

VENTURIMETER, ORIFICEMETER AND ROTAMETER TEST RIG

DETERMINATION OF THE CO EFFICIENT OF DISCHARGE OF GIVEN VENTURIMETER

AIM:

To determine the coefficient of discharge for liquid flowing through venturimeter.

APPARATUS REQUIRED:

- 1. Venturimeter
- 2. Stop watch
- 3. Collecting tank
- 4. Differential U-tube
- 5. Manometer
- 6. Scale

FORMULAE:

1. ACTUAL DISCHARGE:

$$Q_{act} = A \times h / t \quad (m^3 / s)$$

2. THEORTICAL DISCHARGE:

$$Q_{th} = a_1 \times a_2 \times \sqrt{2gh} / \sqrt{a_1^2 - a_2^2}$$
 (m³/s)

Where:

A = Area of collecting tank in m^2

h = Height of collected water in tank = 10 cm

 a_1 = Area of inlet pipe in m^2

 a_2 = Area of the throat in m^2

 $g = Specify gravity in m/s^2$

t = Time taken for h cm rise of water

H = Orifice head in terms of flowing liquid

$$= (H_1 \sim H_2) (s_m/s_{1-}1)$$

Where:

H1 = Manometric head in first limb

H2 = Manometric head in second limb

s _m = Specific gravity of Manometric liquid

(i.e.) Liquid mercury Hg = 13.6

 s_1 = Specific gravity of flowing liquid water = 1

Theoretical discharge Qth x 10 ⁻³ (no unit)				Mean Cd =
				×
Actual discharge Q act x 10 ³ m ³ / s				
Time taken for 'h' cm rise of water 't' Sec				
Manometric head H = (H1~H2) x 12.6 x 10 ⁻²				
Manometric reading	H2 cm of Hg			
Mano	H1 cm of Hg			
Diameter in mm				
S. No				

3. CO EFFICENT OF DISCHARGE:

Co- efficient of discharge = Q act / Q th (no units)

DESCRIPTION:

Venturimeter has two sections. One divergent area and the other throat area. The former is represented as a $_1$ and the later is a $_2$ water or any other liquid flows through the Venturimeter and it passes to the throat area the value of discharge is same at a $_1$ and a $_2$.

PROCEDURE:

- 1. The pipe is selected for doing experiments
- 2. The motor is switched on, as a result water will flow
- 3. According to the flow, the mercury level fluctuates in the U-tube manometer
- 4. The reading of H₁ and H₂ are noted
- 5. The time taken for 10 cm rise of water in the collecting tank is noted
- 6. The experiment is repeated for various flow in the same pipe
- 7. The co-efficient of discharge is calculated

MODEL CALCULATION:
WODEL CALCULATION.
RESULT:
The co efficient of discharge through Venturimeter is (No unit)