
CSE1729 - Introduction to Programming September 4, 2019

Lab Assignment 1

Objectives

1. Understand arithmetic expression and operators

2. Write some simple functions in SCHEME

3. Be able to submit your work via the MIMIR site for CSE1729
(use the link to Mimir found on the Moodle site here: http://courses.engr.uconn.edu).

Starting Racket

We again encourage you to use DrRacket on your machine to get familiar with the environment and
see how it can help you debug your programs. While Mimir is great for grading and immediate feed-
back, it does not offer a lot of support for debugging.

DrRacket runs a REPL (read-eval-print) loop. That is, it continuously repeats a cycle of reading a
SCHEME expression, evaluating that expression and printing the result of evaluating that expression.
Right now it is just waiting for an expression to evaluate. Since Racket supports several dialects of
Scheme, we can indicate the particular dialect we want the interpreter to emulate. For most of the
semester, we will follow the R5RS standard which we can indicate opening the Language -> Choose
Language menu item and selecting the “Other Languages” radio button and clicking on R5RS in the
dialog box and clicking on the “OK” button. Go ahead and do that now. You should use this mode
unless otherwise indicated for the rest of the course.

Lab Assignment Activities

1. Currency Conversion

(a) The exchange rate between U.S. dollars and euros is 1$ = 0.91€. Write a SCHEME procedure,
named usd-to-euro, to convert dollars into euros. How many euros will you get when you
exchange $250?

(b) The exchange rate between euros and Japanese yen is 1€= 116.77 ¥. Write a SCHEME proce-
dure, named euro-to-yen, to convert euros into yen. How many yen will you get when you
exchange€250?

(c) Write a procedure, named usd-to-yen, using your solutions from parts (a) and (b) to convert
U.S. dollars to yen. How many yen would you receive in exchange for $250?

2. (a) Define a variable representing the mathematical constant e . You must name your constant e
and use the approximation 2.71828 as the value for your variable.
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(b) Define a function tanh which, given a positive number x , returns the hyperbolic tangent of
x defined as

tanh(x ) =
e 2x −1

e 2x +1
.

You may use the built in SCHEME function (expt b e) function to complete this problem.
(expt b e) computes b e .

3. Matrices

A matrix is a rectangular grid of numbers organized into rows and columns. Matrices are an im-
portant tool in algebra and are often used to solve systems of linear equations. Below are examples
of a couple of 2×2 matrices (matrices with 2 rows and 2 columns) that we will call M and N .

M =

�

2 −4
−6 12

�

N =

�

−3 1
2 7

�

(a) A special value associated with any 2×2 matrix is the determinant. Given a generic 2×2 matrix,
the determinant can be computed using the following formula:

det

�

a b
c d

�

= a d − b c

Using the formula, we can compute the determinant of matrix M above as (2)(12)− (−4)(−6) =
0. Write a Scheme procedure to compute the determinant of a generic 2× 2 matrix. Assume
that the matrix elements a . b , c and d are given as four formal parameters. Compute the
determinant of N .

(b) A matrix is called invertible if its determinant is non-zero. Write a procedure that checks
whether or not a generic 2× 2 matrix is invertible. Verify that N is invertible and M is not
invertible.

(c) A powerful property of matrices is that certain kinds of matrices may be meaningfully mul-
tiplied together to get another matrix. (It turns out that matrix multiplication is intimately
related to composition of linear functions, but you won’t need this interpretation to complete
the exercise.) In particular, it is possible to multiply 2×2 matrices. Assume we have two ma-
trices:

A =

�

a1 b1

c1 d1

�

B =

�

a2 b2

c2 d2

�

The product of these matrices is defined to be

A ·B =
�

a1a2+ b1c2 a1b2+ b1d2

c1a2+d1c2 c1b2+d1d2

�

.

Given two 2 × 2 matrices, we wish to determine whether or not their product A · B will be
invertible. There are two ways to do this

i. Compute the product, as described above; then compute its determinant. Define a func-
tion named (prod-inv-direct? a1 b1 c1 d1 a2 b2 c2 d2) which determines if
the product of two matrices is invertible by this method.
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ii. It is a remarkable fact that for two matrices A and B , det(A ·B ) = det(A)×det(B ). Thus, we
can compute the determinant of A · B indirectly (without computing the product of the
two matrices) from the determinants of A and B . Define a function named
(prod-inv-indirect? a1 b1 c1 d1 a2 b2 c2 d2) which determines if the prod-
uct of two matrices is invertible by this method.

Once you have finished:

1. Save your work (the definitions) to a file named lab1.rkt

2. Submit your lab solution file for grading via Mimir.

3. If you haven’t already, read the Honor Code Pledge on the CSE1729 Moodle site completely, sign
it and return it..

Please note: assignments will not be graded for credit until your Honor Code Agreement is filed-see
it under Course Content in Moodle.
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CSE1729 - Introduction to Programming September 10, 2019

Laboratory Assignment 2

Objectives

• Work with recursive functions

• Work with the conditional if and cond special forms.

Activities

1. Write a recursive function, named (zeno n), that computes the sum of the first n terms of the following
series from Zeno’s Dichotomy Paradox, Zn =

1
2 +

1
4 +

1
8 + · · ·+

1
2n . Use the SCHEME built-in function (expt b

e) function to compute the denominator of each term.

2. Number of Digits Write a SCHEME procedure, named (num-digits n), which accepts an integer n and
returns the number of digits in n. For example, both (num-digits 10000) and (num-digits 12345)
evaluate to 5.

3. Young Jeanie knows she has two parents, four grandparents, eight great grandparents, and so on.

(a) Write a recursive function, named (a n) to compute the number of Jeanie’s ancestors in the n t h previ-
ous generation. The number of ancestors in each generation back produces a sequence that may look
familiar:

2, 4, 8, 16, . . .

For each generation back, there are twice the number of ancestors than in the previous generation back.
That is, an = 2an−1. Of course, Jeanie knows she has two ancestors, her parents, one generation back.

(b) Write a recursive function to compute Jeanie’s total number of ancestors if we go back n generations.
Specifically, (num-ancestors n) should return:

2+4+8+ · · ·+an

Use your function in part (a) as a “helper” function in the definition of (num-ancestors n)1.

4. Combinations: Often, we are interested in the number of ways a group of k objects can be formed from
a total of n objects. For instance, if I needed to select three students from a lab section containing twenty
students. How many ways are there to make this selection? First, notice that for the first student selected, I
can choose any one out of the twenty in the section. Therefore, there are twenty ways to make this selection.
For the second student, I am selecting from the nineteen remaining students. Therefore, there are nineteen
ways to make this selection. Finally, I am making the selection of the last student from the remaining eigh-
teen. So, there are eighteen ways to make the final selection. But, the ordering of our selections don’t make
any difference. Consider the number of ways we can select a group of three students A, B and C. ABC, ACB,
BAC, BCA, CBA and CAB give us six ways the same group of three have been counted. So, the total number
of groups that can be counted is:

20 ·19 ·18

3 ·2 ·1
1Of course, we can use the closed-form solution for the geometric progression to compute num-ancestors (a n c e s t o r s (n ) = 2n+1 −2)

but that doesn’t give us any experience with recursive functions. However, this is a useful fact we can use when testing our functions to ensure
they are correct.
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In general, we use the following equation to compute the number of groups of size k that can be formed
from n objects:

n !

(n −k )!k !

You will notice that the (n −k )! term in the denominator cancels the last (n −k ) terms in the product of n ! in
the numerator, leaving just the product of the top k terms from n !. Also notice, the k ! term prevents us from
counting the duplicate ways of selecting the same k objects. This computation has it’s own terminology and
notation. The notation is

�n
k

�

and is read “n choose k ” indicating this quantity represents the number of ways
of choosing k objects from a group of n objects. So,

�

n

k

�

=
n !

(n −k )!k !

Use the factorial function discussed in lecture to write an (n-choose-k n k) function that takes two
parameters, n and k and computes the value of

�n
k

�

shown above.

Remark 1. Note that (n-choose-k n k) should evaluate to zero when n < k or k < 0.

5. Interestingly,
�n

k

�

is the binomial coefficient indexed by n and k in the polynomial expansion of (x + y )n .
That is, by the binomial theorem, the polynomial expansion of (x + y )n is the sum of a x b y c terms where
a is specified by

�n
b

�

or
�n

c

�

which are equal. These binomial coefficients also form the sequence of natural
numbers in Pascal’s Triangle which has interesting properties and contains many patterns.

The cells in Pascals Triangle, pictured below in Figures 1 and 2, are arranged by a row number, starting at the
top at row n = 0, and an entry number starting on the left of each row at entry k = 0. The entry in row n=0, is
defined as 1. Figure 1 shows the second entry in row 2 computed as

�1
0

�

+
�1

1

�

= 1+1= 2. In general, the entries
in Pascal’s Triangle are determined by the recurrence relation referred to as Pascal’s Law:

�

n

k

�

=

�

n −1

k

�

+

�

n −1

k −1

�

Define a SCHEME function, named (pascals-triangle n k), which computes the entry in Pascal’s Tri-
angle at row n and entry k recursively, without factorial, by using Pascal’s Rule defined above. Take great
care with your base case(s). That is, be sure the entries you are adding from the previous row exist. Figure 2
shows an example of the first five rows of Pascal’s Triangle.

Figure 1: Illustration of
�3

2

�

decomposed into the sum
�1

0

�

+
�1

1

�

arranged in Pascal’s Triangle.
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Figure 2: Five rows completed in Pascal’s Triangle.
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CSE1729 - Introduction to Programming September 15, 2019

Laboratory Assignment 3

Activities

1. (a) The Pell numbers are an infinite sequence of integers which correspond to the denominators of the clos-
est rational approximations of

p
2. The Pell numbers are defined by the following recurrence relation

(which looks very similar to the Fibonnacci sequence):

Pn =







0 if n = 0
1 if n = 1
2Pn−1+Pn−2 otherwise

Use this recurrence relation to write a recursive function, pell, which takes one parameter, n , and
returns the n t h Pell number.

(b) Write a separate function, named (find-pell n), which uses your Pell function to find the largest
Pell number which is less than n . You can try testing it by finding the largest Pell number less than 100.

(c) The numerator for the rational approximation of
p

2 corresponding to a particular Pell number is half
of the corresponding number in the sequence referred to as the companion Pell numbers (or Pell-Lucas
numbers). The companion Pell numbers are defined by the recurrence relation:

Qn =







2 if n = 0
2 if n = 1
2Qn−1+Qn−2 otherwise

Use this recurrence relation to write a function, named (comp-pell n), which returns the n t h com-
panion Pell number.

(d) Finally write a function that uses the Pell number and companion Pell number functions, as described
in Part a, to write a SCHEME function, named(sqrt-2-approx n), to compute the n t h approximation
for
p

2. You can test your new function to compute the approximation for
p

2 using the sixth Pell and
companion Pell numbers.

2. Viète’s formula is the following infinite product of nested radicals representing the mathematical constant
π:

2

π
=

p
2

2
·

p

2+
p

2

2
·

q

2+
p

2+
p

2

2
· · ·

Write a SCHEME function named (viete n) which approximates 2
π using Viète’s formula.

Note: You may want to use a helper function that takes an additonal parameter so that you can compute the
numerator of each term easily (in a let form perhaps) as well as pass it to the recursive call.

3. It is an interesting fact the the square-root of any number may be expressed as a continued fraction. For
example,

p
x = 1+

x −1

2+
x −1

2+
x −1

...

Write a Scheme function called new-sqrt which takes two formal parameters x and n , where x is the num-
ber we wish to find the square root of and n is the number of continued fractions to compute recursively.
Demonstrate that for large n , new-sqrt is very close to the builtin sqrt function.
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4. Nested Recursion:The McCarthy 91 function is a recursive function, defined by the computer scientist John
McCarthy as a test case for formal verification within computer science.

The McCarthy 91 function is defined as

m91(n ) =

¨

n −10, if n > 100

m91(m91(n +11)), if n ≤ 100

Define a SCHEME procedure, named (m91 n), which evaluates to McCarthy’s 91 function. Try a few values
for n which are less than 100 and a few greater than 100.
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CSE1729 - Introduction to Programming September 24, 2019

Laboratory Assignment 4

Activities

1. Using the special form let, we can declare some substitutions for use within an expression. To
illustrate this, we use an equation relating atmospheric pressure p to altitude h and other parameters:

p = p0 · (1−
L · h
T0
)(

g ·M
R·L )

This function has several constant parameters as detailed in the table below. For a more detailed intro-
duction, see http://en.wikipedia.org/wiki/Atmospheric\_pressure\#Altitude\_atmospheric\
_pressure\_variation.

Parameter Description Value
p0 sea level standard atmospheric pressure 101325 Pa
L temperature lapse rate 0.0065 K/m
T0 sea level standard temperature 288.15 K
g Earth-surface gravitational acceleration 9.80665 m/s2

M molar mass of dry air 0.0289644 k g/mol
R universal gas constant 8.31447 J/(mol ·K)

For our own convenience, you can define these constants within the function for this equation, es-
tablishing local bindings the interpreter can use during evaluation of the function. In order to make
the expression in the function body easier to read, we can also add bindings for the base and exponent
portions of the body expression. To do this, we must use nested let statements here since none of
the variables are bound to values until the entire list has been evaluated. Define a SCHEME function,
named (pressure h), using the let form to simplify the function body.

2. The Tower of Hanoi is a classic problem often given to students learning about recursion. The puzzle
was invented by mathematician Édouard Lucas (of Lucas Numbers fame) in 1883.
The problem consists of three pegs onto which are placed disks of different sizes. At the start, all disks
are stacked onto one peg, with each placed onto a larger disk (see Figure 1). Let’s call that the source
peg. The object of the game is to move the entire stack of disks from the source peg to the destination
peg. You may use the remaining peg, the temporary peg, to hold disks while you are in the process of
moving disks to the destination peg. However, you may only move one disk at a time and you may
not place a disk on top of a smaller disk.

At first, it may not be obvious how to develop a recursive decomposition for this problem. The key
observation is, if you could recursively move the stack of all but the largest disk to the temporary peg
(see Figure 2), you could then move the largest disk to the destination peg (see Figure 3. Once the
largest disk is on the destination peg, you can then, again recursively, move the stack of the remaining
disks on top of the largest disk at the destination peg (see Figure 4).
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Figure 1: Starting configuration for Tower of Hanoi.

Figure 2: Step 1: Move the stack of all except the largest disk to the temporary peg.

For this problem, define a SCHEME procedure, named (tower n source temp dest), which gives
step-by-step instructions on how to move a stack of n disks from the source peg to the dest peg, using
the temp peg to temporarily hold smaller disks while larger disks are moved into place.
In order to print instructions to the interactions window of the Racket IDE, you will need to use
the SCHEME display function. You should use the following commands to print the instructions to
move the top disk from one peg to another:

(display "Move the disk from peg ")
(display source)
(display " to peg " )
(display dest)
(newline ))

You must copy these expressions precisely to pass the Mimir test cases. Also, use a cond form for your
conditional expression instead of an if form.

See below for sample output from an evaluation of the tower function using four disks and moving
the stack from peg 1 to peg 3:
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Figure 3: Step 2: Move the largest disk to the destination peg.

Figure 4: Step 3: Move the stack of all except the largest disk to the destination peg.

> (towers-of-hanoi 4 1 2 3)
Move the disk from peg 1 to peg 2
Move the disk from peg 1 to peg 3
Move the disk from peg 2 to peg 3
Move the disk from peg 1 to peg 2
Move the disk from peg 3 to peg 1
Move the disk from peg 3 to peg 2
Move the disk from peg 1 to peg 2
Move the disk from peg 1 to peg 3
Move the disk from peg 2 to peg 3
Move the disk from peg 2 to peg 1
Move the disk from peg 3 to peg 1
Move the disk from peg 2 to peg 3
Move the disk from peg 1 to peg 2
Move the disk from peg 1 to peg 3
Move the disk from peg 2 to peg 3
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3. SICP Exercise 1.42 Let f and g be two one-argument functions. The composition f after g is de-
fined to be the function x 7→ f (g (x)). Define a procedure, named (compose f g), that implements
composition. For example, if inc is a procedure that adds 1 to its argument,

(( compose square inc) 6)
49

Note: Your procedure should return a function that performs the composition of f and g .

4. SICP Exercise 1.43 If f is a numerical function and n is a positive integer, then we can form the n t h

repeated application of f , which is defined to be the function whose value at x is f ( f (...( f (x))...)).
For example, if f is the function x 7→ x + 1, then the n t h repeated application of f is the function
x 7→ x + n. If f is the operation of squaring a number, then the n t h repeated application of f is the
function that raises its argument to the 2n th power. Write a procedure named (repeated f n), that
takes as inputs a procedure that computes f and a positive integer n and returns the procedure that
computes the n t h repeated application of f . Your procedure should be able to be used as follows:

((repeated square 2) 5)
625

You may want to take advantage of the compose function you wrote.

5. Recall the McCarthy 91 function from Lab 3. Consider the following form for the 91 function:

f (x) =
¨

x − 10, if x > 100
f 91(x + 901), if x ≤ 100

where f 91(y) stands for f ( f (· · · f (y) · · · )) , the 91-times-repeated application of f . That is, f composed
with itself 90 times. Write a SCHEME function, named (m91 x) which computes the 91 function as
defined above. That is, use the repeated function you wrote earlier to compute the m91 function.
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CSE1729 - Introduction to Programming October 14, 2019

Laboratory Assignment 5

Objectives

Work with pairs and lists

Activities

1. There are two main systems of defining points on a two-dimensional plane. One consists of a distance from
the origin and an angle from the positive x-axis, referred to as polar coordinates. The other, more familiar
system, consists of two components corresponding to the distance along the x-axis and the distance along
the y-axis from the origin, referred to as Cartesian coordinates.

x

y
r

θ

(a) Converting to polar coordinates: Define a SCHEME function named (c->p p)which accepts a point in
the Cartesian coordinate system as a pair and returns another pair representing the same point in the
polar coordinate system. That is, if the function receives the pair (x . y) as a parameter, it should
evaluate to the pair (r . θ), where r =

p

x 2+ y 2 and θ = t a n−1( y
x ). Your function should take a

SCHEME pair as a parameter and return a SCHEME pair. Note: the arctan function in SCHEME is named
atan.

(b) Converting to Cartesian coordinates: Define a SCHEME function named (p->c p) which accepts a
point in the polar coordinate system as a pair and returns another pair representing the same point
in the Cartesian coordinate system. That is, if the function receives the pair ( r . θ) as a param-
eter, it should evaluate to the pair (x . y), where x = r · c o s (θ ) and y = r · s i n (θ ). Your function
should take a SCHEME pair as a parameter and return a SCHEME pair.

2. You may recall that, given two points, (x1, y1) and (x2, y2), one can find the slope, m , of a straight line through
these two points with the equation:

m =
y2− y1

x2− x1

Furthermore, the function that defines a straight line in “slope intercept form” has the form y = m x + b
where b is the y-intercept. Given the slope, m , of a line and a point, (x1, y1), on the line, one can find the
y-intercept by the equation b = y1−m x1.
Define a SCHEME function, named (y p1 p2), that takes two points, p1 and p2 (each point stored in a
SCHEME pair), as parameters and evaluates to a function of one parameter that, given x , will return the
corresponding y for a point on the straight line between p1 and p2.
Hint: If you want to define variables for m and b , using the variable m in the expression that defines b , you
can avoid using nested let forms by using let* instead.

3. Hamming Weight The Hamming weight, named after the computer scientist Richard W. Hamming, of a
string is the number of symbols that are different from the zero-symbol of the alphabet used. Define a
SCHEME function, named (hamming-weight lst), which takes a list of integers and returns the number
of non-zero integers in the list.
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4. Hamming Distance In information theory, the Hamming distance function, also named after the computer
scientist Richard W. Hamming, gives a measure of the “difference” between two strings that have the same
length. In other words, it measures the minimum number of substitutions required to change one string into
the other, or the minimum number of errors that could have transformed one string into the other. Define a
SCHEME function, named (hamming-distance l1 l2), which takes two lists of integers of equal length
as parameters, and returns the number of positions in which the value inl1 and the value inl2 are different.

5. Scalar-Vector Multiplication Multiplying a vector by a scalar produces a vector where each component is
the corresponding value in the original vector multiplied by the scalar quantity. For example:

a (x1 x2 x3) = (a x1 a x2 a x3)

Define a SCHEME function, named sv-mult, which takes a list and a value as parameters and performs
scalar-vector multiplication on them.

6. Vector Addition Adding two vectors produces a vector where each component is the sum of the correspond-
ing values in the original vectors. For example:

(x1 x2 x3) + (y1 y2 y3) = (x1+ y1 x2+ y2 x3+ y3)

Define a SCHEME function, namedv-add, which takes two lists and performs vector addition on them. Note:
vector subtraction is structured in the same way.

7. The dot product of two lists of numbers (x 1 x 2 x 3) and (y 1 y 2 y 3) is

x 1 ∗ y 1+ x 2 ∗ y 2+ x 3 ∗ y 3

Define a recursive SCHEME function (dot x y) that takes two lists of numbers as its inputs and returns the
dot product of those two lists. Do not use the in-built map function. You can assume the two lists have the
same length.
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CSE1729 - Introduction to Programming October 21, 2019

Laboratory Assignment 6

Objectives

More work with lists

Activities

1. The median value of a set of n numbers is the value that separates the half of higher values from
the half of lower values in the set. The median can be found by arranging the values in the set in
(sorted) order and choosing the “middle” value. If there are an even number of values in the set,
the median is described as the mean of the two middle values.

(a) Define a SCHEME function named(list-at l i)which, given a listl and an indexi returns
the element in the list at index i. You should consider the first element of the original list to
be at index 0.

(b) Write a SCHEME function, named list-median, that takes a list of numbers as a parameter
and returns the median value in the list. You can simply copy your favorite implementation
of your favorite sorting algorithm to get the elements of the supplied list in sorted order.

2. (a) Define a SCHEMEprocedure, named (fold-right op initial sequence) which accu-
mulates the values in the listsequenceusing the function/operatoropand initial valueinitial.
fold-right should start with the initial value and accumulate the result from the last item in
the list to the first. The procedure is named “fold-right” because it combines the first element
of the sequence with the result of combining all the elements to the right. For example:

(fold-right + 0 (list 1 2 3 4 5))
15
(fold-right * 1 (list 1 2 3 4 5))
120
(fold-right cons ’() (list 1 2 3 4 5))
(1 2 3 4 5)

(b) Define a SCHEMEfunction, named (fold-left op initial sequence), which is another
accumulate procedure except that fold-left applies the operator to the first element of the
list first and then the next until it reaches the end of the list. That is, fold-left combines
elements of sequence working in the opposite direction from fold-right.

(fold-left + 0 (list 1 2 3 4 5))
15
(fold-left * 1 (list 1 2 3 4 5))
120
(fold-left cons ’() (list 1 2 3 4 5))
(5 4 3 2 1)

(c) Complete the following definition of my-map below which implements the map function on
lists using only the fold-right function.
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(define (my-map p sequence)
(fold-right (lambda (x y) <??>) ’() sequence ))

(d) Complete the following definition of my-append below which implements the append func-
tion on lists using only the fold-right function.

(define (my-append seq1 seq2) (fold-right cons <??> <??>))

(e) Complete the following definition of my-length below which implements thelength function
on lists using only the fold-right function.

(define (my-length sequence) (fold-right <??> 0 sequence ))

(f) Complete the following definition ofreverse-rbelow which implements thereverse func-
tion on lists using only the fold-right function.

(define (reverse-r sequence)
(fold-right (lambda (x y) <??>) ’() sequence ))

(g) Complete the following definition ofreverse-lbelow which implements thereverse func-
tion on lists using only the fold-left function.

(define (reverse-l sequence)
(fold-left (lambda (x y) <??>) ’() sequence ))

(h) [SICP EXERCISE 2.34] Evaluating a polynomial in x at a given value of x can be formulated as
an accumulation. We evaluate the polynomial

an x n +an−1 x n−1+ · · ·+a1 x +a0

using a well-known algorithm called Horner’s rule, which structures the computation as

(· · · (an x +an−1)x + · · ·+a1)x +a0

In other words, we start with an , multiply by x , add an−1 , multiply by x , and so on, until we
reach a0 . Use thefold-right function to define a SCHEMEprocedure, named(horner-eval
x coefficient-list) which evaluates a polynomial using Horner’s rule. Assume that the
coefficients of the polynomial are arranged in a list, from a0 through an .
For example, to compute 1+3x +5x 3+ x 5 at x = 2 you would evaluate

(horner-eval 2 (list 1 3 0 5 0 1))

2



CSE1729 - Introduction to Programming October 28, 2019

Laboratory Assignment 7

Objectives

• Work with trees

• Use Binary Search Trees

Activities

Trees

1. Write a SCHEME function named tree-depth which takes a tree node, n , as a parameter and returns the
depth of the tree rooted at n . For the purpose of this exercise, the depth of a tree rooted at n is one plus the
maximum of the depths of its two children. Recall the following code from the lecture slides:

(define (make-tree value left right)
(list value left right))

(define (value T) (car T))
(define (right T) (caddr T))
(define (left T) (cadr T))

(define (insert x T)
(cond ((null? T) (make-tree x ’() ’()))

((eq? x (value T)) T)
((< x (value T)) (make-tree (value T)

(insert x (left T))
(right T)))

((> x (value T)) (make-tree (value T)
(left T)
(insert x (right T))))))

2. Define a SCHEME function named (count-pred P tree) which given a binary tree and predicate func-
tion, P, applies the predicate to each of the values in the tree and returns the number of values for which the
predicate returns \#t (true).

3. Define a SCHEME function named count-one-child which returns the number of internal nodes of a bi-
nary tree which have exactly one child.

Binary Search Trees

4. Define a SCHEME function named (invert-bst T) which, given a Binary Search Tree (BST) inverts that
BST. That is, the function returns a binary tree in which has the property that all values at nodes in the left
subtree are greater than the value at the root node and all values at nodes in the right subtree are less than
the value at the root node.

5. Write a SCHEME function, named (num-gteq-z z T) which, given a binary search tree T and an integer
z , returns the number of integers in the tree that are greater than or equal to z . For example, given the tree
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below and the number 5, your function should return 4, since there are 4 numbers in the tree that are greater
than or equal to 5 (specifically, 5, 8, 11, and 21).

Your solution should exploit the fact that the tree is a binary search tree to avoid considering certain subtrees.

8

11

21

4

1 5

Figure 1: A binary search tree with 6 nodes, 4 of which are 5 or larger.

6. Organization Trees Businesses build organizational charts showing the management structure of the busi-
ness. With some modifications to expand on our binary trees, we can store the same information in a tree
structure and perform some computation on that data structure. There will be two modifications necessary.
The data stored in each node will consist of two pieces of information, a name and the salary for the person
represented by the node. These two pieces of information will be stored together in a pair. The second mod-
ification is necessary for managers to be able to manage more than two subordinates. Subordinates will be
stored in a list of organization trees which are all subtrees of the node. See Figure 2 for an example in which
the top manager has two “direct reports.” One direct report of Bob is Mary, who has only one direct report.
The other is Steve who has three direct reports. See the convenience functions defined below as well as the
SCHEME code for an example organization tree (org-tree).

bob,1000000

mary,500000

frank;250000

steve,650000

sally;275000 nelly;350000 telly;375000

Figure 2: An organizational chart stored in a tree.

(define (make-org-tree name salary direct-reports)
(list (cons name salary) direct-reports ))

(define (get-name org-tree) (caar org-tree ))
(define (get-salary org-tree) (cdar org-tree ))
(define (get-direct-reports org-tree) (cadr org-tree ))
(define org

(make-org-chart
"bob"
1000000
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(list (make-org-chart "mary"
500000
(list (make-org-chart "frank" 250000 (list ))))

(make-org-chart "steve"
650000
(list (make-org-chart "sally" 275000 (list))

(make-org-chart "nelly" 350000 (list))
(make-org-chart "telly" 375000 (list )))))))

(a) Define a SCHEME procedure, named (num-direct-reports org-tree), which, given an organiza-
tional chart stored in a tree, returns the number of direct reports for the employee at the root of the
tree.

(b) Define a SCHEME procedure, named (dept-size org-tree), which, given an organizational chart
stored in a tree, returns the number of employees in the department defined by the root of the given
tree. Include the manager at the root of the tree plus the number of employees working under that
manager (sum of all the direct-reports, their direct reports and so on).

(c) Define a SCHEME procedure, named(dept-budget org-tree), which, given an organizational chart
stored in a tree, returns sum of all the salaries in the entire department defined by the root of the given
tree. Include the salary of the manager at the root of the tree as well as employees working under the
manager (sum of all the salaries of the direct-reports, their direct reports and so on).
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CSE1729 - Introduction to Programming November 4, 2019

Laboratory Assignment 8

Objectives

• Work with heaps

Activities

1. For this question, we will use the heap-supporting functions as seen in the lecture slides as building blocks
for this assignment to build a new heap implementation. The heap implementation shown in the lecture
slides is an example of a min-heap, in which the smallest element is at the root and all elements in child trees
are larger than the value at the root. We can also construct max-heap data structures in which the largest
element in the heap is at the root and all elements in child trees are smaller than the root.

The objective is to define SCHEME functions to manipulate a heap which:

1. maintain a binary tree as a heap,

2. use a generic (first order) order relation,

3. provides functions which can determine if a heap is empty? as well as heap-insert, heap-remove,
and combine-heaps

(a) Define a SCHEME procedure, named (heap-insert f x H), which adds element x to heap H using
the first-order relation f to determine which element belongs at the root of each (sub)tree.
For instance, if we wanted the same behavior as the heaps in the lecture slides (min-heap), we would
use the “less than” function as our first-order relation:

(heap-insert < 100 (heap-insert < 10 (list )))
(10 () (100 () ()))

If, instead, we wanted a max-heap implementation, where the largest element is at the root of the heap,
we would use the “greater than” function as our first-order relation.

(heap-insert > 100 (heap-insert > 10 (list )))
(100 () (10 () ()))

Note, you must use the same first-order relation for all of the heap procedures applied to a particular
heap structure.

(b) Define a SCHEME procedure, named (combine f Ha Hb), which accepts three arguments, f, a first-
order relation which is used to order the elements in the heap, and two heap structures, Ha and Hb,
which have been constructed using the same first-order relation. For example, for two min-heaps

(define Ha (heap-insert-list > (list 9 5 7 3) (list )))
(define Hb (heap-insert-list > (list 2 8 4 6) (list )))
(combine > Ha Hb)
(9 (7 () (5 () (3 () ()))) (8 (4 () ()) (6 () (2 () ()))))

(c) Define a SCHEME function, named (empty? H) which takes one argument, a heap, and returns a
boolean value, true if H is the empty heap and false otherwise.
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(d) Define a SCHEME function, named (heap-remove f H)which takes two arguments, a heap and a first-
order relation, a heap containing the elements of H with the root value removed. Note, heap-remove
must take the first-order relation as a parameter to pass to other functions.

(heap-remove > (combine > Ha Hb))
(8 (6 (2 () ()) (4 () ())) (7 () (5 () (3 () ()))))
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CSE 1729 - Introduction to Principles of Programming November 19,2019

Laboratory Assignment 9

Objectives

• Work with mutations

• Work with objects

Activities

1. Early in the course, we saw how to compute the factorial function using nondestructive functional
programming. We’ve seen that a good way to do this is to define helper function which passes itself
an accumulator at each recursive call. Using destructive assignment, we can use a helper function
with no arguments that can update an accumulator in place rather than passing it as an argument
to itself. This helper function doesn’t even need to evaluate to anything useful, as the result ends
up in the in-place accumulator.

What does this look like? Here is an example that takes this approach to sum the first n integers:

(define (sum-first-n n)
(let ((sum 0)

(count 0))
(define (helper)

(cond ((= count n) 'done)
(else
(set! count (+ count 1))
(set! sum (+ sum count))
(helper))))

(helper)
sum))

Notably, when helper is finished, the result is in the variable sum.

Write a new version of the factorial procedure (fact n) that works this way (that is, using a
helper with no parameters that modifies an accumulated value). Make sure it works as intended
by testing it on the numbers 1 through 5.

2. Extend the bank account example in the slides with the following upgrade and new methods:

• withdraw – modify this method so it prints a message showing what the balance is and how
much less than the request it is (i.e. “Withdrawal not allowed since balance is x” where x is
the current balance of the account). if the request is larger than the balance.

• accrue – add 1 year of simple interest to the balance. At first assume an interest rate of 1%

• setrate – change the interest rate to the given argument, where 1% is represented as 0.01,
not 1.
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You may start with the following code which is (essentially) copied from the lecture slides:

(define (new-account initial-balance)
(let ((balance initial-balance))

(define (deposit f)
(set! balance (+ balance f))
balance)

(define (withdraw f)
(cond ((> f balance) "Insufficient funds")

(else
(set! balance (- balance f))
balance)))

(define (bal-inq) balance)
(lambda (method)

(cond ((eq? method 'deposit) deposit)
((eq? method 'withdraw) withdraw)
((eq? method 'balance-inquire) bal-inq)))))

3. Create two bank account objects and demonstrate that the balance and rate can be set and modified
independently.

4. (Pseudorandom Number Generator, PRNG) Randomly chosen numbers are often needed for com-
puter simulations. Different methods have been devised for generating numbers that have prop-
erties of randomly chosen numbers. Because numbers generated by systematic methods are not
truly random, they are called pseudorandom numbers. The most commonly used procedure for
generating pseudorandom numbers is the linear congruential method. We choose four integers:
the modulus m, multiplier a, increment c,and seed x0, with 2 ≤ a < m, 0 ≤ c < m, and 0 ≤ x0 < m.
We generate a sequence of pseudorandom numbers {xn}, with 0≤ xn < m for all n, by successively
using the recursively defined function

xn+1 = (axn + c) mod m

Most computers do use linear congruential generators to generate pseudorandom numbers. Often,
a linear congruential generator with increment c = 0 is used. Such a generator is called a pure
multiplicative generator. For example, the pure multiplicative generator with modulus 231 − 1 and
multiplier 75 = 16,807 is widely used. With these values, it can be shown that 231−2 numbers are
generated before repetition begins.
Pseudorandom numbers generated by linear congruential generators have long been used for many
tasks. Unfortunately, it has been shown that sequences of pseudorandom numbers generated in this
way do not share some important statistical properties that true random numbers have. Because
of this, it is not advisable to use them for some tasks, such as large simulations. For such sensitive
tasks, other methods are used to produce sequences of pseudorandom numbers, either using some
sort of algorithm or sampling numbers arising from a random physical phenomenon.
Define a SCHEME object representing a pure multiplicative pseudorandom number generator, using
the modulus and multiplier above, that provides the following operations:

next calculates and returns the next pseudorandom number
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get retrieves the current pseudorandom number in the sequence

Your object creation function, prng should accept a value for the initial seed as well as the mini-
mum and maximum values desired for pseudorandom numbers. You can restrict the large numbers
provided by the linear congruential generator by applying the modulo function to it with the size of
the range of numbers required (i.e. xnmodulo(max −min) and shifting it up to the desired range
by adding min . Your object should look something like,

(define (prng seed min max)
(let (...) ;;internal prng variables

... ;;prng methods
(lambda (method) ;the dispatcher

(cond ((eq? method 'next) next)
((eq? method 'get) get)))))
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CSE1729 - Introduction to Programming December 2, 2019

Laboratory Assignment 10

Objectives
• Work with streams.

Activities
There are simple ways to check a number for primality if a candidate number is quite small. For instance, you can
just see if any numbers between 1 and that candidate divide the candidate evenly. You can use a slightly smarter
algorithm that only checks to see if the candidate is divisible by prime numbers less than the candidate, and even
smarter, primes less than the square root of the candidate.

The largest known prime number is 282,589,933− 1, a number with 24,862,048 digits. It was found by the Great
Internet Mersenne Prime Search (GIMPS) in 2018 (see https://www.mersenne.org/). The majority of the largest
known primes are Mersenne Primes, that is, primes of the form 2p−1 where p is an odd prime. The reason most of
the largest prime numbers are of this form is because there is an easy (faster) way to verify primality for Mersenne
Primes. Note, however, that even with this method, it can take approximately one month to conduct the necessary
computations to verify a number is a Mersenne prime. Édouard Lucas was able to verify

2127− 1= 170,141,183,460,469,231,731,687,303,715,884,105,727

is prime by performing the following calculations by hand in 1876. It would take until 1951 for Aimé Ferrier to find
the next largest prime using a mechanical calculator.

1. Lucas Pseudoprimes

(a) One test for primality uses the Lucas sequence, which is similar to the Fibonacci sequence, except it starts
with the values 1 and 3. So, it is defined as follows:

Ln =







1 if n = 0
3 if n = 1
Ln−1+ Ln−2 otherwise

Define a SCHEME function, named (lucas-stream), which evaluates to a stream object which produces
the stream of Lucas numbers.

(b) To show how to check primality with the Lucas sequence, let’s look at an example. Consider the first few
numbers in the Lucas sequence:

1,3,4,7,11,18,29,47,76,123, . . .

If we are interested to see if a particular number, say 7, is prime, we take the 7t h number in the Lucas
sequence and subtract 1. The 7t h Lucas number is 29. Subtract 1 and we have 28. Now, if this result is
evenly divisible by 7, 7 is probably prime. In our example, 28 is divisible by 7, so it is probably prime. We
call these numbers Lucas pseudoprimes.
If we were interested in another number, say 8, we would take the 8t h Lucas number and subtract 1. In this
case, we get 46, which is not evenly divisible by 8. So, 8 is definitely not prime. This method is useful for
filtering out composite numbers.
So, the general procedure to determine if an integer p could possibly be prime is as follows:

1. Find the p t h Lucas number
2. Subtract 1

1
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3. Check to see if p divides the result evenly
Define a SCHEME function, named (lucas-pseudoprime p) which uses this approach to determine if an
integer p is a Lucas pseudoprime.

2. This Lucas pseudoprime solution isn’t completely satisfying. We’d like a more definitive solution to test very
large numbers for primality. Consider the following solution for verifying Mersenne primes.

(a) To check to see if a number is a Mersenne prime, we first need to compute values in the Lucas-Lehmer
sequence which is defined as follows:

LLi =
¨

4 if i = 0
LL2

i−1− 2 otherwise

Define a SCHEME function, named (ll-stream), that returns a stream object which produces the stream
of Lucas-Lehmer numbers. If you use your stream to find the first six numbers or so, you will see that these
numbers grow very quickly.

4,14,194,37634,1416317954,2005956546822746114,4023861667741036022825635656102100994, . . .

(b) To use this sequence to determine if a number of the form 2p − 1 is prime, take the exponent, p, and find
the (p − 1)s t number in the Lucas-Lehmer sequence. If 2p − 1 divides this number in the sequence evenly,
then 2p − 1 is definitely prime. If the candidate number does not divide this number in the sequence, it is
definitely not prime. For example, if we wanted to verify 23−1= 7 is prime, we would find the 3−1= 2nd

number in the Lucas-Lehmer sequence (14), and check to see if 7 divides 14 evenly. 7 does divide 14 evenly.
So, 7 is definitely prime.
As presented, this procedure would require us to work with ridiculously large integers to verify the pri-
mality of large Mersenne primes. However, there is hope. Note that, to determine primality, we will need
to determine if our candidate number (2p − 1) divides the corresponding number in this sequence evenly.
So, all we really need to know are the remainders of dividing each of the numbers in the Lucas-Lehmer
sequence by the candidate number.
Define a SCHEME function, named (ll-test-stream c) which produces a sequence of integers the cor-
responding number in the Lucas-Lehmer sequence modulo the candidate number c . Your function should
not use the (ll-stream) function, but should compute the square of the previous term, subtract two, and
produce that result modulo p. You should be able to copy your solution to the Lucas-Lehmer sequence
stream and add the modulo operation.

LL(i , c) =
¨

4 if i = 0
[LL(i − 1, c)2− 2] modulo c otherwise

As an example, if we wanted to test the integer 213− 1 = 8191 for primality using this method, we would
produce the sequence

4,14,194,4870,3953,5970,1857,36,1294,3470,128,0, . . .

We can see that the 13− 1 = 12t h number in this sequence shows a remainder of 0. So, 213 − 1 = 8191 is
prime.

3. Define a SCHEME function, named (mprime? p) which takes the power, p, of an integer of the form 2p − 1
and uses the (ll-test-stream c) function to test for primality using the method outlined above. Specifically,
if the (p − 1)s t integer in the corresponding ll-test-stream sequence is 0, the number 2p − 1 is prime. Note,
that c = 2p − 1 when using your (ll-test-stream c) function. Also, note that the test stream starts with
index i = 0.
Note, Lucas was able to determine 2127−1 was prime. He was also able to determine that 267−1 was not prime,
without finding a single factor!
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