

Общероссийский математический портал

Роберт Орос ди Бартини, Некоторые соотношения между физическими константами, Докл. AH CCCP, 1965, том 163, номер 4, 861–864

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением

http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 84.115.222.3

9 февраля 2022 г., 03:07:39

ФИЗИКА

РОБЕРТ ОРОС ди БАРТИНИ

НЕКОТОРЫЕ СООТНОШЕНИЯ МЕЖДУ ФИЗИЧЕСКИМИ КОНСТАНТАМИ

(Представлено академиком Б. М. Понтекорво 23 IV 1965)

Рассмотрим некоторый тотальный и, следовательно, уникальный экземпляр A. Установление тождества экземпляра с самим собою $A \equiv A$; $A \cdot \frac{1}{A} = 1$ можно рассматривать как отображение, приводящее образы A в соответствие с прообразом A. Экземпляр A, по определению, может быть сопоставлен только с самим собой, поэтому отображение является внутренним и, согласно теореме Стилова, может быть представлено в виде суперпозиции топологического и последующего аналитического отображения. Совокупность образов A составляет точечную систему, элементы которой являются эквивалентными точками; n-мерная аффинная протяженность, содержащая в себе (n+1) элементов системы, преобразуется в себя

линейно
$$x_i' = \sum_{k=1}^{n+1} a_{ik} x_k$$
.

 Π ри всех действительных a_{ik} унитарное преобразование

$$\delta_{il} = \sum_{k} a_{ik}^* a_{lk} = \sum_{k} a_{ki}^* a_{kl} \ (i, k = 1, 2, ..., n + 1)$$

является ортогональным, так как $\det a_{ik} = \pm 1$, следовательно, преобразование представляет собой вращение или инверсионный поворот.

Проективное пространство, содержащее в себе совокупность всех образов объекта A, метризуемо. Метрическая протяженность R^n , совпадающая целиком со всей проективной протяженностью, является, согласно теореме Гамеля, замкнутой.

Группа совмещений эквивалентных точек, изображающих элементы множества образов A, составляет конечную систему, которую можно рассматривать как топологическую протяженность, отображенную в сферическое пространство R^n . Поверхность (n+1)-мерной сферы, эквивалентная объему n-мерного тора, полностью, правильно и везде плотно заполнена n-мерной, совершенной, замкнутой и конечной точечной системой образов A. Размеоность протяженности R^n , целиком и только вмещающей в себя множество элементов образования, может быть любым целым числом n в интервале от (1-N) до (N-1), где N—число экземпляров ансамбля.

Будем рассматривать последовательности случайных переходов между конфигурациями различного числа измерений как векторные случайные величины, т. е. как поля. Пусть дифференциальная функция распределения частот (тона) переходов v задана выражением $\phi(v) = v^n \exp\left[-\pi v^2\right]$. Если $n \gg 1$, то математическое ожидание частоты перехода из состояния n равно

$$m\left(\mathbf{v}
ight) = \int\limits_{0}^{\infty} \mathbf{v}^{n} \exp\left[-\pi \mathbf{v}^{2}\right] d\mathbf{v} \Big/ \int\limits_{0}^{\infty} \exp\left[-\pi \mathbf{v}^{2}\right] d\mathbf{v} = \Gamma\left(\frac{n+1}{2}\right) \Big/ 2\pi^{(n+1)/2}.$$

Статистический вес длительности определенного состояния есть величина, обратная к вероятности изменения этого состояния. Поэтому наиболее вероятное, актуальное, число измерений конфигурации ансамбля есть число n, при котором величина m(v) имеет минимум. Обратное значение функции m(v) $\Phi_n = 1/m(v) = {}_{S}S_{n+1} = {}_{T}V_n$ изоморфно функции величины поверхности гиперсфер единичного радиуса в (n+1)-мерном пространстве. Эта изоморфность адэкватна эргодической концепции, согласно которой пространственная и временная совокупность являются эквивалентными аспектрами многообразия. Положительная ветвь функции Φ_n унимодальна, при отрицательных значениях (n+1) функция знакопеременна.

Максимальное значение объема протяженности образования имеет место при $n=\pm 6$, следовательно, наиболее вероятное и наименее невероятное, экстремальное, распределение элементарных образов объекта A соот-

ветствует 6-мерной конфигурации.

Одним из основных понятий в теории размерности комбинаторной топологии является понятие нерва, из которого следует, что всякая компактная метрическая протяженность размерности 2n+1 может быть гомеоморфно отображена на эвклидово подмножество размерности n.

Все четномерные пространства можно рассматривать как произведения двух нечетномерных протяженностей одинаковой размерности и противоположной ориентации, вложенных друг в друга. Все нечетномерные проективные пространства при иммерсии в протяженность собственных измерений являются ориентируемыми, в то время как пространства четной размерности являются односторонними. Таким образом, протяженность, форма существования объекта A является (3+3)-мерным комплексным многообразием, состоящим из произведения 3-мерной пространствоподобной и ортогональной к ней 3-мерной времениподобной протяженности, обладающими ориентацией. Геометрия этих многообразий определяется установленной в них метрикой, измеряющей интервал с квадратической формой

$$\Delta s^2 = \Phi_n^2 \sum_{ik}^n g_{ik} \Delta x^i \Delta x^k \quad (i, k = 1, 2, ..., n),$$

который зависит, кроме функции координат g_{ih} , также от функции числа независимых параметров Φ_n .

Тотальная протяженность многообразия конечна и неизменна, следовательно, сумма протяженностей реализованных в ней формаций — величина, инвариантная относительно ортогональных преобразований. Инвариантность суммарной протяженности образования выражается квадратической формой $N_i r_i^2 = N_h r_h^2$, где N — число экземпляров, а r — радиальный эквивалент формации.

Конфигурации отрицательной размерности являются инверсионными образами, соответствующими антисостояниям системы, они обладают зеркальной симметрией при n=2 (2m-1) и прямой симметрией при n=2(2m), $m=1,2,\ldots$ Конфигурации нечетной размерности не имеюг антисостояния. Объем антисостояний равен $V_{(-n)}=4(-1/V_n)$.

Уравнения физики принимают простой вид, если в качестве системы измерения принять кинематическую систему (LT), единицами которой являются два аспекта радиуса инверсии областей пространства R^n : l— элемент пространствоподобной протяженности подпространства L и t— элемент, времениподобной протяженности подпространства T. Введение однородных координат позволяет свести теоремы проективной геометрии к алгебраическим эквивалентам и геометрические соотношения— к кинематическим связям.

В кинематической системе показатели степеней в структурных формулах размерностей всех физических величин, в том числе и электромагнитных, являются целыми числами.

Физические константы выражаются некоторыми соотношениями геометрии ансамбля, приведенными к кинематическим структурам. Наиболее устойчивой форме кинематического состояния соответствует наиболее вероятная форма статистического существования формации. Величину физических констант можно определить следующим образом.

Максимальное значение вероятности состояния соответствует объему

6-мерного тора и равно

$$V_6 = \frac{16\pi^3}{15} r^6 = 33,0733588 r^6.$$

Экстремальные значения — максимум положительной и наименьший минимум отрицательной ветви функции Φ_n равны:

$$n+4$$
 +7,256 946 404 -4,991 284 10
S_{n+1} +33,161 194 485 -0,120 954 210 8.

Отношение экстремальных значений функций S_{n+1} равно

$$\bar{E} = |+S_{n+1 \max}|/|-S_{n+1 \min}| = 274,163208 r^{12}.$$

С другой стороны, конечный сферический слой протяженности R^n , равномерно и везде плотно заполненный дублетами элементарных образований A, эквивалентен концентрическому с ним вихревому тору. Зеркальное изображение этого слоя есть другой концентрический однородный двойной слой, который, со своей стороны, эквивалентен вихревому кольцу, соосному с первым. Для (3+1)-мерного случая подобные образования исследованы Левисом и Лармором.

Условия стационарности вихревого движения выполняются, когда

$$V \times \text{rot } V = \text{grad } \varphi, \quad 2\omega \ ds = d\psi = d\varkappa,$$

где циркуляция и — основной кинематический инвариант поля. Вихревое движение устойчиво в том случае, когда линии тока совпадают с траекторией ядра. Для (3+1)-мерного вихревого тора $V_x = \frac{\varkappa}{2\pi D} \left[\ln \frac{4D}{r} - \frac{1}{4} \right]$ где r — радиус циркуляции и D — диаметр кольца тора. Скорость в центре образования $V_{\odot}=u\pi D/2r$. Условие $V_x=V_{\odot}$ в нашем случае выполняется, когда при n=7

$$\ln \frac{4D}{r} = (2\pi + 0.25014803) \frac{2n+1}{2n} = 2\pi + 0.25014803 + \frac{n}{2n+1} = 7,$$

$$D/r = \overline{E} = \frac{1}{4}e^7 = 274,15836.$$

В поле вихревого тора на боровском радиусе заряда $\gamma = 0.999\,902\,8$ и π принимает значение $\pi^*=0.999\,951\,4$ π . Тогда $E={}^1/_4e^{6,~999~696~8}=274,074\,996$. Вводя отношение $B=V_6E$ / $\pi=2885,3453$, в кинематической системе [LT] величины всех физических констант K единообразно выразим простыми соотношениями между E и B

$$K = \delta E^{\alpha} B^{\beta},$$

где δ равняется некоторому квантованному повороту, α и β — некоторые целые числа.

В табл. 1 даны аналитические и экспериментальные значения некоторых физических констант и в приложении приведено опытное определение единиц системы CGS, так как они являются конвенциональными величинами, а не физическими константами.

	$K = \delta E^{\alpha} B^{\beta}$	Аналитические значения	Экспериментальные значения
Постоянная Зоммер-	$2^{-1}\pi^{0}EB^{0}$	1,370 374 9·10²loto cmº·ro·cek"	1,370 374 3.102
Постоинная гравита-	$2^{-2}\pi^{-1}E^{0}B^{0}F$ *	7,986 888 8·10 ⁻² l ⁰ t ⁰ 6,670 024 6·10 ⁻⁸ CM ³ ·г ⁻¹ CeH ⁻²	6,670.10-8
Базисное отношение зарядов	$2{}^{0}\pi^{0}E^{0}B^{6}$	5,770 146 0·10 ² 'l ⁰ t ⁰ 5,273 304 76·10 ¹⁷ CM ² / ₃ ·г- ² ·CeK ¹ / ₂	5,273 058 5.1017
Базисное отношение масс	$2^{1}\pi^{-1}E^{0}B^{1}$	1,836 867 8·10 ³ l ⁰ t ⁰ см ⁰ ·г ⁰ ·сек ²	1,836 30•103 **
Эффективный грави- тационный радиус электрона	$2^{-1}\pi^{0}E^{0}B^{-12}$	2,390 102 2·10 ⁻⁴³ lt ⁰ 0,673 495 1·10 ⁻⁵⁵ cm ¹ ·r ⁰ ·cek ⁰	0,674.10-55
Электрический радиус электрона	$2^{-1}\pi^{-1}E^0B^{-6}$	2,758 247 7·10 ⁻²¹ l t ⁰ 7,772 329 1·10 ⁻³⁵ cm ¹ ·г ⁰ ·сек ⁰	
Классический радиус электрона	$2^{\eta}\pi^{0}E^{0}B^{0}$	1,000 000 0·10°lt° 2,817 850 2·10 ⁻¹³ cm ¹ ·r°·cek°	2,817 85-10-13
Космический радиус	$2^{1}\pi^{1}E^{0}B^{12}$	2,091 961 2-10 ⁴² l ³ t- ² 5,894 831 5-1029 cm ¹ ·r ⁰ ·cek ⁰	6,1029>1028
Масса электрона	$2^0\pi^0E^0B^{-12}$	3,003 491 $6 \cdot 10^{-43} l^3 t^{-2}$ 9,108 300 $6 \cdot 10^{-28}$ cm $^{3} \cdot \Gamma^{1} \cdot \text{cek}^{0}$	9,1083.10-28
Масса нуклонная	$2\pi^{-1}E^{0}B^{-11}$	5,517 016 $4 \cdot 10^{-39} l^3 t^{-2}$ 1,673 074 $2 \cdot 10^{-24} \text{ cm}^0 \cdot \text{r}^1 \cdot \text{cek}^0$	1,6725.10-24 **
Масса космическая	$2^2\pi^2 E^0 B^{12}$,	1,314 417 5·10 ⁴³ l ³ l ⁻² 3,936 064 2·10 ⁵⁷ cm ⁰ ·r ¹ ·cek ⁹	>1056
Период космический	$2^1\pi^1E^0B^{12}$	2,091 931 2 10 ⁴² l ⁰ t ¹ 1,936 300 9 10 ¹⁹ cm ⁰ ·r ⁰ ·cek ¹	2·10 ¹⁹ >10 ⁷
Заряд электрона	$2^0\pi^0E^0B^{6}$	1,733 058 $4 \cdot 10^{-2i} l^3 t^{-2}$ 4,802 850 $2 \cdot 10^{-10}$ cm ³ / ₂ ·1 ⁻¹ ·cek ¹ / ₂	4,802 86.10-10
Число элементарных вкземпляров	$2^2\pi^2E^0B^{24}$	4,376 299 0.1084000 CM°·r°·cek°	>1082

Совпадение теоретических и наблюдаемых величин констант позволяет предполагать, что можно отождествлять все метрические свойства рассматриваемого тотального и уникального экземпляра со свойствами наблюдаемого Мира, тождественного с единственной фундаментальной «частицей» A. В другом сообщении будет показано, что (3+3)-мерность пространства — времени является экспериментально проверяемым фактором и что 6-мерная модель свободна от логических трудностей, созданных (3+1)-мерной концепцией фона.

Приложение

Определение величины 1 см CGS. Аналитическое значение постоянной Ридберга $[R_\infty]=(1/4\pi E^3)l^{-1}=3{,}092\ 2328\cdot 10^{-8}\ l^{-1}$, эксперипостоянной Ридберга $(R_{\infty}) = 109737,311 \pm$ ментальное значение \pm 0,012 см⁻¹; следовательно, 1 см CGS = (R $_{\infty}$) / [R $_{\infty}$] = 3,548 8041 · 10¹² l.

Определение величины 1 сек CGS. Аналитическое значение фундаментальной скорости [c] = l/t = 1; экспериментальное значение скорости света в вакууме (c) = $2,997930 \pm 0,0000080 \cdot 10^{10}$ см сек $^{-1}$; следовательно, 1 сек CGS = (c)/l[c] = 1,063 906 6 · 10²³ t.

Определение величины 1 г CGS. Аналитическое значение от- $[e/mc] = B^6 l^{-1} t = 5{,}770\ 146\ 0 \cdot 10^{20}\ l^{-1} t;$ экспериментальное значение отношения $(e/mc) = 1,758897 \pm 0,000032 \cdot 10^7 \text{ (см} \cdot \text{г}^{-1})^{1/2}$; следовательно, 1 г CGS $=\frac{(e/mc)^2}{16\pi}$ $\frac{\sqrt{(e/mc)^{2}}}{l[e/mc]^{2}} = 3,297\ 532\ 5 \cdot 10^{-15}\ l^{3}t^{-2}.$

Автор выражает благодарность Н. Н. Боголюбову, В. М. Понтекорво и С. С. Гирштейну за обсуждение работы, а также П. С. Кочеткову, помогавшему произвести отдельные вычисления и З. И. Ивановой-Зенкович, Т. Н. Елецкой и М. Я. Истоминой, выполнившим расчет экстремумов функции Φ_n .

> Поступило 23 IV 1965

^{*} $F = E/(E-1) = 1,003\,662\,0$. ** Масса протона равна $0,999\,695$ нуклонной массы.