )∧ . . . , where the ai, bi are ‘literals’, i.e. any of the original
variables or their negations. This form is called a conjunctive normal form (CNF),
and it is easy to see that any logical statement between Boolean variables can be
written as a CNF. This universal decomposition gives an idea of why the satisfiability
problem plays a central role.

3.4.6 P = NP?

When an NP-complete problem A is known, one can find other NP-complete problems
relatively easily: if there exists a polynomial reduction from A to another problem B ∈
NP, then B is also NP-complete. In fact, whenever RA←P is a polynomial reduction
from a problem P to A and RB←A is a polynomial reduction from A to B, then
RB←A ◦RA←P is a polynomial reduction from P to B. Starting from the satisfiability
problem, it has been possible to find, by this method, thousands of NP-complete
problems. To quote a few of them, among the problems we have encountered so far,
the Hamiltonian cycle problem, the TSP, and the 3-satisfiability problem are NP-
complete. Actually, most NP problems can be classified either as being in P or as
NP-complete (see Fig. 3.4). The precise status of some NP problems, however, such
as graph isomorphism, is still unknown.
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Fig. 3.4 Classification of some well known decision problems. If P �= NP, the classes P and

NP-complete are disjoint. But if it happened that P=NP, all the problems in NP, and in

particular all those mentioned here, would be solvable in polynomial time.

Exercise 3.5 Show that the 3-satisfiability problem is NP-complete, by constructing a
polynomial reduction from the satisfiability problem. The idea is to transform all possible
clauses into sets of 3-clauses, using the following steps:

• A 2-clause x1 ∨ x2 can be written as two 3-clauses (x1 ∨ x2 ∨ y)∧ (x1 ∨ x2 ∨ y) with one
extra variable y.

• Write a 1-clause with four 3-clauses and two extra variables.

• Show that a k-clause x1 ∨ x2 ∨ · · · ∨ xk with k ≥ 4 can be written with k − 3 auxiliary
variables as (x1∨x2∨y1)∧ (x3∨y1∨y2)∧· · ·∧ (xk−2∨yk−4∨yk−3)∧ (xk−1∨xk ∨yk−3).

Finally, those problems which, not being in NP, are at least as hard as NP-complete
problems, are usually called NP-hard. These include both decision problems for which
a short certificate does not exist, and non-decision problems. For instance, the opti-
mization and evaluation versions of the TSP are NP-hard. However, in such cases,
we shall choose between the expressions ‘the TSP is NP-complete’ and ‘the TSP is
NP-hard’ rather freely.

One major open problem in the theory of computational complexity is whether
the classes P and NP are distinct or not. It might be that P = NP = NP-complete:
this would be the case if someone found a polynomial algorithm for one NP-complete
problem. This would imply that any problem in the broad class NP could be solved
in polynomial time.

It is a widespread conjecture that there exists no polynomial algorithm for NP-
complete problems. In this case the classes P and NP-complete would be disjoint.
Moreover, it is known that if P = NP, then there are NP problems which are neither
in P nor in NP-complete.
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3.4.7 Other complexity classes

Notice the fundamental asymmetry in the definition of the class NP: the existence of
a short certificate is required only for the ‘yes’ answers. To understand the meaning
of this asymmetry, consider the problem of unsatisfiability (which is the complement
of the satisfiability problem), formulated as ‘given a set of clauses, is the problem
unsatisfiable?’ It is not clear if there exists a short certificate that allows one to check
a ‘yes’ answer: it is very difficult to prove that a problem cannot be satisfied without
checking an exponentially large number of possible configurations. So it is not at all
obvious that unsatisfiability is in NP. Problems which are complements of those in NP
define the class of co-NP problems, and it is not known whether NP = co-NP or not,
although it is widely believed that co-NP is different from NP. This consideration opens
a Pandora’s box containing many other classes of complexity, but we shall immediately
close it, since leaving it open would carry us too far.

3.5 Optimization and statistical physics

3.5.1 General relation

There exists a natural mapping from optimization to statistical physics. Consider
an optimization problem defined by a finite set X of allowed configurations, and a
cost function E defined on this set with values in R. Although optimization consists in
finding the configuration C ∈ X with the smallest cost, one can introduce a probability
measure of the Boltzmann type on the space of configurations: for any β, each C is
assigned a probability

µβ(C) =
1

Z(β)
e−βE(C) , Z(β) =

∑
C∈X

e−βE(C) . (3.1)

The positive parameter β plays the role of an inverse temperature. In the limit β → ∞,
the probability distribution µβ concentrates on the configurations of minimum energy
(ground states in statistical-physics jargon). This is the relevant limit for optimization
problems. Note that there exist many alternatives to the straightforward generalization
(3.1). In some problems, it may be useful to use more than one inverse temperature
parameter β. Some of these parameters can be used to ‘soften’ constraints. For instance
in the TSP, one might like to relax the constraint that a configuration is a tour, by
summing over all length-N paths of the salesman, with an extra cost each time the
path does not make a full tour, associated with an inverse temperature β1. The length
of the path would be another cost, associated with an inverse temperature β2. The
original problem is recovered when both β1 and β2 go to infinity.

In the statistical-physics approach, one generalizes the optimization problem to
study properties of the distribution µβ at finite β. In many cases, it is useful to follow
µβ as β increases (for instance by monitoring the thermodynamic properties, i.e. the
internal energy, entropy, . . . ). This may be particularly useful, both for analytical and
for algorithmic purposes, when the thermodynamic properties evolve smoothly. An
example of a practical application is the simulated-annealing method, which samples
the configuration space at larger and larger values of β until it finds a ground state.
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This method will be described in Chapter 4. As we shall see, the occurrence of phase
transitions poses major challenges to this kind of approach.

3.5.2 Spin glasses and maximum cuts

To give a concrete example, let us go back to the spin glass problem of Section 2.6.
This involves N Ising spins σ1, . . . , σN in {±1}, located on the vertices of a graph, and
the energy function is

E(σ) = −
∑
(ij)

Jijσiσj , (3.2)

where the sum
∑

(ij) runs over all edges of the graph, and the variables Jij are exchange
couplings, which can be either positive or negative. Given the graph and the exchange
couplings, what is the ground state of the corresponding spin glass? This is a typical
optimization problem. In fact, it very well known in computer science in a slightly
different form.

Each spin configuration partitions the set of vertices into two complementary sub-
sets V± = {i |σi = ±1}. Let us call the set of edges with one end-point in V+ and the
other in V− γ(V+). The energy of the configuration can be written as

E(σ) = −C + 2
∑

(ij)∈γ(V+)

Jij , (3.3)

where C =
∑

(ij) Jij . Finding the ground state of the spin glass is thus equivalent to

finding a partition of the vertices V = V+ ∪ V− such that
∑

(ij)∈γ(V+) cij is maximum,

where cij ≡ −Jij . This problem is known as the maximum cut (max-cut) problem:
the set of edges γ(V+) is a cut, each cut is assigned a weight

∑
(ij)∈γ(V+) cij , and one

seeks the cut with maximal weight.
Standard results on the max-cut problem immediately apply. In general, this is an

NP-hard problem, but there are some categories of graphs for which it is polynomially
solvable. In particular, the max-cut of a planar graph can be found in polynomial
time, providing an efficient method to obtain the ground state of a spin glass on a
square lattice in two dimensions. The three-dimensional spin glass problem falls into
the general NP-hard class, but efficient ‘branch and bound’ methods, based on its
max-cut formulation, have been developed for this problem in recent years.

Another well-known application of optimization to physics is the random-field Ising
model, which is a system of Ising spins with ferromagnetic couplings (all Jij are posi-
tive), but with a magnetic field hi which varies from site to site, taking both positive
and negative values. Its ground state can be found in polynomial time thanks to the
equivalence with the problem of finding a maximal flow in a graph.

3.6 Optimization and coding

Computational-complexity issues are also crucial in all problems of information theory.
We shall see this recurrently throughout the book, but let us just give here some small
examples in order to fix our ideas.
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Consider the error-correcting-code problem of Chapter 1. We have a code which
maps an original message to a codeword x, which is a point in the N -dimensional
hypercube {0, 1}N . There are 2M codewords (with M < N), which we assume to be
a priori equiprobable. When the message is transmitted through a noisy channel, the
codeword x is corrupted to –say– a vector y with probability Q(y|x). The decoder
maps the received message y to one of the possible input codewords x′ = d(y).

As we saw a measure of performance is the average block error probability

Pav
B ≡ 1

2M

∑
x

∑
y

Q(y|x) I(d(y) = x) . (3.4)

A simple decoding algorithm would be the following: for each received message y, con-

sider all the 2M codewords, and determine the most likely one: d(y) = arg maxx∈Code Q(y|x).
It is clear that this algorithm minimizes the average block error probability.

For a general code, there is no better way to maximize Q(y|x) than to go through

all codewords and compute their likelihood one by one. This takes a time of order 2M ,
which is definitely too large. Recall that in fact, to achieve reliable communication, M
and N have to be large (in data transmission applications, one may use an N as large
as 105). One might object that ‘decoding a general code’ is too general a problem.
Just to specify a single instance, we would need to specify all the codewords, which
takes N 2M bits. Therefore, the complexity of decoding could be a trivial consequence
of the fact that even reading the input takes a huge time. However, it can be proved
that, for codes that admit a concise specification (polynomial in the block length),
also, decoding is NP-hard. We shall see some examples, namely linear codes, in the
following chapters.

Notes

We have left aside most of the algorithmic issues in this chapter. A general approach to
design efficient algorithms consists in finding a good ‘convex relaxation’ of the problem.
The idea is to enlarge the space of feasible solutions in such a way that the problem
translates into minimizing a convex function, a task that can be performed efficiently.
A general introduction to combinatorial optimization, including all these aspects, is
provided by Papadimitriou and Steiglitz (1998). Convex optimization is the topic of
many textbooks, for instance Boys and Vandenberghe (2004).

The MST algorithm described in Section 3.1 was found by Prim (1957).
A complete treatment of computational complexity theory can be found in Garey

and Johnson (1979), or in the more recent book by Papadimitriou (1994). The seminal
theorem by Cook (1971) was independently rediscovered by Levin in 1973. The reader
can find a proof in the above books.

Euler discussed the problem of the seven bridges of Könisberg in Euler (1736).
The TSP, which is simple to state and difficult to solve, and lends itself to nice

representations in figures, has attracted much attention. The interested reader can
find many references and also pictures of optimal tours with thousands of vertices,
including tours of the main cities in various countries, applets, etc. on the Web, starting
for instance from Applegate et al. (2008).
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The book by Hartmann and Rieger (2002) focuses on the use of optimization algo-
rithms for solving some problems in statistical physics. In particular, it explains the
determination of the ground state of a random-field Ising model with a maximum-flow
algorithm. A recent volume edited by the same authors (Hartmann and Rieger, 2004)
addresses several algorithmic issues connecting optimization and physics. Chapter 4 of
that volume describes the branch-and-cut approach to the maximum cut problem used
for spin glass studies. The book by Hartmann and Weigt (2005) contains an introduc-
tion to combinatorial optimization considered as a physics problem, with particular
emphasis on the vertex cover problem.

Standard computational problems in coding theory are reviewed in Barg (1998).
Some more recent issues are addressed by Spielman (1997). Finally, the first proof of
NP-completeness for a decoding problem was obtained by Berlekamp et al. (1978).
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4

A probabilistic toolbox

The three fields that form the subject of this book all deal with large sets of discrete
variables. Often, a probability distribution can be defined naturally on such variables.
Not surprisingly, the problems arising in these three fields possess common underly-
ing structures, and some general probabilistic techniques can be applied to all three
domains. This chapter describes some of them, concentrating on the mathematical
structures, namely large deviations on the one hand, and Markov chains for Monte
Carlo computations on the other hand. These tools will reappear several times in the
following chapters.

Since this chapter is more technical than the previous ones, we devote the whole of
Section 4.1 to a qualitative introduction to the subject. In Section 4.2, we consider the
large-deviation properties of simple functions of many independent random variables.
In this case, many explicit results can be easily obtained. We present a few general
tools for correlated random variables in Section 4.3 and the idea of the Gibbs free
energy in Section 4.4. Section 4.5 provides a simple introduction to the Monte Carlo
Markov chain method for sampling configurations from a given probability distribu-
tion. Finally, in Section 4.6, we show how simulated annealing exploits Monte Carlo
techniques to solve optimization problems.

4.1 Many random variables: A qualitative preview

Consider a set of N random variables x = (x1, x2, . . . , xN ), with xi ∈ X and a proba-
bility distribution

PN (x) = PN (x1, . . . , xN ) . (4.1)

This could be, for instance, the Boltzmann distribution for a physical system with
N degrees of freedom. The entropy of this distribution is HN = −E log PN (x). It
often happens that this entropy grows linearly with N at large N . This means that
the entropy per variable hN = HN/N has a finite limit: limN→∞ hN = h. It is then
natural to characterize any particular realization of the random variables (x1, . . . , xN )
by computing the quantity

r(x) =
1

N
log

[
1

PN (x)

]
, (4.2)

which measures how probable the event (x1, . . . , xN ) is. The expectation of r is Er(x) =
hN . One may wonder whether r(x) fluctuates a lot, or whether its distribution is
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strongly peaked around r = hN . The latter hypothesis turns out to be the correct
one in many cases. It often happens that the probability distribution of r(x) behaves
exponentially with N , i.e.

P{r(x) ≈ ρ} .
= e−NI(ρ) . (4.3)

where I(ρ) has a non-degenerate minimum at ρ = limN→∞ hN = h, and I(h) = 0.
This means that, with large probability, a randomly chosen configuration x has an
empirical entropy r(x) ‘close to’ h, and, because of the definition (4.2), its probability is
approximately exp(−Nh). Since the total probability of realizations x such that f(x) ≈
h is close to one, their number must behave as N .

= exp(Nh). In other words, the whole
probability is carried by a small fraction of all configurations (since their number,
exp(Nh), is in general exponentially smaller than |X |N ), and these configurations all
have the same probability. This property, called asymptotic equipartition, holds in
many of the problems we are interested in, and its consequences are very important.

Suppose, for instance, that one is interested in compressing the information con-
tained in the variables (x1, . . . , xN ), which are a sequence of symbols produced by an
information source. Clearly, one should focus on ‘typical’ sequences x such that f(x)
is close to h, because all other sequences have a vanishing small probability. Since
there are about exp(Nh) such typical sequences, one must be able to encode them in
Nh/ log 2 bits by simply numbering them.

Another general problem consists in sampling from the probability distribution
PN (x). With n samples x1, . . . , xn drawn independently with distribution PN (x), one
can estimate expectation values EO(x) ≡ ∑

x PN (x)O(x) as 1
n

∑r
k=1 O(xk). This

avoids summing over |X |N terms, and the precision usually improves like 1/
√

n at
large n.

A naive sampling algorithm could be the following. First, ‘propose’ a configuration
x from the uniform probability distribution P unif

N (x) = 1/|X |N . This is simple to do
using a pseudorandom generator: �N log2 |X |� unbiased random bits are sufficient to
sample from P unif

N (x). Then ‘accept’ the configuration with probability PN (x). Such an
algorithm is very inefficient. It is clear that, to estimate expectation of ‘well-behaved’
observables, we need to generate typical configurations x, i.e. configurations such that
r(x) is close to h. However, such configurations are exponentially rare, and the above
algorithm will require a time of order exp[N(log |X |−h)] to generate one of them. The
Monte Carlo Markov chain method provides a better alternative.

4.2 Large deviations for independent variables

A behaviour of the type (4.3) is an example of a large-deviation principle. We shall
first study the simplest case where such a behaviour is found, namely the case of
independent random variables. This case is instructive because all properties can be
controlled in great detail.

4.2.1 How typical is a series of observations?

Suppose that you are given given the values s1, . . . , sN of N i.i.d. random variables
drawn from a finite space X according to a known probability distribution {p(s)}s∈X .
The si could be produced, for instance, by an information source, or by repeated
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measurements on a physical system. You would like to know if the sequence s =
(s1, . . . , sN ) is a typical one, or if you have found a rare event. If N is large, one can
expect that the number of appearances of a given x ∈ X in a typical sequence will be
close to Np(x). The method of types allows us to quantify this statement.

The type qs(x) of a sequence s is the frequency of appearance of the symbol x in
the sequence:

qs(x) =
1

N

N∑
i=1

I(x = si) . (4.4)

The type qs(x), considered as a function of x, has the properties of a probability
distribution over X : qs(x) ≥ 0 for any x ∈ X , and

∑
x qs(x) = 1. In the following, we

shall denote by M(X ) the space of probability distributions over X : M(X ) ≡ {q ∈
RX such that q(x) ≥ 0 ,

∑
x q(x) = 1}. In particular, qs ∈ M(X ).

The expectation of the type qs(x) coincides with the original probability distribu-
tion:

E qs(x) = p(x) . (4.5)

Sanov’s theorem estimates the probability that the type of the sequence differs from
p(x).

Theorem 4.1. (Sanov) Let s1, . . . , sN ∈ X be N i.i.d. random variables drawn from
the probability distribution p(x), and let K ⊂ M(X ) be a compact set of probability
distributions over X . If q is the type of (s1, . . . , sN ), then

P [q ∈ K]
.
= exp[−ND(q∗||p)] , (4.6)

where q∗ = arg minq∈K D(q||p), and D(q||p) is the Kullback–Leibler divergence defined
in eqn (1.10) .

Informally, this theorem means that the probability of finding a sequence with
type q behaves at large N like exp[−ND(q||p)]. For large N , typical sequences have
a type q(x) ≈ p(x), and those with a different type are exponentially rare. The proof
of the theorem is a straightforward application of Stirling’s formula and is left as an
exercise for the reader. In Section 4.7 we give a derivation using a ‘field-theoretical’
manipulation as used in physics. This may be an instructive, simple example for the
reader who wants to get used to this kind of technique, frequently used by physicists.

Example 4.2 Let the si be the outcome of a biased coin: X = {head, tail}, with
p(head) = 1 − p(tail) = 0.8. What is the probability of getting 50 heads and 50
tails in 100 throws of the coin? Using eqns (4.6) and (1.10) with N = 100 and
q(head) = q(tail) = 0.5, we get Prob[50 tails] ≈ 2.04 × 10−10.
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Example 4.3 Consider the reverse case: we take a fair coin (p(head) = p(tail) =
0.5) and ask what the probability of getting 80 heads and 20 tails is. Sanov’s theorem
provides the estimate Prob[80 heads] ≈ 4.27× 10−9, which is much higher than the
value computed in the previous example.

Example 4.4 A simple model of a column of the atmosphere is obtained by consid-
ering N particles in the earth’s gravitational field. The state of particle i ∈ {1, . . . , N}
is given by a single coordinate zi ≥ 0 which measures its height with respect to ground
level. For the sake of simplicity, we assume the zi to be integer numbers. We can, for
instance, imagine that the heights are discretized in terms of some small unit length
(e.g. millimetres). The N -particle energy function reads, in properly chosen units,

E =

N∑
i=1

zi . (4.7)

The type of a configuration {z1, . . . , zN} can be interpreted as the density profile
ρ(z) of the configuration:

ρ(z) =
1

N

N∑
i=1

I(z = zi) . (4.8)

Using the Boltzmann probability distribution (2.4), it is simple to compute the ex-
pected density profile, which is usually called the ‘equilibrium’ profile:

ρeq(z) ≡ 〈ρ(z)〉 = (1 − e−β) e−βz . (4.9)

If we take a snapshot of the N particles at a given instant, their density will show
some deviations with respect to ρeq(z). The probability of seeing a density profile
ρ(z) is given by eqn (4.6) with p(z) = ρeq(z) and q(z) = ρ(z). For instance, we can
compute the probability of observing an exponential density profile like that in eqn
(4.9) but with a different parameter λ: ρλ(z) = (1− e−λ) e−λz. Using eqn (1.10), we
get:

D(ρλ||ρeq) = log

(
1 − e−λ

1 − e−β

)
+

β − λ

eλ − 1
. (4.10)

The function Iβ(λ) ≡ D(ρλ||ρeq) is depicted in Fig. 4.1.
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Fig. 4.1 In an atmosphere where the equilibrium density profile is ρeq(z) ∝ e−βz, the prob-

ability of observing an atypical profile ρ(z) ∝ e−λz is, for a large number of particles N ,

exp[−NIβ(λ)]. The curves of Iβ(λ) plotted here show that small values of λ are very rare.

Exercise 4.1 The previous example is easily generalized to the density profile of N par-
ticles in an arbitrary potential V (x). Show that the Kullback–Leibler divergence takes the
form

D(ρ||ρeq) = β
X

x

V (x)ρ(x) +
X

x

ρ(x) log ρ(x) + log z(β) . (4.11)

4.2.2 How typical is an empirical average?

The result (4.6) contains detailed information concerning the large fluctuations of
the random variables {si}. Often one is interested in measuring some property of
the particles, that is described by a real number f(si). The empirical average of the
measurement is given by

f ≡ 1

N

N∑
i=1

f(si) . (4.12)

Of course f , will be ‘close’ to E f(x) with high probability. The following result quan-
tifies the probability of rare fluctuations.

Corollary 4.5 Let s1, . . . , sN be N i.i.d. random variables drawn from a probability
distribution p(.). Let f : X → R be a real-valued function and let f be its empirical
average. If A ⊂ R is a closed interval of the real axis, then

P [f ∈ A]
.
= exp[−NI(A)] , (4.13)

where
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(4.7).

I(A) = min
q

[
D(q||p)

∣∣∣∣∣ ∑
x∈X

q(x)f(x) ∈ A

]
. (4.14)

Proof: f is related to the type of x1, . . . , xN through f =
∑

x q(x)f(x). Therefore we
can apply Theorem 4.1, using for K the set of distributions such that the expectation
value of f is in A:

K =

{
q ∈ M(X ) |

∑
x∈X

q(x)f(x) ∈ A

}
. (4.15)

This implies eqn (4.13) and (4.14) directly. �

Exercise 4.2 Let s1, . . . , sN be N i.i.d. random variables drawn from a probability distri-
bution p( · ) with bounded support. Show that, to leading exponential order, P

˘
s1 + · · · +

sN ≤ 0
¯ .

=
˘
infz≥0 E [e−zs1 ]

¯N
.

Example 4.6 We look again at N particles in a gravitational field, and consider
the average height of the particles

z =
1

N

N∑
i=1

zi . (4.16)
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The expected value of this quantity is E(z) = zeq = (eβ − 1)−1. The probability of a
fluctuation in z is easily computed using the above corollary. For z > zeq, we obtain
P [z > z]

.
= exp[−N I(z)], where

I(z) = (1 + z) log

(
1 + zeq

1 + z

)
+ z log

(
z

zeq

)
. (4.17)

Analogously, for z < zeq, P [z < z]
.
= exp[−N I(z)], with the same rate function I(z).

The function I(z) is depicted in Fig. 4.2.

Exercise 4.3 One can construct a thermometer using a system of N particles with the
energy function (4.7). Whenever the temperature is required, one takes a snapshot of the
N particles, computes x, and estimates the inverse temperature βest using the formula
(eβest − 1)−1 = x. What (for N � 1) is the probability of getting a result βest �= β?

4.2.3 Asymptotic equipartition

The above tools can also be used for counting the number of configurations s =
(s1, . . . , sN ) with either a given type q(x) or a given empirical average of some observ-
able f . One finds, for instance, the following.

Proposition 4.7 The number NK,N of sequences s which have a type belonging to the
compact set K ⊂ M(X ) behaves as NK,N

.
= exp{NH(q∗)}, where q∗ = arg max{H(q) | q ∈

K}.

This result can be stated informally by saying that ‘there are approximately eNH(q)

sequences with type q’.
Proof The idea is to apply Sanov’s theorem, taking the ‘reference’ distribution p(x)
to be the uniform probability distribution punif(x) = 1/|X |. Using eqn (4.6), we get

NK,N = |X |NPunif [q ∈ K]
.
= exp{N log |X |−ND(q∗||punif)} = exp{NH(q∗)} . (4.18)

�

We now return to a generic sequence s = (s1, . . . , sN ) of N i.i.d. variables with a
probability distribution p(x). As a consequence of Sanov’s theorem, we know that the
most probable type is p(x) itself, and that deviations are exponentially rare in N . We
expect that almost all the probability will be concentrated into sequences that have a
type close to p(x) in some sense. On the other hand, because of the above proposition,
the number of such sequences is exponentially smaller than the total number of possible
sequences |X |N .

These remarks can be made more precise by defining what is meant by a sequence
having a type ‘close to p(x)’. Given a sequence s, we introduce the quantity

r(s) ≡ − 1

N
log PN (s) = − 1

N

N∑
i=1

log p(xi) . (4.19)
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Clearly, E r(s) = H(p). The sequence s is said to be ε-typical if and only if |r(s) −
H(p)| ≤ ε.

Theorem 4.8 Let TN,ε be the set of ε-typical sequences. Then we have the following
properties.

(i) limN→∞ P[s ∈ TN,ε] = 1.

(ii) For N large enough, eN [H(p)−ε] ≤ |TN,ε| ≤ eN [H(p)+ε].

(iii) For any s ∈ TN,ε, e−N [H(p)+ε] ≤ PN (s) ≤ e−N [H(p)−ε].

Proof Since r(s) is an empirical average, we can apply Corollary 4.5. This allows us to
estimate the probability of the sequence not being typical as P[ s /∈ TN,ε]

.
= exp(−NI).

The exponent is given by I = minq D(q||p), the minimum being taken over the set K
of all probability distributions q(x) such that

∣∣ ∑
x∈X q(x) log[1/q(x)] − H(p)

∣∣ ≥ ε.
But D(q||p) > 0 unless q = p, and p does not belong to K. Therefore I > 0 and
limN→∞ P[ s /∈ TN,ε] = 0, which proves (i).

The condition for q(x) to be the type of an ε-typical sequence can be rewritten as
|D(q||p) + H(q) − H(p)| ≤ ε. Therefore, for any ε-typical sequence, |H(q) − H(p)| ≤ ε,
and Proposition 4.7 leads to (ii). Finally, (iii) is a direct consequence of the definition
of ε-typical sequences. �

The behaviour described in this theorem is usually referred to as the asymptotic
equipartition property. Although we have proved it only for i.i.d. random variables,
it holds in a much broader context. In fact, it will be found in many interesting systems
throughout the book.

4.3 Correlated variables

In the case of independent random variables in finite spaces, the probability of a
large fluctuation is easily computed by combinatorics. It would be nice to have some
general result for large deviations of non-independent random variables. In this section,
we shall describe the use of Legendre transforms and saddle point methods to study
the general case. This method corresponds to a precise mathematical statement: the
Gärtner–Ellis theorem. We shall first describe the approach informally and apply it to
a few examples. Then we shall state the theorem and discuss it.

4.3.1 Legendre transformation

We consider a set of N random variables x = (x1, . . . , xN ), with xi ∈ X and a proba-
bility distribution

PN (x) = PN (x1, . . . , xN ) . (4.20)

Let f : X → R be a real-valued function. We are interested in estimating, for large N ,
the probability distribution of the empirical average

f(x) =
1

N

N∑
i=1

f(xi) . (4.21)

In the previous section, we studied the particular case in which the xi are i.i.d. random
variables. We proved that, quite generally, a finite fluctuation of f(x) is exponentially
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unlikely. It is natural to expect that the same statement will hold true if the xi are
‘weakly correlated’. Whenever PN (x) is the Boltzmann distribution for some physical
system, this expectation is supported by physical intuition. We can think of the xi

as the microscopic degrees of freedom that make up the system, and of f(x) as a
macroscopic observable (pressure, magnetization, etc.). It is a common observation
that the relative fluctuations of macroscopic observables are very small.

Let us thus assume that the distribution of f follows a large-deviation principle,
meaning that the asymptotic behaviour of the distribution at large N is

PN (f)
.
= exp[−NI(f)] , (4.22)

with a rate function I(f) ≥ 0.
In order to determine I(f), a useful method is to ‘tilt’ the measure PN (·) in such

a way that the rare events responsible for O(1) fluctuations of f become likely. In
practice, we define the (logarithmic) moment-generating function of f as follows

ψN (t) =
1

N
log
(
E eNtf(x)

)
, t ∈ R . (4.23)

When the large-deviation principle (4.22) holds, we can evaluate the large-N limit of
ψN (t) using the saddle point method:

lim
N→∞

ψN (t) = lim
N→∞

1

N
log

{∫
eNtf−NI(f)df

}
= ψ(t) , (4.24)

where

ψ(t) = sup
f∈R

[
tf − I(f)

]
. (4.25)

In other words, ψ(t) is the Legendre transform of I(f), and it is a convex function of t
by construction (this can be proved by differentiating eqn (4.23) twice). It is therefore
natural to invert the Legendre transform (4.25) as follows:

Iψ(f) = sup
t∈R

[
tf − ψ(t)

]
, (4.26)

and we expect Iψ(f) to coincide with the convex envelope of I(f). This procedure
is useful whenever computing ψ(t) is easier than a direct estimate of the probability
distribution PN (f). It is useful to gain some insight by considering a few examples.
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Fig. 4.3 Rate function for the magnetization of the one-dimensional Ising model. Notice

that, as the temperature is lowered (β is increased), the probability of large fluctuations

increases.

Exercise 4.4 Consider the one-dimensional Ising model without an external magnetic field
(see Section 2.5.1). The variables are N Ising spins σi ∈ {+1,−1}, and their distribution
is the Boltzmann distribution PN (σ) = exp[−βE(σ)]/Z with an energy function E(σ) =

−PN−1
i=1 σiσi+1. We want to compute the large-deviation properties of the magnetization,

m(σ) =
1

N

NX
i=1

σi , (4.27)

using the moment-generating function.

(a) Show that ψ(t) = φ(β, t/β) − φ(β, 0), where φ(β, B) is the free-energy density of the
model in an external magnetic field B found in eqn (2.63). Explicitly, this gives

ψ(t) = log

 
cosh t +

p
sinh2 t + e−4β

1 + e−2β

!
. (4.28)

(b) The function ψ(t) is convex and analytic for any β < ∞. By applying eqn (4.26), obtain
numerically the rate function Iψ(m). The result is shown in Fig. 4.3 for several inverse
temperatures β.

Example 4.9 Consider a Markov chain X0, X1, . . . , Xi, . . . taking values in a finite
state space X , and assume all the elements of the transition matrix w(x → y) to be
strictly positive. Let us study the large-deviation properties of the empirical average
(1/N)

∑
i f(Xi).
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model (left), and the corresponding generating function (right).

One can show that the limit moment-generating function ψ(t) (see eqn (4.23)) ex-
ists, and can be computed using the following recipe. Define the ‘tilted’ transition
probabilities as wt(x → y) = w(x → y) exp[t f(y)]. Let λ(t) be the largest solution
of the eigenvalue problem∑

x∈X

φl
t(x) wt(x → y) = λ(t) φl

t(y) (4.29)

(which is unique and positive because of the Perron–Frobenius theorem). The
moment-generating function is given simply by ψ(t) = log λ(t).

An interesting new phenomenon emerges if we consider now the Curie–Weiss model
with a vanishing external field. We again study N Ising spins σi ∈ {+1,−1} with a
distribution PN (σ) = exp[−βE(σ)]/Z, and the energy function is

E(σ) = − 1

N

∑
(ij)

σiσj . (4.30)

We are interested in the large fluctuations of the global magnetization (4.27). In this
case one can compute the large-deviation function directly as explained in the following
exercise.

Exercise 4.5 Using the arguments of Section 2.5.2, show that, for any m1 < m2,

PN{m(σ) ∈ [m1, m2]} .
=

1

ZN (β)

Z m2

m1

eNφmf (m;β) dm , (4.31)

where φmf(m; β) = βm2/2 − log[2 cosh(βm)].

This exercise shows that the large-deviation principle (4.22) holds, with
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I(m) = φmf(m
∗;β) − φmf(m;β) , (4.32)

and m∗(β) is the largest solution of the Curie–Weiss equation m = tanh(βm). The
function I(m) is represented in Fig. 4.4, left frame, for several values of the inverse
temperature β. For β < βc = 1, I(m) is convex and has its unique minimum at m = 0.

A new situation appears when β > βc. The function I(m) is non-convex, with two
degenerate minima at m = ±m∗(β). In words, the system can be found in either of two
well-distinguished ‘states’: the states of positive and negative magnetization. There is
no longer a unique typical value of the magnetization such that large fluctuations away
from this value are exponentially rare.

Let us now look at what happens if one uses the generating-function approach. It
is easy to see that the limit (4.23) exists and is given by

ψ(t) = sup
m∈[−1,1]

[mt − I(m)] . (4.33)

While at high temperature, β < 1, ψ(t) is convex and analytic, for β > 1 ψ(t) develops
a singularity at t = 0. In particular, we have ψ′(0+) = m∗(β) = −ψ′(0−). We now com-
pute Iψ(m) using eqn (4.26). A little thought shows that, for any m ∈ [−m∗(β),m∗(β)],
the supremum is achieved for t = 0, which yields Iψ(m) = 0. Outside this interval,
the supremum is achieved at the unique solution of ψ′(t) = m, and Iψ(m). As an-
ticipated, Iψ(m) is the convex envelope of I(m). In the range (−m∗(β),m∗(β)), an
estimate of the magnetization fluctuations through the function

.
= exp(−NIψ(m))

would overestimate the fluctuations.

4.3.2 The Gärtner–Ellis theorem

The Gärtner–Ellis theorem has several formulations, which usually require some tech-
nical definitions beforehand. Here we shall state it in a simplified (and somewhat weak-
ened) form. We need only the definition of an exposed point: x ∈ R is an exposed
point of the function F : R → R if there exists t ∈ R such that ty − F (y) > tx− F (x)
for any y = x. If, for instance, F is convex, a sufficient condition for x to be an exposed
point is that F is twice differentiable at x, with F ′′(x) > 0.

Theorem 4.10. (Gärtner–Ellis) Consider a function f(x) (not necessarily of the
form (4.21)) and assume that the moment-generating function ψN (t) defined in eqn
(4.23) exists and has a finite limit ψ(t) = limN→∞ ψN (t) for any t ∈ R. Define Iψ(·)
as the inverse Legendre transform of eqn (4.26), and let E be the set of exposed points
of Iψ(·).

1. For any closed set F ∈ R,

lim sup
N→∞

1

N
log PN (f ∈ F ) ≤ − inf

f∈F
Iψ(f) . (4.34)

2. For any open set G ∈ R,

lim sup
N→∞

1

N
log PN (f ∈ G) ≥ − inf

f∈G∩E
Iψ(f) . (4.35)
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3. If, moreover, ψ(t) is differentiable for any t ∈ R, then the last statement holds
true if the inf is taken over the whole set G (rather than over G ∩ E).

Informally, the inverse Legendre transform (4.26) generically yields an upper bound
on the probability of a large fluctuation of the macroscopic observable. This upper
bound is tight unless a ‘first-order phase transition’ occurs, corresponding to a discon-
tinuity in the first derivative of ψ(t), as we saw in the low-temperature phase of the
Curie–Weiss model.

It is worth mentioning that ψ(t) can be non-analytic at a point t∗ even though its
first derivative is continuous at t∗. This corresponds, in statistical-mechanics jargon,
to a ‘higher-order’ phase transition. Such phenomena have interesting probabilistic
interpretations too.

4.3.3 Typical sequences

Let us return to the concept of typical sequences introduced in Section 4.2. More pre-
cisely, we want to investigate the large deviations of the probability itself, measured by
r(x) = −(1/N) log P (x). For independent random variables, the study in Section 4.2.3
led to the concept of ε-typical sequences. What can one say about general sequences?

Let us compute the corresponding moment-generating function (4.23):

ψN (t) =
1

N
log

⎧⎨⎩∑
x

PN (x)1−t

⎫⎬⎭ . (4.36)

Without loss of generality, we can assume PN (x) to have the Boltzmann form

PN (x) =
1

ZN (β)
exp{−βEN (x)} , (4.37)

with energy function EN (x). Inserting this into eqn (4.36), we get

ψN (t) = βfN (β) − βfN (β(1 − t)) , (4.38)

where fN (β) = −(1/N) log ZN (β) is the free-energy density of the system with en-
ergy function EN (x) at inverse temperature β. Let us assume that the thermodynamic
limit f(β) = limN→∞ fN (β) exists and is finite. It follows that the limiting generat-
ing function ψ(t) exists and we can apply the Gärtner–Ellis theorem to compute the
probability of a large fluctuation of r(x). As long as f(β) is analytic, large fluctuations
are exponentially depressed and the asymptotic equipartition property of independent
random variables is essentially recovered. On the other hand, if there is a phase tran-
sition at β = βc, where the first derivative of f(β) is discontinuous, then the likelihood
r(x) may take several distinct values with a non-vanishing probability. This is what
happened in our Curie–Weiss example.

4.4 The Gibbs free energy

4.4.1 Variational principle

In the introduction to statistical physics in Chapter 2, we assumed that the probability
distribution of the configurations of a physical system was the Boltzmann distribution.
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It turns out that this distribution can be obtained from a variational principle. This is
interesting, both as a matter of principle and for the purpose of finding approximation
schemes.

Consider a system with a configuration space X , and a real-valued energy function
E(x) defined on this space. The Boltzmann distribution is µβ(x) = exp[−β(E(x) −
F (β))], where F (β), the ‘free energy’, is a function of the inverse temperature β defined
by the fact that

∑
x∈X µβ(x) = 1. We define the Gibbs free energy G[P ] as the

following real-valued functional over the space of probability distributions P (x) on X :

G[P ] =
∑
x∈X

P (x)E(x) +
1

β

∑
x∈X

P (x) log P (x) . (4.39)

(The Gibbs free energy should not be confused with F (β).) It is easy to rewrite the
Gibbs free energy in terms of the KL divergence between P (x) and the Boltzmann
distribution µβ(x):

G[P ] =
1

β
D(P ||µβ) + F (β) . (4.40)

This representation implies straightforwardly the following proposition (the Gibbs
variational principle).

Proposition 4.11 The Gibbs free energy G[P ] is a convex functional of P (x), and it
achieves its unique minimum on the Boltzmann distribution P (x) = µβ(x). Moreover,
G[µβ ] = F (β), where F (β) is the free energy.

The relation between the Gibbs free energy and the Kullback–Leibler divergence
in eqn (4.40) implies a simple probabilistic interpretation of the Gibbs variational
principle. Imagine that a large number N of copies of the same physical system have
been prepared. Each copy is described by the same energy function E(x). Now consider
the empirical distribution P (x) of the N copies. Typically, P (x) will be close to the
Boltzmann distribution µβ(x). Sanov’s theorem implies that the probability of an
‘atypical’ distribution is exponentially small in N : P[P ]

.
= exp[−N (G[P ] − F (β))] .

When the partition function of a system cannot be computed exactly, the above re-
sult suggests a general line of approach for estimating the free energy: one can minimize
the Gibbs free energy in some restricted subspace of ‘trial probability distributions’
P (x). These trial distributions should be simple enough that G[P ] can be computed,
but the restricted subspace should also contain distributions which are able to give
a good approximation to the true behaviour of the physical system. For each new
physical system one will thus need to find a good restricted subspace.
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Fig. 4.5 Variational estimates of the free energy of the model (4.41), using the Gibbs free

energy with the trial distribution (4.42) on the left and (4.44) on the right.

Exercise 4.6 Consider a system with configuration space X = R and energy

E(x) =
1

2
t x2 +

1

4
x4 , (4.41)

with t ∈ R. Let us find an upper bound on its free energy at temperature β = 1, F (t) =

− log
“R

e−E(x)dx
”

, using the Gibbs variational principle. We first use the following family

of Gaussian trial probability distributions:

Qa(x) =
1√
2πa

e−x2/2a . (4.42)

Show that the corresponding Gibbs free-energy at β = 1 is:

G[Qa] =
1

2
ta +

3

4
a2 − 1

2
(1 + log 2πa) ≡ G(a, t) . (4.43)

The Gibbs principle implies that F (t) ≤ mina G(a, t). In Fig. 4.5, we have plotted the
optimal value of a, aopt(t) = argminaG(a, t), and the corresponding estimate Gopt(t) =
G(aopt(t), t).

Exercise 4.7 Consider the same problem with the family of trial distributions

Qa(x) =
1√
2π

e−(x−a)2/2 . (4.44)

Determine the optimal value of aopt, and the corresponding upper bound on F (t) (see
Fig. 4.5). Notice the bifurcation at tcr = −3. For t > tcr, one finds that aopt(t) = 0, while
G[Qa] has two degenerate local minima a = ±aopt(t) for t ≤ tcr.
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4.4.2 Mean-field approximation

An important application of the variational approximation using the Gibbs free energy
is the mean-field approximation. Usually, we do not know how to compute the free
energy of a problem with many interacting variables. A natural approximation is to
take the class of distributions over independent variables as trial family. In order to
illustrate this idea, consider the Ising model on a d-dimensional cubic lattice L of linear
size L (i.e. L = [L]d) (see Section 2.5). The energy function is

E(σ) = −1

d

∑
(ij)

σiσj − B
∑
i∈L

σi . (4.45)

Notice that we have chosen a particular scale of energy by deciding that the strength of
the interaction between the spins is J = 1/d. This choice will allow us to make direct
contact with the Curie–Weiss model. For the sake of simplicity, we assume periodic
boundary conditions. This means that two sites i = (i1, . . . , id) and j = (j1, . . . , jd)
are considered nearest neighbours if, for some l ∈ {1, . . . , d}, il−jl = ±1 (mod L) and
il′ = jl′ for any l′ = l. The sum over (ij) in eqn (4.45) runs over all nearest-neighbour
pairs in L.

In order to obtain a variational estimate of the free energy F (β) at inverse tem-
perature β, we evaluate the Gibbs free energy on the following trial distribution:

Qm(σ) =
∏
i∈L

qm(σi) , (4.46)

where qm(+) = (1 + m)/2, qm(−) = (1 − m)/2, and m ∈ [−1,+1]. Note that, under
Qm(σ), the σi are i.i.d. random variables with expectation m.

It is easy to evaluate the density of the Gibbs free energy, g(m;β,B) ≡ G[Qm]/Ld,
on this distribution:

g(m;β,B) = −1

2
m2 − B m − 1

β
H
(

1 + m

2

)
. (4.47)

The Gibbs variational principle implies an upper bound on the free-energy density
fd(β,B) ≤ infm g(m;β,B). Notice that, apart from an additive constant, this ex-
pression (4.47) has the same form as the solution of the Curie–Weiss model (see eqn
(2.79)). This immediately implies that fd(β,B) ≤ fCW(β, h)− 1

2 . The minimization of
g(m;β,B) has already been discussed in Section 2.5.2; we shall not repeat it here. Let
us just mention that, in zero magnetic field (B = 0), at low enough temperature, the
mean-field approximation always predicts that the Ising model has a phase transition
to a ferromagnetic phase. While this prediction is qualitatively correct when d ≥ 2, it
is wrong when d = 1, as we saw through the exact solution in Section 2.5.1. Indeed,
the mean-field approximation becomes better the larger the dimension d, and it is
asymptotically exact for d → ∞.

4.5 The Monte Carlo method

The Monte Carlo method is an important generic tool which is common to probability
theory, statistical physics, and combinatorial optimization. In all of these fields, we
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are often confronted with the problem of sampling a configuration x ∈ XN (here we
assume X to be a finite space) from a given distribution P (x). This can be quite
difficult when N is large, because there are too many configurations, because the
typical configurations are exponentially rare, and/or because the distribution P (x) is
specified by the Boltzmann formula with an unknown normalization (the partition
function).

A general approach is to construct a Markov chain which is guaranteed to converge
to the desired P (x), and then simulate it on a computer. The computer is of course
assumed to have access to some source of randomness: in practice, pseudo-random
number generators are used. If the chain is simulated for a long enough time, the
final configuration has a distribution ‘close’ to P (x). In practice, the Markov chain
is defined by a set of transition rates w(x → y) with x, y ∈ XN which satisfy the
following conditions:

1. The chain is irreducible, i.e. for any pair of configurations x and y there exists
a path (x0, x1, . . . xn) of length n, connecting x to y with non-zero probability.
This means that x0 = x, xn = y and w(xi → xi+1) > 0 for i = 0, . . . , n − 1.

2. The chain is aperiodic: for any pair x and y, there exists a positive integer n(x, y)
such that, for any n ≥ n(x, y), there exists a path of length n connecting x to
y with non-zero probability. Note that, for an irreducible chain, aperiodicity is
easily enforced by allowing the configuration to remain unchanged with non-zero
probability: w(x → x) > 0.

3. The distribution P (x) is stationary with respect to the probabilities w(x → y):∑
x

P (x) w(x → y) = P (y) . (4.48)

Sometimes a stronger condition (implying stationarity) is satisfied by the transi-
tion probabilities. In this case, for each pair of configurations x, y such that either
w(x → y) > 0 or w(y → x) > 0, one has

P (x)w(x → y) = P (y)w(y → x) . (4.49)

This condition is referred to as reversibility or detailed balance.

The strategy of designing and simulating such a process in order to sample from
P (x) goes under the name of the dynamic Monte Carlo method or the Markov
chain Monte Carlo (MCMC) method (hereafter we shall refer to it simply as the
Monte Carlo method). The theoretical basis for such an approach is provided by a
classic theorem.

Theorem 4.12 Assume the rates w(x → y) to satisfy the conditions 1–3 above. Let
X0, X1, . . . , Xt, . . . be random variables distributed according to the Markov chain with
rates w(x → y) and initial condition X0 = x0. Let f : XN → R be any-real valued
function. Then:

1. The probability distribution of Xt converges to the stationary distribution:

lim
t→∞

P[Xt = x] = P (x) . (4.50)
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2. Time averages converge to averages over the stationary distribution:

lim
t→∞

1

t

t∑
s=1

f(Xs) =
∑

x

P (x)f(x) almost surely. (4.51)

The proof of this theorem can be found in any textbook on Markov processes. Here
we shall illustrate it by considering some simple Monte Carlo algorithms which are
frequently used in statistical mechanics (although they are by no means the most
efficient ones).

Consider a system of N Ising spins σ = (σ1 . . . σN ) with energy function E(σ) and
inverse temperature β. We are interested in sampling the Boltzmann distribution µβ .
The Metropolis algorithm is defined as follows. We denote by σ(i) the configuration

which coincides with σ except for the site i (σ
(i)
i = −σi), and let ∆Ei(σ) ≡ E(σ(i)) −

E(σ). At each step, an integer i ∈ [N ] is chosen randomly with a uniform distribution,
and the spin σi is flipped with probability

wi(σ) = exp{−β max[∆Ei(σ), 0]} . (4.52)

More explicitly, the transition probabilities are given by

w(σ → τ) =
1

N

N∑
i=1

wi(σ) I(τ = σ(i)) +

[
1 − 1

N

N∑
i=1

wi(σ)

]
I(τ = σ) . (4.53)

It is easy to check that this definition satisfies both the irreducibility and the
stationarity conditions for any energy function E(σ) and inverse temperature β < 1.
Furthermore, the chain satisfies the detailed balance condition

µβ(σ)wi(σ) = µβ(σ(i))wi(σ
(i)) . (4.54)

Whether the condition of aperiodicity is fulfilled depends on the energy function. It
is easy to construct systems for which it does not hold. Take, for instance, a single
spin, N = 1, and let E(σ) = 0: the spin is flipped at each step, and there is no way to
have a transition from σ = +1 to σ = −1 in an even number of steps. (Luckily, this
kind of pathology is easily cured by modifying the algorithm as follows. At each step,
with probability 1 − ε, a site i is chosen and a spin flip is proposed as above. With
probability ε, nothing is done, i.e. a null transition σ → σ is realized.)

Exercise 4.8 Variants of this chain can be obtained by changing the flipping probabilities
given by eqn (4.52). A popular choice is the heat bath algorithm (also referred to as
Glauber dynamics):

wi(σ) =
1

2

»
1 − tanh

„
β∆Ei(σ)

2

«–
. (4.55)

Prove irreducibility, aperiodicity, and stationarity for these transition probabilities.
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One reason that makes the heat bath algorithm particularly interesting is that it
can be easily generalized for the purpose of sampling from a distribution P (x) in any
system whose configuration space has the form XN . In this algorithm, one chooses a
variable index i, fixes all the other variables, and assigns a new value to the i-th one
according to its conditional distribution. A more precise description is provided by
the following pseudocode (Recall that, given a vector x ∈ XN , we denote by x∼i the
N − 1-dimensional vector obtained by removing the i-th component of x.)

Heat bath algorithm (P (x), number of iterations r)

1: Generate x(0) uniformly at random in XN ;
2: for t = 1 to t = r:
3: Draw a uniformly random integer i ∈ {1, . . . , N}
4: For each z ∈ X , compute

P (Xi = z|X∼i = x
(t−1)
∼i ) =

P (Xi=z,X∼i=x
(t−1)
∼i )P

z′∈X P (Xi=z′,X∼i=x
(t−1)
∼i )

;

5: Set x
(t)
j = x

(t−1)
j for each j = i, and x

(t)
i = z,

where z is drawn from the distribution P (Xi = z|X∼i = x
(t−1)
∼i );

6: end
7: return the sequence x(t), t = 1, · · · , r.

Let us stress that this algorithm only requires one to be able to compute the
probability P (x) up to a multiplicative constant. If, for instance, P (x) is given by
Boltzmann’s law (see Section 2.1) it is enough to be able to compute the energy E(x)
of a configuration, and it is not necessary to compute the partition function Z(β).

This is a very general method for defining a Markov chain with the desired prop-
erties. The proof is left as exercise.

Exercise 4.9 Assuming for simplicity that ∀x, P (x) > 0, prove irreducibility, aperiodicity
and stationarity for the heat bath algorithm.

Theorem 4.12 confirms that the Monte Carlo method is indeed a viable approach
for sampling from a given probability distribution. However, it does not provide any
information concerning its computational efficiency. In order to discuss this issue, it is
convenient to assume that simulating a single step Xt → Xt+1 of the Markov chain
has a time cost equal to one. This assumption is a good one as long as sampling
a new configuration requires a number of operations that depends only mildly (e.g.
polynomially) on the system size. This is the case in the two examples provided above,
and we shall stick here to this simple scenario.

Computational efficiency reduces therefore to the following question: how many
steps of the Markov chain should be simulated? Of course, there is no unique answer to
such a generic question. We shall limit ourselves to introducing two important figures of
merit. The first concerns the following problem: how many steps should be simulated in
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order to produce a single configuration x which is distributed approximately according
to P (x)? In order to specify what is meant by ‘approximately’ we have to introduce
a notion of distance between two distributions P1(·) and P2(·) on XN . A widely used
definition is given by the variation distance

||P1 − P2|| =
1

2

∑
x∈XN

|P1(x) − P2(x)| . (4.56)

Consider now a Markov chain satisfying the conditions 1–3 above with respect to a
stationary distribution P (x), and denote by Pt(x|x0) the distribution of Xt conditional
on the initial condition X0 = x0. Let dx0

(t) = ||Pt(·|x0) − P (·)|| be the distance from
the stationary distribution. The mixing time (or variation threshold time) is
defined as

τeq(ε) = min{t > 0 : sup
x0

dx0
(t) ≤ ε} . (4.57)

In this book, we shall often refer informally to this quantity as the equilibration
time. The number ε can be chosen arbitrarily, a change in ε usually implying a simple
multiplicative change in τeq(ε). For of this reason, the convention ε = 1/e is sometimes
adopted.

Rather than producing a single configuration with the prescribed distribution, one
is often interested in computing the expectation value of some observable O(x). In
principle, this can be done by averaging over many steps of the Markov chain as
suggested by eqn (4.51). It is therefore natural to ask the following question. Assume
that the initial condition X0 is distributed according to the stationary distribution
P (x). This can be obtained (to a good approximation) by simulating τeq(ε) steps of
the chain in a preliminary (equilibration) phase. We shall denote by 〈 · 〉 the expectation
with respect to the Markov chain with this initial condition. How many steps should
we average over in order to get expectation values within some prescribed accuracy?
In other words, we estimate

∑
P (x)O(x) ≡ EPO by

OT ≡ 1

T

T−1∑
t=0

O(Xt) . (4.58)

It is clear that 〈OT 〉 =
∑

P (x)O(x). Let us compute the variance of this estimator:

Var(OT ) =
1

T 2

T−1∑
s,t=0

〈Os;Ot〉 =
1

T 2

T−1∑
t=0

(T − t)〈O0;Ot〉 , (4.59)

where we have used the notation Ot ≡ O(Xt). Let us introduce the autocorrelation

function CO(t−s) ≡ 〈Os;Ot〉/〈O0;O0〉, so that Var(OT ) = (〈O0;O0〉/T 2)
∑T−1

t=0 (T−
t)CO(t). General results for Markov chains on finite state spaces imply that CO(t)
decreases exponentially as t → ∞. Therefore, for large T , we have

Var(OT ) =
τO
int

T
[EPO2 − (EPO)2] + O(T−2) . (4.60)
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Fig. 4.6 Monte Carlo simulation of the Curie–Weiss model at three different temperatures:

from top to bottom β = 0.8, 1.0, and 1.2. Here, we reproduce the global magnetization m(σ)

as a function of the number of iterations.

The integrated autocorrelation time τO
int is given by

τO
int ≡

∞∑
t=0

CO(t) , (4.61)

and provides a reference for estimating how long the Monte Carlo simulation should be
run in order to achieve some prescribed accuracy. equation (4.60) can be interpreted
by saying that one statistically independent estimate of EPO is obtained every τO

int

iterations.

Example 4.13 Consider the Curie–Weiss model (see Section 2.5.2), at inverse tem-
perature β, and use the heat bath algorithm described above in order to sample from
the Boltzmann distribution. In Fig. 4.6 we reproduce the evolution of the global mag-
netization m(σ) during three different simulations at inverse temperatures β = 0.8,
1.0, and 1.2 for a model of N = 150 spin. In all cases, we initialized the Markov
chain by drawing a random configuration with uniform probability.

A spectacular effect occurs at the lowest temperature, β = 1.2. Although the
Boltzmann average of the global magnetization vanishes, i.e. 〈m(σ)〉 = 0, the sign
of the magnetization remains unchanged over extremely long time scales. It is clear
that the equilibration time is at least as large as these scales. An order-of-magnitude
estimate would be τeq > 105. Furthermore, this equilibration time diverges expo-
nentially at large N . Sampling from the Boltzmann distribution using the present
algorithm becomes exceedingly difficult at low temperature.
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4.6 Simulated annealing

As we mentioned in Section 3.5, any optimization problem can be ‘embedded’ in a
statistical-mechanics problem. The idea is to interpret the cost function E(x), x ∈ XN ,
as the energy of a statistical-mechanics system and consider the Boltzmann distribu-
tion µβ(x) = exp[−βE(x)]/Z. In the low-temperature limit β → ∞, the distribution
becomes concentrated on the minima of E(x), and the original optimization setting is
recovered.

Since the Monte Carlo method provides a general technique for sampling from
the Boltzmann distribution, one may wonder whether it can be used, in the β → ∞
limit, as an optimization technique. A simple-minded approach would be to take β =
∞ at the outset. Such a strategy is generally referred to as a quench in statistical
physics and a greedy search in combinatorial optimization, and is often bound to
fail. Consider the stationarity condition (4.48) and rewrite it using the Boltzmann
formula: ∑

x

e−β [E(x)−E(y)] w(x → y) = 1 . (4.62)

All the terms in the sum on the left-hand side must be less than or equal to one.
This implies 0 ≤ w(x → y) ≤ exp{−β [E(y) − E(x)]}. Therefore, for any pair of
configurations x, y such that E(y) > E(x), we have w(x → y) → 0 in the β → ∞
limit. In other words, the energy is always non-increasing along the trajectories of a
zero-temperature Monte Carlo algorithm. As a consequence, the corresponding Markov
chain is not irreducible (although it is irreducible at any β < ∞) and is not guaranteed
to converge to the equilibrium distribution, i.e. to find a global minimum of E(x). In
fact, if the energy landscape E(x) has local minima, this algorithm can get trapped in
such a local minimum forever.

Another simple-minded approach would be to set β to some large but finite value.
Although the Boltzmann distribution gives some weight to near-optimal configura-
tions, the algorithm will also visit, from time to time, optimal configurations which are
the most probable ones. How large should β be? How much time must we wait before
an optimal configuration is visited? We can assume without loss of generality that the
minimum of the cost function (the ground state energy) is zero: E0 = 0. A meaningful
quantity to look at is the probability for E(x) = 0 under the Boltzmann distribution at
an inverse temperature β. We can easily compute the logarithmic moment-generating
function of the energy:

ψN (t) =
1

N
log

⎡⎣∑
x

µβ(x) etE(x)

⎤⎦ =
1

N
log

[∑
x e−(β−t)E(x)∑

x e−βE(x)

]
. (4.63)

This is given by ψN (t) = φN (β − t)− φN (β), where φN (β) is the free-entropy density
at inverse temperature β. Clearly µβ [E(x) = 0] = exp[NψN (−∞)] = exp{N [φN (∞)−
φN (β)]}, and the average time that we must wait before visiting the optimal configu-
ration is 1/µβ [E(x) = 0] = exp[−NψN (−∞)].
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Exercise 4.10 Assume that the cost function takes integer values E = 0, 1, 2 . . . and
denote XE the set of configurations x such that E(x) = E. You want the Monte Carlo
trajectories to spend a fraction (1 − ε) of the time on optimal solutions. Show that the
temperature must be chosen such that

β = log

„ |X1|
ε|X0|

«
+ Θ(ε) . (4.64)

In Section 2.4 we argued that, for many statistical-mechanics models, the free-
entropy density has a finite thermodynamic limit φ(β) = limN→∞ φN (β). In the fol-
lowing chapters, we shall show that this is also the case for several interesting opti-
mization problems. This implies that µβ [E(x) = 0] vanishes in the N → ∞ limit. In
order to have a non-negligibile probability of hitting a solution of the optimization
problem, β must be scaled with N in such a way that β → ∞ as N → ∞. On the
other hand, if we let β → ∞, we are going to face the reducibility problem mentioned
above. Although the Markov chain is formally irreducible, its equilibration time will
diverge as β → ∞.

The idea of simulated annealing consists in letting β vary with time. More
precisely, one decides on an annealing schedule {(β1, n1); (β2, n2); . . . (βL, nL)},
with inverse temperatures βi ∈ [0,∞] and integers ni > 0. The algorithm is initialized
on a configuration x0 and executes n1 Monte Carlo steps at temperature β1, n2 steps
at temperature β2, . . . , and nL steps at temperature βL. The final configuration of
each cycle i (with i = 1, . . . , L−1) is used as the initial configuration of the next cycle.
Mathematically, such a process is a time-dependent Markov chain. The common
wisdom about the simulated-annealing algorithm is that varying the temperature with
time should help one to avoid the two problems encountered above. Usually, one takes
the βi to be an increasing sequence. In the first stages, a small β should help in
equilibrating across the space of configurations XN . As the temperature is lowered,
the probability distribution becomes concentrated on the lowest-energy regions of this
space. Finally, in the late stages, a large β forces the system to fix the few wrong
details, and to find a solution. Of course, this image is somewhat simplistic, but we
shall see later with some examples, in particular in Chapter 15, how the method works
in practice, and what its limitations are.

4.7 Appendix: A physicist’s approach to Sanov’s theorem

Let us show how the formulae of Sanov’s theorem can be obtained using the ‘field-
theoretic’ type of approach used in statistical physics. The theorem is easy to prove
by standard techniques. The aim of this section is not so much to give a proof, but
rather to show, with a simple example, a type of calculation that is very common in
physics, and which can be powerful. We shall not aim at a rigorous derivation.

The probability that the type of the sequence x1, · · · , xN is equal to q(x) can be
written as
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P[q(x)] = E

{∏
x∈X

I

(
q(x) =

1

N

N∑
i=1

δx,xi

)}

=
∑

x1···xN

p(x1) · · · p(xN ) I

(
q(x) =

1

N

N∑
i=1

δx,xi

)
, (4.65)

where we have introduced the Kronecker symbol δx,y, equal to 1 if x = y and 0
otherwise. A typical approach in field theory is to introduce some auxiliary variables
in order to enforce the constraint that q(x) = (1/N)

∑N
i=1 δx,xi

. For each x ∈ X , one
introduces a variable λ(x), and uses an ‘integral representation’ of the constraint in
the form

I

(
q(x) =

1

N

N∑
i=1

δx,xi

)
=

∫ 2π

0

dλ(x)

2π
exp

[
iλ(x)

(
Nq(x) −

N∑
i=1

δx,xi

)]
. (4.66)

Dropping q-independent factors, we get

P[q(x)] = C

∫ ∏
x∈X

dλ(x) exp{NS[λ]} , (4.67)

where C is a normalization constant, and the action S is given by

S[λ] = i
∑

x

λ(x)q(x) + log

[∑
x

p(x) e−iλ(x)

]
. (4.68)

In the large-N limit, the integral in eqn (4.67) can be evaluated by the saddle point
method. The saddle point λ(x) = λ∗(x) is found by solving the stationarity equations
∂S/∂λ(x) = 0 for any x ∈ X . One obtains a family of solutions −iλ(x) = C +
log(q(x)/p(x)), with C arbitrary. The freedom in the choice of C comes from the
fact that

∑
x(
∑

i δx,xi
) = N for any configuration x1 . . . xN , and therefore one of the

constraints is in fact redundant. This choice can be made arbitrarily: regardless of the
choice, the action at the saddle point is

S[λ∗] = S0 −
∑

x

q(x) log
q(x)

p(x)
, (4.69)

where S0 is a q-independent constant. One thus gets P[q(x)]
.
= exp[−ND(q||p)].

The reader who has never encountered this type of reasoning before may wonder
why use such an indirect approach. It turns out that it is a very common formalism
in statistical physics, where similar methods are also applied, under the name ‘field
theory’, to continuous spaces X (some implicit discretization is then usually assumed
at intermediate steps, and the correct definition of a continuum limit is often not
obvious). In particular, the reader interested in the statistical-physics approach to
optimization problems or information theory will often find this type of calculation in
research papers. One of the advantages of this approach is that it provides a formal
solution to a large variety of problems. The quantity to be computed is expressed
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in an integral form as in eqn (4.67). In problems that have a ‘mean-field’ structure,
the dimension of the space over which the integration is performed does not depend
upon N . Therefore its leading exponential behaviour at large N can be obtained by
saddle point methods. The reader who wants to get some practice with this approach
is invited to ‘derive’ the various theorems and corollaries of this chapter in this way.

Notes

The theory of large deviations is set out in the book by Dembo and Zeitouni (1998),
and its connections to statistical physics can be found in Ellis (1985).

A discussion of statistical physics from a computational perspective, with a nice
introduction to Monte Carlo methods, is provided by Krauth (2006). Markov chains
on discrete state spaces are treated by Norris (1997), and a more formal presentation
of the Monte Carlo method is given by Sokal (1996).

Simulated annealing was introduced by Kirkpatrick et al. (1983). One of its main
qualities is that it is very versatile. In some sense it is a completely ‘universal’ opti-
mization algorithm: it can be defined without reference to any particular problem. Fo
this reason, however, it often overlooks important structures that may help in solving
a specific problem.
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5

The random energy model

The random energy model (REM) is probably the simplest statistical-physics model
of a disordered system which exhibits a phase transition. It is not supposed to give
a realistic description of any physical system, but it provides an example with which
various concepts and methods can be studied in full detail. Moreover, owing to its sim-
plicity, the same mathematical structure appears in a large number of contexts. This
is witnessed by the examples from information theory and combinatorial optimization
presented in the next two chapters. The model is defined in Section 5.1 and its ther-
modynamic properties are studied in Section 5.2. The simple approach developed in
these sections turns out to be useful in a large variety of problems. A more detailed,
and more involved, study of the low-temperature phase is developed in Section 5.3.
Section 5.4 provides an introduction to the ‘annealed approximation,’ which will be
useful in more complicated models. Finally, in Section 5.5 we consider a variation of
the REM that provides a ‘cartoon’ for the structure of the set of solutions of random
constraint satisfaction problems.

5.1 Definition of the model

A statistical-mechanics model is defined by a set of configurations and an energy
function defined on this space. In the REM, there are M = 2N configurations (as in
a system of N Ising spins), denoted by indices i, j, . . . ∈ {1, . . . , 2N}. The REM is a
disordered model: the energy is not a deterministic function, but rather a stochastic
process. A particular realization of such a process is usually called a sample (or
instance). In the REM, one makes the simplest possible choice for this process: the
energies {Ei} are i.i.d. random variables (the energy of a configuration is also called an
energy level). For definiteness, we shall keep here to the case where the energies have
Gaussian distribution with zero mean and variance N/2, but other distributions could
be studied as well. The scaling with N of the distribution should always be chosen in
such a way that thermodynamic potentials are extensive. The pdf for the energy Ei

of the state i is given by

P (E) =
1√
πN

e−E2/N . (5.1)

Given an instance of the REM, defined by the 2N real numbers {E1, E2, . . . , E2N },
one assigns to each configuration j a Boltzmann probability µβ(j) in the usual way:

µβ(j) =
1

Z
exp (−βEj) . (5.2)
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where β = 1/T is the inverse of the temperature, and the normalization factor Z, the
partition function, is given by

Z =

2N∑
j=1

exp (−βEj) . (5.3)

Notice that Z depends upon the temperature β, the ‘sample size’ N , and the particular
realization of the energy levels E1, . . . , EM . We shall write Z = ZN (β) to emphasize
the dependence of the partition function upon N and β.

It is important not to be confused by the existence of two levels of probability in the
REM, as in all disordered systems. We are interested in the properties of a probability
distribution, the Boltzmann distribution (5.2), which is itself a random object because
the energy levels are random variables.

Physically, a particular realization of the energy function corresponds to a given
sample of some substance whose microscopic features cannot be controlled experimen-
tally. This is what happens, for instance, in a metallic alloy: only the proportions of
the various components can be controlled. The precise positions of the atoms of each
species can be described by random variables. The expectation value with respect to
the sample realization will be denoted in the following by E(·). For a given sample,
Boltzmann’s law (5.2) gives the probability of occupying the various possible con-
figurations, according to their energies. The average with respect to the Boltzmann
distribution will be denoted by 〈 · 〉. In experiments one deals with a single (or a few)
sample(s) of a given disordered material. One might therefore be interested in comput-
ing the various thermodynamic potentials (the free energy FN , internal energy UN ,
or entropy SN ) for one given sample. This is an extremely difficult task. However,
in most cases, as N → ∞, the probability distributions of intensive thermodynamic
potentials concentrate around their expected values. Formally, for any tolerance θ > 0,

lim
N→∞

P

[∣∣∣∣XN

N
− E

(
XN

N

)∣∣∣∣ ≥ θ

]
= 0 , (5.4)

where X is a thermodynamic potential (X = F, S, U, . . . ). In statistical physics, the
quantity X is then said to be self-averaging (in probability theory, one says that it
concentrates). This essential property can be summarized in plain language by saying
that almost all large samples ‘behave’ in the same way. This is the reason why different
samples of alloys with the same chemical composition have the same thermodynamic
properties. Often the convergence is exponentially fast in N (this happens, for instance,
in the REM): this means that the expected value E XN provides a good description
of the system even at moderate sizes.

5.2 Thermodynamics of the REM

In this section we compute the thermodynamic potentials of the REM in the ther-
modynamic limit N → ∞. Our strategy consists in estimating the microcanonical
entropy density, which was introduced in Section 2.4. This knowledge is then used for
computing the partition function Z to leading exponential order for large N .
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5.2.1 Direct evaluation of the entropy

Let us consider an interval of energy I = [Nε,N(ε + δ)], and denote by N (ε, ε + δ)
the number of configurations i such that Ei ∈ I. Each energy level Ei belongs to I
independently, with probability

PI =

√
N

π

∫ ε+δ

ε

e−Nx2

dx . (5.5)

Therefore N (ε, ε + δ) is a binomial random variable, and its expectation and variance
are given by

EN (ε, ε + δ) = 2NPI , VarN (ε, ε + δ) = 2NPI [1 − PI ] . (5.6)

Because of the appropriate scaling of the interval I with N , the probability PI depends
exponentially upon N . To exponential accuracy, we thus have

EN (ε, ε + δ)
.
= exp

{
N max

x∈[ε,ε+δ]
sa(x)

}
, (5.7)

VarN (ε, ε + δ)

[EN (ε, ε + δ)]2
.
= exp

{
−N max

x∈[ε,ε+δ]
sa(x)

}
, (5.8)

where sa(x) ≡ log 2 − x2. Note that sa(x) ≥ 0 if and only if x ∈ [−ε∗, ε∗], where
ε∗ =

√
log 2.

The intuitive content of these equalities is the following. When ε is outside the
interval [−ε∗, ε∗], the average density of energy levels is exponentially small in N :
for a typical sample, there is no configuration at energy Ei ≈ Nε. In contrast, when
ε ∈] − ε∗, ε∗[, there is an exponentially large density of levels, and the fluctuations of
this density are very small. This result is illustrated by a small numerical experiment
in Fig. 5.1. We now give a more formal version of this statement.

Proposition 5.1 Define the entropy function

s(ε) =

{
sa(ε) = log 2 − ε2 if |ε| ≤ ε∗,
−∞ if |ε| > ε∗.

(5.9)

Then, for any pair ε and δ, with probability one,

lim
N→∞

1

N
logN (ε, ε + δ) = sup

x∈[ε,ε+δ]

s(x) . (5.10)

Proof The proof makes simple use of the two moments of the number of energy
levels in I, given in eqns (5.7), and (5.8).

Assume first that the interval [ε, ε+δ] is disjoint from [−ε∗, ε∗]. Then EN (ε, ε+δ)
.
=

e−AN , where A = − supx∈[ε,ε+δ] sa(x) > 0. As N (ε, ε + δ) is an integer, we have the
simple inequality

P[N (ε, ε + δ) > 0] ≤ EN (ε, ε + δ)
.
= e−AN . (5.11)

In words, the probability of having an energy level in any fixed interval outside [−ε∗, ε∗]
is exponentially small in N . An inequality of the form (5.11) goes under the name of
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Fig. 5.1 Histogram of the energy levels for three samples of the random energy model with

increasing size: from left to right N = 10, 15, and 20. Here we have plotted N−1 logN (ε, ε+δ)

versus ε, with δ = 0.05. The dashed curve gives the N → ∞ analytical prediction (5.9).

Markov inequality, and the general strategy is sometimes called the first-moment
method.

Assume now that the intersection between [ε, ε + δ] and [−ε∗, ε∗] is an interval of
non-zero length. In this case N (ε, ε+ δ) is tightly concentrated around its expectation
EN (ε, ε + δ), as can be shown using the Chebyshev inequality. For any fixed C > 0,
one has

P

{∣∣∣∣ N (ε, ε + δ)

EN (ε, ε + δ)
− 1

∣∣∣∣ > C

}
≤ VarN (ε, ε + δ)2

C2[EN (ε, ε + δ)]2
.
= e−BN , (5.12)

where B = supx∈[ε,ε+δ] sa(x) > 0.
Finally, the statement (5.10) follows from the previous estimates by a straight-

foward application of the Borel–Cantelli lemma. �

Exercise 5.1 (Large deviations) Let Nout(δ) be the total number of configurations j such
that |Ej | > N(ε∗ + δ), with δ > 0. Use Markov inequality to show that the fraction of
samples in which there exist such configurations is exponentially small.

Besides being an interesting mathematical statement, Proposition 5.1 provides a
good quantitative estimate. As shown in Fig. 5.1, even at N = 20, the outcome of
a numerical experiment is quite close to the asymptotic prediction. Note that, for
energies in the interval ] − ε∗, ε∗[, most of the discrepancy is due to the fact that we
have dropped subexponential factors in EN (ε, ε+δ): this produces corrections of order
Θ(log N/N) to the asymptotic behaviour (5.10). The contribution due to fluctuations
of N (ε, ε + δ) around its average is exponentially small in N .
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5.2.2 Thermodynamics and phase transition

From the previous result on the microcanonical entropy density, we now compute the

partition function ZN (β) =
∑2N

i=1 exp(−βEi). In particular, we are interested in in-
tensive thermodynamic potentials such as the free-entropy density φ(β) = limN→∞

(1/N) log ZN (β). We start with a quick (and loose) argument, using the general ap-
proach outlined in Section 2.4. This amounts to discretizing the energy axis using some
step size δ, and counting the energy levels in each interval using eqn (5.10). Taking
at the end the limit δ → 0 (after the limit N → ∞), one expects to get, to leading
exponential order,

ZN (β)
.
=

∫ ε∗

−ε∗

exp [N (sa(ε) − βε)] dε . (5.13)

A rigorous formulation of this result can be obtained by analogy1 with the general
equivalence relation stated in Proposition 2.6. We find the following free-entropy den-
sity:

φ(β) = max
ε∈[−ε∗,ε∗]

[sa(ε) − βε] . (5.14)

Note that although every sample of the REM is a new statistical-physics system, with
its own thermodynamic potentials, we have found that, with high probability, a random
sample has a free-entropy (or free-energy) density arbitrarily close to (5.14). A little
more work shows that the internal energy and entropy density concentrate as well.
More precisely, for any fixed tolerance θ > 0, we have |(1/N) log ZN (β) − φ(β)| < θ
with probability approaching one as N → ∞.

Let us now discuss the physical content of the result (5.14). The optimization
problem on the right-hand side can be solved through the geometrical construction
illustrated in Fig. 5.2. One has to find a tangent to the curve sa(ε) = log 2 − ε2

with slope β ≥ 0. We denote by εa(β) = −β/2 the abscissa of the tangent point. If
εa(β) ∈ [−ε∗, ε∗], then the ‘max’ in eqn (5.14) is realized in εa(β). In the other case
εa(β) < −ε∗ (because β ≥ 0), and the ‘max’ is realized in −ε∗. Therefore we have the
following result

Proposition 5.2 The free-energy density of the REM, f(β) = −φ(β)/β, is equal to

f(β) =

{
− 1

4β − log 2/β if β ≤ βc ,
−
√

log 2 if β > βc ,
where βc = 2

√
log 2 . (5.15)

This shows that a phase transition (i.e. a non-analyticity of the free-energy density)
takes place at the inverse critical temperature βc = 1/Tc = 2

√
log 2. It is a second-order

phase transition in the sense that the derivative of f(β) is continuous, but because of
the condensation phenomenon which we shall discuss in Section 5.3, it is often called
a ‘random first-order’ transition. The other thermodynamic potentials are obtained
through the usual formulae (see Section 2.2). They are plotted in Fig. 5.3.

1The task is, however, more difficult here, because the density of energy levels N (ε, ε + δ) is a
random function whose fluctuations must be controlled.
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Fig. 5.2 The ‘annealed’ entropy density sa(ε) = log 2 − ε2 of the REM as a function of

the energy density ε. The canonical entropy density s(β) is the ordinate of the point with

slope dsa/dε = β when this point lies within the interval [−ε∗, ε∗] (this is for instance the

case at ε = ε1 in the plot), and s(β) = 0 otherwise. This gives rise to a phase transition at

βc = 2
√

log 2.

The two temperature regimes or ‘phases’, β < βc and β > βc have distinct qual-
itative properties, which are most easily characterized through the thermodynamic
potentials.

• In the high-temperature phase, i.e. for β ≤ βc, the energy and entropy densities
are u(β) = −β/2 and s(β) = log 2 − β2/4, respectively. The Boltzmann mea-
sure is dominated by configurations with an energy Ei ≈ −Nβ/2. There is an
exponentially large number of configurations having such an energy density (the
microcanonical entropy density s(ε) is strictly positive at ε = −β/2), and the
Boltzmann measure is roughly equidistributed among such configurations. In the
infinite-temperature limit β → 0 the Boltzmann measure becomes uniform, and
one finds, as expected, u(β) → 0 (because nearly all configurations have an energy
Ei/N close to 0) and s → log 2.

• In the low-temperature phase, i.e. for β > βc, the thermodynamic potentials are
constant: u(β) = −ε∗ and s(β) = 0. The relevant configurations are the ones
with the lowest energy density, namely those with Ei/N ≈ −ε∗. The Boltzmann
measure is dominated by a relatively small set of configurations, which is not
exponentially large in N (the entropy density vanishes).
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Fig. 5.3 Thermodynamics of the REM: the free-energy density (full line), the energy den-

sity (dashed line) and the entropy density (dotted line), are plotted versus the temperature

T = 1/β. A phase transition takes place at Tc = 1/(2
√

log 2) ≈ 0.6005612.

Exercise 5.2 The REM was originally motivated by the attempt to provide a simple model
of a spin glass. One can generalize it by introducing the effect of a magnetic field B. The
2N configurations are divided into N + 1 groups. Each group is labelled by its ‘magnetiza-

tion’ M ∈ {−N,−N +2, . . . , N − 2, N}, and includes

„
N

(N + M)/2

«
configurations. Their

energies {Ej} are independent Gaussian variables with variance
p

N/2 as in eqn (5.1) and
mean E Ej = −MB which depends upon the group that j belongs to. Show that there
exists a phase transition line βc(B) in the plane β, B such that

1

N
E M =

j
tanh [βB] when β ≤ βc(B) ,
tanh [βc(B)B] when β > βc(B) ,

(5.16)

and plot the magnetic susceptibility (∂M/∂B)β = 0 versus T = 1/β.

Exercise 5.3 Consider a generalization of the REM where the pdf of the energies, instead
of being Gaussian, is given by P (E) ∝ exp

ˆ−C|E|δ˜, where δ > 0. Show that in order

to have extensive thermodynamic potentials, one must scale C as C = N1−δ bC (i.e. the

thermodynamic limit N → ∞ should be taken at fixed bC). Compute the critical temperature
and the ground state energy density. What is the qualitative difference between the cases
δ > 1 and δ < 1?
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5.3 The condensation phenomenon

In the low-temperature phase, a smaller-than-exponential set of configurations domi-
nates the Boltzmann measure: we say that a condensation of the measure onto these
configurations takes place. This is a scenario which is typical of the appearance of
a glass phase, and we shall encounter it in several other problems, including, for in-
stance, the satisfiability and colouring problems. It usually leads to many difficulties in
finding the relevant configurations. In order to characterize the condensation, one can
compute a participation ratio YN (β), defined in terms of the Boltzmann weights
(5.2), by

YN (β) ≡
2N∑
j=1

µβ(j)2 =

⎡⎣∑
j

e−2βEj

⎤⎦⎡⎣∑
j

e−βEj

⎤⎦−2

. (5.17)

One can think of 1/YN (β) as giving some estimate of the ‘effective’ number of con-
figurations which contribute to the measure. If the measure were equidistributed on r
levels, one would have YN (β) = 1/r.

The participation ratio can be expressed as YN (β) = ZN (2β)/ZN (β)2, where
ZN (β) is the partition function at inverse temperature β. The analysis in the pre-
vious section showed that ZN (β)

.
= exp[N(log 2 + β2/4)] with very small fluctuations

when β < βc, while ZN (β)
.
= exp[Nβ

√
log 2] when β > βc. This indicates that YN (β)

is exponentially small in N for almost all samples in the high-temperature phase, i.e.
for β < βc, in agreement with the fact that the measure is not condensed at high
temperatures. In the low-temperature phase, in contrast, we shall see that YN (β) is
finite and fluctuates from sample to sample.

The computation of E Y (we drop the arguments N and β from now on) for the
low-temperature phase is slightly involved. It requires us to control those energy levels
Ei such that Ei/N ≈ −ε∗. We give here only a sketch of the computation, and leave
the details to the reader as an exercise. Using the integral representation 1/Z2 =∫∞

0
t exp(−tZ) dt, one gets (using M = 2N )

E Y = M E

∫ ∞

0

t exp [−2βE1] exp

[
−t

M∑
i=1

e−βEi

]
dt (5.18)

= M

∫ ∞

0

t a(t) [1 − b(t)]M−1 dt , (5.19)

where

a(t) ≡
∫

exp
[
−2βE − te−βE

]
dP (E) , (5.20)

b(t) ≡
∫

[1 − exp(−te−βE)] dP (E) , (5.21)

and P (E) is the Gaussian distribution (5.1). For large N , the leading contributions
to E Y come from the regions where E is close to −Nε0 and log t is close to −Nβε0,
where
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ε0 = ε∗ −
1

2ε∗
log

√
πN (5.22)

is fixed by the condition 2NP (−Nε0) = 1. This can be thought of as a refined estimate
for the energy density of the lowest-energy configuration.

We thus change variables from E, t to u, θ using E = −Nε0+u and t = θ exp(−Nβε0),
and we study the regime where u and θ are finite as N → ∞. In this regime, the func-
tion P (E) can be replaced by 2−Neβcu. One gets

a(t) � 1

M
e2Nβε0

∫ +∞

−∞

du eβcu−2βu−ze−βu

=
e2Nβε0

Mβ
zβc/β−2 Γ

(
2 − βc

β

)
, (5.23)

b(t) � 1

M

∫ +∞

−∞

du eβcu [1 − exp(−ze−βu)] = − 1

Mβ
zβc/β Γ

(
−βc

β

)
, (5.24)

where Γ(x) is Euler’s gamma function. Note that the substitution P (E) � 2−Neβcu is
harmless because the resulting integrals (5.23) and (5.24) converge at large u.

For large N , the expression [1 − b(t)]M−1 in eqn (5.19) can be approximated by
e−Mb(t), and one finally obtains

E Y = M

∫ ∞

0

dt t a(t) e−Mb(t) (5.25)

=
1

β
Γ

(
2 − βc

β

)∫ ∞

0

dz zβc/β−1 exp

[
1

β
Γ

(
−βc

β

)
zβc/β

]
= 1 − βc/β ,

where we have used the approximate expressions (5.23) and (5.24), and the equalities
are understood to hold up to corrections which vanish as N → ∞.

We therefore obtain the following.

Proposition 5.3 In the REM, when N → ∞, the expectation value of the participa-
tion ratio is

E Y =

{
0 when T > Tc ,
1 − T/Tc when T ≤ Tc .

(5.26)

This gives a quantitative measure of the degree of condensation of the Boltzmann mea-
sure: when T decreases, condensation starts at the phase transition temperature Tc.
At lower temperatures, the participation ratio Y increases, meaning that the measure
becomes concentrated onto fewer and fewer configurations, until at T = 0 only one
configuration contributes and Y = 1.

With the participation ratio, we have a first qualitative and quantitative charac-
terization of the low-temperature phase. Actually, the energies of the relevant configu-
rations in this phase have many interesting probabilistic properties, to which we shall
return in Chapter 8.

5.4 A comment on quenched and annealed averages

In the previous section, we found that the self-averaging property holds in the REM,
and this result allowed us to discuss the thermodynamics of a generic sample.
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Self-averaging of the thermodynamic potentials is a very frequent property, but in
more complicated systems it is often difficult to compute their expectation. We discuss
here an approximation which is frequently used in such cases, the ‘annealed average’.
When the free-energy density is self-averaging, the value of fN is roughly the same
for almost all samples and can be estimated by its expectation, called the quenched
average, fN,q:

fN,q = E fN = − T

N
E log ZN . (5.27)

This is the quantity that we computed in eqn (5.15). In general, it is hard to compute
the expectation of the logarithm of the partition function. A much easier task is to
compute the annealed average,

fN,a = − T

N
log(E ZN ) . (5.28)

Let us compute this quantity for the REM. Starting from the partition function (5.3),
we find:

E ZN = E

2N∑
i=1

e−βEi = 2NE e−βE = 2NeNβ2/4 , (5.29)

yielding fN,a(β) = −β/4 − log 2/β.
Let us compare this with the correct free-energy density found in eqn (5.15).

Jensen’s inequality (eqn (1.6)) shows that the annealed free-energy density fa(β) is
always smaller than or equal to the quenched value (remember that the logarithm is a
concave function). In the REM, and a few other particularly simple problems, the an-
nealed average gives the correct result in the high-temperature phase, i.e. for T > Tc,
but fails to identify the phase transition, and predicts wrongly a free-energy density in
the low-temperature phase which is the analytic prolongation of the free-energy den-
sity at T > Tc. In particular, it yields a negative entropy density sa(β) = log 2− β2/4
for T < Tc (see Fig. 5.2).

A negative entropy is impossible in a system with a finite configuration space, as
can be seen from the definition of entropy. It thus signals a failure, and the reason
is easily understood. For a given sample with a free-energy density f , the partition
function behaves as ZN = exp(−βNfN ). Self-averaging means that fN has small
sample-to-sample fluctuations. However, these fluctuations, exist and are amplified
in the partition function because of the factor N in the exponent. This implies that
the annealed average of the partition function can be dominated by some very rare
samples (those with an anomalously low value of fN ). Consider, for instance, the low-
temperature limit. We already know that in almost all samples the configuration with
the lowest energy density is found at Ei ≈ −Nε∗. However, there exist exceptional
samples where one configuration has a smaller energy Ei = −Nε where ε > ε∗. These
samples are exponentially rare (they occur with probability

.
= 2Ne−Nε2

), they are
irrelevant as far as the quenched average is concerned, but they dominate the annealed
average.

Let us add a short semantic note. The terms ‘quenched’ and ‘annealed’ originate
from the thermal processing of materials, for instance in the context of the metallurgy
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of alloys: a quench corresponds to preparing a sample by bringing it suddenly from
a high to low a temperature. During a quench, atoms do not have time to change
position (apart from some small vibrations). A given sample is formed by atoms in
some random positions. In contrast in an annealing process, one gradually cools down
the alloy, and the various atoms will find favourable positions. In the REM, the energy
levels Ei are quenched: for each given sample, they take certain fixed values (like the
positions of atoms in a quenched alloy). In the annealed approximation, one treats the
configurations i and the energies Ei on the same footing. One says that the variables
Ei are thermalized (like the positions of atoms in an annealed alloy).

In general, the annealed average can be used to find a lower bound on the free
energy for any system with a finite configuration space. Useful results can be obtained,
for instance, using the following two simple relations, valid for all temperatures T =
1/β and sizes N :

fN,q(T ) ≥ fN,a(T ) ,
dfN,q(T )

dT
≤ 0 . (5.30)

The first relation one follows from Jensen’s inequality as mentioned above, and the
second can be obtained from the positivity of the canonical entropy (see eqn (2.22)),
after averaging over the quenched disorder.

In particular, if one is interested in optimization problems (i.e. in the limit of
vanishing temperature), the annealed average provides the following general bound.

Proposition 5.4 The ground state energy density

uN (T = 0) ≡ 1

N
E

[
min

x∈XN
E(x)

]
(5.31)

satisfies the bound uN (0) ≥ maxT∈[0,∞] fN,a(T ) .

Proof Consider the annealed free-energy density fN,a(T ) as a function of the tempera-
ture T = 1/β. For any given sample, the free energy is a concave function of T because
of the general relation (2.23). It is easy to show that the same property holds for the
annealed average. Let T∗ be the temperature at which fN,a(T ) achieves its maximum,
and let f∗

N,a be its maximum value. If T∗ = 0, then uN (0) = fN,q(0) ≥ f∗
N,a. If T∗ > 0,

using the two inequalities (5.30), one gets

uN (0) = fN,q(0) ≥ fN,q(T∗) ≥ fa(T∗) . (5.32)

�

In the REM, this result immediately implies that u(0) ≥ maxβ [−β/4 − log 2/β] =
−
√

log 2, which is actually a tight bound.

5.5 The random subcube model

In the spirit of the REM, it is possible to construct a toy model for the set of solutions
of a random constraint satisfaction problem. The random subcube model is defined
by three parameters N,α, p. It has 2N configurations: the vertices x = (x1, · · · , xN ) of
the unit hypercube {0, 1}N . An instance of the model is defined by a subset S of the
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hypercube, the ‘set of solutions’. Given an instance, the analogue of the Boltzmann
measure is defined as the uniform distribution µ(x) over S.

The solution space S is the union of M = �2(1−α)N� random subcubes which are
i.i.d. subsets. Each subcube Cr, r ∈ {1, . . . , M}, is generated through the following
procedure:

1. Generate the vector t(r) = (t1(r), t2(r), . . . , tN (r)), with independent entries

ti(r) =

⎧⎨⎩0 with probability (1 − p)/2 ,
1 with probability (1 − p)/2 ,
∗ with probability p.

(5.33)

2. Given the values of {ti(r)}, Cr is a subcube constructed as follows. For all i’s such
that ti(r) is 0 or 1, fix xi = ti(r). Such variables are said to be ‘frozen’ for the
subcube Cr. For all other i’s, xi can be either 0 or 1. These variables are said to
be ‘free’.

A configuration x may belong to several subcubes. Whenever it belongs to at least
one subcube, it is in S.

To summarize, α < 1 fixes the number of subcubes, and p ∈ [0, 1] fixes their size.
The model can be studied using exactly the same methods as for the REM. Here we
shall just describe the main results, omitting all proofs. It is a good exercise to work
out the details and prove the various assertions.

Let us denote by σr the entropy density of the r-th cluster in bits: σr = (1/N) log2 |Cr|.
It is clear that σr coincides with the fraction of ∗’s in the vector t(r). In the large-N
limit, the number of clusters N (σ) with an entropy density σ obeys a large-deviation
principle:

N (σ)
.
= 2NΣ(σ) . (5.34)

The function Σ(σ) is given as follows. Let D(σ||p) denote the Kullback–Leibler diver-
gence between a Bernoulli distribution with mean σ and a Bernoulli distribution with
mean p. As we saw in Section 1.2, this is given by

D(σ||p) = σ log2

σ

p
+ (1 − σ) log2

1 − σ

1 − p
. (5.35)

We define [σ1(p, α), σ2(p, α)] as the interval in which D(σ||p) ≤ 1 − α. Then

Σ(σ) =

{
1 − α − D(σ||p) when σ ∈ [σ1(p, α), σ2(p, α)] ,
−∞ otherwise.

(5.36)

We can now derive the phase diagram (see Fig. 5.4). We denote by s the total
entropy density of the solution space, i.e. s = (1/N) log2 |S|. Consider a configuration
x. The expected number of clusters to which it belongs is 2N(1−α)((1+p)/2)N . There-
fore, if α < αd ≡ log2(1+p), the solution space contains all but a vanishing fraction of
the configurations, with high probability: s = log 2. On the other hand, if α > αd, the
probability that a configuration in S belongs to at least two distinct clusters is very
small. In this regime, s = maxσ(Σ(σ)+σ). As in the REM, there are two cases. (i) The
maximum of Σ(σ) + σ is achieved for σ = σ∗(p, α) ∈]s1(p, α), s2(p, α)[. This happens
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Fig. 5.4 Left : the function Σ(σ) of the random subcube model, for p = 0.6 and

α = 0.8 ∈]αd, αc[. The maximum of the curve gives the total number of clusters Σmax.

A ‘typical’ random solution x ∈ S belongs to one of the eNΣ(σ∗) clusters with entropy density

σ∗, with Σ′(σ∗) = −1. As α increases above αc, random solutions condense into a few clusters

with entropy density s2. Right : thermodynamic quantities plotted versus α for p = 0.6: the

total entropy s, the total number of clusters Σmax, and the number of clusters where typical

configurations are found, Σ∗.

when α < αc(p) ≡ log2(1+p)+(1−p)/(1+p). In this case s = (1−α) log 2+log(1+p).
(ii) The maximum of Σ(σ) + σ is obtained for σ = σ2(p, α). In this case s = σ2(p, α).

Altogether, we have found three phases:

• For α < αd, subcubes overlap and one big cluster contains most of the configura-
tions: stot = 1.

• For αd < α < αc, the solution space S is split into 2N(1−α) non-overlapping
clusters of configurations (every subcube is a cluster of solutions, separated from
the others). Most configurations of S are in the eNΣ(s∗) clusters which have an
entropy density close to s∗(p, α). Note that the majority of clusters have entropy
density 1 − p < s∗. There is a tension between the number of clusters and their
size (i.e. their internal entropy). The result is that the less numerous, but larger,
clusters with entropy density s∗ dominate the uniform measure.

• For α > αc, the solution space S is still partitioned into 2N(1−α) non-overlapping
clusters of configurations. However, most solutions are in clusters with entropy
density close to s2(p, α). The number of such clusters is not exponentially large.
In fact, the uniform measure over S shows a condensation phenomenon, which is
completely analogous to that in the REM. One can define a participation ratio
Y =

∑
r µ(r)2, where µ(r) is the probability that a configuration of S chosen

uniformly at random belongs to cluster r; µ(r) = eNσr/
∑

r′ eNσr′ . This partici-
pation ratio is finite, and equal to 1 − m, where m is the slope m = −(dΣ/dσ),
evaluated at s2(p, α).

Notes

The REM was invented by Derrida (1980), as an extreme case of family of spin glass
models. Here we have followed his original analysis, which makes use of the microcanon-
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ical entropy. More detailed computations can be found in Derrida (1981), including
the solution to Exercise 5.2.

The condensation formula (5.3) appeared first in Gross and Mézard (1984) as an
application of replica computations which we shall discuss in Chapter 8. The direct
estimate of the participation ratio presented here and the analysis of its fluctuations
were developed by Mézard et al. (1985a) and Derrida and Toulouse (1985). We shall
return to the properties of the fascinating condensed phase in Chapter 8.

Exercise 5.3 shows a phase transition which goes from second-order when δ > 1,
to first-order when δ < 1. Its solution can be found in Bouchaud and Mézard (1997).

The random subcube model was introduced by Achlioptas (2007) and studied in
detail by Mora and Zdeborová (2007). We refer to that paper for the derivations
omitted from Section 5.5.

As a final remark, note that in most of the physics literature, authors do not
explicitely write down all of the mathematical steps leading, for instance, to eqn (5.13),
preferring a more synthetic presentation which focuses on the basic ideas. In more
complicated problems, it may be very difficult to fill in the corresponding mathematical
gaps. In many of the models studied in this book, this is still beyond the range of
rigorous techniques. The recent book by Talagrand (2003) adopts a fully rigorous
point of view, and it starts with a presentation of the REM which nicely complements
the one given here and in Chapter 8.
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The random code ensemble

As already explained in Section 1.6, one of the basic problems of information the-
ory consists in communicating reliably over a noisy communication channel. Error-
correcting codes achieve this task by systematically introducing some form of redun-
dancy into the message to be transmitted. One of the major breakthroughs accom-
plished by Claude Shannon was to understand the importance of code ensembles. He
realized that it is much easier to construct ensembles of codes which have good prop-
erties with high probability than to exhibit explicit examples that achieve the same
performance. In a nutshell, ‘stochastic’ design is much easier than ‘deterministic’ de-
sign.

At the same time, he defined and analysed the simplest such ensembles, which has
been named thereafter the random code ensemble (or, sometimes, the Shannon ensem-
ble). Despite its great simplicity, the random code ensemble (RCE) has very interesting
properties and, in particular, it achieves the optimal error-correcting performance. It
provides therefore a proof of the ‘direct’ part of the channel coding theorem: it is pos-
sible to communicate with vanishing error probability as long as the communication
rate is smaller than the channel capacity. Furthermore, it is the prototype of a code
based on a random construction. In the following chapters we shall explore several
examples of this approach, and the random code ensemble will serve as a reference.

We introduce the idea of code ensembles and define the RCE in Section 6.1. Some
properties of this ensemble are described in Section 6.2, and its performance over
the BSC is estimated in Section 6.3. We generalize these results to a general discrete
memoryless channel in Section 6.4. Finally, in Section 6.5, we show that the RCE is
optimal by a simple sphere-packing argument.

6.1 Code ensembles

An error-correcting code is defined as a pair of an encoding and a decoding map.
The encoding map is applied to the information sequence to get an encoded message
which is transmitted through the channel. The decoding map is applied to the (noisy)
channel output. For the sake of simplicity, we shall assume throughout this chapter
that the message to be encoded is given as a sequence of M bits and that encoding
produces a redundant sequence of N > M bits. The possible codewords (i.e. the 2M

points in the space {0, 1}N which are all possible outputs of the encoding map) form
the codebook CN . We denote by Y the output alphabet of the communication channel.
We use the notation
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x : {0, 1}M → {0, 1}N encoding map , (6.1)

xd : YN → {0, 1}N decoding map . (6.2)

Notice that the definition of the decoding map here is slightly different from the one
given in Section 1.6. Here we consider only the difficult part of the decoding procedure,
namely how to reconstruct from the received message the codeword which was sent.
To complete the decoding as defined in Section 1.6, one needs to get back the original
message by knowing the codeword, but this is assumed to be an easier task (encoding
is assumed to be injective).

The customary recipe for designing a code ensemble is the following. (i) Define
a subset of the space of encoding maps (6.1). (ii) Endow this set with a probability
distribution. (iii) Finally, for each encoding map in the ensemble, define the associated
decoding map. In practice, this last step is accomplished by declaring that one of a
few general ‘decoding strategies’ is adopted. We shall introduce two such strategies
below.

Our first example is the random code ensemble. Note that there exist 2N2M

pos-
sible encoding maps of the type (6.1): one must specify N bits for each of the 2M code-
words. In the RCE, any of these encoding maps is picked with uniform probability. The
code is therefore constructed as follows. For each of the possible information messages

m ∈ {0, 1}M , we obtain the corresponding codeword x(m) = (x
(m)
1 , x

(m)
2 , . . . , x

(m)
N ) by

tossing an unbiased coin N times: the i-th outcome is assigned to the i-th coordinate

x
(m)
i .

Exercise 6.1 Note that, with this definition, the code is not necessarily injective: there
could be two information messages m1 �= m2 with the same codeword: x(m1) = x(m2).
This is an annoying property for an error-correcting code: any time that we send either of
the messages m1 or m2, the receiver will not be able to distinguish between them, even in
the absence of noise. Happily enough, though, these unfortunate coincidences occur rarely,
i.e. their number is much smaller than the total number of codewords 2M . What is the
expected number of pairs m1, m2 such that x(m1) = x(m2)? What is the probability that
all the codewords are distinct?

Let us now turn to the definition of the decoding map. We shall introduce two of
the most important decoding schemes here: word MAP (MAP stands for ‘maximum
a posteriori probability’ here) and symbol MAP decoding. Both schemes can be
applied to any code. In order to define them, it is useful to introduce the probability
distribution P (x|y) for x to be the channel input conditional on the received message
y. For a memoryless channel with a transition probability Q(y|x), this probability has
an explicit expression as a consequence of the Bayes rule:

P(x|y) =
1

Z(y)

N∏
i=1

Q(yi|xi) P(x) . (6.3)

Here Z(y) is fixed by the normalization condition
∑

x P(x|y) = 1, and P(x) is the a
priori probability for x to be the transmitted message. Throughout this book, we shall
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assume that the transmitter chooses the codeword to be transmitted with uniform
probability. Therefore P(x) = 1/2M if x ∈ CN and P(x) = 0 otherwise. This can also
be written formally as

P(x) =
1

|CN | I(x ∈ CN ) . (6.4)

Indeed, it is not hard to realize that Z(y) is the probability of observing y when
a random codeword is transmitted. Hereafter, we shall use µy( · ) to denote the a
posteriori distribution (6.3) and µ0( · ) for the a priori one (6.4). We can thus rewrite
eqn (6.3) as

µy(x) =
1

Z(y)

N∏
i=1

Q(yi|xi)µ0(x) . (6.5)

It is also useful to define the marginal distribution µ
(i)
y (xi) = P(xi|y) of the i-th

bit of the transmitted message conditional on the output message. This is obtained
from the distribution (6.5) by marginalizing over all the bits xj with j = i:

µ(i)
y (xi) =

∑
x\i

µy(x) , (6.6)

where we have introduced the shorthand x\i ≡ {xj : j = i}. Word MAP decoding
outputs the most probable transmitted codeword, i.e. it maximizes the distribution
(6.5):

xw(y) = arg max
x

µy(x) . (6.7)

We do not specify what to do in the case of a tie (i.e. if the maximum is degenerate),
since this is irrelevant for all the coding problems that we shall consider. Scrupulous
readers can chose their own convention in such cases.

A strongly related decoding strategy is maximum-likelihood decoding. In this
case, one maximizes Q(y|x) over x ∈ CN . This coincides with word MAP decoding
whenever the a priori distribution over the transmitted codeword P(x) = µ0(x) is taken
to be uniform as in eqn (6.4). From now on, we shall therefore blur the distinction
between these two strategies.

Symbol (or bit) MAP decoding outputs the sequence of the most probable trans-
mitted bits, i.e. it maximizes the marginal distribution (6.6):

xb(y) =

(
arg max

x1

µ(1)
y (x1) , . . . , arg max

xN

µ(N)
y (xN )

)
. (6.8)

Exercise 6.2 Consider a code of block length N = 3 and codebook size |C| = 4, with

codewords x(1) = 001, x(1) = 101, x(1) = 110, x(1) = 111. What is the code rate? This
code is used to communicate over a binary symmetric channel with flip probability p < 0.5.
Suppose that the channel output is y = 000. Show that the word MAP decoding outputs
the codeword 001. Now apply symbol MAP decoding to decode the first bit x1. Show that
the result coincides with that of word MAP decoding only when p is small enough.
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It is important to note that each of the above decoding schemes is optimal with
respect a different criterion. Word MAP decoding minimizes the average block error
probability PB defined in Section 1.6.2. This is the probability, with respect to the
channel distribution Q(y|x), that the decoded codeword xd(y) is different from the
transmitted one, averaged over the transmitted codeword:

PB ≡ 1

|C|
∑
x∈C

P[xd(y) = x] . (6.9)

Bit MAP decoding minimizes the bit error probability, or bit error rate
(BER), Pb. This is the fraction of incorrect bits, averaged over the transmitted code-
word:

Pb ≡ 1

|C|
∑
x∈C

1

N

N∑
i=1

P[xd
i (y) = xi] . (6.10)

Exercise 6.3 Show that word MAP and symbol MAP decoding are indeed optimal with
respect to the above criteria.

6.2 The geometry of the random code ensemble

We begin our study of the RCE by first working out some of its geometrical properties.
A code from this ensemble is defined by a codebook, i.e. a set CN of 2M points (the
codewords) in the Hamming space {0, 1}N . Each of these points is drawn with
uniform probability from the Hamming space. The simplest question one may ask
about CN is the following. Suppose you sit on one of the codewords and look around
you. How many other codewords are there at a given distance? We shall use here the
Hamming distance: the distance between two points x, y ∈ {0, 1}N is the number
of coordinates in which they differ.

This question is addressed through the distance enumerator Nx(0)(d) with re-

spect to a codeword x(0) ∈ CN . This is defined as the number of codewords in x ∈ CN

whose Hamming distance from x(0) is equal to d: d(x, x(0)) = d.
We shall now compute the typical properties of the distance enumerator for a

random code. The simplest quantity to look at is the average distance enumerator
ENx(0)(d), the average being taken over the code ensemble. In general one should also

specify which one of the codewords is x(0). Since, in the, RCE all codewords are drawn
independently, each one with uniform probability over the Hamming space, such a
specification is irrelevant and we can in fact fix x(0) to be the all-zeros codeword,
x(0) = 000 · · · 00. Therefore we are asking the following question: take 2M −1 points at
random with uniform probability in the Hamming space {0, 1}N ; what is the average
number of points at distance d form the corner 00 · · · 0? This is simply the number
of points (2M − 1), times the fraction of the Hamming space ‘volume’ at a distance d
from 000 · · · 0 (2−N

(
N
d

)
):
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Fig. 6.1 Growth rate of the distance enumerator for the random code ensemble, with rate

R = 1/2, as a function of the Hamming distance d = Nδ.

ENx(0)(d) = (2M − 1) 2−N

(
N

d

)
.
= 2N [R−1+H2(δ)] . (6.11)

In the second expression above, we have introduced the fractional distance δ ≡ d/N
and the rate R ≡ M/N , and considered the N → ∞ asymptotics with these two
quantities kept fixed. We plot the function R−1+H2(δ) (which is sometimes called the
growth rate of the distance enumerator) in Fig. 6.1. For δ small enough, i.e. δ < δGV ,
the growth rate is negative: the average number of codewords at a small distance from
x(0) vanishes exponentially with N . By the Markov inequality, the probability of having
any codeword at all at such a short distance vanishes as N → ∞. The distance δGV(R),
called the Gilbert–Varshamov distance, is the smallest root of R− 1 +H2(δ) = 0.
For instance, we have δGV(1/2) ≈ 0.110278644.

Above the Gilbert–Varshamov distance, i.e. δ > δGV, the average number of code-
words is exponentially large, with the maximum occurring at δ = 1/2: ENx(0)(N/2)

.
=

2NR = 2M . It is easy to show that the distance enumerator Nx(0)(d) is sharply concen-
trated around its average in the whole regime δGV < δ < 1 − δGV. This can be done
using arguments similar to those developed in Section 5.2 for the random energy model
(REM configurations become codewords in the present context, the role of the energy
is played by the Hamming distance, and the Gaussian distribution of the energy levels
is replaced here by the binomial distribution). A pictorial interpretation of the above
result is shown in Fig. 6.2 (but note that it is often misleading to interpret phenomena
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GV

codewords

x(0)
δ

Fig. 6.2 A pictorial view of a typical code from the random code ensemble. The codewords

are random points in the Hamming space. If we pick a codeword at random from the code

and consider a ball of radius Nδ around it, the ball will not contain any other codeword as

long as δ < δGV(R), it will contain exponentially many codewords when δ > δGV(R).

occurring in spaces with a large number of dimensions using finite-dimensional images:
such images must be handled with care!).

Exercise 6.4 The random code ensemble can easily be generalized to other (non-
binary) alphabets. Consider, for instance, a q-ary alphabet, i.e. an alphabet with letters
{0, 1, 2, . . . , q− 1} ≡ A. A code CN is constructed by taking 2M codewords with uniform
probability in AN . We can define the distance between any two codewords dq(x, y) as the
number of positions in which the sequences x, y differ. Show that the average distance
enumerator is now

ENx(0)(d)
.
= 2N [R−log2 q+δ log2(q−1)+H2(δ)] , (6.12)

where δ ≡ d/N and R ≡ M/N . The maximum of the above function is no longer at δ = 1/2.
How can we explain this phenomenon in simple terms?

6.3 Communicating over a binary symmetric channel

We shall now analyse the performance of the RCE when used for communicating over
a binary symmetric channel (BSC) as defined in Fig. 1.4. We start by considering
a word MAP (or, equivalently, maximum-likelihood) decoder, and then analyse the
slightly more complicated symbol MAP decoder. Finally, we introduce another decod-
ing strategy, inspired by the statistical-physics analogy, that generalizes word MAP
and symbol MAP decoding.
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Fig. 6.3 A pictorial view of word MAP decoding for a BSC. A codeword x(0) is chosen and

transmitted through a noisy channel. The channel output is y. If the distance between x(0)

and y is small enough (left frame), the transmitted message can be safely reconstructed by

looking for the codeword closest to y. In the opposite case (right frame), the closest codeword

x1 does not coincide with the transmitted one.

6.3.1 Word MAP decoding

For a BSC, both the channel input x and the output y are sequences of bits of length
N . The probability for the codeword x to be the channel input conditional on the
output y, defined in eqns (6.5) and (6.4), depends uniquely on the Hamming distance
d(x, y) between these two vectors. Denoting by p the channel flip probability, we have

µy(x) =
1

Z ′(y)
pd(x,y)(1 − p)N−d(x,y) I(x ∈ CN ) , (6.13)

where Z ′(y) is a normalization constant which depends uniquely upon y (up to a factor,
this coincides with the normalization Z(y) in eqn (6.5)). Without loss of generality,
we can assume that p < 1/2. Therefore word MAP decoding, which prescribes that
µy(x) is maximized with respect to x, outputs the codeword which is the closest to
the channel output.

We have obtained a purely geometrical formulation of the original communication
problem. A random set of points CN is drawn in the Hamming space {0, 1}N , and one
of them (let us call it x(0)) is chosen for communicating. Noise perturbs this vector,
yielding a new point y. Decoding consists in finding the closest point to y among all

the points in CN , and fails every time this is not x(0). The block error probability is
simply the probability for such an event to occur. This formulation is illustrated in
Fig. 6.3.

This description should immediately make it clear that the block error probability
vanishes, (in the N → ∞ limit) as soon as p is below some finite threshold. In the pre-
vious Section we saw that, with high probability, the closest codeword x′ ∈ CN\x(0) to
x(0) lies at a distance d(x′, x(0)) � NδGV(R). On the other hand, y is obtained from x(0)

by flipping each bit independently with probability p, and therefore d(y, x(0)) � Np

with high probability. By the triangle inequality, x(0) is certainly the closest codeword
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to y (and therefore word MAP decoding is successful) if d(x(0), y) < d(x(0), x′)/2.
If p < δGV(R)/2, this happens with probability approaching one as N → ∞, and
therefore the block error probability vanishes.

However, the above argument overestimates the effect of noise. Although about
NδGV(R)/2 incorrect bits may cause an unsuccessful decoding, they must occur in the
appropriate positions for y to be closer to x′ than to x(0). If they occur at uniformly
random positions (as happens in a BSC), they will probably be harmless. The difference
between the two situations is most significant in large-dimensional spaces, as shown
by the analysis provided below.

The distance between x(0) and y is a sum of N i.i.d. Bernoulli variables with
parameter p (each bit is flipped with probability p). By the central limit theorem,
N(p−ε) < d(x(0), y) < N(p+ε) with probability approaching one in the N → ∞ limit,

for any ε > 0. As for the remaining 2M−1 codewords, they are completely uncorrelated

with x(0) and, therefore, with y: {y, x(1), · · · , x(2M−1)} are 2M i.i.d. random points

drawn from the uniform distribution over {0, 1}N . The analysis of the previous section
shows that, with probability approaching one as N → ∞, none of the codewords

{x(1), · · · , x(2M−1)} lies within a ball of radius Nδ centred on y when δ < δGV(R).
In the opposite case, if δ > δGV(R), there is an exponential (in N) number of these
codewords within a ball of radius Nδ.

The performance of the RCE is easily deduced (see Fig. 6.4). If p < δGV(R), the
transmitted codeword x(0) lies at a shorter distance than all the other ones from the
received message y: decoding is successful. At a larger noise level, if p > δGV(R),
there is an exponential number of codewords closer to y than the transmitted one
is: decoding is unsuccessful. Note that the condition p < δGV(R) can be rewritten as
R < CBSC(p), where CBSC(p) = 1−H2(p) is the capacity of a BSC with flip probability
p.

6.3.2 Symbol MAP decoding

In symbol MAP decoding, the i-th bit is decoded by first computing the marginal
P (i)(xi|y) and then maximizing it with respect to xi. Using eqn (6.13), we get

µ(i)
y (xi) =

∑
x\i

µy(x) =
1

Z

∑
x\i

exp{−2B d(x, y)} , (6.14)

where we have introduced the parameter

B ≡ 1

2
log

(
1 − p

p

)
(6.15)

and the normalization constant

Z ≡
∑

x∈CN

exp{−2B d(x, y)} . (6.16)

Equation (6.14) shows that the marginal distribution µ
(i)
y (xi) sums contributions from

all the codewords, not only the one closest to y. This makes the analysis of symbol
MAP decoding slightly more involved than the word MAP decoding case.
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Fig. 6.4 Logarithm of the distance enumerator bNy(d) (which counts the number of code-

words at a distance d = Nδ from the received message) divided by the block length N . Here,

the rate is R = 1/2. We also show the distance of the transmitted codeword for two different

noise levels: p = 0.03 < δGV(1/2) ≈ 0.110278644 (left) and p = 0.3 > δGV(R) (right). The

tangent lines with slope 2B = log[(1−p)/p] determine which codewords dominate the symbol

MAP decoder.

Let us start by estimating the normalization constant Z. It is convenient to separate
the contribution arising from the transmitted codeword x(0) from that arising from

the incorrect codewords x(1), . . . , x(2M−1):

Z = e−2Bd(x(0),y) +
N∑

d=0

N̂y(d) e−2Bd ≡ Zcorr + Zerr , (6.17)

where we have denoted by N̂y(d) the number of incorrect codewords at a distance

d from the vector y. The contribution from x(0) in the above expression is easily

estimated. By the law of large numbers, d(x(0), y) � Np and therefore Zcorr is close

to e−2NBp with high probability. More precisely, for any ε > 0, e−N(2Bp+ε) ≤ Zcorr ≤
e−N(2Bp−ε) with probability approaching one in the N → ∞ limit.

For Zerr, we proceed in two steps: we first compute the distance enumerator N̂y(d),
and then sum over d. The distance enumerator was computed in Section 6.2. As in the
analysis of word MAP decoding, the fact that the distances are measured with respect
to the channel output y and not with respect to a codeword does not change the result,

because y is independent of the incorrect codewords x(1), · · · , x(2M−1). Therefore N̂y(d)

is exponentially large in the interval δGV(R) < δ ≡ d/N < 1−δGV(R), while it vanishes
with high probability outside the same interval. Moreover, if δGV(R) < δ < 1−δGV(R),

N̂y(d) is tightly concentrated around its mean, given by eqn (6.11). The summation

over d in eqn (6.17) can then be evaluated by the saddle point method. This calculation
is very similar to the estimation of the free energy of the random energy model (see
Section 5.2). Roughly speaking, we have
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Zerr =
N∑

d=0

N̂y(d) e−2Bd � N

∫ 1−δGV

δGV

eN [(R−1) log 2+H(δ)2Bδ] dδ
.
= eNφerr , (6.18)

where

φerr ≡ max
δ∈[δGV,1−δGV]

[ (R − 1) log 2 + H(δ) − 2Bδ ] . (6.19)

The reader can complete the mathematical details of the above derivation as outlined
in Section 5.2. The bottom line is that Zerr is close to eNφerr with high probability as
N → ∞.

Let us examine the resulting expression given in eqn (6.19) (see Fig. 6.4). If the
maximum is achieved in the interior of [δGV, 1− δGV], its location δ∗ is determined by
the stationarity condition H′(δ∗) = 2B, which implies δ∗ = p. In the opposite case,
the maximum must be realized at δ∗ = δGV (remember that B > 0). Evaluating the
right hand side of eqn (6.19) in these two cases, we get

φerr =

{
−δGV(R) log ((1 − p)/p) if p < δGV,
(R − 1) log 2 − log(1 − p) otherwise.

(6.20)

We can now compare Zcorr and Zerr. At low noise levels (small p), the transmit-
ted codeword x(0) is close enough to the received message y to dominate the sum in
eqn (6.17). At higher noise levels, the exponentially more numerous incorrect code-
words overcome the term due to x(0). More precisely, with high probability we have

Z =

{
Zcorr[1 + e−Θ(N)] if p < δGV,
Zerr[1 + e−Θ(N)] otherwise,

(6.21)

where the exponents Θ(N) are understood to be positive.
We now consider eqn (6.14), and once again separate out the contribution of the

transmitted codeword,

P (i)(xi|y) =
1

Z
[Zcorr I(xi = x

(0)
i ) + Zerr,xi

] , (6.22)

where we have introduced the quantity

Zerr,xi
=

∑
z∈CN\x(0)

e−2Bd(z,y) I(zi = xi) . (6.23)

Note that Zerr,xi
≤ Zerr. Together with eqn (6.21), this implies, if p < δGV(R), that

µ
(i)
y (xi = x

(0)
i ) = 1 − e−Θ(N) and µ

(i)
y (xi = x

(0)
i ) = e−Θ(N). Therefore, in this regime,

the symbol MAP decoder correctly outputs the transmitted bit x
(0)
i . It is important to

stress that this result holds with probability approaching one as N → ∞. Concretely,
there exist bad choices of the code CN and particularly unfavourable channel realiza-

tions y such that µ
(i)
y (xi = x

(0)
i ) < 1/2 and the decoder fails. However, the probability

of such an event (i.e. the bit-error rate Pb) vanishes in the large-block length limit
N → ∞.
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What happens for p > δGV(R)? Arguing as for the normalization constant Z, it
is easy to show that the contribution of incorrect codewords dominates the marginal
distribution (6.22). Intuitively, this suggests that the decoder fails. A more detailed
computation, sketched below, shows that the bit error rate in the N → ∞ limit is

Pb =

{
0 if p < δGV(R),
p if δGV(R) < p < 1/2.

(6.24)

Note that, above the threshold δGV(R), the bit error rate is the same as if the in-
formation message were transmitted without coding through the BSC: the code is
useless.

A complete calculation of the bit error rate Pb in the regime p > δGV(R) is rather
lengthy. We shall provide here a heuristic, albeit essentially correct, justification, and
leave a more detailed derivation to the exercise below. As already stressed, the con-
tribution Zcorr of the transmitted codeword can be safely neglected in eqn (6.22).

Assume, without loss of generality, that x
(0)
i = 0. The decoder will be successful if

Zerr,0 > Zerr,1 and will fail in the opposite case. Two cases must be considered: either
yi = 0 (this happens with probability 1−p) or yi = 1 (probability p). In the first case,
we have

Zerr,0 =
∑

z∈CN\x(0)

I(zi = 0) e−2Bdi(y,z) ,

Zerr,1 = e−2B
∑

z∈CN\x(0)

I(zi = 1) e−2Bdi(y,z) , (6.25)

where we have denoted by di(x, y) the number of of positions j, distinct from i, such
that xj = yj . The sums in the above expressions are independent identically distributed
random variables. Moreover, they are tightly concentrated around their mean. Since
B > 0, this implies Zerr,0 > Zerr,1 with high probability. Therefore the decoder is
successful in the case yi = 0. Analogously, the decoder fails with high probability if
yi = 1, and hence the bit error rate converges to Pb = p for p > δGV(R).

Exercise 6.5 From a rigorous point of view, the weak point of the above argument is the
lack of any estimate of the fluctuations of Zerr,0/1. The reader may complete the derivation
along the following lines:

(a) Define X0 ≡ Zerr,0 and X1 ≡ e2B Zerr,1. Prove that X0 and X1 are independent and
identically distributed.

(b) Define the correct distance enumerators N0/1(d) such that a representation of the form
X0/1 =

P
d N0/1(d) exp(−2Bd) holds.

(c) Show that a significant fluctuation of N0/1(d) from its average is highly (more than
exponentially) improbable (within an appropriate range of d).

(d) Deduce that a significant fluctuation of X0/1 is highly improbable (the last two points
can be treated along the lines already discussed for the random energy model in Chap-
ter 5).
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6.3.3 Finite-temperature decoding

The expression (6.14) for the marginal µ
(i)
y (xi) is strongly reminiscent of a Boltzmann

average. This analogy suggests a generalization which interpolates between the two
‘classical’ MAP decoding strategies discussed so far: finite-temperature decoding.
We first define this new decoding strategy in the context of the BSC. Let β be a non-
negative number playing the role of an inverse temperature, and let y ∈ {0, 1}N be
the channel output. We define the probability distribution µy,β(x) to be given by

µy,β(x) =
1

Z(β)
e−2βBd(y,x) I(x ∈ CN ) , Z(β) ≡

∑
x∈CN

e−2βBd(x,y) , (6.26)

where B is always related to the noise level p through eqn (6.15). This distribution
depends upon the channel output y: for each received message y, the finite-temperature
decoder constructs the appropriate distribution µy,β(x). For the sake of simplicity, we

shall not write this dependence explicitly. Let µ
(i)
y,β(xi) be the marginal distribution of

xi when x is distributed according to µy,β(x). The new decoder outputs

xβ =

(
arg max

x1

µ
(1)
y,β(x1) , . . . , arg max

xN

µ
(N)
y,β (xN )

)
. (6.27)

As in the previous sections, readers are free to choose their favourite convention in the

case of ties (i.e. for those i’s such that µ
(i)
y,β(0) = µ

(i)
y,β(1)).

Two values of β are particularly interesting: β = 1 and β = ∞. If β = 1, the distri-
bution µy,β(x) coincides with the distribution µy(x) of the channel input conditional
on the output (see eqn (6.13)). Therefore, for any y, symbol MAP decoding coincides

with finite-temperature decoding at β = 1: xβ=1
i = xb.

If β = ∞, the distribution (6.26) is concentrated on those codewords which are the
closest to y. In particular, if there is a unique closest codeword to y, finite-temperature

decoding at β = ∞ coincides with word MAP decoding: xβ=∞ = xw.

Exercise 6.6 Using the approach developed in the previous section, analyse the perfor-
mances of finite-temperature decoding for the RCE at any β.

The results of the above exercise are summarized in Fig. 6.5, which gives the
finite-temperature decoding phase diagram. There exist three regimes, which are three
distinct phases with very different behaviours.

1. A ‘completely ordered’ phase at low noise (p < δGV(R)) and low temperature
(large enough β). In this regime, the decoder works: the probability distribu-
tion µy,β(x) is dominated by the transmitted codeword x(0). More precisely,
µy,β(x(0)) = 1 − exp{−Θ(N)}. The bit and block error rates vanish as N → ∞.

2. A ‘glassy’ phase at higher noise (p > δGV(R)) and low temperature (large enough
β). The transmitted codeword has a negligible weight µy,β(x(0)) = exp{−Θ(N)}.
The bit error rate is bounded away from 0, and the block error rate converges
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Fig. 6.5 Phase diagram for the rate-1/2 random code ensemble over a binary symmetric

channel, using finite temperature decoding. Word MAP and bit MAP decoding correspond

to 1/β = 0 and 1/β = 1, respectively. Note that the phase boundary of the error-free (ordered)

phase is vertical in this interval of temperature.

to 1 as N → ∞. The measure µy,β(x) is dominated by the codewords closest
to the received message y (which are distinct from the correct codeword, since
p > δGV(R)). Its Shannon entropy H(µy,β) is sublinear in N . This situation
is closely related to the ‘measure condensation’ phenomenon that occurs in the
low-temperature phase of the random energy model.

3. An ‘entropy-dominated’ (paramagnetic) phase at high temperature (small enough
β). The bit and block error rates behave as in the glassy phase, and µy,β(x(0)) =
exp{−Θ(N)}. However, the measure µy,β(x) is now dominated by codewords
whose distance d � Nδ∗ from the received message is larger than the minimal
distance: δ∗ = pβ/[pβ + (1 − p)β ]. In particular, δ∗ = p if β = 1, and δ∗ = 1/2 if
β = 0. In the first case we recover the result already obtained for symbol MAP
decoding. In the second case, µy,β=0(x) is the uniform distribution over the code-
words, and the distance from the received message under this distribution is, with
high probability, close to N/2. In this regime, the Shannon entropy H(µβ) is linear
in N .

Finite-temperature decoding can be generalized to other channel models. Let µy(x)
be the distribution of the transmitted message conditional on the channel output, given
explicitly in eqn (6.5). For β > 0, we define the distribution1

1The partition function Z(β) defined here differs by a multiplicative constant from the one defined
in eqn (6.26) for a BSC.
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µy,β(x) =
1

Z(β)
µy(x)β , Z(β) ≡

∑
x

µy(x)β . (6.28)

Once more, the decision of the decoder for the i-th bit is taken according to the rule
(6.27). The distribution µy,β(x) is a ‘deformation’ of the conditional distribution µy(x).
At large β, more weight is given to highly probable transmitted messages. At small
β, the most numerous codewords dominate the sum. A little thought shows that, as
for a BSC, the cases β = 1 and β = ∞ correspond, respectively, to symbol MAP
and word MAP decoding. The qualitative features of the finite-temperature-decoding
phase diagram are easily generalized to any memoryless channel. In particular, the
three phases described above can be found in such a general context. Decoding is
successful in the low-noise, large-β phase.

6.4 Error-free communication with random codes

As we have seen, the block error rate PB for communicating over a BSC with a
random code and word MAP decoding vanishes in the large-block-length limit as long
as R < CBSC(p), where CBSC(p) = 1−H2(p) is the channel capacity. This establishes
the ‘direct’ part of Shannon’s channel coding theorem for the BSC case: error-free
communication is possible at rates below the channel capacity. This result is in fact
much more general. We describe here a proof for general memoryless channels, always
based on random codes.

For the sake of simplicity we shall restrict ourselves to memoryless channels with
binary input and discrete output. Such are defined by a transition probability Q(y|x),
where x ∈ {0, 1} and y ∈ Y, with Y being a finite alphabet. In order to handle this
case, we must generalize the RCE: each codeword x(m) ∈ {0, 1}N , m = 0, . . . , 2M−1, is

again constructed independently as a sequence of N i.i.d. bits x
(m)
1 · · ·x(m)

N . Unlike the

case of symmetric channels, x
(m)
i is now drawn from an arbitrary distribution P (x),

x ∈ {0, 1} instead of being uniformly distributed. It is important to distinguish P (x),
which is an arbitrary single-bit distribution defining the code ensemble and will be
chosen at our convenience for optimizing it, from the a priori source distribution µ0(x)
of eqn (6.5), which is a distribution over the codewords and models the behaviour
of the information source. As in the previous sections, we shall assume the source
distribution µ0 to be uniform over the codewords (see eqn (6.4)). On the other hand,
the codewords themselves have been constructed using the single-bit distribution P (x).

We shall first analyse the RCE for a generic distribution P (x), under word MAP
decoding. The main result is the following.

Theorem 6.1 Consider communication over a binary-input discrete memoryless chan-
nel with transition probability Q(y|x), using a code from the RCE with input bit distri-
bution P (x) and word MAP decoding. If the code rate is smaller than the mutual infor-
mation IX,Y between two random variables X,Y with joint distribution P (x)Q(y|x),
then the block error rate vanishes in the large-block-length limit.

Using this result, one can optimize the performance of the ensemble over the choice of
the distribution P (·). More precisely, we maximixe the achievable rate for error-free
communication, IX,Y . The corresponding optimal distribution P ∗(·) depends upon
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that channel: it is the best distribution adapted to the channel. Since the channel
capacity is in fact defined as the maximum mutual information between the channel
input and the channel output (see eqn (1.38)), the RCE with input bit distribution
P ∗(·) allows one to communicate without errors up to the channel capacity. The above
theorem implies therefore the ‘direct part’ of Shannon’s theorem (Theorem 1.23).

Proof Assume that the codeword x(0) is transmitted through the channel and
the message y ∈ YN is received. The decoder constructs the probability for x to be
the channel input, conditional on the output y (see eqn (6.5)). Word MAP decoding
consists in minimizing the cost function

E(x) = −
N∑

i=1

log2 Q(yi|xi) (6.29)

over the codewords x ∈ CN (note that we are using natural logarithms here). Decoding
will be successful if and only if the minimum of E(x) is realized over the transmitted
codeword x(0). The problem therefore consists in understanding the behaviour of the

2M random variables E(x(0)), . . . , E(x(2M−1)).
Once more, it is necessary to single out E(x(0)). This is the sum of N i.i.d. random

variables − log Q(yi|x(0)
i ), and it is therefore well approximated by its mean

E E(x(0)) = −N
∑
x,y

P (x)Q(y|x) log2 Q(y|x) = NHY |X . (6.30)

In particular (1− δ)NHY |X < E(x(0)) < (1 + δ)NHY |X with probability approaching
one as N → ∞.

As for the 2M − 1 incorrect codewords, the corresponding ‘log-likelihoods’ E(x(1)),

. . . , E(x(2M−1)) are i.i.d. random variables. We can therefore estimate the smallest of
them by following the approach developed for the REM and already applied to the
RCE for a BSC. In Section 6.8, we prove the following large-deviation result for the
distribution of these variables.

Lemma 6.2 Let εi = E(x(i))/N . Then ε1, . . . , ε2M−1 are i.i.d. random variables and
their distribution satisfies a large-deviation principle of the form P(ε)

.
= 2−Nψ(ε). The

rate function is given by

ψ(ε) ≡ min
{py(·)}∈Pε

[∑
y

Q(y)D(py||P )

]
, (6.31)

where the minimum is taken over the set of probability distributions {py(·), y ∈ Y} in
the subspace Pε defined by the constraint

ε = −
∑
xy

Q(y)py(x) log2 Q(y|x) , (6.32)

and where we have defined Q(y) ≡∑x Q(y|x)P (x).
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The solution of the minimization problem formulated in this lemma is obtained through
a standard Lagrange multiplier technique:

py(x) =
1

z(y)
P (x)Q(y|x)γ , (6.33)

where the (ε-dependent) constants z(y) and γ are chosen in order to satisfy the nor-
malizations

∑
x py(x) = 1 for all y ∈ Y, and the constraint (6.32).

The rate function ψ(ε) is convex, with a global minimum (corresponding to γ = 0)
at ε∗ = −

∑
x,y P (x)Q(y) log2 Q(y|x), where its value is ψ(ε∗) = 0. This implies that,

with high probability, all incorrect codewords will have costs E(x(i)) = Nε in the
range εmin − δ ≤ ε ≤ εmax + δ for all δ > 0, where εmin and εmax are the two solutions
of ψ(ε) = R. Moreover, for any ε inside thar interval, the number of codewords with
E(x(i)) � Nε is exponentially large, and close to 2NR−Nψ(ε). So, with high probability,
the incorrect codeword with minimum cost has a cost close to Nεmin, while the correct
codeword has a cost close to NHY |X . Therefore MAP decoding will find the correct
codeword if and only if HY |X < εmin.

Let us now show that the condition HY |X < εmin is in fact equivalent to R < IX,Y .
It turns out that the value ε = HY |X is obtained using γ = 1 in eqn (6.33), and
therefore py(x) = P (x)Q(y|x)/Q(y). The corresponding value of the rate function is
ψ(ε = HY |X) = HY − HY |X = IY |X . The condition for error-free communication,
HY |X < εmin, can thus be rewritten as R < ψ(HY |X), or R < IX,Y . �

Example 6.3 Reconsider a BSC with flip probability p. We have

E(x) = −(N − d(x, y)) log(1 − p) − d(x, y) log p . (6.34)

Up to a rescaling the cost coincides with the Hamming distance from the received
message. If we take P (0) = P (1) = 1/2, the optimal types are

p0(1) = 1 − p0(0) =
pγ

(1 − p)γ + pγ
(6.35)

(see eqn (6.33)) and analogously for p1(x). The corresponding cost is

ε = −(1 − δ) log(1 − p) − δ log p , (6.36)

where have we defined δ = pγ/[(1 − p)γ + pγ ]. The large-deviation rate function is
given, parametrically, by ψ(ε) = log 2 − H(δ). The reader will easily recognize the
results already obtained in the previous section.

Exercise 6.7 Consider communication over a discrete memoryless channel with finite in-
put and output alphabets X and Y, and transition probability Q(y|x), x ∈ X , y ∈ Y. Check
that the above proof remains valid in this context.
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6.5 Geometry again: Sphere packing

Coding has a lot to do with the optimal packing of spheres, which is a mathematical
problem of considerable interest in various branches of science. Consider, for instance,
communication over a BSC with flip probability p. A code of rate R and block length N

consists of 2NR points {x(1) · · ·x(2NR)} in the hypercube {0, 1}N . With each possible
channel output y ∈ {0, 1}N , the decoder associates one of the codewords x(i). Therefore

we can think of the decoder as realizing a partition of the Hamming space into 2NR

decision regions D(i), i ∈ {1, . . . , 2NR}, each one associated with a distinct codeword.
If we require each decision region {D(i)} to contain a sphere of radius ρ, the resulting
code is guaranteed to correct any error pattern such that fewer than ρ bits are flipped.
One often defines the minimum distance of a code as the smallest distance between
any two codewords. If a code has a minimum distance d, the Hamming spheres of
radius ρ = �(d − 1)/2� do not overlap, and the code can correct ρ errors, whatever
their positions.

6.5.1 The densest packing of Hamming spheres

We are thus led to consider the general problem of sphere packing on the hypercube
{0, 1}N . A (Hamming) sphere of centre x(0) and radius r is defined as the set of points
x ∈ {0, 1}N such that d(x, x(0)) ≤ r. A packing of spheres of radius r and cardinality
NS is specified by a set of centres x1, . . . , xNS

∈ {0, 1}N such that the spheres of radius
r centred on these points are disjoint. Let Nmax

N (δ) be the maximum cardinality of
a packing of spheres of radius Nδ in {0, 1}N . We define the corresponding rate as
Rmax

N (δ) ≡ N−1 log2 Nmax
N (δ) and would like to compute this quantity in the infinite-

dimensional limit

Rmax(δ) ≡ lim sup
N→∞

Rmax
N (δ) . (6.37)

The problem of determining the function Rmax(δ) is open: only upper and lower bounds
are known. Here we shall derive the simplest of these bounds.

Proposition 6.4

1 −H2(2δ) ≤ Rmax(δ) ≤ 1 −H2(δ) (6.38)

The lower bound is often called the Gilbert–Varshamov bound, the upper bound is
called the Hamming bound.

Proof Lower bounds can be proved by analysing good packing strategies. A simple
such strategy is to take the centres of the spheres as 2NR random points with uniform
probability in the Hamming space. The minimum distance between any pair of points
must be larger than 2Nδ. This can be estimated by defining the distance enumerator
M2(d), which counts how many pairs of points have a distance d between them. It is
straightforward to show that if d = 2Nδ and δ is kept fixed as N → ∞,

EM2(d) =

(
2NR

2

)
2−N

(
N

d

)
.
= 2N [2R−1+H2(2δ)] . (6.39)
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As long as R < [1 − H2(2δ)]/2, the exponent in the above expression is negative.
Therefore, by the Markov inequality, the probability of having any pair of centres at
a distance smaller than 2δ is exponentially small in the size. This implies that

Rmax(δ) ≥ 1

2
[1 −H2(2δ)] . (6.40)

A better lower bound can be obtained by a closer examination of the above (ran-
dom) packing strategy. In Section 6.2, we derived the following result. If 2NR points
are chosen from the uniform distribution in the Hamming space {0, 1}N , and one of
them is considered, its closest neighbour is with high probability at a Hamming dis-
tance close to NδGV(R). In other words, if we draw around each point a sphere of
radius δ, with δ < δGV(R)/2, and one of these spheres is selected randomly, with high
probability it will not intersect any other sphere. This remark suggests the following
trick (sometimes called expurgation in coding theory). Go through all of the spheres
one by one and check if the chosen sphere intersects any other one. If the answer is
positive, simply eliminate the sphere. This reduces the cardinality of the packing, but
only by a fraction approaching 0 as N → ∞: the packing rate is thus unchanged. As
δGV(R) is defined by R = 1−H2(δGV(R)), this proves the lower bound in eqn (6.38).

The upper bound can be obtained from the fact that the total volume occupied by
the spheres is not larger than the volume of the hypercube. If we denote by ΛN (δ) the
volume of an N -dimensional Hamming sphere of radius Nδ, we get NS ΛN (δ) ≤ 2N .
Since ΛN (δ)

.
= 2NH2(δ), this implies the upper bound in eqn (6.38). �

Better upper bounds can be derived using more sophisticated mathematical tools.
An important result of this type is the linear-programming bound,

Rmax(δ) ≤ H2

(
1

2
−
√

2δ(1 − 2δ)

)
, (6.41)

whose proof goes beyond our scope. On the other hand, no better lower bound than
the Gilbert–Varshamov result is known. It is a widespread conjecture that this bound
is indeed tight: in high dimensions, there is no better way to pack spheres than placing
them randomly and expurgating the small fraction of them that are ‘squeezed’. The
various bounds are shown in Fig. 6.6.

Exercise 6.8 Derive two simple alternative proofs of the Gilbert–Varshamov bound using
the following hints:

(a) Given a constant δ, we look at all of the ‘dangerous’ pairs of points whose distance is

smaller than 2Nδ. For each dangerous couple, we can expurgate one of its two points.
The number of points expurgated is less than or equal to the number of dangerous
pairs, which can be bounded using EM2(d). What is the largest value of δ such that
this expurgation procedure does not reduce the rate?



Geometry again: Sphere packing ���

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

R(δ)

δ

random packing
expurgated packing

Hamming bound
linear programming bound

Fig. 6.6 Upper and lower bounds on the maximum packing rate Rmax(δ) of Hamming spheres

of radius Nδ. Random packing and expurgated random packing provide lower bounds. The

Hamming and linear-programming bounds are upper bounds.

(b) Construct a packing x1 . . . xN as follows. The first centre x1 can be placed anywhere

in {0, 1}N . The second centre can be placed anywhere outside a sphere of radius 2Nδ

centred on x(0). In general, the i-th centre xi can be at any point outside the spheres
centred on x1 . . . xi−1. This procedure stops when the spheres of radius 2Nδ cover all

the space {0, 1}N , giving a packing of cardinality N equal to the number of steps, and
with a radius Nδ.

6.5.2 Sphere packing and decoding over a BSC

Let us now see the consequences of Proposition 6.4 for coding over a BSC. If the
transmitted codeword is x(i), the channel output will be (with high probability) at
a distance close to Np from x(i). Clearly, R ≤ Rmax(p) is a necessary and sufficient
condition for the existence of a code which corrects any error pattern such that fewer
than Np bits are flipped. Note that this correction criterion is much stronger than
requiring a vanishing (bit or block) error rate. The direct part of Shannon’s theorem
shows the existence of codes with a vanishing (as N → ∞) block error probability for
R < 1 − H2(p) = CBSC(p). As shown by the linear-programming bound in Fig. 6.6,
CBSC(p) lies above Rmax(p) for large enough p. Therefore, for such values of p, there
is a non-vanishing interval of rates Rmax(p) < R < CBSC(p) such that one can correct
Np errors with high probability but one cannot correct all error patterns involving
that many bits.

Let us show, for the BSC case, that the condition R < 1 − H2(p) is actually a
necessary one for achieving a vanishing block error probability (this is nothing but the
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converse part of Shannon channel coding theorem, i.e Theorem 1.23).
We define PB(k) to be the block error probability under the condition that k bits

are flipped by the channel. If the codeword x(i) is transmitted, the channel output
lies on the border of a Hamming sphere of radius k centred on x(i): ∂Bi(k) ≡ {z :
d(z, x(i)) = k}. Therefore

PB(k) =
1

2NR

2NR∑
i=1

[
1 − |∂Bi(k) ∩ D(i)|

|∂Bi(k)|

]
(6.42)

≥ 1 − 1

2NR

2NR∑
i=1

|D(i)|
|∂Bi(k)| , (6.43)

where D(i) is the set of channel outputs that are decoded to x(i) (under word MAP
decoding, these coincide with the points in {0, 1}N that are closer to x(i) than to any
other codeword). For a typical channel realization, k is close to Np, and |∂Bi(Np)| .

=
2NH2(p). Since {D(i)} is a partition of {0, 1}N ,

∑
i |D(i)| = 2N . We deduce that for

any ε > 0 and a large enough N ,

PB ≥ 1 − 2N(1−R−H2(p)+ε) , (6.44)

and thus reliable communication is possible only if R ≤ 1 −H2(p).

6.6 Other random codes

A major drawback of the random code ensemble is that specifying a particular code
(an element of the ensemble) requires N2NR bits. This information has to be stored
somewhere when the code is used in practice, and the memory requirement goes soon
beyond the capabilities of hardware. A much more compact specification is possible for
the random linear code (RLC) ensemble. In this case the encoder is required to be a
linear map, and all such maps are equiprobable. Concretely, the code is fully specified
by an N × M binary matrix G = {Gij} (the generator matrix), and encoding is
performed by left multiplication by G:

x : {0, 1}M → {0, 1}N , (6.45)

z �→ G z , (6.46)

where the multiplication has to be carried modulo 2. Endowing the set of linear codes
with a uniform probability distribution is essentially equivalent to assuming the entries
of G to be i.i.d. random variables, with Gij = 0 or 1 with probability 1/2. Note that
only MN bits are required for specifying a code within this ensemble.
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Exercise 6.9 Consider a linear code with N = 4 and |C| = 8 defined by

C = {(z1 ⊕ z2, z2 ⊕ z3, z1 ⊕ z3, z1 ⊕ z2 ⊕ z3) | z1, z2, z3 ∈ {0, 1}} , (6.47)

where we have denoted by ⊕ the sum modulo 2. For instance, (0110) ∈ C because we can
take z1 = 1, z2 = 1, and z3 = 0, but (0010) �∈ C. Compute the distance enumerator for

x(0) = (0110).

It turns out that the RLC has extremely good performance. Like the original Shan-
non ensemble, it allows one to communicate without errors below capacity. Moreover,
the rate at which the block error probability PB vanishes is faster for the RLC than for
the RCE. This justifies the considerable effort devoted so far to the design and analysis
of specific ensembles of linear codes satisfying additional computational requirements.
We shall discuss some of the best such codes in the following chapters.

6.7 A remark on coding theory and disordered systems

We would like to stress here the fundamental similarity between the analysis of random
code ensembles and the statistical physics of disordered systems. As should already be
clear, there are several sources of randomness in coding theory:

• First of all, the code used is chosen randomly from an ensemble. This was the
original idea used by Shannon to prove the channel coding theorem.

• The codeword to be transmitted is chosen with uniform probability from the code.
This hypothesis is supported by the source–channel separation theorem.

• The channel output is distributed, once the transmitted codeword is fixed, ac-
cording to a probabilistic process which accounts for the channel noise.

• Once all the above elements have been given, one is left with the decoding problem.
As we have seen in Section 6.3.3, both classical MAP decoding strategies and
finite-temperature decoding can be defined in a unified framework. The decoder
constructs a probability distribution µy,β(x) over the possible channel inputs, and

estimates its single-bit marginals µ
(i)
y,β(xi). The decision about the i-th bit depends

upon the distribution µ
(i)
y,β(xi).

The analysis of a particular coding system can therefore be regarded as the analysis
of the properties of the distribution µy,β(x) when the code, the transmitted codeword
and the noise realization are distributed as described above.

In other words, we are distinguishing between two levels of randomness: on the first
level, we deal with the first three sources of randomness, and on the second level, we
use the distribution µy,β(x). The deep analogy with the theory of disordered systems
should be clear at this point. The code, channel input, and noise realization play the
role of quenched disorder (the sample), while the distribution µy,β(x) is the analogue
of the Boltzmann distribution. In both cases, the problem consists in studying the
properties of a probability distribution which is itself a random object.
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6.8 Appendix: Proof of Lemma 6.2

We estimate (to the leading exponential order in the large-N limit) the probability
PN (ε) for one of the incorrect codewords, x, to have cost E(x) = Nε. The channel
output y = (y1 · · · yN ) is a sequence of N i.i.d. symbols distributed according to

Q(y) ≡
∑

x

Q(y|x)P (x) , (6.48)

and the cost can be rewritten as

E(x) ≡ −
N∑

i=1

log Q(yi|xi)

= −N
∑
x,y

Q(y) log Q(y|x)
1

NQ(y)

N∑
i=1

I(xi = x, yi = y) . (6.49)

There are approximatively NQ(y) positions i such that yi = y, for y ∈ Y. We assume
that there are exactly NQ(y) such positions, and that NQ(y) is an integer (of course,
this hypothesis is false in general: it is, however, a routine exercise, left to the reader,
to show that it can be avoided by a small technical detour). Furthermore, we introduce

py(x) ≡ 1

NQ(y)

N∑
i=1

I(xi = x, yi = y) . (6.50)

Under the above assumptions, the function py(x) is a probability distribution over
x ∈ {0, 1} for each y ∈ Y. Looking at the subsequence of positions i such that yi = y,
this function counts the fraction of the xi’s such that xi = x. In other words py(·) is
the type of the subsequence {xi|yi = y}. Because of eqn (6.49), the cost can be written
in terms of these types as follows:

E(x) = −N
∑
xy

Q(y)py(x) log Q(y|x) . (6.51)

Therefore E(x) depends upon x uniquely through the types {py(·) : y ∈ Y}, and
this dependence is linear in py(x). Moreover, according to our definition of the RCE,
x1, . . . , xN are i.i.d. random variables with distribution P (x). The probability PN (ε)
that E(x)/N = ε can therefore be deduced from Corollary 4.5. To the leading expo-
nential order, we get

PN (ε)
.
= exp{−Nψ(ε) log 2} , (6.52)

ψ(ε) ≡ min
py(·)

[∑
y

Q(y)D(py||P ) such that ε = −
∑
xy

Q(y)py(x) log2 Q(y|x)

]
.(6.53)

Notes

The random code ensemble dates back to Shannon (1948), who used it (somewhat
implicitly) in his proof of the channel coding thorem. A more explicit (and complete)
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proof was provided by Gallager (1965). The reader can find alternative proofs in stan-
dard textbooks such as Cover and Thomas (1991), Csiszár and Körner (1981), and
Gallager (1968).

The distance enumerator is a code property that has been extensively investigated
in coding theory. We refer for instance to Csiszár and Körner (1981), and Gallager
(1968). A treatment of the random code ensemble by analogy with the random energy
model was presented by Montanari (2001b). More detailed results in the same spirit
can be found in Barg and Forney (2002) and Forney and Montanari (2001). The
analogy between coding theory and the statistical physics of disordered systems was
put forward by Sourlas (1989). Finite temperature decoding was introduced in by
Rujan (1993).

A key ingredient of our analysis was the assumption, already mentioned in Sec-
tion 1.6.2, that any codeword is a priori equiprobable. The fundamental motivation
for such an assumption is the source–channel separation theorem. In simple terms,
one does not lose anything in constructing an encoding system in two blocks. First, an
ideal source code compresses the data produced by the information source and outputs
a sequence of i.i.d. unbiased bits. Then, a channel code adds redundancy to this se-
quence in order to counteract the noise on the channel. The theory of error-correcting
codes focuses on the design and analysis of this second block, leaving the first one
to source coding. The interested reader may find proofs of the separation theorem in
Cover and Thomas (1991), Csiszár and Körner (1981), and Gallager (1968).

Sphere packing is a classical problem in mathematics, with applications in various
branches of science. The book by Conway and Sloane (1998) provides both a very
good introduction to this problem and some far-reaching results related to it and its
connections to other fields, in particular to coding theory. Finding the densest packing
of spheres in Rn is an open problem when n ≥ 4.
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7

Number partitioning

Number partitioning is one of the most basic optimization problems. It is very easy
to state: ‘Given the values of N assets, is there a fair partition of them into two sets?’
Nevertheless, it is very difficult to solve: it is NP-complete, and the known heuristics
are often not very good. It is also a problem with practical applications, for instance
in multiprocessor scheduling.

In this chapter, we shall pay special attention to the partitioning of a list of i.i.d.
random numbers. It turns out that most heuristics perform poorly on this ensemble
of instances. This motivates their use as a benchmark for new algorithms, as well as
their analysis. On the other hand, it is relatively easy to characterize analytically the
structure of random instances. The main result is that low-cost configurations (those
with a small imbalance between the two sets) can be seen as independent energy levels.
The model behaves very much like the random energy model of Chapter 5, although
with a different energy distribution.

The problem is defined in Section 7.1. Section 7.2 discusses algorithmic aspects: it
introduces a complete algorithm and a smart heuristic. These are used in Section 7.3 in
order to study numerically the partitioning of i.i.d. random numbers. Then we discuss,
in Section 7.4, a simple model in the REM family, the random cost model, which can
be analysed in detail by elementary methods. Section 7.5 provides a short description
of rigorous results on the partitioning of i.i.d. random numbers: these results show that
the random cost model provides a very good approximation to the original problem.

7.1 A fair distribution into two groups?

An instance of the number-partitioning problem is defined by a set of N positive inte-
gers S = {a1, . . . , aN} indexed by i ∈ [N ] ≡ {1, . . . , N}. One would like to partition
the integers into two subsets {ai : i ∈ A} and {ai : i ∈ B ≡ [N ] \ A} in such a way
as to minimize the discrepancy between the sums of the elements in the two subsets.
In other words, a configuration is given by A ⊆ [N ], and its cost is defined by

EA =

∣∣∣∣∣
(∑

i∈A

ai

)
−
(∑

i∈B

ai

)∣∣∣∣∣ . (7.1)

A perfect partition is such that the total numbers in each subset equilibrate, which
means that EA ≤ 1 (actually, EA = 0 if

∑
i ai is even, and EA = 1 if

∑
i ai is

odd). As usual, one can define several versions of the problem, among which there are
the following: (i) The decision problem: does there exist a perfect partition? (ii) The
optimization problem: find a partition of lowest cost.
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There are several variants of the problem. So far, we have left the size of A free.
This is called the unconstrained version. One can also study a constrained version
where the cardinality difference |A| − |B| between the two subsets is fixed at some
number D. If D = 0, the partition is said to be balanced. Here, for simplicity, we shall
keep mainly to the unconstrained case.

Exercise 7.1 As a small warm-up, the reader can show that the following are true (maybe
by writing a simple exhaustive search program):

(a) The set S1 = {10, 13, 23, 6, 20} has a perfect partition.

(b) The set S2 = {6, 4, 9, 14, 12, 3, 15, 15} has a perfect balanced partition.

(c) In the set S3 = {93, 58, 141, 209, 179, 48, 225, 228}, the lowest possible cost is 5.

(d) In the set S4 = {2474, 1129, 1388, 3752, 821, 2082, 201, 739}, the lowest possible cost is
48.

7.2 Algorithmic issues

7.2.1 An NP-complete problem

In order to understand the complexity of the problem, one must first measure its size.
This is in turn given by the number of characters required for specifying a particular
instance. In number partitioning, this depends crucially on how large the integers can
be. Imagine that we restrict ourselves to the case

ai ∈ {1, . . . , 2M} ∀ i ∈ {1, . . . , N} , (7.2)

so that each of the N integers can be encoded with M bits. The entire instance can
then be encoded in NM bits. An exhaustive search obviously finds a solution in 2N

operations for unbounded numbers (any M). On the other hand, for bounded numbers
(fixed M) and N going to infinity, the algorithm defined in the exercise below finds
a solution in a time of order N2 2M . It turns out that no known algorithm solves the
number-partitioning problem in a time bounded from above by a power of its size,
NM . In fact, number partitioning is NP-complete and is considered to be among the
fundamental problems in this class.

Exercise 7.2 Consider the following ‘transfer matrix’ (or ‘dynamic-programming’) ap-
proach to number partitioning with bounded numbers {ai}. For any k ∈ {1, . . . , N} and
any q ∈ {1, . . . , N2M}, define

Zk(q) =

j
1 if q can be written as

Pk
r=1 nrar with nr ∈ {0, 1},

0 otherwise.
(7.3)

Write a recursion relation expressing Zk+1 in terms of Zk. Show that the set of numbers
{ZN (q)}, q ∈ {1, . . . , N2M} can be computed in a time of order N2 2M . How could you then
use ZN to solve the number-partitioning problem?
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7.2.2 A simple heuristic and a complete algorithm

There is no good algorithm for the number-partitioning problem. One of the best
heuristics, due to Karmarkar and Karp (KK), uses the following idea. We start from a
list a1, . . . , aN which coincides with the original set of integers, and reduce it by erasing
two elements ai and aj from the list and replacing them by the difference |ai − aj |,
if this difference is non-zero. This substitution means that a decision has been made
to place ai and aj in two different subsets (but without fixing which subsets they are
in). One then iterates this procedure as long as the list contains two or more elements.
If in the end one finds either an empty list or the list {1}, then there exists a perfect
partitioning. In the opposite case, the remaining integer is the cost of one particular
partitioning, but the problem could have better solutions. Of course, there is a lot of
flexibility and ingenuity involved in the best choice of the elements ai and aj selected
at each step. In the KK algorithm one chooses the two largest numbers.

Example 7.1 Let us see how the KK algorithm works with the first list in Exercise
7.1: {10, 13, 23, 6, 20}. In the first iteration, we substitute 23 and 20 by 3, giving
the list {10, 13, 6, 3}. The next step gives {3, 6, 3}, then {3, 3}, and then ∅, showing
that there exists a perfect partition. Readers can find out for themselves how to
systematically reconstruct the partition.

A modification due to Korf transforms the KK heuristic into a complete algorithm,
which will return the best partitioning (possibly in exponential time). Each time one
eliminates two elements ai and aj , two new lists are built: a ‘left’ list, which contains
|ai − aj | (this corresponds to placing ai and aj in different groups), and a ‘right’
list which contains ai + aj (it corresponds to placing ai and aj in the same group).
By iterating in this way, one constructs a tree with 2N−1 terminal nodes, each one
containing the cost of a valid partition. Vice versa, the cost of each possible partition
is reported at one of the terminal nodes (note that each of the 2N possible partitions
A is equivalent to its complement [N ] \A). If one is interested only in the decision ‘is
there a perfect partition?’, the tree can be pruned as follows. Each time one encounters
a list whose largest element is larger than the sum of all other elements plus 1, this list
cannot lead to a perfect partition. One can therefore avoid constructing the subtree
whose root is such a list. Figure 7.1 shows a simple example of application of this
algorithm.

7.3 Partition of a random list: Experiments

A natural way to generate random instances of the number-partitioning problem is to
choose the N input numbers ai as i.i.d. random variables. Here we will be interested in
the case where they are uniformly distributed in the set {1, . . . , 2M}. As we discussed in
Chapter 3, one can use these random instances in order to test the typical performance
of algorithms, but we will also be interested in natural probabilistic issues, such as the
distribution of the optimal cost, in the limits where N and M go to ∞.

It is useful to first get an intuitive feeling for the respective roles of N (the size
of the set) and M (the number of digits of each ai in base 2). Consider the instances
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23    20    13     10     6

43   13   10   613   10   6   3

6   3   3 23   6   3 

3   3

40 52 6014 26 34 460 6 14 20 26 32126 72

30  10  6 56  10  6

17  3 29  3 20  6 40  6 46  6 66  69   3

Fig. 7.1 A complete search algorithm. Starting from a list, one erases the two largest numbers

ai and aj and generates two new lists: the left one contains |ai−aj |, and the right one contains

ai +aj . At the bottom of the tree, every leaf contains the cost of a valid partition. In a search

for a perfect partition, the tree can be pruned at the dashed leaves because the largest number

is bigger than the sum of the others: the dash–dotted lists are not generated. The KK heuristic

picks up only the left branch. In this example, it is successful and finds the unique perfect

partition.

S2,S3,S4 of Exercise 7.1. Each of them contains N = 8 random numbers, but they are
randomly generated with M = 4, M = 8, and M = 16, respectively. Clearly, the larger
M is, the larger is the typical value of the ai, and the more difficult it is to distribute
them fairly. Consider the costs of all possible partitions: it is reasonable to expect
that in about half of the partitions, the most significant bit of the cost is 0. Among
these, about one-half should have the second significant bit equal to 0. The number
of partitions is 2N−1, and this qualitative argument can thus be iterated roughly N
times. This leads one to expect that, in a random instance with large N , there will be
a significant chance of having a perfect partition if N > M . In contrast, for N < M ,
the typical cost of the best partition should behave like 2M−N .

This intuitive reasoning turns out to be essentially correct, as far as the leading
exponential behaviour in N and M is concerned. Here, we first provide some numerical
evidence, obtained with the complete algorithm of Section 7.2.2 for relatively small
systems. In the next section, we shall validate our conclusions by a sharper analytical
argument.

Figure 7.2 shows a numerical estimate of the probability pperf(N,M) that a ran-
domly generated instance has a perfect partition, plotted versus N . This was ob-
tained by sampling nstat instances of the problem for each pair N , M considered (here
nstat = 104 , 103, and 102 when M = 8, 16, and 24, respectively), and solving each
instance by complete enumeration. The probability pperf(N,M) was estimated as the
fraction of the sampled instances for which a perfect partitioning was found. The
standard deviation of such an estimate is

√
pperf(1 − pperf)/nstat.

For a fixed value of M , pperf(N,M) crosses over from a value close to 0 at small
N to a value close to 1 at large N . The typical values of N where the crossover takes
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Fig. 7.2 A numerical study of randomly generated number-partitioning instances, where the

ai are uniformly distributed in {1, . . . 2M}, with
P

i ai even. The fraction of samples with a

perfect balanced partition is plotted versus N (left plot : from left to right, M = 8, 16, 24), and

versus κ = M/N (right plot). In the limit N → ∞ at fixed κ, it turns out that the probability

becomes a step function, equal to 1 for κ < 1, and to 0 for κ > 1 (see also Fig. 7.4).

place seem to grow proportionally to M . It is useful to look at the same data from a
slightly different perspective by defining the ratio

κ =
M

N
, (7.4)

and considering pperf as a function of N and κ. The plot of pperf(κ,N) versus κ at fixed
N shows a very interesting behaviour; see Fig. 7.2, right frame. A careful analysis of the
numerical data indicates that limN→∞ pperf(κ,N) = 1 for κ < 1, and 0 for κ > 1. We
stress that the limit N → ∞ is taken with κ kept fixed (and therefore letting M → ∞
in proportion to N). As we shall see in the following, we face here a typical example
of a phase transition, in the sense introduced in Chapter 2. The behaviour of a generic
large instance changes completely when the control parameter κ crosses a critical
value κc ≡ 1. For κ < 1, almost all instances of the problem have a perfect partition
(in the large-N limit), for κ > 1 almost none of them can be partitioned perfectly.
This phenomenon has important consequences for the computational difficulty of the
problem. A good measure of the performance of Korf’s complete algorithm is the
number R of lists generated in the tree before the optimal partition is found. In
Fig. 7.3, we plot the quantity log2 R averaged over the same instances as those which
we used for the estimation of pperf in Fig. 7.2. The size of the search tree first grows
exponentially with N and then reaches a maximum around N ≈ M . We see a peak in
log2 R plotted as a function of κ, somewhere around κ = κc = 1: problems close to the
critical point are the hardest ones for the algorithm considered. A similar behaviour is
found with other algorithms, and in fact we shall encounter it in many other decision
problems, such as the satisfiability and colouring problems. When a class of random
instances shows a phase transition as a function of one parameter, it is generally the
case that the most difficult instances are found in the neighbourhood of the phase
transition.
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Fig. 7.3 Left : average of log2 R, where R is the size of the search tree for the KK algorithm.

The three curves correspond to M = 8, 16, and 24 (from left to right). The size grows

exponentially with N , and then reaches a maximum for N ≈ M . Right : the average of

log2 R/(N − 1) plotted versus κ = M/N .

7.4 The random cost model

7.4.1 Definition of the model

Consider, as before, the probability space of random instances constructed by taking
the numbers aj as i.i.d., uniformly distributed in {1, . . . , 2M}. For a given partition
A, the cost EA is a random variable with a probability distribution PA. Obviously,
the costs of two partitions A and A′ are correlated random variables. The random
cost approximation consists in neglecting these correlations. Such an approximation
can be applied to any kind of problem, but it is not always a good one. Remarkably,
as discovered by Mertens, the random cost approximation turns out to be ‘essentially
exact’ for the partitioning of i.i.d. random numbers.

In order to state precisely the above-mentioned approximation, one defines a ran-
dom cost model (RCM), which is similar to the REM of Chapter 5. A sample is defined
by the costs of all 2N−1 ‘partitions’ (here we identify the two complementary partitions
A and [N ]\A). The costs are supposed to be i.i.d. random variables drawn from the
probability distribution P. In order to mimic the random number-partitioning prob-
lem, P is taken to be the same as the distribution of the cost of a random partition A
in the original problem:

P ≡ 1

2N−1

∑
A

PA . (7.5)

Here PA is the distribution of the cost of a partition A in the original number-
partitioning problem.

Let us analyse the behaviour of P for large N . The cost of a randomly chosen
partition in the original problem is given by |∑i σiai|, where the σi are i.i.d. variables
taking values ±1 with probability 1/2. For large N , the distribution of

∑
i σiai is

characterized by the central limit theorem, and P is obtained by restricting it to the
positive domain. In particular, the cost of a partition will be, with high probability, of
order

√
Nα2

M , where
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α2
M ≡ E a2 =

1

3
22M +

1

2
2M +

1

6
. (7.6)

Moreover, for any 0 ≤ x1 < x2,

P
(

E√
Nα2

M

∈ [x1, x2]

)
�
√

2

π

∫ x2

x1

e−x2/2 dx .

Finally, the probability of a perfect partition P(E = 0) is just the probability of
return to the origin for a random walk with steps σiai ∈ {−2M , . . . ,−1}∪{1, . . . , 2M}.
Assuming for simplicity that

∑
i ai is even, we get

P(0) � 2
1√

2πNα2
M

�
√

6

πN
2−M , (7.7)

where 1/
√

2πNα2
M is the density of a normal random variable of mean 0 and variance

Nα2
M near the origin, and the extra factor of 2 comes from the fact that the random

walk is on even integers only.
As we shall show in the next sections, the RCM is a good approximation to the

original number-partitioning problem. An intuitive explanation of this property can
be found in the exercise below.

Exercise 7.3 Consider two random, uniformly distributed, independent partitions A and
A′. Let P(E, E′) denote the joint probability of their energies when the numbers {ai} are
i.i.d. and uniformly distributed over {1, . . . , 2M}. Show that P(E, E′) = P(E)P(E′)[1+o(1)]
in the large-N, M limit, if E, E′ < C 2M for some fixed C.

7.4.2 Phase transition

We can now proceed with the analysis of the RCM. We shall first determine the phase
transition, then study the phase κ > 1, where, typically, no perfect partition can be
found, and finally study the phase κ < 1, where an exponential number of perfect
partitions exist.

Consider a random instance of the RCM. The probability that no perfect partition
exist is just the probability that each partition has a strictly positive cost. Since, within
the RCM, the 2N−1 partitions have i.i.d. costs with distribution P, we have

1 − pperf(κ,N) = [1 − P(0)]
2N−1

. (7.8)

In the large-N limit with fixed κ, the zero-cost probability is given by eqn (7.7). In
particular, P(0) � 1. Therefore,

pperf(κ,N) = 1−exp[−2N−1P(0)]+o(1) = 1−exp

[
−
√

3

2πN
2N (1−κ)

]
+o(1) . (7.9)

This expression predicts a phase transition for the RCM at κc = 1. Notice, in fact,
that limN→∞ pperf(κ,N) = 1 if κ < 1, and 0 if κ > 1. Moreover, eqn (7.9) describes
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Fig. 7.4 Finite-size scaling plot for the data of Fig. 7.2. The (estimated) probability of perfect

partition pperf(N, M) is plotted versus the rescaled variable x = N(κ − κc) + (1/2) log2 N .

The agreement with the theoretical prediction (7.10) is very good.

the precise behaviour of pperf(κ,N) around the critical point κc for finite N . Let us
define the variable x = N(κ − κc) + (1/2) log2 N . In the limit N → ∞ and κ → κc at
fixed x, one finds the following crossover behaviour:

lim
N→∞
κ→κc

pperf(κ,N) = 1 − exp

[
−
√

3

2π
2−x

]
. (7.10)

This is an example of finite-size scaling behaviour.
In order to compare the above prediction with our numerical results for the original

number-partitioning problem, we plot in Fig. 7.4 pperf(κ,N) versus the scaling variable
x. Here we have used the same data as that presented in Fig. 7.2, just changing the
horizontal scale from N to x. The good collapse of the curves for various values of
M provides evidence for the claim that the number-partitioning problem is indeed
asymptotically equivalent to the RCM and undergoes a phase transition at κ = 1.

Exercise 7.4 The argument above assumes that
P

i ai is even. This is a condition which
was imposed in the simulation whose results are presented in Fig. 7.4. How should one
modify the estimate of P(0) in eqn (7.7) when

P
i ai is odd? Show that, in this case,

if one keeps the definition x = N(κ − κc) + (1/2) log2 N , the scaling function becomes

1 − exp
h
−p6/π 2−x

i
. Run a simulation to check this prediction.
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7.4.3 Study of the two phases

Let us now study the minimum cost in the phase κ > 1. The probability that all
configurations have a cost larger than E is

P(∀A : EA > E) =

(
1 −

E∑
E′=0

P(E′)

)2N−1

. (7.11)

This probability is non-trivial (i.e. it is bounded away from 0 and 1) if
∑E

E′=0 P(E′) =
O(2−N ). This sum can be estimated by substituting P(E′) → P(0), which gives the
condition E � 1/(P(0)2N−1) ∼ 2M−N

√
N (note that, as this value of E is much

smaller than the scale over which P(E) varies significantly (see eqn (7.7)), the substi-
tution of P(0) for P(E′) is indeed consistent). We therefore get, from eqn (7.11)

lim
N→∞

P

(
∀A : EA >

ε

P(0)2N−1

)
= e−ε I(ε ≥ 0) . (7.12)

In particular, the mean of the distribution on the right-hand side is equal to 1. This im-
plies that the expectation of the lowest cost in the problem is E Egs =

√
2πN/3 2N(κ−1).

These predictions also fit the numerical results for number partitioning very well.

Exercise 7.5 Show that the probability density of the k-th lowest-cost configuration, in
terms of the rescaled variable ε, is (εk−1/(k − 1)!) exp(−ε) I(ε > 0). This is a typical case
of extreme value statistics for bounded i.i.d. variables.

For the phase κ < 1, we already know that, for all but a vanishing fraction of
samples, there exists at least one configuration with zero cost. It is instructive to
count the number of zero-cost configurations. Since each configuration has zero cost
independently with probability P(0), the number Z of zero-cost configurations is a
binomial random variable with distribution

P (Z) =

(
2N−1

Z

)
P(0)Z [1 − P(0)]

2N−1−Z
. (7.13)

In particular, for large N , Z concentrates around its average value Zav
.
= 2N(1−κ).

One can define an entropy density of the ground state as

sgs =
1

N
log2 Z . (7.14)

The RCM result in eqn (7.13) predicts that for κ < 1, the entropy density is close
to (1 − κ) with high probability. Once again, numerical simulations of the original
number-partitioning problem confirm this expectation.
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Exercise 7.6 Using the integral representation of the logarithm

log2 x =

Z ∞

0

1

t

“
e−t log 2 − e−tx

”
dt , (7.15)

compute E sgs directly. It will be useful to notice that the integral over t is domi-
nated by very small values of t, of order 1/(2N−1P(0)). One then easily finds E sgs �
(1/N) log2(2

N−1P(0)) � 1 − κ.

7.5 Partition of a random list: Rigorous results

A detailed rigorous characterization of the phase diagram for the partitioning of ran-
dom numbers confirms the predictions of the RCM. We shall first state some of the ex-
act results known for the balanced partitioning of N numbers. For definiteness we keep
as before to the case where the ai are i.i.d. and uniformly distributed in {1, . . . , 2M},
and both N and

∑N
i=1 ai are even. The following results hold in the ‘thermodynamic

limit’ N,M → ∞ with fixed κ = M/N .

Theorem 7.2 There is a phase transition at κ = 1. For κ < 1, with high probability,
a randomly chosen instance has a perfect balanced partition. For κ > 1, with high
probability, a randomly chosen instance does not have a perfect balanced partition.

Theorem 7.3 In the phase κ < 1, the entropy density (7.14) of the number of perfect
balanced partitions converges in probability to s = 1 − κ.

Theorem 7.4 Define E = 2N(κ−1)
√

2πN/3, and let E1 ≤ · · · ≤ Ek be the k lowest
costs, with k fixed. The k-tuple

(
ε1 = E1/E, . . . , εk = Ek/E

)
then converges in distri-

bution to (W1,W1 + W2, . . . , W1 + . . . Wk), where the Wi are i.i.d. random variables
with distribution P (Wi) = e−Wi I(Wi ≥ 0). In particular, the (rescaled) optimal cost
distribution converges to P (ε1) = e−ε1 I(ε1 ≥ 0).

Note that these results all agree with the RCM. In particular, Theorem 7.4 states that,
for fixed k and N → ∞, the lowest k costs are i.i.d. variables, as assumed in the RCM.
This explains why the random cost approximation is so good.

The proofs of these theorems (and of more detailed results concerning the scaling in
the neighbourhood of the phase transition point κ = 1) are all based on the analysis of
an integral representation for the number of partitions with a given cost, which we shall
derive below. We shall then outline the general strategy by proving the existence of a
phase transition, as in Theorem 7.2, and we refer the reader to the original literature
for the other proofs.

7.5.1 Integral representation

For simplicity, we keep to the case where
∑

i ai is even: similar results can be obtained
in the case of an odd sum (but the lowest cost is then equal to 1).
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Proposition 7.5 Given a set S = {a1, . . . , aN} with
∑

i ai even, the number Z of
partitions with cost E = 0 can be written as

Z = 2N−1

∫ π

−π

N∏
j=1

cos(ajx)
dx

2π
. (7.16)

Proof We represent the partition A by writing σi = 1 if i ∈ A, and σi = −1 if

i ∈ B = [N ] \ A. We can write Z = 1
2

∑
σ1,...,σN

I

(∑N
j=1 σjaj = 0

)
, where the factor

1/2 comes from the symmetry between A and B (the same partition is represented
by the sequence σ1, . . . , σN and by −σ1, . . . ,−σN ). We use the integral representation
valid for any integer number a,

I(a = 0) =

∫ π

−π

eixa dx

2π
, (7.17)

which gives

Z =
1

2

∑
σ1,...,σN

∫ π

−π

eix(
P

j σjaj) dx

2π
. (7.18)

The sum over the σi gives the integral representation (7.16) �

Exercise 7.7 Show that a similar representation holds for the number of partitions with
cost E ≥ 1, with an extra factor 2 cos(Ex) in the integrand. For the case of balanced
partitions, find a similar representation with a two-dimensional integral.

The integrand of eqn (7.16) is typically exponential in N and oscillates wildly.
It is thus tempting to compute the integral by the method of steepest descent. This
strategy yields correct results for the phase κ ≤ 1, but it is not easy to control it
rigorously. Hereafter, we shall use simple first- and second-moment estimates of the
integral, which are powerful enough to derive the main features of the phase diagram.
Finer control gives more accurate predictions which go beyond this presentation.

7.5.2 Moment estimates

We start by evaluating the first two moments of the number of perfect partitions Z.

Proposition 7.6 In the thermodynamic limit, the first moment of Z behaves as

E Z = 2N(1−κ)

√
3

2πN
(1 + Θ(1/N)) . (7.19)

Proof The expectation value is taken over choices of ai where
∑

i ai is even. Let us
use a modified expectation, denoted by Ei, over all choices of a1, . . . , aN , without any
parity constraint, so that the ai are i.i.d. Clearly, EiZ = (1/2)E Z, because a perfect
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partition can be obtained only in the case where
∑

i ai is even, and this happens with
probability 1/2.

Because of the independence of the ai in the expectation Ei, one gets from eqn
(7.16)

E Z = 2EiZ = 2N

∫ π

−π

[Ei cos(a1x)]
N dx

2π
. (7.20)

The expectation of the cosine is

Ei cos(a1x) = 2−M cos
(x

2
(2M + 1)

) sin(2Mx/2)

sin(x/2)
≡ g(x) . (7.21)

A little thought shows that the integral in eqn (7.20) is dominated in the thermody-
namic limit by values of x very near to 0. More precisely, we can rescale the variable as
x = x̂/(2M

√
N). We then have g(x) = 1− x̂2/(6N)+Θ(1/N2). The leading behaviour

of the integral (7.20) at large N is thus given by

E Z � 2N−M 1√
N

∫ ∞

−∞

exp

(
− x̂2

6

)
dx̂

2π
� 2N−M

√
3

2πN
, (7.22)

up to corrections of order 1/N . �

Exercise 7.8 Show that, for E even, with E ≤ C2M for a fixed C, the number of partitions
with cost E is also given by eqn (7.19) in the thermodynamic limit.

Proposition 7.7 When κ < 1, the second moment of Z behaves in the thermodynamic
limit as

E Z2 = [E Z]
2

(1 + Θ(1/N)) . (7.23)

Proof We again release the constraint of an even
∑

i ai, so that

E Z2 = 22N−1

∫ π

−π

dx1

2π

∫ π

−π

dx2

2π
[E cos(a1x1) cos(a1x2)]

N
(7.24)

The expectation of the product of the two cosines is

E cos(a1x1) cos(a1x2) =
1

2
[g(x+) + g(x−)] , (7.25)

where x± = x1 ± x2. In order to find out which regions of the integration domain are
important in the thermodynamic limit, one must be careful because the function g(x) is
periodic with a period of 2π. The double integral is performed in the square [−π,+π]2.
The region of this square where g can be very close to 1 are the ‘centre’ where x1, x2 =
Θ(1/(2M

√
N)), and the four corners, close to (±π,±π), obtained from the centre by a

shift of ±π in x+ or in x−. Because of the periodicity of g(x), the total contribution of
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the four corners equals that of the centre. Therefore one can first compute the integral
near the centre, using the change of variables x1(2) = x̂1(2)/(2M

√
N). The correct

value of E Z2 is equal to twice the result of this integral. The remaining part of the
computation is straightforward, and indeed gives EZ2 � 3 · 22N(1−κ)/(2πN).

In order for this argument to be correct, one must show that the contributions from
outside the centre are negligible in the thermodynamic limit. The leading correction
comes from regions where x+ = Θ(1/(2M

√
N)), while x− is arbitrary. One can explic-

itly evaluate the integral in such a region by using the saddle point approximation. The
result is of order Θ(2N(1−κ)/N). Therefore, for κ < 1 the relative contributions from
outside the centre (and the corners) are exponentially small in N . A careful analysis
of the above two-dimensional integral can be found in the literature. �

Propositions 7.6 and 7.7 above have the following important implications. For
κ > 1, E Z is exponentially small in N . Since Z is a non-negative integer, this implies
(by the first-moment method) that, in most instances, Z is indeed 0. For κ < 1, E Z
is exponentially large. Moreover, the normalized random variable Z/E Z has a small
second moment, and therefore small fluctuations. An analysis similar to the one we
did in Section 5.2.1 for the REM then shows that Z is positive with high probability.
We have thus proved the existence of a phase transition at κc = 1, i.e. Theorem 7.2.

Exercise 7.9 Define as usual the partition function at inverse temperature β as Z(β) =P
A e−βEA . Using the integral representation

e−|U| =

Z ∞

−∞

dx

π

1

1 + x2
e−ixU (7.26)

and the relation
P

k∈Z
1/(1 + x2k2) = π/(x tanh(π/x)), show that the ‘annealed average’

for i.i.d. numbers ai is

Ei(Z) = 2N(1−κ)

r
3

2πN

1

tanh(β/2)
(1 + Θ(1/N)) . (7.27)

Notes

A nice elementary introduction to number partitioning is provided by Hayes (2002).
The NP-complete nature of this problem is a classical result which can be found in text-
books such as Papadimitriou (1994) and Garey and Johnson (1979). The Karmarkar–
Karp algorithm was introduced in a technical report (Karmarkar and Karp, 1982).
Korf’s complete algorithm is given in Korf (1998).

There has been a lot of work on the partitioning of random i.i.d. numbers. In
particular, the case where ai is uniform in [0, 1] has been studied in detail. This can
be regarded as equivalent to uniform costs in {1, . . . , 2M}, in the large-M limit. The
scaling of the cost of the optimal solution in this case was studied as early as 1986 by
Karmarkar et al. (1986). On the algorithmic side, this is a very challenging problem.
As we have seen, the optimal partition has a cost O(

√
N2−N ); however, all known



��� Number partitioning

heuristics perform badly on this problem. For instance, the KK heuristic finds a solu-
tion with a cost Θ

(
exp
[
−0.72(log N)2

])
, which is very far from the optimal scaling

(Yakir, 1996).
The phase transition was identified numerically by Gent and Walsh (1998), and

studied by statistical-physics methods by Ferreira and Fontanari (1998) and Mertens
(1998). Mertens also introduced the random cost model (Mertens, 2000). His review
paper (Mertens, 2001) provides a good summary of these publications, and will help
to solve Exercises 7.3, 7.5, and 7.8. The parity questions discussed in Exercise 7.4 have
been studied by Bauke (2002).

Elaborating on these statistical-mechanics treatments, detailed rigorous results
have been obtained for the unconstrained problem (Borgs et al., 2001) and more re-
cently, for the constrained case (Borgs et al., 2003). These results go far beyond the
theorems which we have stated here, and the interested reader is encouraged to study
the original papers. Readers will also find there all the technical details needed to fully
control the integral representation used in Section 7.5, and the solutions to Exercises
7.6 and 7.7.
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Introduction to replica theory

Over the past 30 years, the replica method has evolved into a rather sophisticated tool
for attacking theoretical problems as diverse as spin glasses, protein folding, vortices in
superconductors, and combinatorial optimization. In this book, we adopt a different
(but equivalent and, in our view, more concrete) approach: the ‘cavity method’. In
fact, readers can skip this chapter without great harm to their understanding of the
rest of this book.

It can be instructive, nevertheless, to have some knowledge of replicas: the replica
method is an amazing construction which is incredibly powerful. It is not yet a rigorous
method: it involves some formal manipulations, and a few prescriptions which may
appear arbitrary. Nevertheless, these prescriptions are fully specified, and the method
can be regarded as an ‘essentially automatic’ analytical tool. Moreover, several of
its most important predictions have been confirmed rigorously through alternative
approaches. Among its most interesting aspects is the role played by ‘overlaps’ among
replicas. It turns out that the subtle probabilistic structure of the systems under study
are often most easily phrased in terms of such variables.

Here we shall take advantage of the simplicity of the random energy model defined
in Chapter 5 to introduce replicas. This is the topic of Section 8.1. A more complicated
spin model is introduced and discussed in Section 8.2. In Section 8.3, we study the re-
lationship between the simplest replica-symmetry-breaking scheme and extreme value
statistics. Finally, in Section 8.4, we briefly explain how to perform a local stability
analysis in replica space. This is one of the most common consistency checks in the
replica method.

8.1 Replica solution of the random energy model

As we saw in Section 5.1, a sample (or instance) of the REM is given by the values of
2N energy levels Ej , with j ∈ {1, . . . , 2N}. The energy levels are i.i.d. Gaussian random
variables with mean 0 and variance N/2. A configuration of the REM is specified by
the index j of one energy level. The partition function for a sample with energy levels
{E1 . . . , E2N } is

Z =

2N∑
j=1

exp (−βEj) , (8.1)

and is itself a random variable (in physicists’ language, ‘Z fluctuates from sample to
sample’). In Chapter 5 we showed that intensive thermodynamic potentials are self-
averaging, meaning that their distribution is sharply concentrated around the mean
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value in the large-N limit. Among these quantities, a prominent role is played by the
free-energy density f = −(βN)−1 log Z. Other potentials can in fact be computed from
derivatives of the free energy. Unlike thermodynamic potentials, the partition function
has a broad distribution even for large sizes. In particular, its average is dominated,
in the low temperature phase, by extremely rare samples. In order to describe typical
samples, one has to compute the average of the log-partition function, E log Z, i.e., up
to a constant, the average free-energy density.

It turns out that computing integer moments of the partition function E Zn, with
n ∈ N, is much easier than computing the average log-partition function E log Z. This
happens because Z is the sum of a large number of ‘simple’ terms.

If, on the other hand, we were able to compute E Zn for any real n or, at least,
for n small enough, the average log-partition function could be determined using, for
instance, the relation

E log Z = lim
n→0

1

n
log(E Zn) . (8.2)

The idea is to carry out the calculation of E Zn ‘as if’ n were an integer. At a certain
point, after obtaining a manageable enough expression, we ‘remember’ that n has in
fact to be a real number and take this into account. As we shall see this whole line of
approach has some of the flavour of an analytic continuation, but in fact it has quite
a few extra grains of salt. . .

The first step consists in noticing that Zn can be written as an n-fold sum

Zn =

2N∑
i1...in=1

exp (−βEi1 − · · · − βEin
) . (8.3)

This expression can be interpreted as the partition function of a new system. A config-
uration of this system is given by the n-tuple (i1, . . . , in), with ia ∈ {1, . . . , 2N}, and
its energy is Ei1...in

= Ei1 + · · ·+ Ein
. In other words, the new system is formed from

n statistically independent copies of the original one. We shall refer to such copies as
replicas.

In order to evaluate the average of eqn (8.3), it is useful to first rewrite it as

Zn =
2N∑

i1...in=1

2N∏
j=1

exp

[
−βEj

(
n∑

a=1

I(ia = j)

)]
. (8.4)

By exploiting the linearity of the expectation, the independence of the Ej ’s, and the
fact that they are Gaussian, one gets

E Zn =

2N∑
i1...in=1

exp

⎛⎝β2N

4

n∑
a,b=1

I(ia = ib)

⎞⎠ . (8.5)

E Zn can also be interpreted as the partition function of a new ‘replicated’ system.
As before, a configuration is given by the n-tuple (i1, . . . , in), but now its energy is
Ei1...in

= −Nβ/4
∑n

a,b=1 I(ia = ib).
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This replicated system has several interesting properties. First of all, it is no longer
a disordered system: the energy is a deterministic function of the configuration. Second,
replicas are no longer statistically independent: they do ‘interact’. This is due to the
fact that the energy function cannot be written as a sum of single replica terms.
The interaction amounts to an attraction between different replicas. In particular, the
lowest-energy configurations are obtained by setting i1 = · · · = in. Their energy is
Ei1...in

= −Nβn2/4. Third, the energy itself depends upon the temperature, although
in a very simple fashion. The effect of interaction is stronger at low temperature.

The origin of the interaction among replicas is easily understood. For one given
sample of the original problem, the Boltzmann distribution is concentrated at low
temperature (β � 1) on the lowest energy levels: all the replicas will tend to be in the
same configuration with large probability. When averaging over sample realizations
(i.e. over the energy levels E1, . . . , E2N ), we do not see any longer which configuration
i ∈ {1, . . . , 2N} has the lowest energy, but we still see that the replicas prefer to stay
in the same state. There is no mystery in these remarks. The elements of the n-tuple
(i1 . . . in) are independent conditional on the sample, that is on the realization of the
energy levels Ej , j ∈ {1, . . . , 2N}. If we do not condition on the realization, i1, . . . , in
become dependent.

Given the configurations (i1 . . . in) of the replicas, it is convenient to introduce an
n × n matrix Qab = I(ia = ib), with elements in {0, 1}. We shall refer to this matrix
as the overlap matrix. The summand in eqn (8.5) depends upon the configuration
(i1 . . . in) only through the overlap matrix. We can therefore rewrite the sum over
configurations as

E Zn =
∑
Q

NN (Q) exp

⎛⎝Nβ2

4

n∑
a,b=1

Qab

⎞⎠ . (8.6)

Here NN (Q) denotes the number of configurations (i1 . . . in) whose overlap matrix is
Q = {Qab}, and the sum

∑
Q runs over the symmetric {0, 1} matrices with ones on the

diagonal. The number of such matrices is 2n(n−1)/2, while the number of configurations
of the replicated system is 2Nn. It is therefore natural to guess that the number of
configurations with a given overlap matrix satisfies a large-deviation principle of the
form NN (Q)

.
= exp(Ns(Q)).

Exercise 8.1 Show that the overlap matrix always has the following form: There exists a
partition G1, G2, . . . , Gng of the n replicas (this means that G1 ∪ G2 ∪ · · · ∪ Gng = {1 . . . n}
and Gi ∩ Gj = ∅) into ng groups such that Qab = 1 if a and b belong to the same group,
and Qab = 0 otherwise. Prove that NN (Q) satisfies the large-deviation principle described
above, with s(Q) = ng log 2.

Using this form of NN (Q), the replicated partition function can be written as

E Zn .
=
∑
Q

exp (Ng(Q)) , g(Q) ≡ β2

4

n∑
a,b=1

Qab + s(Q) . (8.7)
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The strategy of the replica method is to estimate the above sum using the saddle point
method.1 The ‘extrapolation’ to non-integer values of n is discussed afterward. Note
that this programme is completely analogous to the treatment of the Curie–Weiss
model in Section 2.5.2 (see also Section 4.3 for related background), with the extra
step of extrapolating to non-integer n.

8.1.1 The replica-symmetric saddle point

The function g(Q) is symmetric under permutation of replicas. Let π ∈ Sn be a
permutation of n objects, and denote by Qπ the matrix with elements Qπ

ab = Qπ(a)π(b).
Then g(Qπ) = g(Q). This is a simple consequence of the fact that the n replicas were
equivalent from the beginning. This symmetry is called replica symmetry, and is a
completely generic feature of the replica method.

When the dominant saddle point possesses this symmetry (i.e. when Qπ = Q for
any permutation π), one says that the system is replica-symmetric (RS). In the
opposite case, replica symmetry is spontaneously broken in the large-N limit. This is
analogous to the spontaneous breaking of +/− symmetry in the Curie–Weiss model,
which we discussed in Chapter 2 (see Section 2.5.2).

In view of this permutation symmetry, the simplest idea is to seek a replica-
symmetric saddle point. If Q is invariant under permutation, then, necessarily, Qaa =
1, and Qab = q0 for any pair a = b. We are left with two possibilities:

• The matrix QRS,0 is defined by q0 = 0. In this case NN (QRS,0) = 2N (2N −
1) . . . (2N−n+1), which yields s(QRS,0) = n log 2 and g(QRS,0) = n

(
β2/4 + log 2

)
.

• The matrix QRS,1 is defined by q0 = 1. This means that i1 = · · · = in. There are,
of course, NN (QRS,1) = 2N choices of the n-tuple (i1 . . . in) compatible with this
constraint, which yields s(QRS,1) = log 2 and g(QRS,1) = n2β2/4 + log 2.

Keeping for the moment to these RS saddle points, we need to find which one dominates
the sum. In Fig. 8.1 we plot, for n = 3 and n = 0.5, g0(n, β) ≡ g(QRS,0) and g1(n, β) ≡
g(QRS,1) as functions of T = 1/β. Note that the expressions we have obtained for
g0(n, β) and g1(n, β) are polynomials in n, which we can plot for non-integer values of
n.

When n > 1, the situation is always qualitatively the same as the one shown
for the n = 3 case. If we let βc(n) =

√
4 log 2/n, we have g1(β, n) > g0(β, n)

for β > βc(n), while g1(β, n) < g0(β, n) for β < βc(n). Assuming for the mo-
ment that the sum in eqn (8.7) is dominated by replica-symmetric terms, we have
E Zn .

= exp{N max[g0(β, n), g1(β, n)]}. The point βc(n) can therefore be interpreted
as a phase transition in the system of n replicas. At high temperatures (β < βc(n)),
the q0 = 0 saddle point dominates the sum: replicas are essentially independent. At
low temperature, the partition function is dominated by q0 = 1: replicas are locked
together. This fits nicely within our qualitative discussion of the replicated system in
the previous section.

The problems appear when we consider the n < 1 situation. In this case we still have
a phase transition at βc(n) =

√
4 log 2/n, but the high- and low-temperature regimes

1Speaking of ‘saddle points’ is a bit sloppy in this case, since we are dealing with a discrete sum.
By this, we mean that we aim at estimating the sum in eqn (8.7) through a single ‘dominant’ term.
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Fig. 8.1 Rate function g(Q) for the REM (see eqn (8.7)) versus temperature; g(Q) is eval-

uated here at the two replica-symmetric saddle points QRS,0 (continuous curves) and QRS,1

(dashed curves), in the cases n = 3 and n = 0.5.

exchange their roles. At low temperature (β > βc(n)), we have g1(β, n) < g0(β, n),
and at high temperature (β < βc(n)), we have g1(β, n) > g0(β, n). If we were to
apply the usual prescription and pick out the saddle point which maximizes g(Q), we
would obtain nonsense, physically (replicas become independent at low temperatures,
and correlated at high temperatures, contrary to our general discussion) as well as
mathematically (for n → 0, the function E Zn does not go to one, because g1(β, n) is
not linear in n at small n). As a matter of fact, the replica method prescribes that,
in this regime n < 1, one must estimate the sum (8.7) using the minimum of g(Q)!
There is no mathematical justification for this prescription in the present context. In
the next example and the following chapters we shall outline some of the arguments
employed by physicists in order to rationalize this choice.

Example 8.1 In order to get some understanding of this prescription, consider the
following toy problem. We want to apply the replica recipe to the quantity Ztoy(n) =
(2π/N)n(n−1)/4 (for a generic real n). For n integer, we have the following integral
representation:

Ztoy(n) =

∫
e−(N/2)

P
(ab) Q2

ab

∏
(ab)

dQab ≡
∫

eNg(Q)
∏
(ab)

dQab , (8.8)

where (ab) runs over all of the unordered pairs of indices a, b ∈ {1 . . . n} with a =
b, and the integrals over Qab run over the real line. Now we try to evaluate the
above integral by the saddle point method, and begin with the assumption that
it is dominated by a replica-symmetric point Q∗

ab = q0 for any a = b, yielding
g(Q∗) = −n(n− 1)q2

0/2. Next, we have to fix the value of q0 ∈ R. It is clear that the
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correct result is recovered by setting q0 = 0, which yields Ztoy(n)
.
= 1. Moreover this

is the unique choice such that g(Q∗) is stationary. However, for n < 1, q0 = 0 cor-
responds to a minimum, rather than to a maximum of g(Q∗). A formal explanation
of this odd behaviour is that the number of degrees of freedom, i.e. the number of
matrix elements Qab with a = b, becomes negative for n < 1.

This is one of the strangest aspects of the replica method, but it is unavoidable.
Another puzzle which we shall discuss later, concerns the exchange of the order of the
N → ∞ and n → 0 limits.

Let us therefore select the saddle point q0 = 0, and use the trick (8.2) to evaluate
the free-energy density. Assuming that the N → ∞ and n → 0 limits commute, we
get the RS free energy

−βf ≡ lim
N→∞

1

N
E log Z = lim

N→∞
lim
n→0

1

Nn
log(E Zn)

= lim
n→0

1

n
g0(n, β) =

β2

4
+ log 2 . (8.9)

Comparing this result with the exact free-energy density (eqn (5.15)), we see that the
RS result is correct only for the high-temperature phase β < βc = 2

√
log 2. It misses

the phase transition. Within the RS framework, there is no way to get the correct
solution for β > βc.

8.1.2 One-step replica symmetry breaking

For β > βc, the sum (8.7) is dominated by matrices Q which are not replica sym-
metric. The problem is to find these new saddle points, and they must make sense
in the n → 0 limit. In order to improve on the RS result, one can the subspace of
matrices to be optimized over (i.e. weaken the requirement of replica symmetry). The
replica-symmetry-breaking (RSB) scheme, initially proposed by Parisi in the more
complicated case of spin glass mean-field theory, prescribes a recursive procedure for
defining larger and larger spaces of matrices Q where one searches for saddle points.

The first step of this procedure is called one-step replica symmetry breaking
(1RSB). In order to describe it, let us suppose that n is a multiple of x, divide the n
replicas into n/x groups of x elements each, and set

Qaa = 1 ,

Qab = q1 if a and b are in the same group, (8.10)

Qab = q0 if a and b are in different groups.

Since, in the case of the REM, the matrix elements are in {0, 1}, this Ansatz is distinct
from the RS Ansatz only if q1 = 1 and q0 = 0. This corresponds, after a relabeling of
the replica indices, to i1 = · · · = ix, ix+1 = · · · = i2x, etc. The number of choices of
(i1, . . . in) which satisfy these constraints is NN (Q) = 2N (2N − 1) · · · (2N − n/x + 1),
and therefore we get s(Q) = (n/x) log 2. The rate function in eqn (8.7) is given by
g(QRSB) = gRSB(β, n, x):
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Fig. 8.2 The rate function g(Q) (see eqn (8.7)), evaluated at the one-step replica-symme-

try-breaking point, as a function of the replica-symmetry-breaking parameter x.

gRSB(β, n, x) =
β2

4
nx +

n

x
log 2 . (8.11)

Following the discussion in Section 8.1.1, we should minimize gRSB(β, n, x) with respect
to x, and then take the n → 0 limit. Notice that eqn (8.11) can be interpreted as an
analytic function both of n and of x = 0. We shall therefore forget hereafter that n
and x are integers with n a multiple of x. The derivative ∂gRSB(β, n, x)/∂x vanishes if
x = xs(β), where

xs(β) ≡ 2
√

log 2

β
=

βc

β
. (8.12)

Substituting this into eqn (8.11), and assuming again that we can exchange the order
of the limits n → 0 and N → ∞, we get

−βf = lim
n→0

1

n
min
x

gRSB(β, n, x) = β
√

log 2 , (8.13)

which is the correct result for β > βc: f = −
√

log 2. In fact, we can recover the
correct free energy of the REM over the whole temperature range if we accept that
the inequality 1 ≤ x ≤ n, valid for n, x integers, becomes n = 0 ≤ x ≤ 1 in the limit
n → 0 (we shall see later on some other arguments supporting this prescription). If the
minimization is constrained to x ∈ [0, 1], we get a fully consistent answer: x = βc/β is
the correct saddle point in the phase β > βc, while for β < βc the parameter x remains
at the value x = 1. In Fig. 8.2, we sketch the function gRSB(β, n, x)/n for a few values
of the temperature β.

8.1.3 Comments on the replica solution

One might think that the replica method is just a fancy way of reconstructing a
probability distribution from its integer moments. We know how to compute the integer
moments of the partition function E Zn, and we would like to infer the full distribution
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of Z and, in particular, the value of E log Z. This is a standard topic in probability
theory. It turns out that the probability distribution can be reconstructed if its integer
moments do not grow too fast as n → ∞. A typical result is the following.

Theorem 8.2. (Carleman) Let X be a real random variable with moments mn =
E Xn such that

∞∑
n=1

m
−1/2n
2n = ∞ . (8.14)

Then any variable with the same moments is distributed identically to X.

For instance, if the moments do not grow faster than exponentially, i.e. E Xn ∼ eαn,
a knowledge of them completely determines the distribution of X.

Let us try to apply the above result to the REM. The replica-symmetric calculation
of Section 8.1.1 is easily turned into a lower bound:

E Zn ≥ eng(QRS,0) ≥ eNβ2n2/4 . (8.15)

Therefore the sum in eqn (8.14) converges, and the distribution of Z is not necessarily
fixed by its integer moments.

Exercise 8.2 Assume that Z = e−F , where F is a Gaussian random variable, with prob-
ability density

p(F ) =
1√
2π

e−F2/2 . (8.16)

Compute the integer moments of Z. Do they satisfy the hypothesis of Carleman’s theorem?
Show that the moments are unchanged if p(F ) is replaced by the density pa(F ) = p(F )[1+
a sin(2πF )], with |a| < 1 (from Feller (1968)).

In our replica approach, there exist several possible analytic continuations to non-
integer n’s, and the whole issue is to find the correct one. Parisi’s Ansatz (and its
generalization to higher-order RSB that we shall discuss below) gives a well-defined
class of analytic continuations, which turns out to be the correct one in many different
problems.

The suspicious reader will notice that the moments of the REM partition function
would not grow so rapidly if the energy levels had a distribution with bounded support.
If for instance, we considered the Ei to be Gaussian random variables truncated to
Ei ∈ [−Emax, Emax], the partition function would be bounded from above by the
constant Zmax = 2NeβEmax . Consequently, we would have E Zn ≤ Zn

max, and the whole
distribution of Z could be recovered from its integer moments. In order to achieve such
a goal, we would, however, need to know exactly all the moments 1 ≤ n < ∞ at fixed
N (the system size). What we are instead able to compute, in general, is the large-N
behaviour at any fixed n. In most cases, this information is insufficient to ensure a
unique continuation to n → 0.
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In fact, one can think of the replica method as a procedure for computing the
quantity

ψ(n) = lim
N→∞

1

N
log E Zn , (8.17)

whenever the limit exists. In the frequent case where f = −(1/βN) log Z satisfies a
large-deviation principle of the form PN (f)

.
= exp[−NI(f)], we have

E Zn .
=

∫
exp[−NI(f) − Nβnf ] df

.
= exp{−N inf[I(f) + βnf ]} . (8.18)

Therefore ψ(n) = − inf[I(f) + βnf ]. In turn, the large-deviation properties of fN can
be inferred from ψ(n) through the Gärtner–Ellis theorem (Theorem 4.10). The typical
value of the free-energy density is given by the location of the absolute minimum of
I(f). In order to compute it, one must in general use values of n which go to 0, and
one cannot infer it from the integer values of n.

8.1.4 Condensation

As we discussed in Chapter 5, the appearance of a low-temperature ‘glass’ phase is
associated with a condensation of the probability measure onto few configurations. We
described this phenomenon quantitatively by the participation ratio Y . For the REM
we obtained limN→∞ E Y = 1 − βc/β for any β > βc (see Proposition 5.3). Let us see
how this result can be recovered in just a few lines from a replica computation.

The participation ratio is defined by Y =
∑2N

j=1 µ(j)2, where µ(j) = e−βEj /Z is
the Boltzmann probability of the j-th energy level. Therefore,

E Y = lim
n→0

E

⎡⎣Zn−2
2N∑
i=1

e−2βEi

⎤⎦ [definition of Y ]

= lim
n→0

E

⎡⎣ ∑
i1...in−2

e−β(Ei1+···+Ein−2
)

2N∑
i=1

e−2βEi

⎤⎦ [assume n ∈ N]

= lim
n→0

E

[ ∑
i1...in

e−β(Ei1
+···+Ein )I(in−1 = in)

]

= lim
n→0

1

n(n − 1)

∑
a	=b

E

[ ∑
i1...in

e−β(Ei1
+···+Ein ) I(ia = ib)

]
[symmetrize]

= lim
n→0

1

n(n − 1)

∑
a	=b

E

[ ∑
i1...in

e−β(Ei1
+···+Ein ) I(ia = ib)

]
E

[ ∑
i1...in

e−β(Ei1
+···+Ein )

] [denominator → 1]

= lim
n→0

1

n(n − 1)

∑
a	=b

〈Qab〉n , (8.19)



��� Introduction to replica theory

where the sums over the replica indices a, b run over a, b ∈ {1, . . . , n}, while the config-
uration indices ia are summed over {1, . . . , 2N}. In the last step, we have introduced
the notation

〈f(Q)〉n ≡
∑

Q f(Q) NN (Q)e(Nβ2/4)
P

a,b Qab∑
Q NN (Q)e(Nβ2/4)

P
a,b Qab

, (8.20)

and noticed that the sum over i1, . . . , in can be split into a sum over the overlap
matrices Q and a sum over the n-tuples i1 . . . in that have an overlap matrix Q. Note
that 〈 · 〉n can be interpreted as an expectation in the ‘replicated system’.

In the large-N limit, NN (Q)
.
= eNs(Q), and the expectation value in eqn (8.20) is

given by a dominant2 (saddle point) term: 〈f(Q)〉n � f(Q∗). As argued in the previous
sections, in the low-temperature phase β > βc, the saddle point matrix is given by the
1RSB expression (8.10):

E Y = lim
n→0

1

n(n − 1)

∑
a	=b

Q1RSB
ab [saddle point]

= lim
n→0

1

n(n − 1)
n[(n − x)q0 + (x− 1)q1] [eqn (8.10)]

= 1 − x = 1 − βc

β
. [q0 = 0, q1 = 1] (8.21)

This is exactly the result that we found in Proposition 5.3, using a direct combinatorial
approach. It also confirms that the 1RSB Ansatz (8.10) makes sense only if 0 ≤ x ≤ 1
(the participation ratio Y is positive by definition). Compared with the computation
in Section 5.3, the simplicity of the replica derivation is striking.

At first sight, the manipulations in eqn (8.19) seem to require new assumptions
with respect to the free-energy computation in the previous sections. Replicas are in-
troduced in order to write the factor Z−2 in the participation ratio as the analytic
continuation of a positive power Zn−2. It turns out that this calculation is in fact
equivalent to the one in eqn (8.2). This follows from the basic observation that expec-
tation values can be obtained as derivatives of log Z with respect to some parameters.

Exercise 8.3 Using the replica method, show that, for T < Tc,

E

0@ 2NX
j=1

µ(j)r

1A =
Γ(r − x)

Γ(r)Γ(1 − x)
=

(r − 1 − x)(r − 2 − x) . . . (1 − x)

(r − 1)(r − 2) . . . (1)
, (8.22)

where Γ(x) denotes Euler’s gamma function.

2If the dominant term corresponds to a non-replica-symmetric matrix Q∗, all the terms obtained
by permuting the replica indices contribute with an equal weight. Because of this fact, it is a good idea
to compute averages of symmetric functions f(Q) = f(Qπ). This is what we have done in eqn (8.19).
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Exercise 8.4 Using the replica method, show that, for T < Tc,

E
`
Y 2´ =

3 − 5x + 2x2

3
. (8.23)

8.2 The fully connected p-spin glass model

The replica method provides a compact and efficient way to compute –in a non-rigorous
way– the free-energy density of the REM. The result proves to be exact, once replica
symmetry breaking is used in the low-temperature phase. However, its power can be
better appreciated on more complicated problems which cannot be solved by direct
combinatorial approaches. In this section we shall apply the replica method to the
‘p-spin glass’ model. This model was invented in the course of the theoretical study
of spin glasses. Its distinguishing feature is interactions which involve groups of p
spins, with p ≥ 2. It generalizes ordinary spin glass models (see Section 2.6) in which
interactions involve pairs of spins (i.e. p = 2). This provides an additional degree of
freedom, the value of p, and different physical scenarios appear depending on whether
p = 2 or p ≥ 3. Moreover, some pleasing simplifications show up for large p.

In the p-spin model, one considers the space of 2N configurations of N Ising spins.
The energy of a configuration σ = {σ1, . . . , σN} is defined as

E(σ) = −
∑

i1<i2<···<ip

Ji1...ip
σi1 · · ·σip

, (8.24)

where σi ∈ {±1}. This is a disordered system: a sample is characterized by the set of all
couplings Ji1...ip

, with 1 ≤ i1 < · · · < ip ≤ N . These are taken as i.i.d. Gaussian ran-
dom variables with zero mean and variance E J2

i1...ip
= p!/(2Np−1). Their probability

density reads

P (J) =

√
πp!

Np−1
exp

(
−Np−1

p!
J2

)
. (8.25)

The p-spin model is an infinite-range interaction (or mean-field) model: there is
no notion of a Euclidean distance between the positions of the spins. It is also called
a fully connected model, since each spin interacts directly with all the others. The
last feature is the origin of the special scaling of the variance of the distribution of J
in eqn (8.25). A simple criterion for arguing that the proposed scaling is the correct
one consists in requiring that a flip of a single spin generates an energy change of
order 1 (i.e. finite when N → ∞). More precisely, we denote by σ(i) the configuration
obtained from σ by reversing the spin i, and we define ∆i ≡ [E(σ(i)) − E(σ)]/2. It
is easy to see that ∆i =

∑
i2...ip

Jii1...ip
σiσi1 · · ·σip

. The sum is over Θ(Np−1) terms,
and, if σ is a random configuration, the product σiσi1 · · ·σip

in each term is +1 or −1
with probability 1/2. The scaling in eqn (8.25) ensures that ∆i is finite as N → ∞ (in
contrast, the factor p! is just a matter of convention).
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Why is it important that the ∆i’s are of order 1? The intuition is that ∆i estimates
the interaction between a spin and the rest of the system. If ∆i were much larger than
1, the spin σi would be completely frozen in the direction which makes ∆i positive,
and temperature would not have any role. On the other hand, if ∆i were much smaller
than one, the spin i would be effectively independent of the others.

Exercise 8.5 An alternative argument can be obtained as follows. Show that, at high
temperature, i.e. β � 1, Z = 2N [1 + 2−1 β2P

i1<···<ip
J2

i1...ip
+ O(β3)]. This implies

N−1E log Z = log 2 + CNβ2/2 + O(β3), with CN = 1. What would happen with a dif-
ferent scaling of the variance? What scaling is required in order for CN to have a finite
N → ∞ limit?

The special case of p = 2 is the closest to the original spin glass problem and is
known as the Sherrington–Kirkpatrick (or SK) model.

8.2.1 The replica calculation

Let us start by writing Zn as the partition function for n non-interacting replicas σa
i ,

with i ∈ {1, . . . , N}, a ∈ {1, . . . , n}:

Zn =
∑
{σa

i }

∏
i1<···<ip

exp

(
βJi1...ip

n∑
a=1

σa
i1 . . . σa

ip

)
. (8.26)

The average over the couplings Ji1...ip
is easily evaluated by using their independence

and the well-known identity

E eλX = e∆λ2/2 , (8.27)

which holds for a Gaussian random variable X with zero mean and variance E X2 = ∆.
One gets

E Zn =
∑
{σa

i }

exp

⎛⎝β2

4

p !

Np−1

∑
i1<···<ip

∑
a,b

σa
i1σ

b
i1 σa

i2σ
b
i2 · · ·σ

a
ip

σb
ip

⎞⎠
.
=
∑
{σa

i }

exp

⎡⎣β2

4

1

Np−1

∑
a,b

(∑
i

σa
i σb

i

)p
⎤⎦ (8.28)

where we have neglected corrections due to coincident indices il = ik in the first term,
since they are irrelevant to the leading exponential order. We introduce the variables
λab and Qab for each a < b by using the identity

1 =

∫
δ

(
Qab −

1

N

N∑
i=1

σa
i σb

i

)
dQab = N

∫ ∫
e
−iλab

„
NQab−

P
i

σa
i σb

i

«
dλab

2π
dQab ,

(8.29)
with all of the integrals running over the real line. Using this identity in eqn (8.28),
we get
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E Zn .
=

∫ ∏
a<b

dQab

∑
{σa

i }

exp

(
Nβ2

4
n +

Nβ2

2

∑
a<b

Qp
ab

)
δ

(
Qab −

1

N

N∑
i=1

σa
i σb

i

)
.
= eNβ2n/4

∫ ∏
a<b

(dQab dλab) e
Nβ2

2

P
a<b Qp

ab
−iN

P
a<b λabQab

∑
{σa

i }

e
i

P
a<b λab

P
i

σa
i σb

i

.
=

∫ ∏
a<b

(dQab dλab) e−NG(Q,λ) (8.30)

where we have introduced the function

G(Q,λ) = −n
β2

4
− β2

2

∑
a<b

Qp
ab + i

∑
a<b

λabQab − log

⎡⎣∑
{σa}

e

P
a<b

iλabσaσb

⎤⎦ , (8.31)

which depends upon the n(n − 1)/2 + n(n − 1)/2 variables Qab, λab, 1 ≤ a < b ≤ n.

Exercise 8.6 An alternative route consists in noticing that the right-hand side of
eqn (8.28) depends upon the spin configuration only through the overlap matrix Qab =
N−1P

i σa
i σb

i , with a < b. The sum can be therefore decomposed into a sum over the
overlap matrices and a sum over configurations with a given overlap matrix:

E Zn .
=
X
Q

NN (Q) exp

 
Nβ2

4
n +

Nβ2

2

X
a<b

Qp
ab

!
. (8.32)

Here NN (Q) is the number of spin configurations with a given overlap matrix Q. In analogy
to the REM case, it is natural to guess a large-deviation principle of the form NN (Q)

.
=

exp[Ns(Q)]. Use the Gärtner–Ellis theorem (Theorem 4.10) to obtain an expression for the
‘entropic’ factor s(Q). Compare the resulting formula for E Zn with eqn (8.28).

Following our general approach, we shall estimate the integral (8.30) at large N
by the saddle point method. The stationarity conditions of G are most conveniently
written in terms of the variables ωab = iλab. By differentiating eqn (8.31) with respect
to its arguments, we get, ∀ a < b,

ωab =
1

2
pβ2 Qp−1

ab , Qab = 〈σaσb〉n , (8.33)

where we have introduced the average within the replicated system

〈f(σ)〉n ≡ 1

z(ω)

∑
{σa}

f(σ) exp

(∑
a<b

ωabσaσb

)
, z(ω) ≡

∑
{σa}

exp

(∑
a<b

ωab σaσb

)
,

(8.34)
for any function f(σ) = f(σ1, . . . , σn).



��� Introduction to replica theory

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

g(
q)

q

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

g(
q)

q

Fig. 8.3 Graphical solution of the RS equations for the p-spin model, with p = 2 (SK model,

left) and p = 3 (right). The various curves correspond to inverse temperatures β = 4, 3, 2,

1.5, 1, and 0.5 (from top to bottom).

We start by considering an RS saddle point Qab = q, ωab = ω for any a = b. Using
the Gaussian identity (8.27), we find that the saddle point equations (8.33) become

ω =
1

2
pβ2 qp−1 , q = Ez tanh2

(
z
√

ω
)

, (8.35)

where Ez denotes the expectation with respect to a Gaussian random variable z of
zero mean and unit variance. Eliminating ω, we obtain an equation for the overlap
parameter q = r(q), with r(q) ≡ Ez tanh2(z

√
pβ2 qp−1/2). In Fig. 8.3, we plot the

function r(q) for p = 2 and 3 and various temperatures. The equations (8.35) always
admit the solution q = ω = 0. Substituting into eqn (8.31), and using the trick (8.2),
this solution would yield a free-energy density

fRS = lim
n→0

1

βn
G(QRS, λRS) = −β/4 − (1/β) log 2 . (8.36)

At low enough temperature, other RS solutions appear. For p = 2, a single such
solution departs continuously from 0 at βc = 1, (see Fig. 8.3, left frame). For p ≥ 3,
a pair of non-vanishing solutions appear discontinuously for β ≥ β∗(p) and merge as
β ↓ β∗(p), (see Fig. 8.3, right frame). However two arguments allow us to discard these
saddle points:

• Stability argument. One can compute the Taylor expansion of G(Q,λ) around
such RS saddle points. The saddle point method can be applied only if the matrix
of second derivatives has a defined sign. As discussed in Section 8.4, this condition
does not hold for the non-vanishing RS saddle points.

• Positivity of the entropy. As explained in Chapter 2, because of the positivity of
the entropy, the free energy of a physical system with discrete degrees of freedom
must be a decreasing function of the temperature. Once again, one can show
that this condition is not satisfied by the non-vanishing RS saddle points. On the
other hand, the q = 0 saddle point also violates this condition at low enough
temperature (as the reader can see from eqn (8.36)).



The fully connected p-spin glass model ���

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������x+1

x

n

1

q
0

q
1

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������q

x

1

n

1

x

2 q
q

0

12

Fig. 8.4 Structure of the matrix Qab when replica symmetry is broken. Left : 1RSB Ansatz.

The n(n−1)/2 values of Qab are the non-diagonal elements of a symmetric n×n matrix. The

n replicas are divided into n/x blocks of size x. When a and b are in the same block, Qab = q1;

otherwise, Qab = q0. Right : 2RSB Ansatz: an example with n/x1 = 3 and x1/x2 = 2.

The above arguments are very general. The second condition, in particular, is
straightforward to check and must always be satisfied by the correct saddle point. The
conclusion is that none of the RS saddle points is correct at low temperatures. This
motivates us to look for 1RSB saddle points. We partition the set of n replicas into
n/x groups of x replicas each and seek a saddle point of the following 1RSB form:

Qab = q1 , ωab = ω1 , if a and b belong to the same group,

Qab = q0 , ωab = ω0 , if a and b belong to different groups. (8.37)

In practice, one can relabel the replicas in such a way that the groups are formed by
successive indices {1 . . . x}, {x + 1 . . . 2x}, . . . , {n − x + 1 . . . n} (see Fig. 8.4).

The computation of G(Q,λ) at this saddle point makes repeated use of the identity
(8.27) and is left as an exercise. One gets

G(Q1RSB, λ1RSB) = −n
β2

4
+ n

β2

4
[(1 − x)qp

1 + xqp
0 ] − n

2
[(1 − x)q1ω1 + xq0ω0]

+
n

2
ω1 − log

{
Ez0

[
Ez1(2 cosh(

√
ω0 z0 +

√
ω1 − ω0 z1))

x
]n/x
}

,

(8.38)

where Ez0 and Ez1 denote expectations with respect to the independent Gaussian
random variables z0 and z1 with zero mean and unit variance.
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Exercise 8.7 Show that the limit G1RSB(q0, q1, ω0, ω1; x) = limn→0 n−1 G(Q1RSB, λ1RSB)
exists, and compute it. Determine the stationarity condition for the parameters q0, q1, ω0, ω1,
and x by computing the partial derivatives of G1RSB(q, ω; x) with respect to its arguments
and setting them to 0. Show that these equations are always consistent with q0 = ω0 = 0,
and that

G1RSB|q0,ω0=0 = − 1

4
β2[1 − (1 − x)qp

1 ] +
1

2
ω1[1 − (1 − x)q1]

−1

x
log Ez [(2 cosh(

√
ω1 z))x] . (8.39)

If we choose the solution q0 = ω0 = 0, the stationarity conditions for the remaining
parameters q1 and ω1 are most easily obtained by differentiating eqn (8.39) with respect
to q1 and ω1. These conditions read

ω1 =
1

2
pβ2 qp−1

1 , q1 =
Ez

[
(2 cosh(

√
ω1 z))x(tanh(

√
ω1 z))2

]
Ez

[
(2 cosh(

√
ω1 z))x

] . (8.40)

These equations always admit the solution q1 = ω1 = 0: this choice reduces in fact
to a replica-symmetric Ansatz, as can be seen from eqn (8.37). Let us now consider
the case p ≥ 3. At low enough temperature, two non-vanishing solutions appear. A
local stability analysis shows that the larger one, which we shall call ωsp

1 , qsp
1 , must be

chosen.
The next step consists in optimizing G1RSB(Q0 = 0, qsp

1 , ω0 = 0, ωsp
1 ; x) with respect

to x ∈ [0, 1] (notice that G1RSB depends on x both explicitly and through qsp, ωsp). It
turns out that a unique stationary point xs(β) exists, but xs(β) belongs to the interval
[0, 1] only at low enough temperature, i.e. for β > βc(p). We refer to the literature
for an explicit characterization of βc(p). At the transition temperature βc(p), the free
energy of the 1RSB solution becomes equal to that of the RS solution. There is a phase
transition from an RS phase for β < βc(p) to a 1RSB phase for β > βc(p).

These calculations are greatly simplified (and can be carried out analytically) in
the large-p limit. The leading terms in a large p expansion are:

βc(p) = 2
√

log 2 + e−Θ(p) , xs(β) =
βc(p)

β
+ e−Θ(p) , q1 = 1 − e−Θ(p) . (8.41)

The corresponding free-energy density is constant in the whole low-temperature phase,
and equal to −

√
log 2. The reader will notice that several features of the REM are

recovered in this large-p limit. One can get a hint that this should be the case from
the following exercise.
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Exercise 8.8 Consider a p-spin glass problem, and take an arbitrary configuration σ =
{σ1, . . . , σN}. Let Pσ(E) denote the probability that this configuration has energy E when a
sample (i.e. a choice of couplings Ji1...ip) is chosen at random with the distribution (8.25).
Show that Pσ(E) is independent of σ, and is a Gaussian distribution with mean 0 and
variance N/2. Now take two configurations σ and σ′, and show that the joint probability
distribution of their energies E and E′, respectively, in a randomly chosen sample, is

Pσ,σ′(E, E′) = C exp

"
− (E + E′)2

2N(1 + qp
σ,σ′)

− (E − E′)2

2N(1 − qp
σ,σ′)

#
, (8.42)

where qσ,σ′ = (1/N)
P

i σiσ
′
i, and C is a normalization constant. When |qσ,σ′ | < 1, the en-

ergies of the two configurations become uncorrelated as p → ∞ (i.e. limp→∞ Pσ,σ′(E, E′) =
Pσ(E)Pσ′(E′)), suggesting an REM-like behaviour.

In order to know if the 1RSB solution which we have just found is the correct one,
we should first check its stability by verifying that the eigenvalues of the Hessian (i.e.
the matrix of second derivatives of G(Q,λ) with respect to its arguments) have the
correct sign. Although straightforward in principle, this computation becomes rather
cumbersome and we shall just give the result, due to Elizabeth Gardner. The 1RSB
solution is stable only in some intermediate phase defined by βc(p) < β < βu(p). At the
inverse temperature βu(p), there is a second transition to a new phase which involves
a more complex replica-symmetry-breaking scheme.

The 1RSB solution was generalized by Parisi to higher orders of RSB. His con-
struction is a hierarchical one. In order to define the structure of the matrix Qab with
two steps of replica symmetry breaking (2RSB), one starts from the 1RSB matrix
of Fig. 8.4 (left panel). The off-diagonal blocks with matrix elements q0 are left un-
changed. The diagonal blocks are changed as follows. Let us consider any diagonal
block of size x1 × x1 (we now call x = x1). In the 1RSB case, all its matrix elements
are equal to q1. In the 2RSB case, the x1 replicas are split into x1/x2 blocks of x2 repli-
cas each. The matrix elements in the off-diagonal blocks remain equal to q1. The ones
in the diagonal blocks become equal to a new number q2 (see Fig. 8.4, right panel).
The matrix is parameterized by five numbers: q0, q1, q2, x1, x2. This construction can
obviously be generalized by splitting the diagonal blocks again, grouping x2 repli-
cas into x2/x3 groups of x3 replicas. The full replica-symmetry-breaking (FRSB)
Ansatz Ansatz corresponds to iterating this procedure R times, and eventually taking
R to infinity. Notice that, although the construction makes sense for n integer only
when n ≥ x1 ≥ x2 ≥ · · · ≥ xR ≥ 1, in the n → 0 limit, this order is reversed to
0 ≤ x1 ≤ x2 ≤ · · · ≤ xR < 1. Once one assumes an R-RSB Ansatz, computing the
rate function G and solving the saddle point equations is a matter of calculus (special
tricks have been developed for R → ∞). It turns out that, in order to find a stable
solution in the phase β > βu(p), an FRSB Ansatz is required. The same situation is
also encountered in the case of the SK model (p = 2), in the whole of the phase β > 1,
but its description would take us too far.
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8.2.2 Overlap distribution

Replica symmetry breaking appeared in the previous subsections as a formal trick for
computing some partition functions. One of the fascinating features of spin glass theory
is that RSB has a very concrete physical, as well as a probabilistic, interpretation. One
of the main characteristics of a system displaying RSB is the existence, in a typical
sample, of some spin configurations which are very different from the lowest-energy
(ground state) configuration, but are very close to it in energy. One can get a measure
of this property through the distribution of overlaps between configurations. Given two
spin configurations σ = {σ1, . . . , σN} and σ′ = {σ′

1, . . . , σ
′
N}, the overlap between σ

and σ′ is

qσσ′ =
1

N

N∑
i=1

σiσ
′
i , (8.43)

so that N(1− qσσ′)/2 is the Hamming distance between σ and σ′. For a given sample
of the p-spin glass model, which we denote by J , the overlap distribution PJ(q) is
the probability density that two configurations, randomly chosen with the Boltzmann
distribution, have overlap q:∫ q

−1

PJ(q′) dq′ =
1

Z2

∑
σ,σ′

exp [−βE(σ) − βE(σ′)] I (qσσ′ ≤ q) . (8.44)

Let us compute the expectation of PJ(q) in the thermodynamic limit,

P (q) ≡ lim
N→∞

E PJ (q) , (8.45)

using replicas. One finds:∫ q

−1

P (q′) dq′ = lim
n→0

∑
σ1...σn

E

[
exp

(
−β
∑

a

E(σa)

)]
I (qσ1σ2 ≤ q) . (8.46)

The calculation is very similar to that of E (Zn); the only difference is that now the
overlap between replicas 1 and 2 is fixed to be ≤ q. Following the same steps as
before, we obtain an expression for P (q) in terms of the saddle point matrix Qsp

ab.
The only delicate point is that there may be several RSB saddle points related by
a permutation of the replica indices. If Q = {Qab} is a saddle point, any matrix
(Qπ)ab = Qπ(a),π(b) (where π is a permutation in Sn) is also a saddle point, with the
same weight: G(Qπ) = G(Q). When computing P (q), we need to sum over all the
equivalent distinct saddle points, which gives in the end∫ q

−1

P (q′) dq′ = lim
n→0

1

n (n − 1)

∑
a	=b

I (Qsp
ab ≤ q) . (8.47)

In the case of an RS solution, one has,∫ q

−1

P (q′) dq′ = I
(
qRS ≤ q

)
, (8.48)

where qRS is the solution of the saddle point equations (8.35). In words, if two con-
figurations σ and σ′ are drawn according to the Boltzmann distribution, their overlap
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will be qRS with high probability. Since the overlap is a sum of many ‘simple’ terms,
the fact that its distribution concentrates around a typical value is somehow to be
expected.

In a 1RSB phase characterized by the numbers q0, q1, λ0, λ1, x, one finds∫ q

−1

P (q′) dq′ = (1 − x) I (q1 ≤ q) + x I (q0 ≤ q) . (8.49)

The overlap can take, with positive probability, two values: q0 or q1. This has a very
nice geometrical interpretation. When configurations are sampled randomly with the
Boltzmann probability, at an inverse temperature β > βc(p), the configurations will
typically be grouped into clusters, such that any two configurations in the same cluster
have an overlap close to q1, while configurations in different clusters have an overlap
q0 < q1, and thus a larger Hamming distance The probability that they fall into
the same cluster is equal to 1 − x. The clustering property is a rather non-trivial
one: it would have been difficult to anticipate it without a detailed calculation. We
shall encounter later several other models where it also occurs. Although the replica
derivation presented here is non-rigorous, the clustering phenomenon can be proved
rigorously.

In a solution with higher-order RSB, the distribution P (q) develops new peaks.
The geometrical interpretation is that clusters contain subclusters, which themselves
contain subclusters etc. This hierarchical structure leads to the property of ultra-
metricity. Consider a triangle formed by three independent configurations drawn
from the Boltzmann distribution, and let the lengths of its sides be measured using
the Hamming distance. With high probability, such a triangle will be either equilat-
eral, or isosceles with the two equal sides larger than the third one. In the case of full
RSB, P (q) has a continuous part, showing that the clustering property is not as sharp,
because clusters are no longer well separated; but ultrametricity still holds.

Exercise 8.9 For a given sample of a p-spin glass in its 1RSB phase, we define Y as
the probability that two configurations fall into the same cluster. More precisely: Y =R 1

q
PJ(q′) dq′, where q0 < q < q1. The previous analysis shows that limN→∞ E Y = 1 − x.

Show that, in the large-N limit, E
`
Y 2
´

= (3 − 5x + 2x2)/3, as in the REM. Show that all
moments of Y are identical to those of the REM. This result depends only on the 1RSB
structure of the saddle point, and not on any of its details.

8.3 Extreme value statistics and the REM

Exercise 8.9 suggests that there exist universal properties which hold in the glass
phase, independently of the details of the model.

In systems with a 1RSB phase, this universality is related to the universality of
extreme value statistics. In order to clarify this point, we shall consider in this section
a slightly generalized version of the REM. Here, we assume the energy levels to be
M = 2N i.i.d. random variables admitting a probability density function P (E) with
the following properties:
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1. P (E) is continuous.

2. P (E) is strictly positive on a semi-infinite domain −∞ < E ≤ E0.

3. In the E → −∞ limit, P (E) vanishes more rapidly than any power law. We shall
keep here to the simple case in which

P (E) � A exp
(
−B|E|δ

)
as E → −∞ , (8.50)

for some positive constants A,B, δ.

We allow for such a general probability distribution because we want to check which
properties of the corresponding REM are universal.

As we have seen in Chapter 5, the low-temperature phase of the REM is controlled
by a few low-energy levels. Let us therefore begin by computing the distribution of the
lowest energy level among E1, . . . , EM (which we call Egs). Clearly,

P[Egs > E] =

[∫ ∞

E

P (x) dx

]M

. (8.51)

Let E∗(M) be the value of E such that P[Ei < E] = 1/M for one of the energy levels
Ei. For M → ∞, one gets

|E∗(M)|δ =
log M

B
+ O(log log M) . (8.52)

Let us focus on energies close to E∗(M), such that E = E∗(M) + ε/(Bδ|E∗(M)|δ−1),
and consider the limit M → ∞ with ε fixed. Then,

P[Ei > E] = 1 − A

Bδ|E|δ−1
e−B|E|δ [1 + o(1)]

= 1 − 1

M
eε [1 + o(1)] . (8.53)

Therefore, if we define a rescaled ground state energy through Egs = E∗(M) +
εgs/(Bδ|E∗(M)|δ−1), we get

lim
N→∞

P[εgs > ε] = exp (−eε) . (8.54)

In other words, the pdf of the rescaled ground state energy converges to P1(ε) =
exp(ε−eε). This limit distribution, known as the Gumbel distribution, is universal.
The form of the energy level distribution P (E) enters only into the values of the shift
and the scale, and not into the form of P1(ε). The following exercises show that several
other properties of the glass phase in the REM are also universal.
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Exercise 8.10 Let E1 ≤ E2 ≤ · · · ≤ Ek be the k lowest energies. Show that uni-
versality also applies to the joint distribution of these energies, in the limit M → ∞
at fixed k. More precisely, define the rescaled energies ε1 ≤ · · · ≤ εk through Ei =
E∗(M)+εi/(Bδ|E∗(M)|δ−1). Prove that the joint distribution of ε1, . . . , εk admits a density
and converges (as M → ∞) to

Pk(ε1, . . . , εk) = exp (ε1 + · · · + εk − eεk) I (ε1 ≤ · · · ≤ εk) . (8.55)

As the previous exercise shows, any finite number of energy levels, properly rescaled,
has a well-defined distributional limit. Remarkably, one can obtain a compact descrip-
tion of this limit for an infinite number of enegy levels. Recall that a Poisson point
process with a continuous density ρ is defined as a (random) collection of points on
the real line, such that the expected number of points in a small interval [ε, ε + dε] is
ρ(ε)dε+O((dε)2), and the numbers of points in two disjoint intervals are independent
random variables.

Now think of the energy levels as points on a line. The claim is that they are
distributed as a Poisson point process with density eε. Since

∫
eε dε = ∞, one can

show that this process has an infinite number of points with high probability. This is
indeed quite natural, since we want a model for the energy levels as N → ∞. It is not
difficult to check that the first (smallest) point of such a process has the distribution
(8.54) and that the first k points have the distribution (8.55).

Out of these energy levels, one can construct a probability distribution, by letting
Z(x) =

∑
j e−εj/x (this converges for x ∈ [0, 1)) and µ(j) = e−εj/x/Z(x). To make

contact with previous calculations, one should choose x = βc/β. This defines a random
probability distribution µ( · ) over the integers that is usually referred to as the Poisson–
Dirichlet process.

Exercise 8.11 Consider an REM where the pdf of the energies satisfies the assumptions
1–3 above, and M = 2N . Show that, in order for the ground state energy to be extensive
(i.e. E1 ∼ N in the large-N limit), one must have B ∼ N1−δ. Show that the system has a

phase transition at the critical temperature Tc = δ (log 2)(δ−1)/δ.

We define the participation ratios Yr ≡ P2N

j=1 µ(j)r. Prove that, for T < Tc, these
quantities signal a condensation phenomenon. More precisely,

lim
N→∞

E Yr =
Γ(r − x)

Γ(r)Γ(1 − x)
, (8.56)

where x = (T/Tc) min{δ, 1}, as in the standard REM (see Section 8.3).
[Hint: One can prove this equality by direct probabilistic means using the methods of

Section 5.3. For δ > 1, one can also use the replica approach of Section 8.1.4.]

To summarize, in the condensed phase only the configurations with low energy
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matter. Within the class of random energy models defined above, the distribution of
their energies converges to a Poisson–Dirichlet process. All the details of the model
are hidden in the temperature-dependent parameter x. This universality is expected
to hold in a wide class of models for which the 1RSB approach is asymptotically exact
(with the caveat that configurations should be replaced by ‘configuration lumps’ or
‘pure states’). This explains the success of 1RSB in many systems with a glass phase.

Indeed, this universality is expected to hold also when higher-order RSB applies.
Namely, energy levels, properly rescaled, have the same distribution as that described
above. The difference is that in this case they are endowed with an ultrametric distance
structure, that corresponds to the ultrametric matrix Qab that appears in the replica
method.

8.4 Appendix: Stability of the RS saddle point

In order to establish if a replica saddle point is correct, one widely used criterion is
its local stability. In order to explain the basic idea, let us take a step backward and
express the replicated free energy as an integral over the overlap parameters uniquely:

E Zn .
=

∫
eN bG(Q)

∏
(a,b)

dQab . (8.57)

Such an expression can be obtained either from eqn (8.30) by integrating over {λab}
or as described in Exercise 8.6. Following the latter approach, we get

Ĝ(Q) = −n
β2

4
− β2

2

∑
a<b

Qp
ab − s(Q) , (8.58)

where

s(Q) = −
∑
a<b

ωabQab + ψ(ω)

∣∣∣∣∣
ω=ω∗(Q)

, ψ(ω) = log

⎡⎣∑
{σa}

e

P
a<b

ωabσaσb

⎤⎦ , (8.59)

and ω∗(Q) solves the equation Qab = (∂ψ(ω)/∂ωab). In other words, s(Q) is the
Legendre transform of ψ(ω) (apart from an overall minus sign). An explicit expression
for s(Q) is not available, but we shall need only the following well-known property of
Legendre transforms:

∂2s(Q)

∂Qab∂Qcd
= −C−1

(ab)(cd) , C(ab)(cd) ≡
∂2ψ(ω)

∂ωab∂ωcd

∣∣∣∣
ω=ω∗(Q)

, (8.60)

where C−1 is the inverse of C in the matrix sense. The right-hand side is, in turn,
easily written down in terms of averages over the replicated system (see eqn (8.34)):

C(ab)(cd) = 〈σaσbσcσd〉n − 〈σaσb〉n〈σcσd〉n . (8.61)

Assume now that (Qsp, λsp) is a stationary point of G(Q,λ). This is equivalent to

saying that Qsp is a stationary point of Ĝ(Q) (the corresponding value of ω coincides
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with iλsp). We would like to estimate the sum (8.57) as EZn .
= eN bG(Qsp). A necessary

condition for this to be correct is that the matrix of second derivatives of Ĝ(Q) is
positive semidefinite at Q = Qsp. This is referred to as the local stability condition.
Using eqns (8.58) and (8.61), we get the explicit condition

M(ab)(cd) ≡
[
−1

2
β2p(p − 1)Qp−2

ab δ(ab),(cd) + C−1
(ab)(cd)

]
! 0 , (8.62)

where we write A ! 0 to denote that the matrix A is positive semidefinite.
In this technical appendix, we sketch this computation in two simple cases: the

stability of the RS saddle point for the general p-spin glass in zero magnetic field, and
the SK model in a field.

We consider first the RS saddle point Qab = 0, ωab = 0 in the p-spin glass. In this
case

〈f(σ)〉n =
1

2n

∑
{σa}

f(σ) . (8.63)

It is then easy to show that M(ab)(cd) = δ(ab),(cd) for p ≥ 3 and M(ab)(cd) = (1 −
β2)δ(ab),(cd) for p = 2. The situations for p ≥ 3 and for p = 2 are very different:

• If p = 2 (the SK model), the RS solution is stable for β < 1, and unstable for
β > 1.

• If p ≥ 3, the RS solution is always stable.

Let us now look at the SK model in a magnetic field. This is the p = 2 case but with
an extra term −B

∑
i σi added to the energy (8.24). It is straightforward to repeat all

the replica computations with this extra term.The results are formally identical if the
average within the replicated system (8.34) is changed to

〈f(σ)〉n,B ≡ 1

z(ω)

∑
{σa}

f(σ) exp

(∑
a<b

ωab σaσb + βB
∑

a

σa

)
, (8.64)

z(ω) ≡
∑
{σa}

exp

(∑
a<b

ωab σaσb + βB
∑

a

σa

)
. (8.65)

The RS saddle point equations (8.35) are changed to

ω = β2 q , q = Ez tanh2
(
z
√

ω + βB
)

. (8.66)

When B = 0, the values of q, ω are non-zero at any positive β. This complicates the
stability analysis.

Since p = 2, we have M(ab)(cd) = −β2δ(ab)(cd)+C−1
(ab)(cd). Let {λj} be the eigenvalues

of C(ab)(cd). Since C ! 0, the condition M ! 0 is in fact equivalent to 1 − β2λj ≥ 0,
for all the eigenvalues λj .
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The matrix elements C(ab)(cd) take three different forms, depending on the number
of common indices in the two pairs (ab), (cd):

C(ab)(ab) = 1 −
[
Ez tanh2

(
z
√

ω + βB
)]2 ≡ U ,

C(ab)(ac) = Ez tanh2
(
z
√

ω + βB
)
−
[
Ez tanh2

(
z
√

ω + βB
)]2 ≡ V ,

C(ab)(cd) = Ez tanh4
(
z
√

ω + βB
)
−
[
Ez tanh2

(
z
√

ω + βB
)]2 ≡ W ,

where b = c is assumed in the second line, and all indices are distinct in the last line.
We want to solve the eigenvalue equation

∑
(cd) C(ab)(cd)xcd = λx(ab).

The first eigenvector is the uniform vector x(ab) = x. Its eigenvalue is λ1 = U +
2(n − 2)V + (n − 2)(n − 3)/2W . Next we consider eigenvectors which depend on
one special value θ of the replica index in the form x(ab) = x if a = θ or b = θ,
and x(ab) = y in all other cases. Orthogonality to the uniform vector is enforced by
choosing x = (1 − n/2)y, and we find the eigenvalue λ2 = U + (n − 4)V + (3 − n)W .
This eigenvalue has degeneracy n− 1. Finally, we consider eigenvectors which depend
on two special values θ, ν of the replica index: x(θ,ν) = x, x(θ,a) = x(ν,a) = y, x(ab) = z,
where a and b are distinct from θ, ν. Orthogonality to the previously found eigenvectors
imposes x = (2−n)y and y = [(3−n)/2]z. Plugging this into the eigenvalue equation,
we obtain the eigenvalue λ3 = U − 2V + W , with degeneracy n(n − 3)/2.

In the limit n → 0, the matrix C has two distinct eigenvalues: λ1 = λ2 = U −
4V + 3W and λ3 = U − 2V + W . Since V ≥ W , the most dangerous eigenvalue is λ3

(called the replicon eigenvalue). This implies that the RS solution of the SK model
is locally stable if and only if

Ez

[
1 − tanh2

(
z
√

ω + βB
)]2 ≤ T 2 (8.67)

This inequality is saturated on a line in the T,B plane, called the AT line. This

behaves like T = 1 −
(

3
4

)2/3
B2/3 + o(B2/3) for B → 0 and like T � 4 e−B2/2/(3

√
2π)

for B � 1.

Exercise 8.12 Readers who want to test their understanding of these replica computations
can study the SK model in zero field (B = 0), but in the case where the couplings have a
ferromagnetic bias: the Jij are i.i.d. and Gaussian distributed, with mean J0/N and variance
1/N .

(a) Show that the RS equations (8.35) are modified to

ω = β2 q , q = Ez tanh2 `z√ω + βJ0m
´

, m = Ez tanh
`
z
√

ω + βJ0m
´

. (8.68)
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(b) Solve these equations numerically. Notice that, depending on the values of T and J0,
three types of solutions can be found: (1) a paramagnetic solution m = 0, q = 0, (2) a
ferromagnetic solution m > 0, q > 0, and (3) a spin glass solution m = 0, q > 0.

(c) Show that the AT stability condition becomes

Ez

ˆ
1 − tanh2 `z√ω + βJ0m

´˜2
< T 2 , (8.69)

and deduce that the RS solution found in (a) and (b) is stable only in the paramagnetic
phase and in a part of the ferromagnetic phase.

Notes

The replica solution of the REM was derived in the original work of Derrida that
introduced the model (Derrida, 1980; Derrida, 1981). His motivation for introducing
the REM came actually from the large-p limit of p-spin glasses.

The problem of moments is discussed, for instance, by Shohat and Tamarkin (1943).
The first universally accepted model of spin glasses was that of Edwards and An-

derson (1975). The mean-field theory was defined by Sherrington and Kirkpatrick
(1975) and Kirkpatrick and Sherrington (1978), who considered the RS solution. The
instability of this solution in the p = 2 case was found by de Almeida and Thouless
(1978), who first computed the location of the AT line. The solution to Exercise 8.12
can be found in Kirkpatrick and Sherrington (1978) and de Almeida and Thouless
(1978).

Parisi’s Ansatz was introduced in a few very inspired works starting in 1979 (Parisi,
1979; Parisi, 1980a; Parisi 1980b). His original motivation came from his reflections on
the meaning of the permutation group Sn when n < 1, particularly in the n → 0 limit.
Unfortunately, there have not been any mathematical developments along these lines.
The replica method, in the presence of RSB, is still waiting for a proper mathematical
framework. On the other hand, it is a very well-defined computational scheme, which
applies to a wide variety of problems. The physical interpretation of RSB in terms of
condensation was found by Parisi (1983), and developed by Mézard et al. (1985c), who
discussed the distribution of weights in the glass phase and its ultrametric organization.
The p-spin model was analysed at large p using replicas by Gross and Mézard (1984).
The clustering phenomenon was discovered in that work. The finite-p case was later
studied by Gardner (1985). A rigorous treatment of the clustering effect in the p-
spin glass model was developed by Talagrand (2000) and can be found in his book
(Talagrand, 2003).

Ruelle (1987) introduced the asymptotic model for the low-lying energy levels of the
REM. The connection between 1RSB and Gumbel’s statistics of extremes is discussed
in Bouchaud and Mézard (1997). For a description of the mathematical structure
of (free) energy levels in models with higher-order RSB, we suggest the review by
Aizenman et al. (2005). Poisson–Dirichlet processes are discussed from a probabilistic
point of view in Pitman and Yor (1997).

A more detailed presentation of the replica method, together with reprints of most
of the above papers, can be found in Mézard et al. (1987).
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9

Factor graphs and graph ensembles

Systems involving a large number of simple variables with mutual dependencies (or
constraints or interactions) appear recurrently in several fields of science. It is often the
case that such dependencies can be ‘factorized’ in a non-trivial way, and distinct that
variables interact only ‘locally’. In statistical physics, the fundamental origin of such
a property can be traced back to the locality of physical interactions. In computer
vision it is due to the two-dimensional character of the retina and the locality of
reconstruction rules. In coding theory, it is a useful property for designing a system
with fast encoding/decoding algorithms. This important structural property plays a
crucial role in many interesting problems.

There exist several possibilities for expressing graphically the structure of depen-
dencies among random variables: graphical models, Bayesian networks, dependency
graphs, normal realizations, etc. We adopt here the factor graph language, because of
its simplicity and flexibility.

As argued in the previous chapters, we are particularly interested in ensembles of
probability distributions. These may emerge either from ensembles of error-correcting
codes, in the study of disordered materials, or in the study of random combinatorial
optimization problems. Problems drawn from these ensembles are represented by fac-
tor graphs, which are themselves random. The most common examples are random
hypergraphs, which are a simple generalization of the well-known random graphs.

Section 9.1 introduces factor graphs and provides a few examples of their utility. In
Section 9.2, we define some standard ensembles of random graphs and hypergraphs.
We summarize some of their important properties in Section 9.3. One of the most
surprising phenomena in random graph ensembles is the sudden appearance of a ‘giant’
connected component as the number of edges crosses a threshold. This is the subject
of Section 9.4. Finally, in Section 9.5, we describe the local structure of large random
factor graphs.

9.1 Factor graphs

9.1.1 Definitions and general properties

Example 9.1 We begin with a toy example. A country elects its president from two
candidates {A,B} according to the following peculiar system. The country is divided
into four regions {1, 2, 3, 4}, grouped into two states: North (regions 1 and 2) and
South (3 and 4). Each of the regions chooses its favourite candidate according
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Fig. 9.1 Factor graph representation of the electoral process described in Example 1.

to the popular vote: we denote this candidate by xi ∈ {A,B}, with i ∈ {1, 2, 3, 4}.
Then, a North candidate yN and a South candidate yS are decided according to the
following rule. If the preferences x1 and x2 in regions 1 and 2 agree, then yN takes
this value. If they do not agree, yN is decided according to a fair-coin trial. The
same procedure is adopted for the choice of yS, given x3, x4. Finally, the president
z ∈ {A,B} is decided on the basis of the choices yN and yS in the two states using
the same rule as inside each state.

A polling institute has obtained fairly good estimates of the probabilities pi(xi)
for the popular vote in each region i to favour the candidate xi. They ask you to
calculate the odds for each of the candidates to become the president.

It is clear that the electoral procedure described above has important ‘factoriza-
tion’ properties. More precisely, the probability distribution for a given realization
of the random variables {xi}, {yj}, z has the form

P ({xi}, {yj}, z) = f(z, yN, yS) f(yN, x1, x2) f(yS, x3, x4)
4∏

i=1

pi(xi) . (9.1)

We leave it to the reader to write explicit forms for the function f . The election
process and the above probability distribution can be represented graphically as in
Fig. 9.1. Can this particular structure be exploited for computing the chances for
each candidate to become president?

Abstracting from the above example, let us consider a set of N variables x1, . . . , xN

taking values in a finite alphabet X . We assume that their joint probability distribution
takes the form

P (x) =
1

Z

M∏
a=1

ψa(x∂a) . (9.2)

Here we have used the shorthands x ≡ {x1, . . . , xN} and x∂a ≡ {xi | i ∈ ∂a}, where
∂a ⊆ [N ]. The set of indices ∂a, with a ∈ [M ], has a size ka ≡ |∂a|. When necessary,
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Fig. 9.2 A generic factor graph is formed by several connected components. Variables belong-

ing to distinct components (for instance x3 and x15 in the graph shown here) are statistically

independent.

we shall use the notation {ia1 , . . . , iaka
} ≡ ∂a to denote the indices of the variables

which correspond to the factor a, and xia
1 ,...,ia

ka

≡ x∂a for the corresponding variables.

The compatibility functions ψa : X ka → R are non-negative, and Z is a positive
constant. In order to completely determine the form of eqn (9.2), we need to specify
both the functions ψa( · ) and an ordering of the indices in ∂a. In practice, this last
specification will always be clear from the context.

Factor graphs provide a graphical representation of distributions of the form
(9.2), which are also referred to as undirected graphical models. The factor graph
for the distribution (9.2) contains two types of nodes: N variable nodes, each one
associated with a variable xi (represented by circles), and M function nodes, each
one associated with a function ψa (represented by squares). An edge joins a variable
node i and a function node a if the variable xi is among the arguments of ψa(x∂a)
(in other words if i ∈ ∂a). The set of function nodes that are adjacent to (share an
edge with) the variable node i is denoted by ∂i. The graph is bipartite: an edge always
joins a variable node to a function node. The reader can easily check that the graph
in Fig. 9.1 is indeed the factor graph corresponding to the factorized form (9.1). The
degree of a variable node |∂i| or of a factor node |∂a| is defined as usual as the number
of edges incident on it. In order to avoid trivial cases, we shall assume that |∂a| ≥ 1 for
any factor node a. The basic property of the probability distribution (9.2), encoded in
its factor graph, is that two ‘well-separated’ variables interact uniquely through those
variables which are interposed between them. A precise formulation of this intuition
is given by the following observation, named the global Markov property.

Proposition 9.2 Let A,B, S ⊆ [N ] be three disjoint subsets of the variable nodes,
and denote by xA, xB, and xS the corresponding sets of variables. If S ‘separates’ A
and B (i.e. if there is no path in the factor graph joining a node of A to a node of B
without passing through S), then

P (xA, xB |xS) = P (xA|xS)P (xB |xS) . (9.3)

In such a case, the variables xA, xB are said to be conditionally independent.
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Fig. 9.3 The action of conditioning on a factor graph. The probability distribution on the

left has the form P (x1...6) ∝ fa(x1...4)fb(x3,4,5)fc(x1,3,5,6)fd(x5). After conditioning on x3,

we get P (x1...6|x3 = x∗) ∝ f ′
a(x1,2,4)f

′
b(x4,5)f

′
c(x1,5,6)fd(x5). Note that the functions f ′

a(·),
f ′

b(·), f ′
c(·) (grey nodes on the right) are distinct from fa(·), fb(·), fc(·) and depend upon the

value x∗.

x

x

x

2
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4x1

Fig. 9.4 A factor graph with four variables; {x1} and {x2, x3} are independent, conditional

on x4. The set of variables {x2, x3, x4} and the three function nodes connecting two points

in this set form a clique.

Proof It is easy to provide a ‘graphical’ proof of this statement. Notice that, if the
factor graph is disconnected, then variables belonging to distinct components are in-
dependent; see Fig. 9.2. Conditioning on a variable xi is equivalent to eliminating
the corresponding variable node from the graph and modifying the adjacent function
nodes accordingly; see Fig. 9.3. Finally, when one conditions on xS as in eqn (9.3), the
factor graph becomes split in such a way that A and B belong to distinct components.
We leave to the reader the exercise of filling in the details. �

It is natural to wonder whether any probability distribution which is ‘globally
Markov’ with respect to a given graph can be written in the form (9.2). In general,
the answer is negative, as can be shown with a simple example. Consider the small
factor graph in Fig. 9.4. The global Markov property has a non-trivial content only
for the following choice of subsets: A = {1}, B = {2, 3}, S = {4}. The most general
probability distribution such that x1 is independent of {x2, x3} conditional on x4 is
of the type fa(x1, x4)fb(x2, x3, x4). The probability distribution encoded by the factor
graph is a special case where fb(x2, x3, x4) = fc(x2, x3)fd(x3, x4)fe(x4, x2).

The factor graph of our counterexample in Fig. 9.4 has a peculiar property: it
contains a subgraph (the one with variables {x2, x3, x4}) such that, for any pair of
variable nodes, there is a function node adjacent to both of them. We call any factor
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subgraph possessing this property a clique (this definition generalizes the notion of a
clique in the usual type of graphs with pairwise edges). It turns out that once one gets
rid of cliques, the converse of Proposition 9.2 can be proved. We ‘get rid’ of cliques by
completing the factor graph. Given a factor graph F , its completion F is obtained by
adding one factor node for each clique in the graph and connecting it to each variable
node in the clique and to no other node.

Theorem 9.3. (Hammersley–Clifford) Let P (·) be a strictly positive probability
distribution over the variables x = (x1, . . . , xN ) ∈ XN , satisfying the global Markov
property (9.3) with respect to a factor graph F . Then P can be written in the factorized
form (9.2) with respect to the completed graph F .

Roughly speaking, the only assumption behind the factorized form (9.2) is the rather
weak notion of locality encoded by the global Markov property. This may serve as
a general justification for studying probability distributions that have a factorized
form. Note that the positivity hypothesis P (x1, . . . , xN ) > 0 is not just a technical
assumption: there exist counterexamples to the Hammersley–Clifford theorem if P is
allowed to vanish.

9.1.2 Examples

Let us look at a few examples.
We start with Markov chains. The random variables X1, . . . , XN taking values in

a finite state space X form a Markov chain of order r (with r < N) if

P (x1 . . . xN ) = P0(x1 . . . xr)
N−1∏
t=r

w(xt−r+1 . . . xt → xt+1) , (9.4)

for some non-negative transition probabilities {w(x−r . . . x−1 → x0)} and initial con-
dition P0(x1 . . . xr) satisfying the normalization conditions

∑
x1...xr

P0(x1 . . . xr) = 1 ,
∑
x0

w(x−r . . . x−1 → x0) = 1 . (9.5)

The parameter r is the ‘memory range’ of the chain. Ordinary Markov chains have
r = 1. Higherorder Markov chains allow one to model more complex phenomena. For
instance, in order to get a reasonable probabilistic model of the English language with
the usual alphabet X = {a,b,. . . z, blank} as the state space, it is reasonable to choose
r to be of the order of the average word length.

It is clear that eqn (9.4) is a particular case of the factorized form (9.2). The
corresponding factor graph includes N variable nodes, one for each variable xi; N − r
function nodes, one for each of the factors w(·); and one function node for the initial
condition P0(·). In Fig. 9.5, we present a small example with N = 6 and r = 2.
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Fig. 9.5 Left : factor graph for a Markov chain of length N = 6 and memory range r = 2.

Right : by adding auxiliary variables, the same probability distribution can be written as a

Markov chain with memory range r = 1.

Exercise 9.1 Show that a Markov chain with memory range r and state space X can
always be rewritten as a Markov chain with memory range 1 and state space X r.

[Hint: The transition probabilities ŵ of the new chain are given in terms of the original
ones by

ŵ(�x → �y) =

j
w(x1, . . . , xr → yr) if x2 = y1, x3 = y2, . . . xr = yr−1 ,
0 otherwise,

(9.6)

where we have used the shorthands �x ≡ (x1, . . . , xr) and �y = (y1, . . . , yr).]
Figure 9.5 shows a reduction to an order-1 Markov chain in factor graph language.

What is the content of the global Markov property for Markov chains? Let us
start from the case of order-1 chains. Without loss of generality, we can choose S
as containing only one variable node (let us say the i-th one) while A and B are,
respectively the nodes to the left and to the right of i: A = {1, . . . , i − 1} and B =
{i + 1, . . . , N}. The global Markov property reads

P (x1 . . . xN |xi) = P (x1 . . . xi−1|xi)P (xi+1 . . . xN |xi) , (9.7)

which is just a rephrasing of the usual Markov condition: Xi+1 . . . XN depend upon
X1 . . . Xi uniquely through Xi. We invite the reader to discuss the global Markov
property for order-r Markov chains.

Our second example is borrowed from coding theory. Consider a ‘Hamming’ code
C of block length N = 7 defined by the codebook

C = {(x1, x2, x3, x4) ∈ {0, 1}4 | x1 ⊕ x3 ⊕ x5 ⊕ x7 = 0 , (9.8)

x2 ⊕ x3 ⊕ x6 ⊕ x7 = 0 , x4 ⊕ x5 ⊕ x6 ⊕ x7 = 0} .

Let µ0(x) be the uniform probability distribution over the codewords. Then,

µ0(x) =
1

Z0
I(x1 ⊕ x3 ⊕ x5 ⊕ x7 = 0) I(x2 ⊕ x3 ⊕ x6 ⊕ x7 = 0) (9.9)

× I(x4 ⊕ x5 ⊕ x6 ⊕ x7 = 0) ,

where Z0 = 16 is a normalization constant. This distribution has the form (9.2), and
the corresponding factor graph is reproduced in Fig. 9.6.
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Fig. 9.6 Left : factor graph for the uniform distribution over the code defined in eqn (9.8).

Right : factor graph for the distribution of the transmitted message conditional on the channel

output. Grey function nodes encode the information carried by the channel output.
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Fig. 9.7 Factor graph for an Edwards–Anderson model with size L = 4 in d = 2 dimen-

sions. Filled squares correspond to pairwise interaction terms −Jijσiσj . Grey squares denote

magnetic-field terms −Bσi.

Exercise 9.2 Suppose that a codeword in C is transmitted through a binary memoryless
channel, and that the message (y1, y2, . . . , y7) is received. As argued in Chapter 6, in order
to find the codeword which has been sent, one should consider the probability distribution
of the transmitted message conditional on the channel output (see eqn (6.5)). Show that
the factor graph representation for this distribution is the one given in Fig. 9.6, right-hand
frame.

Let us now introduce an example from statistical physics. In Section 2.6 we intro-
duced the Edwards–Anderson model, a statistical-mechanics model for spin glasses,
whose energy function reads E(σ) = −∑(ij) Jijσiσj − B

∑
i σi. The Boltzmann dis-

tribution can be written as
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µβ(σ) =
1

Z

∏
(ij)

eβJijσiσj

∏
i

eβBσi , (9.10)

where i runs over the sites of a d-dimensional cubic lattice of side L, i.e. i ∈ [L]d,
and (ij) runs over the pairs of nearest neighbours in the lattice. Once again, this
distribution admits a factor graph representation, as shown in Fig. 9.7. This graph in-
cludes two types of function nodes. Nodes corresponding to pairwise interaction terms
−Jijσiσj in the energy function are connected to two neighbouring variable nodes.
Nodes representing magnetic-field terms −Bσi are connected to a unique variable.

The final example comes from combinatorial optimization. The satisfiability prob-
lem is a decision problem, introduced in Chapter 3. Given N Boolean variables x1, . . . ,
xN ∈ {T, F} and M logical clauses containing them, one is asked to find a truth as-
signment that satisfies all of the clauses. The logical AND of the M clauses is usually
called a formula. Consider, for instance, the following formula over N = 7 variables:

(x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x5) ∧ (x4 ∨ x5) ∧ (x5 ∨ x7 ∨ x6) . (9.11)

For a given satisfiability formula, it is quite natural to consider the uniform probabil-
ity distribution µsat(x1, . . . , xN ) over the truth assignments which satisfy eqn (9.11)
(whenever there exists at least one such assignment). A little thought shows that such
a distribution can be written in the factorized form (9.2). For instance, the formula
(9.11) yields

µsat(x1, . . . , x7) =
1

Zsat
I(x1 ∨ x2 ∨ x4) I(x2 ∨ x3 ∨ x5)) I(x4 ∨ x5)

×I(x5 ∨ x7 ∨ x6) , (9.12)

where Zsat is the number of distinct truth assignments which satisfy eqn (9.11). We
invite the reader to draw the corresponding factor graph.

Exercise 9.3 Consider the problem of colouring a graph G with q colours, encountered
earlier in Section 3.3. Build a factor graph representation for this problem, and write the
associated compatibility functions.

[Hint: In the simplest such representation, the number of function nodes is equal to the
number of edges of G, and every function node has degree 2.]

9.2 Ensembles of factor graphs: Definitions

We shall be interested generically in understanding the properties of ensembles of prob-
ability distributions taking the factorized form (9.2). We introduce here a few useful
ensembles of factor graphs. In the simple case, where every function node has degree
2, factor graphs are in one-to-one correspondence with the usual type of graphs, and
we are just treating random graph ensembles, as first studied by Erdös and Renyi. The
case of arbitrary factor graphs is a simple generalization. From the graph-theoretical
point of view, they can be regarded either as hypergraphs (by associating a vertex
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with each variable node and a hyperedge with each function node) or as bipartite
graphs (variable and function nodes are both associated with vertices in this case).

For any integer k ≥ 1, the random k-factor graph with M function nodes and
N variables nodes is denoted by GN (k,M), and is defined as follows. For each function
node a ∈ {1 . . . M}, the k-tuple ∂a is chosen uniformly at random from the

(
N
k

)
k-

tuples in {1 . . . N}.
Sometimes one encounters variations of this basic distribution. For instance, it can

be useful to prevent any two function nodes from having the same neighbourhood,
by imposing the condition ∂a = ∂b for any a = b. This can be done in a natural
way through the ensemble GN (k, α) defined as follows. For each of the

(
N
k

)
k-tuples

of variable nodes, a function node is added to the factor graph independently with
probability Nα/

(
N
k

)
, and all of the variables in the k-tuple are connected to it. The

total number M of function nodes in the graph is a random variable, with expectation
Mav = αN .

In the following, we shall often be interested in large graphs (N → ∞) with a finite
density of function nodes. In GN (k,M), this means that M → ∞, with the ratio M/N
kept fixed. In GN (k, α), the large-N limit is taken with α fixed. The exercises below
suggest that, for some properties, the distinction between the two graph ensembles
does not matter in this limit.

Exercise 9.4 Consider a factor graph from the ensemble GN (k, M). What is the probabil-
ity pdist that for all pairs of function nodes, the corresponding neighbourhoods are distinct?
Show that, in the limit N → ∞, M → ∞ with M/N ≡ α and k fixed,

pdist =

8><>:
O(e−α2N/2) if k = 1 ,

e−α2

[1 + Θ(N−1)] if k = 2 ,
1 + Θ(N−k+2) if k ≥ 3 .

(9.13)

Exercise 9.5 Consider a random factor graph from the ensemble GN (k, α), in the large-N
limit. Show that the probability of getting a number of function nodes M different from its
expectation αN by an ‘extensive’ number (i.e. a number of order N) is exponentially small.
In mathematical terms, there exists a constant A > 0 such that, for any ε > 0,

P [|M − Mav| > Nε] ≤ 2 e−ANε2

. (9.14)

Consider the distribution of a GN (k, α) random graph conditional on the number of function

nodes being M . Show that this is the same as the distribution of a GN (k, M) random graph
conditional on all the function nodes having distinct neighbourhoods.

An important local property of a factor graph is its degree profile. Given a graph,
we denote by Λi and Pi the fractions of variable nodes and function nodes,respectively,
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of degree i. Note that Λ ≡ {Λn : n ≥ 0} and P ≡ {Pn : n ≥ 0} are in fact two distri-
butions over the non-negative integers (they are both non-negative and normalized).
Moreover, they have non-vanishing weight only at a finite number of degrees (at most
N for Λ and M for P ). The pair (Λ, P ) is called the degree profile of the graph F . A
practical representation of the degree profile is provided by the generating functions
Λ(x) =

∑
n≥0 Λn xn and P (x) =

∑
n≥0 Pn xn. Because of the above remarks, both

Λ(x) and P (x) are in fact finite polynomials with non-negative coefficients. The av-
erage degree of a variable node and a function node are given by

∑
n≥0 Λn n = Λ′(1)

and
∑

n≥0 Pn n = P ′(1), respectively.
If the graph is randomly generated, its degree profile is a random variable. For

instance, in the random k-factor graph ensemble GN (k,M) defined above, the variable-
node degree Λ depends upon the graph realization: we shall investigate some of its
properties below. In contrast, the function node profile Pn = I(n = k) of this ensemble
is deterministic.

It is convenient to consider ensembles of factor graphs with a prescribed degree
profile. We therefore introduce the ensemble of degree-constrained factor graphs
DN (Λ, P ) by endowing the set of graphs with degree profile (Λ, P ) with the uniform
probability distribution. Note that the number M of function nodes is fixed by the
relation MP ′(1) = NΛ′(1). A special case which is important in this context is that
of random regular graphs, in which the degree of variable nodes is fixed, as well
as the degree of function nodes. In an (l, k) random regular graph, each variable node
has degree l and each function node has degree k, corresponding to Λ(x) = xl and
P (x) = xk.

A degree-constrained factor graph ensemble is non-empty only if NΛn and MPn

are integers for any n ≥ 0. Even if these conditions are satisfied, it is not obvious how
to construct a graph in DN (Λ, P ) efficiently. Since such ensembles play a crucial role
in the theory of sparse-graph codes, we postpone this issue to Chapter 11.

9.3 Random factor graphs: Basic properties

For the sake of simplicity, we shall study here only the ensemble GN (k,M) with
k ≥ 2. Generalizations to graphs in DN (Λ, P ) will be mentioned in Section 9.5.1 and
developed further in Chapter 11. We study the asymptotic limit of large graphs, i.e.
for N → ∞ with k (the degree of function nodes) and M/N = α fixed.

9.3.1 Degree profile

The variable-node degree profile {Λn : n ≥ 0} is a random variable. By the linearity
of expectation, E Λn = P[degi = n], where degi is the degree of the node i. Let p be the
probability that a uniformly chosen k-tuple in {1, . . . , N} contains i. It is clear that
degi is a binomial random variable (defined in Section A.3) with parameters M and
p. Furthermore, since p does not depend upon the site i, it is equal to the probability
that a randomly chosen site belongs to a fixed k-tuple. Expressed in formulae,

P[degi = n] =

(
M

n

)
pn(1 − p)M−n , p =

k

N
. (9.15)

If we consider the large-graph limit, with n fixed, we get
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lim
N→∞

P [degi = n] = lim
N→∞

E Λn = e−kα (kα)n

n!
. (9.16)

The degree of site i is asymptotically a Poisson random variable.
How correlated are the degrees of variable nodes? By a simple generalization of the

above calculation, we can compute the joint probability distribution of degi and degj

with i = j. We think of constructing the graph by choosing one k-tuple of variable
nodes at a time and adding the corresponding function node to the graph. Each node
can have one of four possible ‘fates’: it is connected to both of the nodes i and j (with
probability p2); it is connected only to i or only to j (each case has probability p1); or
it is connected neither to i nor to j (probability p0 ≡ 1 − 2p1 − p2). A little thought
shows that p2 = k(k − 1)/N(N − 1), p1 = k(N − k)/N(N − 1), and

P[degi = n, degj = m] =

min(n,m)∑
l=0

(
M

n − l, m − l, l

)
pl
2p

n+m−2l
1 pM−n−m+l

0 , (9.17)

where l is the number of function nodes which are connected both to i and to j, and
we have used the standard notation for multinomial coefficients (see Appendix A).

Once again, it is illuminating to look at the large-graph limit N → ∞ with n and
m fixed. It is clear that the l = 0 term dominates the sum in eqn (9.17). In fact,
the multinomial coefficient is of order Θ(Nn+m−l) and the various probabilities are of
order p0 = Θ(1), p1 = Θ(N−1), and p2 = Θ(N−2). Therefore the l-th term of the sum
is of order Θ(N−l). Elementary calculus then shows that

P[degi = n, degj = m] = P[degi = n] P[degj = m] + Θ(N−1) . (9.18)

This shows that, asymptotically, the degrees of the nodes are pairwise independent
Poisson random variables. This fact can be used to show that the degree profile {Λn :
n ≥ 0} is, for large graphs, close to its expectation. In fact,

E

[
(Λn − EΛn)

2
]

=
1

N2

N∑
i,j=1

{
P[degi = n, degj = n] − P[degi = n]P[degj = n]

}
= Θ(N−1) , (9.19)

which implies, via the Chebyshev inequality, P(|Λn − EΛn| ≥ δ EΛn) = Θ(N−1) for
any δ > 0.

The pairwise independence expressed in eqn (9.18) is essentially a consequence of
the fact that, given two distinct variable nodes i and j, the probability that they are
connected to the same function node is of order Θ(N−1). It is easy to see that the same
property holds when we consider any finite number of variable nodes. Suppose now
that we look at a factor graph from the ensemble GN (k,M) conditional on the function
node a being connected to variable nodes i1, . . . , ik. What is the distribution of the
residual degrees deg′i1 , . . . , deg′ik

? (By the residual degree deg′i, we mean the degree of
node i once the function node a has been pruned from the graph.)?It is clear that the
residual graph is distributed according to the ensemble GN (k,M − 1). Therefore the
residual degrees are (in the large-graph limit) independent Poisson random variables
with mean kα. We can formalize these simple observations as follows.
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Proposition 9.4 Let i1, . . . , in ∈ {1, . . . , N} be n distinct variable nodes, and let G
be a random graph from GN (k,M) conditional on the neighbourhoods of m function
nodes a1, . . . , am being ∂a1, . . . , ∂am. Denote by deg′i the degree of variable node i
once a1, . . . , am have been pruned from the graph. In the limit of large graphs N → ∞
with M/N ≡ α, k, n, and m fixed, the residual degrees deg′i1 , . . . , deg′in

converge in
distribution to independent Poisson random variables with mean kα.

This property is particularly useful when one is investigating the local properties of
a GN (k,Nα) random graph. In particular, it suggests that such local properties are
close to those of the ensemble DN (Λ, P ), where P (x) = xk and Λ(x) = exp[kα(x−1)].

A remark: in the above discussion, we have focused on the probability of finding a
node with some constant degree n in the asymptotic limit N → ∞. One may wonder
whether, in a typical graph G ∈ GN (k,M), there might exist some variable nodes with
exceptionally large degrees. The exercise below shows that this is not the case.

Exercise 9.6 We want to investigate the typical properties of the maximum variable-node
degree ∆(G) in a random graph G from GN (k, M).

(a) Let nmax be the smallest value of n > kα such that NP[degi = n] ≤ 1. Show that
∆(G) ≤ nmax with probability approaching one in the large-graph limit.

[Hint: Show that NP[degi = nmax + 1] → 0 at large N .]

(b) Show that the following asymptotic form holds for nmax:

nmax

kαe
=

z

log(z/ log z)

»
1 + Θ

„
log log z

(log z)2

«–
, (9.20)

where z ≡ (log N)/(kαe).

(c) Let nmax be the largest value of n such that NP[degi = n] ≥ 1. Show that ∆(G) ≥ nmax

with probability approaching one in the large-graph limit.
[Hints: Show that NP[degi = nmax − 1] → ∞ at large N . Apply the second-moment

method to Zl, the number of nodes of degree l.]

(d) What is the asymptotic behaviour of nmax? How does it compare with nmax?

9.3.2 Small subgraphs

The next simplest question one may ask, concerning a random graph, is the occurrence
in it of a given small subgraph. We shall not give a general treatment of the problem
here, but rather work out a few simple examples.

Let us begin by considering a fixed k-tuple of variable nodes i1, . . . , ik and ask for
the probability p that they are connected by a function node in a graph G ∈ GN (k,M).
In fact, it is easier to compute the probability that they are not connected:

1 − p =

[
1 −
(

N

k

)−1
]M

. (9.21)
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Fig. 9.8 A factor graph from the ensemble GN (k, M) with k = 3, N = 23, and M = 8. It

contains Zisol = 3 isolated function nodes, Zisol,2 = 1 isolated pairs of function nodes, and

Zcycle,3 = 1 cycle of length 3. The remaining three variable nodes have degree 0.

The quantity in brackets is the probability that a given function node is not a neigh-
bour of i1, . . . , ik. It is raised to the power M because the M function nodes are
independent in the model GN (k,M). In the large-graph limit, we get

p =
α k!

Nk−1
[1 + Θ(N−1)] . (9.22)

This confirms an observation of the previous section: for any fixed set of nodes, the
probability that a function node connects any two of them vanishes in the large graph
limit.

As a first example, let us ask how many isolated function nodes appear in a graph
G ∈ GN (k,M). We say that a node is ‘isolated’ if all the neighbouring variable nodes
have degree one. We denote the number of such function nodes by Zisol. It is easy to
compute the expectation of this quantity,

E Zisol = M

[(
N

k

)−1(
N − k

k

)]M−1

. (9.23)

The factor M is due to the fact that each of the M function nodes can be isolated.
Consider one such node a and its neighbours i1, . . . , ik. The factor in

(
N
k

)−1(N−k
k

)
is

the probability that a function node b = a is not incident on any of the variables
i1, . . . , ik. This must be counted for any b = a; hence the exponent M −1. Once again,
things become more transparent in the large-graph limit:

E Zisol = Nαe−k2α[1 + Θ(N−1)] . (9.24)

So, there is a non-vanishing density of isolated function nodes, E Zisol/N . This density
approaches 0 at small α (because there are few function nodes) and at large α (because
function nodes are unlikely to be isolated). A more refined analysis shows that Zisol is
tightly concentrated around its expectation: the probability of an order-N fluctuation
vanishes exponentially as N → ∞.
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There is a way of finding the asymptotic behaviour (9.24) without going through
the exact formula (9.23). We notice that E Zisol is equal to the number of function nodes
(M = Nα) times the probability that the neighbouring variable nodes i1, . . . , ik have
degree 0 in the residual graph. Because of Proposition 9.4, the degrees deg′i1 , . . . , deg′ik

are approximatively i.i.d. Poisson random variables with mean kα. Therefore the prob-
ability for all of them to vanish is close to (e−kα)k = e−k2α.

Of course, this last type of argument becomes extremely convenient when we are
considering small structures which involve more than one function node. As a second
example, let us compute the number Zisol,2 of pairss of function nodes which have
exactly one variable node in common and are isolated from the rest of the factor
graph (for instance, in the graph in Fig. 9.8, we have Zisol,2 = 1). We obtain

E Zisol,2 =

(
N

2k − 1

)
· k

2

(
2k − 1

k

)
·
(

αk!

Nk−1

)2

· (e−kα)2k−1

[
1 + Θ

(
1

N

)]
. (9.25)

The first factor counts the ways of choosing the 2k − 1 variable nodes which support
the structure. Then we count the number of way of connecting two function nodes to
(2k − 1) variable nodes in such a way that they have only one variable in common.
The third factor is the probability that the two function nodes are indeed present (see
eqn (9.22)). Finally, we have to require that the residual graph of all the (2k − 1)
variable nodes is 0, which gives the factor (e−kα)2k−1. The above expression is easily
rewritten as

E Zisol,2 = N · 1

2
(kα)2 e−k(2k−1)α [1 + Θ(1/N)] . (9.26)

With some more work, one can prove again that Zisol,2 is in fact concentrated around
its expected value: a random factor graph contains a finite density of isolated pairs of
function nodes.

Let us consider, in general, the number of small subgraphs of some definite type.
Its most important property is how it scales with N in the large N -limit. This is easily
found. For instance, let us take another look at eqn (9.25): N enters only in counting
the (2k − 1)-tuples of variable nodes which can support the chosen structure, and in
the probability of having two function nodes in the desired positions. In general, if we
consider a small subgraph with v variable nodes and f function nodes, the number
Zv,f of such structures has an expectation which scales as

E Zv,f ∼ Nv−(k−1)f . (9.27)

This scaling has important consequences for the nature of small structures which ap-
pear in a large random graph. For discussing such structures, it is useful to introduce
the notions of a ‘connected (sub)graph’, a ‘tree’, and a ‘path’ in a factor graph exactly
in the same way as in the case of the usual type of graphs, whereby both variable and
function nodes are viewed as vertices (see Chapter 3). We define, further, a compo-
nent of a factor graph G as a subgraph C which is is connected and isolated, in the
sense that there is no path between a node of C and a node of G\C

Consider a connected factor graph with v variable nodes and f function nodes, all
of them having degree k. This graph is a tree if and only if v = (k−1)f +1. We denote
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by Ztree,v the number of isolated trees over v variable nodes which are contained in
a GN (k,M) random graph. Because of eqn (9.27), we have E Ztree,v ∼ N : a random
graph contains a finite density (when N → ∞) of trees of any finite size. On the
other hand, connected subgraphs which are not trees must have v < (k− 1)f + 1, and
eqn (9.27) shows that their number does not grow with N . In other words, most (more
precisely, all but a vanishing fraction) of the finite components of a random factor
graph are trees.

Exercise 9.7 Consider the largest component in the graph in Fig. 9.8 (the one with three
function nodes), and let Zcycle,3 be the number of times it occurs as a component of a
GN (k, M) random graph. Compute E Zcycle,3 in the large-graph limit.

Exercise 9.8 A factor graph is said to be unicyclic if it contains a unique (up to shifts)
closed, self-avoiding path ω0, ω1, . . . , ω = ω0 (‘self-avoiding’ means that for any t, s ∈
{0 . . . � − 1} with t �= s, one has ωt �= ωs).

(a) Show that a connected factor graph with v variable nodes and f function nodes, all of
them having degree k, is unicyclic if and only if v = (k − 1)f .

(b) Let Zcycle,v(N) be the number of unicyclic components over v nodes in a GN (k, M)
random graph. Use eqn (9.27) to show that Zcycle,v is finite with high probability in the
large-graph limit. More precisely, show that limn→∞ limN→∞ PGN

[Zcycle,v ≥ n] = 0.

9.4 Random factor graphs: The giant component

We have just argued that most finite-size components of a GN (k, αN) factor graph
are trees in the large-N limit. However, finite-size trees do not always exhaust the
graph. It turns out that when α becomes larger than a threshold value, a ‘giant com-
ponent’ appears in the graph. This is a connected component containing an extensive
(proportional to N) number of variable nodes, with many cycles.

9.4.1 Nodes in finite trees

We want to estimate what fraction of a random graph from the ensemble GN (k, αN)
is covered by finite-size trees. This fraction is defined as

xtr(α, k) ≡ lim
s→∞

lim
N→∞

1

N
E Ntrees,s , (9.28)

where Ntrees,s is the number of sites contained in trees of size not larger than s. In
order to compute E Ntrees,s, we use the number of trees of size equal to s, which we
denote by Ztrees,s. Using the approach discussed in the previous section, we get
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E Ntrees,s =
s∑

v=0

v · E Ztrees,v (9.29)

=

s∑
v=0

v

(
N

v

)
· Tk(v) ·

(
αk!

Nk−1

)(v−1)/(k−1)

· (e−kα)v

[
1 + Θ

(
1

N

)]

= N(αk!)−1/(k−1)
s∑

v=0

1

(v − 1)!
Tk(v)

[
(αk!)1/(k−1)e−kα

]v
+ Θ(1) ,

where Tk(v) is the number of trees which can be built out of v distinct variable nodes
and f = (v − 1)/(k − 1) function nodes of degree k. The computation of Tk(v) is a
classical piece of enumerative combinatorics, which is described in Section 9.4.3 below.
The result is

Tk(v) =
(v − 1)! vf−1

(k − 1)!ff !
, (9.30)

and the generating function T̂k(z) =
∑∞

v=1 Tk(v)zv/(v − 1)!, which we need in order
to compute ENtrees,s from eqn (9.29), is found to satisfy the self-consistency equation

T̂k(z) = z exp

{
T̂k(z)k−1

(k − 1)!

}
. (9.31)

It is a simple exercise to see that, for any z ≥ 0, this equation has two solutions such
that T̂k(z) ≥ 0, the relevant one being the smaller of the two (this is a consequence

of the fact that T̂k(z) has a regular Taylor expansion around z = 0). Using this

characterization of T̂k(z), one can show that xtr(α, k) is the smallest positive solution
of the equation

xtr = exp
(
−kα + kα xk−1

tr

)
. (9.32)

This equation is solved graphically in Fig. 9.9, left frame. In the range α ≤ αp ≡
1/(k(k − 1)), the only non-negative solution is xtr = 1: all but a vanishing fraction
of nodes belong to finite-size trees. When α > αp, the solution has 0 < xtr < 1: the
fraction of nodes in finite trees is strictly smaller than one.

9.4.2 Size of the giant component

This result is somewhat surprising. For α > αp, a strictly positive fraction of variable
nodes does not belong to any finite tree. On the other hand, we saw in the previous
subsection that finite components with cycles contain a vanishing fraction of the nodes.
Where are the other N(1−xtr) nodes? It turns out that, roughly speaking, they belong
to a unique connected component, called the giant component, which is not a tree.
One basic result describing this phenomenon is the following.
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Fig. 9.9 Left : graphical representation of eqn (9.32) for the fraction of nodes of a GN (k, M)

random factor graph that belong to finite-size tree components. The curves refer to k = 3

and (from top to bottom) α = 0.05, 0.15, 0.25, 0.35, 0.45. Right : typical size of the giant

component.

Theorem 9.5 Let X1 be the size of the largest connected component in a GN (k,M)
random graph with M = N [α+oN (1)], and let xG(α, k) = 1−xtr(α, k), where xtr(α, k)
is defined as the smallest solution of eqn (9.32). Then, for any positive ε,

|X1 − NxG(α, k)| ≤ Nε , (9.33)

with high probability.

Furthermore, the giant component contains many loops. We define the cyclic number
c of a factor graph containing v vertices and f function nodes of degree k as c =
v − (k − 1)f − 1. The cyclic number of the giant component is then c = Θ(N) with
high probability.

Exercise 9.9 Convince yourself that there cannot be more than one component of size
Θ(N). Here is a possible route. Consider the event of having two connected components of
sizes �Ns1 and �Ns2, for two fixed positive numbers s1 and s2, in a GN (k, M) random
graph with M = N [α + oN (1)] (with α ≥ s1 + s2). In order to estimate the probability of
such an event, imagine constructing the GN (k, M) graph by adding one function node at
a time. What condition must hold when the number of function nodes is M − ∆M? What
can happen to the last ∆M nodes? Now take ∆M = �Nδ with 0 < δ < 1.

The appearance of a giant component is sometimes referred to as percolation on
the complete graph and is one of the simplest instance of a phase transition. We
shall now give a simple heuristic argument which predicts correctly the typical size
of the giant component. This argument can be seen as the simplest example of the
‘cavity method’ that we shall develop in the following chapters. We first notice that,
by the linearity of the expectation, E X1 = NxG, where xG is the probability that a
given variable node i belongs to the giant component. In the large-graph limit, site i
is connected to l(k − 1) distinct variable nodes, l being a Poisson random variable of
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Fig. 9.10 A rooted tree G on v + 1 vertices can be decomposed into a root and the union

of n rooted trees G1, . . . , Gn on v1, . . . , vn vertices, respectively.

mean kα (see Section 9.3.1). The node i belongs to the giant component if any of its
l(k−1) neighbours does. If we assume that the l(k−1) neighbours belong to the giant
component independently with probability xG, then we get

xG = El[1 − (1 − xG)l(k−1)] , (9.34)

where l is Poisson distributed with mean kα. Taking the expectation, we get

xG = 1 − exp[−kα + kα(1 − xG)k−1] , (9.35)

which coincides with eqn (9.32) if we set xG = 1 − xtr.
The above argument has several flaws, but only one of them is serious. In writing

eqn (9.34), we assumed that the probability that none of l randomly chosen variable
nodes belongs to the giant component is just the product of the probabilities that
each of them does not. In the present case it is not difficult to fix the problem, but
in subsequent chapters we shall see several examples of the same type of heuristic
reasoning where the solution is less straightforward.

9.4.3 Appendix: Counting trees

This subsection is a technical appendix devoted to the computation of Tk(v), the
number of trees with v variable nodes, when the function nodes have degree k. Let us
begin by considering the case k = 2. Note that if k = 2, we can uniquely associate with
any factor graph F an ordinary graph G obtained by replacing each function node by
an edge joining the neighbouring variables (for basic definitions concerning graphs,
we refer readers to Chapter 3). In principle, G may contain multiple edges, but this
does not concern us as long as we stick to the case where F is a tree. Therefore T2(v)
is just the number of ordinary (non-factor) trees on v distinct vertices. Rather than
computing T2(v), we shall compute the number T ∗

2 (v) of rooted trees on v distinct
vertices. Recall that a rooted graph is just a pair (G, i∗), where G is a graph and i∗ is
a distinguished node in G. Of course, we have the relation T ∗

2 (v) = vT2(v).
Consider now a rooted tree on v+1 vertices, and assume that the root has degree n

(of course, 1 ≤ n ≤ v). Erase the root together with its edges, and mark the n vertices
that were connected to the root. We are left with n rooted trees of sizes v1, . . . , vn

such that v1 + · · · + vn = v. This naturally leads to the recursion
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T ∗
2 (v + 1) = (v + 1)

v∑
n=1

1

n!

∑
v1...vn>0

v1+···+vn=v

(
v

v1, · · · , vn

)
T ∗

2 (v1) · · ·T ∗
2 (vn) , (9.36)

which holds for any v ≥ 1. Together with the initial condition T ∗
2 (1) = 1, this relation

allows one to determine T ∗
2 (v) recursively for any v > 0. This recursion is depicted in

Fig. 9.10.
The recursion is most easily solved by introducing the generating function T̂ (z) =∑

v>0 T ∗
2 (v) zv/v!. Using this definition in eqn (9.36), we get

T̂ (z) = z exp{T̂ (z)} , (9.37)

which is closely related to the definition of Lambert’s W function (usually written as

W (z) exp(W (z)) = z). One has in fact the identity T̂ (z) = −W (−z). The expansion

of T̂ (z) in powers of z can be obtained by the Lagrange inversion method (see the
Exercise below). We get T ∗

2 (v) = vv−1, and therefore T2(v) = vv−2. This result is
known as the Cayley formula and is one of the most famous results in enumerative
combinatorics.

Exercise 9.10 Assume that the generating function A(z) =
P

n>0 Anzn is a solution of

the equation z = f(A(z)), where f is an analytic function such that f(0) = 0 and f ′(0) = 1.
Use theCauchy formula An =

H
z−n−1 A(z) dz/(2πi) to show that

An = coeff
˘
f ′(x) (x/f(x))n+1; xn−1¯ . (9.38)

Use this result, known as the ‘Lagrange inversion method’, to compute the power expansion

of bT (z) and prove the Cayley formula T2(v) = vv−2.

Let us now return to the generic-k case. The reasoning is similar to the k = 2 case.
One finds, after some work, that the generating function T̂k(z) ≡ ∑v>0 T ∗

k (v)zv/v!
satisfies the equation

T̂k(z) = z exp

{
T̂k(z)k−1

(k − 1)!

}
, (9.39)

from which one can deduce the number of trees with v variable nodes,

T ∗
k (v) =

v! vf−1

(k − 1)!ff !
. (9.40)

In this expression, the number of function nodes f is fixed by v = (k − 1)f + 1.

9.5 The locally tree-like structure of random graphs

9.5.1 Neighbourhood of a node

There exists a natural notion of a distance between variable nodes of a factor graph.
Given a path (ω0, . . . , ω�) on the factor graph, we define its length as the number of



��� Factor graphs and graph ensembles

function nodes on it. Then the distance between two variable nodes is defined as the
length of the shortest path connecting them (by convention, it is set to +∞ when the
nodes belong to distinct connected components). We also define the neighbourhood
of radius r of a variable node i, denoted by Bi,r(F ), as the subgraph of F including all
the variable nodes at a distance at most r from i, and all the function nodes connected
only to those variable nodes.

What does the neighbourhood of a typical node look like in a random graph? It
is convenient to step back for a moment from the ensemble GN (k,M) and consider

a degree-constrained factor graph F
d
= DN (Λ, P ). Furthermore, we define the edge-

perspective degree profiles as λ(x) ≡ Λ′(x)/Λ′(1) and ρ(x) ≡ P ′(x)/P ′(1). These are
polynomials

λ(x) =

lmax∑
l=1

λl x
l−1 , ρ(x) =

kmax∑
k=1

ρk xk−1 , (9.41)

where λl and ρk are the probabilities that a randomly chosen edge in the graph is
adjacent to a variable node and to a function node, respectively, of degree l or k. The
explicit formulae

λl =
lΛl∑
l′ l′Λl′

, ρk =
kPk∑
k′ k′Pk′

, (9.42)

can be derived by noticing that the graph F contains nlΛl and mkPk edges adjacent
to variable nodes of degree l and function nodes of degree k, respectively.

Imagine constructing the neighbourhoods of a node i of increasing radius r. Given
Bi,r(F ), let i1, . . . , iL be the nodes at distance r from i, and let deg′i1 , . . . , deg′iL

be their
degrees in the residual graph F \Bi,r(F ). Arguments analogous to the ones leading to
Proposition 9.4 imply that deg′i1 , . . . , deg′iL

are asymptotically i.i.d. random variables
with deg′in

= ln − 1, and with ln distributed according to λln . An analogous result
holds for function nodes (we just invert the roles of variable and function nodes).

This motivates the following definition of an r-generation tree ensemble Tr(Λ, P ).
If r = 0, there is a unique element in the ensemble: a single isolated node, which is
given the generation number 0. If r > 0, we first generate a tree from the ensemble
Tr−1(Λ, P ) ensemble. Then, for each variable node i of generation r − 1, we draw
an independent integer li ≥ 1 distributed according to λl and add to the graph li − 1
function nodes connected to the variable i (unless r = 1, in which case li function nodes
are added, with li distributed according to Λli). Next, for each of the newly added
function nodes {a}, we draw an independent integer ka ≥ 1 distributed according to
ρk and add to the graph ka − 1 variable nodes connected to the function a. Finally,
the new variable nodes are given the generation number r. The case of uniformly
chosen random graphs where function nodes have a fixed degree k corresponds to
the tree ensemble Tr(e

kα(x−1), xk). In this case, it is easy to check that the degrees
in the residual graph have a Poisson distribution with mean kα, in agreement with
Proposition 9.4. With a slight abuse of notation, we shall use the shorthand Tr(k, α)
to denote this tree ensemble.
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It is not unexpected that Tr(Λ, P ) constitutes a good model for r-neighbourhoods
in the degree-constrained ensemble. Analogously, Tr(k, α) is a good model for r-
neighbourhoods in the ensemble GN (k,M) when M � Nα. This is made more precise
below.

Theorem 9.6 Let F be a random factor graph in the ensemble DN (Λ, P ) or GN (k,M),
respectively, let i be a uniformly chosen random variable node in F , and let r be a non-
negative integer. Then Bi,r(F ) converges in distribution to Tr(Λ, P ) or to Tr(k, α) as
N → ∞ with Λ, P fixed or α, k fixed, respectively.

In other words, the factor graph F looks locally like a random tree from the ensemble
Tr(Λ, P ).

9.5.2 Loops

We have seen that in the large-graph limit, a factor graph F
d
= GN (k,M) converges

locally to a tree. Furthermore, it has been shown in Section 9.3.2 that the number of
‘small’ cycles in such a graph is only Θ(1) as N → ∞. It is therefore natural to ask at
what distance from any given node loops start playing a role.

More precisely, let i be a uniformly chosen random node in F . We would like to
know what the typical length of the shortest loop through i is. Of course, this question
has a trivial answer if k(k−1)α < 1, since in this case most of the variable nodes belong
to small tree components (see Section 9.4). We shall therefore consider k(k − 1)α > 1
from now on.

A heuristic guess at the size of this loop can be obtained as follows. Assume that
the neighbourhood Bi,r(F ) is a tree. Each function node has k − 1 adjacent variable
nodes at the next generation. Each variable node has a Poisson-distributed number of
adjacent function nodes at the next generation, with mean kα. Therefore the average
number of variable nodes at a given generation is [k(k − 1)α] times the number at
the previous generation. The total number of nodes in Bi,r(F ) is about [k(k − 1)α]r,
and loops will appear when this quantity becomes comparable to the total number of
nodes in the graph. This yields [k(k − 1)α]r = Θ(N), or r = log N/ log[k(k − 1)α].
This is of course a very crude argument, but it is also a very robust one: one can, for
instance, change N to N1±ε and affect only the prefactor. It turns out that this result
is correct, and can be generalized to the ensemble DN (Λ, P ).

Proposition 9.7 Let F be a random factor graph in the ensemble DN (Λ, P ) or GN (k,M),
let i be a uniformly chosen random variable node in F , and let �i be the length of the
shortest loop in F through i. Assume that c = λ′(1)ρ′(1) > 1 or c = k(k − 1)α > 1,
respectively. Then, with high probability,

�i =
log N

log c
[1 + o(1)] . (9.43)

We refer the reader to the literature for a proof. The following exercise gives a slightly
more precise, but still heuristic, version of the previous argument.
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Exercise 9.11 Assume that the neighbourhood Bi,r(F ) is a tree and that it includes n
‘internal’ variable nodes (i.e. nodes whose distance from i is smaller than r), nl ‘boundary’
variable nodes (whose distance from i is equal to r), and m function nodes. Let Fr be the

residual graph, i.e. F minus the subgraph Bi,r(F ). It is clear that Fr
d
= GN−n(k, M − m).

Show that the probability pr that a function node of Fr connects two of the variable nodes
on the boundary of Bi,r(F ) is

pr = 1 −
h
(1 − q)k + k (1 − q)k−1 q

iM−m

, (9.44)

where q ≡ nl/(N − n). As a first estimate of pr, we can substitute nl, n, and m by their
expectations (in the tree ensemble) in this equation, and call the corresponding estimate

pr. Assuming that r = ρ log N
log[k(k−1)α]

, show that

pr = 1 − exp

j
−1

2
k(k − 1)αN2ρ−1

ff
[1 + O(N−2+3ρ)] . (9.45)

If ρ > 1/2, this indicates that, under the assumption that there is no loop of length 2r
or smaller through i, there is, with high probability, a loop of length 2r + 1. If, on the
other hand, ρ < 1/2, this indicates that there is no loop of length 2r + 1 or smaller
through i. This argument suggests that the length of the shortest loop through i is about
log N/ log[k(k − 1)α].

Notes

A nice introduction to factor graphs is provided by the paper by Kschischang et

al. (2001); see also Aji and McEliece (2000). Factor graphs are related to graphical
models (Jordan, 1998), Bayesian networks (Pearl, 1988), and to Tanner graphs in
coding theory (Tanner, 1981). Among the alternatives to factor graphs, it is worth
recalling the ‘normal realizations’ discussed by Forney (2001).

The proof of the Hammersley–Clifford theorem (initially motivated by the proba-
bilistic modelling of some physical problems) goes back to 1971. A proof, more detailed
references, and some historical comments can be found in Clifford (1990).

The theory of random graphs was pioneered by Erdös and Renyi (1960). The
emergence of a giant component in a random graph is a classic result which goes back
to their work. Two standard textbooks on random graphs, by Bollobás (2001) and
Janson et al. (2000), provide, in particular, a detailed study of the phase transition.
Graphs with constrained degree profiles were studied by Bender and Canfield (1978).
A convenient ‘configuration model’ for analysing them was introduced by Bollobás
(1980) and allowed for the location of the phase transition by Molloy and Reed (1995).
Finally, Wormald (1999) provides a useful survey (including short-loop properties) of
degree-constrained ensembles.

For general background on hypergraphs, see Duchet (1995). The threshold for the
emergence of a giant component in a random hypergraph with edges of fixed size k



Notes ���

(corresponding to the factor graph ensemble GN (k,M)) was discussed by Schmidt-
Pruzan and Shamir (1985). The neighbourhood of the threshold was analysed by
Karónski and Luczak (2002) and in references therein.

In enumerating trees, we used generating functions. This approach to combinatorics
is developed thoroughly in Flajolet and Sedgewick (2008).

Ensembles with hyperedges of different sizes have been considered recently in com-
binatorics (Darling and Norris, 2005), as well as in coding theory (as code ensembles).
Our definitions and notation for degree profiles and degree-constrained ensembles fol-
lows the coding literature (Luby et al., 1997; Richardson and Urbanke, 2001a).

The local structure of random graphs and of more complex random objects (in
particular, random labelled graphs) is the object of the theory of local weak convergence
(Aldous and Steele, 2003).
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10

Satisfiability

Because of Cook’s theorem (see Chapter 3) satisfiability lies at the heart of compu-
tational complexity theory: this fact has motivated intense research activity on this
problem. This chapter will not be a comprehensive introduction to such a vast topic,
but rather will present some selected research directions. In particular, we shall pay
special attention to the definition and analysis of ensembles of random satisfiability
instances. There are various motivations for studying random instances. In order to
test and improve algorithms that are aimed at solving satisfiability, it is highly de-
sirable to have an automatic generator of ‘hard’ instances at hand. As we shall see,
properly ‘tuned’ ensembles provide such a generator. Also, the analysis of ensembles
has revealed a rich structure and stimulated fruitful contacts with other disciplines.
The present chapter focuses on ‘standard’ algorithmic and probabilistic approaches.
We shall come back to satisfiability, using methods inspired by statistical physics, in
Chapter 20.

Section 10.1 recalls the definition of satisfiability and introduces some standard
terminology. A basic, widely adopted strategy for solving decision problems consists
in exploring exhaustively the tree of possible assignments of the problem’s variables.
Section 10.2 presents a simple implementation of this strategy. In Section 10.3, we
introduce some important ensembles of random instances. The hardness of the satisfi-
ability problem depends on the maximum clause length. When clauses have length 2,
the decision problem is solvable in polynomial time. This is the topic of Section 10.4.
Finally, in Section 10.5, we discuss the existence of a phase transition for random
K-satisfiability with K ≥ 3, when the density of clauses is varied, and derive some
rigorous bounds on the location of this transition.

10.1 The satisfiability problem

10.1.1 SAT and UNSAT formulae

An instance of the satisfiability problem is defined in terms of N Boolean variables
and a set of M constraints between them, where each constraint takes the special
form of a clause. A clause is a logical OR of some variables or their negations. Here
we shall adopt the following representation: a variable xi, with i ∈ {1, . . . , N}, takes
values in {0, 1}, where 1 corresponds to ‘true’ and 0 to ‘false’; the negation of xi

is xi ≡ 1 − xi. A variable or its negation is called a literal, and we shall denote a
literal by zi, with i ∈ {1, . . . , N} (therefore zi denotes any of xi, xi). A clause a,
with a ∈ {1, . . . , M}, involving Ka variables is a constraint which forbids exactly one
among the 2Ka possible assignments to these Ka variables. It is written as a logical OR
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Fig. 10.1 Factor graph representation of the formula (x1 ∨ x2 ∨ x4)∧(x1 ∨ x2)

∧(x2 ∨ x4 ∨ x5) ∧(x1 ∨ x2 ∨ x5)∧(x1 ∨ x3 ∨ x5).

(denoted by ∨) function of some variables or their negations. For instance, the clause
x2 ∨ x12 ∨ x37 ∨ x41 is satisfied by all assignments of the variables except those where
x2 = 0, x12 = 1, x37 = 0, x41 = 1. When it is not satisfied, a clause is said to be
violated.

We denote by ∂a the subset {ia1 , . . . , iaKa
} ⊆ {1, . . . , N} containing the indices

of the Ka = |∂a| variables involved in clause a. Clause a can be written as Ca =
zia

1
∨ zia

2
∨ · · · ∨ zia

Ka
. An instance of the satisfiability problem can be summarized as

the following logical formula (in conjunctive normal form (CNF)):

F = C1 ∧ C2 ∧ · · · ∧ CM . (10.1)

As we have seen in Section 9.1.2, there exists1 a simple and natural representation
of a satisfiability formula as a factor graph associated with the indicator function
I(x satisfies F ). Actually, it is often useful to use a slightly more elaborate factor
graph with two types of edges: a full edge is drawn between a variable vertex i and
a clause vertex a whenever xi appears in a, and a dashed edge is drawn whenever xi

appears in a. In this way, there is a one-to-one correspondence between a CNF formula
and its graph. An example is shown in Fig. 10.1.

Given the formula F , the question is whether there exists an assignment of the
variables xi to {0, 1} (among the 2N possible assignments) such that the formula F is
true. An algorithm that solves the satisfiability problem must be able, given a formula
F , either to answer ‘yes’ (the formula is then said to be SAT), and provide such an
assignment, called a SAT-assignment, or to answer ‘no’, in which case the formula is
said to be UNSAT. The restriction of the satisfiability problem obtained by requiring
that all the clauses in F have the same length Ka = K is called the K-satisfiability
(or K-SAT) problem.

As usual, an optimization problem is naturally associated with the decision version
of the satisfiability provlem: given a formula F , one is asked to find an assignment
which violates the smallest number of clauses. This is called the MAX-SAT problem.

1It may happen that there does not exist any assignment satisfying F , so that one cannot use
this indicator function to define a probability measure. However, one can still characterize the local
structure of I(x satisfies F ) by a factor graph.
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Exercise 10.1 Consider the 2-SAT instance defined by the formula F1 = (x1 ∨x2)∧ (x2 ∨
x3)∧ (x2 ∨ x4)∧ (x4 ∨ x1)∧ (x3 ∨ x4)∧ (x2 ∨ x3). Show that this formula is SAT and write
a SAT-assignment.

[Hint: Assign, for instance, x1 = 1; the clause x4 ∨ x1 is then reduced to x4; this is a
unit clause which fixes x4 = 1; the chain of ‘unit clause propagation’ leads either to a
SAT assignment or to a contradiction.]

Exercise 10.2 Consider the 2-SAT formula F2 = (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x4 ∨
x1)∧ (x3 ∨ x4)∧ (x2 ∨ x3). Show that this formula is UNSAT by using the same method as
in the previous exercise.

Exercise 10.3 Consider the 3-SAT formula F3 = (x1∨x2∨x3)∧ (x1∨x3∨x4)∧ (x2∨x3∨
x4)∧(x1∨x2∨x4)∧(x1∨x2∨x4)∧(x1∨x2∨x4)∧(x2∨x3∨x4)∧(x2∨x3∨x4)∧(x1∨x3∨x4).
Show that it is UNSAT.

[Hint: Try to generalize the previous method by using a decision tree (see Section 10.2.2)
or list the 16 possible assignments and cross out which one is eliminated by each clause.]

As we have already mentioned, satisfiability was the first problem to be proved to
be NP-complete. The restriction defined by requiring that Ka ≤ 2 for each clause a is
polynomial. However, if one relaxes this condition to Ka ≤ K, with K = 3 or more,
the resulting problem is NP-complete. For instance, 3-SAT is NP-complete, while 2-
SAT is polynomial. It is intuitively clear that MAX-SAT is ‘at least as hard’ as SAT:
an instance is SAT if and only if the minimum number of violated clauses (that is,
the output of MAX-SAT) vanishes. It is less obvious that MAX-SAT can be ‘much
harder’ than SAT. For instance, MAX-2-SAT is NP-hard, while, as said above, its
decision counterpart is in P.

The study of applications is not the aim of this book, but one should keep in mind
that the satisfiability problem is related to a myriad of other problems, some of which
have enormous practical relevance. It is a problem of direct relevance to the fields of
mathematical logic, computation theory, and artificial intelligence. Applications range
from integrated circuit design (modelling, placement, routing, testing, . . . ), through
computer architecture design (compiler optimization, scheduling and task partitioning,
. . . ), to computer graphics, image processing, etc. . .

10.2 Algorithms

10.2.1 A simple case: 2-SAT

The reader who has worked out Exercises 10.1 and 10.2 will already have a feeling that
2-SAT is an easy problem. The main tool for solving it is the unit clause propagation
(UCP) procedure. If we start from a 2-clause C = z1 ∨ z2 and fix the literal z1, two
things may happen:
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Fig. 10.2 Factor graph representation of the 2SAT formula

F = (x1 ∨ x2)∧(x1 ∨ x3)∧(x2 ∨ x3) (left) and the corresponding directed graph D(F )

(right).

• If we fix z1 = 1, the clause is satisfied and disappears from the formula.

• If we fix z1 = 0, the clause is transformed into the unit clause z2, which implies
that z2 = 1.

Given a 2-SAT formula, one can start from a variable xi, i ∈ {1, . . . , N}, and fix xi = 0,
for instance. Then apply the reduction rule described above to all the clauses in which
xi or xi appears. Finally, one fixes recursively, in the same way, all the literals which
appear in unit clauses. This procedure may halt for one of the following reasons: (i)
the formula does not contain any unit clause, or (ii) the formula contains the unit
clause zj together with its negation zj .

In the first case, a partial SAT assignment (i.e. an assignment of a subset of the
variables such that no clause is violated) has been found. We shall prove below that
such a partial assignment can be extended to a complete SAT assignment if and only
if the formula is SAT. One therefore repeats the procedure by fixing a not-yet-assigned
variable xj .

In the second case, the partial assignment cannot be extended to a SAT assignment.
One proceeds by changing the initial choice and setting xi = 1. Once again, if the
procedure stops because of reason (i), then the formula can be effectively reduced and
the already-fixed variables do not need to be reconsidered in the following steps. If
on the other hand, the choice xi = 1 also leads to a contradiction (i.e. the procedure
stops because of (ii)), then the formula is UNSAT.

It is clear that the algorithm defined in this way is very efficient. Its complexity
can be measured by the number of variable-fixing operations that it involves. Since
each variable is considered at most twice, this number is at most 2N .

To prove the correctness of this algorithm, we still have to show the following
fact: if the formula is SAT and UCP stops because of reason (i), then the resulting
partial assignment can be extended to a global SAT assignment. (The implication in
the reverse direction is obvious.) The key point is that the residual formula is formed
by a subset R of the variables (the ones which have not yet been fixed) together with a
subset of the original clauses (those which involve, uniquely, variables in R). If a SAT
assignment exists, its restriction to R satisfies the residual formula and constitutes an
extension of the partial assignment generated by UCP.
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Exercise 10.4 Write a code for solving 2-SAT using the algorithm described above.

Exercise 10.5 A nice way to understand UCP, and why it is so effective for 2-SAT, consists
in associating with the formula F a directed graph D(F ) (not to be confused with the factor
graph!) as follows. We associate a vertex with each of the 2N literals (for instance we have
one vertex for x1 and one vertex for x1). Whenever a clause such as x1 ∨ x2 appears in
the formula, we have two implications: if x1 = 1, then x2 = 1; if x2 = 0, then x1 = 0. We
represent them graphically by drawing a directed edge from the vertex x1 towards x2, and
an directed edge from x2 to x1.

Show that F is UNSAT if and only if there exists a variable index i ∈ {1, . . . , N} such
that D(F ) contains a directed path from xi to xi, and a directed path from xi to xi.

[Hint: Consider the UCP procedure described above and rephrase it in terms of the
directed graph D(F ). Show that it can be regarded as an algorithm for finding a pair of
paths from xi to xi and vice-versa in D(F ).]

Let us note, finally, that the procedure described above does not give any clue about
an efficient solution of MAX-2SAT, apart from determining whether the minimum
number of violated clauses vanishes or not. As already mentioned, MAX-2SAT is NP-
hard.

10.2.2 A general complete algorithm

As soon as we allow an unbounded number of clauses of length 3 or larger, satisfiability
becomes an NP-complete problem. Exercise 10.3 shows how the UCP strategy fails:
fixing a variable in a 3-clause may leave a 2-clause. As a consequence, UCP may halt
without contradictions and produce a residual formula containing clauses which were
not present in the original formula. Therefore, it can happen that the partial assign-
ment produced by UCP cannot be extended to a global SAT assignment even if the
original formula is SAT. Once a contradiction is found, it may be necessary to change
any of the choices made so far in order to find a SAT assignment (in contrast to 2-SAT
where only the last choice had to be changed). The exploration of all such possibilities
is most conveniently described through a decision tree. Each time a contradiction is
found, the search algorithm backtracks to the last choice for which one possibility was
not explored.

The most widely used complete algorithms (i.e. algorithms which are able to
either find a satisfying assignment or prove that there is no such assignment) rely
on this idea. They are known under the name of DPLL search algorithms, from
the initials of their inventors, Davis, Putnam, Logemann, and Loveland. The basic
recursive process is best explained with an example, as in Fig. 10.3. Its structure can
be summarized in a few lines, using the recursive procedure DPLL, described below,
which takes as input a CNF formula F , a partial assignment of the variables A, and
the list of indices of unassigned variables V , and returns either ‘UNSAT’ or a SAT
assignment. To solve a problem given by the CNF formula F , written in terms of
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the N variables x1, dots, xN , the initial call to this procedure should be DPLL(F , ∅,
{1, . . . , N}).

DPLL (formula F , partial assignment A, unassigned variables V )
1: if V = ∅:
2: Choose an index i ∈ V ;
3: B=DPLL(F |{xi = 0}, A ∪ {xi = 0}, V \ i);
4: if B=UNSAT B=DPLL(F |{xi = 1}, A ∪ {xi = 1}, V \ i);
5: else return A ∪ {xi = 0} ∪ B;
6: if B=UNSAT return B;
7: else return A ∪ {xi = 1} ∪ B;
8: else:
9: if F has no clause return A;
10: else return UNSAT;

The notation F |{xi = 0} refers to the formula obtained from F by assigning xi to
0: all clauses of F which contain the literal xi are eliminated, while clauses that contain
xi are shortened, namely y ∨ xi is reduced to y. The reduced formula F |{xi = 1} is
defined analogously.

As shown in Fig. 10.3, the algorithm can be represented as a walk in the decision
tree. When it finds a contradiction, i.e. it reaches an ‘UNSAT’ leaf of the tree, it
backtracks and searches a different branch.

In the above pseudocode, we did not specify how to select the next variable to
be fixed in step 2. The various versions of the DPLL algorithm differ in the order in
which the variables are taken into consideration and in which the branching process
is performed. Unit clause propagation can be rephrased in the present setting as the
following rule: whenever the formula F contains clauses of length 1, xi must be chosen
from the variables appearing in such clauses. In such a case, no branching takes place.
For instance, if the literal xi appears in a unit clause, setting xi = 0 would produce
an empty clause and therefore a contradiction: one is forced to set xi = 1.

Apart from the case of unit clauses, deciding on which variable the next branching
will be done on is an art, and can result in strongly varying performance. For instance,
it is a good idea to branch on a variable which appears in many clauses, but other
criteria, such as the number of unit clauses that a branching will generate, can also
be used. It is customary to characterize the performances of this class of algorithms
by the number of branching nodes that it generates. This does not correspond to the
actual number of operations executed, which may depend on the heuristic. However,
for many reasonable heuristics, the actual number of operations is within a polynomial
factor (in the size of the instance) of the number of branchings, and such a factor does
not affect the leading exponential behaviour.

Whenever the DPLL procedure does not return a SAT assignment, the formula is
UNSAT: a representation of the search tree explored provides a proof of unsatisfiability.
This is sometimes also called an UNSAT certificate. Note that the length of an
UNSAT certificate is (in general) larger than polynomial in the size of the input. This
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Fig. 10.3 A sketch of the DPLL algorithm, acting on the formula

(x1 ∨ x2 ∨ x3)∧(x1 ∨ x3 ∨ x4)∧(x2 ∨ x3 ∨ x4)∧(x1 ∨ x2 ∨ x4)∧(x2 ∨ x3 ∨ x4)∧
(x2 ∨ x3 ∨ x4)∧(x1 ∨ x2 ∨ x3)∧(x1 ∨ x2 ∨ x4). In order to get a more readable figure,

the notation has been simplified: a clause such as (x1 ∨ x2 ∨ x4) is denoted here by (1̄ 2 4).

A first variable is fixed, here x1 = 0. The problem is then reduced: clauses containing x1

are eliminated, and clauses containing x1 are shortened by eliminating the literal x1. Then

one proceeds by fixing a second variable, etc. At each step, if a unit clause is present, the

next variable to be fixed is chosen from those appearing in unit clauses. This corresponds to

the unit clause propagation rule. When the algorithm finds a contradiction (where two unit

clauses fix a variable simultaneously to 0 and to 1), it backtracks to the last not-yet-explored

branching node and explores another choice for the corresponding variable. In the present

case, for instance, the algorithm first fixes x1 = 0 and then it fixes x2 = 0, which implies

through UCP that x3 = 0 and x3 = 1. This is a contradiction, and therefore the algorithm

backtracks to the last choice, which was x2 = 0, and tries instead the other choice: x2 = 1,

etc. Here, branching follows the order of appearance of variables in the formula.

is at variance with a SAT certificate, which is provided, for instance, by a particular
SAT assignment.

Exercise 10.6 Resolution and DPLL.

(a) A powerful approach to proving that a formula is UNSAT relies on the idea of a res-
olution proof. Imagine that F contains two clauses xj ∨ A and xj ∨ B, where A and
B are subclauses. Show that these two clauses automatically imply the resolvent on
xj that is the clause A ∨ B.
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(b) A resolution proof is constructed by adding resolvent clauses to F . Show that if this
process produces an empty clause, then the original formula is necessarily UNSAT. An
UNSAT certificate is given simply by the sequence of resolvents leading to the empty
clause.

(c) Although the use of a resolution proof may look different from the DPLL algorithm,
any DPLL tree is in fact an example of a resolution proof. To see this, proceed as
follows. Label each ‘UNSAT’ leaf of the DPLL tree by the resolvent of a pair of clauses
of the original formula which have been shown to be contradictory on this branch (e.g.
the leftmost such leaf in Fig. 10.3 corresponds to the pair of initial clauses x1 ∨ x2 ∨ x3

and x1 ∨ x2 ∨ x3, so that it can be labelled by the resolvent of these two clauses on
x3, namely x1 ∨ x2). Show that each branching node of the DPLL tree can be labelled
by a clause which is a resolvent of the two clauses labeling its children, and that this
process, when carried out on an UNSAT formula, produces a root (the top node of the
tree) which is an empty clause.

10.2.3 Incomplete search

As we have seen above, proving that a formula is SAT is much easier than proving that
it is UNSAT: one ‘just’ needs to exhibit an assignment that satisfies all the clauses. One
can therefore relax the initial objective, and look for an algorithm that tries only to
deal with the first task. This is often referred to as an incomplete search algorithm.
Such an algorithm can either return a satisfying assignment or just say ‘I do not know’
whenever it is unable to find one (or to prove that the formula is UNSAT).

One basic algorithm for incomplete search, due to Schöning, is based on the fol-
lowing simple random-walk routine.

Walk (CNF formula F in N variables)
1: for each variable i, set xi = 0 or xi = 1 with probability 1/2;
2: repeat 3N times:
3: if the current assignment satisfies F , return it and stop;
4: else:
5: choose an unsatisfied clause a uniformly at random;
6: choose a variable index i uniformly at random in ∂a;
7: flip the variable i (i.e. xi ← 1 − xi);
8: end

For this algorithm, one can obtain a guarantee of performance.

Proposition 10.1 Denote by p(F ) the probability that the routine Walk, when exe-
cuted on a formula F , returns a satisfying assignment. If F is SAT, then p(F ) ≥ pN ,
where

pN =
2

3

(
K

2(K − 1)

)N

. (10.2)
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One can therefore run the routine many times (with independent random numbers
each time) in order to increase the probability of finding a solution. Suppose that the
formula is SAT. If the routine is run 20/pN times, the probability of not finding any
solution is (1− pN )20/pN ≤ e−20. While this is of course not a proof of unsatisfiability,
it is very close to it. In general, the time required for this procedure to reduce the
error probability below any fixed ε grows as

τN
.
=

(
2(K − 1)

K

)N

. (10.3)

This simple randomized algorithm achieves an exponential improvement over the naive
exhaustive search, which takes about 2N operations.
Proof We prove the lower bound (10.2) on the probability of finding a satisfying
assignment during a single run of the routine Walk. Since, by assumption, F is SAT, we
can consider a particular SAT assignment, say x∗. Let xt be the assignment produced
by Walk(F ) after t flips, and let dt be the Hamming distance between x∗ and xt.
Obviously, at time 0 we have

P{d0 = d} =
1

2N

(
N

d

)
. (10.4)

Since x∗ satisfies F , each clause is satisfied by at least one variable as assigned in x∗.
We mark exactly one such variable per clause. Each time Walk( · ) chooses a violated
clause, it flips a marked variable with probability 1/K, reducing the Hamming distance
by one. Of course, the Hamming distance can also decrease when another variable is
flipped (if more than one variable in x∗ satisfies this clause). In order to obtain a

bound, we introduce an auxiliary integer variable d̂t which decreases by one each time
a marked variable is selected, and increases by one (the maximum possible increase in
the Hamming distance due to a single flip) otherwise. If we choose the initial condition

d̂0 = d0, it follows from the previous observations that dt ≤ d̂t for any t ≥ 0. We
can therefore bound from below the probability that Walk finds a solution by the
probability that d̂t = 0 for some 0 ≤ t ≤ 3N . But the random process d̂t = 0 is simply
a biased random walk on the a half-line with the initial condition (10.4): at each
time step, it moves to the left with probability 1/K and to the right with probability
1− 1/K. The probability of hitting the origin can then be estimated as in Eq. (10.2),
as shown in the following exercise.

Exercise 10.7 Analysis of the biased random walk d̂t.

(a) Show that the probability for d̂t to start at position d at t = 0 and be at the origin at
time t is

P
˘
d̂0 = d ; d̂t = 0

¯
=

1

2N

 
N

d

!
1

Kt

 
t

(t − d)/2

!
(K − 1)(t−d)/2 (10.5)

for t + d even, and vanishes otherwise.
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(b) Use Stirling’s formula to derive an approximation for this probability to the leading

exponential order, P
˘
d̂0 = d ; d̂t = 0

¯ .
= exp{−NΨ(θ, δ)}, where θ = t/N and δ = d/N .

(c) Minimize Ψ(θ, δ) with respect to θ ∈ [0, 3] and δ ∈ [0, 1], and show that the minimum
value is Ψ∗ = log[2(K−1)/K]. Argue that pN

.
= exp{−NΨ∗} to the leading exponential

order.

�

Notice that the above algorithm applies a very noisy strategy. Although it ‘focuses’
on unsatisfied clauses, it makes essentially random steps. The opposite philosophy
would be that of making greedy steps. An example of a ‘greedy’ step is the following:
flip a variable which will lead to the largest positive increase in the number of satisfied
clauses.

There exist several refinements of the simple random-walk algorithm. One of the
greatest improvement consists in applying a mixed strategy: with probability p, pick
an unsatisfied clause, and flip a randomly chosen variable in this clause (as in Walk);
with probability 1 − p, perform a ‘greedy’ step as defined above.

The pseudocode of this ‘Walksat’ algorithm is given below, using the following
notation: E(x) is the number of clauses violated by the assignment x = (x1, . . . , xN )
and x(i) is the assignment obtained from x by flipping xi → 1 − xi.

WalkSAT (CNF formula F , number of flips f , mixing p)
1 : t = 0;
2 : Initialize x to a random assignment;
3 : While t < f do
4 : If x satisfies F , return x;
5 : Let r be uniformly random in [0, 1];
6 : If r < 1 − p then
7 : For each i ∈ V , let ∆i = E(x(i)) − E(x);
8 : Flip a variable xi for which ∆i is minimal;
9 : else
10: Choose a violated clause a uniformly at random;
11: Flip a uniformly random variable xi, i ∈ ∂a;
12: End-While
13: Return ‘Not found’;

This strategy works reasonably well if p is properly optimized. The greedy steps
drive the assignment towards ‘quasi-solutions’, while the noise term allows the algo-
rithm to escape from local minima.

10.3 Random K-satisfiability ensembles

The satisfiability problem is NP-complete. One thus expects a complete algorithm to
take exponential time in the worst case. However, empirical studies have shown that
many formulae are very easy to solve. A natural research direction is therefore to
characterize ensembles of problems which are easy, separating them from those which
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are hard. Such ensembles can be defined by introducing a probability measure over
the space of instances.

One of the most interesting families of ensembles is random K-SAT. An instance
of random K-SAT contains only clauses of length K. The ensemble is further charac-
terized by the number of variables N and the number of clauses M , and is denoted
by SATN (K,M). A formula in SATN (K,M) is generated by selecting M clauses of
size K uniformly at random from the

(
N
K

)
2K such clauses. Note that the factor graph

associated with a random K-SAT formula from the ensemble SATN (K,M) is in fact
a random GN (K,M) factor graph.

It turns out that a crucial parameter characterizing the random K-SAT ensemble
is the clause density α ≡ M/N . We shall define the ‘thermodynamic’ limit as M →
∞, N → ∞, with a fixed density α. In this limit, several important properties of
random formulae concentrate in probability around their typical values.

As in the case of random graphs, it is sometimes useful to consider slight variants of
the above definition. One such variant is the ensemble SATN (K,α). A random instance
from this ensemble is generated by including in the formula each of the

(
N
K

)
2K possible

clauses independently with probability αN2−K/
(
N
K

)
. Once again, the corresponding

factor graph will be distributed according to the ensemble GN (K,α) introduced in
Chapter 9. For many properties, the differences between such variants vanish in the
thermodynamic limit (this is analogous to the equivalence of different factor graph
ensembles).

10.3.1 Numerical experiments

Using the DPLL algorithm, one can investigate the properties of typical instances of the
random K-SAT ensemble SATN (K,M). Figure 10.4 shows the probability PN (K,α)
that a randomly generated formula is satisfiable, for K = 2 and K = 3. For fixed K
and N , this is a decreasing function of α, which goes to 1 in the α → 0 limit and
goes to 0 in the α → ∞ limit. One interesting feature in these simulations is the
fact that the crossover from high to low probability becomes sharper and sharper as
N increases. This numerical result points to the existence of a phase transition at a
finite value αs(K): for α < αs(K) (α > αs(K)) a random K-SAT formula is SAT
(respectively, UNSAT) with probability approaching 1 as N → ∞. On the other hand,
for α > αs(K) a random K-SAT formula is UNSAT with probability approaching 1
as N → ∞.

The conjectured phase transition in random satisfiability problems with K ≥ 3
has drawn considerable attention. One important reason for this interest comes from
the study of the computational effort needed to solve the problem. Figure 10.5 shows
the typical number of branching nodes in the DPLL tree required to solve a typical
random 3-SAT formula. One may notice two important features. For a given value
of the number of variables N , the computational effort has a peak in the region of
clause density where a phase transition seems to occur (compare Fig. 10.4). In this
region, the computational effort also increases rapidly with N . Looking carefully at the
data, one can distinguish qualitatively three different regions: at low α, the solution
is ‘easily’ found and the computer time grows polynomially; at intermediate α, in the
phase transition region, the problem becomes typically very hard and the computer
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Fig. 10.5 Computational effort of our DPLL algorithm applied to random 3-SAT formulae.

The logarithm of the number of branching nodes was averaged over 104 instances. From

bottom to top: N = 50, 100, 150, 200.

time grows exponentially; and at larger α, in the region where a random formula is
almost always UNSAT, the problem becomes easier, although the size of the DPLL
tree still grows exponentially with N .

The hypothetical phase transition region is therefore the one where the hardest
instances of random 3-SAT are located. This makes such a region particularly inter-
esting, both from the point of view of computational complexity and from that of
statistical physics.
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10.4 Random 2-SAT

From the point of view of computational complexity, 2-SAT is polynomial, while K-
SAT is NP-complete for K ≥ 3. It turns out that random 2-SAT is also much simpler to
analyse than the other cases. One important reason is the existence of the polynomial
decision algorithm described in Section 10.2.1 (see, in particular, Exercise 10.5). This
can be analysed in detail using the representation of a 2-SAT formula as a directed
graph whose vertices are associated with literals. One can then use the mathematical
theory of random directed graphs. In particular, the existence of a phase transition at
a critical clause density αs(2) = 1 can be established.

Theorem 10.2 Let PN (K = 2, α) be the probability for a SATN (K = 2,M) random
formula to be SAT. Then

lim
N→∞

PN (K = 2, α) =

{
1 if α < 1 ,
0 if α > 1 .

(10.6)

Proof Here we shall prove that a random formula is SAT with high proability for
α < 1. It follows from Theorem 10.5 below that it is, with high probability, UNSAT
for α > 1.

We use the directed-graph representation defined in Exercise 10.5. In this graph, we
define a bicycle of length s as a path (u,w1, w2, . . . , ws, v), where the wi’s are literals
on s distinct variables, and u, v ∈ {w1, . . . , ws, w1, . . . , ws}. As we saw in Example
10.5, if a formula F is UNSAT, its directed graph D(F ) has a cycle containing the
two literals xi and xi for some i. From such a cycle, one can easily build a bicycle.
The probability that a bicycle appears in D(F ) is, in turn, bounded from above by
the expected number of bicycles. Therefore,

P(F is UNSAT) ≤ P(D(F ) has a bicycle) ≤
N∑

s=2

Ns2s(2s)2Ms+1

(
1

4
(
N
2

))s+1

.

(10.7)
The sum is over the size s of the bicycle; Ns is an upper bound on

(
N
s

)
, the number of

ways one can choose the s variables; 2s corresponds to the choice of literals, given the
variables; (2s)2 corresponds to the choice of u, v; Ms+1 is an upper bound on

(
M

s+1

)
,

the number of choices for the clauses involved in the bicycle; and the last factor is
the probability that each of the chosen clauses of the bicycle appears in the random
formula. A direct summation of the series in eqn (10.7) shows that, in the large-N
limit, the result is O(1/N) whenever α < 1. �

10.5 The phase transition in random K(≥ 3)-SAT

10.5.1 The satisfiability threshold conjecture

As noted above, numerical studies suggest that random K-SAT undergoes a phase
transition between a SAT phase and an UNSAT phase, for any K ≥ 2. There is a
widespread belief that this is indeed true, as formalized by the following conjecture.
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Conjecture 10.3 For any K ≥ 2, there exists a threshold αs(K) such that

lim
N→∞

PN (K,α) =

{
1 if α < αs(K) ,
0 if α > αs(K) .

(10.8)

As discussed in the previous section, this conjecture has been proved in the case K = 2.
The existence of a phase transition is still an open problem for larger K, although the
following theorem gives some strong support.

Theorem 10.4. (Friedgut) Let PN (K,α) be the probability for a random formula
from the ensemble SATN (K,M) to be satisfiable, and assume that K ≥ 2. There then

exists a sequence of α
(N)
s (K) such that, for any ε > 0,

lim
N→∞

PN (K,αN ) =

{
1 if αN < α

(N)
s (K) − ε ,

0 if αN > α
(N)
s (K) + ε ,

(10.9)

In other words, the crossover from SAT to UNSAT becomes sharper and sharper as
N increases. For N large enough, it takes place in a window smaller than any fixed
width ε. The ‘only’ missing piece needed to prove the satisfiability threshold conjecture

(10.3) is the convergence of α
(N)
s (K) to some value αs(K) as N → ∞.

10.5.2 Upper bounds

Rigorous studies have allowed to establish bounds on the satisfiability threshold α
(N)
s (K).

Usually one focuses on the large-N limit of such bounds. Upper bounds are obtained
by using the first moment method. The general strategy is to introduce a function
U(F ) acting on formulae such that

U(F ) =

{
0 if F is UNSAT,
≥ 1 otherwise.

(10.10)

Therefore, if F is a random K-SAT formula

P {F is SAT} ≤ E U(F ) . (10.11)

The inequality becomes an equality if U(F ) = I(F is SAT). Of course, we do not know
how to compute the expectation in this case. The idea is to find some function U(F )
which is simple enough that E U(F ) can be computed, and which has an expectation
value that vanishes as N → ∞, for large enough α.

The simplest such choice is U(F ) = Z(F ), the number of SAT assignments (this
is the analogue of a ‘zero-temperature’ partition function). The expectation E Z(F ) is
equal to the number of assignments, 2N , times the probability that an assignment is
SAT (which does not depend on the assignment). Consider, for instance, the all-zero
assignment xi = 0, i = 1, . . . , N . The probability that it is SAT is equal to the product
of the probabilities that it satisfies each of the M clauses. The probability that the
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all-zero assignment satisfies a clause is (1 − 2−K) because a K-clause excludes one of
the 2K assignments of variables which appear in it. Therefore

E Z(F ) = 2N (1 − 2−K)M = exp
[
N
(
log 2 + α log(1 − 2−K)

)]
. (10.12)

This result shows that, for α > αUB,1(K), where

αUB,1(K) ≡ − log 2

log(1 − 2−K)
, (10.13)

E Z(F ) is exponentially small at large N . Equation (10.11) implies that the probability
of a formula being SAT also vanishes at large N for such an α.

Theorem 10.5 If α > αUB,1(K), then limN→∞ P{F is SAT} = 0, whence α
(N)
s (K) ≤

αUB,1(K).

One should not expect this bound to be tight. The reason is that, in the SAT phase,
Z(F ) takes exponentially large values, and its fluctuations tend to be exponential in
the number of variables.

Example 10.6 As a simple illustration, consider a toy example: the random 1-SAT
ensemble SATN (1, α). A formula is generated by including each of the 2N literals as
a clause independently with probability α/2 (we assume that α ≤ 2). In order for the
formula to be SAT, for each of the N variables, at most one of the two corresponding
literals must be included. We therefore have

PN (K = 1, α) = (1 − α2/4)N . (10.14)

In other words, the probability for a random formula to be SAT goes exponentially
fast to 0 for any α > 0: αs(K = 1) = 0. On the other hand, the upper bound deduced
from EZ(F ) is αUB,1(K) = 1. This is due to large fluctuations in the number of SAT
assignments Z, as we shall see in the next exercise.
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Exercise 10.8 Consider the distribution of Z(F ) in the random 1-SAT ensemble.

(a) Show that

P {Z(F ) = 2n} =

 
N

n

! “
1 − α

2

”2n h
α
“
1 − α

4

”iN−n

, (10.15)

for any n ≥ 0.
[Hint: If F is SAT, then Z(F ) = 2n, where n is the number of variables which do

not appear in any clause.]

(b) From this expression, deduce the large-deviation principle

P

n
Z(F ) = 2Nν

o
.
= exp{−N Iα(ν)} , (10.16)

where

Iα(ν) ≡ −H(ν) − 2ν log(1 − α/2) − (1 − ν) log(α(1 − α/4)) . (10.17)

What is the most probable value of ν?

(c) Show that

E Z(F )
.
= exp

n
N max

ν
[−Iα(ν) + ν log 2]

o
. (10.18)

What is the value of ν where the maximum is achieved, ν∗? Show that Iα(ν∗) > 0:

the probability of having Z(F )
.
= 2Nν∗

is exponentially small, and therefore E Z(F ) is
dominated by rare events.

Exercise 10.9 Repeat the derivation of Theorem 10.5 for the ensemble SATN (K, α) (i.e.
compute E Z(F ) for this ensemble and find for what values of α this expectation is expo-
nentially small). Show that the upper bound obtained in this case is α = 2K log 2. This is
worse than the previous upper bound αUB,1(K), although one would expect the threshold
to be the same. Why?

[Hint: The number of clauses M in a SATN (K, α) formula has a binomial distribution
with parameters N and α. What values of M provide the dominant contribution to E Z(F )?]

In order to improve upon Theorem 10.5 using the first-moment method, one needs
a better (but still simple) choice of the function U(F ). A possible strategy consists
in defining some small subclass of ‘special’ SAT assignments, such that if a SAT
assignment exists, then a special SAT assignment exists too. If the subclass is small
enough, one can hope to reduce the fluctuations in U(F ) and sharpen the bound.

One choice of such a subclass is ‘locally maximal’ SAT assignments. Given a formula
F , an assignment x for this formula is said to be a locally maximal SAT assignment if
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and only if (1) it is a SAT assignment, and (2) for any i such that xi to 0, the assignment
obtained by flipping it to xi = 1 is UNSAT. We define U(F ) as the number of locally
maximal SAT assignments and apply the first-moment method to this function. This
gives the following result.

Theorem 10.7 For any K ≥ 2, let αUB,2(K) be the unique positive solution of the
equation

α log(1 − 2−K) + log

[
2 − exp

(
− Kα

2K − 1

)]
= 0 . (10.19)

Then α
(N)
s (K) ≤ αUB,2(K) for large enough N .

The proof is left as the following exercise.

Exercise 10.10 Consider an assignment x where exactly L variables are set to 0, the
remaining N − L variables being set to 1. Without loss of generality, assume x1, . . . , xL to
be the variables set to zero.

(a) Let p be the probability that a clause constrains the variable x1, given that the clause is
satisfied by the assignment x (By a clause that constrains x1, we mean that the clause

becomes unsatisfied if x1 is flipped from 0 to 1.) Show that p =
`

N−1
K−1

´
[(2K − 1)

`
N
K

´
]−1.

(b) Show that the probability that the variable x1 is constrained by at least one of the
M clauses, given that all these clauses are satisfied by the assignment x, is equal to

q = 1 − (1 − p)M .

(c) Let Ci be the event that xi is constrained by at least one of the M clauses. If C1, . . . ,
CL were independent events, under the condition that x satisfies F , the probability
that x1, . . . xL are constrained would be equal to qL. Of course, C1, . . . , CL are not
independent. Find a heuristic argument to show that they are anti-correlated and that
their joint probability is at most qL (consider, for instance the case L = 2).

(d) Assume the claim in (c) to be true. Show that E [U(F )] ≤ (1−2−K)M PN
L=0

`
N
L

´
qL =

(1 − 2−K)M [1 + q]N and finish the proof by working out the large-N asymptotics of
this formula (with α = M/N fixed).

In Table 10.1, we report the numerical values of the upper bounds αUB,1(K) and
αUB,2(K) for a few values of K. These results can be slightly improved upon by
pursuing the same strategy further. For instance, one may strengthen the condition of
maximality to flipping two or more variables. However, the quantitative improvement
in the bound is rather small.

10.5.3 Lower bounds

Two main strategies have been used to derive lower bounds on α
(N)
c (K) in the large-

N limit. In both cases, one takes advantage of Theorem 10.4: in order to show that

α
(N)
c (K) ≥ α∗, it is sufficient to prove that a random SATN (K,M) formula, with

M = αN , is SAT with non-vanishing probability in the N → ∞ limit.
The first approach consists in analysing explicit heuristic algorithms for finding

SAT assignments. The idea is to prove that a particular algorithm finds a SAT assign-
ment with positive probability as N → ∞ when α is smaller than some value.
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One of the simplest such bounds is obtained by considering unit clause propagation.
Whenever there exists a unit clause, we assign the variables appearing in one such
clause in such a way to satisfy it, and proceed recursively. Otherwise, we choose a
variable uniformly at random from those which have not yet been fixed and assign it
to 0 or 1 with probability 1/2. The algorithm halts if it finds a contradiction (i.e. a
pair of opposite unit clauses) or if all the variables have been assigned. In the latter
case, the assignment produced by the algorithm satisfies the formula.

This algorithm is then applied to a random K-SAT formula with clause density α.
It can be shown that a SAT assignment will be found with positive probability for α

small enough: this gives the lower bound α
(N)
c (K) ≥ ((K − 1)/(K − 2))K−22K−1/K

in the N → ∞ limit. In the exercise below, we give the main steps of the reasoning
for the case K = 3; we refer to the literature for more detailed proofs.

Exercise 10.11 After T iterations, the formula will contain 3-clauses, as well as 2-clauses
and 1-clauses. Denote by Cs(T ) the set of s-clauses, s = 1, 2, 3, and denote its size by
Cs(T ) ≡ |Cs(T )|. Let V(T ) be the set of variables which have not yet been fixed, and let
L(T ) be the set of literals on the variables of V(T ) (obviously, we have |L(T )| = 2|V(T )| =
2(N−T )). Finally, if a contradiction is encountered after Thalt steps, we adopt the convention
that the formula remains unchanged for all T ∈ {Thalt, . . . , N}.

(a) Show that, for any T ∈ {1, . . . , N}, each clause in Cs(T ) is uniformly distributed among
the s-clauses over the literals in L(T ).

(b) Show that the expected changes in the numbere of 3- and 2-clauses are given
by E [C3(T + 1) − C3(T )] = −3C3(T )/(N − T ) and E [C2(T + 1) − C2(T )] =
3C3(T )/

`
2(N − T )

´− 2C2(T )/(N − T ).

(c) Show that, conditional on C1(T ), C2(T ), and C3(T ), the change in the number of 1-

clauses is distributed as follows: C1(T +1)−C1(T )
d
= −I(C1(T ) > 0)+B

`
C2(T ), 1/(N−

T )
´
. (We recall that B(n, p) denotes a binomial random variable with parameters n and

p (see Appendix A)).

(d) It can be shown that, as N → ∞ at fixed t = T/N , the variables Cs(T )/N for
s ∈ {2, 3} concentrate around their expectation values, and these converge to smooth
functions cs(t). Argue that these functions must solve the ordinary differential equa-
tions (dc3/dt) = −3c3(t)/(1−t) and (dc2/dt) = 3c3(t)/

`
2(1−t)

´−2c2(t)/(1−t). Check

that the solutions of these equations are c3(t) = α(1 − t)3 and c2(t) = (3α/2)t(1 − t)2.

(e) Show that the number of unit clauses follows a Markov process described by C1(0) = 0,

C1(T +1)−C1(T )
d
= −I(C1(T ) > 0)+η(T ), where η(T ) is a Poisson-distributed random

variable with mean c2(t)/(1−t), and where t = T/N . Given C1 and a time T , show that
the probability that there is no contradiction generated by the unit clause algorithm

up to time T is
QT

τ=1 (1 − 1/(2(N − τ)))[C1(τ)−1]I(C1(τ)≥1).

(f) Let ρ(T ) be the probability that there is no contradiction up to time T . Consider

T = N(1−ε); show that ρ(N(1−ε)) ≥ (1−1/(2Nε))AN+B P(
PN(1−ε)

τ=1 C1(τ) ≤ AN+B).
Assume that α is such that, ∀t ∈ [0, 1− ε], c2(t)/(1− t) < 1. Show that there exist A, B

such that limN→∞ P(
PN(1−ε)

τ=1 C1(τ) ≤ AN + B) is finite. Deduce that in the large-N
limit, there is a finite probability that, at time N(1− ε), the unit clause algorithm has
not produced any contradiction so far, and C1(N(1 − ε)) = 0.
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(g) Conditionnal on the fact that the algorithm has not produced any contradiction and
C1(N(1− ε)) = 0, consider the residual formula at time T = N(1− ε). Transform each
3-clause into a 2-clause by removing a uniformly random variable from it. Show that
one obtains, for ε small enough, a random 2-SAT problem with a small clause density
≤ 3ε2/2, so that this is a satisfiable instance.

(h) Deduce that, for α < 8/3, the unit clause propagation algorithm finds a solution with
a finite probability

More refined heuristics have been analysed using this method and lead to better

lower bounds on α
(N)
c (K). We shall not elaborate on this approach here, but rather

present a second strategy, based on a structural analysis of the problem. The idea is
to use the second-moment method. More precisely, we consider a function U(F ) of the
SAT formula F , such that U(F ) = 0 whenever F is UNSAT and U(F ) > 0 otherwise.
We then make use of the following inequality:

P{F is SAT} = P{U(F ) > 0} ≥ [E U(F )]2

E[U(F )2]
. (10.20)

The present strategy is more delicate to implement than the first-moment method,

which we used in Section 10.5.2 to derive upper bounds on α
(N)
c (K). For instance,

the simple choice U(F ) = Z(F ) does not give any result: it turns out that the ratio
[E Z(F )]2/E[Z(F )2] is exponentially small in N for any non-vanishing value of α, so
that the inequality (10.20) is useless. Again, one needs to find a function U(F ) whose
fluctuations are smaller than those of the number Z(F ) of SAT assignments. More
precisely, one needs the ratio [E U(F )]2/E[U(F )2] to be non-vanishing in the N → ∞
limit.

One successful idea uses a weighted sum of SAT assignments,

U(F ) =
∑

x

M∏
a=1

W (x, a) . (10.21)

Here the sum is over all the 2N assignments, and W (x, a) is a weight associated with
clause a. This weight must be such that W (x, a) = 0 when the assignment x does not
satisfy clause a, and W (x, a) > 0 otherwise. Let us choose a weight which depends on
the number r(x, a) of variables which satisfy clause a in the assignment x:

W (x, a) =

{
ϕ(r(x, a)) if r(x, a) ≥ 1,
0 otherwise.

(10.22)

It is then easy to compute the first two moments of U(F ):

E U(F ) = 2N

[
2−K

K∑
r=1

(
K

r

)
ϕ(r)

]M

, (10.23)

E
[
U(F )2

]
= 2N

N∑
L=0

(
N

L

)
[gϕ(N,L)]

M
. (10.24)
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Here gϕ(N,L) is the expectation value of the product W (x, a)W (y, a) when a clause a
is chosen uniformly at random, given that x and y are two assignments of N variables
which agree on exactly L of them.

In order to compute gϕ(N,L), it is convenient to introduce two binary vectors
�u,�v ∈ {0, 1}K . They encode the following information. Consider a clause a, and fix
us = 1 if, in the assignment x, the s-th variable of clause a satisfies the clause, and fix
us = 0 otherwise. The components of �v are defined similarly, but with the assignment
y. Furthermore, we denote the Hamming distance between these vectors by d(�u,�v),
and their Hamming weights (number of non-zero components) by w(�u), w(�v). Then

gϕ(N,L) = 2−K
∑
�u,�v

′ ϕ (w(�u)) ϕ (w(�v))

(
L

N

)d(�u,�v)(
1 − L

N

)K−d(�u,�v)

. (10.25)

Here the sum
∑′

runs over K-component vectors �u, �v with at least one non-zero
component. A particularly simple choice is ϕ(r) = λr. Denoting L/N by z, we find
that

gw(N,L) = 2−K
([

(λ2 + 1)z + 2λ(1 − z)
]K − 2 [z + λ(1 − z)]

K
+ zk

)
. (10.26)

The first two moments can be evaluated from Eqs. (10.23) and (10.24):

E U(F )
.
= exp{Nh1(λ, α)} , E [U(F )2]

.
= exp{N max

z
h2(λ, α, z)} , (10.27)

where the maximum is taken over z ∈ [0, 1], and

h1(λ, α) ≡ log 2 − αK log 2 + α log
[
(1 + λ)K − 1

]
, (10.28)

h2(λ, α, z) ≡ log 2 − z log z − (1 − z) log(1 − z) − αK log 2 (10.29)

+α log
([

(λ2 + 1)z + 2λ(1 − z)
]K − 2 [z + λ(1 − z)]

K
+ zk

)
.

Evaluating the above expression for z = 1/2, one finds h2(λ, α, 1/2) = 2h1(λ, α). The
interpretation is as follows. Setting z = 1/2 amounts to assuming that the second mo-
ment of U(F ) is dominated by completely uncorrelated assignments (two uniformly
random assignments agree on about half of the variables). This results in the factor-
ization of the expectation E [U(F )2] ≈ [E U(F )]2.

Two cases are possible: either the maximum of h2(λ, α, z) over z ∈ [0, 1] is achieved
only at z = 1/2, or it is not.

(i) In the latter case, maxz h2(λ, α, z) > 2h1(λ, α) strictly, and therefore the ratio
[E U(F )]2/E[U(F )2] is exponentially small in N , and the second-moment inequal-
ity (10.20) is useless.

(ii) If, on the other hand, the maximum of h2(λ, α, z) is achieved only at z = 1/2,
then the ratio [E U(F )]2/E[U(F )2] is 1 to the leading exponential order. It is
not difficult to work out the precise asymptotic behaviour (i.e. to compute the
prefactor of the exponential). One finds that [E U(F )]2/E[U(F )2] remains finite

when N → ∞. As a consequence, α ≤ α
(N)
c (K) for N large enough.
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Table 10.1 Satisfiability thresholds for random K-SAT. We report the lower bound from

Theorem 10.8 and the upper bounds obtained from Eqs. (10.13) and (10.19).

K 3 4 5 6 7 8 9 10
αLB(K) 2.548 7.314 17.62 39.03 82.63 170.6 347.4 701.5

αUB,1(K) 5.191 10.74 21.83 44.01 88.38 177.1 354.5 709.4
αUB,2(K) 4.666 10.22 21.32 43.51 87.87 176.6 354.0 708.9

A necessary condition for the second case to occur is that z = 1/2 is a local maximum
of h2(λ, α, z). This implies that λ must be the (unique) strictly positive root of

(1 + λ)K−1 =
1

1 − λ
. (10.30)

We have thus proved the following result.

Theorem 10.8 Let λ be the positive root of Eq. (10.30), and let the function h2( · ) be
defined as in Eq. (10.29). Assume that h2(λ, α, z) achieves its maximum, as a function
of z ∈ [0, 1] only at z = 1/2. Then a random SATN (K,α) is SAT with probability
approaching one as N → ∞.

Let αLB(K) be the largest value of α such that the hypotheses of this theorem are
satisfied. The Theorem implies an explicit lower bound on the satisfiability threshold:

α
(N)
s (K) ≥ αLB(K) in the N → ∞ limit. Table 10.1 summarizes some of the values of

the upper and lower bounds found in this section for a few values of K. In the large-K
limit, the following asymptotic behaviours can be shown to hold:

αLB(K) = 2K log 2 − 2(K + 1) log 2 − 1 + o(1) , (10.31)

αUB,1(K) = 2K log 2 − 1

2
log 2 + o(1) . (10.32)

In other words, the simple methods set out in this chapter allow one to determine the
satisfiability threshold with a relative error that behaves as 2−K in the large K-limit.
More sophisticated tools, to be discussed in the following chapters, are necessary for
obtaining sharp results at finite K.

Exercise 10.12 [Research problem] Show that the choice of weights ϕ(r) = λr is optimal:
all other choices for ϕ(r) give a worse lower bound. What strategy could be followed to
improve the bound further?

Notes

The review paper by Gu et al. (1996) is a rather comprehensive source of information
on the algorithmic aspects of satisfiability. The reader interested in applications will
also find a detailed and referenced list of applications there.
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Davis and Putnam first studied an algorithm for satisfiability in Davis and Put-
nam (1960). This was based on a systematic application of the resolution rule. The
backtracking algorithm discussed in this chapter was introduced in Davis et al. (1962).

Other ensembles of random CNF formulae have been studied, but it turns out that
it is not so easy to find hard formulae. For instance, take N variables, and generate
M clauses independently according to the following rule. In a clause a, each of the
variables appears as either xi or xi with the same probability p ≤ 1/2 in both cases,
and does not appear with probability 1 − 2p. The reader is invited to study this
ensemble; an introduction and a guide to the corresponding literature can be found in
Franco (2000). Another useful ensemble is the ‘2+p’ SAT problem, which interpolates
between K = 2 and K = 3 by picking pM 3-clauses and (1 − p)M 2-clauses; see
Monasson and Zecchina (1998), and Monasson et al. (1999).

The polynomial nature of 2-SAT is discussed by Cook (1971). MAX-2SAT was
shown to be NP-complete by Garey et al. (1976).

Schöning’s algorithm was introduced in Schöning (1999) and discussed further in
Schöning (2002). More general random-walk strategies for SAT are treated in Pa-
padimitriou (1991), Selman and Kautz (1993), and Selman et al. (1994).

The threshold αs = 1 for random 2-SAT was proved by Chvátal and Reed (1992),
Goerdt (1996), and de la Vega (1992); see also de la Vega (2001). The scaling behaviour
near to the threshold has been analysed using graph theoretical methods by Chayes
et al. (2001).

The numerical identification of the phase transition in random 3-SAT, together
with the observation that difficult formulae are found near the phase transition, were
done by Kirkpatrick and Selman (1994) and Selman and Kirkpatrick (1996). See also
Selman et al. 1996).

Friedgut’s theorem was proved by Friedgut (1999).
Upper bounds on the threshold were discussed by Dubois and Boufkhad (1997)

and Kirousis et al. (1998). Lower bounds for the threshold in random K-SAT, based
on the analysis of search algorithms, were pioneered by Chao and Franco. The paper
by Chao and Franco (1986) corresponds to Exercise 10.11, and a generalization can
be found in Chao and Franco (1990). A review of this type of methods is provided
by Achlioptas (2001). Backtracking algorithms were first analysed using an heuristic
approach by Cocco and Monasson (2001a). Cocco et al. (2006) gives a survey of the
analysis of algorithms based on statistical-physics methods.

The idea of deriving a lower bound by the weighted second-moment method was
introduced by Achlioptas and Moore (2007). The lower bound which we discuss here
is derived by Achlioptas and Peres (2004); this paper also solves the first question
of Exercise 10.12. A simple introduction to the use of the second moment method in
various constraint satisfaction problems is provided by Achlioptas et al. (2005); see
also Gomes and Selman (2005).
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Low-density parity-check codes

Low-density parity-check (LDPC) error-correcting codes were introduced in 1963 by
Robert Gallager in his PhD thesis. The basic motivation came from the observation
that random linear codes (see Section 6.6), had excellent theoretical performance (in
terms of the number of channel errors they could correct) but were unpractical. In
particular, no efficient algorithm was known for decoding. In retrospect, this is not
surprising, since it was later shown that decoding for linear codes is an NP-hard
problem.

The idea was then to restrict the random linear code ensemble, introducing some
structure that could be exploited for more efficient decoding. Of course, the risk is that
such a restriction of the ensemble might spoil its performance. Gallager’s proposal was
simple and successful (but ahead of its time): LDPC codes are among the most efficient
codes around.

In this chapter, we introduce one of the most important families of LDPC ensembles
and derive some of their basic properties. As for any code, one can take two quite
different points of view. The first is to study the performance of the code with respect
to an appropriate metric, under optimal decoding, in which no constraint is imposed
on the computational complexity of the decoding procedure. For instance, decoding
by a scan of the whole, exponentially large codebook is allowed. The second approach
consists in analysing the performance of the code under some specific, efficient decoding
algorithm. Depending on the specific application, one may be interested in algorithms
of polynomial complexity, or even require the complexity to be linear in the block
length.

Here we shall focus on performance under optimal decoding. We shall derive rig-
orous bounds, showing that appropriately chosen LDPC ensembles allow one to com-
municate reliably at rates close to Shannon’s capacity. However, the main interest of
LDPC codes is that they can be decoded efficiently, and we shall discuss a simple
example of a decoding algorithm with linear time complexity. A more extensive study
of LDPC codes under practical decoding algorithms is deferred to Chapter 15.

After defining LDPC codes and LDPC code ensembles in Section 11.1, we discuss
some geometric properties of their codebooks in Section 11.2. In Section 11.3 we use
these properties to derive a lower bound on the threshold for reliable communication.
An upper bound follows from information-theoretic considerations. Section 11.4 dis-
cusses a simple decoding algorithm, which is shown to correct a finite fraction of errors.
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11.1 Definitions

11.1.1 Linear algebra with binary variables

Recall that a code is characterized by its codebook C, which is a subset of {0, 1}N .
LDPC codes are linear codes, which means that the codebook is a linear subspace
of {0, 1}N . In practice, such a subspace can be specified through an M ×N matrix H,
with binary entries Hij ∈ {0, 1}, where M < N . The codebook is defined as the kernel
of H:

C = {x ∈ {0, 1}N : Hx = 0 } . (11.1)

Here and in all of this chapter, the multiplications and sums involved in Hx are under-
stood as being computed modulo 2. The matrix H is called the parity check matrix
of the code. The size of the codebook is |C| = 2N−rank(H), where rank(H) denotes the
rank of the matrix H (the number of linearly independent rows). As rank(H) ≤ M , we
have |C| ≥ 2N−M . With a slight modification with respect to the notation of Chapter
1, we let L ≡ N − M . The rate R of the code therefore satisfies R ≥ L/N , equality
being obtained when all of the rows of H are linearly independent.

Given such a code, encoding can always be implemented as a linear operation.
There exists an N × L binary matrix G, called the generator matrix, such that the
codebook is the image of G: C = {x = Gz , where z ∈ {0, 1}L}. Encoding is therefore
realized as the mapping z �→ x = Gz. (Note that the product H G is an M × L ‘null’
matrix with all entries equal to zero.)

11.1.2 Factor graph

In Section 9.1.2, we described the factor graph associated with one particular linear
code (the Hamming code of eqn (9.8)). The recipe to build the factor graph, knowing
H, is as follows. Let us denote by ia1 , . . . , iak(a) ∈ {1, . . . , N} the column indices such that
H has a matrix element equal to 1 at row a and column iaj . The a-th coordinate of the
vector Hx is then equal to xia

1
⊕ · · · ⊕ xia

k(a)
. Let µ0,H(x) be the uniform distribution

over all codewords of the code H (hereafter, we shall often identify a code with its
parity check matrix). It is given by

µ0,H(x) =
1

Z

M∏
a=1

I(xia
1
⊕ · · · ⊕ xia

k
= 0) . (11.2)

Therefore, the factor graph associated with µ0,H(x) (or with H) includes N variable
nodes, one for each column of H, and M function nodes (also called, in this context,
check nodes), one for each row. A factor node and a variable node are joined by an
edge if the corresponding entry in H is non-vanishing. Clearly, this procedure can be
inverted: with any factor graph with N variable nodes and M function nodes, we can
associate an M × N binary matrix H, the adjacency matrix of the graph, whose
non-zero entries correspond to the edges of the graph.

11.1.3 Ensembles with given degree profiles

In Chapter 9, we introduced the ensembles of factor graphs DN (Λ, P ). These have N
variable nodes, and the two polynomials Λ(x) =

∑∞
n=0 Λnxn and P (x) =

∑∞
n=0 Pnxn
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PERMUTATION

Fig. 11.1 Construction of a graph/code with given degree profiles. Here, a graph with N = 7,

M = 4, Λ(x) = 1
7
(2x + 2x2 + 3x3), and P (x) = 1

4
(3x3 + x6) is shown. The ‘sockets’ from the

variable nodes and those from the check nodes are connected through a uniformly random

permutation.

define the degree profiles: Λn is the probability that a randomly chosen variable node
has degree n, and Pn is the probability that a randomly chosen function node has
degree n.

We define LDPCN (Λ, P ) to be the ensemble of linear codes whose parity check
matrix is the adjacency matrix of a random graph from the ensemble DN (Λ, P ). We
shall be interested in the limit N → ∞ while keeping the degree profiles fixed. There-
fore each vertex has bounded degree, and hence the parity check matrix has a ‘low
density.’

In order to eliminate trivial cases, we always assume that variable nodes have
a degree at least 1, and function nodes at least 2. The numbers of parity check and
variable nodes satisfy the relation M = NΛ′(1)/P ′(1). The ratio L/N = (N−M)/N =
1−Λ′(1)/P ′(1), which is a lower bound on the actual rate R, is called the design rate
Rdes of the code (or of the ensemble). The actual rate of a code from the ensemble
LDPCN (Λ, P ) is of course a random variable, but we shall see below that it is, in
general, sharply concentrated ‘near’ Rdes.

A special case which is often considered is that of ‘regular’ graphs: all variable nodes
have degree l and all function nodes have degree k (i.e. P (x) = xk and Λ(x) = xl).
The corresponding code ensemble is usually denoted simply by LDPCN (l, k), or, more
synthetically, (l, k). It has a design rate Rdes = 1 − (l/k).

Generating a uniformly random graph from the ensemble DN (Λ, P ) is not a trivial
task. The simplest way to bypass this problem is to substitute the uniformly random
ensemble by a slightly different one which has a simple algorithmic description. One
can, for instance, proceed as follows. First, separate the set of variable nodes uniformly
at random into subsets of sizes NΛ0, NΛ1, . . . , NΛlmax

, and attribute zero ‘sockets’
to the nodes in the first subset, one socket to each of the nodes in the second, and
so on. Analogously, separate the set of check nodes into subsets of size MP0, MP1,
. . . , MPkmax and attribute 0, 1, . . . , kmax sockets to the nodes in each subset. At this
point the variable nodes have NΛ′(1) sockets, and so have the check nodes. Draw a
uniformly random permutation from NΛ′(1) objects and connect the sockets on the
two sides accordingly (see Fig. 11.1).
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Exercise 11.1 In order to sample a graph as described above, one needs two routines. The
first one separates a set of N objects uniformly into subsets of prescribed sizes. The second
one samples a random permutation of NΛ′(1) objects. Show that both of these tasks can be
accomplished with O(N) operations (having at your disposal a random number generator).

This procedure a flaw: it may generate multiple edges joining the same pair of
nodes in the graph.

In order to cure this problem, we shall agree that each time n edges join any two
nodes, they must be erased if n is even, and they must be replaced by a single edge if n
is odd. Of course, the resulting graph does not necessarily have the prescribed degree
profile (Λ, P ), and even if we condition on this to be the case, its distribution is not
uniform. We shall nevertheless insist on denoting the ensemble by LDPCN (Λ, P ). The
intuition is that, for large N , the degree profile will be ‘close’ to the prescribed one
and the distribution will be ‘uniform enough’ for our purposes. Moreover –and this is
really important– this and similar graph generation techniques are used in practice.

Exercise 11.2 This exercise aims at proving that, for large N , the degree profile produced
by the explicit construction described above is close to the prescribed degree profile.

(a) Let m be the number of multiple edges appearing in the graph; compute its expectation.
Show that E m = O(1) as N → ∞ with Λ and P fixed.

(b) Let (Λ′, P ′) be the degree profile produced by the above procedure. Denote by

d ≡
X

l

|Λl − Λ′
l| +

X
k

|Pk − P ′
k| (11.3)

the ‘distance’ between the prescribed and the actual degree profiles. Derive an upper
bound on d in terms of m and show that it implies E d = O(1/N).

11.2 The geometry of the codebook

As we saw in Section 6.2, a classical approach to the analysis of error-correcting codes
is to study the geometric properties of the corresponding codebooks. An important
example of such properties is the distance enumerator Nx0

(d), giving the number of
codewords at a Hamming distance d from x0. In the case of linear codes, the distance
enumerator does not depend upon the reference codeword x0 (the reader is invited
to prove this statement). It is therefore customary to take the all-zeros codeword as
the reference, and to use the term weight enumerator: N (w) = Nx0

(d = w) is the
number of codewords having a weight (the number of ones in the codeword) equal to
w.

In this section, we want to estimate the expected weight enumerator N (w) ≡
EN (w) for a random code in the ensemble LDPCN (Λ, P ). In the case of the random
code ensemble of Section 6.2, the corresponding N (w) grows exponentially in the block
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length N , and that most of the codewords have a weight w = Nω growing linearly
with N . We shall in fact compute the exponential growth rate φ(ω), defined by

N (w = Nω)
.
= eNφ(ω) . (11.4)

In the jargon of statistical physics, N (w) is an ‘annealed average’ and hence it
may be dominated by rare instances in the ensemble. On the other hand, one expects
logN (w) to be tightly concentrated around its typical value Nφq(ω). The typical
exponent φq(ω) can be computed through a quenched calculation, for instance consid-
ering limN→∞ N−1E log [1 + N (w)]. Of course, φq(ω) ≤ φ(ω) because of the concavity
of the logarithm. In this chapter, we shall keep to the annealed calculation, which is
much easier and gives an upper bound on the quenched result φq.

Let x ∈ {0, 1}N be a binary word of length N and weight w. Note that Hx =
0 mod 2 if and only if the corresponding factor graph has the following property.
Consider all the w variable nodes i such that xi = 1, and colour all edges incident
on these nodes in red. Colour all of the other edges blue. All of the check nodes must
then have an even number of incident red edges. A little thought shows that N (w)
is the number of ‘coloured’ factor graphs that have this property for some set of w
variable nodes, divided by the total number of factor graphs in the ensemble. We shall
compute this number first for a graph with fixed degrees, i.e. for codes in the ensemble
LDPCN (l, k), and then we shall generalize to arbitrary degree profiles.

11.2.1 Weight enumerator: Regular ensembles

In the fixed-degree case we have N variable nodes of degree l, and M function nodes
of degree k. We denote by F = Mk = Nl the total number of edges. A valid coloured
graph must have E = wl red edges. It can be constructed as follows. First, choose w
variable nodes, which can be done in

(
N
w

)
ways. Assign l red sockets to each node in this

set, and l blue sockets to each node outside the set. Then, for each of the M function
nodes, colour an even subset of its sockets red in such a way that the total number
of red sockets is E = wl. Let mr be the number of function nodes with r red sockets.
The numbers mr can be non-zero only when r is even, and they are constrained by∑k

r=0 mr = M and
∑k

r=0 rmr = lw. The number of ways one can colour the sockets
of the function nodes is thus

C(k,M,w) =
∑

m0,...,mk

(e)
(

M

m0, . . . , mk

) ∏
r

(
k

r

)mr

× I

( k∑
r=0

mr = M
)

I

( k∑
r=0

rmr = lw
)

,

(11.5)

where the sum
∑(e)

means that non-zero mr’s appear only for r even. Finally, we
join the variable-node and check node sockets in such a way that colours are matched.
There are (lw)!(F − lw)! such matchings out of the total number F ! corresponding
to different elements in the ensemble. Putting everything together, we get the final
formula,

N (w) =
(lw)!(F − lw)!

F !

(
N

w

)
C(k,M,w) . (11.6)
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In order to compute the function φ(ω) in eqn (11.4), we need to work out the
asymptotic behaviour of this formula when N → ∞ at fixed ω = w/N . Assuming that
mr = xrM = xrNl/k, we can expand the multinomial factors using Stirling’s formula.
This gives

φ(ω) = max
{xr}

∗

[
(1 − l)H(ω) +

l

k

∑
r

(
−xr log xr + xr log

(
k

r

))]
, (11.7)

where the max∗ is taken over all choices of x0, x2, x4, . . . in [0, 1], subject to the two
constraints

∑
r xr = 1 and

∑
r rxr = kω. The maximization can be done by imposing

these constraints via two Lagrange multipliers. We obtain xr = Czr
(
k
r

)
I(r even), where

C and z are two constants fixed by the equations

C =
2

(1 + z)k + (1 − z)k
, (11.8)

ω = z
(1 + z)k−1 − (1 − z)k−1

(1 + z)k + (1 − z)k
. (11.9)

Substituting the resulting xr back into the equation (11.7) for φ, this gives, finally,

φ(ω) = (1 − l)H(ω) +
l

k
log

(1 + z)k + (1 − z)k

2
− ωl log z , (11.10)

where z is the function of ω defined in eqn (11.9).
We shall see in the next sections how to use this result, but let us first explain how

it can be generalized.

11.2.2 Weight enumerator: General case

We want to compute the leading exponential behaviour N (w)
.
= exp[Nφ(ω)] of the

expected weight enumerator for a general LDPCN (Λ, P ) code. The idea of the ap-
proach is the same as the one we have just used for the case of regular ensembles,
but the computation becomes heavier. It is therefore useful to adopt a more powerful
formalism. Altogether, this subsection is more technical than the others: the reader
who is not interested in the details can skip it and go to the results.

We want to build a valid coloured graph; let us denote its number of red edges
(which is no longer fixed by w) by E. There are coeff[

∏
l(1 + xyl)NΛl , xwyE ] ways

of choosing the w variable nodes in such a way that their degrees add up to E.1

As before, for each of the M function nodes, we colour an even subset of its sockets
red in such a way that the total number of red sockets is E. This can be done in
coeff[

∏
k qk(z)MPk , zE ] ways, where qk(z) ≡ 1

2 (1+z)k+ 1
2 (1−z)k. The numbers of ways

one can match the red sockets in the variable and function nodes is still E!(F − E)!,
where F = NΛ′(1) = MP ′(1) is the total number of edges in the graph. This gives
the result

1We denote the coefficient of xn in the formal power series f(x) by coeff[f(x), xn].
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Fig. 11.2 Modulus of the function z−3ξq4(z)3/4 for ξ = 1/3.

N (w) =

F∑
E=0

E!(F − E)!

F !

× coeff

[
lmax∏
l=1

(1 + xyl)NΛl , xwyE

]
coeff

[
kmax∏
k=2

qk(z)MPk , zE

]
. (11.11)

In order to estimate the leading exponential behaviour of N (w) at large N , when
w = Nω, we set E = Fξ = NΛ′(1)ξ. The asymptotic behaviour of the coeff[. . . , . . . ]
terms can be estimated using the saddle point method. Here, we sketch the idea for
the second of these terms. By the Cauchy theorem,

coeff

[
kmax∏
k=2

qk(z)MPk , zE

]
=

∮
1

zNΛ′(1)ξ+1

kmax∏
k=2

qk(z)MPk
dz

2πi
≡
∮

f(z)N

z

dz

2πi
,

(11.12)

where the integral runs over any path encircling the origin of the complex z plane in
the anticlockwise direction, and

f(z) ≡ 1

zΛ′(1)ξ

kmax∏
k=2

qk(z)Λ
′(1)Pk/P ′(1) . (11.13)

In Fig. 11.2, we plot the modulus of the function f(z) for degree distributions Λ(x) =
x3, P (x) = x4, and ξ = 1/3. The function has two saddle points of ±z∗, where
z∗ = z∗(ξ) ∈ R+ solves the equation f ′(z∗) = 0, namely

ξ =

kmax∑
k=2

ρk z∗
(1 + z∗)

k−1 − (1 − z∗)
k−1

(1 + z∗)k + (1 − z∗)k
. (11.14)
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Here we have used the notation ρk ≡ kPk/P ′(1) introduced in Section 9.5 (analo-
gously, we shall write λl ≡ lΛl/Λ′(1)). This equation generalizes (11.9). If we take the
integration contour in eqn (11.12) to be the circle of radius z∗ centred at z = 0, the
integral is dominated by the saddle point at z∗ (together with the symmetric point
−z∗). We therefore get

coeff

[
kmax∏
k=2

qk(z)MPk , zE

]
.
= exp

{
N

[
−Λ′(1)ξ log z∗ +

Λ′(1)

P ′(1)

kmax∑
k=2

Pk log qk(z∗)

]}
.

Proceeding analogously with the second coeff[. . . , . . . ] term in eqn (11.11), we get
N (w = Nω)

.
= exp{Nφ(ω)}. The function φ is given by

φ(ω) = sup
ξ

inf
x,y,z

{
−Λ′(1)H(ξ) − ω log x − Λ′(1)ξ log(yz)

+

lmax∑
l=2

Λl log(1 + xyl) +
Λ′(1)

P ′(1)

kmax∑
k=2

Pk log qk(z)

}
, (11.15)

where the minimization over x, y, z is understood to be taken over the positive real
axis while ξ ∈ [0, 1]. The stationarity condition with respect to variations of z is given
by eqn (11.14). Stationarity with respect to ξ, x, y yields

ξ =
yz

1 + yz
, ω =

lmax∑
l=1

Λl
xyl

1 + xyl
, ξ =

lmax∑
l=1

λl
xyl

1 + xyl
, (11.16)

respectively. If we use the first of these equations to eliminate ξ, we obtain the final
parametric representation (in the parameter x ∈ [0,∞[) of φ(ω)

φ(ω) = −ω log x − Λ′(1) log(1 + yz) +

lmax∑
l=1

Λl log(1 + xyl) (11.17)

+
Λ′(1)

P ′(1)

kmax∑
k=2

Pk log qk(z) ,

ω =

lmax∑
l=1

Λl
xyl

1 + xyl
. (11.18)

The two functions y = y(x) and z = z(x) are solutions of the coupled equations

y =

∑kmax

k=2 ρk p−k (z)∑kmax

k=2 ρk p+
k (z)

, z =

∑lmax

l=1 λlxyl−1/(1 + xyl)∑lmax

l=1 λl/(1 + xyl)
, (11.19)

where we have defined p±k (z) ≡ [(1 + z)k−1 ± (1 − z)k−1]/[(1 + z)k + (1 − z)k].
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Exercise 11.3 The numerical solution of eqns (11.18) and (11.19) can be somewhat tricky.
Here is a simple iterative procedure which usually works reasonably well. Readers are invited
to try it with their favourite degree distributions Λ, P .

First, solve eqn (11.18) for x at given y ∈ [0,∞[ and ω ∈ [0, 1], using a bisection
method. Next, substitute this value of x into eqn (11.19), and write the resulting equations
as y = f(z) and z = g(y, ω). Define Fω(y) ≡ f(g(y, ω)). Solve the equation y = Fω(y)
by iteration of the map yn+1 = Fω(yn) Once the fixed point y∗ has been found, the other
parameters are computed as follows z∗ = g(y∗, ω), and x∗ is the solution of eqn (11.18) for
y = y∗. Finally, x∗, y∗, z∗ are substituted into eqn (11.17) to obtain φ(ω).

Examples of functions φ(ω) are shown in Figs 11.3–11.5. We shall now discuss these
results, paying special attention to the region of small ω.

11.2.3 Short-distance properties

In the low-noise limit, the performance of a code depends a lot on the existence of code-
words at a short distance from the transmitted one. For linear codes and symmetric
communication channels, we can assume without loss of generality that the all-zeros
codeword has been transmitted. Here, we shall work out the short-distance (i.e. for a
mall weight ω) behaviour of φ(ω) for several LDPC ensembles. These properties will
be used to characterize the performance of the code in Section 11.3.

As ω → 0, solving eqns (11.18) and (11.19) yields y, z → 0. By Taylor expansion
of these equations, we get

y � ρ′(1)z , z � λlminxylmin−1 , ω � Λlminxylmin , (11.20)

where we have neglected higher-order terms in y, z. At this point we must distinguish
whether lmin = 1, lmin = 2, or lmin ≥ 3.

We start with the case lmin = 1. In this case x, y, z all scale like
√

ω, and a short
computation shows that

φ(ω) = −1

2
ω log

(
ω

Λ2
1

)
+ O(ω) . (11.21)

In particular, φ(ω) is strictly positive for ω sufficiently small. The expected number of
codewords within a small relative Hamming distance w = Nω from a given codeword
is exponential in N . Furthermore, eqn (11.21) is reminiscent of the behaviour in the
absence of any parity check, where one gets φ(ω) = H(ω) � −ω log ω.

Exercise 11.4 In order to check eqn (11.21), compute the weight enumerator for the
regular ensemble LDPCN (l = 1, k). Note that, in this case, the weight enumerator
does not depend on the realization of the code, and admits the simple representation
N (w) = coeff[qk(z)N/k, zw].

An example of a weight enumerator for an irregular code with lmin = 1 is shown
in Fig. 11.3. The behaviour (11.21) is quite bad for an error-correcting code. In order
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Fig. 11.3 Logarithm of the expected weight enumerator, φ(ω), plotted versus the reduced

weight ω = w/N for the ensemble LDPCN ( 1
4
x + 1

4
x2 + 1

2
x3, x6). Inset : small-weight region.

φ(ω) is positive near to the origin, and in fact its derivative diverges as ω → 0: each codeword

is surrounded by a large number of very close other codewords. This makes it a bad error

correcting code.

to understand why, let us for a moment forget that this result was obtained by taking
ω → 0 after N → ∞, and apply it in the regime N → ∞ at w = Nω fixed. We get

N (w) ∼
(

N

w

)w/2

. (11.22)

It turns out that this result holds not only on average but for most codes in the
ensemble. In other words, even at a Hamming distance of 2 from any given codeword,
there are Θ(N) other codewords. It is intuitively clear that discriminating between
two codewords at Hamming distance Θ(1), given a noisy observation, is in most cases
impossible. Because of these remarks, one usually discards lmin = 1 ensembles in error
correction.

Consider now the case lmin = 2. From eqn (11.20), we get

φ(ω) � Aω , A ≡ log

[
P ′′(1)

P ′(1)

2Λ2

Λ′(1)

]
= log [λ′(0)ρ′(1)] . (11.23)

As will be apparent in Chapter 15, the combination λ′(0)ρ′(1) has an important con-
crete interpretation.

The code ensemble has significantly different properties depending on the sign of
A. If A > 0, the expected number of codewords within a small (but of order Θ(N))
Hamming distance from any given codeword is exponential in the block length. The
situation seems similar to the lmin = 1 case. Note, however, that φ(ω) goes much more
quickly to 0 as ω → 0 in the present case. Assuming again that eqn (11.23) holds
beyond the asymptotic regime in which it was derived, we get

N (w) ∼ eAw . (11.24)
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Fig. 11.4 Logarithm of the expected weight enumerator for the ensemble LDPCN (2, 4). The

degree profiles are Λ(x) = x2, meaning that all variable nodes have degree 2, and P (x) = x4,

meaning that all function nodes have degree 4. Inset : small-weight region. The constant A is

positive, so there exist codewords at short distances.

In other words, the number of codewords around any particular codeword is o(N) until
we reach a Hamming distance d∗ � log N/A. For many purposes d∗ plays the role of
an ‘effective’ minimum distance. The example of the regular code LDPCN (2, 4), for
which A = log 3, is shown in Fig. 11.4.

If, on the other hand A < 0, then φ(ω) < 0 in some interval ω ∈]0, ω∗[. The first-
moment method then shows that there are no codewords of weight ‘close to’ Nω for
any ω in this range.

A similar conclusion is reached if lmin ≥ 3, where one finds

φ(ω) �
(

lmin − 2

2

)
ω log

(
ω

Λlmin

)
. (11.25)

An example of a weight enumerator exponent for a code with good short-distance
properties, the code LDPCN (3, 6), is given in Fig. 11.5.

This discussion can be summarized as follows.

Proposition 11.1 Consider a random linear code from the ensemble LDPCN (Λ, P )
with lmin ≥ 3. Let ω∗ ∈]0, 1/2[ be the first non-trivial zero of φ(ω), and consider
any interval [ω1, ω2] ⊂]0, ω∗[. With high probability, there does not exist any pair of
codewords with a distance belonging to this interval. The same result holds when lmin =
2 and λ′(0)ρ′(1) = (P ′′(1)/P ′(1))(2Λ2/Λ′(1)) < 1.

Note that our study deals only with weights w = ωN which grow linearly with
N . The proposition excludes the existence of codewords of arbitrarily small ω, but it
does not tell us anything about possible codewords of sublinear weight, i.e. w = o(N)
(for instance, with w finite as N → ∞). It turns out that if lmin ≥ 3, the code has
with high probability no such codewords, and its minimum distance is at least Nω∗.
If, on the other hand, lmin = 2, the code typically has some codewords of finite weight
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Fig. 11.5 Logarithm of the expected weight enumerator for the ensemble LDPCN (3, 6).

Inset : small-weight region; φ(ω) < 0 for ω < ω∗ ≈ 0.02. There are no codewords except for

the ‘all-zeros’ one in the region ω < ω∗.

w. However (if A < 0), they can be eliminated without changing the code rate by an
‘expurgation’ procedure similar to that described in Section 6.5.1.

11.2.4 Rate

The weight enumerator can also be used to obtain a precise characterization of the
rate of an LDPCN (Λ, P ) code. For ω = 1/2, x = y = z = 1 satisfy eqns (11.18) and
(11.19). This gives

φ

(
ω =

1

2

)
=

(
1 − Λ′(1)

P ′(1)

)
log 2 = Rdes log 2 . (11.26)

It turns out that, in most cases of practical interest, the curve φ(ω) has its maximum
at ω = 1/2 (see for instance Figs 11.3–11.5). In such cases the result (11.26) shows
that the rate equals the design rate.

Proposition 11.2 Let R be the rate of a code from the ensemble LDPCN (Λ, P ), let
Rdes = 1 − Λ′(1)/P ′(1) be the associated design rate, and let φ(ω) be the function
defined in eqns (11.17)–(11.19). Assume that φ(ω) achieves its absolute maximum
over the interval [0, 1] at ω = 1/2. Then, for any δ > 0, there exists a positive N -
independent constant C1(δ) such that

P{|R − Rdes| ≥ δ} ≤ C1(δ) 2−Nδ/2 . (11.27)

Proof Since we have already established that R ≥ Rdes, we only need to prove an
upper bound on R. The rate is defined as R ≡ (log2 N )/N , where N is the total
number of codewords. Markov’s inequality gives:

P{R ≥ Rdes + δ} = P{N ≥ 2N(Rdes+δ)} ≤ 2−N(Rdes+δ) EN . (11.28)
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The expectation of the number of codewords is EN (w)
.
= exp{Nφ(w/N)}, and there

are only N + 1 possible values of the weight w; therefore,

EN .
= exp{N sup

ω∈[0,1]

φ(ω)} . (11.29)

As sup φ(ω) = φ(1/2) = Rdes log 2 by hypothesis, there exists a constant C1(δ) such
that EN ≤ C1(δ)2

N(Rdes+δ/2) for any N . Plugging this into eqn (11.28), we get

P{R ≥ Rdes + δ} ≤ C1(δ) 2−Nδ/2 . (11.30)

�

11.3 LDPC codes for the binary symmetric channel

Our study of the weight enumerator has shown that codes from the ensemble LDPCN (Λ, P )
with lmin ≥ 3 have a good short-distance behaviour. The absence of codewords within
an extensive distance Nω∗ from the transmitted codeword guarantees that any error
(even one introduced by an adversarial channel) that changes a fraction of the bits
smaller than ω∗/2 can be corrected. Here we want to study the performance of these
codes in correcting typical errors introduced by a given (probabilistic) channel. We
shall focus on the binary symmetric channel denoted by BSC(p), which flips each bit
independently with probability p < 1/2. Supposing as usual that the all-zero codeword
x(0) = 0 has been transmitted, let us denote the received message by y = (y1 . . . yN ).
Its components are i.i.d. random variables taking the value 0 with probability 1 − p,
and the value 1 with probability p. The decoding strategy which minimizes the block
error rate is word MAP (or maximum-likelihood) decoding, which outputs the code-
word closest to the channel output y. As already mentioned, we shall not bother about
the practical implementation of this strategy and its computational complexity.

The block error probability for a code C, denoted by PB(C), is the probability that
there exists a ‘wrong’ codeword, distinct from 0, whose distance from y is smaller than
d(0, y). Its expectation value over the code ensemble, PB = E PB(C), is an important
indicator of the performance of the ensemble. We shall show that in the large-N
limit, codes with lmin ≥ 3 undergo a phase transition, separating a low-noise phase,
where p < pMAP, in which limN→∞ PB is zero, from a high-noise phase, where p >
pMAP, in which the limit is not zero. Although the computation of pMAP is deferred
to Chapter 15, we derive rigorous bounds here which imply that appropriate LDPC
codes have very good performance, close to Shannon’s information-theoretic limit,
under MAP decoding.

11.3.1 Lower bound on the threshold

We start by deriving a general bound on the block error probability PB(C) for BSC(p),
valid for any linear code. Let N = 2NR be the size of the codebook C. By the union
bound,

PB(C) = P

{
∃α = 0 such that d(x(α), y) ≤ d(0, y)

}
≤

N−1∑
α=1

P

{
d(x(α), y) ≤ d(0, y)

}
. (11.31)
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As the components of y are i.i.d. Bernoulli variables, the probability P{d(x(α), y) ≤
d(0, y)} depends on the vector x(α) only through its weight w. Let x(w) be the vector
formed by w ones followed by N−w zeros, and denote by N (w) the weight enumerator
of the code C. Then

PB(C) ≤
N∑

w=1

N (w) P
{
d(x(w), y) ≤ d(0, y)

}
. (11.32)

The probability P
{
d(x(w), y) ≤ d(0, y)

}
can be written as

∑
u

(
w
u

)
pu(1− p)w−u I(u ≥

w/2), where u is the number of sites i ∈ {1, . . . , w} such that yi = 1. A good bound is
provided by a standard method known as the Chernoff bound.

Exercise 11.5 Let X be a random variable. Show that, for any a and any λ > 0,

P(X ≥ a) ≤ e−λa
E

“
eλX

”
. (11.33)

In our case this gives

P
{
d(x(w), y) ≤ d(0, y)

}
≤ Eeλ[d(0,y)−d(x(w),y)] = [(1 − p) e−λ + p eλ]w .

The bound is optimized for λ = 1
2 log

(
(1 − p)/p

)
> 0, and gives

PB(C) ≤
N∑

w=1

N (w) e−γw , (11.34)

where γ ≡ − log
√

4p(1 − p) ≥ 0. The quantity
√

4p(1 − p) is sometimes referred to
as the Bhattacharya parameter of the channel BSC(p).

Exercise 11.6 Consider the case of a general binary memoryless symmetric channel with
a transition probability Q(y|x), x ∈ {0, 1}, y ∈ Y ⊆ R. First, show that eqn (11.31) remains
valid if the Hamming distance d(x, y) is replaced by the log-likelihood

dQ(x|y) = −
NX

i=1

log Q(yi|xi) . (11.35)

[Hint: Remember the general expressions (6.5) for the probability µy(x) = P(x|y) that

the transmitted codeword was x, given that the received message is y.] Then repeat the

derivation from eqn (11.31) to eqn (11.34). The final expression involves γ = − log BQ,

where the Bhattacharya parameter is defined as BQ =
P

y

p
Q(y|1)Q(y|0).
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Fig. 11.6 Geometric construction yielding a lower bound on the threshold for reliable com-

munication for the ensemble LDPCN (3, 6) used over the binary symmetric channel. In this

case pLB ≈ 0.0438737, shown by the line labelled ‘p = pLB’. The other two lines refer to

p = 0.01 < pLB and p = 0.10 > pLB.

Equation (11.34) shows that the block error probability depends on two factors:
the first is the weight enumerator, and the second, exp(−γw), is a channel-dependent
term: as the weight of the codewords increases, their contribution is scaled down by
an exponential factor because it is less likely that the received message y will be closer
to a codeword of large weight than to the all-zero codeword.

So far, the discussion has been valid for any given code. Let us now consider the
average over LDPCN (Λ, P ) code ensembles. A direct averaging gives the bound

PB ≡ ECPB(C) ≤
N∑

w=1

N (w) e−γw .
= exp

{
N sup

ω∈]0,1]

[φ(ω) − γω]

}
. (11.36)

As such, this expression is useless, because the supω[φ(ω)− γω], being greater than or
equal to the value at ω = 0, is always positive. However, if we restrict to ensembles
with lmin ≥ 3, we know that, with a probability going to one in the large-N limit,
there exists no codeword in the ω interval ]0, ω∗[. In such cases, the maximization
over ω in eqn (11.36) can be performed in the interval [ω∗, 1] instead of ]0, 1]. (By

the Markov inequality, this is true whenever N
∑Nω∗−1

w=1 N (w) → 0 as N → ∞.) The
bound becomes useful whenever the supremum supω∈[ω∗,1][φ(ω) − γω] is less than 0:
then PB vanishes in the large-N limit. We have thus obtained the following result.

Proposition 11.3 Consider the average block error rate PB for a random code in the
ensemble LDPCN (Λ, P ), with lmin ≥ 3, used over a channel BSC(p), with p < 1/2.
Let γ ≡ − log

√
4p(1 − p), and let φ(ω) be the the weight enumerator exponent defined

in eqn (11.4) (φ(ω) can be computed using eqns (11.17)–(11.19)). If φ(ω) < γω for
any ω ∈ (0, 1] such that φ(ω) ≥ 0, then PB → 0 in the large-block-length limit.
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This result has a pleasing geometric interpretation which is illustrated in Fig. 11.6.
As p increases from 0 to 1/2, γ decreases from +∞ to 0. The condition φ(ω) < γω
can be rephrased by saying that the weight enumerator exponent φ(ω) must lie below
a straight line of slope γ through the origin. We denote by pLB the smallest value of
p such that the line γω touches φ(ω).

This geometric construction implies pLB > 0. Furthermore, for p large enough
Shannon’s theorem implies that PB is bounded away from 0 for any non-vanishing rate
R > 0. The MAP threshold pMAP for the ensemble LDPCN (Λ, P ) can be defined as
the largest (or, more precisely, the supremum) value of p such that limN→∞ PB = 0.
This definition has a very concrete practical meaning: for any p < pMAP one can
communicate with an arbitrarily small error probability by using a code from the
LDPCN (Λ, P ) ensemble, provided N is large enough. Proposition 11.3 then implies
that

pMAP ≥ pLB . (11.37)

In general, one expects limN→∞ PB to exist (and to be strictly positive) for p > pMAP.
However, there exists no proof of this statement.

It is interesting to note that, at p = pLB, our upper bound on PB is dominated by
codewords of weight w ≈ Nω̃, where ω̃ > 0 is the value where φ(ω)− γω is maximum.
This suggests that each time an error occurs, a finite fraction of the bits are decoded
incorrectly and this fraction fluctuates little from transmission to transmission (or
from code to code in the ensemble). The geometric construction also suggests the less
obvious (but essentially correct) guess that this fraction jumps discontinuously from
0 to a finite value when p crosses the critical value pMAP. Finally, ω̃ > ω∗ strictly:
dominant error events are not triggered by the closest codewords!

Exercise 11.7 Let us study the case lmin = 2. Proposition 11.3 is no longer valid, but we
can still apply eqn (11.36).

(a) Consider the ensemble (2, 4) whose weight enumerator exponent is plotted in Fig. 11.4,
the small-weight behaviour being given by eqn (11.24). At small enough p, it is rea-
sonable to assume that the block error rate is dominated by small weight codewords.
Estimate PB using eqn (11.36) under this assumption.

(b) Show that the above assumption breaks down for p ≥ ploc, where ploc ≤ 1/2 solves the

equation 3
p

4p(1 − p) = 1.

(c) Discuss the case of a general code ensemble with lmin = 2, and φ(ω) concave for
ω ∈ [0, 1]. Draw a weight enumerator exponent φ(ω) such that the assumption of
dominance by low-weight codewords breaks down before ploc. What do you expect for
the average bit error rate Pb for p < ploc? And for p > ploc?

Exercise 11.8 Discuss the qualitative behaviour of the block error rate for cases where
lmin = 1.
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11.3.2 Upper bound on the threshold

Let us consider as before communication over BSC(p), keeping for simplicity to regular
codes LDPCN (l, k). Gallager has proved the following bound.

Theorem 11.4 Let pMAP be the threshold for reliable communication over a binary
symmetric channel using codes from the ensemble LDPCN (l, k), with design rate Rdes =
1 − k/l. Then pMAP ≤ pUB, where pUB ≤ 1/2 is the solution of

H(p) = (1 − Rdes)H
(

1 − (1 − 2p)k

2

)
. (11.38)

We shall not give a full proof of this result, but we shall show in this section a sequence
of heuristic arguments which can be turned into a proof. The details can be found in
the original literature.

Assume that the all-zero codeword 0 has been transmitted and that a noisy vector
y has been received. The receiver will look for a vector x at a Hamming distance
of about Np from y, satisfying all the parity check equations. In other words, let us

denote the syndrome by z = Hx, z ∈ {0, 1}M (here H is the parity check matrix and
multiplication is performed modulo 2). This is a vector with M components. If x is
a codeword, all parity checks are satisfied, and we have z = 0. There is at least one
vector x fulfilling the conditions d(x, y) ≈ Np and z = 0: the transmitted codeword 0.
Decoding is successful only if this is the unique such vector.

The number of vectors x whose Hamming distance from y is close to Np is ap-

proximatively 2NH(p). Let us now estimate the number of distinct syndromes z = Hx
when x is on the sphere d(x, y) ≈ Np. Writing x = y ⊕ x′, this is equivalent to count-
ing the number of distinct vectors z′ = Hx′ when the weight of x′ is about Np. It is
convenient to think of x′ as a vector of N i.i.d. Bernoulli variables of mean p: we are
then interested in the number of distinct typical vectors z′. Note that, since the code
is regular, each entry z′i is a Bernoulli variable of parameter

pk =
k∑

n odd

(
k

n

)
pn(1 − p)k−n =

1 − (1 − 2p)k

2
. (11.39)

If the bits of z′ were independent, the number of typical vectors z′ would be 2N(1−Rdes)H(pk)

(the dimension of z′ being M = N(1 − Rdes)). It turns out that correlations between
the bits decrease this number, so we can use the i.i.d. estimate to get an upper bound.

Let us now assume that for each z in this set, the number of reciprocal images (i.e. of
vectors x such that z = Hx) is approximatively the same. If 2NH(p) � 2N(1−Rdes)H(pk),
for each z there is an exponential number of vectors x such that z = Hx. This will be
true, in particular, for z = 0: the received message is therefore not uniquely decodable.
In the alternative situation most of the vectors z correspond to (at most) a single x.
This will be the case for z = 0: decoding can be successful.

11.3.3 Summary of the bounds

In Table 11.1 we consider a few regular LDPCN (Λ, P ) ensembles over the channel
BSC(p). We show the window of possible values of the noise threshold pMAP, using
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Table 11.1 Bounds on the threshold for reliable communication over BSC(p) using

LDPCN (l, k) ensembles with MAP decoding. The fourth and fifth columns list the lower

bound (LB) of Proposition 11.3 and the upper bound (UB) of Theorem 11.4. The sixth

column lists an improved lower bound obtained by Gallager.

l k Rdes LB of Section 11.3.1 Gallager UB Gallager LB Shannon limit
3 4 1/4 0.1333161 0.2109164 0.2050273 0.2145018
3 5 2/5 0.0704762 0.1397479 0.1298318 0.1461024
3 6 1/2 0.0438737 0.1024544 0.0914755 0.1100279
4 6 1/3 0.1642459 0.1726268 0.1709876 0.1739524
5 10 1/2 0.0448857 0.1091612 0.1081884 0.1100279

the lower bound of Proposition 11.3 and the upper bound of Theorem 11.4. In most
cases, the comparison is not satisfactory (the gap between the upper and lower bounds
is close to a factor of 2). A much smaller uncertainty is achieved using an improved
lower bound again derived by Gallager, based on a refinement of the arguments in the
previous section. As we shall see in Chapter 15 by computing pMAP, neither of the
bounds is tight. On the other hand, they are sufficiently good to show that, for large k, l
the MAP threshold of these ensembles is close to Shannon, capacity (although bounded
away from it). Indeed, by studying the asymptotic behaviour of these bounds, one can
show that the MAP threshold of the (k, l) ensemble converges to pSh as k, l → ∞ with
a fixed ratio l/k.

Exercise 11.9 Let pSh be the upper bound on pMAP provided by the Shannon channel
coding theorem. Explicitly, pSh ≤ 1/2 is the solution of H(p) = 1−R. Prove that if R = Rdes

(as is the case with high probability for LDPCN (l, k) ensembles), then pUB < pSh.

11.4 A simple decoder: Bit flipping

So far, we have analysed the behaviour of LDPC ensembles under the optimal (word
MAP) decoding strategy. However, there is no known way of implementing this decoder
with an efficient algorithm. The naive algorithm goes through each codeword x(α), α =
0, . . . , 2NR − 1, and outputs the codeword of greatest likelihood Q(y|x(α)). However,
this approach takes a time which grows exponentially with the block length N . For
large N (which is the regime where the error rate becomes close to optimal), this is
unpractical.

LDPC codes are interesting because there exist fast suboptimal decoding algo-
rithms with performances close to the theoretical optimal performance, and therefore
close to Shannon’s limit. Here we show one example of a very simple decoding method,
called the bit flipping algorithm. After transmission through a BSC, we have received
the message y, and we try to find the sent codeword x by use of the following algorithm.
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Fig. 11.7 Performance of the bit-flipping decoding algorithm on random codes from the
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Bit-flipping decoder (received message y)

1: Set x(0) = y.
2: for t = 1, . . . , N :
3: find a bit belonging to more unsatisfied than satisfied parity checks;
4: if such a bit exists, flip it: xi(t + 1) = xi(t) ⊕ 1,

and keep the other bits: xj(t + 1) = xj(t) for all j = i;
5: if there is no such bit, return x(t) and halt.

The bit to be flipped is usually chosen uniformly at random from the bits satisfying
the condition at step 3. However, this is irrelevant in the analysis below.

Exercise 11.10 Consider a code from the (l, k) regular LDPC ensemble (with l ≥ 3).
Assume that the received message differs from the transmitted message in only one position.
Show that the bit-flipping algorithm always corrects such an error.

Exercise 11.11 Assume now that the channel has introduced two errors. Draw the factor
graph of a regular (l, k) code for which the bit-flipping algorithm is unable to recover from
such an error event. What can you say of the probability of this type of graph in the
ensemble?

In order to monitor the bit-flipping algorithm, it is useful to introduce the ‘energy.’

E(t) ≡ Number of parity check equations not satisfied by x(t) . (11.40)
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This is a non-negative integer, and if E(t) = 0, the algorithm is halted and its output
is x(t). Furthermore, E(t) cannot be larger than the number of parity checks M , and
it decreases (by at least one) at each cycle. Therefore, the complexity of the algorithm
is O(N) (this is a commonly regarded as the ultimate goal for many communication
problems).

It remains to be seen if the output of the bit-flipping algorithm is related to the
transmitted codeword. In Fig. 11.7, we present the results of a numerical experiment.
We considered the (5, 10) regular ensemble and generated about 1000 random code
and channel realizations for each value of the noise in a mesh. Then we applied the
above algorithm and plotted the fraction of successfully decoded blocks, as well as the
residual energy E∗ = E(t∗), where t∗ is the total number of iterations of the algorithm.
The data suggests that bit-flipping is able to overcome a finite noise level: it recovers
the original message with high probability when fewer than about 2.5% of the bits are
corrupted by the channel. Furthermore, the curves for Pbf

B under bit-flipping decoding
become steeper and steeper as the size of the system is increased. It is natural to
conjecture that asymptotically, a phase transition takes place at a well-defined noise
level pbf : Pbf

B → 0 for p < pbf and Pbf
B → 1 for p > pbf . Numerically, pbf = 0.025±0.005.

This threshold can be compared with that for MAP decoding. The results in Ta-
ble 11.1 imply 0.108188 ≤ pMAP ≤ 0.109161 for the (5, 10) ensemble. Bit-flipping is
significantly suboptimal, but is still surprisingly good, given the extreme simplicity of
the algorithm.

Can we provide any guarantee on the performance of the bit-flipping decoder? One
possible approach consists in using the expansion properties of the underlying factor
graph. Consider a graph from the (l, k) ensemble. We say that it is an (ε, δ) expander
if, for any set U of variable nodes such that |U | ≤ Nε, the set |D| of neighbouring
check nodes has a size |D| ≥ δ|U |. Roughly speaking, if the factor graph is an expander
with a large expansion constant δ, any small set of corrupted bits induces a large
number of unsatisfied parity checks. The bit-flipping algorithm can exploit these checks
to successfully correct the errors.

It turns out that random graphs are very good expanders. This can be understood
as follows. Consider a fixed subset U . As long as U is small, the subgraph induced by
U and the neighbouring factor nodes D is a tree with high probability. If this is the
case, elementary counting shows that |D| = (l−1)|U |+1. This would suggest that one
can achieve an expansion factor of l− 1 (or close to it), for small enough ε. Of course,
this argument has several flaws. First of all, the subgraph induced by U is a tree only
if U has a sublinear size, but we are interested in all subsets U with |U | ≤ εN for
some fixed N . Then, while most of the small subsets U are trees, we need to be sure
that all subsets expand well. Nevertheless, one can prove that the heuristic expansion
factor is essentially correct.

Proposition 11.5 Consider a random factor graph F from the (l, k) ensemble. Then,
for any δ < l − 1, there exists a constant ε = ε(δ; l, k) > 0 such that F is an (ε, δ)
expander with probability approaching 1 as N → ∞.

In particular, this implies that, for l ≥ 5, a random (l, k) regular factor graph is,
with high probability an (ε, 3

4 l) expander. In fact, this is enough to ensure that the
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code will perform well at a low noise level.

Theorem 11.6 Consider a regular (l, k) LDPC code C, and assume that the corre-
sponding factor graph is an (ε, 3

4 l) expander. Then, the bit-flipping algorithm is able to
correct any pattern of fewer than Nε/2 errors produced by a binary symmetric channel.
In particular, PB(C) → 0 for communication over BSC(p) with p < ε/2.

Proof As usual, we assume the channel input to be the all-zeros codeword 0. We
denote by w = w(t) the weight of x(t) (the current configuration of the bit-flipping
algorithm), and by E = E(t) the number of unsatisfied parity checks, as in eqn (11.40).
Finally, we denote by F the number of satisfied parity checks among those which are
neighbours of at least one corrupted bit in x(t) (a bit is ‘corrupted’ if it takes the value
1).

Assume, first, that 0 < w(t) ≤ Nε at some time t. Because of the expansion
property of the factor graph, we have E + F > 3

4 lw. On the other hand, every un-
satisfied parity check is a neighbour of at least one corrupted bit, and every satisfied
check which is a neighbour of a corrupted bit must involve at least two of them.
Therefore E + 2F ≤ lw. Eliminating F from the above inequalities, we deduce that
E(t) > 1

2 lw(t). Let Ei(t) be the number of unsatisfied checks involving the bit xi.
Then, ∑

i:xi(t)=1

Ei(t) ≥ E(t) >
1

2
lw(t) . (11.41)

Therefore, there must be at least one bit that has more unsatisfied than satisfied
neighbours, and the algorithm does not halt.

Let us now suppose that we start the algorithm with w(0) ≤ Nε/2. It must halt
at some time t∗, either with E(t∗) = w(t∗) = 0 (and therefore decoding is successful)
or with w(t∗) ≥ Nε. In the second case, as the weight of x(t) changes by one at
each step, we have w(t∗) = Nε. The above inequalities imply E(t∗) > Nlε/2 and
E(0) ≤ lw(0) ≤ Nlε/2. This contradicts the fact that E(t) is a strictly decreasing
function of t. Therefore the algorithm, when started with w(0) ≤ Nε/2, ends up in
the state w = 0, E = 0. �

The approach based on expansion of the graph has the virtue of pointing out one
important mechanism for the good performance of random LDPC codes, namely the
local tree-like structure of the factor graph. It also provides explicit lower bounds on
the critical noise level pbf for bit-flipping. However, these bounds turn out to be quite
pessimistic. For instance, in the case of the (5, 10) ensemble, it has been proved that
a typical factor graph is an (ε, 3

4 l) = (ε, 15
4 ) expander for ε < ε∗ ≈ 10−12. On the

other hand, numerical simulations (see Fig. 11.7) show that the bit-flipping algorithm
performs well up to noise levels much larger than ε∗/2.

Notes

Modern (post-Cook’s Theorem) complexity theory was first applied to coding by
Berlekamp et al. (1978), who showed that maximum-likelihood decoding of linear
codes is NP-hard.
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LDPC codes were first introduced by Gallager in his PhD thesis (Gallager, 1963;
Gallager, 1962), which is in fact older than these complexity results. An excellent,
detailed account of modern developments is provided by Richardson and Urbanke
(2008).

Gallager’s proposal did not receive enough consideration at the time. One possible
explanation is the lack of computational power for simulating large codes in the 1960s.
The rediscovery of LDPC codes in the 1990s (MacKay, 1999) was (at least in part) a
consequence of the invention of turbo codes by Berrou and Glavieux (1996). Both of
these classes of codes were soon recognized to be prototypes of a larger family: codes
on sparse graphs.

The major technical advance after this rediscovery was the introduction of irreg-
ular ensembles (Luby et al. 1997; Luby et al. 1998). There exists no formal proof of
the ‘equivalence’ (whatever this means) of the various possible definitions of LDPC
ensembles in the large-block-length limit. But, as we shall see in Chapter 15, the main
property that enters in the analysis of LDPC ensembles is the local tree-like structure
of the factor graph described in Section 9.5.1; and this property is rather robust with
respect to a change of the ensemble.

Gallager (1963) was the first to compute the expected weight enumerator for regular
ensembles, and to use it in order to bound the threshold for reliable communication.
General ensembles were considered by Litsyn and Shevelev (2003), Burshtein and
Miller (2004), and Di et al. (2006). It turns out that the expected weight enumerator
coincides with the typical (most likely) weight enumerator to leading exponential order
for regular ensembles (in statistical-physics jargon, the annealed computation coincides
with the quenched one). This is not the case for irregular ensembles, as pointed out
by Di et al. (2004).

Proposition 11.2 has, essentially, been known since Gallager (1963). The formula-
tion quoted here is from Méasson et al. (2008). That paper contains some examples of
‘exotic’ LDPC ensembles such that the maximum of the expected weight enumerator
is at a weight w = Nω∗, with ω∗ = 1/2.

A proof of the upper bound in Theorem 11.4 can be found in Gallager (1963). For
some recent refinements, see Burshtein et al. (2002).

Bit-flipping algorithms played an important role in the revival of LDPC codes,
especially following the work of Sipser and Spielman (1996). These authors focused
on explicit code construction based on expander graphs. They also provided bounds
on the expansion of random LDPCN (l, k) codes. The lower bound on the expansion
mentioned in Section 11.4 is taken from Richardson and Urbanke (2008).
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Spin glasses

We have already encountered several examples of spin glasses in Chapters 2 and 8.
Like most problems in equilibrium statistical physics, they can be formulated in the
general framework of factor graphs. Spin glasses are disordered systems, whose mag-
netic properties are dominated by randomly placed impurities. The theory aims at
describing the behaviour of a typical sample of such materials. This motivates the
definition and study of spin glass ensembles.

In this chapter, we shall explore the glass phase of these models. It is useful to
have a good understanding of glass phases, as we shall see them appearing in various
problems from optimization and coding theory. In general, the occurrence of a glass
phase is described physically in terms of a dramatic slowdown in a dynamical relaxation
process. Here, we shall focus instead on purely static characterizations of glass phases,
which can be applied to a broad class of problems. The focus of our presentation is
on ‘mean-field models’, for at least two reasons: (i) a deep mathematical theory (still
under developement) can provide a precise understanding of their behaviour; (ii) the
ensembles of combinatorial optimization and coding problems to be considered in the
following fall naturally into this class. We shall discuss the two types of spin glass
transition that have been encountered in such models.

In contrast to these ‘soluble’ cases, it must be stressed that very little is known
(let alone proven) for realistic models of real spin glass materials. Even the existence
of a spin glass phase has not been established rigorously in the latter case.

We first discuss, in Section 12.1, how Ising models and their generalizations can
be formulated in terms of factor graphs, and introduce several ensembles of these
models. Frustration is a crucial feature of spin glasses; in Section 12.2, we discuss it in
conjunction with gauge transformations. This section also explains how to derive some
exact results solely with the use of gauge transformations. Section 12.3 describes the
spin glass phase and the main approaches to its characterization. Finally, the phase
diagram of a spin glass model with several glassy phases is traced in Section 12.4.

12.1 Spin glasses and factor graphs

12.1.1 Generalized Ising models

Let us recall the main ingredients of magnetic systems with interacting Ising spins.
The variables are N Ising spins σ = {σ1, . . . , σN}, taking values in {+1,−1}. These
are jointly distributed according to Boltzmann’s law for the energy function
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Fig. 12.1 Factor graph representation of the SK model with N = 4 (left), and of the fully

connected 3-spin model with N = 4 (right). The squares denote the interactions between the

spins.

E(σ) = −
pmax∑
p=1

∑
i1<···<ip

Ji1...ip
σi1 · · ·σip

. (12.1)

The index p gives the order of the interaction. One-body terms (p = 1) are also referred
to as external-field interactions, and will be sometimes written as −Biσi. If Ji1...ip

≥ 0
for any i1 . . . ip, and p ≥ 2, the model is said to be a ferromagnet. If Ji1...ip

≤ 0, it is
an antiferromagnet. Finally, if both positive and negative couplings are present for
p ≥ 2, the model is a spin glass.

The energy function can be rewritten as E(σ) =
∑

a Ea(σ∂a), where Ea(σ∂a) ≡
−Jaσia

1
· · ·σia

pa
. Each interaction term a involves the spins contained in a subset σ∂a =

{σia
1
, . . . , σia

pa
}, of size pa. We then introduce a factor graph, in which each interaction

term is represented by a square vertex and each spin is represented by a circular vertex.
Edges are drawn between an interaction vertex a and a variable vertex i whenever the
spin σi appears in σ∂a. We have already seen, in Fig. 9.7, the factor graph of a two-
dimensional Edwards-Anderson spin glass, where the energy contains terms with p = 1
and p = 2. Figure 12.1 shows the factor graphs of some small samples of the SK model
in zero magnetic field (p = 2 only), and the ‘3-spin model’, in which terms with p = 3
appear in the energy function.

The energy function (12.1) can be straightforwardly interpreted as a model of a
magnetic system. We have used, so far, the language inherited from this application:
the spins {σi} are ‘rotational’ degrees of freedom associated with magnetic particles,
their average is the magnetization, etc. In this context, the most relevant interaction
between distinct degrees of freedom is pairwise: −Jijσiσj .

Higher-order terms naturally arise in other applications, one of the simplest being
lattice particle systems. These are used to model liquid-to-gas, liquid-to-solid, and
similar phase transitions. One normally starts by considering some base graph G with
N vertices, which is often taken to be a portion of Zd (to model a real physical system,
the dimension of choice is of course d = 3). Each vertex in the graph can be either
occupied by a particle or empty. The particles are assumed to be indistinguishable from
each other, and a configuration is characterized by occupation variables ni = {0, 1}.
The energy is a function E(n) of the occupancies n = {n1, . . . , nN}, which takes into
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account local interactions between neighbouring particles. Usually, it can be rewritten
in the form (12.1), using the mapping σi = 1 − 2ni. We give a few examples in the
exercises below.

Exercise 12.1 Consider an empty box which is free to exchange particles with a reservoir,
and assume that particles do not interact with each other (except for the fact that they
cannot be superimposed). This can be modelled by taking G to be a cube of side L in Zd,
and specifying that each particle in the system contributes a constant amount −µ to the
energy: E(n) = −µ

P
i ni. This is a model for what is usually called an ideal gas.

Compute the partition function. Rewrite the energy function in terms of spin variables
and draw the corresponding factor graph.

Exercise 12.2 In the same problem, imagine that particles attract each other at short
distances: whenever two neighbouring vertices i and j are occupied, the system gains an
energy −ε. This is a model for the liquid–gas phase transition.

Write the corresponding energy function in terms both of occupancy variables {ni} and
spin variables {σi}. Draw the corresponding factor graph. Based on the phase diagram
of the Ising model (see Section 2.5) discuss the behaviour of this particle system. What
physical quantity corresponds to the magnetization of the Ising model?

Exercise 12.3 In some materials, molecules cannot be packed in a regular lattice at high
density, and this may result in an amorphous solid material. In order to model this phe-
nomenon, one can modify the energy function of the previous exercises as follows. Each
time that a particle (i.e. an occupied vertex) is surrounded by more than k other particles
in the neighbouring vertices, a penalty +δ is added to the energy.

Write the corresponding energy function (in terms both of {ni} and {σi}), and draw
the factor graph associated with it.

12.1.2 Spin glass ensembles

A sample (or an instance) of a spin glass is defined by:

• its factor graph, which specifies the subsets of spins which interact;

• the value of the coupling constant Ja ∈ R for each function node in the factor
graph.

An ensemble is defined by a probability distribution over the space of samples. In
all of the cases which we shall consider, the couplings are assumed to be i.i.d. random
variables, independent of the factor graph. The most studied cases are those with
Gaussian Ja’s or those with Ja taking values {+1,−1} with equal probability (in the
jargon, this is called the ±J model). More generally, we shall denote the pdf of Ja by
P(J).

One can distinguish two large families of spin glass ensembles which have attracted
the attention of physicists: ‘realistic’ and ‘mean-field’ ones. While in the first case the
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focus is on modelling actual physical systems, mean-field models have proved to be
analytically tractable, and have revealed a rich mathematical structure. The relation
between these two classes is a fascinating open problem that we shall not try to address.

Physical spin glasses are mostly three-dimensional systems, but in some cases they
can be two-dimensional. The main feature of realistic ensembles is that they retain this
geometric structure: a position x in d dimensions can be associated with each spin.
The interaction strength (the absolute value of the coupling J) decays rapidly with
the distance between the positions of the associated spins. The Edwards–Anderson
model is the most studied example in this family. Here, the spins are located on the
vertices of a d-dimensional hypercubic lattice. Neighbouring spins interact, through
two-body interactions (i.e. pmax = 2 in eqn (12.1)). The corresponding factor graph
is not random, as can be seen for the two-dimensional example of Fig. 9.7. The only
source of disorder is the random couplings Jij , distributed according to P(J). It is
customary to add a uniform magnetic field B, which is written as a p = 1 term
with Ji = B. Very little is known about these models when d ≥ 2, and most of our
knowledge comes from numerical simulations. These suggest the existence of a glass
phase when d ≥ 3, but this has not been proven yet.

There exists no general mathematical definition of a mean-field model. From a
technical point of view, mean-field models admit exact expressions for the asymptotic
(N → ∞) free-energy density, as the optimum of some sort of large-deviation rate
function. The distinctive feature that allows a solution in this form is the lack of any
finite-dimensional geometrical structure.

The p-spin glass model discussed in Section 8.2 (and, in particular, the p = 2 case,
which is the SK model) is a mean-field model. In this case also, the factor graph is
non-random, and the disorder enters only into the random couplings. The factor graph
is a regular bipartite graph. It contains

(
N
p

)
function nodes, one for each p-tuple of

spins; for this reason, it is called fully connected. Each function node has degree
p, and each variable node has degree

(
N−1
p−1

)
. Since the degree diverges with N , the

coupling distribution P(J) must be scaled appropriately with N (see eqn (8.25)).
Fully connected models are among the best understood in the mean-field family.

They can be studied either via the replica method, as in Chapter 8, or via the cavity
method, which we shall develop in the following chapters. Some of the predictions from
these two heuristic approaches have been confirmed rigorously.

One unrealistic feature of fully connected models is that each spin interacts with
a diverging number of other spins (the degree of a spin variable in the factor graph
diverges in the thermodynamic limit). In order to eliminate this feature, one can study
spin glass models on Erdös–Rényi random graphs with a finite average degree. Spins are
associated with vertices in the graph, and p = 2 interactions (with couplings that are
i.i.d. random variables drawn from P(J)) are associated with edges in the graph. The
generalization to p-spin interactions is immediate. The corresponding spin glass models
are called diluted spin glasses (DSGd). We define the ensemble DSGN (p,M,P) as
follows:

• Generate a factor graph from the ensemble GN (p,M) (the graph therefore has M
function nodes, all of degree p).
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• For every function node a in the graph, connecting spins ia1 , . . . , iap, draw a random
coupling Jia

1 ,...,ia
p

from the distribution P(J), and introduce an energy term

Ea(σ∂a) = −Jia
1 ,...,ia

p
σia

1
· · ·σia

p
. (12.2)

• The final energy is E(σ) =
∑M

a=1 Ea(σ∂a).

The thermodynamic limit is taken by letting N → ∞ at fixed α = M/N .
As in the case of random graphs, one can introduce some variants of this defini-

tion. In the ensemble DSG(p, α,P), the factor graph is drawn from GN (p, α): each
p-tuple of variable nodes is connected by a function node independently, with proba-
bility α/

(
N
p

)
. As we shall see, the ensembles DSGN (p,M,P) and DSGN (p, α,P) have

the same free energy per spin in the thermodynamic limit, and many of their thermo-
dynamic properties are identical. One basic reason for this phenomenon is that any
finite neighbourhood of a random site i has the same asymptotic distribution in the
two ensembles.

Obviously, any ensemble of random graphs can be turned into an ensemble of spin
glasses by the same procedure. Some of these ensembles have been considered in the
literature. Mimicking the notation defined in Section 9.2, we shall introduce general
diluted spin glasses with constrained degree profiles, denoted by DSGN (Λ, P,P), which
indicates the ensemble derived from the random graphs in DN (Λ, P ).

Diluted spin glasses are a very interesting class of models, which are intimately
related to sparse graph codes and to random satisfiability problems, among other
things. Our understanding of DSGs is at an intermediate level between fully connected
models and realistic models. It is believed that both the replica and the cavity method
should allow one to compute many thermodynamic properties exactly for most of
these models. However, the number of such exact results is still rather small, and only
a fraction of these have been proved rigorously.

12.2 Spin glasses: Constraints and frustration

Spin glasses at zero temperature can be seen as constraint satisfaction problems. Con-
sider, for instance, a model with two-body interactions

E(σ) = −
∑

(i,j)∈E

Jijσiσj , (12.3)

where the sum is over the edge set E of a graph G (the corresponding factor graph
is obtained by associating a function node a with each edge (ij) ∈ E). At zero tem-
perature the Boltzmann distribution is concentrated on those configurations which
minimize the energy. Each edge (i, j) therefore induces a constraint between the spins
σi and σj : they should be aligned if Jij > 0, or anti-aligned if Jij < 0. If there ex-
ists a spin configuration which satisfies all the constraints, the ground state energy is
Egs = −∑(i,j)∈E |Jij | and the sample is said to be unfrustrated (see Section 2.6).
Otherwise, it is frustrated. In this case one defines a ground state as a spin configu-
ration which violates the minimum possible number of constraints.

As shown in the exercise below, there are several methods to check whether an
energy function of the form (12.3) is frustrated.
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Exercise 12.4 We define a ‘plaquette’ of a graph as a circuit i1, i2, . . . , iL, i1 such that
no shortcut exists: ∀r, s ∈ {1, . . . , L}, the edge (ir, is) is absent from the graph whenever
r �= s± 1 (mod L). Show that a spin glass sample is unfrustrated if and only if the product
of the couplings along every plaquette of the graph is positive.

Exercise 12.5 Consider a spin glass of the form (12.3), and define the Boolean variables
xi = (1−σi)/2. Show that the spin glass constraint satisfaction problem can be transformed
into an instance of the 2-satisfiability problem.

[Hint: Write the constraint Jijσiσj > 0 in Boolean form using xi and xj .]

Since 2-SAT is in P, and because of the equivalence demonstrated in the last exer-
cise, one can check in polynomial time whether the energy function (12.3) is frustrated
or not. This approach does not work when p ≥ 3, because K-SAT is NP-complete for
K ≥ 3. However, as we shall see in Chapter 18, checking whether a spin glass energy
function is frustrated remains a polynomial problem for any p.

12.2.1 Gauge transformation

When a spin glass sample has some negative couplings but is unfrustrated, one is in
fact dealing with a ‘disguised ferromagnet’. By this we mean that, through a change
of variables, the problem of computing the partition function for such a system can
be reduced to the problem of computing the partition function of a ferromagnet.
Indeed, by assumption, there exists a ground state spin configuration σ∗

i ∈ {±1} such
that, ∀(i, j) ∈ E , Jijσ

∗
i σ∗

j > 0. Given a configuration σ, we define τi = σiσ
∗
i , and

notice that τi ∈ {+1,−1}. Then the energy of the configuration is E(σ) = E∗(τ) ≡
−∑(i,j)∈E |Jij |τiτj . Obviously, the partition function for a system with the energy

function E∗( · ) (which is a ferromagnet, since |Jij | > 0) is the same as for the original
system.

This change of variables is an example of a gauge transformation. In general,
such a transformation amounts to changing all spins and, simultaneously, all couplings
according to:

σi �→ σ
(s)
i = σisi , Jij �→ J

(s)
ij = Jijsisj , (12.4)

where s = {s1, . . . , sN} is an arbitrary configuration in {−1, 1}N . If we regard the
partition function as a function of the coupling constants J = {Jij : (ij) ∈ E},

Z[J ] =
∑
{σi}

exp

⎛⎝β
∑

(ij)∈E

Jijσiσj

⎞⎠ , (12.5)

then we have

Z[J ] = Z[J (s)] . (12.6)
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The system with coupling constants J (s) is sometimes called the ‘gauge-transformed
system’.

Exercise 12.6 Consider adding a uniform magnetic field (i.e. a linear term of the form
−B

P
i σi) to the energy function (12.3), and apply a generic gauge transformation to such

a system. How must the uniform magnetic field be changed in order to keep the partition
function unchanged? Is the new magnetic-field term still uniform?

Exercise 12.7 Generalize the above discussion of frustration and gauge transformations
to the ±J 3-spin glass (i.e. a model of the type (12.1) involving only terms with p = 3).

12.2.2 The Nishimori temperature. . .

In many spin glass ensembles, there exists a special temperature (called the Nishi-
mori temperature) at which some thermodynamic quantities, such as the internal
energy, can be computed exactly. This nice property is particularly useful in the study
of inference problems (a particular instance being symbol MAP decoding of error-
correcting codes), since the Nishimori temperature arises naturally in these contexts.
There are in fact two ways of deriving it: either as an application of gauge transfor-
mations (this is how it was discovered in physics), or by mapping the system onto an
inference problem.

Let us begin by taking the first point of view. Consider, for the sake of simplicity,
the model (12.3). The underlying graph G = (V, E) can be arbitrary, but we assume
that the couplings Jij on all the edges (ij) ∈ E are i.i.d. random variables taking values
Jij = +1 with probability 1− p and Jij = −1 with probability p. We denote by E the
expectation with respect to this distribution.

The Nishimori temperature for this system is given by TN = 1/βN, where βN =
1
2 log

(
(1 − p)/p

)
. It is chosen in such a way that the coupling-constant distribution

P(J) satisfies the condition

P(J) = e−2βN J P(−J) . (12.7)

An equivalent way of stating the same condition is to write

P(J) =
eβN J

2 cosh(βNJ)
Q(|J |) , (12.8)

where Q(|J |) denotes the distribution of the absolute values of the couplings (in the
present example, this is a Dirac delta on |J | = 1).

Let us now turn to the computation of the average, over the distribution of cou-
plings, of the internal energy1 U ≡ E〈E(σ)〉. More explicitly,

1The same symbol U was used in Chapter 2 to denote the internal energy 〈E(σ)〉 (instead of its
average). There should be no confusion with the present use.
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U = E

⎧⎨⎩ 1

Z[J ]

∑
σ

(
−
∑
(kl)

Jklσkσl

)
eβ

P
(ij) Jijσiσj

⎫⎬⎭ . (12.9)

In general, it is very difficult to compute U . It turns out, however, that at the
Nishimori temperature, the gauge invariance allows an easy computation. The av-
erage internal energy U can be expressed as U = E{ZU [J ]/Z[J ]}, where ZU [J ] =
−
∑

σ

∑
(kl) Jklσkσl

∏
(ij) eβNJijσiσj .

Let s ∈ {−1, 1}N . By an obvious generalization of eqn (12.6), we have ZU [J (s)] =
ZU [J ], and therefore

U = 2−N
∑

s

E{ZU [J (s)]/Z[J (s)]} . (12.10)

If the coupling constants Jij are i.i.d. with the distribution (12.8), then the gauge-

transformed constants J ′
ij = J

(s)
ij are equally independent but with a distribution

Ps(Jij) =
eβNJijsisj

2 cosh βN
. (12.11)

Equation (12.10) can therefore be written as U = 2−N
∑

s Es{ZU [J ]/Z[J ]}, where

Es denotes the expectation with respect to the modified measure Ps(Jij). Using
eqn (12.11), and denoting by E0 the expectation with respect to the uniform mea-
sure over Jij ∈ {±1}, we get

U = 2−N
∑

s

E0

⎧⎨⎩∏
(ij)

eβNJijsisj

cosh βN

ZU [J ]

Z[J ]

⎫⎬⎭ (12.12)

= 2−N (cosh βN)−|E|E0

⎧⎨⎩∑
s

eβN

P
(ij) Jijsisj

ZU [J ]

Z[J ]

⎫⎬⎭ (12.13)

= 2−N (cosh βN)−|E|E0 {ZU [J ]} . (12.14)

It is easy to compute E0ZU [J ] = −2N (cosh βN)|E|−1 sinhβN. This implies our final
result for the average energy at the Nishimori temperature:

U = −|E| tanh(βN) . (12.15)

Note that this simple result holds for any choice of the underlying graph. Furthermore,
it is easy to generalize it to other choices of the coupling distribution that satisfy
eqn (12.8) and to models with multispin interactions of the form (12.1). An even
wider generalization is treated below.

12.2.3 . . . and its relation to probability

The calculation of the internal energy in the previous subsection is straightforward
but, in a sense, mysterious. It is hard to grasp what the fundamental reason is that
makes things simpler at the Nishimori temperature. Here we discuss a more general
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derivation, in a slightly more abstract setting, which is related to the connection with
inference problems mentioned above.

Consider the following process. A configuration σ ∈ {±1} is chosen uniformly at
random; we call the corresponding distribution P0(σ). Next, a set of coupling constants
J = {Ja} is chosen according to the conditional distribution

P(J |σ) = e−βEJ (σ) Q0(J) . (12.16)

Here EJ(σ) is an energy function with coupling constants J , and Q0(J) is some refer-
ence measure (which can be chosen in such a way that the resulting P(J |σ) is normal-
ized). This can be interpreted as a communication process. The information source
produces the message σ uniformly at random, and the receiver observes the couplings
J .

The joint distribution of J and σ is P(J, σ) = e−βEJ (σ) Q0(J)P0(σ). We shall denote
the expectation with respect to this joint distribution by ‘Av’ in order to distinguish
it from the thermal average (that over the Boltzmann measure, denoted by 〈 . 〉) and
from the quenched average over the couplings, denoted by E.

We assume that this process possesses a gauge symmetry: this assumption defines
the Nishimori temperature. By this we mean that, given s ∈ {±1}N , there exists an

invertible mapping J → J (s) such that Q0(J
(s)) = Q0(J) and EJ(s)(σ(s)) = EJ(σ). It

is then clear that the joint probability distribution of the coupling and the spins and
the conditional distribution possess the same symmetry:

P(σ(s), J (s)) = P(σ, J) , P(J (s)|σ(s)) = P(J |σ) . (12.17)

Let us introduce the quantity

U(J) = Av(EJ(σ)|J) =
∑

σ

P(σ|J)EJ (σ) , (12.18)

and denote
∑

J P(J |σ0)U(J) by U(σ0). This is nothing but the average internal en-

ergy for a disordered system with an energy function EJ(σ) and coupling distribution
P(J |σ0). For instance, if we take σ0 as the ‘all-plus’ configuration, Q0(J) to be pro-
portional to the uniform measure over {±1}E , and EJ(σ) as given by eqn (12.3), then
U(σ0) is exactly the quantity U that we computed in the previous section.

Gauge invariance implies that U(J) = U(J (s)) for any s, and U(σ0) does not depend
upon σ0. We can therefore compute U = U(σ0) by averaging over σ0. We obtain

U =
∑
σ0

P0(σ0)
∑

J

P(J |σ0)
∑

σ

P(σ|J)EJ(σ)

=
∑
σ,J

P(σ, J)EJ (σ) =
∑

J

P(J |σ0)EJ(σ) , (12.19)

where we have used gauge invariance once more in the last step. The final expression
is generally easy to evaluate, since the coublings Ja are generically independent under
P(J |σ0) In particular, it is straightforward to recover eqn (12.15) for the case treated
in the last subsection.
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Exercise 12.8 Consider a spin glass model on an arbitrary graph, with an energy given by
eqn (12.3), and i.i.d. random couplings on the edges, drawn from the distribution P(J) =
P0(|J |)eaJ . Show that the Nishimori inverse temperature is βN = a, and that the internal
energy at this point is given by U = −|E|PJ P0(|J |) J sinh(βNJ). In the case where P is
a Gaussian distribution of mean J0, show that U = −|E|J0.

12.3 What is a glass phase?

12.3.1 Spontaneous local magnetizations

In physics, a ‘glass’ is defined through its dynamical properties. For classical spin
models such as the ones we are considering here, one can define several types of phys-
ically meaningful dynamics. For definiteness, we shall use the single-spin-flip Glauber
dynamics defined in Section 4.5. The main features of our discussion should remain
unchanged as long as we keep to local dynamics (i.e. a bounded number of spins is
flipped at each step), which obey detailed balance.

Consider a system at equilibrium at time 0 (i.e. assume σ(0) to be distributed
according to the Boltzmann distribution), and denote by 〈 · 〉σ(0) the expectation with
respect to Glauber dynamics conditional on the initial configuration. Within a ‘solid’2

phase, spins are correlated with their initial values on long time scales:

lim
t→∞

lim
N→∞

〈σi(t)〉σ(0) ≡ mi,σ(0) = 〈σi〉 . (12.20)

In other words, on arbitrary long but finite (in terms of the system size) time scales,
the system converges to a ‘quasi-equilibrium’ state, which we shall call for brevity a
‘quasi-state’, with local magnetizations mi,σ(0) depending on the initial condition.

The condition (12.20) is, for instance, satisfied by a d ≥ 2 Ising ferromagnet in zero
external field, at temperatures below the ferromagnetic phase transition. In this case we
have either mi,σ(0) = M(β) or mi,σ(0) = −M(β), depending on the initial condition,
where M(β) is the spontaneous magnetization of the system. There are two quasi-
states, invariant under translation and related by a simple symmetry transformation.
If the different quasi-states are neither periodic nor related by any symmetry, one may
speak of a glass phase.

It is also very important to characterize the glass phase at the level of equilibrium
statistical mechanics, without introducing a specific dynamics. For the case of ferro-
magnets we have already seen the solution to this problem in Chapter 2. Let 〈 · 〉B
denote the expectation with respect to the Boltzmann measure for the energy func-
tion (12.1), after a uniform magnetic field has been added. We then define the two
quasi-states by

mi,± ≡ lim
B→0±

lim
N→∞

〈σi〉B . (12.21)

A natural generalization to glasses consists in adding a small magnetic field which is
not uniform. Let us add to the energy function (12.1) a term of the form −ε

∑
i siσi,

2The name comes from the fact that in a solid, the preferred positions of the atoms are time-
independent; for instance, in a crystal, they are the vertices of a periodic lattice.
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where s ∈ {±1}N is an arbitrary configuration. We denote by 〈 · 〉ε,s the expectation
with respect to the corresponding Boltzmann distribution, and let

mi,s ≡ lim
ε→0±

lim
N→∞

〈σi〉ε,s . (12.22)

The Edwards–Anderson order parameter, defined as

qEA ≡ lim
ε→0±

lim
N→∞

1

N

∑
i

〈σi〉2ε,s , (12.23)

where s is an equilibrium configuration sampled from the Boltzmann distribution, then
signals the onset of the spin glass phase.

The careful reader will notice that eqn (12.20) is not really completely defined. How
should we take the N → ∞ limit? Do the limits exist, and how does the result depend
on s? These are subtle questions. They underlie the problem of defining properly the
pure states (extremal Gibbs states) in disordered systems. We shall come back to these
issues in Chapter 22.

An extremely fruitful idea is, instead, to study glassy phases by comparing several
equilibrated (i.e. drawn from the Boltzmann distribution) configurations of the system:
one can then use one configuration to define the direction of the polarizing field, as we
just did for the Edwards–Anderson order parameter. Remarkably, this idea underlies
the formal manipulations in the replica method.

We shall explain below in greater detail two distinct criteria, based on this idea,
which can be used to define a glass phase. Before this, let us discuss a criterion for
stability of the high-temperature phase.

12.3.2 The spin glass susceptibility

We take a spin glass sample, with energy (12.1), and add to it a local magnetic field on
site i, Bi. The magnetic susceptibility of spin j with respect to the field Bi is defined
as the rate of change of mj = 〈σj〉Bi

with respect to Bi,

χji ≡
dmj

dBi

∣∣∣∣
Bi=0

= β(〈σiσj〉 − 〈σi〉〈σj〉) , (12.24)

where we have used the fluctuation–dissipation relation (2.44).
The uniform (ferromagnetic) susceptibility defined in Section 2.5.1 gives the rate

of change of the average magnetization with respect to an infinitesimal global uniform
field, i.e. χ = (1/N)

∑
i,j χji. Consider a ferromagnetic Ising model, as introduced in

Section 2.5. Within the ferromagnetic phase (i.e. at zero external field and below the
critical temperature), χ diverges with the system size N . One way to understand this
divergence is the following. If we denote by m(B) the magnetization in infinite volume
in a magnetic field B, and denote the spontaneous magnetization by M(β), we have

χ = lim
B→0

1

2B
[m(B) − m(−B)] = lim

B→0+

M(β)

B
= ∞ , (12.25)

within the ferromagnetic phase.
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The above argument relates the divergence of the susceptibility to the existence of
two distinct pure states of the system (‘plus’ and ‘minus’). What is the appropriate
susceptibility for detecting a spin glass ordering? Following our previous discussion,
we should consider the addition of a small non-uniform field Bi = siε. The local
magnetizations are given by

〈σi〉ε,s = 〈σi〉0 + ε
∑

j

χijsj + O(ε2) . (12.26)

As suggested by eqn (12.25), we compare the local magnetizations obtained by per-
turbing the system in two different directions s and s′:

〈σi〉ε,s − 〈σi〉ε,s′ = ε
∑

j

χij(sj − s′j) + O(ε2) . (12.27)

How should we choose s and s′? A simple choice takes them as independent and uni-
formly random in {±1}N ; let us denote the expectation with respect to this distribution
by Es. The above difference therefore becomes a random variable with zero mean. Its
second moment allows us to define the spin glass susceptibility (sometimes called
the non-linear susceptibility),

χSG ≡ lim
ε→0

1

2Nε2

∑
i

Es

(
〈σi〉ε,s − 〈σi〉ε,s′

)2
. (12.28)

This is in a sense the equivalent of eqn (12.25) for the spin glass case. Using eqn (12.27),
one gets the expression χSG = (1/N)

∑
ij(χij)

2, which can also be written, using the
fluctuation–dissipation relation, as

χSG =
β2

N

∑
i,j

[〈σiσj〉 − 〈σi〉〈σj〉]2 . (12.29)

Usually, a necessary condition for the system to be in a paramagnetic, non-solid phase
is that χSG remains finite when N → ∞. We shall see below that this necessary
condition of local stability is not always sufficient.

Exercise 12.9 Another natural choice would consist in choosing s and s′ as independent
configurations drawn from the Boltzmann distribution. Show that with such a choice one
would get χSG = (1/N)

P
i,j,k χijχjkχki. This susceptibility has not been studied in the

literature, but it is reasonable to expect that it will lead generically to the same criterion
of stability as the usual one given in eqn (12.29).

12.3.3 The overlap distribution function P (q)

One of the main indicators of a glass phase is the overlap distribution, which we defined
in Section 8.2.2. Given a general magnetic model of the type (12.1), one generates two
independent configurations σ and σ′ from the associated Boltzmann distribution and
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considers their overlap qσ,σ′ = N−1
∑

i σiσ
′
i. The overlap distribution PN (q) is the

distribution of qσ,σ′ when the couplings and the underlying factor graph are taken
randomly from an ensemble. Its infinite-N limit is denoted by P (q). Its moments are
given by ∫

PN (q)qr dq = E

{ 1

Nr

∑
i1,...,ir

〈σi1 . . . σir
〉2
}

. (12.30)

In particular, the first moment
∫

PN (q) q dq = N−1
∑

i m2
i is the expected overlap,

and the variance Var(q) ≡
∫

PN (q) q2 dq −
[∫

PN (q) q dq
]2

is related to the spin glass
susceptibility:

Var(q) = E

{ 1

N2

∑
i,j

[〈σiσj〉 − 〈σi〉〈σj〉]2
}

=
1

N
χSG . (12.31)

How is a glass phase detected through the behaviour of the overlap distribution
P (q)? We shall discuss here two scenarios that appear to be remarkably universal
within mean-field models. In the next subsection, we shall see that the overlap dis-
tribution is in fact related to the idea, discussed in Section 12.3.1, of perturbing the
system in order to explore its quasi-states.

Generically, at small β, a system of the type (12.1) is found in a ‘paramagnetic’,
or ‘liquid’, phase. In this regime, PN (q) becomes concentrated as N → ∞ on a single
(deterministic) value q(β): with high probability, two independent configurations σ and
σ′ have an overlap close to q(β). In fact, in such a phase, the spin glass susceptibility
χSG is finite, and the variance of PN (q) therefore vanishes as 1/N .

For β larger than a critical value βc, the distribution P (q) may acquire some
structure, in the sense that several values of the overlap have non-zero probability in
the N → ∞ limit. The temperature Tc = 1/βc is called the static (or equilibrium)
glass transition temperature. For β > βc, the system is in an equilibrium glass
phase.

What does P (q) look like at β > βc? Generically, the transition falls into one of
the following two categories, the names of which come from the corresponding replica-
symmetry-breaking patterns found in the replica approach:

(i) Continuous (‘full replica-symmetry-breaking’, ‘FRSB’) glass transition. In Fig. 12.2,
we sketch the behaviour of the thermodynamic limit of P (q) in this case. The delta
function present at β < βc ‘broadens’ for β > βc, giving rise to a distribution with
support in some interval [q0(β), q1(β)]. The width q1(β) − q0(β) vanishes contin-
uously when β ↓ βc. Furthermore, the asymptotic distribution has a continuous
density which is strictly positive in ]q0(β), q1(β)[, and two discrete (delta) contri-
butions at q0(β) and q1(β). This type of transition has a ‘precursor’. If we consider
the N → ∞ limit of the spin glass susceptibility, this diverges as β ↑ βc. This
phenomenon is quite important for identifying the critical temperature experi-
mentally, numerically, and analytically.

(ii) Discontinuous (‘1RSB’) glass transition (see Fig. 12.3). Again, P (q) acquires
a non-trivial structure in the glass phase, but the scenario is different. When β
increases above βc, the δ-peak at q(β), which had unit mass at β ≤ βc, becomes a
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Fig. 12.2 Typical behaviour of the order parameter P (q) (the asymptotic overlap distribu-

tion) at a continuous (FRSB) glass transition. Vertical arrows denote Dirac delta functions.

peak at q0(β), with a mass 1−x(β) < 1. Simultaneously, a second δ-peak appears
at a value of the overlap q1(β) > q0(β) with mass x(β). As β ↓ βc, q0(β) → q(βc)
and x(β) → 0. Unlike in a continuous transition, the width q1(β)− q0(β) does not
vanish as β ↓ βc, and the open interval ]q0(β), q1(β)[ has vanishing probability
in the N → ∞ limit. Furthermore, the thermodynamic limit of the spin glass
susceptibility χSG has a finite limit as β ↑ βc. This type of transition has no
‘simple’ precursor (but we shall describe below a more subtle indicator).

The two-peak structure of P (q) in a discontinuous transition has a particularly
simple geometrical interpretation. When two configurations σ and σ′ are chosen in-
dependently with the Boltzmann measure, their overlap is (with high probability)
approximately equal to either q0 or q1. In other words, their Hamming distance is
either N(1 − q1)/2 or N(1 − q0)/2. This means that the Boltzmann measure µ(σ) is
concentrated in some regions of the Hamming space {−1, 1}N , called clusters. With
high probability, two independent random configurations in the same cluster have a
distance (close to) N(1− q1)/2, and two configurations in distinct clusters have a dis-
tance (close to) N(1 − q0)/2. In other words, while the overlap does not concentrate
in probability when σ and σ′ are drawn from the Boltzmann measure, it does when
this measure is restricted to one cluster. In a more formal (but still imprecise) way,
we might write

µ(σ) ≈
∑
α

wα µα(σ) , (12.32)

where the µα( · ) are probability distributions concentrated on a single cluster, and the
wα are the weights attributed by the Boltzmann distribution to each cluster.
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Fig. 12.3 Typical behaviour of the order parameter P (q) (the asymptotic overlap distribu-

tion) in a discontinuous (1RSB) glass transition. Vertical arrows denote Dirac delta functions.

According to this interpretation, x(β) = E
{∑

α w2
α

}
. Note that, since x(β) > 0

for β > βc, the weights are sizeable only for a finite number of clusters (if there were
R clusters, all with the same weight wα = 1/R, one would have x(β) = 1/R). This
is what we have found already in the REM, as well as in the replica solution of the
completely connected p-spin model (see. Section 8.2).

Generically, clusters already exist in some region of temperature above Tc, but the
measure is not yet condensed on a finite number of them. The existence of clusters in
this intermediate-temperature region can be detected instead using the tools described
below.

There is no clear criterion that allows one to distinguish a priori between systems
that undergo one or the other type of transition. Experience gained with models solved
via the replica and cavity methods indicates that a continuous transition typically
occurs in standard spin glasses with p = 2-body interactions, but also, for instance, in
the vertex-covering problem. A discontinuous transition is instead found in structural
glasses, generalized spin glasses with p ≥ 3, random satisfiability, and coloring. To
complicate things, both types of transition may occur in the same system at different
temperatures (or when some other parameter is varied). This may lead to a rich phase
diagram with several glass phases of different nature.

It is natural to wonder whether gauge transformations might give some information
about P (q). Unfortunately, it turns out that the Nishimori temperature never enters
a spin glass phase: the overlap distribution at TN is concentrated on a single value, as
suggested by the next exercise.
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Exercise 12.10 Using the gauge transformation of Section 12.2.1, show that, at the Nishi-
mori temperature, the overlap distribution PN (q) is equal to the distribution of the mag-
netization per spin m(σ) ≡ N−1P

i σi. (In many spin glass models, one expects that this
distribution of magnetization per spin will obey a large-deviation principle, and become
concentrated on a single value as N → ∞.)

12.3.4 The ε-coupling method

The overlap distribution is in fact related to the idea of quasi-states introduced in Sec-
tion 12.3.1. Let us again consider a perturbation of the Boltzmann distribution defined
by adding to the energy a magnetic-field term −ε

∑
i siσi, where s = (s1, . . . , sN ) is a

generic configuration. We introduce the ε-perturbed energy of a configuration σ as

Eε,s(σ) = E(σ) − ε

N∑
i=1

siσi . (12.33)

It is important to realize that both the original energy E(σ) and the new term
−ε
∑

i siσi are extensive, i.e. they grow in proportion to N as N → ∞. Therefore,
in this limit the presence of the perturbation can be relevant. The ε-perturbed Boltz-
mann measure is

µε,s(σ) =
1

Zε,s
e−βEε,s(σ) . (12.34)

In order to quantify the effect of the perturbation, let us measure the expected distance
between σ and s,

d(s, ε) ≡ 1

N

N∑
i=1

1

2
(1 − si〈σi〉s,ε) (12.35)

(note that
∑

i(1− siσi)/2 is just the number of positions in which σ and s differ). For
ε > 0, the coupling between σ and s is attractive; for ε < 0, it is repulsive. In fact, it
is easy to show that d(s, ε) is a decreasing function of ε.

In the ε-coupling method, s is taken as a random variable, drawn from the
(unperturbed) Boltzmann distribution. The rationale for this choice is that, in this
way, s will point in the directions corresponding to quasi-states. The average distance
induced by the ε-perturbation is then obtained, after averaging over s and over the
choice of sample:

d(ε) ≡ E

{∑
s

1

Z
e−βE(s) d(s, ε)

}
. (12.36)

There are two important differences between the ε-coupling method and the compu-
tation of the overlap distribution PN (q). (i) When PN (q) is computed, the two copies
of the system are treated on an equal footing: they are independent and distributed
according to Boltzmann law. In the ε-coupling method, one of the copies is distributed
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according to Boltzmann’s law, while the other follows a perturbed distribution de-
pending on the first copy. (ii) In the ε-coupling method, the N → ∞ limit is taken at
fixed ε. Therefore, the sum in eqn (12.36) can be dominated by values of the overlap
q(s, σ) which would have been exponentially unlikely for the original (unperturbed)
measure. When the N → ∞ limit P (q) is computed, such values of the overlap have
a vanishing weight. The two approaches provide complementary information.

Within a paramagnetic phase, d(ε) remains a smooth function of ε in the neigh-
bourhood of ε = 0, even after the N → ∞ limit has been taken: perturbing the system
does not have any dramatic effect. But in a glass phase, d(ε) becomes singular: it
develops a discontinuity at ε = 0, which can be detected by defining

∆ = lim
ε→0+

lim
N→∞

d(ε) − lim
ε→0−

lim
N→∞

d(ε) . (12.37)

Notice that the limit N → ∞ is taken first: for finite N , there cannot be any discon-
tinuity.

One expects ∆ to be non-zero if and only if the system is in a ‘solid’ phase. In
order to get an intuitive understanding of this, one can think of the process of adding
a positive ε-coupling and then letting it tend to 0 as of a physical process. The system
is first forced into an energetically favourable configuration (given by s). The forcing
is then gradually removed and one checks whether any memory of the preparation is
retained (∆ > 0) or whether the system ‘liquefies’ (∆ = 0).

The advantage of the ε-coupling method with respect to the overlap distribution
P (q) is twofold:

• In some cases the dominant contribution to the Boltzmann measure comes from
several distinct clusters, but a single cluster dominates over the others. More pre-
cisely, it may happen that the weights for subdominant clusters scale as wα =
exp[−Θ(Nθ)], with θ ∈]0, 1[. In this case, P (q) is a delta function and does not
allow one to distinguish the state of the system from a purely paramagnetic phase.
However, the ε-coupling method identifies the phase transition through a singu-
larity in d(ε) at ε = 0.

• One can use the ε-coupling method to analyse a system undergoing a discontinuous
transition when it is in a glass phase but in the T > Tc regime. In this case, the
existence of clusters cannot be detected from P (q) because the Boltzmann measure
is spread over an exponential number of them. This situation will be the subject
of the next subsection.

12.3.5 1RSB clusters and the potential method

The 1RSB equilibrium glass phase corresponds to a condensation of the measure onto
a small number of clusters of configurations. However, the most striking phenomenon
is the appearance of clusters themselves. In the following chapters, we shall argue
that this has important consequences for Monte Carlo dynamics, as well as for other
algorithmic approaches to these systems. It turns out that the Boltzmann measure
splits into clusters at a distinct temperature Td > Tc. In the region of temperatures
[Tc, Td], we shall say that the system is in a clustered phase, dynamical glass
phase, or dynamical 1RSB phase. The phase transition at Td will be referred to
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as the clustering or dynamical (glass) transition. In this regime, an exponential
number of clusters N .

= eNΣ carry a roughly equal weight. The rate of growth Σ is
called the complexity3 or configurational entropy.

The thermodynamic limit of the overlap distribution, P (q), does not show any
signature of the clustered phase. In order to understand this point, it is useful to work
through a toy example. Assume that the Boltzmann measure is entirely supported
on exactly eNΣ sets of configurations in {±1}N (each set is a cluster), denoted by
α = 1, . . . , eNΣ, and that the Boltzmann probability of each of these sets is w = e−NΣ.
Assume furthermore that, for any two configurations belonging to the same cluster
σ, σ′ ∈ α, their overlap is qσ,σ′ = q1, whereas, if they belong to different clusters
σ ∈ α, σ′ ∈ α′, α = α′, their overlap is qσ,σ′ = q0 < q1. Although it might be difficult
to actually construct such a measure, we shall neglect this problem for a moment, and
compute the overlap distribution. The probability that two independent configurations
fall into the same cluster is eNΣw2 = e−NΣ. Therefore, we have

PN (q) = (1 − e−NΣ) δ(q − q0) + e−NΣ δ(q − q1) , (12.38)

which converges to δ(q − q0) as N → ∞: P (q) has a single delta function, as in the
paramagnetic phase.

A first signature of the clustered phase is provided by the ε-coupling method de-
scribed in the previous subsection. The reason is very clear if we look at eqn (12.33):
the ε-coupling ‘tilts’ the Boltzmann distribution in such a way that unlikely values of
the overlap acquire a strictly positive probability. It is easy to compute the thermo-
dynamic limit d∗(ε) ≡ limN→∞ d(ε). We get

d∗(ε) =

{
(1 − q0)/2 for ε < εc,
(1 − q1)/2 for ε > εc,

(12.39)

where εc = Σ/β(q1 − q0). As T ↓ Tc, clusters becomes less and less numerous and
Σ → 0. Correspondingly, εc ↓ 0 as the equilibrium glass transition is approached.

The picture provided by this toy example is essentially correct, with the caveats
that the properties of clusters will hold only within some accuracy and with high
probability. Nevertheless, one expects d∗(ε) to have a discontinuity at some εc > 0 for
all temperatures in an interval ]Tc, T

′
d]. Furthermore, εc ↓ 0 as T ↓ Tc.

In general, the temperature T ′
d computed through the ε-coupling method does

not coincide with that of the clustering transition. The reason is easily understood. As
illustrated by the above example, we are estimating the exponentially small probability
P(q|s, J) that an equilibrated configuration σ has an overlap q with the reference
configuration s, in a sample J . In order to do this, we compute the distance d(ε) in a
problem with a tilted measure. As we have seen already several times since Chapter 5,
exponentially small (or large) quantities usually do not concentrate in probability, and
d(ε) may be dominated by exponentially rare samples. We have also learnt the cure
for this problem: take logarithms! We therefore define4 the glass potential

3This use of the term ‘complexity’ here, which is customary in statistical physics, should not be
confused with its use in theoretical computer science.

4One should introduce a resolution here, so that the overlap is actually constrained to be in some
window around q. The width of this window can be let tend to 0 after N → ∞.
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V (q) = − lim
N→∞

1

Nβ
Es,J {log P(q|s, J)} . (12.40)

Here (as in the ε-coupling method), the reference configuration is drawn from the
Boltzmann distribution. In other words,

Es,J( · · · ) = EJ

⎧⎨⎩ 1

ZJ

∑
s

e−βEJ (s)( · · · )

⎫⎬⎭ . (12.41)

If, as expected, log P(q|s, J) concentrates in probability, one has P(q|s, J)
.
= e−NV (q)

with high probability.

Exercise 12.11 Consider the following refined version of the toy model (12.38): P(q|s, J) =

(1− e−NΣ(s,J))Gq0(s,J);(b0/Nβ)(q) + e−NΣ(s,J)) Gq1(s,J);(b1/Nβ)(q), where Ga,b is a Gaussian
distribution of mean a and variance b. We suppose that b0, b1 are constants, but that
Σ(s, J), q0(s, J), q1(s, J) fluctuate as follows: when J and s are distributed according to the
correct joint distribution (12.41), then Σ(s, J), q0(s, J), q1(s, J) are independent Gaussian

random variables of means Σ, q0, q1, respectively, and variances δΣ2/N, δq2
0/N, δq2

1/N .

Assuming for simplicity that δΣ2 < 2Σ, compute P (q) and d(ε) for this model. Show
that the glass potential V (q) is given by two arcs of parabolas as follows:

V (q) = min

j
(q − q0)

2

2b0
,

(q − q1)
2

2b1
+

1

β
Σ

ff
. (12.42)

The glass potential V (q) has been computed using the replica method in only a
small number of cases, mainly fully connected p-spin glasses. Here we shall just mention
the qualitative behaviour that is expected on the basis of these computations. The
result is summarized in Fig. 12.4. At small enough β, the glass potential is convex.
When β is increased, one first encounters a value β∗ where V (q) ceases to be convex.
When β > βd = 1/Td, V (q) develops a secondary minimum, at q = q1(β) > q0(β).
This secondary minimum is in fact an indication of the existence of an exponential
number of clusters, such that two configurations in the same cluster typically have an
overlap q1, while two configurations in distinct clusters have an overlap q0. A little
thought shows that the difference between the values of the glass potential at the two
minima gives the complexity: V (q1) − V (q0) = TΣ.

In models in which the glass potential has been computed exactly, the temperature
Td computed in this way coincides with a dramatic slowing down of the relaxational
dynamics. More precisely, a properly defined relaxation time for Glauber-type dynam-
ics is finite for T > Td and diverges exponentially in the system size for T < Td.

12.3.6 Cloning and the complexity function

When the various clusters do not all have the same weight, the system is most appro-
priately described through a complexity function. Consider a cluster of configura-
tions, called α. Its free energy Fα can be defined by restricting the partition function
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Fig. 12.4 Qualitative shapes of the glass potential V (q) at various temperatures. When the

temperature is very high (not shown), V (q) is convex. Below T = Td, it develops a secondary

minimum. The height difference between the two minima is V (q1)−V (q0) = TΣ. In the case

shown here, q0 = 0 is independent of the temperature.

to configurations in the cluster α. One way of imposing this restriction is to choose a
reference configuration σ0 ∈ α, and restrict the Boltzmann sum to those configurations
σ whose distance from σ0 is smaller than Nδ. In order to correctly identify clusters,
one has to take (1− q1)/2 < δ < (1− q∗)/2, where q∗ > q1 is such that V (q∗) > V (q1).

Let Nβ(f) be the number of clusters such that Fα = Nf (more precisely, this is
an unnormalized measure attributing unit weight to the points Fα/N). We expect it
to satisfy a large-deviation principle of the form

Nβ(f)
.
= exp{NΣ(β, f)} . (12.43)

The rate function Σ(β, f) is the complexity function. If clusters are defined as above,
with the cut-off δ in the appropriate interval, they are expected to be disjoint up to a
subset of configurations of exponentially small Boltzmann weight. Therefore the total
partition function is given by

Z =
∑
α

e−βFα
.
=

∫
eN [Σ(β,f)−βf ] df

.
= eN [Σ(β,f∗)−βf∗] , (12.44)

where we have applied the saddle point method as in standard statistical-mechanics
calculations (see Section 2.4). Here f∗ = f∗(β) solves the saddle point equation
∂Σ/∂f = β.

For several reasons, it is interesting to determine the full complexity function
Σ(β, f) as a function of f for a given inverse temperature β. The cloning method is
a particularly efficient (although non-rigorous) way to do this computation. Here we
sketch the basic idea: several applications will be discussed in the following chapters.



What is a glass phase? ���

One begins by introducing m identical ‘clones’ of the initial system. These are non-
interacting except for the fact that they are constrained to be in the same cluster. In
practice, one can constrain all their pairwise Hamming distances to be smaller than
Nδ, where (1 − q1)/2 < δ < (1 − q∗)/2. The partition function for the systems of m
clones is therefore

Zm =
∑

σ(1),...,σ(m)

′ exp
{
− βE(σ(1)) · · · − βE(σ(m))

}
. (12.45)

where the prime reminds us that σ(1), . . .σ(m) stay in the same cluster. By splitting
the sum over the various clusters, we have

Zm =
∑
α

∑
σ(1)...σ(m)∈α

e−βE(σ(1))···−βE(σ(m)) =
∑
α

(∑
σ∈α

e−βE(σ)
)m

. (12.46)

At this point we can proceed as for the calculation of the usual partition function, and
obtain

Zm =
∑
α

e−βmFα
.
=

∫
eN [Σ(β,f)−βmf ] df

.
= eN [Σ(β,f̂)−βmf̂ ] , (12.47)

where f∗ = f∗(β,m) solves the saddle point equation ∂Σ/∂f = βm.
The free-energy density per clone of the cloned system is defined as

Φ(β,m) = − lim
N→∞

1

βmN
log Zm . (12.48)

The saddle point estimate (12.47) implies that Φ(β,m) is related to Σ(β, f) through
Legendre transform:

Φ(β,m) = f − 1

βm
Σ(β, f) ,

∂Σ

∂f
= βm . (12.49)

If we forget that m is an integer, and admit that Φ(β,m) can be ‘continued’ to
non-integer m, the complexity Σ(β, f) can be computed from Φ(β,m) by inverting
this Legendre transform. The similarity to the procedure used in the replica method
is not fortuitous. Note, however, that replicas were introduced to deal with quenched
disorder, while cloning is more general: it also applies to systems without disorder.

Exercise 12.12 In the REM, the natural definition of the overlap between two configu-
rations i, j ∈ {1, . . . , 2N} is qi,j = I(i = j). Taking a configuration j0 as the reference, the
ε-perturbed energy of a configuration j is E′(ε, j) = Ej − NεI(j = j0). (Note the extra



��� Spin glasses

N multiplying ε, introduced in order to ensure that the new ε-coupling term is typically
extensive.)

(a) Consider the high-temperature phase where β < βc = 2
√

log 2. Show that the ε-
perturbed system has a phase transition at ε = (log 2)/β − β/4.

(b) In the low temperature phase where β > βc, show that the phase transition takes place
at ε = 0.

Therefore, in the REM, clusters exist at any β, and every cluster is reduced to one single
configuration: one must have Σ(β, f) = log 2 − f2 independently of β. Show that this is
compatible with the cloning approach, through a computation of the potential Φ(β, m):

Φ(β, m) =

(
− log 2

βm
− βm

4
for m < βc

β
,

−√
log 2 for m > βc

β
.

(12.50)

12.4 An example: The phase diagram of the SK model

Several mean-field models have been solved using the replica method. Sometimes a
model may present two or more glass phases with different properties. Determining
the phase diagram can be particularly challenging in those cases.

A classical example is provided by the Sherrington–Kirkpatrick model with fer-
romagnetically biased couplings. As in the other examples in this chapter, this is a
model for N Ising spins σ = (σ1, . . . , σN ). The energy function is

E(σ) = −
∑
(i,j)

Jijσiσj , (12.51)

where (i, j) are unordered pairs, and the couplings Jij are i.i.d. Gaussian random vari-
ables with mean J0/N and variance 1/N . In a sense, this model interpolates between
the Curie–Weiss model treated in Section 2.5.2, corresponding to J0 → ∞, and the
unbiased SK model considered in Chapter 8, corresponding to J0 = 0.

The phase diagram can be plotted in terms of two parameters: the ferromagnetic
bias J0, and the temperature T . Depending on their values, the system can be found
in one of four phases (see Fig. 12.5): the paramagnetic (P), ferromagnetic (F), sym-
metric spin glass (SG), or mixed ferromagnetic–spin glass (F-SG) phase. A simple
characterization of these four phases can be obtained in terms of two quantities: the
average magnetization and the overlap. In order to define these quantities, we must
first observe that, since E(σ) = E(−σ), in the present model 〈σi〉 = 0 identically for
all values of J0, and T . In order to break this symmetry, we may add a magnetic-field
term −B

∑
i σi and let B → 0 after taking the thermodynamic limit. We then define

m = lim
B→0+

lim
N→∞

E〈σi〉B , q = lim
B→0+

lim
N→∞

E(〈σi〉2B) , (12.52)

(which do not depend on i, because the coupling distribution is invariant under a
permutation of the sites). In the P phase, one has m = 0, q = 0; in the SG phase,
m = 0, q > 0, and in the F and F-SG phases, m > 0, q > 0.



An example: The phase diagram of the SK model ���

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

T

J0

P

F

SG

F-SG

Fig. 12.5 Phase diagram of the SK model in zero magnetic field. When the temperature T

and the ferromagnetic bias J0 are varied, four distinct phases are encountered: paramagnetic

(P), ferromagnetic (F), spin glass (SG) and mixed ferromagnetic–spin glass (F-SG). The

full lines separate these various phases. The dashed line is the location of the Nishimori

temperature.

A more complete description can be obtained in terms of the overlap distribution
P (q). Because of the symmetry under spin inversion mentioned above, P (q) = P (−q)
identically. The qualitative shape of P (q) in the thermodynamic limit is shown in
Fig. 12.6. In the P phase, it consists of a single delta function with unit weight at
q = 0: two independent configurations drawn from the Boltzmann distribution have,
with high probability, an overlap close to 0. In the F phase, it is concentrated on two
symmetric values q(J0, T ) > 0 and −q(J0, T ) < 0, each carrying a weight of one-half.
We can summarize this behaviour by saying that a random configuration drawn from
the Boltzmann distribution is found, with equal probability, in one of two different
states. In the first one the local magnetizations are {mi}, and in the second one they
are {−mi}. If one draws two independent configurations, they fall into the same state
(corresponding to the overlap value q(J0, T ) = N−1

∑
i m2

i ) or into opposite states
(overlap −q(J0, T )) with probability 1/2. In the SG phase, the support of P (q) is a
symmetric interval [−qmax, qmax], with qmax = qmax(J0, T ). Finally, in the F-SG phase,
the support is the union of two intervals [−qmax,−qmin] and [qmin, qmax]. In both the
SG and the F-SG phase, the presence of a whole range of overlap values carrying
non-vanishing probability, suggests the existence of a multitude of quasi-states (in the
sense discussed in the previous section).

In order to remove the degeneracy due to the symmetry under spin inversion, one
sometimes defines an asymmetric overlap distribution by adding a magnetic-field term,
and taking the thermodynamic limit as in eqn (12.52):

P+(q) = lim
B→0+

lim
N→∞

PB(q) . (12.53)

Somewhat surprisingly, it turns out that P+(q) = 0 for q < 0, while P+(q) = 2P (q)
for q > 0. In other words, P+(q) is equal to the distribution of the absolute value of
the overlap.
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Fig. 12.6 The typical shape of the distribution P (q) in each of the four phases of the SK

model with ferromagnetically biased couplings.

Exercise 12.13 Consider the Curie–Weiss model in a magnetic field, (see Section 2.5.2).
Draw the phase diagram and compute the asymptotic overlap distribution. Discuss its
qualitative features for different values of the temperature and magnetic field.

We shall now add a few words for the reader interested in how one derives this
diagram: Some of the phase boundaries have already been derived using the replica
method in Exercise 8.12. The boundary P–F is obtained by solving the RS equation
(8.68) for q, ω, x. The P–SG and F–M lines are obtained by the AT stability condition
(8.69). Deriving the phase boundary between the SG and F–SG phases is much more
challenging, because it separates glassy phases, and therefore it cannot be derived
within the RS solution. It is known to be approximately vertical, but there is no
simple expression for it. The Nishimori temperature is deduced from the condition
(12.7), which gives TN = 1/J0, and the line T = 1/J0 is usually called the ‘Nishimori
line’. The internal energy per spin on this line is U/N = −J0/2. Notice that the line
does not enter any of the glass phases, as we know from general arguments.

An important aspect of the SK model is that the appearance of the glass phase on
the lines separating P from SG and on the line separating F from F–SG is a continuous
transition. Therefore it is associated with a divergence of the non-linear susceptibility
χSG. The following exercise, reserved for replica aficionados, sketches the main lines
of the argument showing this.
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Exercise 12.14 Let us see how to compute the non-linear susceptibility of the SK model,
χSG = (β2/N)

P
i	=j (〈σiσj〉 − 〈σi〉〈σj〉)2, by the replica method. Show that

χSG = lim
n→0

β2

N

X
i	=j

0@ n

2
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i σb
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j σb

j〉 −
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!−1 X
(abc)
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j σc

j 〉
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n
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(abcd)
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c
jσ

d
j 〉
1A

= N lim
n→0

Z
e−NG(Q,λ)A(Q)

Y
(ab)

(dQabdλab) , (12.54)

where we follow the notation of eqn (8.30), the sum over (a1a2 . . . ak) is understood to run
over all the k-tuples of distinct replica indices, and

A(Q) ≡
 

n

2

!−1X
(ab)

Q2
ab −

 
n

3

!−1 X
(abc)

QabQac +

 
n

4

!−1 X
(abcd)

QabQcd . (12.55)

Analyse the divergence of χSG along the following lines. The leading contribution to eqn
(12.54) should come from the saddle point and be given, in the high-temperature phase,
by A(Qab = q), where Qab = q is the RS saddle point. However, this contribution clearly
vanishes when one takes the n → 0 limit. One must thus consider the fluctuations around
the saddle point. Each of the terms of the type QabQcd in A(Q) gives a factor of 1/N times
the appropriate matrix element of the inverse of the Hessian matrix. When this Hessian
matrix is non-singular, these elements are all finite and one obtains a finite result in the
N → ∞ limit. (The 1/N cancels the factor N in eqn (12.54).) When one reaches the AT
instability line, the elements of the inverse of the Hessian matrix diverge, and therefore χSG

also diverges.

Notes

Lattice gas models of atomic systems, such as those discussed in the first two exercises,
are discussed in statistical-physics textbooks; see, for instance, Ma (1985). The simple
model of a glass in Exercise 12.3 was introduced and solved on sparse random graphs
using the cavity method by Biroli and Mézard (2002).

The order parameter for spin glasses defined by Edwards and Anderson (1975)
is a dynamic order parameter which captures the long-time persistence of the spins.
The static definition that we have introduced here should give the same result as the
original dynamical definition (although of course we have no proof of this statement
in general). A review of simulations of the Edwards–Anderson model can be found in
Marinari et al. (1997).

Mathematical results on mean-field spin glasses can be found in the book by Tana-
grand (2003). A short recent survey is provided by Guerra (2005).

Diluted spin glasses were introduced by Viana and Bray (1985).
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The implications of the gauge transformation were derived by Hidetoshi Nishimori
and his coworkers, and are explained in detail in his book (Nishimori, 2001).

The notion of pure states in phase transitions, and the decomposition of Gibbs
measures into pure states, is discussed in the book by Georgii (1988). We shall discuss
this topic further in Chapter 22.

The divergence of the spin glass susceptibility is especially relevant because this
susceptibility can be measured in zero field. The experiments of Monod and Bouchiat
(1982) present evidence of a divergence. This supports the existence of a spin glass
transition in real (three-dimensional) spin glasses in zero magnetic field, at non-zero
temperature.

The existence of two transition temperatures Tc < Td was first discussed by Kirk-
patrick and Wolynes (1987) and Kirkpatrick and Thirumalai (1987), who pointed out
the relevance to the theory of structural glasses. In particular, Kirkpatrick and Thiru-
malai (1987) discussed the case of the p-spin glass. A review of this line of approach
to structural glasses, and particularly its relevance to dynamical effects, is provided
by Bouchaud et al. (1997).

The ε-coupling method was introduced by Caracciolo et al. (1990). The idea of
cloning in order to study the complexity function is due to Monasson (1995). Its
application to studies of the glass transition without quenched disorder was developed
by Mézard and Parisi (1999).

The glass potential method was introduced by Franz and Parisi (1995).
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Bridges: Inference and the Monte
Carlo method

We have seen in the last three chapters how problems with very different origins can
be cast into the unifying framework of factor graph representations. The underly-
ing mathematical structure, namely the locality of probabilistic dependencies between
variables, is also present in many problems of probabilistic inference, which provides
another unifying view of the field. We shall see through examples that several fun-
damental questions in physics, coding, and constraint satisfaction problems can be
formulated as inference problems.

On the other hand, locality is also an important ingredient that allows sampling
from complex distributions using the Monte Carlo technique. It is thus very natural
to apply this technique to our problems, and to study its limitations. We shall see
here that the existence of large free-energy barriers, in particular in low-temperature
regimes, considerably slows down the Monte Carlo sampling procedure.

In Section 13.1, we present some basic terminology and simple examples of statis-
tical inference problems. Statistical inference is an interesting field in itself, with many
important applications (ranging from artificial intelligence to modelling and statistics).
Here we emphasize the possibility of considering coding theory, statistical mechanics,
and combinatorial optimization as inference problems.

Section 13.2 develops a very general tool, the Markov chain Monte Carlo (MCMC)
technique, already introduced in Section 4.5. This is often a very powerful approach.
Furthermore, Monte Carlo sampling can be regarded as a statistical inference method,
and Monte Carlo dynamics is a simple prototype of the local search strategies intro-
duced in Sections 10.2.3 and 11.4. Many of the difficulties encountered in decoding, in
constraint satisfaction problems, and in the study of glassy phases are connected to a
dramatic slowing down of MCMC dynamics. We present the results of simple numer-
ical experiments on some examples, and identify regions in the phase diagram where
the MCMC slowdown implies poor performance as a sampling/inference algorithm.
Finally, in Section 13.3, we explain a rather general argument to estimate the amount
of time an MCMC algorithm as to be run in order to produce roughly independent
samples with the desired distribution.
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cloudy

rain sprinkler

wet

p(r|c) \ c 0 1
r = 0 0.8 0.3
r = 1 0.2 0.7

p(s|c) \ c 0 1
s = 0 0.1 0.7
s = 1 0.9 0.3

p(w|r, s) \ r, s 0, 0 0, 1 1, 0 1, 1
w = 0 0.9 0.2 0.2 0.1
w = 1 0.1 0.8 0.8 0.9

Fig. 13.1 The rain–sprinkler Bayesian network.

13.1 Statistical inference

13.1.1 Bayesian networks

It is common practice in artificial intelligence and statistics, to formulate inference
problems in terms of Bayesian networks. Although any such problem can also be
represented in terms of a factor graph, it is worth to briefly introduce this alternative
language. A famous toy example is the ‘rain–sprinkler’ network.

Example 13.1 During a walk to the park, a statistician notices that the grass is
wet. There are two possible reasons for this: either it rained during the night, or the
sprinkler was activated in the morning to irrigate the lawn. Both events are, in turn,
correlated with the weather condition in the last 24 hours.

After a little thought, the statistician formalizes these considerations as the prob-
abilistic model depicted in Fig. 13.1. The model includes four random variables:
cloudy, rain, sprinkler, and wet, taking values in {0, 1} (which correspond, respec-
tively, to false and true). The variables are organized as the vertices of a directed
graph. A directed edge corresponds, intuitively, to a relation of causality. The joint
probability distribution of the four variables is given in terms of conditional probabil-
ities associated with the edges. Explicitly (variables are indicated by their initials),

p(c, s, r,w) = p(c) p(s|c) p(r|c) p(w|s, r) . (13.1)

The three conditional probabilities in this formula are given by the tables in Fig. 13.1.
A ‘uniform prior’ is assumed on the event that the day was cloudy: p(c = 0) = p(c =
1) = 1/2.

Given that wet grass was observed, we may want to know whether the most
likely cause was the rain or the sprinkler. This amounts to computing the marginal
probabilities

p(s|w = 1) =

∑
c,r p(c, s, r,w = 1)∑

c,r,s′ p(c, s′, r,w = 1)
, (13.2)

p(r|w = 1) =

∑
c,s p(c, s, r,w = 1)∑

c,r,s′ p(c, s′, r,w = 1)
. (13.3)
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cloudy

sprinklerrain

wet

cloudy

sprinklerrain

Fig. 13.2 Left : factor graph corresponding to the rain–sprinkler Bayesian network repre-

sented in Fig. 13.1. Right : factor graph for the same network under the observation of the

variable w.

Using the numbers in Fig. 13.1, we get p(s = 1|w = 1) ≈ 0.63 and p(r = 1|w = 1) ≈
0.48: the most likely cause of the wet grass is the sprinkler.

In Fig. 13.2 we show the factor graph representation of eqn (13.1), and that
corresponding to the conditional distribution p(c, s, r|w = 1). As is clear from the
factor graph representation, the observation w = 1 induces a further dependency
between the variables s and r, beyond that induced by their relation to c. The reader
is invited to draw the factor graph associated with the marginal distribution p(c, s, r).

In general, a Bayesian network describes the joint distributions of variables
associated with the vertices of a directed acyclic graph G = (V,E). A directed graph
is an ordinary graph with a direction (i.e. an ordering of the adjacent vertices) chosen
on each of its edges, and no cycles. For such a graph, we say that a vertex u ∈ V
is a parent of v, and write u ∈ π(v), if (u, v) is a (directed) edge of G. A random
variable Xv is associated with each vertex v of the graph (for simplicity, we assume
all the variables to take values in the same finite set X ). The joint distribution of
{Xv, v ∈ V } is determined by the conditional probability distributions {p(xv|xπ(v))},
where π(v) denotes the set of parents of the vertex v, and xπ(v) = {xu : u ∈ π(v)}:

p(x) =
∏

v∈π(G)

p(xv)
∏

v∈G\π(G)

p(xv|xπ(v)) , (13.4)

where π(G) denotes the set of vertices that have no parent in G.
A general class of statistical inference problems can be formulated as follows. We

are given a Bayesian network, i.e. a directed graph G plus the associated conditional
probability distributions {p(xv|xπ(v))}. A subset O ⊆ V of the variables is observed
and takes values xO. The problem is to compute marginals of the conditional distri-
bution p(xV \O|xO).

Given a Bayesian network G and a set of observed variable O, it is easy to obtain a
factor graph representation of the conditional distribution p(xV \O|xO), by a general-
ization of the procedure that we applied in Fig. 13.2. The general rule is as follows: (i)
associate a variable node with each non-observed variable (i.e. each variable in xV \O);
(ii) for each variable in π(G)\O, add a degree-1 function node connected uniquely to
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d1 d2 d3 d4 d5

f1 f2 f3 f4 f5 f6 f7 f8

Fig. 13.3 Left : toy version of the QMR-DT Bayesian network. Right : factor graph repre-

sentation of the conditional distribution of the diseases d1, . . . , d5, given the findings f1,

. . . ,f8.

that variable; (iii) for each non-observed vertex v which is not in π(G), add a function
node and connect it to v and to all the parents of v; (iv) finally, for each observed
variable u, add a function node and connect it to all the parents of u.

Here is an example showing the practical utility of Bayesian networks.

Example 13.2 The Quick Medical Reference, Decision Theoretic (QMR-DT) net-
work is a two-level Bayesian network that was developed for automatic medical
diagnosis. A schematic example is shown in Fig. 13.3. Variables in the top level,
denoted by d1, . . . , dN , are associated with diseases. Variables in the bottom level,
denoted by f1, . . . , fM , are associated with symptoms, or findings. Both diseases and
findings are described by binary variables. An edge connects a disease di to a finding
fa whenever that disease may be a cause for that finding. Such networks of implica-
tions are constructed on the basis of accumulated medical experience.

The network is completed by two types of probability distribution. For each dis-
ease di, we are given an a priori occurrence probability p(di). Furthermore, for each
finding, we have a conditional probability distribution for that finding given a certain
disease pattern. This usually takes the ‘noisy-OR’ form

p(fa = 0|d) =
1

za
exp

{
−

N∑
i=1

θiadi

}
. (13.5)

This network is used for diagnostic purposes. The findings are set to values deter-
mined by observation of a patient. Given this pattern of symptoms, one aims to
compute the marginal probability that any given disease is indeed present.

13.1.2 Inference in coding, physics, and optimization

Several of the problems encountered so far in this book can be recast in the language
of statistical inference.

Let us start with the decoding of error-correcting codes. As discussed in Chap-
ter 6, in order to implement symbol MAP decoding, one has to compute the marginal
distribution of input symbols, given the channel output. For instance, in the case of
an LDPC code ensemble, dependencies between input symbols are induced by the
parity check constraints. The joint probability distribution to be marginalized has
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a natural graphical representation (although we have used factor graphs rather than
Bayesian networks). The introduction of finite-temperature decoding allows us to view
word MAP decoding as the zero-temperature limit case of a one-parameter family of
inference problems.

In statistical-mechanics models, one is mainly interested in the expectations and
covariances of local observables with respect to the Boltzmann measure. For instance,
the paramagnetic-to-ferromagnetic transition in an Ising ferromagnet, (see Section 2.5)
can be located using the magnetization MN (β,B) = 〈σi〉β,B . The computation of co-
variances, such as the correlation function Cij(β,B) = 〈σi;σj〉β,B , is a natural gener-
alization of the simple inference problem discussed so far.

Let us consider, finally, consider the case of combinatorial optimization. Assume,
for the sake of definiteness, that a feasible solution is an assignment of the variables
x = (x1, x2, . . . , xN ) ∈ XN and that its cost E(x) can be written as a sum of ‘local’
terms,

E(x) =
∑

a

Ea(xa) . (13.6)

Here xa denotes a subset of the variables (x1, x2, . . . , xN ). Let µ∗(x) denote the uniform
distribution over the optimal solutions. The minimum energy can be computed as a
sum of expectations with respect to this distribution: E∗ =

∑
a[
∑

x µ∗(x)Ea(xa)]. Of

course, the distribution µ∗(x) does not necessarily have a simple representation, and
therefore the computation of E∗ can be significantly harder than simple inference.1

This problem can be overcome by ‘softening’ the distribution µ∗(x). One possibility
is to introduce a finite temperature and define µβ(x) = exp[−βE(x)]/Z, as already
done in Section 4.6: if β is large enough, this distribution is concentrated on optimal
solutions. At the same time, it has an explicit representation (apart from the value of
the normalization constant Z) at any value of β.

How large should β be in order to get a good estimate of E∗? The exercise below
gives the answer under some rather general assumptions.

Exercise 13.1 Assume that the cost function E(x) takes integer values, and let U(β) =
〈E(x)〉β . Owing to the form of eqn (13.6), the computation of U(β) is essentially equivalent
to statistical inference. We assume, furthermore that ∆max = max[E(x) − E∗] is bounded
by a polynomial in N . Show that

0 ≤ ∂U

∂T
≤ 1

T 2
∆2

max |X |Ne−1/T , (13.7)

where T = 1/β. Deduce that by taking T = Θ(1/N), one can obtain |U(β) − E∗| ≤ ε for
any fixed ε > 0.

1Consider, for instance, the MAX-SAT problem, and let E(x) be the number of unsatisfied clauses
under the assignment x. If the formula under study is satisfiable, then µ∗(x) is proportional to the
product of the characteristic functions associated with the clauses. In the opposite case, no explicit
representation is known.
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In fact, a much larger temperature (smaller β) can be used in many important cases.
We refer to Chapter 2 for examples in which U(β) = E∗ +E1(N) e−β +O(e−2β), with
E1(N) growing polynomially in N . In such cases one expects β = Θ(log N) to be large
enough.

13.2 The Monte Carlo method: Inference via sampling

Consider the statistical inference problem of computing the marginal probability µ(xi =
x) from a joint distribution µ(x), x = (x1, x2, . . . , xN ) ∈ XN . Given L i.i.d. samples
{x(1), . . . , x(L)} drawn from the distribution µ(x), the desired marginal µ(xi = x) can
be estimated as the the fraction of such samples for which xi = x.

‘Almost i.i.d.’ samples from p(x) can be produced, in principle, using the Markov
chain Monte Carlo (MCMC) method of Section 4.5. Therefore the MCMC method can
be viewed as a general-purpose inference strategy which can be applied in a variety of
contexts.

Notice that the locality of the interactions, expressed by the factor graph, is very
useful since it allows one to generate ‘local’ changes in x (e.g. changing only one xi or a
small number of them) easily. This will typically change the value of a few compatibility
functions and hence produce only a small change in p(x) (i.e., in physical terms, in
the energy of x). The possibility of generating, given x, a new configuration close in
energy is important for the MCMC method to work. In fact, moves that increase the
system energy by a large amount are typically rejected within MCMC rules.

One should also be aware that sampling, for instance by the MCMC method,
only allows one to estimate marginals or expectations which involve a small subset of
variables. It would be very hard, for instance, to estimate the probability of a particular
configuration x through the number L(x) of its occurrences in the samples. The reason
is that at least 1/µ(x) samples would be required for us to obtain any accuracy, and
this is typically a number exponentially large in N .

13.2.1 LDPC codes

Consider a code C from one of the LDPC ensembles introduced in Chapter 11, and as-
sume that it has been used to communicate over a binary-input memoryless symmetric
channel with transition probability Q(y|x). As shown in Chapter 6 (see eqn (6.5)), the
conditional distribution of the channel input x, given the output y, reads

µy(x) ≡ P(x|y) =
1

Z(y)
I(x ∈ C)

N∏
i=1

Q(yi|xi) . (13.8)

We can use the explicit representation of the code membership function to write

µy,β(x) =
1

Z(y)

M∏
a=1

I(xia
1
⊕ · · · ⊕ xia

k
= 0)

N∏
i=1

Q(yi|xi) . (13.9)

in order to implement symbol MAP decoding, we must compute the marginals µ
(i)
y (xi)

of this distribution. Let us see how this can be done in an approximate way via MCMC
sampling.
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Unfortunately, the simple MCMC algorithms introduced in Section 4.5 (single bit
flip with acceptance test satisfying detailed balance) cannot be applied in the present
case. In any reasonable LDPC code, each variable xi is involved in at least one parity
check constraint. Suppose that we start the MCMC algorithm from a random config-
uration x distributed according to eqn (13.9). Since x has a non-vanishing probability,
it satisfies all the parity check constraints. If we propose a new configuration where bit
xi is flipped, this configuration will violate all the parity check constraints involving
xi. As a consequence, such a move will be rejected by any rule satisfying detailed
balance. The Markov chain is therefore reducible (each codeword forms a separate
ergodic component), and useless for sampling purposes.

In good codes, this problem is not easily cured by allowing for moves that flip
more than a single bit. The reason is that a number of bits greater than or equal to
the minimum distance must be flipped simultaneously. But as we saw in Section 11.2,
if C is drawn from an LDPC ensemble with variable nodes of degree greater than or
equal to 2, its minimum distance diverges with the block length (logarithmically if the
minimum degree is 2, linearly if this is at least 3). Large moves of this type are likely
to be rejected, because they imply a large, uncontrolled variation in the likelihood∏N

i=1 Q(yi|xi).
A way out of this dilemma consists in ‘softening’ the parity check constraint by

introducing a ‘parity check temperature’ β and the associated distribution

µy,β(x) =
1

Z(y, β)

M∏
a=1

e
−βEa(xia

1
...xia

k
)

N∏
i=1

Q(yi|xi) . (13.10)

Here the energy term Ea(xia
1
. . . xia

k
) takes values 0 if xia

1
⊕ · · · ⊕ xia

k
= 0, and 1

otherwise. In the limit β → ∞, the distribution (13.10) reduces to eqn (13.9). The

idea is now to estimate the marginals of eqn (13.10), µ
(i)
y,β(xi), via MCMC sampling

and then to use the decoding rule

x
(β)
i (y) ≡ arg max

xi

µ
(i)
y,β(xi) . (13.11)

For any finite β, this prescription is certainly suboptimal with respect to symbol MAP
decoding. In particular, the distribution (13.10) gives non-zero weight to words x which
do not belong to the codebook C. On the other hand, one may hope that for β large
enough, the above prescription achieves a close-to-optimal bit error rate.

We can simplify the above strategy further by giving up the objective of approx-

imating the marginal µ
(i)
y,β(xi) within any prescribed accuracy. Instead, we run the

Glauber single-bit-flip MCMC algorithm for a fixed computer time and extract an

estimate of µ
(i)
y,β(xi) from this run. Figure 13.4 shows the results of Glauber dynamics

executed for 2LN steps starting from a uniformly random configuration. At each step,
a bit i is chosen uniformly at random and flipped with a probability

wi(x) =
µy,β(x(i))

µy,β(x(i)) + µy,β(x)
, (13.12)

where x is the current configuration and x(i) is the configuration obtained from x by
flipping the i-th bit.
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Fig. 13.4 Decoding LDPC codes from the (3, 6) ensemble, used over a bynary symmetric

channel with flip probability p, using MCMC sampling. The bit error rate is plotted versus

p. The block length was fixed to N = 2000, and the number of sweeps was 2L. Left : for

L = 100 and several values of the effective inverse temperature β. Right : improvement of the

performance as the number of sweeps increases at fixed β = 1.5.

Exercise 13.2 Derive an explicit expression for wi(x), and show that this probability can
be computed with a number of operations independent of the block length.

In this context, one often refers to a sequence of N successive updates as a sweep
(on average, one flip is proposed for each bit in a sweep). The value of xi is recorded
in each of the last L sweeps, and the decoder output is xi = 0 or xi = 1 depending on
which value occurs more often in this record.

The data in Fig. 13.4 refers to communication over a binary symmetric channel
with flip probability p. In the left frame, we have fixed L = 100 and used several values
of β. At small β, the resulting bit error rate is almost indistinguishable from that in
the absence of coding, namely Pb = p. As β increases, parity checks are enforced
more and more strictly and the error-correcting capabilities improve at low noise. The
behaviour is qualitatively different for larger noise levels: for p � 0.05, the bit error
rate increases with β. The reason for this change is essentially dynamical. The Markov
chain used for sampling from the distribution (13.10) decorrelates more and more
slowly from its initial condition. Since the initial condition is uniformly random, thus
yielding Pb = 1/2, the bit error rate obtained through our algorithm approaches 1/2
at large β (and above a certain threshold of p). This interpretation is confirmed by
the data in the right frame of the figure.

We shall see in Chapter 15 that in the large-block-length limit, the threshold for
errorless bit MAP decoding in this case is predicted to be pc ≈ 0.101. Unfortunately,
because of its slow dynamics, our MCMC decoder cannot be used in practice if the
channel noise is close to this threshold.

The sluggish dynamics of the single spin-flip MCMC for the distribution (13.10)
is partially related to its reducibility for the model with hard constraints (13.9). An
initial intuitive picture is as follows. At large β, codewords correspond to isolated
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‘lumps’ of probability with µy,β(x) = Θ(1), separated by improbable regions such that
µy,β(x) = Θ(e−2β) or smaller. In order to decorrelate, the Markov chain must spend a
long time (at least of the order of the minimum distance of the code) in an improbable
region, and this happens only very rarely. This rough explanation is neither complete
nor entirely correct, but we shall refine it in Chapters 15 and 21.

13.2.2 Ising model

Some of the basic mechanisms responsible for the slowing down of Glauber dynamics
can be understood with simple statistical-mechanics models. In this subsection, we
consider a ferromagnetic Ising model with an energy function

E(σ) = −
∑

(ij)∈G

σiσj . (13.13)

Here G is an ordinary graph with N vertices, whose precise structure will depend on
the particular example. The Monte Carlo method is applied to the problem of sampling
from the Boltzmann distribution µβ(σ) at an inverse temperature β.

As in the previous subsection, we focus on Glauber (or heat bath) dynamics, but
rescale the time: in an infinitesimal interval dt, a flip is proposed with probability Ndt
at a uniformly random site i. The flip is accepted with the usual heat bath probability
(here, σ is the current configuration and σ(i) is the configuration obtained by flipping
the spin σi),

wi(σ) =
µβ(σ(i))

µβ(σ) + µβ(σ(i))
. (13.14)

Let us consider equilibrium dynamics first. We assume, therefore, that the initial
configuration σ(0) is sampled from the equilibrium distribution µβ( · ) and ask how
many Monte Carlo steps must be performed in order to obtain an effectively indepen-
dent random configuration. A convenient way of monitoring the equilibrium dynamics
consists in computing the time correlation function

CN (t) ≡ 1

N

N∑
i=1

〈σi(0)σi(t)〉 . (13.15)

Here the average 〈 · 〉 is taken with respect to the realization of the Monte Carlo
dynamics, as well as with respect to the initial state σ(0). Note that (1 − C(t))/2
is the average fraction of spins which differ in the configurations σ(0) and σ(t). One
therefore expects C(t) to decrease with t, asymptotically reaching 0 when σ(0) and
σ(t) are well decorrelated (in this model, each spin is equally likely to take a value +1
or −1).

The reader may wonder how one can sample σ(0) from the equilibrium (Boltzmann)
distribution. As already suggested in Section 4.5, within the Monte Carlo approach
one can obtain an ‘almost’ equilibrium configuration by starting from an arbitrary
configuration and running the Markov chain for sufficiently many steps. In practice,
we initialize our chain from a uniformly random configuration (i.e. a β = 0, or infinite-
temperature, equilibrium configuration) and run the dynamics for tw sweeps. We call
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Fig. 13.5 Equilibrium correlation function for an Ising model on a two-dimensional grid of

side L. Left : high temperature, T = 3. Right : low temperature, T = 2.

the configuration obtained after this process σ(0) and we then run for t more sweeps
in order to measure C(t). The choice of tw is, of course, crucial: in general, the above
procedure will produce a configuration σ(0) whose distribution is not the equilibrium
one, and depends on tw. The measured correlation function will also depend on tw.
Determining how large tw must be in order to obtain a good enough approximation
to C(t) is a subject of intense theoretical work. A simple empirical rule is to measure
C(t) for a given large tw, then double tw and check that nothing has changed.

Exercise 13.3 Using the instructions above, the reader is invited to write an MCMC code
for the Ising model on a general graph and reproduce the data in the following examples.

Example 13.3 We begin by considering an Ising model on a two-dimensional grid of
side L, with periodic boundary conditions. The vertex set is {(x1, x2) : 1 ≤ xa ≤ L}.
Edges join any two vertices at a (Euclidean) distance one, and also join the vertices
(L, x2) to (1, x2) and (x1, L) to (x1, 1). We denote by CL(t) the correlation function
for such a graph.

In Chapter 2, we saw that this model undergoes a phase transition at a critical
temperature 1/βc = Tc = 2/ log(1 +

√
2) ≈ 2.269185. The correlation functions

plotted in Fig. 13.5 are representative of the qualitative behaviour in the high-
temperature (left) and low-temperature (right) phases. At high temperature, CL(t)
depends only mildly on the linear size L of the system. As L increases, the correla-
tion function rapidly approaches a limit curve C(t) which decreases from 1 to 0 on
a finite time scale (more precisely, for any δ > 0, CL(t) decreases below δ in a time
which is bounded as L → ∞).
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Fig. 13.7 A rooted ternary tree with n = 4 generations and N = 40 vertices.

At low temperature, there exists no limiting curve C(t) decreasing from 1 to 0 such
that CL(t) → C(t) as L → ∞. The time required for the correlation function CL(t) to
get close to 0 is much larger than in the high-temperature phase. More importantly,
it depends strongly on the system size. This suggests that strong cooperative effects
are responsible for the slowing down of the dynamics.

Example 13.4 We take G as a random graph from the ensemble GN (2,M), with
M = Nα. As we shall see in Chapter 17, this model undergoes a phase transition
when N → ∞ at a critical temperature βc, satisfying the equation 2α tanhβ = 1. In
Fig. 13.6, we present numerical data for a few values of N , and α = 2 (corresponding
to a critical temperature Tc ≈ 3.915230).

The curves presented here are representative of the high-temperature and low-
temperature phases. As in the previous example, the relaxation time scale depends
strongly on the system size at low temperature.



��� Bridges: Inference and the Monte Carlo method

 0

 0.2

 0.4

 0.6

 1  2  4  8  16  32

C
(t

)

t

n=4
n=5
n=6
n=7

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  5  25  125  625

C
(t

)

t

n=4
n=5
n=6
n=7

Fig. 13.8 Equilibrium correlation function for a ferromagnetic Ising model on a regular

ternary tree. Left : high temperature, T = 2. Right : low temperature, T = 1.25.

Example 13.5 We take G as a rooted ternary tree with n generations (see
Fig. 13.7). This tree contains N = (3n − 1)/(3 − 1) vertices and N − 1 edges. Using
the methods of Chapter 17, one can show that this model undergoes a phase tran-
sition at a critical temperature βc, which satisfies the equation 3(tanhβ)2 = 1. We
therefore get Tc ≈ 1.528651. In this case the dynamics of a spin depends strongly
upon its distance from the root. In particular, leaf spins are much less constrained
than the others. In order to single out the ‘bulk’ behaviour, we modify the definition
of the correlation function (13.15) by averaging only over the spins σi in the first
n = 3 generations. We keep n fixed as n → ∞.

As in the previous examples, CN (t) (see Fig. 13.8) has a well-defined N → ∞
limit in the high-temperature phase, and is strongly size-dependent at low temper-
ature.

We can summarize the last three examples by comparing the size dependence of
the relaxation times scale in the respective low-temperature phases. A simple way to
define such a time scale is to look for the smallest time such that C(t) decreases below
some given threshold:

τ(δ;N) = min{ t > 0 such that CN (t) ≤ δ} . (13.16)

In Fig. 13.9, we plot estimates obtained from the data presented in the previous
examples, using δ = 0.2, and restricting ourselves to the data in the low-temperature
(ferromagnetic) phase. The size dependence of τ(δ;N) is very clear. However, it is much
stronger for the random-graph and square-grid cases (and, in particular, in the former
of these) than for the tree case. In fact, it can be shown that, in the ferromagnetic
phase,

τ(δ;N) =

⎧⎨⎩
exp{Θ(N)} random graph,

exp{Θ(
√

N)} square lattice,
exp{Θ(log N)} tree.

(13.17)

Section 13.3 will explain the origin of these different behaviours.
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Fig. 13.10 Minimization of the number of unsatisfied clauses in random 3-SAT formulae via

Glauber dynamics. The number of variables N = 1000 was kept fixed. Here we take T = 0.25

and, from top to bottom L = 2.5× 103, 5× 103, 104, 2× 104, 4× 104, and 8× 104 iterations.

The inset show the small-α regime in greater detail.

13.2.3 MAX-SAT

Given a satisfiability formula over N Boolean variables (x1, . . . , xN ) = x, xi ∈ {0, 1},
the MAX-SAT optimization problem requires one to find a truth assignment which
satisfies the largest number of clauses. We denote by xa the set of variables involved
in the a-th clause, and by Ea(xa) a function of the truth assignment that takes the
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Fig. 13.11 Same numerical simulation as in Fig. 13.10. Here we fix L = 4 · 104 and take,

from top to bottom at large α, T = 0.15, 0.20, 0.25, 0.30, 0.35.

value 0 if the clause is satisfied and 1 otherwise. With these definitions, the MAX-SAT
problem can be rephrased as the problem of minimizing an energy function of the form
E(x) =

∑
a Ea(xa), and we can therefore apply the general approach discussed after

eqn (13.6).
We thus consider the Boltzmann distribution µβ(x) = exp[−βE(x)]/Z and try

to sample a configuration from µβ(x) at large enough β using the MCMC method.
The assignment x ∈ {0, 1}N is initialized uniformly at random. At each time step,
a variable index i is chosen uniformly at random and the corresponding variable is
flipped according to the heat bath rule

wi(x) =
µβ(x(i))

µβ(x) + µβ(x(i))
. (13.18)

As above, x(i) denotes the assignment obtained from x by flipping the i-th variable.
The algorithm is stopped after LN steps (i.e. L sweeps), and the current assignment
x∗ (and the corresponding cost E∗ = E(x∗)) is stored in memory.

In Fig. 13.10 and 13.11, we present the outcome of such an algorithm when applied
to random 3-SAT formulae from the ensemble SATN (3,M) with α = M/N . Here
we focus on the mean cost 〈E∗〉 of the returned assignment. One expects that, as
N → ∞ with fixed L, the cost scales as 〈E∗〉 = Θ(N), and order-N fluctuations of E∗

away from the mean become exponentially unlikely. At low enough temperature, the
behaviour depends dramatically on the value of α. For small α, E∗/N is small and
grows rather slowly with α. Furthermore, it seems to decrease to 0 as β increases. Our
strategy is essentially successful and finds an (almost) satisfying assignment. Above
α ≈ 2 to 3, E∗/N starts to grow more rapidly with α, and does not seem to vanish as
β → ∞. Even more striking is the behaviour as the number of sweeps L increases. In
the small-α regime, E∗/N decreases rapidly to some roughly L-independent saturation
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Fig. 13.12 Random walk in a double-well energy landscape. After how many steps is the

walker distributed (approximately) according to the equilibrium distribution?

value, already reached after about 103 sweeps. At large α there seems also to be an
asymptotic value, but this is reached much more slowly, and even after 105 sweeps
there is still space for improvement.

13.3 Free-energy barriers

The examples above show that the time scale required for a Monte Carlo algorithm
to produce (approximately) statistically independent configurations may vary wildly
depending on the particular problem at hand. The same is true if we consider the time
required in order to generate a configuration distributed approximately according to
the equilibrium distribution, starting from an arbitrary initial condition.

There exist various sophisticated techniques for estimating these time scales an-
alytically, at least in the case of unfrustrated problems. In this section, we discuss a
simple argument which is widely used in statistical physics as well as in probability
theory, that of free-energy barriers. The basic intuition can be conveyed by simple
examples.

Example 13.6 Consider a particle moving on the line of integers, and denote its
position by x ∈ Z. Each point x on the line has an energy E(x) ≥ Egs associated
with it, as depicted in Fig. 13.12. At each time step, the particle attempts to move
to one of the adjacent positions (either to the right or to the left) with probability
1/2. If we denote by x′ the position that the particle is trying to move to, the move
is accepted according to the Metropolis rule

w(x → x′) = min
{

e−β[E(x′)−E(x)], 1
}

. (13.19)

The equilibrium distribution is of course given by Boltzmann’s law µβ(x) =
exp[−βE(x)]/Z(β).

Suppose we start with, say, x = 10. How many steps must we wait for in order
that the random variable x will be distributed according to µβ(x)? It is intuitively
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Fig. 13.13 How much time does a random walk need to explore this graph?

clear that, in order to equilibrate, the particle must spend some amount of time
both in the right and in the left well, and therefore it must visit the site x = 0. At
equilibrium, this is visited on average a fraction µβ(0) of the time. This gives an
estimate of the time needed to see the system change from one well to the other:

τ ≈ 1

µβ(0)
. (13.20)

One is often interested in the low-temperature limit of τ . Assuming that E(x)
diverges fast enough as |x| → ∞, the leading exponential behaviour of Z is
Z(β)

.
= e−βEgs , and therefore τ

.
= exp{β∆E}, where ∆E = E(0)−Egs is the energy

barrier to be crossed in order to pass from one well to the other. A low-temperature
asymptotics of the type τ

.
= exp{β∆E} is referred to as an Arrhenius law.

Exercise 13.4 Consider a random walk on the graph in Fig. 13.13 (two cliques with n+1
vertices, joined by a k-fold degenerate edge). At each time step, the walker chooses one of
the adjacent edges uniformly at random and moves along it to the next node. What is the
stationary distribution µeq(x), x ∈ {1, . . . , 2n}? Show that the probability to be at node 1
is 1

2
(k + n − 1)/(n2 + k − n).
Suppose we start with a walker distributed according to µeq(x). Using an argument

similar to that in the previous example, estimate the number of time steps τ that one must
wait for in order to obtain an approximatively independent value of x. Show that τ � 2n
when n � k, and interpret this result. In this case the k-fold degenerate edge joining the
two cliques is called a bottleneck, and one speaks of an entropy barrier.

In order to obtain a precise mathematical formulation of the intuition gained in
the preceding examples, we must define what we mean by ‘relaxation time’. We shall
focus here on ergodic continuous-time Markov chains on a finite state space X . Such
a chain is described by its transition rates w(x → y). If, at time t, the chain is in a
state x(t) = x ∈ X , then, for any y = x, the probability that the chain is in a state y,
‘just after’ time t, is
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P {x(t + dt) = y | x(t) = x} = w(x → y)dt . (13.21)

Such a chain is said to satisfy the detailed balance condition (or to be reversible) if,
for any x = y, µ(x)w(x → y) = µ(y)w(y → x).

Exercise 13.5 Consider a discrete-time Markov chain and modify it as follows. Instead of
waiting a unit time ∆t between successive steps, wait an exponentially distributed random
time (i.e. ∆t is a random variable with pdf p(∆t) = exp(−∆t)). Show that the resulting
process is a continuous-time Markov chain. What are the corresponding transition rates?

Let x �→ O(x) be an observable (a function of the state), define the shorthand
O(t) = O(x(t)), and assume x(0) to be drawn from the stationary distribution. If
the chain satisfies the detailed balance condition, one can show that the correlation
function CO(t) = 〈O(0)O(t)〉 − 〈O(0)〉〈O(t)〉 is non-negative and monotonically de-
creasing, and that CO(t) → 0 as t → ∞. The exponential autocorrelation time for the
observable O, denoted by τO,exp, is defined by

1

τO,exp
= − lim

t→∞

1

t
log CO(t) . (13.22)

The time τO,exp depends on the observable and tells us how fast its autocorrelation
function decays to 0: CO(t) ∼ exp(−t/τO,exp). It is meaningful to look for the ‘slowest’
observable and to define the exponential autocorrelation time (also called the
inverse spectral gap, or, for brevity, the relaxation time) of the Markov chain as

τexp = sup
O

{ τO,exp } . (13.23)

The idea of a bottleneck, and its relationship to the relaxation time, is clarified by
the following theorem.

Theorem 13.7 Consider an ergodic continuous-time Markov chain with state space
X , and with transition rates {w(x → y)} satisfying detailed balance with respect to the
stationary distribution µ(x). Given any two disjoint sets of states A,B ⊂ X , define
the probability flux between them as W (A → B) =

∑
x∈A, y∈B µ(x)w(x → y). Then

τexp ≥ 2
µ(x ∈ A)µ(x ∈ A)

W (A → X\A)
. (13.24)

In other words, a lower bound on the correlation time can be constructed by looking
for ‘bottlenecks’ in the Markov chain, i.e. partitions of the configuration space into
two subsets. The lower bound will be good (and the Markov chain will be slow) if each
of the subsets carries a reasonably large probability at equilibrium, but jumping from
one to the other is unlikely.
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Fig. 13.14 Random walk in an asymmetric double well.

Example 13.8 Consider a random walk in the double-well energy landscape of Fig.
13.12, where we confine the random walk to some large interval [−M : M ] in order
to have a finite state space. Let us apply Theorem 13.7, by taking A = {x ≥ 0}. We
have W (A → X\A) = µβ(0)/2 and, by symmetry, µβ(x ∈ A) = 1

2 (1 + µβ(0)). The
inequality (13.24) yields

τexp ≥ 1 − µβ(0)2

µβ(0)
. (13.25)

Expanding the right-hand side in the low-temperature limit, we get τexp ≥
2 eβ∆E (1 + Θ(e−cβ)).

Exercise 13.6 Apply Theorem 13.7 to a random walk in the asymmetric double-well en-
ergy landscape of Fig. 13.14. Does the Arrhenius law τexp ∼ exp(β∆E) apply to this case?
What is the relevant energy barrier ∆E?

Exercise 13.7 Apply Theorem 13.7 to estimate the relaxation time of a random walk on
the graph in Exercise 13.4.

Example 13.9 Consider Glauber dynamics for an Ising model on a two-dimensional
L×L grid, with periodic boundary conditions, discussed earlier in Example 13.3. In
the ferromagnetic phase, the distribution of the total magnetization M(σ) ≡∑i σi,
N = L2, is concentrated around the values ±NM+(β), where M+(β) is the
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spontaneous magnetization. It is natural to expect that the bottleneck will corre-
spond to the global magnetization changing sign. Assuming, for instance, that L is
odd, let us define

A = {σ : M(σ) ≥ 1} , Ā = X\A = {σ : M(σ) ≤ −1} . (13.26)

Using the symmetry under spin reversal, Theorem 13.7 yields

τexp ≥

⎧⎨⎩2
∑

σ :M(σ)=1

∑
i :σi=1

µβ(σ) w(σ → σ(i))

⎫⎬⎭
−1

. (13.27)

A good estimate of this sum can be obtained by noticing that, for any σ, w(σ →
σ(i)) ≥ w(β) ≡ 1

2 (1 − tanh 4β). Moreover, for any σ entering the sum, there
are exactly (L2 + 1)/2 sites i such that σi = +1. We therefore get τexp ≥
(L2w(β)

∑
σ :M(σ)=1 µβ(σ))−1 One suggestive way of writing this lower bound con-

sists in defining a constrained free energy as follows:

FL(m;β) ≡ − 1

β
log

⎧⎨⎩ ∑
σ : M(σ)=m

exp[−βE(σ)]

⎫⎬⎭ . (13.28)

If we denote the usual (unconstrained) free energy by FL(β), our lower bound can
be written as

τexp ≥ 1

L2w(β)
exp{β[FL(1;β) − FL(β)]} . (13.29)

Apart from the pre-exponential factors, this expression has the same form as the
Arrhenius law, the energy barrier ∆E being replaced by a ‘free-energy barrier’
∆FL(β) ≡ FL(1;β) − FL(β).

We are left with the task of estimating ∆FL(β). Let us start by consider-
ing the β → ∞ limit. In this regime, FL(β) is dominated by the all-plus and
all-minus configurations, with energy Egs = −2L2. Analogously, FL(1;β) is dom-
inated by the lowest-energy configurations satisfying the constraint M(σ) = 1.
An example of such a configuration is that shown in Fig. 13.15, whose energy is
E(σ) = −2L2 + 2(2L + 2). Of course, all configurations obtained from that in
Fig. 13.15, through a translation, rotation, or spin inversion have the same energy.
We therefore find ∆FL(β) = 2(2L + 2) + Θ(1/β).

It is reasonable to guess (and it can be proved rigorously) that the size depen-
dence of ∆FL(β) remains unchanged through the whole low-temperature phase:

∆FL(β) � 2γ(β)L , (13.30)

where the surface tension γ(β) is strictly positive at any β > βc, and vanishes as
β ↓ βc. This, in turn, implies the following lower bound on the correlation time:

τexp ≥ exp{2βγ(β)L + o(L)} . (13.31)

This bound matches the numerical simulations in the previous section and can be
proved to give the correct asymptotic size dependence.
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Fig. 13.15 Ferromagnetic Ising model on a 9 × 9 grid with periodic boundary conditions.

Open circles correspond to σi = +1, and filled circles to σi = −1. The configuration shown

here has an energy E(σ) = −122 and a magnetization M(σ) = +1.

Exercise 13.8 Consider the ferromagnetic Ising model on a random graph from GN (2, M)
that we studied in Example 13.4, and assume, for definiteness, N even. Arguing as above,
show that

τexp ≥ CN (β) exp{β[FN (0; β) − FN (β)]} . (13.32)

Here FN (m; β) is the free energy of the model constrained to M(σ) = m, FN (β) is the
unconstrained free energy, and CN (β) is a constant which grows, with high probability,
slower than exponentially with N .

For a graph G, let δ(G) be the minimum number of bicoloured edges if we colour half
of the vertices red and half blue. Show that

FN (0; β) − FN (β) = 2δ(GN ) + Θ(1/β) . (13.33)

The problem of computing δ(G) for a given graph G is referred to as the balanced min-
imum cut (or graph-partitioning) problem, and is known to be NP-complete. For a
random graph in GN (2, M), it is known that δ(GN ) = Θ(N) with high probability in the
limit N → ∞, M → ∞, with α = M/N fixed and α > 1/2. (If α < 1/2, the graph does not
contain a giant component and, obviously, δ(G) = o(N).)

This claim can be substantiated through the following calculation. Given a spin config-
uration σ = (σ1, . . . , σN ) with

P
i σi = 0, let ∆G(σ) be the number of edges (i, j) in G such

that σi �= σj . Then

P {δ(G) ≤ n} = P {∃σ such that ∆G(σ) ≤ n} ≤
nX

m=0

ENG,m , (13.34)

where NG,m denotes the number of spin configurations with ∆G(σ) = m. Show that

ENG,m =

 
N

N/2

! 
N

2

!−M  
M

m

!„
N2

4

«m
" 

N

2

!
− N2

4

#M−m

. (13.35)

Estimate this expression for large N and M with α = M/N fixed, and show that it implies
δ(G) ≥ c(α)N with high probability, where c(α) > 0 for α > 1/2.
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Exercise 13.9 Repeat the same arguments as above for the case of a regular ternary tree
described in Example 13.5, and derive a bound of the form (13.32). Show that, at low
temperature, the Arrhenius law holds, i.e. τexp ≥ exp{β∆EN + o(β)}. How does ∆EN

behave for large N?
[Hint: An upper bound can be obtained by constructing a sequence of configurations

from the all-plus to the all-minus ground state such that any two consecutive configurations
differ by a single spin flip.]

Notes

For introductions to Bayesian networks, see Jordan (1998) and Jensen (1996). Bayesian
inference was proved to be NP-hard by Cooper (1990). In Dagm and Luby (1993), it
was shown that approximate Bayesian inference remains NP-hard.

Decoding of LDPC codes via Glauber dynamics was considered by Franz et al.

(2002). Satisfiability problems were considered by Svenson and Nordahl (1999).
The Arrhenius law and the concept of an energy barrier (or ‘activation energy’)

were discovered by the Swedish chemist Svante Arrhenius in 1889, in his study of
chemical kinetics. An introduction to the analysis of Markov chain Monte Carlo meth-
ods (with special emphasis on enumeration problems) and their equilibration time
can be found in Jerrum and Sinclair (1996) and Sinclair (1998). Geometric techniques
for bounding the spectral gap are also discussed in Diaconis and Stroock (1991) and
Diaconis and Saloff-Coste (1993). A book in preparation (Aldous and Fill, 2008) pro-
vides a complete exposition of the subject from a probabilistic point of view. For a
mathematical-physics perspective, we refer to the lectures by Martinelli (1999). The
rather basic Theorem 13.7 can be found in any of these references.

For an early treatment of the Glauber dynamics of an Ising model on a tree,
see Henley (1986). This paper contains a partial answer to Exercise 13.9. Rigorous
estimates for this problem have been proved by Berger et al. (2005) and Martinelli et

al. (2004).
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Belief propagation

Consider the ubiquitous problem of computing marginals of a graphical model with N
variables x = (x1, . . . , xN ) taking values in a finite alphabet X . The naive algorithm,
which sums over all configurations, takes a time of order |X |N . The complexity can
be reduced dramatically when the underlying factor graph has some special structure.
One extreme case is that of tree factor graphs. On trees, marginals can be computed
in a number of operations which grows linearly with N . This can be done through
a ‘dynamic programming’ procedure that recursively sums over all variables, starting
from the leaves and progressing towards the ‘centre’ of the tree.

Remarkably, such a recursive procedure can be recast as a distributed ‘message-
passing’ algorithm. Message-passing algorithms operate on ‘messages’ associated with
edges of the factor graph, and update them recursively through local computations
done at the vertices of the graph. The update rules that yield exact marginals on trees
have been discovered independently in several different contexts: statistical physics
(under the name ‘Bethe–Peierls approximation’), coding theory (the ‘sum–product’
algorithm), and artificial intelligence (‘belief propagation’, BP). Here we shall adopt
the artificial-intelligence terminology.

This chapter gives a detailed presentation of BP and, more generally, message-
passing procedures, which provide one of the main building blocks that we shall use
throughout the rest of the book. It is therefore important that the reader has a good
understanding of BP.

It is straightforward to prove that BP computes marginals exactly on tree fac-
tor graphs. However, it was found only recently that it can be extremely effective on
loopy graphs as well. One of the basic intuitions behind this success is that BP, being
a local algorithm, should be successful whenever the underlying graph is ‘locally’ a
tree. Such factor graphs appear frequently, for instance in error-correcting codes, and
BP turns out to be very powerful in this context. However, even in such cases, its
application is limited to distributions such that far-apart variables become approxi-
mately uncorrelated. The onset of long-range correlations, typical of the occurrence of
a phase transition, leads generically to poor performance of BP. We shall see several
applications of this idea in the following chapters.

We introduce the basic ideas in Section 14.1 by working out two simple examples.
The general BP equations are stated in Section 14.2, which also shows how they provide
exact results on tree factor graphs. Section 14.3 describes an alternative message-
passing procedure, the max-product (or, equivalently, min-sum) algorithm, which can
be used in optimization problems. In Section 14.4, we discuss the use of BP in graphs
with loops. In the study of random constraint satisfaction problems, BP messages
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ν̂→j ν̂j←

B

j

j

Fig. 14.1 Top: the factor graph of a one-dimensional Ising model in an external field. Bottom:

the three messages arriving at site j describe the contributions to the probability distribution

of σj due to the left chain (bν→j), the right chain (bνj←), and the external field B.

become random variables. The study of their distribution provides a large amount of
information about such instances and can be used to characterize the corresponding
phase diagram. The time evolution of these distributions is known under the name
of ‘density evolution’, and the fixed-point analysis of them is done by the replica-
symmetric cavity method. Both are explained in Section 14.6.

14.1 Two examples

14.1.1 Example 1: Ising chain

Consider the ferromagnetic Ising model on a line. The variables are Ising spins (σ1, . . . ,
σN ) = σ, with σi ∈ {+1,−1}, and their joint distribution takes the Boltzmann form

µβ(σ) =
1

Z
e−βE(σ) , E(σ) = −

N−1∑
i=1

σiσi+1 − B
N∑

i=1

σi . (14.1)

The corresponding factor graph is shown in Figure 14.1.
Let us now compute the marginal probability distribution µ(σj) of spin σj . We

shall introduce three ‘messages’ arriving at spin j, representing the contributions to
µ(σj) from each of the function nodes which are connected to i. More precisely, we
define

ν̂→j(σj) =
1

Z→j

∑
σ1...σj−1

exp

{
β

j−1∑
i=1

σiσi+1 + βB

j−1∑
i=1

σi

}
,

ν̂j←(σj) =
1

Zj←

∑
σj+1...σN

exp

⎧⎨⎩β
N−1∑
i=j

σiσi+1 + βB
N∑

i=j+1

σi

⎫⎬⎭ . (14.2)

Messages are understood to be probability distributions and thus to be normalized.
In the present case, the constants Z→j , Zj← are set by the conditions ν̂→j(+1) +
ν̂→j(−1) = 1, and ν̂j←(+1) + ν̂j←(−1) = 1. In the following, when dealing with
normalized distributions, we shall avoid writing the normalization constants explicitly
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and instead use the symbol ∼= to denote ‘equality up to a normalization’. With this
notation, the first of the above equations can be rewritten as

ν̂→j(σj) ∼=
∑

σ1...σj−1

exp

{
β

j−1∑
i=1

σiσi+1 + βB

j−1∑
i=1

σi

}
. (14.3)

By rearranging the summation over spins σi, i = j, the marginal µ(σj) can be
written as

µ(σj) ∼= ν̂→j(σj) eβBσj ν̂j←(σj) . (14.4)

In this expression, we can interpret each of the three factors as a ‘message’ sent to
j from one of the three function nodes connected to the variable j. Each message
coincides with the marginal distribution of σj in a modified graphical model. For
instance, ν̂→j(σj) is the distribution of σj in the graphical model obtained by removing
all of the factor nodes adjacent to j except for the one on its left (see Fig. 14.1).

This decomposition is interesting because the various messages can be computed
iteratively. Consider, for instance, ν̂→i+1. It is expressed in terms of ν̂→i as

ν̂→i+1(σ) ∼=
∑
σ′

ν̂→i(σ
′) eβσ′σ+βBσ′

. (14.5)

Furthermore, ν̂→1 is the uniform distribution over {+1,−1}: ν̂→1(σ) = 1
2 for σ = ±1.

Equation (14.5) allows one to compute all of the messages ν̂→i, i ∈ {1, . . . , N}, in O(N)
operations. A similar procedure yields ν̂i←, by starting from the uniform distribution
ν̂N← and computing ν̂i−1← from ν̂i← recursively. Finally, eqn (14.4) can be used to
compute all of the marginals µ(σj) in linear time.

All of the messages are distributions over binary variables and can thus be param-
eterized by a single real number. One popular choice for such a parameterization is to
use the log-likelihood ratio1

u→i ≡
1

2β
log

ν̂→i(+1)

ν̂→i(−1)
. (14.6)

In statistical-physics terms, u→i is an ‘effective (or local) magnetic field’: ν̂→i(σ) ∼=
eβu→iσ. Using this definition (and noticing that it implies ν̂→i(σ) = 1

2 (1+
σ tanh(βu→i))), eqn (14.5) becomes

u→i+1 = f (u→i + B) , (14.7)

where the function f(x) is defined as

f(x) =
1

β
atanh [tanh(β) tanh(βx)] . (14.8)

The mapping u �→ f(u + B) is differentiable, with its derivative bounded by
tanhβ < 1. Therefore the fixed-point equation u = f(u + B) has a unique solu-
tion u∗, and u→i goes to u∗ when i → ∞. Consider a very long chain, and a node

1Note that our definition differs by a factor 1/2β from the standard definition of the log-likelihood
in statistics. This factor is introduced to make contact with statistical-physics definitions.
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Fig. 14.2 Left: a simple parity check code with seven variables and three checks. Right: the

factor graph corresponding to the problem of finding the sent codeword, given a received

message.

in the bulk j ∈ [εN, (1 − ε)N ]. Then, as N → ∞, both u→j and uj← converge
to u∗, so that 〈σj〉 → tanh[β(2u∗ + B)]. This is the bulk magnetization. If, on the
other hand, we consider a spin on the boundary, we get a smaller magnetization
〈σ1〉 = 〈σN 〉 → tanh[β(u∗ + B)].

Exercise 14.1 Use the recursion (14.7) to show that, when N and j go to infinity, 〈σj〉 =
M + O(λj , λN−j), where M = tanh(2u∗ + B) and λ = f ′(u∗ + B). Compare this with the
treatment of the one-dimensional Ising model in Section 2.5.

The above method can be generalized to the computation of joint distributions of
two or more variables. Consider, for instance, the joint distribution µ(σj , σk), for k > j.
Since we already know how to compute the marginal µ(σj), it is sufficient to consider
the conditional distribution µ(σk|σj). For each of the two values of σj , the conditional
distribution of σj+1, . . . , σN takes a form analogous to eqn (14.1) but with σj fixed.
Therefore, the marginal µ(σk|σj) can be computed through the same algorithm as
before. The only difference is in the initial condition, which becomes ν̂→j(+1) = 1,
ν̂→j(−1) = 0 (if we condition on σj = +1) and ν̂→j(+1) = 0, ν̂→j(−1) = 1 (if we
condition on σj = −1).

Exercise 14.2 Compute the correlation function 〈σjσk〉, when j, k ∈ [Nε, N(1 − ε)] and

N → ∞. Check that when B = 0, 〈σjσk〉 = (tanh β)|j−k|. Find a simpler derivation of this
last result.
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14.1.2 Example 2: A tree-parity-check code

Our second example deals with a decoding problem. Consider the simple linear code
whose factor graph is reproduced in the left frame of Fig. 14.2. It has a block length
N = 7, and the codewords satisfy the three parity check equations

x0 ⊕ x1 ⊕ x2 = 0 , (14.9)

x0 ⊕ x3 ⊕ x4 = 0 , (14.10)

x0 ⊕ x5 ⊕ x6 = 0 . (14.11)

One of the codewords is sent through a channel of the type BSC(p), defined earlier.
Assume that the received message is y = (1, 0, 0, 0, 0, 1, 0). The conditional distribution
for x to be the transmitted codeword, given the received message y, takes the usual
form µy(x) = P(x|y):

µy(x) ∼= I(x0 ⊕ x1 ⊕ x2 = 0)I(x0 ⊕ x3 ⊕ x4 = 0)I(x0 ⊕ x5 ⊕ x6 = 0)

6∏
i=0

Q(yi|xi) ,

where Q(0|0) = Q(1|1) = 1 − p and Q(1|0) = Q(0|1) = p. The corresponding factor
graph is drawn in the right frame of Fig. 14.2.

In order to implement symbol MAP decoding, (see Chapter 6), we need to compute
the marginal distribution of each bit. The computation is straightforward, but it is
illuminating to recast it as a message-passing procedure similar to that in the Ising
chain example. Consider, for instance, bit x0. We start from the boundary. In the
absence of the check a, the marginal of x1 would be ν1→a = (1 − p, p) (we use here
the convention of writing distributions ν(x) over a binary variable as two-dimensional
vectors (ν(0), ν(1))). This is interpreted as a message sent from variable 1 to check a.

Variable 2 sends an analogous message ν2→a to a (in the present example, this
happens to be equal to ν1→a). Knowing these two messages, we can compute the
contribution to the marginal probability distribution of variable x0 arising from the
part of the factor graph containing the whole branch connected to x0 through the
check a:

ν̂a→0(x0) ∼=
∑

x1,x2

I(x0 ⊕ x1 ⊕ x2 = 0) ν1→a(x1)ν2→a(x2) . (14.12)

Clearly, ν̂a→0(x0) is the marginal distribution of x0 in a modified factor graph that
does not include either of the factor nodes b or c, and in which the received symbol
y0 has been erased. This is analogous to the messages ν̂→j(σj) used in the Ising chain
example. The main difference is that the underlying factor graph is no longer a line,
but a tree. As a consequence, the recursion (14.12) is no longer linear in the incoming
messages. Using the rule (14.12), and analogous ones for ν̂b→0(x0) and ν̂c→0(x0), we
obtain

ν̂a→0 = (p2 + (1 − p)2, 2p(1 − p)) ,

ν̂b→0 = (p2 + (1 − p)2, 2p(1 − p)) ,

ν̂c→0 = (2p(1 − p), p2 + (1 − p)2) .
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The marginal probability distribution of the variable x0 is finally obtained by taking
into account the contributions of each subtree, together with the channel output for
bit x0:

µ(x0) ∼= Q(y0|x0) ν̂a→0(x0)ν̂b→0(x0)ν̂c→0(x0)
∼=
(
2p2(1 − p)[p2 + (1 − p)2]2, 4p2(1 − p)3[p2 + (1 − p)2]

)
.

In particular, the MAP decoding of the symbol x0 is always x0 = 0 in this case, for
any p < 1/2.

An important fact emerges from this simple calculation. Instead of performing a
summation over 27 = 128 configurations, we were able to compute the marginal at x0

by doing six summations (one for every factor node a, b, c and for every value of x0),
each one over two summands (see eqn (14.12)). Such complexity reduction was achieved
by merely rearranging the order of sums and multiplications in the computation of the
marginal.

Exercise 14.3 Show that the message ν0→a(x0) is equal to (1/2, 1/2), and deduce that
µ(x1) ∼= ((1 − p), p).

14.2 Belief propagation on tree graphs

We shall now define belief propagation and analyse it in the simplest possible setting:
tree-graphical models. In this case, it solves several computational problems in an
efficient and distributed fashion.

14.2.1 Three problems

Let us consider a graphical model such that the associated factor graph is a tree (we call
this model a tree-graphical model). We use the same notation as in Section 9.1.1.
The model describes N random variables (x1, . . . , xN ) ≡ x taking values in a finite
alphabet X , whose joint probability distribution has the form

µ(x) =
1

Z

M∏
a=1

ψa(x∂a) , (14.13)

where x∂a ≡ {xi | i ∈ ∂a}. The set ∂a ⊆ [N ], of size |∂a|, contains all variables involved
in constraint a. We shall always use indices i, j, k, . . . for the variables and a, b, c, . . .
for the function nodes. The set of indices ∂i involves all function nodes a connected
to i.

When the factor graph has no loops, the following are among the basic problems
that can be solved efficiently with a message-passing procedure:

1. Compute the marginal distributions of one variable, µ(xi), or the joint distribution
of a small number of variables.

2. Sample from µ(x), i.e. draw independent random configurations x with a distri-
bution µ(x).
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3. Compute the partition function Z or, equivalently, in statistical-physics language,
the free entropy log Z.

These three tasks can be accomplished using belief propagation, which is an obvious
generalization of the procedure exemplified in the previous section.

14.2.2 The BP equations

Belief propagation is an iterative ‘message-passing’ algorithm. The basic variables on
which it acts are messages associated with directed edges on the factor graph. For each
edge (i, a) (where i is a variable node and a a function node) there exist, at the t-th

iteration, two messages ν
(t)
i→a and ν̂

(t)
a→i. Messages take values in the space of probability

distributions over the single-variable space X . For instance, ν
(t)
i→a = {ν(t)

i→a(xi) : xi ∈
X}, with ν

(t)
i→a(xi) ≥ 0 and

∑
xi

ν
(t)
i→a(xi) = 1.

In tree-graphical models, the messages converge when t → ∞ to fixed-point values
(see Theorem 14.1). These coincide with single-variable marginals in modified graphical

models, as we saw in the two examples in the previous section. More precisely, ν
(∞)
i→a(xi)

is the marginal distribution of variable xi in a modified graphical model which does not
include the factor a (i.e. the product in eqn (14.13) does not include a). Analogously,

ν̂
(∞)
a→i(xi) is the distribution of xi in a graphical model where all factors in ∂i except a

have been erased.
Messages are updated through local computations at the nodes of the factor graph.

By local we mean that a given node updates the outgoing messages on the basis of
incoming ones at previous iterations. This is a characteristic feature of message-passing
algorithms; the various algorithms in this family differ in the precise form of the update
equations. The belief propagation (BP), or sum–product, update rules are

ν
(t+1)
j→a (xj) ∼=

∏
b∈∂j\a

ν̂
(t)
b→j(xj) , (14.14)

ν̂
(t)
a→j(xj) ∼=

∑
x∂a\j

ψa(x∂a)
∏

k∈∂a\j

ν
(t)
k→a(xk) . (14.15)

It is understood that, when ∂j \ a is an empty set, νj→a(xj) is the uniform distribu-
tion. Similarly, if ∂a \ j is empty, then ν̂a→j(xj) = ψa(xj). A pictorial illustration of
these rules is provided in Fig. 14.3. A BP fixed point is a set of t-independent mes-

sages ν
(t)
i→a = νi→a, ν̂

(t)
a→i = ν̂a→i which satisfy eqns (14.14) and (14.15). From these,

one obtains 2|E| equations (one equation for each directed edge of the factor graph)
relating 2|E| messages. We shall often refer to these fixed-point conditions as the BP
equations.

After t iterations, one can estimate the marginal distribution µ(xi) of variable i
using the set of all incoming messages. The BP estimate is:

ν
(t)
i (xi) ∼=

∏
a∈∂i

ν̂
(t−1)
a→i (xi) . (14.16)

In writing the update rules, we have assumed that the update is done in parallel at all
the variable nodes, then in parallel at all function nodes, and so on. Clearly, in this
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Fig. 14.3 Left: the portion of the factor graph involved in the computation of ν
(t+1)
j→a (xj).

This message is a function of the ‘incoming messages’ bν(t)
b→j(xj), with b �= a. Right: the portion

of the factor graph involved in the computation of bν(t)
a→j(xj). This message is a function of

the ‘incoming messages’ ν
(t)
k→a(xk), with k �= j.

case, the iteration number must be incremented either at variable nodes or at factor
nodes, but not necessarily at both. This is what happens in eqns (14.14) and (14.15).
Other update schedules are possible and sometimes useful. For the sake of simplicity,
however, we shall stick to the parallel schedule.

In order to fully define the algorithm, we need to specify an initial condition. It is
a widespread practice to set initial messages to the uniform distribution over X (i.e.

ν
(0)
i→a(xi) = 1/|X |). On the other hand, it can be useful to explore several distinct

(random) initial conditions. This can be done by defining some probability measure
P over the space M(X ) of distributions over X (i.e. the |X |-dimensional simplex) and

taking ν
(0)
i→a( · ) as i.i.d. random variables with distribution P.

The BP algorithm can be applied to any graphical model, irrespective of whether
the factor graph is a tree or not. One possible version of the algorithm is as follows.

BP (graphical model (G,ψ), accuracy ε, iterations tmax)
1: Initialize BP messages as i.i.d. random variables with distribution P;
2: For t ∈ {0, . . . , tmax}
3: For each (j, a) ∈ E
4: Compute the new value of ν̂a→j using eqn (14.15);
5: For each (j, a) ∈ E
6: Compute the new value of νj→a using eqn (14.14);
7: Let ∆ be the maximum message change;
8: If ∆ < ε return current messages;
9: End-For;
10: Return ‘Not Converged’;



Belief propagation on tree graphs ���

Among all message-passing algorithms, BP is uniquely characterized by the prop-
erty of computing exact marginals on tree-graphical models.

Theorem 14.1. (BP is exact on trees) Consider a
tree-graphical model with diameter t∗ (which means that t∗ is the maximum distance
between any two variable nodes). Then:

1. Irrespective of the initial condition, the BP update equations (14.14) and (14.15)
converge after at most t∗ iterations. In other words, for any edge (ia), and any

t > t∗, ν
(t)
i→a = ν∗

i→a, ν̂
(t)
a→i = ν̂∗

a→i.

2. The fixed-point messages provide the exact marginals: for any variable node i, and

any t > t∗, ν
(t)
i (xi) = µ(xi).

Proof As exemplified in the previous section, on tree factor graphs BP is just a clever
way to organize the sum over configurations to compute marginals. In this sense, the
theorem is obvious.

We shall sketch a formal proof here, leaving a few details to the reader. Given a
directed edge i → a between a variable i and a factor node a, we define T(i → a) as
the subtree rooted on this edge. This is the subtree containing all nodes w which can
be connected to i by a non-reversing path2 which does not include the edge (i, a). Let
t∗(i → a) be the depth of T(i → a) (the maximal distance from a leaf to i).

We can show that, for any number of iterations t > t∗(i → a), the message ν
(t)
i→a

coincides with the marginal distribution of the root variable with respect to the graph-
ical model T(i → a). In other words, for tree graphs, the interpretation of BP messages
in terms of modified marginals is correct.

This claim is proved by induction on the tree depth t∗(i → a). The base step of the
induction is trivial: T(i → a) is the graph formed by the unique node i. By definition,

for any t ≥ 1, ν
(t)
i→a(xi) = 1/|X | is the uniform distribution, which coincides with the

marginal of the trivial graphical model associated with T(i → a).
The induction step is easy as well. Assuming the claim to be true for t∗(i → a) ≤ τ ,

we have to show that it holds when t∗(i → a) = τ + 1. To this end, take any t > τ + 1

and compute ν
(t+1)
i→a (xi) using eqns (14.14) and (14.15) in terms of messages ν

(t)
j→b(xj)

in the subtrees for b ∈ ∂i \ a and j ∈ ∂b \ i. By the induction hypothesis, and since

the depth of the subtree T (j → b) is at most τ , ν
(t)
j→b(xj) is the root marginal in such

a subtree. It turns out that by combining the marginals at the roots of the subtrees
T(j → b) using eqns (14.14) and (14.15), we can obtain the marginal at the root of
T(i → a). This proves the claim. �

14.2.3 Correlations and energy

The use of BP is not limited to computing one-variable marginals. Suppose we want
to compute the joint probability distribution µ(xi, xj) of two variables xi and xj .
Since BP already enables to compute µ(xi), this task is equivalent to computing the

2A non-reversing path on a graph G is a sequence of vertices ω = (j0, j1, . . . , jn) such that
(js, js+1) is an edge for any s ∈ {0, . . . , n − 1}, and js−1 �= js+1 for s ∈ {1, . . . , n − 1}.
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conditional distribution µ(xj | xi). Given a model that factorizes as in eqn (14.13),
the conditional distribution of x = (x1, . . . , xN ) given xi = x takes the form

µ(x|xi = x) ∼=
M∏

a=1

ψa(x∂a) I(xi = x) . (14.17)

In other words, it is sufficient to add to the original graph a new function node of
degree 1 connected to variable node i, which fixes xi = x. One can then run BP on

the modified factor graph and obtain estimates ν
(t)
j (xj |xi = x) for the conditional

marginal of xj .
This strategy is easily generalized to the joint distribution of any number m of

variables. The complexity, however, grows exponentially in the number of variables
involved, since we have to condition over |X |m−1 possible assignments.

Happily, for tree-graphical models, the marginal distribution of any number of
variables admits an explicit expression in terms of messages. Let FR be a subset
of function nodes, let VR be the subset of variable nodes adjacent to FR, let R be
the induced subgraph, and let xR be the corresponding variables. Without loss of
generality, we shall assume R to be connected. Further, we denote by ∂R the subset
of function nodes that are not in FR but are adjacent to a variable node in VR.

Then, for a ∈ ∂R, there exists a unique i ∈ ∂a ∩ VR, which we denote by i(a).
It then follows immediately from Theorem 14.1, and its characterization of messages,
that the joint distribution of variables in R is

µ(xR) =
1

ZR

∏
a∈FR

ψa(x∂a)
∏

a∈∂R

ν̂∗
a→i(a)(xi(a)) , (14.18)

where ν̂∗
a→i( · ) are the fixed-point BP messages.

Exercise 14.4 Let us use the above result to write the joint distribution of the vari-
ables along a path in a tree factor graph. Consider two variable nodes i, j, and let
R = (VR, FR, ER) be the subgraph induced by the nodes along the path between i and j. For
any function node a ∈ R, denote by i(a) and j(a) the variable nodes in R that are adjacent
to a. Show that the joint distribution of the variables along this path, xR = {xl : l ∈ VR},
takes the form

µ(xR) =
1

ZR

Y
a∈FR

ψ̃a(xi(a), xj(a))
Y

l∈VR

ψ̃l(xl) . (14.19)

In other words, µ(xR) factorizes according to the subgraph R. Write expressions for the

compatibility functions ψ̃a( · , · ), ψ̃l( · ) in terms of the original compatibility functions and
the messages going from ∂R to VR.

A particularly useful case arises in the computation of the internal energy. In
physics problems, the compatibility functions in eqn (14.13) take the form ψa(x∂a) =
e−βEa(x∂a), where β is the inverse temperature and Ea(x∂a) is the energy function
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characterizing constraint a. Of course, any graphical model can be written in this
form (allowing for the possibility of Ea(x∂a) = +∞ in the case of hard constraints),
adopting for instance the convention β = 1, which we shall use from now on. The
internal energy U is the expectation value of the total energy:

U = −
∑

x

µ(x)

M∑
a=1

log ψa(x∂a) . (14.20)

This can be computed in terms of BP messages using eqn (14.18) with FR = {a}. If,
further, we use eqn (14.14) to express products of check-to-variable messages in terms
of variable-to-check ones, we get

U = −
M∑

a=1

1

Za

∑
x∂a

(
ψa(x∂a) log ψa(x∂a)

∏
i∈∂a

ν∗
i→a(xj)

)
, (14.21)

where Za ≡
∑

x∂a
ψa(x∂a)

∏
i∈∂a ν∗

i→a(xj). Notice that in this expression the internal

energy is a sum of ‘local’ terms, one for each compatibility function.
On a loopy graph, eqns (14.18) and (14.21) are no longer valid, and, indeed, BP

does not necessarily converge to fixed-point messages {ν∗
i→a, ν̂∗

a→i}. However, one can
replace fixed-point messages with BP messages after any number t of iterations and
take these as definitions of the BP estimates of the corresponding quantities. From
eqn (14.18), one obtains an estimate of the joint distribution of a subset of variables,
which we shall call ν(t)(xR), and from (14.21), an estimate of the internal energy.

14.2.4 Entropy

Remember that the entropy of a distribution µ over X V is defined as H[µ] =
−∑x µ(x) log µ(x). In a tree-graphical model, the entropy, like the internal energy,
has a simple expression in terms of local quantities. This follows from an important
decomposition property. Let us denote by µa(x∂a) the marginal probability distribu-
tion of all the variables involved in the compatibility function a, and by µi(xi) the
marginal probability distribution of variable xi.

Theorem 14.2 In a tree-graphical model, the joint probability distribution µ(x) of all
of the variables can be written in terms of the marginals µa(x∂a) and µi(xi) as

µ(x) =
∏
a∈F

µa(x∂a)
∏
i∈V

µi(xi)
1−|∂i| . (14.22)

Proof The proof is by induction on the number M of factors. Equation (14.22) holds
for M = 1 (since the degrees |∂i| are all equal to 1). Assume that it is valid for any
factor graph with up to M factors, and consider a specific factor graph G with M + 1
factors. Since G is a tree, it contains at least one factor node such that all its adjacent
variable nodes have degree 1, except for at most one of them. Call such a factor node a,
and let i be the only neighbour with degree larger than one (the case in which no such
neighbour exists is treated analogously). Further, let x∼ be the vector of variables in
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G that are not in ∂a \ i. Then (writing Pµ( · ) for a probability under the distribution
µ), the Markov property together with the Bayes rule yields

Pµ(x) = Pµ(x∼)Pµ(x|x∼) = Pµ(x∼)Pµ(x∂a\i|xi) = Pµ(x∼)µa(x∂a)µi(xi)
−1 .

(14.23)

The probability Pµ(x∼) can be written as P(x∼) ∼= ψ̃a(xi)
∏

b∈F\a ψb(x∂b), where

ψ̃a(xi) =
∑

x∂a\i
ψa(x∂a). As the factor ψ̃a has degree one, it can be erased and

incorporated into another factor as follows: take one of the other factors connected to
i, c ∈ ∂i \ a, and change it to ψ̃c(x∂c) = ψc(x∂c)ψ̃a(xi). In the reduced factor graph,
the degree of i is smaller by one and the number of factors is M . Using the induction
hypothesis, we get

Pµ(x∼) = µi(xi)
2−|∂i|

∏
b∈F\a

µb(x∂b)
∏

j∈V \i

µj(xj)
1−|∂j| . (14.24)

The proof is completed by putting together eqns (14.23) and (14.24). �

As an immediate consequence of eqn (14.22), the entropy of a tree-graphical model
can be expressed as sums of local terms:

H[µ] = −
∑
a∈F

µa(x∂a) log µa(x∂a) −
∑
i∈V

(1 − |∂i|)µi(xi) log µi(xi) . (14.25)

It is also easy to express the free entropy Φ = log Z in terms of local quantities.
Recalling that Φ = H[µ]−U [µ] (where U [µ] is the internal energy given by eqn (14.21)),
we get Φ = F[µ], where

F[µ] = −
∑
a∈F

µa(x∂a) log

{
µa(x∂a)

ψa(x∂a)

}
−
∑
i∈V

(1 − |∂i|)µi(xi) log µi(xi) . (14.26)

Expressing local marginals in terms of messages, via eqn (14.18), we can in turn
write the free entropy as a function of the fixed-point messages. We introduce the func-
tion F∗(ν), which yields the free entropy in terms of 2|E| messages ν = {νi→a( · ), ν̂a→i( · )}:

F∗(ν) =
∑
a∈F

Fa(ν) +
∑
i∈V

Fi(ν) −
∑

(ia)∈E

Fia(ν) , (14.27)

where

Fa(ν) = log

⎡⎣∑
x∂a

ψa(x∂a)
∏
i∈∂a

νi→a(xi)

⎤⎦ , Fi(ν) = log

[∑
xi

∏
b∈∂i

ν̂b→i(xi)

]
,

Fai(ν) = log

[∑
xi

νi→a(xi)ν̂a→i(xi)

]
. (14.28)

It is not hard to show that, by evaluating this functional at the BP fixed point ν∗,
one gets F∗(ν

∗) = F[µ] = Φ, thus recovering the correct free entropy. The function
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Fig. 14.4 Left: the factor graph of a small instance of the satisfiability problem with five

variables and five clauses. A dashed line means that the variable appears negated in the

adjacent clause. Right: the set of fixed-point BP messages for the uniform measure over

solutions of this instance. All messages are normalized, and we show their weights for the

value True. For any edge (a, i) (a being the clause and i the variable), the weight corresponding

to the message bνa→i is shown above the edge, and the weight corresponding to νi→a below

the edge.

F∗(ν) defined in eqn (14.27) is known as the Bethe free entropy (when multiplied
by a factor −1/β, it is called the Bethe free energy). The above observations are
important enough to be highlighted in a theorem.

Theorem 14.3. (the Bethe free entropy is exact on trees) Consider a tree-graphical
model. Let {µa, µi} denote its local marginals, and let ν∗ = {ν∗

i→a, ν̂∗
a→i} be the fixed-

point BP messages. Then Φ = log Z = F[µ] = F∗(ν
∗).

Notice that in the above statement, we have used the correct local marginals in F[ · ]
and the fixed-point messages in F∗( · ). In Section 14.4 we shall reconsider the Bethe
free entropy for more general graphical models, and regard it as a function over the
space of all ‘possible’ marginals/messages.

Exercise 14.5 Consider the instance of the satisfiability problem shown in Fig. 14.4,
left. Show by exhaustive enumeration that it has only two satisfying assignments, x =
(0, 1, 1, 1, 0) and (0, 1, 1, 1, 1). Rederive this result using BP. Namely, compute the entropy
of the uniform measure over satisfying assignments, and check that its value is indeed log 2.
The BP fixed point is shown in Fig. 14.4, right.

Exercise 14.6 In many systems some of the function nodes have degree 1 and amount
to a local redefinition of the reference measure over X . It is then convenient to single out
these factors. Let us write µ(x) ∼= Q

a∈F ψa(x∂a)
Q

i∈V ψi(xi), where the second product
runs over degree-1 function nodes (indexed by the adjacent variable node), and the factors
ψa have degree at least 2. In the computation of F∗, the introduction of ψi adds N extra
factor nodes and subtracts N extra ‘edge’ terms corresponding to the edge between the
variable node i and the function node corresponding to ψi.
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Show that these two effects cancel, and that the net effect is to replace the variable-node
contribution in eqn (14.27) with

Fi(ν) = log

"X
xi

ψi(xi)
Y

a∈∂i

bνa→i(xi)

#
. (14.29)

The problem of sampling from the distribution µ(x) over the large-dimensional
space XN reduces to that of computing one-variable marginals of µ(x), conditional on
a subset of the other variables. In other words, if we have a black box that computes
µ(xi|xU ) for any subset U ⊆ V , it can be used to sample a random configuration x.
The standard procedure for doing this is called sequential importance sampling.
We can describe this procedureby the following algorithm in the case of tree-graphical
models, using BP to implement such a ‘black box’.

BP-Guided Sampling (fraphical model (G,ψ))
1: initialize BP messages;
2: initialize U = ∅;
3: for t = 1, . . . , N :
4: run BP until convergence;
5: choose i ∈ V \ U ;
6: compute the BP marginal νi(xi);
7: choose x∗

i distributed according to νi;
8: fix xi = x∗

i and set U ← U ∪ {i};
9: add a factor I(xi = x∗

i ) to the graphical model;
10: end
11: return x∗.

14.2.5 Pairwise models

Pairwise graphical models, i.e. graphical models such that all factor nodes have degree
2, form an important class. A pairwise model can be conveniently represented as an
ordinary graph G = (V,E) over variable nodes. An edge joins two variables each
time they are the arguments of the same compatibility function. The corresponding
probability distribution reads

µ(x) =
1

Z

∏
(ij)∈E

ψij(xi, xj) . (14.30)

Function nodes can be identified with edges (ij) ∈ E.
In this case belief propagation can be described as operating directly on G. Further,

one of the two types of messages can be easily eliminated: here we shall work uniquely

with variable-to-function messages, which we will denote by ν
(t)
i→j(xi), a shortcut for

ν
(t)
i→(ij)(xi). The BP updates then read
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ν
(t+1)
i→j (xi) ∼=

∏
l∈∂i\j

∑
xl

ψil(xi, xl) ν
(t)
l→i(xl) . (14.31)

Simplified expressions can be derived in this case for the joint distribution of several
variables (see eqn (14.18)), as well as for the free entropy.

Exercise 14.7 Show that, for pairwise models, the free entropy given in eqn (14.27) can
be written as F∗(ν) =

P
i∈V Fi(ν) −P(ij)∈E F(ij)(ν), where

Fi(ν) = log

24X
xi

Y
j∈∂i

0@X
xj

ψij(xi, xj)νj→i(xj)

1A35 ,

F(ij)(ν) = log

24X
xi,xj

νi→j(xi)ψij(xi, xj)νj→i(xj)

35 . (14.32)

14.3 Optimization: Max-product and min-sum

Message-passing algorithms are not limited to computing marginals. Imagine that you
are given a probability distribution µ( · ) as in eqn (14.13), and you are asked to find
a configuration x which maximizes the probability µ(x). Such a configuration is called
a mode of µ( · ). This task is important in many applications, ranging from MAP
estimation (e.g. in image reconstruction) to word MAP decoding.

It is not hard to devise a message-passing algorithm adapted to this task, which
correctly solves the problem on trees.

14.3.1 Max-marginals

The role of marginal probabilities is played here by the max-marginals

Mi(x
∗
i ) = max

x
{µ(x) : xi = x∗

i } . (14.33)

In the same way as the tasks of sampling and of computing partition functions can
be reduced to computing marginals, optimization can be reduced to computing max-
marginals. In other words, given a black box that computes max-marginals, optimiza-
tion can be performed efficiently.

Consider first the simpler case in which the max-marginals are non-degenerate,
i.e., for each i ∈ V , there exists an x∗

i such that Mi(x
∗
i ) > Mi(xi) (strictly) for any

xi = x∗
i . The unique maximizing configuration is then given by x∗ = (x∗

1, . . . , x
∗
N ).

In the general case, the following ‘decimation’ procedure, which is closely related
to the BP-guided sampling algorithm of Section 14.2.4, returns one of the maximizing
configurations. Choose an ordering of the variables, say (1, . . . , N). Compute M1(x1),
and let x∗

1 be one of the values maximizing it: x∗ ∈ arg max M1(x1). Fix x1 to take this
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value, i.e. modify the graphical model by introducing the factor I(x1 = x∗
1) (this corre-

sponds to considering the conditional distribution µ(x|x1 = x∗
1)). Compute M2(x2) for

the new model, fix x2 to one value x∗
2 ∈ arg max M2(x2), and iterate this procedure,

fixing all the xi’s sequentially.

14.3.2 Message passing

It is clear from the above that max-marginals need only to be computed up to a
multiplicative normalization. We shall therefore stick to our convention of denoting
equality between max-marginals up to an overall normalization by ∼=. Adapting the
message-passing update rules to the computation of max-marginals is not hard: it is
sufficient to replace sums with maximizations. This yields the following max-product
update rules:

ν
(t+1)
i→a (xi) ∼=

∏
b∈∂i\a

ν̂
(t)
b→i(xi) , (14.34)

ν̂
(t)
a→i(xi) ∼= max

x∂a\i

⎧⎨⎩ψa(x∂a)
∏

j∈∂a\i

ν
(t)
j→a(xj)

⎫⎬⎭ . (14.35)

The fixed-point conditions for this recursion are called the max-product equations.
As in BP, it is understood that, when ∂j \ a is an empty set, νj→a(xj) ∼= 1 is the
uniform distribution. Similarly, if ∂a \ j is empty, then ν̂a→j(xj) ∼= ψa(xj). After any
number of iterations, an estimate of the max-marginals is obtained as follows:

ν
(t)
i (xi) ∼=

∏
a∈∂i

ν̂
(t−1)
a→i (xi) . (14.36)

As in the case of BP, the main motivation for the above updates comes from the
analysis of graphical models on trees.

Theorem 14.4. (the max-product algorithm is exact on trees) Consider a tree-
graphical model with diameter t∗. Then:

1. Irrespective of the initialization, the max-product updates (14.34) and (14.35) con-
verge after at most t∗ iterations. In other words, for any edge (i, a) and any t > t∗,

ν
(t)
i→a = ν∗

i→a and ν̂
(t)
a→i = ν̂∗

a→i.

2. The max-marginals are estimated correctly, i.e., for any variable node i and any

t > t∗, ν
(t)
i (xi) = Mi(xi).

The proof follows closely that of Theorem 14.1, and is left as an exercise for the reader.
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Exercise 14.8 The crucial property used in both Theorem 14.1 and Theorem 14.4 is the
distributive property of the sum and the maximum with respect to the product. Consider,
for instance, a function of the form f(x1, x2, x3) = ψ1(x1, x2)ψ2(x1, x3). Then one can
decompose the sum and maximum as follows:

X
x1,x2,x3

f(x1, x2, x3) =
X
x1

" X
x2

ψ1(x1, x2)

! X
x3

ψ2(x1, x3)

!#
, (14.37)

max
x1,x2,x3

f(x1, x2, x3) = max
x1

»„
max

x2

ψ1(x1, x2)

«„
max

x3

ψ2(x1, x3)

«–
. (14.38)

Formulate a general ‘marginalization’ problem (with the ordinary sum and product substi-
tuted by general operations with a distributive property) and describe a message-passing
algorithm that solves it on trees.

The max-product messages ν
(t)
i→a( · ) and ν̂

(t)
a→i( · ) admit an interpretation which is

analogous to that of sum–product messages. For instance, ν
(t)
i→a( · ) is an estimate of

the max-marginal of variable xi with respect to the modified graphical model in which
factor node a is removed from the graph. Along with the proof of Theorem 14.4, it is
easy to show that, in a tree-graphical model, fixed-point messages do indeed coincide
with the max-marginals of such modified graphical models.

The problem of finding the mode of a distribution that factorizes as in eqn (14.13)
has an alternative formulation, namely as minimizing a cost (energy) function that
can be written as a sum of local terms:

E(x) =
∑
a∈F

Ea(x∂a) . (14.39)

The problems are mapped onto each other by writing ψa(x∂a) = e−βEa(x∂a) (with β
some positive constant). A set of message-passing rules that is better adapted to the
latter formulation is obtained by taking the logarithm of eqns (14.34) and (14.35).
This version of the algorithm is known as the min-sum algorithm:

E
(t+1)
i→a (xi) =

∑
b∈∂i\a

Ê
(t)
b→i(xi) + C

(t)
i→a , (14.40)

Ê
(t)
a→i(xi) = min

x∂a\i

⎡⎣Ea(x∂a) +
∑

j∈∂a\i

E
(t)
j→a(xj)

⎤⎦+ Ĉ
(t)
a→i . (14.41)

The corresponding fixed-point equations are also known in statistical physics as the
energetic cavity equations. Notice that, since the max-product marginals are rel-
evant only up to a multiplicative constant, the min-sum messages are defined up to

an overall additive constant. In the following, we shall choose the constants C
(t)
i→a

and Ĉ
(t)
a→i such that minxi

E
(t+1)
i→a (xi) = 0 and minxi

Ê
(t)
a→i(xi) = 0, respectively. The
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analogue of the max-marginal estimate in eqn (14.36) is provided by the following
log-max-marginal:

E
(t)
i (xi) =

∑
a∈∂i

Ê
(t−1)
a→i (xi) + C

(t)
i . (14.42)

In the case of tree-graphical models, the minimum energy U∗ = minx E(x) can be

immediately written in terms of the fixed-point messages {E∗
i→a, Ê∗

i→a}. We obtain,
in fact,

U∗ =
∑

a

Ea(x∗
∂a) , (14.43)

x∗
∂a = arg min

x∂a

{
Ea(x∂a) +

∑
i∈∂a

Ê∗
i→a(xi)

}
. (14.44)

In the case of non-tree graphs, this can be taken as a prescription to obtain a max-

product estimate U
(t)
∗ of the minimum energy. One just needs to replace the fixed-

point messages in eqn (14.44) with the messages obtained after t iterations. Finally,
a minimizing configuration x∗ can be obtained through the decimation procedure
described in the previous subsection.

Exercise 14.9 Show that U∗ is also given by U∗ =
P

a∈F εa+
P

i∈V εi−P(ia)∈E εia, where

εa = min
x∂a

24Ea(x∂a) +
X
j∈∂a

E∗
j→a(xj)

35 , εi = min
xi

"X
a∈∂i

bE∗
a→i(xi)

#
,

εia = min
xi

h
E∗

i→a(xi) + bE∗
a→i(xi)

i
. (14.45)

[Hints: (i) Define x∗
i (a) = arg min

h bE∗
a→i(xi) + E∗

i→a(xi)
i
, and show that the minima in

eqn (14.45) are achieved at xi = x∗
i (a) (for εi and εai) and at x∗

∂a = {x∗
i (a)}i∈∂a (for εa).

(ii) Show that
P

(ia)
bE∗

a→i(x
∗
i (a)) =

P
i εi.]

14.3.3 Warning propagation

A frequently encountered case is that of constraint satisfaction problems, where the
energy function just counts the number of violated constraints:

Ea(x∂a) =

{
0 if constraint a is satisfied,
1 otherwise.

(14.46)

The structure of messages can be simplified considerably in this case. More precisely,

if the messages are initialized in such a way that Ê
(0)
a→i ∈ {0, 1}, this condition is

preserved by the min-sum updates (14.40) and (14.41) at any subsequent time. Let us
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prove this statement by induction. Suppose it holds up to time t−1. From eqn (14.40),

it follows that E
(t)
i→a(xi) is a non-negative integer. Now consider eqn (14.41). Since both

E
(t)
j→a(xj) and Ea(x∂a) are integers, it follows that Ê

(t)
a→i(xi), the minimum of the right-

hand side, is a non-negative integer as well. Further, since for each j ∈ ∂a \ i there

exists an x∗
j such that E

(t)
j→a(x∗

j ) = 0, the minimum in eqn (14.41) is at most 1, which
proves our claim.

This argument also shows that the outcome of the minimization in eqn (14.41)

depends only on which entries of the messages E
(t)
j→a( · ) vanish. If there exists an

assignment x∗
j such that E

(t)
j→a(x∗

j ) = 0 for each j ∈ ∂a \ i, and Ea(xi, x
∗
∂a\i) = 0, then

the value of the minimum is 0. Otherwise, it is 1.
In other words, instead of keeping track of the messages Ei→a( · ), one can use their

‘projections’
Ei→a(xi) = min {1, Ei→a(xi)} . (14.47)

Proposition 14.5 Consider an optimization problem with a cost function of the form
(14.39) with Ea(x∂a) ∈ {0, 1}, and assume the min-sum algorithm to be initialized

with Êa→i(xi) ∈ {0, 1} for all edges (i, a). Then, after any number of iterations, the
function-node-to-variable-node messages coincide with those computed using the fol-
lowing update rules:

E
(t+1)
i→a (xi) = min

⎧⎨⎩1,
∑

b∈∂i\a

Ê
(t)
b→i(xi) + C

(t)
i→a

⎫⎬⎭ , (14.48)

Ê
(t)
a→i(xi) = min

x∂a\i

⎧⎨⎩Ea(x∂a) +
∑

j∈∂a\i

E
(t)
j→a(xj)

⎫⎬⎭+ Ĉ
(t)
a→i , (14.49)

where C
(t)
i→a, Ĉ

(t)
a→i are normalization constants determined by minxi

Êa→i(xi) = 0 and
minxi

Ei→a(xi) = 0.
Finally, the ground state energy takes the same form as eqn. (14.45), with Ei→a( · )

replacing Ei→a( · ).

We call the simplified min-sum algorithm with the update equations (14.49) and
(14.48) the warning propagation algorithm.

The name is due to the fact that the messages Ei→a( · ) can be interpreted as the
following warnings:

Ei→a(xi) = 1 → ‘according to the set of constraints b ∈ ∂i \ a, the i-th variable
should not take the value xi’.

Ei→a(xi) = 0 → ‘according to the set of constraints b ∈ ∂i \ a, the i-th variable
can take the value xi’.

Warning propagation provides a procedure for finding all direct implications of a par-
tial assignment of the variables in a constraint satisfaction problem. For instance, in
the case of the satisfiability problem, it finds all implications found by unit clause
propagation (see Section 10.2).
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14.4 Loopy BP

We have seen how message-passing algorithms can be used efficiently in tree-graphical
models. In particular, they allow one to exactly sample distributions that factorize
according to tree factor graphs and to compute marginals, partition functions, and
modes of such distributions. It would be very useful in a number of applications to
be able to accomplish the same tasks when the underlying factor graph is no longer a
tree.

It is tempting to use the BP equations in this more general context, hoping to
get approximate results for large graphical models. Often, we shall be dealing with
problems that are NP-hard even to approximate, and it is difficult to provide general
guarantees of performance. Indeed, an important unsolved challenge is to identify
classes of graphical models where the following questions can be answered:

1. Is there any set of messages {ν∗
i→a, ν̂∗

a→i} that reproduces the local marginals of
µ( · ) by use of eqn (14.18), within some prescribed accuracy?

2. Do such messages correspond to an (approximate) fixed point of the BP update
rules (14.14) and (14.15)?

3. Do the BP update rules have at least one (approximate) fixed point? Is it unique?

4. Does such a fixed point have a non-empty ‘basin of attraction’ with respect to
eqns (14.14) and (14.15)? Does this basin of attraction include all possible (or all
‘reasonable’) initializations?

We shall not treat these questions in depth, as a general theory is lacking. We shall,
rather, describe the sophisticated picture that has emerged, building on a mixture of
physical intuition, physical methods, empirical observations, and rigorous proofs.

Exercise 14.10 Consider a ferromagnetic Ising model on a two-dimensional grid with
periodic boundary conditions (i.e. ‘wrapped’ around a torus), as defined in Section 9.1.2
(see Fig. 9.7). Ising spins σi, i ∈ V , are associated with the vertices of the grid, and interact
along the edges:

µ(σ) =
1

Z
eβ

P
(ij)∈E σiσj . (14.50)

(a) Describe the associated factor graph.

(b) Write the BP equations.

(c) Look for a solution that is invariant under translation, i.e. νi→a(σi) = ν(σi), bνa→i(σi) =bν(σi): write down the equations satisfied by ν( · ), bν( · ).
(d) Parameterize ν(σ) in terms of the log-likelihood h = (1/2β) log(ν(+1)/ν(−1)) and

show that h satisfies the equation tanh(βh) = tanh(β) tanh(3βh).

(e) Study this equation and show that, for 3 tanh β > 1, it has three distinct solutions
corresponding to three BP fixed points.

(f) Consider the iteration of the BP updates starting from a translation-invariant initial
condition. Does the iteration converge to a fixed point? Which one?



Loopy BP ���

(g) Discuss the appearance of three BP fixed points in relation to the structure of the
distribution µ(σ) and the paramagnetic–ferromagnetic transition. What is the approx-
imate value of the critical temperature obtained from BP? Compare with the exact
value βc = 1

2
log(1 +

√
2).

(h) What results does one obtain for an Ising model on a d-dimensional (instead of two-
dimensional) grid?

14.4.1 The Bethe free entropy

As we saw in Section 14.2.4, the free entropy of a tree-graphical model has a simple
expression in terms of local marginals (see eqn (14.26)). We can use it in graphs with
loops with the hope that it provides a good estimate of the actual free entropy. In
spirit, this approach is similar to the ‘mean-field’ free entropy introduced in Chapter 2,
although it differs from it in several respects.

In order to define precisely the Bethe free entropy, we must first describe a space
of ‘possible’ local marginals. A minimalistic approach is to restrict ourselves to the
‘locally consistent marginals’. A set of locally consistent marginals is a collection
of distributions bi( · ) over X for each i ∈ V , and ba( · ) over X |∂a| for each a ∈ F .
Being distributions, they must be non-negative, i.e. bi(xi) ≥ 0 and ba(x∂a) ≥ 0, and
they must satisfy the normalization conditions∑

xi

bi(xi) = 1 ∀i ∈ V ,
∑
x∂a

ba(x∂a) = 1 ∀a ∈ F . (14.51)

To be ‘locally consistent’, they must satisfy the marginalization condition∑
x∂a\i

ba(x∂a) = bi(xi) ∀a ∈ F , ∀i ∈ ∂a . (14.52)

Given a factor graph G, we shall denote the set of locally consistent marginals by
LOC(G), and the Bethe free entropy will be defined as a real-valued function on this
space.

It is important to stress that, although the marginals of any probability distribution
µ(x) over x = (x1, . . . , xN ) must be locally consistent, the converse is not true: one can
find sets of locally consistent marginals that do not correspond to any distribution.
In order to emphasize this point, locally consistent marginals are sometimes called
‘beliefs’.

Exercise 14.11 Consider the graphical model shown in Fig. 14.5, on binary variables
(x1, x2, x3), xi ∈ {0, 1}. The figure also gives a set of beliefs in the vector/matrix form

bi =

»
bi(0)
bi(1)

–
, bij =

»
bij(00) bij(01)
bij(10) bij(11)

–
. (14.53)

Check that this set of beliefs is locally consistent, but that they cannot be the marginals of
any distribution µ(x1, x2, x3).
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b1 =

[
0.5
0.5

]

b3 =

[
0.5
0.5

]
b2 =

[
0.5
0.5

]
b12 =

[
0.49 0.01
0.01 0.49

]
b31 =

[
0.01 0.49
0.49 0.01

]

b23 =

[
0.49 0.01
0.01 0.49

]
Fig. 14.5 A set of locally consistent marginals, ‘beliefs’, that cannot arise as the marginals

of any global distribution.

Given a set of locally consistent marginals b = {ba, bi}, we associate a Bethe free
entropy with it exactly as in eqn (14.26):

F[b] = −
∑
a∈F

ba(x∂a) log

{
ba(x∂a)

ψa(x∂a)

}
−
∑
i∈V

(1 − |∂i|) bi(xi) log bi(xi) . (14.54)

The analogy with the naive mean-field approach suggests that stationary points (and,
in particular, maxima) of the Bethe free entropy should play an important role. This
is partially confirmed by the following result.

Proposition 14.6 Assume ψa(x∂a) > 0 for every a and x∂a. Then the stationary
points of the Bethe free entropy F[b] are in one-to-one correspondence with the fixed
points of the BP algorithm.

As will become apparent from the proof, the correspondence between BP fixed points
and stationary points of F[b] is completely explicit.

Proof We want to check stationarity with respect to variations of b within the set
LOC(G), which is defined by the constraints (14.51) and (14.52), as well as ba(x∂a) ≥ 0,
bi(xi) ≥ 0. We thus introduce a set of Lagrange multipliers λ = {λi, i ∈ V ;
λai(xi), (a, i) ∈ E, xi ∈ X}, where λi corresponds to the normalization of bi( · ) and
λai(xi) corresponds to the marginal of ba coinciding with bi. We then define the La-
grangian

L(b, λ) = F[b] −
∑
a∈F

λi

[∑
xi

bi(xi) − 1

]
−
∑

(ia),xi

λai(xi)

⎡⎣∑
x∂a\i

ba(x∂a) − bi(xi)

⎤⎦ .

(14.55)

Notice that we have not introduced a Lagrange multiplier for the normalization of
ba(x∂a), as this follows from the two constraints already enforced. The stationarity
conditions with respect to bi and ba imply

bi(xi) ∼= e−1/(|∂i|−1)
∑
a∈∂i

λai(xi) , ba(x∂a) ∼= ψa(x∂a) e−
P

i∈∂a λai(xi) . (14.56)
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The Lagrange multipliers must be chosen in such a way that eqn (14.52) is fulfilled.
Any such set of Lagrange multipliers yields a stationary point of F[b]. Once the λai(xj)
have been found, the computation of the normalization constants in these expressions
fixes λi. Conversely, any stationary point corresponds to a set of Lagrange multipliers
satisfying the stated condition.

It remains to show that sets of Lagrange multipliers such that
∑

x∂a\i
ba(x∂a) =

bi(xi) are in one-to-one correspondence with BP fixed points. In order to see this, we
define the messages

νi→a(xi) ∼= e−λai(xi) , ν̂a→i(xi) ∼=
∑

x∂a\i

ψa(x∂a) e−
P

j∈∂a\i λaj(xj) . (14.57)

It is clear from the definition that such messages satisfy

ν̂a→i(xi) ∼=
∑

x∂a\i

ψa(x∂a)
∏

j∈∂a\i

νi→a(xi) . (14.58)

Further, using the second equation of eqns (14.56) together with eqn. (14.57), we get∑
x∂a\i

ba(x∂a) ∼= νi→a(xi)ν̂a→i(xi). On the other hand, from the first of eqns (14.56)

together with eqn (14.57), we get bi(xi) ∼=
∏

b νi→b(xi)
1/(|∂i|−1). The marginalization

condition thus implies∏
b∈∂i

νi→b(xi)
1/(|∂i|−1) ∼= νi→a(xi)ν̂a→i(xi) . (14.59)

Taking the product of these equalities for a ∈ ∂i \ b, and eliminating
∏

a∈∂i\b νi→a(xi)

from the resulting equation (which is possible if ψa(x∂a) > 0), we get

νi→b(xi) ∼=
∏

a∈∂i\b

ν̂a→i(xi) . (14.60)

At this point we recognize in eqns (14.58) and (14.60) the fixed-point condition for
BP (see eqns (14.14) and (14.15)). Conversely, given any solution of eqns (14.58) and
(14.60), one can define a set of Lagrange multipliers using the first of eqns (14.57).
It follows from the-fixed point condition that the second of eqns (14.57) is fulfilled as
well, and that the marginalization condition holds. �

An important consequence of this proposition is the existence of BP fixed points.

Corollary 14.7 Assume ψa(xa) > 0 for every a and x∂a. The BP algorithm then has
at least one fixed point.

Proof Since F[b] is bounded and continuous in LOC(G) (which is closed), it takes
its maximum at some point b∗ ∈ LOC(G). Using the condition ψa(xa) > 0, it is easy
to see that such a maximum is reached in the relative interior of LOC(G), i.e. that
b∗a(x∂a) > 0, b∗i (xi) > 0 strictly. As a consequence, b∗ must be a stationary point and
therefore, by Proposition 14.6, there is a BP fixed point associated with it. �

The ‘variational principle’ provided by Proposition 14.6 is particularly suggestive
as it is analogous to naive mean-field bounds. For practical applications, it is sometimes
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xi xi

xj xj

xl xl

Fig. 14.6 Left: neighbourhood of a node i in a pairwise graphical model. Right: the modified

graphical model used to define the message νi→j(xi).

more convenient to use the free-entropy functional F∗(ν) of eqn (14.27). This can be

regarded as a function from the space of messages to reals F : M(X )|
�E| → R (remember

that M(X ) denotes the set of measures over X , and �E is the set of directed edges in
the factor graph).3 It satisfies the following variational principle.

Proposition 14.8 The stationary points of the Bethe free entropy F∗(ν) are fixed
points of belief propagation. Conversely, any fixed point ν of belief propagation such
that F∗(ν) is finite, is also a stationary point of F∗(ν).

The proof is simple calculus and is left to the reader.
It turns out that for tree graphs and unicyclic graphs, F[b] is convex, and the above

results then prove the existence and uniqueness of BP fixed points. But, for general
graphs, F[b] is non-convex and may have multiple stationary points.

14.4.2 Correlations

What is the origin of the error made when BP is used in an arbitrary graph with loops,
and under what conditions can it be small? In order to understand this point, let us
consider for notational simplicity a pairwise graphical model (see eqn (14.2.5)). The
generalization to other models is straightforward. Taking seriously the probabilistic
interpretation of messages, we want to compute the marginal distribution νi→j(xi)
of xi in a modified graphical model that does not include the factor ψij(xi, xj) (see
Fig. 14.6). We denote by µ∂i\j(x∂i\j) the joint distribution of all variables in ∂i \ j in
the model where all the factors ψil(xi, xl), l ∈ ∂i, have been removed. Then,

νi→j(xi) ∼=
∑
x∂i\j

∏
l∈∂i\j

ψil(xi, xl)µ∂i\j(x∂i\j) . (14.61)

Comparing this expression with the BP equations (see eqn (14.31)), we deduce that
the messages {νi→j} solve these equations if

3On a tree, F∗(ν) is (up to a change of variables) the Lagrangian dual of F(b).
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xi xi

xj xj

xl xl

Fig. 14.7 Left: modified graphical model used to define νl→i(xl). Right: modified graphical

model corresponding to the cavity distribution of the neighbours of i, µ∂i\j(x∂i\j).

µ∂i\j(x∂i\j) =
∏

l∈∂i\j

νl→i(xl) . (14.62)

We can expect this to happen when two conditions are fulfilled:

1. Under µ∂i\j( · ), the variables {xl : l ∈ ∂i \ j} are independent: µ∂i\j(x∂i\j) =∏
l∈∂i\j µ∂i\j(xl).

2. The marginal of each of these variables under µ∂i\j( · ) is equal to the corre-
sponding message νl→i(xl). In other words, the two graphical models obtained
by removing all the compatibility functions that involve xi (namely, the model
µ∂i\j( · )) and by removing only ψil(xi, xl) must have the same marginal for the
variable xl; see Fig. 14.7.

These two conditions are obviously fulfilled for tree-graphical models. They are
also approximately fulfilled if the correlations among the variables {xl : l ∈ ∂i} are
‘small’ under µ∂i\j( · ). As we have seen, in many cases of practical interest (LDPC
codes, random K-SAT, etc.) the factor graph is locally tree-like. In other words, when
node i is removed, the variables {xl : l ∈ ∂i} are, with high probability, far apart
from each other. This suggests that, in such models, the two conditions above may
indeed hold in the large-size limit, provided far-apart variables are weakly correlated. A
simple illustration of this phenomenon is provided in the exercises below. The following
chapters will investigate this property further and discuss how to cope with cases in
which it does not hold.

Exercise 14.12 Consider an antiferromagnetic Ising model on a ring, with variables
(σ1, . . . , σN ) ≡ σ, σi ∈ {+1,−1} and distribution

µ(σ) =
1

Z
e−β

PN
i=1 σiσi+1 , (14.63)

where σN+1 ≡ σ1. This is a pairwise graphical model whose graph G is a ring over N
vertices.
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(a) Write the BP update rules for this model (see Section 14.2.5).

(b) Express the update rules in terms of the log-likelihoods h
(t)
i→ ≡

1
2

log((ν
(t)
i→i+1(+1))/(ν

(t)
i→i+1(−1))), and h

(t)
←i ≡ 1

2
log((ν

(t)
i→i−1(+1))/(ν

(t)
i→i−1(−1))).

(c) Show that, for any β ∈ [0,∞), and any initialization, the BP updates converge to the
unique fixed point h←i = hi→ = 0 for all i.

(d) Assume that β = +∞ and N is even. Show that any set of log-likelihoods of the form
hi→ = (−1)ia, h←i = (−1)ib, with a, b ∈ [−1, 1], is a fixed point.

(e) Consider now the case where β = ∞ and N is odd, and show that the only fixed
point is h←i = hi→ = 0. Find an initialization of the messages such that BP does not
converge to this fixed point.

Exercise 14.13 Consider a ferromagnetic Ising model on a ring with a magnetic field.
This is defined through the distribution

µ(σ) =
1

Z
eβ

PN
i=1 σiσi+1+B

PN
i=1 σi , (14.64)

where σN+1 ≡ σ1. Notice that, with respect to the previous exercise, we have changed a
sign in the exponent.

(a, b) As in the previous exercise.

(c) Show that, for any β ∈ [0,∞), and any initialization, the BP updates converge to
the unique fixed point h←i = hi→ = h∗(β, B) for all i.

(d) Let 〈σi〉 be the expectation of spin σi with respect to the measure µ( · ), and let
〈σi〉BP be the corresponding BP estimate. Show that |〈σi〉 − 〈σi〉BP| = O(λN ) for
some λ ∈ (0, 1).

14.5 General message-passing algorithms

Both the sum–product and the max-product (or min-sum) algorithm are instances of
a more general class of message-passing algorithms. All of the algorithms in this
family share some common features, which we now highlight.

Given a factor graph, a message-passing algorithm is defined by the following in-
gredients:

1. An alphabet of messages M. This can be either continuous or discrete. The algo-

rithm operates on messages ν
(t)
i→a, ν̂

(t)
a→i ∈ M associated with the directed edges in

the factor graph.

2. Update functions Ψi→a : M|∂i\a| → M and Φa→i : M|∂a\i| → M that describe how
to update messages.

3. An initialization, i.e. a mapping from the directed edges in the factor graph to

M (this can be a random mapping). We shall denote by ν
(0)
i→a, ν̂

(0)
a→i the image of

such a mapping.

4. A decision rule, i.e. a local function from messages to a space of ‘decisions’ from
which we are interested in making a choice. Since we shall be interested mostly



Probabilistic analysis ���

in computing marginals (or max-marginals), we shall assume the decision rule to

be given by a family of functions Ψ̂i : M|∂i| → M(X ).

Notice the characteristic feature of message-passing algorithms: messages going out
from a node are functions of messages coming into the same node through the other
edges.

Given these ingredients, a message-passing algorithm with parallel updating may

be defined as follows. Assign the values of initial messages ν
(0)
i→a, ν̂

(0)
a→i according to an

initialization rule. Then, for any t ≥ 0, update the messages through local operations
at variable/check nodes as follows:

ν
(t+1)
i→a = Ψi→a({ν̂(t)

b→i : b ∈ ∂i \ a}) , (14.65)

ν̂
(t)
a→i = Φa→i({ν(t)

j→a : j ∈ ∂a \ i}) . (14.66)

Finally, after a pre-established number of iterations t, take the decision using the rules
Ψ̂i; namely, return

ν
(t)
i (xi) = Ψ̂i({ν̂(t−1)

b→i : b ∈ ∂i})(xi) . (14.67)

Many variants are possible concerning the update schedule. For instance, in the case of
sequential updating one can pick out a directed edge uniformly at random and compute
the corresponding message. Another possibility is to generate a random permutation
of the edges and update the messages according to this permutation. We shall not
discuss these ‘details’, but the reader should be aware that they can be important in
practice: some update schemes may converge better than others.

Exercise 14.14 Recast the sum–product and min-sum algorithms in the general message-
passing framework. In particular, specify the alphabet of the messages, and the update and
decision rules.

14.6 Probabilistic analysis

In the following chapters, we shall repeatedly be concerned with the analysis of
message-passing algorithms on random graphical models. In this context, messages
become random variables, and their distribution can be characterized in the large-
system limit, as we shall now see.

14.6.1 Assumptions

Before proceeding, it is necessary to formulate a few technical assumptions under which
our approach works. The basic idea is that, in a ‘random graphical model’, distinct
nodes should be essentially independent. Specifically, we shall consider below a setting
which already includes many cases of interest; it is easy to extend our analysis to even
more general situations.
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A random graphical model is a (random) probability distribution on x =
(x1, . . . , xN ) of the form4

µ(x) ∼=
∏
a∈F

ψa(x∂a)
∏
i∈V

ψi(xi) , (14.68)

where the factor graph G = (V, F,E) (with variable nodes V , factor nodes F , and edges
E) and the various factors ψa, ψi are independent random variables. More precisely,
we assume that the factor graph is distributed according to one of the ensembles
GN (K,α) or DN (Λ, P ) (see Chapter 9).

The random factors are assumed to be distributed as follows. For any given degree
k, we are given a list of possible factors ψ(k)(x1, . . . , xk; Ĵ), indexed by a ‘label’ Ĵ ∈ J,

and a distribution P
(k)bJ over the set of possible labels J. For each function node a ∈ F

of degree |∂a| = k, a label Ĵa is drawn with distribution P
(k)bJ , and the function ψa( · )

is taken to be equal to ψ(k)( · ; Ĵa). Analogously, the factors ψi are drawn from a list
of possible {ψ( · ;J)}, indexed by a label J which is drawn from a distribution PJ .
The random graphical model is fully characterized by the graph ensemble, the set of

distributions P
(k)bJ , PJ , and the lists of factors {ψ(k)( · ; Ĵ)}, {ψ( · ;J)}.

We need to make some assumptions about the message update rules. Specifically,
we assume that the variable-to-function-node update rules Ψi→a depend on i → a only
through |∂i| and Ji, and the function-to-variable-node update rules Φa→i depend on

a → i only through |∂a| and Ĵa. With a slight misuse of notation, we shall denote the
update functions by

Ψi→a({ν̂b→i : b ∈ ∂i \ a}) = Ψl(ν̂1, . . . , ν̂l;Ji) , (14.69)

Φa→i({νj→a : j ∈ ∂a \ i}) = Φk(ν1, . . . , νk; Ĵa) , (14.70)

where l ≡ |∂i| − 1, k ≡ |∂a| − 1, {ν̂1, . . . , ν̂l} ≡ {ν̂b→i : b ∈ ∂i \ a}, and {ν1, . . . , νk} ≡
{νj→a : j ∈ ∂a \ i}. A similar notation will be used for the decision rule Ψ̂.

Exercise 14.15 Let G = (V, E) be a uniformly random graph with M = Nα edges over
N vertices, and let λi, i ∈ V , be i.i.d. random variables uniform in [0, λ̄]. Recall that an
independent set for G is a subset of the vertices S ⊆ V such that if i, j ∈ S, then (ij) is
not an edge. Consider the following weighted measure over independent sets:

µ(S) =
1

Z
I(S is an independent set)

Y
i∈S

λi . (14.71)

4Note that the factors ψi, i ∈ V , could have been included as degree-1 function nodes, as we
did in eqn (14.13); including them explicitly yields a description of density evolution which is more
symmetric between variables and factors, and applies more directly to decoding.
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i

a

Fig. 14.8 A radius-2 directed neighbourhood Bi→a,2(F ).

(a) Write the distribution µ(S) as a graphical model with binary variables, and define the
corresponding factor graph.

(b) Describe the BP algorithm to compute its marginals.

(c) Show that this model is a random graphical model in the sense defined above.

14.6.2 Density evolution equations

Consider a random graphical model, with factor graph G = (V, F,E), and let (i, a)

be a uniformly random edge in G. Let ν
(t)
i→a be the message sent by the BP algorithm

in iteration t along edge (i, a). We assume that the initial messages ν
(0)
i→a, ν̂

(0)
a→i are

i.i.d. random variables, with distributions independent of N . A considerable amount

of information is contained in the distributions of ν
(t)
i→a and ν̂

(t)
a→i with respect to the

realization of the model. We are interested in characterizing these distributions in the
large-system limit N → ∞. Our analysis will assume that both the message alphabet
M and the node label alphabet J are subsets of Rd for some fixed d, and that the
update functions Ψi→a, Φa→i are continuous with respect to the usual topology of Rd.

It is convenient to introduce the directed neighbourhood of radius t of a directed
edge i → a, denoted by: Bi→a,t(G). This is defined as the subgraph of G that includes
all of the variable nodes which can be reached from i by a non-reversing path of length
at most t, whose first step is not the edge (i, a). It includes, as well, all of the function
nodes connected only to those variable nodes; see Fig. 14.8. For illustrative reasons,
we shall occasionally add a ‘root edge’, such as i → a in Fig. 14.8. Let us consider, to
be definite, the case where G is a random factor graph from the ensemble DN (Λ, P ).
In this case, Bi→a,t(F ) converges in distribution, when N → ∞, to the random tree
ensemble Tt(Λ, P ) defined in Section 9.5.1.

Exercise 14.16 Consider a random graph from the regular ensemble DN (Λ, P )
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i

a

i

a

i

a

(A) (B) (C)

Fig. 14.9 The three possible radius-1 directed neighbourhoods in a random factor graph

from the regular graph ensemble DN (2, 3).

with Λ2 = 1 and P3 = 1 (each variable node has degree 2 and each function node degree 3).
The three possible radius-1 directed neighbourhoods appearing in such factor graphs are
depicted in Fig. 14.9.

(a) Show that the probability that a given edge (i, a) has neighbourhoods as in (B) or (C)
in the figure is O(1/N).

(b) Deduce that Bi→a,1(F )
d→ T1, where T1 is distributed according to the tree model

T1(2, 3) (i.e. it is the tree in Fig. 14.9, labelled (A)).

(c) Discuss the case of a radius-t neighbourhood.

For our purposes, it is necessary to include in the description of the neighbourhood
Bi→a,t(F ) the value of the labels Ji, Ĵb for function nodes b in this neighbourhood. It is
understood that the tree model Tt(Λ, P ) includes labels as well: these have to be drawn
as i.i.d. random variables independent of the tree and with the same distribution as
in the original graphical model.

Now consider the message ν
(t)
i→a. This is a function of the factor graph G, of the

labels {Jj}, {Ĵb}, and of the initial condition {ν(0)
j→b}. However, a moment of thought

shows that its dependence on G and on the labels occurs only through the radius-(t+1)
directed neighbourhood Bi→a,t+1(F ). Its dependence on the initial condition is only

through the messages ν
(0)
j→b for j, b ∈ Bi→a,t(F ).

In view of the above discussion, let us pretend for a moment that the neighbourhood
of (i, a) is a random tree Tt+1 with distribution Tt+1(Λ, P ). We define ν(t) to be the
message passed through the root edge of such a random neighbourhood after t message-
passing iterations. Since Bi→a,t+1(F ) converges in distribution to the tree Tt+1, we

find that5 ν
(t)
i→a

d→ ν(t) as N → ∞.

We have shown that, as N → ∞, the distribution of ν
(t)
i→a converges to that of a

well-defined (N -independent) random variable ν(t). The next step is to find a recursive
characterization of ν(t). Consider a random tree from the ensemble Tr(Λ, P ) and let

5The mathematically suspicious reader may wonder about the topology we are assuming for the

message space. In fact, no assumption is necessary if the distribution of labels Ji, bJa is independent
of N . If it is N -dependent but converges, then the topology must be such that the message updates
are continuous with respect to it.
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j → b be an edge directed towards the root, at a distance d from it. The directed
subtree rooted at j → b is distributed according to Tr−d(Λ, P ). Therefore the message
passed through it after r − d − 1 (or more) iterations is distributed as ν(r−d−1). The
degree of the root variable node i (including the root edge) has a distribution λl.
Each check node connected to i has a number of other neighbours (distinct from i)
which is a random variable distributed according to ρk. These facts imply the following
distributional equations for ν(t) and ν̂(t):

ν(t+1) d
= Ψl(ν̂

(t)
1 , . . . , ν̂

(t)
l ;J) , ν̂(t) d

= Φk(ν
(t)
1 , . . . , ν

(t)
k ; Ĵ) . (14.72)

Here ν̂
(t)
b , b ∈ {1, . . . , l−1}, are independent copies of ν̂(t), and ν

(t)
j , j ∈ {1, . . . , k−1},

are independent copies of ν(t). As for l and k, these are independent random integers

distributed according to λl and ρk, respectively; Ĵ is distributed as P
(k)bJ , and J is

distributed as PJ . It is understood that the recursion is initiated with ν(0) d
= ν

(0)
i→a,

ν̂(0) d
= ν̂

(0)
a→i.

In coding theory, the equations (14.72) are referred to as density evolution;
sometimes, this term is also applied to the sequence of random variables {ν(t), ν̂(t)}.
In probabilistic combinatorics, they are also called recursive distributional equa-
tions. We have proved the following characterization of the distribution of messages.

Proposition 14.9 Consider a random graphical model satisfying the assumptions in
Section 14.6.1. Let t ≥ 0 and let (ia) be a uniformly random edge in the factor graph.

Then, as N → ∞, the messages ν
(t)
i→a and ν̂

(t)
i→a converge in distribution to the random

variables ν(t) and ν̂(t), respectively, defined through the density evolution equations
(14.72).

We shall discuss several applications of the idea of density evolution in the following
chapters. Here we shall just mention that it allows one to compute the asymptotic
distribution of message-passing decisions at a uniformly random site i. Recall that the
general message-passing decision after t iterations is taken using the rule (14.67), with

Ψ̂i({ν̂b}) = Ψ̂l(ν̂1, . . . , ν̂l;Ji) (where l ≡ |∂i|). Arguing as in the previous paragraphs,

it is easy to show that in the large-N limit, ν
(t)
i

d→ ν(t), where the random variable
ν(t) is distributed according to

ν(t) d
= Ψ̂l(ν̂

(t−1)
1 , . . . , ν̂

(t−1)
l ;J) . (14.73)

As above, ν̂
(t−1)
1 , . . . , ν̂

(t−1)
l are i.i.d. copies of ν̂(t−1), J is an independent copy of the

variable-node label Ji, and l is a random integer distributed according to Λl.

14.6.3 The replica-symmetric cavity method

The replica-symmetric (RS) cavity method of statistical mechanics adopts a point of
view which is very close to the previous one, but less algorithmic. Instead of considering
the BP update rules as an iterative message-passing rule, it focuses on the fixed-point
BP equations themselves.
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The idea is to compute the partition function recursively, by adding one variable
node at a time. Equivalently, one may think of taking one variable node out of the
system and computing the change in the partition function. The name of the method
comes exactly from this image: one digs a ‘cavity’ in the system.

As an example, take the original factor graph, and delete the factor node a and
all the edges incident on it. If the graph is a tree, this procedure separates it into |∂a|
disconnected trees. Consider now the tree-graphical model described by the connected
component containing the variable j ∈ ∂a. Denote the corresponding partition func-
tion, when the variable j is fixed to the value xj , by Zj→a(xj). This partial partition
function can be computed iteratively as

Zj→a(xj) =
∏

b∈∂j\a

⎡⎣∑
x∂b\j

ψb(x∂b)
∏

k∈∂b\j

Zk→b(xk)

⎤⎦ . (14.74)

The equations obtained by letting j → b be a generic directed edge in G are called the
cavity equations, or Bethe equations.

The cavity equations are mathematically identical to the BP equations, but with
two important conceptual differences: (i) one is naturally led to think that the equa-
tions (14.74) must have a fixed point, and to give special importance to it; (ii) the
partial partition functions are unnormalized messages, and, as we shall see in Chapter
19, their normalization provides useful information. The relation between BP messages
and partial partition functions is

νj→a(xj) =
Zj→a(xj)∑
y Zj→a(y)

. (14.75)

In the cavity approach, the replica symmetry assumption consists in pretending
that, for random graphical models of the kind introduced above, and in the large-N
limit, the following conditions apply:

1. There exists a solution (or quasi-solution6) to these equations.

2. This solution provides good approximations to the marginals of the graphical
model.

3. The messages in this solution are distributed according to a density evolution
fixed point.

The last statement amounts to assuming that the normalized variable-to-factor mes-
sages νi→a (see eqn (14.75)), converge in distribution to a random variable ν that
solves the following distributional equations:

ν
d
= Ψ(ν̂1, . . . , ν̂k−1;J) , ν̂

d
= Φ(ν1, . . . , νl−1; Ĵ) . (14.76)

Here we have used the same notation as in eqn (14.72): ν̂b, b ∈ {1, . . . , l − 1}, are

independent copies of ν̂(t); ν
(t)
j , j ∈ {1, . . . , k − 1}, are independent copies of ν(t); l

6A quasi-solution is a set of messages νj→a such that the average difference between the left- and
right-hand sides of the BP equations goes to zero in the large-N limit.
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and k are independent random integers distributed according to λl and ρk respectively;
and J and Ĵ are distributed as the variable and function node labels Ji and Ĵa.

Using the distributions of ν and ν̂, the expected Bethe free entropy per variable
F/N can be computed by taking the expectation of eqn (14.27). The result is

fRS = fRS
v + nf f

RS
f − nef

RS
e , (14.77)

where nf is the average number of function nodes per variable, and ne is the average
number of edges per variable. In the ensemble DN (Λ, P ) we have nf = Λ′(1)/P ′(1)
and ne = Λ′(1); in the ensemble GN (K,α), nf = α and ne = Kα. The contributions
of the variable nodes fRS

v , function nodes fRS
f , and edges fRS

e are

fRS
v = El,J,{bν} log

[∑
x

ψ(x;J) ν̂1(x) · · · ν̂l(x)

]
,

fRS
f = Ek, bJ,{ν} log

[ ∑
x1,...,xk

ψ(k)(x1, . . . , xk; Ĵ) ν1(x1) · · · νk(xk)

]
,

fRS
e = Eν,bν log

[∑
x

ν(x)ν̂(x)

]
. (14.78)

In these expressions, E denotes the expectation with respect to the random variables
given in subscript. For instance, if G is distributed according to the ensemble DN (Λ, P ),
El,J,{bν} implies that l is drawn from the distribution Λ, J is drawn from PJ , and
ν̂1, . . . , ν̂l are l independent copies of the random variable ν̂.

Instead of estimating the partition function, the cavity method can be used to
compute the ground state energy. One then uses min-sum-like messages instead of
those in eqn (14.74). The method is then called the ‘energetic cavity method’; we
leave to the reader the task of writing the corresponding average ground state energy
per variable.

14.6.4 Numerical methods

Generically, the RS cavity equations (14.76), as well as the density evolution equations
(14.72), cannot be solved in closed form, and one must use numerical methods to
estimate the distribution of the random variables ν, ν̂. Here we limit ourselves to
describing a stochastic approach that has the advantage of being extremely versatile
and simple to implement. It has been used in coding theory under the name of ‘sampled
density evolution’ or the ‘Monte Carlo method’, and is known in statistical physics as
population dynamics, a name which we shall adopt in the following.

The idea is to approximate the distribution of ν (or ν̂) through a sample of (ideally)
N i.i.d. copies of ν (or ν̂, respectively). As N becomes large, the empirical distribution
of such a sample should converge to the actual distribution of ν (or ν̂). We shall call
the sample {νi} ≡ {ν1, . . . , νN} (or {ν̂i} ≡ {ν̂1, . . . , ν̂N}) a population.

The algorithm is described by the pseudocode below. As inputs, it requires the pop-
ulation size N , the maximum number of iterations T , and a specification of the ensem-
ble of (random) graphical models. The latter is a description of the (edge-perspective)
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degree distributions λ and ρ, the variable node labels PJ , and the factor node labels

P
(k)bJ .

Population dynamics (model ensemble, size N , iterations T )

1: Initialize {ν(0)
i };

2: for t = 1, . . . , T :
3: for i = 1, . . . , N :
4: Draw an integer k with distribution ρ;
5: Draw i(1), . . . , i(k − 1) uniformly in {1, . . . , N};
6: Draw Ĵ with distribution P

(k)bJ ;

7: Set ν̂
(t)
i = Φk(ν

(t−1)
i(1) , . . . , ν

(t−1)
i(k−1); Ĵ);

8: end;
9: for i = 1, . . . , N :
10: Draw an integer l with distribution λ;
11: Draw i(1), . . . , i(l − 1) uniformly in {1, . . . , N};
12: Draw J with distribution PJ ;

13: Set ν
(t)
i = Ψl(ν̂

(t)
i(1), . . . , ν̂

(t)
i(l−1);J);

14: end;
15: end;

16: return {ν(T )
i } and {ν̂(T )

i }.

In step 1, the initialization is done by drawing ν
(0)
1 , . . . , ν

(0)
N independently with the

same distribution P that was used for the initialization of the BP algorithm.

It is not hard to show that, for any fixed T , the empirical distribution of {ν(T )
i }

(or {ν̂(T )
i }) converges, as N → ∞, to the distribution of the density evolution random

variable ν(t) (or ν̂(t)). The limit T → ∞ is trickier. Let us assume first that the density
evolution has a unique fixed point, and ν(t), ν̂(t) converge to this fixed point. We then

expect the empirical distribution of {ν(T )
i } also to converge to this fixed point if the

N → ∞ limit is taken after T → ∞. When the density evolution has more than one
fixed point, which is probably the most interesting case, the situation is more subtle.

The population {ν(T )
i } evolves according to a large but finite-dimensional Markov

chain. Therefore (under some technical conditions) the distribution of the population
is expected to converge to the unique fixed point of this Markov chain. This seems to
imply that population dynamics cannot describe the multiple fixed points of density
evolution. Luckily, the convergence of the population dynamics algorithm to its unique
fixed point appears to happen on a time scale that increases very rapidly with N . For
large N and on moderate time scales T , it converges instead to one of several ‘quasi-
fixed points’ that correspond to the fixed points of the density evolution algorithm.

In practice, one can monitor the effective convergence of the algorithm by comput-
ing, after any number of iterations t, averages of the form
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〈ϕ〉t ≡
1

N

N∑
i=1

ϕ(ν
(t)
i ) , (14.79)

for a smooth function ϕ : M(X ) → R. If these averages are well settled (up to statistical
fluctuations of order 1/

√
N), this is interpreted as a signal that the iteration has

converged to a ‘quasi-fixed point.’
The populations produced by the above algorithm can be used to to estimate

expectations with respect to the density-evolution random variables ν, ν̂. For instance,
the expression in eqn (14.79) is an estimate for E{ϕ(ν)}. When ϕ = ϕ(ν1, . . . , νl) is a
function of l i.i.d. copies of ν, the above formula is modified to

〈ϕ〉t ≡
1

R

R∑
n=1

ϕ(ν
(t)
in(1), . . . , ν

(t)
in(l)) . (14.80)

Here R is a large number (typically of the same order as N), and in(1), . . . , in(l) are
i.i.d. indices in {1, . . . , N}. Of course such estimates will be reasonable only if l � N .

A particularly important example is the computation of the free entropy (14.77).
Each of the terms fRS

v , fRS
f and fRS

e can be estimated as in eqn (14.80). The precision of
these estimates can be improved by repeating the computation for several iterations
and averaging the result.

Notes

The belief propagation equations have been rediscovered several times. They were de-
veloped by Pearl (1988) as an exact algorithm for probabilistic inference in acyclic
Bayesian networks. In the early 1960s, Gallager had introduced them as an itera-
tive procedure for decoding low-density-parity-check codes (Gallager, 1963). Gallager
described several message-passing procedures, among them being the sum–product
algorithm. In the field of coding theory, the basic idea of this algorithm was redis-
covered in several works in the 1990s, in particular by Berrou and Glavieux (1996).
In the physics context, the history is even longer. In 1935, Bethe used a free-energy
functional written in terms of pseudo-marginals to approximate the partition function
of the ferromagnetic Ising model (Bethe, 1935). Bethe’s equations were of the simple
form discussed in Exercise 14.10, because of the homogeneity (translation invariance)
of the underlying model. Their generalization to inhomogeneous systems, which has
a natural algorithmic interpretation, waited until the application of Bethe’s method
to spin glasses (Thouless et al., 1977; Klein et al., 1979; Katsura et al., 1979; Morita,
1979; Nakanishi, 1981).

The review paper by Kschischang et al. (2001) gives a general overview of belief
propagation in the framework of factor graphs. The role of the distributive property,
mentioned in Exercise 14.8, was emphasized by Aji and McEliece (2000). On tree
graphs, belief propagation can be regarded as an instance of the junction–tree algo-
rithm (Lauritzen, 1996). This algorithm constructs a tree from the graphical model
under study by grouping some of its variables. Belief propagation is then applied to
this tree.
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Although implicit in these earlier works, the equivalence between BP, the Bethe
approximation, and the sum–product algorithm was only recognized in the 1990s. The
turbodecoding and the sum–product algorithms were shown to be instances of BP
by McEliece et al. (1998). A variational derivation of the turbo decoding algorithm
was proposed by Montanari and Sourlas (2000). The equivalence between BP and the
Bethe approximation was first put forward by Kabashima and Saad (1998) and, in a
more general setting, by Yedidia et al. (2001) and Yedidia et al. (2005).

The last of these papers proved, in particular, the variational formulation in Propo-
sition 14.8. This suggests that one should look for fixed points of BP by seeking sta-
tionary points of the Bethe free entropy directly, without iterating the BP equations.
An efficient such procedure, based on the observation that the Bethe free entropy can
be written as a difference between a convex and a concave function, was proposed by
Yuille (2002). An alternative approach consists in constructing convex surrogates of
the Bethe free energy (Wainwright et al., 2005 a,b) which allow one to define provably
convergent message-passing procedures.

The Bethe approximation can also be regarded as the first step in a hierarchy
of variational methods describing larger and larger clusters of variables exactly. This
point of view was first developed by Kikuchi (1951), leading to the ‘cluster varia-
tional method’ in physics. The algorithmic version of this approach is referred to as
‘generalized BP’, and is described in detail by Yedidia et al. (2005).

The analysis of iterative message-passing algorithms on random graphical models
dates back to Gallager (1963). These ideas were developed into a systematic method,
thanks also to efficient numerical techniques, by Richardson and Urbanke (2001 b),
who coined the name ‘density evolution’. The point of view taken in this book, however,
is closer to that of ‘local weak convergence’ (Aldous and Steele, 2003).

In physics, the replica-symmetric cavity method for sparse random graphical mod-
els was first discussed by Mézard and Parisi (1987). The use of population dynamics
first appeared in Abou-Chacra et al. (1973) and was developed further for spin glasses
by Mézard and Parisi (2001), but that paper deals mainly with RSB effects, which
will be the subject of Chapter 19.
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Decoding with belief propagation

As we have already seen, symbol MAP decoding of error-correcting codes can be
regarded as a statistical inference problem. It is a very natural idea to accomplish this
task using belief propagation. For properly constructed codes (in particular, LDPC
ensembles), this approach has low complexity while achieving very good performance.

However, it is clear that an error-correcting code cannot achieve good performance
unless the associated factor graph has loops. As a consequence, belief propagation has
to be regarded only as an approximate inference algorithm in this context. A major
concern of the theory is to establish conditions for its optimality, and, more generally,
the relation between message passing and optimal (exact symbol MAP) decoding.

In this chapter, we discuss belief propagation decoding of the LDPC ensembles in-
troduced in Chapter 11. The message-passing approach can be generalized to several
other applications within information and communication theory: other code ensem-
bles, source coding, channels with memory, etc. Here we shall keep to the ‘canonical’
example of channel coding, as most of the theory has been developed in this context.

BP decoding is defined in Section 15.1. One of the main tools in the analysis is
the ‘density evolution’ method, which we discuss in Section 15.2. This allows one
to determine the threshold for reliable communication under BP decoding, and to
optimize the code ensemble accordingly. The whole process is considerably simpler for
an erasure channel, which is treated in Section 15.3. Finally, Section 15.4 explains the
relation between optimal (MAP) decoding and BP decoding in the large-block-length
limit: the two approaches can studied within a unified framework based on the Bethe
free energy.

15.1 BP decoding: The algorithm

In this chapter, we shall consider communication over a binary-input, output-
symmetric, memoryless (BMS) channel. This is a channel in which the trans-
mitted codeword is binary, x ∈ {0, 1}N , and the output y is a sequence of N letters
yi from an alphabet Y ⊂ R. The probability of receiving letter y when bit x is sent,
Q(y|x), possesses the symmetry property Q(y|0) = Q(−y|1).

Let us suppose that an LDPC error-correcting code is used in this communication.
The conditional probability for the channel input to be x ∈ {0, 1}N given the output
y is P(x|y) = µy(x), where

µy(x) =
1

Z(y)

N∏
i=1

Q(yi|xi)
M∏

a=1

I(xia
1
⊕ · · · ⊕ xia

k(a)
= 0) . (15.1)
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The factor graph associated with this distribution is the usual one: an edge joins a
variable node i to a check node a whenever the variable xi appears in the a-th parity
check equation.

Messages νi→a(xi), ν̂a→i(xi) are exchanged along the edges. We shall assume a
parallel updating of BP messages, as introduced in Section 14.2:

ν
(t+1)
i→a (xi) ∼= Q(yi|xi)

∏
b∈∂i\a

ν̂
(t)
b→i(xi) , (15.2)

ν̂
(t)
a→i(xi) ∼=

∑
{xj}

I(xi ⊕ xj1 ⊕ · · · ⊕ xjk−1
= 0)

∏
j∈∂a\i

ν
(t)
j→a(xj) , (15.3)

where we have used the notation ∂a ≡ {i, j1, . . . , jk−1}, and the symbol ∼= denotes,
as before, ‘equality up to a normalization constant’. We expect that the asymptotic
performance at large t and large N of such BP decoding, for instance its asymptotic
bit error rate, should be insensitive to the precise update schedule. On the other hand,
this schedule can have an important influence on the speed of convergence, and on
performance at moderate N . Here we shall not address these issues.

The BP estimate for the marginal distribution at node i and time t, also called the
‘belief’ or soft decision, is

ν
(t)
i (xi) ∼= Q(yi|xi)

∏
b∈∂i

ν̂
(t−1)
b→i (xi) . (15.4)

Based on this estimate, the optimal BP decision for bit i at time t, sometimes called
the hard decision, is

x̂
(t)
i = arg max

xi

ν
(t)
i (xi) . (15.5)

In order to fully specify the algorithm, one must address two more issues: (1) How are
the messages initialized? (2) After how many iterations t is the hard decision (15.5)
taken?

In practice, one usually initializes the messages to ν
(0)
i→a(0) = ν

(0)
i→a(1) = 1/2. One

alternative choice, which is sometimes useful for theoretical reasons, is to take the

messages ν
(0)
i→a( · ) as independent random variables, for instance by choosing ν

(0)
i→a(0)

uniformly on [0, 1].
In relation to the number of iterations, one would like to have a stopping criterion.

In practice, a convenient criterion is to check whether x̂(t) is a codeword, and to stop
if this is the case. If this condition is not fulfilled, the algorithm is stopped after a
fixed number of iterations tmax. On the other hand, for the purpose of performance
analysis, we shall instead fix tmax and assume that the belief propagation algorithm
is always run for tmax iterations, regardless of whether a valid codeword is reached at
an earlier stage.

Since the messages are distributions over binary-valued variables, we parameterize
them by the log-likelihoods

hi→a =
1

2
log

νi→a(0)

νi→a(1)
, ua→i =

1

2
log

ν̂a→i(0)

ν̂a→i(1)
. (15.6)
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ub→jhi→a

Fig. 15.1 Factor graph of a (2,3) regular LDPC code, and notation for the belief propagation

messages.

Further, we introduce the a priori log-likelihood for bit i, given the received message
yi:

Bi =
1

2
log

Q(yi|0)
Q(yi|1)

. (15.7)

For instance, if communication takes place over a binary symmetric channel with flip
probability p, one has Bi = 1

2 log((1 − p)/p) on variable nodes which have received
yi = 0, and Bi = − 1

2 log((1 − p)/p) on those with yi = 1. The BP update equations
(15.2) and (15.3) read in this notation (see Fig. 15.1)

h
(t+1)
i→a = Bi +

∑
b∈∂i\a

u
(t)
b→i , u

(t)
a→i = atanh

{ ∏
j∈∂a\i

tanhh
(t)
j→a

}
. (15.8)

The hard-decision decoding rule depends on the overall BP log-likelihood

h
(t+1)
i = Bi +

∑
b∈∂i

u
(t)
b→i , (15.9)

and is given by (using, for definiteness, a fair-coin outcome in the case of a tie)

x̂
(t)
i (y) =

⎧⎪⎨⎪⎩
0 if h

(t)
i > 0,

1 if h
(t)
i < 0,

0 or 1 with probability 1/2 if h
(t)
i = 0.

(15.10)

15.2 Analysis: Density evolution

Let us study BP decoding of random codes from the ensemble LDPCN (Λ, P ) in the
large-block-length limit. The code ensemble is specified by the degree distributions
of the variable nodes Λ = {Λl} and of the check nodes P = {Pk}. We assume for

simplicity that messages are initialized to u
(0)
a→i = 0.

Because of the symmetry of the channel, under the above hypotheses, the bit
(or block) error probability is independent of the transmitted codeword. An explicit
derivation of this fact is outlined in Exercise 15.1 below. Thanks to this freedom, we
can assume that the all-zero codeword has been transmitted. We shall first write the
density evolution recursion as a special case of the recursion given in Section 14.6.2. It
turns out that this recursion can be analysed in quite some detail, and, in particular,
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one can show that the decoding performance improves as t increases. The analysis
hinges on two important properties of BP decoding and density evolution, related to
the notions of ‘symmetry’ and ‘physical degradation’.

Exercise 15.1 The error probability is independent of the transmitted codeword. Assume

that the codeword x has been transmitted, and let Bi(x), u
(t)
a→i(x) and h

(t)
i→a(x) be the cor-

responding channel log-likelihoods and messages. Because of the randomness in the channel
realization, they are random variables. Furthermore, let σi = σi(x) = +1 if xi = 0, and
= −1 otherwise.

(a) Prove that the distribution of σiBi is independent of x.

(b) Use the equations (15.8) to prove, by induction over t, that the (joint) distribution of

{σih
(t)
i→a, σiu

(t)
a→i} is independent of x.

(c) Use eqn (15.9) to show that the distribution of {σih
(t)
i } is independent of x for any

t ≥ 0. Finally, prove that the distribution of the ‘error vector’ z(t) ≡ x ⊕ bx(t)(y) is
independent of x as well. Write the bit and block error rates in terms of the distribution
of z(t).

15.2.1 Density evolution equations

Let us consider the distribution of messages after a fixed number t of iterations. As
we saw in Section 14.6.2, in the large-N limit, the directed neighbourhood of any
given edge is with high probability a tree, whose distribution converges to the model
Tt(Λ, P ). This implies the following recursive distributional characterization for h(t)

and u(t):

h(t+1) d
= B +

l−1∑
b=1

u
(t)
b , u(t) d

= atanh
{ k−1∏

j=1

tanhh
(t)
j

}
. (15.11)

Here u
(t)
b , b ∈ {1, . . . , l−1}, are independent copies of u(t); h

(t)
j , j ∈ {1, . . . , k−1}, are

independent copies of h(t); and l and k are independent random integers distributed
according to λl and ρk, respectively. Finally, B = 1

2 log(Q(y|0)/Q(y|1)), where y is

independently distributed according to Q(y|0). The recursion is initialized with u(0) =
0.

Let us now consider the BP log-likelihood at site i. The same arguments as above

imply h
(t)
i

d→ h
(t)
∗ , where the distribution of h

(t)
∗ is defined by

h
(t+1)
∗

d
= B +

l∑
b=1

u
(t)
b , (15.12)

where l is a random integer distributed according to Λl. In particular, if we let P
(N,t)
b

be the expected (over an LDPCN (Λ, P ) ensemble) bit error rate for the decoding rule
(15.10), then
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lim
N→∞

P
(N,t)
b = P

{
h

(t)
∗ < 0

}
+

1

2
P
{
h

(t)
∗ = 0

}
. (15.13)

The suspicious reader will notice that this statement is non-trivial, because f(x) =
I(x < 0)+ 1

2 I(x = 0) is not a continuous function. We shall prove the statement below

using the symmetry property of the distribution of h
(t)
i , which allows us to write the

bit error rate as the expectation of a continuous function (see Exercise 15.2).

15.2.2 Basic properties: 1. Symmetry

A real random variable Z (or, equivalently, its distribution) is said to be symmetric
if

E {f(−Z)} = E
{
e−2Zf(Z)

}
(15.14)

for any function f such that one of the expectations exists. If Z has a density p(z),
then the above condition is equivalent to p(−z) = e−2zp(z).

Symmetric variables appear naturally in the description of BMS channels.

Proposition 15.1 Consider a BMS channel with transition probability Q(y|x). Let Y
be the channel output conditional on input 0 (this is a random variable with distribution
Q(y|0)), and let B ≡ 1

2 log(Q(Y |0)/Q(Y |1)). Then B is a symmetric random variable.
Conversely, if Z is a symmetric random variable, there exists a BMS channel whose

log-likelihood ratio, conditional on the input being 0, is distributed as Z.

Proof To avoid technicalities, we prove this claim when the output alphabet Y is
a discrete subset of R. In this case, using channel symmetry in the form Q(y|0) =
Q(−y|1), we get

E {f(−B)} =
∑

y

Q(y|0) f

(
1

2
log

Q(y|1)
Q(y|0)

)
=
∑

y

Q(y|1) f

(
1

2
log

Q(y|0)
Q(y|1)

)
=
∑

y

Q(y|0) Q(y|1)
Q(y|0) f

(
1

2
log

Q(y|0)
Q(y|1)

)
= E

{
e−2Bf(B)

}
. (15.15)

We now prove the converse. Let Z be a symmetric random variable. We build a
channel with output alphabet R as follows. Under input 0, the output is distributed
as Z, and under input 1, it is distributed as −Z. In terms of densities,

Q(z|0) = p(z) , Q(z|1) = p(−z) . (15.16)

This is a BMS channel with the desired property. Of course, this construction is not
unique. �

Example 15.2 Consider the binary erasure channel BEC(ε). If the channel input
is 0, then Y can take two values, either 0 (with probability 1 − ε) or ∗ (probability
ε). The distribution of B, PB = (1− ε) δ∞ + ε δ0 , is symmetric. In particular, this is
true for the two extreme cases ε = 0 (a noiseless channel) and ε = 1 (a completely
noisy channel, where PB = δ0).
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Example 15.3 Consider the binary symmetric channel BSC(p). The log-likelihood
B can take two values, either b0 = 1

2 log((1 − p)/p) (input 0 and output 0) or −b0

(input 0 and output 1). Its distribution, PB = (1 − p) δb0 + p δ−b0 , is symmetric.

Example 15.4 Finally, consider the binary white-noise additive Gaussian channel
BAWGN(σ2). If the channel input is 0, the output Y has a probability density

q(y) =
1√

2πσ2
exp

{
− (y − 1)2

2σ2

}
, (15.17)

i.e. it is a Gaussian of mean 1 and variance σ2. The output density for input 1 is
determined by the symmetry of the channel; it is therefore a Gaussian of mean −1
and variance σ2. The log-likelihood for output y is easily checked to be b = y/σ2.
Therefore B also has a symmetric Gaussian density, namely

p(b) =

√
σ2

2π
exp

{
−σ2

2

(
b − 1

σ2

)2
}

. (15.18)

The variables appearing in the density evolution are symmetric as well. The ar-
gument is based on the symmetry of the channel log-likelihood, and the fact that
symmetry is preserved by the operations in BP evolution: if Z1 and Z2 are two in-
dependent symmetric random variables (not necessarily identically distributed), it is
straightforward to show that Z = Z1 + Z2 and Z ′ = atanh[tanhZ1 tanhZ2] are both
symmetric.

Let us now consider the communication of the all-zero codeword over a BMS chan-
nel using an LDPC code, but let us first assume that the factor graph associated with
the code is a tree. We apply BP decoding with a symmetric random initial condition

such as u
(0)
a→i = 0. The messages passed during the decoding procedure can be regarded

as random variables, because of the random received symbols yi (which yield random
log-likelihoods Bi). Furthermore, incoming messages at a given node are independent,
since they are functions of Bi’s (and of initial conditions) on disjoint subtrees. From
the above remarks, and looking at the BP equations (15.8), it follows that the mes-

sages u
(t)
a→i and h

(t)
i→a, as well as the overall log-likelihoods, h

(t)
i are symmetric random

variables at all t ≥ 0. Therefore we can state the following proposition.

Proposition 15.5 Consider BP decoding of an LDPC code under the above assump-

tions. If Bi→a,t+1(F ) is a tree, then h
(t)
i→a is a symmetric random variable. Analogously,

if Bi,t+1(F ) is a tree, then H
(t)
i is a symmetric random variable.

Proposition 15.6 The density-evolution random variables {h(t), u(t),H
(t)
∗ } are sym-

metric.
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Exercise 15.2 Using Proposition 15.5 and the fact that, for any finite t, Bi→a,t+1(F ) is a
tree with high probability as N → ∞, show that

lim
N→∞

P
(N,t)
b = lim

N→∞
E

(
1

N

NX
i=1

f(h
(t)
i )

)
, (15.19)

where f(x) = 1/2 for x ≤ 0 and f(x) = e−2x/2 otherwise.

Symmetry does not hold uniquely for the BP log-likelihood; it also holds for the
actual (MAP) log-likelihood of a bit, as shown in the exercise below.

Exercise 15.3 Consider the actual (MAP) log-likelihood for bit i (as opposed to its BP
approximation). This is defined as

hi(y) =
1

2
log

P{xi = 0|y}
P{xi = 1|y} . (15.20)

If we condition on the all-zero codeword being transmitted, so that P(y) =
Q

i Q(yi|0), then

the random variable Hi = hi(y) is symmetric. This can be shown as follows.

(a) Suppose that a codeword z �= 0 has been transmitted, so that P(y) =
Q

i Q(yi|zi), and
define in this case a random variable associated with the log-likelihood of bit xi as

H
(z)
i = hi(y). Show that H

(z)
i

d
= Hi if zi = 0, and H

(z)
i

d
= −Hi if zi = 1.

(b) Consider the following process. A bit zi is chosen uniformly at random. Then a code-
word z is chosen uniformly at random conditional on the value of zi, and transmit-

ted through a BMS channel, yielding an output y. Finally, the log-likelihood H
(z)
i is

computed. If we hide the intermediate steps in a black box, this can be seen as a

communication channel zi → H
(z)
i . Show that this is a BMS channel.

(c) Show that Hi is a symmetric random variable.

The symmetry property is a generalization of the Nishimori condition that we
encountered for spin glasses. As can be recognized from eqn (12.7), the Nishimori con-
dition is satisfied if and only if, for each coupling constant J , βJ is a symmetric random
variable. Whereas symmetry occurs only at very special values of the temperature for
spin glasses, it holds generically for decoding. The common mathematical origin of
these properties can be traced back to the structure discussed in Section 12.2.3.

15.2.3 Basic properties: 2. Physical degradation

It turns out that, for large block lengths, BP decoding gets better as the number of
iterations t increases (although it does not necessarily converge to the correct values).
This is an extremely useful result, which does not hold when BP is applied to general
inference problems. A precise formulation of this statement is provided by the notion
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BMS(2)

BMS(1) C

x y2

x y1 y2

Fig. 15.2 The channel BMS(2) (top) is said to be physically degraded with respect to

BMS(1) if it is equivalent to the concatenation of BMS(1) with a second channel C (bottom).

of physical degradation. We shall first define this notion in terms of BMS channels,
and then extend it to all symmetric random variables. This allows us to apply it to
the random variables encountered in BP decoding and density evolution.

Let us start with the case of BMS channels. Consider two such channels, denoted
as BMS(1) and BMS(2); we denote their transition matrices by {Q1(y|x)}, {Q2(y|x)}
and the corresponding output alphabets by Y1, Y2. We say that BMS(2) is physically
degraded with respect to BMS(1) if there exists a third channel C with input alphabet
Y1 and output Y2 such that BMS(2) can be regarded as the concatenation of BMS(1)
and C. By this we mean that passing a bit through BMS(1) and then feeding the output
to C is statistically equivalent to passing the bit through BMS(2). If the transition
matrix of C is {R(y2|y1)}, this can be written in formulae as

Q2(y2|x) =
∑

y1∈Y1

R(y2|y1)Q1(y1|x) , (15.21)

where, to simplify the notation, we have assumed Y1 to be discrete. A pictorial repre-
sentation of this relationship is provided in Fig. 15.2. A formal way of expressing the
same idea is that there exists a Markov chain X → Y1 → Y2.

Whenever BMS(2) is physically degraded with respect to BMS(1), we shall write
BMS(1) & BMS(2) (which is read as: ‘BMS(1) is “less noisy than” BMS(2)’). Physical
degradation is a partial ordering: if BMS(1) & BMS(2) and BMS(2) & BMS(3), then
BMS(1) & BMS(3). Furthermore, if BMS(1) & BMS(2) and BMS(2) & BMS(1), then
BMS(1) = BMS(2). However, given two binary memoryless symmetric channels, they
are not necessarily ordered by physical degradation (i.e. it can happen that neither
BMS(1) & BMS(2) nor BMS(2) & BMS(1)).

Here are a few examples of channel pairs ordered by physical degradation.
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Example 15.7 Let ε1, ε2 ∈ [0, 1] with ε1 ≤ ε2. The corresponding erasure channels
are then ordered by physical degradation: BEC(ε1) & BEC(ε2).

Consider a channel C that has input and output alphabets Y = {0, 1, ∗} (the
symbol ∗ representing an erasure). On the inputs 0, 1, it transmits the input un-
changed with probability 1 − x and erases it with probability x. On the input ∗, it
outputs an erasure. If we concatenate this channel with the output of BEC(ε1), we
obtain a channel BEC(ε), with ε = 1 − (1 − x)(1 − ε) (the probability that a bit
is not erased is the product of the probability that it is not erased by each of the
component channels). The claim is thus proved by taking x = (ε2 − ε1)/(1 − ε1).

Exercise 15.4 If p1, p2 ∈ [0, 1/2] with p1 ≤ p2, then BSC(p1) � BSC(p2). This can be
proved by showing that BSC(p2) is equivalent to the concatenation of BSC(p1) with a
second binary symmetric channel BSC(x). What value of the crossover probability x must
one take?

Exercise 15.5 If σ2
1 , σ2

2 ∈ [0,∞[ with σ2
1 ≤ σ2

2 , show that BAWGN(σ2
1) � BAWGN(σ2

2).

If BMS(1) & BMS(2), most measures of the ‘reliability’ of the channel are ordered
accordingly. Let us discuss two important such measures here: (1) the conditional
entropy and (2) the bit error rate.

(1) Let Y1 and Y2 be the outputs of passing a uniformly random bit through chan-
nels BMS(1) and BMS(2), respectively. Then H(X|Y1) ≤ H(X|Y2) (the uncertainty
in the transmitted bit is larger for the ‘noisier’ channel). This follows immediately
from the fact that X → Y1 → Y2 is a Markov chain by applying the data-processing
inequality (see Section 1.4).

(2) Assume that the outputs of channels BMS(1) and BMS(2) are y1 and y2,
respectively. The MAP decision rule for x, knowing ya, is x̂a(ya) = arg maxx P{X =

x|Ya = ya}, with a = 1, 2. The corresponding bit error rate is P
(a)
b = P{x̂a(ya) = x}.

Let us show that P
(1)
b ≤ P

(2)
b . As BMS(1) & BMS(2), there is a channel C such that

BMS(1) concatenated with C is equivalent to BMS(2). Then P
(2)
b can be regarded

as the bit error rate for a non-MAP decision rule, given y1. The rule is: transmit y1

through C, denote the output by y2, and then compute x̂2(y2). This non-MAP decision
rule cannot be better than the MAP rule applied directly to y1.

Since symmetric random variables can be associated with BMS channels (see
Proposition 15.1), the notion of physical degradation of channels can be extended
to symmetric random variables. Let Z1, Z2 be two symmetric random variables and
let BMS(1), BMS(2) be the associated BMS channels, constructed as in the proof of
Proposition 15.1. We say that Z2 is physically degraded with respect to Z1 (and write
Z1 & Z2) if BMS(2) is physically degraded with respect to BMS(1). It can be proved
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that this definition is in fact independent of the choice of BMS(1) and BMS(2) within
the family of BMS channels associated with Z1, Z2.

The interesting result is that BP decoding behaves in the intuitively most natural
way with respect to physical degradation. As above, we now fix a particular LDPC
code and look at BP messages as random variables due to the randomness in the
received vector y.

Proposition 15.8 Consider communication over a BMS channel using an LDPC
code under the all-zero-codeword assumption, and BP decoding with the standard initial

condition X = 0. If Bi,r(F ) is a tree, then h
(0)
i ! h

(1)
i ! · · · ! h

(t−1)
i ! h

(t)
i for any

t ≤ r−1. Analogously, if Bi→a,r(F ) is a tree, then h
(0)
i→a ! h

(1)
i→a ! · · · ! h

(t−1)
i→a ! h

(t)
i→a

for any t ≤ r − 1.

We shall not prove this proposition in full generality here, but rather prove its most
useful consequence for our purpose, namely the fact that the bit error rate decreases
monotonically with t.

Proof Under the all-zero-codeword assumption, the bit error rate is P{x̂(t)
i =

1} = P{h(t)
i < 0} (for the sake of simplicity, we neglect the case h

(t)
i = 0 here).

Assume Bi,r(F ) to be a tree, and fix t ≤ r − 1. We want to show that P{h(t)
i <

0} ≤ P{h(t−1)
i < 0}. The BP log-likelihood after T iterations on the original graph,

h
(t)
i , is equal to the actual (MAP) log-likelihood for the reduced model defined on the

tree Bi,t+1(F ). More precisely, let us denote by Ci,t the LDPC code associated with
the factor graph Bi,t+1(F ), and imagine the following process. A uniformly random
codeword in Ci,t is transmitted through the BMS channel, yielding an output y

t
. We

define the log-likelihood ratio for bit xi as

ĥ
(t)
i =

1

2
log

{
P(xi = 0|y

t
)

P(xi = 1|y
t
)

}
, (15.22)

and denote the MAP estimate for xi by x̂i. Clearly, P{x̂i = 1|xi = 0} = P{h(t)
i < 0}.

Instead of this MAP decoding, we can imagine that we scratch all the received
symbols at a distance t from i, and then perform MAP decoding on the reduced
information. We denote the resulting estimate by x̂′

i. The vector of non-erased symbols
is y

t−1
. The corresponding log-likelihood is clearly the BP log-likelihood after t − 1

iterations. Therefore P{x̂′
i = 1|xi = 0} = P{h(t−1)

i < 0}. By the optimality of the
MAP decision rule, P{x̂i = xi} ≤ P{x̂′

i = xi}, which proves our claim. �

In the case of random LDPC codes, Bi,r(F ) is a tree with high probability for any
fixed r, in the large-block-length limit. Therefore Proposition 15.8 has an immediate
consequence in the asymptotic setting.

Proposition 15.9 The density-evolution random variables are ordered by physical

degradation. Namely, h(0) ! h(1) ! · · · ! h(t−1) ! h(t) ! · · · . Analogously, h
(0)
∗ !

h
(1)
∗ ! · · · ! h

(t−1)
∗ ! h

(t)
∗ ! · · · . As a consequence, the asymptotic bit error rate after

a fixed number t of iterations, P
(t)
b ≡ limN→∞ P

(N,t)
b , decreases monotonically with t.
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Fig. 15.3 Predicted performance of two LDPC ensembles with a binary symmetric chan-

nel. The curves were obtained through a numerical solution of density evolution, us-

ing a population dynamics algorithm with a population size of 5 × 105. Left : the (3, 6)

regular ensemble. Right : an optimized irregular ensemble with the same design rate

Rdes = 1/2, and degree distribution pair Λ(x) = 0.4871 x2+0.3128 x3+0.0421 x4+0.1580 x10,

P (x) = 0.6797 x7 + 0.3203 x8. The dotted curves give the bit error rate obtained after t = 1,

2, 3, 6, 11, 21 and 51 iterations (from top to bottom), and the bold continuous lines refer to

the limit t → ∞. In the insets we plot the expected conditional entropy EH(Xi|Y ).

Exercise 15.6 An alternative measure of the reliability of h
(t)
i is provided by the condi-

tional entropy. Assuming that a uniformly random codeword is transmitted, this is given

by Hi(t) = H(Xi|h(t)
i ).

(a) Prove that if Bi,r(F ) is a tree, then Hi(t) decreases monotonically with t for t ≤ r− 1.

(b) Assume that, under the all-zero-codeword assumption, h
(t)
i has a density pt(.). Show

that Hi(t) =
R

log(1 + e−2z) dpt(z) .
[Hint: Remember that pt(.) is a symmetric distribution.]

15.2.4 Numerical implementation, and threshold

Density evolution is a useful tool because it can be simulated efficiently. One can
estimate numerically the distributions of the density evolution variables {h(t), u(t)},
and also {h(t)

∗ }. As we have seen, this gives access to the properties of BP decoding in

the large-block-length limit, such as the bit error rate P
(t)
b after t iterations.

A possible approach1 consists in representing the distributions by samples of some
fixed size S. This leads to the population dynamics algorithm discussed in Section 14.6.4.

This algorithm generates, at each time t ∈ {0, . . . , T}, two populations {h(t)
1 , · · · , h

(t)
Npop

}

1An alternative approach is as follows. Both of the maps (15.11) can be regarded as convo-
lutions of probability densities for an appropriate choice of the message variables. For the first
map, this is immediate in terms of log-likelihoods. For the second map, one can use variables
r(t) = (sign h(t), log | tanh h(t)|) and s(t) = (sign u(t), log | tanh y(t)|)). By using a fast Fourier trans-
form to implement convolutions, this can result in a significant speed-up of the calculation.
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Table 15.1 Belief propagation thresholds for a binary symmetric channel, for a few regular

LDPC ensembles. The third column lists the design rate 1 − l/k.

l k Rdes pd Shannon limit
3 4 1/4 0.1669(2) 0.2145018
3 5 2/5 0.1138(2) 0.1461024
3 6 1/2 0.0840(2) 0.1100279
4 6 1/3 0.1169(2) 0.1739524

and {u(t)
1 , · · · , u

(t)
Npop

} which are approximately i.i.d. variables distributed as h(t) and

u(t), respectively. From these populations, one can estimate the bit error rate following
eqn (15.13). More precisely, the population dynamics estimate is

P
(t),pop dyn
b =

1

R

R∑
n=1

ϕ
(
Bn +

l(n)∑
j=1

u
(t−1)
in(j)

)
, (15.23)

where ϕ(x) ≡ 1 if x > 0, ϕ(0) = 1/2, and ϕ(x) = 0 otherwise. Here the Bn

are distributed as 1
2 log(Q(y|0)/Q(y|1)), l(n) is distributed as Λl, and the indices

in(1), . . . , in(l) are uniformly random in {1, . . . , Npop}. The parameter R is usually
taken to be of the same order as the population size.

In Fig. 15.3, we report the results of population dynamics computations for two
different LDPC ensembles used with a binary symmetric channel with crossover prob-

ability p. We consider two performance measures: the bit error rate P
(t)
b and the

conditional entropy H(t), which can also be easily estimated from the population.

As follows from Proposition 15.9, P
(t)
b and H(t) are monotonically decreasing func-

tions of the number of iterations. One can also show that they are monotonically

increasing functions of p. Since P
(t)
b is non-negative and decreasing in t, it has a finite

limit PBP
b ≡ limt→∞ P

(t)
b , which is itself non-decreasing in p (the limit curve PBP

b has

been estimated in Fig. 15.3 by choosing t large enough so that P
(t)
b is independent of

t within the numerical accuracy). The BP threshold is defined as

pd ≡ sup
{

p ∈ [0, 1/2] : PBP
b (p) = 0

}
. (15.24)

Here the subscript ‘d’ stands for ‘dynamical’: its intrinsic meaning and its relation
to phase transitions in other combinatorial problems will be discussed in Chapter 21.
Analogous definitions can be provided for other channel families such as the erasure
channel BEC(ε) and the Gaussian channel BAWGN(σ2). In general, the definition
(15.24) can be extended to any family of BMS channels BMS(p) indexed by a real
parameter p which orders the channels with respect to physical degradation.

Numerical simulation of the density evolution allows one to determine the BP
threshold pd with good accuracy. We report the results of a few such simulations in
Table 15.1. Let us stress that the threshold pd has an important practical meaning. For
any p < pd, one can achieve an arbitrarily small bit error rate with high probability
just by picking one random code from the ensemble LDPCN (Λ, P ) with large N and
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decoding it using BP with a large enough (but independent of N) number of iterations.
For p > pd, the bit error rate is asymptotically bounded from below by PBP

b (p) > 0 for
any fixed number of iterations (in practice, it turns out that doing more iterations, say
Na, does not help). The value of pd is therefore a primary measure of the performance
of a code.

One possible approach to the design of good LDPC codes is to use random ensem-
bles, and optimize the degree distribution. For instance, one can look for the degree
distribution pair (Λ, P ) with the largest BP threshold pBP, given a certain design rate
Rdes = 1 − P ′(1)/Λ′(1). In the simple case of communication over a BEC, the opti-
mization over the degree distributions can be carried out analytically, as we shall see
in Section 15.3. For general BMS channels, it can be done numerically: one computes
the threshold noise level for a given degree distribution pair using density evolution,
and maximizes it by a local search procedure. Figure 15.3 shows an example of an
optimized irregular ensemble with rate 1/2 for a BSC, including variable nodes of de-
grees 2, 3, 4 and 10 and check nodes of degrees 7 and 8. Its threshold is pd ≈ 0.097
(while the Shannon limit is 0.110).

Note that this ensemble has a finite fraction of variable nodes of degree 2. We
can use the analysis in Chapter 11 to compute its weight enumerator function. It
turns out that the parameter A in eqn (11.23) is positive. This optimized ensemble
has a large number of codewords with small weight. It is surprising, and not very
intuitive, that a code such that there exist codewords at a sublinear distance from
the transmitted codeword nevertheless has a large BP threshold pd. It turns out that
this phenomenon is very general: code ensembles that approach the Shannon capacity
turn out to have bad ‘short-distance properties’. In particular, the weight enumerator
exponent, discussed in Section 11.2, is positive for all values of the normalized weight.
Low-weight codewords do not spoil the performance in terms of pd. They are not
harmless, though: they degrade the performance of the code at moderate block lengths
N , below the threshold pd. Further, they prevent the block error probability from
vanishing as N goes to infinity (in each codeword, a fraction 1/N of the bits is decoded
incorrectly). This phenomenon is referred to as the error floor.

Exercise 15.7 While the BP threshold (15.24) was defined in terms of the bit error rate,
any other ‘reasonable’ measure of the error in the decoding of a single bit would give the
same result. This can be shown as follows. Let Z be a symmetric random variable and
Pb ≡ P{Z < 0} + 1

2
P{Z = 0}. Show that, for any ∆ > 0, P{Z < ∆} ≤ (2 + e2∆)Pb.

Consider a sequence of symmetric random variables {Z(t)} such that the sequence of

P
(t)
b defined as before goes to 0. Show that the distribution of Z(t) becomes a Dirac delta

at plus infinity as t → ∞.

15.2.5 Local stability

In addition to numerical computation, it is useful to derive simple analytical bounds
on the BP threshold. A particularly interesting bound is provided by a local stabil-
ity analysis. It applies to any BMS channel, and the result depends on the specific
channel only through its Bhattacharya parameter B ≡∑y

√
Q(y|0)Q(y|1) ≤ 1. This
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parameter, which we have already encountered in Chapter 11, is a measure of the
noise level of the channel. It preserves the ordering by physical degradation (i.e. the
Bhattacharya parameters of two channels BMS(1) & BMS(2) satisfy B(1) ≤ B(2)),
as can be checked by explicit computation.

The local stability condition depends on the LDPC code through the fraction of
vertices with degree 2, Λ2 = λ′(0), and the value of ρ′(1) =

∑
k Pkk(k − 1)/

∑
k Pkk.

It is expressed as follows.

Theorem 15.10 Consider communication of the all-zero codeword over a binary mem-
oryless symmetric channel with Bhattacharyia parameter B, using random elements
from the ensemble LDPCN (Λ, P ) and belief propagation decoding in which the initial

messages u
(0)
a→i are i.i.d. copies of a symmetric random variable. Let P

(t,N)
b be the bit

error rate after t iterations, and P
(t)
b = limN→∞ P

(t,N)
b .

1. If λ′(0)ρ′(1)B < 1, then there exists ξ > 0 such that, if P
(t)
b < ξ for some ξ, then

P
(t)
b → 0 as t → ∞.

2. If λ′(0)ρ′(1)B > 1, then there exists ξ > 0 such that P
(t)
b > ξ for any t.

Corollary 15.11 We define the local stability threshold ploc as

ploc = inf
{

p | λ′(0)ρ′(1)B(p) > 1
}

. (15.25)

The BP threshold pBP for decoding a communication over an ordered channel family
BMS(p) using random codes from the ensemble LDPCN (Λ, P ) satisfies

pd ≤ ploc .

We shall not give the full proof of this theorem, but will explain the stability
argument that underlies it. If the minimum variable-node degree is 2 or larger, the

density evolution recursion (15.11) has as a fixed point h, u
d
= Z∞, where Z∞ is a

random variable that takes the value +∞ with probability 1. The BP threshold pd is
the largest value of the channel parameter such that {h(t), u(t)} converge to this fixed
point as t → ∞. It is then quite natural to ask what happens if the density evolution
recursion is initiated with some random initial condition that is ‘close enough’ to Z∞.
To this end, we consider the initial condition

X =

{
0 with probability ε,
+∞ with probability 1 − ε.

(15.26)

This is nothing but the log-likelihood distribution for a bit transmitted through a
binary erasure channel, with erasure probability ε.

Let us now apply the density evolution recursion (15.11) with the initial condition

u(0) d
= X. At the first step, we have h(1) d

= B +
∑l−1

b=1 Xb, where the {Xb} are i.i.d.
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copies of X. Therefore h(1) = +∞ unless X1 = · · · = Xl−1 = 0, in which case h(1) d
= B.

We therefore have

With probability λl : h(1) =

{
B with prob. εl−1,
+∞ with prob. 1 − εl−1,

(15.27)

where B is distributed as the channel log-likelihood. Since we are interested in the
behaviour ‘close’ to the fixed point Z∞, we linearize with respect to ε, thus getting

h(1) =

⎧⎨⎩B with prob. λ2ε + O(ε2),
+∞ with prob. 1 − λ2ε + O(ε2),
· · · with prob. O(ε2).

(15.28)

The last line has not been given in full here, but it will become necessary in subsequent
iterations. It signals that h(1) could take some other value with a negligible probability.

Next, consider the first iteration at the check node side: u(1) = atanh{
∏k−1

j=1 tanhh
(1)
j }.

To first order in ε, we need to consider only two cases: Either h
(1)
1 = · · · = h

(1)
k−1 = +∞

(this happens with probability 1− (k − 1)λ2ε + O(ε2)), or one of the log-likelihoods is
distributed like B (with probability (k−1)λ2ε+O(ε2)). Averaging over the distribution
of k, we get

u(1) =

⎧⎨⎩B with prob. λ2ρ
′(1)ε + O(ε2),

+∞ with prob. 1 − λ2ρ
′(1)ε + O(ε2),

· · · with prob. O(ε2).
(15.29)

Repeating the argument t times (and recalling that λ2 = λ′(0)), we get

h(t) =

⎧⎨⎩B1 + · · · + Bt with prob. (λ′(0)ρ′(1))tε + O(ε2),
+∞ with prob. 1 − (λ′(0)ρ′(1))tε + O(ε2),
· · · with prob. O(ε2).

(15.30)

The bit error rate vanishes if and only P(t; ε) = P
{
h(t) ≤ 0

}
goes to 0 as t → ∞. The

above calculation shows that

P(t; ε) = (λ′(0)ρ′(1))t ε P
{
B1 + · · · + Bt ≤ 0

}
+ O(ε2) . (15.31)

The probability of B1+· · ·+Bt ≤ 0 can be computed, to leading exponential order,
using the large-deviations estimates of Section 4.2. In particular, we saw in Exercise
4.2 that

P
{
B1 + · · · + Bt ≤ 0

} .
=

{
inf
z≥0

E [e−zB ]

}t

. (15.32)

We leave to the reader the exercise of showing that, since B is a symmetric random
variable, E e−zB is minimized for z = 1, thus yielding

P
{
B1 + · · · + Bt ≤ 0

} .
= Bt . (15.33)

As a consequence, the order-ε coefficient in eqn (15.31) behaves, to leading exponen-
tial order, as (λ′(0)ρ′(1)B)t. Depending on whether λ′(0)ρ′(1)B < 1 or λ′(0)ρ′(1)B >
1, the density evolution may or may not converge to the error-free fixed point if initi-
ated sufficiently close to it. The full proof relies on these ideas, but it requires one to
control the terms of higher order in ε, and other initial conditions as well.
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15.3 BP decoding for an erasure channel

We now focus on an erasure channel BEC(ε). The analysis can be greatly simplified
in this case: the BP decoding algorithm has a simple interpretation, and the density
evolution equations can be studied analytically. This allows us to construct capacity-
achieving ensembles, i.e. codes which are, in the large-N limit, error-free up to a
noise level given by Shannon’s threshold.

15.3.1 BP, the peeling algorithm, and stopping sets

We consider BP decoding, with initial condition u
(0)
a→i = 0. As can be seen from

eqn (15.7), the channel log-likelihood Bi can take three values: +∞ (if a 0 has been
received at position i), −∞ (if a 1 has been received at position i), or 0 (if an erasure
occurred at position i).

It follows from the update equations (15.8) that the messages exchanged at any
subsequent time take values in {−∞, 0,+∞} as well. Consider first the equation for

the check nodes. If one of the incoming messages h
(t)
j→a is 0, then u

(t)
a→i = 0 as well.

If, on the other hand, h
(t)
j→a = ±∞ for all incoming messages, then u

(t)
a→i = ±∞ (the

sign being the product of the incoming signs). Next, consider the update equation for

the variable nodes. If u
(t)
b→i = 0 for all of the incoming messages, and Bi = 0 as well,

then of course h
(t+1)
i→a = 0. If, on the other hand, some of the incoming messages or

the received value Bi takes the value ±∞, then h
(t+1)
i→a takes the same value. Notice

that there can never be contradictory incoming messages (i.e. both +∞ and −∞) at
a variable node.

Exercise 15.8 Show that, if contradictory messages were sent to the same variable node,
this would imply that the transmitted message was not a codeword.

The meaning of the three possible messages ±∞ and 0 and of the update equations

is very clear in this case. Each time the message h
(t)
i→a or u

(t)
a→i is +∞ (or −∞), this

means that the bit xi is 0 (or 1, respectively) in all codewords that coincide with the
channel output at the non-erased positions: the value of xi is perfectly known. Vice

versa, if h
(t)
i→a = 0 (or u

(t)
a→i = 0), the bit xi is currently considered equally likely to be

either 0 or 1.
The algorithm is very simple: each message changes value at most one time, either

from 0 to +∞, or from 0 to −∞.

Exercise 15.9 To show this, consider the first time, t1, at which a message h
(t)
i→a changes

from +∞ to 0. Find what has happened at time t1 − 1.

Therefore a fixed point is reached after a number of updates less than or equal to
the number of edges NΛ′(1). There is also a clear stopping criterion: if, in one update
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round, no progress is made (i.e. if h
(t)
i→a = h

(t+1)
i→a for all directed edges i → a), then no

progress will be made in subsequent rounds.
An alternative formulation of BP decoding is provided by the peeling algorithm.

The idea is to view decoding as a linear-algebra problem. The code is defined through
a linear system over Z2, of the form Hx = 0. The output of an erasure channel
fixes a fraction of the bits in the vector x (the non-erased bits). One is left with an
inhomogeneous linear system L over the remaining erased bits. Decoding amounts
to using this new linear system to determine the bits erased by the channel. If an
equation in L contains a single variable xi with a non-vanishing coefficient, it can be
used to determine xi, and replace it everywhere. One can then repeat this operation
recursively until either all of the variables have been fixed (in which case the decoding
is successful) or the residual linear system includes only equations over two or more
variables (in which case the decoder gets stuck).

Exercise 15.10 An explicit characterization of the fixed points of the peeling algorithm
can be given in terms of stopping sets (or 2-cores). A stopping set is a subset of variable
nodes in the factor graph such that each check node has a number of neighbours in the
subset which is either zero or at least 2. Let S be the subset of undetermined bits when the
peeling algorithm stops.

(a) Show that S is a stopping set.

(b) Show that the union of two stopping sets is a stopping set. Deduce that, given a subset
of variable nodes U , there exists a unique ‘largest’ stopping set contained in U that
contains any other stopping set in U .

(c) Let U be the set of erased bits. Show that S is the largest stopping set contained in U .

Exercise 15.11 We prove here that the peeling algorithm is indeed equivalent to BP
decoding. As in the previous exercise, we denote by S the largest stopping set contained in
the erased set U .

(a) Prove that, for any edge (i, a) with i ∈ S, u
(t)
a→i = h

(t)
a→i = 0 at all times.

(b) Vice versa, let S′ be the set of bits that are undetermined by BP after a fixed point is
reached. Show that S′ is a stopping set.

(c) Deduce that S′ = S (use the maximality property of S).

15.3.2 Density evolution

Let us study BP decoding of an LDPCN (Λ, P ) code after communication through a
binary erasure channel. Under the assumption that the all-zero codeword has been
transmitted, messages will take values in {0,+∞}, and their distribution can be pa-
rameterized by a single real number. We denote by zt the probability that h(t) = 0, and
by ẑt the probability that u(t) = 0. The density evolution recursion (15.11) translates
into the following recursion on {zt, ẑt}:
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Fig. 15.4 Density evolution for the (3, 6) LDPC ensemble over the erasure channel BEC(ε),

for two values of ε, below and above the BP threshold εd = 0.4294.

zt+1 = ελ(ẑt) , ẑt = 1 − ρ(1 − zt) . (15.34)

We can eliminate ẑt from this recursion to get zt+1 = Fε(zt), where we have defined
Fε(z) ≡ ελ(1− ρ(1− z)). The bit error rate after t iterations in the large-block-length

limit is P
(t)
b = εΛ(ẑt).

In Fig. 15.4, we show as an illustration the recursion zt+1 = Fε(zt) for the (3, 6)
regular ensemble. The edge-perspective degree distributions are λ(z) = z2 and ρ(z) =
z5, so that Fε(z) = ε[1 − (1 − z)2]5. Notice that Fε(z) is a monotonically increasing
function with Fε(0) = 0 (if the minimum variable-node degree is at least 2) and
Fε(1) = ε < 1. As a consequence, the sequence {zt} is decreasing and converges
at large t to the largest fixed point of Fε. In particular, zt → 0 (and consequently
PBP

b = 0) if and only if Fε(z) < z for all z ∈ ]0, 1]. This yields the following explicit
characterization of the BP threshold:

εd = inf

{
z

λ(1 − ρ(1 − z))
: z ∈]0, 1]

}
. (15.35)

It is instructive to compare this characterization with the local stability threshold,
which in this case reads εloc = 1/λ′(0)ρ′(1). It is obvious that εd ≤ εloc, since εloc =
limz→0 z/λ(1 − ρ(1 − z)).

Two cases are possible, as illustrated in Fig. 15.5: either εd = εloc or εd < εloc.
Each case corresponds to a different behaviour of the bit error rate. If εd = εloc, then,
generically,2 PBP

b (ε) is a continuous function of ε at εd, with PBP
b (εd +δ) = Cδ +O(δ2)

just above the threshold. If, on the other hand, εd < εloc, then PBP
b (ε) is discontinuous

at εd, with PBP
b (εd + δ) = PBP,∗

b + Cδ1/2 + O(δ) just above threshold.

2Other behaviours are possible, but they are not ‘robust’ with respect to a perturbation of the
degree sequences.
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Fig. 15.5 The bit error rate under BP decoding for the (3, 6) (left) and (2, 4) (right) ensem-

bles. The prediction of density evolution (bold lines) is compared with numerical simulations

(averaged over 10 code/channel realizations with block length N = 104). For the (3, 6) ensem-

ble, where εBP ≈ 0.4294 < εloc = ∞, the transition is discontinuous. For the (2, 4) ensemble,

where εBP = εloc = 1/4, the transition is continuous.

Exercise 15.12 Consider communication over a binary erasure channel using random ele-
ments from the regular (l, k) ensemble, in the limit k, l → ∞, with a fixed rate Rdes = 1−l/k.
Prove that the BP threshold εd tends to 0 in this limit.

15.3.3 Ensemble optimization

The explicit characterization (15.35) of the BP threshold for a binary erasure channel
opens the way to the optimization of the code ensemble.

One possible set-up is the following. We fix an erasure probability ε ∈ ]0, 1[: this
is the estimated noise level in the channel that we are going to use. For a given
degree sequence pair (λ, ρ), let εd(λ, ρ) denote the corresponding BP threshold, and let
R(λ, ρ) = 1−(

∑
k ρk/k)/(

∑
l λl/l) be the design rate. Our objective is to maximize the

rate, while keeping εd(λ, ρ) ≤ ε. Let us assume that the check node degree distribution
ρ is given. Finding the optimal variable-node degree distribution can then be recast
as an (infinite-dimensional) linear programming problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩

maximize
∑

l λl/l ,

subject to
∑

l λl = 1
λl ≥ 0 ∀ l ,
ελ(1 − ρ(1 − z)) ≤ z ∀ z ∈ ]0, 1] .

(15.36)

Note that the constraint ελ(1 − ρ(1 − z)) ≤ z conflicts with the requirement of
maximizing

∑
l λl/l, since both are increasing functions in each of the variables λl.

As is usual with linear programming, one can show that the objective function is
maximized when the constraints are satisfied with equality, i.e. ελ(1 − ρ(1 − z)) = z
for all z ∈ ]0, 1]. This ‘matching condition’ allows one to determine λ for a given ρ.
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Fig. 15.6 Belief propagation bit error rate for LDPCN (Λ, P ) ensembles from the capaci-

ty-achieving sequence (λ(k), ρ(k)) defined in the main text. The sequence is constructed in

such a way as to achieve capacity at a noise level ε = 0.5 (the corresponding capacity is

C(ε) = 1 − ε = 0.5). The five ensembles considered here have design rates Rdes = 0.42253,

0.48097, 0.49594, 0.49894 and 0.49976 (for k = 4, 6, 8, 10 and 12, respectively).

We shall do this in the simple case where the check nodes have a uniform degree
k, i.e. ρ(z) = zk−1. The saturation condition implies λ(z) = (1/ε)[1 − (1 − z)1/(k−1)].
By Taylor expanding this expression, we get, for l ≥ 2,

λl =
(−1)l

ε

Γ (1/(k − 1) + 1)

Γ(l) Γ (1/(k − 1) − l + 2)
. (15.37)

In particular, λ2 = 1/((k − 1)ε), λ3 = (k − 2)/(2(k − 1)2ε), and λl � λ∞l−k/(k−1) as
l → ∞. Unhappily, this degree sequence does not satisfy the normalization condition
in (15.36). In fact,

∑
l λl = λ(1) = 1/ε. This problem can, however, be overcome

by truncating the series and letting k → ∞, as shown in the exercise below. The
final result is that a sequence of LDPC ensembles can be found that allows reliable
communication under BP decoding, at a rate that asymptotically achieves the channel
capacity C(ε) = 1 − ε. This is stated more formally below.

Theorem 15.12 Let ε ∈ (0, 1). Then there exists a sequence of degree distribution
pairs (λ(k), ρ(k)), with ρ(k)(x) = xk−1, such that εd(λ(k), ρ(k)) > ε and R(λ(k), ρ(k)) →
1 − ε.

The precise construction of the sequence (λ(k), ρ(k)) is outlined in the next exercise.
In Fig. 15.6, we show the BP error probability curves for this sequence of ensembles.
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Exercise 15.13 Let ρ(k)(z) = zk−1, λ̂(k)(z) = (1/ε)[1−(1−z)1/(k−1)], and zL =
PL

l=2 λ̂
(k)
l .

Define L(k, ε) as the smallest value of L such that zL ≥ 1. Finally, set λ
(k)
l = λ̂

(k)
l /zL(k,ε) if

l ≤ L(k, ε) and λ
(k)
l = 0 otherwise.

(a) Show that ελ(k)(1 − ρ(k)(1 − z)) < z for all z ∈ ]0, 1] and, as a consequence,

εd(λ(k), ρ(k)) > ε.
[Hint: Use the fact that the coefficients λl in eqn (15.37) are non-negative and hence

λ(k)(x) ≤ λ̂(k)(z)/zL(k,ε).]

(b) Show that, for any sequence l(k), λ̂
(k)

l(k) → 0 as k → ∞. Deduce that L(k, ε) → ∞ and

zL(k,ε) → 1 as k → ∞.

(c) Prove that limk→∞ R(λ(k), ρ(k)) = limk→∞ 1 − ε zL(k,ε) = 1 − ε.

15.4 The Bethe free energy and MAP decoding

So far, we have studied the performance of LDPCN (Λ, P ) ensembles under BP message-
passing decoding, in the large-block-length limit. Remarkably, sharp asymptotic pre-
dictions can be obtained for optimal decoding as well, and they involve the same
mathematical objects, namely distributions of messages. We shall focus here on sym-
bol MAP decoding for a channel family {BMS(p)} ordered by physical degradation.
As in Chapter 11, we can define a threshold pMAP depending on the LDPC ensemble,
such that MAP decoding allows one to communicate reliably at all noise levels below
pMAP. We shall compute pMAP using the Bethe free entropy. The free entropy of our
decoding problem, averaged over the received signal, is defined as Ey log Z(y). Let us
see how its value can be related to the properties of MAP decoding.

A crucial step to understanding MAP decoding is estimating the typical number
of inputs with non-negligible probability for a given channel output. We can quantify
this precisely by introducing the ‘codeword entropy density’ hN = (1/N) EHN (X|Y ),
averaged over the code ensemble (throughout this section we shall use natural log-
arithms in the definition of the entropies, instead of logarithms to base 2). If hN is
bounded away from 0 as N → ∞, the typical channel output is likely to correspond to
an exponential number of inputs. If, on the other hand, hN → 0, the correct input has
to be searched for among a subexponential number of candidates, and one may hope
to be able to decode correctly. A precise relation to the error probability is provided
by Fano’s inequality (1.28).

Proposition 15.13 Denote by PN
b the bit error probability for communication using

a code of block length N . Then,

H(PN
b ) ≥ HN (X|Y )

N
.

In particular, if the entropy density HN (X|Y )/N is bounded away from 0, so is PN
b .
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Although this gives only a bound, it suggests that we can identify the MAP threshold
as the largest noise level such that hN → 0 as N → ∞. In other words, we define

pc ≡ sup
{

p : lim
N→∞

hN = 0
}

, (15.38)

and conjecture that, for LDPC ensembles, the bit error rate vanishes asymptotically
if p < pc, thus implying pMAP = pc. Hereafter, we shall use pc (or εc for a BEC) to
denote the MAP threshold. The relation between this and similar phase transitions in
other combinatorial problems will be discussed in Chapter 21.

The conditional entropy HN (X|Y ) is directly related to the free entropy of the
model defined in (15.1). More precisely, we have

HN (X|Y ) = Ey log Z(y) − N
∑

y

Q(y|0) log Q(y|0) , (15.39)

where Ey denotes the expectation with respect to the output vector y. In order to derive

this expression, we first use the entropy chain rule to write (dropping the subscript
N)

H(X|Y ) = H(Y |X) + H(X) − H(Y ) . (15.40)

Since the input message is uniform over the code, H(X) = N log |C|. Further, since
the channel is memoryless and symmetric, H(Y |X) =

∑
i H(Yi|Xi) = NH(Yi|Xi =

0) = −N
∑

y Q(y|0) log Q(y|0). Finally, rewriting the distribution (15.1) as

p(x|y) =
|C|

Z(y)
p(y, x) , (15.41)

we can identify (by Bayes’ theorem) Z(y) = |C| p(y). Equation (15.39) follows by
putting together these contributions.

The free entropy Ey log Z(y) is the non-trivial term in eqn (15.39). For LDPC
codes, in the large-N limit, it is natural to compute it using the Bethe approximation
of Section 14.2.4. Suppose u = {ua→i}, h = {hi→a} is a set of messages which solves
the BP equations

hi→a = Bi +
∑

b∈∂i\a

ub→i , ua→i = atanh

⎧⎨⎩ ∏
j∈∂a\i

tanhhj→a

⎫⎬⎭ . (15.42)

Then the corresponding Bethe free entropy follows from eqn (14.28):

F(u, h) = −
∑

(ia)∈E

log

[∑
xi

νua→i
(xi)νhi→a

(xi)

]
(15.43)

+
N∑

i=1

log

[∑
xi

Q(yi|xi)
∏
a∈∂i

νua→i
(xi)

]
+

M∑
a=1

log

⎡⎣∑
xa

Ia(x)
∏
i∈∂a

νhi→a
(xi)

⎤⎦ .

where we denote the distribution of a bit x whose log-likelihood ratio is u by νu(x),
given by νu(0) = 1/(1 + e−2u), νu(1) = e−2u/(1 + e−2u).
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We are interested in the expectation of this quantity with respect to the code and
channel realization, in the N → ∞ limit. As in Section 14.6.3, we assume that messages

are asymptotically identically distributed, i.e. ua→i
d
= u, hi→a

d
= h, and that messages

coming into the same node along distinct edges are asymptotically independent. Under
these hypotheses, we get

lim
N→∞

1

N
Ey F(u, h) = fRS

u,h +
∑

y

Q(y|0) log Q(y|0) , (15.44)

where the ‘shifted’ free-entropy density fRS
u,h associated with the random variables u, h

is defined by

fRS
u,h = −Λ′(1) Eu,h log

[∑
x

νu(x)νh(x)

]
+ El,y,{ui} log

[∑
x

Q(y|x)

Q(y, 0)

l∏
i=1

νui
(x)

]

+
Λ′(1)

P ′(1)
EkE{hi} log

[ ∑
x1...xk

I (x1 ⊕ · · · ⊕ xk = 0)

k∏
i=1

νhi
(xi)

]
. (15.45)

Here k and l are distributed according to Pk and Λl, respectively, and u1, u2, . . . and
h1, h2, . . . are i.i.d. and distributed as u and h, respectively.

If the Bethe free entropy is correct, the shifted Bethe free-entropy density fRS
u,h is

equal to the codeword entropy density hN . This reasonable assumption can be turned
into a rigorous inequality.

Theorem 15.14 If u, h are symmetric random variables satisfying the distributional

identities u
d
= atanh

{∏k−1
i=1 tanhhi

}
and h

d
= B +

∑l−1
a=1 ua, then

lim
N→∞

hN ≥ fRS
u,h . (15.46)

It is natural to conjecture that the correct limit is obtained by optimizing the above
lower bound, i.e.

lim
N→∞

hN = sup
u,h

fRS
u,h , (15.47)

where, once again, the sup is taken over the pairs of symmetric random variables u, h

satisfying u
d
= atanh

{∏k−1
i=1 tanhhi

}
and h

d
= B +

∑l−1
a=1 ua.

This conjecture has indeed been proved in the case of communication over a binary
erasure channel for a large class of LDPC ensembles (including, for instance, regular
ones).

The above equation is interesting because it establishes a bridge between BP and
MAP decoding. An example of application of this bridge is given in the next exercise.
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Fig. 15.7 Illustration of the RS cavity method applied to a (3, 6) regular code used over a

binary symmetric channel. Left : a non-trivial distribution of the variables h found by pop-

ulation dynamics at a noise level p = 0.095. Right : shifted free entropy versus p, for the

non-trivial solution (the normalization is such that the free entropy of the perfect-decoding

phase u = h = ∞ is zero). When the noise level is increased, the non-trivial solution appears

at pd, and its free entropy becomes positive at pc

Exercise 15.14 Proof that pd ≤ pc.

(a) Recall that the pair of distributions “u, h = +∞ with probability one” constitute a
density-evolution fixed point for any noise level. Show that fRS

h,u = 0 at such a fixed
point.

(b) Use ordering by physical degradation to show that if any other fixed point exists, then
the density evolution converges to it.

(c) Deduce that pd ≤ pc.

Evaluating the expression in eqn (15.47) implies an a priori infinite-dimensional
optimization problem. In practice, good approximations can be obtained through the
following procedure:

1. Initialize h, u to a pair of symmetric random variables h(0), u(0).

2. Implement numerically the density evolution recursion (15.11) by population dy-
namics, and iterate it until an approximate fixed point is attained.

3. Evaluate the functional fRS
u,h at such a fixed point, after enforcing u

d
=

atanh
{∏k−1

i=1 tanhhi

}
exactly.

The above procedure can be repeated for several different initializations u(0), h(0). The
largest of the corresponding values of fRS

u,v is then picked as an estimate for limN→∞ hN .
While this procedure is not guaranteed to exhaust all of the possible density-

evolution fixed points, it allows one to compute a sequence of lower bounds on the
conditional entropy density. Further, by analogy with exactly solvable cases (such
as that of a binary erasure channel), one expects a small, finite number of density-
evolution fixed points. In particular, for regular ensembles and p > pd, a unique
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Table 15.2 MAP thresholds for a binary symmetric channel compared with the BP decoding

thresholds, for a few regular LDPC ensembles.

l k Rdes pd pc Shannon limit
3 4 1/4 0.1669(2) 0.2101(1) 0.2145018
3 5 2/5 0.1138(2) 0.1384(1) 0.1461024
3 6 1/2 0.0840(2) 0.1010(2) 0.1100279
4 6 1/3 0.1169(2) 0.1726(1) 0.1739524

Table 15.3 MAP thresholds for a binary erasure channel compared with the BP decoding

thresholds, for a few regular LDPC ensembles.

l k Rdes εd εc Shannon limit
3 4 1/4 0.647426 0.746010 0.750000
3 5 2/5 0.517570 0.590989 0.600000
3 6 1/2 0.429440 0.488151 0.500000
4 6 1/3 0.506132 0.665656 0.666667

(stable) fixed point is expected to exist in addition to the no-error one u, h = +∞. In
Table 15.2 we present the corresponding MAP thresholds for a BSC and a few regular
ensembles.

The whole approach simplifies considerably in the case of communication over a
binary erasure channel, as shown in the exercise below.

Exercise 15.15 Consider the erasure channel BEC(ε), and look for a fixed point of the
density evolution equations (15.11) such that (i) h = 0 with probability z and h = ∞ with
probability 1 − z, and (ii) u = 0 with probability ẑ and u = ∞ with probability 1 − ẑ.

(a) Show that z and ẑ must satisfy the equations (15.34).

(b) Show that the shifted free entropy (15.45) is equal to

fRS
u,h =

»
Λ′(1)z(1 − ẑ) +

Λ′(1)

P ′(1)
(P (1 − z) − 1) + εΛ(ẑ)

–
log 2 . (15.48)

(c) Use this expression and the conjecture (15.47) to obtain the MAP thresholds for regular
ensembles listed in Table 15.3.

The two problems of computing the BP and MAP thresholds are thus unified by
the use of the RS cavity method. For any noise level p, there always exists a solution
to the RS cavity equations in which the distribution of u is a point mass distribution
at u = +∞ and the distribution of h is a point mass distribution at h = +∞. This
solution corresponds to a perfect decoding; its shifted free entropy density is fRS

u,h = 0.
When p > pd, another solution to the RS cavity equations appears. Its shifted free
entropy density fRS can be computed from eqn (15.44): it is initially negative and



��� Decoding with belief propagation

increases with p. The MAP threshold is the value p = pd above which fRS becomes
positive. Figure 15.7 illustrates this behaviour.

Still, this description leaves us with a puzzle. In the regime pd ≤ p < pc, the
codeword entropy density associated with the solution h, u < ∞ is limN→∞ hN ≥
fRS
u,h < 0. Analogously to what happens in the replica method (see Chapter 8), the
solution should therefore be discarded as unphysical. It turns out that a consistent
picture can be obtained only by including replica symmetry breaking, which will be
the subject of Chapter 21.

Notes

Belief propagation was first applied to the decoding problem by Robert Gallager in
his PhD thesis (Gallager, 1963), and called the ‘sum–product’ algorithm there. Several
low-complexity alternative message-passing approaches were introduced in the same
work, along with the basic ideas of their analysis.

The analysis of iterative decoding of irregular ensembles over an erasure channel
was pioneered by Luby and co-workers (Luby et al., 1997, 1998, 2001a,b). These papers
also presented the first examples of capacity-achieving sequences.

Density evolution for general binary memoryless symmetric channels was intro-
duced by Richardson and Urbanke (2001b). The whole subject is surveyed by Richard-
son and Urbanke (2001a, 2008). One important property that we have left out is ‘con-
centration’: the error probability under message-passing decoding is, for most of the
codes, close to its ensemble average, which is predicted by density evolution.

The design of capacity-approaching LDPC ensembles for general BMS channels
was discussed by Chung et al. (2001) and Richardson et al. (2001).

Since message passing allows efficient decoding, one may wonder whether the en-
coding (whose complexity is, a priori, O(N2)) might become the bottleneck. Luckily
this is not the case: efficient encoding schemes were discussed by Richardson and Ur-
banke (2001c).

The use of the RS replica method (equivalent to the cavity method) to charac-
terize MAP decoding for sparse-graph codes was initiated by Kabashima and Saad
(1999), who considered Sourlas’s LDGM codes. MN codes (a class of sparse-graph
codes defined by MacKay and Neal (1996)) and turbo codes were studied shortly
after, by Kabashima et al. (2000a,b) and by Montanari and Sourlas (2000) and Mon-
tanari (2000), respectively. Plain regular LDPC ensembles were considered first by
Kabashima and Saad (2000), who considered the problem on a tree, and by Nakamura
et al. (2001). The effect of replica symmetry breaking was first investigated by Mon-
tanari (2001b) and standard irregular ensembles were studied by Franz et al. (2002).

The fact that the RS cavity method yields the exact value of the MAP threshold
and that pMAP = pc has not yet been proven rigorously in a general setting. The
first proof that it gives a rigorous bound was found by Montanari (2005) and subse-
quently generalized by Macris (2007). An alternative proof technique uses the ‘area
theorem’ and the related ‘Maxwell construction’ (Méasson et al., 2005). Tightness of
these bounds for a binary erasure channel was proved by Méasson et al. (2008). In
this case the asymptotic codeword entropy density and the MAP threshold have been
determined rigorously for a large family of ensembles.
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The analysis that we have described in this Chapter is valid in the large-block-
length limit N → ∞. In practical applications, a large block length implies some
communication delay. This has motivated a number of studies aimed at estimating
and optimizing LDPC codes at moderate block lengths. Some pointers to this large
literature can be found in Di et al. (2002), Amraoui et al. (2004, 2007), Wang et

al. (2006), Kötter and Vontobel (2003), and Stepanov et al. (2005).
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16

The assignment problem

Consider N ‘agents’ and N ‘jobs’, and suppose you are given an N ×N matrix {Eij},
where Eij is the cost for having job j executed by agent i. Finding an assignment of
agents to jobs that minimizes the cost is one of the most classical of combinatorial
optimization problems.

The minimum-cost (also referred to as ‘maximum-weight’) assignment problem
is important both because of its many applications and because it can be solved in
polynomial time. This has motivated a number of theoretical developments, from the
algorithmic as well as the probabilistic viewpoint.

Here we shall study the assignment problem as an application of message-passing
techniques. It is, in fact, a success story of this approach. Given a generic instance of the
assignment problem, the associated factor graph is not locally tree-like. Nevertheless,
the min-sum algorithm can be proved to converge to an optimal solution in polynomial
time. Belief propagation (the sum–product algorithm) can also be used for computing
weighted sums over assignments, although much weaker guarantees exist in this case.
A significant amount of work has been devoted to the study of random instances,
mostly in the case where the costs Eij are i.i.d. random variables. Typical properties
(such as the cost of the optimal assignment) can be computed heuristically within the
replica-symmetric cavity method. It turns out that these calculations can also be made
fully rigorous.

In spite of the success of the replica-symmetric cavity method, one must be warned
that apparently harmless modifications of the problem can spoil this success. One ex-
ample is the generalization of minimal-cost assignment to multi-indices (say, matching
agents with jobs and houses): such a ‘multi-assignment’ problem is not described
by the replica-symmetric scenario. The more sophisticated ideas of replica symmetry
breaking, described in Chapter 19 and after, are required.

After defining the problem in Section 16.1, we compute in Section 16.2 the asymp-
totic optimal cost for random instances using the cavity method. This approach is
based on a statistical analysis of the min-sum equations. In Section 16.3, we study the
algorithmic aspects of the min-sum iteration and prove its convergence to the optimal
assignment. Section 16.4 contains a combinatorial study of the optimal cost that con-
firms the cavity result and provides sharper estimates. In Section 16.5, we discuss a
generalization of the assignment problem to a multi-assignment case.
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Fig. 16.1 Left : graphical representation of a small assignment problem with three agents and

three jobs. Each edge carries a cost (not shown); the problem is to find a perfect matching,

i.e. a set of three edges which are vertex-disjoint, of minimal cost. Right : the factor graph

corresponding to the representation (16.2) of this problem. The hatched squares indicate the

function nodes associated with edge weights.

16.1 The assignment problem and random assignment ensembles

An instance of the assignment problem is determined by a cost matrix {Eij}, indexed
by i ∈ A (the ‘agents’ set) and j ∈ B (the ‘jobs’ set), with |A| = |B| = N . We shall
often identify A and B with the set {1, . . . , N} and use the terms ‘cost’ and ‘energy’
interchangeably. An assignment is a one-to-one mapping of agents to jobs; that is, a
permutation π of {1, . . . , N}. The cost of an assignment π is E(π) =

∑N
i=1 Eiπ(i). The

optimization problem consists in finding a permutation that minimizes E(π).
We shall often use a graphical description of the problem as a weighted complete

bipartite graph over sets of vertices A and B. Each of the N2 edges (i, j) carries a
weight Eij . The problem is to find a perfect matching in this graph (a subset M of
edges such that every vertex is adjacent to exactly one edge in M), of minimal weight
(see Fig. 16.1).

In the following, we shall be interested in two types of questions. The first is
to understand whether a minimum-cost assignment for a given instance can be found
efficiently through a message-passing strategy. The second will be to analyse the typical
properties of ensembles of random instances where the N2 costs Eij are i.i.d. random
variables drawn from a distribution with density ρ(E). One particularly convenient
choice is that of exponentially distributed variables with a probability density function
ρ(E) = e−E I(E ≥ 0). Although the cavity method allows more general distributions
to be tackled, assuming exponential costs greatly simplifies rigorous combinatorial
proofs.
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16.2 Message passing and its probabilistic analysis

16.2.1 Statistical-physics formulation and counting

Following the general statistical-physics approach, it is of interest to relax the opti-
mization problem by introducing a finite inverse temperature β. The corresponding
computational problem associates a weight with each possible matching, as follows.

Consider the complete bipartite graph over the sets of vertices A (agents) and B
(jobs). With each edge (i, j), i ∈ A, j ∈ B, we associate a variable (an ‘occupation
number’) nij ∈ {0, 1}, encoding membership of edge (ij) in the matching: nij = 1
means that job j is done by agent i. We impose the condition that the subset of edges
(i, j) with nij = 1 is a matching of the complete bipartite graph:∑

j∈B

nij ≤ 1 ∀i ∈ A ,
∑
i∈A

nij ≤ 1 ∀j ∈ B . (16.1)

Let us denote by n = {nij : i ∈ Aj ∈ B} the matrix of occupation numbers, and
define the probability distribution

µ(n) =
1

Z

∏
i∈A

I

⎛⎝∑
j∈B

nij ≤ 1

⎞⎠ ∏
j∈B

I

(∑
i∈A

nij ≤ 1

) ∏
(ij)

e−βnij(Eij−2γ) . (16.2)

The support of µ(n) corresponds to matchings, thanks to the ‘hard constraints’ that

enforce the conditions (16.1). The factor exp
(
2βγ

∑
(ij) nij

)
can be interpreted as a

‘soft constraint’: as γ → ∞, the distribution becomes concentrated on perfect match-
ings (the factor 2 is introduced here for future convenience). On the other hand, in
the limit β → ∞, the distribution (16.2) becomes concentrated on the minimal-cost
assignments. The optimization problem is thus recovered in the double limit of γ → ∞
followed by β → ∞.

There is a large degree of arbitrariness in the choice of which constraint should be
‘softened’ and how. The present choice makes the whole problem as similar as possible
to the general class of graphical models that we are studying in this book. The factor
graph obtained from eqn (16.2) has the following structure (see Fig. 16.1). It contains
N2 variable nodes, each associated with an edge (i, j) in the complete bipartite graph
over the sets of vertices A and B. It also includes N2 function nodes of degree one,
one for each variable node, and 2N function nodes of degree N , associated with the
vertices in A and B. The variable node (i, j), i ∈ A, j ∈ B, is connected to the two
function nodes corresponding to i and j, as well as to the function node corresponding
to the edge (i, j). The first two function nodes enforce the hard constraints (16.1); the
third one corresponds to the weight exp [−β(Eij − 2γ)nij ].

In the case of random instances, we shall be particularly interested in the ther-
modynamic limit N → ∞. In order for this limit to be non-trivial, the distribution
(16.2) must be dominated neither by energy nor by entropy. Consider the case of i.i.d.
costs Eij ≥ 0 with an exponential density ρ(E) = e−E . One can argue in this case
that low-energy assignments have, with high probability, an energy of order O(1) as
N → ∞. The ‘hand-waving’ reason is that for a given agent i ∈ A and any fixed k,
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the k lowest costs among those of the jobs that can be assigned to that agent (namely
among {Eij : j ∈ B}) are of order O(1/N). The exercise below sketches a more for-
mal proof. Since the entropy1 is linear in N , we need to rescale the costs for the two
contributions to be of the same order.

To summarize, throughout our cavity analysis, we shall assume the edge cost to be
drawn according to the ‘rescaled pdf’ ρ̂(E) = (1/N) exp(−E/N). This choice ensures
that the occupied edges in the best assignment have a non-vanishing cost in the large-N
limit.

Exercise 16.1 Assume the energies Eij to be i.i.d. exponential variables of mean η. Con-
sider the ‘greedy mapping’ obtained by mapping each vertex i ∈ A to that j = π1(i) ∈ B
which minimizes Eij , and call the corresponding energy E1 =

P
i Ei,π1(i).

(a) Show that E E1 = η.

(b) Of course, π1 is not necessary injective, and is therefore not a valid matching. Let C
be the number of collisions (i.e. the number of vertices j ∈ B such that there exist
several i with π1(i) = j). Show that E C = N(1 − 2/e) + O(1), and that C is tightly
concentrated around its expectation.

(c) Consider the following ‘fix’. Construct π1 in the greedy fashion described above, and let
π2(i) = π1(i) whenever i is the unique vertex mapped to π1(i). For each collision vertex
j ∈ B, and each i ∈ A such that π1(i) = j, let j′ be the vertex in B such that Eij′

takes the smallest value among the vertices still unmatched. What is the expectation
of the resulting energy E2 =

P
i Ei,π2(i)? What is the number of residual collisions?

(d) How can this construction be continued?

16.2.2 The belief propagation equations

The BP equations for this problem are a particular instantiation of the general ones
given in eqns (14.14) and (14.15). We shall denote vertices in the sets A and B in the
complete bipartite graph by i and j, respectively (see Fig. 16.1).

To be definite, let us write explicitly the equations for updating messages flowing
from right to left (i.e. from vertices j ∈ B to i ∈ A) in the graph in Fig. 16.1:

νij→i(nij) ∼= ν̂j→ij(nij) e−βnij(Eij−2γ) , (16.3)

ν̂j→ij(nij) ∼=
∑
{nkj}

I

[
nij +

∑
k∈A\i

nkj ≤ 1
] ∏

k∈A\i

νkj→j(nkj) . (16.4)

The equations for messages moving from A to B, i.e. νij→j and ν̂i→ij , are obtained
by inverting the roles of the two sets.

Since the variables nij take values in {0, 1}, messages can be parameterized by a
single real number, as usual. In the present case, it is convenient to introduce rescaled
log-likelihood ratios as follows:

1The total number of assignments is N !, which would imply an entropy of order N log N . However,
if we limit the choices of π(i) to those j ∈ B such that the cost Eij is comparable to the lowest cost,
the entropy becomes O(N).
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xL
j→i ≡ γ +

1

β
log

{
ν̂j→ij(1)

ν̂j→ij(0)

}
, xR

i→j ≡ γ +
1

β
log

{
ν̂i→ij(1)

ν̂i→ij(0)

}
. (16.5)

Variable-to-function-node messages do not enter into this definition, but they are easily
expressed in terms of the quantities xL

i→j , xR
i→j using eqn (16.3). The BP equations

(16.3) and (16.4) can be written as

xL
j→i = − 1

β
log
{

e−βγ +
∑

k∈A\i

e−βEkj+βxR
k→j

}
,

xR
i→j = − 1

β
log
{

e−βγ +
∑

k∈B\j

e−βEik+βxL
k→i

}
.

(16.6)

The factor graph representation in Fig. 16.1, right frame, was necessary in order to
write down the original BP equations. However, any reference to the factor graph
disappears in the simplified form (16.6). This form can be regarded as a message-
passing procedure operating on the original complete bipartite graph (see Fig. 16.1,
left frame).

Exercise 16.2 Marginals. Consider the expectation value of nij with respect to the mea-

sure (16.2). Show that its BP estimate is tij/(1 + tij), where tij ≡ eβ(xL
j→i+xR

i→j−Eij).

The Bethe free entropy F(ν) can be computed using the general formulae (14.27)
and (14.28). Writing it in terms of the log-likelihood ratio messages {xR

i→j , x
L
j→i} is

straightforward but tedious. The resulting BP estimate for the free entropy log Z is

F(x) = 2Nβγ −
∑

i∈A,j∈B

log
[
1 + e−β(Eij−xR

i→j−xL
j→i)
]

+
∑
i∈A

log

⎡⎣e−βγ +
∑

j

e−β(Eij−xL
j→i)

⎤⎦+
∑
j∈B

log

[
e−βγ +

∑
i

e−β(Eij−xR
i→j)

]
.

(16.7)

The exercise below provides a few guidelines for this computation.

Exercise 16.3 Consider the Bethe free entropy (14.27) for the model (16.2).

(a) Show that it contains three types of function-node terms, one type of variable-node
term, and three types of mixed (edge) terms.

(b) Show that the function node term associated with the weight e−βnij(Eij−2γ) exactly
cancels the mixed term involving this same factor node and the variable node (i, j).

(c) Write explicitly each of the remaining terms, express them in terms of the messages
{xR

i→j , x
L
j→i}, and derive the result (16.7).

[Hint: The calculation can be simplified by recalling that the expression (14.27) does
not change value if each message is independently rescaled.]
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16.2.3 Zero temperature: The min-sum algorithm

The BP equations (16.6) simplify in the double limit of γ → ∞ followed by β →
∞ which is relevant to the minimum-cost assignment problem. Assuming that the
{xR

i→j , xL
j→i} remain finite in this limit, we get

xL
j→i = min

k∈A\i

(
Ekj − xR

k→j

)
, xR

i→j = min
k∈B\j

(
Eik − xL

k→i

)
. (16.8)

Alternatively, the same equations can be obtained directly as min-sum update rules.
This derivation is outlined in the exercise below.

Exercise 16.4 Consider the min-sum equations (14.41) and (14.40), applied to the graph-
ical model (16.2).

(a) Show that the message arriving at a variable node (ij) from the adjacent degree-1

factor node is equal to bE→ij(nij) = nij(Eij − 2γ).

(b) Write the update equations for the other messages, and eliminate the variable-to-
function-node messages Eij→i(nij) and Eij→j(nij) in favour of the function-to-variable
ones. Show that the resulting equations for function-to-variable messages read as follows
(see Fig. 16.1):

bEi→ij(1) =
X

k∈B\j

bEk→ik(0) ,

bEi→ij(0) =
X

k∈B\j

bEk→ik(0) + min
l∈B\j

ˆ bEl→il(1) − bEl→il(0) + Eil − 2γ
˜
−

,

where we have adopted the notation [x]− = x if x < 0 and [x]− = 0 otherwise.

(c) Define xR
i→j = bEi→ij(0)− bEi→ij(1)+γ and, analogously xL

i→j = bEj→ij(0)− bEj→ij(1)+γ.

Write the above min-sum equations in terms of {xR
i→j , xL

j→i}.
(d) Show that, in the large-γ limit, the update equations for these x-messages coincide

with eqn (16.8).

The Bethe estimate for the ground state energy (the cost of the optimal assignment)
can be obtained by taking the γ, β → ∞ limit of the free energy −F(x)/β, where
F(x) is the Bethe approximation for the log-partition function log Z (see eqn (16.7)).
Alternatively, we can use the fact that the min-sum equations estimate the max-
marginals of the graphical model (16.2). More precisely, for each pair (i, j), i ∈ A,
j ∈ B, we define

Eij(nij) ≡ nij(Eij − 2γ) + Êi→ij(nij) + Êj→ij(nij) , (16.9)

n∗
ij ≡ arg min

n∈{0,1}
Eij(n) . (16.10)

The interpretation of these quantities is that e−βEij(n) is the message-passing estimate
for the max-marginal of nij with respect to the distribution (16.2). Let us neglect
the case of a multiple optimal assignment (in particular, the probability of such an
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event vanishes for the random ensemblesthat we shall consider). Under the assumption
that message-passing estimates are accurate, nij necessarily takes the value n∗

ij in the
optimal assignment; see Section 14.3. The resulting estimate of the ground state energy
is Egs =

∑
ij n∗

ijEij .
In the limit γ → ∞, eqn (16.10) reduces to a simple inclusion principle: an edge

ij is present in the optimal assignment (i.e. n∗
ij = 1) if and only if Eij ≤ xR

i→j + xL
j→i.

We invite the reader to compare this result with that obtained in Exercise 16.2.

16.2.4 The distributional fixed point and ζ(2)

Let us now consider random instances of the assignment problem. For the sake of
simplicity, we assume that the edge costs Eij are i.i.d. exponential random variables
with mean N . We want to use the general density evolution technique of Section 14.6.2
to analyse the min-sum message-passing equations (16.8).

The sceptical reader might notice that the assignment problem does not fit into
the general framework for density evolution, since the associated graph (the complete
bipartite graph) is not locally tree-like. The use of density evolution can nevertheless
be justified, through the following limiting procedure. Given a threshold energy Emax,
remove from the factor graph all of the variables (ij), i ∈ A, j ∈ B, such that Eij >
Emax, and also remove the edges attached to them. Remembering that the typical
edge costs are of order Θ(N), it is easy to check that the resulting graph is a sparse
factor graph and therefore density evolution applies. On the other hand, one can prove
that the error made in introducing a finite cut-off Emax is bounded uniformly in N by
a quantity that vanishes as Emax → ∞, which justifies the use of density evolution.
In the following, we shall take the shortcut of writing density evolution equations for
finite N without any cut-off and formally take the limit N → ∞ for them.

Since the min-sum equations (16.8) involve minima, it is convenient to introduce

the distribution function AN,t(x) = P{x(t)
i→j ≥ x}, where t indicates the iteration

number, and x(t) refers to right-moving messages (from A to B) when t is even and
to left moving messages when t is odd. Then, the density evolution equations read
AN,t+1(x) = [1 − E AN,t(E − x)]N−1, where E denotes the expectation with respect
to E (that is, an exponential random variable of mean N). In the cavity method, one
seeks fixed points of this recursion. These are the distributions that solve

AN (x) = [1 − E AN (E − x)]N−1 . (16.11)

We now want to take the N → ∞ limit. Assuming the fixed point AN (x) has a (weak)
limit A(x), we have

E AN (E − x) =
1

N

∫ ∞

−x

AN (y) e−(x+y)/Ndy =
1

N

∫ ∞

−x

A(y) dy + o(1/N) . (16.12)

It follows from eqn (16.11) that the limit message distribution must satisfy the equation

A(x) = exp

{
−
∫ ∞

−x

A(y) dy

}
. (16.13)
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This equation has the unique solution A(x) = 1/(1+ex), corresponding to the density
a(x) = A′(x) = 1/[4 cosh2(x)]. It can be shown that density evolution does indeed
converge to this fixed point.

Within the hypothesis of replica symmetry (seeSection 14.6.3), we can use the above
fixed-point distribution to compute the asymptotic ground state energy (the minimum
cost of the assignment). The most direct method is to use the inclusion principle: an
edge (ij) is present in the optimal assignment if and only if Eij ≤ xR

i→j + xL
j→i.

Therefore the conditional probability for (ij) to be in the optimal assignment, given
its energy Eij = E, is given by

q(E) =

∫
I(x1 + x2 ≥ E) a(x1)a(x2) dx1dx2 =

1 + (E − 1)eE

(eE − 1)2
(16.14)

The expected cost E∗ of the optimal assignment is equal to the number of edges, N2,
times the expectation of the edge cost, times the probability that the edge is in the
optimal assignment. Asymptotically we have E∗ = N2E{Eq(E)}:

E∗ = N2

∫ ∞

0

E e−E/N q(E) dE/N + o(N)

= N

∫ ∞

0

E
1 + (E − 1)eE

(eE − 1)2
dE + o(N) = Nζ(2) + o(N) ,

where

ζ(2) ≡
∞∑

n=1

1

n2
=

π2

6
≈ 1.64493406684823 . (16.15)

Recall that this result holds when the edge weights are exponential random variables
of mean N . If we reconsider the case of exponential random variables of mean 1, we
get E∗ = ζ(2) + o(1).

The reader can verify that the above derivation does not depend on the full dis-
tribution of the edge costs, but only on its behaviour near E = 0. More precisely, for
any distribution of edge costs with a density ρ(E) such that ρ(0) = 1, the cost of the
optimal assignment converges to ζ(2).

Exercise 16.5 Suppose that the pdf of the costs ρ(E) has support R+, and that ρ(E) �
Er, for some r > 0, when E ↓ 0.

(a) Show that, in order to have an optimal weight of order N , the edge costs must be

rescaled by letting Eij = Nr/r+1 eEij , where the eEij have density ρ (i.e. the typical

costs must be of order Nr/r+1).

(b) Show that, within the replica-symmetric cavity method, the asymptotic (N → ∞)
message distribution satisfies the following distributional equation:

A(x) = exp

j
−
Z ∞

−x

(x + y)r
A(y) dy

ff
. (16.16)
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(c) Assume that the solution A(x) to eqn (16.16) is unique and that replica symmetry
holds. Show that the expected ground state energy (in the problem with rescaled edge
costs) is E∗ = Nεr + o(N), where εr ≡ − R A(x) log(A(x)) dx. As a consequence, the

optimal cost in the initial problem is Nr/(r+1)εr(1 + o(1)).

(d) Equation (16.16) can be solved numerically by use of the population dynamics algo-
rithm of Section 14.6.3. Write the corresponding program and show that the costs of
the optimal matching for r = 1, 2 are ε1 ≈ 0.8086 and ε2 ≈ 0.6382.

16.2.5 Non-zero temperature and stability analysis

The reader may wonder whether the heuristic discussion in the previous subsections
can be justified. While a rigorous justification would lead us too far, we want to discuss,
still at a heuristic level, the consistency of the approach. In particular, we want to argue
that BP provides good approximations to the marginals of the distribution (16.2), and
that density evolution can be used to analyse its behaviour sur random instances.

Intuitively, two conditions should be satisfied for the approach to be valid: (i) the
underlying factor graph should be locally tree-like; and (ii) the correlation between
two variables nij , nkl should decay rapidly with the distance between edges (ij) and
(kl) on such a graph.

At first sight it appears that condition (i) is far from holding, since our factor
graph is constructed from a complete bipartite graph. As mentioned in the previous
subsection, the locally tree-like structure emerges if one notices that only edges with
costs of order 1 are relevant (as above, we are assuming that the edge costs have
been rescaled so that they are drawn with a probability density function ρ̂(E) =
N−1 exp(−E/N)). In order to investigate this point further, we modify the model
(16.2) by pruning from the original graph all edges with a cost larger than 2γ. In
the large-β limit, this modification will become irrelevant since the Boltzmann weight
(16.2) ensures that these ‘costly’ edges of the original problem are not occupied. In
the modified problem, the degree of any vertex in the graph converges (as N → ∞)
to a Poisson random variable with mean 2γ. The costs of ‘surviving’ edges converge
to i.i.d. uniform random variables in the interval [0, 2γ].

For fixed β and γ, the asymptotic message distribution can be computed by the
RS cavity method. The corresponding fixed-point equation reads

x
d
= − 1

β
log

[
e−βγ +

k∑
r=1

e−β(Er−xr)

]
, (16.17)

where k is a Poisson random variable with mean 2γ, the Er are i.i.d. and uniformly
distributed on [0, 2γ], and the xr are i.i.d. with the same distribution as x. The fixed-
point distribution can be estimated easily using the population dynamics algorithm
of Section 14.6.3. Some results are shown in Fig. 16.2. For large β, γ, the density
estimated by this algorithm converges rapidly to the analytical result for β = γ = ∞,
namely a(x) = 1/[4 cosh2(x/2)].

The distribution of messages can be used to compute the expected Bethe free
entropy. Assuming that the messages entering into eqn (16.7) are independent, we get
E F(x) = N fRS(β, γ) + o(N), where
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Fig. 16.2 Left : estimate of the probability distribution of the messages xi→j obtained

by population dynamics. Here we consider the modified ensemble in which costly edges

(with Eij > 2γ) have been removed. The three curves, from top to bottom, correspond to

(β = 1, γ = 5), (β = 1, γ = 60), and (β = 10, γ = 60). The last curve is indistinguishable

from the analytical result for (β = ∞, γ = ∞) namely a(x) = 1/[4 cosh2(x/2)], also shown.

The curves for larger γ are indistinguishable from the curve for γ = 60 on this scale. The

algorithm used a population of size 105, and the whole population wass updated 100 times.

Right : free energy versus temperature T = 1/β, computed using eqn (16.18). The distribution

of messages was obtained as above with γ = 40.
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Fig. 16.3 Part of the factor graph used to compute the correlation between xr and x1.

fRS(β, γ) = 2βγ + 2E log

⎡⎣e−βγ +

k∑
j=1

e−β(Ej−xj)

⎤⎦− 2γE log
[
1 + e−β(E1−x1−x2)

]
.

(16.18)

Having a locally tree-like structure is only a necessary condition for BP to provide
good approximations of the marginals. An additional condition is that the correlations
of distinct variables nij , nkl decay rapidly enough with the distance between the
nodes (ij), (kl) in the factor graph. Let us discuss here one particular measure of
these correlations, namely the spin glass susceptibility defined in Section 12.3.2. In the
present case it can be written as
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χSG ≡ 1

N

∑
e,f

(〈nenf 〉 − 〈ne〉〈nf 〉)2 , (16.19)

where the sum runs over all pairs of variable nodes e = (i, j) and f = (k, l) in the
factor graph (or, equivalently, over all pairs of edges in the original bipartite graph
with vertex sets A, B).

If correlations decay fast enough for the system to be stable with respect to small
perturbations, χSG should remain bounded as N → ∞. The intuitive explanation
goes as follows. From the fluctuation–dissipation relation of Section 2.3, 〈nenf 〉 −
〈ne〉〈nf 〉 is proportional to the change in 〈nf 〉 when the cost of edge e is perturbed.
The sign of such a change will depend upon f , and therefore the resulting change in the
expected matching size

∑
f 〈nf 〉 (namely

∑
f (〈nenf 〉−〈ne〉〈nf 〉)) can be either positive

or negative. Assuming that this sum obeys a central limit theorem, its typical size is
given by the square root of

∑
f (〈nenf 〉 − 〈ne〉〈nf 〉)2. Averaging over the perturbed

edge, we see that χSG measures the decay of correlations.
We shall thus estimate χSG using the same RS cavity assumption that we used

in our computation of the expectations 〈ne〉. If the resulting χSG is infinite, the as-
sumption will be falsified. In the opposite case, although nothing definite can be said,
the assumption will be said to be ‘consistent’, and the RS solution will be said to be
‘locally stable’ (since it is stable to small perturbations).

In order for the susceptibility to be finite, only pairs of variable nodes (e, f) whose
distance r in the factor graph is bounded should give a significant contribution to the
susceptibility. We can then compute

χ
(r)
SG ≡ 1

N

∑
e,f : d(e,f)=r

(〈nenf 〉 − 〈ne〉〈nf 〉)2 (16.20)

for fixed r in the N → ∞ limit, and then sum the result over r. For any given r and
large N , there is, with high probability, a unique path of length r joining e to f , all
the others being of length Θ(log N). On this path, we denote the variable nodes by
(j1, j2, . . . , jr) (with e = j1, f = jr), and denote the function nodes by (a2, . . . , ar)
(see Fig. 16.3).

We consider a fixed point of the BP algorithm and denote by xn the (log-likelihood)
message passed from an to jn. The BP fixed-point equations (16.6) allow us to compute
xr as a function of the message x1 arriving at j1, and of all the messages coming in
on the path {a2, . . . , ar} from edges outside this path, which we denote by {yn,p}:

x2 = − 1

β
log
{

e−βγ + e−β(E1−x1) +

k2∑
p=1

e−β(E2,p−y2,p)
}

,

. . .

. . .

xr = − 1

β
log
{

e−βγ + e−β(Er−xr) +

kr∑
p=1

e−β(Er,p−yr,p)
}

. (16.21)

In a random instance, the kn are i.i.d. Poisson random variables with mean 2γ, the
variables En and En,p are i.i.d. random variables uniform on [0, 2γ], and the yn,p are
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i.i.d. random variables with the same distribution as the solution of eqn (16.17). We
shall denote by Eout the expectation with respect to all of these variables outside the
path. If we keep these variables fixed, a small change δx1 in the message x1 leads to
a change δxr = (∂xr/∂x1)δx1 = (∂x2/∂x1)(∂x3/∂x2) . . . (∂xr/∂xr−1)δx1 in xr. We
leave it as an exercise to the reader to show that the correlation function is given by

〈nenf 〉 − 〈ne〉〈nf 〉 = C
∂xr

∂x1
= C

r∏
n=2

∂xn

∂xn−1
, (16.22)

where the proportionality constant C is r-independent. Recalling that the expected
number of variable nodes f such that d(e, f) = r grows as (2γ)r, and using eqn (16.20),

we have E χ
(r)
SG = C ′ eλrr, where

λr(β, γ) = log(2γ) +
1

r
log

{
Eout

r∏
n=2

(
∂xn

∂xn−1

)2
}

. (16.23)

Therefore, a sufficient condition for the expectation of χSG to be finite is that λr(β, γ)

is negative and bounded away from 0 for large enough r (when this happens, E χ
(r)
SG

decays exponentially with r).
The exponent λr(β, γ) can be computed numerically through population dynamics:

the population allows us to sample i.i.d. messages yn,p from the fixed-point message
density, and the costs En and En,p are sampled uniformly in [0, 2γ]. The expectation
(16.23) can be estimated through a numerical average over large enough populations.
Note that the quantity that we are taking the expectation of depends exponentially
on r. As a consequence, its expectation becomes more difficult to compute as r grows.

In Fig. 16.4 we present some estimates of λr obtained by this approach. Since λr

depends very weakly on r, we expect that λ∞ can be safely estimated from these data.
The data are compatible with the following scenario: λ∞(β, γ) is negative at all finite
inverse temperatures β and vanishes as 1/β as β → ∞. This indicates that χSG is
finite, so that the assumption of replica symmetry is consistent.

16.3 A polynomial message-passing algorithm

Remarkably, the min-sum message-passing algorithm introduced in Section 16.2.3 can
be proved to return the minimum-cost assignment on any instance for which the mini-
mum is unique. Let us state again the min-sum update equations of eqn (16.8), writing
the iteration number explicitly:

xL
j→i(t + 1) = min

k∈A\i

(
Ekj − xR

k→j(t)
)

, xR
i→j(t) = min

k∈B\j

(
Eik − xL

k→i(t)
)

. (16.24)

Here, as before, A and B (with |A| = |B| = N) are the two sets of vertices to be
matched, and we continue to denote generic vertices in A and B by i and j, respectively.

The algorithm runs as follows:
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Fig. 16.4 The stability parameter λr defined in eqn (16.23), plotted versus r, for inverse

temperatures β = 10, 5, 2, 1 (from top to bottom). The lines are guides to the eye. A negative

asymptotic value of λr at large r shows that the spin glass susceptibility is finite. The data

were obtained from a population dynamics simulation with a population of 106, for γ = 20.

min-sum assignment (cost matrix E, iterations t∗)
1: Set xL

j→i(0) = xR
i→j(0) = 0 for any i ∈ A, j ∈ B

2: For all t ∈ {0, 1, . . . , t∗}:
3: Compute the messages at time t + 1 using eqn (16.24)
4: Set π(i) = arg minj∈B

(
Eij − xL

j→i(t∗)
)

for each i ∈ A;
5: Output the permutation π;

This algorithm finds the optimal assignment if it is unique and if the number of
iterations is large enough, as stated in the theorem below.

Theorem 16.1 Let W ≡ maxij |Eij | and let ε be the gap between the cost E∗ of
the optimal assignment π∗ and the next best cost: ε ≡ minπ(	=π∗)(E(π) − E∗), where

E(π) ≡∑N
i=1 Eiπ(i). Then, for any t∗ ≥ 2NW/ε, the min-sum algorithm above returns

the optimal assignment π∗.

The proof is given in Section 16.3.2, and is based on the notion of a computation tree,
explained in the present context in Section 16.3.1.

For practical application of the algorithm to cases where one does not know the
gap ε in advance, it is important to have a stopping criterion for the algorithm. This
can be obtained by noticing that, after convergence, the messages become ‘periodic-
up-to-a-drift’ functions of t. More precisely, there exists a period τ and a drift C > 0
such that for any t > 2NW/ε, and any i ∈ A, xL

j→i(t + τ) = xL
j→i(t) + C if j =

arg mink∈B(Eik − xL
k→i(t)), and xL

j→i(t + τ) = xL
j→i(t)−C otherwise. If this happens,

we write xL(t + τ) = xL(t) + C.
It turns out that (i) if for some time t0, period τ , and constant C > 0, one has

xL(t0 + τ) = xL(t0) + C, then xL(t + τ) = xL(t) + C for any t ≥ t0; and (ii) under the
same conditions, the permutation returned by the min-sum algorithm is independent
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of t∗ for any t∗ ≥ t0. We leave the proof of these statements as a (research-level)
exercise for the reader. It can be seen immediately that they imply a clear stopping
criterion: After any number of iterations t, check whether there exist t0 < t and C > 0,
such that xL(t) = xL(t0)+C. If this is the case, halt the message-passing updates and
return the resulting permutation as in step 4 of the above pseudocode.

16.3.1 The computation tree

As we saw in Fig. 16.1, an instance of the assignment problem corresponds to a
weighted complete bipartite graph GN over sets of vertices A and B, with |A| =
|B| = N . The analysis of the min-sum algorithm described above uses the notion of a
computation tree in a crucial way.

Given a vertex i0 ∈ A (the case i0 ∈ B is completely symmetric), the corresponding
computation tree of depth t, denoted by Tt

i0
, is a weighted rooted tree of depth t and

degree N , which is constructed recursively as follows. First, introduce the root î0 that
is in correspondence with i0 ∈ A. For any j ∈ B, add a corresponding vertex ĵ to Tt

i0

and connect it to î0. The weight of the resulting edge is taken to be Eî0,ĵ ≡ Ei0,j . At

every subsequent generation, if î ∈ Tt
i0

corresponds to i ∈ A, and its direct ancestor

is the ĵ that corresponds to j ∈ B, add N − 1 direct descendants of î to Tt
i0

. Each

of these descendants k̂ corresponds to a distinct vertex k ∈ B \ j, and the associated
weight is Ek̂ĵ = Ekj . An alternative, more compact description of the computation

tree Tt
i0

is to say that it is the tree of non-reversing paths on GN , rooted at i0.
Imagine iterating the min-sum equations (16.24) on the computation tree Tt

i0
(starting from the initial condition xî→ĵ(0) = 0). Since Tt

i0
has the same local structure

as GN , for any s ≤ t the messages coming into the root î0 coincide with the messages
along the corresponding edges in the original graph GN : xĵ→î0

(s) = xj→i0(s). As the
min-sum algorithm correctly finds the ground state on trees (see Theorem 14.4), the
following property holds.

Lemma 16.2 We define, for any i ∈ A, πt(i) = argminj∈B

(
Ei,j − xL

j→i(t)
)
. Let î

denote the root of the computation tree Tt
i, and let ĵ denote the direct descendant of î

that corresponds to πt(i).
We define an internal matching of a tree to be a subset of the edges such that

each non-leaf vertex has one adjacent edge in the subset. Then the edge (̂i, ĵ) belongs
to the internal matching with lowest cost in Tt

i (assuming that this is unique).

Although it follows from general principles, it is instructive to rederive this result
explicitly.

Exercise 16.6 Let r be an internal (non-leaf) vertex in the computation tree Tt
i, distinct

from the root. Denote the set of its direct descendants by Sr (hence |Sr| = N − 1), and
denote the tree induced by r and all its descendants by Tr. We define a ‘cavity internal
matching’ in Tr as a subset of the edges of Tr such that each vertex in Tr distinct from r
has degree 1. Denote the cost of the optimal cavity internal matching when vertex r is not
matched by Ar, and denote its cost when vertex r is matched by Br.
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Show that

Ar =
X
q∈Sr

Bq , Br = min
q∈Sr

24Bq + Erq +
X

q′∈Sr\{q}

Aq′

35 . (16.25)

Show that xr = Br − Ar satisfies the same equations as in eqn (16.24), and prove Lemma

16.2.

16.3.2 Proof of convergence of the min-sum algorithm

This subsection is a technical one, which gives a detailed proof of Theorem 16.1. It
is convenient here to represent assignments as matchings, i.e. subsets of the edges
such that each vertex is incident on exactly one edge in the subset. In particular, we
denote the optimal matching on G by M∗. If π∗ is the optimal assignment, then M∗ ≡
{(i, π∗(i)) : i ∈ A}. We denote by π the mapping returned by the min-sum algorithm.
It is not necessarily injective, and therefore the subset of edges M = {(i, π(i)) : i ∈ A}
is not necessarily a matching.

The proof is by contradiction. Assume that π = π∗. Then there exists at least one
vertex in A, which we denote by i0, such that π(i0) = π∗(i0). Consider the depth-t

computation tree of i0, Tt
i0

, denote its root by î0, and denote by M̂ the optimal internal

matching in this graph. Finally, denote by M̂∗ the internal matching on Tt
i0

which is

obtained by ‘lifting’ the optimal matching, M∗. Let j = π(i0) ∈ B, and let ĵ ∈ Tt
i0

be

the neighbour of î0 whose projection on G is j. By Lemma 16.2, (̂i0, ĵ) ∈ M̂. On the

other hand, since π(i0) = π∗(i0), (̂i0, ĵ) ∈ M̂∗. The idea is to construct a new internal

matching M̂′ on Tt
i0

, such that (i) (̂i0, ĵ) ∈ M̂′, and (ii) the cost of M̂′ is strictly smaller

than the cost of M̂, thus leading to a contradiction.
Intuitively, the improved matching M̂′ is constructed by modifying M̂ in such a

way as to ‘get closer’ to M̂∗. In order to formalize this idea, consider the symmetric
difference of M̂ and M̂∗, P̂′ = M̂ ' M̂∗, i.e. the set of edges which are either in M̂ or
in M̂∗ but not in both. The edge (̂i0, ĵ) belongs to P̂′. We can therefore consider the

connected component of P̂′ that contains (̂i0, ĵ), which we shall call P̂. A moment of

thought reveals that P̂ is a path on Tt
i0

with end-points on its leaves (see Fig. 16.5).

Furthermore, its 2t edges alternate between edges in M̂ and in M̂∗. We can then define
M̂′ = M̂' P̂ (so that M̂′ is obtained from M̂ by deleting the edges in P̂∩ M̂ and adding

those in P̂∩ M̂∗). We shall now show that, if t is large enough, the cost of M̂′ is smaller

than the cost of M̂, in contradiction with the hypothesis.
Consider the projection of P̂ onto the original complete bipartite graph G; call it

P ≡ ϕ(P̂) (see Fig. 16.5). This is a non-reversing path of length 2t on G. As such,
it can be decomposed into m simple cycles2 {C1, . . . ,Cm} (possibly with repetitions)
and at most one even-length path Q, whose lengths add up to 2N . Furthermore, the
length of Q is at most 2N − 2, and the length of each of the cycles at most 2N . As a
consequence, m > t/N .

2A simple cycle is a cycle that does not visit the same vertex twice.
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Fig. 16.5 Top left : an instance G of the assignment problem with 2N = 6 vertices (the costs

are not shown). The optimal assignment π∗ is composed of the thick edges. Right : the com-

putation tree T2
l1

. The matching π∗ is ‘lifted’ to an internal matching in T2
l1

composed of the

thick edges. Notice that one edge in the original graph has many images in the computation

tree. The dashed edges are those of the optimal internal matching in T2
l1

, and the alternating

path P is enclosed by the dotted line. Bottom left : the projection of P on the original graph;

here, it consists of a single cycle.

Consider now a particular cycle, say Cs. Its edges alternate between edges belonging
to the optimal matching M∗ and edges not belonging to it. As we have assumed that
the second-best matching in G has a cost of at least ε above the best one, the total
cost of the edges in Cs \ M∗ is at least ε above the total cost of the edges in Cs ∩ M∗.

As for the path Q, it again alternates between edges belonging to M∗ and edges
outside of M∗. We can order the edges in Q in such a way that the first edge is in
M∗ and the last is not. By changing the last step, we can transform the path into an
alternating cycle, to which the same analysis as above applies. This swapping changes
the cost of edges not in Q by at most 2W . Therefore the cost of the edges in Q \ M∗

is at least the cost of the edges in Q ∩ M∗ plus ε − 2|W |.
Let ET(M̂) denote the cost of the matching M̂ on Tt

i0
. By summing the cost dif-

ferences between the m cycles {C1, . . . ,Cm} and the path Q, we find that ET(M̂) ≥
ET(M̂′)+(m+1)ε−2W . Therefore, for t > 2NW/ε, ET(M̂) > ET(M̂′), in contradiction
with our hypothesis.�

16.3.3 A few remarks

The alert reader might be puzzled by the following observation. Consider a random
instance of the assignment problem with i.i.d. edge weights, for example exponen-
tially distributed. In Section 16.2.4, we analysed the min-sum algorithm using density
evolution and showed that the only fixed point is given by the x-message density
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a(x) = 1
4 cosh2(x/2). A little more work shows that, when initiated with x = 0 mes-

sages, the density evolution does indeed converge to such a fixed point.
On the other hand, for such a random instance the maximum weight W and the

gap between the two best assignments are almost surely finite and non-vanishing, and
so the hypotheses of Theorem 16.1 apply. The proof in the previous subsection implies
that the min-sum messages diverge: the messages xi→π∗(i) diverge to +∞, while other
ones diverge to −∞ (indeed, min-sum messages are just the difference between the
cost of the optimal matching on the computation tree and the cost of the optimal
matching that does not include the root).

How can these two behaviours be compatible? The conundrum is that density
evolution correctly predicts the distribution of messages as long as the number of
iterations is kept bounded as N → ∞. On the other hand, the typical number of
iterations required to see the divergence of messages discussed above is NW/ε. If the
edge weights are exponentially distributed random variables of mean N , the typi-
cal gap is ε = Θ(1), while W = Θ(N log N). Therefore the divergence sets in after
t∗ = Θ(N2 log N) iterations. The two analyses therefore describe completely distinct
regimes.

16.4 Combinatorial results

It turns out that a direct combinatorial analysis allows one to prove several non-
asymptotic results for ensembles of random assignment problems. Although the tech-
niques are quite specific, the final results are so elegant that they deserve to be pre-
sented. As a by-product, they also provide rigorous proofs of some of our previous
results, such as the asymptotic optimal cost ζ(2) found in eqn (16.15).

We shall consider here the case of edge weights given by i.i.d. exponential random
variables with rate 1. Let us recall that an exponential random variable X with rate
α has a density ρ(x) = α e−αx for x ≥ 0, and therefore its expectation is E[X] = 1/α.
Equivalently, the distribution of X is given by P{X ≥ x} = e−αx for x ≥ 0.

Exponential random variables have several special properties that make them par-
ticularly convenient in the present context. The most important one is that the mini-
mum of two independent exponential random variables is again exponential. We shall
use the following refined version of this statement.

Lemma 16.3 Let X1, . . . , Xn be n independent exponential random variables with
respective rates α1, . . . , αn. Then:

1. The random variable X = min{X1, . . . , Xn} is exponential with rate α ≡
∑n

i=1 αi.

2. The random variable I = arg mini Xi is independent of X, and has a distribution
P{I = i} = αi/α.

Proof First, note that the minimum of {X1, . . . , Xn} is almost surely achieved by
only one of the variables, and therefore the index I in item 2 of the lemma is well
defined. An explicit computation yields, for any x ≥ 0 and i ∈ {1, . . . , n},
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P{I = i, X ≥ x} =

∫ ∞

x

αi e−αiz
∏

j(	=i)

P{Xj ≥ z} dz

=

∫ ∞

x

αi e−αz dz =
αi

α
e−αx . (16.26)

By summing over i = 1, . . . , n, we get P{X ≥ x} = e−αx, which proves item 1.
By taking x = 0 in the above expression, we get P{I = i} = αi/α. Using these two

results, eqn (16.26) can be rewritten as P{I = i, X ≥ x} = P{I = i}P{X ≥ x}, which
implies that X and I are independent. �

16.4.1 The Coppersmith–Sorkin and Parisi formulae

The combinatorial approach is based on a recursion on the size of the problem. It is
therefore natural to generalize the assignment problem by allowing for partial matching
between two sets of unequal size as follows. Given a set of agents A and a set of jobs
B (with |A| = M and |B| = N), consider the complete bipartite graph G over the
vertex sets A and B. A k-assignment between A and B is defined as a subset of k
edges of G that has size k and is such that each vertex is adjacent to at most one edge.
Given edge costs {Eij : i ∈ A, j ∈ B}, the optimal k-assignment is the assignment
that minimizes the sum of the costs over the edges in the matching. The assignment
problem considered so far is recovered by setting k = M = N . Below we shall assume,
without loss of generality, that k ≤ M ≤ N .

Theorem 16.4. (Coppersmith–Sorkin formula) Assume the edge costs {Eij : i ∈
A, j ∈ B} to be i.i.d. exponential random variables of rate 1, with |A| = M and
|B| = N , and let Ck,M,N denote the expected cost of the optimal k-assignment. Then,

Ck,M,N =
k−1∑
i,j=0

I(i + j < k)
1

(M − i)(N − j)
. (16.27)

This result, which we shall prove in the next two subsections, yields, as a special
case, the expected cost CN of the complete matching over a bipartite graph with 2N
vertices.

Corollary 16.5. (Parisi formula) Let CN ≡ CN,N,N be the expected cost of the
optimal complete matching between sets of vertices A, B with |A| = |B| = N , assuming
that the edge weights are i.i.d. and exponentially distributed with a rate 1. Then

CN =
N∑

i=1

1

i2
. (16.28)

In particular, the expected cost of the optimal assignment when N → ∞ is ζ(2).
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Proof By Theorem 16.4, we have CN =
∑N−1

i,j=0 I(i + j < N) (N − i)−1(N − j)−1. By
simplifying equal terms, the difference CN+1 − CN can be written as

N∑
j=0

1

(N + 1)(N + 1 − j)
+

N∑
i=1

1

(N + 1 − i)(N + 1)
−

N∑
r=1

1

(N + 1 − r)r
. (16.29)

By applying the identity 1/((N + 1 − r)r) = 1/((N + 1)r) + 1/((N + 1 − r)(N + 1)),
this implies CN+1 − CN = 1/(N + 1)2, which establishes Parisi’s formula. �

The rest of this section will describe the proof of Theorem 16.4.

16.4.2 From k-assignment to k + 1-assignment

The proof relies on two lemmas which relate the properties of the optimal k-assignment
to those of the optimal (k + 1)-assignment. Let us denote the optimal k-assignment
(viewed as a subset of the edges of the complete bipartite graph) by Mk.

The first lemma applies to any realization of the edge costs, provided that no
two subsets of the edges have equal cost (this happens with probability 1 within our
random cost model).

Lemma 16.6. (nesting lemma) Let k < M ≤ N , and assume that no linear combi-
nation of the edge costs {Eij : i ∈ A, j ∈ B} with coefficients in {+1, 0,−1} vanishes.
Then every vertex that belongs to Mk also belongs to Mk+1.

The matching Mk consists of k edges which are incident on the vertices i1, . . . , ik in
set A and on j1, . . . , jk in set B. We denote by E(k) the k × k matrix which is the
restriction of E to the rows i1, . . . , ik and the columns j1, . . . , jk. The nesting lemma
ensures that E(k+1) is obtained from E(k) by adding one row (ik+1) and one column
(jk+1). Therefore we have a sequence of nested matrices E(1) ⊂ E(2) · · · ⊂ E(M) = E
containing the sequence of optimal assignments M1,M2, . . . ,MM . Proof Colour all
the edges in Mk red and all the edges in Mk+1 blue, and denote by Gk+ the bipartite
graph induced by edges in Mk ∪Mk+1. Clearly, the maximum degree of Gk+ is at most
2, and therefore its connected components are either cycles or paths.

We first show that no component of Gk+ can be a cycle. Assume, in contradiction,
that the edges {u1, v1, u2, v2, . . . , up, vp} ⊆ Gk+ form such a cycle, with {u1, . . . , up} ⊆
Mk and {v1, . . . , vp} ⊆ Mk+1. Since Mk is the optimal k-assignment, Eu1 + · · ·+Eup

≤
Ev1 + · · ·+Evp

(in the opposite case, we could decrease its cost by replacing the edges
{u1, . . . , up} with {v1, . . . , vp}, without changing its size). On the other hand, since
Mk+1 is the optimal (k +1)-assignment, the same argument implies Eu1

+ · · ·+Eup
≥

Ev1 + · · ·+Evp
. These two inequalities imply Eu1 + · · ·+Eup

= Ev1 + · · ·+Evp
, which

is impossible by the non-degeneracy hypothesis.
So far, we have proved that Gk+ consists of a collection of disjoint simple paths,

formed by alternating blue and red edges. Along such paths, all vertices have degree 2
except for the two end-points which have degree 1. Since each path alternates between
red and blue edges, the difference between the numbers of red and blue edges can be
either 0 or ±1. We shall now show that there can exist only one such path, with one
more blue edge than red edges.
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We first notice that Gk+ cannot contain even paths, with as many red as blue
edges. This can be shown using the same argument that we used above in the case of
cycles: either the cost of the blue edges along the path is lower than the cost of the
red ones, which would imply that Mk is not optimal, or, vice versa, the cost of the red
edges is lower, which would imply that Mk+1 is not optimal.

We now exclude the existence of a path P of odd length with one more red edge
than blue edges. Since the total number of blue edges is larger than the total number
of red edges, there should exist at least one path P′ with odd length, with one more
blue edge than red edges. We can then consider the double path P∪P′, which contains
as many red as blue edges, and apply to it the same argument as for cycles and even
paths.

We thus conclude that the symmetric difference of Mk and Mk+1 is a path of odd
length, with one end-point i ∈ A and one end-point j ∈ B. These are the only vertices
that are in Mk+1 but not in Mk. Conversely, there is no vertex that is in Mk but not
in Mk+1. �

Lemma 16.7 Let {ui : i ∈ A} and {vj : j ∈ B} be two collections of positive real
numbers, and assume that the costs of the edges {Eij : i ∈ A, j ∈ B} are inde-
pendent exponential random variables, the rate of Eij being uivj. Denote by Ak =
{i1, . . . , ik} ⊆ A and Bk = {j1, . . . , jk} ⊆ B the sets of vertices appearing in the op-
timal k-assignment Mk. Let Ik+1 = Ak+1 \ Ak and Jk+1 = Bk+1 \ Bk be the extra
vertices which are added in Mk+1. The conditional distribution of Ik+1 and Jk+1 is
then P {Ik+1 = i, Jk+1 = j|Ak, Bk} = Qi,j, where

Qij =
uivj(∑

i′∈A\Ak
ui′

) (∑
j′∈B\Bk

vj′

) . (16.30)

Proof Because of the nesting lemma, one of the following must be true: either the
matching Mk+1 contains edges (Ik+1, jb) and (ia, Jk+1) for some ia ∈ Ak and jb ∈ Bk,
or it contains the edge (Ik+1, Jk+1).

Let us fix ia and jb and condition on the first event

E1(ia, jb) ≡ {Ak, Bk, (Ik+1, jb), (ia, Jk+1) ∈ Mk+1} .

Then, necessarily, EIk+1,jb
= min{Eijb

: i ∈ A \Ak} (because, otherwise, we could de-
crease the cost of Mk+1 by making a different choice for Ik+1). Analogously, Eia,Jk+1

=
min{EiAj : j ∈ B \ Bk}. Since the two minima are taken over independent random
variables, Ik+1 and Jk+1 are independent as well. Further, by Lemma 16.3,

P {Ik+1 = i, Jk+1 = j | E1(ia, jb)} =
uivjb∑

i′∈A\Ak
ui′vjb

uia
vj∑

j′∈B\Bk
uia

vj′

= Qij .

If we instead condition on the second event

E2 ≡ {Ak, Bk, (Ik+1, Jk+1) ∈ Mk+1} ,
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then EIk+1,Jk+1
= min{Eij : i ∈ A \ Ak j ∈ B \ Bk} (because, otherwise, we could

decrease the cost of Mk+1). By applying Lemma 16.3 again we get

P {Ik+1 = i, Jk+1 = j | E2} =
uivj∑

i′∈A\Ak,j′∈B\Bk
ui′vj′

= Qij .

Since the resulting probability is Qij irrespective of the conditioning, it remains the
same when we condition on the union of the events {∪a,bE1(ia, jb)} ∪ E2 = {Ak, Bk}.
�

16.4.3 Proof of Theorem 16.4

In order to prove the Coppersmith–Sorkin (C–S) formula (16.27), we shall consider
the difference Dk,M,N ≡ Ck,M,N − Ck−1,M,N−1, and establish in this subsection that

Dk,M,N =
1

N

(
1

M
+

1

M − 1
+ · · · + 1

M − k + 1

)
. (16.31)

This immediately leads to the C–S formula, by recursion using as a base step the
identity C1,M,N−k+1 = 1/(M(N − k + 1)) (which follows from the fact that this is the
minimum of M(N − k + 1) i.i.d. exponential random variables with rate 1).

Consider a random instance of the problem over vertex sets A and B with |A| = M
and |B| = N , whose edge costs {Eij : i ∈ A, j ∈ B} are i.i.d. exponential random
variables with rate 1. Let X be the cost of its optimal k-assignment. Let Y be the cost
of the optimal (k − 1)-assignment for the new problem that is obtained by removing
one fixed vertex, say the last one, from B. Our aim is to estimate the expectation
value Dk,M,N = E(X − Y ),

We shall use an intermediate problem with a cost matrix F of size (M + 1) × N ,
constructed as follows. The first M rows of F are identical to those of E. The elements
of the matrix in its last line are N i.i.d. exponential random variables of rate λ,
independent of E. We denote the cost of the edge (M +1, N) by W , and call the event
‘the optimal k-assignment in F uses the edge (M + 1, N)’ E .

We claim that, as λ → 0, P(E) = λE[X − Y ] + O(λ2). Note first that, if E is true,
then W + Y < X, and therefore

P(E) ≤ P{W + Y < X} = E
[
1 − e−λ(X−Y )

]
= λ E[X − Y ] + O(λ2) . (16.32)

Conversely, if W < X − Y , and all the edges from the vertex M + 1 in A to B \ {N}
have a cost of at least X, then the optimal k-assignment in F uses the edge (M +1, N).
Therefore, using the independence of the edge costs,

P(E) ≥ P{W < X − Y ; EM+1,j ≥ X for j ≤ N − 1}

= E

{
P{W < X − Y | X,Y }

N−1∏
j=1

P{EM+1,j ≥ X|X}
}

= E

{
P{W < X − Y | X,Y } e−(N−1)λX

}
= E

{(
1 − e−λ(X−Y )

)
e−(N−1)λX

}
= λ E[X − Y ] + O(λ2) . (16.33)



��� The assignment problem

We now turn to the evaluation of P(E), and show that

P(E) =
1

N

[
1 −

k−1∏
r=0

M − r

M − r + λ

]
. (16.34)

Let us denote the M+1-th vertex in A by α. By Lemma 16.7, conditional on α /∈ Mk−1,
the probability that α ∈ Mk is λ/(M − (k − 1) + λ). By recursion, this shows that the

probability that α /∈ Mk−1 is
∏k−1

r=0((M − r)/(M − r + λ)). Since all of the N edges
incident on α are statistically equivalent, we get eqn (16.34).

Expanding eqn (16.34) as λ → 0, we get P(E) = (λ/N)
∑k−1

r=0(1/(M − r)) + O(λ2).
Since, as shown above, E[X − Y ] = limλ→0 P(E)/λ, this proves eqn (16.31), which
establishes the C–S formula.�

16.5 An exercise: Multi-index assignment

In Section 16.2.4, we computed the asymptotic minimum cost for random instances
of the assignment problem using the cavity method under the replica-symmetric (RS)
assumption. The result, namely that the cost converges to ζ(2) for exponential edge
weights with mean 1, was confirmed by the combinatorial analysis of Section 16.4.
This suggests that the RS assumption is correct for this ensemble, an intuition that is
further confirmed by the fact that the min-sum algorithm finds the optimal assignment.

Statistical physicists conjecture that there exists a broad class of random combina-
torial problems which satisfy the RS assumption. On the other hand, many problems
are thought not to satisfy it: the techniques developed for dealing with such problems
will be presented in Chapter 19. It is important to have a feeling for the boundary
separating RS from non-RS problems. This is a rather subtle point. Here we want
to illustrate it by considering a generalization of random assignment: the multi-index
random assignment (MIRA) problem. We shall consider studying the MIRA problem
using the RS cavity method and detect the inconsistency of this approach. Since the
present section is essentially an application of the methods developed above for the
assignment problem, we shall skip all technical details. The reader may consider it as
a long guided exercise.

An instance of the multi-index assignment problem consists of d sets A1, . . . , Ad,
of N vertices, and a cost Ei for every d-tuple i = (i1, . . . , id) ∈ A1 × · · · × Ad. A
‘hyperedge’ i can be occupied (ni = 1) or empty (ni = 0). A matching is a set of
hyperedges which are vertex disjoint; this means that

∑
i: a∈i ni ≤ 1 for each r and

each a ∈ Ar. The cost of a matching is the sum of the costs of the hyperedges that it
occupies. The problem is to find a perfect matching (i.e. a matching with N occupied
hyperedges) with minimal total cost.

In order to define a random ensemble of instances of the multi-index assignment
problem, we proceed as for the assignment problem, and assume that the edge costs
Ea are i.i.d. exponential random variables with mean Nd−1. Thus the costs have a
density

ρ(E) = N−d+1 e−E/Nd−1

I(E ≥ 0) . (16.35)
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The reader is invited to check that under this scaling of the edge costs, the typical
optimal cost is extensive, i.e. Θ(N). The simple random assignment problem considered
before corresponds to d = 2.

We introduce a probability distribution on matchings that naturally generalizes
eqn (16.2):

µ(n) =
1

Z
e−β

P
i ni(Ei−2γ)

∏
a∈F

I

( ∑
i: a∈i

ni ≤ 1
)

, (16.36)

where F ≡ A1 ∪ · · · ∪ Ad. The associated factor graph has Nd variable nodes, each
of degree d, corresponding to the original hyperedges, and dN factor nodes, each of
degree N , corresponding to the vertices in F . As usual i, j, · · · ∈ V denote the variable
nodes in the factor graph and a, b, · · · ∈ F denote the function nodes enforcing the
hard constraints.

Using a parameterization analogous to that for the assignment problem, we find
that the BP equations for this model take the form

hi→a =
∑

b∈∂i\a

xb→i ,

xa→i = − 1

β
log
{

e−βγ +
∑

j∈∂a\i

e−β(Ej−hj→a)
}

.
(16.37)

In the large-β, γ limit they become

hi→a =
∑

b∈∂i\a

xb→i , xa→i = min
j∈∂a\i

(Ej − hj→a). (16.38)

Finally, the Bethe free entropy can be written in terms of x-messages, yielding

F[x] =Ndβγ +
∑
a∈F

log
{

e−βγ +
∑
i∈∂a

e−β(Ei−
P

b∈∂i\a xb→i)
}

− (d − 1)
∑
i∈V

log
{

1 + e−β(Ei−
P

a∈∂i xj→a))
}

.
(16.39)

Using the RS cavity method, we obtain the following equation for the distribution
of x-messages in the N → ∞ limit:

A(x) = exp

⎧⎨⎩−
∫ (

x +
d−1∑
j=1

tj

)
I

(
x +

d−1∑
j=1

tj ≥ 0
) d−1∏

j=1

dA(tj)

⎫⎬⎭ . (16.40)

This reduces to eqn (16.13) in the case of simple assignment. Under the RS as-
sumption, the cost of the optimal assignment is E∗ = Nε∗ + o(N), where

ε∗ =
1

2

∫ ( d∑
j=1

xj

)2

I

(∑
j

xj > 0
) d∏

j=1

dA(xj) . (16.41)

These equations can be solved numerically to high precision and allow one to
derive several consequences of the RS assumption. However, the resulting predictions



��� The assignment problem

(in particular, the cost of the optimal assignment) are wrong for d ≥ 3. There are two
observations that show that the RS assumption is inconsistent:

1. Using the Bethe free-entropy expression (16.39), we can compute the asymptotic
free-energy density as fRS(β) = limN→∞ F/N , for a finite β = 1/T . The resulting
expression can be estimated numerically via population dynamics, for instance for
d = 3. It turns out that the predicted entropy density s(T ) = fRS − β(dfRS/dβ)
becomes negative for T < Tcr ≈ 2.43. This implies that the prediction is incorrect:
we are dealing with a statistical-mechanics model with a finite state space, and
thus the entropy must be non-negative.

2. A local stability analysis can be performed analogously to what was done in Sec-
tion 16.2.5. It turns out that, for d = 3, the stability coefficient λ∞ (see eqn (16.23)),
becomes positive for T � 1.6, indicating an instability of the putative RS solution
to small perturbations.

The same findings are generic for d ≥ 3. A more satisfactory set of predictions for
such problems can be developed using the RSB cavity method, which will be treated
in Chapter 19.

Notes

Rigorous upper bounds on the cost of the optimal random assignment date back to
Walkup (1979) and Karp (1987). The ζ(2) result for the cost was first obtained by
Mézard and Parisi (1985) using the replica method. The cavity method solution was
then found by Mézard and Parisi (1986) and Krauth and Mézard (1989), but the
presentation in Section 16.2 is closer to that of Martin et al. (2005). The last of these
papers deals with the multi-index assignment problem and contains answers to the
exercise in Section 16.5, as well as a proper solution of this problem using the RSB
cavity method.

The first rigorous proof of the ζ(2) result was derived by Aldous (2001), using a
method which can be regarded as a rigorous version of the cavity method. An essential
step in developing this proof was the establishment of the existence of the limit, and
its description as a minimum-cost matching on an infinite tree (Aldous, 1992). An
extended review of the ‘objective method’ on which this convergence result is based
can be found in Aldous and Steele (2003). A survey of the recursive distributional
equations such as eqn (16.17) that occur in the replica-symmetric cavity method can
be found in Aldous and Bandyopadhyay (2005).

On the algorithmic side, the assignment problem has been a very well-studied
problem for many years (Papadimitriou and Steiglitz, 1998), and there exist efficient
algorithms based on ideas of network flows. The first BP algorithm was found by
Bayati et al. (2005); it was then simplified by Bayati et al. (2006) into the O(N3)
algorithm presented in Section 16.3. This paper also shows that the BP algorithm is
basically equivalent to Bertsekas’s auction algorithm (Bertsekas, 1988). The periodic-
up-to-a-shift stopping criterion is due to Sportiello (2004), and the explanation for the
existence of diverging time scales for the onset of the drift can be found in Grosso
(2004).
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Combinatorial studies of random assignments were initiated by Parisi’s conjecture
(Parisi, 1998). This was generalized to the Coppersmith–Sorkin conjecture by Copper-
smith and Sorkin (1999). The same paper also provides a nice survey of algorithmic
bounds. In 2003, these conjectures were turned into theorems by two groups indepen-
dently (Nair et al., 2003, 2006; Linusson and Wästlund, 2004). The simple derivation
presented here is from Wästlund (2008).
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17

Ising models on random graphs

In this chapter, we shall consider two statistical-physics models for magnetic systems:
the Ising ferromagnet and the Ising spin glass. While for physical applications one is
mainly interested in three-dimensional Euclidean lattices, we shall study models on
sparse random graphs. It turns out that this is a much simpler problem, and one can
hope to obtain an exact solution in the thermodynamic limit. It is expected that, for
a large family of ‘mean-field’ graphs, the qualitative behaviour of Ising models will be
similar to that for sparse random graphs. For instance, ferromagnetic Ising models on
any lattice of dimension d > 4 share many of the features of models on random graphs.
A good understanding of which graphs are mean-field is, however, still lacking.

Here we shall develop the replica-symmetric (RS) cavity approach, and study its
stability. In the ferromagnetic case, this allows us to compute the asymptotic free
energy per spin and the local magnetizations, at all temperatures. In the spin glass
case, the ‘RS solution’ is correct only at high temperature, in the ‘paramagnetic’ phase.
We shall see that the RS approach is inconsistent in the low-temperature ‘spin glass’
phase, and identify the critical transition temperature separating these two phases.
Despite its inconsistency in the spin glass phase, the RS approach provides a very
good approximation for many quantities of interest.

Our study will be based mainly on non-rigorous physical methods. The results
on ferromagnets and on the high-temperature phase of spin glasses, however, can be
turned into rigorous statements, and we shall briefly outline the ideas involved in the
rigorous approach.

The basic notation and the BP (or cavity) formalism for Ising models are set in
Section 17.1. Section 17.2 specializes to the case of random graph ensembles, and intro-
duces the corresponding distributional equations. Finally, Sections 17.3 and 17.4 deal
with the analysis of these equations and derive the phase diagram in the ferromagnetic
and spin glass cases, respectively.

17.1 The BP equations for Ising spins

Given a graph G = (V,E), with |V | = N , we consider a model for N Ising spins
σi ∈ {±1}, i ∈ V , with an energy function

E(σ) = −
∑

(i,j)∈E

Jijσiσj . (17.1)

The coupling constants Jij = Jji are associated with edges of G and indicate the
strength of the interaction between spins connected by an edge. The graph G and the
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set of coupling constants J define a ‘sample’.
Given a sample, the Boltzmann distribution is

µG,J (σ) =
1

ZG,J
e−βE(σ) =

1

ZG,J

∏
(i,j)∈E

eβJijσiσj . (17.2)

As in the general model (14.13), this distribution factorizes according to a factor
graph that has a variable node associated with each vertex i ∈ V , and a function node
associated with each edge (i, j) ∈ E. It is straightforward to apply BP to such a model.

Since the model (17.2) is pairwise (every function node has degree 2), the BP equa-
tions can be simplified following the strategy of Section 14.2.5. The message ν̂(ij)→j

from function node (ij) to variable node j is related to the message νi→(ij) through

ν̂
(t)
(ij)→j(σj) ∼=

∑
σi

eβJijσiσj ν
(t)
i→(ij)(σi) . (17.3)

We can choose to work with only one type of message on each directed edge i → j of the
original graph, say the variable-to-factor message. With a slight misuse of notation, we
shall write νi→j(σi) ≡ νi→(ij)(σi). The BP update equations now read (see eqn(14.31))

ν
(t+1)
i→j (σi) ∼=

∏
k∈∂i\j

∑
σk

eβJkiσkσi ν
(t)
k→i(σk) . (17.4)

Since spins are binary variables, one can parameterize messages by their log-

likelihood ratio h
(t)
i→j , defined through the relation

ν
(t)
i→j(σi) ∼= exp

{
β h

(t)
i→j σi

}
. (17.5)

We follow here the physics convention of rescaling the log-likelihood ratio by a factor
1/(2β). The origin of this convention lies in the idea of interpreting the distribution
(17.5) as an ‘effective’ Boltzmann distribution for the spin σi, with energy function

−h
(t)
i→jσi. In statistical-physics jargon, h

(t)
i→j is a local magnetic field.

Two messages h
(t)
i→j , h

(t)
j→i ∈ R are exchanged along each edge (i, j). In this param-

eterization, the BP update equations (17.4) become

h
(t+1)
i→j =

∑
k∈∂i\j

f(Jki, h
(t)
k→i) , (17.6)

where the function f has already been encountered in Section 14.1:

f(J, h) =
1

β
atanh [tanh(βJ) tanh(βh)] . (17.7)

The local marginals and the free entropy can be estimated in terms of these mes-
sages. We shall assume here that h ≡ {hi→j} is a set of messages which solve the
fixed-point equations. The marginal of spin σi is then estimated as
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νi(σi) ∼= eβHiσi , Hi =
∑
k∈∂i

f(Jik, hk→i) . (17.8)

The free entropy log ZG,J is estimated using the general formulae (14.27) and
(14.28). The result can be expressed in terms of the cavity fields {hi→j}. Using the
shorthand θij ≡ tanhβJij , one gets

F[h] =
∑

(ij)∈E

log cosh βJij −
∑

(ij)∈E

log
{

1 + θij tanhβhi→j tanhβhj→i

}
+
∑
i∈V

log
{ ∏

j∈∂i

(1 + θij tanhβhj→i) +
∏
j∈∂i

(1 − θij tanhβhj→i)
}

. (17.9)

This expression is obtained by using the parameterization (17.5) in the general ex-
pressions (14.27) and (14.28), as outlined in the exercise below. As an alternative, one
can use the expression (14.32) for pairwise models.

Exercise 17.1 In order to derive eqn (17.9), it is convenient to change the normalization
of the compatibility functions by letting ψij(σi, σj) = 1 + θijσiσj . This produces an overall
change in the the energy that is taken into account by the first term in eqn (17.9). To get
the other terms:

(a) Show that bν(ij)→j(σj) = 1
2
(1 + σjθij tanh βhi→j). Note that F(ν), (see eqn (14.27)), is

left unchanged by a multiplicative rescaling of the messages. As a consequence, we can
use bν′

(ij)→j(σi) = 1 + σjθij tanh βhi→j .

(b) Show that, with this choice, the term Fi(ν) in eqn (14.27) is equal to the last term in
eqn (17.9).

(c) Note that
P

σi
σiνi→(ij)(σi) = tanh βhi→j .

(d) Show that this implies (for a ≡ (ij))

Fa(ν) = Fai(ν) = Faj(ν) = log{1 + θij tanh βhi→j tanh βhj→i} . (17.10)

Exercise 17.2 Show that the fixed points of the BP update equations (17.6) are stationary
points of the free-energy functional (17.9).
[Hint: Differentiate the right-hand side of eqn (17.9) with respect to tanh βhi→j .]
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Exercise 17.3 Show that the Bethe approximation to the internal energy, (see
eqn (14.21)), is given by

U = −
X
(ij)

Jij
θij + tanh βhi→j tanh βhj→i

1 + θij tanh βhi→j tanh βhj→i
. (17.11)

Check that U = −dF/dβ as it should, where F is given in eqn. (17.9).
[Hint: Use the result of the previous exercise]

17.2 RS cavity analysis

We shall now specialize our analysis to the case of sparse random graphs. More pre-
cisely, we assume G to be a uniformly random graph with degree profile {Λk} (i.e.,
for each k ≥ 0, the number of vertices of degree k is NΛk). The associated factor
graph is a random factor graph from the ensemble DN (Λ, P ), where P (x) = x2 and
Λ(x) =

∑
k≥0 Λk xk (see Section 9.2).

As for the couplings Jij , we shall focus on two significant examples:

(i) Ferromagnetic models, with Jij = +1 for any edge (i, j).

(ii) Spin glass models. In this case the couplings Jij are i.i.d. random variables with
Jij ∈ {+1,−1} uniformly at random.

The general case of i.i.d. random couplings Jij can be treated within the same frame-
work.

Let us emphasize that the graph G and the couplings {Jij} are quenched random
variables. We are interested in the properties of the measure (17.2) for a typical random
realization of G, J . We shall pursue this goal by analysing distributions of BP messages
(cavity fields).

17.2.1 Fixed-point equations

We choose an edge (i, j) uniformly at random in the graph G. The cavity field hi→j

is a random variable (both because of the random choice of (i, j) and because of the
randomness in the model). Within the assumptions of the RS cavity method, in the
large-N limit, the distribution of h = hi→j satisfies the distributional equation

h
d
=

K−1∑
i=1

f(Ji, hi) , (17.12)

where K is distributed according to the edge-perspective degree distribution: the prob-
ability that K = k is λk = kΛk/(

∑∞
p=1 pΛp). The fields h1, . . . , hK are independent

copies of the random variable h, and the couplings J1, . . . JK are i.i.d. random variables
distributed as the couplings in the model.

In the physics literature, the distributional equation (17.12) is written formally in
terms of the density a( · ) of the random variable h. Writing EJ for the expectation
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over the i.i.d. coupling constants J1, J2, . . . , and enforcing the cavity equation through
a Dirac delta, we have

a(h) =

∞∑
k=1

λk EJ

∫
δ

(
h −

k∑
i=1

f(Ji, hi)

)
k∏

r=1

a(hr) dhr . (17.13)

Let us emphasize that, in writing such an equation, physicists do not assume that a
genuine density a( · ) does exist. This and similar equations should be interpreted as a
proxy for expressions such as eqn (17.12).

Assuming that the distribution of h that solves eqn (17.12) has been found, the RS
cavity method predicts the asymptotic free-entropy density fRS ≡ limN→∞ F/N as

fRS = −1

2
Λ log cosh β +

1

2
Λ EJ,h log

{
1 + tanh βJ tanhβh1 tanhβh2

}
(17.14)

+EkEJ,h log
{ k∏

i=1

(1 + tanhβJi tanhβhi) +
k∏

i=1

(1 − tanhβJi tanhβhi)
}

.

Here k is distributed according to {Λk}, the hi are i.i.d. random variables distributed as
h, and the Ji are i.i.d. couplings (identically equal to +1 for ferromagnets, and uniform
in {+1,−1} for spin glasses). Finally, Λ =

∑
k kΛk = Λ′(1) denotes the average degree.

17.2.2 The paramagnetic solution

The RS distributional equation (17.12) always admits the solution ‘h = 0’, mean-
ing that the random variable h is equal to 0 with probability 1. The corresponding
distribution is a Dirac delta on h = 0: a = δ0.

This is usually referred to as the paramagnetic solution. Using eqn (17.14) we
obtain the corresponding prediction for the free-entropy density

fRS
para(β) = log 2 +

1

2
Λ log cosh β . (17.15)

Exercise 17.4 In the context of this paramagnetic solution, derive expressions for
the internal-energy density (−(Λ/2)EJJ tanh(βJ)) and the entropy density (log 2 +

(Λ/2)EJ [log cosh(βJ) − βJ tanh(βJ)]).

In order to interpret this solution, recall that a( · ) is the asymptotic distribution of
the cavity fields (BP messages) hi→j . The paramagnetic solution indicates that they
vanish (apart, possibly, from a sublinear number of edges). Recalling the expression
for local marginals in terms of cavity fields (see eqn (17.8)), this implies νi(σi = +1) =
νi(σi = −1) = 1/2. One can similarly derive the joint distribution of two spins σi, σj

connected by a single edge with a coupling Jij . A straightforward calculation yields

νij(σi, σj) =
1

4 cosh β
exp
{
βJijσiσj

}
. (17.16)
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This is the same distribution as for two isolated spins interacting via the coupling Jij .
In the paramagnetic solution, the effect of the rest of the graph on local marginals is
negligible.

The fact that h = 0 is a solution of the RS distributional equation (17.12) does
not imply that the paramagnetic predictions are correct. We can distinguish three
possibilities:

1. The paramagnetic predictions are correct.

2. The hypotheses of the RS cavity method do hold, but the distributional equation
(17.12) admits more than one solution. In this case it is possible that behaviour
of the model is correctly described by one of these solutions, although not the
paramagnetic one.

3. The hypotheses of the RS method are incorrect.

It turns out that, in the high-temperature phase, the paramagnetic solution is
correct for both the ferromagnetic and the spin glass model. At low temperature
(the critical temperature being different in the two cases), new solutions to the RS
equations appear. Wheras for the ferromagnetic model correct asymptotic predictions
are obtained by selecting the appropriate RS solution, this is not the case for spin
glasses.

17.3 Ferromagnetic model

For the ferromagnetic Ising model (Jij = +1 identically), the paramagnetic solution
correctly describes the asymptotic behaviour for β ≤ βc. The critical temperature de-
pends on the graph ensemble only through the average degree from the edge perspective
λ, and is the unique solution of the equation

λ tanhβc = 1 . (17.17)

The edge-perspective average degree λ is defined in terms of the degree distribution
as

λ =
∑

k

λk (k − 1) =

∑
k Λkk(k − 1)∑

k Λkk
, (17.18)

or, more compactly, in terms of the degree generating function as λ = λ′(1). In words,
we choose an edge (i, j) of G uniformly at random, and select one of its end-points,
say i, also at random. Then, λ is the expected number of edges incident on i distinct
from (i, j).

For β > βc, the RS distributional equation (17.12) admits more than one solution.
While h = 0 is still a solution, the correct thermodynamic behaviour is obtained by
selecting a different solution, the ‘ferromagnetic’ solution.

17.3.1 Local stability

When confronted with a distributional equation such as eqn (17.12), the simplest thing
we can try to do is to take expectations. Recalling that k has a distribution λk and
writing θ = tanhβ, we obtain
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E{h} = λ E{f(+1, h)} = λ E{θ h + O(h3)} = λθ E{h} + E{O(h3)} . (17.19)

If we neglect terms of order E{O(h3)} (for instance, assuming that E{h3} = O(E{h}3)),
this yields a linear iteration for the expectation of h. For λθ > 1, this iteration is un-
stable, indicating that h = 0 is an unstable fixed point and new fixed distributions
appear.

Indeed, a little more work shows that, for λθ < 1, h = 0 is the unique fixed point.
It is enough to take the expectation of |h| and use the triangle inequality to obtain

E|h| ≤ λ E|f(+1, h)| . (17.20)

A little calculus shows that f(1, x) ≤ θx for x > 0, whence E|h| ≤ λθE|h| and therefore
h = 0 identically.

17.3.2 Ferromagnetic susceptibility

There is a second, more physical, interpretation of the above calculation. Consider the
ferromagnetic susceptibility,

χ =
1

N

∑
i,j∈V

(〈σiσj〉 − 〈σi〉〈σj〉) . (17.21)

We expect this quantity to be bounded as N → ∞. This corresponds to the expectation
that the total magnetization

∑
i σi behaves as in the central limit theorem. The idea

is to assume that the paramagnetic solution is the correct one, and to check whether
χ is indeed bounded.

We have already seen that, in the paramagnetic phase, 〈σi〉 vanishes. Let us now
consider two randomly chosen vertices i, j at a given distance r, and let us compute the
expectation 〈σiσj〉. With high probability, there is a single path with r edges joining
i to j, and any finite neighbourhood of this path is a tree. Let us rename the two
vertices 0 and r, and denote by σn, n ∈ {0, . . . , r}, the spins along the path joining
them. Within the RS cavity approach, the marginal distribution of these spins is, (see
eqn (14.18)):

µG(σ0, . . . , σr) ∼= exp

{
β

r−1∑
p=0

σpσp+1 + β

r∑
p=0

gpσp

}
. (17.22)

The field gp is the effect of the rest of the graph on the distribution of the spin σp.
Using eqn (14.18), one gets

gp =
∑

j∈∂p\path

f(+1, hj→p) , (17.23)

where the sum extends over the set ∂p of neighbours of σp in the factor graph that
are not on the path. Since, in the paramagnetic solution, the hj→p’s vanish, all of the
gp vanish as well. This implies 〈σ0 σr〉 = (tanhβ)r.
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The susceptibility is then given by

χ =
1

N

∑
i,j∈V

〈σiσj〉 =
∞∑

r=0

N (r) (tanh β)r , (17.24)

where N (r) is the expected number of vertices j at distance r from a uniformly random
vertex i. It is not hard to show that N (r)

.
= λ

r
for large r (the limit N → ∞ is taken

before r → ∞). It follows that, for λ tanhβ < 1, the susceptibility χ remains bounded.
For λ tanhβ > 1, the susceptibility is infinite and the paramagnetic solution cannot
be correct.

17.3.3 The ferromagnetic phase

For β > βc (low temperature), one has to look for other solutions of the RS distri-
butional equation (17.12). In general, this is done numerically, for instance using the
population dynamics algorithm. In special cases, exact solutions can be found. As an
example, assume that G is a random regular graph of degree k + 1. The correspond-
ing factor graph is thus drawn from the ensemble DN (Λ, P ), with Λ(x) = xk+1 and
P (x) = x2.

The local structure of the graph around a typical vertex is always the same: a
regular tree of degree (k +1). It is thus natural to seek a solution such that hi→j = h0

for each directed edge i → j. This corresponds to a solution of the distributional
equation (17.12) where h = h0 identically (formally a = δh0). Equation (17.12) implies

h0 = kf(+1, h0) . (17.25)

This equation is easily solved. For β > βc, it has three solutions: the paramagnetic
solution, and two opposite solutions ±h0. In order to interpret these solutions, recall
that eqn (17.8) implies 〈σi〉 = ±M , with M = tanh((k + 1)βf(+1, h0)), where h0 is
the positive solution of eqn (17.25). Figure 17.1 summarizes these results for the case
k = 2.

The reader might be puzzled by these results since, by symmetry, one necessarily
has 〈σi〉 = 0. The correct interpretation of the ferromagnetic solution is similar to that
of the Curie–Weiss model discussed in Section 2.5.2. In a typical configuration, the
total magnetization

∑
i σi is, with high probability, close to +NM or −NM . Since

each of these events occurs with probability 1/2, the average magnetization is 0. We
can decompose the Boltzmann distribution as

µ(σ) =
1

2
µ+(σ) +

1

2
µ−(σ) , (17.26)

where µ+( · ) and µ−( · ) are supported on configurations with
∑

i σi > 0 and
∑

i σi < 0,
respectively, assuming N odd for simplicity. The expectation of a typical spin with
respect to µ+( · ) or µ−( · )) is then, asymptotically, 〈σi〉+ = +M or 〈σi〉− = −M ,
respectively.

The two components µ+( · ) and µ−( · ) are often referred to as ‘pure states’, and are
expected to have several remarkable properties. We will shall discuss decomposition
into pure states further in the following chapters. It is interesting to notice that the
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Fig. 17.1 Magnetization M and cavity field h0 in a ferromagnetic Ising model on a random

regular graph of degree k +1 = 3, as a function of the temperature. The critical temperature

is Tc = 1/atanh(1/2) ≈ 1.82048.

cavity method does not reproduce the actual averages over the Boltzmann distribution,
but rather the averages with respect to pure states.

One can repeat the stability analysis for this new solution. The ferromagnetic
susceptibility always involves the correlation between two spins in a one-dimensional
problem, as in eqn (17.22). However, the fields gp are now non-zero. In particular,
for p ∈ {1, . . . , r − 1}, we have gp = (k − 1)f(+1, h0). An explicit computation using
the transfer matrix technique of Section 2.5.1 shows that the susceptibility of this
ferromagnetic solution is finite in the whole low-temperature phase β > βc.

Exercise 17.5 Consider the case of a ferromagnetic Ising model on a random regular graph
in the presence of a positive external magnetic field. This is described by a term +B

P
i σi

in the exponent in eqn (17.2). Show that there is no phase transition: the cavity field h0

and the magnetization M are positive at all temperatures.

Exercise 17.6 Consider a ferromagnetic problem in which the Jij are i.i.d. random vari-
ables, but always positive (i.e. their distribution is supported on J > 0.) Write the RS
distributional equation (17.12) in this case and perform a local stability analysis of the
paramagnetic solution. Show that the critical temperature is determined by the equation
λ EJ tanh(βJ) = 1. Compute the magnetization in the ferromagnetic phase (i.e. for β > βc)
using the population dynamics algorithm.
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17.3.4 Rigorous treatment

In the case of Ising ferromagnets, many predictions of the RS cavity method can be
confirmed rigorously. While describing the proofs in detail would take us to far, we
shall outline the main ideas here.

To be concrete, we consider a model of the form (17.2), with Jij = +1, on a random
graph with degree profile Λ such that λ is finite (i.e. Λ must have a second moment).
Since we know that eqn (17.12) admits more than one solution at low temperature,
we need to select a particular solution. This can be done by considering the density
evolution iteration

h(t+1) d
=

K−1∑
i=1

f(+1, h
(t)
i ) (17.27)

with the initial condition h(0) = +∞. In other words, we consider the sequence of
distributions a( · ) that are obtained by iterating eqn (17.13) starting from δ+∞.

It can be shown that the sequence of random variables h(t) converges in distribution
as t → ∞, and that the limit h(+) is a solution of eqn (17.12). It is important to stress
that in general h(+) is a random variable with a highly non-trivial distribution. For
λ tanhβ < 1, the argument in Section 17.3.1 implies that h(+) = 0 with probability
one. For λ tanhβ > 1, h(+) is supported on non-negative values.

Theorem 17.1 Let ZN (β) be the partition function of a ferromagnetic Ising model
on a random graph with degree profile Λ. Under the hypotheses above, the RS cavity
expression for the free entropy is exact. Precisely,

lim
N→∞

1

N
log ZN (β) = fRS(β) , (17.28)

the limit holding almost surely for any finite β. Here fRS(β) is defined as in eqn (17.14),
where the hi are i.i.d. copies of h(+).

Let us sketch the key ideas used in the proof, referring to the literature for a
complete derivation. The first step consists in introducing a small positive magnetic
field B that adds a term −B

∑
i σi to the energy (17.1). One then uses the facts

that the free-entropy density is continuous in B (which also applies as N → ∞)
and that log ZN (β,B) concentrates around E log ZN (β,B). This allows us to focus
on E log ZN (β,B). It is easy to check that the cavity prediction is correct at β = 0
(since, in this limit, the spins become independent). The idea is then to compute the
derivative of N−1E log ZN (β,B) with respect to β and prove that this converges to
the derivative of fRS(β). Some calculus shows that this is equivalent to proving that,
for a uniformly random edge (i, j) in the graph,

lim
N→∞

E〈σiσj〉 = E

{
tanhβ + tanhβh1 tanhβh2

1 + tanhβ tanhβh1 tanhβh2

}
, (17.29)

where h1, h2 are i.i.d. copies of h(+).
The advantage of eqn (17.29) is that 〈σiσj〉 is a local quantity. One can then try

to estimate it by looking at the local structure of the graph in a large but finite
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neighbourhood around (i, j). The key problem is to prove that the rest of the graph
‘decouples’ from the expectation 〈σiσj〉.

One important ingredient in this proof is Griffiths’ inequality. For the reader’s
reference, we recall it here for the case of a pairwise Ising model.

Theorem 17.2 Consider a ferromagnetic Ising model, i.e. a Boltzmann distribution
of the form

µG,J (σ) =
1

ZG,J
exp

⎧⎨⎩β
∑

(i,j)∈G

Jijσiσj +
∑

i

Biσi

⎫⎬⎭ , (17.30)

with Jij , Bi ≥ 0. Then, for any U ⊆ V , 〈
∏

i∈U σi〉 is non-negative and non-decreasing
in all of the Jij , Bi.

The strategy is then the following:

1. Given a certain neighbourhood S of the edge (i, j), one can consider two modified
measures on the spins of S given by the Boltzmann measure where the spins
outside of S have been fixed. The first measure (the ‘+ boundary condition’) has
σi = 1 ∀i ∈ S. The second one (the ‘free boundary condition’) has σi = 0 ∀i ∈ S.
The latter also amounts to considering the model on the subgraph induced by S.
Griffiths’ inequality allows one to show that the true 〈σiσj〉 is bounded by the
expectations obtained with the + and with free boundary conditions.

2. It can be shown that whenever the recursion (17.27) is initialized with h(0) sup-
ported on non-negative values, it converges to h(+).

3. Finally one takes for S a ball of radius r centred on i. This is, with high probability,
a tree. Using the result in item 2, one proves that the two expectations of 〈σiσj〉
with the + and free boundary conditions converge to the same value as r → ∞.

17.4 Spin glass models

We now turn to the study of the spin glass problem. Again, the paramagnetic solu-
tion turns out to describe correctly the system at high temperature, and the critical
temperature depends on the ensemble only through the quantity λ. We shall see that
the paramagnetic solution is unstable for β > βc, where

λ (tanhβc)
2 = 1 . (17.31)

As in the previous section, we shall try to find another solution of the RS distri-
butional equation (17.12) when β > βc. Such a solution exists and can be studied
numerically; it yields predictions which are better than those of the paramagnetic so-
lution. However, we shall argue that, even in the large-system limit, this solution does
not correctly describe the model: the RS assumptions do not hold for β > βc, and
replica symmetry breaking is needed.

17.4.1 Local stability

As with the ferromagnetic model, we begin with a local stability analysis of the para-
magnetic solution, by taking moments of the RS distributional equation. Since f(J, h)
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is antisymmetric in J , any solution of eqn (17.12) has E{h} = 0 identically. The lowest
non-trivial moment is therefore E{h2}.

Using the fact that E{f(Ji, hi)f(Jj , hj)} = 0 for i = j, and the Taylor expansion
of f(J, h) around h = 0, we get

E{h2} = λ E{f(J, h)2} = λ θ2 E{h2} + E{O(h4)} . (17.32)

Assuming that E{O(h4)} = O(E{h2}2) (this step can be justified through a lengthier
argument), we get a linear recursion for the second moment of h which is unstable
for λθ2 > 1 (i.e. β > βc). On the other hand, as in Section 17.3.1, one can use the

inequality |f(J, h)| ≤ h(tanhβ) to show that the paramagnetic solution h
d
= δ0 is the

only solution in the high-temperature phase λ θ2 < 1.

17.4.2 Spin glass susceptibility

An alternative argument for the appearance of the spin glass phase at β > βc is
provided by computing the spin glass susceptibility. Recalling the discussion in Sec-
tion 12.3.2, and using 〈σi〉 = 0 (as is the case in the paramagnetic case), we have

χSG =
1

N

∑
i,j∈V

〈σiσj〉2 . (17.33)

Assuming the RS cavity approach to be correct, and using the paramagnetic so-
lution, the computation of 〈σiσj〉 is analogous to the one we did in the ferromagnetic
case. Denoting by ω the shortest path in G between i and j, the result is

〈σiσj〉 =
∏

(kl)∈ω

tanhβJkl . (17.34)

Taking the square and splitting the sum according to the distance between i and j,
we get

χSG =

∞∑
r=0

N (r) (tanh β)2r , (17.35)

where N (r) is the average number of vertices at distance r from a random vertex i. We
have N (r)

.
= λ

r
to the leading exponential order for large r. Therefore the above series

is summable for λ θ2 < 1, yielding a bounded susceptibility. Conversely, if λ θ2 > 1 the
series diverges, and the paramagnetic solution must be considered inconsistent.

17.4.3 Paramagnetic phase: Rigorous treatment

From a mathematical point of view, determining the free energy of the spin glass
model on a sparse random graph is a challenging open problem. The only regime that
is (relatively) well understood is the paramagnetic phase at zero external field.
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Theorem 17.3 Let ZN (β) denote the partition function of the spin glass model with
couplings ±1 on a random graph G, with a degree distribution Λ which has a finite
second moment. If λ (tanhβ)2 < 1, then

lim
N→∞

1

N
log ZN (β) = fRS

para(β) ≡ log 2 +
1

2
Λ log cosh β , (17.36)

where the limit holds almost surely.

Proof To keep things simple, we shall prove only a slightly weaker statement, namely
the following. For any δ > 0,

eN [fRS
para−δ] ≤ ZN ≤ eN [fRS

para+δ] , (17.37)

with high probability as N → ∞. In the proof, we shall denote by EJ the expectation
with respect to the couplings Jij ∈ ±1, and write M = NΛ/2 for the number of edges

in G, so that eN fRS
para = 2N (cosh β)M .

The probability of the event ZN ≥ eN [fRS
para+δ] is bounded from above using the

Markov inequality. The annealed partition function is

EJ{ZN} =
∑

σ

EJ

⎧⎨⎩ ∏
(ij)∈E

eβJijσiσj

⎫⎬⎭ =
∑

σ

(cosh β)M = 2N (cosh β)M , (17.38)

whence ZN ≤ 2N (cosh β)M eNδ with high probability.
The lower bound follows by applying the second-moment method to the random

realization of the couplings Jij , given a typical random graph G: it is sufficient to show

that EJ{Z2
N} ≤ EJ{ZN}2 eNδ′

for any δ′ > 0.
Surprisingly, the computation of the second moment reduces to computing the

partition function of a ferromagnetic Ising model. The key identity is

EJ{eβJij(σ
1
i σ1

j +σ2
i σ2

j )} =
(cosh β)2

cosh γ
eγτiτj , (17.39)

where γ ≡ atanh((tanhβ)2); σ1
i , σ2

i , σ1
j , σ2

j are Ising spins; and τi = σ1
i σ2

i andτj = σ1
j σ2

j .
Using this identity, we find

EJ{Z2
N} =

∑
σ1,σ2

EJ

{ ∏
(ij)∈E

eβJij(σ
1
i σ1

j +σ2
i σ2

j )
}

(17.40)

= 2N

(
(cosh β)2

cosh γ

)M ∑
τ

∏
(ij)∈E

eγτiτj = 2N

(
(cosh β)2

cosh γ

)M

Zf
N (γ) ,

where Zf
N (γ) is the partition function of a ferromagnetic Ising model on the graph G at

inverse temperature γ. This can be estimated through Theorem 17.1. As λ(tanh γ) =
λ (tanhβ)2 < 1, this ferromagnetic model is in its paramagnetic phase, and therefore
Zf

N (γ) ≤ 2N (cosh γ)MeNδ with high probability. This in turn implies

EJ{Z2
N} ≤ 22N (cosh β)2MeNδ , (17.41)

which completes the proof. �
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Fig. 17.2 Distribution of cavity fields approximated by the population dynamics algorithm

at T = 0.5 (left) and T = 0.1 (right), for a Jij = ±1 spin glass on a random regular graph

with degree 3. Here, we plot a histogram with bin size ∆h = 0.01. A population of 104 fields

{hi} was used in the algorithm, and the resulting histogram was averaged over 104 iterations.

17.4.4 An attempt to describe the spin glass phase

If β > βc, the RS distributional equation (17.12) admits a solution h that is not
identically 0. The corresponding distribution a( · ) is symmetric under h → −h and
can be approximated numerically using the population dynamics algorithm. This is
usually referred to as ‘the RS spin glass solution’ (although it is far from obvious
whether it is unique.)

In Fig. 17.2 we plot the empirical distribution of cavity fields as obtained through
the population dynamics algorithm, for a random regular graph of degree k+1 = 3. The
corresponding critical temperature can be determined through eqn (17.31), yielding
Tc = 1/ log(

√
2 + 1) ≈ 1.134592. Notice that the distribution a( · ) is extremely non-

trivial, and indeed is likely to be highly singular.
Once an approximation of the distribution of fields has been obtained, the free

entropy can be estimated as fRS, given in eqn (17.14). Figure 17.3 shows the free energy
F versus temperature. It is difficult to control the solutions of the RS distributional
equation (17.12) analytically, with the exception of some limiting cases. One such case
is the object of the next exercise.

Exercise 17.7 Consider the spin glass model on a random regular graph with degree
k + 1, and assume that the couplings Jij take values {+1/

√
k,−1/

√
k} independently and

uniformly at random.
Argue that, as k → ∞, the following limiting behaviour holds.

(a) The solution a( · ) of the RS equation (17.12) converges to a Gaussian with mean 0 and
variance q, where q solves the equation

q =

Z
(tanh βh)2 e−h2/(2q) dh√

2πq
= Eh tanh2(βh) . (17.42)
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Fig. 17.3 The free-energy density −fRS/β of a spin glass model with Jij = ±1 on a ran-

dom regular graph with degree 3. Here, we plot results obtained for the paramagnetic solu-

tion (dashed line) and the RS spin glass solution (full black line). The critical temperature

Tc ≈ 1.134592, (see eqn (17.31)), is indicated by the vertical line.

(b) Show that the RS prediction for the free entropy per spin converges to the following
value (here the limit k → ∞ is taken after N → ∞):

fRS
SK(β) = Eh log(2 cosh(βh)) +

β2

4
(1 − q)2 . (17.43)

Notice that these results are identical to those obtained by the replica-symmetric analysis

of the SK model (see eqn (8.68)).

The second limit in which a solution can be found analytically is that of zero
temperature, T → 0 (or, equivalently, β → ∞). Assume that h has a finite, non-
vanishing limit as β → ∞. It is easy to show that the limiting distribution must
satisfy a distributional equation that is formally identical to (17.12), but with the
function f( · ) replaced by its zero-temperature limit

f(J, h) = sign(J h) min[|J |, |h|] . (17.44)

Since J ∈ {+1,−1}, if h takes values on the integers, then f(J, h) ∈ {+1, 0,−1}.
As a consequence, eqn (17.12) admits a solution with support on the integers. For the
sake of simplicity, we shall restrict ourselves to the case of a regular graph with degree
k + 1. The distribution of h can be formally written as

a(h) =

k∑
r=−k

prδr(h) . (17.45)
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Let us denote by p+ =
∑∞

r=1 pr the probability that the field h is positive, and by
p− the probability that it is negative. Notice that the distribution of f(J, h) depends
only on p+, p0 and p− and not on the individual weights pr. By the symmetry of a( · ),
pr = p−r, and therefore p+ = (1 − p0)/2. As a consequence, the RS cavity equation
(17.13) implies the following equation for p0:

p0 =

�k/2�∑
q=0

(
k

2q

)(
2q

q

)
pk−2q
0

(
1 − p0

2

)2q

. (17.46)

Exercise 17.8

(a) Show that the probability that h = r (and by symmetry, the probability that h = −r)
is given by:

pr = p−r =

�(k−r)/2�X
q=0

 
k

2q + r

!
pk−2q−r
0

„
1 − p0

2

«2q+r
 

2q + r

q

!
. (17.47)

(b) Consider the distribution a∗( · ) of the local field H acting on a spin, defined by H
d
=Pk+1

r=1 f(Jr, hr). Show that it takes the form a(h) =
Pk+1

r=−k−1 srδr(h), where sr is given

by the same formula (17.47) as for pr above, with k replaced by k + 1.

(c) Show that the ground state energy per spin is

E0 = k

k+1X
r=−k−1

sr|r| − (k + 1)

kX
r=−k

pr|r| − k + 1

2
p0(2 − p0) . (17.48)

As an example, consider the case of a random regular graph with degree k +1 = 3.
In this case, solving eqn (17.46) yields p0 = 1/3, p1 = 2/9, and p2 = 1/9. The resulting
ground state energy per spin is E0 = −23/18.

17.4.5 Instability of the RS spin glass solution

It turns out that the solution of the RS distributional equation discussed in the previ-
ous subsection does not correctly describe the model in the thermodynamic limit. In
particular, the RS spin glass solution predicts an unacceptable negative entropy at low
temperatures, and its prediction for the ground state energy per spin, E0 = −23/18 =
−1.27777 . . . , differs from the best numerical estimate −1.2716 ± 0.0001. Therefore
the assumptions of the RS cavity method cannot be correct for the low-temperature
phase λ(tanhβ)2 > 1. On the other hand, physicists think that the approach can be
rescued: the asymptotic free-energy density can be computed by introducing replica
symmetry breaking. This will be the subject of Chapters 19 to 22.

Here we want to show how the inconsistency of this ‘RS solution’ can be detected,
by the computation of the spin glass susceptibility. The computation is similar to that
for the paramagnetic solution, but one has to deal with the presence of non-zero values
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Fig. 17.4 Instability of the ‘RS solution’ for the Ising spin glass on a random regular graph

with degree k + 1 = 3. The plot shows kρ2 versus the temperature, where ρ2 is the rate of

exponential decay of the spin glass correlation function E(〈σ0σr〉 − 〈σ0〉〈σr〉)2 at large r. A

value of kρ2 < 1 corresponds to a bounded spin glass susceptibility. This is the case for the

paramagnetic solution at T > Tc. For T < Tc ≈ 1.134592, the bottom curve is the result for

the RS cavity solution (with a field distribution a(h) estimated from population dynamics),

and the top curve is the result for the paramagnetic solution. Both ‘solutions’ yield kρ2 > 1,

and are thus unstable.

in the support of the cavity field distribution a( · ). As in Section 17.4.2, the first step
is to compute the correlation between two spins σ0 and σr at a distance r in G. This is
found by considering the joint distribution of the spins along the shortest path between
0 and r. In the cavity method, this has the form

µG,J (σ0, . . . , σr) ∼= exp

{
β

r−1∑
p=0

Jpσpσp+1 + β
r∑

p=0

gpσp

}
. (17.49)

Here the couplings Jp are i.i.d. and uniformly random in {+1,−1}. The fields gp are
i.i.d. variables whose distribution is determined by

g
d
=

k−1∑
q=1

f(Jq, hq) , (17.50)

where the hq are k − 1 independent copies of the random variable h that solves
eqn (17.12), and the Jr are again independent and uniformly random in {+1,−1}.
(To be precise, g0 and gr have a different distribution from the others, as they are
sums of k i.i.d. terms instead of k − 1. However, this difference is irrelevant for our
computation of the leading exponential order of the correlation at large r.)

The solution of the one-dimensional problem (17.22) can be obtained by the trans-
fer matrix method discussed in Section 2.5.1 (and, in the BP context, in Section 14.1).
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We denote by z+
p (σ) the partition function of the partial chain including the spins

σ0, σ1, . . . , σp, where we have fixed σ0 = +1, and σp = σ. We can then immediately
derive the recursion

z+
p+1(σ) =

∑
σ′∈{+1,−1}

Tp(σ, σ′)z+
p (σ′) , (17.51)

where the p-th transfer matrix takes the form

Tp =

(
eβJp+βgp+1 e−βJp+βgp+1

e−βJp−βgp+1 eβJp−βgp+1

)
. (17.52)

Similarly, we denote by z−p (σ) the partition function conditional on σ0 = −1. This
satisfies the same recursion relation as z+

p , but with a different initial condition. We

have, in fact, z+
0 (1) = 1, z+

0 (−1) = 0, and z−0 (1) = 0, z−0 (−1) = 1.
The joint probability distribution of σ0 and σr is given by

µG,J (σ0, σr) ∼= eβg0I(σ0 = +1) z+
r (σr) + e−βg0I(σ0 = −1) z−r (σr) . (17.53)

From this expression, one finds, after a few lines of computation,

〈σ0σr〉 − 〈σ0〉〈σr〉 =
4[z+

r (1)z−r (−1) − z+
r (−1)z−r (1)][

eβg0(z+
r (1) + z+

r (−1)) + e−βg0(z−r (1) + z+
r (−1))

]2 . (17.54)

Approximate samples of the random variables g1, g2, . . . gr can be obtained through the
population dynamics algorithm. This allows one to evaluate the correlation function
(17.54) and estimate its moments. In order to compute the spin glass susceptibility
(see Section 17.4.2), one needs to estimate the growth rate of the second moment at
large r. We define ρ through the leading exponential behaviour at large r,

E (〈σ0σr〉 − 〈σ0〉〈σr〉)2 .
= ρ2r , (17.55)

where E refers here to the expectation with respect to the fields g1, . . . , gr (i.e. to the
graph and the couplings outside the path between 0 and r).

In a regular graph with degree (k + 1), the number of neighbours at a distance
r from a random vertex i grows like kr. As a consequence, the series for the spin
glass susceptibility is summable (thus suggesting that the susceptibility is bounded)
if kρ2 < 1. For the paramagnetic solution, ρ = tanh β, and this condition reduces
to β < βc (see eqn (17.31)). In Figure 17.4 we plot kρ2 versus the temperature, as
computed numerically for the RS spin glass field distribution a( · ). In the whole phase
T < Tc, this is larger than one, showing that the RS ‘solution’ is in fact unstable.
This analysis is easily generalized to irregular graph ensembles, by replacing k with
the average (edge-perspective) degree λ.

Physicists point out that the RS spin glass solution, although wrong, looks ‘less
wrong’ than the paramagnetic solution. Indeed, kρ2 is smaller in the RS spin glass
solution. Also, if one computes the entropy density −dF/dT at zero temperature, one
finds that it is negative in both solutions, but it is larger for the RS spin glass solution.
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Table 17.1 Estimates of the ground state energy density of the Ising spin glass on a random

regular graph of degree k + 1.

Paramagnetic RS 1RSB 2RSB Numerics
k = 2 −3/2 = −1.5 −23/18 ≈ −1.2778 −1.2723 −1.2716(1)
k = 4 −5/2 = −2.5 −1.69133 −1.6752 −1.67316(4) −1.673(1)

In the next few chapters we shall discuss a one-step replica-symmetry-breaking for-
malism that goes further in the same direction. The instability parameter kρ2 becomes
smaller than in the RS case, but it is still larger than one. In this respect, the Ising
spin glass is a particularly complicated model. It is expected that the free-entropy
density and similar asymptotic quantities wil be predicted correctly only in the limit
of full replica symmetry breaking. We refer to Chapter 22 for a further discussion of
this point. Table 17.1 gives the one- and two-step RSB estimates of the ground state
energy in the cases k = 2 and 4, and compares them with the best available numerical
results.

Exercise 17.9 Consider the large-degree limit as in Exercise 17.7. Show that the stability
condition kρ2 < 1 becomes, in this limit, β2Eh(1− tanh2(βh))2 < 1, where h is a Gaussian
random variable with zero mean and a variance q satisfying eqn (17.42). This is nothing
but the de Almeida–Thouless condition discussed in Chapter 8.

Let us conclude by warning the reader on one point. Although local stability is a
necessary consistency check for the RS solution, it is by no means sufficient. Indeed,
models with p-spin interactions and p ≥ 3 (such as the XORSAT model treated in the
next chapter) often admit a locally stable ‘RS solution’ that is nevertheless incorrect.

Notes

Ising ferromagnets on random graphs have appeared in several papers (e.g. Johnston
and Plechác, 1998; Dorogotsev et al., 2002; Leone et al., 2004). The application of belief
propagation to this model was considered by Looij and Kappen (2005). The rigorous
cavity analysis of the Ising ferromagnet presented in this chapter can be found in
Dembo and Montanari (2008c), which also proves the exponential convergence of BP.

The problem of spin glasses on random graphs was first studied using the replica
method by Viana and Bray (1985), who worked out the paramagnetic solution and
located the transition. The RS cavity solution that we have described here was first
discussed for Erdös–Renyi graphs by Mézard and Parisi (1987); see also Kanter and
Sompolinsky (1987). Expansions around the critical point were developed by Gold-
schmidt and De Dominicis (1990). The related (but different) problem of a spin glass
on a regular tree was introduced by Thouless (1986) and further studied by Chayes et

al. (1986) and Carlson et al. (1990).
One-step replica symmetry breaking for spin glasses on sparse random graphs was

studied by Wong and Sherrington (1988), Goldschmidt and Lai (1990) and Monasson
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(1998) using replicas, and by Goldschmidt (1991) and Mézard and Parisi (2001, 2003)
using the cavity method. The 2RSB ground state energy given in Table 17.1 was
obtained by Montanari (2003), and the numerical values are from Boettcher (2003).
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18

Linear equations with Boolean
variables

Solving a system of linear equations over a finite field F is arguably one of the most
fundamental operations in mathematics. Several algorithms have been devised to ac-
complish such a task in polynomial time. The best known is Gaussian elimination,
which has O(N3) complexity (here N is number of variables in the linear system, and
we assume the number of equations to be M = Θ(N)). As a matter of fact, one can
improve over Gaussian elimination, and the best existing algorithm for general systems
has complexity O(N2.376...). Faster methods also exist for special classes of instances.

The set of solutions of a linear system is an affine subspace of FN . Despite this
apparent simplicity, the geometry of affine or linear subspaces of FN can be surprisingly
rich. This observation is systematically exploited in coding theory. Linear codes are just
linear spaces over finite fields. Nevertheless, they are known to achieve the Shannon
capacity on memoryless symmetric channels, and their structure is far from trivial, as
we have already seen in Chapter 11.

From a different point of view, linear systems are a particular example of constraint
satisfaction problems. We can associate with a linear system a decision problem (es-
tablishing whether it has a solution), a counting problem (counting the number of
solutions), and an optimization problem (minimizing the number of violated equa-
tions). While the first two are polynomial, the latter is known to be NP-hard.

In this chapter, we consider a specific ensemble of random linear systems over
Z2 (the field of integers modulo 2), and discuss the structure of its set of solutions.
The definition of this ensemble is motivated mainly by its analogy with other random
constraint satisfaction problems, which also explains the name ‘XOR-satisfiability’ (or
‘XORSAT’).

In the next section, we provide the precise definition of the XORSAT ensemble
and recall a few elementary properties of linear algebra. We also introduce one of
the main objects of study of this chapter: the SAT–UNSAT threshold. Section 18.2
takes a detour into the properties of belief propagation for XORSAT. These are shown
to be related to the correlation structure of the uniform measure over solutions and,
in Section 18.3, to the appearance of a 2-core in the associated factor graph. Sec-
tions 18.4 and 18.5 build on these results to compute the SAT–UNSAT threshold and
characterize the structure of the solution space. While many results can be derived
rigorously, XORSAT offers an ideal playground for understanding the non-rigorous
cavity method, which will be developed further in the following chapters. This is the
subject of Section 18.6.
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18.1 Definitions and general remarks

18.1.1 Linear systems

Let H be an M ×N matrix with entries Hai ∈ {0, 1}, a ∈ {1, . . . , M}, i ∈ {1, . . . , N},
and let b be an M -component vector with binary entries ba ∈ {0, 1}. An instance of
the XORSAT problem is given by a pair (H, b). The decision problem requires us
to find an N -component vector x with binary entries xi ∈ {0, 1} which solves the
linear system Hx = b mod 2, or to show that the system has no solution. The name
‘XORSAT’ comes from the fact that the sum modulo 2 is equivalent to the ‘exclusive
OR’ operation: the problem is whether there exists an assignment of the variables x
which satisfies a set of XOR clauses. We shall thus say that an instance is SAT or
UNSAT whenever the linear system has or does not have, respectively, a solution.

We shall, furthermore, be interested in the set of solutions, denoted by S; in its
size Z = |S|; and in the properties of the uniform measure over S. This is defined by

µ(x) =
1

Z
I( Hx = b mod 2 ) =

1

Z

M∏
a=1

ψa(x∂a) , (18.1)

where ∂a = (ia(1), . . . , ia(K)) is the set of non-vanishing entries in the a-th row of H,
and ψa(x∂a) is the characteristic function for the a-th equation in the linear system
(explicitly, ψa(x∂a) = I(xi1(a) ⊕ · · · ⊕ xiK(a) = ba), where we denote the sum modulo
2 by ⊕ as usual). In the following, we shall omit the specification that operations are
carried mod 2 when this is clear from the context.

When H has a row weight p (i.e. each row has p non-vanishing entries), the problem
is related to a p-spin glass model. Writing σi = 1 − 2xi and Ja = 1 − 2ba, we can
associate with an XORSAT instance the energy function

E(σ) =

M∑
a=1

(
1 − Ja

∏
j∈∂a

σj

)
, (18.2)

which counts (twice) the number of violated equations. This can be regarded as a p-
spin glass energy function with binary couplings. The XORSAT decision problem asks
whether there exists a spin configuration σ with zero energy or, in physical jargon,
whether the above energy function is ‘unfrustrated’. If there exists such a configuration,
log Z is the ground state entropy of the model.

A natural generalization is the MAX-XORSAT problem. This requires us to find a
configuration which maximizes the number of satisfied equations, i.e. minimizes E(σ).
In the following, we shall use the language of XORSAT but, of course, all statements
have their direct counterpart in the context of p-spin glasses.

Let us recall a few well-known facts of linear algebra that will be useful in the
following:

(i) The image of H is a vector space of dimension rank(H) (rank(H) is the number
of independent rows in H); the kernel of H (the set S0 of x which solves the
homogeneous system Hx = 0) is a vector space of dimension N − rank(H).

(ii) As a consequence, if M ≤ N and H has rank M (all of its rows are independent),
then the linear system Hx = b has a solution for any choice of b.
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(iii) Conversely, if rank(H) < M , then the linear system has a solution if and only if
b is in the image of H.

If the linear system has at least one solution x∗, then the set of solutions S is an
affine space of dimension N − rank(H): we have S = x∗ + S0 and Z = 2N−rank(H).
We shall denote by µ0( · ) the uniform measure over the set S0 of solutions of the
homogeneous linear system:

µ0(x) =
1

Z0
I( Hx = 0 mod 2 ) =

1

Z0

M∏
a=1

ψ0
a(x∂a) , (18.3)

where ψ0
a is given by the same expression as for ψa but with ba = 0. Note that µ0

is always well defined as a probability distribution, because the homogeneous system
has at least the solution x = 0, whereas µ is well defined only for SAT instances. The
linear structure has several important consequences:

• If y is a solution of the inhomogeneous system, and if x is a uniformly random
solution of the homogeneous linear system (with distribution µ0), then x′ = x ⊕
y is a uniformly random solution of the inhomogeneous system (its probability
distribution is µ).

• Under the measure µ0, there exist only two sorts of variables xi, those which are
‘frozen to 0’, (i.e. take the value 0 in all of the solutions) and those which are
‘free’ (they take the value 0 in one half of the solutions and 1 in the other half).
Under the measure µ (when it exists), a bit can be frozen to 0, frozen to 1, or
free. These facts are proved in the next exercise.

Exercise 18.1 Let f : {0, 1}N → {0, 1} be a linear function (explicitly, f(x) is the sum of
a subset xi(1), . . . , xi(n) of the bits, mod 2).

(a) If x is drawn from the distribution µ0, f(x) becomes a random variable taking values
in {0, 1}. Show that if there exists a configuration y with µ0(y) > 0 and f(y) = 1, then

P{f(x) = 0} = P{f(x) = 1} = 1/2. In the opposite case, P{f(x) = 0} = 1.

(b) Suppose that there exists at least one solution to the system Hx = b, so that µ exists.
Consider the random variable f(x) obtained by drawing x from the distribution µ. Show
that one of the following three cases occurs: P{f(x) = 0} = 1, P{f(x) = 0} = 1/2, or
P{f(x) = 0} = 0.

These results apply in particular to the marginal of bit i, using f(x) = xi.

Exercise 18.2 Show that:

(a) If the number of solutions of the homogeneous system is Z0 = 2N−M , then the inho-
mogeneous system is satisfiable (SAT), and has 2N−M solutions, for any b.

(b) Conversely, if the number of solutions of the homogeneous system is Z0 > 2N−M , then
the inhomogeneous system is SAT only for a fraction 2N−M/Z0 of the b’s.
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Fig. 18.1 Factor graph for a 3-XORSAT instance with N = 6, M = 6 (see Exercise 18.3).

The distribution µ admits a natural factor graph representation: variable nodes are
associated with variables and factor nodes with linear equations; see Fig. 18.1. Given
an XORSAT formula F (i.e. a pair H, b), we denote the associated factor graph by
G(F ). It is remarkable that one can identify subgraphs of G(F ) that serve as witnesses
of the satisfiability or unsatisfiability of F . By this we mean that the existence of such
subgraphs implies the satisfiability or unsatisfiability of F . The existence of a simple
witness for unsatisfiability is intimately related to the polynomial nature of XORSAT.
Such a witness is obtained as follows. Given a subset L of the clauses, draw the factor
graph including all of the clauses in L, all of the adjacent variable nodes, and the edges
between them. If this subgraph has even degree at each of the variable nodes, and if
⊕a∈Lba = 1, then L is a witness for unsatisfiability. Such a subgraph is sometimes
called a frustrated hyperloop (in analogy with the frustrated loops that appear in spin
glasses, where function nodes have degree 2).

Exercise 18.3 Consider a 3-XORSAT instance defined through the 6 × 6 matrix

H =

2666664
0 1 0 1 1 0

1 0 0 1 0 1

0 1 0 0 1 1

1 0 1 0 0 1

0 1 0 1 0 1

1 0 1 0 1 0

3777775 . (18.4)

(a) Compute rank(H) and find the two solutions of the homogeneous linear system.

(b) Show that the linear system Hx = b has a solution if and only if b1 ⊕ b4 ⊕ b5 ⊕ b6 = 0.
How many solutions does it have in this case?
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(c) Consider the factor graph associated with this linear system, (see Fig. 18.1). Show that
each solution of the homogeneous system must correspond to a subset U of variable
nodes with the following property: the subgraph induced by U and including all of the
adjacent function nodes has even degree at the function nodes. Find one subgraph with
this property.

18.1.2 Random XORSAT

The random K-XORSAT ensemble is defined by taking b uniformly at random in
{0, 1}M , and H uniformly at random from the N × M matrices with entries in {0, 1}
which have exactly K non-vanishing elements per row. Each equation thus involves
K distinct variables chosen uniformly from the

(
N
K

)
K-tuples, and the resulting factor

graph is distributed according to the ensemble GN (K,M).
A slightly different ensemble is defined by including each of the

(
N
K

)
possible rows

with K non-zero entries independently with probability p = Nα/
(

N
K

)
. The correspond-

ing factor graph is then distributed according to the ensemble GN (K,α).
Given the relation between homogeneous and inhomogeneous systems described

above, it is quite natural to introduce an ensemble of homogeneous linear systems.
This is defined by taking H to be distributed as above, but with b = 0. Since a
homogeneous linear system always has at least one solution, this ensemble is sometimes
referred to as SAT K-XORSAT or, in its spin interpretation, as the ferromagnetic
K-spin model. Given a K-XORSAT formula F , we shall denote by F0 the formula
corresponding to the homogeneous system.

We are interested in the limit of large systems N , M → ∞ with α = M/N fixed. By
applying Friedgut’s theorem (see Section 10.5), it is possible to show that, for K ≥ 3,
the probability for a random formula F to be SAT has a sharp threshold. More precisely,

there exists an α
(N)
s (K) such that for α > (1 + δ)α

(N)
s (K) or α < (1 − δ)α

(N)
s (K),

P{F is SAT} → 0 or P{F is SAT} → 1, respectively, as N → ∞.

A moment of thought reveals that α
(N)
s (K) = Θ(1). Let us give two simple bounds

to convince the reader of this statement.
Upper bound. The relation between the homogeneous system and the original linear

system derived in Exercise 18.2 implies that P{F is SAT} = 2N−ME{1/Z0}. As Z0 ≥
1, we get P{F is SAT} ≤ 2−N(α−1) and therefore α

(N)
s (K) ≤ 1.

Lower bound. For α < 1/K(K − 1), the factor graph associated with F is formed,
with high probability, by finite trees and unicyclic components. This corresponds to
the matrix H being decomposable into blocks, each one corresponding to a connected
component. The reader can show that, for K ≥ 3, both a tree formula and a unicyclic
component correspond to a linear system of full rank. Since each block has full rank,

H has full rank as well. Therefore α
(N)
s (K) ≥ 1/K(K − 1).
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Exercise 18.4 There is no sharp threshold for K = 2.

(a) Let c(G) be the cyclic number of the factor graph G (the number of edges, minus the
number of vertices, plus the number of connected components) of a random 2-XORSAT

formula. Show that P{F is SAT} = E 2−c(G).

(b) Argue that this implies that P{F is SAT} is bounded away from 1 for any α > 0.

(c) Show that P{F is SAT} is bounded away from 0 for any α < 1/2.

[Hint: Remember the geometrical properties of G discussed in Sections 9.3.2 and 9.4.]

In the next sections we shall show that α
(N)
s (K) has a limit αc(K) and compute

it explicitly. Before delving into this, it is instructive to derive two improved bounds.

Exercise 18.5 In order to obtain a better upper bound on α
(N)
s (K), proceed as follows:

(a) Assume that, for any α, Z0 ≥ 2NfK(α) with probability larger than some ε > 0 at large

N . Show that α
(N)
s (K) ≤ α∗(K), where α∗(K) is the smallest value of α such that

1 − α − fK(α) ≤ 0.

(b) Show that the above assumption holds with fK(α) = e−Kα, and that this yields α∗(3) ≈
0.941. What is the asymptotic behaviour of α∗(K) for large K? How can you improve
the exponent fK(α)?

Exercise 18.6 A better lower bound on α
(N)
s (K) can be obtained through a first-moment

calculation. In order to simplify the calculations, we consider here a modified ensemble in
which the K variables entering into each equation are chosen independently and uniformly
at random (they do not need to be distinct). The scrupulous reader can check at the end
that returning to the original ensemble needs only small changes.

(a) Show that for a positive random variable Z, (EZ)(E[1/Z]) ≥ 1. Deduce that
P{F is SAT} ≥ 2N−M/E ZF0 .

(b) Prove that

E ZF0 =
NX

w=0

 
N

w

! "
1

2

 
1 +

„
1 − 2w

N

«K
!#M

. (18.5)

(c) Let gK(x) = H(x)+α log
ˆ

1
2

`
1 + (1 − 2x)K

´˜
, and define α∗(K) to be the largest value

of α such that the maximum of gK(x) is achieved at x = 1/2. Show that α
(N)
s (K) ≥

α∗(K). For K = 3, we get α∗(3) ≈ 0.889.
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18.2 Belief propagation

18.2.1 BP messages and density evolution

Equation (18.1) provides a representation of the uniform measure over solutions of an
XORSAT instance as a graphical model. This suggests that we should apply message-
passing techniques. We shall describe belief propagation here and analyse its behaviour.

While this may seem at first sight a detour from the objective of computing α
(N)
s (K),

it will instead provide some important insight.
Let us assume that the linear system Hx = b admits at least one solution, so that

the model (18.1) is well defined. We shall first study the homogeneous version Hx = 0,
i.e. the measure µ0, and then pass to µ. Applying the general definitions of Chapter 14,
the BP update equations (14.14) and (14.15) for the homogeneous problem read

ν
(t+1)
i→a (xi) ∼=

∏
b∈∂i\a

ν̂
(t)
b→i(xi) , ν̂

(t)
a→i(xi) ∼=

∑
x∂a\i

ψ0
a(x∂a)

∏
j∈∂a\i

ν
(t)
j→a(xj) .

(18.6)

These equations can be considerably simplified using the linear structure. We have
seen that under µ0, there are two types of variables, those ‘frozen to 0’ (i.e. equal to
0 in all solutions) and those which are ‘free’ (equally likely to be 0 or 1). BP aims at
determining whether any single bit belongs to one class or the other. Now consider
BP messages, which are also distributions over {0, 1}. Suppose that at time t = 0 they
also take one of two possible values that we denote by ∗ (corresponding to the uniform
distribution) and 0 (distribution entirely supported on 0). It is not hard to show that
this remains true at all subsequent times. The BP update equations (18.6) simplify
under this initialization (they reduce to the erasure decoder of Sect. 15.3):

• At a variable node, the outgoing message is 0 unless all the incoming messages
are ∗.

• At a function node, the outgoing message is ∗ unless all the incoming messages
are 0.

(The message coming out of a degree-1 variable node is always ∗.)
These rules preserve a natural partial ordering. Given two sets of messages ν =

{νi→a}, ν̃ = {ν̃i→a}, let us say that ν(t) ! ν̃(t) if, for each directed edge i → a where

the message ν̃
(t)
i→a = 0, then ν

(t)
i→a = 0 as well. It follows immediately from the update

rules that if at some time t the messages are ordered as ν(t) ! ν̃(t), then this order is
preserved at all later times: ν(s) ! ν̃(s) for all s > t.

This partial ordering suggests that we should pay special attention to the two

‘extremal’ initial conditions, namely ν
(0)
i→a = ∗ for all directed edges i → a or ν

(0)
i→a = 0

for all i → a. The fraction of edges Qt that carry a message 0 at time t is a deterministic
quantity in the N → ∞ limit. It satisfies the recursion

Qt+1 = 1 − exp{−KαQK−1
t } , (18.7)

with Q0 = 1 for the ‘0’ initial condition and Q0 = 0 for the ‘∗’ initial condition. The
density evolution recursion (18.7) is represented pictorially in Fig. 18.2.
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Fig. 18.2 Density evolution for the fraction of messages 0 for 3-XORSAT. Left : the mapping

F (Q) = 1 − exp(−KαQK−1) below, at, and above the critical point αd(K = 3) ≈ 0.818468.

Right : evolution of Qt for (from bottom to top) α = 0.75, 0.8, 0.81, 0.814, 0.818468.

Under the ‘∗’ initial condition, we have Qt = 0 at all times t. In fact, the all-∗
message configuration is always a fixed point of BP. On the other hand, when Q0 = 1,
we find two possible asymptotic behaviours: Qt → 0 for α < αd(K), and Qt → Q > 0
for α > αd(K). Here Q > 0 is the largest positive solution of Q = 1−exp{−Kα QK−1}.
The critical value αd(K) of the density of equations α = M/N separating these two
regimes is given by

αd(K) = sup
{

α such that ∀x ∈]0, 1] : x < 1 − e−Kα xK−1 }
. (18.8)

We get, for instance, αd(K) ≈ 0.818469, 0.772280, and 0.701780 for K = 3, 4, and 5,
respectively, and αd(K) = log K/K[1 + o(1)] as K → ∞.

We have therefore found two regimes for the homogeneous random XORSAT prob-
lem in the large-N limit. For α < αd(K), there is a unique BP fixed point with all
messages1 equal to ∗. The BP prediction for single-bit marginals that corresponds to
this fixed point is νi(xi = 0) = νi(xi = 1) = 1/2.

For α > αd(K), there exists more than one BP fixed point. We have found two of
them: the all-∗ one, and one with a density of ∗’s equal to Q. Other fixed points of
the inhomogeneous problem can be constructed as follows for α ∈ ]αd(K), αs(K)[. Let
x(∗) be a solution of the inhomogeneous problem, and let ν, ν̂ be a BP fixed point in
the homogeneous case. Then the messages ν(∗), ν̂(∗), defined by

ν
(∗)
j→a(xj = 0) = ν

(∗)
j→a(xj = 1) = 1/2 if νj→a = ∗,

ν
(∗)
j→a(xj) = I(xj = x

(∗)
j ) if νj→a = 0, (18.9)

(and similarly for ν̂(∗)) are a BP fixed point for the inhomogeneous problem.
For α < αd(K), the inhomogeneous problem admits, with high probability, a

unique BP fixed point. This is a consequence of the result obtained in the follow-
ing exercise:

1While a vanishing fraction of messages νi→a = 0 is not excluded by our argument, it can be ruled
out by a slightly lengthier calculation.
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Fig. 18.3 Factor graph for a 3-XORSAT instance with the depth t = 1 neighbourhood of

vertex i, Bi,t(G), indicated. Fixing all of the variables outside Bi,t(G) to 0 does not imply

that xi must be 0 in order to satisfy the homogeneous linear system.

Exercise 18.7 Consider a BP fixed point ν(∗), bν(∗) for the inhomogeneous problem, and

assume all the messages to be of one of three types: ν
(∗)
j→a(xj = 0) = 1, ν

(∗)
j→a(xj = 0) = 1/2,

and ν
(∗)
j→a(xj = 0) = 0. Assume furthermore that the messages are not ‘contradictory,’ i.e.

that there exists no variable node i such that bν(∗)
a→i(xi = 0) = 1 and bν(∗)

b→i(xi = 0) = 0.
Construct a non-trivial BP fixed point for the homogeneous problem.

18.2.2 Correlation decay

The BP prediction is that for α < αd(K), the marginal distribution of any bit xi is
uniform under either of the measures µ0 or µ. The fact that the BP estimates do not
depend on the initialization is an indication that the prediction is correct. Let us prove
that this is indeed the case. To be definite, we consider the homogeneous problem (i.e.
µ0). The inhomogeneous case follows, using the general remarks in Section 18.1.1.

We start from an alternative interpretation of Qt. Let i ∈ {1, . . . , N} be a uniformly
random variable index, and consider the ball of radius t around i in the factor graph
G, Bi,t(G) (see Fig. 18.3). Set all of the variables xj outside this ball to xj = 0, and

let Q
(N)
t be the probability that, under this condition, all of the solutions of the linear

system Hx = 0 have xi = 0. The convergence of Bi,t(G) to the tree model T(K,α)

discussed in Section 9.5 then implies that, for any given t, limN→∞ Q
(N)
t = Qt. It also

determines the initial condition to be Q0 = 1.
Consider now the marginal distribution µ0(xi). If xi = 0 in all of the solutions

of Hx = 0, then, a fortiori, xi = 0 in all of the solutions that fulfil the additional

condition xj = 0 for j ∈ Bi,t(G). Therefore we have P {µ0(xi = 0) = 1} ≤ Q
(N)
t . By

taking the N → ∞ limit, we get
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Fig. 18.4 A thought experiment: fix variables ‘far’ from i to two different assignments and

check their influence on xi. For α < αd, there is no influence.

lim
N→∞

P {µ0(xi = 0) = 1} ≤ lim
N→∞

Q
(N)
t = Qt . (18.10)

Letting t → ∞ and noticing that the left-hand side does not depend on t, we get
P {µ0(xi = 0) = 1} → 0 as N → ∞. In other words, all but a vanishing fraction of the
bits are free for α < αd(K).

The number Qt also has another interpretation, which generalizes to the inho-
mogeneous problem. We choose a solution x(∗) of the homogeneous linear system
and, instead of fixing the variables outside the ball of radius t to 0, we fix them to

xj = x
(∗)
j , j ∈ Bi,t(G). Then Q

(N)
t is the probability that xi = x

(∗)
i , under this

condition. The same argument holds in the inhomogeneous problem, with the mea-
sure µ: if x(∗) is a solution of Hx = b and we fix the variables outside Bi,t(G) to

xj = x
(∗)
j , the probability that xi = x

(∗)
i under this condition is again Q

(N)
t . The fact

that limt→∞ Qt = 0 when α < αd(K) thus means that a spin decorrelates from the
whole set of variables at distance larger than t, when t is large. This formulation of
the correlation decay is rather specific to XORSAT, because it relies on the dichoto-
mous nature of this problem: either the ‘far away’ variables completely determine xi,
or they have no influence on it and it is uniformly random. A more generic formula-
tion of the correlation decay, which generalizes to other problems which do not have
this dichotomy property, consists in comparing two different choices x(1), x(2) of the
reference solution (see Fig. 18.4). For α < αd(K), the correlations decay even in the
worst case:

lim
N→∞

E

{
sup

x(1),x(2)

|µ(xi|x(1)
∼i,t) − µ(xi|x(2)

∼i,t)|
}

= Qt → 0 (18.11)

as t → ∞. In Chapter 22, we shall discuss weaker (non-worst-case) definitions of
correlation decay, and their relation to phase transitions.

18.3 Core percolation and BP

18.3.1 The 2-core and peeling

What happens for α > αd(K)? A first hint is provided by the instance in Fig. 18.1. In

this case, the configuration of messages ν
(t)
i→a = 0 on all directed edges i → a is a fixed
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point of the BP update for the homogeneous system. A moment of thought shows that
this happens because G has the property that each variable node has degree at least 2.
We shall now see that, for α > αd(K), G has with high probability a subgraph (called
the 2-core) with the same property.

We have already encountered similar structures in Section 15.3, where we identified
them as being responsible for errors in the iterative decoding of LDPC codes over an
erasure channel. Let us recall the relevant points2 from that discussion. Given a factor
graph G, a stopping set is a subset of the function nodes such that all of the variable
nodes have a degree greater than or equal to 2 in the induced subgraph. The 2-core is
the largest stopping set. It is unique and can be found by the peeling algorithm, which
amounts to iterating the following procedure: find a variable node of degree 0 or 1 (a
‘leaf’), and erase it together with the factor node adjacent to it, if there is one. The
resulting subgraph, the 2-core, will be denoted as K2(G).

The peeling algorithm is of direct use for solving the linear system: if a variable
has degree 1, the unique equation where it appears allows one to express it in terms
of other variables. It can thus be eliminated from the problem. The 2-core of G is the
factor graph associated with the linear system obtained by iterating this procedure,
which we shall refer to as the ‘core system’. The original system has a solution if and
only if the core does. We shall refer to solutions of the core system as core solutions.

18.3.2 Clusters

Core solutions play an important role, as the set of solutions can be partitioned ac-
cording to their core values. Given an assignment x, we denote by π∗(x) its projection
onto the core, i.e. the vector of those entries in x that corresponds to vertices in the
core. Suppose that the factor graph has a non-trivial 2-core, and let x(∗) be a core so-
lution. We define the cluster associated with x(∗) as the set of solutions to the linear
system such that π∗(x) = x(∗) (the reason for the name ‘cluster’ will become clear in
Section 18.5). If the core of G is empty, we shall adopt the convention that the entire
set of solutions forms a unique cluster.

Given a solution x(∗) of the core linear system, we shall denote the corresponding
cluster by S(x(∗)). One can obtain the solutions in S(x(∗)) by running the peeling al-
gorithm in the reverse direction, starting from x(∗). In this process, one finds variables
which are uniquely determined by x(∗); they form what is called the ‘backbone’ of the
graph. More precisely, we define the backbone B(G) as the subgraph of G that is
obtained by augmenting K2(G) as follows. Set B0(G) = K2(G). For any t ≥ 0, pick a
function node a which is not in Bt(G) and which has at least K − 1 of its neighbour-
ing variable nodes in Bt(G), and build Bt+1(G) by adding a (and its neighbouring
variables) to Bt(G). If no such function node exists, set B(G) = Bt(G) and halt the
procedure. This definition of B(G) does not depend on the order in which function
nodes are added. The backbone contains the 2-core, and is such that any two solutions
of the linear system which belong to the same cluster coincide on the backbone.

We have thus found that the variables in a linear system naturally divide into three
possible types: the variables in the 2-core K2(G), those in B(G)\K2(G) which are not

2Note that the structure causing decoding errors was the 2-core of the dual factor graph that is
obtained by exchanging variable and function nodes.
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Fig. 18.5 The factor graph of an XORSAT problem, its core (enclosed by the dash–dotted

line), and its backbone (enclosed by the dashed line).

in the core but are fixed by the core solution, and the variables which are not uniquely
determined by x(∗). This distinction is based on the geometry of the factor graph, i.e.
it depends only the matrix H, and not on the value of the right-hand side b in the
linear system. We shall now see how BP finds these structures.

18.3.3 Core, backbone, and belief propagation

Consider the homogeneous linear system Hx = 0, and suppose that the BP algorithm

is run with the initial condition ν
(0)
i→a = 0. Denote by νi→a, ν̂a→i the fixed point reached

by BP (with the measure µ0) under this initialization (the reader is invited to show
that such a fixed point is indeed reached after a number of iterations at most equal to
the number of messages).

The fixed-point messages νi→a, ν̂a→i can be exploited to find the 2-core K2(G),
using the following properties (which can be proved by induction over t): (i) νi→a =
ν̂a→i = 0 for each edge (i, a) in K2(G); (ii) a variable i belongs to the core K2(G)
if and only if it receives messages ν̂a→i = 0 from at least two of the neighbouring
function nodes a ∈ ∂i; and (iii) if a function node a ∈ {1, . . . , M} has νi→a = 0 for
all of the neighbouring variable nodes i ∈ ∂a, then a ∈ K2(G).

The fixed-point BP messages also contain information about the backbone: a vari-
able i belongs to the backbone B(G) if and only if it receives at least one message
ν̂a→i = 0 from its neighbouring function nodes a ∈ ∂i.

Exercise 18.8 Consider an XORSAT problem described by the factor graph in Fig. 18.5.

(a) Using the peeling and backbone construction algorithms, check that the core and back-
bone are those described in the caption.

(b) Compute the BP messages found for the homogeneous problem as a fixed point of the
BP iteration starting from the all-0 configuration. Check the core and backbone that
you obtain from these messages.
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(c) Consider the general inhomogeneous linear system with the same factor graph. Show
that there exist two solutions to the core system: x1 = 0, x2 = bb ⊕ bc, x3 = ba ⊕ bb ⊕
bc, x4 = ba ⊕ bb and x1 = 0, x2 = bb ⊕ bc ⊕ 1, x3 = ba ⊕ bb ⊕ bc, x4 = ba ⊕ bb ⊕ 1. Identify
the two clusters of solutions.

18.4 The SAT–UNSAT threshold in random XORSAT

We shall now see how a sharp characterization of the core size in random linear systems
provides the clue to the determination of the satisfiability threshold. Remarkably, this
characterization can again be achieved through an analysis of BP.

18.4.1 The size of the core

Consider an homogeneous linear system over N variables drawn from the random

K-XORSAT ensemble, and let {ν(t)
i→a} denote the BP messages obtained from the

initialization ν
(0)
i→a = 0. The density evolution analysis of Section 18.2.1 implies that

the fraction of edges carrying a message 0 at time t (which we called Qt) satisfies
the recursion equation (18.7). This recursion holds for any given t asymptotically as
N → ∞.

It follows from the same analysis that, in the large-N limit, the messages ν̂
(t)
a→i

entering a variable node i are i.i.d. with P{ν̂(t)
a→i = 0} = Q̂t ≡ QK−1

t . Let us assume
for a moment that the limits t → ∞ and N → ∞ can be exchanged without much
harm. This means that the fixed-point messages ν̂a→i entering a variable node i are
asymptotically i.i.d. with P{ν̂a→i = 0} = Q̂ ≡ QK−1, where Q is the largest solution
of the fixed-point equation

Q = 1 − e−Kα bQ , Q̂ = QK−1 . (18.12)

The number of incoming messages with ν̂a→i = 0 therefore converges to a Poisson
random variable with mean KαQ̂. The expected number of variable nodes in the core
will be E|K2(G)| = NV (α,K) + o(N), where V (α,K) is the probability that such a
Poisson random variable is greater than or equal to 2; that is,

V (α,K) = 1 − e−Kα bQ − KαQ̂ e−Kα bQ . (18.13)

In Fig. 18.6, we plot V (α) as a function of α. For α < αd(K), the peeling algorithm
erases the whole graph, and there is no core. The size of the core jumps to some finite
value at αd(K), and when α → ∞ the core is the full graph.

Is K2(G) a random factor graph or does it have any particular structure? By
construction, it cannot contain variable nodes of degree zero or one. Its expected
degree profile (the expected fraction of nodes of any given degree) is asymptotically

Λ̂ ≡ {Λ̂l}, where Λ̂l is the probability that a Poisson random variable of parameter

KαQ̂, conditioned to be at least 2, is equal to l. Explicitly, Λ̂0 = Λ̂1 = 0, and

Λ̂l =
1

eKα bQ − 1 − KαQ̂

1

l!
(KαQ̂)l for l ≥ 2. (18.14)

Somewhat surprisingly, K2(G) does not have any more structure than that determined
by its degree profile. This fact is stated more formally in the following theorem.
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Fig. 18.6 The core of the random 3-XORSAT formulae contains NV (α) variables and

NC(α) equations. These numbers are plotted versus the number of equations per vari-

able of the original formula, α. The number of solutions to the XORSAT linear system is

Σ(α) = V (α) − C(α). The core appears for α ≥ αd, and the system becomes UNSAT for

α > αs, where αs is determined by Σ(αs) = 0.

Theorem 18.1 Consider a factor graph G from the ensemble GN (K,Nα) with K ≥
3. Then

(i) K2(G) = ∅ with high probability for α < αd(K).

(ii) For α > αd(K), |K2(G)| = NV (α,K) + o(N) with high probability.

(iii) The fraction of vertices of degree l in K2(G) is between Λ̂l − ε and Λ̂l + ε with
probability greater than 1 − e−Θ(N).

(iv) Conditional on the number of variable nodes n = |K2(G)|, the degree profile being

Λ̂, K2(G) is distributed according to the ensemble Dn(Λ̂, xK).

We shall not provide a proof of this theorem. The main ideas have already been
presented in the previous pages, except for one important mathematical point: how to
exchange the limits N → ∞ and t → ∞. The basic idea is to run BP for a large but
fixed number of steps t. At this point the resulting graph is ‘almost’ a 2-core, and one
can show that a sequential peeling procedure stops in fewer than Nε steps.

In Fig. 18.7, we compare the statement in this theorem with numerical simulations.
The probability that G contains a 2-core Pcore(α) increases from 0 to 1 as α ranges from
0 to ∞, with a threshold that becomes sharper and sharper as the size N increases.
The threshold behaviour can be accurately described using finite-size scaling. Setting
α = αd(K)+β(K) z N−1/2 + δ(K)N−2/3 (with properly chosen β(K) and δ(K)), one
can show that Pcore(α) approaches a K-independent non-trivial limit that depends
smoothly on z.
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outcome of numerical simulations is compared with the asymptotic threshold αd(K). Right :
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18.4.2 The threshold

Knowing that the core is a random graph with degree distribution Λ̂l, we can compute
the expected number of equations in the core. This is given by the number of vertices
times their average degree, divided by K, which yields NC(α,K) + o(N), where

C(α,K) = αQ̂(1 − e−Kα bQ) . (18.15)

In Fig. 18.6, we plot C(α,K) versus α. If α < αd(K), there is no core. For α ∈ ]αd, αs[,
the number of equations in the core is smaller than the number of variables V (α,K).
Above αc, there are more equations than variables.

A linear system has a solution if and only if the associated core problem has a
solution. In a large random XORSAT instance, the core system involves approximately
NC(α,K) equations between NV (α,K) variables. We shall show that these equations
are, with high probability, linearly independent as long as C(α,K) < V (α,K), which
implies the following result.

Theorem 18.2. (XORSAT satisfiability threshold) For K ≥ 3, let

Σ(K,α) = V (K,α) − C(K,α) = Q − αQ̂(1 + (K − 1)(1 − Q)) , (18.16)

where Q, Q̂ are the largest solution of eqn (18.12). Let αs(K) = inf{α : Σ(K,α) < 0}.
Consider a random K-XORSAT linear system with N variables and Nα equations.
The following results hold with a probability going to 1 in the large-N limit:

(i) The system has a solution when α < αs(K).

(ii) The system has no solution when α > αs(K).

(iii) For α < αs(K), the number of solutions is 2N(1−α)+o(N), and the number of
clusters is 2NΣ(K,α)+o(N).

Note that the the last expression in eqn (18.16) can be obtained from eqns (18.13) and
(18.15) using the fixed-point condition (18.12).
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Fig. 18.9 Left : a pictorial view of the phase transitions in random XORSAT systems. The

satisfiability threshold is αs. In the ‘Easy-SAT’ phase, for α < αd, there is a single cluster of

solutions. In the ‘Hard-SAT’ phase, for αd < α < αs, the solutions of the linear system are

grouped into well-separated clusters. Right : the thresholds αd, αs for various values of K. At

large K, one has αd(K) � log K/K and αs(K) = 1 − e−K + O(e−2K).

The predictions of this theorem are compared with numerical simulations in Fig. 18.8,
and Fig. 18.9 summarizes the results for the thresholds for XORSAT.

Proof We shall convey only the basic ideas of the proof here and refer to the
literature for technical details.

Let us start by proving (ii), namely that for α > αs(K), random XORSAT in-
stances are with high probability UNSAT. This follows from a linear-algebra argu-
ment. Let H∗ denote the 0–1 matrix associated with the core, i.e. a matrix including
those rows/columns such that the associated function/variable nodes belong to K2(G).
Notice that if a given row is included in H∗ then all the columns corresponding to non-
zero entries of that row are also in H∗. As a consequence, a necessary condition for
the rows of H to be independent is that the rows of H∗ are independent. This is, in
turn, impossible if the number of columns in H∗ is smaller than its number of rows.

Quantitatively, one can show that M − rank(H) ≥ rows(H∗) − cols(H∗) (with the
obvious meanings of rows( · ) and cols( · )). For large random XORSAT systems, Theo-
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Fig. 18.10 Adding a function node involving a variable node of degree one. The correspond-

ing linear equation is independent of the other equations.

rem 18.1 implies that rows(H∗)−cols(H∗) = −NΣ(K,α)+o(N) with high probability.
According to our discussion in Section 18.1.1, among the 2M possible choices of the
right-hand side vector b, only 2rank(H) are in the image of H and thus lead to a solvable
system. In other words, conditional on H, the probability that random XORSAT is
solvable is 2rank(H)−M . By the above argument this is, with high probability, smaller
than 2NΣ(K,α)+o(N). Since Σ(K,α) < 0 for α > αs(K), it follows that the system is
UNSAT with high probability.

In order to show that a random system is satisfiable with high probability when
α < αs(K), one has to prove the following facts: (i) if the core matrix H∗ has maximum
rank, then H has maximum rank as well; (ii) if α < αs(K), then H∗ has maximum rank
with high probability. As a by-product, the number of solutions is 2N−rank(H) = 2N−M .

(i) The first step follows from the observation that G can be constructed from
K2(G) through an inverse peeling procedure. At each step, one adds a function node
which involves at least a degree-one variable (see Fig. 18.10). Obviously this newly
added equation is linearly independent of the previous ones, and therefore rank(H) =
rank(H∗) + M − rows(H∗).

(ii) Let n = cols(H∗) be the number of variable nodes and m = rows(H∗) the
number of function nodes in the core K2(G). Let us consider the homogeneous system
on the core, H∗x = 0, and denote by Z∗ the number of solutions to this system. We
shall show that, with high probability, this number is equal to 2n−m. This means that
the dimension of the kernel of H∗ is n − m and therefore H∗ has full rank.

We know from linear algebra that Z∗ ≥ 2n−m. To prove the reverse inequality, we
use a first-moment method. According to Theorem 18.1, the core is a uniformly random
factor graph with n = NV (K,α) + o(N) variables and degree profile Λ = Λ̂ + o(1).
We denote the expectation value with respect to this ensemble by E. We shall use a
first-moment analysis below to show that, when α < αc(K),

E {Z∗} = 2n−m[1 + oN (1)] . (18.17)

The Markov inequality P{Z∗ > 2n−m} ≤ 2−n+mE{Z∗} then implies the bound.
The surprise is that eqn (18.17) holds, and thus a simple first-moment estimate

allows us to establish that H∗ has full rank. We saw in Exercise 18.6 that the same
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Fig. 18.11 The exponential rate φ(ω) of the weight enumerator of the core of a random

3-XORSAT formula. From top to bottom, α = αd(3) ≈ 0.818469, 0.85, 0.88, 0.91, and 0.94

(recall that αs(3) ≈ 0.917935). Inset : blow-up of the small-ω region.

approach, when applied directly to the original linear system, fails above some α∗(K)
which is strictly smaller than αs(K). Reducing the original graph to its 2-core has dras-
tically reduced the fluctuations of the number of solutions, thus allowing a successful
application of the first-moment method.

We now turn to the proof of eqn (18.17), and we shall limit ourselves to the com-
putation of E{Z∗} to the leading exponential order, when the core size and degree

profiles take their typical values n = NV (K,α), Λ = Λ̂, and P (x) = xK . This prob-
lem is equivalent to computing the expected number of codewords in the LDPC code
defined by the core system, which we have already done in Section 11.2. The result
takes the typical form

E{Z∗} .
= exp

{
N sup

ω∈[0,V (K,α)]

φ(ω)
}

. (18.18)

Here, φ(ω) is the exponential rate for the number of solutions with weight Nω. Adapt-
ing eqn (11.18) to the present case, we obtain the following parametric expression:

φ(ω) = −ω log x − η(1 − e−η) log(1 + yz) (18.19)

+
∑
l≥2

e−η ηl

l!
log(1 + xyl) +

η

K
(1 − e−η) log qK(z) ,

ω =
∑
l≥2

e−η ηl

l!

xyl

1 + xyl
, (18.20)

where η = KαQ̂∗ and qK(z) = [(1 + z)K + (1 − z)K ]/2, and y = y(x), z = z(x) are
the solution of

z =

∑
l≥1[η

l/l!] [xyl−1/(1 + xyl)]∑
l≥1[η

l/l!] [1/(1 + xyl)]
, y =

(1 + z)K−1 − (1 − z)K−1

(1 + z)K−1 + (1 − z)K−1
. (18.21)
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With a little work one can see that ω∗ = V (K,α)/2 is a local maximum of φ(ω),
with φ(ω∗) = Σ(K,α) log 2. As long as ω∗ is a global maximum, E{Z∗|n,Λ} .

=
exp{Nφ(ω∗)} .

= 2n−m. It turns out (seeFig. 18.11) that the only other local maxi-
mum is at ω = 0, corresponding to φ(0) = 0. Therefore E{Z∗|n,Λ} .

= 2n−m as long as
φ(ω∗) = Σ(K,α) > 0, i.e. for any α < αs(K)

Note that the actual proof of eqn (18.17) is more complicated, because it requires
estimating the subexponential factors. Nevertheless, it can be carried out successfully.
�

18.5 The Hard-SAT phase: Clusters of solutions

In random XORSAT, the whole regime α < αs(K) is SAT. This means that, with
high probability, there exist solutions to the random linear system, and the number of
solutions is in fact Z

.
= eN(1−α). Note that the number of solutions does not show any

precursor of the SAT–UNSAT transition at αs(K) (recall that αs(K) < 1), nor does
it carry any trace of the sudden appearence of a non-empty 2-core at αd(K).

On the other hand, the threshold αd(K) separates two phases, which we shall
call the Easy-SAT phase (for α < αd(K)) and the Hard-SAT phase (for α ∈
]αd(K), αs(K)[). These two phases differ in the structure of the solution space, as
well as in the behaviour of some simple algorithms.

In the Easy-SAT phase there is no core, solutions can be found in (expected) linear
time using the peeling algorithm, and they form a unique cluster. In the Hard-SAT
phase, the factor graph has a large 2-core, and no algorithm is known that finds
a solution in linear time. The solutions are partitioned into 2NΣ(K,α)+o(N) clusters.
Until now, we have used the name ‘cluster’ fairly arbitrarily, and it has only denoted
a subset of solutions that coincide in the core. The next result shows that distinct
clusters are ‘far apart’ in Hamming space.

Proposition 18.3 In the Hard-SAT phase, there exists a δ(K,α) > 0 such that, with
high probability, any two solutions in distinct clusters have a Hamming distance larger
than Nδ(K,α).

Proof The proof follows from the computation of the weight enumerator exponent
φ(ω) (see eqn (18.20) and Fig. 18.11). One can see that for any α > αd(K), φ′(0) < 0,
and, as a consequence, there exists a δ(K,α) > 0 such that φ(ω) < 0 for 0 < ω <
δ(K,α). This implies that if x∗, x′

∗ are two distinct solutions of the core linear system,
then either d(x∗, x

′
∗) = o(N) or d(x, x′) > Nδ(K,α). It turns out that the first case

can be excluded along the lines of the minimal-distance calculation of Section 11.2.
Therefore, if x, x′ are two solutions belonging to distinct clusters, then d(x, x′) ≥
d(π∗(x), π∗(x

′)) ≥ Nδ(K,α). �

This result suggests that we can regard clusters as ‘lumps’ of solutions well sepa-
rated from each other. One aspect which has been conjectured, but not proved, con-
cerns the assertion that clusters form ‘well-connected components’. By this we mean
that any two solutions in a cluster can be joined by a sequence of other solutions,
whereby two successive solutions in the sequence differ in at most sN variables, with
sN = o(N) (a reasonable expectation is sN = Θ(log N)).
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18.6 An alternative approach: The cavity method

The analysis of random XORSAT in the previous sections relied heavily on the linear
structure of the problem, as well as on the very simple instance distribution. This
section describes an alternative approach that is potentially generalizable to more
complex situations. The price to be paid is that this second derivation relies on some
assumptions about the structure of the solution space. The observation that our final
results coincide with those obtained in the previous section gives some credibility to
these assumptions.

The starting point is the observation that BP correctly computes the marginals
of µ( · ) (the uniform measure over the solution space) for α < αd(K), i.e. as long as
the set of solutions forms a single cluster. We want to extend its domain of validity
to α > αd(K). If we index the clusters by n ∈ {1, . . . ,N}, the uniform measure µ( · )
can be decomposed into a convex combination of uniform measures over each single
cluster:

µ( · ) =

N∑
n=1

wn µn( · ) . (18.22)

Note that in the present case, wn = 1/N is independent of n and the measures µn( · )
are obtained from each other via a translation, but this will not be true in more general
situations.

Consider an inhomogeneous XORSAT linear system, and denote by x(∗) one of
its solutions in cluster n. The distribution µn has single-variable marginals µn(xi) =

I(xi = x
(∗)
i ) if node i belongs to the backbone, and µn(xi = 0) = µn(xi = 1) = 1/2 on

the other nodes.
In fact, we can associate with each solution x(∗) a fixed point of the BP equations.

We have already described this in Section 18.2.1 (see eqn (18.9)). At this fixed point,

messages take one of the following three values: ν
(∗)
i→a(xi) = I(xi = 0) (which we shall

denote by ν
(∗)
i→a = 0), ν

(∗)
i→a(xi) = I(xi = 1) (denoted by ν

(∗)
i→a = 1), and ν

(∗)
i→a(xi = 0) =

ν
(∗)
i→a(xi = 1) = 1/2 (denoted by ν

(∗)
i→a = ∗). An analogous notation will be used for

function-to-variable-node messages. The solution can be written most easily in terms
of the latter,

ν̂
(∗)
a→i =

⎧⎪⎨⎪⎩
1 if x

(∗)
i = 1 and i, a ∈ B(G),

0 if x
(∗)
i = 0 and i, a ∈ B(G),

∗ otherwise.

(18.23)

Note that these messages depend only on the value of x
(∗)
i on the backbone of G, and

hence they depend on x(∗) only through the cluster that it belongs to. Conversely, for
any two distinct clusters, the above definition gives two distinct fixed points. Because

of this observation, we shall denote these fixed points by {ν(n)
i→a, ν̂

(n)
a→i}, where n is a

cluster index.
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corefrozen

1

2

a

b

Fig. 18.12 Left : a set of BP messages associated with one cluster (cluster number n) of

solutions. An arrow along an edge means that the corresponding message (either ν
(n)
i→a orbν(n)

a→i) takes a value in {0, 1}. The other messages are equal to ∗. Right : a small XORSAT

instance. The core is the whole graph. In the homogeneous problem, there are two solutions,

which form two clusters: x1 = x2 = 0 and x1 = x2 = 1. Besides the two corresponding BP

fixed points described in Proposition 18.4, and the all-∗ fixed point, there exist other fixed

points such as bνa→1 = ν1→b = bνb→2 = ν2→a = 0, bνa→2 = ν2→b = bνb→1 = ν1→a = ∗.

Let us recall the BP fixed-point condition:

νi→a =

{
∗ if ν̂b→i = ∗ for all b ∈ ∂i\a,
any ‘non-∗’ ν̂b→i otherwise,

(18.24)

ν̂a→i =

{
∗ if ∃j ∈ ∂a\i such that ν̂j→a = ∗,
ba ⊕ νj1→a ⊕ · · · ⊕ νjl→a otherwise.

(18.25)

Below, we shall denote these equations symbolically as

νi→a = f{ν̂b→i} , ν̂a→i = f̂{νj→a} . (18.26)

Let us summarize our findings.

Proposition 18.4 With each cluster n, we can associate a distinct fixed point of the

BP equations (18.25) {ν(n)
i→a, ν̂

(n)
a→i}, such that ν̂

(n)
a→i ∈ {0, 1} if i, a are in the backbone

and ν̂
(n)
a→i = ∗ otherwise.

Note that the converse of this proposition is false: there may exist solutions to the BP
equations which are not of the above type. One of them is the all-∗ solution. Non-trivial
solutions exist as well, as shown in Fig. 18.12.
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An introduction to the 1RSB cavity method in the general case will be presented
in Chapter 19. Here we shall give a short informal preview in the special case of
XORSAT: the reader will find a more formal presentation in the next chapter. The
first two assumptions of the 1RSB cavity method can be summarized as follows (all
statements are understood to hold with high probability).

Assumption 1 In the case of a large random XORSAT instance, for each cluster ‘n’
of solutions, the BP solution ν(n), ν̂(n) provides an accurate ‘local’ description of the
measure µn( · ).

This means that, for instance, the one-point marginals are given by µn(xj) ∼=∏
a∈∂j ν̂

(n)
a→j(xj) + o(1), but also that local marginals inside any finite cavity are well

approximated by eqn (14.18).

Assumption 2 For a large random XORSAT instance in the Hard-SAT phase, the
number of clusters eNΣ is exponential in the number of variables. Further, the number
of solutions of the BP equations (18.25) is, to the leading exponential order, the same
as the number of clusters. In particular, it is the same as the number of solutions
constructed in Proposition 18.4.

A priori, one might have hoped to identify the set of messages {ν(n)
i→a} for each

cluster. The cavity method gives up this ambitious objective and aims instead to

compute the distribution of ν
(n)
i→a for any fixed edge i → a, when n is a cluster index

drawn with distribution {wn}. We thus want to compute the quantities

Qi→a(ν) = P

{
ν

(n)
i→a = ν

}
, Q̂a→i(ν̂) = P

{
ν̂

(n)
a→i = ν̂

}
, (18.27)

for ν, ν̂ ∈ {0, 1, ∗}. Computing these probabilities rigorously is still a challenging task.
In order to proceed, we make some assumptions about the joint distribution of the

messages ν
(n)
i→a when n is a random cluster index (chosen with probability wn).

The simplest idea would be to assume that messages on ‘distant’ edges are inde-
pendent. For instance, let us consider the set of messages entering a given variable
node i. Their only correlations are induced through BP equations along the loops to
which i belongs. Since in random K-XORSAT formulae such loops have, with high
probability, a length of order log N , one might think that messages coming into a
given node are asymptotically independent. Unfortunately, this assumption is false.
The reason is easily understood if we assume that Q̂a→i(0), Q̂a→i(1) > 0 for at least
two of the function nodes a adjacent to a given variable node i. This would imply that,

with positive probability, a randomly sampled cluster has ν
(n)
a→i = 0 and ν

(n)
b→i = 1. But

there does not exist any such cluster, because in such a situation there is no consistent
prescription for the marginal distribution of xi under µn( · ).

Our assumption will be that the next simplest thing happens: messages are inde-
pendent conditional on the fact that they do not contradict each other.

Assumption 3 Consider the Hard-SAT phase of a random XORSAT problem. De-
note by i ∈ G a uniformly random node, denote by n a random cluster index with

distribution {wn}, and let � be an integer ≥ 1. Then the messages {ν(n)
j→b}, where
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(j, b) are all of the edges at distance � from i directed towards i, are asymptotically
independent under the condition of being compatible.

Here ‘compatible’ means the following. Consider the linear system Hi,�xi,� = 0

for the neighbourhood of radius � around node i. If this admits a solution under the
boundary condition xj = νj→b for all of the boundary edges (j, b) on which {νj→b} ∈
{0, 1}, then the messages {νj→b} are said to be compatible.

Given the messages νj→b at the boundary of a radius-� neighbourhood, the BP
equations (18.24) and (18.25) allow one to determine the messages inside this neigh-
bourhood. Consider, in particular, two nested neighbourhoods at distances � and �+1
from i. The inward messages on the boundary of the larger neighbourhood completely
determines those on the boundary of the smaller neighbourhood. A little thought shows
that if the messages on the outer boundary are distributed according to Assumption 3,
then the distribution of the resulting messages on the inner boundary also satisfies the
same assumption. Further, the distributions are consistent if and only if the following
‘survey propagation’ equations are satisfied by the one-message marginals:

Qi→a(ν) ∼=
∑
{bνb}

∏
b∈∂i\a

Q̂b→i(ν̂b) I(ν = f{ν̂b}) I({ν̂b}b∈∂i\a ∈ COMP) , (18.28)

Q̂a→i(ν̂) =
∑
{νj}

∏
j∈∂a\i

Qj→a(νj) I(ν̂ = f̂{νj}) . (18.29)

Here, {ν̂b} ∈ COMP if and only if the messages are compatible (i.e. they do not contain
both a 0 and a 1). Since Assumptions 1, 2, and 3 above hold only with high probability,
and asymptotically in the system size, the equalities in eqns (18.28) and (18.29) must
also be interpreted as approximate. The equations should be satisfied within any given
accuracy ε, with high probability as N → ∞.

Exercise 18.9 Show that eqns (18.28) and (18.29) can be written explicitly as

Qi→a(0) ∼=
Y

b∈∂i\a

( bQb→i(0) + bQb→i(∗)) −
Y

b∈∂i\a

bQb→i(∗) , (18.30)

Qi→a(1) ∼=
Y

b∈∂i\a

( bQb→i(1) + bQb→i(∗)) −
Y

b∈∂i\a

bQb→i(∗) , (18.31)

Qi→a(∗) ∼=
Y

b∈∂i\a

bQb→i(∗) , (18.32)

where the symbol ∼= hides a global normalization constant, and
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bQa→i(0) =
1

2

8<: Y
j∈∂a\i

(Qj→a(0) + Qj→a(1)) +
Y

j∈∂a\i

(Qj→a(0) − Qj→a(1))

9=; ,

(18.33)

bQa→i(1) =
1

2

8<: Y
j∈∂a\i

(Qj→a(0) + Qj→a(1)) −
Y

j∈∂a\i

(Qj→a(0) − Qj→a(1))

9=; ,

(18.34)bQa→i(∗) = 1 −
Y

j∈∂a\i

(Qj→a(0) + Qj→a(1)) . (18.35)

The final step of the 1RSB cavity method consists in looking for a solution of
eqns (18.28) and (18.29). There are no rigorous results on the existence or number
of such solutions. Further, since these equations are only approximate, approximate
solutions should be considered as well. In the present case, a very simple (and somewhat
degenerate) solution can be found that yields correct predictions for all of the quantities
of interest. In this solution, the message distributions take one of two possible forms:
on some edges, one has Qi→a(0) = Qi→a(1) = 1/2 (with some misuse of notation, we
shall write Qi→a = 0 in this case), and on some other edges, Qi→a(∗) = 1 (we shall

then write Qi→a = ∗). Analogous forms hold for Q̂a→i. A little algebra shows that
this is a solution if and only if the η’s satisfy

Qi→a =

{
∗ if Q̂b→i = ∗ for all b ∈ ∂i\a,
0 otherwise,

(18.36)

Q̂a→i =

{
∗ if ∃j ∈ ∂a\i such that Q̂j→a = ∗,
0 otherwise.

(18.37)

These equations are identical to the original BP equations for the homogeneous prob-
lem (this feature is very specific to XORSAT and will not generalize to more advanced
applications of the method). However, the interpretation is now completely different.

On the edges where Qi→a = 0, the corresponding message ν
(n)
i→a depends on the cluster

n; ν
(n)
i→a = 0 in half of the clusters, and ν

(n)
i→a == 1 in the other half. These edges are

those inside the core, or in the backbone but directed ‘outward’ with respect to the
core, as shown in Fig. 18.12. On the other edges, the message does not depend upon

the cluster, and ν
(n)
i→a = ∗ for all n’s.

A concrete interpretation of these results is obtained if we consider the one-bit
marginals µn(xi) under the single-cluster measure. According to Assumption 1 above,

we have µn(xi = 0) = µn(xi = 1) = 1/2 if ν̂
(n)
a→i = ∗ for all a ∈ ∂i. If, on the other

hand, ν̂
(n)
a→i = 0 or 1 for at least one a ∈ ∂i, then µn(xi = 0) = 1 or µn(xi = 0) = 0,

respectively. We thus recover the full solution discussed in the previous sections: inside
a given cluster n, the variables in the backbone are completely frozen, either to 0 or
to 1. The other variables have equal probability to be 0 or 1 under the measure µn.
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The cavity approach allows one to compute the complexity Σ(K,α), as well as
many other properties of the measure µ( · ). We shall see this in the next chapter.

Notes

Random XORSAT formulae were first studied as a simple example of random sat-
isfiability by Creignou and Daudé (1999). This work considered the case of ‘dense
formulae’ where each clause includes O(N) variables. In this case the SAT–UNSAT
threshold is at α = 1. In the field of coding theory, this model had been characterized
since the work by Elias (1955) (see Chapter 6).

The case of sparse formulae was addressed using moment bounds by Creignou et

al. (2003). The replica method was used by Ricci-Tersenghi et al. (2001), Franz et

al. (2001a), and Franz et al. (2001b) to derive the clustering picture, determine the
SAT–UNSAT threshold, and study the glassy properties of the clustered phase.

The fact that, after reducing the linear system to its core, the first-moment method
provides a sharp characterization of the SAT–UNSAT threshold was discovered inde-
pendently by two groups: Cocco et al. (2003) and Mézard et al. (2003). The latter also
discussed the application of the cavity method to the problem. The full second-moment
calculation that completes the proof can be found for the case K = 3 in Dubois and
Mandler (2002).

Papers by Montanari and Semerjian (2005), Montanari and Semerjian (2006a),
and Mora and Mézard (2006) were devoted to finer geometrical properties of the set
of solutions of random K-XORSAT formulae. Despite these efforts, it remains to be
proved that clusters of solutions are indeed ‘well connected’.

Since the locations of various transitions are known rigorously, a natural question
is to study the critical window. Finite-size scaling of the SAT–UNSAT transition was
investigated numerically by Leone et al. (2001). A sharp characterization of finite-size
scaling for the appearence of a 2-core, corresponding to the clustering transition, was
achieved by Dembo and Montanari (2008a).
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The 1RSB cavity method

The effectiveness of belief propagation depends on one basic assumption: when a func-
tion node is pruned from the factor graph, the adjacent variables become weakly
correlated with respect to the resulting distribution. This hypothesis may break down
either because of the existence of small loops in the factor graph or because variables
are correlated at large distances. In factor graphs with a locally tree-like structure, the
second scenario is responsible for the failure of BP. The emergence of such long-range
correlations is a signature of a phase transition separating a ‘weakly correlated’ and a
‘highly correlated’ phase. The latter is often characterized by the decomposition of the
(Boltzmann) probability distribution into well-separated ‘lumps’ (pure Gibbs states).

We considered a simple example of this phenomenon in our study of random XOR-
SAT. A similar scenario holds in a variety of problems, from random graph colouring to
random satisfiability and spin glasses. The reader should be warned that the structure
and organization of the pure states in such systems is far from being fully under-
stood. Furthermore, the connection between long-range correlations and pure-state
decomposition is more subtle than is suggested by the above remarks.

Despite these complications, physicists have developed a non-rigorous approach to
deal with this phenomenon: the ‘one-step replica symmetry breaking’ (1RSB) cavity
method. This method postulates a few properties of the pure-state decomposition, and,
on this basis, allows one to derive a number of quantitative predictions (‘conjectures’
from a mathematical point of view). Examples include the satisfiability threshold for
random K-SAT and for other random constraint satisfaction problems.

The method is rich enough to allow some self-consistency checks of such assump-
tions. In several cases in which the 1RSB cavity method has passed this test, its
predictions have been confirmed by rigorous arguments (and there is no case in which
they have been falsified so far). These successes encourage the quest for a mathematical
theory of Gibbs states on sparse random graphs.

This chapter explains the 1RSB cavity method. It alternates between a general pre-
sentation and a concrete illustration of the XORSAT problem. We strongly encourage
readers to read the previous chapter on XORSAT before the present one. This should
help them to gain some intuition about the whole scenario.

We start with a general description of the 1RSB glass phase, and the decomposi-
tion into pure states, in Section 19.1. Section 19.2 introduces an auxiliary constraint
satisfaction problem in order to count the number of solutions of BP equations. The
1RSB analysis amounts to applying belief propagation to this auxiliary problem. One
can then apply the methods of Chapter 14 (for instance, density evolution) to the
auxiliary problem. Section 19.3 illustrates this approach with the XORSAT problem
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and shows how the 1RSB cavity method recovers the rigorous results of the previous
chapter.

In Section 19.4, we show how the 1RSB formalism, which in general is rather
complicated, simplifies considerably when the temperature of the auxiliary constraint
satisfaction problem takes the value x = 1. Section 19.5 explains how to apply this
formalism to optimization problems (leveraging the min-sum algorithm), leading to
the survey propagation algorithm. Section 19.6 describes the physical intuition which
underlies the whole method. The appendix in Section 19.7 contains some technical
aspects of the survey propagation equations applied to XORSAT, and their statistical
analysis.

19.1 Beyond BP: Many states

19.1.1 Bethe measures

The main lesson of the previous chapters is that in many cases, the probability distri-
bution specified by graphical models with a locally tree-like structure takes a relatively
simple form, which we shall call a Bethe measure (or Bethe state). Let us first define
precisely what we mean by this, before we proceed to discuss what kinds of other
scenarios can be encountered.

As in Chapter 14, we consider a factor graph G = (V, F,E), with variable nodes
V = {1, . . . , N}, factor nodes F = {1, . . . , M}, and edges E. The joint probability
distribution over the variables x = (x1, . . . , xN ) ∈ XN takes the form

µ(x) =
1

Z

M∏
a=1

ψa(x∂a) . (19.1)

Given a subset of variable nodes U ⊆ V (which we shall call a ‘cavity’), the induced
subgraph GU = (U,FU , EU ) is defined as the factor graph that includes all of the
factor nodes a such that ∂a ⊆ U , and the adjacent edges. We also write (i, a) ∈ ∂U
if i ∈ U and a ∈ F \ FU . Finally, a set of messages {ν̂a→i} is a set of probability
distributions over X , indexed by directed edges a → i in E with a ∈ F , i ∈ V .

Definition 19.1. (Informal) The probability distribution µ is a Bethe measure (or
Bethe state) if there exists a set of messages {ν̂a→i} such that, for ‘almost all’ of the
‘finite-size’ cavities U , the distribution µU ( · ) of the variables in U can be approximated
as

µU (xU ) ∼=
∏

a∈FU

ψa(x∂a)
∏

(ia)∈∂U

ν̂a→i(xi) + err(xU ) , (19.2)

where err(xU ) is a ‘small’ error term, and ∼= denotes, as usual, equality up to a nor-
malization.

A formal definition should specify what is meant by ‘almost all’, ‘finite-size’ and ‘small’.
This can be done by introducing a tolerance εN (with εN ↓ 0 as N → ∞) and a size
LN (where LN is bounded as N → ∞). One then requires that some norm of err( · )
(e.g. an Lp norm) is smaller than εN for a fraction larger than 1 − εN of all possible
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i

a j

b

i

a j

b

Fig. 19.1 Two examples of cavities. The right-hand one is obtained by adding the extra

function node a. The consistency of the Bethe measure in these two cavities implies the BP

equation for bνa→i; see Exercise 19.1.

cavities U of size |U | < LN . The underlying intuition is that the measure µ( · ) is well
approximated locally by the given set of messages. In the following, we shall follow the
physicists’ habit of leaving implicit the various approximation errors.

Notice that the above definition does not make use of the fact that µ factorizes as
in eqn (19.1). It thus applies to any distribution over x = {xi : i ∈ V }.

If µ( · ) is a Bethe measure with respect to the message set {ν̂a→i}, then the con-
sistency of eqn (19.2) for different choices of U implies some non-trivial constraints on
the messages. In particular, if the loops in the factor graph G are not too small (and
under some technical conditions on the functions ψa( · )), then the messages must be
close to satisfying the BP equations. More precisely, we define a quasi-solution of
the BP equations as a set of messages which satisfy almost all of the equations within
some accuracy. The reader is invited to prove this statement in the exercise below.

Exercise 19.1 Assume that G = (V, F, E) has girth larger than 2, and that µ( · ) is a Bethe
measure with respect to the message set {bνa→i}, where bνa→i(xi) > 0 for any (i, a) ∈ E,
and ψa(x∂a) > 0 for any a ∈ F . For U ⊆ V and (i, a) ∈ ∂U , define a new subset of variable
nodes as W = U ∪ ∂a (see Fig. 19.1).

Applying eqn (19.2) to the subsets of variables U and W , show that a message must
satisfy (up to an error term of the same order as err( · ))

bνa→i(xi) ∼=
X

x∂a\i

ψa(x∂a)
Y

j∈∂a\i

n Y
b∈∂j\a

bνb→j(xj)
o

. (19.3)

Show that these equations are equivalent to the BP equations (14.14) and (14.15).
[Hint: Define, for k ∈ V , c ∈ F and (k, c) ∈ E, νk→c(xk) ∼=Qd∈∂k\c bνd→k(xk).]

It would be pleasant if the converse was true, i.e. if each quasi-solution of the BP
equations corresponded to a distinct Bethe measure. In fact, such a relation will be at
the heart of the assumptions of the 1RSB method. However, one should keep in mind
that this is not always true, as the following example shows.
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Example 19.2 Let G be a factor graph with the same degree K ≥ 3 at both factor
and variable nodes. Consider binary variables (X = {0, 1}) and, for each a ∈ F , let

ψa(xi1(a), . . . , xiK(a)) = I(xi1(a) ⊕ · · · ⊕ xiK(a) = 0) . (19.4)

Given a perfect matching M ⊆ E, a solution of the BP equations can be constructed
as follows. If (i, a) ∈ M, then let ν̂a→i(xi) = I(xi = 0) and νi→a(0) = νi→a(1) = 1/2.
If, on the other hand, (i, a) ∈ M, then let ν̂a→i(0) = ν̂a→i(1) = 1/2 and νi→a(0) =
I(xi = 0).

Check that this is a solution of the BP equations and that all the resulting local
marginals coincide with the ones of the measure µ(x) ∼= I(x = 0), independently of
M. If we take, for instance, G to be a random regular graph with degree K ≥ 3,
both at factor nodes and at variable nodes, then the number of perfect matchings of
G is, with high probability, exponential in the number of nodes. Therefore we have
constructed an exponential number of solutions of the BP equations that describe
the same Bethe measure.

19.1.2 A few generic scenarios

Bethe measures are a conceptual tool for describing distributions of the form (19.1).
Inspired by the study of glassy phases (see Section 12.3), statistical mechanics studies
have singled out a few generic scenarios in this respect, that we informally describe
below.

RS (replica-symmetric). This is the simplest possible scenario: the distribution
µ( · ) is a Bethe measure. A slightly more complicated situation (which we still
place in the ‘replica-symmetric’ family) arises when µ( · ) decomposes into a
finite set of Bethe measures related by ‘global symmetries’, as in the Ising
ferromagnet discussed in Section 17.3.

d1RSB (dynamic one-step replica symmetry breaking). There exist an exponentially
large (in the system size N) number of Bethe measures. The measure µ de-
composes into a convex combination of these Bethe measures, i.e.

µ(x) =
∑

n

wn µn(x) , (19.5)

with weights wn exponentially small in N . Furthermore µ( · ) is itself a Bethe
measure.

s1RSB (static one-step replica symmetry breaking). As in the d1RSB case, there exist
an exponential number of Bethe measures, and µ decomposes into a convex
combination of such states. However, a finite number of the weights wn are
of order 1 as N → ∞, and (unlike in the previous case) µ is not itself a Bethe
measure.

In the following, we shall focus on the d1RSB and s1RSB scenarios, which are
particularly interesting and can be treated in a unified framework (we shall sometimes
refer to both of them as ‘1RSB’). More complicated scenarios, such as ‘full RSB’,
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are also possible. We shall not discuss such scenarios here because, so far, we have a
relatively poor control of them in sparse graphical models.

In order to proceed further, we shall make a series of assumptions about the struc-
ture of Bethe states in the 1RSB case. While further research work is required to
formalize these assumptions completely, they are precise enough for deriving several
interesting quantitative predictions.

To avoid technical complications, we assume that the compatibility functions ψa( · )
are strictly positive. (The cases with ψa( · ) = 0 should be treated as limiting cases of
such models.) Let us index the various quasi-solutions {νn

i→a, ν̂n
a→i} of the BP equations

by n. With each of them we can associate a Bethe measure, and we can compute the
corresponding Bethe free entropy Fn = F(νn). The three postulates of the 1RSB

scenario are listed below.

Assumption 1 There exist exponentially many quasi-solutions of the BP equations.
The number of such solutions with free entropy F(νn) ≈ Nφ is (to leading exponential
order) exp{NΣ(φ)}, where Σ( · ) is the complexity function.1

This can be expressed more formally as follows. There exists a function Σ : R → R+

(the complexity) such that, for any interval [φ1, φ2], the number of quasi-solutions
of the BP equations with F(νn) ∈ [Nφ1, Nφ2] is exp{NΣ∗ + o(N)}, where Σ∗ =
sup{Σ(φ) : φ1 ≤ φ ≤ φ2}. We shall also assume in the following that Σ(φ) is ‘regular
enough’, without going into the details.

Among Bethe measures, a special role is played by those which have short range
correlations (are extremal). We have already mentioned this point in Chapter 12, and
shall discuss the relevant notion of correlation decay in Chapter 22. We denote the set
of extremal measures by E.

Assumption 2 The ‘canonical’ measure µ, defined as in eqn (19.1), can be written
as a convex combination of extremal Bethe measures

µ(x) =
∑
n∈E

wn µn(x) , (19.6)

with weights related to the Bethe free entropies wn = eFn/Ξ, Ξ ≡∑n∈E
eFn .

Note that Assumption 1 characterizes the number of (approximate) BP fixed
points, and Assumption 2 expresses the measure µ( · ) in terms of extremal Bethe
measures. While each such measure gives rise to a BP fixed point by the arguments in
the previous subsection, it is not clear that the converse holds. The next assumption
implies that this is the case, to the leading exponential order.

Assumption 3 To leading exponential order, the number of extremal Bethe measures
equals the number of quasi-solutions of the BP equations: the number of extremal Bethe
measures with free entropy ≈ Nφ is also given by exp{NΣ(φ)}.

1As we are interested only in the leading exponential behaviour, the details of the definitions
of quasi-solutions become irrelevant, as long as (for instance) the fraction of violated BP equations
vanishes in the large-N limit.
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19.2 The 1RSB cavity equations

Within the three assumptions described above, the complexity function Σ(φ) provides
basic information on how the measure µ decomposes into Bethe measures. Since the
number of extremal Bethe measures with a given free-entropy density is exponential in
the system size, it is natural to treat them within a statistical-physics formalism. The
BP messages of the original problem will be the new variables, and Bethe measures
will be the new configurations. This is what 1RSB is about.

We introduce the auxiliary statistical-physics problem through the definition of a
canonical distribution over extremal Bethe measures: we assign to a measure n ∈ E

the probability wn(x) = exFn/Ξ(x). Here x plays the role of an inverse temperature
(and is often called the Parisi 1RSB parameter). 2 The partition function of this
generalized problem is

Ξ(x) =
∑
n∈E

exFn
.
=

∫
eN [xφ+Σ(φ)] dφ . (19.7)

According to Assumption 2 above, extremal Bethe measures contribute to µ with a
weight wn = eFn/Ξ. Therefore the original problem is described by the choice x = 1.
But varying x will allow us to recover the full complexity function Σ(φ).

If Ξ(x)
.
= eNF(x), a saddle point evaluation of the integral in eqn (19.7) gives Σ as

the Legendre transform of F:

F(x) = xφ + Σ(φ) ,
∂Σ

∂φ
= −x . (19.8)

19.2.1 Counting BP fixed points

In order to actually estimate Ξ(x), we need to consider the distribution induced by
wn(x) in the messages ν = {νi→a, ν̂a→i}, which we shall denote by Px(ν). The funda-
mental observation is that this distribution can be written as a graphical model, whose
variables are BP messages. A first family of function nodes enforces the BP equations,
and a second one implements the weight exF(ν). Furthermore, it turns out that the
topology of the factor graph in this auxiliary graphical model is very close to that
of the original factor graph. This suggests that we should use the BP approximation
in this auxiliary model in order to estimate Σ(φ).

The 1RSB approach can be therefore summarized in one sentence:

Introduce a Boltzmann distribution over Bethe measures, write it in the form of a
graphical model, and use BP to study this model.

This programme is straightforward, but one must be careful not to confuse the
two models (the original one and the auxiliary one), and their messages. Let us first
simplify the notations for the original messages. The two types of messages entering the
BP equations of the original problem will be denoted by ν̂a→i = m̂ai and νi→a = mia;
we shall denote the set of all of the mia by m and the set of all of the m̂ai by m̂. Each

2It turns out that the present approach is equivalent to the cloning method discussed in Chapter
12, where x is the number of clones.
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Fig. 19.2 A part of the original factor graph (left), and the corresponding auxiliary factor

graph (right).

of these 2|E| messages is a normalized probability distribution over the alphabet X .
With this notation, the original BP equations read

mia(xi) ∼=
∏

b∈∂i\a

m̂bi(xi) , m̂ai(xi) ∼=
∑

{xj}j∈∂a\i

ψa(x∂a)
∏

j∈∂a\i

mja(xj) . (19.9)

Hereafter, we shall write them in the compact form

mia = fi
(
{m̂bi}b∈∂i\a

)
, m̂ai = f̂a

(
{mja}j∈∂a\i

)
. (19.10)

Each message set (m, m̂) is given a weight proportional to exF(m,bm), where the free entropy
F(m, m̂) is written in terms of BP messages as

F(m, m̂) =
∑
a∈F

Fa ({mja}j∈∂a) +
∑
i∈V

Fi ({m̂bi}b∈∂i) −
∑

(ia)∈E

Fia (mia, m̂ai) . (19.11)

The functions Fa, Fi, Fia were obtained in (14.28). Let us copy them here for conve-
nience:

Fa({mja}j∈∂a) = log

⎡⎣∑
x∂a

ψa(x∂a)
∏

j∈∂a

mja(xj)

⎤⎦ ,

Fi({m̂bi}b∈∂i) = log

[∑
xi

∏
b∈∂i

m̂bi(xi)

]
, (19.12)

Fia(mia, m̂ai) = log

[∑
xi

mia(xi)m̂ai(xi)

]
. (19.13)

We now consider the 2|E| messages m and m̂ as variables in our auxiliary graphical
model. The distribution induced by wn(x) in such messages takes the form

Px(m, m̂) =
1

Ξ(x)

∏
a∈F

Ψa({mja, m̂ja}j∈∂a)
∏
i∈V

Ψi({mib, m̂ib}b∈∂i)
∏

(ia)∈E

Ψia(mia, m̂ia) ,

(19.14)
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where we have introduced the compatibility functions

Ψa =
∏
i∈∂a

I

(
m̂ai = f̂a

(
{mja}j∈∂a\i

))
exFa({mja}j∈∂a) , (19.15)

Ψi =
∏
a∈∂i

I
(
mia = fi

(
{m̂bi}b∈∂i\a

))
exFi({bmbi}b∈∂i) , (19.16)

Ψia = e−xFia(mia,bmai) . (19.17)

The corresponding factor graph is depicted in Fig. 19.2 and can be described as
follows:

• For each edge (i, a) of the original factor graph, we introduce a variable node in the
auxiliary factor graph. The associated variable is the pair (mia, m̂ai). Furthermore,
we introduce a function node connected to this variable, contributing to the weight
through a factor Ψia = e−xFai .

• For each function node a of the original graph, we introduce a function node in
the auxiliary graph and connect it to all of the variable nodes corresponding to
edges (i, a), i ∈ ∂a. The compatibility function Ψa associated with this function
node has two roles: (i) it enforces the |∂a| BP equations expressing the variables
{m̂ai}i∈∂a in terms of the {mia}i∈∂a (see eqn (19.9)); (ii) it contributes to the
weight through a factor exFa .

• For each variable node i of the original graph, we introduce a function node in
the auxiliary graph, and connect it to all of the variable nodes corresponding to
edges (i, a), a ∈ ∂i. The compatibility function Ψi has two roles: (i) it enforces
the |∂i| BP equations expressing the variables {mib}b∈∂i in terms of {m̂bi}b∈∂i (see
eqn (19.9)); (ii) it contributes to the weight through a factor exFi .

Note that we were a bit sloppy in eqns (19.15)–(19.17). The messages mia, m̂ai are
in general continuous, and indicator functions should therefore be replaced by delta
functions. This might, in turn, pose some definition problems (what is the reference
measure on the messages? can we hope for exact solutions of BP equations?). One
should consider the above as a shorthand for the following procedure. First, we dis-
cretize the messages (and BP equations) in such a way that they can take a finite
number q of values. We compute the complexity by letting N → ∞ at fixed q, and
take the limit q → ∞ at the end. It is easy to define several alternative, and equally
reasonable, limiting procedures. We expect all of them to yield the same result. In
practice, the ambiguities in eqns (19.15)–(19.17) are resolved on a case-by-case basis.

19.2.2 Message passing in the auxiliary model

The problem of counting the number of Bethe measures (more precisely, computing
the complexity function Σ(φ)) has been reduced to one of estimating the partition
function Ξ(x) of the auxiliary graphical model (19.14). Since we are interested in the
case of locally tree-like factor graphs G, the auxiliary factor graph is locally tree-
like as well. We can therefore apply BP to estimate its free-entropy density F(x) =
limN N−1 log Ξ(x). This will give us the complexity through the Legendre transform
of eqn (19.8).
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νi→(ia)

e−xFai(mia,bmai)

Fig. 19.3 Messages in the auxiliary graphical model.

In the following, we denote by i ∈ V and a ∈ F a generic variable node and
function node in the graph G, and by (ia) ∈ E an edge in G. By extension, we
denote the corresponding nodes in the auxiliary graph in the same way. The messages
appearing in the BP analysis of the auxiliary model can be classified as follows (see
Fig. 19.3):

• From the variable node (ia), two messages are issued: ν(ia)→a(mia, m̂ai) and
ν(ia)→i(mia, m̂ai).

• From the function node a, |∂a| messages to nodes i ∈ ∂a are issued: ν̂a→(ai)(mia, m̂ai).

• From the function node i, |∂i| messages to nodes a ∈ ∂i are issued: ν̂i→(ai)(mia, m̂ai).

• From the degree-one function node connected to the variable node (ia), a message
is issued towards this variable node. This message is simply e−xFia(mia,bmai).

The BP equations for the variable node (ia) take a simple form:

ν(ia)→a(mia, m̂ai) ∼= ν̂i→(ia)(mia, m̂ai) e−xFia(mia,bmai) ,

ν(ia)→i(mia, m̂ai) ∼= ν̂a→(ia)(mia, m̂ai) e−xFia(mia,bmai) . (19.18)

We can use these equations to eliminate the messages ν̂i→(ia), ν̂a→(ia) in favour of
ν(ia)→a, ν(ia)→i. In order to emphasize this choice (and to simplify the notation) we
define

Qia(mia, m̂ai) ≡ ν(ia)→a(mia, m̂ai) , Q̂ai(mia, m̂ai) ≡ ν(ia)→i(mia, m̂ai) . (19.19)

We can now write the remaining BP equations of the auxiliary graphical model in
terms of Qia( · , · ) and Q̂ai( · , · ). The BP equation associated with the function node
corresponding to i ∈ V reads

Qia(mia, m̂ai) ∼=
∑

{mib,bmbi}b∈∂i\a

[∏
c∈∂i

I
(
mic = fi({m̂di}d∈∂i\c)

)]

× exp
{
x [Fi ({m̂bi}b∈∂i) − Fai (mia, m̂ai)]

} ∏
b∈∂i\a

Q̂bi(mib, m̂bi) , (19.20)

and the equation associated with the function node corresponding to a ∈ F is
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Q̂ ai(mia, m̂ai) ∼=
∑

{mja,bmaj}j∈∂a\i

⎡⎣∏
j∈∂a

I

(
m̂aj = f̂a({mka}k∈∂a\j)

)⎤⎦
× exp

{
x
[
Fa

(
{mja}j∈∂a

}
− Fai (mia, m̂ai)

]) ∏
j∈∂a\i

Qja(mja, m̂aj) . (19.21)

Equations (19.20) and (19.21) can be simplified further, using the following lemma.

Lemma 19.3 Assume that
∑

xi
mia(xi)m̂ai(xi) > 0. Under the condition mia =

fi({m̂di}d∈∂i\a) (which holds when the indicator functions in eqn (19.20) evaluate to
1), the difference Fi ({m̂bi}b∈∂i)−Fai (mia, m̂ai) can be expressed in terms of {m̂bi}b∈∂i\a.
Explicitly, we have

eFi−Fia = zia({m̂bi}b∈∂i\a) ≡
∑
xi

∏
b∈∂i\a

m̂bi(xi) . (19.22)

Analogously, under the condition m̂ai = f̂a({mka}k∈∂a\i) (which holds when the
indicator functions in eqn (19.21) evaluate to 1), the difference Fa ({mja}j∈∂a) −
Fai (mia, m̂ai) depends only on {mja}j∈∂a\i. Explicitly,

eFa−Fia = ẑai({mja}j∈∂a\i) ≡
∑
x∂a

ψa(x∂a)
∏

j∈∂a\i

mja(xj) . (19.23)

Proof Let us consider eqn (19.22) first. From the definition (14.28), it follows that

eFi−Fia =

∑
xi

∏
b∈∂i m̂bi(xi)∑

xi
mia(xi)m̂ai(xi)

. (19.24)

Substituting mia = fi({m̂ci}c∈∂i\a) in the denominator, and keeping track of the nor-
malization constant, we get

∑
xi

mia(xi)m̂ai(xi) =

∑
xi

∏
b∈∂i m̂bi(xi)∑

xi

∏
b∈∂i\a m̂ai(xi)

, (19.25)

which implies eqn (19.22).
The derivation of eqn (19.23) is completely analogous and is left as an exercise for

the reader. �

Note that the functions zia( · ) and ẑai( · ) appearing in eqns (19.22) and (19.23)
are in fact the normalization constants hidden by the ‘∼=’ notation in eqns (19.9).

Because of this lemma, we can seek a solution of eqns (19.20) and (19.21) where

Qia depends only on mia, and Q̂ai depends only on m̂ai. Hereafter, we shall focus on
this case, and, with some misuse of notation, we shall write

Qia(mia, m̂ai) = Qia(mia) , Q̂ia(mia, m̂ai) = Q̂ai(m̂ai) . (19.26)
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The BP equations for the auxiliary graphical model (19.20), (19.21) then become

Qia(mia) ∼=
∑
{bmbi}

I (mia = gi({m̂bi})) [zia({m̂bi})]x
∏

b∈∂i\a

Q̂bi(m̂bi) , (19.27)

Q̂ai(m̂ai) ∼=
∑
{mja}

I (m̂ai = fa({mja})) [ẑai({mja})]x
∏

j∈∂a\i

Qja(mja) , (19.28)

where {m̂bi} is a shorthand for {m̂bi}b∈∂i\a and {mja} is a shorthand for {mja}j∈∂a\i.
The expressions for zia({m̂bi}) and ẑai({mja}) are given in eqns (19.22) and (19.23).

Equations (19.27) and (19.28) are the 1RSB cavity equations. As we did in
the case of the ordinary BP equations, we can consider them as an update rule for
a message-passing algorithm. This will be discussed further in the following sections.
Sometimes the notation Qi→a( · ), Q̂a→i( · ) is used, to emphasize the fact that 1RSB
messages are associated with directed edges.

Notice that our derivation was based on the assumption that
∑

xi
mia(xi)m̂ai(xi) >

0. This condition holds if, for instance, the compatibility functions of the original
model are bounded away from 0. Under this condition, we have shown the following.

Proposition 19.4 If the 1RSB cavity equations (19.27) and (19.28) have a solution

Q̂,Q, this corresponds to a solution to the BP equations of the auxiliary graphical
model. Conversely, if the BP equations of the auxiliary graphical model admit a solution
satisfying the condition (19.26), then the resulting messages must be a solution of the
1RSB cavity equations.

The assumption (19.26)—which is suggestive of a form of ‘causality’— cannot be
further justified within the present approach, but alternative derivations of the 1RSB
equations confirm its validity.

19.2.3 Computing the complexity

We now compute the free entropy of the auxiliary graphical model within the BP
approximation. We expect the result of this procedure to be asymptotically exact for
a wide class of locally tree-like graphs, thus yielding the correct free-entropy density
F(x) = limN N−1 log Ξ(x).

Assume {Qia, Q̂ai} to be a solution (or a quasi-solution) of the 1RSB cavity equa-
tions (19.27) and (19.28). We use the general form (14.27) of the Bethe free entropy,
but take into account the degree-one factor nodes using the simplified expression de-
rived in Exercise 14.6. The various contributions to the free entropy are:

• The contribution from the function node a (here {mia} is a shorthand for {mia}i∈∂a):

FRSB
a = log

⎧⎨⎩∑
{mia}

exFa({mia})
∏
i∈∂a

Qia(mia)

⎫⎬⎭ . (19.29)

• The contribution from the function node i (here {m̂ai} is a shorthand for {m̂ai}a∈∂i):

FRSB
i = log

⎧⎨⎩∑
{bmai}

exFi({bmai})
∏
a∈∂i

Q̂ai(m̂ai)

⎫⎬⎭ . (19.30)
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• The contribution from the variable node (ia):

FRSB
ia = log

⎧⎨⎩ ∑
mia,bmai

exFia(mia,bmai)Qia(mia)Q̂ai(m̂ai)

⎫⎬⎭ . (19.31)

• The contributions from the two edges a–(ai) and i–(ai) are both equal to −FRSB
ia .

The Bethe free entropy of the auxiliary graphical model is equal to

FRSB({Q, Q̂}) =
∑
a∈F

FRSB
a +

∑
i∈V

FRSB
i −

∑
(ia)∈E

FRSB
ia . (19.32)

19.2.4 Summary

The 1RSB cavity equations (19.27) and (19.28) are the BP equations for the auxiliary

graphical model defined in eqn (19.14). They relate 2|E| messages {Qia(mia), Q̂ai(m̂ai)}.
Each such message is a probability distribution of ordinary BP messages mia(xi) and
m̂ai(xi), respectively. These elementary messages are, in turn, probability distributions
on variables xi ∈ X .

Given a solution (or an approximate solution) {Qia, Q̂ai}, one can estimate the
free-entropy density of the auxiliary model as

log Ξ(x) = FRSB({Q, Q̂}) + errN , (19.33)

where FRSB({Q, Q̂}) is given by eqn (19.32). For a large class of locally tree-like models,
we expect the BP approximation to be asymptotically exact for the auxiliary model.
This means that the error term errN is o(N).

For such models, the free-entropy density is given by its 1RSB cavity expression
F(x) = fRSB(x) ≡ limN→∞ FRSB({Q, Q̂})/N . The complexity Σ(φ) is then computed
through the Legendre transform (19.8).

19.2.5 Random graphical models and density evolution

Let us consider the case where G is a random graphical model as defined in Sec-
tion 14.6.1. The factor graph is distributed according to one of the ensembles GN (K,α)

or DN (Λ, P ). The function nodes are taken from a finite list {ψ(k)(x1, . . . , xk; Ĵ)} in-

dexed by a label Ĵ with distribution P
(k)bJ . Each factor ψa( · ) is taken to be equal to

ψ(k)( · · · ; Ĵa) independently with the same distribution. We also introduce explicitly
a degree-one factor ψi(xi) connected to each variable node i ∈ V . This is also drawn
independently from a list of possible factors {ψ(x;J)}, indexed by a label J with
distribution PJ .

For a random graphical model, the measure µ( · ) becomes random, and so does
its decomposition into extremal Bethe states in particular the probabilities {wn} and

the message sets {νn
i→a, ν̂n

a→i}. In particular, the 1RSB messages {Qia, Q̂ai} become
random. It is important to keep in mind the ‘two levels’ of randomness. Given an edge
(ia), the message νn

i→a is random if the Bethe state n is drawn from the distribution
wn. The resulting distribution Qia(m) becomes a random variable when the graphical
model is itself random.
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The distributions of Qia(m) and Q̂ai(m̂) can then be studied through the density evo-

lution method of Section 14.6.2. Let us assume an i.i.d. initialization Q
(0)
ia ( · ) d

= Q(0)( · )
(and Q̂

(0)
ai ( · ) d

= Q̂(0)( · )), and denote by Q
(t)
ia ( · ) and Q̂

(t)
ai ( · ) the 1RSB messages along

edge (ia) after t parallel updates using the 1RSB equations (19.27) and (19.28). If (ia)

is a uniformly random edge then, as N → ∞, Q
(t)
ia ( · ) converges in distribution3 to

Q(t)( · ) (and Q̂
(t)
ia ( · ) converges in distribution to Q̂(t)( · )). The distributions Q(t)( · )

and Q̂(t)( · ) are themselves random variables that satisfy the following equations:

Q(t+1)(m)
d∼=
∑
{bmb}

I (m = f({m̂b};J)) z({m̂b};J)x
l−1∏
b=1

Q̂
(t)
b (m̂b) , (19.34)

Q̂(t)(m̂)
d∼=
∑
{mj}

I

(
m̂ = f̂({mj}; Ĵ)

)
ẑ({mj}; Ĵ)x

k−1∏
j=1

Q
(t)
j (mj) , (19.35)

where k and l are distributed according to the edge-perspective degree profiles ρk and

λl, the
{

Q̂
(t)
b

}
are k − 1 independent copies of Q̂(t)( · ), and the

{
Q

(t)
j

}
are l − 1

independent copies of Q(t)( · ). The functions z and ẑ are given by

z({m̂b};J) =
∑

x

ψ(x, J)
l−1∏
b=1

m̂b(x) ,

ẑ({mj}; Ĵ) =
∑

x1,...,xk

ψ(k)(x1, . . . , xk; Ĵ)

k−1∏
j=1

mj(xj) . (19.36)

In the 1RSB cavity method, the actual distribution of Qi→a is assumed to coincide
with one of the fixed points of the above density evolution equations. As in the RS
case, one hopes that, on large enough instances, the message-passing algorithm will
converge to messages distributed according to this fixed-point equation (meaning that
there is no problem in exchanging the limits t → ∞ and N → ∞). This can be checked
numerically.

For random graphical models, the 1RSB free-entropy density converges to a finite
limit fRSB(x). This can be expressed in terms of the distributions of Q and Q̂. by
taking the expectation of eqns (19.29)–(19.31) and assuming that the 1RSB messages
coming into the same node are i.i.d. As in eqn (14.77), the result takes the form

fRSB = fRSB
v + nf f

RSB
f − nef

RSB
e . (19.37)

Here nf is the average number of function nodes per variable (equal to Λ′(1)/P ′(1) for
a graphical model in the ensemble DN (Λ, P ), and to α for a graphical model in the
ensemble GN (K,α)), and ne is the number of edges per variable (equal to Λ′(1) and

3We shall not discuss the measure-theoretic subtleties related to this statement. Let us just mention
that weak topology is understood on the space of messages Q(t).



��� The 1RSB cavity method

to Kα for these two ensembles). The contributions from variable nodes fRSB
v , function

nodes fRSB
f , and edges fRSB

e are

fRSB
v = El,J,{ bQ} log

⎧⎨⎩ ∑
{bm1,...,bml}

Q̂1(m̂1) . . . Q̂l(m̂l)

[∑
x∈X

m̂1(x) . . . m̂l(x)ψ(x;J)

]x⎫⎬⎭ ,

fRSB
f = Ek, bJ,{Q} log

⎧⎨⎩ ∑
{m1,...,mk}

Q1(m1) . . . Qk(mk)

×

⎡⎣ ∑
x1,...,xk∈X

m1(x1) . . . mk(xk)ψ(k)(x1, . . . , xk; Ĵ)

⎤⎦x⎫⎬⎭ ,

fRSB
e = E bQ,Q log

⎧⎨⎩∑bm,m Q̂(m̂)Q(m)

[∑
x∈X

m̂(x)m(x)

]x⎫⎬⎭ . (19.38)

19.2.6 Numerical implementation

Needless to say, it is extremely challenging to find a fixed point of the density evolution
equations (19.34) and (19.35), and thus determine the distributions of Q and Q̂. A
simple numerical approach consists in generalizing the population dynamics algorithm
described in the context of the RS cavity method (see Section 14.6.3).

There are two important issues related to such a generalization:

(i) We seek the distribution of Q( · ) (and Q̂( · )), which is itself a distribution of mes-
sages. If we approximate Q( · ) by a sample (a ‘population’), we thus need two
levels of populations. In other words, we seek a population {ms

r} with NM items.
For each r ∈ {1, . . . , N}, the set of messages {ms

r}, s ∈ {1, . . . , M}, represents a
distribution Qr( · ) (ideally, it would be an i.i.d. sample from this distribution).
At the next level, the population {Qr( · )} , r ∈ {1, · · · , N}, represents the dis-
tribution of Q( · ) (ideally, an i.i.d. sample). Analogously, for function-to-variable
messages, we use a population {m̂s

r}, with r ∈ {1, . . . , N} and s ∈ {1, . . . , M}.

(ii) The reweighting factors z({m̂b};J)x and ẑ({mj}; Ĵ)x appearing in eqns (19.34) and
(19.35) do not have any analogue in the RS context. How can one take such factors

into account when Q( · ) and Q̂( · ) are represented as populations? One possibility
is to generate an intermediate weighted population, and then sample from it with
a probability proportional to the weight.

This procedure is summarized in the following pseudocode.
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1RSB Population dynamics (model ensemble, sizes N,M , iterations T )
1: Initialize {ms

r};
2: for t = 1, . . . , T :
3: for r = 1, . . . , N :
4: Draw an integer k with distribution ρ;
5: Draw i(1), . . . , i(k − 1) uniformly in {1, . . . , N};
6: Draw Ĵ with distribution P

(k)bJ ;

7: for s = 1, . . . , M :
8: Draw s(1), . . . , s(k− 1) uniformly in {1, . . . , M};
9: Compute m̂s

temp = f̂(m
s(1)
i(1) , . . . , m

s(k−1)
i(k−1) ; Ĵ)

10: Compute W s = ẑ(m
s(1)
i(1) , . . . , m

s(k−1)
i(k−1) ; Ĵ)x

11: end;
12: Generate the new population

{m̂s
r}s∈[M ] = Reweight({m̂s

temp,W
s}s∈[M ])

13: end;
14: for r = 1, . . . , N :
15: Draw an integer l with distribution λ;
16: Draw i(1), . . . , i(l − 1) uniformly in {1, . . . , N};
17: Draw J with distribution P ;
18: for s = 1, . . . , M :
19: Draw s(1), . . . , s(l − 1) uniformly in {1, . . . , M};
20: Compute ms

temp = f(m̂
s(1)
i(1) , . . . , m̂

s(k−1)
i(l−1) ;J)

21: Compute W s = z(m̂
s(1)
i(1) , . . . , m̂

s(l−1)
i(l−1) ;J)x

22: end;
23: Generate the new population

{ms
r}s∈[M ] = Reweight({ms

temp,W
s}s∈[M ])

24: end;
25: return {m̂s

r} and {ms
r}.

The reweighting procedure is given by the following pseudocode:

Reweight (population of messages and weights {(ms
temp,W

s)}s∈[M ])

1: for s = 1, . . . , M , set ps ≡ W s/
∑

s′ W s′

;
2: for s = 1, . . . , M :
3: Draw i ∈ {1, . . . , M} with distribution ps;
4: Set ms

new = mi
temp;

5: end;
6: return {ms

new}s∈[M ].

In the large-N,M limit, the populations generated by this algorithm should con-
verge to i.i.d. samples distributed as Q(T )( · ) and Q̂(T )( · ) (see eqns (19.34) and
(19.35)). If we let T grow, they should represent accurately the fixed points of the
density evolution, although the caveats expressed in the RS case should be repeated
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here.
Among the other quantities, the populations generated by this algorithm allow

one to estimate the 1RSB free-entropy density (19.37). Suppose we have generated a
population of messages {m̂s

r( · )}, where each message is a probability distribution on
X . The corresponding estimate of fRSB

v is

f̂RSB
v = El,J

1

N l

N∑
r(1)...r(l)=1

log

⎧⎨⎩ 1

M l

M∑
s(1),...,s(l)=1

[∑
x∈X

m̂
s(1)
r(1)(x) · · · m̂s(l)

r(l)(x) ψ(x;J)

]x⎫⎬⎭ .

Similar expressions are easily written for fRSB
f and fRSB

e . Their (approximate) evalua-
tion can be accelerated considerably by summing over a random subset of the l-tuples
r(1), . . . , r(l) and s(1), . . . , s(l). Further, as in the RS case, it is beneficial to average
over iterations (or, equivalently, over T ) in order to reduce statistical errors at small
computational cost.

19.3 A first application: XORSAT

Let us apply the 1RSB cavity method to XORSAT. This approach was introduced in
Section 18.6, but we now want to show how it follows as a special case of the formalism
developed in the previous sections of this chapter. Our objective is to exemplify the
general ideas with a well understood problem, and to build some basic intuition that
will be useful in more complicated applications.

As in Chapter 18, we consider the distribution over x = (x1, . . . , xN ) ∈ {0, 1}N

specified by

µ(x) =
1

Z

M∏
a=1

I
(
xi1(a) ⊕ · · · ⊕ xik(a) = ba

)
. (19.39)

As usual, ⊕ denotes the sum modulo 2 and, for each a ∈ {1, . . . , M}, ∂a = {i1(a), . . . , iK(a)}
is a subset of {1, ·, N}, and ba ∈ {0, 1}. Random K-XORSAT formulae are generated
by choosing both the index set {i1(a), . . . , iK(a)} and the right-hand side ba uniformly
at random.

19.3.1 BP equations

The BP equations read

mia(xi) =
1

zia

∏
b∈∂i\a

m̂bi(xi) , (19.40)

m̂ai(xi) =
1

ẑai

∑
x∂a\i

I
(
xi1(a) ⊕ · · · ⊕ xiK(a) = ba

) ∏
j∈∂a\i

mja(xj) . (19.41)

As in Section 18.6, we shall assume that messages can take only three values, which we
denote by the shorthands mia = 0 if (mia(0) = 1, mia(1) = 0), mia = 1 if (mia(0) = 0,
mia(1) = 1), and mia = ∗ if (mia(0) = mia(1) = 1/2).
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Consider the first BP equation (19.40), and denote by n0, n1, and n∗ the numbers
of messages of type 0, 1, and ∗, respectively, in the set of incoming messages {m̂bi}, b ∈
∂i\a. Equation (19.40) can then be rewritten as

mia =

⎧⎪⎪⎨⎪⎪⎩
0 if n0 > 0, n1 = 0,
1 if n0 = 0, n1 > 0,
∗ if n0 = 0, n1 = 0,
? if n0 > 0, n1 > 0,

zia =

⎧⎪⎪⎨⎪⎪⎩
2−n∗ if n0 > 0, n1 = 0,
2−n∗ if n0 = 0, n1 > 0,
21−n∗ if n0 = 0, n1 = 0,
0 if n0 > 0, n1 > 0.

(19.42)

The computation of the normalization constant zia will be useful in the 1RSB analysis.
Notice that if n0 > 0 and n1 > 0, a contradiction arises at node i and therefore mia

is not defined. However, we shall see that, because zia = 0 in this case, this situation
does not create any problem within 1RSB.

In the second BP equation (19.41), we denote by n̂0, n̂1, and n̂∗ the numbers of
messages of type 0, 1, and ∗, respectively, among {mja}, j ∈ ∂a\i. We then obtain

m̂ai =

⎧⎨⎩0 if n∗ = 0 and n1 has the same parity as ba,
1 if n∗ = 0 and n1 does not have the same parity as ba,
∗ if n∗ > 0.

(19.43)

In all three cases, ẑai = 1.
In Section 18.6 we studied the equations (19.40) and (19.41) above and deduced

that, for typical random instances with α = M/N < αd(K), they have a unique
solution, with mia = m̂ai = ∗ on each edge.

Exercise 19.2 Evaluate the Bethe free entropy for this solution, and show that it yields
the free-entropy density fRS = (1 − α) log 2.

19.3.2 The 1RSB cavity equations

We now assume that the BP equations (19.42) and (19.43) have many solutions, and
apply the 1RSB cavity method to study their statistics.

The 1RSB messages Qia and Q̂ai are distributions over {0, 1, ∗}. A little effort
shows that eqn (19.27) yields

Qia(0) =
1

Zia

⎧⎨⎩ ∏
b∈∂i\a

(
Q̂bi(0) + 2−xQ̂bi(∗)

)
−
∏

b∈∂i\a

(
2−xQ̂bi(∗)

)⎫⎬⎭ , (19.44)

Qia(1) =
1

Zia

⎧⎨⎩ ∏
b∈∂i\a

(
Q̂bi(1) + 2−xQ̂bi(∗)

)
−
∏

b∈∂i\a

(
2−xQ̂bi(∗)

)⎫⎬⎭ , (19.45)

Qia(∗) =
1

Zia
2x
∏

b∈∂i\a

2−xQ̂bi(∗) . (19.46)

For instance, eqn (19.44) follows from the first line of eqn (19.42): mia = 0 if all of
the incoming messages are m̂bi ∈ {∗, 0} (first term), unless they are all equal to ∗
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(subtracted term). The reweighting zxia = 2−xn∗ decomposes into factors associated
with the incoming ∗ messages.

The second group of 1RSB equations, eqn (19.28), takes the form

Q̂ai(0) =
1

2

⎧⎨⎩ ∏
j∈∂a\i

(Qja(0) + Qja(1)) + s(ba)
∏

j∈∂a\i

(Qja(0) − Qja(1))

⎫⎬⎭ ,

(19.47)

Q̂ai(1) =
1

2

⎧⎨⎩ ∏
j∈∂a\i

(Qja(0) + Qja(1)) − s(ba)
∏

j∈∂a\i

(Qja(0) − Qja(1))

⎫⎬⎭ ,

(19.48)

Q̂ai(∗) = 1 −
∏

j∈∂a\i

(Qja(0) + Qja(1)) , (19.49)

where s(ba) = +1 if ba = 0, and s(ba) = −1 otherwise.
Notice that, if one takes x = 0, the two sets of equations coincide with those

obtained in Section 18.6 (see eqn (18.35)) (the homogeneous linear system, ba = 0,
was considered there). As in that section, we look for solutions such that the messages

Qia( · ) (and similarly Q̂ai( · )) take two possible values: either Qia(0) = Qia(1) = 1/2,
or Qia(∗) = 1. This assumption is consistent with the 1RSB cavity equations (19.44)
and (19.49). Under this assumption, the x dependency drops from these equations
and we recover the analysis in Section 18.6. In particular, we can repeat the density
evolution analysis discussed there. If we denote by Q∗ the probability that a randomly
chosen edge carries the 1RSB message Qia(0) = Qia(1) = 1/2, then the fixed-point
equation of density evolution reads

Q∗ = 1 − exp{−kαQk−1
∗ } . (19.50)

For α < αd(K), this equation admits only the solution Q∗ = 0, implying Qia(∗) = 1
with high probability. This indicates (once more) that the only solution of the BP
equations in this regime is mia = ∗ for all (i, a) ∈ E.

For α > αd, a pair of non-trivial solutions (with Q∗ > 0) appear, indicating the
existence of a large number of BP fixed points (and hence Bethe measures). Consid-
erations of stability under density evolution suggest that we should select the largest
one. It will also be useful in the following to introduce the probability

Q̂∗ = Qk−1
∗ (19.51)

that a uniformly random edge carries a message Q̂ai(0) = Q̂ai(1) = 1/2.

19.3.3 Complexity

We can now compute the Bethe free entropy (19.32) of the auxiliary graphical model.
The complexity will be computed through the Legendre transform of the 1RSB free
entropy (see eqn (19.8)).



A first application: XORSAT ���

Let us start by computing the contribution FRSB
a defined in eqn (19.29). Consider

the weight

eFa({mia}) =
∑
x∂a

I(xi1(a) ⊕ · · · ⊕ xiK(a) = ba)
∏
i∈∂a

mia(xi) . (19.52)

Let n̂0, n̂1, and n̂∗ denote the number of variable nodes i ∈ ∂a such that mia = 0, 1,
and ∗, respectively, for i ∈ ∂a. We then obtain

eFa({mia}) =

⎧⎨⎩1/2 if n̂∗ > 0,
1 if n̂∗ = 0 and n̂1 has the same parity as ba,
0 if n̂∗ = 0 and n̂1 does not have the same parity as ba.

(19.53)

Taking the expectation of exFa({mia}) with respect to {mia}, distributed independently
according to Qia( · ), and assuming that Qia(0) = Qia(1) (which is the case in our
solution), we get

FRSB
a = log

{
1

2

∏
i∈∂a

(1 − Qia(∗)) +
1

2x

[
1 −

∏
i∈∂a

(1 − Qia(∗))
]}

. (19.54)

The first term corresponds to the case n̂∗ = 0 (the factor 1/2 being the probability
that the parity of n̂1 is ba), and the second to n̂∗ > 0. Within our solution, either
Qia(∗) = 0 or Qia(∗) = 1. Therefore only one of the above terms survives: either
Qia(∗) = 0 for all i ∈ ∂a, yielding FRSB

a = − log 2, or Qia(∗) = 1 for some i ∈ ∂a,
implying FRSB

a = −x log 2.
Until now, we have considered a generic K-XORSAT instance. For random in-

stances, we can take the expectation with respect to Qia(∗), independently distributed
as in the density-evolution fixed point. The first case, namely Qia(∗) = 0 for all i ∈ ∂a
(and thus FRSB

a = − log 2), occurs with probability Qk
∗. The second, i.e. Qia(∗) = 1 for

some i ∈ ∂a (and FRSB
a = −x log 2), occurs with probability 1 − Qk

∗. Altogether, we
obtain

E{FRSB
a } = −

[
Qk

∗ + x(1 − Qk
∗)
]

log 2 + oN (1) . (19.55)

Assuming the messages Qia( · ) to be short-range correlated,
∑

a∈F FRSB
a will concen-

trate around its expectation. We then have, with high probability,

1

N

∑
a∈F

FRSB
a = −α

[
Qk

∗ + x(1 − Qk
∗)
]

log 2 + oN (1) . (19.56)

The contributions from variable-node and edge terms can be computed along similar
lines. We shall just sketch these computations, and invite the reader to work out the
details.

Consider the contribution FRSB
i , i ∈ V , defined in eqn (19.30). Assume that

Q̂ai(∗) = 1 and Q̂ai(0) = Q̂ai(1) = 1/2 for n∗ and n0, respectively, of the neigh-
bouring function nodes a ∈ ∂i. Then FRSB

i = −(n∗x + n0 − 1) log 2 if n0 ≥ 1, and
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FRSB
i = −(n∗ − 1)x log 2 otherwise. Averaging these expressions over n0 (a Poisson-

distributed random variable with mean kαQ̂∗) and n∗ (Poisson with mean kα(1−Q̂∗)),
we obtain

1

N

∑
i∈V

FRSB
i = −

{[
kαQ̂∗ − 1 + e−kα bQ∗

]
+
[
kα(1 − Q̂∗) − e−kα bQ∗

]
x
}

log 2 + oN (1) .

(19.57)
Let us consider, finally, the edge contribution FRSB

(ia) defined in eqn (19.31). If

Qia(0) = Qia(1) = 1/2 and Q̂ai(0) = Q̂ai(1) = 1/2, then either eFai = 1 or eFia = 0,
each with probability 1/2. As a consequence, FRSB

(ia) = − log 2. If either Qia(∗) = 1 or

Q̂ai(∗) = 1 (or both), eF
RSB
ia = 1/2 with probability 1, and therefore FRSB

(ia) = −x log 2.
Altogether, we obtain, with high probability,

1

N

∑
(ia)∈E

FRSB
(ia) = −kα

{
Q∗Q̂∗ + (1 − Q∗Q̂∗)x

}
log 2 + oN (1). (19.58)

The free entropy (19.32) of the auxiliary graphical model is obtained by collecting
the various terms. We obtain FRSB(x) = N fRSB(x) + o(N), where fRSB(x) = [Σtot +
xφtyp] log 2 and

Σtot = kαQ∗Q̂∗ − kαQ̂∗ − αQk
∗ + 1 − e−kα bQ∗ , (19.59)

φtyp = −kαQ∗Q̂∗ + kαQ̂∗ + αQk
∗ − α + e−kα bQ∗ . (19.60)

Here Q∗ is the largest solution of eqn (19.50), and Q̂∗ = Qk−1
∗ , a condition that has a

pleasing interpretation, as shown in the exercise below.

Exercise 19.3 Consider the function Σtot(Q∗, bQ∗) defined in eqn (19.59). Show that the

stationary points of this function coincide with the solutions of eqn (19.50) and that bQ∗ =
Qk−1

∗ .

Because of the linear dependence on x, the Legendre transform (19.8) is straight-
forward:

Σ(φ) =

{
Σtot if φ = φtyp,
−∞ otherwise.

(19.61)

This means that there are 2NΣtot Bethe measures, and these all have entropy Nφtyp log 2.
Furthermore, Σtot + φtyp = 1 − α, confirming that the total entropy is (1 − α) log 2.
This identity can be also written in the form

1

2N(1−α)
=

1

2NΣtot
× 1

2Nφtyp
, (19.62)

which is nothing but the decomposition (19.6) into extremal Bethe measures. Indeed,
if x is a solution of the linear system, then µ(x) = 1/2N(1−α), wn ≈ 1/2NΣtot , and
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(assuming the µn to have disjoint supports) µn(x) ≈ 1/2Nφtyp for the state n which
contains x.

Note that the value of Σ that we find here coincides with the result that we ob-
tained in Section 18.5 for the logarithm of the number of clusters in random XORSAT
formulae. This provides an independent check of our assumptions and, in particular,
it shows that the number of clusters is, to leading order, the same as the number of
Bethe measures. In particular, the SAT–UNSAT transition occurs at the value of α
where the complexity Σtot vanishes. At this value, each cluster still contains a large
number, 2N(1−αs), of configurations.

Exercise 19.4 Repeat this 1RSB cavity analysis for a linear Boolean system described
by a factor graph from the ensemble DN (Λ, P ). (This means a random system of linear
equations, where the fraction of equations involving k variables is Pk, and the fraction of
variables which appear in exactly � equations is Λ.)

(a) Show that Q∗ and bQ∗ satisfy

bQ∗ = ρ(Q∗) , Q∗ = 1 − λ(1 − bQ∗) , (19.63)

where λ and ρ are the edge-perspective degree profiles.

(b) Show that the complexity is given by

Σtot = 1 − Λ′(1)

P ′(1)
P (Q∗) − Λ(1 − bQ∗) − Λ′(1)(1 − Q∗) bQ∗ , (19.64)

and the internal entropy of the clusters is φtyp = 1 − Λ′(1)/P ′(1) − Σtot.

(c) In the case where all variables have a degree strictly larger than 1 (so that λ(0) = 0),

argue that the relevant solution is Q∗ = bQ∗ = 1, Σtot = 1 − Λ′(1)/P ′(1), φtyp = 0.
What is the interpretation of this result in terms of the core structure discussed in
Section 18.3?

19.4 The special value x = 1

Let us now return to the general formalism. The case x = 1 plays a special role, in
that the weights {wn(x)} of various Bethe measures in the auxiliary model coincide
with those appearing in the decomposition (19.6). This fact manifests itself in some
remarkable properties of the 1RSB formalism.

19.4.1 Back to BP

Consider the general 1RSB cavity equations (19.27) and (19.28). Using the explicit
form of the reweighting factors eFi−Fia and eFa−Fia provided in eqns (19.22) and
(19.23), they can be written, for x = 1, as
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Qia(mia) ∼=
∑
xi

∑
{bmbi}

I (mia = gi({m̂bi}))
∏

b∈∂i\a

Q̂bi(m̂bi) m̂bi(xi) , (19.65)

Q̂ai(m̂ai) ∼=
∑
x∂a

ψa(x∂a)
∑
{mja}

I (m̂ai = fa({mja}))
∏

j∈∂a\i

Qja(mja) mja(xj) . (19.66)

We introduce the messages obtained by taking the averages of the 1RSB messages
{Qia, Q̂ai}:

νav
i→a(xi) ≡

∑
mia

Qia(mia) mia(xi) , ν̂av
a→i(xi) ≡

∑
bmai

Q̂ai(m̂ai) m̂ai(xi) .

The interpretation of these quantities is straightforward. Given an extremal Bethe
measure sampled according to the distribution wn, let νn

i→a( · ) (or ν̂n
a→i( · )) be the

corresponding message along the directed edge i → a (or a → i, respectively). Its
expectation, with respect to the random choice of the measure, is νav

i→a( · ) (or ν̂av
a→i( · ),

respectively).
Using the eqns (19.9), one finds that eqns (19.65) and (19.66) imply

νav
i→a(xi) ∼=

∏
b∈∂i\a

ν̂av
b→i(xi) , (19.67)

ν̂av
a→i(xi) ∼=

∑
{xj}j∈∂a\i

ψa(x∂a)
∏

j∈∂a\i

νav
j→a(xj) , (19.68)

which are nothing but the ordinary BP equations. This suggests that even if µ( · )
decomposes into an exponential number of extremal Bethe measures µn( · ), it is itself
a (non-extremal) Bethe measure. In particular, there exists a quasi-solution of the BP
equations associated with it that allows one to compute its marginals.

The reader might be disappointed by these remarks. Why should we insist on the
1RSB cavity approach if, when the ‘correct’ weights are used, one recovers the much
simpler BP equations? There are at least two answers:

1. The 1RSB approach provides a much more refined picture: decomposition into
extremal Bethe states, long-range correlations, and complexity. This is useful and
interesting per se.

2. In the case of a static (s1RSB) phase, it turns out that the region x = 1 cor-
responds to an ‘unphysical’ solution of the 1RSB cavity equations, and that
(asymptotically) correct marginals are instead obtained by letting x = x∗, for
some x∗ ∈ [0, 1). In such cases it is essential to resort to the full 1RSB formalism
(see Section 19.6 below).

19.4.2 A simpler recursion

As we stressed above, controlling (either numerically or analytically) the 1RSB dis-
tributional recursions (19.34) and (19.35) is a difficult task. In the case x = 1, they
simplify considerably and lend themselves to a much more accurate numerical study.
This observation can be very useful in practice.
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As in Section 19.2.5, we consider a random graphical model. We shall also assume a
‘local uniformity condition’. More precisely, the original model µ( · ) is a Bethe measure
for the message set νav

i→a(xi) = 1/q and ν̂av
a→i(xi) = 1/q, where q = |X | is the size of

the alphabet. While such a local uniformity condition is not necessary, it considerably
simplifies the derivation below. The reader can find a more general treatment in the
literature.

Consider eqns (19.34) and (19.35) at x = 1. The normalization constants can
be easily computed using the uniformity condition. We can then average over the
structure of the graph and the function node distribution: let us denote the averaged
distributions by Qav and Q̂av. They satisfy the following equations:

Q(t+1)
av (m) = E

⎧⎨⎩ql−2
∑
{bmb}

I (m = f({m̂b};J)) z({m̂b})
l−1∏
b=1

Q̂(t)
av (m̂b)

⎫⎬⎭ , (19.69)

Q̂(t)
av (m̂) = E

⎧⎨⎩qk−2

ψk

∑
{mj}

I

(
m̂ = f̂({mj}; Ĵ)

)
ẑ({mj}; Ĵ)

k−1∏
j=1

Q(t)
av (mj)

⎫⎬⎭ , (19.70)

where the expectations are taken over l, k, J, Ĵ , distributed according to the random
graphical model. Here, ψk =

∑
x1,...,xk−1

ψ(x1, . . . , xk−1, x; Ĵ) can be shown to be in-

dependent of x (this is necessary for the uniformity condition to hold).
Equations (19.69) and (19.70) are considerably simpler than the original distribu-

tional equations (19.34) and (19.35) in that Q(t)
av ( · ) and Q̂(t)

av ( · ) are non-random. On
the other hand, they still involve a reweighting factor that is difficult to handle. It turns
out that this reweighting can be eliminated by introducing a new pair of distributions
for each x ∈ X :

R̂(t)
x (m) ≡ q m(x) Q̂(t)

av (m) , R(t)
x (m) = q m(x) Q(t)

av (m) . (19.71)

One can show that eqns (19.69) and (19.70) imply the following recursions for R
(t)
x

and R̂
(t)
x :

R(t+1)
x (m) = E

⎧⎨⎩∑
{bmb}

I (m = g({m̂b};J))
l−1∏
b=1

R̂(t)
x (m̂b)

⎫⎬⎭ , (19.72)

R̂(t)
x (m̂) = E

⎧⎨⎩∑
{xj}

π({xj}|x; Ĵ)
∑
{mj}

I

(
m̂ = f({mj}; Ĵ)

) k−1∏
j=1

R(t)
xj

(mj)

⎫⎬⎭ . (19.73)

Here E denotes the expectation with respect to l, Ĵ , k, J and, for any x, Ĵ , the distri-
bution π({xj}|x; Ĵ) is defined by

π(x1, . . . , xk−1|x; Ĵ) =
ψ(x1, . . . , xk−1, x; Ĵ)∑

y1,...,yk−1
ψ(y1, . . . , yk−1, x; Ĵ)

. (19.74)
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Exercise 19.5 Prove eqns (19.72) and (19.73). It might be useful to recall the following
explicit expressions for the reweighting factors z and ẑ:

z({bmb}) m(x) =

l−1Y
b=1

bmb(x) , (19.75)

ẑ({mj}; bJ) bm(x) =
X

{xi},x

ψ(x1, . . . , xk−1, x; bJ)

k−1Y
j=1

mj(xj) . (19.76)

Equations (19.72) and (19.73) have a simple operational description. Let Ĵ and k be
drawn according to their distribution, and, given x, let us generate x1, . . . , xk−1 accord-

ing to the kernel π(x1, . . . , xk|x; Ĵ). Then we draw independent messages m1, . . . , mk−1

with distributions R
(t)
x1 , . . . , R

(t)
xk−1 , respectively. According to eqn (19.73), m̂ = f({mj}; Ĵ)

then has the distribution R̂
(t)
x . For eqn (19.72), we draw J and l according to their

distribution. Given x, we draw l− 1 i.i.d. messages m̂1, . . . , m̂l−1 with distribution R̂
(t)
x .

Then m = g({m̂b};J) has the distribution R
(t+1)
x .

We shall see in Chapter 22 that this procedure does indeed coincide with that for
computing ‘point-to-set correlations’ with respect to the measure µ( · ).

To summarize, for x = 1 we have succeeded in simplifying the 1RSB density evolu-
tion equations in two directions: (i) the resulting equations do not involve ‘distributions
of distributions’; and (ii) we have got rid of the reweighting factor. A third crucial
simplification is the following.

Theorem 19.5 The 1RSB equations have a non-trivial solution (meaning a solution
different from the RS one) if and only if eqns (19.72) and (19.73), when initialized

so that R
(0)
x is a singleton distribution on m(y) = I(y = x), converge as t → ∞ to a

non-trivial distribution.

This theorem resolves (in the case x = 1) the ambiguity in the initial condition of the
1RSB iteration. In other words, if the 1RSB equations admit a non-trivial solution, this
solution can be reached if we iterate the equations starting from the initial condition
mentioned in the theorem. We refer the reader to the literature for a proof.

Exercise 19.6 Show that the free entropy of the auxiliary model FRSB(x), evaluated at
x = 1, coincides with the RS Bethe free entropy.

Further, its derivative with respect to x at x = 1 can be expressed in terms of the fixed-

point distributions R
(∞)
x and bR(∞)

x . In particular, the complexity and internal free entropy
can be computed from the fixed points of the simplified equations (19.72) and (19.73).
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The conclusion of this section is that 1RSB calculations at x = 1 are not technically
harder than RS ones. In view of the special role played by the value x = 1, this
observation can be exploited in a number of contexts.

19.5 Survey propagation

The 1RSB cavity method can be applied to other message-passing algorithms whenever
these have many fixed points. A particularly important case is the min-sum algorithm
of Section 14.3. This approach (in both its RS and its 1RSB version) is sometimes
referred to as the energetic cavity method because, in physics terms, the min-sum
algorithm aims at computing the ground state configuration and its energy. We shall
call the corresponding 1RSB message-passing algorithm SP(y) (‘survey propagation
at finite y’).

19.5.1 The SP(y) equations

The formalism follows closely that used for counting the solutions of BP equations. To
emphasize the similarities, let us adopt the same notation for the min-sum messages
as for the BP ones. We define

mja(xj) ≡ Ei→a(xi) , m̂ai(xi) ≡ Êa→i(xi) , (19.77)

and write the min-sum equations (14.41) and (14.40) as

mia = fei
(
{m̂bi}b∈∂i\a

)
, m̂ai = f̂ea

(
{mja}j∈∂a\i

)
. (19.78)

The functions fei and f̂ea are defined by eqns (14.41) and (14.40), which we reproduce
here:

mia(xi) =
∑

b∈∂i\a

m̂bi(xi) − uia , (19.79)

m̂ai(xi) = min
x∂a\i

⎡⎣Ea(x∂a) +
∑

j∈∂a\i

mja(xj)

⎤⎦− ûai , (19.80)

where uia, ûai are normalization constants (independent of xi) which ensure that
minxi

m̂ai(xi) = 0 and minxi
mia(xi) = 0.

With any set of messages {mia, m̂ai}, we associate the Bethe energy

Fe(m, m̂) =
∑
a∈F

Fe
a({mia}i∈∂a) +

∑
i∈V

Fe
i ({m̂ai}a∈∂i) −

∑
(ia)∈E

Fe
ia(mia, m̂ai) , (19.81)

where the various terms are (see eqn (14.45))

Fe
a = min

x∂a

[
Ea(x∂a) +

∑
j∈∂a

mia(xi)
]
, Fe

i = min
xi

[ ∑
a∈∂i

m̂ai(xi)
]
,

Fe
ia = min

xi

[
mia(xi) + m̂ai(xi)

]
. (19.82)

Having set up the message-passing algorithm and the associated energy functional,
we can repeat the programme developed in the previous sections. In particular, in
analogy with Assumption 1, we have the following.
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Assumption 4 There exist exponentially many quasi-solutions {mn} of the min-sum
equations. The number of such solutions with Bethe energy Fe(mn) ≈ Nε is (to leading
exponential order) exp{NΣe(ε)}, where Σe(ε) is the energetic complexity function.

In order to estimate Σe(ε), we introduce an auxiliary graphical model, whose vari-
ables are the min-sum messages {mia, m̂ai}. These are forced to satisfy (within some
accuracy) the min-sum equations (19.79) and (19.80). Each solution is given a weight
e−yF

e(m,bm), with y ∈ R. The corresponding distribution is

Py(m, m̂) =
1

Ξ(y)

∏
a∈F

Ψa({mja, m̂ja}j∈∂a)
∏
i∈V

Ψi({mib, m̂ib}b∈∂i)
∏

(ia)∈E

Ψia(mia, m̂ia) ,

(19.83)
where

Ψa =
∏
i∈∂a

I

(
m̂ai = f̂ea

(
{mja}j∈∂a\i

))
e−yF

e
a({mja}j∈∂a) , (19.84)

Ψi =
∏
a∈∂i

I
(
mia = fei

(
{m̂bi}b∈∂i\a

))
e−yF

e
i({bmbi}b∈∂i) , (19.85)

Ψia = eyF
e
ia(mia,bmai) . (19.86)

Since the auxiliary graphical model is again locally tree-like, we can hope to derive
asymptotically exact results through belief propagation. The messages of the auxiliary
problem, which will be denoted as Qia( · ) and Q̂ai( · ), are distributions over the min-
sum messages. The SP(y) equations are obtained by making, further, the independence
assumption (19.26).

The reader will certainly have noticed that the whole procedure is extremely close
to our study in Section 19.2.2. We can apply our previous analysis verbatim to derive
the SP(y) update equations. The only step that requires some care is the formulation
of the proper analogue of Lemma 19.3. This becomes the following.

Lemma 19.6 Assume that mia(xi) + m̂ai(xi) < ∞ for at least one value of xi ∈ X .
If mia = fei ({m̂bi}b∈∂i\a), then

Fe
i − Fe

ia = uia({m̂bi}b∈∂i\a) ≡ min
xi

{ ∑
b∈∂i\a

m̂bi(xi)
}

. (19.87)

Analogously, if m̂ai = f e
a({mja}j∈∂a\i), then

Fe
a − Fe

ia = ûai({mja}j∈∂a\i) ≡ min
x∂a

{
Ea(x∂a) +

∑
k∈∂a\i

mka(xk)
}

. (19.88)

Using this lemma, the same derivation as in Section 19.2.2 leads to the following
result.
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Proposition 19.7 The SP(y) equations are (with the shorthands {m̂bi} for {m̂bi}b∈∂i\a

and {mja} for {mja}j∈∂a\i)

Qia(mia) ∼=
∑
{bmbi}

I (mia = ge
i ({m̂bi})) e−yuia({bmbi})

∏
b∈∂i\a

Q̂bi(m̂bi) , (19.89)

Q̂ai(m̂ai) ∼=
∑
{mja}

I (m̂ai = f e
a({mja})) e−yûai({mja})

∏
j∈∂a\i

Qja(mja) . (19.90)

In the following we shall reserve the name survey propagation (SP) for the y = ∞
case of these equations.

19.5.2 Energetic complexity

The Bethe free entropy for the auxiliary graphical model is given by

FRSB,e({Q, Q̂}) =
∑
a∈F

FRSB,e
a +

∑
i∈V

F
RSB,e
i −

∑
(ia)∈E

F
RSB,e
ia , (19.91)

and allows us to count the number of min-sum fixed points. The various terms are
formally identical to those in eqns (19.29), (19.30), and (19.31), provided F·( · ) is
replaced everywhere by −Fe

· ( · ), and x by y. We reproduce these equations here for
convenience:

FRSB,e
a = log

⎧⎨⎩∑
{mia}

e−yF
e
a({mia})

∏
i∈∂a

Qia(mia)

⎫⎬⎭ , (19.92)

F
RSB,e
i = log

⎧⎨⎩∑
{bmai}

e−yF
e
i({bmai})

∏
a∈∂i

Q̂ai(m̂ai)

⎫⎬⎭ , (19.93)

F
RSB,e
ia = log

⎧⎨⎩ ∑
mia,bmai

e−yF
e
ia(mia,bmai)Qia(mia)Q̂ai(m̂ai)

⎫⎬⎭ . (19.94)

Assuming that the Bethe free entropy gives the correct free entropy of the auxil-
iary model, the energetic complexity function Σe(ε) can be computed from FRSB,e(y)

through a Legendre transform: in the large-N limit, we expect FRSB,e({Q, Q̂}) =
NFe(y) + o(N), where

Fe({Q, Q̂}) = Σe(ε) − yε ,
∂Σe

∂ε
= y . (19.95)

Finally, the 1RSB population dynamics algorithm can be used to sample (approx-
imately) the SP(y)messages in random graphical models.
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19.5.3 Constraint satisfaction and binary variables

In Section 14.3.3, we noticed that the min-sum messages simplify significantly when we
are dealing with constraint satisfaction problems. In such problems, the energy function
takes the form E(x) =

∑
a Ea(x∂a), where Ea(x∂a) = 0 if constraint a is satisfied by

the assignment x, and Ea(x∂a) = 1 otherwise. As discussed in Section 14.3.3, the
min-sum equations then admit solutions with m̂ai(xi) ∈ {0, 1}. Furthermore, we do
not need to keep track of the variable-to-function-node messages mia(xi), but only of
their ‘projection’ on {0, 1}.

In other words, in constraint satisfaction problems the min-sum messages take
2|X | − 1 possible values (the all-1 message cannot appear). As a consequence, the

SP(y)messages Q̂ai( · ) and Qia( · ) simplify considerably: they are points in a (2|X |−1)-
dimensional simplex.

If the min-sum messages are interpreted in terms of warnings, as we did in Sec-
tion 14.3.3, then SP(y)messages keep track of the warnings’ statistics (over pure
states). One can use this interpretation to derive the SP(y) update equations directly
without going through the whole 1RSB formalism. Let us illustrate this approach with
the important case of binary variables |X | = 2.

The min-sum messages m̂ and m (once projected) can take three values: (m̂(0), m̂(1)) ∈
{(0, 1), (1, 0), (0, 0)}. We shall denote them by 0 (interpreted as a warning ‘take value
0’), 1 (interpreted as a warning ‘take value 1’) and ∗ (interpreted as a warning ‘you can
take any value’), respectively. Warning propagation (WP) can be described in words
as follows.

Consider the message from variable node i to function node a. This depends on
all of the messages to i from function nodes b ∈ ∂i \ a. Suppose that n̂0, n̂1, and
n̂∗ of these messages are of type 0, 1, and ∗, respectively, for i ∈ ∂a. If n̂0 > n̂1, i
sends a 0 message to a. If n̂1 > n̂0, it sends a 1 message to a. If n̂1 = n̂0, it send a ∗
message to a. The ‘number of contradictions’ among the messages that it receives is
Fe

i − Fe
ia = uia = min(n̂1, n̂0).

Now consider the message from function node a to variable node i. This depends
on the messages coming from the neighbouring variables j ∈ ∂a \ i. We partition the
neighbours into subsets P∗,P0,P1, where Pm is the set of indices j such that mja = m.
For each value of xi ∈ {0, 1}, the algorithm computes the minimal value of Ea(x∂a)
such that the variables in P0 and P1 are fixed to 0 and to 1, respectively. More explicitly,
let us define a function ∆P(xi) as follows:

∆P(xi) = min
{xj}j∈P∗

Ea(xi, {xj}j∈P∗
, {xk = 0}k∈P0

, {xl = 1}l∈P1
) . (19.96)

The following table then gives the outgoing message m̂ai and the number of contradic-
tions at a, Fe

a − Fe
ai = ûai, as a function of the values of ∆P(0) and ∆P(1):

∆P(0) ∆P(1) m̂ai ûai

0 0 ∗ 0
0 1 0 0
1 0 1 0
1 1 ∗ 1
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Having established the WP update rules, we can immediately write the SP(y) equations.
Consider a node, and one of its neighbours to which it sends messages. For each possi-
ble configuration of incoming warnings at this node, denoted by input, we have found
the rules to compute the outgoing warning output = ÔUT(input) and the number
of contradictions δFe(input). SP(y)messages are distributions over (0, 1, ∗), namely

(Qia(0), Qia(1), Qia(∗)) and (Q̂ai(0), Q̂ai(1), Q̂ai(∗)). Notice that these messages are
only marginally more complicated than ordinary BP messages. Let P(input) denote
the probability of a given input assuming independent warnings with distribution
Qia( · ) or Q̂ai( · ). The probability of an outgoing message output ∈ {0, 1, ∗} is then

P(output) ∼=
∑
input

P(input)I(ÔUT(input) = output)e−yδF
e(input) . (19.97)

Depending on whether the node we are considering is a variable or function node, this
probability distribution corresponds to the outgoing message Qia( · ) or Q̂ai( · ).

It can be shown that the Bethe energy (19.82) associated with a given fixed point
of the WP equations coincides with the total number of contradictions. This can be
expressed as the number of contradictions at function nodes, plus those at variable
nodes, minus the number of edges (i, a) such that the warning in direction a → i
contradicts the warning in direction i → a (the last term avoids double counting). It
follows that the Bethe free entropy of the auxiliary graphical model FRSB,e(y) weights
each WP fixed point depending on its number of contradictions, as it should.

19.5.4 XORSAT again

Let us now apply the SP(y) formalism to random K-XORSAT instances. We let the
energy function E(x) count the number of unsatisfied linear equations:

Ea(x∂a) =

{
0 if xi1(a) ⊕ · · · ⊕ xiK(a) = ba,
1 otherwise.

(19.98)

The simplifications discussed in the previous subsection apply to this case. The 1RSB
population dynamics algorithm can be used to compute the free-entropy density Fe(y).
Here we limit ourselves to describing the results of this calculation for the case K = 3.

Let us stress that the problem we are considering here is different from the one
investigated in Section 19.3. Whereas there we were interested in the uniform measure
over solutions (thus focusing on the satisfiable regime α < αs(K)), here we are esti-
mating the minimum number of unsatisfied constraints (which is most interesting in
the unsatisfiable regime α > αs(K)).

It is easy to show that the SP(y) equations always admit a solution in which
Qia(∗) = 1 for all (i, a), indicating that the min-sum equations have a unique solution.
This corresponds to a density-evolution fixed point where Q(∗) = 1 with probability
1, yielding an Fe(y) independent of y. For y smaller than an α-dependent threshold
y∗(α), this is the only solution that we find. For larger values of y, the SP(y) equations
have a non-trivial solution. Figure 19.4 shows the result for the free-entropy density
Fe(y) for three values of α.
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Fig. 19.4 Random 3-XORSAT at α = 0.87, 0.97 and 1.07. Recall that, for K = 3,

αd(K) ≈ 0.818 and αs(K) ≈ 0.918. Left : free-entropy density Fe(y) as a function of y,

obtained using the population dynamics algorithm, with N = 2 × 104 and t = 5 × 103 (α

increases from bottom to top). Right : complexity Σe(ε) as a function of energy density (equal

to the number of violated constraints per variable); α increases from left to right. Only the

concave part of Σe(ε) is physically meaningful.

Above this threshold, the density evolution converges to a ‘non-trivial’ 1RSB fixed
point. The complexity functions Σe(ε) can be deduced by taking the Legendre trans-
form (see eqn (19.95)-, which requires differentiating Fe(y) and plotting (ε,Σe) in
parametric form. The derivative can be computed numerically in a number of ways:

1. Compute analytically the derivative of FRSB,e(y) with respect to y. This turns out

to be a functional of the fixed-point distributions of Q and Q̂, and can therefore
be easily evaluated.

2. Fit the numerical results for the function Fe(y) and differentiate the fitting func-
tion

3. Approximate the derivative as a difference at nearby values of y.

In the present case, we have followed the second approach using the parametric form
Ffit(y) = a + b e−y + c e−2y + d e−3y. As shown in Fig. 19.4, the resulting parametric
curve (ε,Σe) is multiple-valued (this is a consequence of the fact that Fe(y) is not
concave). Only the concave part of Σe(ε) is retained as physically meaningful. Indeed,
the convex branch is ‘unstable’ (in the sense that further RSB would be needed), and
it is not yet understood whether it has any meaning.

For α ∈ [αd(K), αs(K)[, Σe(ε) remains positive down to ε = 0. The intercept Σe(ε =
0) coincides with the complexity of clusters of SAT configurations, as computed in
Chapter 18 (see Theorem 18.2). For α > αs(K) (in the UNSAT phase), Σe(ε) vanishes
at εgs(K,α) > 0. The energy density εgs(K,α) is the minimal fraction of violated
equations in a random XORSAT linear system. Note that Σe(ε) is not defined above a
second energy density εd(K,α). This indicates that we should take Σe(ε) = −∞ there:
above εd(K,α), one recovers a simple problem with a unique Bethe measure.

Figure 19.5 shows the values of εgs(K,α) and εd(K,α) as functions of α for K = 3
(random 3-XORSAT).
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Fig. 19.5 Asymptotic ground state energy (= minimal number of violated constraints) per

variable, εgs(K, α), for random K = 3-XORSAT formulae; εgs(K, α) vanishes for α < αs(K).

The dashed line shows εd(K, α), which is the highest energy density e such that configurations

with E(x) < Ne are clustered. It vanishes for α < αd(K).

19.6 The nature of 1RSB phases

In the previous sections, we discussed how to compute the complexity function Σ(φ)
(or its ‘zero-temperature’ version, the energetic complexity Σe(ε)). Here we want to
come back to the problem of determining some qualitative properties of the measure
µ( · ) for random graphical models, on the basis of its decomposition into extremal
Bethe measures,

µ(x) =
∑
n∈E

wnµn(x) . (19.99)

Assumptions 2 and 3 imply that, in this decomposition, we introduce a negligible
error if we drop all of the states n except the ones with free entropy φn ≈ φ∗, where

φ∗ = argmax {φ + Σ(φ) : Σ(φ) ≥ 0} . (19.100)

In general, Σ(φ) is strictly positive and continuous in an interval [φmin, φmax] with
Σ(φmax) = 0, and

Σ(φ) = x∗(φmax − φ) + O((φmax − φ)2) (19.101)

for φ close to φmax.
It turns out that the decomposition (19.99) has different properties depending on

the result of the optimization (19.100). One can distinguish two phases (see Fig. 19.6):
d1RSB (dynamic one-step replica symmetry breaking), when the maximum is achieved
in the interior of [φmin, φmax] and, as a consequence Σ(φ∗) > 0; and s1RSB (static one-
step replica symmetry breaking), when the maximum is achieved at φ∗ = φmax and
therefore Σ(φ∗) = 0 (this case occurs iff x∗ ≤ 1).
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Fig. 19.6 A sketch of the complexity Σ versus the free-entropy density φ in a finite-temper-

ature problem with a 1RSB phase transition, at three temperatures T1 < T2 < T3. A random

configuration x with distribution µ(x) is found with high probability in a cluster with free-en-

tropy density φ1, φ2, or phi3, respectively. T2 and T3 are above the condensation transition:

φ2 and φ3 are the points where ∂Σ/∂φ = −1. T1 is below the condensation transition: φ1 is

the largest value of φ where Σ is positive.

19.6.1 Dynamical 1RSB

We assume here that Σ∗ = Σ(φ∗) > 0. We can then restrict the sum (19.99) to
those states n such that φn ∈ [φ∗ − ε, φ∗ + ε], if we allow an exponentially small
error. To the leading exponential order, there are eNΣ∗ such states whose weights are
wn ∈ [e−N(Σ∗+ε′), e−N(Σ∗−ε′)].

Different states are expected to have essentially disjoint support. By this we mean
that there exist subsets {Ωn}n∈E of the configuration space XN such that, for any
m ∈ E,

µm(Ωm) ≈ 1 ,
∑

n∈E\m

wnµn(Ωm) ≈ 0 . (19.102)

Further, different states are separated by ‘large free-energy barriers’. This means that
one can choose the above partition in such a way that only an exponentially small (in
N) fraction of the probability measure is on its boundaries.

This structure has two important consequences:

Glassy dynamics. Let us consider a local Markov chain dynamics that satisfies
detailed balance with respect to the measure µ( · ). As an example, we can consider
the Glauber dynamics introduced in Chapter 4 (in order to avoid trivial reducibility
effects, we can assume in this discussion that the compatibility functions ψa(x∂a) are
bounded away from 0).

Imagine initiating the dynamics at time 0 with an equilibrated configuration x(0)
distributed according to µ( · ). This is essentially equivalent to picking a state n uni-
formly at random from among the typical states, and then sampling x(0) from µn( · ).
Because of the exponentially large barriers, the dynamics will stay confined in Ωn for
an exponentially large time, and equilibrate among states only on larger time scales.

This can be formalized as follows. We denote by D(x, x′) the Hamming distance in
XN . Take two i.i.d. configurations with distribution µ, and let Nd0 be the expectation
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value of their Hamming distance. Analogously, take two i.i.d. configurations with dis-
tribution µn, and let Nd1 be the expectation value of their Hamming distance. When
the state n is chosen randomly with distribution wn, we expect d1 not to depend on
the state n, asymptotically, for large sizes. Furthermore, we expect d1 < d0. We can
then consider the (normalized) expected Hamming distance between configurations
at time t in Glauber dynamics, d(t) = 〈D(x(0), x(t))〉/N . For any ε < d0 − d1, the
correlation time τ(ε) ≡ inf{t : d(t) ≥ d0 − ε} is expected to be exponentially large in
N .

Short-range correlations in finite-dimensional projections. We described the moti-
vation for the 1RSB cavity method by considering the emergence of long-range correla-
tions due to decomposition of µ( · ) into many extremal Bethe measures. Surprisingly,
such correlations cannot be detected by probing a bounded (when N → ∞) number of
variables. More precisely, if i(1), . . . , i(k) ∈ {1, · · · , N} are uniformly random variable
indices, then, in the d1RSB phase,

E|〈f1(xi(1))f2(xi(2)) · · · fk(xi(k))〉 − 〈f1(xi(1))〉〈f2(xi(2))〉 · · · 〈fk(xi(k))〉| N→∞→ 0 .

(Here 〈 · 〉 denotes the expectation with respect to the measure µ, and E denotes the
expectation with respect to the graphical model for a random ensemble.) This finding
can be understood intuitively as follows. If there are long-range correlations among
subsets of k variables, then it must be true that conditioning on the values of k − 1 of
those variables changes the marginal distribution of the k-th one. On the other hand,
we think that long-range correlations arise because far-apart variables ‘know’ that the
whole system is in the same state n. But conditioning on a bounded number (k − 1)
of variables cannot select in any significant way from among the eNΣ∗ relevant states,
and thus cannot change the marginal of the k-th variable.

An alternative argument makes use of the observation that if x(1) and x(2) are two
i.i.d. configurations with distribution µ( · ), then their distance D(x(1), x(2)) concen-
trates in probability. This is due to the fact that the two configurations will be, with
high probability, in different states n1 = n2 (the probability of n1 = n2 being e−NΣ∗),
whose distance depends weakly on the pair of states.

Let us note, finally, that the absence of long range correlations among bounded
subsets of variables is related to the observation that µ( · ) is itself a Bethe measure
(although a non-extremal one) in a d1RSB phase (see Section 19.4.1). Indeed, each BP
equation involves a bounded subset of the variables and can be violated only because
of correlations among them.

As we shall discuss in Section 22.1.2, long-range correlations in a d1RSB phase can
be probed through more sophisticated ‘point-to-set’ correlation functions.

19.6.2 Static 1RSB

In this case the decomposition (19.99) is dominated by a few states of near-to-maximal
free entropy φn ≈ φmax. If we ‘zoom in’ near the edge by letting φn = φmax + sn/N ,
then the ‘free-entropy shifts’ sn form a point process with density exp(−x∗s).

The situation is analogous to the one we found in the random energy model for
T < Tc. Indeed, it is expected that the weights {wn} will converge to the same universal
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Poisson-Dirichlet process found there, and to depend on the details of the model only
through the parameter x∗ (we have already discussed this universality using replicas
in Chapter 8). In particular, if x(1) and x(2) are two i.i.d. replicas with distribution
µ, and n1 and n2 are the states that they belong to, then the probability for them to
belong to the same state is

E {Pµ(n1 = n2)} = E

{∑
n∈E

w2
n

}
= 1 − x∗ . (19.103)

Here E denotes the expectation with respect to the graphical-model distribution.
As a consequence, the distance D(x(1), x(2)) between two i.i.d. replicas does not

concentrate (the overlap distribution is non-trivial). This, in turn, can only be true
if the two-point correlation function does not vanish at large distances. Long-range
correlations of this type make BP break down. The original graphical model µ( · ) is
no longer a Bethe measure: its local marginals cannot be described in terms of a set
of messages. The 1RSB description, according to which µ( · ) is a convex combination
of Bethe measures, is unavoidable.

At this point, we are left with a puzzle. How do we circumvent the argument given
in Section 19.4.1 that, if the ‘correct’ weight x = 1 is used, then the marginals as
computed within 1RSB still satisfy the BP equations? The conundrum is that, within
an s1RSB phase, the parameter x = 1 is not the correct one to use in the 1RSB cavity
equations (although it is the correct one for weighting states). In order to explain this,
let us first note that, if the complexity is convex and behaves as in eqn (19.101) near
its edge, with a slope −x∗ > −1, then the optimization problem (19.100) has the same
result as

φ∗ = argmax {xφ + Σ(φ) : Σ(φ) ≥ 0} , (19.104)

for any x ≥ x∗. Therefore, in the 1RSB cavity equations, we could in principle use any
value of x greater than or equal to x∗ (this would select the same states). However, the
constraint Σ(φ) ≥ 0 cannot be enforced locally, and does not show up in the cavity
equations. If one performs the computation of Σ within the cavity method using a value
x > x∗, then one finds a negative value of Σ, which must be rejected (it is believed
to be related to the contribution of some exponentially rare instances). Therefore, in
order to ensure that one studies the interval of φ such that Σ(φ) ≥ 0, one must impose
x ≤ x∗ in the cavity method. In order to select the states with free-entropy density
φmax, we must thus choose the Parisi parameter that corresponds to φmax, namely
x = x∗.

19.6.3 When does 1RSB fail?

The 1RSB cavity method is a powerful tool, but does not always provide correct an-
swers, even for locally tree-like models, in the large-system limit. The main assumption
of the 1RSB approach is that once we pass to the auxiliary graphical model (which
‘enumerates’ BP fixed points), a simple BP procedure is asymptotically exact. In other
words, the auxiliary problem has a simple ‘replica-symmetric’ structure and no glassy
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phase. This is correct in some cases, such as random XORSAT and SAT close to their
SAT–UNSAT threshold, but it may fail in others.

One mechanism leading to a failure of the 1RSB approach is that the auxiliary
graphical model is incorrectly described by BP. This may happen because the mea-
sure of the auxiliary model decomposes into many Bethe states. In such a case, one
must introduce a second auxiliary model, dealing with the multiplicity of BP fixed
points in the first auxiliary model. This is usually referred to as ‘two-step replica sym-
metry breaking’ (2RSB). Obviously one can find situations in which it is necessary to
iterate this construction, leading to an R-th level auxiliary graphical model (R-RSB).
Continuous (or full) RSB corresponds to the large-R limit.

While such developments are conceptually clear (at least from a heuristic point of
view), they are technically challenging. So far, only limited results have been obtained
beyond 1RSB. A brief survey is given in Chapter 22.

19.7 Appendix: The SP(y)equations for XORSAT

This appendix provides some technical details of the 1RSB treatment of random K-
XORSAT within the ‘energetic’ formalism. The results of this approach were discussed
in Section 19.5.4. In particular, we shall derive the behaviour of the auxiliary free
entropy Fe(y) at large y, and deduce the behaviour of the complexity Σe(ε) at small ε.
This section can be regarded as an exercise in applying the SP(y) formalism. We shall
skip many details and just give the main intermediate results of the computation.

XORSAT is a constraint satisfaction problem with binary variables. We can thus
apply the simplified method of Section 19.5.3. The projected min-sum messages can
take three values: 0, 1, ∗. By exploiting the symmetry of XORSAT between 0 and
1, SP(y) messages can be parameterized by a single number, for instance the sum
of their weights on 0 and 1. We shall therefore write Qia(0) = Qia(1) = ζia/2 (thus

implying Qia(∗) = 1 − ζia) and Q̂ai(0) = Q̂ai(1) = ηai/2 (whence Q̂ai(∗) = 1 − ηai).
In terms of these variables, the SP(y) equation at function node a reads

ηai =
∏

j∈∂a\i

ζja . (19.105)

The SP(y) equation at variable node i is a little more complicated. Let us consider

all of the |∂i|− 1 incoming messages Q̂bi, b ∈ ∂i \a. Each of them is parameterized by
a number ηbi. We let η = {ηbi, b ∈ ∂i \ a} and define the function Bq(η) as follows:

Bq(η) =
∑

S⊂{∂i\a}

I(|S| = q)
∏

b∈∂i\{S∪{a}}

(1 − ηbi)
∏
c∈S

ηcj . (19.106)

Let Aq,r(η) = Bq+r(η)
(
q+r

q

)
2−(q+r). After some thought, one can obtain the following

update equation:

ζia =
2
∑|∂i|−2

q=0

∑|∂i|−1
r=q+1 Aq,r(η)e−yq∑�(|∂i|−1)/2�

q=0 Aq,q(η)e−yq + 2
∑|∂i|−2

q=0

∑|∂i|−1
r=q+1 Aq,r(η)e−yq

. (19.107)
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The auxiliary free entropy FRSB,e(y) has the general form (19.91), with the various
contributions expressed as follows in terms of the parameters {ζia, ηai}:

eF
RSB,e
a = 1 − 1

2
(1 − e−y)

∏
i∈∂a

ζia , eF
RSB,e
ai = 1 − 1

2
ηaiζia(1 − e−y) ,

eF
RSB,e
i =

di∑
q=0

di−q∑
r=0

Aq,r ({ηai}a∈∂i) e−ymin(q,r) . (19.108)

Let us consider random K-XORSAT instances with a constraint density α. Equa-
tions (19.105) and (19.107) are promoted to distributional relations that determine
the asymptotic distribution of η and ζ on a randomly chosen edge (i, a). The 1RSB
population dynamics algorithm can be used to approximate these distributions. We
encourage the reader to implement it, and obtain a numerical estimate of the auxiliary
free-entropy density Fe(y).

It turns out that, at large y, one can control the distributions of η and ζ analytically,
provided their qualitative behaviour satisfies the following assumptions (which can be
checked numerically):

• With probability t one has η = 0, and with probability 1−t, η = 1−e−yη̂, where t
has a limit in ]0, 1[, and η̂ converges to a random variable with support on [0,∞[,
as y → ∞.

• With probability s, one has ζ = 0, and with probability 1 − s, ζ = 1 − e−yζ̂,
where s has a limit in ]0, 1[, and ζ̂ converges to a random variable with support
on [0,∞[, as y → ∞.

Under these assumptions, we shall expand the distributional version of eqns (19.105)

and (19.107) keeping terms up to first order in e−y. We shall use t, s, η̂, ζ̂ to denote
the limit quantities mentioned above.

It is easy to see that t and s must satisfy the equations (1 − t) = (1 − s)k−1 and

s = e−Kα(1−t). These are identical to eqns (19.50) and (19.51), whence t = 1− Q̂∗ and
s = 1 − Q∗.

Equation (19.105) leads to the distributional equation

η̂
d
= ζ̂1 + · · · + ζ̂K−1 , (19.109)

where ζ̂1, . . . , ζ̂K−1 are K − 1 i.i.d. copies of the random variable ζ̂.
The update equation (19.107) is more complicated. There are, in general, l inputs

to a variable node, where l is Poisson-distributed with mean Kα. Let us denote by m
the number of incoming messages with η = 0. The case m = 0 yields ζ = 0 and is taken
care of in the relation between t and s. If we condition on m ≥ 1, the distribution of
m is

P(m) =
λm

m!
e−λ 1

1 − e−λ
I(m ≥ 1) , (19.110)

where λ = Kα(1 − t). Conditional on m, eqn (19.107) simplifies as follows:

• If m = 1, ζ̂
d
= η̂.
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• If m = 2, ζ̂ = 1 identically.

• If m ≥ 3, ζ̂ = 0 identically.

The various contributions to the free entropy (19.37) are given by

fRSB,e

f = (1 − s)k
[
− log 2 + e−y(1 + K〈ζ̂〉)

]
+ o(e−y) , (19.111)

fRSB,e
v =

λ2

2
e−λ
[
− log 2 + e−y(1 + 2〈η̂〉)

]
+

∞∑
m=3

λm

m!
e−λ
[
(1 − m) log 2 + e−ym(1 + 〈η̂〉)

]
+ o(e−y) , (19.112)

fRSB,e
e = (1 − t)(1 − s)

[
− log 2 + e−y(1 + 〈η̂〉 + 〈ζ̂〉)

]
+ o(e−y) , (19.113)

where 〈η̂〉 and 〈ζ̂〉 are the expectation values of η̂ and ζ̂. This gives the free-entropy
density Fe(y) = fRSB,e

f + αfRSB,e
v − Kα fRSB,e

e = Σ0 + e−yε0 + o(e−y), where

Σ0 =

[
1 − λ

k
− e−λ

(
1 +

k − 1

k
λ

)]
log 2 , (19.114)

ε0 =
λ

k

[
1 − e−λ

(
1 +

k

2
λ

)]
. (19.115)

Taking the Legendre transform (see eqn (19.95)), we obtain the following behaviour
of the energetic complexity as ε → 0:

Σe(ε) = Σ0 + ε log
ε0e

ε
+ o(ε) , (19.116)

This shows, in particular, that the ground state energy density is proportional to
(α − αs)/| log(α − αs)| close to the SAT–UNSAT transition (when 0 < α − αs � 1).

Exercise 19.7 In the other extreme case, show that at large α one gets εgs(K, α) = α/2+√
2αε∗(K) + o(

√
α), where the positive constant ε∗(K) is the absolute value of the ground

state energy of the fully connected K-spin model studied in Section 8.2. This indicates that
there is no interesting intermediate asymptotic regime between M = Θ(N) (discussed in
the present chapter) and M = Θ(NK−1) (discussed with the use of the replica method in
Chapter 8).

Notes

The cavity method originated as an alternative to the replica approach in the study of
the Sherrington–Kirkpatrick model (Mézard et al., 1985b). The 1RSB cavity method
for locally tree-like factor graphs was developed in the context of spin glasses by Mézard
and Parisi (2001). Its application to zero-temperature problems (counting solutions of
the min-sum equations) was also first described in the context of spin glasses, by
Mézard and Parisi (2003). The presentation in this chapter differs in its scope from
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those studies, which were more focused on computing averages over random instances.
For a rigorous treatment of the notion of a Bethe measure, we refer to Dembo and
Montanari (2008b).

The idea that the 1RSB cavity method is in fact equivalent to applying BP on
an auxiliary model appeared in several papers treating the cases of colouring and
satisfiability with y = 0 (Parisi, 2002; Braunstein and Zecchina, 2004; Maneva et al.,
2005). The treatment presented here generalizes these studies, with the important
difference that the variables of our auxiliary model are messages on the edges rather
than quantities defined on vertices.

The analysis of the x = 1 case is strictly related to the problem of reconstruction
on a tree. This has been studied by Mézard and Montanari (2006), where the reader
will find the proof of Theorem 19.5 and the expression for the free entropy obtained
in Exercise 19.6.

The SP(y) equations for one single instance were written down first in the context
of the K-satisfiability problem by Mézard and Zecchina (2002); see also Mézard et

al. (2003a). The direct derivation of the SP(y) equations for binary-variable problems
described in Section 19.5.3 was done originally for the satisfiability problem by Braun-
stein et al. (2005); see also Braunstein and Zecchina (2004) and Maneva et al. (2005).
The application of the 1RSB cavity method to the random XORSAT problem, and its
comparison with the exact results, was done by Mézard et al. (2003b).

An alternative to the cavity approach followed throughout this book is provided
by the replica method of Chapter 8. As we saw, the replica method was first invented
in order to treat fully connected models (i.e. models on complete graphs) (see Mézard
et al., 1987), and was subsequently developed in the context of sparse random graphs
(Mézard and Parisi, 1985; De Dominicis and Mottishaw, 1987; Mottishaw and De
Dominicis, 1987; Wong and Sherrington, 1988; Goldschmidt and Lai, 1990). The tech-
nique was further improved in Monasson (1998), which offers a very lucid presentation
of the method.
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Random K-satisfiability

This chapter applies the cavity method to the random K-satisfiability problem. We
shall study both the phase diagram (in particular, we shall determine the SAT–UNSAT
threshold αs(K)) and the algorithmic applications of message passing. The whole
chapter is based on heuristic derivations: the rigorization of the whole approach is still
in its infancy. Neither the conjectured phase diagram nor the efficiency of message-
passing algorithms has yet been confirmed rigorously. But the computed value of αs(K)
is conjectured to be exact, and the low-complexity message-passing algorithms that
we shall describe turn out to be particularly efficient in finding solutions.

We start in Section 20.1 by writing the BP equations, following the approach set
out in Chapter 14. The statistical analysis of such equations provides a first (replica-
symmetric) estimate of αs(K). This, however, turns out to be incorrect. The reason
for this failure is traced back to the incorrectness of the replica-symmetric assumption
close to the SAT–UNSAT transition. The system undergoes a ‘structural’ phase tran-
sition at a clause density smaller than αs(K). Nevertheless, BP empirically converges
for a wide range of clause densities, and it can be used to find SAT assignments for
large instances provided the clause density α is not too close to αs(K). The key idea
is to use BP as a heuristic guide in a sequential decimation procedure.

In Section 20.2, we apply the 1RSB cavity method developed in Chapter 19. A
statistical analysis of the 1RSB equations gives the values for αs(K) summarized in
Table 20.1. From the algorithmic point of view, one can use SP instead of BP as a guide
in the decimation procedure. We shall explain and study numerically the corresponding
‘survey-guided decimation’ algorithm, which is presently the most efficient algorithm
for finding SAT assignments in large random satisfiable instances with a clause density
close to the threshold αs(K).

This chapter focuses on K-SAT with K ≥ 3. The K = 2 problem is quite different:
satisfiability can be proved in polynomial time, the SAT–UNSAT phase transition is
driven by a very different mechanism, and the threshold is known to be αs(2) = 1.
It turns out that a (more subtle) qualitative difference also distinguishes K = 3 from
K ≥ 4. In order to illustrate this point, we shall use both 3-SAT and 4-SAT as running
examples.

The problem of colouring random graphs turns out to be very similar to that of
random K-satisfiability. Section 20.4 presents a few highlights in the study of ran-
dom graph colourings. In particular, we emphasize how the techniques used for K-
satisfiability are successful in this case as well.
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20.1 Belief propagation and the replica-symmetric analysis

We have already studied some aspects of random K-SAT in Chapter 10, where we
derived, in particular, some rigorous bounds on the SAT–UNSAT threshold αs(K).
Here we shall study the problem using message-passing approaches. Let us start by
summarizing our notation.

An instance of the K-satisfiability problem is defined by M clauses (indexed by
a, b, . . . ∈ {1, . . . , M}) over N Boolean variables x1, . . . , xN taking values in {0, 1}. We
denote by ∂a the set of variables in clause a, and by ∂i the set of clauses in which
variable xi appears. Further, for each i ∈ ∂a, we introduce a number Jai, which takes
the value 1 if xi occurs negated in clause a, and takes the value 0 if the variable occurs
unnegated.

It will be convenient to distinguish elements of ∂a according to the value of Jai.
We let ∂0a ≡ {i ∈ ∂a such that Jai = 0} and ∂1a = {i ∈ ∂a such that Jai = 1}.
Similarly we denote by ∂0i and ∂1i the neighbourhoods of i: ∂0i = {a ∈ ∂i such that
Jai = 0} and ∂1i = {a ∈ ∂i such that Jai = 1}.

As usual, the indicator function over clause a being satisfied is denoted by ψa( · ):
ψa(x∂a) = 1 if clause a is satisfied by the assignment x, and ψa(x∂a) = 0 if it is
not. Given a SAT instance, we begin by studying the uniform measure over SAT
assignments,

µ(x) =
1

Z

M∏
a=1

ψa(x∂a) . (20.1)

We shall represent this distribution with a factor graph, as in Fig. 10.1, and in this
graph we draw dashed edges when Jai = 1 and full edges when Jai = 0.

20.1.1 The BP equations

The BP equations for a general model of the form (20.1) have already been written
down in Chapter 14. Here we want to rewrite them in a more compact form that
is convenient for both analysis and implementation. They are best expressed using
the following notation. Consider a variable node i connected to a factor node a and
partition its neighbourhood as ∂i = {a} ∪ Sia ∪ Uia, where (see Fig. 20.1)

if Jai = 0 then Sia = ∂0i \ {a}, Uia = ∂1i ,

if Jai = 1 then Sia = ∂1i \ {a}, Uai = ∂0i . (20.2)

Since the variables xi are binary, the BP messages νi→a( · ) and ν̂a→i( · ) at any time
can be parameterized by a single real number. We fix the parameterization by letting
ζia ≡ νi→a(xi = Jai) (which obviously implies νi→a(xi = 1 − Jai) = 1 − ζia) and

ζ̂ai ≡ ν̂a→i(xi = Jai) (yielding ν̂a→i(xi = 1 − Jai) = 1 − ζ̂ai).
A straightforward calculation allows us to express the BP equations (here in fixed-

point form) in terms of these variables:
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i
j

a

Sia

Uia

Uja

Sja

Fig. 20.1 The set Sia contains all checks b in ∂i \ a such that Jbi = Jai; the set Uia contains

all checks b in ∂i \ a such that Jbi = 1 − Jai.

ζia =

[∏
b∈Sia

ζ̂bi

] [∏
b∈Uia

(1 − ζ̂bi)
]

[∏
b∈Sia

ζ̂bi

] [∏
b∈Uia

(1 − ζ̂bi)
]

+
[∏

b∈Uia
ζ̂bi

] [∏
b∈Sia

(1 − ζ̂bi)
] ,

ζ̂ai =
1 −∏j∈∂a\i ζja

2 −∏j∈∂a\i ζja
, (20.3)

with the convention that a product over zero terms is equal to 1. Note that evaluating
the right-hand sides takes O(|∂i|) and O(|∂a|) operations, respectively. This should
be contrasted with the general implementation of the BP equations (see Chapter 14),
which requires O(|∂i|) operations at variable nodes but O(2|∂a|) at function nodes.

The Bethe free entropy takes the usual form, F =
∑

a∈F Fa+
∑

i∈V Fi−
∑

(ia)∈E Fia

(see eqn (14.27)). The various contributions can be expressed in terms of the param-

eters ζia, ζ̂ai as follows:

Fa = log

[
1 −

∏
i∈∂a

ζia

]
, Fi = log

[ ∏
a∈∂0i

ζ̂ai

∏
b∈∂1i

(1 − ζ̂bi) +
∏

a∈∂0i

(1 − ζ̂ai)
∏

b∈∂1i

ζ̂bi

]
,

Fai = log
[
(1 − ζia)(1 − ζ̂ai) + ζiaζ̂ai

]
. (20.4)

Given the messages, the BP estimate for the marginal on site i is

νi(xi) ∼=
∏
a∈∂i

ν̂a→i(xi) . (20.5)

20.1.2 Statistical analysis

Let us now consider a random K-SAT formula, i.e. a uniformly random formula with
N variables and M = Nα clauses. The resulting factor graph will be distributed
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according to the ensemble GN (K,M). Given a variable index i, the numbers |∂0i| and
|∂1i| of variables in which xi occurs unnegated or negated converge to independent
Poisson random variables of mean Kα/2.

If (i, a) is a uniformly random edge in the graph, the corresponding fixed-point

messages ζia and ζ̂ai are random variables (we assume here that an ‘approximate’ fixed
point exists). Within the RS assumption, they converge in distribution, as N → ∞, to

random variables ζ and ζ̂ whose distributions satisfy the RS distributional equations

ζ̂
d
=

1 − ζ1 . . . ζK−1

2 − ζ1 . . . ζK−1
, (20.6)

ζ
d
=

ζ̂1 . . . ζ̂p(1 − ζ̂p+1) . . . (1 − ζ̂p+q)

ζ̂1 . . . ζ̂p(1 − ζ̂p+1) . . . (1 − ζ̂p+q) + (1 − ζ̂1) . . . (1 − ζ̂p)ζ̂p+1 . . . ζ̂p+q

. (20.7)

Here p and q are two i.i.d. Poisson random variables with mean Kα/2 (corresponding

to the sizes of S and U), ζ1, . . . , ζK−1 are i.i.d. copies of ζ, and ζ̂1, . . . , ζ̂p+q are i.i.d.

copies of ζ̂.
The distributions of ζ and ζ̂ can be approximated using the population dynamics

algorithm. The resulting samples can then be used to estimate the free-entropy density,
as outlined in the exercise below.

Exercise 20.1 Argue that, within the RS assumptions, the large-N limit of the Bethe
free-entropy density is given by limN→∞ F/N = fRS = fRS

v + αfRS
c − KαfRS

e , where

fRS
v = E log

"
pY

a=1

ζ̂a

p+qY
a=p+1

(1 − ζ̂a) +

pY
a=1

(1 − ζ̂a)

p+qY
a=p+1

ζ̂a

#
,

fRS
c = E log [1 − ζ1 · · · ζK−1] ,

fRS
e = E log

h
(1 − ζ1)(1 − ζ̂1) + ζ1ζ̂1

i
. (20.8)

Here E denotes the expectation with respect to ζ1, . . . , ζK , which are i.i.d. copies of ζ;

ζ̂1, . . . , ζ̂p+q, which are i.i.d. copies of ζ̂; and p and q, which are i.i.d. Poisson random
variables with mean Kα/2.

Figure 20.2 shows an example of the entropy density found within this approach
for 3-SAT. For each value of α in a mesh, we used a population of size 104, and ran
the algorithm for 3 × 103 iterations. Messages were initialized uniformly in ]0, 1[, and
the first 103 iterations were not used for computing the free entropy.

The predicted entropy density is strictly positive and decreasing in α for α ≤
α∗(K), with α∗(3) ≈ 4.6773. Above α∗(K), the RS distributional equations do not

seem to admit any solution with ζ, ζ̂ ∈ [0, 1]. This is revealed numerically by the fact
that the denominator of eqn (20.7) vanishes during the population updates. Since we
find an RS entropy density which is positive for all α < α∗(K), the value α∗(K) is
the RS prediction for the SAT–UNSAT threshold. It turns out that α∗(K) can be
computed without population dynamics, as outlined by the exercise below.
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Fig. 20.2 RS prediction for the asymptotic entropy density of random 3-SAT formulae,

plotted versus the clause density α for 3-SAT. The result is expected to be correct for

α ≤ αc(3) = αd(3) ≈ 3.86.

Exercise 20.2 How to compute α∗(K)? The idea is that, above this value of the clause

density, any solution of the RS distributional equations has ζ̂ = 0 with positive probability.
In this case the denominator of eqn (20.7) vanishes with positive probability, leading to a
contradiction.

We start by regularizing eqn (20.7) with a small parameter ε. Each ζ̂i is replaced by

max(ζ̂i, ε). Let us denote by x the probability that ζ̂ is of order ε, and by y the probability
that ζ is of order 1 − ε. Consider the limit ε → 0.

(a) Show that x = yK−1

(b) Show that 1 − 2y = e−KαxI0(Kαx), where I0(z) is the Bessel function with Taylor

expansion I0(t) =
P∞

p=0(1/p!2) (t/2)2p.

[Hint: Suppose that there are p′ variables among ζ̂1 . . . ζ̂p and q′ among ζ̂p+1 . . . ζ̂p+q

that are of order ε. Show that this update equation gives ζ = O(ε) if p′ > q′, ζ = 1−O(ε)
if p′ < q′, and ζ = O(1) if p′ = q′. ]

(c) Let α∗(K) be the largest clause density such that the two equations derived in (a) and
(b) admit the unique solution x = y = 0. Show that, for α ≥ α∗(K), a new solution
appears with x, y > 0.

(d) By solving the above equations numerically, show that α∗(3) ≈ 4.6673 and α∗(4) ≈
11.83.

Unhappily, this RS computation is incorrect when α is large enough, and, as a
consequence, the prediction for the SAT–UNSAT phase transition is wrong as well.
In particular, it contradicts the upper bound αUB,2(K) found in Chapter 10 (for in-
stance, in the two cases K = 3 and 4, one has αUB,2(3) ≈ 4.66603 < α∗(3) and
αUB,2(4) ≈ 10.2246 < α∗(4)). The largest α such that the RS entropy density is cor-
rect is nothing but the value for the condensation transition αc(K). We shall discuss
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Fig. 20.3 Empirical probability that BP converges to a fixed point, plotted versus the clause

density α, for 3-SAT (left plot) and 4-SAT (right plot). The statistics are over 100 instances,

with N = 5 × 103 variables (dashed curve) and N = 104 variables (full curve). There is an

indication of a phase transition occurring for αBP ≈ 3.85 (K = 3) and αBP ≈ 10.3 (K = 4).

The data points show the empirical probability that BP-guided decimation finds a SAT

assignment, computed over 100 instances with N = 5× 103. The vertical lines correspond to

the SAT–UNSAT threshold.

this phase transition further below and in Chapter 22.
There is another way to realize that something is wrong with the RS assumption

close to the SAT–UNSAT phase transition. The idea is to look at the BP iteration.

20.1.3 BP-guided decimation

The simplest experiment consists in iterating the BP equations (20.3) on a randomly
generated K-SAT instance. We start from uniformly random messages, and choose the
following convergence criterion, defined in terms of a small number δ: the iteration is
halted at the first time t∗(δ) such that no message has changed by more than δ over
the last iteration.

If a large time tmax is fixed, one can estimate the probability of convergence within
tmax iterations by repeating the same experiment many times. Figure 20.3 shows this
probability for δ = 10−2 and tmax = 103, plotted versus α. The probability curves
show a sharp decrease around a critical value of α, αBP, which is robust to variations
of tmax and δ. This numerical result is indicative of a threshold behaviour: the typical
convergence time t∗(δ) stays finite (or grows moderately) with N when α < αBP.
Above αBP, BP fails to converge in a time tmax on a typical random instance.

When it converges, BP can be used to find a SAT assignment, using it as a heuristic
guide for a sequential decimation procedure. Each time the value of a new variable has
to be fixed, BP is iterated until the convergence criterion, with parameter δ, is met
(alternatively, one may be more bold and use the BP messages after a time tmax even
when they have not converged). Then one uses the BP messages in order to decide (i)
which variable to fix, and (ii) what value the variable should take.

In the present implementation, these decisions were taken on the basis of a simple
statistic: the bias of the variables. Given the BP estimate νi( · ) of the marginal of xi,
we define the bias as πi ≡ νi(0) − νi(1). The algorithm is given below.



Belief propagation and the replica-symmetric analysis ���

BP-Guided Decimation (SAT formula F , accuracy ε, iterations tmax)
1: For all n ∈ {1, . . . , N}:
2: Call BP(F , ε, tmax);
3: If BP does not converge, return ‘NOT found’ and exit;
4: For each variable node j, compute the bias πj ;
5: Find a variable i(n) with the largest absolute bias |πi(n)|;
6: If πi(n) ≥ 0, fix xi(n) to x∗

i(n) = 0;

7: Otherwise, fix xi(n) to x∗
i(n) = 1;

8: Replace F by the formula obtained after this reduction
9: End-For;
10: Return the assignment x∗

A pseudocode for BP was given in Section 14.2. Let us emphasize that the same
decimation procedure could be used not only with BP but also with other types of
guidance, if we had some way to estimate the marginals.

The empirical success probability of the BP-guided decimation algorithm on ran-
dom formulae is shown in Fig. 20.3 (estimated from 100 instances of size N = 5×104)
for several values of α. The qualitative difference between 3-SAT and 4-SAT emerges
clearly from this data. For 3-SAT, the decimation procedure returns a SAT assign-
ment almost every time it converges, i.e. with probability close to one for α � 3.85.
For 4-SAT, BP converges most of the time if α � 10.3. This value is larger than the
conjectured SAT–UNSAT threshold αs(4) ≈ 9.931 (and also larger than the best rigor-
ous upper bound αUB,2(4) ≈ 10.2246.) On the other hand, the BP-guided decimation
finds SAT assignments only when α � 9.25. It is believed that the cases K ≥ 5 behave
like K = 4.

20.1.4 On the validity of the RS analysis

These experiments suggest that something is not correct in the RS assumptions when α
is large enough. The precise mechanism by which they are incorrect depends, however,
on the value of K. For K = 3, the BP fixed point become unstable, and this leads to
errors in decimations. In fact, the local stability of the BP fixed point can be computed
along the lines of Section 17.4.2. The result is that it become unstable at αst(3) ≈ 3.86.
In contrast, for K ≥ 4 the fixed point remains stable but does not correspond to the
correct marginals. Local stability is not a good enough test in this case.

Correspondingly, one can define two types of threshold:

(i) A stability threshold αst(K), beyond which BP does not have a locally stable
fixed point.

(ii) A 1RSB condensation threshold αc(K), beyond which there is no BP fixed point
that gives a correct estimate of the local marginals and free entropy.

Clearly, one should have αc(K) ≤ αst(K). Our study suggests that αc(3) = αst(3) �
3.86, whereas, for K ≥ 4, there is a strict inequality αc(K) < αst(K).

The reason for the failure of BP is the decomposition of the measure (20.1) into
many pure states. This happens at a third critical value αd(K) ≤ αc(K), referred
to as the dynamical transition, in accordance with our discussion of spin glasses in
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Section 12.3: αd(K) is the critical clause density above which Glauber dynamics will
become inefficient. If αd(K) < α < αc(K), one expects, as we discussed in Sec-
tion 19.4.1, that there will exist many pure states, and many quasi-solutions to the
BP equations, among which one will give the correct marginals.

At this point, the reader might well be discouraged. This is understandable: we
started by seeking one threshold (the SAT–UNSAT transition αs(K)) and rapidly
ended up defining a number of other thresholds, αd(K) ≤ αc(K) ≤ αst(K) ≤ αs(K),
to describe a zoology of exotic phenomena. It turns out that, while an understanding of
the proliferation of pure states is necessary to get the correct value of αs(K), one does
not need a detailed description of the clusters, which is a challenging task. Luckily,
there exists a shortcut, through the use of the energetic cavity method. It turns out
that the sketchy description of clusters that we get from this method, as if looking
at them from far away, is enough to determine αs. Even more than that, the sketch
is a very useful and interesting one. In Section 20.3, we shall discuss a more detailed
picture obtained through the fully fledged 1RSB cavity method applied to the model
(20.1).

20.2 Survey propagation and the 1RSB phase

The use of the energetic 1RSB cavity method can be justified in two ways. From the
first point of view, we are changing the problem. Instead of computing marginals of
the distribution (20.1), we consider the problem of minimizing the energy function

E(x) =

M∑
a=1

Ea(x∂a) . (20.9)

Here Ea(x∂a) = 0 if clause a is satisfied by the assignment x, and Ea(x∂a) = 1
otherwise. The SAT–UNSAT threshold αs(K) is thus identified as the critical value
above which the ground state energy minE(x) vanishes.

With the cavity method, we shall estimate the ground state energy density, and
find that it vanishes below some threshold. This is then identified as αs(K). This
identification amounts to assuming that, for generic large random K-SAT problems,
there is no interval of α where the ground state energy is positive but sublinear in N .
This assumption is reasonable, but of course it does not hold in more general situations.
If, for instance, we added to a random K-SAT formula a small unsatisfiable subformula
(including o(N) variables), our approach would not detect the change, whereas the
formula would always be unsatisfiable.

For α < αs(K), the cavity method provides a rough picture of zero-energy pure
states. This brings us to the second way of justifying this ‘sketch’. We saw that de-
scribing a pure (Bethe) state in a locally tree-like graph amounts to assigning a set
of cavity messages, i.e. of marginal distributions for the variables. The simplified de-
scription of the energetic 1RSB method only distinguishes between marginals that are
concentrated on a single value and marginals that are not. The concentrated marginals
are described exactly, while the other ones are just summarized by a single statement,
‘not concentrated’.
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20.2.1 The SP(y) equations

The satisfiability problem involves only hard constraints and binary variables. We
can thus use the simplified SP(y) equations of Section 19.5.3. The messages are triples:

(Qia(0), Qia(1), Qia(∗)) for variable-to-function messages, and (Q̂ai(0), Q̂ai(1), Q̂ai(∗))
for function-to-variable messages.

In the case of K-satisfiability, these can be further simplified. The basic observation
is that if Jai = 0, then Q̂ai(1) = 0, and if Jai = 1, then Q̂ai(0) = 0. This can be shown
either by starting from the general formalism in Section 19.5.3 or by reconsidering
the interpretation of warning propagation messages. Recall that a ‘0’ message means
that the constraint a ‘forces’ variable xi to take the value 0 in order to minimize the
system’s energy. In K-SAT this can happen only if Jai = 0, because xi = 0 is then the
value that satisfies the clause a. With this remark in mind, the function-to-variable-
node message can be parameterized by a single real number. We shall choose this
number to be Q̂ai(0) if Jai = 0 and Q̂ai(1) if Jai = 1, and denote it by Q̂ai. This

number Q̂ai is the probability that there is a warning sent from a to i which forces
the value of variable xi.

Analogously, it is convenient to adopt a parameterization of the variable-to-function
message Qia(m) which takes into account the value of Jai. More precisely, recall that
Qia is supported on three types of messages: m(0) = 0, m(1) > 0; m(0) = m(1) = 0; or
m(0) > 0, m(1) = 0. Let us denote the corresponding weights by Qia(0), Qia(∗) and
Qia(1). If Jai = 0, we then define QS

ia ≡ Qia(0), Q∗
ia ≡ Qia(∗), and QU

ia ≡ Qia(1).
Conversely, if Jai = 1, we let QS

ia ≡ Qia(1), Q∗
ia ≡ Qia(∗), and QU

ia ≡ Qia(0).
We summarize this notation below with the corresponding interpretations. We

emphasize that ‘probability’ refers here to the random choice of a pure state (see
Section 19.1).

• QS
ia: probability that xi is forced by the clauses b ∈ ∂i \ a to satisfy a;

• QU
ia: probability that xi is forced by the clauses b ∈ ∂i \ a to violate a;

• Q∗
ia: probability that xi is not forced by the clauses b ∈ ∂i \ a;

• Q̂ai: probability that xi is forced by clause a to satisfy it.

The 1RSB cavity equations have been written in Section 19.5.3.

Exercise 20.3 Write the 1RSB equations explicitly in terms of the messages QS, QU, Q∗, bQ
by applying the procedure of Section 19.5.3.

Alternatively, the 1RSB cavity equations can be guessed, bearing the above inter-
pretation in mind. Clause a forces variable xi to satisfy it if and only if all of the other
variables entering into clause a are forced (by some other clause) not to satisfy a. This
means that

Q̂ai =
∏

j∈∂a\i

QU
ja . (20.10)
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Consider, on the other hand, variable node i, and assume for definiteness that Jia = 0
(the opposite case gives rise to identical equations). Remember that, in this case, Sia

denotes the subset of clauses b = a in which Jib = 0, and Uia the subset in which
Jib = 1. Assume that the clauses in ΩS ⊆ Sia and ΩU ⊆ Uia force xi to satisfy them.
Then xi is forced to either satisfy or violate a, depending whether |ΩS| > |ΩU| or
|ΩS| < |ΩU|. Finally, xi is not forced if |ΩS| = |ΩU|. The energy shift is equal to the
number of ‘forcing’ clauses in ∂i \ a that are violated when xi is chosen to satisfy the
largest number of them, namely min(|ΩU|, |ΩS|). We thus get the equations

QU
ia

∼=
∑

|ΩU|>|ΩS|

e−y|ΩS|
∏

b∈ΩU∪ΩS

Q̂bi

∏
b	∈ΩU∪ΩS

(1 − Q̂bi) , (20.11)

QS
ia

∼=
∑

|ΩS|>|ΩU|

e−y|ΩU|
∏

b∈ΩU∪ΩS

Q̂bi

∏
b	∈ΩU∪ΩS

(1 − Q̂bi) , (20.12)

Q∗
ia

∼=
∑

|ΩU|=|ΩS|

e−y|ΩU|
∏

b∈ΩU∪ΩS

Q̂bi

∏
b	∈ΩU∪ΩS

(1 − Q̂bi) . (20.13)

The overall normalization is fixed by the condition QU
ia + Q∗

ia + QS
ia = 1.

As usual, eqns (20.10–(20.13) can be understood either as defining a mapping from

the space of messages {Q̂ai, Qia} onto itself or as a set of fixed-point conditions. In
both cases, they are referred to as the SP(y) equations for the satisfiability problem.
From the computational point of view, these equations involve a sum over 2|∂i|−1

terms. This is often too much if we want to iterate the SP(y) equations on large K-
SAT formulae: the average degree of a variable node in a random K-SAT formula with
clause density α is Kα. Further, in the most interesting regime—close to the SAT–

UNSAT threshold—α = Θ(2K), and the sum is over 2Θ(K2K) terms, which rapidly
becomes impractical. It is thus important to notice that the sums can be computed
efficiently by interpreting them as convolutions.

Exercise 20.4 Consider a sequence of independent Bernoulli random variables
X1, . . . , Xn, . . . , with means η1, . . . , ηn, . . . , respectively. Let Wn(m) be the probability
that the sum

Pn
b=1 Xb is equal to m.

(a) Show that these probabilities satisfy the recursion

Wn(m) = ηnWn−1(m − 1) + (1 − ηn)Wn−1(m) ,

for m ∈ {0, . . . , n}. Argue that these identities can be used, together with the initial
condition W0(m) = I(m = 0), to compute Wn(m) in O(n2) operations.

(b) How can one compute the right-hand sides of eqns (20.11)–(20.13) in O(|∂i|2) opera-
tions?

20.2.2 The free entropy FRSB,e

Within the 1RSB energetic cavity method, the free entropy FRSB,e({Q, Q̂}) provides
detailed information on the minimal energy of (Bethe) pure states. These pure states
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are nothing but metastable minima of the energy function (i.e. minima whose energy
cannot be decreased with a bounded number of spin flips).

The 1RSB free entropy is expressed in terms of a set of messages {Qia, Q̂ai} that
provide a (quasi-)solution of the SP(y) equations (20.10)–(20.13). Following the general
theory in Section 19.5.2, it can be written in the form

FRSB,e({Q, Q̂}) =
∑
a∈C

FRSB,e
a +

∑
i∈V

F
RSB,e
i −

∑
(i,a)∈E

F
RSB,e
ia . (20.14)

Equation (19.94) yields

eF
RSB,e
ia = 1 − (1 − e−y)Q̂aiQ

U
ia . (20.15)

The contribution FRSB,e
a defined in eqn (19.92) can be computed as follows. The

reweighting Fe
a({mia}) is always equal to 0, except in the case where all of the vari-

ables in clause a receive a warning requesting that they point in the ‘wrong direction’,
namely the direction which does not satisfy the clause. Therefore,

eF
RSB,e
a = 1 − (1 − e−y)

∏
i∈∂a

QU
ia .

Finally, the contribution F
RSB,e
i defined in eqn (19.93) depends on the messages sent

from the check nodes b ∈ ∂i. Let us denote by ΩS ⊆ ∂0i the subset of check nodes
b ∈ ∂0i such that clause b forces xi to satisfy it. Similarly, we denote by ΩU ⊆ ∂1i the
subset of ∂1i such that clause b forces xi to satisfy it. We then have

eF
RSB,e
i =

∑
ΩU,ΩS

e−ymin(ΩS,ΩU)

[ ∏
b∈ΩU∪ΩS

Q̂bi

] ⎡⎣ ∏
b	∈ΩU∪ΩS

(1 − Q̂bi)

⎤⎦ . (20.16)

Exercise 20.5 Show that, for any i ∈ ∂a, F
RSB,e
ia = FRSB,e

a .

20.2.3 The large-y limit: The SP equations

Consider now the case of satisfiable instances. A crucial problem is to characterize
satisfying assignments and to find them efficiently. This amounts to focusing on zero-
energy assignments, which are selected by taking the y → ∞ limit within the energetic
cavity method.

We can take the limit y → ∞ in the SP(y) equations (20.11)–(20.13). This yields
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Q̂ai =
∏

j∈∂a\i

QU
ja , (20.17)

QU
ja

∼=
∏

b∈Sja

(1 − Q̂bj)

⎡⎣1 −
∏

b∈Uja

(1 − Q̂bj)

⎤⎦ , (20.18)

QS
ja

∼=
∏

b∈Uja

(1 − Q̂bj)

⎡⎣1 −
∏

b∈Sja

(1 − Q̂bj)

⎤⎦ , (20.19)

Q∗
ja

∼=
∏

b∈∂j\a

(1 − Q̂bj) , (20.20)

where the normalization is always fixed by the condition QU
ja + QS

ja + Q∗
ja = 1.

The y = ∞ equations have a simple interpretation. Consider a variable xj appear-
ing in clause a, and assume that it receives a warning from clause b = a independently
with probability Q̂bj . Then

∏
b∈Sja

(1 − Q̂bj) is the probability that variable j re-
ceives no warning forcing it in the direction which satisfies clause a. The product∏

b∈Uja
(1 − Q̂bj) is the probability that variable j receives no warning forcing it in

the direction which violates clause a. Therefore QU
ja is the probability that variable j

receives at least one warning forcing it in the direction which violates clause a, condi-
tional on the fact that there are no contradictions in the warnings received by j from
clauses b = a. Analogous interpretations hold for QS

ja and Q∗
ja. Finally, Q̂ai is the

probability that all variables in ∂a \ i are forced in the direction which violates clause
a, under the same condition of no contradiction.

Note that the y = ∞ equations are a relatively simple modification of the BP
equations in eqn (20.3). However, the interpretation of the messages is very different
in the two cases.

Finally, the free entropy in the y = ∞ limit is obtained as

FRSB,e =
∑
a∈C

FRSB,e
a +

∑
i∈V

F
RSB,e
i −

∑
(i,a)∈E

F
RSB,e
ia , (20.21)

where

F
RSB,e
ia = log

{
1 − QU

iaQ̂ai

}
, (20.22)

F
RSB,e
i = log

{ ∏
b∈∂0i

(1 − Q̂bi) +
∏

b∈∂1i

(1 − Q̂bi) −
∏
b∈∂i

(1 − Q̂bi)

}
, (20.23)

FRSB,e
a = log

⎧⎨⎩1 −
∏

j∈∂a

QU
ja

⎫⎬⎭ . (20.24)

Exercise 20.6 Show that, if the SP messages satisfy the fixed-point equations (20.17)–

(20.20), the free entropy can be rewritten as FRSB,e =
P

i F
RSB,e
i +

P
a(1 − |∂a|)FRSB,e

a .
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20.2.4 The SAT–UNSAT threshold

The SP(y) equations (20.10)–(20.13) always admit a ‘no warning’ fixed point corre-

sponding to Q̂ai = 0, QS
ia = QU

ia = 0, and Q∗
ia = 1 for each (i, a) ∈ E. Other fixed

points can be explored numerically by iterating the equations on large random formu-
lae.

Within the cavity approach, the distribution of the message associated with a
uniformly random edge (i, a) satisfies a distributional equation. As explained in Sec-

tion 19.2.5, this distributional equation is obtained by promoting Q̂ai and (QU
ia, QS

ia, Q∗
ia)

to random variables and reading eqns (20.10)–(20.13) as equalities in distribution. The
distribution can then be studied by the population dynamics of Section 19.2.6. It ob-
viously admits a no-warning (or ‘replica-symmetric’) fixed point, with Q̂ = 0 and
(QU, QS, Q∗) = (0, 0, 1) identically, but (as we shall see) in some cases one also finds
a different, ‘non-trivial’ fixed-point distribution.

Given a fixed point, the 1RSB free-entropy density Fe(y) can be estimated by taking
the expectation of eqn (20.14) (with respect to both degrees and fields) and dividing
by N . When evaluated at the no-warning fixed point, the free-entropy density Fe(y)
vanishes. This means that the number of clusters of SAT assignments is subexponen-
tial, so that the corresponding complexity density vanishes. To a first approximation,
this solution corresponds to low-energy assignments forming a single cluster. Note that
the energetic cavity method counts the number of clusters of SAT assignments, and
not the number of SAT assignments itself (which is actually exponentially large).

Figure 20.4 shows the outcome of a population dynamics computation. We plot the
free-entropy density Fe(y) as a function of y for random 3-SAT, for a few values of the
clause density α. These plots were obtained by initializing the population dynamics
recursion with i.i.d. messages {Q̂i} uniformly random in [0, 1]. For α < αd,SP � 3.93,

the iteration converges to the ‘no-warning’ fixed point where all of the messages Q̂ are
equal to 0.

For α > αd,SP, and when y is larger than a critical value yd(α), the iteration
converges to a non-trivial fixed point. This second solution has a non-vanishing value
of the free-entropy density Fe(y). The energetic complexity Σe(ε) is obtained from
Fe(y) via the Legendre transform (19.95).

In practice, the Legendre transform is computed by fitting the population dynamics
data, and then transforming the fitting curve. Good results were obtained with a fit of
the form Fe

fit(y) =
∑r∗

r=0 ψr e−ry with r∗ between 2 and 4. The resulting curves Σe(ε)
(or, more precisely, their concave branches) are shown in Fig. 20.5.

Exercise 20.7 Show that Σe(ε = 0) = limy→∞ Fe(y)

The energetic complexity Σe(ε) is the exponential growth rate of the number of
(quasi-) solutions of the min-sum equations with energy density u. As can be seen in
Fig. 20.5, for α = 4.1 or 4.2 (and in general, in an interval above αd(3)), one finds
Σe(ε = 0) > 0. The interpretation is that there exist exponentially many solutions of
the min-sum equations with zero energy density.
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Fig. 20.4 1RSB free-entropy density for 3-SAT, computed from a population dynamics

analysis of the SP equation, at α = 4.1, 4.2, and 4.3 (from top to bottom). For each α, y,

a population of size 12 000 was iterated 12 × 106 times. The resulting Fe was computed by

averaging over the last 8 × 106 iterations.
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Fig. 20.5 Energetic complexity density Σe plotted versus energy density ε, for the 3-SAT

problem at α = 4.1, 4.2, and 4.3 (from top to bottom). These curves were obtained from

Fig. 20.4, using a Legendre transform of free-entropy fits. .

In contrast, when α = 4.3 the curve starts at a positive ε or, equivalently, the
1RSB complexity curve has Σe(ε = 0) < 0. Of course, the typical number of min-sum
solutions cannot decrease exponentially. The result Σe(ε = 0) < 0 is interpreted as
a consequence of the fact that a typical random formula does not admit any (ap-
proximate) solutions of the min-sum equations with energy density ε = 0. Given the
correspondence between min-sum fixed points and clusters of low-energy assignments,
this in turn implies that a typical random formula does not have any SAT assignment.
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Table 20.1 Predictions of the 1RSB cavity method for the SAT–UNSAT threshold of random

K-satisfiability.

K 3 4 5 6 7 8 9 10
αs(K) 4.2667 9.931 21.117 43.37 87.79 176.5 354.0 708.9

From Fig. 20.5, one would expect that the SAT–UNSAT transition would lie be-
tween α = 4.2 and α = 4.3. A more precise estimate can be obtained by plotting
Fe(y → ∞) versus α, and locating the value of α where it vanishes. For 3-SAT, we
obtain the estimate for the SAT–UNSAT threshold αs(3) = 4.26675 ± 0.00015. The
predictions of this method for αs(K) are shown in Table 20.1. In practice, reliable
estimates can be obtained with population dynamics only for K ≤ 7. The reason is
that αs(K) increases exponentially with K, and the size of the population needed in
order to achieve a given precision will increase accordingly (the average number of
independent messages entering into the distributional equations is Kα).

For large K, one can formally expand the distributional equations, which yields
a series for αs(K) in powers of 2−K . The first two terms (seven terms have been
computed) of this expansion are

αs(K) = 2K log 2 − 1

2
(1 + log 2) + O(2−KK2) . (20.25)

20.2.5 SP-guided decimation

The analysis in the last few pages provides a refined description of the set of solutions of
random formulae. This knowledge can be exploited to efficiently find some solutions,
much in the same way as we used belief propagation in Section 20.1.3. The basic
strategy is again to use the information provided by the SP messages as a clever
heuristic in a decimation procedure.

The first step consists in finding an approximate solution of the SP(y) equations
(20.10)–(20.13), or of their simplified y = ∞ version (eqns (20.17)–(20.20)), for a given
instance of the problem. To be definite, we shall focus on the latter case, since y = ∞
selects zero-energy states. We can seek solutions of the SP equations by iteration,
exactly as we would do with BP. We initialize the SP messages, generally as i.i.d.
random variables with some common distribution, and then update them according
to eqns (20.17)–(20.20). Updates can, for instance, be implemented in parallel until a
convergence criterion has been met.

Figure 20.6 shows the empirical probability that the iteration converges before
tmax = 1000 iterations on random formulae as a function of the clause density α.
As a convergence criterion, we required that the maximal difference between any two
subsequent values of a message was smaller than δ = 10−2. Messages were initialized
by drawing, for each edge, Q̂ai ∈ [0, 1] independently and uniformly at random. It is
clear that SP has better convergence properties than BP for K = 3 and, indeed, it
converges even for α larger than the SAT–UNSAT threshold.
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Fig. 20.6 Empirical convergence probability of SP (initialized with uniformly random mes-

sages) plotted versus the clause density α for 3-SAT (left), and 4-SAT (right). The average

is over 100 instances, with N = 5× 103 (solid line) and N = 104 (dashed line) variables. The

data points show the empirical probability that SP-guided decimation finds a SAT assign-

ment, computed over 100 instances with N = 5 × 103. The vertical lines are the predicted

SAT–UNSAT thresholds.

The numerics suggest the existence of two thresholds αd,SP(K) and αu,SP(K) that
characterize the convergence behaviour as follows (all of the statements below should
be interpreted as holding with high probability in the large-N limit):

• For α < αd,SP, the iteration converges to the trivial fixed point defined by Q̂ai = 0
for all edges (i, a) ∈ G.

• For αd,SP < α < αu,SP, the iteration converges to a ‘non-trivial’ fixed point.

• For αu,SP < α, the iteration does not converge.

In the interval αd,SP(K) < α < αU,SP(K), it is expected that an exponential
number of fixed points will exist, but most of them will be degenerate and correspond
to ‘disguised’ WP fixed points. In particular, Q̂ai = 0 or 1 for all of the edges (i, a).
On the other hand, the fixed point actually reached by iteration is stable with respect
to changes in the initialization. This suggests the existence of a unique non-degenerate
fixed point. The threshold αd,SP(K) is conjectured to be the same as that defined for
the distributional equation in the previous section; this is why we have used a similar
symbol. In particular, αd,SP(K = 3) ≈ 3.93 and αd,SP(K = 4) ≈ 8.30. We have also
obtained αu,SP(K = 3) ≈ 4.36 and αu,SP(K = 4) ≈ 9.7.

SP can be used in a decimation procedure. After iterating the SP equations until
convergence, one computes the SP marginal for each variable i ∈ {1, . . . , N}:

wi(1) ∼=
∏

a∈∂0i

(1 − Q̂ai)

[
1 −

∏
a∈∂1i

(1 − Q̂ai)

]
,

wi(0) ∼=
∏

a∈∂1i

(1 − Q̂ai)

[
1 −

∏
a∈∂0i

(1 − Q̂ai)

]
,

wi(∗) ∼=
∏
a∈∂i

(1 − Q̂ai) , (20.26)
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with the normalization condition wi(1) + wi(0) + wi(∗) = 1. The interpretation of
these SP marginals is the following: wi(1) and wi(0) are the probabilities that the
variable i receives a warning forcing it to take the value xi = 1 or xi = 0, respectively,
conditional on the fact that it does not receive contradictory warnings. The bias of the
variable is then defined as πi ≡ wi(0) − wi(1). The variable with the largest absolute
bias is selected, and fixed according to the sign of the bias. This procedure is then
iterated as with BP-guided decimation.

It typically happens that, after some fraction of the variables have been fixed with
this method, the SP iteration on the reduced instance converges to the trivial fixed
point Q̂ai = 0. According to our interpretation, this means that the resulting problem
is described by a unique Bethe measure, and the SAT assignments are no longer
clustered. In fact, in agreement with this interpretation, it is found that, typically,
simple algorithms are able to solve the reduced problem. A possible approach is to run
BP-guided decimation. An even simpler alternative is to apply a simple local search
algorithm, such as Walksat or simulated annealing.

The pseudocode for this algorithm is as follows.

SP-Guided Decimation (formula F , SP parameter ε, tmax,
WalkSAT parameters f , p)

1: Set U = ∅;
2: Repeat until FAIL or U = V :
3: Call SP(F , ε, tmax). If it does not converge, FAIL;
4: For each i ∈ V \ U , compute the bias πi;
5: Let j ∈ V \ U have the largest value of |πi|;
6: If |πj | ≤ 2Kε call WalkSAT(F , f, p);
7: Else fix xj according to the sign of πj ,

and define F as the new formula obtained after fixing xj ;
8: End-Repeat;
9: Return the current assignment;

SP (formula F , accuracy ε, iterations tmax)
1: Initialize SP messages to i.i.d. random variables;
2: For t ∈ {0, . . . , tmax}
3: For each (i, a) ∈ E

4: Compute the new value of Q̂ai using eqn (20.10)
5: For each (i, a) ∈ E
6: Compute the new value of Qai using eqns (20.11)–(20.13)
7: Let ∆ be the maximum difference from the previous iteration;
8: If ∆ < ε return current messages;
9: End-For;
10: Return ‘Not Converged’;

The pseudocode of WalkSAT was given in Section 10.2.3.
In Fig. 20.6, we plot the empirical success probability of the SP-guided-decimation
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Fig. 20.7 Performance of BP-guided decimation and SP-guided decimation on 3-SAT (left

plot) and 4-SAT (right plot) problems. The plots show the probability of finding a SAT

assignment versus the clause density, averaged over 100 instances with N = 5×103 variables.

The SP-based algorithm (dotted line) performs better than the BP-based one (full line). The

vertical lines are the SAT–UNSAT thresholds.

algorithm for random 3-SAT and 4-SAT formulae as a function of the clause density
α. A careful study suggests that the algorithm finds a satisfying assignment with
high probability when α � 4.252 (for K = 3) and α � 9.6 (for K = 4). These
values are slightly smaller than the conjectured locations of the SAT–UNSAT threshold
αs(3) ≈ 4.2667 and αs(4) ≈ 9.931.

Apart from the SP routine (which builds upon the statistical-mechanics insight),
the above algorithm is quite naive and could be improved in a number of directions.
One possibility is to allow the algorithm to backtrack, i.e. to release some variables
that were fixed at a previous stage of the decimation. Further, we have not used, at any
step, the information provided by the free entropy Fe(y = ∞), which can be computed
at little extra cost. Since this gives an estimate of the logarithm of the number of
clusters of solutions, it can also be reasonable to make choices that maximize the
value of Fe in the resulting formula.

As can be deduced from Fig. 20.7, SP-guided decimation outperforms BP-guided
Decimation. Empirically, this algorithm, or small variations of it, provides the most
efficient procedure for solving large random K-SAT formulae close to the SAT–UNSAT
threshold. Furthermore, it has extremely low complexity. Each SP iteration requires
O(N) operations, which yields O(Ntmax) operations per SP call. In the implementation
outlined above, this implies an O(N2tmax) complexity. This can, however, be reduced
to O(Ntmax) by noticing that fixing a single variable does not affect the SP messages
significantly. As a consequence, SP can be called every Nδ decimation steps for some
small δ. Finally, the number of iterations required for convergence seems to grow very
slowly with N , if it does at all. One should probably think of tmax as a big constant,
or tmax = O(log N)

In order to get a better understanding of how SP-guided decimation works, it is
useful to monitor the evolution of the energetic-complexity curve Σe(ε) while decimat-
ing. When SP iteration has converged for a given instance, one can use eqn (20.21) to
compute the free entropy, and then compute the curve Σe(ε) by means of a Legendre
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transform.
In Fig. 20.8, we consider a run of the SP-guided decimation algorithm on one ran-

dom 3-SAT formula with N = 104 at α = 4.2. Here, the complexity curve of the
residual formula (NΣe(ε) versus the number of violated clauses Nε) is plotted every
1000 decimation steps. One can notice two main effects: (i) the zero-energy complexity
NΣe(0) decreases, showing that some clusters of solutions are lost during the decima-
tion; and (ii) the number of violated clauses in the most numerous metastable clusters,
the ‘threshold energy’, decreases as well,1 implying that the problem becomes simpler:
the true solutions are less and less hidden among metastable minima.

The important point is that the effect (ii) is much more pronounced than (i). After
about half of the variables have been fixed, the threshold energy vanishes. SP converges
to the trivial fixed point, the resulting instance becomes ‘simple’ and is solved easily
by Walksat.

20.3 Some ideas about the full phase diagram

20.3.1 Entropy of clusters

The energetic 1RSB cavity method has given two important results: on the one hand,
a method to locate the SAT–UNSAT transition threshold αs, which is conjectured to
be exact, and on the other, a powerful message-passing algorithm: SP. These results

1Because of the instability of the 1RSB solution at large energies (see Chapter 22), the threshold
energies obtained within the 1RSB approach are not exact. However, one expects the actual behaviour
to be quantitatively close to the 1RSB description.
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Fig. 20.9 1RSB analysis of random 4-SAT. Left : complexity versus internal entropy density

of clusters, for α = 9.3, 9.45, 9.6, 9.7, 9.8, and 9.9 (from top to bottom). When SAT configura-

tions are sampled uniformly, one finds either configurations in an exponentially large number

of clusters (the dot on the curve for α = 9.45, which is the point where dΣ/dφ = −1), or a

condensed phase where the measure is dominated by a few clusters (the squares on the curves

for α ≥ 9.6). Right : complexity Σ(x) and free-entropy density F(x) at a few key values of x:

x = 0 corresponds to the maximum of Σ(φ), x = 1 to the point where dΣ/dφ = −1, and

x = x∗ to Σ(φ) = 0. The dynamical transition is at αd ≈ 9.38, the condensation transition at

αc ≈ 9.547, and the SAT–UNSAT transition at αs ≈ 9.931.

were obtained at a cost: we completely forgot about the size of the clusters of SAT
assignments, their ‘internal entropy’.

In order to get a finer understanding of the geometry of the set of solutions in
the SAT phase, we need to get back to the uniform measure over SAT assignments
of eqn (20.1), and use the 1RSB method of Section 19.2. Our task is, in principle,
straightforward: we need to estimate the 1RSB free entropy F(x), and evaluate the
Legendre transform (19.8) in order to get the complexity function Σ(φ). Recall that
Σ(φ) is the exponential growth rate of the number of clusters with free entropy Nφ
(in the present case, since we are restricting ourselves to SAT configurations, the free
entropy of a cluster is equal to its entropy).

This is a rather demanding task from the numerical point of view. Let us under-
stand why: each BP message is parameterized by one real number in [0, 1], as we saw
in eqn (20.3). A 1RSB message characterizes the distribution of this number, so it is a
pdf on [0, 1]. One such distribution is associated with each directed edge of the factor
graph. For a study of the phase diagram, one needs to perform a statistical analysis
of the 1RSB messages. Within the population dynamics approach, this means that we
must use a (large) population of distribution functions. For each value of x, the algo-
rithm must be run for a large enough number of iterations to estimate F(x). This is
at the limit of what can be done numerically. Fortunately, it can be complemented by
two simpler computations: the SP approach, which gives the results corresponding to
x = 0, and a study of the x = 1 case using the simplification described in Section 19.4.
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20.3.2 The condensation transition for K ≥ 4

We shall not provide any technical details of these computations, but focus instead on
the main results using K = 4-SAT as a running example. As shown by Fig. 20.9, this
system displays the full scenario of phase transitions described in Section 19.6. Upon
increasing the clause density α, one finds first an RS phase for α < αd, then a d1RSB

phase with exponentially many relevant states for αd < α < αc, and then an s1RSB

phase with condensation of the measure on a few states for αc < α < αs. The system
becomes UNSAT for α > αs.

Figure 20.9 shows the evolution of the complexity versus the internal entropy den-
sity of the clusters as α increases (note that increasing α plays the same role as de-
creasing the temperature in the general scenario sketched in Fig. 19.6). For a given α,
almost all clusters have an internal entropy density φ0 corresponding to the maximum
of Σ(φ). The complexity at the maximum, Σ(φ0) = F(x = 0), is equal to the complex-
ity at zero energy density that we found by the energetic 1RSB cavity method. When
SAT configurations are sampled uniformly, almost all of them are found in clusters of
internal entropy density φ1 such that Σ(φ) + φ is maximum, conditional on the fact
that Σ(φ) ≥ 0. In the d1RSB phase, one has Σ(φ1) > 0, and in the s1RSB phase one
has Σ(φ1) = 0. The condensation point αc can therefore be found through a direct
(and more precise) study at x = 1. Indeed it is identified as the value of the clause
density such that the two equations Σ(φ) = 0 and dΣ/dφ = −1 admit a solution.

Exercise 20.8 Using the Legendre transform in eqn (19.8), show that this condensation
point αc is the point where the 1RSB free-entropy function F(x) satisfies F(1) − F′(1) = 0
(where the prime means a derivative with respect to x). As we saw in Section 19.4, the
value of F(1) is equal to the RS free entropy. The value of the internal entropy F′(1) can
be obtained explicitly from the x = 1 formalism. Writing down the full x = 1 formalism
for random satisfiability, including this computation of F′(1), is an interesting (non-trivial)
exercise.

The dynamical transition point αd is defined as the smallest value of α such that
there exists a non-trivial solution to the 1RSB equations at x = 1 (in practice, it is
best studied using the point-to-set correlation, which will be described in Chapter 22).
Notice from Fig. 20.9 that there can exist clusters of SAT assignments even at α < αd:
for α = 4.3, there exists a branch of Σ(φ) around the point φ0 where it is maximum,
but this branch disappears, if one increases φ, before one can find a point where
dΣ/dφ = −1. The interpretation of this regime is that an exponentially small fraction
of the solutions are grouped into well-separated clusters. The vast majority of the
solutions belong instead to a single, well-connected ‘replica-symmetric’ cluster. As we
saw in the case of the energetic cavity method, the first occurrence of the clusters
around φ0 occurs at the value αd,SP, which is around 8.3 for 4-SAT.

The same scenario has been found in studies of random K-SAT with K = 5 and
6, and it is expected to hold for all K ≥ 4. The situation is somewhat different for
K = 3, as the condensation point αc coincides with αd: the 1RSB phase is always
condensed. Table 20.2 summarizes the values of the thresholds.
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Table 20.2 Predictions of the 1RSB cavity method for the non-trivial SP, dynamical, con-

densation, and SAT–UNSAT thresholds of random K-satisfiability.

K αd αc αs

3 3.86 3.86 4.2667
4 9.38 9.547 9.931
5 19.16 20.80 21.117
6 36.53 43.08 43.37

20.4 An exercise: Colouring random graphs

Recall that a proper q-colouring of a graph G = (V, E) is an assignment of colours
{1, . . . , q} to the vertices of q in such a way that no edge has its two adjacent ver-
tices of the same colour. Hereafter, we shall refer to a proper q-colouring as simply a
‘colouring’ of G. Colourings of a random graph can be studied following the approach
just described for satisfiability, and reveal a strikingly similar behaviour. Here we shall
just present some key steps of this analysis: this section can be seen as a long exercise
in applying the cavity method. We shall focus on the case of random regular graphs,
which is technically simpler. In particular, many results can be derived without re-
sorting to a numerical solution of the cavity equations. The reader is encouraged to
work out the many details which have been left out.

We shall adopt the following description of the problem: with each vertex i ∈ V
of a graph G = (V, E), we associate a variable xi ∈ {1, . . . , q}. The energy of a colour
assignment x = {x1, . . . , xN} is given by the number of edges whose vertices have the
same colour:

E(x) =
∑

(ij)∈E

I(xi = xj) . (20.27)

If the graph is colourable, we are also interested in the uniform measure over proper
colourings:

µ(x) =
1

Z
I(E(x) = 0) =

1

Z

∏
(ij)∈E

I(xi = xj) , (20.28)

where Z is the number of proper colourings of G. The factor graph associated with
µ( · ) is easily constructed. We associate one variable node with each vertex of i ∈ G
and one function node with each edge (ij) ∈ C, and connect this function node to
the two variable nodes corresponding to i and j. The probability distribution µ(x) is
therefore a pairwise graphical model.

We shall assume that G is a random regular graph of degree c. Equivalently, the
corresponding factor graph is distributed according to the ensemble DN (Λ, P ), with
Λ(x) = xc and P (x) = x2. The important technical simplification is that, for any fixed
r, the radius-r neighbourhood around a random vertex i is, with high probability, a
tree of degree c, i.e. it is non-random. In other words, the neighbourhood of most of
the nodes is the same.

Let us start with the RS analysis of the graphical model (20.28). As we saw in
Section 14.2.5, we can get rid of function-to-variable-node messages, and work with
variable-to-function-node messages νi→j(xi). The BP equations read
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νi→j(x) ∼=
∏

k∈∂i\j

(1 − νk→i(x)) . (20.29)

Because of the regularity of the graph, there exist solutions of these equations such
that messages take the same value on all edges. In particular, eqn (20.29) admits the
solution νi→j( · ) = νunif( · ), where νunif( · ) is the uniform message: νunif(x) = 1/q
for x ∈ {1, . . . , q}. The corresponding free-entropy density (equal here to the entropy
density) is

fRS = log q +
c

2
log

(
1 − 1

q

)
. (20.30)

It can be shown that this coincides with the ‘annealed’ estimate N−1 log EZ. It
decreases with the degree c of the graph and becomes negative for c larger than
cUB(q) ≡ 2 log q/ log(q/(q−1)), similarly to what we saw in Fig. 20.2. The Markov in-
equality implies that, with high probability, a random c-regular graph does not admit
a proper q-colouring for c > cUB(q). Further, the RS solution is certainly incorrect for
c > cUB(q).

A stability analysis of this solution shows that the spin glass susceptibility diverges
as c ↑ cst(q), with cst(q) = q2 − 2q + 2. For q ≥ 4, cst(q) > cUB(q).

In order to correct the above inconsistencies, we have to resort to the energetic
1RSB approach. Let us focus on the y → ∞ limit (or, equivalently, the zero-energy
limit). In this limit, we obtain the SP equations. These can be written in terms of
messages Qi→j( · ) that have the following interpretation:

• Qi→j(x) = probability that, in the absence of (i, j), xi is forced to the value x,

• Qi→j(∗) = probability that, in the absence of (i, j), xi is not forced.

Recall that ‘probability’ is interpreted here with respect to a random Bethe state.
An SP equation expresses the message Qi→j( · ) in terms of the c − 1 incoming

messages Qk→i( · ), with k ∈ ∂i \ j. To keep the notation simple, we fix an edge i → j
and denote it by 0, and use 1, . . . , c− 1 to label the edges k → i with k ∈ ∂i \ j. Then,
for any x in {1, . . . , q},we have

Q0(x) =

∑
(x1...xc−1)∈N (x) Q1(r1)Q2(x2) · · ·Qc−1(xc−1)∑

(x1...xc−1)∈D Q1(r1)Q2(x2) · · ·Qc−1(xc−1)
, (20.31)

where:

• D is the set of tuples (x1, . . . , xc−1) ∈ {∗, 1, . . . , q}n such that there exists z ∈
{1, . . . , q} with z = x1, . . . , xc−1. According to the interpretation above, this
means that there is no contradiction among the warnings to i.

• N (x) is the set of tuples (x1, . . . , xc−1) ∈ D such that, for any z = x, there exists
k ∈ {1, . . . , c−1} such that xk = z. In other words, x is the only colour for vertex
i that is compatible with the warnings.

Q0(∗) is determined by the normalization condition Q0(∗) +
∑

x Q0(x) = 1.
On a random regular graph of degree c, these equations admit a solution with

Qi→j( · ) = Q( · ) independent of the edge (i, j). Furthermore, if we assume this solution
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Fig. 20.10 Results of a 1RSB analysis of proper q-colourings of random regular graphs.

The table gives the thresholds: the threshold for the appearance of non-trivial SP solutions

cd,SP, the dynamical threshold cd, the condensation threshold cc, and the threshold for the

colourable/uncolourable transition cs. The figure on the right shows the complexity of the

clusters as a function of their internal entropy density. Here, q = 6 and the degrees of the

graphs are c = 17 (RS), c = 18 (d1RSB), c = 19 (s1RSB) and c = 20 (uncolourable). The

circles denote the points of slope −1 on the complexity curves.

to be symmetric under permutation of colours, the corresponding message can be
parameterized by a single number a ∈ [0, 1/q]:

Q(x) = a for x ∈ {1, . . . , q} ,

Q(∗) = 1 − qa . (20.32)

Plugging this Ansatz into eqn (20.31), we get

a =

∑q−1
r=0 (−1)r

(
q−1

r

)
(1 − (r + 1)a)c−1∑q−1

r=0 (−1)r
(

q
r+1

)
(1 − (r + 1)a)c−1

. (20.33)

The complexity Σe(ε = 0), yielding the exponential growth rate of the number of
clusters of proper colourings, is given by Σe(e = 0) = limy→∞ Fe(y). We find that

Σe(ε = 0; c, q) = log

(
q−1∑
r=0

(−1)r

(
q

r + 1

)
(1 − (r + 1)a)c

)
− c

2
log(1 − qa2) .

(20.34)

Given the number of colours q, one can study what happens when the degree c grows
(which amounts to increasing the density of constraints). The situation is very similar
to that found for the satisfiability problem. For c ≥ cd,SP(q), there exists a pair of non-
trivial solution to eqn (20.33) with a > 0. The complexity Σe(e = 0) can be computed
from eqn (20.34) (evaluated for the largest solution a of eqn (20.33)), and is decreasing
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in c. It becomes negative for c ≥ cs(q). The degree cs(q) is thus the 1RSB prediction
for the SAT–UNSAT threshold.

When c < cs(q), the uniform measure over valid colourings can be studied, and,
in particular, one can characterize the distribution of the entropy of the clusters.
Figure 20.10 shows the complexity as a function of the internal entropy density of the
clusters. The similarity to Fig. 20.9 is obvious. One can define two particularly relevant
thresholds: cd is the smallest degree such that the 1RSB equations at x = 1 have a
non-trivial solution, and cc is the smallest degree such that the uniform measure over
proper colourings is ‘condensed’. The table in Fig. 20.10 gives some examples of these
thresholds. An asymptotic analysis for large q shows that

cd,SP = q(log q + log log q + 1 − log 2 + o(1)) , (20.35)

cd = q(log q + log log q + O(1)) , (20.36)

cc = 2q log q − log q − 2 log 2 + o(1) , (20.37)

cs = 2q log q − log q − 1 + o(1) . (20.38)

These predictions can be rephrased into a statement on the chromatic number,
i.e. the minimal number of colours needed to colour a graph. Because of the heuristic
nature of the approach, we formulate it as a conjecture.

Conjecture 20.1 With high probability, the chromatic number of a random regular
graph with N vertices and degree c ≥ 4 is equal to χchrom(c), where

χchrom(c) = max{q : Σe(ε = 0; c, q) > 0} . (20.39)

Here Σe(ε = 0; c, q) is given by eqn (20.34), where a is the largest solution of eqn (20.33)
in the interval [0, 1/q].

Using the numbers in Fig. 20.10, this conjecture predicts, for instance, that χchrom(c) =
3 for c = 4, 5, χchrom(c) = 4 for c = 6, 7, 8, 9, and χchrom(c) = 5 for 10 ≤ c ≤ 14.

On the side of rigorous results, a clever use of the first- and second- moment
methods allows one to prove the following result.

Theorem 20.2 With high probability, the chromatic number of a random regular
graph with N vertices and degree c is either k, k + 1 or k + 2, where k is the small-
est integer such that c < 2k log k. Furthermore, if c > (2k − 1) log k, then with high
probability the chromatic number is either k or k + 1.

One can check explicitly that the results of the 1RSB cavity conjecture agree with this
theorem, which proves the correct leading behaviour at large c.

Although this presentation was focused on random regular graphs, a large class of
random graph ensembles can be analysed along the same lines.

Notes

Random K-satisfiability was first analysed using the replica-symmetric cavity method
by Monasson and Zecchina (1996, 1997). The resulting equations are equivalent to
a density evolution analysis of belief propagation. BP was used as an algorithm for
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finding SAT assignments by Pumphrey (2001). That study concluded that BP was
ineffective in solving satisfiability problems, mainly because it assigned variables in a
one-shot fashion, unlike the case when it is used in decimation.

The 1RSB cavity method was applied to random satisfiability in Mézard et al. (2002)
and Mézard and Zecchina (2002), where the value of αc was computed for 3-SAT. This
approach was applied to larger K by Mertens et al. (2006), who also derived the large-
K asymptotics. The SP(y) and SP equations for satisfiability were first written down
in Mézard and Zecchina (2002), where SP-guided decimation was introduced. A more
algorithmic presentation of SP was then developed by Braunstein et al. (2005), to-
gether with an optimized source code for SP and decimation (Braunstein et al., 2004).
The idea of backtracking was suggested by Parisi (2003), but its performance has not
been systematically studied yet.

The condensation phenomenon was discussed by Krzakala et al. (2007), in relation
to studies of the entropic complexity in the colouring problem (Mézard et al., 2005b;
Krzakala and Zdeborová, 2007) and in the satisfiability problem (Montanari et al.,
2008).

The analysis in this chapter was heuristic, and is waiting for a rigorous proof. Let us
point out that one important aspect of the whole scenario has been established rigor-
ously for K ≥ 8: it has been shown that in some range of clause density below αs(K),
the SAT assignments are grouped into exponentially many clusters, well separated
from each other (Mézard et al., 2005a; Achlioptas and Ricci-Tersenghi, 2006; Daudé
et al., 2008). This result can be obtained by a study of the ‘x-satisfiability’ problem,
which requires one to determine whether a formula has two SAT assignments differing
in xN variables. Bounds on the x-satisfiability threshold can be obtained through the
first- and second- moment methods.

The colouring problem was first studied with the energetic 1RSB cavity method by
Mulet et al. (2002) and Braunstein et al. (2003): these papers contain the derivation of
the SAT/UNSAT threshold and the SP equations. A detailed study of the entropy of
clusters, and the computation of the other thresholds, was carried out by Krzakala and
Zdeborová (2007). These papers also study the case of Erdös–Rényi graphs. Theorem
20.2 was proven by Achlioptas and Moore (2004), and its analogue for Erdös–Rényi
graphs by Achlioptas and Naor (2005). The validity of the RS solution for colouring
graphs of low enough degree was proven by Bandyopadhyay and Gamarnik (2006).
Linear relaxations of satisfiability have been studied by Gamarnik (2004).
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Glassy states in coding theory

In Chapter 15, we studied the problem of decoding random LDPC codes, and found
two phase transitions that characterize the performance of the code in the large-block-
length limit. Consider, for instance, communication over a binary symmetric channel
with crossover probability p. Under belief propagation decoding, the bit error rate
vanishes in the large-block-length limit below a first threshold pd and remains strictly
positive for p > pd. On the other hand, the minimal bit error rate achievable with the
same ensemble (i.e. the bit error rate under symbol MAP decoding) vanishes up to a
larger noise level pc and is bounded away from 0 for p > pc.

In principle, one should expect every decoding algorithm to have a different thresh-
old. This suggests that we should not attach too much importance to the BP threshold
pd. On the contrary, we shall see in this chapter that pd is, in some sense, a ‘universal’
characteristic of the code ensemble: above pd, the decoding problem is plagued by an
exponential number of metastable states (Bethe measures). In other words, the phase
transition which takes place at pd is not only algorithmic, it is a structural phase
transition. This transition turns out to be a dynamical 1RSB glass transition, and this
suggests that pd is the largest possible threshold for a large class of local decoding
algorithms.

We have already seen, in the last section of Chapter 15, that the two thresholds pd

and pc are closely related and can both be computed formally within the RS cavity
method, i.e. in terms of the density-evolution fixed point. The analysis below will
provide a detailed explanation of this connection in terms of the glass transition studied
in Chapter 19.

In Section 21.1, we start by considering a numerical investigation of the role of
metastable states in decoding. Section 21.2 considers the particularly instructive case
of a binary erasure channel, where the glassy states can be analysed relatively easily
using the energetic 1RSB cavity method. The analysis of general memoryless channels
is described in Section 21.3. Finally, Section 21.4 describes the connection between
metastable states, which are one of the main subjects of study in this chapter, and
trapping sets (subgraphs of the original factor graph that are often regarded as re-
sponsible for coding failures).

21.1 Local search algorithms and metastable states

The codewords of an LDPC code are solutions of a constraint satisfaction problem.
The variables are the bits of a word x = (x1, x2, . . . , xN ), with xi ∈ {0, 1}, and the
constraints are the parity check equations, i.e. a set of linear equations mod 2. This is
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analogous to the XORSAT problem considered in Chapter 18, although the ensembles
of linear systems used in coding are different.

An important difference from XORSAT is that we are looking for a specific solution
of the linear system, namely the transmitted codeword. The received message y gives
us a hint of where to look for this solution. For notational simplicity, we shall assume
that the output alphabet Y is discrete, and the channel is a binary-input, memory-
less, output-symmetric (BMS) channel (see Chapter 15)) with transition probability1

Q(y|x). The probability that x is the transmitted codeword, given the received message
y, is given by the usual formula (15.1), P(x|y) = µy(x), where

µy(x) ∼=
N∏

i=1

Q(yi|xi)
M∏

a=1

I(xia
1
⊕ · · · ⊕ xia

k(a)
= 0) . (21.1)

It is natural to associate an optimization problem with the code. We define the
energy E(x) of a word x (also called a ‘configuration’) as twice the number of parity
check equations violated by x (the factor 2 is introduced for future simplification).
Codewords coincide with the global minima of this energy function, with zero energy.

We already know that decoding consists in computing marginals of the distribution
µy(x) (symbol MAP decoding) or finding its argmax (word MAP decoding). In the
following, we shall discuss two closely related problems: (i) optimizing the energy
function E(x) within a subset of the configuration space defined by the received word
and the channel properties; and (ii) sampling from a ‘tilted’ Boltzmann distribution
associated with E(x).

21.1.1 Decoding by constrained optimization

Let us start by considering the word MAP decoding problem. We shall exploit our
knowledge of BMS channels. Conditional on the received word y = (y1, y2, . . . , yN ),
the log-likelihood for x to be the channel input is

Ly(x) =

N∑
i=1

logQ(yi|xi) . (21.2)

We shall later use the knowledge that the input word was a codeword, but Ly(x) is

well defined for any x ∈ {0, 1}N , regardless of whether it is a codeword or not, so let
us first characterize its properties.

Assume, without loss of generality, that the codeword 0 was transmitted. By the
law of large numbers, for large N the log-likelihood of this codeword is close to −Nh,
where h is the channel entropy: h = −∑y Q(y|0) logQ(y|0). The probability of an
order-N deviation away from this value is exponentially small in N . This suggests
that we should look for the transmitted codeword among those x such that Ly(x) is
close to h.

The corresponding typical-pairs decoding strategy goes as follows. Given the
channel output y, look for a codeword x ∈ C such that Ly(x) ≥ −N(h + δ). We shall

1Throughout this chapter, we adopt a different notation for the channel transition probability from
that in the rest of the book, in order to avoid confusion with 1RSB messages.
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refer to this condition as the ‘distance constraint’. For instance, in the case of a binary
symmetric channel, it amounts to constraining the Hamming distance between the
codeword x and the received codeword y to be small enough. If exactly one codeword
satisfies the distance constraint, return it. If there is no such codeword, or if there are
several of them, declare an error. Here δ > 0 is a parameter of the algorithm, which
should be thought of as going to 0 after N → ∞.

Exercise 21.1 Show that the block error probability of typical-pairs decoding is indepen-
dent of the transmitted codeword.
[Hint: Use the linear structure of LDPC codes, and the symmetry property of a BMS
channel.]

Exercise 21.2 This exercise is aimed at convincing the reader that typical-pairs decoding
is ‘essentially’ equivalent to maximum-likelihood (or MAP) decoding.

(a) Show that the probability that no codeword exists with Ly(x) ∈ [−N(h+δ),−N(h−δ)]
is exponentially small in N .
[Hint: Apply Sanov’s Theorem, (see Section 4.2), to the type of the received codeword.]

(b) Obtain an upper bound for the probability that maximum-likelihood decoding succeeds
and typical-pairs decoding fails in terms of the probability that there exists an incorrect
codeword x with Ly(x) ≥ −N(h + δ), but no incorrect codeword Ly(x) ≥ −N(h − δ).

(c) Estimate the last probability for Shannon’s random code ensemble. Show, in particular,
that it is exponentially small for all noise levels strictly smaller than the MAP threshold
and δ small enough.

Since codewords are global minima of the energy function E(x), we can rephrase
typical-pairs decoding as an optimization problem:

Minimize E(x) subject to Ly(x) ≥ −N(h + δ) . (21.3)

Neglecting exponentially rare events, we know that there always exists at least one
solution with cost E(x) = 0, corresponding to the transmitted codeword. Therefore,
typical-pairs decoding is successful if and only if the minimum is non-degenerate. This
happens with high probability for p < pc. In contrast, for p > pc, the optimization
admits other minima with zero cost (incorrect codewords). We have already explored
this phenomenon in Chapters 11 and 15, and we shall discuss it further below. For
p > pc, there exists an exponential number of codewords whose likelihood is greater
than or equal to the likelihood of the transmitted one.

Similarly to what we have seen in other optimization problems (such as MAX-
XORSAT and MAX-SAT), there exists generically an intermediate regime pd < p < pc,
which is characterized by an exponentially large number of metastable states. For
these values of p, the global minimum of E(x) is still the transmitted codeword, but
is ‘hidden’ by the proliferation of deep local minima. Remarkably, the threshold for
the appearance of an exponential number of metastable states coincides with the BP
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threshold pd. Thus, for p ∈ ]pd, pc[, MAP decoding would be successful, but message-
passing decoding fails. In fact, no practical algorithm which succeeds in this regime is
known. A ‘cartoon’ of this geometrical picture is presented in Fig. 21.1.

At this point, the reader might be puzzled by the observation that finding config-
urations with E(x) = 0 is, per se, a polynomial task. Indeed, it amounts to solving a
linear system modulo 2, and can be done by Gaussian elimination. However, the prob-
lem (21.3) involves the condition Ly(x) ≥ −N(h + δ), which is not a linear constraint
modulo 2. If one resorts to local-search-based decoding algorithms, the proliferation of
metastable states for p > pd can block the algorithm. We shall discuss this phenomenon
for two local search strategies: ∆-local search and simulated annealing.

21.1.2 ∆-local-search decoding

A simple local search algorithm consists in starting from a word x(0) such that
Ly(x(0)) ≥ −N(h + δ) and then recursively constructing x(t + 1) by optimizing the

energy function within a neighbourhood of radius ∆ around x(t), as in the following
pseudocode.

∆ local search (channel output y, search size ∆, likelihood resolution δ)

1: Find x(0) such that Ly(x(0)) ≥ −N(h + δ);

2: for t = 0, . . . , tmax − 1:
3: Choose a uniformly random connected set U ⊂ {1, . . . , N}

of variable nodes in the factor graph with |U | = ∆;
4: Find the configuration x′ that minimizes the energy subject

to x′
j = xj for all j ∈ U ;

5: If Ly(x′) ≥ −N(h + δ), set x(t + 1) = x′;

otherwise, set x(t + 1) = x(t);
6: end;
7: return x(tmax).

(Recall that a set of variable nodes U is ‘connected’ if, for any i, j ∈ U , there exists a
path in the factor graph connecting i to j such that all variable nodes along the path
are in U as well.)

Exercise 21.3 A possible implementation of step 1 consists in setting xi(0) =
arg maxx Q(yi|x). Show that this choice meets the likelihood constraint.

If the factor graph has bounded degree (which is the case with LDPC ensembles),
and ∆ is bounded as well, each execution of the cycle above implies a bounded number
of operations. As a consequence, if we let tmax = O(N), the algorithm has linear
complexity. A computationally heavier variant consists in choosing U at step 3 greedily.
This means going over all such subsets and then taking the one that maximizes the
decrease in energy |E(x(t + 1)) − E(x(t))|.
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Fig. 21.1 Three possible ‘cartoon’ landscapes for the energy function E(x) (the number of

violated checks), plotted in the space of all configurations x with Ly(x) ≥ N(h − δ). Left :

the energy has a unique global minimum with E(x) = 0 (the transmitted codeword) and no

(deep) local minima. Centre: many deep local minima appear, although the global minimum

remains non-degenerate. Right : more than one codeword is compatible with the likelihood

constraint, and the global minimum E(x) = 0 becomes degenerate.

Obviously, the energy E(x(t)) of the configuration produced after t iterations is a
non-increasing function of t. If it vanishes at some time t ≤ tmax, then the algorithm
implements a typical-pairs decoder. Ideally, one would like a characterization of the
noise levels and code ensembles such that E(x(tmax)) = 0 with high probability.

The case ∆ = 1 was analysed in Chapter 11, under the name of the ‘bit-flipping’
algorithm, for communicating over the channel BSC(p). We saw that there exists a
threshold noise level p1 such that if p < p1, the algorithm returns the transmitted
codeword with high probability. It is reasonable to expect that the algorithm will be
unsuccessful with high probability for p > p1.

Analogously, one can define thresholds p∆ for each value of ∆. Determining these
thresholds analytically is an extremely challenging problem.

One line of approach could consist in first studying ∆-stable configurations. We
say that a configuration x is ∆-stable if, for any configuration x′ such that Ly(x′) ≥
−N(h + δ) and d(x, x′) ≤ ∆, E(x′) ≥ E(x).

Exercise 21.4 Show that, if no ∆-stable configuration exists, then the greedy version of
the algorithm above will find a codeword after at most M steps (M being the number orf
parity checks).

While this exercise hints at a connection between the energy landscape and the
difficulty of decoding, one should be aware that the problem of determining p∆ cannot
be reduced to determining whether ∆-stable states exist or to estimating their number.
The algorithm in fact fails if, after a number t of iterations, the distribution of x(t) is
(mostly) supported in the basin of attraction of ∆-stable states. The key difficulty is,
of course, to characterize the distribution of x(t).

21.1.3 Decoding by simulated annealing

A more detailed understanding of the role of metastable configurations in the decoding
problem can be obtained through an analysis of the MCMC decoding procedure that
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we discussed in Section 13.2.1. We thus soften the parity check constraints through
the introduction of an inverse temperature β = 1/T (this should not be confused with
the temperature introduced in Chapter 6, which instead multiplied the log-likelihood
of the codewords). Given the received word y, we define the following distribution over
the transmitted message x (see eqn (13.10)):

µy,β(x) ≡ 1

Z(β)
exp{−βE(x)}

N∏
i=1

Q(yi|xi) . (21.4)

This is the ‘tilted Boltzmann form’ that we alluded to before. In the low-temperature
limit, it reduces to the familiar a posteriori distribution which we would like to sample:
µy,β=∞(x) is supported on the codewords, and gives each of them a weight proportional
to its likelihood. At infinite temperature, β = 0, the distribution factorizes over the
bits xi. More precisely, under µy,β=0(x), the bits xi are independent random variables
with marginals Q(yi|xi)/(Q(yi|0)+Q(yi|1)). Sampling from this measure is very easy.

For β ∈ ]0,∞[, µy,β( · ) can be regarded as a distribution of possible channel inputs
for a code with ‘soft’ parity check constraints. Note that, unlike the β = ∞ case, this
distribution depends in general on the actual parity check matrix and not just on the
codebook C. This is actually a good feature of the tilted measure: the performance of
practical algorithms does indeed depend upon the representation of the parity check
matrix of C. It is therefore necessary to take it into account.

We sample from µy,β( · ) using Glauber dynamics, (see Section 13.2.1). We have
already seen in that section that decoding through sampling at a fixed β fails above
a certain noise level. Let us now try to improve on that method using a simulated-
annealing procedure in which β is increased gradually according to an annealing sched-
ule β(t), with β(0) = 0. The following decoder uses as input the received word y, the
annealing schedule, and some maximal numbers of iterations tmax, n.

Simulated Annealing Decoder (y, {β(t)}, tmax, n)

1: Generate x∗(0) from µy,0( · );
2: for t = 0, . . . tmax − 1:
3: Set x(0; t) = x∗(t − 1);
4: Let x(j; t), j ∈ {1, . . . , n} be the configurations produced by

n successive Glauber updates at β = β(t);
5: Set x∗(t) = x(n; t);
6: end
7: return x(tmax).

The algorithmic complexity of the decoder is proportional to the total number of
Glauber updates ntmax. If we want the algorithm to be efficient, this should grow
linearly or slightly superlinearly with N . The intuition is that the first (small-β) steps
allow the Markov chain to equilibrate across the configuration space, whereas, as β
gets larger, the sample becomes concentrated onto (or near to) codewords. Hopefully,
at each stage x∗(t) will be approximately distributed according to µy,β(t)( · ).



Local search algorithms and metastable states ���

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.0 0.2 0.4 0.6 0.8 1.0 1.2

τ =1
τ =10

τ =102

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.0 0.2 0.4 0.6 0.8 1.0 1.2

τ =10
τ =102

τ =103

T T

eann eann

Fig. 21.2 Decoding random codes from the (5, 6) LDPC ensemble using simulated annealing.

Here we consider a block length N = 12 000 and transmission over BSC(p) with p = 0.12

(left) and 0.25 (right). The system was annealed through tmax = 1200 temperature values

equally spaced between T = 1.2 and T = 0. At each temperature, n = Nτ updates were

executed. The statistical errors are comparable to the size of the jumps along the curves.

Figure 21.2 shows the result obtained by use of this simulated-annealing decoder,
using random LDPC codes from the (5, 6) regular ensemble, over a binary symmetric
channel with crossover probabilities p = 0.12 and 0.25 (for this ensemble, pd ≈ 0.139
and pc ≈ 0.264). The annealing schedule was linear in the temperature, namely β(t) =
1/T (t), where

T (t) = T (0) −
{
T (0) − T (tmax)

} ( t

tmax

)
, (21.5)

with T (0) = 1.2 and T (tmax) = 0. The performance of the decoding can be evalu-
ated through the number of violated checks in the final configuration, which is half of
E(x(tmax)). The figure shows the energy density averaged over 10 repetitions of the
decoding experiment (each time with a new code randomly chosen from the ensem-
ble), e(t) = (1/N)〈E(x(t))〉, versus the temperature T (t). As the number of updates
performed at each temperature increases, the number of violated checks per variable
seems to converge to a well-defined limiting value that depends on t only through the
corresponding temperature:

1

N
〈E(x(t))〉 → eann(β(t)) . (21.6)

Further, E(x(t))/N seems to concentrate around its mean as N → ∞.
At small p, eann(β) quickly converges to 0 as β → ∞: a codeword (the transmitted

one) is found efficiently. In fact, even at β = 1, the numerical result for eann(β) is
indistinguishable from 0. We expect that eann(β) will coincide within the numerical
accuracy with the theoretical prediction for the equilibrium average

eeq(β) ≡ 1

N
lim

N→∞
〈E(x)〉β . (21.7)

This agrees with the above observations, since eeq(β) = O(e−10β) (the lowest excitation
over the ground state amounts to flipping a single bit; its energy is equal to 10). The
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numerics thus suggest that x(tmax) is indeed approximately distributed according to
µy,β(t)( · ).

At large p, eann(β) has instead a non-vanishing β → ∞ limit: the annealing al-
gorithm does not find any codeword. The returned word x∗(tmax) typically violates
Θ(N) parity checks. On the other hand, in the equilibrated system at β = ∞, the
energy vanishes by construction (we know that the transmitted codeword satisfies all
checks). Therefore the simulation has fallen out of equilibrium at some finite β, thus
yielding a distribution of x(tmax) which is very different from µy,β=∞( · ). The data in
Fig. 21.2 show that the energy varies very slowly at low temperatures, which confirms
the fact that the system is out of equilibrium.

We shall argue below that this slowing down is in fact due to a dynamical glass-
phase transition occuring at a well-defined temperature Td = 1/βd. Below this tem-
perature, x(tmax) gets trapped with high probability into a pure state corresponding
to a deep local minimum of E(x) with positive energy, and never reaches a global
minimum of the energy (i.e. a codeword).

This is related to the ‘energy landscape’ picture discussed in the previous sub-
section. Indeed, the success of the simulated-annealing decoder for p ≤ pd can be
understood as follows. At small noise, the ‘tilting’ factor

∏
i Q(yi|xi) effectively se-

lects a portion of the configuration space around the transmitted codeword (more or
less like the likelihood constraint above), and this portion is small enough that there
is no metastable state inside it. An interesting aspect of simulated-annealing decod-
ing is that it can be analysed on the basis of a purely static calculation. Indeed, for
any β ≤ βd, the system is still in equilibrium and its distribution is simply given by
eqn (21.4). Its study, and the determination of βd, will be the subject of the next
sections.

Before moving to this analysis, let us make a last remark about simulated anneal-
ing: for any finite β, the MCMC algorithm is able to equilibrate if it is iterated a large
number of times (a direct consequence of the fact that Glauber dynamics is irreducible
and aperiodic). This raises a paradox, as it seems to imply that the annealing energy
always coincides with the equilibrium energy, and the system never falls out of equi-
librium during the annealing process. The solution to the conundrum is that in the
previous discussion, we tacitly assumed that the number of Monte Carlo steps cannot
grow exponentially with the system size. To be more precise, one can, for instance,
define the annealing energy as

eann(β) ≡ lim
tmax→∞

lim
N→∞

1

N
〈EN (x(tβ = �(1 − β(0)/β)tmax�))〉 , (21.8)

where we have assumed β(tmax) = ∞ The important point is that the limit N → ∞
is taken before tmax → ∞: in such a case, simulated annealing can be trapped in
metastable states.

21.2 The binary erasure channel

If communication takes place over the binary erasure channel BEC(ε), the analysis
of metastable states can be carried out in detail by adopting the point of view of
constrained optimization introduced in Section 21.1.1.
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Suppose that the all-zero codeword x∗ = (0, . . . , 0) has been sent, and let y ∈
{0, ∗}N be the channel output. We shall denote by U = U(y) the set of erased bits.
The log-likelihood for the word x to be the input can take two possible values: Ly(x) =

|U | log ε if xi = 0 for all i ∈ U , and Ly(x) = −∞ otherwise. Of course, the input

codeword belongs to the first set: Ly(x∗) = |U | log ε. The strategy of Section 21.1.1

reduces therefore to minimizing E(x) (i.e. minimizing the number of violated parity
checks) among all configurations x such that xi = 0 on all of the non-erased positions.

When the noise ε is smaller than the MAP threshold, there is a unique minimum
with energy 0, namely the transmitted codeword x∗. Our aim is to study the possible
existence of metastable states, using the energetic cavity method of Section 19.5. This
problem is closely related to XORSAT, whose analysis was presented in Chapters 18
and Chapter 19. Once all the non-erased bits have been fixed to xi = 0, decoding
amounts to solving a homogeneous system of linear equations for the remaining bits.
If one uses a code from the ensemble LDPCN (Λ, P ), the degree profiles of the remaining
nodes are Λ(x) and R(x), where the probability of a check node to have degree k, Rk,
is given in terms of the original Pk by

Rk =

kmax∑
k′=k

Pk′

(
k′

k

)
εk(1 − ε)k′−k , (21.9)

and the corresponding edge-perspective degree profile is given as usual by rk =
kRk/

∑
p pRp.

Exercise 21.5 Show that r(u) =
P

k rkuk−1 = ρ(1 − ε(1 − u)).

Assuming as usual that the number of metastable states—solutions of the min-sum
equations—of energy Ne grows like exp(NΣe(e)), we shall use the 1RSB energetic
cavity method to compute the energetic complexity Σe(e). This can be done using
the SP(y) equations on the original factor graph. As our problem involves only hard
constraints and binary variables, we can use the simplified formalism of Section 19.5.3.
Each min-sum message can take three possible values, 0 (the meaning of which is ‘take
value 0’), 1 (‘take value 1’) and ∗ (‘you can take any value’). The SP(y)messages are
distributions on these three values or, equivalently, normalized triplets.

21.2.1 The energetic 1RSB equations

Let us now turn to the statistical analysis of these messages. We denote by Q =
(Q0, Q1, Q∗) the messages from variable to check nodes, and by Q̂ the messages from
check to variable nodes. We first note that, if a bit is not erased, then it sends a sure 0
message Q = (1, 0, 0) to all its neighbouring checks. This means that the distribution
of Q has a mass of at least 1 − ε on sure 0 messages. We can write

Q =

{
(1, 0, 0) with probability (1 − ε) ,

Q̃ with probability ε .
(21.10)
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The distributional equations for Q̃ and Q̂ can then be obtained exactly as in Sec-
tions 19.5 and 19.7.

Exercise 21.6 Show that the distributions of eQ and bQ satisfy the equations

eQσ
d
= Fl,σ( bQ1, · · · , bQl−1) , (21.11)0@ bQ0bQ1bQ∗

1A d
=

0@ 1
2

Qk−1
i=1 ( eQi

0 + eQi
1) + 1

2

Qk−1
i=1 ( eQi

0 − eQi
1)

1
2

Qk−1
i=1 ( eQi

0 + eQi
1) − 1

2

Qk−1
i=1 ( eQi

0 − eQi
1)

1 −Qk−1
i=1 (1 − eQ∗,i)

1A , (21.12)

where we have defined, for σ ∈ {0, 1, ∗},

Fl,σ( bQ1, . . . , bQl−1) ≡ Zl,σ({ bQa})
Zl,0({ bQa}) + Zl,1({ bQa}) + Zl,∗({ bQa})

, (21.13)

Zl,σ({ bQa}) ≡
(σ)X

Ω0,Ω1,Ω∗

e−y min(|Ω0|,|Ω1|)
Y

a∈Ω0

bQa
0

Y
a∈Ω1

bQa
1

Y
a∈Ω∗

bQa
∗ . (21.14)

Here we have denoted by
P(σ)

Ω0,Ω1,Ω∗
the sum over partitions of {1, . . . , l−1} = Ω0∪Ω1∪Ω∗

such that |Ω0| > |Ω1| (for the case σ = 0), |Ω0| = |Ω1| (for σ = ∗), or |Ω0| < |Ω1| (for σ = 1).
Furthermore, k and l are random integers, with distributions rk and λl respectively, the

{ eQi} are l − 1 i.i.d. copies of eQ, and the { bQa} are k − 1 i.i.d. copies of bQ.

Given a solution of the 1RSB equations, we can compute the Bethe free-entropy
density FRSB,e(Q, Q̂) of the auxiliary problem. Within the 1RSB cavity method, we can
estimate the free-entropy density of the auxiliary model using the Bethe approximation
as Fe(y) = (1/N)FRSB,e(Q, Q̂). This gives access to the energetic complexity function
Σe(e) through the Legendre transform Fe(y) = Σe(e) − y e. Within the 1RSB cavity
method, we can estimate the latter using the Bethe approximation: Fe(y) = fRSB,e(y).

Exercise 21.7 Computation of the free entropy. Using eqn (19.91), show that the Bethe
free entropy of the auxiliary graphical model is N fRSB,e + o(N), where

fRSB,e = −Λ′(1)ε E log ze( eQ, bQ) + ε E log zv({ bQa}; l)

+
Λ′(1)

P ′(1)
E log zf({ eQi}; k) . (21.15)

Here the expectations are taken over l (with distribution Λl), k (with distribution Rk,

defined in eqn (21.9)), eQ, bQ, and their i.i.d. copies eQi, bQa. The contributions of edges (ze),
variable nodes (zv) and function nodes (zf) take the form
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ze( eQ, bQ) = 1 + (e−y − 1)
“ eQ0

bQ1 + eQ1
bQ0

”
, (21.16)

zv({ bQi}; l) =
X

Ω0,Ω1,Ω∗

Y
b∈Ω0

bQb
0

Y
b∈Ω1

bQb
1

Y
b∈Ω∗

bQb
∗ e−y min(|Ω0|,|Ω1|) , (21.17)

zf({ eQi}; k) = 1 +
1

2
(e−y − 1)

(
kY

i=1

( eQi
0 + eQi

1) −
kY

i=1

( eQi
0 − eQi

1)

)
, (21.18)

where the sum in the second equation runs over the partitions Ω0 ∪ Ω1 ∪ Ω∗ = [l].

21.2.2 The BP threshold and the onset of metastability

A complete study of the distributional equations (21.11) and (21.12) is a rather chal-
lenging task. On the other hand, they can be solved approximately through population
dynamics. It turns out that the distribution obtained numerically shows different sym-
metry properties depending on the value of ε. We define a distribution Q̃ (or Q̂) to

be ‘symmetric’ if Q̃0 = Q̃1, and ‘positive’ if Q̃0 > Q̃1. We know from the analysis of
BP decoding that directed edges in the graph can be divided into two classes: those
that eventually carry a message 0 under BP decoding, and those that instead carry
a message ∗ even after a BP fixed point has been reached. It is natural to think that
edges of the first class correspond to a positive 1RSB message Q̃ (i.e., even among
metastable states, the corresponding bits are biased towards 0), while edges of the

second class correspond instead to a symmetric message Q̃.
This suggests the following hypothesis concerning the distributions of Q̃ and Q̂.

We assume that there exist weights ξ, ξ̂ ∈ [0, 1] and random distributions b, b̂, c, ĉ,

such that b, b̂ are symmetric, c, ĉ are positive, and

Q̃
d
=

{
b with probability ξ,
c with probability 1 − ξ,

(21.19)

Q̂
d
=

{
b̂ with probability ξ̂,

ĉ with probability 1 − ξ̂.
(21.20)

In other words ξ and ξ̂ denote the probabilities that Q and Q̂, respectively, are sym-
metric.

Equation (21.11) shows that, in order for Q̃ to be symmetric, all of the inputs Q̂i

must be symmetric. On the other hand, eqn (21.12) implies that Q̂ is symmetric if at

least one of the inputs Q̃a is symmetric. Using the result of Exercise 21.5, we thus find
that our Ansatz is consistent only if the weights ξ, ξ̂ satisfy the equations

ξ = λ(ξ̂) , ξ̂ = 1 − ρ(1 − εξ) . (21.21)

If we define z ≡ εξ and ẑ ≡ ξ̂, these coincide with the density-evolution fixed-point
conditions for BP (see eqns (15.34)). This is not surprising, in view of the physical
discussion which lead us to introduce the Ansatz in eqns (21.19) and (21.20): ξ cor-
responds to the fraction of edges that remain erased at the BP fixed point. On the
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Fig. 21.3 Metastable states for random elements of the (3, 6) regular ensemble used over

BEC(ε) (for this ensemble, εd ≈ 0.4294 and εc ≈ 0.4882). Left : complexity as a function of

the energy density for three values of the channel parameter above εd. Right : the maximum

and minimum energy densities ed and ec of the metastable states as a function of the erasure

probability.

other hand, we shall see that this observation implies that BP ceases to converge to
the correct fixed point at the same threshold noise εd where metastable states start to
appear.

For ε ≤ εd, eqns (21.21) admit the unique solution ξ = ξ̂ = 0, corresponding to the
fact that BP decoding recovers the full transmitted message. As a consequence, we

can take Q( · ) d
= c( · ), Q̂( · ) d

= ĉ( · ) to have an almost surely positive mean. In fact, it
is not hard to check that a consistent solution of eqns (21.11) and (21.12) is obtained
by taking

Q̂ = Q̃ = (1, 0, 0) almost surely. (21.22)

Since the cavity fields do not fluctuate from state to state (their distribution is almost
surely a point mass), the structure of this solution indicates that no metastable state
is present for ε ≤ εd. This is confirmed by the fact that the free-entropy density of this
solution, Fe(y), vanishes for all y.

Above a certain noise threshold, i.e. for ε > εd, eqns (21.21) still possess the solution

ξ = ξ̂ = 0, but a new solution with ξ, ξ̂ > 0 appears as well. We have discussed this
new solution in the density evolution analysis of BP decoding: it is associated with
the fact that the BP iterations have a fixed point at which a finite fraction of the bits
remain undetermined. Numerical calculations show that that, for ε > εd, the iteration
of eqns (21.11) and (21.12) converges to a non-trivial distribution. In particular, Q̃ and

Q̂ are found to be symmetric with probability ξ > 0 and ξ̂ > 0, respectively, where
the values of ξ, ξ̂ are the non-trivial solution of eqns (21.21). The free entropy of the
auxiliary model, Fe(y), can be computed using eqn (21.15). Its Legendre transform is
the energetic-complexity curve Σe(e).
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Fig. 21.4 Decoding random codes from the (3, 6) regular ensemble used over BEC(ε). In both

cases, N = 104, and the annealing schedule consisted of tmax = 103 equidistant temperatures

in T = 1/β ∈ [0, 1]. At each value of the temperature, n = Nτ Monte Carlo updates were

performed. Left, ε = 0.4 < εd. Right, ε = 0.6 > εd; the horizontal line corresponds to the

energy density of the highest metastable states ed(ε = 0.6).

Figure 21.3 shows a typical outcome of such a calculation for LDPC ensembles
when ε > εd. In this whole regime, there exists a zero-energy word, the transmitted
(all-0) codeword. This is described by the solution ξ = ξ̂ = 0. On top of this, the
non-trivial solution gives a complexity curve Σe(e) which is positive in an interval of
energy densities (ec, ed). A positive complexity means that an exponential number of
metastable states is present. But, when their energy density e is strictly positive, these
metastable states violate a finite fraction of the parity checks.

As ε increases, both ed and ec decrease. At εc, ec vanishes continuously, and ec = 0
and ed > 0 for all ε ≥ εc. In other words, at noise levels larger than εc, there appears an
exponential number of zero-energy states. These are codewords that are separated by
energy barriers with a height Θ(N). Consistently with this interpretation, Σ(e = 0) =
fRS
h,u, where fRS

h,u is the RS free-entropy density (15.48) estimated for the non-trivial
fixed point of density evolution.

The notion of metastable states thus allows us to compute the BP and MAP
thresholds within a unified framework. The BP threshold is the noise level where
an exponential number of metastable states appears. This shows that this threshold
not only is associated with a specific decoding algorithm, but also has a structural,
geometric meaning. On the other hand, the MAP threshold coincides with the noise
level where the energy of the lowest-lying metastable states vanishes.

Figure 21.4 shows the results of some numerical experiments with the simulated-
annealing algorithm of Section 21.1.3. Below the BP threshold, and for a slow enough
annealing schedule, the algorithm succeeds in finding a codeword (a zero-energy state)
in linear time. Above the threshold, even at the slowest annealing rate, we could
not find a codeword. Furthermore, the residual energy density at zero temperature is
close to ed, suggesting that the optimization procedure is indeed trapped among the
highest metastable states. This suggestion is confirmed by Fig. 21.5, which compares
the ε dependence of ed with the residual energy under simulated annealing. Once again,
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we plot the minimum energy density achieved through simulated annealing versus the channel

parameter. The continuous line shows the energy of the highest-lying metastable states. The

size and annealing schedule were as in Fig. 21.4.

there is rough agreement between the two (let us stress that one should not expect
perfect agreement between the residual energy in Fig. 21.5 and ed: the former does
indeed depend on the whole dynamical annealing process).

21.3 General binary memoryless symmetric channels

One would like to generalize to other channel models the above analysis of metastable
states in the constrained-optimization formulation of decoding. In general, the com-
putation is technically more intricate than for a BEC. The reason is that, for general
channels, the distance condition Ly(x) ≥ −N(h + δ) cannot be written in terms of
‘local’ binary constraints. As a consequence, one cannot use the simplified approach
of Section 19.5.3, and the general 1RSB formalism is required.

We shall follow this line of approach, but rather than push it to the point of
determining the full complexity function, we shall only determine whether the model
(21.4) undergoes a dynamical phase transition as β increases from 0 to ∞, and locate
the critical point βd(p) (here p denotes the channel parameter). This is, indeed, the
most important piece of information for our purposes. If a dynamical phase transition
occurs at some βd < ∞, then for β > βd the measure (21.4) decomposes into an
exponential number of metastable pure states. As β crosses βd, the system is trapped
in one of these and falls out of equilibrium. Upon further cooling (increase of β), the
energy density of the annealed system remains higher than the equilibrium energy
density and does not vanish as β → ∞. This analysis allows us to determine the noise
threshold of the simulated-annealing decoder as the largest noise level p such that
there is no finite βd.

In the following, we first write the general 1RSB equations at finite β, and present
some results obtained by solving them numerically. Finally, we give a heuristic argu-
ment showing that βd(p) goes to infinity for exactly p ↓ pd.
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21.3.1 The 1RSB cavity approach

We shall apply the 1RSB cavity approach of Chapter 19 to the decoding problem.
Given a code and a received message y, we want to study the probability distribution
µy,β(x) defined in eqn (21.4), and understand whether it decomposes into exponentially
many extremal Bethe measures. The BP equations are simple generalizations of those
written in Chapter 15 for the case β = ∞. In terms of the log-likelihoods

hi→a =
1

2
log

νi→a(0)

νi→a(1)
, ua→i =

1

2
log

ν̂a→i(0)

ν̂a→i(1)
,

Bi =
1

2
log

Q(yi|0)
Q(yi|1)

≡ B(yi) , (21.23)

they read

hi→a = Bi +
∑

b∈∂i\a

ub→i ≡ fi({ub→i}) , (21.24)

ua→i = atanh
{

tanhβ
∏

j∈∂a\i

tanhhj→a

}
≡ f̂a({hj→a}) . (21.25)

The corresponding Bethe free entropy is given by the following equation (unlike in
Chapter 15, we use natural logarithms here):

F(u, h) = −
∑

(ia)∈E

log

[∑
xi

ν̂ua→i
(xi)νhi→a

(xi)

]
+

N∑
i=1

log

[∑
xi

Q(yi|xi)
∏
a∈∂i

ν̂ua→i
(xi)

]

+

M∑
a=1

log

⎡⎣∑
x∂a

exp(−βEa(x∂a))
∏
i∈∂a

νhi→a
(xi)

⎤⎦ . (21.26)

As in eqn (15.44), we introduce a ‘shifted’ free-entropy density φ, defined as

φ =
1

N
F(u, h) −

∑
y

Q(y|0) logQ(y|0) . (21.27)

Recall that the 1RSB cavity approach assumes that, to leading exponential order,
the number N (φ) of Bethe measures with a shifted free-entropy density equal to φ is
equal to the number of quasi-solutions of eqns (21.24) and (21.25). We shall write, as
usual, N (φ)

.
= exp(NΣ(φ)), and our aim is to compute the complexity Σ(φ), using as

in Chapter 19 an auxiliary graphical model which counts the number of solutions of
the BP equations, weighted by a factor exp(Nxφ). If the free entropy of the auxiliary
model is F(x) = limN→∞ FRSB(x)/N , then Σ(φ) is given by the Legendre transform
F(x) = xφ + Σ(φ), ∂Σ/∂φ = −x.

For a given code and received y, the basic objects involved in the 1RSB approach

are the distributions of the fields hi→a and ub→j , denoted respectively by Qia and Q̂bj .
They satisfy the following 1RSB equations:
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Qia(hi→a) ∼=
∫

δ (hi→a = fi({ub→i})) (zia)x
∏

b∈∂i\a

dQ̂bi(ub→i) , (21.28)

Q̂ai(ua→i) ∼=
∫

δ
(
ua→i = f̂a({hj→a})

)
(ẑai)

x
∏

j∈∂a\i

dQja(hj→a) . (21.29)

Exercise 21.8 Show that the factors zia and ẑai in these equations, defined in eqns (19.22)
and (19.23), are given by

zia({ub→i}, Bi) =
2 cosh(Bi +

P
b∈∂i\a ub→i)Q

b∈∂i\a(2 cosh(ub→i))
, (21.30)

ẑai({hj→a}) = 1 + e−2β . (21.31)

Although in this case ẑai is a constant and can be absorbed in the normalization,
we shall keep it explicitly in the following.

We now turn to the statistical analysis of the above equations. If we pick out a uni-
formly random edge in the factor graph of a code from the ensemble LDPCN (Λ, P ), the

densities Q̂ and Q themselves become random objects, which satisfy the distributional
equations

Q(h)
d
=

1

Z

∫
z({ua};B(y))x δ

(
h − fl−1({ua};B(y))

) l−1∏
a=1

dQ̂a(ua) , (21.32)

Q̂(u)
d
=

1

Ẑ

∫
ẑ({hi})x δ

(
u − f̂k−1({hi})

) k−1∏
i=1

dQi(hi) (21.33)

where k, l, y are random variables, the {Q̂a} are l − 1 i.i.d. copies of Q̂, and the {Qi}
are k − 1 i.i.d. copies of Q. Further, l is drawn from the edge-perspective variable-
degree profile λ, k is drawn from the edge-perspective check-degree profile ρ, and
y is drawn from Q( · |0), the distribution of the channel output upon input 0. The

functions f̂k−1({hi}) = atanh(tanhβ
∏k−1

i=1 tanh(hi)) and fl−1({ua};B) = B−∑l−1
a=1 ua

are defined analogously to eqns (21.24) and (21.25). The functions z( · ) and ẑ( · ) are
given similarly by the expressions in eqns (21.30) and (21.31).

The 1RSB free-entropy density (i.e. the entropy density of the auxiliary model) is

estimated as F(x) = fRSB(Q, Q̂), where fRSB(Q, Q̂) is the expected free-entropy density,

and Q and Q̂ are distributed according to the ‘correct’ solution of the distributional
equations (21.32) and (21.33):

fRSB(Q, Q̂) = −Λ′(1) E log ze(Q, Q̂) + E log zv({Q̂a}; l, y) +
Λ′(1)

P ′(1)
E log zf({Qi}; k) .

Here the expectation is taken with respect to k i.i.d. copies of Q̂ and l i.i.d. copies of

Q, and with respect to k
d
= P·, l

d
= Λ·, and y

d
= Q( · |0). Finally, ze, zv, zf read
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ze(Q, Q̂) =

∫
dQ(h) dQ̂(u)

[
1∑

x=0

νh(x)νu(x)

]x
, (21.34)

zv({Q̂a}; l, y) =

∫ l∏
a=1

dQ̂a(ua)

[
1∑

x=0

Q(y|x)

Q(y|0)

l∏
a=1

νua
(x)

]x
, (21.35)

zf({Qi}; k) =

∫ l∏
i=1

dQi(hi)

⎡⎣ ∑
{x1,··· ,xk}

k∏
i=1

νhi
(xi)

×
(

I

(∑
i

xi = even

)
+ e−2β I

(∑
i

xi = odd

))]x
. (21.36)

A considerable amount of information is contained in the 1RSB free-energy density
F(x). For instance, one could deduce the energetic complexity from it by taking the
appropriate β → ∞ limit. Here, we shall not attempt to develop a full solution of
the 1RSB distributional equations, but shall use them to detect the occurrence of a
dynamical phase transition.

21.3.2 The dynamical phase transition

The location of the dynamical phase transition βd(p) is determined by the smallest
value of β such that the distributional equations (21.32) and (21.33) have a non-
trivial solution at x = 1. For β > βd(p), the distribution (21.4) decomposes into an
exponential number of pure states. As a consequence, we expect simulated annealing
to fall out of equilibrium when βd(p) is crossed.

In the top part of Fig. 21.6, we show the result of applying such a technique to the
(5, 6) regular ensemble used for communication over BSC(p). At small p, no dynamic
phase transition is revealed through this procedure at any positive temperature. Above
a critical value of the noise level p, the behaviour changes dramatically, and a phase
transition is encountered at a critical point βd(p) that decreases monotonically for
larger p. By changing both β and p, one can identify a phase transition line that
separates the ergodic and non-ergodic phases. Remarkably, the noise level at which a
finite βd appears is numerically indistinguishable from pd ≈ 0.145.

Does the occurrence of a dynamical phase transition for p � pd indeed influence
the behaviour of the simulated-annealing decoder? Some numerical confirmation was
presented earlier in Fig. 21.2. Further support in favour of this thesis is provided by the
bottom part of Fig. 21.6, which plots the residual energy density of the configuration
produced by the decoder as β → ∞. Above pd, this becomes strictly positive and only
slowly dependent on the cooling rate. It is compared with the equilibrium value of
the internal energy at βd(p). This would be the correct prediction if the energy of the
system did not decrease any more after the system fell out of equilibrium at βd(p).
Although we do not expect this to be strictly true, the resulting curve provides a good
first estimate.
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21.3.3 Metastable states and the BP threshold

One crucial element of this picture can be confirmed analytically, for a generic BMS
channel family ordered by physical degradation with respect to p: at zero temperature,
the dynamical transition, which signals the proliferation of metastable Bethe states,
occurs exactly at the decoding threshold pd. More precisely, the argument below proves
that at β = ∞ there cannot exist any non-trivial x = 1 solution of eqns (21.32) and
(21.33) for p < pd, while there exists one for p > pd. We expect that, for most channel
families, the same situation should hold for β large enough (dependent on p), but this
has not been proven yet.

Let us consider the 1RSB equations (21.32) and (21.33) in the case β = ∞. Assum-
ing that the degree profiles are such that l ≥ 2 and k ≥ 2 (a reasonable requirement
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for useful code ensembles), it is clear that they have a special ‘no-error’ solution as-

sociated with the sent codeword in which Q(h) = δ∞(h) and Q̂(u) = δ∞(h) almost
surely. It is a simple exercise to check that the (shifted) free-entropy density of this
solution is equal to 0.

The important question is whether there exist other solutions beyond the ‘no-
error’ one. We can make use of the simplification occuring at x = 1. As we saw in
Section 19.4.1, the expectation values of the messages, νav

i→a(xi) ≡
∑

νia
Qia(νia)νia(xi)

and ν̂av
a→i(xi) ≡

∑bmai
Q̂ai(ν̂ai)ν̂ai(xi), satisfy the BP equations.

Let us first study the case p < pd. We have seen in Chapter 15 that there is a
unique solution of the BP equations: the no-error solution. This shows that in this
low-noise regime, there cannot exist any non-trivial 1RSB solution. We conclude that
there is no glass phase in the regime p < pd

We now turn to the case p > pd (always with β = ∞), and use the analysis of BP
presented in Chapter 15. That analysis revealed that, when p > pd, the density evo-
lution of the BP messages admits at least one ‘replica-symmetric’ fixed point distinct
from the no-error one.

We shall now use this replica-symmetric fixed point in order to construct a non-
trivial 1RSB solution. The basic intuition behind this construction is that each Bethe
measure consists of a single configuration, well separated from other ones. Indeed, we
expect that each Bethe measure can be identified with a zero-energy configuration, i.e.
with a codeword. If this is true, then, with respect to each of these Bethe measures, the
local distribution of a variable is deterministic, either a unit mass on 0 or a unit mass
on 1. Therefore we seek a solution where the distribution of Q and Q̂ is supported on
functions of the form

Q(h) =
1

2
(1 + tanh h̃) δ+∞(h) +

1

2
(1 − tanh h̃) δ−∞(h) , (21.37)

Q̂(u) =
1

2
(1 + tanh ũ) δ+∞(u) +

1

2
(1 + tanh ũ) δ−∞(u) , (21.38)

where h̃ and ũ are random variables.

Exercise 21.9 Show that this Ansatz solves eqns (21.32) and (21.33) at β = ∞ if and

only if the distributions of h̃ and ũ satisfy

h̃
d
= B(y) +

l−1X
a=1

ũ , ũ
d
= atanh

h k−1Y
i=1

tanh h̃i

i
. (21.39)

It is easy to check that the random variables h̃ and ũ satisfy the same equations
as the fixed point of the density evolution for BP (see eqn (15.11)). We conclude that,
for p > pd and x = 1, a solution to the 1RSB equations is given by the Ansatz in
eqns (21.37) and (21.38) if h̃ and ũ are drawn from the fixed-point distributions of
eqn (15.11).
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Fig. 21.7 Left : the free entropy of the auxiliary model, F(x), as a function of the weight pa-

rameter x, for a (3, 6) code on a BSC (recall that pd ≈ 0.084 and pc ≈ 0.101 in this case). From

bottom to top, p = 0.090, 0.095, 0.100, 0.105, 0.110. Right : the complexity Σ(φ) plotted versus

the shifted free-entropy density φ. From left to right, p = 0.090, 0.095, 0.100, 0.105, 0.110.

It turns out that a similar solution is easily found for any value of x > 0, provided
β = ∞. The only place where x plays a role is in the reweighting factor of eqn (21.35):
when x = 1, the only modification in the distributional equations (21.39) is that B(y)
must be multiplied by x. Therefore one can obtain the 1RSB solution for any x > 0 if
one knows the solution to the RS cavity equations (i.e. the fixed point of the density
evolution for BP) for a slightly modified problem in which B(y) is changed to xB(y).
Technically, this is equivalent to studying the modified measure

µy(x) ∼=
M∏

a=1

I(xia
1
⊕ · · · ⊕ xia

k(a)
= 0)

N∏
i=1

Q(yi|xi)
x , (21.40)

within the RS approach of Chapter 15 (such a modified measure has already been
introduced in Chapter 6).

Let us assume that we have found a non-trivial fixed point for this auxiliary prob-

lem, characterized by the distributions a
(x)
RS(h) and â

(x)
RS(u), and denote by fRS(x) the

corresponding value of the free-entropy density defined in eqn (15.45). The 1RSB equa-
tions with reweighting parameter x have a solution of the type (21.37) and (21.38),

provided h̃ is distributed according to a
(x)
RS( · ), and ũ is distributed according to â

(x)
RS( · ).

The 1RSB free-entropy density F(x) = E FRSB(x)/N is given simply by

F(x) = fRS(x) . (21.41)

Therefore the problem of computing F(x), and its Legendre transform, the complexity
Σ(φ), reduce to a replica-symmetric computation. This is a simple generalization of
the problem considered in Chapter 15, where the decoding measure is modified by
raising it to the power x, as in eqn (21.40). Notice, however, that the interpretation is
now different. In particular, x has to be properly chosen in order to focus on dominant
pure states.

The problem can easily be studied numerically using the population dynamics
algorithm. Figure 21.7 shows an example of the complexity Σ(φ) for a binary symmetric
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Fig. 21.8 Bit error probability for 40 random elements of the (3, 6) regular ensemble with

N = 2500 used over the BEC(ε). The continuous curve corresponds to the average error

probability.

channel. The regime pd < p < pc is characterized by the existence of a band of
metastable states with a negative shifted free entropy φ ≤ φ0 < 0. They are, in
principle, irrelevant when compared with the ‘no-error’ solution, which has φ = 0,
confirming that MAP decoding will return the transmitted codeword. In fact, they are
even unphysical: φ is nothing but the conditional entropy density of the transmitted
codeword given the received message. As a consequence, it must be non-negative.
However, the solution extends to β < ∞, where it makes perfect sense (it describes
non-codeword metastable configurations), thus solving the puzzle.

The appearance of metastable states coincides with the noise threshold above which
BP decoding fails. When p > pc, the top end of the band φ0 becomes positive: the
‘glassy’ states dominate the measure and MAP decoding fails.

21.4 Metastable states and near-codewords

In a nutshell, the failure of BP decoding for p > pd can be traced back to configurations
(words) x that (i) are deep local minima of the energy function E(x) (which counts
the number of violated parity checks), and (ii) have a significant weight under the
measure

∏
i Q(y|xi).

Typically, such configurations are not codewords, although they can be very close
to codewords from the energy point of view. An interesting qualitative analogy can
be drawn between this analysis, and various notions that have been introduced to
characterize the error floor.

Let us start by describing the error floor problem. We saw that, for p < pd, the
bit error rate under BP decoding vanishes when the block length N → ∞. Unhappily,
the block length cannot be taken arbitrarily large, because of two types of practical
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considerations. First, coding a block of N bits simultaneously implies a communica-
tion delay proportional to N . Second, any hardware implementation of BP decoding
becomes increasingly difficult as N gets larger. Depending on the application, one can
be forced to consider a maximum block length between 103 and 105.

This brings up the problem of characterizing the bit error rate at moderate block
length. Figure 21.8 shows the outcomes of numerical simulations for random elements
of the (3, 6) ensemble used over an erasure channel. One can clearly distinguish two
regimes: a rapid decrease of the error probability in the ‘waterfall region’ ε � εd ≈ 0.429
(in physics terms, the ‘critical regime’); and a flattening at lower noise values, in the
‘error floor’. It is interesting to note that the error floor level is small but highly
dependent (in relative terms) on the graph realization.

We know that the error floor should vanish when codes with larger and larger block
length are taken, but we would like a prediction of its value given the graph G. With
the notable exception of an erasure channel, this problem is largely open. However,
several heuristics have been developed. The basic intuition is that the error floor is
due to small subgraphs of the factor graph that are prone to error. If U is the set
of variable nodes in such a subgraph, we can associate with it a configuration x that
takes the value 1 on U and 0 otherwise (throughout our analysis, we are assuming
that the codeword 0 has been transmitted). This x need not be a codeword but should
in some sense be ‘close’ to one.

Once a class F of such subgraphs has been identified, the error probability is
estimated by assuming that any type of error is unlikely, and errors in different subsets
are roughly independent:

PB(G) ≈
∑
U∈F

P {BP decoder fails on U} . (21.42)

If the subsets U are small, each of the terms on the right-hand side can be evaluated
efficiently via importance sampling.

It is interesting to take a look at some definitions of the class of subgraphs F that
have been introduced in the literature. In each case, the subgraph is characterized
by two integers (w, e) that describe how dangerous/close to codewords it is (small w
or e corresponding to dangerous subgraphs). In practice, the sum in eqn (21.42) is
restricted to small w, e.

• Trapping sets (or near-codewords). A trapping set is a subgraph including
the variable nodes in U , all of the adjacent check nodes, and the edges that connect
them. It is a (w, e) near-codeword if the number of variable nodes is |U | = w and
the number of check nodes of odd degree is e. In our framework, a trapping set is
simply a configuration x with a weight (number of non-zero entries) equal to w and
an energy E(x) = 2e. Notice that hardly any restriction is imposed on trapping sets.
Special constraints are sometimes added, depending on the channel model and on the
decoding algorithm (if not BP).

• Absorbing sets. A (w, e) absorbing set is a (w, e) trapping set that satisfies two
further requirements: (i) each variable node is adjacent to more check nodes of even
degree (with respect to the subgraph) than of odd degree, and (ii) it does not contain
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a (w′, e) absorbing set with w′ < w. The first condition implies that the corresponding
configuration x is a local minimum of E(x), stable with respect to one flip.

The connection between small weak subgraphs and the error probability is still
somewhat vague. The ‘energy landscape’ E(x) might provide some hints towards bridg-
ing this gap.

Notes

This chapter is largely based on the analysis of metastable states given by Montanari
(2001a, b) and Franz et al. (2002). One-step replica symmetry breaking was also in-
vestigated by Migliorini and Saad (2006). The approach was extended to asymmetric
channels by Neri et al. (2008).

The typical-pairs decoding presented here is slightly different from the original
procedure of Aji et al. (2001).

Stopping sets were introduced by Di et al. (2002), and inspired much of the sub-
sequent research on error floors. The idea that small subgraphs of the factor graph
are responsible for error floors was first convincingly demonstrated for general channel
models by MacKay and Postol (2003) and Richardson (2003). Absorbing sets were
defined by Dolecek et al. (2007).

After its invention, simulated annealing was the object of a significant amount
of work in the fields of operations research and probability. A review can be found
in Aarts et al. (2003). A detailed comparison between 1RSB analysis and simulated-
annealing experiments for models on sparse graphs was presented by Montanari and
Ricci-Tersenghi (2004).
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22

An ongoing story

This book describes a unified approach to a number of important problems in infor-
mation theory, physics, and computer science. We have presented a consistent set of
methods to address these problems, but the field is far from being fully understood,
and there remain many open challenges. This chapter provides a concise description
of some of these challenges, as well as a survey of recent progress. Our ambition is to
set an agenda for the newly developed field that we have been describing. We shall
distinguish roughly three types of directions.

The first one, to be discussed in Section 22.1, is the main challenge. It aims at a
better qualitative understanding of models on sparse random graphs. At the core of
the cavity method lies the postulate that such systems can have only a limited number
of ‘behaviours’ (phases). Each phase corresponds to a different pattern of replica sym-
metry breaking (replica-symmetric (RS), one-step replica symmetry breaking (1RSB),
etc.). In turn, these phases also have a description in terms of pure states decompo-
sition, as well as in terms of long-range correlations. Understanding the fundamental
reasons and conditions for the universality of these phases, as well as the equivalence
between their characterizations, would be extremely important.

The second direction, described in Section 22.2, concerns the development of the
cavity formalism itself. We have focused mainly on systems in which either the RS or
the 1RSB cavity method is expected to be asymptotically exact in the large-size limit.
This expectation is, in part, based on some internal consistency checks of the 1RSB
approach. An important such check is to verify that the 1RSB ‘solution’ is stable with
respect to small perturbations. Whenever this test is passed, physicists feel confident
enough that the cavity method provides exact conjectures (thresholds, minimum cost
per variable, etc.). If the test is not passed, higher-order RSB is thought to be needed.
The situation is much less satisfactory in this case, and the cavity method poses some
technical problems even at the heuristic level.

Section 22.3 lists a number of fascinating questions that arise in the connection
between the existence of glassy-phase transitions and algorithmic slowdown. These are
particularly important in view of applications in computer science and information
theory: sparse graphical models can be useful for a number of practically relevant
tasks, as the example of the use of LDPC codes in channel coding has shown. There is
some empirical evidence that phase transitions have an impact on the behaviour and
efficiency of algorithms. Physicists hope that this impact can be understood (to some
extent) in a unified way, and that it is ultimately related to the geometric structure of
the set of solutions and to correlation properties of the measure. While some general
arguments in favour of this statement have been put forward, the actual understanding
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is still very poor.

22.1 Gibbs measures and long-range correlations

At an abstract level, the cavity method explored in the last few chapters relies on a
(yet unproven) structural theorem. Consider a generic graphical model, for a probability
distribution on N variables, x, taking values in a discrete space XN :

µ(x) =
1

Z

∏
a∈F

ψa(x∂a) . (22.1)

The cavity method postulates that, for large classes of models taken from appropriate
ensembles, the model is qualitatively described in the large-N limit by one out of a
small number of generic scenarios, or phases. The postulated qualitative features of
such phases are then cleverly used to derive quantitative predictions (e.g. the locations
of phase transitions).

Needless to say, we are not able to state precisely, let alone prove, such a structural
theorem in this generality. The complete set of necessary hypotheses is unknown.
However, we have discussed several examples, from XORSAT to diluted spin glasses
and error-correcting codes. In principle, it is not necessary that the factor graph be
locally tree-like, but, in practice, locally tree-like models are the ones that we can
control most effectively. Such a structure implies that when one digs a cavity in the
graph, the variables on the boundary of the cavity are far apart. This leads to a simple
structure of their correlation in the large-system limit, and hence to the possibility of
writing asymptotically exact recursion equations.

Here, we do not want to discuss the necessary hypotheses in any more detail.
It would certainly be a significant achievement to prove such a structural theorem
even in a restricted setting (say, for the uniform measure over solutions of random
K-SAT formulae). We want, instead, to convey some important features of the phases
postulated within the cavity approach. In particular, there is a key aspect that we
want to stress. Each of the various phases mentioned can be characterized from two
complementary points of view:

1. In terms of decomposition of the distribution µ( · ) into ‘lumps’ or ‘clusters’. Below,
we shall propose a precise definition of these lumps, and they will be called pure
states.

2. In terms of correlations among far-apart variables on the factor graph. We shall
introduce two notions of correlation decay that differ in a rather subtle way but
correspond to different phases.

These two characterizations are, in turn, related to the various aspects of the cavity
method.

22.1.1 On the definition of pure states

The notion of a pure state is a crucial one in rigorous statistical mechanics. Unfor-
tunately, standard definitions are tailored to translation-invariant models on infinite
graphs. The graphical models that we have in mind are sparse random graphs (in this
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class we include labelled random graphs, where the labels specify the nature of func-
tion nodes), and standard approaches do not apply to them. In particular, we need a
concrete definition that is meaningful for finite graphs.

Consider a sequence of finite graphical models {µN ( · )}, indexed by the number of
variable nodes N . A pure-state decomposition is defined by assigning, for each N ,
a partition of the configuration space XN into NN subsets Ω1,N , . . . ,ΩNN ,N :

XN = Ω1,N ∪ · · · ∪ ΩNN ,N . (22.2)

The pure-state decomposition must meet the following conditions:

1. The measure of each subset in the partition is bounded away from 1:

max{µN (Ω1,N ), . . . , µN (ΩN ,N )} ≤ 1 − δ . (22.3)

2. The subsets are separated by ‘bottlenecks.’ More precisely, for Ω ⊆ XN , we define
its ε-boundary as

∂εΩ ≡ {x ∈ XN : 1 ≤ d(x,Ω) ≤ Nε} . (22.4)

where d(x,Ω) is the minimum Hamming distance between x and any configuration
x′ ∈ Ω. Then we require

lim
N→∞

max
r

µN (∂εΩr,N )

µN (Ωr,N )
= 0 , (22.5)

for some ε > 0. Note that the measure of ∂εΩr,N can be small for two reasons,
either because Ωr,N is small itself (and therefore has a small boundary) or because
the boundary of Ωr,N is much smaller than its interior. Only the last situation
corresponds to a true bottleneck, as is enforced by the denominator µN (Ωr,N ) in
eqn (22.5).

3. The conditional measure on the subset Ωr,N , defined by

µr
N (x) ≡ 1

µN (Ωr,N )
µN (x)I(x ∈ Ωr,N ) , (22.6)

cannot be decomposed further according to the two conditions above.

Given such a partition, the distribution µN ( · ) can be written as a convex combi-
nation of distributions with disjoint support

µN ( · ) =

NN∑
r=1

wr µr
N ( · ) , wr ≡ µN (Ωr,N ) . (22.7)

Note that this decomposition is not necessarily unique, as shown by the example below.
The non-uniqueness is due to the fact that sets of configurations of XN with negligeable
weight can be attributed to one state or another. On the other hand, the conditional
measures µr

N ( · ) should depend only weakly on the precise choice of decomposition.
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Example 22.1 Consider a ferromagnetic Ising model on a random regular graph of
degree (k + 1). The Boltzmann distribution reads

µN (x) =
1

ZN (β)
exp

⎧⎨⎩β
∑

(i,j)∈E

xixj

⎫⎬⎭ , (22.8)

with xi ∈ X = {+1,−1}. To avoid irrelevant complications, let us assume that N is
odd. Following the discussion in Section 17.3, we expect this distribution to admit a
non-trivial pure-state decomposition for k tanhβ > 1, with a partition Ω+ ∪ Ω− =
XN . Here Ω+ and Ω−) are the sets of configurations for which

∑
i xi is positive or

negative, respectively. With respect to this decomposition, w+ = w− = 1/2.
Of course, an (asymptotically) equivalent decomposition is obtained by letting

Ω+ be the set of configurations with
∑

i xi ≥ C for some fixed C.

It is useful to recall that the condition (22.5) implies that any ‘local’ Markov
dynamics that satisfies detailed balance with respect to µN ( · ) is slow. More precisely,
assume that

µN (∂εΩr,N )

µN (Ωr,N )
≤ exp{−∆(N)} . (22.9)

Then any Markov dynamics that satisfies detailed balance with respect to µN and
flips at most Nε variables at each step has a relaxation time larger than C exp{∆(N)}
(where C is an N -independent constant that depends on the details of the model).
Moreover, if the dynamics is initialized in x ∈ Ωr,N , it will take a time of order
C exp{∆(N)} to get to a distance Nε from Ωr,N .

In many cases based on random factor graph ensembles, we expect eqn (22.9)
to hold with a ∆(N) which is linear in N . In fact, in the definition of pure-state
decomposition, we might require a bound of the form (22.9) to hold, for some function
∆(N) (e.g. ∆(N) = Nψ, with some appropriately chosen ψ). This implies that pure
states are stable on time scales shorter than exp{∆(N)}.

22.1.2 Notions of correlation decay

The above discussion of relaxation times brings up a second key concept: correlation
decay. According to an important piece of wisdom in statistical mechanics, physical
systems that have only short-range correlations should relax rapidly to their equi-
librium distribution. The hand-waving reason is that, if different degrees of freedom
(particles, spins, etc.) are independent, then the system relaxes on microscopic time
scales (namely the relaxation time of a single particle, spin, etc.). If the degrees of
freedom are not independent, but their correlations are short-ranged, they can be
coarse-grained in such a way that they become nearly independent. Roughly speaking,
this means that one can construct ‘collective’ variables from blocks of original vari-
ables. Such conditional variables take |X |B values, where B is the block size, and are
nearly independent under the original (Boltzmann) distribution.
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As we are interested in models on non-Euclidean graphs, the definition of cor-
relation decay must be specified. We shall introduce two distinct types of criteria.
Although they may look similar at first sight, it turns out that they are not, and each
of them will characterize a distinct generic phase.

The simplest approach, widely used in physics, consists in considering two-point
correlation functions. Averaging them over the two positions defines a susceptibility.
For instance, in the case of Ising spins xi ∈ X = {1,−1}, we have already discussed
the spin glass susceptibility

χSG =
1

N

∑
i,j∈V

(〈xixj〉 − 〈xi〉〈xj〉)2 , (22.10)

where 〈 · 〉 denotes the expectation value with respect to µ. When χSG is bounded as
N → ∞, this is an indication of short-range correlations. Through the fluctuation–
dissipation theorem (see Section 2.3), this is equivalent to stability with respect to
local perturbations. Let us recall the mechanism of this equivalence. Imagine a per-
turbation of the model (22.16) that acts on a single variable xi. Stability requires that
the effect of such a perturbation on the expectation of a global observable

∑
j f(xj)

should be bounded. The change in the marginal at node j due to a perturbation at i
is proportional to the covariance 〈xixj〉 − 〈xi〉〈xj〉. As in Section 12.3.2, the average
effect of the perturbation at i on the variables xj , j = i, often vanishes (more pre-
cisely, limN→∞(1/N)

∑
j∈V

(
〈xixj〉−〈xi〉〈xj〉

)
= 0) because terms related to different

vertices j cancel. The typical effect of the perturbation is captured by the spin glass
susceptibility.

Generalizing this definition to arbitrary alphabets is easy. We need to use a measure
of how much the joint distribution µij( · , · ) of xi and xj is different from the product
of the marginals µi( · ) times µj( · ). One such measure is provided by the variation
distance

||µij( · , · ) − µi( · )µj( · )|| ≡
1

2

∑
xi,xj

|µij(xi, xj) − µi(xi)µj(xj)| . (22.11)

We then define the two-point correlation by averaging this distance over the vertices
i, j:

χ(2) ≡ 1

N

∑
i,j∈V

||µij( · , · ) − µi( · )µj( · )|| . (22.12)

Exercise 22.1 Consider again the case of Ising variables, where X = {+1,−1}. Show that

χSG = o(N) if and only if χ(2) = o(N).
[Hint: Let Cij ≡ 〈xixj〉−〈xi〉〈xj〉. Show that Cij = 2||µij( · , · )−µi( · )µj( · )||. Then use

χSG = NE{C2
ij} and χ(2) = NE{|Cij |}/2, the expectation E being over uniformly random

i, j ∈ V .]
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Of course, one can define l-point correlations in an analogous manner:

χ(l) ≡ 1

N l−1

∑
i(1),...,i(l)∈V

||µi(1)...i(l)( · · · ) − µi(1)( · ) · · ·µi(l)( · )|| . (22.13)

The l-point correlation χ(l) has a useful interpretation in terms of a thought ex-
periment. Suppose you are given an N -dimensional distribution µ(x) and have ac-
cess to the marginal µi(1)( · ) at a uniformly random variable node i(1). You want
to test how stable this marginal is with respect to small perturbations. Perturba-
tions affect l − 1 randomly chosen variable nodes i(2), . . . , i(l), changing µ(x) into
µ′(x) ∼= µ(x)(1 + δ2(xi(2))) · · · (1 + δl(xi(l))). The effect of the resulting perturbation
on µi(1), to first order in the product δ2 · · · δl, is bounded in terms of the expectation

by χ(l) (this is again a version of the fluctuation–dissipation theorem).

Definition 22.2. (First type of correlation decay) The graphical model given by
µ( · ) is said to be stable to small perturbations if, for all finite l, χ(l)/N → 0 as
N → ∞.

In practice, in sufficiently homogeneous (mean-field) models, this type of stability is
equivalent to that found using only l = 2.

Let us now introduce another type of criterion for correlation decay. Again we look
at a variable node i, but now we want to check how strongly xi is correlated with
all of the ‘far apart’ variables. Of course, we must define what ‘far apart’ means. We
fix an integer �, define B(i, �) as the ball of radius � centred on i, and define B(i, �)
as its complement, i.e. the subset of variable nodes j such that d(i, j) ≥ �. We then
want to estimate the correlation between xi and x

B(i,�) = {xj : j ∈ B(i, �)}. This

amounts to measuring the distance between the joint distribution µi,B(,�)( · , · ) and

the product of the marginals µi( · )µB(,�)( · ). If we use the total variation distance

defined in eqn (22.11), we obtain the following point-to-set correlation function:

Gi(�) ≡ ||µi,B(i,�)( · , · ) − µi( · )µB(i,�)( · )|| . (22.14)

The function Gi(�) can be interpreted according to two distinct but equally sug-
gestive thought experiments. The first one comes from the theory of structural glasses
(it is meant to elucidate the kind of long-range correlations arising in a fragile glass).
Imagine that we draw a reference configuration x∗ from the distribution µ( · ). Now,
we generate a second configuration x as follows. Variables outside the ball, with
i ∈ B(i, �), are forced to the reference configuration, xi = x∗

i . Variables at a distance
smaller than � (denoted by x

B(i,�)) are instead drawn from the conditional distribution
µ(xB(i,�)|x∗

B(i,�)
). If the model µ( · ) has some form of rigidity (long-range correlations),

then xi should be close to x∗
i . The correlation Gi(�) measures how much the distribu-

tions of xi and x∗
i differ.

The second experiment is closely related to the first one, but has the flavour of
a statistics (or computer science) question. Someone draws the configuration x∗ as
above from the distribution µ( · ). They then reveal to you the values of far-apart
variables in the reference configuration, i.e. the values of x∗

j for all j ∈ B(i, �). They
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ask you to reconstruct the value of x∗
i , or to guess it as well as you can. The correlation

function Gi(�) measures how likely you are to guess correctly (assuming unbounded
computational power), compared with the case in which no variable has been revealed
to you.

This discussion suggests the following definition.

Definition 22.3. (Second type of correlation decay) The graphical model µ( · )
is said to satisfy the non-reconstructibility (or extremality) condition if, for all
i’s, Gi(�) → 0 as � → ∞. (More precisely, we require that there exists a function δ(�),
with lim�→∞ δ(�) = 0, such that Gi(�) ≤ δ(�) for all i and N .) In the opposite case,
i.e. if Gi(�) remains bounded away from zero at large distance, the model is said to be
reconstructible.

22.1.3 Generic scenarios

We shall now describe the correlation decay properties and the pure-state decompo-
sition for the three main phases that we have encountered in the previous chapters:
the RS, dynamical 1RSB, and static 1RSB phases. When we are dealing with models
on locally tree-like random graphs, each of these phases can also be studied using the
appropriate cavity approach, as we shall recall.

Here we focus on phases that appear ‘generically’. This means that we exclude (i)
critical points, which are obtained by fine-tuning some parameters of the model; and
(ii) multiplicities due to global symmetries, for instance in the zero-field ferromagnetic
Ising model. Of course, there also exist other types of generic phases, such as the higher-
order RSB phases that will be discussed in the next section, and maybe more that
have not been explored yet.

• Replica-symmetric. In this phase, there exists no non-trivial decomposition into
pure states of the form (22.7). In other words, NN = 1 with high probabil-
ity. Correlations decay according to both criteria: the model is stable to small
perturbations and it satisfies the non-reconstructibility condition. Therefore it is
short-range correlated in the strongest sense. Finally, the replica-symmetric cavity
method of Chapter 14 yields asymptotically exact predictions.

• Dynamical 1RSB. In this phase, the measure µ( · ) admits a non-trivial decomposi-
tion of the form (22.7) into an exponential number of pure states: NN = eNΣ+o(N)

with high probability for some Σ > 0. Furthermore, most of the measure is car-
ried by states of equal size. More precisely, for any δ > 0, all but an exponentially
small fraction of the measure is contained in states Ωr,N such that

−Σ − δ ≤ 1

N
log µ(Ωr,N ) ≤ −Σ + δ . (22.15)

From the correlation point of view, this phase is stable to small perturbations, but
it is reconstructible. In other words, a finite number of probes would fail to reveal
long-range correlations. But long-range correlations of the point-to-set type are
in fact present, and they are revealed, for instance, by a slowdown of reversible
Markov dynamics. The glass order parameter, namely the overlap distribution
P (q), is trivial in this phase (as implied by eqn (12.31)), but its glassy nature
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αd(K) αc(K) αs(K) α

UNSAT

Fig. 22.1 A pictorial view of the different phases in K-SAT with K ≥ 4, depending on the

number of clauses per variable α. From left to right : replica-symmetric, dynamical 1RSB,

static 1RSB, and UNSAT.

can be found through the ε-coupling method of Section 12.3.4. The model can
be solved exactly (in the sense of determining its asymptotic free-energy density)
within the 1RSB cavity method. The thermodynamically dominant states, i.e.
those satisfying eqn (22.15), correspond to the 1RSB parameter x = 1.

• Static 1RSB. This is the ‘genuine’ 1RSB phase analogous to the low-temperature
phase of the random energy model. The model admits a non-trivial pure-state
decomposition with wildly varying weights. For any δ > 1, a fraction 1 − δ of
the measure is contained in the k(N, δ) pure states with the largest weights. The
number k(N, δ) converges, when N → ∞, to a finite random variable (taking
integer values). If we order the weights according to their magnitudes w(1) ≥
w(2) ≥ w(3) ≥ · · · , they converge to a Poisson–Dirichlet process (see Chapter 8).
This phase is not stable to small perturbations, and it is reconstructible: it has
long-range correlations according to both criteria. The asymptotic overlap distri-
bution function P (q) has two delta-function peaks, as in Fig. 12.3. Again, it can
be solved exactly within the 1RSB cavity method.

These three phases are present in a variety of models, and are often separated by
phase transitions. The ‘clustering’ or ‘dynamical’ phase transition separates the RS and
dynamical 1RSB phases, and a condensation phase transition separates the dynamical
1RSB from the static 1RSB phase. Figure 22.1 describes the organization of the various
phases in random K-SAT with K ≥ 4, as discussed in Section 20.3. For α < αd(K), the
model is RS; for αd(K) < α < αc(K), it is dynamically 1RSB; for αc(K) < α < αs(K),
it is statically 1RSB; and for αs(K) < α, it is UNSAT. Figure 22.2 shows the point-to-
set correlation function in random 4-SAT. It clearly develops long-range correlations
at α ≥ αd ≈ 9.38. Notice the peculiar development of correlations through a plateau
whose width increases with α, and diverges at αd. This is typical of the dynamical
1RSB transition.

22.2 Higher levels of replica symmetry breaking

For some of the models studied in this book, the RS or the 1RSB cavity method is
thought to yield asymptotically exact predictions. However, in general, higher orders
of RSB are necessary. We shall sketch how to construct these higher-order solutions
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Fig. 22.2 The point-to-set correlation function defined in eqn (22.14), plotted versus distance

for random 4-satisfiability, at clause densities α = 9.30, 9.33, 9.35, and 9.40 (from bottom to

top).

hierarchically in locally tree-like graphical models. In particular, understanding the
structure of the two-step replica-symmetry-breaking (2RSB) solution allows us to de-
rive a ‘stability criterion’ for the 1RSB approach. It is on the basis of this criterion that,
for instance, our derivation of the SAT–UNSAT threshold in Chapter 20 is conjectured
to give an exact result.

22.2.1 The high-level picture

Let us first briefly summarize the RS/1RSB approach. Consider an ensemble of graph-
ical models defined through the distribution (22.1) with a locally tree-like factor graph
structure. Within the RS cavity method, the local marginals of µ( · ) are accurately
described in terms of the message sets {νi→a} and {ν̂a→i}. Given a small (tree-like)
subgraph induced by the vertex set U ⊂ V , the effect of the rest of the graph G \ GU

on U is described by a factorized measure on the boundary of U .
One-step replica symmetry breaking relaxes this assumption, by allowing long-

range correlations, with a peculiar structure. Namely, the probability distribution µ( · )
is assumed to decompose into a convex combination of Bethe measures µr( · ). Within
each ‘state’ r, the local marginals of the measure restricted to this state are well
described in terms of a set of messages {νr

i→a} (by ‘well described’, we mean that the
description becomes asymptotically exact at large N). Sampling a state r at random
defines a probability distribution P({ν}, {ν̂}) over messages. This distribution is then
found to be described by an ‘auxiliary’ graphical model, which is easily deduced from
the original one. In particular, the auxiliary factor graph inherits the structure of the
original one, and therefore it is again locally tree-like. 1RSB amounts to using the RS
cavity method to study this auxiliary graphical model over messages.

In some cases, 1RSB is expected to be asymptotically exact in the thermodynamic
limit. However, this is not always the case: it may fail because the measure P({ν}, {ν̂})
decomposes into multiple pure states. Higher-order RSB is used to study this type of
situation by iterating the above construction.
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Fig. 22.3 Cartoon of the distribution µ(x) for a model described by two-step replica sym-

metry breaking. The probability mass is concentrated in the grey ‘lumps’ of radius d2, which

are organized into ‘clouds’ of radius d1 > d2. The dashed circle corresponds to the typical

distance d0 between clouds.

More precisely, the 2RSB method starts from the ‘auxiliary’ distribution P({ν}, {ν̂}).
Instead of studying this with the RS method as we havedone so far, we use instead
the 1RSB method to study P({ν}, {ν̂}) (therefore introducing an auxiliary auxiliary
model, which is studied by the RS method).

The 2RSB Ansatz admits a hand-waving interpretation in terms of the qualitative
features of the original model µ( · ). Consider 1RSB again. The interpretation was that
µ( · ) is a convex combination of ‘pure states’ µr( · ), each forming a well-separated lump
in configuration space. Within 2RSB, the lumps have a hierarchical organization, i.e.
they are grouped into ‘clouds’. Each lump is addressed by giving a ‘cloud index’ r1,
and, within the cloud, a ‘lump index’ r2. The measure thus decomposes as

µ(x) =
∑

r1∈S1, r2∈S2(r1)

wr1,r2 µr1,r2(x) . (22.16)

Here S2(r1) is the set of indices of the lumps inside cloud r1. A pictorial sketch of this
interpretation is shown in Fig. 22.3.

Even the most forgiving reader should be puzzled by all this. For instance, what
is the difference between N1 clouds, each involving N1 lumps, and just N1N2 lumps?
In order to distinguish between these two cases, one can look at a properly defined
distance, say the Hamming distance divided by N , between two i.i.d. configurations
drawn with distribution µ( · ) (in physics jargon, two replicas). If the two configurations
are conditioned to belong to the same lump, to different lumps within the same cloud,
or to different clouds, the normalized distances concentrate around three values d2,
d1, d0, respectively, with d2 < d1 < d0. As in the case of 1RSB, one could in principle
distinguish dynamic and static 2RSB phases depending on the numbers of relevant
clouds and lumps within clouds. For instance, in the most studied case of static 2RSB,
these numbers are subexponential. As a consequence, the asymptotic distribution of
the distance between two replicas has non-zero weight on each of the three values d0,
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Fig. 22.4 Hierarchical structure of the distribution µ(x) within k-step replica symmetry

breaking. Here k = 3.

d1, d2 (in other words, the overlap distribution P (q) is a combination of three delta
functions).

Of course, this whole construction can be bootstrapped further, by having clouds
grouped into larger structures, etc. Within k-RSB, the probability distribution µ( · ) is
a convex combination of ‘states’ µr( · ), where r = (r1, r2, . . . , rk) indexes the leaves of a
k-generation tree. The indices r1, r2, . . . , rk correspond to the nodes encountered along
the path between the root and the leaf. This translates into a hierarchy of auxiliary
graphical models. If k is allowed to be arbitrarily large, this hierarchy is expected to
determine the asymptotic properties of a large class of models. In particular, one can
use it to compute the free entropy per variable φ ≡ limN→∞ N−1 log ZN .

The resulting description of µ(x) has a natural ultrametric structure, as discussed
in Chapter 8 and recalled in Fig. 22.4. This structure is captured by the generalized
random energy model (GREM), a simple model that generalizes the REM discussed
in Chapter 5. While presenting the solution of the GREM would take us too far, it is
instructive to give its definition.

Example 22.4 The GREM is a simple model for the probability distribution µ( · )
within k-step RSB. Its definition involves one parameter N ∈ N that corresponds to
the system size, and several others (denoted by {a0, a1, . . . , ak−1}, {d0, d2, . . . , dk−1},
and {Σ0,Σ1, . . . ,Σk−1}) that are thought of as being fixed as N → ∞. States are
associated with the leaves of a k-generation tree. Each leaf is indexed by the path
r = (r0, . . . , rk−1) that connects it to the root (see Fig. 22.4).

The GREM does not describe the structure of each state µr( · ) (which can be
thought of as supported on a single configuration). It describes only the distribution
of distances between the states, and the distribution of the weights wr appearing in
the decomposition (22.16).

A node at level i has exp{NΣi} offspring. The total number of states is therefore
exp{N(Σ0 + · · · + Σk−1)}. Two random configurations drawn from states r and s
have a distance di(r,s), where i(r, s) is the largest integer i such that ri = si. Finally,
the weight of state r has the form
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wr =
1

Z
exp{−β(E(0)

r0
+ · · · + E(k−1)

rk−1
)} , (22.17)

where the E
(i)
r are independent normal random variables with mean 0 and variance

Nai. The interested reader is invited to derive the thermodynamic properties of the
GREM, for instance the free energy as a function of the temperature.

22.2.2 What does 2RSB look like?

Higher-order RSB has been studied in some detail in many ‘fully connected’ models
such as the p-spin Ising model considered in Chapter 8. In contrast, if one consid-
ers models on sparse graphs as we do here, any cavity calculation beyond 1RSB is
technically very challenging. In order to understand why, it is interesting to have a
superficial look at how a 2RSB cavity calculation would be formally set up, without
any attempt at justifying it.

For the sake of simplicity, we shall consider a model of the form (22.1) with pairwise
interactions. Therefore all of the factor nodes have degree 2, and BP algorithms can
be simplified by using only one type of message passed along the edges of an ordinary
graph (see Section 14.2.5). Consider a variable node 0 ∈ V of degree (l + 1), and
denote l of its neighbours by {1, . . . , l}. We let ν1, . . . , νl be the messages from 1, . . . , l,
respectively, and let ν0 be the message from 0 to its (l + 1)-th neighbour.

As we saw in Section 14.2.5, the RS cavity equation (i.e. the BP fixed-point equa-
tion) at node 0 reads

ν0(x0) =
1

z{νi}

k∏
i=1

∑
xi

ψ0i(x0, xi)νi(xi) , (22.18)

where z{νi} is determined by the normalization condition of ν0( · ). In order to lighten
the notation, it is convenient to introduce a function f0 that, when evaluated on l mes-
sages ν1, . . . , νl, returns the message ν0 as above. We shall therefore write eqn (22.18)
in shorthand form as ν0 = f0{νi}. Each νi is a point in a (|X |−1)-dimensional simplex.

The 1RSB cavity equations are obtained from eqn (22.18) by promoting the mes-
sages νi to random variables with distribution Qi( · ) (see Chapter 19). The equations
depend on the 1RSB parameter (a real number), which we denote here by x1. Adopting
a continuous notation for the distributions of messages, we get

Q0(ν0) =
1

Z{Qi}

∫
z{νi}x1 δ(ν0 − f0{νi})

l∏
i=1

dQi(νi) , (22.19)

Analogously to the replica-symmetric case (eqn (22.18)), we shall write Q0 = F0{Qi}
as a shorthand for this equation. The function F0 takes as its argument l distributions
Q1, . . . , Ql and evaluates a new distribution Q0 (each of the Qi’s is a distribution over
a (|X | − 1)-dimensional simplex).

At this point, the formal similarity of eqns (22.18) and (22.19) should be clear.
The 2RSB cavity equations are obtained by promoting the distributions Qi to random
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variables (taking values in the set of distributions over a |X |-dimensional simplex).1

Their probability distributions are denoted by Qi, and the resulting equations depend
on one further real parameter x2. Formally, the 2RSB equation can be written as

Q0(Q0) =
1

Z{Qi}

∫
Z{Qi}x2/x1 δ(Q0 − F0{Qi})

l∏
i=1

dQi(Qi) . (22.20)

This equation might look scary, as the Qi( · ) are distributions over distributions over a
compact subset of the reals. It is useful to rewrite it in a mathematically more correct
form. This is done by requiring, for any measurable set of distributions A (see the
footnote), the following equality to hold:

Q0(A) =
1

Z{Qi}

∫
Z{Qi}x2/x1 I(F0{Qi} ∈ A)

l∏
i=1

dQi(Qi) . (22.21)

The interpretation of the 2RSB messages Qi is obtained by analogy with the 1RSB
case. Let α1 be the index of a particular cloud of states, and let Qα1

i ( · ) be the distri-
bution of the message νi over the lumps in cloud α1. Then Qi is the distribution of
Qα1

i when one picks out a cloud index α1 randomly (each cloud being sampled with a
weight that depends on x1.)

In principle, eqn (22.20) can be studied numerically by generalizing the popula-
tion dynamics approach of Chapter 19. In the present case, one can think of two
implementations: for one given instance, one can generalize the SP algorithm, but
this generalization involves, on each directed edge of the factor graph, a population of
populations. If, instead, one wants to perform a statistical analysis of these messages,
seeking a fixed point of the corresponding density evolution, one must use a population
of populations of populations! This is obviously challenging from the point of view of
computer resources (both memory and time). To the best of our knowledge, it has
been tried only once, in order to compute the ground state energy of the spin glass on
random 5-regular graphs. Because the graph is regular, it looks identical at any finite
distance from any given point. One can therefore seek a solution such that the Qi on
all edges are the same, and one is back to the study of populations of populations. The
results have been summarized in Table 17.1: if one looks at the ground state energy,
the 2RSB method provides a small correction of order 10−4 to the 1RSB value, and
this correction seems to be in agreement with the numerical estimates of the ground
state.

22.2.3 Local stability of the 1RSB phase

The above discussion of 2RSB will help us to check the stability of the 1RSB phase.
The starting point consists in understanding the various ways in which the 2RSB
formalism can reduce to the 1RSB one.

1The mathematically inclined reader might be curious about the precise definition of a probability
distribution over the space of distributions. It turns out that, given a measure space Ω (in our case a
(|X | − 1)-dimensional simplex), the set of distributions over Ω can be given a measurable structure
that makes 2RSB equations well defined. This is done by using the smallest σ-field under which the
mapping Q �→ Q(A) is measurable for any A ⊆ Ω that is measurable.
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The first obvious reduction consists in taking the 2RSB distribution Qi to be a
Dirac delta at Q∗

i . In other words, for any continuous functional F on the space of
distributions, ∫

F(Qi) dQi(Qi) = F(Q∗
i ) . (22.22)

It is not hard to check that, if {Q∗
i } solves the 1RSB equation (22.19), this choice of

{Qi} solves eqn (22.20) independently of x2.
There exists, however, a second reduction, which corresponds to taking Qi( · ) to be

a non-trivial distribution, but supported on Dirac deltas. Let us denote by δν∗ a 1RSB
distribution which is a Dirac delta on the message ν = ν∗. Given a set of messages
{Q∗

i } that solves the 1RSB equation (22.19), we construct Qi( · ) as a superposition of
Dirac deltas over all values of ν∗, each one appearing with a weight Q∗

i (ν
∗). Again, this

distribution is defined more precisely by its action on a continuous functional F(Q):∫
F(Qi) dQi(Qi) =

∫
F(δν∗) dQ∗

i (ν
∗) . (22.23)

Exercise 22.2 Suppose that {Q∗
i } solves the analogue of the 1RSB equation (22.19) in

which the parameter x1 has been changed to x2. Show that the Qi defined by eqn (22.23)
solves eqn (22.20) independently of x1.

[Hint: Show that, when evaluated on Dirac deltas, the normalization Z appearing in
eqn (22.19) is related to the normalization z in eqn (22.18) by Z{δνi} = (z{νi})x1 .]

In view of the interpretation of the 2RSB messages Qi outlined in the previous
subsection, and illustrated schematically in Fig. 22.3, these two reductions correspond
to qualitatively different limiting situations. In the first case, described by eqn (22.22),
the distribution over clouds becomes degenerate: there is essentially one cloud (by this
we mean that the number of clouds is not exponentially large in N : the corresponding
complexity vanishes). In the second case, described by eqn (22.23), it is the distribution
within each cloud that trivializes: there is only one cluster (in the same sense as above)
in each cloud.

What are the implications of these remarks? Within the 1RSB approach, one needs
to solve eqn (22.19) in the space of distributions over BP messages: let us call this
the ‘1RSB space’. When passing to 2RSB, one seeks a solution of eqn (22.20) within
a larger ‘2RSB space’, namely the space of distributions over distributions over BP
messages. Equations (22.22) and (22.23) provide two ways of embedding the 1RSB
space in the 2RSB space.

When one finds a 1RSB solution, one should naturally ask whether there exists a
proper 2RSB solution as well (i.e. a solution outside the 1RSB subspace). If this is
not the case, physicists usually conjecture that the 1RSB solution is asymptotically
correct (for instance, it yields the correct free energy per spin). This check has been
carried out for models on complete graphs (e.g. the fully connected p-spin glasses). So
far, the difficulties of studying the 2RSB equations have prevented its implementation
for sparse factor graphs.
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Fig. 22.5 Cartoon of the two types of local instabilities from a 1RSB solution towards 2RSB.

Luckily there is a convenient (albeit less ambitious) alternative: check the local
stability of 1RSB solutions with respect to higher-order RSB. Given a 1RSB so-
lution, we look at it as a point in the 2RSB space according to the two possible
embeddings, and we study the effect of a small perturbation. More precisely, consider
the iteration of the 2RSB equations (22.20):

Q(t+1)
i→j (Q0) =

1

Z{Ql→i}

∫
Z{Ql→i}r δ(Qi→j − Fi{Ql→i})

∏
l∈∂i\j

dQ(t)
l→i(Ql→i) .

Given the factor graph G, we initiate this iteration from a point close to the 1RSB
solution described by either of the embeddings (22.22) or (22.23) and see if the iteration
converges back to the 1RSB fixed point. This is studied by linearizing the iteration in
terms of an appropriate ‘perturbation’ parameter. If the iteration does not converge
to the 1RSB fixed point, the 1RSB solution is said to be unstable. The instability is
said to be of ‘type I’ if it occurs when the embedding (22.22) is used, and of ‘type II’
if it occurs for the embedding (22.23).

An alternative approach to checking the local stability of a 1RSB solution consists
in computing the spin glass susceptibility, which describes the reaction of the model
(22.16) to a perturbation that acts on a single variable xi. As we discussed above,
the effect of this perturbation (studied to linear order) remains finite when the spin
glass susceptibility χ(2) is finite. One should therefore compute χ(2) assuming that the
1RSB solution is correct, and check that it is finite. However, the 1RSB picture implies
a second condition: each single lump r should also be stable to small perturbations.
More precisely, we define χSG,r as the spin glass susceptibility with respect to the
measure µr( · ) restricted to the state r. If we denote by 〈 · 〉r the expectation value
with respect to µr, the ‘intra-state’ susceptibility χSG,intra is a weighted average of
χSG,r over the states:
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χSG,intra =
∑

r

wr χSG,r, (22.24)

χSG,r =
1

N

∑
i,j

(
〈xixj〉r − 〈xi〉r〈xj〉r

)2
. (22.25)

Within the susceptibility approach, the second condition consists in computing χSG,intra

with the 1RSB approach and requiring that it stays finite as N → ∞.
It is generally believed that these two approaches to the local stability of the 1RSB

phase coincide. Type I stability should be equivalent to χ(2) being finite; it means
that the system is stable with respect to the grouping of states into clusters. Type
II stability should be equivalent to χSG,intra being finite; it means that the system is
stable towards a splitting of the states into substates. A pictorial representation of the
nature of the two instabilities in the spirit of Fig. 22.3 is shown in Fig. 22.5.

The two approaches to stability computations have been developed in several spe-
cial cases, and are conjectured to coincide in general. Remarkably, 1RSB is unstable
in several interesting cases, and higher-order RSB would be needed to obtain exact
predictions.

Stability computations are somewhat involved, and a detailed description is beyond
our scope. Nevertheless, we would like to give an example of the results that can be
obtained through a local stability analysis. Consider random K-SAT formulae, with N
variables and M = Nα clauses. Let es(α) denote the minimum number of unsatisfied
clauses per variable, in the large-system limit. The limit es(α) can be computed along
the lines of Chapter 20 using the 1RSB cavity method: for a given α, one computes the
energetic complexity density Σe(e) versus the density of violated clauses e. Then es(α)
is found as the minimal value of u such that Σe(e) > 0. It vanishes for α < αs(K) (the
SAT–UNSAT threshold) and, for α > αs(K), departs continuously from 0, increasing
monotonically.

The stability computation shows that, for a given α, there is in general an instability
of type II which appears above some value e = eG(α): only the part of Σe(e) with
e ≤ eG(α) is in a locally stable 1RSB phase. When α < αm(K), eG(α) = 0 and the
whole 1RSB computation is unstable. For α > αG(K), eG(α) < es(α) (the ground state
energy density), and again 1RSB is unstable (this implies that the 1RSB prediction
for es(α) is not correct). The conclusion is that the 1RSB calculation is stable only in
an interval ]αm(K), αG(K)[. Figure 22.6 summarizes this discussion for 3-SAT. For all
values of K, the stable interval ]αm(K), αG(K)[ contains the SAT–UNSAT threshold
αs(K).

The stability check leads to the conjecture that the 1RSB prediction for αs(K)
is exact. Let us stress, however, that stability has been checked only with respect to
small perturbations. A much stronger argument would be obtained if one could do the
2RSB computation and show that it has no solution apart from the two ‘embedded
1RSB solutions’ that we discussed above.

22.2.4 Open problems within the cavity method

The main open problem is, of course, to prove that the 1RSB cavity approach yields
correct predictions for some models. This has been achieved so far only for a class of
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Fig. 22.6 Top: the energetic complexity Σe in a random 3-SAT problem, computed within

the 1RSB cavity method, plotted versus the density e of violated clauses, for α = 4.1, 4.2, and

4.3 (from top to bottom). The curves reproduce Fig. 20.5, but now the stable and unstable

regions are shown. The thick lines, below eG(α), give the part of the complexity curve for

which the 1RSB computation is locally stable (absent for α = 4.1 < αm(3), where the whole

curve is unstable). This is the only part that is computed reliably by 1RSB; the parts shown

by dashed lines are unstable. Bottom: for the same random 3-SAT problem, plotted versus

the clause density α, the continuous line gives the minimum density of unsatisfied clauses as

predicted within 1RSB (this is the value of e where Σe(e) starts to become positive). The

dotted line gives the threshold energy density as predicted within 1RSB (the maximal value

of e where Σe(e) exists). The grey area indicates the region of local stability of the 1RSB

solution. The ground state energy density predicted by 1RSB is wrong for α > αG (although

probably very close to the actual value), because in this region there is an instability towards

higher-order RSB. It is conjectured that the stable region, αm < α < αs, is in a 1RSB phase:

if this conjecture holds, the 1RSB prediction of αs for the SAT–UNSAT threshold is correct.

For K = 3, one has αm(3) = 4.153(1), αs(3) = 4.2667(1), and αG(3) = 4.390(5).
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models on the complete graph. Here we want to point out a number of open questions
that wait for an answer, even at a heuristic level, within the 1RSB cavity method
itself.

Distributional equations. Cavity predictions are expressed in terms of fixed points
of equations of the form (22.19). When we are considering models on ensembles of
random graphs, this can be read as an equation for the probability distribution of
Q0( · ) (which is taken to be identical to those of Q1( · ), . . . , Qk( · ).)

Currently such equations are mostly studied using the population dynamics method
of Section 14.6.4. The main alternative explored so far has been to formally expand the
equations for large degrees. Population dynamics is powerful and versatile. However,
in many cases, this approach is too coarse, particularly as soon as one wants to study
k-RSB with k ≥ 2. It is intrinsically hampered by statistical errors that are of the order
of the inverse square root of population size. In some models (for instance, for graph
ensembles with large but bounded average degree), statistical fluctuations are too large
for the population sizes that can be implemented on ordinary PCs (typically 107–108

elements). This limits the possibility of distinguishing, for instance, 2RSB from 1RSB
effects, because high precision is generally required to see the difference. Furthermore,
metastability is the crux (and the limit) of the whole population dynamics approach.
Therefore it would be interesting to make progress in two directions:

• Analytical tools and generic results for the cavity equations; this could provide
important guiding principles for any numerical study.

• New efficient and stable numerical methods.

A step forward has been made with the reconstruction algorithm discussed in The-
orem 19.5, but unfortunately it is limited to one value of the rescaling parameter,
x = 1.

Local stability. Local stability criteria provide important guidance in heuristic stud-
ies. It is important to put these results on firmer foundations. Two specific tasks could
be, for instance:

• Prove that if all 1RSB solutions of the cavity equations are locally unstable, then
there must exist a 2RSB solution outside the 1RSB subspace.

• Prove that if a solution of the cavity equations is locally unstable, it does not
describe the model correctly.

Occurrence of k-RSB. A number of random graphical models have been studied
within the cavity (or replica) method. In most cases, it has been found that the system
is either RS, 1RSB, or FRSB. The cases in which a 2RSB phase is found are rare, and
they always involve some kind of special construction of the compatibility function
(for instance, a fully connected model which is a superposition of two p-spin glass
interactions, with p1 = 3 and p2 = 16, displays 2RSB). Therefore one should:

• Find a ‘natural’ model for which 2RSB is asymptotically exact, or understand
why this is impossible.
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Full replica symmetry breaking. We saw that k-RSB provides, as k increases, a
sequence of ‘nested’ schemes aimed at computing various quantities such as local
marginals and the free-entropy density in the large-system limit. A k-th order scheme
includes all of the lower l-RSB schemes with l < k as nested subspaces of the set
of feasible solutions to the cavity equations. On the other hand, as the number of
steps increases, the description of the set of feasible solutions becomes more and more
complicated (distributions of distributions of . . . ).

Surprisingly, in the case of fully connected models, there exists a compact descrip-
tion of the space of feasible solutions in the FRSB limit k → ∞. An outstanding
problem is to find an analogous description in the case of models on sparse graphs.
This would allow us to look for the best solution in the k-RSB space for all k. Therefore
we need to:

• Find a description of the space of full replica-symmetry-breaking messages for
models on sparse graphs.

Variational aspects. It is widely believed that if one finds a consistent solution of
the cavity k-RSB equations, the free-energy density computed with this solution is
always a lower bound on the correct free-energy density of the model (in particular,
the k-RSB ground state energy density prediction is a lower bound on the true value).
This should hold for a large class of models.While this has been proven in some specific
cases, one would like to:

• Find a general proof that the free energy computed with the cavity method is a
lower bound on the correct free energy of the model.

22.3 Phase structure and the behaviour of algorithms

A good part of this book has been devoted to the connection between the various
phases in random graphical models and the behaviour of algorithms. There exists by
now substantial evidence (empirical, heuristic, and in some cases rigorous) that such a
connection exists. For instance, we have seen with the example of codes in Chapter 21
how the appearance of a 1RSB phase, and the corresponding proliferation of metastable
states, determines the noise threshold where BP decoding fails. Developing a broader
understanding of this connection, and determining the class of algorithms to which it
applies, is a very important problem.

We propose here a list of broad research problems, whose advancement will prob-
ably help to clarify this issue. We always have in mind a graphical model of the form
(22.1), with a locally tree-like factor graph.

Impact of the dynamical transition on Monte Carlo dynamics. Consider the problem
of sampling from the distribution (22.1) using a Monte Carlo Markov chain (MCMC)
algorithm. The Markov chain is assumed to flip a sublinear (o(N)) number of variables
at each step, and to satisfy detailed balance with respect to the probability distribution
µ( · ).

One expects that, if the system is in a 1RSB phase, the relaxation time of this al-
gorithm will increase rapidly (probably exponentially) with the system size. Intuitive
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arguments in favour of this statement can be obtained from each of the two charac-
terizations of the 1RSB phases introduced in Section 22.1. The argument is different
depending on whether we start from the pure-state decomposition or from the char-
acterization in terms of correlations. In the first case, the relaxation time is estimated
through the time to cross a bottleneck (see also Chapter 13). In the second case, one
can define a correlation length �∗i through the point-to-set correlation function Gi(�)
(see eqn (22.14)). In order for the system to relax, information has to travel a distance
�∗i . But if �∗i diverges with the size, so must the relaxation time.

This picture is intuitively satisfying, but it is far from being proved, and needs to be
formulated more precisely. For instance, it often happens that in RS phases there exist
small isolated metastable states that make the relaxation time (the inverse spectral gap
of the MCMC) formally large. But even in such cases, numerical simulations indicate
that Glauber dynamics equilibrates rapidly within the RS phase. This observation is
probably related to the fact that the initial condition is chosen uniformly at random,
and that equilibration is only checked for on local observables. A number of questions
arise:

• Why is metastability irrelevant ‘in practice’ in an RS phase? Is it because of local
measurements? Or because of the uniform initial condition? If the latter is true,
what is so special about the uniform initial condition?

• Within an RS phase, can one approximate partition functions efficiently?

Message passing and the estimation of marginals. For a number of models on sparse
random graphs within the RS and (sometimes) dynamical 1RSB phases, message-
passing methods such as belief propagation and survey propagation show good perfor-
mance empirically. More precisely, they return good approximations of local expecta-
tion values if initialized from uniform messages.

Current rigorous techniques for analysing BP often aim at proving that it is ac-
curate regardless of the initialization. As a consequence, results are dominated by the
behaviour under worst-case initializations that are not used in practice. As an illustra-
tion, consider applying BP to the uniform measure over solutions of a random K-SAT
formula. An analysis under worst-case initialization allows one to prove that BP is
accurate only for α ≤ (2 log K)/K[1 + o(1)]. This threshold is embarrassingly small
when compared with the dynamical transition point that terminates the RS phase at
αd(K) = 2K log K/K[1 + o(1)].

In general, we have no good mathematical control of when BP or SP converges
and/or gives good approximations of marginals. Empirically, it seems that SP is able
to converge in some regions of 1RSB phases where BP does not. We have no real
understanding of this fact beyond the hand-waving argument that 1RSB correctly
captures the structure of correlations in these phases.

Here are a number of open questions about these issues:

• Why is the performance of BP and SP on random instances, with uniformly
random initialization, much better than in the worst case? What is special about
the uniform initialization? What are the features of random instances that make
them easier? Can these features be characterized and checked efficiently?
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• Under what conditions do BP (and SP) algorithms converge and give good ap-
proximations to local marginals? When their naive iteration does not converge,
can one systematically either force convergence or use time averages of the mes-
sages?

• It seems that, on sparse random graphical models, BP and SP outperform local
MCMC algorithms. In particular, these message-passing algorithms can have (at
least in principle), good performance within the dynamical 1RSB phase. Can one
demonstrate this possibility convincingly for some model?

Message-passing algorithms and optimization. If one is seeking a solution to a random
constraint satisfaction problem using message passing, the main approach so far has
been the use of decimation: one first computes all local marginals, then decides, based
on this knowledge, how to fix a variable, and then iterates the procedure. In general,
this procedure converges when the number of constraints per variable is not too large,
but it fails above a critical value of this number, which is strictly smaller than the
SAT–UNSAT threshold. No one knows how to determine this threshold analytically.

An alternative to decimation is the reinforcement method: instead of fixing a vari-
able based on a knowledge of local marginals, it modifies some local factors applying
to each of the individual variables, based on this same information. So far, optimizing
this modification is an art, and its critical threshold cannot be estimated either. Some
of the questions that arise are the following:

• How can we predict the performance of BP+decimation or SP+decimation? For
instance, empirically these methods find solutions to random K-SAT formulae
with high probability for α < αBP(K) (or α < αSP(K)), but we have no prediction
for these algorithmic thresholds. In what class of problems is SP better than BP?

• Similar questions for BP+reinforcement and SP+reinforcement.

• We need to find new ways to use the information about local marginals found by
message passing in order to exhibit solutions.

• In an UNSAT phase, the message-passing procedure is able to give an estimate of
the minimal number of violated constraints. Is it possible to use this information,
and that contained in the messages, in order to prove unsatisfiability for one given
instance?

The above questions focus on sparse random instances. Message-passing techniques
have been (partially) understood and sharpened for this type of instance. They nat-
urally arise in a large class of applications where the graphical model is random or
pseudorandom by design. The theory of sparse-graph codes is a clear example in this
direction. In the limit of large block lengths, random constructions have proved to
be generally superior to deterministic ones. More recently, sparse-graph constructions
have been proposed for data compression (both lossless and lossy), online network
measurements, multiterminal communications, distributed storage, group testing, etc.

On the other hand, being able to deal with structured graphs would open up an even
broader class of applications. When applied to structured problems, message-passing
algorithms often fail to converge. This is typically the reason why the decimation
method may fail, even when the marginals of the original problem are well estimated
by message passing: the instance found after fixing many variables is no longer random.



��� An ongoing story

Finding appropriate modifications of message passing for structured graphs would
therefore be very interesting. The question that arises, therefore, is:

• How can we use message passing in order to improve the solution of some gen-
eral classes of (non-random) constraint satisfaction problems? Can it be coupled
efficiently to other general methods (such as MCMC)?

Notes

The present chapter has inevitably been elliptic. We shall provide a few pointers to
recent research here, without any ambition to be comprehensive.

The connection between correlation lengths and phase transitions is a classical
topic in statistical mechanics which has recently been revived by the interest in the
glass transition. A good starting point for learning about this subject in the context
of glasses is the paper by Bouchaud and Biroli (2004), which describes the point-to-
set correlation function using a thought-experiment where one freezes the variables
outside a ball (see Section 22.1.2).

The description of point-to-set correlations in terms of ‘reconstruction’ problems is
taken from Evans et al. (2000). This paper studied the reconstruction phase transition
for Ising models on trees. Results for a wide class of models on trees were surveyed
by Mossel and Peres (2003) and Mossel (2004). We also refer to Gerschenfeld and
Montanari (2007) for the generalization to non-tree graphs. The connection between
‘reconstruction’ and the ‘dynamical’ 1RSB phase transition was first pointed out by
Mézard and Montanari (2006). The implications of this phase transition for dynamics
were explored by Berger et al. (2005), Martinelli et al. (2004), and Montanari and
Semerjian (2006b). The definition of pure states presented in this chapter and the
location of the dynamical and condensation phase transitions for random K-SAT and
the colouring of random graphs are from Krzakala et al. (2007).

The GREM was introduced by Derrida (1985) and studied in detail by Derrida and
Gardner (1986). A 2RSB phase in fully connected models has been found by Crisanti
and Leuzzi (2007). There are very few results about higher-order RSB in models on
sparse random graphs. For spin glasses, one can use perturbative expansions close to
the critical point (Viana and Bray, 1985) or for large degrees (Goldschmidt and De
Dominicis, 1990). The 2RSB computation of the ground-state energy for spin glasses
mentioned in Section 22.2 is from Montanari (2003). The method for verifying the local
stability of the 1RSB solution for sparse systems was first devised by Montanari and
Ricci-Tersenghi (2003), and applied to random satisfiability problems by Montanari et

al. (2004). A complete list of stability thresholds, including their asymptotic behaviour,
for random K-SAT can be found in Mertens et al. (2006). The interpretation of 1RSB
instability in terms of susceptibilities was discussed by Rivoire et al. (2003).

The fact that the free energy computed with the cavity (or replica) method is a
lower bound on the true value can be proven in some fully connected models using the
inequalities of Guerra (2003). The same strategy also yields rigorous bounds in some
diluted systems (Franz and Leone, 2003; Franz et al., 2003; Panchenko and Talagrand,
2004) but it still relies on some details of the structure of the models, and a general
proof applicable to all cases is lacking.
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The reinforcement algorithm was introduced and discussed for SAT by Chavas et

al. (2005).
There exist only scarce results on the algorithmic consequences of the structure

of the solution space. Some recent analyses can be found in Altarelli et al. (2007),
Montanari et al. (2007), Ardelius and Aurell (2006) and Alava et al. (2007). The
convergence and correctness of BP for random K-satisfiability at small enough α was
proven by Montanari and Shah (2007).

This book has covered only a small subset of the problems that lie at the intersec-
tion between information theory, computer science and statistical physics. It would be
difficult to provide an exhaustive list of references on the topics that we did not touch:
we shall instead limit ourselves to a few ‘access points’.

The vertex-covering problem has been studied in detail by the replica and the
cavity method (Weigt and Hartmann, 2000; Zhou, 2003; Hartmann and Weigt, 2005).

As we mentioned, channel coding is only one of the fundamental problems ad-
dressed by information theory. Data compression, in particular in its ‘lossy’ version, is
a key component in many modern technologies, and presents a number of open prob-
lems (Ciliberti et al., 2005; Wainwright and Maneva, 2005). Some other statistical
problems such as group testing are similar in spirit to data compression (Mézard et

al., 2007).
Modern wireless and wireline communication systems are intrisically multi-user

systems. Finding optimal coding schemes in a multi-user context is a very open sub-
ject of great practical interest. Even the information-theoretic capacity of such systems
is unknown. Two fields that have benefited from tools or from analogies with statis-
tical mechanics are multi-user detection (Tanaka, 2002; Guo and Verdú, 2002) and
networking (Kelly, 1991). Also within a communications context, a large effort has
been devoted to characterizing large communication networks such as the Internet. A
useful review was provided by Kleinberg et al. (1999).

Statistical mechanics concepts have been applied to the analysis of fluctuations in
financial markets (Bouchaud and Potters, 2003) and for modelling interactions among
economic agents (Challet et al., 2005). Finally, biology presents a number of problems
in which randomness, interaction between different components, and robustness play
important roles. Stochastic models on networks, and inference algorithms have been
studied in a number of contexts, from neural networks (Baldassi et al., 2007; Coolen
et al., 2000) to phylogeny (Mossel, 2003) and gene expression (Friedman et al., 2000).

A few of these topics, and others, are reviewed in recent summer school proceedings
(Bouchaud et al., 2007).
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Appendix A

Symbols and notation

In this appendix, we summarize the conventions that we have adopted throughout the
book for symbols and notation. Secs. A.1 and A.2 deal with equivalence relations and
orders of growth. Sec. A.3 presents the notation used in combinatorics and probability.
The table in Section A.4 gives the main mathematical notation, and that in Section
A.5 gives the notation for information theory. The table in Section A.6 summarizes the
notation used for factor graphs and graph ensembles. The table in Section A.7 focuses
on the notation used in message passing, belief propagation and survey propagation,
and the cavity method.

A.1 Equivalence relations

As usual, the symbol ‘=’ denotes equality. We also use ‘≡’ for definitions and ‘≈’ for
‘numerically close to’. For instance, we may say that the Euler–Mascheroni constant
is given by

γE ≡ lim
n→∞

(
n∑

k=1

1

k
− log n

)
≈ 0.5772156649 . (A.1)

When dealing with two random variables X and Y , we write X
d
= Y if X and

Y have the same distribution. For instance, given n + 1 i.i.d. Gaussian variables
X0, . . . , Xn, with zero mean and unit variance, we can write

X0
d
=

1√
n

(X1 + · · · + Xn) . (A.2)

We have adopted several equivalence symbols to denote the asymptotic behavior of
functions as their argument tends to some limit. For the sake of simplicity, we assume
here that the argument is an integer n → ∞. The limit to be considered in each
particular case should be clear from the context. We write f(n)

.
= g(n) if f and g are

equal ‘to the leading exponential order’ as n → ∞, i.e. if

lim
n→∞

1

n
log

f(n)

g(n)
= 0 . (A.3)

For instance, we may write (
n

�n/2�

)
.
= 2n . (A.4)
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We write instead f(n) ∼ g(n) if f and g are asymptotically equal ‘up to a constant’,
i.e. if

lim
n→∞

f(n)

g(n)
= C , (A.5)

for some constant C = 0. For instance, we have

1

2n

(
n

�n/2�

)
∼ n−1/2 . (A.6)

Finally, the symbol ‘�’ is reserved for asymptoric equality, i.e. if

lim
n→∞

f(n)

g(n)
= 1 . (A.7)

For instance, we have

1

2n

(
n

�n/2�

)
�
√

2

πn
. (A.8)

The symbol ‘∼=’ denotes equality up to a constant. If p( · ) and q( · ) are two measures
on the same finite space X (not necessarily normalized), we write p(x) ∼= q(x) if there
exists C > 0 such that

p(x) = C q(x) , (A.9)

for any x ∈ X . The definition generalizes straightforwardly to infinite sets X : the
Radon–Nikodyn derivative between p and q is a positive constant.

A.2 Orders of growth

We have used a few symbols to denote the order of growth of functions when their
arguments tend to some definite limit. For the sake of definiteness, we refer here to
functions of an integer n → ∞. As above, the adaptation to any particular context
should be straightforward.

We write f(n) = Θ(g(n)), and say that f(n) is of order g(n), if there exist two
positive constants C1 and C2 such that

C1 g(n) ≤ |f(n)| ≤ C2g(n) , (A.10)

for any n large enough. For instance, we have

n∑
k=1

k = Θ(n2) . (A.11)

We write instead f(n) = o(g(n)) if

lim
n→∞

f(n)

g(n)
= 0 . (A.12)
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For instance,

n∑
k=1

k − 1

2
n2 = o(n2) . (A.13)

Finally, f(n) = O(g(n)) if there exist a constant C such that

|f(n)| ≤ C g(n) (A.14)

for any n large enough. For instance,

n3 sin(n/10) = O(n3) . (A.15)

Note that both f(n) = Θ(g(n)) and f(n) = o(g(n)) imply f(n) = O(g(n)). As the last
example shows, the converse is not necessarily true.

A.3 Combinatorics and probability

The standard notation is used for multinomial coefficients. For any n ≥ 0, l ≥ 2, and
n1, . . . , nl ≥ 0 such that n1 + · · · + nl = n, we have(

n

n1, n2, . . . , nl

)
≡ n!

n1!n2! . . . nl!
. (A.16)

For binomial coefficients (i.e. for l = 2), the usual shorthand is(
n

k

)
≡
(

n

k, l − k

)
=

n!

k!(n − k)!
. (A.17)

In combinatorics, certain quantities are most easily described in terms of their
generating functions. Given a formal power series f(x), coeff{f(x), xn} denotes the
coefficient of the monomial xn in the series. More formally,

f(x) =
∑

n

fnxn ⇒ fn = coeff{f(x), xn} . (A.18)

For instance,

coeff{(1 + x)m, xn} =

(
m

n

)
. (A.19)

Some standard random variables are as follows:

• A Bernoulli p variable is a random variable X taking values in {0, 1} such that
P(X = 1) = p.

• B(n, p) denotes a binomial random variable with parameters n and p. This is
defined as a random variable taking values in {0, . . . , n} and having a probability
distribution

P{B(n, p) = k} =

(
n

k

)
pk(1 − p)n−k . (A.20)
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• A Poisson random variable X with parameter λ takes integer values and has the
following probability distribution:

P{X = k} =
λk

k!
e−λ . (A.21)

The parameter λ is the mean of X.

Finally, we have used the symbol δa for the Dirac ‘delta function’. This is in fact
a measure that attributes unit mass to the point a. In formulae, for any set A,

δa(A) = I(a ∈ A) . (A.22)

A.4 Summary of mathematical notation

= Equal.
≡ Defined as.
≈ Numerically close to.
d
= Equal in distribution.
.
= Equal to the leading exponential order.
∼ Asymptotically equal up to a constant.
∼= Equal up to a normalization constant (for probabilities; see

Eq. (14.3)).
Θ(f) Of the same order as f (see Sec. A.2).
o(f) Grows more slowly than f (see Sec. A.2).
argmaxf(x) The set of values of x where the real-valued function f reaches

its maximum.
�·� Integer part. �x� is the largest integer n such that n ≤ x.
�·� �x� is the smallest integer n such that n ≥ x.
N The set of integer numbers.
R The set of real numbers.
β ↓ βc β goes to βc through values > βc.
β ↑ βc β goes to βc through values < βc.
]a, b[ Open interval of real numbers x such that a < x < b.
]a, b] Interval of real numbers x such that a < x ≤ b.
Z2 The field of integers modulo 2.
a ⊕ b The sum modulo 2 of the two integers a and b.
I(·) Indicator function: I(A) = 1 if the logical statement A is true,

and I(A) = 0 if the statement A is false.
A ! 0 The matrix A is positive semidefinite.



Information theory ���

A.5 Information theory

HX Entropy of the random variable X (See Eq. (1.7)).
IXY Mutual information of the random variables X and Y (see

Eq. (1.25)).
H(p) Entropy of a Bernoulli variable with parameter p.
M(X ) Space of probability distributions over a finite set X .
C Codebook.
& BMS(1) & BMS(2): channel BMS(2) is physically degraded

with respect to BMS(1).
B Bhattacharya parameter of a channel.

A.6 Factor graphs

GN (k,M) Random k-factor graph with M function nodes and N variable
nodes.

GN (k, α) Random k-factor graph with N variable nodes. Each function
node is present independently with probability Nα/

(
N
k

)
.

DN (Λ, P ) Degre- constrained random factor graph ensemble.
Tr(Λ, P ) Degree-constrained random tree factor graph ensemble.
Tr(k, α) Shorthand for the random tree factor graph Tr(Λ(x) =

ekα(x−1), P (x) = xk).
Λ(x) Degree profile of variable nodes.
P (x) Degree profile of function nodes.
λ(x) Edge-perspective degree profile of variable nodes.
ρ(x) Edge-perspective degree profile of function nodes.
Bi,r(F ) Neighbourhood of radius r of variable node i.
Bi→a,t(F ) Directed neigbourhood of an edge.

A.7 Cavity and message-passing methods

νi→a(xi) BP messages (variable to function node).
ν̂a→i(xi) BP messages (function to variable node).
Φ Free entropy.
F(ν) Bethe free entropy (as a function of messages).
Fe(ν) Bethe energy (as a function of min-sum messages).
fRS Bethe (RS) free-entropy density.
Qi→a(ν) 1RSB cavity message/SP message (variable to function node).

Q̂a→i(ν̂) 1RSB cavity message/SP message (function to variable node).
x Parisi 1RSB parameter.
F(x) Free-entropy density of the auxiliary model counting BP fixed

points.



��� Symbols and notation

Σ(φ) Complexity.
FRSB(Q) 1RSB cavity free entropy (Bethe free entropy of the auxiliary

model, a function of the messages).
fRSB 1RSB cavity free-entropy density.
y Zero-temperature Parisi 1RSB parameter (y = limβ→∞ βx).
Fe(y) Free-entropy density of the auxiliary model counting min-sum

fixed points.
Σe(e) Energetic complexity.
FRSB,e(Q) Energetic 1RSB cavity free entropy (Bethe free entropy of the

auxiliary model, a function of the messages).
fRSB,e Energetic 1RSB cavity free-entropy density.
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Creignou, N., Daudé, H., and Dubois, O. (2003). Approximating the satisfiability
threshold for random k-XOR-formulas. Combinatorics, Probab. Comput., 12, 113–
126.

Crisanti, A. and Leuzzi, L. (2007). Amorphous–amorphous transition and the two-
step replica symmetry breaking phase. Phys. Rev. B , 76, 184417.

Csiszár, I. and Körner, J. (1981). Information Theory: Coding Theorems for Discrete
Memoryless Systems. Academic Press, New York.

Dagum, P. and Luby, M. (1993). Approximating probabilistic inference in Bayesian
belief networks is NP-hard. Artif. Intell., 60, 141–153.

Darling, R. W. R. and Norris, J. R. (2005). Structure of large random hypergraphs.
Ann. Appl. Probab., 15, 125–152.
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Mora, T. and Mézard, M. (2006). Geometrical organization of solutions to random
linear Boolean equations. J. Stat. Mech., 10007.
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absorbing set, 514

annealed average, 102

annealing, 86

antiferromagnet, 242

antiferromagnetic, 44, 44 , 46, 315
aperiodicity, see Markov chain
Arrhenius law, 282

assignment problem, 53 , 355–379
ζ(2), 362
BP equations, 358
min-sum algorithm, 360
multi-index, 376

asymptotic equipartition property, 72

AT line, 168

autocorrelation, 84

auxiliary graphical model, 434

average, 3

backbone, 413

balanced minimum cut problem, 286
Bayes rule, 10 , 108
Bayesian network, 269 , 287
BEC, 17 , 344, 351

bit error probability, 513
BP decoding, 342–347
decoding thresholds, 351
metastable states, 500–506

belief propagation (BP), 297 , 291–326, 536
equations, 297

pairwise models, 304
exact on trees, 299
threshold, 338–352

beliefs, 311

Bernoulli process, 5, 543
Bethe equations, see cavity method
Bethe free energy, see Bethe free entropy
Bethe free entropy, 303 , 312

1RSB, 439, 455
function of BP messages, 302
MAP decoding, 347
pairwise models, 305
stationary points, 314

Bethe measure, 430 , 432, 433, 448, 461
extremal, 433, 459

Bethe state, see Bethe measure
Bhattacharya parameter, 232

binary memoryless symmetric channel
(BMS), 327

bit, 5

bit error rate (BER), 110 , 117, 273, 331,
336–338

bit-flipping algorithm, 236
block error, 19 , 62, 110, 118, 120, 126, 231,

233, 237, 495
block length, 19
Boltzmann average, 25 , 118
Boltzmann distribution, 25 , 28 , 73, 78, 82,

86, 94, 127, 179
boundary conditions, periodic, 80 , 276, 310
BP, see belief propagation
BSC, 17 , 120

decoding threshold, 235, 236, 338, 351
dynamical phase transition, 509, 510, 512
finite-temperature decoding, 118–120
LDPC code, 231–239, 337, 339, 350
MAP decoding, 113–117
sphere packing, 125–126

capacity, see channel, capacity
capacity-achieving ensembles, 342
Carleman’s theorem, 152
cavity method, 189, 358, 422, 429–466

1RSB, 424, 439 , 429–466
energetic, 307 , 323, 453, 455, 459, 474, 485
equations, 322 , 376, 390
RS, 321, 384

Cayley formula, 191
certificate, 57
chain rule, 8, 10 , 11, 12
channel, 16

binary erasure, see BEC
binary symmetric, see BSC
capacity, 18
memoryless, 17
Z, 18

channel coding, 16 , 19, 20
check nodes, 220
Chernoff bound, 232
chromatic number, 491
clause, 53
clause density, 207
clique, see graph, complete, 177, 282
cloning method, 260
clustering transition, see dynamical glass

transition
clusters, 104, 163, 254 , 255, 257, 259, 413,

421, 422, 474, 485
code

ensemble, 108



��� Index

error-correcting, 19

instantaneous, 13
rate, see rate
repetition, 20

source, 12 , 13, 14
uniquely decodable, 13

codebook, 19 , 107
codeword, 12 , 19

colouring, 54 , 180, 488
combinatorial optimization, 51

compatibility function, 175

complete algorithm, 201

complexity (statistical physics), 258 , 259,
433, 434, 436, 446

1RSB expression, 439
complexity class, 57

NP, 57

NP-complete, 58

NP-hard, 59

polynomial, 55 , 57

compression, 12, 14, 16
computation tree, 368

computational complexity, 51
concentration, 94

condensation, 100 , 101, 105, 153, 471, 473,
487

configuration, 51
configurational entropy, see complexity

(statistical physics)
conjunctive normal form, 58 , 198

connected, 48

Cook’s theorem, 58 , 62

Coppersmith–Sorkin formula, 372

core (2-core), 343 , 413–415
correlation decay, 520
correlation function, 39 , 520

connected, 32

point-to-set, 522
correlation length, 40
cost function, 51

crossover, 17

Curie–Weiss model, 40 , 75, 77, 85, 264
cycle, 48

data-processing inequality, see inequality
decimation

BP-guided, 472

SP-guided, 481

decision problem, 51
decoder, 19

decoding
finite-temperature, 118

symbol MAP, see MAP
typical-pairs, 494
word MAP, see MAP

degree, 48

in multigraphs, 52

degree profile, 181 , 182, 220, 224
edge-perspective, 192

∆-stable configurations, 497

density evolution, 321 , 323
1RSB, 440, 442
2RSB, 529
assignment, 361
BP decoding, 329, 343, 503
XORSAT, 409

detailed balance, 27 , 81, 82, 283, 460, 520
distance

in a graph, 192

minimum, 123

distance enumerator, 110 , 111, 115, 123, 222
DPLL algorithm, 201 , 202, 203

resolution, 204
dynamical glass transition, 258 , 460, 473,

487, 509, 535

Edwards–Anderson model, 44 , 46, 179, 244
Edwards–Anderson order parameter, 251 ,

265
encoding, 19

energy, 24

density, 33

gap, 29

internal, 29

level, 93

entropy, 5

canonical, 29

conditional, 10, 10 , 11, 12
density, 33

ε-coupling method, 256 , 524
equilibration, 84

erasure, see BEC
error floor, 339 , 513
Eulerian circuit, 52
evaluation problem, 51
event, 3

expander, 238

expectation value, 3

expurgation, 124 , 230
extremality, 433 , 523
extreme value statistics, 163

Fano’s inequality, see inequality
ferromagnet, 35 , 43, 242 , 246, 250, 271,

381–400
ferromagnetic, 44, 44 , 46, 61, 80, 168, 251,

275, 286, 292, 316
finite-size scaling, 138 , 218, 416, 427
first-moment method, 96

fluctuation–dissipation theorem, 33

free entropy
Bethe, see Bethe free entropy

free energy, 28

Bethe, see Bethe free energy
density, 33

Gibbs, 78, 78 , 79, 80
free entropy, 28 , 29, 34, 297

density, 33, 87
Friedgut’s theorem, 210
FRSB, see replica, full symmetry breaking
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frustration, 45 , 46, 245, 245
fully connected model, 155 , 244, 465
function node, 175

Gärtner–Ellis theorem, 76
gauge transformation, 246
generator matrix, 126 , 220
giant component, see graph
Gibbs variational principle, 78 , 79, 80
Gilbert–Varshamov bound, 123 , 124
Gilbert–Varshamov distance, 111
glass, see phase -glass
glass transition, 253, 253 , 258, 493, 538
Glauber dynamics, see heat bath algorithm
graph, 48

complete, 48
component, 186
cyclic number of a, 189
degree-constrained factor, 182
factor, 175 , 173–195
giant component, 187–190
partitioning, 286
random k-factor, 181
random ensembles, 180–194
random regular, 182
unicyclic, 187
weighted, 48

graphical model, 175
greedy algorithm, 86
GREM, 527
Griffiths’ inequality, see inequality
ground state, 28 , 30, 37, 60, 61, 103, 164
Gumbel distribution, 164

Hamiltonian cycle, 52
Hammersley–Clifford theorem, 177 , 194
Hamming bound, 123
Hamming code, 178, 220
Hamming distance, 110 , 163, 205, 216
Hamming space, 110 , 123
Hamming sphere, 123 , 125
hard decision, 328
heat bath algorithm, 82 , 250, 259, 273, 275,

280, 284, 287, 460, 461, 474, 498,
500, 536

hyperedge, 181 , 195, 376, 377
hypergraph, 180 , 194
hyperloop, 406

ideal gas, 243
inclusion principle (in assignment), 361
incomplete search, 204
independent identically distributed (i.i.d.), 8
indicator function, 4
induced subgraph, 430
inequality

data-processing, 11
Fano, 11 , 347
Griffiths, 391
Jensen, 4 , 7, 11

Kraft, 14 , 15
Markov, 96 , 489

information, mutual, 10, 10 , 11, 18
insertion, 17
instance, 51, 93
irreducibility, see Markov chain
Ising model, 35, 35 , 36, 46, 74, 80, 241, 243,

275, 276, 284, 286, 292, 310, 386,
389

Ising spin, 25 , 75, 155, 241

Jensen’s inequality, see inequality

k-body interaction, 24
KL divergence, see Kullback–Leibler

divergence
Kraft’s inequality, see inequality
Kronecker symbol, 88
Kullback–Leibler (KL) divergence, 7 , 78

large deviations, 65–89
principle, 73
rate function, 73

LDPC codes, 219–240, 327–353, 493
BSC thresholds, 235, 338, 350, 351
rate, 230
weight enumerator, 224, 226

leading exponential order, 34
leaf removal, see peeling algorithm
likelihood, maximum, 109 , 231, 239, 495
linear codes, 220

random, 126 , 219
local stability, 167 , 252, 339, 378, 386, 391,

473, 522, 529, 534
in coding, 340
of 1RSB, 531

locally consistent marginals, 311
log-likelihood, 121, 232 , 293 , 328, 330, 332,

333, 348, 358, 382, 494, 501
loop, 193

magnetization, 25
average, 37
instantaneous, 41
spontaneous, 37

MAP, 108 , 109, 113, 118, 127
symbol, 109 , 114
threshold, 234 , 236, 348, 351, 505
word, 109 , 113

marginal, 8
Markov chain, 9, 9 , 10, 11, 74, 81

aperiodicity, 81 , 82, 83, 500
irreducibility, 81 , 82, 83, 86, 87, 500
stationarity, 81, 81 , 82–84, 86, 282, 283
with memory, 177

Markov inequality, see inequality
Markov property, global, 175 , 177
max-marginal, 305
max-product algorithm, 306, 306 , 308
MAX-SAT problem, 198, 279
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maximum cut problem, 61
MCMC, see Monte Carlo method
mean-field approximation, 80, 80 , 313
mean-field model, 155 , 241, 244, 262, 381,

522
message passing, 316 , 317, 453, 536

auxiliary model, 436
messages (set of), 430
Metropolis algorithm, 82
min-sum algorithm, 307 , 309, 323, 360, 366,

368, 369, 453, 456
minimum distance, 229, 273
minimum spanning tree, 48
mixing time, 84
mode (of a distribution), 305
moment-generating function, 73
Monte Carlo method, 81 , 82, 83, 86, 87, 89,

257, 272–287, 500, 505, 535
Monte Carlo sweep, 274
multigraph, 52

nat, 5
near-codeword, see trapping set
neighbourhood (in a graph), 192

directed, 319
Nishimori temperature, 247
non-interacting, 24 , 156
non-reversing path, 299
NP, see complexity class
NP-complete, see complexity class
NP-hard, see complexity class
number partitioning, 54 , 131–144

unconstrained, 132

observable, 24 , 25, 28
optimal, 51
optimization problem, 51
overlap, 162 , 252–255, 257, 258, 263, 462

distribution, 162 , 252, 254, 256, 258, 523
matrix, 147 , 157

p-spin model, see spin glass
paramagnetic, see phase, paramagnetic
Parisi 1RSB parameter, 434
Parisi formula (assignment), 372
Parisi hierarchical RSB scheme, 161
parity check matrix, 220
participation ratio, 100
partition function, 25
path, 48
peeling algorithm

decoding, 343
XORSAT, 412

percolation, 189
perfect partition, 131
phase

ferromagnetic, 37
glass, 100, 163, 241, 250 , 252, 253, 257,

394
paramagnetic, 37 , 385

transition, 33
first-order, 33
second-order, 33

physical degradation, 334
Poisson point process, 165
Poisson random variable, 544
Poisson–Dirichlet process, 165 , 166, 462, 524
polynomially reducible, 56
population dynamics, 323 , 394, 442, 534

1RSB, 442 , 464, 512
potential method, 257
Potts spin, 26
probability density function (pdf), 4
probability distribution, 3
pure states, 518 , 519

quench, 86
quenched average, 102

random code ensemble, see RCE
random cost model (RCM), 136
random energy model, see REM
random graphical model, 318
random variable

continuous, 3
discrete, 3
independent, 7
sequence, 8

rate
code rate, 19 , 20, 111, 115, 120, 220, 221,

230, 339
design, 221 , 230
growth, 111 , 223

rate function, see large deviations
rate of an exponential random variable, 371
RCE, 107 , 108, 110, 495
reconstructibility, see extremality
recursive distributional equations, see

density evolution
relaxation time, 259, 277, 279, 283 , 520
REM, 93–106, 163, 262

replica solution, 145
replica

full symmetry breaking, 161 , 163, 253,
399, 463, 535

method, 146 , 145–169, 253, 261, 262
symmetry, see RS
symmetry breaking, see RSB

replicon, 168
resolution proof, 203
reversibility, see detailed balance
RS, 148 , 158, 321, 322, 381, 396, 432, 523
RSB, 162, 253, 396

1RSB, 150, 160, 429–466
cavity equations, 434
discontinuous, 253
dynamical, 432 , 459, 461, 487
static, 432, 450, 459, 462, 487

higher levels, 524

sample, 93
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Sanov’s theorem, 67 , 87
SAT

Easy-SAT, 421
Hard-SAT, 421

satisfiability, 53 , 58, 197–218, 303, 525
K-satisfiability, 54 , 198
random, 207 , 467–492
threshold

K-SAT conjecture, 209
bounds, 217
table, 481

search tree, 133
self-averaging, 94
sequential importance sampling, 304
Shannon, 14, 16, 21, 128, 231, 236, 338, 342,

351
channel coding theorem, 20, 120, 121, 126,

236
code, 15, 15 , 16
entropy, 29
random code ensemble, see RCE
source coding theorem, 14
source–channel separation, 19

Sherrington–Kirkpatrick model, 156 , 167,
168, 262, 395

soft decision, 328
source coding, 12 , 15, 16, 21
SP, see survey propagation
spectral gap, see relaxation time
sphere packing, 123–126
spin glass, 44 , 179, 241–266, 381, 391–403

p-spin glass, 155, 155 , 167, 404, 407
diluted, 244
maximum cut, 61

SPY, see survey propagation
stationarity, see Markov chain
stopping set, see core
subcube, 103
sum–product algorithm, see belief

propagation
surface tension, 285
survey propagation, 425, 453 , 455, 474, 536

decimation, 482
marginal, 482
SPY, 453, 455

susceptibility, 39
ferromagnetic, 251
non-linear, see susceptibility, spin glass
spin glass, 252 , 392

symmetric random variable (in coding), 331
syndrome, 235

temperature, 25
critical, 37
high, 28 , 29
low, 28 , 29

thermodynamic limit, 33
threshold

2-SAT, 209
BP, see belief propagation
condensation, 487
energy, 485
LDPC MAP decoding, see MAP
random graph, 187
SAT–UNSAT, 479
satisfiability (bounds), 217
satisfiability (conjecture), 210
XORSAT, 415

transfer matrix, 37
transition probability, 9
trapping set, 514
travelling salesman problem, 52
tree, 48 , 186, 187, 190, 191

binary, 14
ensemble, 192
rooted, 190

tree-graphical model, 296
truth assignment, 198
type (of a sequence), 67 , 71, 87, 122, 128
typical sequence, 72
typical-pairs, see decoding, typical-pairs

ultrametricity, 163 , 166, 527
unfrustrated, 245
unit clause propagation, 199, 199 , 214, 309
UNSAT certificate, 202

variable node, 175
variation distance, 84

warning propagation, 309 , 456, 457, 478
waterfall region, 514
weight enumerator, 222 , 222–231

XOR satisfiability, 404 , 403–427
ensembles, 407
threshold, 417
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