Teacher: Mr. Brandon Debert & Catlyn Todorovich

Subject: Math

Grade: 7/8

Lesson Length: 45 Minutes

Outcome:

SP8.2 - Demonstrate understanding of the probability of independent events concretely, pictorially, orally, and symbolically. [C, CN, PS, T]

Indicator:

• Explore and explain the relationship between the probabilities of two independent events.

Purpose:

<u> Materials/ Equipment:</u>

- Tasks for Dices rolls
- Dice
- Whiteboard Markers

Preconceptions:

Lesson:

Break the students into groups, hand out two dice to each group and explain the following:

- 1. *Contextual Features:* Make sure students understand the rules of the game by introducing the tasks for each number rolled, Write these instructions on the board for visual cues (*Reinforce continually rolling the dice so that the students can get a number of chances to perform tasks from this it will allow students to see patterns and recognize theoretical probability):*
- a. 2- Jump
- b. **3-** Spin in circle
- c. 4- Touch your toes
- d. 5- Wave to your partners
- e. 6- Clap
- f. 7- Jumping Jack
- g. 8- Fist Pump

- h. 9- Beat your chest like a gorilla
- i. 10- YMCA
- j. 11- Gallop
- k. 12- Elephant noise
 - 2. *Mathematical Ideas:* Students are looking for patterns, relationships for this they should keep in mind what numbers are being commonly rolled. They should keep track of the outcomes of rolling a specific number.
 - 3. *Common Language:* As a group the students should start seeing common patterns. (*This would be a good time to introduce the term of probability*)

As the students play the game, we will walk around the classroom and monitor the conversations and actions that are being done as a result of rolling the dice. Once they have explored the task for some time we will bring the classroom back for some discussion:

- What do you notice happening the most?
- I noticed you were doing (Task), why is that?
- Is rolling a 6 & 2 = 8 same as rolling a 2 & 6 = 8? (Works with any number)
- How are you organizing what you know for sure?
- Keep track of the different approaches, correct/incorrect forms.

If students do not notice the patterns/relationships of the two independent events then they will go back to playing the game. This time they will be conscious of what they are seeing/doing while rolling the dice.

After they play the game a second time we will make a chart of the probability of rolling a certain number and discuss their understanding of the events:

- Describe the patterns you found for me. Can we write them out in some sort of chart? Better way of understanding?
- How many different ways can we roll a dice?
- How come there are less ways to roll a two but more to roll a 7?
- What patterns do you notice? How many times did you do a task?
- Can you get a six anyway other than rolling a '1&4'/ '4&1'/'2'&3'/'3&2'?
- What do you think that chart would look like? Why do you think that?
- What will happen if we introduce three dice? Or different color dice?

9 10 11 12 1 2 5 3 6 8 Theoretical probability 0 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 for the sum of two sixsided dice.

Theoretical Probability for Sum of Two Dice Tossed

Taken from: http://staff.argyll.epsb.ca/jreed/math8/strand4/4203.htm

Roll						
2	1/1					
3	1/2	2/1				
4	2/2	1/3	3/1	2/2		
5	2/3	1/4	3/2	4/1		
6	2/4	1/5	3/3	4/2	5/1	3/3
7	2/5	3/4	1/6	6/1	4/3	5/2
8	2/6	4/4	3/5	6/2	4/4	5/3
9	5/4	3/6	6/3	4/5		
10	5/5	6/4	4/6	5/5		
11	6/5	5/6				
12	6/6					

- This chart would help a student notice the patterns and further define probability
- From the same chart it would also show a student the different ways of rolling a certain number. (*Ex. 2/3 or 3/2 both equal "5"*)
- Students may use other means of getting to the number six, other than by adding the two dice together. (*Ex. They may roll a "6", and a "1" from this they may see that they have rolled a six without adding the other dice*)

What difficulties might students encounter?

- Students may have errors in adding.
- Students may not recognize the patterns easily.
- Take too much time focusing on smaller numbers that have less probability
- Students may not have background knowledge of probability. May need to scaffold them to this understanding.

Final Task/ Assessment:

Exit Slip: What do you think you know about probability?