Week 1 - Introduction to Regression and Simple Linear Regression

Written by /u/econpanda

Problems with a * are not necessary but may provide additional insight. The readings for this problem set are

- Chapter 1
- \bullet 2.1, 2.2, 2.4, 2.6

Pay attention to the following key topics

- Meaning of **ceteris paribus**
- Examples 1.3, 1.4, 1.5, 1.6
- Problems with nonrandom assignment (pages 14-15)
- What the regression error term *u* captures
- Assumptions about relation between *x* and *u*
- Estimation of regression coefficients
- Interpretation of regression coefficients
- How $log(.)$ changes interpretation of regression coefficients (Table 2.3)
- Regression assumptions (section 2.3) and properties of OLS estimators (section 2.5) will be covered next week
- 1. (Wooldridge 1.1) Suppose that you are asked to conduct a study to determine whether smaller class sizes lead to improved performance of fourth graders.¹
	- (a) If you could conduct any experiment you want, what would you do?
	- (b) More realistically, suppose you can collect observational data on several thousand fourth graders in a given state. You can obtain the size of their fourth-grade class and a standardized test score taken at the end of fourth grade. Why might you expect a negative correlation between class size and test score?
	- (c) Would a negative correlation necessarily show that smaller class sizes cause better performance?

¹For a good answer to this question see the Tennessee STAR experiment and Krueger (1999)

2. (Wooldridge 2.1) Let *kids* denote the number of children born to a woman, and let *educ* denote years of education for the woman. A simple model relating education to fertility to years of education is

$$
kids = \beta_0 + \beta_1 educ + u
$$

- (a) List 5 specific variables that are in *u*
- (b) Are any of these things likely to be correlated with *educ*?
- (c) Would this simple regression uncover the ceteris paribus effect of education on fertility (Is $E(u|x)$ likely to hold)?
- 3. You are interested in finding the relation between time allowed for college students to take an exam and their performance on the exam. You notice that at your university a class is offered on MWF (for 50 minutes) and on TTH (for 75 minutes) and it is taught by the same professor that uses the same exam.
	- (a) Is a simple regression of time on test score likely to uncover a ceteris paribus effect of time on test score (Hint: Are students randomly assigned between classes? Is $E(u|x)$ likely to hold)?
	- (b) Alternatively you can convince the professor to pool the sections for exams and flip a coin for each student to determine their time allotment, heads means they get 75 minutes and tails means they get 50 minutes. Would this approach uncover a ceteris paribus effect?
- 4. * Wooldridge derives OLS through the method of moments estimator, an alternative way to estimate $\hat{\beta}_0$ and $\hat{\beta}_1$ is through minimizing the sum of squared residuals. Define the residuals as $\hat{u}_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i,1}$, the objective function is:

$$
\min_{\hat{\beta}_0, \hat{\beta}_1} \sum_{i=1}^n \hat{u}^2 = \min_{\hat{\beta}_0, \hat{\beta}_1} \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i,1})^2
$$

(a) Show that the derivatives of this function with respect to β_0 and β_1 are²

$$
-2\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i,1})
$$

-2 $\sum_{i=1}^{n} x_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i,1})$

(b) Set these equations equal to 0 and solve for $\hat{\beta}_0$ and $\hat{\beta}_1$ and show that they are equivalent to equations 2.17 and 2.19 from Wooldridge. You will need the following properties

$$
\sum_{i=1}^{n} x_i (x_i - \bar{x}) = \sum_{i=1}^{n} (x_i - \bar{x})^2 \text{ and } \sum_{i=1}^{n} x_i (y_i - \bar{y}) = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})
$$

 2 If you need a review of calculus and summation operators see Appendix A in Wooldridge

- 5. (Wooldridge 2.2) In the simple linear regression model $y = \beta_0 + \beta_1 x_i$, suppose that $E(u) =$ α ^{\neq} 0. Show that the model can always be written with the same slope, but a new intercept and new error, where the new error has zero mean.
- 6. For each of the following regressions on the relation between a persons high school GPA and the ACT score provide a general interpretation of β_1
	- (a) $GPA = \beta_0 + \beta_1 ACT + u$
	- (b) $log(GPA) = \beta_0 + \beta_1 ACT + u$
	- (c) $GPA = \beta_0 + \beta_1 \log (ACT) + u$
	- (d) $\log(GPA) = \beta_0 + \beta_1 \log(ACT) + u$

References

Krueger, A. B. (1999). Experimental estimates of education production functions*. *The Quarterly journal of Economics 114*(2), 497–532.