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Introduction

Keith Frankish and William M. Ramsey

Overview

Very generally, artificial intelligence (AI) is a cross-disciplinary approach to

understanding, modeling, and replicating intelligence and cognitive processes

by invoking various computational, mathematical, logical, mechanical, and

even biological principles and devices. On the one hand, it is often abstract

and theoretical as investigators try to develop theories that will enrich our

understanding of natural cognition or help define the limits of computabil-

ity or proof theory. On the other hand, it is often purely pragmatic as other

investigators focus on the engineering of smart machines and applications.

Historically, its practitioners have come from such disciplines as logic, mathe-

matics, engineering, philosophy, psychology, linguistics, and, of course, com-

puter science. It forms a critical branch of cognitive science since it is often

devoted to developing models that explain various dimensions of human and

animal cognition. Indeed, since its inception in the mid twentieth century, AI

has been one of the most fruitful new areas of research into the nature of

human mentality. Today, it is impossible to be a serious cognitive scientist

or philosopher of mind without at least some familiarity with major devel-

opments in AI. At the same time, anyone who uses modern technology is

probably enjoying features that, in one way or another, had their origin in AI

research, and AI technology will undoubtedly play an increasingly large role

in our lives in coming decades.

This volume of original essays aims to describe the state of the art in the field

of AI and to highlight important theoretical and philosophical applications of

current research. The book’s focus is on theory rather than technical and

applied issues, and the chapters should be useful not only to AI researchers

and other cognitive scientists, but also to philosophers and people in the

humanities. Each chapter is a specially commissioned survey article from a

leading writer in the area – either a philosopher of AI or an AI researcher with

strong theoretical interests. There is coverage of the foundations of the disci-

pline, cognitive architectures, the various facets of AI research, and extensions

of AI research, such as robotics and artificial life (see the chapter summary

below for details about each contribution). The approach is thematic rather

than historical, and although the chapters are primarily survey pieces, critical

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139046855.001
https://www.cambridge.org/core


2 Keith Frankish and William M. Ramsey

assessment is also included where appropriate. We have worked hard to make

the material accessible to non-specialists, and readers are not expected to have

any significant background in the subject areas covered.

The volume possesses a number of distinctive features. First, it provides

concise and up-to-date coverage of a diverse and rapidly expanding field,

written by leading researchers with important perspectives. The contributors

include both senior figures who have helped to form the modern discipline

and younger researchers doing work that will help shape its future. Second, it

presents scientific work in a form that is accessible to a humanities audience

and focuses on broad theoretical issues and applications rather than experi-

mental work and technical details. Contributors present logical and mathemat-

ical principles in general terms, and the use of symbolic notation has been kept

to a minimum. Third, the book includes coverage of important topics that have

been relatively neglected by past overviews, including the ethics of artificial

intelligence, artificial life, and machine consciousness. Fourth, the discussion

is pitched at an intermediate level, suitable for both advanced students and

scholars new to the area, and the book includes supporting material, such as

a glossary and chapter-specific “Further reading” sections that enhance its

value as a teaching text. A companion volume, The Cambridge Handbook to

Cognitive Science (2012), serves to complement this handbook in both scope

and aims.

Artificial intelligence and cross-disciplinarity

As its title indicates, this volume is intended as a guide to AI itself, rather

than to the philosophy of AI. That is, the primary focus is on first-order

research in AI, and on theoretical issues raised directly by that research, rather

than on meta-level philosophical questions about the science of AI. Yet, as

readers will note, several of the chapters are written by people who are usually

characterized as philosophers of AI or of cognitive science, and the volume’s

co-editors both have their homes in philosophy departments and have done

no significant first-order research in AI. Why, one might ask, do philosophers

have such a large role in a volume about one of the sciences of the mind?

There are a number of reasons why philosophical involvement in a volume

on AI is beneficial. First, in truth, the distinction between AI research and

philosophical work on mentality is not a sharp one. As a number of the

chapters make clear, there are no tidy and well-defined demarcations between,

say, programming rationality on the one hand and philosophical work on logic

or reasoning on the other. Foundational questions and challenges regarding

the development of synthetic minds are unavoidably philosophical in nature,

and AI researchers often need to reflect on the broader implications of their

findings, speculate about abstract matters such as hidden assumptions and
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3 Introduction

overarching themes, appeal to thought experiments, and invoke traditional

philosophical concepts, such as knowledge, representation, and action. In

other words, there is a lot of philosophical reasoning involved in being a

cutting-edge investigator in AI. At the same time, philosophers of mind need

to be well-versed in the theories, models, and major developments in AI, so

that their own contributions are informed and useful.

Second, philosophers of mind possess two attributes that provide them

with a unique perspective on AI research itself. One is an understanding

of the more general metaphysical, epistemological, and even ethical issues

that arise in AI. These include questions about the nature of machine intel-

ligence and consciousness, reductionism, levels of explanation, properties of

symbols and representations, the moral status of non-humans, and so on. The

other attribute is an appreciation of specific foundational issues in various

areas of AI research. For centuries, philosophers have been thinking and writ-

ing about a wide array of phenomena that AI researchers are now exploring –

phenomena such as intelligence, consciousness, rationality, mental represen-

tation, perceptual experience, and human action. These are both established

areas of philosophical analysis and the target of increased scientific investi-

gation. The philosophy of mind is itself being transformed by work in AI, and,

at the same time, philosophers have a unique vantage from which they can

elucidate empirical work, synthesizing ideas, making theoretical connections,

and highlighting conceptual and methodological issues.

Despite this overlap, however, there has remained some distance between

advanced AI researchers and those working in related disciplines, including

philosophy. Consequently, a third and final reason to have input from relative

outsiders is to help overcome this. The distance has been especially marked

where AI research has been highly technical and focused upon specific appli-

cations and tasks. To some degree, AI researchers belong to a tighter, more

homogeneous community than researchers in other areas of cognitive sci-

ence, with a greater emphasis upon investigating precise theoretical problems

or producing highly specific applications. This focus has led to considerable

progress in many areas, but it has also made much of the work less accessible

to those in other disciplines. Thus, one of our aims in compiling the present

volume was to help bridge this gap by presenting even technical areas of

research in an accessible manner, with a focus on general principles rather

than specific details. In our role as editors, we view ourselves as representa-

tives of readers who have a strong interest in AI but who do not currently

work in the field and are not familiar with many developments. Consequently,

we chose a mix of established figures and up-and-coming researchers, and

then pressured them hard to explain the state of the art in a way that others

could understand. The end result is a unique volume that allows those without

formal training to gain a good overview of even highly complicated areas
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4 Keith Frankish and William M. Ramsey

of AI research. We hope it will help to foster productive communication and

collaboration between AI and other disciplines.

Summary of the volume

The volume is composed of fifteen chapters, collected into four sections: Foun-

dations, Architectures, Dimensions, and Extensions. The focus narrows across

the first three sections, which respectively survey foundational issues, general

theories of mental architecture, and specific areas of research. The final sec-

tion then extends the coverage to some related topics and research programs.

Each section and each chapter stands alone and can be read individually (and

in order to achieve this, we have allowed occasional overlap between chapter

contents); but the chapters and sections are designed to complement each

other, and the collection as a whole provides a systematic and comprehensive

overview of the theoretical landscape of AI. Below we give a brief summary

of the contents of each part of the volume.

Part I: Foundations

The essays in this section are devoted to explaining and discussing foun-

dational issues in AI. In the first chapter, Stan Franklin introduces readers

to the field, with a concise survey of the discipline’s core themes, landmark

moments, major accomplishments, main research areas, and recent trends.

Chapter 2, by Konstantine Arkoudas and Selmer Bringsjord, looks in detail at

the philosophical and conceptual roots of AI. For instance, the functionalist

notion that the mind is like a computational program has traditionally served

as a metaphysical basis for a great deal of work in AI, but it has also led to

various powerful criticisms. Arkoudas and Bringsjord discuss these and other

ways in which philosophy and AI intersect. The field of AI has also faced a

number of philosophical challenges, both to the general project of creating

artificial intelligence and to specific approaches within the field. In Chapter 3,

William Robinson discusses the most important of these and the ways in which

defenders have responded. For example, Robinson carefully explains Searle’s

well-known Chinese Room argument against the classical symbol-processing

approach to AI and the responses that have been offered by proponents of

that approach.

Part II: Architectures

This section of the volume looks at the three major architectural views (gen-

eral theories of the representations and processes involved in intelligent

thought and action) that have dominated work in AI. In Chapter 4, Margaret

Boden provides an overview of the core features of classic computational
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5 Introduction

architectures, often called GOFAI (for “Good Old-Fashioned AI”). She exam-

ines the strengths and weaknesses of the classical approach, and argues that

the alleged failure of traditional AI has been grossly overstated, though she

grants that it will probably need to be complemented by other approaches.

Ron Sun presents a similar review of connectionism and neural networks in

Chapter 5. After providing a historical perspective and an analysis of the dis-

tinctive features of connectionist models (such as distributed representations),

Sun offers his own support for hybrid architectures, which combine both con-

nectionist and traditional symbolic elements. In Chapter 6, Randall Beer gives

an in-depth look at the dynamical and embedded approach to AI, or as he puts

it, the Situated, Embodied, and Dynamical (SED) framework. As Beer notes,

this approach focuses upon the dynamic interaction between intelligent sys-

tems and their environment, and leans heavily upon mathematical tools such

as dynamical systems theory to capture that interaction through time. Beer

provides an analysis of both the unique characteristics of the SED frame-

work and its prospects for providing a radically new way of thinking about

intelligent systems.

Part III: Dimensions

In this section, authors provide a glimpse into cutting-edge research in dif-

ferent subfields of AI, corresponding to different dimensions of intelligence:

learning, perception, reasoning, language, action, and consciousness.

The section begins with Chapter 7, in which David Danks provides an

overview of the different forms of machine learning and the sorts of algo-

rithms and methods that have proven successful. The chapter also provides

an interesting analysis of some of the technical and philosophical challenges

that confront researchers in this area. In Chapter 8, Markus Vincze, Sven

Wachsmuth, and Gerhard Sagerer review work in artificial perception, partic-

ularly computer vision. They give a detailed account of recent developments

in such critical areas as object recognition and categorization, tracking and

visual servoing, and vision-based human–computer interaction, and they offer

their assessment of the key challenges that lie ahead. In Chapter 9, Eyal Amir

presents a survey of recent work in artificial reasoning and decision making –

topics which are central to the AI subfield known as Knowledge Representation

and Reasoning (KR&R). Amir surveys techniques for representing information

and reasoning with it (including ones drawn from propositional logic and

probabilistic theory), looks at the various formalisms that have guided work

in automated decision making, and highlights some cross-cutting issues such

as the emergence of applications combining logic-based and probabilistic

methods.

Two other important subfields of AI have been Natural Language Process-

ing and Computational Linguistics, both of which focus on artificial language
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processing. In Chapter 10, Yorick Wilks provides some of the background

to these fields and explains how they relate to core areas of linguistics,

including syntactic processing, semantics, and lexical disambiguation. He

also explains some of the quantitative and statistical approaches that have

recently been employed to develop AI systems with linguistic capacities. In

Chapter 11, Eduardo Alonso looks at agency in AI and discusses the strategies

used to develop AI systems that function as competent agents in different

environments, both as a consequence of stored knowledge and as a result

of learning. In particular, Alonso highlights the importance of an emerging

agent-centered AI, in which software systems are designed to display behavior

that is autonomous, adaptive, and social. The chapter looks at the challenges

involved in developing artificial agents that can operate in multi-agent envi-

ronments by using techniques such as negotiation and argumentation. In the

final chapter in this section, Chapter 12, Matthias Scheutz provides an in-

depth look at recent work on developing machines that experience emotions

and even some form of consciousness. Reviewing the historical and philosoph-

ical dimensions of the issue (such as the possible functional role of emotions),

Scheutz examines the central challenges to this line of research, noting that

we have yet to develop clear criteria for deciding when a system does or does

not possess subjective states.

Part IV: Extensions

This final section extends the volume’s coverage to topics and research pro-

grams that are closely related to AI, including robotics, artificial life, and the

ethical dimensions of AI. In Chapter 13, Phil Husbands looks at the recent his-

tory of building machines that engage in intelligent behavior, both for indus-

trial applications and for research purposes. He examines efforts to mimic

biological systems, especially insects, and surveys evolutionary approaches,

which use processes of iterated replication and mutation to generate robotic

controllers adapted to specific tasks and environments. Chapter 14, by Mark

Bedau, presents a fascinating look at the rapidly growing field of artificial

life, which seeks to synthesize life in a variety of different forms, including

robotic systems, artificial cells made from biochemical building blocks, and

software agents inhabiting virtual eco-systems. After examining the ways in

which artificial life is linked to conventional AI, Bedau explores what it has

taught us about living systems and highlights some new philosophical issues it

raises. In the final chapter of the volume, Chapter 15, Nick Bostrom and Eliezer

Yudkowsky explore a wide range of ethical issues associated with the creation

of thinking and feeling machines. These include questions about our use of

AI algorithms to govern financial or legal transactions, the creation of artifi-

cial persons with moral status and rights, and the development of machines

that are smarter than humans. As Bostrom and Yudkowsky correctly note,
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whereas these issues once belonged to the domain of science fiction, they are

increasingly becoming real moral dilemmas we must face.

Coverage and scope

We shall add some remarks on the coverage and the scope of the volume. Our

first point concerns the relation between the chapters. This handbook can be

read straight through by those wanting a broad overview of the field of AI,

but we also wanted it to be of use to those seeking to know only about specific

topics or particular areas of AI research. Consequently, the chapters are written

as stand-alone pieces that can be read individually for a thorough treatment

of a given topic. Readers with a particular interest in, say, machine learning

can go straight to David Danks’ chapter and find an extensive examination

of the topic that includes discussion of several closely related issues and

does not assume familiarity with the material in earlier chapters. While we

regard this as an important virtue of the volume, it also means that there

is occasional overlap between different chapters. For example, any chapter

on the philosophical foundations of AI, such as Arkoudas and Bringsjord’s,

would be incomplete without discussion of John Searle’s famous Chinese

Room argument, since that argument played a significant role in shaping the

way some people think about the limits of AI. But, of course, discussion of

Searle’s argument also belongs in Robinson’s chapter on the philosophical

challenges to AI and in Boden’s chapter on classical (“Good Old-Fashioned”)

AI as well. The same can be said for a variety of other arguments, ideas,

theories, and developments that are critical for understanding the different

aspects of AI described in these chapters.

While this overlap is unavoidable, it should be noted that each chapter has

a unique focus, emphasizing different aspects of shared topics. Thus, Robin-

son places Searle’s argument in the context of philosophical and conceptual

challenges to AI, assessing the scope of the argument (via a useful distinction

between flexibility and understanding) and explaining the major replies to the

argument and Searle’s responses to them. Boden, on the other hand, discusses

the argument’s impact on classical AI’s supposed commitment to Strong AI –

the view that running a suitable computer program is sufficient for mental-

ity – and she goes on to discuss the extent to which classical AI is actually

committed to that doctrine. Similar points could be made with regard to other

topics that surface in different places, such as connectionism, dynamical sys-

tems theory, the Turing Test, and the frame problem. Thus, although readers

may come across particular themes or topics in more than one chapter, we

believe that each encounter will be informative and helpful.

Our second point concerns the scope of the volume. There are some topics

relevant to AI research that are not covered in depth here. In particular, there is

no systematic coverage of the technical, nuts-and-bolts aspects of AI research,
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such as programming languages and techniques, information search strategies,

different styles of knowledge representation (such as scripts and frames), and

so on – though there is some discussion of these matters in the chapters on the

subfields of AI research. These “tools” of AI are of course essential topics for

those planning to work in the field of AI. However, they are covered in detail

in standard textbooks (see the “Further reading” section at the end of this

Introduction), and, given space constraints, we decided to focus the volume

primarily on what AI researchers are doing and thinking, rather than on how

to actually do AI research.

Another area in which the coverage could have been greatly extended

is that of applications and implications of AI research. Developments in AI

are so far-reaching and have become so interwoven in our lives that our

section on the extensions of AI could have been much, much larger. Indeed,

whole volumes could be (and have been) devoted to topics such as AI and

creativity, AI and the internet, AI on the battlefield, AI in film and literature,

and so on. These issues are touched on in many places throughout the volume.

However, this is not, strictly speaking, an “AI-And-Something-Else” volume,

and we limited the Extensions section to two major research areas that are

closely intertwined with AI – robotics and artificial life – and discussion of the

major ethical issues arising directly from AI research. These well illustrate the

important and fascinating ways in which the field of AI has grown, influenced

other areas of inquiry, and generated new topics of enquiry, new problems,

and new challenges.

The focus of the volume, then, is on the middle ground – the central concep-

tual and theoretical issues in AI and the major research programs – excluding

technical details of AI system building on the one hand and the wider social,

cultural, and economic implications of AI research on the other. We feel this

makes for a manageable and accessible volume, which can easily be com-

plemented by other works with a narrower or wider focus. We offer some

suggestions for complementary works in the “Further reading” section at the

end of this Introduction. Finally, as already mentioned, this volume has a

companion, The Cambridge Handbook of Cognitive Science, which has a sim-

ilar structure and scope and was designed to complement this one. That book

looks at many of the same topics (the nature of mentality, cognitive architec-

ture, the structure and function of various mental faculties) from the perspec-

tive of researchers on human cognition, as well as discussing allied research

programs such as evolutionary psychology. AI and cognitive science have

influenced each other strongly throughout their history, and the discussions

in each volume will give further depth and perspective to those in the other.

General themes

Although the chapters were written individually, the reader will notice a

number of common themes appearing throughout the volume. For example,
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in the past a good deal of AI research involved the promotion of specific

architectures or theories, such as classic computationalism or connectionism.

Often, simple toy systems were developed, in part to demonstrate how a given

type of computational framework could in principle perform a particular task.

However, with rapid developments in technology and computing power, it

has become possible to build far more sophisticated AI systems that can do

real work, and, as a result, pragmatic engineering concerns have become more

central. Many researchers today are more concerned with employing whatever

works best for the particular job in hand, rather than promoting a particular

global architecture. Consequently, an increasing amount of AI work involves

hybrid systems, as investigators employ different sorts of architectures for

different sub-processes or tasks. This mirrors recent trends in cognitive science,

such as “dual-process” theories of cognition, which claim that different types

of computational architectures underlie different cognitive capacities. Much

of the work discussed in this volume suggests that past theoretical divisions

and battles over competing architectures are fading while a growing number

of researchers are adopting a more inclusive and ecumenical outlook.

Another trend is a shift in the theoretical, conceptual, and philosophical

issues that occupy investigators. Traditional questions about whether a com-

puter could feel pain or about the nature of computational symbols are still

important, but we also see new philosophical concerns becoming central. For

example, the development of dynamic models in AI has encouraged people to

reconsider what counts as a computational or intelligent system, the bound-

aries of such systems, and how intelligent behavior ought to be explained. At

the same time, many investigators are rethinking the need for representations

or internal models that in the past were assumed to be essential for guiding the

behavior of AI systems. More and more investigators are accepting the impor-

tance of situatedness and embodiment and exploring the degree to which a

system’s interactions with a real-world environment are crucial. Thus, many

of the chapters reveal that traditional assumptions are no longer taken for

granted, and that radically new ideas and principles are taking center stage.

At the same time, developments in popular culture and technology are hav-

ing a greater impact on how researchers regard the field, with investigators

commonly making reference to the internet, to the explosion of special appli-

cations for smart devices, and to the influence of computer gaming. Similarly,

many of the chapters reflect a sophisticated awareness of important findings

in biology, animal cognition, neuroscience, and the psychology of perception.

Thus, one thing that has not changed is the degree to which the field of AI

continues to evolve as it assimilates the newest developments in technology

and the most recent discoveries in the life sciences.

We have enjoyed putting this volume together and hope it will serve as an

entry-point to the fascinating and hugely important work being done in AI.

Work in this field already affects our lives in countless ways, and future
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developments are likely to transform our world radically. On the small scale,

AI applications will increasingly pervade our lives, reshaping and enhancing

our interactions with our environment and each other, while on a larger scale,

theoretical advances in artificially modeling intelligence will not only give us

a deeper understanding of our own minds, but may also confront us with new

minds with vastly different capacities from ours. We hope this volume will

help to make this exciting but often highly technical field more accessible,

and that readers will be inspired to learn more about AI, to apply its insights

in other fields, and to reflect upon its implications for humanity.

Further reading

As explained earlier, this volume’s focus is on the middle ground of AI research –

the main conceptual and theoretical issues and the major research programs. As

such, the volume is designed to be self-standing. However, some readers may wish

to complement it with other reading that has either a narrower focus, on technical

matters, or a wider one, on the social and cultural implications of AI research. In

this section we offer some brief suggestions for such reading.

Technical matters

One of the most popular undergraduate textbooks of AI concepts and techniques

and among the best single-volume introductions to the nuts and bolts of AI is:

Russell, S. and Norvig, P. (2010). Artificial Intelligence: A Modern Approach

(3rd edn.). Upper Saddle River, NJ: Prentice Hall.

Two other recommended volumes, on more specialized topics, are:

Norvig, P. (1992). Paradigms of Artificial Intelligence Programming: Case Studies

in Common Lisp. San Francisco, CA: Morgan Kaufmann. A little dated, but

still a classic textbook on AI programming, which teaches the reader how to

build and debug real AI programs and illustrates important techniques and

concepts.

Whitten, I. H., Frank, E., and Hall, M. A. (2011). Data Mining: Practical Machine

Learning Tools and Techniques (3rd edn.). Burlington, MA: Morgan Kauf-

mann. A standard textbook on the statistical techniques of machine learning

and data mining, which are now central to much AI research. Written at an

accessible introductory level.

Wider perspectives

There is a growing literature on the social, economic, and cultural effects of AI

research, from which the following is a selection.
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Anderson, M. and Anderson, S. L. (eds.) (2011). Machine Ethics. Cambridge Uni-

versity Press. A collection of essays on the project of building machines with

ethical values, covering the importance of developing machine ethics, the

requirements of the task, challenges facing the project, various approaches

that have been proposed, and the future of the field.

Boden M. A. (2004). The Creative Mind: Myths and Mechanisms (2nd edn.). Lon-

don: Routledge. Offers a computationalist perspective on human creativity,

drawing on work in AI.

Boden M. A (2011) Creativity and Art: Three Roads to Surprise. Oxford University

Press. A series of essays exploring creativity in art, including discussion of

computer art.

Chalmers, D. J. (2010). The singularity: A philosophical analysis, Journal of Con-

sciousness Studies, 17(9–10): 7–65. An analysis of the intelligence explosion

(“singularity”) that some believe will occur when machines surpass humans

in intelligence and then proceed to create ever more sophisticated machines

themselves. Discusses whether there will be a singularity, how humans should

deal with it, and the future for humanity in a post-singularity world.

Lin, P., Abney, K., and Bekey, G. A. (2012). Robot Ethics: The Ethical and Social

Implications of Robotics. Cambridge, MA: MIT Press. Discusses ethical, social,

and legal issues associated with advanced robotics, including ones arising

from the use of robots as weapons, sexual partners, and caregivers.

Singer, P. W. (2009). Wired for War: The Robotics Revolution and Conflict in

the 21st Century. New York: Penguin. A readable account of the emerging

military applications of robotics and the effects they may have.

Turkle, S. (2011) Alone Together: Why We Expect More from Technology and Less

from Each Other. New York: Basic Books. A psychologist’s perspective on

how robotics and digital technology are affecting human social interaction.
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1 History, motivations, and core themes

Stan Franklin

1.1 Introduction

This chapter introduces the field of artificial intelligence (AI) through a review

of its core themes, history, major research areas, and current trends. The goal

is to provide the reader with sufficient background context for understanding

and appreciating the subsequent chapters in the volume.

1.2 Overview of core themes

The history of artificial intelligence may be best understood in the context

of its core themes and controversies. Below is a brief listing of such AI dis-

tinctions, issues, themes, and controversies. It would be well to keep these

in mind during your reading of the rest of this chapter. Each of the themes

will be expanded upon and clarified as the chapter progresses. Many of these

result from there being, to this day, no agreed upon definition of intelligence

within the AI community of researchers.

Smart software vs. cognitive modeling. AI has always been a part of

computer science, an engineering discipline aimed at creating smart computer

programs – that is, intelligent software products to meet human needs. We

shall see a number of examples of such smart software. AI also has its

science side, which is aimed at helping us understand human intelligence.

This endeavor includes building software systems that “think” in human-like

ways, as well as producing computational models of aspects of human

cognition. These computational models provide hypotheses for cognitive

scientists.

Symbolic AI vs. neural nets. From its very inception AI was divided into

two quite distinct research streams: symbolic AI and neural nets. Symbolic AI

took the view that intelligence could be achieved by manipulating symbols

within the computer according to rules. Neural nets, or connectionism as the

cognitive scientists called it, instead attempted to create intelligent systems as

networks of nodes each comprising a simplified model of a neuron. Basically,

the difference was between a computer analogy and a brain analogy, between

implementing AI systems as traditional computer programs and modeling

them after nervous systems.
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Reasoning vs. perception. Here the distinction is between intelligence as

high-level reasoning for decision making, say in machine chess or medical

diagnosis, and the lower-level perceptual processing involved in, say, machine

vision – the understanding of images by identifying objects and their rela-

tionships.

Reasoning vs. knowledge. Early symbolic AI researchers concentrated on

understanding the mechanisms (algorithms) used for reasoning in the ser-

vice of decision making. The assumption was that understanding how such

reasoning could be accomplished in a computer would be sufficient to build

useful smart software. Later, researchers realized that, in order to scale up for

real-world problems, they had to build significant amounts of knowledge into

their systems. A medical diagnosis system had to know a great deal about

medicine, to be able to draw valuable conclusions.

To represent or not. This knowledge had to be represented somehow within

the system; that is, the system had to somehow model its world. Such repre-

sentation could take various forms, including rules. Later, a controversy arose

as to how much of such modeling actually needed to be done. Some claimed

that much could be accomplished without extensive internal modeling.

Brain in a vat vs. embodied AI. The early AI systems had humans entering

input into the systems and acting on the output of the systems. Like a “brain

in a vat” these systems could neither sense the world nor act on it. Later,

AI researchers created embodied, or situated, AI systems that directly sensed

their worlds and also acted on them directly. Real-world robots are examples

of embodied AI systems.

Narrow AI vs. human-level intelligence. In the early days of AI many

researchers aimed at creating human-level intelligence in their machines,

the so-called “strong AI.” Later, as the extraordinary difficulty of such an

endeavor became more evident, almost all AI researchers built systems that

operated intelligently within some relatively narrow domain such as chess

or medicine. Only recently has there been a move back in the direction of

systems capable of a more general, human-level intelligence that could be

applied broadly across diverse domains.

1.3 Some key moments in AI

1.3.1 McCulloch and Pitts

The neural nets branch of AI began with a very early paper by Warren

McCulloch and Walter Pitts (1943). McCulloch, a professor at the University

of Chicago, and Pitts, then an undergraduate student, developed a much-

simplified model of a functioning neuron, a McCulloch–Pitts unit (Figure 1.1).

They showed that networks of such units could perform any Boolean oper-

ation (and, or, not) and, thus, any possible computation. Each of these units
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Figure 1.1 A simple artificial neuron.

compared the weighted sum of its inputs to a threshold value to produce a

binary output. Neural Nets AI, and also computational neuroscience, thus was

born.

1.3.2 Alan Turing

Alan Turing, a Cambridge mathematician of the first half of the twentieth cen-

tury, can be considered the father of computing (its grandfather was Charles

Babbage during the mid nineteenth century) and the grandfather of AI. During

World War II in 1939–1944 Turing pitted his wits against the Enigma cipher

machine, the key to German communications. He led in developing the British

Bombe, an early computing machine that was used over and over to decode

messages encoded using the Enigma.

During the early twentieth century Turing and others were interested in

questions of computability. They wanted to formalize an answer to the ques-

tion of which problems can be solved computationally and several people

developed distinct formalisms as a result. Turing offered the Turing Machine

(1936), Alonzo Church the Lambda Calculus (1936), and Emil Post the Pro-

duction System (1943). These three apparently quite different formal systems

soon proved to be logically equivalent in defining computability, that is, for

specifying those problems that can be solved by a program running on a

computer. The Turing machine proved to be the most useful formalization and

it is the one most often used in theoretical computer science.

In 1950 Turing published the very first paper suggesting the possibility of

artificial intelligence (1950). In it he first described what we now call the Turing

Test, and offered it as a sufficient condition for the existence of AI. The Turing

Test has human testers conversing in natural language without constraints via

terminals with either a human or an AI natural language program, both hidden

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139046855.003
https://www.cambridge.org/core


18 Stan Franklin

from view. If the testers cannot reliably distinguish between the human and

the program, intelligence is ascribed to the program. In 1991 Hugh Loebner

established the Loebner Prize, which would award $100,000 to the first AI

program to pass the Turing Test. As of this writing, the Loebner Prize has not

been awarded.

1.3.3 The Dartmouth Workshop

The Dartmouth Workshop served to bring researchers in this newly emerging

field together to interact and to exchange ideas. Held during August of 1956,

the workshop marks the birth of artificial intelligence. AI seems alone among

disciplines in having a birthday. Its parents included John McCarthy, Marvin

Minsky, Herbert Simon, and Allen Newell. Other eventually prominent atten-

dees were Claude Shannon of Information Theory fame, Oliver Selfridge, the

developer of Pandemonium Theory, and Nathaniel Rochester, a major designer

of the very early IBM 701 computer.

John McCarthy, on the Dartmouth faculty at the time of the Workshop, is

credited with having coined the name Artificial Intelligence. He was also the

inventor of LISP, the predominant AI programming language for a half cen-

tury. McCarthy subsequently joined the MIT faculty and later moved to Stan-

ford where he established their AI Lab. He remained an active AI researcher

until his death in 2011. Marvin Minsky helped to found the MIT AI Lab where

at the time of this writing he remains an active and influential AI researcher.

Herbert Simon and Allen Newell brought the only running AI program, the

logical theorist, to the Dartmouth Workshop. This operated by means–ends

analysis, an AI planning algorithm. At each step it attempted to choose an

operation (means) that moved the system closer to its goal (end). Simon and

Newell founded the AI research lab at Carnegie Mellon University. Newell

passed away in 1992, and Simon in 2001.1

1.3.4 Samuel’s checker player

Every computer scientist knows that a computer only executes the algorithm

it was programmed to run. Hence, it might be thought that it can only do what

its programmer told it to do. It cannot know anything its programmer didn’t,

nor do anything its programmer couldn’t. This seemingly logical conclusion

is, in fact, simply wrong because it ignores the possibility of a computer being

programmed to learn. Such machine learning, later to become a major subfield

of AI, began with Arthur Samuel’s checker playing program (1959). Though

1 While still a pure mathematician, the present author spent some years on the Carnegie

Mellon faculty, where he knew both Simon and Newell. He learned no AI from them, a

wasted opportunity.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139046855.003
https://www.cambridge.org/core


19 History, motivations, and core themes

Samuel was initially able to beat his program, after a few months of learning

it is said that he never won another game from it. Machine learning was born.

1.3.5 Minsky’s dissertation

In 1951, Marvin Minsky and Dean Edmonds built the SNARC, the first artificial

neural network, which simulated a rat running a maze. This work was the

foundation of Minsky’s Princeton dissertation (1954). Thus one of the founders

and major players in symbolic AI was, initially, more interested in neural nets

and set the stage for their computational implementation.

1.3.6 Perceptrons and the neural net winter

Frank Rosenblatt’s perceptron (1958) was among the earliest artificial neural

nets. A two-layer neural net best thought of as a binary classifier system, a

perceptron maps its input vector into a weighted sum subject to a threshold,

yielding a yes or no answer. The attraction of the perceptron was due to

a supervised learning algorithm, by means of which a perceptron could be

taught to classify correctly. Thus neural nets contributed to machine learning.

Research on perceptrons came to an inglorious end with the publication of

the Minsky and Papert book Perceptrons (1969) in which they showed that

the perceptron is incapable of learning to classify as true or false the inputs to

such simple systems as the exclusive “or” (XOR – either A or B but not both).

Minsky and Papert also conjectured that even multi-layered perceptrons would

prove to have similar limitations. Though this conjecture proved to be mostly

false, the government agencies funding AI research took it seriously. Funding

for neural net research dried up, leading to a neural net winter that didn’t

abate until the publishing of the Parallel Distributing Processing volumes in

the mid 1980s (McClelland, Rumelhart, and the PDP Research Group 1986;

Rumelhart, McClelland, and the PDP Research Group 1986).

1.3.7 The genesis of major research areas

Early in its history the emphasis of AI research was largely toward producing

systems that could reason about high-level, relatively abstract, but artificial

problems – problems that would require intelligence if attempted by a human.

Among the first of such systems was Simon and Newell’s general problem

solver (Newell, Shaw, and Simon 1959), which, like its predecessor the logical

theorist, used means–ends analysis to solve a variety of puzzles. Yet another

early reasoning system was Gelernter’s geometry theorem-prover.

Another important subfield of AI is natural language processing, concerned

with systems that understand language. Among the first such was SHRDLU

(Winograd 1972), named after the order of keys on a linotype machine.
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SHRDLU could understand and execute commands in English ordering it to

manipulate wooden blocks, cones, spheres, and so on with a robot arm in what

came to be known as a “blocks world.” SHRDLU was sufficiently sophisticated

to be able to use the remembered context of a conversation to disambiguate

references.

It was not long, however, before AI researchers realized that reasoning

wasn’t all there was to intelligence. In attempting to scale their systems up to

deal with real-world problems, they ran squarely into the wall of the lack of

knowledge. Real-world problems demanded that the solver know something.

So, knowledge-based systems (often called expert systems) were born. The

name came from the process of knowledge engineering: of having knowl-

edge engineers laboriously extract information from human experts and then

encode that knowledge into their expert systems.

Led by chemist Joshua Lederberg and AI researchers Edward Feigenbaum

and Bruce Buchanan, the first such expert system, called DENDRAL, was

an expert in organic chemistry. DENDRAL helped to identify the molecular

structure of organic molecules by analyzing data from a mass spectrometer

and employing its knowledge of chemistry (Lindsay, Buchanan, Feigenbaum,

and Lederberg 1980). The designers of DENDRAL added knowledge to its

underlying reasoning mechanism, an inference engine, to produce an expert

system capable of dealing with a complex, real-world problem.

A second such expert system, called Mycin (Davis, Buchanan and Shortliffe

1977), helped physicians diagnose and treat infectious blood diseases and

meningitis. Like DENDRAL, Mycin relied on both hand-crafted expert

knowledge and a rule-based inference engine. The system was successful in

that it could diagnose difficult cases as well as the most expert physicians,

but unsuccessful in that it was never fielded. Inputting information into

Mycin required about twenty minutes. A physician would spend at most five

minutes on such a diagnosis.

1.3.8 Research during the neural net winter

As already noted, Minsky and Papert’s Perceptrons (1969) mistakenly con-

vinced government funding agencies that the neural net approach was

unpromising, leading to a neural net winter that lasted almost twenty years.

In spite of this appalling lack of funding, significant research continued to

be performed around the world. Intrepid researchers who somehow managed

to keep this important research going included Shun-ichi Amari and Satoru

Fukushima in Japan, Stephen Grossberg and John Hopfield in the United

States, Teuvo Kohonen in Finland, and Christoph von der Malsburg in Ger-

many. Much of this work concerned the self-organization of neural nets,

and learning therein. Much was also motivated by the backgrounds of these

researchers in neuroscience.
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1.3.9 The rise of connectionism

The end of the neural net winter was precipitated by the publication of the two

Parallel Distributed Processing volumes (Rumelhart et al. 1986; McClelland

et al. 1986). They were two massive edited volumes with chapters authored

by members of the PDP research group, then at the University of California,

San Diego. These volumes gave rise to the application of artificial neural nets,

soon to be called connectionism, in cognitive science. Whether connectionism

was up to the job of explaining the mind rapidly became a hot topic of debate

among philosophers, psychologists, and AI researchers (Fodor and Pylyshyn

1988; Smolensky 1987; Chalmers 1990). The debate has died down with no

declared winner, but with artificial neural nets becoming an established player

in the current AI field.

In addition to their success (in the guise of connectionism) for cognitive

modeling, artificial neural nets have found a host of practical applications.

Most of these involve pattern recognition. They include mutual fund invest-

ing, fraud detection, credit scoring, real estate appraisal, and a host of others.

This wide applicability has been primarily the result of a widely used training

algorithm called backpropagation. Though subsequently traced to much earlier

work, backpropagation was rediscovered by the PDP research group and con-

stituted the preeminent tool for the research reported in the two PDP volumes.

1.3.10 The AI winter

Owing to what turned out to be an overstatement of the potential and timing of

artificial intelligence, symbolic AI suffered its own winter. As an example, in

1965 Herbert Simon predicted “machines will be capable, within twenty years,

of doing any work that a man can do.” This and other such predictions did not

come to pass. As a result, by the mid 1980s government agency funding for

AI began to dry up, and commercial investment became almost non-existent.

Artificial intelligence became a taboo word in the computing industry for a

decade or more, in spite of the enormous success of expert systems. The AI

spring did not arrive until the advent of the next “killer” application, video

games (these developments are discussed in Section 1.4).

1.3.11 Soft computing

The term “soft computing” refers to a motley assemblage of computational

techniques designed to deal with imprecision, uncertainty, approximation,

partial truths, and so on. Its methods tend to be inductive rather than

deductive. In addition to neural nets, which we have already discussed, soft

computing includes evolutionary computation, fuzzy logic, and Bayesian

networks. We shall consider each in turn.
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Evolutionary computation began with a computational rendition of natural

selection called a genetic algorithm (Holland 1975). A population search algo-

rithm, this process typically begins with a population of artificial genotypes

representing possible solutions to the problem at hand. The members of this

population are subjected to mutation (random changes) and crossover (the

intermixing of two genotypes). The resulting new genotypes are input to a fit-

ness function that measures the quality of the genotype. The most successful

of these genotypes constitute the next population, and the process repeats. If

well designed, the genotypes in the population tend over time to become much

alike, thus converging to a desired solution and completing the genetic algo-

rithm. In addition, evolutionary computation also includes classifier systems,

which combine rule-based and reinforcement ideas with genetic algorithms.

Evolutionary computation also includes genetic programming, a method of

using genetic algorithms to search for computer programs, typically in LISP,

that will solve a given problem.

Derived from Zadeh’s fuzzy set theory, in which degrees of set membership

between 0 and 1 are assigned (1965), fuzzy logic has become a mainstay

of soft computing. Using if-then rules with fuzzy variables, fuzzy logic has

been employed in a host of control applications including home appliances,

elevators, automobile windows, cameras, and video games. (References are

not given since these commercial applications are almost always proprietary.)

A Bayesian network, with nodes representing situations, uses Bayes’ theorem

on conditional probability to associate a probability with each of its links.

Such Bayesian networks have been widely used for cognitive modeling, gene

regulation networks, decision support systems, and so on. They are an integral

part of soft computing.

1.4 Recent major accomplishments

We shall conclude our brief history of AI with an account of some of its

relatively recent major accomplishments. These include expert systems, chess

players, theorem provers, natural language processing, and a new killer appli-

cation. Each will be described in turn.

1.4.1 Knowledge-based expert systems

Though knowledge-based expert systems made their appearance relatively

early in AI history, they became a major, economically significant AI applica-

tion somewhat later. Perhaps the earliest such commercially successful expert

system was R1, later renamed XCON (McDermott 1980). XCON saved millions

for DEC (Digitial Equipment Corporation) by effectively configuring their VAX

computers before delivery, rather than having DEC engineers solve problems

after their delivery. Other such applications followed, including diagnostic
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and maintenance systems for Campbell Soups’ cookers and GE locomotives.

A Ford Motor Company advertisement for a piece of production machinery

stipulated that such a diagnostic and maintenance expert system be a part

of every proposal. One book detailed 2,500 fielded expert systems. Expert

systems constituted the first AI killer application. It was not to be the last.

1.4.2 Deep Blue beating Kasparov

Early AI researchers tended to work on problems that would require intelli-

gence if attempted by a human. One such problem was playing chess. AI chess

players appeared not long after Samuel’s checker player. Among the most

accomplished of these chess-playing systems was IBM’s Deep Blue, which

in 1997 succeeded in defeating world champion Gary Kasparov in a six-

game match, belatedly fulfilling another of Herbert Simon’s early predictions.

Though running on a specially built computer and provided with much chess

knowledge, Deep Blue depended ultimately upon traditional AI game-playing

algorithms. The match with Kasparov constituted an AI triumph.

1.4.3 Solution of the Robbins conjecture

Another, even greater, AI triumph was soon to follow. In a 1933 paper

E. V. Huntington gave a new set of three axioms that characterized a Boolean

algebra, a formal mathematical system important to theoretical computer sci-

ence. The third of these axioms was so complex as to be essentially unusable.

Thus motivated, Herbert Robbins soon replaced this third axiom with a sim-

pler one, and conjectured that this new three-axiom set also characterized

Boolean algebras. This Robbins conjecture remained one of a host of such in

the mathematical literature until the prominent logician and mathematician

Alfred Tarski called attention to it, turning it into a famous unsolved problem.

After resisting the efforts of human mathematicians for over half a century,

the Robbins conjecture finally succumbed to a general-purpose AI automatic

theorem prover called EQP (EQuational Prover). Where humans had failed,

EQP succeeded in proving the Robbins conjecture to be true (McCune 1997).

1.4.4 Watson defeats human champions at Jeopardy

Jeopardy is a popular and long-running TV quiz show in which contestants

are given clues in the form of answers to wide-ranging trivia questions and

must respond with the corresponding questions as quickly as possible. Its

twenty-eighth season opened in 2011. In that same year three special episodes

of Jeopardy aired in which two of the most successful human champions

and record holders were pitted against each other and against an AI system

called Watson (in honor of the founder of IBM). Using its AI natural language
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processing algorithms to query some 200 million pages of content, and

replying in conversational English, Watson consistently outperformed its two

human opponents.

1.4.5 Games – the killer app

Employing more AI practitioners than any other, the computer and video game

industry is enjoying a screaming success. According to one reliable source, the

Entertainment Software Association, total US spending on the games industry

topped 20 billion dollars in 2012, with 188 million games sold.2 AI’s role

in this astounding success is critical; its use is essential to producing the

needed intelligent behavior on the part of the virtual characters who populate

the games. Wikipedia has an entry entitled “game artificial intelligence” that

includes a history of the ever-increasing sophistication of AI techniques used

in such games, as well as references to a half-dozen or so books on applying

AI to games. At this writing there seems to be an unbounded demand for AI

workers in the game industry. This highly successful commercial application

is yet another triumph for AI.

1.5 Major AI research areas

There are almost a dozen distinct subfields of AI research, each with its own

specialized journals, conferences, workshops, and so on. This section will

provide a concise account of the research interests in each of these subfields.

1.5.1 Knowledge representation

Every AI system, be it a classical AI system with humans providing input

and using the output, or an autonomous agent (Franklin and Graesser 1997),

must somehow translate input (stimuli) into information or knowledge to be

used to select output (action). This information or knowledge must somehow

be represented within the system so that it can be processed to help deter-

mine output or action. The problems raised by such representation constitute

the subject matter of research in the AI subfield commonly referred to as

knowledge representation.

In AI systems, one encounters knowledge represented using logical for-

malisms such as propositional logic and first-order predicate calculus. One

may also find network representations such as semantic nets whose nodes

and links have labels providing semantic content. The underlying idea is that

a concept, represented by a node, gains meaning via its relationships (links)

2 www.theesa.com/facts/pdfs/ESA EF 2013.pdf, pp. 10–11.
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to other concepts. More complex data structures such as production rules,

frames, and fuzzy sets are also used. Each of these data structures has its own

type of reasoning or decision-making apparatus, its inference engine.

The issue of whether to represent or not seems to have been implicitly

settled, as the arguments have died down. Rodney Brooks of the MIT AI Lab

seems to have made his point that more than was previously thought could

be accomplished without representation (1991). His opponents, however, have

carried the day, in that representations continue to be widely used. It appears

that representations are critical for the process of deciding what action to take,

and much less so for the process of executing the action. This seems to be the

essence of the issue.

1.5.2 Heuristic search

Search problems have been studied in computer science almost since its incep-

tion. For example, in the traveling salesman problem, the task is to find the

most efficient route for a salesman to take to visit each of N cities exactly

once. All known algorithms for finding optimal solutions to such a problem

increase exponentially with N, meaning that for large numbers of cities no

optimal solution can be found. However, good enough solutions can be found

using heuristic search algorithms from AI. Such algorithms employ knowledge

of the particular domain in the form of heuristics, rules of thumb, that are not

guaranteed to find the best solution, but that most often find a good enough

solution.

Such heuristic search algorithms are widely used for scheduling, for data

mining (finding patterns in data), for constraint satisfaction problems, for

games, for searching the web, and for many other such applications.

1.5.3 Planning

An AI planner is a system that automatically devises a sequence of actions

leading from an initial real-world state to a desired goal state. Planners may be

used, for example, to schedule work on a shop floor, to find routes for package

delivery, or to assign usage of the Hubble telescope. Research on such planning

programs is a major subfield of AI. Fielded applications are involved in space

exploration, military logistics, and plant operations and control.

1.5.4 Expert systems

Knowledge-based expert systems were discussed in the previous sections. As

a subfield of AI, expert systems researchers are concerned with reasoning

(improving inference engines for their systems), knowledge representation

(how to represent needed facts to their systems), and knowledge engineering
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(how to elicit knowledge from experts that is sometimes implicit). As we have

seen, their fielded applications are legion.

1.5.5 Machine vision

Machine or computer vision is a subfield of AI devoted to the automated

understanding of visual images, typically digital photographs. Among its

many applications are product inspection, traffic surveillance, and military

intelligence. With images multiplying every few seconds from satellites, high-

flying spy planes, and autonomous drones, there are not enough humans to

interpret and index the objects in the images so that they can be under-

stood and located. Research toward automating this process is just starting. AI

research in machine vision is also beginning to be applied to security video

cameras so as to understand scenes and alert humans when necessary.

1.5.6 Machine learning

The AI subfield of machine learning3 is concerned with algorithms that allow

AI systems to learn (see Samuel’s checker player above). Though machine

learning is as old as AI itself, its importance has increased as more and

more AI systems, especially autonomous agents (see below), are operating

in progressively more complex and dynamically changing domains. Much of

machine learning is supervised learning in which the system is instructed using

training data. Unsupervised, or self-organizing systems, as mentioned above,

are becoming common. Reinforcement learning, accomplished with artificial

rewards, is typical for learning new tasks. There is even a new subfield of

machine learning devoted to developmental robotics, robots that go through

a rapid early learning phase, as do human children.

1.5.7 Natural language processing

The AI subfield of natural language processing includes both the generation

and the understanding of natural language, usually text. Its history dates

back to the Turing Test discussed earlier. Today it is a flourishing field of

research into machine translation, question answering, automatic summa-

rization, speech recognition, and other areas. Machine translators, though

typically only about 90 percent accurate, can increase the productivity of

human translators fourfold. Text recognition systems are being developed for

the automatic input of medical histories. Voice recognition enables spoken

commands to a computer and even dictation.

3 Searching Google with the key words “machine learning” yielded this message: “Google is

looking for Engineering experts to join our team. Apply!”
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1.5.8 Software agents

An autonomous agent is defined to be a system situated in an environment

that senses the environment and acts on it in pursuit of its own agenda, in

such a way that its actions can influence what it later senses (Franklin and

Graesser 1997). Artificial autonomous agents include software agents and

some robots. Autonomous software agents come in several varieties. Some

like the author’s IDA “live” in an environment including databases and the

internet, and autonomously perform a specified task such as assigning new

jobs for sailors at the end of a tour of duty. Others, sometimes called avatars,

have virtual faces or bodies displaying on monitors that allow them to interact

more naturally with humans, often providing information. Still others, called

conversational virtual agents, simulate humans, and interact conversationally

with them in chat rooms, some so realistically as to be mistaken for

human.4 Finally, there are virtual agents as characters in computer and video

games.

1.5.9 Intelligent tutoring systems

Intelligent tutoring systems are AI systems, typically software agents, whose

task it is to tutor students interactively one on one, much as a human tutor

would. Results from early efforts in this direction were disappointing. Later

systems were more successful in domains such as mathematics that lend them-

selves to short answers from the student. More recently intelligent tutoring

systems such as AutoTutor have been developed that can deal appropriately

with full paragraphs written by the student. Today the major bottleneck in this

research is getting domain knowledge into the tutoring systems. As a result,

research in various authoring tools has flourished.

1.5.10 Robotics

In its early days robotics was a subfield of mechanical engineering with

most research being devoted to developing robots capable of executing

particular actions, such as grasping, walking, and so on. Their control systems

were purely algorithmic, with no AI components. As robots became more

capable, the need for more intelligent control structures became apparent, and

cognitive robotics research involving AI-based control structures was born.

Today, robotics and AI research have a significant and important overlap

(more below).

4 One such agent, called Julia, interacted so realistically that young men would hit on her.
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1.6 Recent trends and directions

As the second decade of the twenty-first century began, artificial intelligence

had not only emerged from its AI winter into an AI spring, but that spring

had morphed into a full-fledged AI summer with its luxuriant growth of

fruit. Flourishing recent trends include soft computing, AI for data mining,

agent-based AI, cognitive computing (including developmental robotics and

artificial general intelligence), and the application of AI in cognitive science.

Let’s look at each of these in turn.

1.6.1 Soft computing

In addition to the components described earlier (namely, neural nets, evolu-

tionary computing, and fuzzy logic) soft computing is expanding into hybrid

systems merging symbolic and connectionist AI. Prime examples of such

hybrid systems are ACT-R, CLARION, and the author’s LIDA. Most such hybrid

systems, including the three examples, were intended as cognitive models.

Some of them underlie the computational architectures of practical AI pro-

grams. Soft computing now also includes artificial immune systems with their

significant contributions to computer security as well as applications to opti-

mization and to protein structure prediction.

1.6.2 AI for data mining

Along with statistics, AI provides indispensable tools for data mining, the

process of searching large databases for useful patterns of data. Many of these

tools have been derived from research in machine learning. As databases

rapidly increase in content, data mining systems become more and more

useful, leading to a trend toward researching AI tools for data mining.

1.6.3 Agent-based AI

The situated, or embodied, cognition movement (Varela, Thompson, and

Rosch 1991), in the form of agent-based AI, has clearly carried the day in

AI research. Today, most newly fielded AI systems are autonomous agents

of some sort. The dominant AI textbook (Russell and Norvig 2010), used in

over 1,000 universities in over 100 countries, is the leading text, partially

because its first edition was the first agent-based AI textbook. Applications

of AI agents abound. Some were mentioned in the section on software agents

above.
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1.6.4 Cognitive computing

Perhaps the newest, and certainly among the most insistent, current trends

in AI research is what has come to be called cognitive computing.5 Cognitive

computing includes cognitive robotics, development robotics, self-aware

computing systems, autonomic computing systems and artificial general

intelligence. We shall briefly describe each in turn.

As mentioned above, robotics in its early days was primarily concerned with

how to perform actions, and was mostly a mechanical engineering discipline.

More recently this emphasis is shifting to action selection, that is, to deciding

what action to perform. Cognitive robotics, the endowing of robots with more

cognitive capabilities, was born, and is becoming an active subfield of AI.

Another closely related new AI research discipline, developmental robotics,

combines robotics, machine learning, and developmental psychology. The

idea is to enable robots to learn continually. as humans do. Such learning

should allow cognitive robots to operate in environments too complex and

too dynamic for all contingencies to be hand-crafted into the robot. This

new discipline is supported by the IEEE Technical Committee on Autonomous

Mental Development, as well as its own journal, Transactions on Autonomous

Mental Development.

Government agencies are investing in cognitive computing in the form

of self-aware computing systems. DARPA, the Defense Advanced Research

Programs Agency, sponsored the Workshop on Self-aware Computer Systems.

Ron Brachman, then director of the DARPA IPTO program office, and since

the president of AAAI, the Association for the Advancement of Artificial

Intelligence, spelled it out thus:

A truly cognitive system would be able to . . . explain what it was doing and why

it was doing it. It would be reflective enough to know when it was heading down

a blind alley or when it needed to ask for information that it simply couldn’t get

to by further reasoning. And using these capabilities, a cognitive system would

be robust in the face of surprises. It would be able to cope much more maturely

with unanticipated circumstances than any current machine can.6

DARPA is currently supporting research on such biologically inspired cogni-

tive systems.

IBM Research is offering commercially oriented support for cognitive com-

puting through what it refers to as autonomic computing. The primary interest

here is in self-configuring, self-diagnosing, and self-healing systems.

5 The author heads the Cognitive Computing Research Group at the University of Memphis.
6 www-formal.stanford.edu/jmc/www.selfawaresystems.org/
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A very recent and not yet fully developed trend in AI research is the move

toward systems exhibiting a more human-like general intelligence, often now

called artificial general intelligence (AGI). The development of this AGI trend

can be traced through a sequence of special tracks, special sessions, symposia,

and workshops:

� AAAI’04 Fall Symposium entitled Achieving Human-Level Intelligence

through Integrated Systems and Research
� AAAI’06 Special Track on Integrated Intelligent Capabilities
� WCCI’06 special session entitled A Roadmap to Human-Level Intelligence
� CogSci’06 Symposium on Building and Evaluating Models of Human-Level

Intelligence
� AAAI’06 Spring Symposium entitled Between a Rock and a Hard Place:

Cognitive Science Principles Meet AI-Hard Problems
� AAAI’09 Fall Symposium entitled Biologically Inspired Cognitive Architec-

tures.
� AAAI’12 Spring Symposium entitled Designing Intelligent Robots: Reinte-

grating AI
� AGIRI Workshop on Artificial General Intelligence Workshop
� Artificial General Intelligence Conferences – 2008, 2009, 2010, 2011

AGI systems currently being developed include LIDA, Joshua Blue, and

Novamente.

1.6.5 AI and cognitive science

The science side of AI is devoted primarily to modeling human cognition. Its

application is to provide hopefully testable hypotheses for cognitive scientists

and cognitive neuroscientists. In addition to cognitive models with more lim-

ited theoretical ambition, integrated models of large portions of cognition have

been developed. These include SOAR, ACT-R, CLARION, and LIDA. Some of

them have been implemented computationally as software agents, becoming

part of embodied cognition. One of them, LIDA, implements several different

psychological theories, including global workspace theory, working memory,

perception by affordances, and transient episodic memory. The importance of

this cognitive modeling subfield of AI has been recognized by a few computer

science departments that have begun offering degree programs in cognitive

science.

1.7 The core themes – where do they stand now?

Smart software vs. cognitive modeling. As throughout AI history, both

pursuits are still active in AI research, the engineering side and the science

side. Currently, both are moving toward a more general approach. Smart
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software is beginning to include AGI. Cognitive modeling is moving toward

more integrated hybrid models such as ACT-R, CLARION, and LIDA, in

addition to its traditional interest in more specialized models. Another major

push on the smart software side is toward more autonomous software agent

systems.

Symbolic AI vs. neural nets. Both symbolic AI and neural nets have

survived their respective winters and are now flourishing. Neither side of the

controversy has won out. Both continue to be quite useful. They are even

coming together in such hybrid systems as ACT-R, CLARION, and LIDA.

ACT-R melds symbolic and neural net features, CLARION consists of a neural

net module interconnected with a symbolic module, and LIDA incorporates

passing activation throughout an otherwise symbolic system, making it also

quite neural-net-like.

Reasoning vs. perception. Research into AI reasoning continues unabated

in such subfields as search, planning, and expert systems. Fielded practical

applications are legion. Perception has come into its own in machine vision,

agent-based computing, and cognitive robotics. Note that reasoning and per-

ception come together in the last two, as well as in integrated cognitive

modeling and AGI.

Reasoning vs. knowledge. In addition to reasoning, knowledge plays a criti-

cal role in expert systems, and in agent-based computing, self-aware comput-

ing, and autonomic computing also. Again both are alive and flourishing, with

the importance of adding knowledge to practical systems ever more apparent.

Data mining has become another way of acquiring such knowledge.

To represent or not. Without representation, Brooks’ subsumption archi-

tecture accords each layer its own senses and ability to choose and perform

its single act. A higher level can, when appropriate, subsume the action of

the next lower level. With this subsumption architecture controlling robots,

Brooks successfully made his point that much could and should be done with

little or no representation. Still, representation is almost ubiquitous in AI sys-

tems as they become able to deal more intelligently with ever more complex,

dynamic environments. It would seem that representation is critical to the

process of action selection in AI systems, but much less so to the execution of

these actions. The argument over whether to represent seems to have simply

died away.

Brain in a vat vs. embodied AI. For once we seem to have a winner. Embod-

ied, or situated, AI has simply taken over, as most of the new research into

AI systems is agent based. Perusal of the titles of talks at any of the gen-

eral AI conferences such as AAAI or IJCAI (International Joint Conference on

Artificial Intelligence) makes this abundantly clear.

Narrow AI vs. human-level intelligence. Narrow AI continues to flourish

unabated, while the pursuit of human-level intelligence in machines is gaining

momentum via AGI.
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Except for the strong move of AI research toward embodiment, each side

of every issue continues to be strongly represented in today’s AI research.

Research into artificial intelligence is thriving as never before, and promises

continuing contributions, both practical to engineering and theoretical to

science.

Further reading

Franklin, S. (1995). Artificial Minds. Cambridge MA: MIT Press. In this book for

the intelligent layperson, the reader will find expanded discussions of most

of the major themes and ideas of this chapter.

Russell, S. and Norvig, P. (2010). Artificial Intelligence: A Modern Approach

(3rd edn.). Upper Saddle River, NJ: Prentice Hall. This best-selling text offers

the most comprehensive, state-of-the-art introduction to the theory and prac-

tice of artificial intelligence. It is both readable and monumentally complete,

perfect for a general reference to the various topics in this chapter.

Timeline: A Brief History of Artificial Intelligence. An online chronology of

significant events in the History of AI prepared by the Association for

the Advancement of Artificial Intelligence. www.aaai.org/AITopics/pmwiki/

pmwiki.php/AITopics/BriefHistory
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2 Philosophical foundations

Konstantine Arkoudas and Selmer Bringsjord

2.1 Introduction

Much work in artificial intelligence has built on concepts and theories devel-

oped by philosophers and logicians. This chapter introduces this foundational

work, surveying different conceptions of AI, the philosophical dream of mech-

anizing human reasoning, the conceptual roots of AI, and the major theories

of mind that have underpinned different strands of AI research.

2.2 What is AI?

That is itself a deep philosophical question, and attempts to systematically

answer it fall within the foundations of AI as a rich topic for analysis and

debate. Nonetheless, a provisional answer can be given: AI is the field devoted

to building artifacts capable of displaying, in controlled, well-understood envi-

ronments, and over sustained periods of time, behaviors that we consider to

be intelligent, or more generally, behaviors that we take to be at the heart of

what it is to have a mind. Of course this answer gives rise to further questions,

most notably, what exactly constitutes intelligent behavior, what it is to have

a mind, and how humans actually manage to behave intelligently. The last

question is empirical; it is for psychology and cognitive science to answer. It

is particularly pertinent, however, because any insight into human thought

might help us to build machines that work similarly. Indeed, as will emerge in

this article, AI and cognitive science have developed along parallel and tightly

interwoven paths; their stories cannot be told separately. The second question,

the one that asks what is the mark of the mental, is philosophical. AI has lent

significant urgency to it, and conversely, we will see that careful philosophical

contemplation of this question has influenced the course of AI itself. Finally,

the first challenge, that of specifying precisely what is to count as intelligent

behavior, has traditionally been met by proposing particular behavioral tests

whose successful passing would signify the presence of intelligence.

The most famous of these is what has come to be known as the Turing

Test (TT), introduced by Turing (1950). In TT, a woman and a computer are

sequestered in sealed rooms, and a human judge, ignorant as to which of

the two rooms contains which contestant, asks them both questions by email
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(actually, by teletype, to use the original term). If, on the strength of the

returned answers, the judge can do no better than 50/50 when delivering

a verdict as to which room houses which player, we say that the computer

in question has passed TT. According to Turing, a computer able to pass TT

should be declared a thinking machine.

His claim has been controversial, although it seems undeniable that linguis-

tic behavior of the sort required by TT is routinely taken to be at the heart of

human cognition. Part of the controversy stems from the unabashedly behav-

iorist presuppositions of the test. Block’s “Aunt Bertha” thought experiment

(1981) was intended to challenge these presuppositions, arguing that it is not

only the behavior of an organism that determines whether it is intelligent. We

must also consider how the organism achieves intelligence. That is, the inter-

nal functional organization of the system must be taken into account. This

was a key point of functionalism, another major philosophical undercurrent

of AI, to which we will return later. (For more discussion of Block’s thought

experiment, under its other name, “the Blockhead argument,” see Chapter 3.)

Another criticism of TT is that it is unrealistic and may even have obstructed

AI progress insofar as it is concerned with disembodied intelligence. As we will

see, many thinkers have concluded that disembodied artifacts with human-

level intelligence are a pipe dream, practically impossible to build, if not

downright conceptually absurd. Accordingly, Harnad (1991) insists that sen-

sorimotor capability is required of artifacts that would spell success for AI,

and he proposes the Total TT (TTT) as an improvement over TT. Whereas in

TT a bodiless computer program could, at least in principle, pass, TTT-passers

must be robots able to operate in the physical environment in a way that is

indistinguishable from the behaviors manifested by embodied human persons

navigating the physical world.

When AI is defined as the field devoted to engineering artifacts able to pass

TT, TTT, and various other tests,1 it can be safely said that we are dealing with

weak AI. Put differently, weak AI aims at building machines that act intelli-

gently, without taking a position on whether or not the machines actually are

intelligent.

There is another answer to the “What is AI?” question: AI is the field

devoted to building persons, period. This brand of AI is so-called strong AI,2

an ambitious form of the field aptly summed up by Haugeland:

The fundamental goal [of AI research] is not merely to mimic intelligence or

produce some clever fake. Not at all. AI wants only the genuine article: machines

with minds, in the full and literal sense. This is not science fiction, but real

1 More stringent tests than TT and TTT are discussed by Bringsjord (1995).
2 To the best of our knowledge, the distinction between strong and weak AI was first made

(in those terms) by Searle (1980).
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science, based on a theoretical conception as deep as it is daring: namely, we are,

at root, computers ourselves. (Haugeland 1985, p. 2)

This “theoretical conception” of the human mind as a computer has served

as the bedrock of most strong-AI research to date. It has come to be known

as the computational theory of the mind; we will discuss it in detail shortly.

On the other hand, AI engineering that is itself informed by philosophy, as

in the case of the sustained attempt to mechanize reasoning, discussed in the

next section, can be pursued in the service of both weak and strong AI.

2.3 Philosophical AI: The example of mechanizing reasoning

It would not be unreasonable to describe Classical Cognitive Science as an

extended attempt to apply the methods of proof theory to the modelling of

thought. (Fodor and Pylyshyn 1988, pp. 29–30)

This section is devoted to a discussion of an area that serves as an exemplar

of AI that is bound up with philosophy (as opposed to philosophy of AI). This

is the area that any student of both philosophy and AI ought to be familiar

with, first and foremost. Part of the reason for this is that other problems in

AI of at least a partially philosophical nature are intimately connected with

the attempt to mechanize human-level reasoning.3

Aristotle considered rationality to be an essential characteristic of the

human mind. Deductive thought, expressed in terms of syllogisms, was the

hallmark of such rationality, as well as the fundamental intellectual instru-

ment (organon) of all science. Perhaps the deepest contribution of Aristotle

to artificial intelligence was the idea of formalism. The notion that certain

patterns of thought are valid by virtue of their syntactic form, independently

of content, was an exceedingly powerful innovation, and it is that notion that

remains at the heart of the contemporary computational theory of the mind

(Pylyshyn 1989) and what we have called strong AI above.

In view of the significance that was historically attached to deduction in phi-

losophy (starting with Aristotle and continuing with Euclid, and later Bacon,

Hobbes, Leibniz, and others), the very idea of an intelligent machine was

often tantamount to a machine that can perform logical inference: one that

can validly extract conclusions from premises. Automated theorem proving

(ATP), as the field is known today, has thus been an integral part of AI

from the very beginning, although, as we will see, its relevance has been

hotly debated, especially in recent decades. Broadly speaking, the problem of

3 Many examples can be given. One is the frame problem, which we discuss in Section 2.6.

Another is defeasible reasoning, which is the problem of how to formalize inference given

that much everyday reasoning only temporarily commits us to conclusions, in light of the

fact that newly arrived information often defeats prior arguments.
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mechanizing deduction has at least three different layers. Listed in order of

increasing difficulty, we have:

� Proof checking: Given a deduction D that purports to derive a conclusion P

from a number of premises P1, . . . , Pn, decide whether or not D is correct.
� Proof discovery: Given a number of premises P1, . . . , Pn and a putative

conclusion P, decide whether P follows logically from the premises, and if

it does, produce a formal derivation of it.
� Conjecture generation: Given a number of premises P1, . . . , Pn, generate

an “interesting” conclusion P that is likely to follow logically from the

premises.

Technically speaking, the first problem is the easiest. In the case of predicate

logic with equality, the problem of checking the correctness of a given deduc-

tion is not only algorithmically solvable, but efficiently so. Nevertheless, the

problem is pregnant with interesting philosophical and technical issues, and

its relevance to AI was realized early on by McCarthy (1962), who wrote that

“checking mathematical proofs is potentially one of the most interesting and

useful applications of automatic computers.”

The second problem is considerably harder. Early results in recursive func-

tion theory (Church 1936; Turing 1936) established that there is no Turing

machine which can decide whether an arbitrary formula of first-order logic

is valid (that was Hilbert’s Entscheidungsproblem). Therefore, by Church’s

thesis, it follows that the problem is algorithmically unsolvable – there is

no general mechanical method that will always make the right decision in

a finite amount of time. However, humans have no guarantee of always

solving the problem either (and indeed often fail to do so). Accordingly,

AI can look for conservative approximations that perform well in practice:

programs that give the right answer as often as possible, and otherwise do

not give an answer at all (either failing explicitly, or else going on indefi-

nitely until we stop them). The problem was tackled early on for weaker for-

malisms with seemingly promising results: The Logic Theorist (LT) of Newell,

Simon, and Shaw, presented at the inaugural 1956 AI conference at Dart-

mouth, managed to prove thirty-eight out of the fifty-two propositional-logic

theorems of Principia Mathematica. Other notable early efforts included an

implementation of Presburger arithmetic by Martin Davis in 1954 at Prince-

ton’s Institute for Advanced Studies (Davis 2001), the Davis-Putnam proce-

dure (Davis and Putnam 1960), variations of which are used today in many

satisfiability-based provers, and an impressive system for first-order logic built

by Wang (1960). It should be noted that whereas LT was intentionally designed

to simulate human reasoning and problem-solving processes, the authors

of these other systems believed that mimicking human processes was un-

necessarily constraining, and that better results could be achieved by doing

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139046855.004
https://www.cambridge.org/core


38 Konstantine Arkoudas and Selmer Bringsjord

away with cognitive plausibility. This was an early manifestation of a ten-

sion that is still felt in the field and which parallels the distinction between

strong and weak forms of AI: AI as science, particularly as the study of

human thought, vs. AI as engineering – the construction of intelligent sys-

tems whose operation need not resemble the internal workings of human

cognition.

Robinson’s discovery of unification and the resolution method (Robinson

1965) provided a major boost to the field. Most automated theorem provers

today are based on resolution. Other prominent formalisms include semantic

tableaux and equational logic (Robinson and Voronkov 2001). While there has

been impressive progress over the last ten years, the most sophisticated ATPs

today continue to be brittle, and occasionally fail on problems that would be

trivial for college students.

The third problem, that of conjecture generation, is the most difficult, but

it is also the most interesting. Conjectures do not fall from the sky, after all.

Presented with a body of information, humans – particularly mathematicians –

regularly come up with interesting conjectures and then set out to prove

those conjectures, often with success. This discovery process (along with new

concept formation) is one of the most creative activities of the human intellect.

The sheer difficulty of simulating this creativity computationally is surely a

chief reason why AI has made little progress here. But another reason is that

throughout most of the previous century (and really beginning with Frege in

the nineteenth century), logicians and philosophers were concerned almost

exclusively with justification rather than with discovery. This applied not only

to deductive reasoning but to inductive reasoning as well, and indeed to

scientific theorizing in general (Reichenbach 1938). It was widely felt that

the discovery process should be studied by psychologists, not by philosophers

and logicians. Interestingly, this was not the case prior to Frege. Philosophers

such as Descartes (1988), Bacon (2002), Mill (1874), and Peirce (1960) had

all attempted to study the discovery process rationally and to formulate rules

for guiding it. Beginning with Hanson (1958) in science and with Lakatos

(1976) in mathematics (the latter having been heavily influenced by Pólya

(1945)), philosophers started re-emphasizing discovery. AI researchers also

attempted to model discovery computationally, both in science (Langley et al.

1987) and in mathematics (Lenat 1976, 1983), and this line of work has led to

machine-learning innovations in AI such as genetic programming (Koza 1992)

and inductive logic programming (Muggleton 1992). However, the successes

have been limited, and fundamental philosophical objections to algorithmic

treatments of discovery and creativity in general – for example, such as put

forth by Hempel (1985) – remain trenchant. A major issue is the apparently

holistic character of higher cognitive processes such as creative reasoning,

and the difficulty of formulating a rigorous characterization of relevance.

Without a precise notion of relevance, one that is amenable to computational
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implementation, there seems to be little hope for progress on the conclusion-

generation problem, or on any of the other similar problems, including concept

generation and abductive hypothesis formation.

Faced with relatively meager progress on the hard reasoning problems, and

influenced by various critiques of symbolic AI (see Section 2.6), some AI

researchers (such as Minsky 1986, p. 167) launched serious attacks on formal

logic, criticizing it as an overly rigid system that does not provide a good

model of the eminently flexible mechanisms of human reasoning. They have

accordingly tried to shift the field’s attention and efforts away from rigorous

deductive and inductive reasoning, turning them toward “commonsense rea-

soning” instead. A good deal of work has been aimed at developing formal

systems for modeling commonsense reasoning (Davis and Morgenstern 2004).

However, critics charge that such efforts miss the greater point. For instance,

Winograd writes that

Minsky places the blame for lack of success in explaining ordinary reasoning on

the rigidity of logic, and does not raise the more fundamental questions about

the nature of all symbolic representations and of formal (though possibly

non-logical) systems of rules for manipulating them. There are basic limits to

what can be done with symbol manipulation, regardless of how many “different,

useful ways to chain things together” one invents. The reduction of mind to

decontextualized fragments is ultimately impossible and misleading. (Winograd

1990, p. 172)

As we will see in the sequel, similar criticisms have been made by Dreyfus

(1992) and others, who have argued that symbol manipulation cannot account

for such essential human traits as intuition, judgment, and imagination, all of

which can play a key role in inference and problem solving in general; and

that human reasoning will never be matched by any decontextualized

and unembodied (or “unsituated”) system that works by formally representing

and manipulating symbolic information.

2.4 Historical and conceptual roots of AI

AI officially started in 1956, launched by a small but now-famous summer

conference at Dartmouth College, in Hanover, New Hampshire. (The fifty-year

celebration of this conference, AI@50, was held in July 2006 at Dartmouth,

with five of the original participants making it back. Some of what happened

at this historic conference figures in the final section of this chapter.) Ten

thinkers attended, including John McCarthy (who was working at Dartmouth

in 1956), Claude Shannon, Marvin Minsky, Arthur Samuel, Trenchard Moore

(apparently the youngest attendee, and the lone note-taker at the original con-

ference), Ray Solomonoff, Oliver Selfridge, Allen Newell, and Herbert Simon.

From where we stand now, some years into the new millennium, the Dartmouth
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conference is memorable for many reasons, including this pair: (1) the term

“artificial intelligence” was coined there (and has long been firmly entrenched,

despite being disliked to this day by some of the attendees, e.g., Moore); (2)

Newell and Simon revealed a program – Logic Theorist (LT) – agreed by those

at the conference (and, indeed, by nearly all those who learned about it soon

after the Dartmouth event) to be a remarkable achievement. LT, as we have

mentioned, was capable of proving elementary theorems in the propositional

calculus, and was regarded as a remarkable step toward the rendering of

human-level reasoning in concrete computation.

From the standpoint of philosophy, however, neither the 1956 conference

nor the aforementioned Turing Mind paper of 1950 come close to marking the

start of AI. Hobbes had already anticipated strong AI back in the seventeenth

century, when he famously proclaimed that “ratiocination is computation.”

Roughly in that same era, Leibniz dreamed of a “universal calculus” in which

all disputes could be settled by rote calculation. And Descartes had already

considered something like the Turing Test long before Turing, albeit adopting

a rather pessimistic view of the matter in perhaps a somewhat glib fashion:

[I]f there were machines which bore a resemblance to our body and imitated our

actions as far as it was morally possible to do so, we should always have two

very certain tests by which to recognise that, for all that, they were not real men.

The first is, that they could never use speech or other signs as we do when

placing our thoughts on record for the benefit of others. For we can easily

understand a machine’s being constituted so that it can utter words, and even

emit some responses to action on it of a corporeal kind . . . But it never happens

that it arranges its speech in various ways, in order to reply appropriately to

everything that may be said in its presence, as even the lowest type of man can

do. And the second difference is, that although machines can perform certain

things as well as or perhaps better than any of us can do, they infallibly fall

short in others, by the which means we may discover that they did not act from

knowledge, but only from the disposition of their organs. (Descartes 1911, p. 116)

But while the ceremonial inauguration of AI was the 1956 Dartmouth con-

ference, and while philosophers have ruminated on machines and intelligence

for centuries, the key conceptual origins of AI can be found at the intersec-

tion of two of the most important intellectual developments of the twentieth

century:

� the “cognitive revolution”4 that started in the mid 1950s and which over-

threw behaviorism and rehabilitated mentalistic psychology;

4 Speaking of the cognitive revolution has become somewhat of a banality, particularly after

the 1980s saw the publication of two books on the subject (Baars 1986; Gardner 1985).
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� the theory of computability that had been developed over the preceding

couple of decades by pioneers such as Turing, Church, Kleene, and Gödel.

The significance of each for AI will be briefly discussed below.

The cognitive revolution is typically associated with the work of George

Miller and Noam Chomsky in the 1950s, particularly with the latter’s noto-

rious review of Skinner’s theory of language (Chomsky 1996). It had been

anticipated in the 1940s by McCulloch and Pitts (1943) and other cyber-

netics pioneers, who had already been pointing out the similarities between

human thought and information processing, as well as by experimental results

obtained by psychologists such as Tolman (1948), who, studying maze nav-

igation by rats, presented evidence for the existence of “cognitive maps.”

Particularly influential was Chomsky’s famous “poverty of stimulus” argu-

ment to the effect that the efficiency and rapidity of language acquisition

during childhood cannot be explained solely by appeal to the meager data

to which children are exposed in their early years; rather, they compel the

postulation of innate mental rules and representations that encode linguistic

competence. Strong cases for the existence of mental representations were

also made by experimental findings pertaining to memory, such as the results

of Sperling (1960), which indicated that humans typically store more informa-

tion than they can report. Memory, after all, provides perhaps the clearest case

of mental representation; it seems absurd to deny that people store informa-

tion, that is, that we have some sort of internal representation of information

such as the year we were born or the names of our parents. That much is

commonsensical to the point of triviality, as is the claim that people routinely

talk as if they really have beliefs, hopes, desires, and so on; and indeed most

behaviorists would not have denied these claims. What they denied was the

theoretical legitimacy of explaining human behavior by positing unobservable

mental entities (such as memories), or that intentional terminology had any

place in a science of the mind. Essentially a positivist doctrine, behaviorism

had a distrust of anything that could not be directly observed and a general

aversion to theory. It had been the dominant paradigm in psychology for most

of the twentieth century, up until the mid 1950s, until it was finally dethroned

by the new “cognitive” approach.

2.5 Computational theories of mind and the problem
of mental content

Once the first steps were taken and mental representations were openly allowed

in scientific theorizing about the mind, the “computer metaphor” – with which

researchers such as Newell and Simon had already been flirting – became ripe

for explosion. After all, computers were known to store structured data in

their memories and to solve problems by manipulating that data in systematic
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ways, by executing appropriate instructions. Perhaps a similar model could

explain – and eventually help to duplicate – human thought. Indeed, the

postulation of mental representations would not by itself go far if their causal

efficacy could not be explained in a mechanistic and systematic manner.

Granted that structured mental representations are necessary for higher-order

cognition; but how do such representations actually cause rational thought

and action? The theory of computation was enlisted precisely in order to meet

this important theoretical need. The result became known as the computational

theory of mind (CTM for short), a doctrine that has been inextricably linked

with strong AI. In the next paragraph we briefly discuss the main tenets of

CTM.

The first core idea of CTM is to explain intentional mental states by giving a

computational spin to Russell’s analysis (1940) of intentional sentences such

as “Tom believes that 7 is a prime number” as propositional attitudes that

involve a psychological attitude A (in this case believing) toward a proposi-

tion P (in this case, that 7 is prime). More precisely, to be in a mental state

involving an attitude A and proposition P is to be in a certain relationship RA

with a mental representation MP whose meaning is P. To put it simplistically,

to have a belief that 7 is a prime number is to have a mental representation

in your “belief box” which means that 7 is prime. The representation itself is

symbolic. That is, your “belief box” contains a token of a symbolic structure

whose meaning (or “content”) is that 7 is prime. Thus, mental representations

have both syntax and semantics, much like the sentences of natural languages.

They constitute a “language of thought,” so to speak, or mentalese. But it is

only their syntax – syntax ultimately being reducible to physical shape – that

makes them causally efficacious. This is a plausible story because, as work

in logic and computability has shown, there exist purely syntactic transfor-

mations of symbolic structures that are nevertheless sensitive to semantics.

Deductive proofs provide perhaps the best example: By manipulating formulas

exclusively on the basis of their syntactic properties, it is possible to extract

from them other formulas which follow logically from them. Syntax can thus

mirror semantics, or, as Haugeland (1985, p. 106) put it, “if you take care of

the syntax, the semantics will take care of itself.” On this model, a mental pro-

cess is a sequence of tokenings of mental representations which express the

propositional content of the corresponding thoughts. The causes and effects

of each mental representation, what it can actually do, are determined by its

syntax “in much the way that the geometry of a key determines which locks

it will open” (Fodor 1987, p. 19). And the entire process is orchestrated by

an algorithm, a set of instructions that determines how the representations

succeed one another in the overall train of thought. That is the second core

idea of CTM. The mind is thus viewed as a “syntactic engine” driving a seman-

tic engine, and, at least in principle, its operation could be duplicated on a

computer.
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A natural extension of CTM is Turing-machine functionalism, which was

first adumbrated by Putnam (1960) in an influential paper that helped to drive

the cognitive revolution forward (at least in philosophical circles), to under-

mine behaviorism, and to shape the outlook of strong AI. Functionalism in

general is, roughly, the idea that the essence of a mental state is not to be found

in the biology of the brain (or in the physics that underwrites the hardware of

its central processing unit, in the case of a machine) but rather in the role that

the state plays in one’s mental life (or computations), and particularly in the

causal relations that it bears to stimuli (inputs), behavior (outputs), and other

mental (computational) states. Turing-machine functionalism, in particular, is

the idea that the mind is essentially a giant Turing machine whose operation

is specified by a set of instructions dictating that if the mind is in a certain

state s and receives a certain input x, a transition is made to a state s′ and an

output y is emitted. The most popular – and least implausible – versions of

Turing-machine functionalism allow for probabilistic transitions.

Also closely related to CTM (in fact stronger than it) is the physical symbol

system hypothesis (PSSH) put forth by Newell and Simon (1976). According

to it, a physical symbol system “has the necessary and sufficient means for

general intelligent action” (1976, p. 116), where a physical symbol system

is “a machine that produces through time an evolving collection of symbol

structures” – a symbol structure being a collection of symbol tokens “related

in some physical way (such as one token being next to another)” and sub-

ject to a variety of syntactic operations, most notably “creation, modification,

reproduction, and destruction.” Newell and Simon regarded machines execut-

ing list-processing programs of the LISP variety as the prototypical examples

of physical symbol systems. While there have been various internal disagree-

ments (e.g., pertaining to questions of innateness), in some form or other CTM,

PSSH, and Turing-machine functionalism together loosely characterize “clas-

sical” or “symbolic” AI, or what Haugeland (1985, p. 112) has dubbed GOFAI

(“good old-fashioned AI”). All three were posited as substantive empirical

theses, CTM and Turing-machine functionalism about the human mind and

PSSH about intelligence in general (GOFAI too, was explicitly characterized

by Haugeland as an empirical doctrine of cognitive science). They set the

parameters and goals for most AI research for at least the first three decades

of the field, and they continue to be a dominant influence, although, as we will

see, they are no longer the only game in town, having suffered considerable

setbacks as a result of forceful attacks that have elaborated serious conceptual

and empirical problems with the GOFAI approach.

According to CTM, complex thoughts are represented by complex sym-

bolic structures in much the same way that, in natural languages and formal

logics alike, complex sentences are recursively built up from simpler compo-

nents. Thus the mental representation of a complex thought such as “All men

are mortal” contains component mental representations for concepts such as
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“mortal” and “men,” as well as “all” and “are.” These components are some-

how assembled together (and eventually science should be able to spell out

the details of how such symbolic operations are carried out in the brain) to

form the complex thought whose content is that all men are mortal. That

is how complex thoughts attain their meaning, by combining the meanings

of their components. Now, a compositional story of this sort – akin to the

compositional semantics championed by Frege and Tarski – is only viable if

there is an inventory of primitives that can be used as the ultimate building

blocks of more complex representations. The central question for CTM, which

has a direct analogue in AI, is how these primitives acquire meaning. More

precisely, the question is how mentalese primitives inside our brains (or inside

a robot’s central processing unit) manage to be about objects and states of

affairs outside our brains – objects that may not even exist and states of

affairs that may not even obtain. This is also referred to as the symbol ground-

ing problem (Harnad 1990). It is not merely a philosophical puzzle about the

human mind, or even a protoscientific question of psychology. It has direct

engineering implications for AI, since a plausible answer to it might translate

into a methodology for building a robot that potentially averts some of the

most devastating objections to CTM (these will be discussed in the next sec-

tion). Such a robot would “think” by performing computations over formal

symbolic structures (as we presumably do, according to CTM), but neverthe-

less be sufficiently grounded in the real world that it could be said to attain

extra-symbolic understanding (as we do). Clearly it is not tenable to suggest

that evolution has endowed us with all the right primitive symbols having

all the right meanings built in, since evolution could not have foreseen such

things as thermostats or satellites.

A number of theories have been expounded in response, all falling under

the banner of “naturalizing content,” “naturalizing semantics,” or “naturaliz-

ing intentionality.” The objective is to provide a physicalistic account of how

mentalese symbol tokens in our heads manage to be about things that are

external to us (or, framing the issue independently of CTM, how mental states

can achieve meaning). The type of account that is sought, in other words,

is reductive and materialistic; it should be expressed in the non-intentional

vocabulary of pure physical science. In what follows we will briefly review

three of the most prominent attempts to provide naturalized accounts of

meaning: informational theories, evolutionary theories, and conceptual-role

semantics.

The gist of informational theories is the notion of covariance. The idea is

that if a quantity x covaries systematically with a quantity y, then x car-

ries information about y. A car’s speedometer covaries systematically with

the car’s speed and thus carries information about it. Accordingly, we can

view the speedometer as an intentional system, in that its readings are about

the velocity of the car. Likewise, we say that smoke “means” fire in that
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smoke carries information about fire. This is a sense of the word “means” that

Grice called natural meaning, a notion that presaged theories of informational

semantics. Again, because smoke and fire are nomologically covariant, we

can say that one is about the other. Here, then, we have the beginnings of a

naturalized treatment of meaning that regards intentionality as a common nat-

ural phenomenon rather than a peculiarly mental one. Concerning mentalese

semantics, the core insight of such theories – put somewhat simplistically –

is that the meaning of a symbol is determined by whatever the tokenings of

that symbol systematically (nomologically) covary with. If a token of a certain

mentalese symbol H pops up in our brains whenever a horse appears in front

of us, then H carries information about horses and thus means horse.

Evolutionary theories maintain, roughly, that intentional states are adap-

tations, in the same way that livers and thumbs are adaptations, and that

the content (meaning) of an intentional state is the function for which it was

selected, that is, the purpose that it serves. Like all adaptationist theories, this

too is susceptible to charges of Panglossianism (Gould and Lewontin 1979).

Nevertheless, the basic story is not implausible for, say, beliefs to the effect

that there is a predator nearby or for desires to get and eat some bananas that

appear in one’s visual field. The content of such a belief would be something

like “there is a tiger under that tree over there,” which would presumably

be the function for which such beliefs were selected (to correlate with tigers

under trees), and the content of such a desire would be “I want to eat those

bananas over there,” which would again coincide with the purpose served by

such desires (obtaining food and surviving).

Conceptual-role semantics (CRS) takes its cue from Wittgenstein’s famous

“use” theory of meaning, according to which the meaning of a linguistic item

(expression, sentence, etc.) is the way in which that item is used by speakers of

the language. The main thesis of CRS is that the meaning of a mentalese sym-

bol S is fixed by the role that S plays in one’s cognitive life, and particularly

by the relations that it bears to other symbols, to perception, and to action. It

is thus very similar to functionalism about mental states. Logical connectives

such as and provide the standard illustrations for the use theory of linguistic

meaning, and, likewise, the meaning of a mentalese symbol equivalent to and

would be the role it plays in our heads, for example, the set of mentalese

inferences in which it participates. The theory has notable similarities to the

operational semantics of programming languages in theoretical computer sci-

ence. In cognitive science, CRS has been known as procedural semantics. It

was primarily advocated by Johnson-Laird (1977), and roundly criticized by

Fodor.

Related to this is the whole issue of externalism. CRS makes the meaning

of a symbol a thoroughly internal matter, contingent only on the relations it

bears to other symbols and states (including perceptual and behavioral states).

But clearly there is more to meaning than that. At least on the face of it,
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meaning seems to hook symbols to the world, not just to other symbols. The

meaning of the term dog must have something to do with its reference, that is,

with actual dogs, and the meaning of Aristotle must have something to do with

the actual Aristotle. More sophisticated externalist challenges were presented

by Putnam and Burge, arguing respectively that meaning is a function of

the overall physical and social environment in which one is embedded. So-

called two-factor CRS were developed in response, in an attempt to distinguish

between narrow and wide mental content. Narrow meaning is “in the head”

and does not depend on the surrounding circumstances, while wide meaning

hinges on reference and has truth conditions. An entire industry has grown

around this distinction, and we do not have the space to delve into it here.

Incidentally, it was precisely the lack of a connection between mentalese

and the world (or between a computer’s symbols and the world) that was the

chief objection of Fodor (1978) when he argued against the AI-style “proce-

dural semantics” advocated by Johnson-Laird. The latter had written that the

“artificial languages, which are used to communicate programs of instructions

to computers, have both a syntax and semantics. Their syntax consists of rules

for writing well-formed programs that a computer can interpret and execute.

Their semantics consists of the procedures that the computer is instructed to

execute” (Johnson-Laird 1977, p. 189, our italics).

In an important critique of Johnson-Laird’s article that in some ways pre-

saged Searle’s Chinese Room argument, Fodor protested that:

The computer models provide no semantic theory at all, if what you mean by

semantic theory is an account of the relation between language and the world. In

particular, procedural semantics doesn’t supplant classical semantics, it merely

begs the questions that classical semanticists set out to answer.

. . .

a machine can compile ‘Did Lucy bring dessert?’ and have not the foggiest idea

that the sentence asks about whether Lucy brought dessert. (Fodor 1978, p. 229,

p. 235, his italics)

2.6 Philosophical issues

The three principal philosophical criticisms of strong AI that helped to change

the tide in the AI community and point to new research directions are the

following:

1 The critique of Hubert Dreyfus;

2 Block’s critique of machine functionalism via the China brain thought

experiments; and

3 Searle’s Chinese Room thought experiment.
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All three surfaced within ten years of one another. There had been several other

philosophical criticisms of strong AI before these (e.g., the ones by Lucas and

Penrose; see Chapter 3 of the present volume5), and there have been others

since.6 But these three generated the most debate and have had the greatest

impact.

Dreyfus’ critique was the first (Dreyfus 1972). It was a mixture of empir-

ical and philosophical arguments. Empirically, his main charge was that AI

researchers had simply failed to deliver the goods. Despite exceedingly opti-

mistic – and often grandiose – early forecasts, they had not managed to build

general-purpose intelligent systems. This line of criticism was generally dis-

missed as invalid and unfair: invalid because at best it showed that AI had

not succeeded yet, not that it could not ever succeed; and unfair because AI

was a very young field, and revolutionary technological breakthroughs could

not be expected from a field in its infancy, despite the overly enthusiastic

proclamations of some of its pioneers. Philosophically, Dreyfus argued that

our ability to understand the world and other people is a non-declarative

type of know-how skill that is not amenable to GOFAI-style propositional

codification. It is inarticulate, preconceptual, and has an indispensable phe-

nomenological dimension that cannot be captured by any rule-based system.

Dreyfus also stressed the importance of capacities such as imagination, ambi-

guity tolerance, and the use of metaphor, as well as phenomena such as fringe

consciousness and gestalt perception, all of which were – and continue to be –

resistant to computational treatment. Most importantly, in our view, Dreyfus

stressed the importance of relevance, emphasizing the ability of humans to

distinguish the essential from the inessential, and to effortlessly draw on

relevant aspects of their experience and knowledge in accordance with the

demands of their current situation, as required by their ongoing involvement

with the world.7 He correctly felt that imparting the same ability to a digi-

tal computer would be a major stumbling block for AI – what he called the

“holistic context” problem. The problem of relevance remains, in our view, the

key technical challenge to AI, both strong and weak, and to computational

cognitive science as well.

The claim that people do not go about their daily activities by following

rules points to a concern that has been a recurrent issue for strong AI and

CTM, and even for general mentalistic theories such as Chomsky’s generative

linguistics, and merits a brief discussion here before we move on to Block’s

5 See also Bringsjord 1992 for a sustained, detailed updating of all these criticisms.
6 For instance, see Bringsjord and Zenzen 1997.
7 It may be of historical interest to note that much of what Dreyfus had to say was couched

in the language of continental phenomenology and existentialism, heavily influenced by

thinkers such as Heidegger and Merleau-Ponty. That, unfortunately, was not conducive to

facilitating communication with AI researchers, or with analytic philosophers for that

matter.
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thought experiment. The objection has been made under somewhat different

guises by many philosophers, from Wittgenstein and Quine to Dreyfus, Searle,

and others. It has to do with the so-called psychological reality of rule-based

explanations of cognition, and particularly with computerized simulations

of mental processes. The issue hinges on the distinction between description

and causation, and also between prediction and explanation. A set of rules

(or a fortiori a computer program) might adequately describe a cognitive

phenomenon, in that the rules might constitute a veridical model of the gross

observational regularities associated with that phenomenon. They might fit

all available experimental data and make all the right predictions. But this

does not mean that there is actually an encoded representation of the rules (or

the program) inside our heads that is causally implicated in the production of

the phenomenon. A set of grammatic rules R might correctly describe certain

constraints on English syntax, for instance, but that does not mean that

English speakers have an encoding of R inside their brains which causes them

to produce speech in accordance with R. So even though R might correctly

predict behavior,8 it does not necessarily explain it.

The distinction is also known in the terminology of Pylyshyn (1991, p. 233)

as the difference between explicit and implicit rules. Implicit rules merely

describe behavioral regularities, whereas explicit rules have encoded repre-

sentations, presumably in our brains, which play a causal role in the pro-

duction of the regularities. The issue of psychological reality gives rise to

serious epistemological problems. What evidence would count as substantiat-

ing the claim that certain rules are explicitly encoded in our brains? How do

we distinguish between different sets of rules or different computer programs

that are nevertheless descriptively equivalent? What parts of a computerized

model should be ascribed psychological significance and what parts should be

ignored? Those who are sympathetic to Quine’s arguments about the radical

indeterminacy afflicting the study of language are likely to entertain simi-

lar misgivings about computational approaches to cognitive science and to

conclude that the above difficulties are insurmountable. (Although it is not

necessary to accept Quine’s indeterminacy arguments or his behaviorism in

order to reach such conclusions.) Chomsky views such fears as manifestations

of empirical prejudices about the human mind and of a deep-seated but unwar-

ranted methodological dualism which presupposes a sharp distinction between

the physical and mental realms. To him, the foregoing epistemological prob-

lems amount to nothing more than the usual inductive underdetermination

issue that regularly confronts all sciences. Computational cognitive scientists

such as Newell, Pylyshyn, and others have responded more concretely by

developing the notion of different levels of system description. Nevertheless,

8 In fact rules do not even do that, at least in Chomskyan linguistics, as they are supposed to

model idealized human competence rather than actual performance.
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serious issues with computational cognitive modeling remain, and many con-

tinue to feel that the epistemological difficulties facing such modeling do not

stem from the usual underdetermination problem found in the physical sci-

ences, but from a fundamentally different sort of problem that is much more

challenging.

A second influential criticism was directed specifically against machine

functionalism. It was delivered by Block (1978) in the form of a thought

experiment which asks us to imagine the entire population of China simulat-

ing a human mind for one hour. The citizens of China are all supplied with

two-way radios that connect them to one another in the right way. We can

think of the individual Chinese citizens as neurons, or whatever brain ele-

ments we care to regard as atomic. The people are also connected, via radio,

to an artificial body, from which they can receive sensory stimuli and to

which they can deliver output signals for generating physical behavior such

as raising an arm. According to machine functionalism, one would have to

conclude that if the Chinese simulated the right transition table faithfully,

then by virtue of being properly related to one another and to inputs and

outputs, they would in fact amount to a conscious mind. But this strikes us

as counterintuitive, if not patently absurd. The resulting system might well

be isomorphic to the brain, at some level of description, but it would not

seem to harbor any sensations, pains, itches, or beliefs and desires for that

matter. For similar reasons it would follow that no purely computational AI

system could ever be said to have a genuine mind. Some functionalists have

chosen to bite the bullet and concede that the “China brain” (or a properly

programmed robot) would in fact possess genuine mental contents, chalking

up our contrary intuitions to brain chauvinism, our propensity to regard only

neurological wetware as capable of sustaining a mental life. But this is hard

to swallow, and the thought experiment convinced many that unabashed

functionalism is too liberal and must be either abandoned or significantly

circumscribed.

The third seminal philosophical attack on strong AI was launched by Searle

(1980) with his now-famous Chinese Room argument (CRA). CRA has gener-

ated a tremendous amount of discussion and controversy, and we will only

provide a very cursory review of it here; for a detailed discussion the reader

is referred to Cole (2009; see also Chapter 3). CRA is based on a thought

experiment in which Searle himself stars. He is inside a room; outside the

room are native Chinese speakers who don’t know that Searle is inside it.

Searle-in-the-room, like Searle-in-real-life, doesn’t know any Chinese but is

fluent in English. The Chinese speakers send cards into the room through a

slot; on these cards are written questions in Chinese. The room, courtesy of

Searle’s secret work therein, returns cards to the native Chinese speakers as

output. Searle’s output is produced by consulting a rulebook: this book is a

lookup table that tells him what Chinese to produce based on what is sent

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139046855.004
https://www.cambridge.org/core


50 Konstantine Arkoudas and Selmer Bringsjord

in. To Searle, the Chinese is all just a bunch of – to use Searle’s language –

squiggle-squoggles. The gist of the argument is rather simple: Searle-in-the-

room is supposed to be everything a computer can be, and because he doesn’t

understand Chinese, no computer could have such understanding. Searle is

mindlessly moving squiggle-squoggles around, and, according to the argu-

ment, that’s all computers do, fundamentally. Searle has given various more

general forms of the argument. For example, he summarizes the argument as

one in which from the premises

1. Syntax is not sufficient for semantics.

2. Computer programs are entirely defined by their formal, or syntactical,

structure.

3. Minds have mental contents; specifically, they have semantic contents.

it is supposed to follow that

No computer program by itself is sufficient to give a system a mind. Programs, in

short, are not minds, and they are not by themselves sufficient for having minds.

(Adapted from Searle 1984, p. 39)

Many replies have been given to CRA, both in its original incarnation and

in the general form expressed above; perhaps the two most popular ones are

the systems reply and the robot reply. The former is based on the claim that

though Searle-in-the-room doesn’t understand Chinese, the overall system

that includes him as a proper part does. This means that the premise to the

effect that Searle-in-the-room is everything a computer can be is called into

question. The latter objection is based on the claim that though, again, Searle-

in-the-room doesn’t understand Chinese, this deficiency stems from the fact

that Searle is not causally connected to the outside environment in the right

manner. The claim is that in a real robot, meaning would be built up on

the basis of the robot’s causal transactions with the real world. So, though

Searle may in some sense be functioning in the room as a computer, he is not

functioning as a full-fledged robot, and strong AI is in the business of aiming

at building persons as full-fledged robots. Searle has put forth replies to the

replies, and the controversy continues. Regardless of one’s opinions on CRA,

the argument has undeniably had a tremendous impact on the field.

At the same time that philosophical criticisms like the above were being

made, serious technical problems with classical AI began to emerge. One

of them was the frame problem. By now the term has become quite vague.

Sometimes it is understood as the relevance problem that was mentioned ear-

lier (how to tell whether a piece of information might be relevant in a given

situation); sometimes it is understood to signify the apparent computational

intractability of holistic thought processes; and occasionally it is even mis-

understood as a generic label for the infeasibility of symbolic AI. Perhaps the

widest and least inaccurate reading of it is this: it is the problem of spelling
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out the conditions under which a belief should be updated after an action has

been undertaken. In its original incarnation the problem was more technical

and narrow, and arose in the context of a specific task in a specific framework:

reasoning about action in the situation calculus. The latter is a formal sys-

tem, based on first-order logic, for representing and reasoning about action,

time, and change. Its basic notion is that of a fluent, which is a property

whose value can change over time, such as the temperature of a room or the

position of a moving object. Fluents are reified, and can thus be quantified

over. Importantly, Boolean properties of the world are themselves treated as

fluents. Such a propositional fluent might represent whether or not an object

is to the left of another object, or whether the light in a room is on. The

world at any given point in time can be exhaustively described by a set of

formulas stating the values of all fluents at that point; such a description is

said to represent the state of the world at that point in time. Actions are also

reified. Each action has a set of preconditions and effects, both of which are

described in terms of fluents. If the preconditions of an action are satisfied

in a given state, then the action can be carried out and will result in a new

state satisfying the effects of the action. Starting from an initial state, which

presumably represents the world when a robot first enters it, many different

sequences of states are possible depending on the different courses of action

that may be undertaken.

To rule out outlandish models in which, for example, an action has effects

that are unrelated to it, we need to explicitly specify the non-effects of each

action via so-called “frame axioms.” While succinct ways of stating frame

axioms have been devised, the computational complexity of reasoning with

them remains a challenge. Several other proposed solutions have been put

forth, ranging from circumscription to altogether different formalisms for

representing and reasoning about action and change. It is noteworthy that

none of the proposed solutions so far comes anywhere near approaching

the efficiency with which young children reason about action. It has been

suggested that humans do not run into the problem of reasoning about the

non-effects of actions because they take it for granted that an action does not

affect anything unless they have evidence to the contrary. However, the real

problem, onto which philosophers such as Fodor have latched, is this: How

can we tell whether or not a piece of information constitutes “evidence to the

contrary”? There are at least two separate issues here. First we need to be able

to determine whether or not a piece of information is potentially relevant to

some of our beliefs. That is again the relevance problem. And second, we need

to be able to determine whether or not the information falsifies the belief.

These are both engineering problems for GOFAI and general philosophical

problems. On the engineering front, it is not too difficult to build a symbolic

system that reaches a reasonable verdict once the right background beliefs

have been identified. The major practical difficulty is quickly zeroing in on
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relevant information. Many have come to believe it highly unlikely that any

symbol-manipulating system can overcome this difficulty.

2.7 Connectionism and dynamical systems

Conceptual and engineering problems such as the above, combined with the

disillusionment that followed a brief period of excitement over expert systems

and the grand “fifth-generation” project launched in Japan during the 1980s,

helped to pave the way for a backlash against GOFAI approaches, both in AI

and in cognitive science. To a large extent that backlash was manifested in

the very rapid ascension of connectionism during the 1980s. Connectionism

had been around at least since the 1940s (the foundations had been laid by

McCulloch and Pitts (1943)), but only in the 1980s did it begin to emerge

as a serious alternative to GOFAI, largely due to the efforts of Rumelhart,

McClelland, and the PDP Research Group (1986).

The basic conceptual and engineering tool of connectionists is the neural

network. A neural network consists of a number of nodes (or “units”) that

resemble brain neurons. Each node receives a number of input signals and

delivers an output signal. The nodes are connected to one another so that

the output of one node becomes an input to another node. Input and out-

put values are typically represented by real numbers. The connections have

weights attached to them, which are also represented by real numbers. Intu-

itively, the weight of a connection represents the influence that one node has

on the output of another. The output of each node is a simple linear function

of the inputs; typically, the weighted sum of the input values is calculated,

and an output of 1 or 0 produced depending on whether or not the sum

exceeds a certain threshold. If the output is 1, the node is said to be activated,

or to fire; otherwise it is inhibited. Certain units are designated as the input

and output nodes of the entire network; typically there is only one output

node. Neural networks are capable of a certain type of learning; they can be

trained to compute – or approximate – a target function. General-purpose

learning algorithms exist, such as backpropagation, which, starting with ran-

dom weights, repeatedly expose the network to different inputs in a training

set and adjust the weights so as to bring the output closer to the correct

value. Neural networks have been constructed that perform well on various

nontrivial cognitive tasks, such as learning the past tense of English verbs or

synthesizing speech from written text.

Neural networks have a number of remarkable features that set them apart

from GOFAI systems. One of them is the absence of a central processing unit,

or of any explicitly coded instructions that determine the behavior of the

system. There are only individual nodes, and an individual node has only a

small amount of entirely local information: the input values it receives from

its neighbors. Owing to this massive locality and interconnectedness, neural
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networks are capable of graceful degradation, meaning that if some parts

of the network are damaged, the network as a whole continues to function,

with a performance drop that is more or less proportional to the amount of

damage. In contrast, symbol-manipulating systems are usually brittle; a small

deviation from the programmed course of events can lead to catastrophic

failure. Such brittleness is atypical of human intelligence. Like the performance

of neural networks, human cognition will suffer a continuous and graceful

degradation under adverse conditions, instead of an abrupt general failure.

Second, representation is distributed, in that pieces of information are not

encoded by concrete symbolic structures; rather, a piece of information is

essentially represented as a pattern of activity over the entire network: the

firings of the various nodes. And the overall “knowledge” encoded by a neural

network essentially resides in the weights of the various connections; it is

sub-symbolic and highly distributed. An important corollary of distributed

representation is that neural networks end up sidestepping the vexing question

of content that arises for classical CTM. The question of how atomic symbols

manage to acquire their meaning does not arise – because there are no atomic

symbols.

These interesting features of neural networks, in combination with the fact

that they appear to be more biologically plausible than digital computers,

continue to appeal to many cognitive scientists and AI engineers, and inten-

sive research in the field is continuing unabated, although so far there have

been relatively few outstanding achievements. The problem of common sense,

however, resurfaces in the setting of neural networks in a different guise. The

intelligence exhibited by a (supervised) neural network is pre-built into the

system by the human modeler who trains the network. But this is not enough

to sufficiently circumscribe the space of possible hypotheses so as to rule out

generalizations which are legitimate from the perspective of the training data

but inept and inappropriate from the human perspective. There are legions of

stories about neural networks which, after intensive training, came up with

generalizations which had learned to distinguish features that were entirely

irrelevant to the human modeler (indeed, features which had not even been

noticed by the modeler). Moreover, in terms of computational power, anything

that can be done by neural networks can be done by Turing machines, and

therefore, by Church’s thesis, there is nothing that neural networks can do

which cannot also be done, say, by LISP programs. This entails that even if

brains turned out to be giant neural networks of sorts, it would be possible in

principle to simulate them with perfect precision using classical GOFAI tech-

niques. It would follow, for instance, that there do exist rule-based systems

capable of passing the Turing Test, even if those systems are so incredibly

vast and unwieldy that it is practically impossible to build them. (Although,

should brains turn out to be nothing but neural networks, that would cer-

tainly prove that it is not necessary for a system to deploy a symbolically
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encoded rule-based theory of a domain in order to achieve competence in

that domain.) There are other issues related to the question of whether neural

networks could ever manage to achieve general intelligence, including the

famous systematicity debate, which was started by Fodor and Pylyshyn (1988)

and is still ongoing, but we will not take these up here (see Chapter 3).

Closely related to connectionism is the dynamical-systems approach to intel-

ligence (Port and van Gelder 1995). This approach draws on the general the-

ory of nonlinear dynamical systems, conceiving of the mind as a continuous

dynamical system – essentially a set of variables whose values evolve con-

currently over time. The evolution of the system is typically described by a

set of laws, usually expressed by differential or difference equations. The state

of the system at a given moment in time is described by the values of the

variables at that moment. The values of the variables at subsequent times

(i.e., the dynamic trajectory of the system through the space of all possible

states) is determined by the present state and the dynamical laws. Dynamical

systems theory, however, is used to do pure cognitive science, not AI. That is,

it provides a set of conceptual resources for understanding cognition and for

modeling aspects of it as dynamical systems, but not for building intelligent

systems. Accordingly, we will not have much to say on it here (though see

Chapter 6). Nevertheless, the advocates of the dynamical-systems approach

to cognition typically emphasize the importance of time, context, interac-

tion, embodiment, and the environment, and have thus been natural allies of

situated and embedded AI, to which we turn next.

2.8 AI from below: Situated intelligence

As disillusionment with GOFAI began to take hold in the 1980s, AI researchers

such as Rod Brooks of MIT were coming to the conclusion that systems which

relied on detailed symbolic representations of the world, baked in ahead of

time by the engineers, and on action generation via detailed logical planning,

were infeasible, brittle, and cognitively implausible. They encouraged a shift

of focus from higher-order symbolic tasks such as deductive reasoning to

lower-level, ostensibly “simple” perceptual and motor tasks, such as sensing,

moving, turning, grasping, avoiding obstacles, and so on. They maintained

that only fully embodied agents capable of carrying out these tasks adeptly

can be truly validated as artificial agents, and that only full embodiment

has any hopes of properly “grounding” an artificial agent in the real world.

GOFAI had either completely ignored or minimized the importance of such

activities. Perceptual and motor faculties were seen as mere “transducers,”

peripherally useful and relevant only inasmuch as they delivered symbolic

representations of the world to the central thought processes or deployed

effectors to translate the outcomes of such processes into bodily movements.
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Surely what differentiates humans from insects, GOFAI advocates thought, is

our capacity for rational thought.

Brooks and his co-workers argued that bodily capacities were far from

trivial – indeed, GOFAI had proved inept at building systems that had them.

Moreover, they held that the study of such capacities could lend us valuable

insights on how higher-order cognition could emerge from them. Language

and the capacity for symbolic thought have emerged very recently in human

history, a consideration which suggests that evolution has put most of its

effort into building up our sensory and motor systems. Once we understand

the seemingly simple and mundane workings of such systems, the puzzle of

intelligence might begin to dissolve. Language and reasoning will become

simple once we know how to build a robot that can successfully navigate the

physical world, for, according to Brooks, the “prime component of a robot’s

intellect” is not to be found in reasoning but rather in “the dynamics of the

interaction of the robot and its environment.” Essentially, the AI research pro-

gram pursued by Brooks and his followers, which became known as situated

AI,9 amounted to “looking at simpler animals as a bottom-up model for build-

ing intelligence” (Brooks 1991, p. 16). To borrow a phrase from historians, this

was, in a sense, AI “from below.”

A key point made by Brooks and his team was that intricate symbolic

representations of the world are unnecessary for solving a wide variety of

problems. Many problems can be more efficiently tackled by doing away with

representations and exploiting the structure of the surrounding environment,

an idea captured in the slogan “the world is its own best representation.”

Continuously sensing and interacting with the world in a closed feedback loop

was thought to be a much more promising approach than building a static

symbolic “model” of it (described, say, as a state in the situation calculus)

and reasoning over that. Brooks and his team demonstrated their approach by

building a robot named Herbert, whose task was to roam the halls of the MIT

AI Lab with the goal of identifying and disposing of empty soda cans. Herbert

was built on a so-called subsumption architecture, consisting of a number of

independent modules, each of them specialized for performing a specific task,

such as moving forward. At any given time, a module might become activated

or suppressed depending on the stimuli dynamically received by Herbert. The

overall system relied on little or no internal representations and symbolic

manipulation, but managed to exhibit surprisingly robust behavior (see also

Chapter 13).

By turning the spotlight away from internal representations and processes

toward external behavior and continuous interaction with the environment,

9 Also known as embedded or embodied AI.
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Table 2.1 The main differences between GOFAI and

situated/embodied AI

Classical Embodied

representational non-representational

individualistic social

abstract concrete

context-independent context-dependent

static dynamic

atomistic holistic

computer-inspired biology-inspired

thought-oriented action-oriented

the work of Brooks and other situated-AI researchers marked a reverse shift

away from the cognitive revolution and back towards behaviorism. Indeed,

some have spoken about a “counter-revolution” in AI and cognitive science.

We believe that such claims are exaggerated; the majority of researchers in

these fields are not willing to renounce the scientific legitimacy of repre-

sentations in explaining the mind or their usefulness as engineering tools.

Nor should they, in our view. The points made by the situation theorists

have been well taken, and AI as a whole now pays considerably more atten-

tion to environmental context and embodiment. That is a positive develop-

ment, and the trend is likely to persist. But the existence of mental repre-

sentations seems as undeniable now as ever. People can simply close their

eyes, shut their ears, and do some very nontrivial thinking about the possible

effects of their actions, the tenth prime number, logical consequences of their

beliefs, the structure of our solar system or water molecules, unicorns, and

so on. The premise that such “classical” thinking will become straightforward

once we understand how we tie shoelaces is dubious, and has been called

into question (Kirsh 1991). In summary, Table 2.1 provides a rough graphi-

cal depiction of the main differences between GOFAI and situated/embodied

AI.

It is noteworthy that the advent of situational theories in AI and cognitive

science had already been mirrored – or has since been mirrored – by similar

movements in several areas of philosophy. In philosophy of language, for

instance, the ordinary-language turn that started to occur in Oxford in the

1950s, primarily as a reaction against logical positivism, can be seen as a

precursor to the behavioral backlash against cognitivism. Speech-act theory,

in particular, initiated by Austin and then taken up by Strawson, Searle, and

others, was the first to emphasize that the key unit of linguistic meaning was

not an abstract sentence but rather an utterance, thereby shifting attention
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from an isolated theoretical entity (the sentence) to a concrete act carried out

by real people in real time. The trend has continued and strengthened, partic-

ularly as seen in the subsequent development of pragmatics and the growing

recognition of the extensive and very intricate dependence of meaning on

deictic and other contextual factors.

Roughly similar developments took place in the philosophy of science and

mathematics, again to a large extent as a reaction against positivism. In sci-

ence, philosophers such as Thomas Kuhn and Joseph Agassi emphasized that

abstract systems of justification (essentially inductive and deductive logics)

are poor models of scientific practice, which is, above all, a human activ-

ity that is highly contingent on social interaction and cultural and political

factors. In mathematics, philosophers such as Lakatos (1976) and social con-

structivists such as Barnes and Bloor (1982) launched vigorous attacks against

“Euclideanism,” the formal style of doing mathematics whereby a seemingly

indubitable set of axioms is laid down as the foundation and deductive con-

sequences are then derived cumulatively and monotonically. That style, it was

claimed, is too neat to reflect “real” mathematics. In fact it completely dis-

regarded the process of doing mathematics (actually coming up with results),

the dynamic and live aspects of the field.

We do not claim that all these threads necessarily influenced one another,

or that there was anything inexorable about any of them. Nevertheless, the

existence of certain salient common points of reference and underlying simi-

larities is undeniable. There has been an overall trend away from statics and

toward dynamics, from the abstract and decontextualized to the concrete and

context-bound, from justification to discovery, from isolated contemplation

to social interaction, and from thinking to doing. A dominant and recur-

rent theme has been the conviction that genuine understanding will never be

attained by taking something that is dynamic and evolving, reactive, plastic,

flexible, informal, highly nuanced, textured, colorful, and open-ended; and

modeling it by something static, rigorous, unbending, and inflexible – that

is, essentially by replacing something alive by something that is dead. The

trends in question are not unrelated to the increasing prominence of social

sciences, cultural anthropology, feminist studies, and so on, and to a large

extent the conflict between GOFAI and situated AI can be seen as a reflection

of the infamous science wars, the clash between traditional “objectivist” meta-

physics and social constructivism, and more recently, in the case of cognitive

science, the rationality wars, where situational theorists have been question-

ing the “ecological validity” of classical cognitive science and psychology

laboratory experiments, and calling for a greater focus on ethology, ecologi-

cal validity, and “real” behavior exhibited in the “real” world (as opposed to

the supposedly artificial and highly constrained conditions of the laboratory).

Our remarks here are not intended as a commentary on the science wars, but
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merely as an effort to provide a greater context for understanding the back-

lash against GOFAI and the emergence of situational approaches to AI and

the study of the mind.

2.9 The future of AI

If past predictions are any indication, the only thing we know today about

tomorrow’s science and technology is that it will be radically different from

whatever we predict. Arguably, in the case of AI, we may also know today that

progress will be much slower than what most expect. After all, at the 1956

kickoff conference at Dartmouth College, Herb Simon predicted that thinking

machines able to match the human mind were “just around the corner” (for

relevant quotes and informative discussion, see the first chapter of Russell

and Norvig 2003). As it turned out, the new century would arrive without a

single machine able to converse at even the toddler level. When it comes to

building machines capable of displaying human-level intelligence, Descartes,

not Turing, seems today to be the better prophet. That has not stopped people

from continuing to issue exceedingly optimistic predictions. For example,

Moravec (1999) declared that because the speed of computer hardware was

doubling every eighteen months (in accordance with Moore’s Law, which has

apparently held in the past), “fourth-generation” robots would soon enough

exceed humans in all respects, from running companies to writing novels.

These robots, so the story goes, will evolve to such lofty cognitive heights that

we will stand to them as single-cell organisms stand to us today.

Moravec is by no means singularly Pollyannaish. Many others in AI predict

the same sensational future unfolding just as rapidly. In fact, at the fiftieth

anniversary celebration at Dartmouth of the 1956 AI conference at the uni-

versity, host and philosopher Jim Moor posed the question “Will human-level

AI be achieved within the next 50 years?” to five thinkers who attended the

original conference: John McCarthy, Marvin Minsky, Oliver Selfridge, Ray

Solomonoff, and Trenchard Moore. McCarthy and Minsky gave firm, unhesi-

tating affirmatives, and Solomonoff seemed to suggest that AI provided the

one ray of hope in the face of the fact that our species seems bent on destroying

itself. (Selfridge’s reply was a bit cryptic. Moore returned a firm, unambiguous

negative, and declared that once his computer is smart enough to interact with

him conversationally about mathematical problems, he might take this whole

enterprise more seriously.)

Moor’s question is not just for scientists and engineers; it is also a question

for philosophers. This is so for two reasons: (1) research and development

designed to validate an affirmative answer must include philosophy, for rea-

sons expressed above; (2) philosophers might be able to provide arguments

that answer Moor’s question now, definitively. If any of the strong critiques

of AI that we have discussed is fundamentally correct, then of course AI will
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not manage to produce machines having the mental powers of persons. At

any rate, time marches on, and will tell.

Further reading

Introductions
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ficial Intelligence. Edinburgh University Press. An accessible general intro-

duction to philosophical issues in artificial intelligence (sympathetic to com-

putationalism).
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Press. Another lucid exposition of the big AI questions at a generally intro-
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Chinese Room argument.
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3 Philosophical challenges

William S. Robinson

Descartes (1637/1931, p. 116) held that our reason was a “universal instru-

ment.” Since he believed that any mechanism has to have some special

purpose, and that no collection of special purpose mechanisms could be large

enough to encompass all that reason can do, he concluded that no mechanism

could instantiate human reason. Aquinas (1265–72, I, Q.75, a. 2) also argued

that intellect was not provided by a material organ. He believed that a

disease-induced bitter humor could interfere with our tasting sweetness, or

any taste different from bitter. Analogously, he thought that if our intellects

were material, they would be prevented from knowing material things of

different natures.

Most contemporary philosophers would accept that our intelligence is pro-

vided by our material brains, and thus would be disinclined to challenge the

possibility of artificially intelligent devices on the ground of their materiality.

The questions and problems about artificial intelligence that remain can be

divided into those that are largely independent of particular approaches to

AI, and those that are prompted by more specific ideas about artificially

realizable cognitive architectures. We shall begin with the more general

issues.

3.1 General questions

3.1.1 Terminological preliminaries

Some tasks would be generally agreed to require intelligence for their

execution – for example, finding the quotient of 231 divided by 42. One may

say that a device has artificial intelligence just in case it can be used by us

to carry out a task that would be agreed to require intelligence for execution

by a human being. I shall call possession of intelligence in this sense “task

intelligence.” Calculators can be used to find the quotient of 231 divided

by 42, so, evidently, even calculators have task intelligence. Artificial task

intelligence is not controversial; not even Aquinas or Descartes would have

reason to object to task intelligence. We must note, however, that calculators

do not know what the answers to arithmetic problems are, nor do they know

they are doing arithmetic. It is thus clear that we are not entitled to move
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from possession of task intelligence to grander claims about the intelligence

of the thing that we can use to carry out a task.

The intended contrast to task intelligence is “thing intelligence.” If a device

has artificial thing intelligence, then it – the device – is intelligent. Con-

troversial contemporary questions concern the possibility of artificial thing

intelligence, and various approaches to its design.

We may distinguish between two species of thing intelligence by borrowing

some terminology from the gas station. Let us say that a device has premium,

artificial, thing intelligence (or “premium AI”) if it has its intelligence in a

way that is enlightening about how humans have their thing intelligence.

If a device has its intelligence in a way that is not enlightening about how

humans have their intelligence, let us say that it has regular, artificial, thing

intelligence (or “regular AI”). It is to be noted that regular gasoline is real

gasoline; likewise, regular AI is real intelligence.

Compatibly with these definitions, it could turn out that there is no real

difference between regular and premium AI; that is, it could turn out that the

only way to provide thing intelligence in a device is to provide it in a way

that would be enlightening about how we have intelligence. But it is not an a

priori truth that this is so, and so we need both terms.

Searle (1980) introduced a distinction between strong AI and weak AI.

Strong AI is the thesis that “the appropriately programmed computer really is

a mind, in the sense that computers given the right programs can be literally

said to understand and have other cognitive states” (p. 417; emphases in orig-

inal). Weak AI claims only that computers provide a useful tool for rigorous

formulation and testing of hypotheses about the mind.

Searle’s distinction enabled him to readily focus his argument which, as

we shall see later, was directed only against the strong AI thesis. But for

more general purposes, we need the further distinctions just introduced. The

regular/premium distinction enables us to recognize two possibilities within

strong AI. And the task/thing distinction permits us to agree with most writers

in what counts as work in AI research while recognizing that philosophi-

cal challenges are generally directed at claims that a device could itself be

genuinely intelligent, or have cognitive states of its own.

Since there is no real issue about the possibility of task intelligence, unqual-

ified occurrences of “intelligence” in what follows will always mean “thing

intelligence.”

3.1.2 The Turing Test

If we suppose that an artificially intelligent device is possible, the question

arises as to how we might know when we had succeeded in producing one.

Although Alan Turing (1950) suggested that we replace such questions with

questions about the performance in his “imitation game,” his proposal has

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139046855.005
https://www.cambridge.org/core


66 William S. Robinson

often been treated as a test, the “passing” of which would show that a device

possessed intelligence.

In its standard interpretation, the Turing Test (as it has come to be known)

consists of a series of trials in which an interrogator interacts with both a

machine and a human, and, after some specified finite time, renders a judg-

ment, either “X is human, Y is a machine” or “Y is human, X is a machine.”

Turing’s examples (ranging from analysis of poetry to arithmetic problems)

show that interrogators are presumed to understand their task to be correct

identification and that they are to have the widest latitude in what they might

ask. The only limitation he put on required performance was that it be exhib-

ited via teletype. A 50 percent success rate for interrogators’ declarations

would mean that they were learning nothing from comparing human and

machine responses to their probes, and rates close to that would plausibly

count as “passing” the Turing Test. Provided it is agreed that engaging in

conversation requires extensive use of our intelligence, the argument can be

advanced that successful devices (devices that “pass”) are exercising intelli-

gence. Such an ability would resist being classified as mere task intelligence,

because the range of allowable probes is so wide.

Interestingly, it was conversational ability that Descartes predicted artifacts

would never be able to achieve. In contrast, Turing (1950) made a famous

prediction that by 2000, devices would exist for which interrogators would

not do better than 70 percent correct after five minutes of questioning. This

failed prediction is, of course, to be distinguished from the view that doing well

on the Turing Test would show that a device possessed intelligence, if such an

achievement were actually attained. Since 1990, an annual competition for

the Loebner Prize has sought to stimulate work toward this goal.

Alternative interpretations of Turing’s description of his procedure have

been advanced, and several suggestions have been made for improving it. The

journal Minds and Machines published fiftieth anniversary issues in 2000 that

contain discussions of several of these interpretations and suggestions.

Ned Block (1981) described a machine that appears to undercut the accept-

ability of the Turing Test. Workers begin by listing all gambits with which an

interrogator might begin. These openers are alphabetized, and for each one

a response is composed for the machine such that the combination of inter-

rogator’s opener and machine response is plausible as a human conversation.

The workers then list and alphabetize all possible next probes by interroga-

tors. (Since interrogators may change the subject whenever they please, later

probes will include almost all earlier ones.) Again, responses are composed

such that each combined series of opener + response + further probe +

response is plausible as a human conversation. The workers continue in this

fashion until conversations of the predetermined finite length are reached.

During a Turing Test trial, the machine simply finds the interrogator’s probes

in the alphabetized list and returns the stored responses.
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The argument that proceeds from this description is that Block’s machine

would pass the Turing Test, but is evidently not intelligent. (It is just canning

plus a mere look-up device and has no more intelligence than a grocery store

bar code reader system.) Therefore, the Turing Test is not a good test for

intelligence.

Dissenters from this argument can concede that the logical possibility of

Block’s machine (aka, the Blockhead) prevents the Turing Test from being used

as a definition of intelligence. But they may still claim that the vastness of

the space of possible probes makes the probability of the actual existence of

Block’s machine vanishingly small and that, consequently, Turing’s procedure

can still be a highly effective test of intelligence.

3.1.3 Purpose, consciousness, and intentionality

Intelligent behavior is purposive; it implies some sort of goal, even if only that

of giving a correct answer to a question. It is difficult to imagine an action’s

having a point unless, sooner or later, someone’s pleasant or unpleasant bod-

ily sensation, emotion, religious transport, elation or depression is contingent

upon that action. Arguably, none of the terms for such states can be fully

understood by beings that cannot be in any of them. These states are, how-

ever, conscious states. Thus, it may be held that artificial intelligence would

require artificial consciousness. Since most approaches to AI are not aimed at

producing consciousness, it may be doubted that typical approaches to AI can

really succeed.

Most AI researchers, however, would be satisfied if they could provide

appropriate responses to purposes∗, where purposes∗ are just like purposes

except that they do not involve consciousness. That is, purposes∗ function as

goal states by reference to which activities may be organized. The purpose∗

of a chess-playing machine is to win, and success by this standard will likely

be counted as a success for task AI even if no one supposes that the machine

feels elation upon winning, or is desolated by losing. If the range of tasks

for which similar remarks would apply were sufficiently wide and varied,

thing intelligence would plausibly be achieved. For example, a robot that

could do one’s grocery shopping, including separating ripe from unripe fruit,

adjusting to changes in bus schedules, weather-related delays, and so on,

would plausibly be counted as artificially (thing) intelligent, without there

being any supposition that it has conscious tastes or feelings of satisfaction

for a job well done.

A deeper line of argument holds that thoughts can be about things only if

they are products of an evolutionary history in which survival functions as

a naturally provided goal (Dretske 1995). Since robots lack the required kind

of evolutionary history, it might be concluded that their “thoughts” cannot

really be about anything. It is, however, controversial whether such a history is
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required for genuine intentionality (aboutness). And even if it were agreed that

it is required, many thinkers would be quite happy to settle for intentionality∗,

that is, to claim success in providing artificial intelligence for any robot that

could not only talk well but also suit its actions to its words while engaging

with real-world objects and processes in real time.

Possession of intentionality (or even intentionality∗) suggests possession of

internal states or events that represent worldly objects and their properties. We

shall see that questions about representations and their use play an important

role in many challenges to AI.

A further doubt about machine intentionality and robotic thing intelligence

has been raised by Searle (1992). His view is that computation is not intrinsic

to any physical system; instead, it is “observer relative,” that is, assigned by

possessors of genuine intentionality such as ourselves. We can, for example,

view a light switch as a computer by assigning 0 to “Off”, 1 to “On” and

regarding each movement of the switch as taking 0 or 1 as input and giving

1 or 0, respectively, as output. By suitable choice of assignments, we could

regard any sufficiently complex system as computing anything we like. Since,

as Searle puts it, syntax is not intrinsic to physics, no physical account of a

robot’s states could determine that any of them are about anything, even if

we could choose an assignment that would make the robot useful to us.

Dissenters from Searle’s view argue, in brief, that we can achieve a non-

arbitrary assignment of meanings to a robot’s linguistic and non-linguistic

behaviors, provided that the robot is sufficiently complex and competent; that

we include causal relations between its states and its external environment;

and that we further include what its behavior would have been under coun-

terfactual conditions. Success in this line would support attribution of thing

intelligence to such a device. Useful further discussions of this somewhat

technical issue can be found in Chalmers (1996) and Piccinini (2010).

3.1.4 Mechanism vs. rationality

Intelligence worthy of the name ought to approximate rationality. Rationality

has sometimes been held to be in conflict with mechanism. If there really is

such a conflict, then artificial intelligence will not be possible.

The putative conflict is that rationality is normative and causation of the

kind found in devices such as computers and robots is not. To explain: Being

rational requires proceeding according to norms of correct inference, including

deductive cases (e.g., accepting modus ponens and rejecting affirming the

consequent) and inductive cases (e.g., inferring high probability from high

frequency in observed samples, or applying the principle of total evidence).

But mechanical causation as such is no respecter of logical norms; it is as

easy to cause a device to print out 2 + 2 = 5 as it is to cause it to produce a

correct statement.
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An alternative formulation of the same point goes this way. A rational

being may be characterized as one that adjusts its beliefs in light of evidence

because that evidence is understood to be relevant to the belief. But computers

and robots change their internal states only because of their inputs and their

wiring. Therefore, none of their changes of state can be regarded as exhibiting

rationality.

In response to this challenge, proponents of AI can concede that the class

of artificial devices contains many examples that do not respect rationality.

Other members of the class, however, may be designed in such a way that

their mechanistic operations parallel correct principles of inference. (Mech-

anistic operations are changes or series of changes in physical systems that

proceed in accordance with natural laws. Mechanical systems – e.g., pendulum

clockworks – are paradigmatically mechanistic, but electrical systems, neural

systems, etc. are mechanistic without being mechanical. See Dennett 1973.)

Proponents of AI may hold that evolution has designed our brains in just this

way – that is, that our brains are neural mechanisms that are ordered so as

to constrain our beliefs by logical principles. That such a design is possible is

illustrated by devices as simple as calculators, which clearly work mechanis-

tically and also clearly respect the principles of arithmetic. From this point of

view, the problem of AI is the problem of finding designs whose mechanistic

operations parallel application of logical principles over a wide range of cases.

(Perfect rationality is not required for AI because it is generally conceded that

human beings are intelligent, but not perfectly rational.)

Devices of the kind just indicated may not have their state changes caused

by logical or evidential relations; but it will be held that it is just as good

if a design makes an addition to its set of beliefs only in cases where the

proper logical or evidential relation holds. In support of this conception, it

may be argued that this must be how it is with human beings. Logical and

evidential relations are abstract entities and thus cannot be causes of particular

events. It is only devices whose designs constrain events within themselves to

conform to logical and evidential principles that can have causes of changes

that respect those principles.

Free will has often been associated with rationality (Aquinas 1265–72/1945,

I, Q83, a. 1; Hasker 1999), and this association can generate a challenge to

AI. Robots, no matter how sophisticated, would be governed by deterministic

laws and thus some would say they lack rationality because, according to one

tradition, deterministic systems lack free will. Of course, such a stance would

be incompatible with regarding human intelligence as completely explainable

by reference to the activity of our material brains. There is, however, a long

standing “compatibilist” tradition according to which free will is not in conflict

with deterministic mechanism. (Hume 1748, viii; Ayer 1954; Dennett 1973.)

Broadly speaking, this tradition holds free will to be present when reasoning

processes have their normal effects on behavior. Deprivations of free will occur
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only when reasoning processes (such as deriving consequences of actions) are

interfered with by being damaged, bypassed, or overruled by brute force.

This distinction between reasoning processes that are operating normally, and

reasoning processes that are interfered with in sundry ways, would seem to

be applicable to the operations of robots. Thus, if the compatibilist tradition

can be sustained on independent grounds, the suspicion of conflict between

robotic intelligence and free will may be able to be allayed.

3.1.5 Gödelian arguments

Gödel (1931) proved a mathematical result that has sometimes been held to

imply a limitation on machine intelligence. To understand the plausibility of

this view, we may begin by imagining a treatment for arithmetic modeled

on Euclid’s treatment of geometry. That is, we may imagine a system that

begins with some axioms that (given a standard scheme of interpretation of

the signs in the system) are about addition and multiplication. For example,

one of the axioms might be a formula whose standard interpretation is “There

is a number n such that, for any number m, n times m equals m.” The further

development of the system would then consist of formulas derived from the

axioms, whose standard interpretations would be statements of arithmetic.

Gödel was concerned with formal systems, that is, systems in which proof

can be defined in terms of explicit rules for adding formulas to the system. An

example of such a rule is that if statements p and p → q are already theorems

of the system, then q may be added to the list of theorems.

Intuitively, two properties would seem to be desirable in a formal system for

arithmetic. One, it should be consistent; that is, our system should not contain

proofs for two formulas whose standard interpretations are contradictions of

each other. Two, we would like our system to be complete; that is, we would

like to have a system such that for each and every true arithmetical statement,

there is a formula, derivable in the system, whose standard interpretation is

that statement.

Gödel’s amazing result was that no formal system for arithmetic can be

both consistent and complete. To condense a long and difficult story, Gödel

showed how each formula of a proposed formal system for arithmetic could

be assigned a unique number (its “Gödel number”). He further showed that

any system that provided for a certain portion of arithmetic could be used to

construct formulas whose standard interpretation would say that the formula

with Gödel number N is not a theorem of that system. Finally, he was able to

show that any system, s, that provided for that portion of arithmetic would

contain some formula (let us call it G(s), the Gödel sentence for system s)

whose interpretation was “The formula with Gödel number N is not provable

in s” and whose Gödel number was N. If this formula were provable in s,

then formulas standardly interpretable as “G(s) is provable” and “G(s) is not
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provable” would both be derivable, and the system would be inconsistent.

If, however, G(s) is not provable in the system, then what it says is a true

arithmetical statement that is not derivable in the system, and thus the system

is incomplete.

The argument that has been based on this result begins with the observation

that any mechanism can be represented as a formal system in which the

outputs of the mechanism correspond to theorems of that formal system.

So, since all formal systems must be either inconsistent or incomplete for

arithmetic, any mechanism must either produce inconsistent outputs or be

unable to produce all the truths of arithmetic. In particular, a mechanism

would be unable to produce G(s), where “s” is the formal system that represents

that mechanism.

However, some thinkers (e.g., Lucas 1961; Penrose 1989, 1994) have argued

that by using ideas contained in Gödel’s method of proving his theorem,

human mathematicians could come to understand the truth of any arithmetical

proposition, including the Gödel sentence of whatever formal system one

might propose as representing their cognitive abilities. And they could do

this without thereby contradicting themselves. If this is right, then human

cognitive ability outstrips the capabilities of any possible mechanism.

Many philosophers (e.g., Putnam 1960; Robinson 1992, 1996) have criti-

cized various aspects of this attempt to apply Gödel’s work. A key point of

dissent begins with the observation that the supposed limitation on abilities

of mechanisms requires the demonstration that there is something that we can

do, but machines cannot. However, both a mechanism that is represented by

system s, and we (if we study Gödel’s work) can prove that

1 If s is consistent, then s cannot prove G(s).

But neither we nor the mechanism represented by s can prove that

2 s cannot prove G(s).

Of course, if human mathematicians could prove that they were consistent,

they could argue that substituting themselves for ‘s’ would enable them to

derive (2). That would lead to a contradiction (since G(s) says that s cannot

prove G(s)), and so they would be in a position to reject the supposition that

they are substitutable for ‘s’. Since, in this argument, s can be any mechanism,

the result would be that human mathematicians could always legitimately

reject the supposition that they are equivalent to a mechanism.

However, this line of defense rests on the premise that human mathemati-

cians can prove themselves to be consistent. It is far from evident that this

can be done. Further, another of Gödel’s results is that if a formal system

is consistent, it cannot contain a proof that it is. If we cannot prove we are

consistent, then it remains open that (1) is provable by both machines and us,
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and (2) is provable by neither; and a difference in what is possible for us and

what is possible for machines will not have been shown.

3.2 The classical approach to AI

If doubts about the possibility of machine intelligence are thought to be

answerable, the question arises as to how machine intelligence might be pro-

duced. In this and the next two sections, we will consider the three leading

approaches to this question.

The classical approach to AI (aka GOFAI, or Good Old-Fashioned Artificial

Intelligence, after Haugeland 1981) developed from factors discussed in the

preceding sections. Logical principles (or, rules) apply to propositions and,

in general, depend on the terms and internal structure of those propositions.

(For example, accepting “All bats are mammals, all mammals are warm-

blooded, therefore, all bats are warm-blooded” depends on appreciating the

force of “all” and the identity and order of the subject and predicate terms that

occur in these statements.) It seems natural, therefore, to conceive intelligence

(whether natural or artificial) as involving states that correspond to terms and

structures of terms, and rules for operations on these terms and structures.

And rules seem very naturally embodied in programs – indeed, the form “If

condition X is satisfied, do Y, otherwise do Z” can be described as a rule to do

Y if X, and Z if not X. Continuing this conception, one can regard data entries

as (structured) representations of facts, and programs as ways of embodying

rules for manipulation of such representations.

The classical approach to AI has received a number of well-known chal-

lenges, which we will now consider.

3.2.1 Searle’s Chinese Room

Schank and Abelson (1977) related understanding to scripts, which consist

of stored knowledge about the structure of specific situations – for example,

eating in a restaurant, or going to a theatrical performance. A brief remark or

story can invoke a script, and the knowledge in the script can then be used to

guide expectations and responses. Schank and Abelson held that we acquire

many scripts, and that “most of understanding is script-based” (p. 67).

Schank and Abelson’s work provided some of the background for a famous

article by John Searle (1980). Searle envisaged himself in a room containing

scripts in Chinese, stories in Chinese, and a program (in English) that per-

mitted operations on Chinese characters solely in virtue of their shapes (i.e.,

neither translations nor the means of making translations were provided).

Searle imagined receiving questions written in Chinese and executing the

program. Sometimes the program would command the copying of a shape

onto a piece of paper, and a series of these would eventually be passed to
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native Chinese speakers outside the room. Searle allowed that these answers

could be as good (from the point of view of the questioners) as one pleases,

so that people on the outside would have every reason to think that some-

thing in the room had understood the questions. But in fact Searle knew no

Chinese and understood nothing; from his point of view, there was nothing

more than the identifying of squiggles and squoggles in various positions and

sequences, and the occasional copying of shapes onto the output paper. If a

paper is passed in that says, in Chinese, “Yell if you want a hamburger,” Searle

might pass out a paper with the Chinese for “Yes, I’d like a hamburger” but

he would have no reason to yell, even if he were ravenously hungry.

Searle’s argument concedes the possibility of a certain kind of achievement,

and it will be convenient to have a term for this achievement. For this purpose,

I introduce the term “flexibility”, as follows.

“X has flexibility” = df X can respond appropriately to a wide range of novel

circumstances.

“Appropriate,” “wide range,” and “novel” are not precise terms, but they are

not obviously less precise than “intelligence” and it appears that flexibility as

just defined captures at least part of what would be expected from anything

that is said to have intelligence.

What Searle characteristically denies to programs is not flexibility, but

understanding, and one way of expressing his conclusion is that flexibil-

ity can be achieved without understanding. Another is that formal symbol

manipulation (i.e., manipulation of symbols in virtue of their shapes alone)

is inadequate to the task of providing understanding. Mere syntactical pro-

ficiency, however appropriate and wide ranging, cannot provide semantic

content (meaning; understanding). Demonstration of flexibility is thus not

demonstration of intelligence, if “intelligence” is taken to require understand-

ing. Formal symbol manipulation is exactly what computers do, so what

computers do is inadequate to providing understanding. They may provide

words that we, who have understanding, can take to be about things in the

world; but for them, there is no intentionality – that is, for them their symbols

are just shapes and are not about anything at all.

Searle considered a number of objections to his argument. A prominent one

is the Systems Reply. We can think of the Systems Reply as a claim about

where to draw the proper shortest boundary of an understander; namely, it

is to be drawn around the whole system, where the whole system includes

not only the man inside, but also the program and the scripts. It is whole

persons who understand stories and questions, not their language centers or

their frontal lobes. Similarly, says the Systems Reply, it is irrelevant that a

certain part of the system (i.e., the man inside the Chinese Room) is not an

understander; it is the whole Chinese Room to which understanding is to be

attributed.
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Searle’s response to the Systems Reply was to imagine himself memorizing

the program and the scripts, and executing the program by consulting his

memory. The effect of internalizing the program and scripts in memory is

that the boundary of the system is now the same as the boundary of Searle’s

body. But, Searle argued, he would still not understand a word of Chinese,

even though the results of his prodigious mental program execution would be

written products that native Chinese speakers regarded as impeccably correct.

The Chinese instruction “Yell if you want a hamburger” would still give Searle

no reason to yell, even as he wrote, in Chinese, “Yes, I’d like a hamburger.”

Another prominent reply that Searle considered is the Robot Reply. This

reply makes an important concession to Searle’s argument, namely, that a

mere computer has no understanding, no matter how good its verbal responses.

But, it says, if the computer’s outputs were used to drive a robot, in such a

way that actions fit the words, the whole robot would understand. For in that

case, there would be analogues of perception and action that would connect

the words to objects and situations in the world. For example, a computer that

answered “What should you do if you smell smoke?” with “Leave the room”

might not understand at all. But suppose a robot has a smoke detector, and

suppose its ability to generate its good answer is connected to transducing

mechanisms that also drive it to leave the room when its smoke detector is

stimulated. Such a robot might then be said not only to talk a good game,

but to understand what it says. The plausibility of this suggestion becomes

stronger, the wider the range of novel responses accompanied by appropriate

actions that we imagine.

Searle’s response to the Robot Reply was to imagine a scenario in which he

is inside a Chinese Room that is inside a robot. He proceeds just as before; but

now, unbeknownst to him, the messages he passes out of the Chinese Room

drive not only the robot’s speech, but also its appropriate actions. Searle noted

that in this scenario, he would still not understand any of the words that he

processes, and concludes that the robot he is (unknowingly) controlling has

no intentionality.

Unfortunately, despite devoting a section to what he calls the “Combination

Reply,” Searle does not really address the result of putting together the Systems

Reply and the Robot Reply. This combination permits the objection that the

relevant boundary for an understander in the robot case is not the man inside,

but the whole robot. Moreover, Searle’s internalizing move in response to the

Systems Reply will not work here; the robotic analogue of internalizing the

scripts and program would require internalizing the mechanisms that drive

appropriate actions. For example, the robot that is being run by Searle’s

program executions might not only give verbal output “When batteries are

low, it’s best to go to the nearest recharger,” but also proceed to the nearest

recharger when its batteries are low. Searle’s lack of explicit consideration

of this possibility leaves his argument open to the objection that, while he
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was right that computers do not understand, he has not shown that properly

organized robots could not understand what they say.

The question of what it would take to give artificially produced words

genuine semantic content has been discussed by others, notably by Harnad

(1990) under the phrase “the symbol grounding problem.”

3.2.2 Dreyfus’ work

Hubert Dreyfus (1972/1979) raised an influential series of related challenges

for the classical approach to AI. We may begin to understand them by return-

ing to our example of calculators. It is true that such devices embody arith-

metical principles; however, they are arguably not (thing) intelligent. What

took intelligence was the discovery of arithmetical principles, and calculators

make no start on that project at all. They can be plausibly regarded as mere

tools in which we have stored a certain product of our intelligence and, as

such, they throw no light on what it takes to actually be intelligent. More

complex devices may store more impressive products of our intelligence, but

the conclusion to be drawn is essentially the same. Intelligence requires the

ability to figure out what rules to apply – and when they can be applied –

and machines that merely store rules do not begin to do this, no matter how

useful they may be as tools.

This challenge can be deepened by noting that intelligence is exhibited in

the ability to recognize what is relevant to whatever task is at hand. But, in

general, relevance depends on all features present (or absent!) in a situation.

Thus, achieving recognition of relevance by applying rules to representations

of features would seem to require exhaustive rule sets that apply to every

contingency. On the one hand, this project does not seem remotely feasible.

On the other hand, if it could be carried out, it would be plausible to object

that intelligence had not been embodied in the resulting device, which, at best,

would be a repository of the results of our intelligence.

The problem of bringing to bear what is relevant to current tasks is some-

times called the “frame problem.” This problem is sometimes regarded as

merely empirical, that is, a problem to be solved by finding a suitable com-

promise between restrictions on the range of cases to which a program may

be applied (which can reduce the size of spaces that have to be searched for

relevant data or operations), and the complexity of the program needed to

deal adequately with the intended problem space. The philosophical challenge

is an addition to the empirical difficulties (which are considerable); it suggests

that the whole idea of approaching intelligence through representations and

rules can never provide a device that exhibits true intelligence. And it offers

an explanation of the difficulties repeatedly encountered in attempts to “scale

up” elegant solutions to relatively simple problems so they can be applied

to complex, real-world problems (Dreyfus 1972/1979; McDermott 1976). The
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explanation is that efficiency implies restriction on the size of search spaces,

but success in providing flexibility requires allowing potential access to any

piece of data. It is not evident how the tension between these two demands

can be resolved in the case of real-world problems in which many features

may become relevant to successful coping.

For some practical purposes, these problems can be handled by hardware

advances in memory size and processing speed. However, the more solutions

rely on these means, the more plausible it becomes that there must be an alter-

native approach to intelligence; for, although our brains’ storage capacity is

large, its processing speed, at the level of individual elements, is slow (roughly

100 processing steps per second [Feldman 1985] vs. millions for computers).

In the terminology introduced above, the more classical approaches to AI base

their improvements in performance on hardware advances, the more it looks

as if they will at most yield regular AI. This reflection suggests that aiming

at premium AI might be useful, even for practical applications, and has led

many in the AI community to explore more biologically inspired approaches.

3.3 Connectionism

Connectionist devices (parallel distributed processors, artificial neural net-

works) typically consist of units whose output to other units is a function of

the sum of weighted inputs that they receive from other units. A weighted

input to a unit B is the output of the projecting unit A times the weight of

the connection (positive or negative) between unit A and unit B. Networks of

units are characterized, in part, by their patterns of connectivity. Many such

patterns have been investigated, including strictly “feedforward” networks and

networks with lateral (“feedsideways”) and recurrent (feedback) connections.

Connectionist devices are further characterized by their rule for finding a

set of connection weights that will yield patterns on their output units that

are appropriate to each pattern on their input units. In many cases, differences

between actual outputs and correct outputs for patterns in a training set are

used to generate an error signal that, in turn, is used to incrementally adjust

weights. After many such cycles of adjustment, correct input–output pattern

pairings are achieved.

Connectionist devices have several properties that have stimulated interest.

For example, they generalize, in the sense that, once trained, a novel input

pattern that is similar to a training pattern, P1, will generate an output that

is similar to the output for P1. Their “memories” are “content addressable” –

that is, the input pattern together with the existing set of weights directly

produces the output, and there is no process of “searching” for information

that is relevant to the input–output relation. They degrade gracefully – that

is, damage to some of a network’s units does not immediately destroy the

input–output relation. Instead, there is a range in which damage makes the
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generalization gradually worse but not completely useless. (For further details

on connectionist devices and their properties, see Chapter 5.)

3.3.1 Rule-like results without rules?

The properties just listed have generated interest in part because they resemble

our own psychological properties, and thus suggest that connectionist studies

can provide some insight into premium AI. This suggestion is present in the

case of a further and somewhat controversial property of some connectionist

devices; namely, they appear to be able to provide rule-like relations between

input and output patterns without having corresponding internal representa-

tions of rules.

For example, it appears that when children learn how to form the past

tense in English, they learn a rule that applies to the majority of verbs: “add

‘-ed’.” In a much-discussed experiment, however, Rumelhart and McClelland

(1986) trained a connectionist device to associate phonetic representations of

verbs with phonetic representations of their past-tense forms. Both regular

and irregular verbs were included, and the results of the training generalized

fairly well for both. There was even a reproduction of an interference effect on

past tenses for irregular verbs that is observed in children and that is usually

attributed to their over-applying the rule for past tenses of regular verbs.

But the training was simply association of present- and past-tense phonetic

representations. One could describe the results in terms of rules, but there was

no representation of rules within the system that generated the results.

However, this experiment has been criticized on several grounds (Pinker and

Prince 1988; for continuing discussion see Clark 1993; McClelland and Patter-

son 2002a, 2002b; Pinker and Ullman 2002a, 2002b.) The most generalizable

of these criticisms concerns the extent to which apparent success in providing

rule-like results without explicit rules depends on particular features of the

course of training. If the rule-like results turn out to depend on features of the

training set that are not common in human experience, then their relevance

to the possibility of premium AI would be significantly weakened.

3.3.2 Systematicity

Fodor and Pylyshyn (1988; see also Fodor 2000) have advanced a line of

criticism of connectionism based on their concept of systematicity. Natural

languages are learned in systems of sentences. For example, if one can under-

stand and apply “John loves Mary,” one can also understand and apply “Mary

loves John,” “Tom loves Jane,” and so on. Systematicity is easily accounted

for in terms of rules that apply to structured representations – for example,

the meaning of “X loves Y” is that the first item mentioned loves the second
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item mentioned. But if sentences and meanings are merely associated in a

trained network, there is no reason to expect to find systematicity.

Connectionists (e.g., Smolensky 1995) may reply that there are some kinds

of networks that will yield systematicity. This kind of response, however, raises

the question whether the attractive properties of connectionist networks really

contribute to our understanding of how intelligence is produced or whether, as

Fodor suggests, connectionist networks are merely capable of implementing a

classical architecture – in which case it is really the latter that explains how

we manage to be intelligent. If that is right, premium intelligence could, in

principle, be implemented in a non-connectionist device after all.

3.3.3 Psychological realism

One can, of course, distinguish between the questions “Are connectionist

devices steps on a road leading to premium AI?” and “Can connectionist

devices be used to provide regular artificial intelligence?” A negative answer

to the first would be compatible with the possibility of a robot that is driven

by a connectionist-style brain and that responds flexibly to obstacles and

exhibits a constant tendency toward achieving its goal states. However, some

of the inspiration for connectionism comes from the idea that since our brains

presumably make us intelligent, a brain-inspired device should also be able to

provide premium artificial intelligence. To the extent that there are doubts that

connectionist devices succeed in capturing the way we work, this inspiration

is weakened, and alternative support for the probability of their providing

even regular artificial intelligence is fairly demanded.

One doubt of this kind concerns the use of error signals (differences between

correct output and actual output of a unit or set of units) to find a set of weights

that will be useful for a given purpose. There is an algorithm (commonly

known as backpropagation) that can be shown to be effective, and that is

frequently used in connectionist research. Unfortunately, it is not clear how

a brain could apply this algorithm to the adjustment of synaptic connections

among neurons.

An alternative approach to weight adjustment is reinforcement learning.

The core idea in reinforcement learning is that no one needs to know correct

solutions to the problem of what actions to take; action choices can be shaped

by the (positive or negative) value of consequences upon an agent of actions

recently taken (e.g., Kaebling, Littman, and Moore 1996; Sutton and Barto

1998; Porta and Celaya 2005). It seems evident that we can learn in this

way, and a very promising suggestion is to design devices that can also learn

through reinforcement.

Those who have taken Dreyfus’ critique of GOFAI to heart, however, may

have some analogous doubts concerning reinforcement learning. Work in this

area at present focuses on small problems and it is not clear whether results
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can be scaled up to handle real-world complexity. Behaviors can be well

defined, and easily distinguished. Intelligence, however, (whether regular or

premium) will likely have to deal with actions whose proper classification

depends on circumstances – for example, the same running behavior might

be fleeing or chasing, depending on whether a predator is behind the runner,

or prey is in front of it. It may be that working on problems that permit easy

classification of actions bypasses an essential element of intelligence; namely,

learning how circumstances affect the significance of a behavior.

A further problem in assessing current work on reinforcement learning is

that many schemes require updating the value, not only of actions, but of

states that are parts of sequences of states leading up to actions. There are

algorithms for doing this, but they require significant calculation and it is not

evident how they, or equivalents, could be executed in the brain. This is not a

problem for regular AI. However, to the extent that research on reinforcement

learning forgoes plausible connection with premium AI, it loses the support of

the argument that since we humans exhibit reinforcement learning, (regular)

AI will be achievable by (current) approaches to reinforcement learning.

3.3.4 Representation

The attractive properties of connectionism depend on the use of distributed

representations; that is, representations that depend on the pattern of activa-

tion across more than one unit. The “knowledge” of a connectionist device is

also distributed across the weights of its connections. Outputs are dependent

on combined effects of many weights, and each weight contributes to many

outputs. The distributed character of the representations and “knowledge” in

connectionist devices leads to two kinds of questions.

Ramsey, Stich, and Garon (1990) have noted that the distributed character

of a network’s “knowledge” makes it difficult to see how a connectionist

network could ever model the seemingly obvious truth that people can act

for one reason rather than another, even when they have beliefs and desires

corresponding to two or more reasons for that action. For if the relevant beliefs

are stored in a single network, the connections grounding both would make a

contribution to any outcome. One could, of course, hold that different beliefs

are stored in different networks; but to apply this strategy generally would be

to give up the putative advantages of connectionist networks.

Connectionists may, however, respond that a distinction among reasons for

an output can be adequately made by attending to whatever differences give

us grounds for believing that an action was done for one, rather than the

other, of two good reasons (Robinson 1995). For example, it might be that

only one of two possible inputs was present (or salient) on a given occasion.

If it is I1 that causes O, the reason that goes with I1 might be the reason for

the output, even if the network would have yielded O if input I2 had been
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present (or more salient). It is, however, controversial whether analogues of

this strategy can be provided for all relevant cases.

A second, widely discussed issue concerns the processing of representations

in connectionist systems. There are several ingenious schemes for creating

and storing information in connectionist devices. (See, e.g., Pollack 1988,

1990; Smolensky and Legendre 2006.) But if stored representations have to

be decoded, (i.e., retrieved and represented separately) in order to be used

in cognitively useful processing, then the idea that connectionism makes a

distinctive contribution to our understanding of cognition is put in some

doubt.

In an ingenious experiment, Chalmers (1993) showed that connectionist rep-

resentations could be processed without decoding. This experiment involved

two networks. The first network was trained to form a compressed represen-

tation of active-voice sentences and passive-voice sentences, and to decode

those representations into their original full sentences. A second network

was trained to convert the compressed representations of active-voice sen-

tences into compressed representations of their passive-voice equivalents.

When these latter compressed representations were decoded by the first net-

work, the result was a correct passive-voice equivalent of the corresponding

active-voice sentence. Most interestingly, the same result was obtained for

compressed representations that had never been presented to the second net-

work during its training phase. In effect, the second network was able to

apply what it had “learned” about the active-/passive-voice relation to new

(i.e., unseen) cases; and it was able to do this without first decoding the

compressed active-voice representations.

However, as Chalmers explicitly noted, this result was not psychologically

realistic. The training set was more than half of the total set of cases, and

the sentences were all of the same simple form (subject, verb, object). Thus,

while Chalmers’ experiment provides an existence proof for the possibility

of useful processing without decoding, it remains an open question whether

psychologically realistic examples can be found.

From a broad perspective, GOFAI and connectionism agree that intelligence

involves the processing of representations. Their disagreement concerns the

nature of that processing, and, in light of the difficulties in both approaches, it

is perhaps not surprising that suspicion has fallen on the idea of representation

itself.

3.4 Dynamical systems theory

Dynamical systems theory (DST) views cognition as depending on a continu-

ous interaction of a cognitive agent with its surroundings. Intelligent action

does not arise in virtue of first representing the environment and then execut-

ing processes upon that representation. Instead, environmental inputs directly
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drive activities that react back upon the environment, resulting in new inputs

and new reactions. Intelligence arises from a design that can exploit the infor-

mation present in an environment without first converting that information

into an internal representation.

A key feature of dynamical systems is their relation to time. If a device

works by operating on representations, its operations can vary in their time

course, subject only to the constraint that a representation of an action must

be delivered in time for the action to be useful. If a device’s processing is

tightly coupled to external inputs, rather than representations of them, then

the timing of the process is dependent on the timing of the arrival of those

inputs, and there is no arbitrariness in the time course of the processing.

These ideas have been illustrated by considering the Watt governor (see

van Gelder 1997). This device links a spindle to the drive shaft of a steam

engine. The spindle supports a pair of weights that rotate with the spindle,

and that are mounted so that they change their height as fluctuations in

engine speed vary their distance from the spindle’s axis. The arms supporting

the weights are mechanically linked to a valve that varies steam pressure

inversely to the height of the weights. The result of this arrangement is to keep

the engine speed within a narrow range, even when load on the drive shaft

varies.

Van Gelder suggested that if we are trying to understand cognition, the

Watt governor is a better inspiration than computers. The key point of

contrast is that the governor’s system of linkages performs its useful function

without having any part that applies rules to representations. The speed of

the drive shaft is mechanically coupled to the governor, which in turn is

mechanically coupled to the valve. The result is a dynamical system that

involves no calculation of appropriate valve state from a record of drive shaft

speed.

Brooks’ (1991) robotic examples are more complex than the Watt gov-

ernor, but the inspiration – visible from his title, “Intelligence without

Representation” – is the same. Brooks regards navigation as a significant prob-

lem, which has been solved in evolutionary time prior to development of the

ability to do explicit calculations. His work suggests that we will understand

intelligence best by constructing devices that dynamically connect inputs to

actions, that is, devices that are always under constraints similar to those that

have been present throughout the course of evolution. Brooks decisively rejects

any conception in which there is a division of labor between devices that

embody intelligence and devices that turn the resulting output into actions.

The problems of transducing sensory inputs to computer representations,

and computer representations to motor outputs, are formidable at best (and

intractable at worst). Such an approach is therefore to be abandoned in favor

of devices in which the sensory input to motor output connection is built in at

every stage. (For further details of DST and related approaches, see Chapter 6.)
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3.4.1 Questions for DST

Downplaying representations naturally focuses attention on what is to count

as a “representation.” The weakest interpretation of this term would equate

it to “tracking” – that is, high correlation between occurrences of states of

a system that are regarded as representations, and the presence of objects

or properties that are held to be represented. A much richer conception of

“representation” (Grush 1997) requires an internal model that can be used

to predict future states from present inputs. It seems clear that dynamical

systems can work without representations in this stronger sense. It is not so

clear, however, that devices of the kind featured in dynamical systems theory

dispense with “representations” in the sense of mere tracking. For example, the

height of the weights in the Watt governor could be regarded as representing

the speed of the drive shaft (see Bechtel 1998).

A further question (also raised by Bechtel 1998) concerns the extent to

which dynamical systems theory offers a distinctive explanation of cognition,

as opposed to a distinctive type of description of what cognitive systems

do. To illustrate: The relation between the height of the weights in the Watt

governor and the speed of the engine can be given an elegant description by

using differential equations. We can, however, still ask how the device works,

and can give an answer by pointing to the spindle, valve, drive shaft, and

the mechanical linkages between them. If this distinction between description

and explanatory mechanism can be applied to cognitive systems, then the

contribution of dynamical systems theory, while valuable at the descriptive

level, may not offer a radical departure at the level of explaining cognition.

Finally, a problem for dynamical systems theory arises from the observation

that many instances of intelligent performance rely heavily on memory. Use

of memory would seem to require representations, and these representations

must have their effects on behavior independently of the time at which the

memory representation was created. Research on robot controllers that work

without memory (e.g., Nolfi and Floreano 2000) has shown some surprising

abilities to solve problems; nonetheless, it is not plausible that there will be

devices that will be widely accepted as exhibiting (thing) intelligence but do

not rely on memory. To be sure, it may be that memory representations can

be incorporated into DST (as van Gelder 1997, suggests). It is, however, not

clear how this can be done without returning us to the previously discussed

questions about how representations can be processed to yield intelligent

outcomes.

Further reading

Carter, M. (2007). Minds and Computers: An Introduction to the Philosophy of

Artificial Intelligence. Edinburgh University Press. Introduces basic concepts
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in philosophy of mind and the computational theory of mind, which is

defended.

Chalmers, D. and Bourget, D. (Repeatedly updated.) “Philosophy of Artificial Intel-

ligence,” http://consc.net/mindpapers/6/all. A comprehensive bibliography of

papers, organized by many sections and subsections covering all aspects

under its title.

Cole, D. (2004, rev. 2009). The Chinese Room argument, in E. N. Zalta (ed.),

The Stanford Encyclopedia of Philosophy, http://plato.stanford.edu/entries/

chinese-room. Explains the argument and the replies to it, and makes con-

nections to larger philosophical issues.

Garson, J. (1997, rev. 2010). Connectionism, in E. N. Zalta (ed.), The Stanford

Encyclopedia of Philosophy, http://plato.stanford.edu/entries/connectionism.

Explanation of connectionist devices, strengths and weaknesses, and issues

between connectionism and classical approaches to AI.

Horst, S. (2003, rev. 2009). The computational theory of mind, in E. N. Zalta (ed.),

The Stanford Encyclopedia of Philosophy, http://plato.stanford.edu/entries/

computational-mind. Explains why the mind has been regarded as a com-

puter, and reviews criticisms of that view.
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4 GOFAI

Margaret A. Boden

4.1 Introduction

Good Old-Fashioned AI – GOFAI, for short – is a label used to denote classical,

symbolic, AI. The term “AI” is sometimes used to mean only GOFAI, but that

is a mistake. AI also includes other approaches, such as connectionism (of

which there are several varieties: see Chapter 5), evolutionary programming,

and situated and evolutionary robotics. Indeed, most work in artificial life

(A-Life) falls within AI broadly defined, despite A-Lifers’ tendency to distance

themselves from it (see Chapter 14). Here, however, we are concerned with

symbolic AI alone.

Both technological and psychological AI employ the full range of AI

methodologies, GOFAI included. But they are driven by different motivations.

The goal of the former is to build useful computer systems, doing, or assisting

with, tasks that humans want done. The goal of the latter – which can also

be called computational psychology – is to develop explanatory theories of

mind. Sometimes (according to “strong” AI: see Section 4.4), it also aims

to build computer systems that are genuinely intelligent in themselves.

Accordingly, psychological AI is the more likely to raise questions of interest

for the philosophy of mind.

4.2 GOFAI outlined

The GOFAI methodology employs programmed instructions operating on for-

mal symbolic representations. It is well suited to the binary, serial nature of

the von Neumann digital computer. From the mid 1950s to the mid 1980s, it

was the dominant (though not the only) approach in AI. Functionalism in the

philosophy of mind was developed with these programs, and/or abstract Tur-

ing machines, in mind (Putnam 1960; Newell and Simon 1963; Fodor 1968;

see Chapter 3).

A GOFAI symbol is an item in a formal language (a programming language).

Like the symbols of mathematics or logic, GOFAI symbols – and programs

composed of them – can be regarded as purely formal (meaningless) struc-

tures. In practice, however, they are normally interpreted by the user in terms

of some particular semantic content: verbal, numerical, visual, auditory, and
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so on. Atomic symbols can be combined to form complex symbols, accord-

ing to specific formal rules of symbol manipulation. What happens when a

GOFAI program is run is that symbols of various kinds, structured in various

ways, are built, stored, retrieved, compared, and transformed. In short, GOFAI

computation involves the construction and transformation of symbolic data

structures.

The key concepts that structure GOFAI programs are heuristic search and

planning. These closely connected ideas were pioneered in the 1950s (Newell,

Shaw, and Simon 1958a; Newell, Shaw, and Simon 1958b, 1959; Samuel

1959; Boden 1977/87, ch. 12). They are still crucial to GOFAI work today

(see Russell and Norvig 2003, especially ch. 4). A GOFAI problem, or task, is

represented as a search space: a set of possibilities (defined by a finite set of

generative rules), within which the solution lies – and within which it must

be found. Examples include the set of legal moves in chess, or of permissible

word strings given some particular grammar and vocabulary. The specific

locations in the search space do not have to be detailed beforehand, but can

be generated by the program.

In many cases, a systematic “brute force” search through the space is imprac-

tical, because there are too many possibilities to be individually considered.

Moreover, there is often no utterly reliable rule for picking out all (and only)

the “promising” candidates. If so, the search must be guided by heuristics:

rules of thumb that are usually helpful in guiding the program toward the

solution and away from dead ends but which are not guaranteed to solve

the problem. (Compare “Protect your queen” in chess: This is a very useful

heuristic, but it is occasionally advisable to sacrifice your queen.) Planning

is a GOFAI technique wherein the problem is analyzed by the program as a

hierarchical structure of goals, subgoals, and sub-subgoals . . . In the paradigm

case, the final goal is specified at the beginning, and the program’s task is to

reduce the differences between the current state and the goal state until no

such differences remain. (The general idea that purposive behavior is rooted in

the reduction of differences was inherited from cybernetics, the mid-century

study of feedback systems, such as biological homeostasis and guided mis-

siles; but cybernetics did not specify structured representations of goal states;

Rosenblueth, Wiener, and Bigelow 1943.) The program is provided before it

starts with a number of possible differences, a list of actions (operators) that

can eliminate the various differences, lists of prerequisites that must hold if

a certain operator is to be used, and heuristics for ordering the actions when

more than one action is possible in the current circumstances. Indeed, most

of the “intelligence” involved lies in the choices of actions, operators, and

heuristics specified by the programmer. If the program, when it is run, decides

that a particular operator is needed to achieve the current goal, it may have

to set up a new subgoal to satisfy the relevant prerequisites. This process can

be repeated on indefinitely many hierarchical levels. In many cases, finely

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139046855.007
https://www.cambridge.org/core


91 GOFAI

detailed planning can be left until the point of execution, so that – up to a

point – unanticipated factors can be dealt with.

In the earliest GOFAI research, the goal hierarchy was clearly explicit and

“up-front.” In other words, the program would be focused on one goal at a

certain moment, and would switch to another only if (1) a new subgoal had

to be set up in order to achieve it, or (2) the original goal was attained – in

which case the program would “pop” up to the next goal level, or exit if the

top level had been reached.

A later AI methodology made the goal hierarchy implicit within a large set of

logically independent Condition-Action rules (Newell and Simon 1972). (The

individual rules were called “productions,” so programs built out of them were

called production systems.) The Condition and the Action within a rule could

each be a single item, or a conjunction (or disjunction) of several – even of

many – different items. For instance, one of the rules in a program for solving

alphabetically coded addition problems, such as “DONALD + GERALD =

ROBERT,” read as follows: “IF the current goal is to evaluate a set of letters,

THEN find one of the letters (by means of the production rule called FIND-

LETTER) AND set up the (new) goal of evaluating it.” What had earlier been

represented as separate lists of heuristics, actions, and prerequisites were now

tacitly included within the productions. So the Condition might include the

specification that such-and-such a goal has already been set up. Similarly,

the Action could include an item setting up a new goal or subgoal. Conflict

resolution techniques were provided to deal with cases where more than one

Condition was satisfied at the same time. For instance, a Condition specifying

a longer, more inclusive, conjunction would take priority over one which

specified only a single conjunct.

One advantage of this general approach was that a new rule could be

added at any time (provided that it was consistent with the existing rule set),

without having to rewrite a complex hierarchical procedure. In addition, this

methodology enabled interrupts: instant changes of goal, promoted by sudden

changes in the environment or elsewhere in the running of the program. GOFAI

search was thereby rendered less inflexible and “single-minded” than in the

early days.

The development of expert systems – for medical diagnosis, for example,

or advice on geological prospecting (Michie 1979; Feigenbaum and McCor-

duck 1983) – depended heavily on production systems. In general, an expert

system is a program that represents the knowledge of the human expert as a

set of IF-THEN rules, and which can be used to offer advice to non-experts

in the domain concerned. For instance, a rule for medical diagnosis might

be: “IF these symptoms are observed in the patient, AND the patient is an

adult male, THEN infer that this bacterium is responsible, AND recommend

this drug, given in that dosage for that length of time, as the treatment.”

The expert-systems researchers introduced inferential techniques for “forward
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chaining” and “backward chaining” within production systems. The former is

used bottom-up, to generate conclusions from data. The latter is used top-

down, to find evidence for a supposition, and/or to explain an item of advice

already given by the program to the human user by recapitulating the previ-

ously fired rules. In general, “bottom-up” processing starts from a collection

of disparate data items and tries to make overall sense of them in some way –

perhaps by GOFAI techniques (such as production systems), or perhaps by

PDP (parallel distributed processing) connectionism or other forms of self-

organization (see Chapter 5). “Top-down” processing, by contrast, starts with

some high-level goal or structure, and uses this to interpret – and sometimes to

alter – input at lower levels. For example, a GOFAI visual program searching

for cubes may decide to “hallucinate” the missing corner of input showing an

incomplete drawing of a cube.

As the notions of search, planning, and heuristic may suggest, GOFAI pro-

grams often simulate the conscious deliberations of high-level human thought.

That is partly because they can represent propositions with specific semantic

content, and partly because they can include top-down executive control and

self-monitoring processes. Even when they model unconscious processes, they

typically represent these as being similar in kind to conscious deliberations.

Visual recognition in GOFAI, for example, is often taken to be analogous to

problem solving in logic. And logical problem solving, a fortiori, is seen as

logic all the way down. However, the type of logic used varies. It may be the

propositional calculus, expressed by simple logic gates implementing the basic

logical operations (McCulloch and Pitts 1943) or by hierarchical planners like

those sketched above (Newell et al. 1958a, 1958b, 1959). More often, it is pred-

icate logic (McCarthy and Hayes 1969). In that case, it may be supplemented

by various modal logics (McCarthy and Hayes 1969; Hayes 1979, 1985), or

by special methods designed to combat the combinatorial explosion – such as

resolution theorem proving (Robinson 1968). Or it may be a production sys-

tem, whose Condition-Action pairs are based on a logic of IF-THEN rules (Post

1943). GOFAI’s roots in logic provide it with both strengths and weaknesses,

as we shall see in Section 4.3.

A further subvariety of GOFAI is evolutionary programming (Holland 1975;

Ray 1992). More accurately, evolutionary programming was initially devel-

oped within GOFAI, and is often used in a GOFAI context – although it can

also be used for evolving connectionist networks. Here, so-called “genetic

algorithms” make random changes in the program’s own rules, inspired by

the processes of point mutation and crossover in biology. (In point mutation,

a single element within the symbol-string that codes the rule is altered, so

that ABCDE may give ABFDE; in crossover, a set of adjacent units on one rule

string – comparable to adjacent genes on a chromosome – is swapped for a set

of adjacent units on another string, so that ABCDEFGH and PQRSTUVW give

ABCSTUFGH and PQRDEFUVW.) At each “generation,” one or two of the more
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successful newly hatched programs are selected as (asexual or sexual) parents

for the next generation. Usually, the selection is done automatically by a pre-

defined fitness function; but it can be done interactively, by a human being.

Where the problem is sufficiently well understood for slight improvements in

performance to be recognized automatically, this methodology enables opti-

mization of the task concerned. For example, if one wants a program that will

sort a list of numbers into ascending order, or put names into alphabetical

order, then an evolutionary approach will be able to find the most efficient

algorithm whereas a human programmer may not.

4.3 Strengths and weaknesses of GOFAI

The major strengths of GOFAI are its abilities to model hierarchy and sequen-

tial order, to allow for precision in problem solving, and to represent specific

propositional contents. Each of these features was illustrated in the pioneer-

ing SHRDLU program (Winograd 1972), which captured the attention of many

psychologists and philosophers previously unfamiliar with AI. Unlike the sim-

ple keyword matchers that preceded it, SHRDLU could parse sentences of some

significant complexity, such as “How many eggs would you have been going

to use in the cake if you hadn’t learned your mother’s recipe was wrong?”

In engaging in “conversation,” SHRDLU’s parser was closely integrated with

semantic analysis, problem solving, and world knowledge. To decide the ref-

erence of the human speaker’s phrase “the pyramid,” for instance, it would

ask itself whether there was more than one pyramid in the scene, and if so

whether any specific pyramid had already been mentioned in the conver-

sation. In general, SHRDLU – like GOFAI programs today – could alternate

between different tasks and/or knowledge bases in order to solve what seems

superficially like “one” problem.

The “How many eggs . . . ?” example illustrates the importance of hierarchy

and sequential order: The parsing simply could not be accomplished without

getting these right. And precision, too, is crucial – for a single letter can

sometimes make a huge difference. (Compare a telegram saying “Our son

is dead” with one saying “Your son is dead.”) However, precision can be

overdone. The early GOFAI programs were notoriously brittle, in the sense that

missing and/or contradictory data would result in a nonsensical response from

the computer – if it did not halt altogether. (Even SHRDLU was less powerful

than it appeared, for its “conversation” was not a continuous exchange but

was cobbled together from a number of separate occasions.)

A special case of brittleness is the frame problem (McCarthy and Hayes

1969; Dennett 1984; Boden 2006, ch. 10.iii). This term is widely used to

mark two difficulties: first, knowing which aspects of a situation would be

changed by a particular action, and which would not; second, reasoning

with incomplete knowledge, due to our inevitable ignorance about the facts
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of the real world and to the vagueness of ordinary-language concepts. For

instance, the puzzle of how stranded explorers can cross a river in a jungle

might be solved not (as one might predict) by their laboriously building a

raft, but by their being unexpectedly rescued by the helicopter of a film crew

working nearby. GOFAI roboticists tried to distinguish between changeable

and unchangeable states of affairs, with respect to planned actions, but often

some relevant instances were overlooked. And the logic of resolution theorem

proving – which proved theorems in predicate logic by showing that their

negations were inconsistent, on the assumption that not-not-X implies X –

was so unforgiving that it threatened to undermine any real-world plan or

“commonsense” problem solver. Various types of “nonmonotonic” logic were

developed, in which a statement could be taken as true until it was shown to

be false (Boden 2006, ch. 13.i.a). Even so, these “default assumptions” had to

be specified beforehand.

(The exigencies of the frame problem later encouraged the development of

situated robotics [Brooks 1991]. GOFAI robots had planned their performance

beforehand, guided top-down by a complex model of the world, which needed

to be laboriously updated if the world suddenly changed, and by assumptions

about what would happen if this or that action was taken. By contrast, situated

robots did not rely on internal world models. Instead, they worked bottom-up

by responding directly in simple “reflex” ways to specific environmental cues

whenever they happened to encounter them; if the world suddenly changed,

the newly relevant responses would be elicited as a matter of course.)

Some critics of GOFAI seem to believe that unrelieved brittleness is essential

to it, but that is not so. There are several ways in which a GOFAI program

can be prevented, up to a point, from making irreversible inferences that

may turn out to be false. Special anticipatory measures, of which the default

assumptions mentioned above are a special case, and a variety of interacting

temporary (i.e., provisional) representations (e.g., Sloman 1978, ch. 9), have

been developed to reduce the brittleness of GOFAI systems. And, as we have

seen, techniques for conflict resolution have been identified which enable a

program to choose between two (or more) individually allowable actions. It is

true, however, that symbolic AI programs do tend to be brittle. They do not

“naturally” show what is called graceful degradation – in which imperfections

in the data lead to proportionally imperfect but often acceptable performance.

A main strength of PDP connectionist systems is that they have this property

simply because of the way they work: It does not have to be specifically built

in (see Chapter 5).

Explicitness has its drawbacks, too. If one wants a GOFAI program to learn

something, one has to provide the defining features of that “something” (Boden

2006, ch. 13.iii.f). Often, this is not possible. For example, you may want

to teach a program to recognize cats. But can you define “cat”? Can you

even identify and list the relevant features seen in photographs of a dozen
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cats? GOFAI programs can sometimes learn new concepts, to be sure: for

instance, a more efficient method for diagnosing a certain disease (Michalski

and Chilausky 1980). But the defining features of those concepts have to be

explicitly specified beforehand, even if they are merely included within a

longer list of features.

It is not the case (although it is often believed) that GOFAI programs always

work top-down, rather than bottom-up. However, they often do involve some

central executive, or high-level control. This is less obvious in production

systems, where the control hierarchy is not made explicit and where inter-

rupts can switch the system’s attention to a different area. But the ability, in

principle, to model hierarchies does often lead, in practice, to the modeling

of hierarchical phenomena – such as complex planning, or natural language.

And it has become increasingly clear, over the years, that some forms of

intelligence (within both individuals and groups) do not involve any central

executive. Rather, the intelligence, and the control, is distributed over the

whole system. In such cases, the traditional GOFAI approach must be mod-

ified, or even wholly abandoned. Modification occurs, for instance, when a

number of largely autonomous systems (“agents”) are programmed, whose

collective behavior emerges from their many interactions rather than from

some high-level executive. The agents may be virtual “softbots” or physical

robots, and their interactions may include communication, negotiation, coop-

eration, bidding, and even bargaining (Boden 2006, ch. 13.iii.d–e; see also

Chapter 11 of the present volume).

Abandonment occurs, for example, when PDP connectionism is used instead

of GOFAI. PDP systems are described in the following chapter. Here, what

is relevant is that – besides avoiding the imposition of a top-down central

controller – the PDP methodology avoids some other weaknesses of GOFAI.

Above all, PDP avoids the brittleness that threatens the symbolic approach.

Instead of deducing a clear conclusion by logical means, a PDP program settles

into an equilibrium state in which a majority of (potentially contradictory)

constraints are simultaneously satisfied. Contaminated and/or partly missing

data can therefore be allowed, up to a point. In other words, noise tolerance

and pattern completion, both of which are problematic for GOFAI, result

“naturally” from the design of PDP networks. For example, a “messy” or

incomplete drawing/photograph of a cube will be recognized by a PDP system

as representing a cube even if the messiness and/or incompleteness had not

been expected, still less deliberately anticipated, by the programmer. Similarly,

patterns (concepts), which are not accessible to GOFAI learners and which were

not suspected by the humans who built the system, can be learnt by example.

(This is why PDP is used for expert systems that identify subtle patterns in

financial information, such as stockmarket movements.)

However, PDP is no panacea. It lacks GOFAI’s key strengths in modeling

multi-level hierarchy, sequential order, and inferential relations between
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specific propositional contents. Moreover, it is not well suited to tasks where

absolute precision, as opposed to graceful degradation, is required. Indeed,

much of the connectionist research of the last twenty years has sought to

acquire those very strengths – so far, with only limited success (Boden 2006,

ch. 12.viii–ix).

Some researchers therefore employ “hybrid” systems, in which GOFAI

is combined with PDP connectionism (see Chapter 5). One example of this

approach is the model of action, and action errors, developed by Donald

Norman and Timothy Shallice, respectively a cognitive psychologist and a

clinical neurologist, and by AI researchers working with them (Norman and

Shallice 1986; Cooper et al. 1996). Briefly, this “Supervisory Attentional

System” uses connectionism to model perceptual recognition and associative

memory/reminding, and GOFAI to model deliberate choice and planning.

Both of these aspects are crucial to (much) human action, and – according to

some leading AI experts – to successful robotics too (Sahota and Mackworth

1994). Since both aspects are crucial, it follows that situated robotics (see

above, and Chapters 6 and 13) cannot always be substituted for GOFAI either.

The hope expressed by Rodney Brooks (1991), that AI can be fully situated

and GOFAI abandoned, is illusory. It is true that “direct” responsiveness to

the environment can provide a surprising degree of order in behavior. This

point was made in the 1960s by one of GOFAI’s high priests, with respect to

the path of an ant walking over cluttered ground (Simon 1969, ch. 3). Insect

locomotion may be amenable to purely situationist modeling, relying only

on inbuilt reflex responses to environmental cues (Beer 1990). But where

human-level behavior is concerned, planning, and internal representation, is

sometimes essential (Kirsh 1991; Vera and Simon 1993).

It is also true that the “embodiment” of a physical robot negotiating the

material world (see Chapter 6) offers problems and solutions over and above

those typical of “disembodied” GOFAI. For a robot is a material thing moving

in the real world, as opposed to a program merely representing that world, so

it encounters physical obstacles – and also opportunities – that do not arise in

the case of a programmed simulation. That is why it has been suggested that

GOFAI be superseded by GOFAIR: GOFAI and Robotics (Sahota and Mack-

worth 1994). GOFAIR is doubly hybrid. On the one hand, much of the robot’s

response is situated; on the other hand, connectionist methods are combined

with GOFAI. The point of importance here, however, is that GOFAI – though

supplemented – is maintained. That is not surprising, since the strengths and

weaknesses of GOFAI and PDP, and of classical GOFAI and situated robotics,

are largely complementary.

The motto of both psychological and technological AI today might be “Let

a hundred flowers blossom – or anyway, four.” Those four are the approaches

of GOFAI, connectionism, situated AI, and dynamical systems (all of which

sometimes employ evolutionary computation).
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4.4 GOFAI as philosophy

When the GOFAI label was coined by the philosopher John Haugeland (1985,

p. 112), his word “old-fashioned” implied that this type of AI had been super-

seded. And in a sense, it had: For PDP connectionism was on the rise, and

would soon enthuse the philosophers (Clark 1989) – and the journalists too.

However, Haugeland apparently knew nothing of that, for connectionism was

not even mentioned in his book. His critique of GOFAI as passé was based

rather in the philosophy of phenomenology, as Hubert Dreyfus’ (1965) had

been twenty years earlier. Haugeland argued that twenty years of philosoph-

ical critique had shown GOFAI to be false. “False,” not just impractical, or

limited. For his definition of the term did not merely pick out an AI method-

ology (symbolic computation). It also specified a commitment to what John

Searle (1980) had called strong AI: the view that a suitably programmed com-

puter would be really intelligent – and by implication, really emotional and

really conscious too. Haugeland believed strong AI to have been refuted, in

different ways, by both Searle and Dreyfus (and by his own arguments as

well). Anyone who still accepted it was not only mistaken but behind the

times (i.e., old-fashioned).

It is not clear that all GOFAI researchers are committed to strong AI. (By

Haugeland’s definition, then, not all GOFAI researchers are GOFAI researchers.)

But some certainly are. For instance, Allen Newell and Herbert Simon explicitly

stated a form of strong AI in their theory of Physical Symbol Systems, or

PSSs (Newell and Simon 1963; Newell 1980). They claimed that intentionality

(i.e., meaning, or “aboutness”) is achieved, in both minds and computers, by

implementing certain types of formal computation in PSSs. These were seen

as “the necessary and sufficient means for general intelligent action.” In other

words, the mind (or mind/brain) is a PSS. Their commitment to strong AI was

crystal clear.

Newell and Simon’s AI programs specified formal computational systems

of the type defined by Alan Turing in 1936. As psychologists, however, they

were interested in computations that are responsive to the world and capable

of directing behavior in it. Unlike Turing himself, then, they defined compu-

tation in causal terms. A symbol, they said, is a physical pattern with causal

effects. The meaning of a symbol is the set of changes it enables the infor-

mation processing system to effect, either to or in response to some object

or process (outside or inside the system itself). Analogously, concepts such

as representation, interpretation, designation, reference, naming, standing for,

and aboutness were causally defined. In short, their semantic theory presented

meaning as computational – and computation as intentional.

It was their statement of strong AI which Searle was attacking in his famous

paper on the Chinese Room (1980; see also Chapter 3). Just in case there are

any readers who have not already come across this example, it can be stated
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very briefly here. Searle imagines himself sitting in a windowless room, with

a slot through which paper slips with “squiggles” and “squoggles” on them are

occasionally passed in. On the table is a box of slips carrying similar doodles,

of various shapes; and there is a rulebook, saying that if a squiggle is passed

in then Searle should find a blingle-blungle and pass it out, or perhaps go

through a long sequence of doodle pairings before passing some shape out.

Unknown to Searle-in-the-room, the doodles are Chinese writing, the rulebook

is an AI program for answering questions in Chinese, and the Chinese people

outside the room are happily using Searle to answer their questions about some

topic or other. The key point, says Searle, is that he entered the room unable

to understand Chinese and, no matter how long he stays there, he still will not

understand a word of it when he comes out. And his anti-GOFAI conclusion

is that formal computation alone (which is what Searle-in-the-room is doing)

cannot generate meaning, or intentionality. As he put it, programs are “all

syntax and no semantics.” So strong AI is impossible.

Searle’s key premise was that GOFAI systems are defined in terms of abstract

(uninterpreted) Turing computation. It follows, he said, that such programs are

mere shufflers of meaningless shapes (i.e., formal symbols). Those shapes could

in principle be interpreted as (mapped onto) many different activities: maths,

music, mousetrap design, and so on. As regards the program itself, however,

the choice between “meanings” is arbitrary. Any meaning it appears to have is

derived entirely from us. So although we cannot help speaking of computers

in intentional terms, they do not “intrinsically” merit such ascriptions. Strong

AI is an illusion.

As for “weak” AI (that is, AI used in formulating, developing, and testing

psychological theories), Searle doubted that brains generally implement formal

computations. If they do not, then GOFAI-based computational psychology

cannot even begin to explain our mental life – although psychological theories

based on connectionist AI might do so. (When Searle defined weak AI he used

“AI” to mean only GOFAI; the connectionist renaissance hadn’t yet happened.)

But even if our brains do implement formal computations, he said, the Chinese

Room argument shows that something more was needed for intentionality.

And that “something” was the causal powers of neuroprotein. This was a

very poor argument, which most commentators politely ignored; for how

neuroprotein, considered as a biochemical substance, can possibly ground

intentionality is a philosophical mystery (Boden 2006, ch. 16.v.d).

The Chinese Room spawned a thriving philosophical industry whose mills

are still spinning merrily. Many readers agreed that Searle’s empty-symbolism

argument proved just what he said it proved, while just as many saw it as

fundamentally wrong-headed. Moreover, those who saw it as wrong-headed

gave different accounts of just what was wrong with it. This is not the

place to summarize the ever-lengthening debate. But two points must be

mentioned.
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First, it is arguable that Searle was attacking a straw man. Newell and

Simon, and their GOFAI co-pioneers Marvin Minsky and John McCarthy too,

undoubtedly believed that AI systems of a certain complexity would be really

intelligent. But, contrary to what Searle assumed, they did not have abstract,

uninterpreted, Turing computation solely in mind. Most philosophers take it

for granted that all computation is Turing computation, and as such seman-

tically empty. If that is so, then PSS theory holds that causation grounds the

interpretation of computations once implemented, not that it is involved in

defining computation as such. However, Newell and Simon’s semantic theory

sketched above suggests that they were not primarily concerned with compu-

tation as uninterpreted Turing computation. (In effect, their causal approach

was tacitly offering what Searle termed “the Robot reply.”) What is more,

other AI scientists have also offered causal/intentional accounts of computa-

tion, sometimes explicitly denying that AI is primarily concerned with Turing

computation (Sloman 2002). Their definitions are admittedly much less clear

than Turing’s, and in one case (Smith 1996) metaphysically maverick too.

Without going into detail here (but see Boden 2006, ch. 16.ix), the point is

that practising AI scientists do not think of computation only in the way

that Turing did in his 1936 paper. It follows that the familiar “all syntax and

no semantics” attack on GOFAI is not so obviously well-aimed as is usually

assumed.

Second, some philosophers have argued that intentionality is grounded in

our evolutionary history (Millikan 1984). If that is so, then only evolved

AI systems/robots (including GOFAI-based examples) could even be candi-

dates for the possession of intentionality. Some of the meanings attributed to

evolved robots are not “arbitrary,” as Searle would have it, but are grounded in

their particular evolutionary history. For instance, a mini-network in a robot’s

“brain” may plausibly be seen as an orientation detector evolved for navi-

gating the task environment (Harvey, Husbands, and Cliff 1994; Husbands,

Harvey, and Cliff 1995). It is true, however, that whether these meanings –

albeit not arbitrary – are real meanings remains controversial.

As remarked above, the empty-program argument was not the only rea-

son why Haugeland rejected GOFAI. Even more important in his eyes (and

Dreyfus’) was the lack of embodiment of GOFAI programs. This feature was

grounded in the Cartesian separation of mind, body, and world – with its pic-

ture of mental life as a sort of relay race, where the baton is passed along by a

series of analytically distinct stages of perception, thinking, and motor action.

That picture had imbued (most) experimental psychology and neurophysiol-

ogy long before GOFAI came on the scene. But GOFAI made it even more evi-

dent, for instance in the 1960s/1970s programs of scene analysis that studied

“vision” as a disembodied, and quasi-intellectualist, matter (Boden 1977/87,

chs. 8–9). Haugeland prefers the phenomenological approach, wherein bod-

ily presence and action in a material (and social) world are the source of all

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139046855.007
https://www.cambridge.org/core


100 Margaret A. Boden

meaning and consciousness. This approach, with an accompanying emphasis

on dynamical systems, was brought into cognitive science by Francisco Varela

(Varela, Thompson, and Rosch 1991). Today, the phenomenological critique

is hugely more influential within the field. Martin Heidegger is now more

of a name to conjure with than is Bertrand Russell, whose works on logic

(and logicist philosophy of language) were so important in the foundation of

symbolic AI. But these two philosophers could hardly be more different.

As a result of this sea change, GOFAI is even more out of fashion now than it

was in the heyday of PDP. In terms of philosophical interest, only GOFAI work

on robotics and distributed cognition is still considered important. Whether

any robot, GOFAI or not, can properly be said to be “embodied” is a highly

germane question that we cannot go into here (see Chapter 6). But we have

already seen (in Section 4.3) that a robot may be situated in, and challenged by,

the physical world in a way in which typical (cerebral/intellectualist) GOFAI

programs are not.

Some readers may feel that to say that GOFAI is “out of fashion” does not

go nearly far enough. After all, fashions can be revived – and admired anew.

But many people believe that GOFAI is out of favor forever, not to say dead.

Why do they think this? And are they right?

4.5 The myth of GOFAI failure

We saw in Section 4.3 that the strengths and weaknesses of GOFAI and con-

nectionism, and of GOFAI and situated robotics, are complementary. In the

minds of the general public (and some AI researchers), however, GOFAI’s

weaknesses are more often noted than its strengths. Indeed, many commen-

tators take it for granted that GOFAI has failed, and should be written off

accordingly.

For example, Dreyfus, who predicted the failure of GOFAI some forty years

ago (1965), now regards himself as vindicated. His Houston University lecture

in 1998 was called “Why Symbolic AI Failed,” and he had already expressed

this unequivocal judgment in print: “The rationalist tradition had finally been

put to an empirical test, and it had failed” (Dreyfus and Dreyfus 1988, p. 34).

This view has percolated so widely that many people now regard it as a cliché.

To be sure, GOFAI has not lived up to its early hype. Simon’s 1950s predic-

tion that it would provide the world chess champion by 1967, for instance, was

not borne out. (Deep Blue’s trouncing of Gary Kasparov happened thirty years

later, thanks to special-purpose chips enabling an eight-move lookahead.)

And many other early predictions, such as near-faultless machine translation,

have not been borne out either. The more recent examples of GOFAI hype

include confident predictions of a robotic world soccer champion by 2050.

My own view is that such promises will not be fulfilled for hundreds of years,

if ever. But that doesn’t spell “failure.” For the success of the field should not
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be assessed by focusing on its most extravagant promises – especially since

many AI researchers, past and present, have not shared those hype-ridden

hopes. Nor should it be assessed in terms of passing the Turing Test. This has

never been an appropriate criterion of success in AI – nor was it intended as

such by Turing himself (Boden 2006, ch. 16.ii.c). So the fact that it has not

been passed is neither here nor there. Nevertheless, many people still assume

that it is highly relevant. Dreyfus’ “Failure” lecture, for example, opened with a

reference to Turing’s prediction of close human–computer similarity by 2000.

Rather, our assessment should be based on whether GOFAI has made signifi-

cant progress toward the goals expressed in less careless moments. And here,

we must recall the distinction between technological and psychological AI.

As regards technological GOFAI, the charge of failure is absurd. The frame

problem itself, though admittedly not solved (and probably insoluble) for the

general case, has been solved for practical purposes in many different contexts.

Expert systems have been developed in a wide range of domains. They are

used, for instance, for commercial, administrative, educational, medical, and

military purposes. Some of them are capable of highly complex planning,

occasionally scaling up to tens of thousands of steps (Russell and Norvig 2003,

p. viii). GOFAI planning is even important in video games and Hollywood

animation, for example, to prevent the virtual reality characters from bumping

into one another. Moreover, the longed-for Semantic Web – typically regarded

as a futuristic project for computer science rather than AI (see below) – will

require advances in computerized ontologies, a topic pioneered by GOFAI

(McCarthy and Hayes 1969).

Expert systems, VR games, and internet search engines such as Google all

illustrate the fact that, in industrial societies, there are a host of invisible

AI applications of which the general public are not even aware. Avid video-

gamers do not know that there is a GOFAI planner in their favorite system.

Workers in call centers often offer advice taken from a GOFAI expert system

that is unseen by the customer at the other end of the telephone line. And

many domestic machines, from cars to cookers, rely on inbuilt GOFAI (and

connectionist) technology.

Invisibility is only one reason why GOFAI’s successes go largely unsung.

Another is unidentifiability. Many aspects of AI have been so successful that

people (including other computer scientists) think of them merely as part of

mainstream computer science. These include computing techniques that are

now taken for granted, such as time sharing, personal computers with windows

and mice, and object-oriented programming. Their roots in AI are forgotten.

In this, AI is comparable to philosophy. It bravely asks the unanswered, almost

unaskable, questions – but when it finds a reliable way of answering them,

they are relabeled as questions for “respectable” science. In short, the charge

that GOFAI has failed as a technology cannot be sustained. But what of GOFAI

as a psychological enterprise?
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As regards weak AI, there is no question but that this has led to many

psychological discoveries. Some GOFAI-based work, to be sure, has led to

what the philosopher Karl Popper called “refutations” of apparently promis-

ing “conjectures.” For instance, GOFAI turned out to be inappropriate for

modeling low-level vision, and for dealing with multiple partially conflicting

constraints. But that is par for the course: The conjecture/refutation dialectic

is what drives science forward.

What is more, GOFAI-based computational psychology has not met only

with refutations. It has led to new psychological data and/or a deeper theoret-

ical understanding regarding many topics (Boden 2006, ch. 7). These include

emotions, hypnosis, and psychopathology, as well as cognitive phenomena

such as reasoning, problem solving, action errors, and language. Even more

important than specific data and theories, AI in general – GOFAI included – has

led psychologists to appreciate the previously unsuspected subtlety and com-

putational power of the human mind. Poets and novelists (and Sigmund Freud,

too) had long had an intuitive sense of this richness. But pre-computational

theorists had no notion of the extent to which they were failing to capture it.

Strong AI is another matter. As remarked in the previous section, the original

definition of GOFAI included a commitment to strong AI. Here, there are two

broad reasons why one cannot claim that GOFAI has succeeded – although

whether it has “failed” is a more delicate judgment.

On the one hand, the notion (put forward by Newell and Simon, for instance)

that symbolic computation can explain/implement all aspects of intelligence

is mistaken. Connectionist computation is crucial too. However, we saw in

Section 4.3 that GOFAI has strengths which other AI methodologies cannot

yet rival, and which are highly relevant to certain aspects of human minds. So

if strong AI (interpreted broadly, as the claim that some computational system

or other could be genuinely intelligent) is correct, then GOFAI can form part

of a truly intelligent system.

On the other hand, it is not clear that strong AI is correct. Indeed, it is as

controversial as ever – not least because it would involve a naturalistic (scien-

tific) explanation of intentionality, or meaning. Those philosophers who are

committed to finding such an explanation disagree over how this is to be done.

The most promising attempt, in my view, is an evolutionary one; but even

its proponents admit that their position is counterintuitive in various ways

(Millikan 1984, pp. 93, 337–8). Furthermore, many philosophers – including

most of those who favor phenomenology – argue that a naturalistic account

of intentionality is impossible in principle (Boden 2006, ch. 16.vi–viii). Even

Hilary Putnam, whose philosophy of functionalism (1960) fuelled the rise of

GOFAI-grounded strong AI, now accepts a version of this view – and accord-

ingly refers to cognitive science as “science fiction” (Putnam 1997, 1999).

The core anti-naturalist claim is that human language, meaning, and con-

sciousness are the fount of all our concepts and all our knowledge (science
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included), so that these phenomena themselves could never be explained by

science. Strong AI, on that view, is philosophically topsy-turvy.

The naturalist/anti-naturalist schism is the deepest divide in philosophy

(Boden 2006, chs. 1.iii.b, 16.vi.b). It has led to the vituperative “science wars,”

in which science in general has been scathingly attacked and hotly defended.

Given its claim to explain mental phenomena, psychological AI – whether

GOFAI or not – is the first in the firing line. Most scientists are realists: They

believe that a real world exists independently of human beings, with its own

properties that much of human thought, and especially science, attempts to

describe. Realists typically accuse the anti-naturalists of being irrational and

self-defeating, and incapable of accounting for the many successes of science.

My own view is that the realists are right. However, there is no knock-down

argument on either side. For sure, this philosophical battle will not be decided

soon.

In sum: Considered as technology, GOFAI is a hugely impressive, though

largely invisible (and therefore unrecognized), success. From expert systems

to the internet, daily life in industrial societies would be very different without

it. Considered as psychology, it is partially successful but needs to be comple-

mented by other AI methodologies. It has thrown light on a very wide range of

psychological phenomena, from everyday cognition (including language use)

to action errors, hypnosis, and hallucinations (Boden 2006, chs. 7, 12, and

14). Considered as philosophy, it is partly mistaken (see Chapter 3), and some

(i.e., the anti-naturalists) would say that it is fundamentally on the wrong

track. If that last charge is correct, however, all other forms of AI/A-Life – and

even neuroscientific explanations of mind, too – fall with it (Boden 2006, chs.

1.iii.b, 16.vi–viii). In other words, people who oppose GOFAI on philosophical

grounds often use arguments which – although they do not always realize

this – cast doubt also on the legitimacy of neuroscience, and even of physics.

In short, GOFAI is in good company.

Further reading

Boden, M. A. (ed.) (1990). The Philosophy of Artificial Intelligence. Oxford Uni-

versity Press. This collection contains some of the classical and some more

recent papers on AI, focusing on theoretical/philosophical issues rather than

practical methodologies. (A companion volume in the same series focuses on

A-Life.)

Boden, M. A. (2006). Mind as Machine: A History of Cognitive Science, 2 vols.

Oxford University Press. This book describes the past history and some current

state-of-the-art work in all the disciplines of cognitive science. The parts

especially relevant to GOFAI are chapters 10, 11, and 13 – plus sections 4.i–

iv, 6.iii, 7.i.e–g, 7.iv–v, and 9.x–xi. (Cybernetics, connectionism, and artificial

life are discussed in Chapters 12, 14, and 15, and in Sections 4.v–ix and 5.iv.)
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Dreyfus, H. L. (1992). What Computers Still Can’t Do: A Critique of Artificial

Reason. Cambridge, MA: MIT Press. An updated version of Dreyfus’ classic

(1972) attack on GOFAI. Its statements about the achievements and limitations

of AI in practice are not always reliable (see Boden 2006, ch. 11.ii). However,

it offers a well-written account of a common set of philosophical objections

to AI in general, and GOFAI in particular.

Graubard, S. (ed.) (1988). The Artificial Intelligence Debate: False Starts, Real

Foundations. Cambridge, MA: MIT Press. This collection of papers (including

one by the Dreyfus brothers) is an attack on GOFAI, in favor of connectionism.

It underestimates the former while overestimating the latter, but is a good

example of a common view outside the field.

Russell, S. and Norvig, P. (2010). Artificial Intelligence: A Modern Approach (3rd

edn.). Upper Saddle River, NJ: Prentice Hall. An up-to-date and comprehen-

sive textbook of technical work in AI. The book includes both connectionism

and GOFAI, but is weighted more heavily towards GOFAI.

Simon, H. A. (1969). The Sciences of the Artificial. Cambridge, MA: MIT Press. A

classic account of the fundamental assumptions and methodology of GOFAI,

which also includes the core idea of situated robotics (in the now-famous

example of Simon’s ant).

Sloman, A. (1978). The Computer Revolution in Philosophy: Philosophy, Science,

and Models of Mind. Brighton: Harvester Press. Out of print, but available –

and continually updated – online at www.cs.bham.ac.uk/research/cogaff/crp/.

This text, and the papers accompanying it on Sloman’s CogAff website, is a

rich and insightful account of how GOFAI and other types of AI relate to the

mind, whether animal or human. Sloman is an accomplished philosopher, as

well as an AI leader. Among other things, he offers a stimulating view (and

mini-programs for simulation) of the role of emotions in mental architecture.
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5 Connectionism and neural networks

Ron Sun

Connectionism and neural networks have become a mainstay of artificial

intelligence and cognitive science. Nowadays, conferences on neural networks

from the perspective of artificial intelligence (or computational intelligence, as

some would put it) are held regularly and are usually fairly well attended (such

as International Joint Conferences on Neural Networks). At major cognitive

science conferences, work based on connectionist models usually occupies a

major place. In many engineering conferences and journals, work utilizing

neural network models is commonplace. Their popularity and appeal have

reached a stable state in a sense. In other words, they have become an integral

part of the study and the exploration of intelligence and cognition.

In this chapter, I will first review briefly the history of connectionist models,

identifying major ideas and major areas of applications, and then move on

to address the issue of symbolic processing in connectionist models; finally, I

will expand the discussion to hybrid connectionist models, which incorporate

both connectionist and symbolic processing methods.

5.1 The connectionist revolution of the 1980s

Connectionist models – that is, models that consist of networks of simple pro-

cessing units interconnected through connectivity patterns of various kinds –

re-emerged in the 1980s as a major paradigm for cognitive science and AI

after a period of dormancy in the late 60s and the 70s. This connectionist

revolution in the 1980s brought with it new paradigms, new approaches, new

ideas, and new techniques, as well as new excitement and new controversies

(Rumelhart, McClelland, and the PDP Research Group 1986). The excitement

and controversies have largely died down by now, but many ideas and tech-

niques of connectionism are staying and they have become an integral part

of the AI and cognitive science toolkit.

5.1.1 Overview of connectionism

Generally speaking, connectionism is a way of capturing and understand-

ing the mechanisms and processes of cognition through building models

using networks of simple, neuron-like processing elements (units), each of
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which performs simple numerical computations. Connectionist models have

been applied to many different tasks: for example, perceiving objects and

events (e.g., Carpenter and Grossberg 1992); pronouncing English texts (e.g.,

Sejnowski and Rosenberg 1987); storing and retrieving (contextually appro-

priate) information from memory (e.g., Rumelhart et al. 1986; McClelland,

McNaughton, and O’Reilly 1995); producing and understanding language

(e.g., Rumelhart et al. 1986; St. John and McClelland 1990); skill learning

(Sun, Slusarz, and Terry 2005); reasoning (e.g., Sun 1994; Sun and Zhang

2006), and so on.

Connectionist models (neural networks) are based on the assumption that

cognition emerges through the interactions of a large number of simple pro-

cessing elements or units (i.e., “neurons”). The basic idea is that the brain

consists of a vast number of such units, and that together they are capa-

ble of extremely complex cognitive processing (such as perception, language,

motor control, and so on). Although connectionists often claim to capture

principles of biological neural processes in their models, the units (nodes) in

connectionist models nevertheless rarely correspond to individual biological

neurons. Often this was necessitated by practical computational considera-

tions or was due to our lack of complete knowledge of the biology of neural

processes.

In a connectionist model, a “representation” is often a pattern of activation

over the set of processing units in the model (although there are many vari-

ations as well as alternatives to this; more later). Processing is accomplished

through the propagation of activations among the processing units (nodes), via

the interconnections among them. What mediates the propagation of activa-

tions is the numerical connection “weights” between pairs of processing units.

Learning takes place through the (usually gradual) change of the connection

“weights,” as a function of the activity in the network. Learning happens

sometimes with “error” signals provided from external sources, in the form of

either a success/failure signal (Sun et al. 2005; Sutton and Barto 1998) or a

signal indicating the degree of mismatch between the actual result from the

network and the desired outcome, or target (Rumelhart et al. 1986).

Here are a few particularly interesting (and potentially useful) properties of

connectionist models, as enumerated in Rumelhart et al.’s 1986 book, as well

as in other relevant literatures:

� Parallelism (that is, the fact that nodes may perform computation simul-

taneously and links may propagate information simultaneously in most of

these models).
� Adaptivity (that is, the built-in learning ability in most of these models, e.g.,

through modification of weights on the links connecting nodes).
� Graceful degradation (that is, being able to avoid catastrophic breakdowns

in the face of errors in processing or in input).
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� Automatic completion of (novel or familiar) patterns (as an inherent prop-

erty of many of these models).
� Spontaneous generalization (that is, the ability to spontaneously apply exist-

ing knowledge to different situations).
� Robustness (that is, inherent fault tolerance due to the preceding five prop-

erties, as a result of the structuring of such models).
� Content addressability (that is, the ability to retrieve information based on

partial knowledge of its content).
� Optimization and constraint satisfaction (that is, the ability to find optimal

or near-optimal solutions that satisfy multiple “soft” constraints, as an

inherent property of some of these models).

See the connectionist literature for more detailed discussions of these prop-

erties of neural networks (e.g., Rumelhart et al. 1986; Waltz and Feldman

1986; Bechtel and Abrahamsen 1990; Ramsey, Stich, and Rumelhart 1991;

Sun 1994).

Historically, connectionism rose from several disparate strands of research.

Some of the early research involved networks of binary units. Other early

research focused on adaptive systems. Work on dynamic programming and

reinforcement learning also contributed to neural networks. In particular,

McCulloch and Pitts in the 1940s explored simple networks of binary thresh-

old “neurons” in terms of logical operations. Donald Hebb developed a cell

assembly theory of cognition, and proposed in particular the idea that spe-

cific synaptic changes might underlie psychological principles of learning.

Frank Rosenblatt in the 1950s formulated learning rules for neural networks

to associate arbitrary patterns through adjusting weights (i.e., the idea of the

perceptron). Bernard Widrow proposed models for adaptive linear systems.

(See Rumelhart et al. 1986 for further details of the history.)

Neural networks were revived in the 1980s as the result of the negative

reaction against the then prevailing symbolic approach in artificial intelli-

gence and cognitive science and its perceived failure. This movement of the

1980s was known as the “connectionist revolution.” Espousing models that

do away with centralized sequential symbol manipulation, and often involv-

ing distributed processing (in massively parallel architectures), connectionism

was frequently referred to in those days as “parallel distributed processing.”

On this view, cognition should be approached more in terms of mechanisms

of constraint satisfaction, pattern recognition, and weight adaptation, rather

than explicit symbol manipulation (see Chapters 2 and 4).

5.1.2 Connectionist learning

A brief review of major paradigms of learning in neural networks is in order

here. We shall look in particular at the following types of learning: supervised
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learning, unsupervised learning, and reinforcement learning. Although these

types of learning can also be carried out in other types of models, they are

particularly prominent in neural networks.

Supervised learning algorithms (Rumelhart et al. 1986) require a feedback

signal (from external sources) for each of the output nodes of a network in

order to get learning going. A typical example of such learning occurs within

a three-layered feedforward neural network (where a feedforward network

means a network with no feedback connections between layers and no lateral

connections within a layer). In such a network, input patterns are presented

at the first layer (the input layer), and each subsequent layer (the hidden

layer and the output layer) is updated in turn (through activation propaga-

tion), resulting in an output pattern at the final (output) layer. This output

pattern is compared to a desired output pattern, and thus an error signal is

computed. The error signal is propagated backward through the network to

compute updates to the weights between layers in order to reduce the error.

The famed backpropagation learning algorithm is one class of such learning

algorithms, which has been widely applied in all areas of cognitive science

and AI (Rumelhart et al. 1986).

In this regard, interesting theoretical results have been obtained concerning

neural network computation. Layered feedforward neural networks have been

shown to be universal approximators, that is, able to represent essentially any

function. Recurrent neural networks (i.e., networks with feedback connec-

tions) have been shown to be Turing-equivalent (i.e., equivalent to the Turing

machine – a general model of computation) and able to represent a large class

of nonlinear dynamic systems. A variety of results have been obtained for

supervised learning in neural networks. For example, for classification, neural

network learning algorithms have been shown to converge to the posterior

probabilities of the classes. These algorithms have been utilized in both cog-

nitive modeling and practical applications. Bayesian statistical methods have

been utilized in analyzing supervised learning and in designing new learning

algorithms.

On the other hand, unsupervised learning (Rumelhart et al. 1986) does not

require error signals or the distinction among input, hidden (internal), and

output nodes. It is thus applicable to many settings where supervised learning

is not. For instance, self-organizing networks, a form of unsupervised learning,

have been widely explored and utilized in cognitive modeling as well as in

industrial applications. They are based on self-organization of nodes and links

in response to data from the environment. Another approach to unsupervised

learning is through specifying a model of the way in which the environment

generates data. Unsupervised learning thus becomes the statistical problem of

finding the best model to fit the data.

Reinforcement learning is somewhere between supervised and unsupervised

learning: It does not require an exact error signal, but only an indication of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139046855.008
https://www.cambridge.org/core


112 Ron Sun

whether the current output is good or bad (or how good or bad it is), usually

in the form of a number. Thus, it is more widely applicable than supervised

learning, and often more useful than unsupervised learning (due to the avail-

ability of feedback). Reinforcement learning has been used in modeling animal

learning and human skill learning (Sun et al. 2005), as well as in control engi-

neering and other industrial applications. Many theoretical results have been

produced concerning various reinforcement learning algorithms (see Sutton

and Barto 1998).

Neural network models based on probability theory have also been explored.

Many neural network learning models have been shown mathematically to be

related to probabilistic computation (i.e., corresponding to probability theory).

This provides, in a way, a mathematically rigorous basis for neural network

learning. In particular, it is worth noting that some of the unsupervised learn-

ing algorithms studied in the neural network literature can be derived from

Bayesian networks (for Bayesian statistical methods, see Chapters 7 and 9).

5.1.3 Connectionist representations

There are, in general, two rough categories of connectionist representations:

(1) localist representation, in which each node represents an individual con-

cept; and (2) distributed representation, in which each concept is represented

by an activation pattern over a set of nodes, each of which may not be

interpretable (cognitively penetrable).1 However, beyond these two rough

categories, there is an entire spectrum of different representational techniques

available:

� Fully localist representation. As mentioned earlier, this is characterized by

representing each concept with an individual, dedicated node in a network.

In other words, it is one node for one concept (i.e., there is a one-to-one

mapping between nodes and concepts).
� Distributed localist representation. Instead of one node for one concept, it

is possible to use a set of nodes for one concept, each of which does the

same processing, so that knocking out one node will not drastically affect

the performance of a system. This set of nodes is dedicated to represent

this particular concept only, and none of these nodes participate in the

representation of any other concepts. This representation may be considered

as a variation of localist representation. It is a set of nodes for one concept

(i.e., there is a one-to-one mapping between sets of nodes and concepts).
� Locally distributed representation. This form of representation is charac-

terized by dividing the representational space (the set of all the available

1 It is also called coarse coding, although later on the term came to mean a particular type of

distributed representation.
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nodes) into several subspaces (i.e., subsets of nodes), and a distributed rep-

resentation is used for each of these subspaces. That is, a set of concepts is

represented in a distributed manner within a representational subspace. But

outside that particular representational subspace, whether a node is active

or not is irrelevant to the representation of the concepts within that set. The

representation is localized with respect to a set of concepts, but is distributed

within the set.2 It can be termed a set of nodes for a set of concepts (i.e.,

there is a one-to-one mapping between sets of nodes and sets of concepts).
� Fully distributed representation. Each node participates in the representation

of all the concepts involved, and each concept is represented by all the nodes

used in a network.3 It can be termed all the nodes for all the concepts.
� Other types of distributed representation. In addition, there are other types of

distributed representation that do not fit into any of the foregoing descrip-

tions (see, e.g., Sun 1994).

Each of these representational techniques has its own characteristics and its

advantages and disadvantages, and therefore each is suitable for some specific

situations (Sun 1994).

5.1.4 Connectionism and cognition

Next, a brief survey is in order of different areas of connectionist modeling

in relation to understanding cognition, in correspondence with the useful

properties of connectionist models mentioned earlier.

While neuroscience addresses phenomena at levels often no higher than cel-

lular and local networks, cognitive models have to address human behavior

of higher levels (e.g., as studied in psychology). Some simplification is there-

fore warranted. In this way, although biological plausibility is compromised

to some extent, we may nevertheless posit that simplified models may share

the same general approach toward computation as biological neural systems.

Because of their distinctive characteristics, connectionist models have

offered new cognitive theories and generated explanations that are often

radically different from those of previous theories. I shall briefly review some

examples.

2 In this way, one may avoid some unnecessary interference (crosstalk), because, by dividing

up a representational space into subspaces and by correspondingly dividing up concepts to

be represented into sets, there are fewer concepts represented in each subspace, and thus

the chance for interference (crosstalk) is reduced.
3 Removing a small number of nodes will not affect the system performance drastically and

the performance will degrade gradually in proportion to the number of nodes removed (i.e.,

the property of fault tolerance and graceful degradation mentioned before). Such

representation is also capable of generalization (another property mentioned before).
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Memory. In connectionist models, memory is often a constructive process

involving the interactions of simple processing units (nodes). For example,

recall may be a process of constructing a pattern of activation over a set of

units that is similar to some pattern previously experienced. It is often subject

to the influences resulting from the interactions of the units, which may fill in

missing details or correct inaccuracies. One useful property of connectionist

models trained with, for example, backpropagation is that they can learn

what basis within a distributed representation to use for representing concepts

internally, so that similarity-based processes (e.g., generalization) can be based

on relevant features. Thus far, connectionist models have been applied to

issues of semantic memory (Rogers 2008), episodic memory (Norman, Detre,

and Polyn 2008), concept learning (Gluck and Bower 1988), categorization

(Kruschke, 2008), and so on.

Implicit and explicit learning. Connectionist models have been shown to be

suitable for addressing the psychological distinction between explicit and

implicit learning, as developed from empirical psychological research. As

demonstrated by Sun et al. (2005), the distinction may be captured by the

use of localist versus distributed representation in connectionist networks.

In localist (or symbolic) representations, each unit is easily interpretable and

has a clear conceptual meaning. This characteristic captures the property of

explicit knowledge being more accessible and more manipulable (Sun 1994).

In contrast, representational units in a distributed representation are together

capable of accomplishing tasks but are generally not individually meaningful

(Rumelhart et al. 1986; Sun 1994, 2002). Sun et al. (2005) carefully demon-

strated how effects of the interaction of implicit and explicit learning might

be captured in models based on this distinction. Relatedly, Cleeremans and

McClelland (1991), as well as others, addressed modeling of psychological data

of purely implicit learning.

Implicit and explicit memory. Connectionist models have also addressed

the distinction between explicit and implicit memory. (Implicit memory refers

to the effect of an experience without explicit reference to that prior expe-

rience – sometimes even without any conscious recollection of that experi-

ence.) Explicit memory for recent experiences may be impaired in some brain-

damaged patients who nevertheless show good implicit memory, suggesting

a special brain system may be required for the formation of new explicit

memories. Connectionist models generally account for implicit memory based

on connections among a large pool of units in a network with distributed

representations (e.g., McClelland, McNaughton, and O’Reilly 1995).

Language. Connectionist models have suggested viable alternatives to the

idea that cognitive processes for language must be represented as a system

of rules. Connectionists have produced models of morphological inflection,

spelling–sound conversion, sentence processing and comprehension, and a

variety of other aspects, which account for many important psycholinguistic
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phenomena often neglected by rule-based theories. One issue is the sensitivity

of language patterns to frequency and consistency. Rule-based approaches

failed to account for the fact that the exceptions are not arbitrary. For exam-

ple, exceptions to the regular past tense of English verbs come in clusters that

share phonological characteristics. A connectionist model (see Rumelhart et al.

1986) showed that such a model, which learned connection weights to gener-

ate the past tense of a word from the present tense, could capture a number

of psychological aspects of the acquisition of the past tense. In connectionist

models, language processing is often a constraint-satisfaction process subject

to semantic, contextual, syntactic, and other constraints. In addition, con-

nectionist work on learning grammatical structures of sentences has been

carried out in recurrent neural networks (e.g., Elman 1990; see Section 5.2.3

below).

Reasoning. For addressing higher-level cognition, such as reasoning and

problem solving, connectionist models (of pure forms) fall short in many ways.

However, there has been some relevant work in this area. For example, work

has been done in the area of analogical reasoning (Holyoak and Thagard 1989).

Some other work has also been done in the areas of rule-based reasoning

and even logical reasoning (e.g., Shastri and Ajjanagadde 1993; Sun 1992,

1994). In this regard, researchers often opt for “hybrid” models. Hybrid models

(which will be discussed later) often involve, in one way or another, traditional

symbolic methods. For example, they may assign units and connections using

symbolic algorithms and then carry out constraint-satisfaction processes or

backpropagation learning in a connectionist fashion. Or, they may implement

symbolic reasoning using connection weights directly (Sun 1992).

Binding. Researchers often view the so-called “binding problem” as a funda-

mental problem in connectionist models of reasoning, as well as in other areas

of cognitive science. ”Binding” refers to the combination of multiple arbitrary

items in processing or representation, including, for example, the assignment

of an arbitrary item to a slot in a structured description (e.g., assigning “CPU-

213” to the “CPU” slot in a structured description of “computer” that includes

slots for CPU, memory, disk, and so on). To address this problem, several (par-

tial) solutions have been proposed (e.g., Shastri and Ajjanagadde 1993; Sun

1992, 1994). However, devising neural networks that learn to form their own

bindings, in either familiar or unfamiliar domains, remains a difficult issue.

5.2 The issue of symbolic processing

5.2.1 The importance of symbolic processing

The connectionist revolution has spurred vigorous theoretical debates about

the nature of cognition and the various approaches toward understanding it.

Among them, the debate between classical connectionism and symbolicism
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has been one of the most fundamental underlying philosophical currents,

which has spurred the development of connectionist models within cognitive

science, and also to some extent within the AI communities (see Fodor and

Pylyshyn 1988; Pinker and Prince 1988; Smolensky 1988, Sun 1994).

The perceived importance of symbol processing lies, at least in part, in a

fundamental tenet of symbolic AI and symbolic cognitive science. The physical

symbol system hypothesis introduced by Newell and Simon (1976) clearly

articulated this tenet. They defined a physical symbol system as follows:

A physical symbol system consists of a set of entities, called symbols, which are

physical patterns that can occur as components of another type of entity called

an expression (or symbol structure). Thus, a symbol structure is composed of a

number of instances (or tokens) of symbols related in some physical way (such as

one token being next to another). (Newell and Simon 1976, p. 116)

They further claimed that symbols can designate arbitrarily: “A symbol may

be used to designate any expression whatsoever . . . it is not prescribed a priori

what expressions it can designate . . . There exist processes for creating any

expression and for modifying any expression in arbitrary ways” (1976, p. 116).

Based on this, they concluded: “A physical symbol system has the necessary

and sufficient means for general intelligent action” (1976, p. 116), which is

the well-known physical symbol system hypothesis.

The physical symbol system hypothesis has spawned enormous research

efforts in traditional AI and also in cognitive science. This approach (classi-

cal symbolicism) typically uses discrete symbols as primitives, and performs

symbol manipulation in a sequential and deliberative manner.

Major ideas in the symbolicist AI tradition include “search” and “knowl-

edge representation” (Newell and Simon 1976). Search refers to a systematic

exploration of a space of problem states, as a means of conceptualizing or

conducting problem solving. Among different types of symbolic knowledge

representations, the most prominent ones are logic-based representations,

structured representations (such as scripts, frames, and semantic networks),

and production rules (see Chapters 2, 3, and 4).

5.2.2 Examples of connectionist symbolic processing

Given the significance of symbols in cognitive processes, connectionist models

need to be able to capture symbols and symbolic processing, especially search

and knowledge representation. There have been many attempts at enabling

connectionist models to perform symbolic processing. Various schemes have

been proposed, which collectively may be labeled connectionist implemen-

tationism. They range from models of variable binding, to implementations

of production systems and of first-order logic, and further on to the incor-

poration of modal logic and fuzzy logic, all based on typical connectionist
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Figure 5.1 The overall structure of a connectionist production system.

network models, such as multi-layered feedforward networks with backprop-

agation learning. Techniques used for implementing symbolic processing in

such networks vary a great deal from model to model.

An early example of connectionist implementationism is Touretzky and

Hinton’s (1988) distributed connectionist production system (DCPS), which

implemented a production system using connectionist models. In DCPS, there

was a working memory, which stored facts; there were two clause compo-

nents, each of which was used to match one of the two conditions of a rule

(where each rule was restricted to have two conditions); there was also a

rule component, which was used to execute the action of a matching rule

that changed the working memory; in addition, a bind component was used

to enforce constraints regarding variables that might exist in a rule. Each of

these components was implemented as a connectionist network. See Figure 5.1.

Overall, it was a complex modular connectionist system designed specifically

for implementing a limited production system, as a demonstration of possi-

bilities of implementing complex symbolic systems in classical connectionist

models with distributed representation.

In addition to this approach, there are many other methods and techniques

that have been proposed and explored for implementing rule-based reasoning
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and symbolic processing in neural networks, including, for example, recur-

rent auto-associative memory (RAAM), holographic representation, and ten-

sor product representation (see Wermter and Sun 2000 for surveys as well as

details).

5.2.3 Emergent symbolic processing in connectionist models

From both the connectionist and the symbolicist side, some researchers believe

that high-level cognition, especially that which is temporally extended or

involves explicit verbal reasoning, can often be better captured through the

use of a more symbolic framework (more on this in the next section). However,

many connectionists believe, rightly or wrongly, that connectionist processes

underlie all aspects of human cognition. They believe that human reasoning

and problem solving often arise from insight or intuition, or directly from

perception, and thus a connectionist, rather than a symbolic, approach may

be needed to capture all their subtleties.

For example, Elman (1990) showed how regularities of language could

arise without explicit representation of linguistic rules, and how learning

could lead to the discovery of internal representations that could capture

linguistic structures on the basis of the co-occurrences of words. In Elman’s

simple recurrent networks (SRNs), on time step t, an input was presented

to the network and caused a pattern of activation on hidden and output

layers. On time step t + 1, the next input in a sequence was presented to

the network, and a copy of the activation of the hidden units on time step

t is also fed back to the hidden units. Each input to the SRN was therefore

processed in the context of what came before. In his experiments, Elman

trained an SRN to predict the next word in a sentence. During training, the

network’s output came to approximate the transition probabilities between

words in sentences. For example, following the first noun, the verb units

would be more active as the possible next word, and verbs that tended to

be associated with this particular noun would be more active than those

that did not. Elman examined the structure of the internal representations

of the SRN, and found that the internal representations were sensitive to

syntactic differences, as well as to a range of semantic distinctions. An SRN

was thus able to develop representations of entities that varied according to

their context of use, in contrast to traditional symbolic representations, which

maintained their identity irrespective of the combinations into which they

were put. In sum, Elman’s work demonstrated how simple networks can learn

statistical regularities over temporal sequences, and how they may be sufficient

to produce many of the behaviors that linguists have ascribed to grammatical

rules.

For another example, Miikkulainen (1993) showed what a set of intercon-

nected multi-layered feedforward networks with the backpropagation learning
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algorithm can accomplish in terms of natural language understanding. Instead

of just implementing scripts and frames, his models showed how these sym-

bolic representations (scripts and frames) might emerge through backprop-

agation learning from training data. Because these representations emerged

from neural networks through learning, they were able to generalize to novel

situations (at least to some extent). This work thus expanded the scope of

symbolic representation within connectionist models.

5.3 Hybrid connectionist models

5.3.1 The idea of a hybrid model

In contrast to connectionist implementationism, hybrid connectionist models

may be considered a synthesis of connectionist models and traditional sym-

bolic models. Such models thus aim to move us away from the old debate of

connectionism versus symbolicism towards a new and productive synthesis.

As a result of combining a variety of representations and processes, sym-

bolic or connectionist, they tend to be more expressive, more powerful, often

more efficient, and thus more useful, in both cognitive modeling and practical

(industrial) applications (Sun 1994, 2002; Sun and Bookman 1995; Wermter

and Sun 2000).

The basic rationale for hybrid models can be succinctly summarized as

“using the right tool for the right job.” More specifically, it should be apparent

that cognitive processes are not homogeneous; a wide variety of represen-

tations and processes are likely employed, playing different roles and serv-

ing different purposes. Some cognitive processes and representations are best

captured by symbolic models, others by connectionist models (Dreyfus and

Dreyfus 1986; Sun 1994, 2002). There is thus a need for pluralism in the mod-

eling of human cognition, which leads naturally to the development of hybrid

connectionist models, to provide necessary computational tools and concep-

tual frameworks. For instance, to capture a full range of human skill-learning

capabilities, a cognitive architecture needs to incorporate both implicit and

explicit knowledge (Sun et al. 2005). An architecture incorporating both pro-

cesses can be implemented computationally by a combination of symbolic

models (which capture explicit knowledge) and connectionist models (which

capture implicit knowledge). The development of intelligent systems for var-

ious practical applications can also benefit from a proper combination of

different techniques, as no one single technique can currently do everything

efficiently and successfully.

The relative advantages of connectionist versus symbolic models have been

amply argued for (see, for example, Dreyfus and Dreyfus 1986; Smolensky

1988; Sun 1994, and Sun 2002, for various views). The advantages of con-

nectionist models include massive parallelism, learning capabilities, and fault
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tolerance, as enumerated earlier. The advantages of symbolic models include

crisp representation and processing, ease of specifying symbolic processing

steps, and the resulting precision in processing. With these relative advan-

tages in mind, the combination of connectionist and symbolic models can be

justified relatively easily.

Some existing cognitive dichotomies are very relevant in this regard. Psy-

chologists have proposed a host of dichotomies on the basis of empirical data.

These dichotomies include implicit vs. explicit learning, implicit vs. explicit

memory, automatic vs. controlled processing, incidental vs. intentional learn-

ing, and so on. There is also the well-known distinction of procedural vs.

declarative knowledge. The evidence for these dichotomies lies in experimental

data that elucidate various dissociations and differences in performance under

different conditions. Although there is no consensus regarding the details of

the dichotomies, there is a consensus on the qualitative difference between

different types of cognition. Moreover, most researchers believe in the neces-

sity of incorporating both sides of the dichotomies, since each serves a unique

function and is thus indispensable. Cognitive architectures incorporating both

connectionist and symbolic techniques have been structured around some of

these dichotomies (e.g., Anderson and Lebiere 1998; Sun et al. 2005).

Related to the above dichotomies, Smolensky (1988) proposed a more

abstract distinction of conceptual vs. subconceptual processing, and linked the

distinction to that between connectionist and symbolic models. Conceptual

processing involves knowledge that possesses the following characteristics:

(1) public access, (2) reliability, and (3) formality. They are what symbolic

models capture in his view. On the other hand, there are other kinds of

cognitive capacities, such as skill and intuition, that are not expressible

in linguistic forms and do not conform to the above criteria. According to

Smolensky and many other researchers, it has been futile to try to model

such capacities in symbolic terms, and they should be viewed as being at a

different level in cognition – the subconceptual level. This level is better dealt

with by connectionist models, which overcome some serious problems that

symbolic models encounter in modeling subconceptual processing. Thus, the

combination of the two types of models can lead to significant advantages

in capturing a full range of cognitive capacities. These ideas provide a

foundation for building hybrid connectionist-symbolic models.

5.3.2 Examples of hybrid models

An example of hybrid connectionist-symbolic models is CLARION (e.g., Sun

2002; Sun et al. 2005), which consists of two levels: a symbolic level and

a connectionist level. The two levels work rather independently, but their

outcomes are combined. The connectionist level consists of neural networks,

which work through spreading activation and learn based on reinforcement
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Figure 5.2 The CLARION architecture.

learning methods. The symbolic level works according to symbolic rules.

Through integrating the outcomes of the two types of processes, the model

was able to capture a variety of human skill learning, reasoning, and other

data.

Specifically, CLARION is an integrative architecture composed of a num-

ber of distinct subsystems, with a dual representational structure in each

subsystem. Its subsystems include the action-centered subsystem (ACS), the

non-action-centered subsystem (NACS), the motivational subsystem (MS), and

the metacognitive subsystem (MCS). The role of the action-centered subsys-

tem is to control actions, regardless of whether the actions are for external

physical movements or for internal mental operations. The role of the non-

action-centered subsystem is to maintain general knowledge. The role of the

motivational subsystem is to provide underlying motivations for perception,

action, and cognition, in terms of providing impetus and feedback. The role

of the metacognitive subsystem is to monitor and modify the operations of

the other subsystems.

Each of these interacting subsystems consists of two levels of representation.

In each subsystem, the top (symbolic) level encodes explicit knowledge and

the bottom (connectionist) level encodes implicit knowledge. The distinction of

implicit and explicit knowledge was based on psychological data (as discussed

earlier; see also, e.g., Sun 2002). See Figure 5.2.
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The action-centered subsystem is the central part of CLARION. In it, the

process for action decision making is essentially the following: Observing the

current state of the world, the two levels of processes (implicit and explicit)

make their separate decisions in accordance with their own knowledge, and

their outcomes are “integrated.” Thus, a final selection of an action is made and

the action is then performed. The action changes the world in some way. Com-

paring the changed state of the world with the previous state, the system learns

(e.g., in accordance with reinforcement learning). The cycle then repeats itself.

At the bottom (connectionist) level, implicit knowledge (reactive routines)

develops. Reactive routines developed through reinforcement learning can

exhibit sequential behaviors without explicit (symbolic) planning. In the top

(symbolic) level of the action-centered subsystem, explicit knowledge is cap-

tured in the form of symbolic rules. There are many ways in which explicit

knowledge may be learned, including independent hypothesis testing learning

and “bottom-up learning” (see Sun 2002 for details).

CLARION has been used for a variety of purposes, including, for example,

understanding human skill learning. A number of well-known skill-learning

tasks have been simulated and explained using CLARION, ranging from simple

reactive skills to complex cognitive skills. In addition, many reasoning tasks,

metacognitive tasks, motivational tasks, and social interaction tasks have been

modeled and explained within CLARION (Sun 2002).

While accounting for various psychological data, CLARION provides

detailed explanations of the human data that shed new light on cognitive

phenomena. For example, in accounting for skill-learning tasks, CLARION

attributed certain performance variations to the differing ways of interaction

between implicit and explicit processes (at the two levels respectively). With

this simple notion, CLARION explained a large variety of human skill-learning

data that had not been explained before in a unified way (see Sun et al. 2005

for details).

In addition to the work above, there are several other approaches that

combine connectionist and symbolic methods in a variety of different ways

(for detailed accounts, see Sun 1994; Sun and Bookman 1995; Anderson and

Lebiere 1998; and Wermter and Sun 2000, among others).

5.3.3 Issues concerning hybrid models

In adopting and developing hybrid connectionist-symbolic models, many

questions need to be addressed in order to forge principled approaches. Chief

among them are:

� What are the relative advantages and disadvantages of each approach to

developing hybrid models?
� How cognitively plausible is each of these approaches?
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More specifically, a range of questions arise concerning architectures of

hybrid models, as well as learning in these models. First of all, hybrid models

usually involve a variety of different types of processes and representations,

and, therefore, multiple heterogeneous mechanisms interacting in complex

ways. It is necessary to consider ways of structuring these different compo-

nents, or, in other words, to consider architectures. Some architecture-related

issues include:

� How does one decide whether the representation of a particular part of an

architecture should be symbolic, localist, or distributed?
� What are the appropriate and principled ways to bridge the likely hetero-

geneity in hybrid models?
� How do representation and learning interact in hybrid models (because in

such models both aspects are likely to be more complex)?
� How does one structure different parts of a hybrid model to achieve optimal

results (in whatever sense is appropriate to the task at hand)?

Second, although purely connectionist models, which constitute a part of

any hybrid model, are known to excel in their learning abilities, hybridization

makes learning more difficult. In a way, hybrid models inherit the difficulty

with learning from the symbolic side and forgo to some extent the advantage

that purely connectionist models have in this respect. Some of the learning-

related issues include:

� What kind of learning can be carried out in each type of hybrid architecture?
� How can complex symbolic structures, such as rules, frames, and seman-

tic networks, be learned in hybrid models? (This is particularly a prob-

lem for highly structured hybrid models, in which learning is especially

difficult.)
� In developing hybrid models, what should the relationship be among sym-

bolic learning methods, knowledge elicitation/acquisition methods, and

neural network learning algorithms?
� How can each type of architecture be formed with various combinations of

the above-mentioned methods?

Despite the diversity that exists in the research on hybrid connectionist-

symbolic models, there is a clear unifying theme: the search for computational

models that bring together symbolic and connectionist techniques to achieve

synthesis and synergy of the two seemingly different paradigms. The various

methods, models, and architectures proposed manifest the common belief

that connectionist and symbolic methods can be usefully integrated, and that

such integration may lead to advances in the understanding of cognition and

intelligence.
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5.3.4 Hybrid models in cognitive modeling

Hybrid models, such as CLARION, have been used to address a wide variety of

issues in cognitive science and artificial intelligence, including human learn-

ing, reasoning, problem solving, creativity, motivational dynamics, metacog-

nitive processes, and above all, human consciousness (see, e.g., Sun 1999). The

modeling and explanation of human learning have already been touched upon.

In relation to understanding human reasoning, CLARION has been shown to

be able to capture both implicit and explicit reasoning and their interac-

tion (Sun 1994; Sun and Zhang 2006). Through detailed modeling of human

reasoning data, CLARION provided interpretations of human reasoning data

on the basis of the interaction of implicit and explicit processes, which led

to new insights about human reasoning, beyond those to be gained from

implementing a limited form of production system, as in the connectionist

implementationist work discussed earlier. In relation to understanding human

consciousness, CLARION has been useful in generating explanatory hypothe-

ses. In particular, the representational difference between the two levels of

representations in CLARION has been hypothesized to capture the fundamen-

tal difference between the conscious and the unconscious (Sun 1999), which

could not have been conceived without the availability of the technical tools

of both symbolic and connectionist approaches. Similarly, John Anderson’s

ACT-R architecture has been used to understand and model the interaction

of perception and cognition in a variety of ways (see Anderson and Lebiere

1998).

5.4 Concluding remarks

In this chapter, three types of connectionist models have been discussed:

classical connectionist, connectionist symbolic processing (implementation-

ist), and hybrid connectionist. While classical connectionism brought forth

interesting and novel ideas, it is limited by its simplicity and uniformity.

Symbolic processing within such connectionist models has been extensively

explored, but has yielded limited results thus far. Therefore, it appears neces-

sary, at least for the short run, to develop hybrid connectionist models incor-

porating symbolic methods (and possibly other methods, such as Bayesian or

fuzzy logic ones).

Looking into the future of this field, some trends are discernible. For

instance, while there are domain-specific applications to modeling various

cognitive processes, such as natural language processing, reasoning and deci-

sion making, memory and learning, vision, and so on, there may also be more

integrative connectionist models that cross boundaries of narrow domains

and functionalities. Another likely trend is that connectionist models may be
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increasingly linked to statistical (Bayesian) approaches to learning and reason-

ing, which may provide principled strategies (but are also likely to incur higher

computational costs). Another, related, trend is the increasing hybridization of

connectionist models; more connectionist models may incorporate symbolic

components, fuzzy logic components, and other components that are outside

the realm of classical connectionist models. In the reverse direction, sym-

bolic models may also increasingly incorporate connectionist techniques and

approaches. Finally, connectionist models may be increasingly linked to work

on biological neural systems, including accounting for brain imaging data.

In particular, in the future more models may be inspired by biological neural

networks, which are not only computationally feasible but also biologically

realistic, and may thus help to move the field forward.

Further reading
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Sun, R. and Bookman, L. A. (eds.) (1995). Computational Architectures Integrating
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6 Dynamical systems and embedded cognition

Randall D. Beer

6.1 Introduction

The conceptual frameworks that we bring to our study of cognition can have

a tremendous impact on the nature of that study. They provide a set of filters

through which we view the world, influencing our choice of phenomena to

study, the language in which we describe these phenomena, the questions

we ask about them, and our interpretations of the answers we receive. For

much of the last fifty years, thinking about thinking has been dominated

by the computational framework, the idea that systems are intelligent to the

extent that they can encode knowledge in symbolic representations which are

then algorithmically manipulated so as to produce solutions to the problems

that these systems encounter (see Chapter 4 of this volume). More recently, the

connectionist framework forced an important refinement of the computational

framework, in which representation and computation could be distributed

across a large number of loosely neuron-like units (see Chapter 5).

Beginning around the mid 1980s, just as the popularity of connectionism

was rising, another conceptual framework appeared (or, as in the case of con-

nectionism, reappeared) on the scene. This framework, which, for want of a

catchier label, I will call the situated, embodied, dynamical (SED) framework,

focuses on concrete action and emphasizes the way in which an agent’s behav-

ior arises from the dynamical interaction between its brain, its body, and its

environment. In this chapter, I will attempt to trace some of the history of the

individual intellectual threads of situated activity, embodiment, and dynamics

that underlie the SED approach. I will particularly focus on the years 1985–

1995. Although there were important precursors to the SED approach (some

of which I will briefly mention), and work in this area has grown rapidly in

recent years, many of the pivotal ideas were first given their modern form

during this ten-year period.

6.2 Situated activity

The first intellectual thread making up the SED approach is situated activ-

ity. Roughly speaking, situated activity stresses three ideas that have been

traditionally neglected in AI and cognitive science.
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S1 Concrete action. Actually taking action in the world is more fundamental

than the abstract descriptions that we sometimes make of it. While con-

scious deliberation clearly has its role, the ultimate job of an intelligent

agent is to do something, to take some concrete action with consequences

beyond its own skull.

S2 Situatedness. An agent’s immediate environment plays a central role in its

behavior. This environment is not only a rich source of constraints and

opportunities for the agent, but also a context that gives meaning to the

agent’s actions.

S3 Interactionism. An agent’s relationship with its environment is one of

ongoing interaction. The environment does not serve merely as a source

of isolated problems for the agent to solve, but rather a partner with which

the agent is fully engaged in moment-to-moment improvisation.

The philosophical roots of situated activity can be traced to phenomenology,

especially the work of Martin Heidegger (1927/1962), which was brought into

AI and cognitive science primarily through the criticisms of Hubert Dreyfus

(1972/1992). One of Heidegger’s key insights was the distinction he drew

between objects being zuhanden (“ready-to-hand”) and vorhanden (“present-

at-hand”). In our normal daily experience, we usually encounter things as

resources for immediate action in the service of achieving our goals. For

example, to someone in the act of hammering a nail, the hammer in some

sense ceases to exist. Rather, like any tool, it becomes merely an extension

of the arm (i.e., it is ready-to-hand). It is only when we explicitly adopt an

intellectual attitude toward the hammer (e.g., because the handle has broken

and the hammer is suddenly unable to perform its normal function), that the

hammer emerges from the unarticulated background of things as a distinct

object characterized by its own set of properties (i.e., it becomes present-at-

hand). A number of authors have carefully articulated the challenges that

phenomenological ideas pose to the cognitivist worldview that has dominated

thinking in AI and cognitive science, which not only conceives of cognition as

the rule-governed manipulation of symbolic representations, but also makes

fundamental distinctions between the physical and the mental, between the

body and the mind and between the environment and the agent (Dreyfus

1972/1992; Winograd and Flores 1986; Varela, Thompson, and Rosch 1991;

Clark 1997; Wheeler 2005).

Another important precursor to situated activity was James Gibson’s Eco-

logical Psychology (Gibson 1979). Based on his studies of vision in World War

II pilots, Gibson emphasized the structure inherent in an organism’s environ-

ment and the importance of the organism/environment relation to a theory of

perception. For example, the way in which an animal’s visual field changes as

it moves through its environment carries a great deal of information about the

direction and speed of motion, distances to objects, orientations of surfaces,
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and so on. Gibson’s views eventually encompassed a wide-ranging rejection

of cognitivism. However, for our purposes here, Gibson’s most important con-

tribution is his notion of affordances – the possibilities for action that an

environment presents to an agent. For example, Heidegger’s hammer affords

pounding nails due to the graspability of its handle and the shape and hard-

ness of its head. Furthermore, Gibson argued that, although affordances are

perceivable facts about the world, they are ecological in the sense that their

significance is relative to the capabilities of a particular organism. For exam-

ple, an opening that affords passability to a mouse does not necessarily afford

passability to a human being.

A third important influence on situated activity came from work in the

social sciences. For example, Lucy Suchman, an anthropologist studying man–

machine interaction, traced breakdowns in communication between a person

and a help system for a photocopy machine to mistaken assumptions made by

the designers of the system about the nature of action (Suchman 1987). She

rejected the traditional view in AI and cognitive science that action results

from the execution of a plan, and argued instead that action must be under-

stood as situated, in the sense that it is contingent upon the actual circum-

stances as they unfold. On this view, explicit plans are best interpreted as

resources for communicating about action rather than as mechanisms for

action. Based on his studies of the navigation team of a large naval vessel,

another anthropologist, Edwin Hutchins, similarly concluded that cognition

“in the wild” must often be understood as a culturally constituted activity

among a group of individuals depending heavily on the unfolding situation

in which it occurs (Hutchins 1995).

Within AI, situated ideas came to the fore in the mid 1980s. Earlier demon-

strations of how rich behavior could arise from simple mechanisms interacting

with complex environments include W. Grey Walter’s robotic “tortoises”

(Walter 1953) and Valentino Braitenburg’s simple “vehicles” (Braitenburg

1984). However, situated activity research within AI arose mainly as a reac-

tion against the traditional planning view of action, in which agents represent

the current situation and available actions, formulate a symbolic plan of

action, and then execute this plan. Philip Agre and David Chapman stressed

the inability of classical planning techniques to scale to complex, uncertain,

real-time environments and proposed instead that routine activity arises from

the interaction of simple internal machinery with the immediate situation

(Agre and Chapman 1987). Agre and Chapman demonstrated the utility of

this idea in a series of programs, the best-known of which was Pengi, an

agent that played the video arcade game Pengo in real time despite having

to deal with hundreds of often unpredictable objects. Stanley Rosenschein

and Leslie Kaelbling showed how a specification of an agent’s goals could be

“compiled away” into simple machinery such that, although it still made sense

for an external observer to talk about the agent’s knowledge and beliefs, these
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states no longer played any direct role in the agent’s actions (Rosenschein

and Kaelbling 1986). Rodney Brooks’ influential work on autonomous robots

rejected the traditional sense-model-plan-act cycle, emphasizing that often

“the world is its own best model” (Brooks 1986, 1991a; see also Chapter 13 of

this volume). He developed a layered control system known as the subsump-

tion architecture, in which networks of simple machines interact with one

another and the immediate circumstances to produce behavior, and deployed

it on a variety of different robots. David Cliff (Cliff 1991) and I (Beer 1990)

demonstrated the significant potential for interaction between work on the

neural basis of animal behavior and situated agents, developing models of a

hoverfly and a cockroach, respectively.

Presumably, no one would deny that the environmental situation has an

important role to play in an agent’s behavior, but just how fundamental this

observation is remains controversial (Kirsch 1991; Vera and Simon 1993;

Hayes, Ford, and Agnew 1994; Clancey 1997; Anderson 2003). To some,

situated activity smacks of behaviorism, but this charge depends a great deal

on what exactly one means by “behaviorism.” It is certainly true that work

in situated activity exhibits a renewed emphasis on concrete behavior over

abstract reasoning. However, abstract reasoning is not rejected by situated

approaches, but rather relegated to a supporting role as an evolutionarily

recent elaboration of a more basic capacity for getting around in the world. It is

also true that much work in situated activity has tended to emphasize reactive

architectures, in which an agent’s actions are completely determined by its

sensations, and to either reject or at least significantly reconstrue the idea of

internal representations. Reactive architectures are strongly reminiscent of the

stimulus–response paradigm embraced by behaviorism, and have well-known

limitations when it comes to, for example, anticipatory behavior. However, as

we shall see later in this chapter, a commitment to purely reactive architectures

is unnecessary, and it is possible to articulate a role for internal state that is

both essential and interestingly different from the representational role that

such state plays in traditional AI and cognitive science.

Perhaps the most controversial idea that has emerged from research on

situated cognition in recent years is the notion of the extended mind (Clark

1997; Clark and Chalmers 1998). This idea is grounded in the observation that

not only does an agent’s environment play an essential role in its behavior, but

the agent itself can manipulate that role by actively organizing its environment

so as to increase its problem-solving ability. For example, we lay out the

ingredients for a recipe in the order in which they will be needed, and we use

maps to find our way through sprawling cities. Such scaffolding allows us

to offload significant parts of our cognitive processing into the environment.

Furthermore, through language, we can coordinate the activities of many

people so that they can collectively accomplish things that no individual

person may be able to, such as navigating a large naval vessel (Hutchins
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1995). Extended mind advocates argue that if memory, problem solving, and

so on can be spread across many agents and artifacts, then cognition itself

must be understood as a distributed phenomenon that transcends the skull of

an individual agent, and properly belongs only to the larger system of agents

and artifacts of which that individual is a part. Indeed, even social insects are

known to collectively accomplish complex construction tasks such as nest-

building by modifying their environment in such a way as to appropriately

organize the flow of workers and material, a process referred to as stigmergy

(Turner 2000).

6.3 Embodiment

A second intellectual thread in the SED approach is embodiment. There are at

least three somewhat distinct ideas that have been advanced by advocates of

embodied cognitive science.

E1 Physical embodiment. The uniquely physical aspects of an agent’s body are

crucial to its behavior, including its material properties, the capabilities for

action provided by the layout and characteristics of its degrees of freedom

and effectors, the unique perspective provided by the particular layout

and characteristics of its sensors, and the modes of sensorimotor interac-

tion that the sensors and effectors collectively support. In some ways, this

aspect of embodiment is a special case of situatedness. Whereas situated-

ness includes any kind of interaction with the environment, embodiment

emphasizes those specifically physical interactions mediated by the body.

E2 Biological embodiment. Not only are the physical characteristics of bodies

important, but the specifically biological facts of an organism’s existence

must also be taken into account, including the relevant neuroscience,

physiology, development, and evolution.

E3 Conceptual embodiment. Even when engaged in pure ratiocination, our

most abstract concepts are still ultimately grounded in our bodily experi-

ences and body-oriented metaphors.

The philosophical roots of embodiment can also be traced to phenomenol-

ogy, especially the work of Maurice Merleau-Ponty (1962), who made bodily

involvement in the world central to his phenomenology of lived experience.

To take but one example, Merleau-Ponty’s argument that how we perceive an

object is shaped by the kinds of interactions with it that our body allows can be

seen as an early precursor to Gibson’s (1979) notion of affordances. Merleau-

Ponty’s thought also played a major role in Dreyfus’ critique of computational

theories of mind (Dreyfus 1972/1992).

Within AI and cognitive science, the importance of physical embodiment

was first emphasized by Brooks (1991b). Brooks argued that AI needed to

move beyond the abstract microworlds that had been its primary concern and
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begin to address the sorts of problems encountered by real robots moving

around in real environments. In this way, Brooks suggested, the extent to

which most classical AI techniques are simply untenable in realistic situations

would become clear. In its milder form, the argument of physical embodiment

is simply that the material properties of the body and environment play a

key role in its behavior and, by building robots, we get this physics “for

free” rather than having to painstakingly model it. In its most radical form,

the claim is that only physically instantiated AI systems will exhibit truly

intelligent behavior. Coupled with the contemporaneous trends in situated

cognition reviewed in the previous section, Brooks’ arguments unleashed an

explosion of work in behavior-based robotics (Arkin 1998), active perception

(Ballard 1991; Churchland, Ramachandran, and Sejnowski 1994; Noë 2004),

embodied cognitive science (Pfeifer and Scheier 1999), autonomous agents

(Maes 1990), some aspects of artificial life (Langton 1989), and the philosophy

of mind (Clark 1997).

Biological embodiment takes the arguments of physical embodiment one

step further. Not only are the physical characteristics of bodies important, but

so are the biological facts of an organism’s existence. The conditions necessary

to maintain our living state fundamentally constrain our behavioral and cog-

nitive capacities. In addition, the specific properties of bone, muscle, and skin,

the specific characteristics of biological sensors, and the ways these sensory

and motor capabilities are knitted together in human bodies fundamentally

define our own particular mode of embodiment. Furthermore, the fact that we

have gone through the particular evolutionary and developmental history that

we have may also have important consequences for our behavioral and cog-

nitive architecture. For example, Esther Thelen and Linda Smith have argued

for the importance of understanding the sensorimotor origins of cognition in

development, both in studies of the development of walking in infants (Thelen

and Smith 1994) and, more recently, in studies of Jean Piaget’s classic A-not-B

error, in which an infant repeatedly shown an object being hidden under box

A will still reach for A even after being shown the object being hidden under

a second box B (Thelen et al. 2001). A similar argument can be made for the

emergence in evolution of uniquely human cognitive capacities from simpler

precursors. Finally, there has been a very strong push toward incorporating

more neurobiological realism into embodied agents (Arbib 1987; Beer 1990;

Edelman et al. 1992). Conversely, neuroscience has begun to take seriously

the role of the body and of neuromechanical interactions in the production of

behavior (Chiel and Beer 1997).

Thus, the conventional claim of biological embodiment is that the biolog-

ical features of organisms matter to their behavior and cognition. A more

radical claim that is sometimes associated with biological embodiment is that

the living state itself is fundamental to cognition (Maturana and Varela 1980;

Varela et al. 1991; Di Paolo 2005). The idea here is generally not that the
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material or biochemistry of life is essential, but rather that the organization

of living systems is indispensable to their cognitive capabilities. The relevant

notion of living organization is generally derived from Humberto Maturana

and Francisco Varela’s concept of autopoiesis (roughly, a self-producing net-

work of components and processes, i.e., a kind of organizational homeostasis)

(Maturana and Varela 1980).

Finally, conceptual embodiment concerns the way in which even abstract

concepts are often grounded in bodily experience and metaphor. For example,

Stevan Harnad defined the symbol grounding problem as the problem of how

words, and ultimately mental states, get their meaning (Harnad 1990), and

he proposed that a way to address this problem is to ground them in senso-

rimotor signals. Furthermore, George Lakoff and Mark Johnson have argued

that the structure of our reason is grounded in the details of our embodiment,

and that many abstract concepts are metaphors derived from sensorimotor

domains (Lakoff and Johnson 1999). For example, we speak of understanding

something as “grasping” it and we speak of failing to understand something

as a failure to “grasp” it or it “going over our heads.” Likewise, bad things

“stink” and the “pieces” of a theory “fit” together.

6.4 Dynamics

The final intellectual thread constituting the SED approach is dynamics, within

which we must distinguish at least three ideas.

D1 Dynamical systems theory (DST). A mathematical theory that can be

applied to any system characterized by a state that changes over time

in some systematic way.

D2 The dynamical framework. A collection of concepts, intuitions, and

metaphors involved in taking a dynamical perspective on some system

of interest.

D3 The dynamical hypothesis. A specific hypothesis, put forward by Timothy

van Gelder (1998), for how DST and the dynamical framework could be

combined into a rigorous counterproposal to the traditional computational

hypothesis in AI and cognitive science.

A dynamical system is a mathematical abstraction that unambiguously

describes how the state of some system evolves over time (Abraham and Shaw

1992; Strogatz 1994). It consists of a state space S, an ordered time set T,

and an evolution operator φ that transforms a state at one time to another

state at some other time. A dynamical system whose evolution depends on

its internal state only is called autonomous, while one whose evolution also

depends on external inputs is called nonautonomous. S can be numerical or

symbolic, continuous or discrete (or a hybrid of the two), and of any topology

and dimension (including infinite dimensional). T is typically either the set
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of integers or the set of real numbers. The evolution operator may be given

explicitly or defined implicitly, and it may be deterministic or stochastic.

The most common examples of dynamical systems are sets of ordinary dif-

ferential equations and iterated maps, but many other kinds of mathematical

systems can also be fruitfully described and analyzed in dynamical terms. For

any mathematical system that can be put into this form, DST offers a wide

variety of tools for analyzing its temporal behavior, many of which were first

developed by the French mathematician Henri Poincaré in support of his work

in celestial mechanics. These tools include the identification of invariant sets

(sets of points in the state space that the evolution operator does not change,

i.e., fixed points and limit cycles), the characterization of their local behav-

ior (how they respond to perturbations, i.e., their stability) and their global

behavior (how they are interconnected, i.e., their saddle manifolds), and their

dependence on parameters (how they change as parameters are changed, i.e.,

their bifurcations). It is important to reiterate that, just like the formal the-

ory of computation, DST is a body of mathematics, and not itself a scientific

theory of the natural world.

Despite the fact that DST is not itself a scientific theory, taking a dynamical

perspective on some natural phenomenon brings with it a set of concepts,

intuitions, and metaphors – a certain worldview – that influences the questions

we ask, the analyses we perform, and how we interpret the results (van Gelder

1995). When one approaches some system from a computational perspective,

one is concerned with what function the system is trying to compute, in

what format the problem input is specified, in what output format the answer

is required, how the relevant features of the problem are to be represented,

by what algorithms these representations are to be transformed, and how

the performance of these algorithms scales with problem size. In contrast,

when one approaches some system from a dynamical perspective, one seeks

to identify a minimal set of state variables whose evolution can account

for the observed behavior, the dynamical laws by which the values of these

variables evolve in time, the overall spatiotemporal structure of their possible

evolution, and the sensitivity of this structure to variations in inputs, states,

and parameters.

The dynamical perspective has been found to be a fruitful one in many

areas of cognitive science (Port and van Gelder 1995; Beer 2000). A dynam-

ical perspective on brain and behavior was first explicitly articulated by W.

Ross Ashby (Ashby 1960). Within neural networks, Stephen Grossberg has

long emphasized the importance of dynamical ideas (Grossberg 1969). Indeed,

DST is now an essential tool in computational neuroscience (Izhikevich 2007)

for analyzing, not just individual nerve cells or small circuits, but also entire

brain systems (Skarda and Freeman 1987). Dynamical ideas were first brought

into ecological psychology by Peter Kugler (Kugler, Kelso, and Turvey 1980;

for reviews see Turvey 1990 and Warren 2006). Scott Kelso and colleagues
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have pursued a dynamical perspective on brain and behavior for many years,

especially emphasizing the role of self-organization in the creation of behav-

ioral patterns and the transitions between them (Kelso 1995). Thelen and

Smith have argued for a dynamical approach to cognitive development, in

which processes and change are studied using the same tools across a range

of timescales (Thelen and Smith 1994). Jeffrey Elman emphasized the fun-

damentally temporal character of language understanding, with preceding

words strongly influencing the interpretation of subsequent ones, and has

developed a dynamical approach to language (Elman 1995). Finally, I argued

that dynamical systems theory provides the appropriate theoretical language

and tools for analyzing the kinds of autonomous agents that were being devel-

oped in AI and robotics (Beer 1995a), and Timothy Smithers (1995) and Gregor

Schöner (Schöner, Dose, and Engels 1995) advocated a dynamical approach

to the design of autonomous robots.

A specific formulation that has received a great deal of attention is the

dynamical hypothesis put forward by van Gelder (van Gelder 1995; 1998). Van

Gelder defines a dynamical system as a quantitative system, that is, a system

whose state space, time set, and evolution law involve numerical quantities.

As we saw above, this is a significant restriction of the mathematical definition

of a dynamical system. His dynamical hypothesis then has two components:

(1) the nature hypothesis and (2) the knowledge hypothesis. The claim of the

nature hypothesis is ontological: Cognitive systems are dynamical systems.

In contrast, the knowledge hypothesis claims only that cognitive systems

are best understood using the tools of dynamical systems theory. Given that

even many advocates of the dynamical approach do not fully support van

Gelder’s dynamical hypothesis, it is unfortunate that most critical discussion

of the dynamical approach to cognition has focused on van Gelder’s specific

formulation (Eliasmith 1997; Grush 1997; Bechtel 1998; Van Leeuwen 2005).

Nevertheless, it is an historically important attempt to formulate a dynamical

alternative to the computational hypothesis.

6.5 Toward an integrated perspective

To this point, I have treated situatedness, embodiment, and dynamics as rel-

atively separate intellectual threads. I did this both because the historical

development of these ideas occurred somewhat independently and because

they are logically independent – that is, people can and do hold each of them

individually without necessarily also subscribing to the others. However, it

will not have escaped the careful reader’s attention that there is a great deal of

potential overlap and synergism between them. The goal of this section is to

articulate an integrated theoretical framework that combines the insights from

situatedness, embodiment, and dynamics. In contrast to previous sections, I

will also adopt a more personal viewpoint in this section, describing my own
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Body

Environment

Nervous

system

Figure 6.1 An agent and its environment are coupled dynamical systems. The agent

in turn is composed of coupled nervous system and body dynamical systems.

particular integrative view (Beer 1995a; 1995b; 2003) rather than attempting

a general survey of all such views.

The basic situated, embodied, dynamical (SED) framework is quite simple

and is illustrated in Figure 6.1. It consists of the following three postulates:

SED1 Brains, bodies, and environments are dynamical systems (cf. S2, E1, E2,

D1, D2). Nervous systems, bodies, and environments are all conceptu-

alized as dynamical systems, by which I mean only that we assume that

each can be characterized by a set of states whose temporal evolution

is governed by dynamical laws.

SED2 Brain, body, and environment dynamics are coupled (cf. S1, S3, D1, D2).

Nervous systems are embodied in bodies, which are in turn situated

within environments, leading to dense interaction between these three

component systems. The coupled brain–body subsystem will be termed

the “agent.” Coupling that flows from the environment to the agent will

be termed “sensory,” and coupling that flows in the opposite direction

will be termed “motor.” The “behavior” of an agent will be defined as

its trajectory of motor actions.

SED3 The agent is subject to viability constraints (cf. E2). There are condi-

tions on the dynamics of the agent that determine its viability. If these

viability constraints are violated, then the agent ceases to exist as an

independent entity and can no longer engage in behavioral interactions

with its environment. (We will not consider this postulate further here;

for discussion of its role in the SED framework, see Beer 2004.)

The a priori theoretical commitments of this framework are quite mini-

mal. Indeed, it is hard to imagine a theoretical framework that makes fewer
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commitments than this. What could possibly follow from such a small set

of claims? In fact, quite a number of nontrivial consequences follow almost

immediately if we take these three postulates seriously.

Perhaps the most important conclusion is this: Strictly speaking, behavior is

a property of the entire coupled brain–body–environment system, and cannot

in general be properly attributed to any one subsystem in isolation from the

others. We have defined behavior to be only the trajectory of an agent’s

motor actions. However, because the brain, body, and environment dynamics

are coupled, they form a single larger autonomous dynamical system with its

own trajectories of temporal evolution. The trajectories of an agent’s motor

actions are merely projections of the full trajectories of the complete brain–

body–environment system, and it is these full trajectories that are the proper

objects of study within the SED framework.

Even though behavior is a property of the entire coupled system, it is

still meaningful to ask about the relative contributions of brain, body, and

environment to some particular feature of a behavioral trajectory. In order to

do so, we must open the coupled brain–body–environment system by cutting

one or more of the coupling pathways in order to isolate the component we

wish to study. This component then becomes a nonautonomous dynamical

system, and our analysis involves examining how its own intrinsic dynamics

interacts with the inputs it receives from the other components of the coupled

system in the production of the behavioral feature of interest. This has many

interesting consequences for the way we conceive of traditional behavioral

and cognitive phenomena.

For example, perception is generally viewed as a means by which an agent

extracts information about its surroundings from the raw sensory signals

it receives and internally represents the structure of its environment. But a

dynamical system follows a trajectory specified by its own internal state

and dynamical laws. Sensory inputs cannot in general place a nonautonomous

dynamical system into some state uniquely characteristic of a given external

object. Rather, the most that they can do is bias the intrinsic tendencies of the

agent dynamics by selecting some particular trajectory from the set of possible

trajectories that the agent’s dynamical laws allow from its current state. This

suggests a more behavior-oriented view of perception that is reminiscent of

Gibson (1979). On this view, perception is a process whereby agent dynamics

that are appropriately sensitive to environmental influences become perturbed

by the trajectory of sensory inputs that the system receives and transforms into

behavior appropriate to the circumstances. Furthermore, because the coupling

between an agent and its environment is two-way, an agent’s action can shape

its own perception. Agents not only perceive in order to act, but they also act

in order to perceive.

Because agents in the SED framework are dynamical, they are not vulnerable

to the criticisms that have been leveled against reactive agents. A reactive
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agent is one whose motor outputs depend only on its sensory inputs; it is

merely a function from sensation to action. Although such an agent can

participate in complex interactions when coupled to a dynamic environment,

its behavior is always subordinated to that environment since it possesses

no dynamics of its own. In contrast, the response of a dynamical agent is

determined at least in part by its own internal dynamics. Because it possesses

an internal state, a dynamical agent can respond differently to the same

sensory stimulus at different times, it can initiate behavior independently of

its immediate environment, it can modify its behavior based on its history of

interactions, and it can exploit long-term correlations in its environment to

organize its behavior in anticipation of future events.

One significant advantage of the SED framework is that it offers the possi-

bility of a uniform treatment of disparate behavioral and cognitive phenomena

that have often been seen as irreconcilable. At one extreme, some basic sen-

sorimotor behavior may be mostly reactive in character, with internal state

playing only a small role in “coloring” the agent’s responses to its environ-

ment. At the other extreme, some of our most cognitive behavior can be

conceived as being nearly decoupled from the immediate environmental cir-

cumstances, driven primarily by the temporal evolution of internal state. Of

course, most behavior is usually a mixture of external and internal influences,

with the relative importance of the two varying, sometimes substantially,

from moment to moment. Indeed, the interesting questions of how higher

cognitive processes arose from more basic sensorimotor competence during

the course of evolution and development seems much more approachable

within a theoretical framework that places them both on a common footing.

On this view, higher cognition does not necessarily alter our fundamentally

situated, embodied, and dynamic character, but instead augments it with a

vastly increased reservoir of internal dynamics.

How are we to understand the nature and role of this internal state within a

dynamical agent? The traditional computational interpretation of such states

would be as internal representations. But possessing an internal state is a

property of physical systems in general, and these states can covary with

states outside the system in quite complicated ways. Unless we wish to grant

representational status to all physical states (does a thunderstorm represent

the topography of the terrain over which it passes?), there must be additional

conditions that license the modifier “representational.” Unfortunately, despite

the fundamental role that the notion of representation plays in computational

approaches, there is very little agreement about what those additional condi-

tions might be. These considerations have led me to adopt a position of repre-

sentational skepticism (not, as some have suggested, anti-representationalism)

(Beer 2003). I view the representational status of an internal state as an empir-

ical question, to be settled according to the precise definition of the partic-

ular representational notion on offer. Thus, by not taking representation for
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granted, a dynamical perspective offers a broader theoretical playing field. On

the one hand, it offers the possibility of understanding what representations

are and when and how they arise. On the other hand, we may find that, at

least in some cases, the roles played by the internal states of a dynamical

agent simply cannot be usefully interpreted as representational.

What is the relationship between a SED approach to cognition and the

more familiar computational and connectionist approaches? Such a compar-

ison is fraught with difficulties. For example, we must distinguish between

the bodies of mathematics that underlie each of these approaches and the

theoretical claims that these approaches make. As mathematical formalisms,

computational, connectionist, and dynamical systems are all of roughly equiv-

alent power in the sense that they can each be used to construct models of

the same class of phenomena. Thus, there is no useful mathematical distinc-

tion to be drawn between these different approaches. This, I think, is one

of the ways in which van Gelder’s dynamical hypothesis goes wrong (Beer

1998).

In addition, we must recognize that computationalism, connectionism, and

dynamicism are not really scientific theories at all, because they themselves

do not make sharply falsifiable predictions. Rather, they are what I have

called theoretical frameworks (Beer 1995b). They provide a set of pretheoret-

ical intuitions, a theoretical vocabulary, a style of explanation, a worldview

within which particular falsifiable theories of specific cognitive phenomena

are formulated and analyzed. The computationalist framework, for example,

emphasizes the structure and content of the internal representations used by

an agent and the algorithms by which those representations are manipulated.

In contrast, the connectionist framework emphasizes the network architecture,

the learning algorithm, the training protocol, and the intermediate distributed

representations that are developed. In this sense, many connectionist mod-

els are still disembodied, unsituated, and computational (albeit distributed) in

nature (Harvey 1992/1996). Finally, the SED framework emphasizes the struc-

ture of the space of all possible trajectories of the brain–body–environment

system and the various forces, both internal and external to the agent, that

shape those trajectories so as to stabilize some particular pattern of behavior.

It is likely that all three perspectives will be important in any future the-

ory of behavior and cognition. For example, since the neural components of

a SED model are often recurrent connectionist networks, and since deliber-

ative reasoning is one of the cognitive phenomena that must eventually be

addressed, ideas and mathematical tools from both connectionism and compu-

tationalism are likely to play an essential role even in a SED-centered theory.

The exact mix of insights from these three theoretical frameworks (or other

frameworks yet unimagined!) that will ultimately prove to be the most fruit-

ful remains an open question that only ongoing empirical investigation can

resolve.
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6.6 Methodological issues

Taking the SED framework seriously raises many difficult methodological

issues. Studying just one component of a brain–body–environment system is

difficult enough, but studying the interactions of all three simultaneously is a

daunting task. Experimentally, we currently lack the instruments to monitor

and manipulate the activity of all the relevant neurons within the nervous

systems of intact, behaving animals, let alone the relevant properties of the

animal’s body and environment. Theoretically, we currently lack the math-

ematical tools necessary to understand large networks of densely intercon-

nected, heterogeneous, nonlinear dynamical elements, particularly in systems

that were evolved for their behavioral efficacy and not for their intelligibil-

ity in terms of traditional engineering design principles of modularity and

hierarchical decomposition.

For these reasons, a number of researchers have turned to the study of model

agents using dynamical neural networks and evolutionary algorithms (Beer

and Gallagher 1992; Cliff, Husbands, and Harvey 1993; Nolfi and Floreano

2000). In this approach, a model “nervous system” is embodied in a model

body, which is in turn situated in a model environment. The entire system is

evolved to perform some behavior of interest. A common choice of nervous

system model is continuous-time recurrent neural networks, which are known

to be universal approximators of smooth dynamics. Typically, only the neural

parameters are evolved, but in some work, network architecture and body

properties are also evolved. One significant advantage of an evolutionary

approach is that it minimizes a priori theoretical assumptions and thus allows

the space of possible brain–body–environment systems capable of generating

a particular behavior to be explored.

This evolutionary methodology has already been applied successfully to a

wide range of interesting behavior (Nolfi and Floreano 2000). A great deal

of work has focused on sensorimotor behavior, such as orientation, legged

locomotion, object avoidance, and navigation (Beer and Gallagher 1992;

Kodjabachian and Meyer 1998; Vickerstaff and Di Paolo 2005). Another line

of work has focused on the evolution of learning behavior (Yamauchi and

Beer 1994; Floreano and Mondada 1996; Tuci, Quinn, and Harvey 2002;

Izquierdo-Torres and Harvey 2006). In addition, there has been considerable

work on visually guided behavior (Cliff et al. 1993) and its application to cat-

egorical perception, selective attention, and other cognitively interesting tasks

(Beer 2003; Di Paolo and Harvey 2003; Ward and Ward 2006). Finally, the

evolution of communication has also been an active area of research (Di Paolo

2000; Marocco, Cangelosi, and Nolfi 2003; Steels 2003; Nolfi 2005). Thus,

although there are difficult open issues in scaling evolutionary approaches

to increasingly complicated behavior, one could argue that the agents that

have already been evolved are interesting enough that their careful analysis
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could teach us many things about the dynamics of brain–body–environment

systems.

Indeed, for me, the main interest is not in evolving such model agents per se,

but rather in analyzing the resulting brain–body–environment systems using

the tools of dynamical systems theory (Beer 1995a, 1995b, 2003; Husbands,

Harvey, and Cliff 1995). The primary purpose of such an analysis is to build

the intuitions, theoretical concepts, and mathematical and computational tools

necessary for understanding the dynamics of brain–body–environment sys-

tems. While DST provides a solid foundation for such investigations, many

additional issues must be addressed. For example, there are different levels at

which the dynamics of a brain–body–environment system can be analyzed,

including the autonomous dynamics of the entire coupled system, how the

coupled behavior arises from the interaction between the nonautonomous

environment and agent dynamics, how the nonautonomous agent dynam-

ics arises from the interaction between the nonautonomous body and neural

dynamics, and how the nonautonomous neural dynamics arises from the

architecture, intrinsic and synaptic parameters of the neural elements.

A final issue that must be addressed is understanding nonautonomous

dynamics. The mathematical tools of DST are most highly developed in the

case of autonomous dynamical systems, when the analysis can focus on

attractors and their bifurcations. However, as mentioned above, when we

wish to understand the contribution of a particular component of a brain–

body–environment system, we must decompose the coupled system into

interacting nonautonomous subsystems, and study their transient responses

to time-varying inputs received from the other components. Unfortunately,

the mathematical tools for analyzing transient dynamics require significant

further development.

6.7 Prospects

Like both computationalism and connectionism, the situated, embodied, and

dynamical framework described in this chapter has its roots in ideas first

articulated in the 1940s and 1950s. However, because the modern form of

the SED framework only emerged in the years 1985–1995, it has had far

less time for development than have the computational and connectionist

frameworks. The number of people working within the SED framework is

also considerably smaller at present. Despite these disadvantages, situated,

embodied, and dynamical ideas are having a major impact on thinking in

cognitive science, AI and robotics, neuroscience, developmental psychology,

and philosophy of mind.

In order to further explore the scope and limits of the SED framework,

and to clarify the best mix of computational, connectionist, and SED ideas

necessary for understanding the mechanisms of behavior and cognition,
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considerable further development is necessary. First and foremost, this will

require the construction and analysis of many more concrete model agents,

especially those of a more cognitively interesting nature. This in turn will

require the continued development of techniques for scaling evolutionary

techniques and dynamical analysis to larger systems and the further develop-

ment of techniques for analyzing the transient dynamics of nonautonomous

dynamical systems. Finally, there is a need for improved education in dynami-

cal systems concepts within the cognitive science community, and for software

to support the dynamical analysis of brain–body–environment systems.
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Clark, A. (1997). Being There: Putting Brain, Body and World Together Again.
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embodied and dynamical approaches to cognition.
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the Dynamics of Cognition. Cambridge, MA: MIT Press. An early collection

of papers on the dynamical approach to cognition, with contributions from
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7 Learning

David Danks

7.1 Introduction

Learning by artificial intelligence systems – what I will typically call machine

learning – has a distinguished history, and the field has experienced something

of a renaissance in the past twenty years. Machine learning consists princi-

pally of a diverse set of algorithms and techniques that have been applied

to problems in a wide range of domains. Any overview of the methods and

applications will inevitably be incomplete, at least at the level of specific

algorithms and techniques. There are many excellent introductions to the

formal and statistical details of machine learning algorithms and techniques

available elsewhere (e.g., Bishop 1995; Mitchell 1997; Duda, Hart, and Stork

2000; Hastie, Tibshirani, and Friedman 2001; Koller and Friedman 2009). The

present chapter focuses on machine learning as a general way of “thinking

about the world,” and provides a high-level characterization of the major

goals of machine learning. There are a number of philosophical concerns that

have been raised about machine learning, but upon closer examination, it is

not always clear whether the objections really speak against machine learning

specifically. Many seem rather to be directed towards machine learning as a

particular instantiation of some more general phenomenon or process. One of

the general morals of this chapter is that machine learning is, in many ways,

less unusual or peculiar than is sometimes thought.

7.2 Three broad classes of inference

At a very high level, one can distinguish between three different, not necessar-

ily exhaustive, inferential strategies: analogical, domain-specific, and struc-

tural. As an example of the generality of this taxonomy, both deductive and

inductive logics are types of structural inference. Analogical inference aims to

map some situation or problem onto salient historical examples, whether well

known or personal; inferences are then made by using the analogical mapping

to translate the historical outcomes onto the present problem. The problems

and outcomes need not be large or significant: If one has previous experiences

with light switches and light bulbs, then one can use analogical inference to

make a decision about how to turn on the lights when entering a new room.
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If the analogies are suitable, then analogical inference can support inferences

for very rare situations or phenomena, or inferences from very limited data.

The reliability of analogical inference is, however, highly dependent on the

analogical cases and mappings, and there is little known about search for

such cases, or development of suitable mappings. With regards to the focus of

this chapter, analogical inference is rarely done by machine; usually, we do

analogical inference in our minds.

Domain-specific inference uses techniques that are specifically tailored to

knowledge about the particular problems, environments, and responses that

occur in a domain. By using specialized algorithms and constraints, one can

often make quite powerful inferences, even given only limited amounts of

data. Domain-specific methods, however, can only be developed and used

with substantial prior domain knowledge, which may preclude the widespread

use of such methods. Domain-specific machine learning and inference can

often be understood as part of the particular domain, rather than as a dis-

tinctive and novel inference strategy. Also, since any technique must use

some domain-specific information (e.g., the possible values of a variable), it is

unclear whether any sharp line can be drawn to delimit exactly the “domain-

specific” methods, though there are clearly many inference algorithms that

are applicable only for highly specific situations.

Structural inference uses (relatively) domain-general algorithms whose suc-

cess depends on the internal structure of the data, rather than features of the

semantic content of the data. That is, structural inference focuses on the rela-

tionships among the variables, objects, or predicates, rather than on any intrin-

sic properties of them. This type of inference is necessarily domain-general,

as such methods are explicitly designed not to use any domain information

except “structural” information about the objects of inference (e.g., number

of variable values, whether spatial location of objects is relevant, and so on).

The advantage of structural inference is obvious: The methods are applicable

for any domain in which the appropriate structural features hold and can

be discovered from data. These methods are thus not restricted to domains in

which we happen to have substantial prior knowledge, nor do we need to have

any significant experience with situations of this type. The disadvantages of

such inferences are equally obvious: One cannot infer domain-specific mech-

anisms (since domain-specific information is excluded), and inference from

small datasets can be quite difficult.

Structural inference is the basis of many, and arguably most, machine

learning frameworks and methods, including many well-known ones such as

various forms of regression, neural-network learning algorithms such as back-

propagation, and causal learning algorithms using Bayesian networks. In all of

these methods, the algorithm works by extracting – and exploiting – structural

relationships among the variables without regard to the meaning or domain

of the variables. For example, if doing classification using an artificial neural
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network, one might be provided with a dataset containing measurements of

various features of widgets, as well as some target category. The neural-net

learning algorithm (e.g., standard backpropagation) then uses only the statis-

tical regularities in the dataset to learn the relevant inter-variable structure,

which can then be used to predict the target category (e.g., “functional” vs.

“defective”) for future widgets. The precise “meaning” of the variables is irrel-

evant to the learning algorithm. For all of these methods, one need not know

much about the underlying domain in order to apply the methods, though

domain-specific information (e.g., variable X takes on a value before vari-

able Y) can typically be incorporated in various ways. The domain-generality

of machine learning methods partly explains their popularity in relatively

novel scientific domains, such as bioinformatics, in which there is substantial

uncertainty about what models or methods are appropriate.

There is a natural division among structural inference methods between

logical and statistical methods. Logical methods typically aim to model the

structure in terms of deductive relationships, perhaps supplemented with var-

ious representations of one’s lack of precise knowledge about a situation. The

methods often use various types of modal logic to help represent and infer

uncertain possibilities. The most common use of logical machine learning

methods is for inference from prior knowledge, where that prior knowledge

encodes structural information about the particular domain. This chapter will

focus more closely on statistical methods, which use larger amounts of data

to infer structural relationships. Most of these methods use data to deter-

mine which variables are informationally relevant for which other ones, and

then use the absence of such informational connections to develop simple but

accurate models with significant predictive power.

There is an obvious difference between the learning algorithms and the

learned model. For example, some particular neural network (with connection

weights, etc.) is a learned model; backpropagation is the algorithm by which

the model is learned. Machine learning algorithms are a type of structural

inference because the learning makes no intrinsic reference to the domain

under study; in particular, the learning algorithm does not use (significant)

semantic information about the variables. This observation leaves open the

question of whether the learned model does have interesting semantic content.

We will return to that question later in this chapter. In the meantime, however,

it is important to bear the “learning algorithm vs. learned model” distinction

in mind when thinking about these processes.

7.3 A rough taxonomy of machine learning

Suppose one has a dataset D: a collection of datapoints, each of which has

measurements of the values of variables V for a particular individual or unit.

There might be many complications with the dataset: The variable values

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139046855.011
https:/www.cambridge.org/core


154 David Danks

might be imputed or inferred; it might not be obvious how to specify the

variables or individuals; the datapoints might not be independent (e.g., if

one has time series data); there might be unmeasured factors that influence

variables in the dataset; and so on. In terms of developing a rough taxonomy of

machine learning methods, these subtleties are largely irrelevant. That being

said, essentially all machine learning methods assume that the situation is

“well posed” in various ways, such as using well-defined variables.

At the coarsest level, machine learning algorithms can be divided into two

classes (with a small middle ground) based on whether the algorithm requires

the specification of a target variable in the dataset. Supervised learning algo-

rithms assume that some variable X is designated as the target for prediction,

explanation, or inference, and that the values of X in the dataset constitute

the “ground truth” values for learning. That is, supervised learning algorithms

use the known values of X to determine what should be learned. The most

common type of supervised learning algorithm aims to develop a classifi-

cation or categorization model: Given information about various individuals

and the categories to which they belong, the algorithm produces a learned

model that can be used to predict the category membership of new individu-

als. For example, one might want to predict which widgets being produced in

a factory are most likely to fail. If one has data on the performance of many

different widgets as well as measurements of other relevant features, then one

can use a machine learning algorithm to learn a model that will predict the

performance of future widgets. Under the right conditions, classification algo-

rithms can yield models that can make novel, warranted generalizations about

the groups based on the inter-feature relationships. Classification algorithms

can also be used for recognition or identification by classifying into a “cat-

egory” with exactly one member. Examples of supervised learning algorithms

include learning algorithms for artificial neural networks, decision trees, and

support vector machines; the many forms of regression; and most reinforce-

ment learning methods.

Unsupervised learning algorithms do not single out any particular variables

as a target or focus, and so aim to provide a general characterization of

the full dataset. Probably the most common use of unsupervised learning

is in clustering algorithms: separating the various individuals into “natural”

groups according to one or another metric. These algorithms will sometimes

draw relatively arbitrary lines between individuals, but they can be quite

effective at discovering groups when they actually exist. For example, one

might measure people’s attitudes about various political issues, and then

want to determine whether there are natural groups that can be defined by

those beliefs. The output of a clustering algorithm can, in certain conditions,

subsequently serve as the target variable for a supervised learning algorithm.

It is typically quite difficult to validate the output or model from an unsuper-

vised learning algorithm, precisely because one usually has no “ground truth”
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against which to compare the performance of the model. There is rarely a

single correct, true way to cluster various individuals, only better and worse

ways. Various methods for probability distribution or density estimation also

fall under the heading of unsupervised learning.

The standard view of learned models is that their semantic content is entirely

statistical: Connections between variables provide information that can be

used for prediction, but no further semantic content – for example, causal

structure – is thought to be attributable to these models. In recent years,

however, there has been a significant surge of interest in machine learning

algorithms that avoid the use of domain-specific assumptions, but produce

learned models with rich semantic content. In particular, the learned models

can be used to predict the future behavior or features given interventions or

manipulations from outside of the system. These machine learning algorithms

are typically unsupervised learning methods, although one often wants to

learn the causal structure in order to affect or bring about a change in some

particular variable. One might wonder how such causal inference is possible,

given the completely standard maxim in the sciences and philosophy that

“correlation is not causation.” Machine learning methods for causal discovery

must make assumptions with some causal content, but they typically use only

domain-general assumptions about the ways in which causation and correla-

tion are connected. For example, the widely discussed causal Markov assump-

tion (e.g., Hausman and Woodward 1999, 2004; Cartwright 2002) asserts that

a variable provides no information about its non-effects, if one already knows

the values of the variable’s direct causes. This assumption has causal content,

but at a very high level of generality.

This type of causal learning is more difficult than purely statistical learning

(e.g., clustering, classification, density estimation, function approximation) in

which one is simply trying to find informational connections between the vari-

ables. Except in highly unusual circumstances, the set of causal relationships

among some features will be a strict subset of the set of informational relation-

ships. That is, (almost all) causal relationships are informational relationships,

but not all informational relationships are causal. Given this asymmetry in

learnability for the different types of models, one might hope that statistical

models could suffice for all interesting applications. Purely statistical informa-

tion, though, is insufficient for prediction when the system changes, whether

because of one’s actions or policies, or perhaps because the causal structure

breaks in various ways. One needs causal information to predict the likely

effects of most interventions, policy decisions, or other exogenous changes in

the system. We must sometimes tackle the harder learning problem.

Machine learning algorithms must balance three factors: (1) complexity of

the learned model, which provides increased accuracy in representing the input

dataset; (2) generalizability of the learned model to new data, which enables

the use of the model in novel contexts; and (3) computational tractability

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139046855.011
https:/www.cambridge.org/core


156 David Danks

of learning and using the model, which is a necessary precondition for the

algorithms to have practical value. The complexity of the world will some-

times be greater than the complexity of the models that are practical for a

particular situation, which suggests that no single model will be sufficient.

One might hope that there are “sub-problems” that are not more complex

than the available models. If that is the case, then one could plausibly learn

more about the world by (1) determining the scope of the sub-problems;

(2) learning an appropriate model (or models) for each sub-problem; and then

(3) integrating the model outputs in a principled manner. Various “meta-

learning” techniques implement this three-step proposal. As an illustration,

consider the case of boosting (Schapire 1990; Freund 1995; and subsequent

work) for simple binary classification: for example, whether or not a widget is

defective. Rather than trying to learn a complete model in one step, a boost-

ing algorithm first learns a simple classification model that works reasonably

well, though typically not as well as the user wants or requires. The system

then extracts all of the cases for which this simple model makes an incorrect

prediction, and learns a second classification model just for those cases. The

outputs of those two models can be integrated in various ways to get a classi-

fier for all of the cases. That unified classifier will make incorrect predictions

for other cases, and so one can learn a third classifier for those misclassified

cases, integrate the new classifier into the unified one, and iterate.1 In this

way, boosting builds a unified classifier consisting of a number of “weak”

classifiers, each of which focuses on accurate classification of a reduced sub-

set of the data. Hierarchical models such as mixtures of experts (e.g., Jordan

and Jacobs 1994) function similarly.

No overview of machine learning would be complete without a discussion

of Bayesian learning. A Bayesian learning algorithm requires specification of

a (possibly infinite) set of possible hypotheses or models, as well as a probabil-

ity distribution – the “prior probability distribution” – over those hypotheses.

When provided with data, the learning algorithm then uses Bayes’ Rule to

determine the correct (by the probability calculus) probability distribution

over the hypotheses given that data. Bayesian reasoning captures the intu-

ition that beliefs after observing some data should be given by the probability

of each possible explanation given that data. Expressed in ordinary language,

Bayes’ Rule states: The probability of a hypothesis after observing some data

[P(H | D)] is equal to (1) the prior probability of the hypothesis [P(H)], mul-

tiplied by (2) the likelihood of seeing data like that if the hypothesis actually

were true [P(D | H)], divided by (3) the probability of seeing that data in

the first place [P(D)]. The idea that Bayesian learning is rational has a long

1 For technically minded readers, boosting techniques rarely focus on only the misclassified

datapoints at each stage. Rather, the currently misclassified datapoints are simply weighted

more heavily for training of the next classifier.
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philosophical history. Bayesianism had relatively little practical impact for

many years, however, because of a simple fact: Except in toy examples, the

computations required for Bayesian learning quickly become too difficult to

do analytically or by hand. The development of modern digital computers has

made it possible to carry out or approximate Bayesian learning for more real-

istic situations, and so Bayesianism has re-emerged as a dominant theme in

learning. Many machine learning algorithms can be viewed as implementing

or approximating Bayesian learning under various assumptions or constraints

on the hypothesis space, prior probability distribution, likelihood functions,

and so on.

7.4 Scope and limits of machine learning

As with human learning, the value of machine learning is less in the output,

and more in the way that the output can be used for future tasks: prediction,

planning, classification, recognition, and so on. As a community, we know

how to do quite a lot with machine learning. Machine learning is a large part

of present-day computer science, and there are many different algorithms

and techniques that are suitable for a wide range of conditions. For clustering,

classification, and causal learning, there are of course algorithms for the simple

situations: datasets containing all relevant variables, clean measurements,

simple relationships (e.g., linear), and no missing datapoints. But there are

also algorithms that are robust to variations along all of these dimensions:

noisy data, unmeasured variables, complex relationships, missing data, sample

selection bias, and so on. There are numerous success stories for each of these

algorithms in terms of real-world applications. There are also algorithms for

handling time series data, and in particular, for conducting systems monitoring

and fault detection. There are quite powerful text and image classification

algorithms that are highly specialized for these purposes (though they typically

still fall short of human performance in accuracy). Information fusion – the

integration of information from multiple distinct sources – has emerged more

recently as a central component of real-world machine learning.

At the same time, there are known theoretical limits to machine learning,

many of which mirror the limits on human learning. For example, if the data

are too noisy – if they are essentially random – then learning will be nearly

impossible. Machine learning algorithms employ structural inference, and so

if there are no patterns in the data, then there is nothing that can be inferred.

Learning also requires some variation in the world, either between individuals,

or between times, or between places. Machine learning algorithms cannot learn

anything about a constant-valued feature, since there is nothing to learn: The

constant feature is always the same. And although some situations are clearly

easier for learning than others, learning is almost always difficult in the worst

case. More precisely, essentially all interesting machine learning problems are
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sufficiently hard that they require (we think) an algorithm with exponentially

many computational steps in the worst case.

A more interesting constraint on machine learning is the inability, even

under seemingly easy conditions, to infer features of the causal or informa-

tional structure of an individual from group-level measurements. Suppose

that we want to learn something about the individual (e.g., how does edu-

cation influence subsequent income?), but we only measure features at the

group level (e.g., the averages in various groups of education, income, and

other relevant variables). Further suppose that every individual has exactly

the same type of underlying relationships (though not necessarily the same

values), and the group-level features are simple, deterministic functions of

the individual-level features (e.g., average or total value). Even under these

strong simplifying assumptions, there are many interesting cases for which

the informational relationships between the group-level features are not the

same as the relationships among the corresponding individual-level features

(Chu et al. 2003). That is, the learned model for the group-level features is not

necessarily the same as the model for the individual, even when every indi-

vidual has the same model. This possibility raises a serious methodological

challenge to the use of machine learning for domains in which individuals

are the primary focus, but data collection principally occurs for groups (e.g.,

parts of economics, other social sciences, and bioinformatics).

7.5 Philosophical challenges to machine learning

Machine learning is a major area of research in computer science and statis-

tics, and so many, and perhaps almost all, of the most prominent problems

in machine learning are computational and algorithmic (e.g., “what can one

learn under certain conditions?” or “can this algorithm run faster?”), rather

than necessarily philosophical. Even notions from machine learning that might

appear philosophical often turn out to be less philosophical than one might

have thought. As just one example, consider the so-called “no-free-lunch”

theorems (e.g., Wolpert 1996; Wolpert and Macready 1997), which are some-

times colloquially stated as: “Algorithms are successful only when they are

‘tuned’ to their domain; there are no universal learning algorithms.” This

phrasing suggests various philosophical arguments, but all trade on a mis-

understanding of the actual theorems. For example, one might be tempted

to argue that machine learning is pointless, since one might think that the

no-free-lunch theorems imply that proper algorithm choice requires that one

already know the underlying truth, which would obviate the need for any

learning. This suggested argument fails to understand the sense in which no

algorithm has an advantage over others. The no-free-lunch theorems are, in

many ways, just a precise statement of the ancient skeptical observation that

any future is consistent with the past. If any future is possible given the past
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observations, then no learning algorithm has any advantage over others. But

one can now straightforwardly see that almost any restriction on the possibil-

ity space suffices to defeat the no-free-lunch theorems; for example, a single

weak regularity assumption can suffice to define a “domain,” and so pick out

a privileged class of superior algorithms. One certainly need not a priori know

the actual, underlying truth.

Of course, as with many bad arguments, there is a kernel of truth inside

this suggested objection. Any interesting machine learning method makes

assumptions about the nature of the world, and algorithms can readily fail if

those assumptions turn out to be false. An important part of machine learning

is to investigate whether the assumptions of one’s algorithm actually hold, at

least approximately (e.g., by checking to see whether the data distribution is

approximately Gaussian). Such tests are often missing from both the practice

and rhetoric of machine learning. If the relevant assumptions are false, then

one should turn to other methods that do not make those assumptions, even

though those other methods will typically be correspondingly weaker. It is

incorrect to think about machine learning as a “black box” that simply takes

data as input and returns the truth. The practice of machine learning is instead

much closer to the use of statistics in science – as a tool to investigate more

precisely the structure of one’s data. The appropriate tool (i.e., machine learn-

ing algorithm) should be chosen for a particular task, and tools can be used

with varying degrees of skill (e.g., by interpreting the output of the algorithm

in various ways). One might hope for a sophisticated system that could take

the input, determine the best algorithm for that type of data, and then apply

the algorithm, but such a meta-learner currently remains largely a hope.

One of the least-discussed “assumptions” of machine learning algorithms

is that they all require one to provide well-specified variables with precise,

possibly infinite, sets of values. The variables need not be numeric – they can

range over various categories, such as “large” and “small” – but they must

be clearly stated: In some sense, there must be some, possibly unknown, fact

about the “true” value of each variable for each datapoint. Machine learning

relies on structural inference, and so it must be possible to find patterns and

structure within the data. It is not clear what it even means to talk about

“structure” among variables that are not well defined. This concern is not

a serious challenge in practice, as one is essentially always concerned with

datasets that result from measurement processes that specify the variables;

metaphysical realists of various types will also typically be untroubled by this

concern. If, however, one questions whether there is any stable underlying

structure to be measured, then machine learning will seem to be a futile

enterprise.

All of the observations in this section raise a natural question: If machine

learning is roughly analogous to statistics, then in what sense is it “learning”?

A more contentious framing would be: Is the machine doing any learning, or
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is it really the human who uses the algorithm who learns? There are two differ-

ent aspects to the “is it learning?” question: The first is a general philosophical

concern, and the second points toward gaps in our understanding of cogni-

tion. The first concern was most famously presented by Searle (1980) using his

Chinese Room, but has arisen in many different forms (e.g., Harnad 1994). The

argument starts with the general claim that computation involves only sym-

bol manipulation while cognition involves something more. The “something

more” of cognition differs between authors, but is often some semantic notion,

such as a particular property of our concepts or a “grounding” for them. Sym-

bol manipulation is then characterized as a purely syntactic notion: According

to this argument, one can manipulate symbols correctly solely by examining

features of the physical representation and without any understanding of the

semantics or meaning of the symbol. The argument then concludes that com-

putation cannot be cognition, as the former lacks any semantic content or

grounding in the world while the latter necessarily has it.

This argument is offered as a general one against the idea of “cognition as

computation,” and machine learning is clearly a relevant type of computa-

tion. The successes of machine learning result from structural inference; these

methods use patterns or statistical regularities in the data, and are (relatively

speaking) indifferent to the semantics of the input variables. A more specific

version of the previous argument would conclude that machine “learning”

might be useful, but it cannot be true learning, at least in so far as true learn-

ing requires cognition. In other words, there might be some actual learning,

but the human being who processes the machine “learning” output is the one

who does it. The machine simply makes certain patterns in the data salient,

though that might be a computationally nontrivial task. This is a serious objec-

tion to at least the title “machine learning” for these algorithms, since this

argument calls into question the use of all cognitive terms to refer to machine

operations. However, this argument does not seem to provide any specific

objection to machine learning itself, but rather it applies to machine learning

qua machine operation. That is, one’s particular response to (or acceptance of)

this argument – for example, appeal to some symbol-grounding process, spe-

cial causal powers of the brain, or rejection of some premise – will arise from

more general philosophical grounds, and not from some deeper reflection on

the nature of machine learning in isolation. The overall objection is clearly

relevant to machine learning, but it seems just as clear that any solution to

it must take into consideration many issues that lie outside of the scope of

machine learning.

There is a more specific form of the “is this learning?” objection that does

speak directly to machine learning. Insight and creativity are often held up as

a central feature of human learning, if not the central feature. Our learning

seems to depend at times on crucial intuitive leaps that we do not seem to

be able to explain or predict. Introspectively, there seems to be something
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“non-algorithmic” about creative insight. Machine learning algorithms seem

to offer no such capacity for insight, as they are “just” complex sequences of

simple operations. The practice of machine learning inevitably involves some

human element to specify and control the algorithm, test various assumptions,

and interpret the algorithm output. These observations suggest the conclusion

that machine learning is (again) not true learning at all, but rather fast,

useful detection of various patterns in data. On this account, the human

who controls and validates the algorithms does the “real” learning. This

objection is notably different from the previous one: No claims are made here

about the impossibility of machine cognition, but only about the failure of

current machine learning algorithms to rise to the level of true learning. This

objection is entirely consistent with the possibility that more sophisticated and

reflective algorithms, supplemented with appropriate background knowledge,

could perform real learning. The argument depends instead on the claim

that none of the currently available algorithms meet that standard for true

learning.

The previous paragraph used the phrases “human learning” and “true learn-

ing” without exposition; the reader was simply assumed to understand what

was intended by them. One might wonder, however, if our understanding

of the nature of human learning is sufficiently clear to provide a standard

of “true learning” that machine learning fails to satisfy. There is no well-

established model for how people actually do learn, and so it is not clear

what criteria would need to be met for a machine algorithm to be considered

“learning.” There is no question that – for certain situations – human learning

is far superior to machine learning. Our ability to assemble disparate pieces

of background knowledge and information, whether by analogy, accident, or

some other process, is unmatched in machine learning (despite many attempts

to build systems for commonsense reasoning). That observation, however,

is not sufficient to conclude that we use some wholly different process in

our learning; one can only conclude that there is something different about

our learning. A plausible alternative explanation is that we have a body of

information, biases, and experiences that is quite simply unmatched by con-

temporary machine learning systems. A database with 10,000 datapoints is

considered large in machine learning; a child who has only one experience

per waking hour (say, sixteen per day) exceeds that number in less than two

years. If she has one experience per waking minute, then she surpasses the

database in around eleven days. The products of human learning are superior

(in some sense) to the products of machine learning, but the processes need

not be fundamentally different in kind, given that there are enormous differ-

ences in background knowledge, accuracy of biases, temporal and semantic

information, and so on.

Perhaps more importantly, there are substantial gaps in our understanding

of the processes underlying human learning. We do not know enough about
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those processes to determine at this point their similarity – or dissimilarity – to

the algorithms proposed in machine learning. One might respond that intro-

spection on our own learning provides all of the evidence that is required.

Such a response neglects the large psychological literature demonstrating the

unreliability of introspection in revealing the details underlying fundamental

cognitive processes (Nisbett and Wilson 1977; Ross and Nisbett 1991). It may

well be the case that there is something qualitatively different about human

learning such that machine “learning” algorithms do not deserve that name.

At the current time, however, such claims are grounded largely in ignorance,

rather than positive evidence of a difference.

The preceding discussions have made a potentially problematic assumption:

There is value in worrying about the particular label that is attached to machine

learning algorithms. The fundamental properties of those algorithms –

their reliability, convergence, computational complexity, and so on – are

real features regardless of the name one uses. Moreover, the algorithms are

already referred to by many different names, such as “data mining,” “applied

statistics,” “automated search,” and so on. One might thus be willing to

give up the label of “machine learning,” since it does not obviously make a

difference to the underlying science. One ought not give up on the label of

“machine learning” so easily, though, as the name points toward a number

of interesting issues about the nature of cognition and learning, and the

relevance of machine methods for the study of human cognition. Machine

learning methods are regularly used today to provide frameworks and inspi-

ration for cognitive models, sometimes under the heading of “computational

cognitive science.” The label is also important because it establishes biases and

expectations in those who hear the label. Sometimes those expectations are

unreasonable, but they prompt individuals – both proponents and skeptics – to

ask important questions about the nature and performance of these algorithms.

One final philosophical issue concerns the extent to which one can be a

realist about the contents or intermediate processes of a learned model. That is,

when can the internal structure or richer semantic content of a learned model

be understood to correspond – perhaps only with some probability – to features

of the world? This question is particularly pressing for research in causal

learning that seeks to infer causal structure in the world from sets of passive

observations. Causal inference algorithms putatively learn the set of causal

structures that could have produced some given dataset, or discover the most

probable such structure (Spirtes, Glymour, and Scheines 1993; Pearl 2000;

Chickering 2002). There are many instances in which these algorithms have

been applied to actual datasets, and the learned models have subsequently

been successfully attributed to the world (e.g., the case studies in Glymour

and Cooper 1999). These algorithms – like all inference methods – are only

reliable under particular assumptions about the nature of the world. Moreover,

the semantic content of the learned model – the fact that we can call it a causal
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model – derives from these assumptions, which provide a characterization

of one (the?) way for causal structures to be “projected” into observed or

experimental data. The analogy here is with assumptions such as the ray

theory of light: Those assumptions explain how three-dimensional objects are

projected onto a two-dimensional plane (e.g., a retina), and are necessary for

any visual system to make inferences about object structure from the limited,

two-dimensional input. Just as our visual system experiences optical illusions

when various assumptions fail to hold (e.g., a straight stick appearing bent

when placed into water), causal inference algorithms are subject to “causal

inference illusions” when the assumptions are violated in particular ways.

These causal inference algorithms, and machine learning algorithms more

generally, do not seem at this point to be any different from standard instances

of inductive inference: No inductive inference can have any guarantees of

reliability without various assumptions about the world. If those assumptions

are satisfied, then the algorithms work; if they are violated, then one has no

particular warrant to believe the internal structure of the algorithm outputs.

The assumptions of causal inference algorithms are sometimes claimed to

be different, however, because it seems that we can only test whether the

assumptions are actually satisfied by having the very same causal knowledge

that we are trying to learn (Cartwright 1999, 2001). This argument is not

focused on the bare possibility that the assumptions could be false (though

that additional claim is also made in, e.g., Cartwright 2001), since that is a

risk that any inductive inference must carry. This concern is also not about

the practical testability of the algorithms’ assumptions; inductive inference –

whether human or machine – inevitably involves making assumptions that

might not be practically testable at the particular moment. One might need,

for example, orders of magnitude more data than one currently has. If the

assumptions are testable in principle, though, then one could (in some sense)

determine whether the algorithms are reliable for a situation like this one, and

so have some warrant to regard the learned model in a realistic manner.

The fundamental worry here is that the assumptions are not even testable in

principle, since it seems that the only way to know which statistical tests are

relevant is to know the underlying causal structure, but that is exactly what

the causal inference algorithm is supposed to find. These algorithms might

(the argument continues) occasionally find approximations to the true causal

structure, but only by random chance. The assumptions might be true in any

particular situation, but one has no way to know that, and so no warrant

to treat the algorithm outputs as anything other than representations of the

observed or experimental data. The algorithms might produce a useful “short-

hand” version of the data that one could use in various ways, but one is not

(on this argument) learning anything substantive about the underlying struc-

ture of the world. Although principally directed at causal inference algorithms,

this potential problem is not limited to them. Many clustering algorithms, for
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example, are reliable only if one can make certain assumptions about the

underlying groups. One must thus be able to examine the groups to deter-

mine whether they have those properties, but that would require knowing the

groups ahead of time, which would obviate the very need to use the clustering

algorithm. Machine learning methods clearly have substantially less value if

they must always be interpreted in an instrumentalist manner. Instrumentalist

theories – those that make predictions about the behavior of a system without

making any commitments to the underlying structure or ontology of the

theory – are useful in a number of ways, but one often desires something

more than mere prediction. Most notably, one must have information about

the underlying mechanisms in order to make accurate predictions about what

will happen when the system breaks or changes in various ways; instrumen-

talist theories provide no such information.

There are three natural responses to this objection. First, careful exami-

nation of the assumptions often reveals that the knowledge required to test

them is weaker than is suggested by the surface framing of the assumption.

In the particular case of causal inference algorithms, one must have certain

types of causal knowledge in order to test the assumptions, but the necessary

knowledge is not the same as knowledge of the causal structure being sought.

For example, one might need to know that a particular population is “causally

homogeneous” (i.e., all individuals have the same causal relations, though not

necessarily the same variable values). This knowledge requires causal knowl-

edge, but not necessarily about the causes or effects of that particular variable.

The second, related, response notes that the argument frames the testability of

assumptions as all-or-nothing: One knows either exactly what is required to

test an assumption (though one might not actually test it), or else nothing at

all. A more realistic characterization of the situation is that one often knows

some but not all of the tests of an assumption, as well as a number of possible

avenues for future tests. One might also have reason to believe that one has

tested an assumption imperfectly. If one has this type of limited knowledge,

then one can have limited confirmation of an assumption, while recognizing

that the algorithm output must therefore be interpreted or accepted in a

limited manner. One can object to many machine learning methods on the

grounds that they require some strong, not completely established, property,

but one should not reject the output of those methods simply because one is

somewhat uncertain in the short run about whether the precise property holds.

The third and most general response to this family of objections is to note

that the argument-schema actually speaks against most inductive methods,

and not just causal inference; it objects to machine learning, not machine

learning. Consider a particular inductive conclusion: “All electrons have neg-

ative charge.” Any method that conjectures this conclusion must make some

assumptions about the world, such as that electrons form a coherent, stable
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set with respect to having some electric charge. Such an assumption can only

be tested by actually determining the electric charges of all electrons, but such

tests would eliminate the need to make any inference to the inductive conclu-

sion. Notice that there was no mention of machine methods in this example,

nor was there any specification beyond “inductive method.” The problem of

knowing the confirmation conditions for the assumption of a method is a

general one that speaks against almost all inductive inference methods, and

not machine learning methods specifically. One can rarely know a priori all of

the confirmation or testing conditions for assumptions that are required for a

particular inference method to provide reliable information about internal or

universal structure.

7.6 Conclusion

Machine learning methods are often regarded with a certain degree of suspi-

cion. They are frequently presented as “black boxes” that take data and, with-

out any guidance, somehow learn part of the true structure of the world. These

algorithms are, in practice, much less mysterious: The label of “automated

statistics” is frequently an apt descriptor. Machine learning methods discover

and exploit structural relations among the data, and this structural inference

underlies both the strengths and weaknesses of machine learning algorithms.

These methods can be applied in a relatively domain-general manner, since the

specific meaning of the variables is irrelevant to the functioning of the algo-

rithm. Because of this generality, however, they cannot yield domain-specific

information, such as mechanisms underlying informational relationships.

Machine learning is one of the most rapidly growing areas of computer

science, and many of the most prominent challenges revolve around the exten-

sion of algorithms to novel data-types, novel models, or weaker assumptions.

There are philosophical concerns about machine learning, but most of those

concerns center on either the “machine” or the “learning” part. On the one

side, machine learning is an instance of complex machine computation, and so

natural questions arise about whether any machine operations can be correctly

described using cognitive terms. On the other side, machine learning algo-

rithms perform complex, but clearly specified sequences of computations, and

so questions arise about whether the methods qualify as “learning,” or whether

the assumptions necessary for the inductive inference can be suitably tested. In

sum, machine learning methods have opened novel avenues for learning about

the structure and behavior of our world. These algorithms must of course be

used with appropriate awareness and testing of the underlying assumptions.

When used properly, however, machine learning can exploit the structure

within data to yield valuable knowledge about structure and relations in the

world.
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Further reading

No single machine learning text includes every standard machine learning algo-

rithm. The following books are all excellent introductions that cover a range of

the machine learning literature:

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University

Press.

Duda, R. O., Hart, P. E., and Stork, D. G. (2000). Pattern Classification (2nd edn.).

New York: John Wiley and Sons.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical

Learning. New York: Springer.

Mitchell, T. M. (1997). Machine Learning. New York: McGraw-Hill.

For the more specific case of causal reasoning methods, as well as their applica-

bility to traditional philosophical problems such as the nature of counterfactuals,

a good introduction is:

Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge University

Press.
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8 Perception and computer vision

Markus Vincze, Sven Wachsmuth, and Gerhard Sagerer

The wish to build artificial and intelligent systems leads to the expectation that

they will operate in our typical environments. Hence, the expectations on their

perceptual capabilities are high. Perception refers to the process of becoming

aware of the elements of the environment through physical sensation, which

can include sensory input from the eyes, ears, nose, tongue, or skin. In this

chapter we focus on visual perception, which is the dominant sense in humans

and has been used from the first days of building artificial machines. Two early

examples are Shakey, a mobile robot with range finder and camera to enable

it to reason about its actions in a room with a few objects (Nilsson 1969), and

FREDDY, a fixed robot with a binocular vision system controlling a two-finger

hand (e.g., Barrow and Salter 1969).

The goal of computer vision is to understand the scene or features in images

of the real world (Ballard and Brown 1982; Forsyth and Ponce 2011). Important

means to achieve this goal are the techniques of image processing and pattern

recognition (Duda and Hart 1973; Gonzales and Woods 2002). The analysis of

images is complicated by the fact that one and the same object may present

many different appearances to the camera depending on the illumination cast

onto the object, the angle from which it is viewed, the shadows it casts,

the specific camera used, whether object parts are occluded, and so forth.

Nevertheless, today computer vision is sufficiently well advanced to detect

specific objects and object categories in a variety of conditions, to enable

an autonomous vehicle to drive at moderate speeds on open roads, to steer

a mobile robot through a suite of offices, and to observe and to understand

human activities.

The objective of this chapter is to highlight the state of the art in computer

vision methods that have been found to operate well and that led to the

development of capabilities mentioned above. After a short discussion of more

general issues, we summarize work structured into four key topics: object

recognition and categorization, tracking and visual servoing, understanding

human behavior, and contextual scene understanding. We conclude with a

critical assessment of what computer vision has achieved and what challenges

remain.
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Figure 8.1 An image is given by a 2D pixel array where each pixel measures the

amount of light traveling along a ray. The plenoptic function would specify this for

each possible viewing point and viewing angle.

8.1 Computer vision paradigms and principles

Computer vision is a heterogeneous field that embraces a large spectrum of

methods as well as scientific perspectives. This starts with the physical under-

standing of how an image is formed or what can principally be seen. Before

light is collected in a dense two-dimensional array on a sensor it gets refracted,

reflected, scattered, or absorbed with regard to a scene. An image is formed by

measuring the intensity of the light rays through each element of the array –

called a pixel (Figure 8.1). If one knew the illumination for each possible ray

of light in the scene, each possible image by a camera could be pre-computed

before measuring it. This mapping between a viewpoint and its illumination is

formally described by what is called the plenoptic function. Computer graph-

ics aims to approximate this function by rendering a known scene with given

light sources. As a first perspective, computer vision targets at computing the

inverse function of computer graphics, that is, reconstructing the viewpoint

and the underlying scene from a given image, image pair, or sequence of

images. Here computer vision is understood as a measurement problem that

is extensively treated by photogrammetry, photometric calibration, as well as

reconstruction and registration techniques.

A second perspective on computer vision is to mimic biological vision in

order to get a deeper understanding of the processes, representations, and

architectures involved. Here, it is becoming more and more obvious that the

fundamental questions and open problems in computer vision are at the cut-

ting edge of cognition research. They cannot be solved in isolation but concern

the fundamental basis of cognition itself.
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Figure 8.2 Computer vision as a knowledge-engineering task.

A third perspective understands computer vision as an engineering disci-

pline that aims at the solution of practical vision tasks. On the one hand,

this perspective is requesting efficient algorithmic solutions, but, on the other

hand, it asks the further question of how to build computer vision systems.

The state of the art in this area is mainly dominated by heuristics and knowl-

edge from experience. Systematic methodological approaches are rare, mostly

application-specific, and currently missing a deep understanding of the vision

problem as such.

Thus, all three perspectives cannot be separated and deeply influence each

other, which – together with an immense technical progress – has made

computer vision a highly dynamic field over the last fifty years.

In order to solve specific computer vision tasks, different design decisions

need to be made. Some of these are pointed out in the following.

What kind of knowledge is needed? In order to understand the content of

an image, relevant parts of it need to be linked to semantically meaningful

concepts. For the scene of a meeting room (Figure 8.2) the knowledge base

might include that it consists of a large table and a couple of chairs positioned

around it, that the table has a top, and so on. The knowledge base decomposes

the complex scene of a meeting room into simpler elements, such as a tabletop,

that correspond to a planar surface or to a homogeneous region that can be

directly extracted from an image. Therefore, an algorithm might start with

searching the image for homogeneous regions, which is a low-level concept

with regard to the signal. Then, these are successively combined (guided by

the knowledge base) to form higher-level concepts. This approach is typically

termed “bottom-up.” Another algorithm might start with the concept of a table

and look specifically for a configuration of parts (predicted by the knowledge

base) that fulfill the requirements of the concept. These parts in turn might

activate a tabletop detector that is applied to the image. This approach is

typically termed “top-down.” Both approaches to the knowledge base helped

drive a considerable amount of computer vision research in the 1970s and

1980s (Ballard and Brown 1982).

How to represent scene geometry? Scene geometry is an important inter-

mediate representation in the interpretation process of an image. It can be
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Figure 8.3 3D scene geometry. The image in the middle is showing the reconstructed

depth with chair backs clearly visible; the right image shows 3D points that have

been grouped to planar patches in a mesh representation.

Figure 8.4 2D scene geometry. The left image shows a region segmentation based on

a color clustering (shown with homogeneous gray values); in the middle a Difference

of Gaussian (DoG) filter has been applied to the original image; the right image shows

a contour segmentation based on the DoG image.

dealt with either in 2D or 3D. In Figure 8.3, a scene is depicted as a regular

2D image (left) and a depth image (middle). The latter can be computed from

pairs of stereo images or directly be measured by, for example, Time-of-Flight

sensors, which measure the distance at each pixel by modulating and receiv-

ing an infra-red light beam. Because the representation in pixel coordinates

is still view-dependent, it is also called 2½D. In a next step, 3D geometric

primitives are fitted into the scene with each fit defining a geometric trans-

formation. Because now the relative 3D position and 3D orientation between

these primitives is known, a view-independent and object-centered represen-

tation is reached. An approach of this kind was originally suggested by David

Marr (1982), who also looked at the concepts of human vision known at his

time (Marr 1982). However in many cases, the extraction of 3D geometry is

too fragile. Real 3D object shapes are often complex and non-rigid, and fit-

ting procedures frequently end in local minima and erroneous object position

and orientation (“pose”). As a consequence, more stable geometric represen-

tations could also be extracted from 2D images. In this case, images are ana-

lyzed with regard to spatial discontinuities in the gray-level or color-surface.

Representations either focus on homogeneous image patches (regions) or on

edges (border lines) (Figure 8.4). Both provide a basis for further interpretation
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Figure 8.5 Pattern classification. A decision function for a specific class (e.g. meeting

room) could be based on probability theory. Here a conditional distribution is

estimated using a Gaussian model. The feature vector x is defined using color

histograms.

processes. The extraction of such geometric primitives is a problem of digital

image processing (Gonzales and Woods 2002).

What are appropriate features? In order to match a geometric or image

representation to a semantic concept, such as “table,” “chair,” or “meeting

room,” one needs to specify a decision function that decides for or against a

membership of a class. This is a classification problem that is intensively dealt

with in the area of pattern recognition (Duda and Hart 1973). A pattern is

represented by a feature vector defining a point in a high-dimensional space.

Given that the classes of some points in this space are known (e.g., a set of

training images annotated by hand), a decision function can be learnt that

partitions the space into these classes. In Figure 8.5 a simple example is given.

The image is divided into six parts and for each sub-image a color histogram

is computed. The concatenated histograms provide a feature vector that can

be used, for example, to classify specific meeting rooms.

The question of what are good features is a long-standing topic of discus-

sion. Over the years, there have been a couple of inventions that have had a

deep impact on the field. In the 1990s, Swain and Ballard proposed the use of

local feature statistics (such as color histograms), Turk and Pentland applied

a technique based on Eigenvectors to image sets of human faces (then called

Eigenfaces). Later, in the 2000s, Viola and Jones revolutionized face detection

by inventing an automatic feature selection process based on a huge number

of very simple features related to Haar-wavelets (features based on the binary

on/off selection of adjacent image parts). Another breakthrough was the Scale

Invariant Feature Transform (SIFT) by David Lowe, that pushed object recog-

nition to a new level. Here, ideas of local gradient statistics are combined with

an extremely stable detection of fixed points on an object – so-called interest

points.

How to control the acquisition process? Biological vision is not a passive

interpretation process, nor should it be for autonomous artificial systems. The
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Figure 8.6 Two different perspectives on computer vision. (a) Image understanding:

extraction of explicit meaningful descriptions. (b) Active vision: control of the image

acquisition and interpretation process (e.g. by moving the camera or selecting a

Region Of Interest [ROI] in the image) with regard to a task.

movement of an agent in the real world basically determines the perception

problem it has to solve. Vision is understood as an active process that includes

the control of the sensor and is tightly coupled to the successful accomplish-

ment of a decision or action (Bajcsy 1988). This has certain consequences for

the design of computer vision systems, which had already been noted in the

early 1990s (Crowley and Christensen 1995). First, instead of modeling an

isolated image-interpretation process, the system must be always running and

must control its own behavior using an image stream. Second, the overall goal

of visual processing is not image understanding. Instead, the vision system

must work as a filter that extracts information relevant for its task. Third, the

system must respond within a fixed time delay in order to be useful for its

current task, such as navigation and obstacle avoidance in a robot. Fourth,

instead of processing the complete image, the system must focus on a region

of interest (ROI) in order to meet the performance goals. The different perspec-

tives are shown in Figure 8.6. The first aims at a complete interpretation of

the image, the second extracts relevant information for action selection and

state prediction.

8.2 Object recognition and categorization

Object recognition can be seen as the challenge to determine the “where” and

“what” of objects in a scene. Many different techniques have been proposed,

and all have their own pros and cons. Given an application scenario, one has

to carefully select an appropriate object recognition technique that fulfills the
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anticipated set of constraints. Techniques also differ in the precise problem

that they solve.

Many recognition techniques are object detectors that post a yes/no ques-

tion regarding the presence of an object class. The image is typically scanned

by a template model; that is, a window is moved over the image and for each

position a so-called filter response is computed by matching the template

to the sub-image defined by the window. Each different object parametriza-

tion (object scale, rotation, etc.) needs a separate scan. More sophisticated

approaches efficiently perform multiple passes on different scales and apply

filters that are learnt from large sets of labeled images. A good example is

the face detector by Viola and Jones mentioned in the previous section. Here

the filter consists of a set of positive and negative integrals over rectangular

image regions learnt before.

Segmentation-based techniques first extract a geometric description of an

object by grouping together pixels that define an object’s extension in an

image. This is a typical bottom-up process as discussed previously. In a sec-

ond step, these techniques compute an invariant feature set. The invariance

property means that the features keep the same or similar values under differ-

ent transformations of the image, such as scaling, rotating, or changing the

lighting. Then the features are used for recognizing an object class or extract-

ing a set of generic primitives from which the objects are constructed. Modern

techniques interleave or combine both steps in order to deal with problems

of over-segmentation (in which parts are split into tiny pieces) and under-

segmentation (in which parts are grouped together with background areas).

Alignment methods use “parametric” object models that are fitted to the

image data (Huttenlocher and Ullman 1990). The algorithm needs to search for

parameters such as scaling, rotation, or translation that optimally fit the model

to corresponding image features. An approximate solution can also be found

by an inverse process, that is, image features (e.g., corners, contours, or other

characteristic image points) vote for parameter solutions that are compatible

with the feature detected (the process involves using a voting scheme or

algorithm, which derives a single output from multiple data sources). In this

case the parameter space is coarsely discretized. This technique is frequently

referred to as the generalized Hough transform (Ballard 1981), and a variant

has been applied in the object recognizer by David Lowe mentioned in the last

section (Lowe 2004).

All three approaches provide different information about objects in images

and assume that different kinds of pre-knowledge are available.

8.2.1 2D modeling

Most objects in the real world are inherently 3D. Nevertheless, many object-

recognition techniques stick to 2D representations with significant success.
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There are several reasons for this. (1) Easy accessibility: We get 2D image

information nearly for free using standard camera equipment. (2) Fast com-

putation: Features can directly be calculated from image pixel data and do

not involve a search for complex geometric primitives. (3) Simple acquisition

of detection models: Models that are used for automatic object detection are

typically learned from example images. (4) Robustness to noise: Features are

directly computed on pixel values. This is in contrast to the extraction of

more abstract primitives (regions, contours, 3D shape primitives) that typi-

cally involves segmentation issues and, therefore, is more error prone with

regard to clutter and noise. (5) Furthermore, many interesting objects have

quite characteristic 2D views – for example, cover pages, traffic signs, side

views of motor bikes or cars, front views of faces.

The price to pay for ignoring the 3D characteristics of objects is typically

over- or under-constrained models because there are a number of perspective

variations that cannot be systematically dealt with. A typical case of under-

constrained approaches are bag-of-feature models. Like the histogram models

mentioned in Section 8.1, these compute feature statistics over an image region

or complete image. Thus, the location of features is completely lost, and object

rotation and exact position cannot be distinguished. Thus, for example, if the

eyes, nose, and mouth of a face were upside down or completely intermixed,

the recognizer would still wrongly detect a face. Over-constrained models, on

the other hand, need multiple representations in order to deal with different

part configurations or rotations of objects. (Good examples are the template-

based methods mentioned before.) Hence if, for example, a face is rotated by

90 degrees, the recognizer would never detect it. As an additional price to

pay, we need to cope with a more challenging segmentation problem – that

is, the problem of extracting an object from its background. Typically, the

background is further away, so that 3D information provides a much stronger

hint than luminance values of 2D images.

The dominant class of 2D object recognition techniques are appearance-

based approaches. Instead of using a view-invariant object-centered repre-

sentation, these represent different aspects of an object. Compact representa-

tions are provided by aspect-graphs (Koenderink 1987) that relate different

2D appearances to each other in an efficient data structure. Secondly,

appearance-based approaches drop an intermediate geometric representation

level by computing features directly from pixel values. This has certain con-

sequences for the kind of object classes that can be distinguished and the

within-class variations that can be covered.

So far, the methods discussed deal with variations of rotation, lighting,

noise, and small distortions of an object’s shape. They mostly assume that

objects are solid, approximately rigid, have similar textures or colors, and are

occluded to a minor degree. Further variations are covered by local descriptor

approaches. Here, the main idea is to detect salient points in an image that
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Figure 8.7 Matching result based on local descriptors (here SIFT; Lowe, 2004). First,

salient points are computed on different scales. Then, the corresponding local

descriptors are matched to a model database (given by the small image). Left is an

ideal example of planar object that is highly textured. Middle and right examples

show that the approach breaks down for less textured 3D objects if the perspective

changes only slightly. In the right image only a single feature correspondence is

found.

provide a partial feature description instead of a complete appearance model.

These approaches gained attention in the first decade of the twenty-first cen-

tury and have reached a performance unachieved before.

By relying on local descriptors (typical examples are SIFT or SURF features,

that analyze the distribution of image gradients around an image point) these

methods are able to cope with occlusion and local variations as they occur in

real-world settings (Lowe 2004). In Figure 8.7 an example of such an approach

is given.

8.2.2 3D modeling

2D color or intensity images do not directly encode depth or shape information.

Consequently, object recognition and localization is a difficult problem and

in general ill-posed (Aloimonos 1993). To overcome these problems the 3D

shape of objects can be directly recovered from depth, or range, images. Depth

images can be obtained through various methods ranging from scanning with

a laser sensor, to structured light approaches, to stereo systems using two

cameras, which is the method used by human vision. A cheap example of a

structured light camera is the Kinect color-and-depth camera.

The main question in computer vision is how to model or represent the

object such that it can be detected in depth data. One way is to parse shapes

into component parts (Shipley and Kellman 2001) and define their spatial

relationships. In computer vision parts are useful for two reasons. First, many

objects are articulated, and the part-based description allows us to decouple

the shapes of the parts from their spatial relationships. And second, not all
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Figure 8.8 Detection results for a dining chair in a home scene (Wohlkinger and

Vincze, 2010). Left: the image of the scene. Right: the stereo point cloud and the chair

detected in the centre.

parts of objects are seen but parts are often sufficient to recognize the object;

for example, a cup can be recognized from either the body or the handle.

A key aspect of part-based representations is their number of parameters.

In the past decade much work has been made describing depth data with

rotational symmetric primitives (sphere, cylinder, cone, torus). Generalized

cylinders can be created by sweeping a 2D contour along an arbitrary space

curve (Binford 1971). Since the contour may vary along the curve (axis), def-

initions of the axis and the sweeping curve are needed to define a generalized

cylinder, which requires a large number of parameters. An often-cited early

vision system that applied generalized cylinders is the ACRONYM system to

detect airplanes (Brooks 1983). However, the fitting of many parameters is

complicated and has limited the use of this method.

One of the most highly investigated methods for 3D modeling involves the

recovery of superquadrics – geometric shapes defined by formulas including

arbitrary powers to produce shapes that resemble cubes, cylinders, and cones,

with either rounded or sharp corners. These became popular because a small

set of parameters can describe a large variety of different basic shapes. Solina

et al. pioneered work in recovering single superquadrics (Solina and Bajcsy,

1990) and demonstrated that the recovery of superquadrics from range images

is sensitive to noise and outliers, in particular from single views as given in

applications such as robotics. Jaklic and colleagues (Jaklic, Leonardis, and

Solina 2000) summarize the recover-and-select paradigm for segmenting a

scene with simple geometric objects without occlusions. This method aims at

a full search with an open processing time unsuitable for most applications

such as robotics.

Lately, images from depth sensors such as the Kinect or from stereo systems

is used more often to obtain 3D data. Since data is in general not as good

as from laser scans, statistical methods rather than direct shape methods are

employed. An example is the detection of chairs (Wohlkinger and Vincze

2010) shown in Figure 8.8.
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Open problems in this area are how to handle sparse data resulting from one-

view scans of the scene, how to cope with the typical laser and camera shadows

and occlusions in cluttered scenes, and how to deal with the uncertainty of

stereo images.

8.3 Tracking and visual servoing

Another typical task humans perform is to detect and follow the motion

of objects. When grasping an object the relative motion is observed. When

walking the motion of the environment is monitored. The technique of visu-

ally tracking an object and determining its location is used particularly in

surveillance and robotics tasks. In the former the paths of cars or persons are

estimated to recover the ongoing activities and react accordingly (also see

Section 8.4.1 below). In robotics the goal is to track the relative position of a

mobile robot and its environment or to steer a robotic hand toward an object.

The continuous feedback control of the position of the robot is referred to as

visual servoing (Chaumette and Hutchinson 2006).

First successes in autonomous car driving and air-vehicle guidance indicate

the use of visual servoing (Dickmanns 2007). However, there are still two major

obstacles to further use in real-world scenarios (Chaumette and Hutchinson

2006). First, an efficient tracking cycle is required. Vision and control must

be coupled to ensure good dynamic performance. Fast motions are needed to

justify the use of visual servoing in real robotic applications. Second, there

must be robust target object detection. Vision must be robust and reliable.

Perception must be able to evaluate the state of the objects and the robot,

enabling the robot to react to changes and make sure it moves safely in its

environment.

The tracking cycle problem has received a lot of attention in the literature

(e.g., Chaumette and Hutchinson 2006) but robust visual target detection is

just as critical and has recently started receiving more and more attention.

The following sections summarize the state of the art with respect to these

two criteria.

8.3.1 The tracking cycle

The goal of visual servoing is to consider the entire system and its inter-

faces. The basic control loop is depicted in Figure 8.9. It contains three major

blocks: the vision system, the controller, and the mechanism (or robot or vehi-

cle). The vision system determines the present location of the target (the object

of interest) in the image. The controller converts the location in the image to a

position in space or directly into command values. The system repeats this at

a cycle rate. In each cycle a new location is determined and it is also possible

to use the location difference to obtain the control command. The robot or
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Figure 8.9 Basic block diagram of visual servoing.

vehicle commonly uses a separate controller to control the motors at the level

of its axes and wheels.

The objective is to build the tracking system such that the target is not

lost. One limit in tracking is given by the field of view of the camera. Hence

it is useful to investigate tracking of the highest possible target velocity (or

acceleration). The relevant property is the delay (or latency) of the feedback

generated by the vision system (Vincze 2005). The two main factors to take

care of are (1) the latency or delays in one cycle, and (2) the part or window

of the image that is actually processed.

Latencies accumulate from the camera. Today, cameras produce images at

a rate of 25 or 30 Hz or images per second. Additional delays come from the

time taken to transfer the image data to the controller. The biggest time delay

is the time needed to process the image. While it seems intuitive that latencies

delay tracking, the second factor, image processing, is often not respected. If

the full image is calculated, this might take much longer than the frame time

of the camera, with consequent loss of images. If a small window is used,

for example around the location where the target has been seen in the last

image, it is possible to exploit every image. The optimum is reached when the

window size is selected such that processing is as fast as acquiring images,

and image processing operates at the same 25 or 30 Hz (Vincze 2005). This

means it is optimal to operate a tracking system with a latency of two cycles

of the frame rate for cameras: one for transmitting the image from camera to

computer and another one for image processing. To compensate for this delay,

filters (such as the Kalman filter) predict where the target will be (Chaumette

and Hutchinson 2006).

It is interesting to note that the human eye is very different from a camera.

Cameras have a uniform array of pixels at one given resolution or pixel
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spacing. The human retina exhibits a space-variant tessellation with a high

resolution fovea in the center and a wide field of view (about 180 degrees) at

logarithmically decreasing resolution. The effect is that humans process all the

image at all times (Vincze 2005). Humans can react to motion in the periphery

while recognition only works in the fovea which is rotated to the target and

tracks it.

8.3.2 Robust target detection

Robustness of tracking is of major concern in ensuring continuous operation in

applications. To say that a tracking method is robust is to say that it degrades

smoothly when input data is noisy and contains outliers. A common denom-

inator of techniques to improve robustness is the exploitation of redundancy

by using multiple cameras, multi-resolutions, temporal constraints intrinsic to

tracking, models, and the integration of several cues or features.

A minimal form of redundancy is inherent in a stereo vision system using

two fixed cameras and searching for the target in both images (Hartley and

Zisserman 2003). Today, systems that calculate a depth image from two stereo

images are commercially available (e.g., Videre Design). Nevertheless the cor-

respondence problem (finding the same scene point in both images) remains

and successful stereo applications are rare. The correspondence problem of

stereo vision is reduced by using three or more cameras, as in TRICLOPS

(Point-Grey Research). Assistive systems to steer cars at high speeds exploit

two or three cameras with different fields of view (Dickmanns 2007).

The idea of merging information from different levels of resolution has

been exploited in scale-space or image-pyramid approaches, where the origi-

nal image is reduced in size several times. Consistency is aggregated over the

smaller images to obtain a measure of the reliability of, for example, edge

detection. Recently, interest-point features (features that have maximum gra-

dients) exploit this to select the most robust local scale of a gradient point,

for example, SIFT (Lowe 2004). However, the use of image pyramids has still

not been sufficiently exploited.

The redundancy of a series of images can be exploited by considering the

temporal consistency of the detected features, also referred to as temporal

data association (Dickmanns 2007). To cope with the uncertainty in locating

the target object in the image, standard methods of control theory such as

filtering and prediction (see above) are widely used to improve robustness.

Today, the most common approach to cope with this uncertainty is Kalman or

particle filtering, where several hypotheses aid in adapting to uncertainties of

the motion of the mechanism and the measurement (Thrun, Burgard, and Fox

2005). The dynamic vision approach (Dickmanns 2007) exploited the temporal

evolution of geometric features such as lines to build a model of the perceived

world. The physical properties of objects, such as a certain inertia, are used
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Figure 8.10 An example of model-based vision. Objects have been recognized based

on their geometric structure using a CAD (Computer Aided Design) model (displayed

with full lines). The models are then tracked using the texture taken from the actual

objects.

to predict future positions of the object in the next image(s). Tracking is then

used to confirm or update the motion model.

Another approach is model-based vision (for a reference work, see Dick-

manns 2007). The model is commonly a CAD (Computer Aided Design) repre-

sentation of the target, which is used for predicting the location of the object

(model) in the next image. Mobile robots hold (or build up) a representation of

objects, such as walls or pillars or boxes, for the navigation or object-grasping

tasks (e.g., Thrun et al. 2005). Figure 8.10 gives an example where models are

projected into the image for the purpose of tracking the known object (for

details, see Mörwald et al. 2010).1

In humans the integration of cues or features such as texture, color, shading,

and so on, has been identified as a likely source of the excellent ability to

cope with changing conditions.

In summary, a plethora of approaches to tracking exist. Most are either

robust or fast. While tracking based on regions or interest points is more

robust in textured environments, edge-based tracking schemes provide the

best input for visual servoing in robotics or in augmented reality systems

where additional information is visualized over real images (Kragic and Vincze

2009). With the steady increase in computing power, work on integrating cues

will go further. There is a lot of performance to be gained from using more

knowledge about the task and the domain, object models, and object functions,

and from using cues such as levels of resolution, temporal consistency, and

various image features.

1 The source code for this example is available on the first author’s webpage at

www.acin.tuwien.ac.at/?id=290.
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8.4 Understanding human behavior

8.4.1 Visual surveillance

Smart rooms, human–machine interfaces, and safety and security applications

require the ability to recognize activities of humans. This field is known as

visual surveillance. (For recent reviews see Buxton 2003; Valera and Velastin

2005. The annual PETS [Performance Evaluation of Tracking and Surveillance]

workshop series is also an excellent resource of ongoing work.)

Typically, surveillance systems operate from fixed cameras, and this per-

mits use of the technique of background subtraction to detect changes in the

image. Background subtraction uses the static images to obtain a model of the

fixed background scene, which simplifies the task of extracting the moving

foreground objects (vehicles, persons, etc.) (for a review see Piccardi 2004).

The main task is to cope with the varying illumination, which changes the

appearance of the image and might hide changes due to moving foreground

objects. This form of change detection results in image regions that are used

as indications of objects. In the next step these blobs are tracked over the

image sequence, where data association methods are used to find consistently

moving objects and to detect erroneous regions generated. Preferred meth-

ods to model the consistently moving object are Hidden Markov Models and

Bayesian networks (Buxton 2003; Valera and Velastin 2005).

Surveillance systems often work in two phases: a learning phase and a

run-time phase. In the learning phase the system is initialized to a scene

and models are either adapted or learned from observations. These models

contain data about normal activities, such as lanes of cars, entrance points, or

typical human gestures. In the run-time phase the data streams are compared

to the model data to come up with interpretations and reactions. At present,

systems can detect and recognize the behavior of a few persons up to larger

groups of people, (e.g., Cupillard, Bremond, and Thonnat 2003). In traffic

scenes, processing is mostly bottom up, while newer systems exploit domain

knowledge in a top-down way (e.g., Xiang and Gong 2006). An example is

the use of object models and expected activity models to monitor activity at

airport aprons (Thirde et al. 2006).

In the domain of robotics the object-to-human relation has been studied

in approaches such as Programming by Demonstration (PbD), where the task

is to interpret user commands to teach a robot (Asfour et al. 2007). In PbD,

the user either physically guides the robot arm through a motion or a vision

system captures the human arm motion and transfers it to the robot arm. In

recent work, activities of the hand and of objects are interpreted and stored

using natural language expressions in an activity plan – a concise account of

the scenario specifying the relevant objects and how they are acted upon (e.g.,

Sage, Howell, and Buxton 2005).
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With the decrease of camera costs the present direction of work is toward

camera networks surveying large areas. Detailed models of humans and their

typical activities yield finer gesture interpretation in less constrained settings

(Valera and Velastin 2005).

8.4.2 Human–machine interaction

Proceeding from visual observation techniques to a vision-based interactive

human–computer interface seems to be a small step. It opens up a full range

of new applications, where computers, monitors, and input devices such as

keyboard and mouse disappear into the everyday environment. For example,

a simple hand gesture and gaze might transfer a photo collection from your

camera to a large TV screen in your living room, turning the human body into

a context-sensitive remote control.

However, as attractive this step might be, its realization faces several tech-

nical and conceptual problems: (1) Reactivity: A system needs to react to user

activity in an appropriately short time frame. Otherwise a user is distracted,

frustrated, and lost with regard to the communicative state. Appropriate tech-

niques have been developed for face recognition, gaze detection, and gesture

recognition, and define a field of active research (Kisacanin, Pavlovic, and

Huang 2005; Pavlovic, Sharma, and Huang 1997). (2) Robustness: High false-

positive detection rates would result in system behavior that is unwanted by

the user and conflicts with their expectations. This is especially problematic

as not all user behavior is directed to the system. Here, an important concept

is that of joint attention – a condition in which both communication part-

ners are attending to the same thing and are aware of each other’s attention

(Breazeal and Scassellati 2000). In human–robot interaction, for instance, the

robot needs to detect when a user is facing it. At the same time, the robot’s

head and eyes will track the user’s face in order to reinforce the established

communication. (3) Reliability: User activities partly missed by the system

could corrupt the whole user input to the system. Thus, there needs to be a

way of determining if the input is well formed or not. This is a difficult learn-

ing and recognition problem because humans typically perform tasks with

a large variability and are not aware of the system’s limits. One interesting

research direction is to understand how humans communicate expectations in

dialogue, for example, by asking a yes/no question or using other conventions

that limit possible answers. (4) Situativity: The interpretation of most human

behavior is context specific. Therefore, many systems are designed for a very

specific scenario or application domain. In order to overcome these limita-

tions, an important notion is that of context awareness – a concept introduced

in the mobile computing community (Schilit, Adams, and Want 1994). For

computer vision, it has been applied to perceptive rooms, for example, by
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Crowley et al. (2002). There, human activities are observed through multiple

cameras and are categorized with regard to different contexts and situations.

As a consequence of the points discussed above, research towards vision-

based human–machine interaction always needs to consider complete systems

together with their interaction partners, making it a highly interdisciplinary

task. Most systems in this area tightly constrain the communicative setting.

Early work has been done by Bolt and his colleagues (Bolt 1980) in his “Put-

That-There” system. A user was able to create and move geometric elements on

a screen by using gestures and voice commands. Today’s systems range over

a wide spectrum of techniques and applications. The SafetyEYE developed in

industry research estimates the action radius of an industrial manufacturing

robot and stops it in case of human–machine interference. The MIT Kidsroom

provides an interactive narrative play space for children (Bobick et al. 1999).

It is based on visual action-recognition techniques that are coupled with

the control of images, video, light, music, sound, and narration. Crowley et al.

(Crowley, Coutaz, and Bérard 2000) describe an interactive Magic Board based

on the tracking of fingers and a perceptual window that scrolls by detecting

head movements. In recent years, body tracking has become a hot com-

mercial topic for game consoles, such as Sony’s PlayStation and Microsoft’s

Xbox. A different focus was set in the VAMPIRE system (Wachsmuth, Wrede,

and Hanheide 2007), which provided assistance to people in everyday tasks

by leading them step-by-step through a recipe. This was demonstrated in a

drink-mixing scenario and used object recognition, tracking, localization, and

action-recognition techniques in order to achieve user assistance based on

augmented-reality techniques. Much work has been conducted in order to

bridge the communication gap between humans and service robots designed

to act like a companion at home. Examples are the PR2 from Willow Garage,

the Care-O-Bot 3 from Fraunhofer IPA, Cosero from University of Bonn, or

ToBI from Bielefeld. The first of these can fold your laundry or get a drink

from the fridge. The others have been active in the RoboCup@Home compe-

tition, which includes a number of benchmarking tests ranging from person

following and getting introduced to guests to cleaning up and fetching drinks.

Compared to human–human communication (HHC), human–machine inter-

action is still brittle and in its infancy. Today’s research concentrates on mim-

icking certain aspects of HHC in order to address the four challenges described.

8.5 Contextual scene understanding

Most approaches in computer vision do not interpret entire images, but selec-

tive parts of them. They aim at extracting foreground objects from background

clutter. Then, each object is classified in isolation. Background is ignored and

viewed as irrelevant distracting data or simply as noise. Contextual scene

understanding makes the contrasting assumption that the foreground objects
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cannot be automatically extracted or at least do not provide sufficient infor-

mation for a classification. It recycles the data ignored before – background

clutter and relational information – in order to infer possible interpretations

for foreground objects. Thus, these techniques aim to incorporate scene con-

text into the classification process.

Pioneering work has been conducted by Strat and Fischler (Strat and Fis-

chler 1991), who define context sets that govern the invocation of the system’s

processing steps. They identify four different kinds of criteria that comprise

context sets: (1) global contexts – attributes of an entire scene such as day-

time or landscape; (2) location – the spatial configuration of a scene such as

touching the ground or coincidence with other object types; (3) appearance

of neighboring objects, such as the similarity of the left and right eyes of

a face; and (4) functionality –the role of an object in a scene, such as sup-

porting another object or bridging a stream. From the control point of view,

Strat and Fischler employ three kinds of context-driven operations to guide

the scene interpretation process: hypothesis generation, hypothesis valida-

tion, and hypothesis ordering. During the search for hypotheses (generation),

consistent groups of recognized entities are constructed that represent partial

interpretations of a scene. The main drawback of this kind of approach is the

huge knowledge-engineering task in coding the contextual knowledge of the

system. However, the general types of contexts introduced and the different

kinds of control principles designed are still valid for the current state of the

art.

Later work adapted probabilistic models for contextual interpretation which

capture relationships and uncertainty in a systematic manner. The following

examples illustrate more recent trends with regard to the general context types

introduced before. Global contexts are used in order to classify semantic places

(e.g., street, city, beach, or indoor room categories like kitchen). In this way,

a holistic image representation is computed – the so called image gist. The

semantic category provides expectations about frequently occurring objects

(such as those typically found in a kitchen). Location is modeled by Hoiem

and colleagues (Hoiem, Efros, and Hebert 2006), who relate object detections

to an overall 3D scene context and judge the scale and location with regard

to the estimated scene geometry. Functionality is exploited by Moore, Essa,

and Hayes (Moore et al. 1999) who relate human actions and objects by a

probabilistic model. They introduce the concept of object spaces that link both

kinds of information in space and time.

Finally, linguistic contexts refer to additional information given by parallel

text or speech. These kinds of bi-modal data frequently occur in catalogues,

newspapers, magazines, webpages, broadcasting news, movies, or human–

machine interaction dialogues. The verbal information principally includes all

three types of contextual information. An image caption mentioning “New

York” or “traffic” might give a hint that the image depicts a city scene.
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Other verbal descriptions, for example, that two persons are standing next to

each other, provide local constraints for the analysis of an image. Functional

contexts can be derived from verbs, though this method has not been widely

used.

8.6 Summary and conclusion

Agents, human or artificial, need to perceive their environment in order to

operate and survive in it. Visual perception is the strongest human sense,

and work in the field of computer vision sets out to provide the required

capabilities. This chapter has summarized the main achievements, starting

with a review of trends and perspectives and then highlighting main areas of

application.

Today it is possible for machines to learn and then recognize objects from

2D images containing up to around 1,000 objects, and the number increases

continuously. It is, however, constrained to databases of images where size

of objects or typical scenes are similar. In open environments, such as search

tasks in homes, variations in illumination, viewpoint, or occlusion still pose

challenges. When using 3D images, for example with laser scanners or depth

images, the shape of objects can be acquired and exploited to control industrial

processes, such as robotic grasping or spray painting.

Tracking of objects or interest points over longer video sequences can be

done in real time given sufficient texture. Rules on how to exploit the image

information and predict and search efficiently in subsequent images are estab-

lished, and visual servoing methods to control robot arms are available.

The real-time performance and robustness achieved by today’s computer

vision techniques for hand tracking, human-body tracking, face recognition,

and so on, lead to a new quality of vision-based human–machine interaction.

We have discussed several challenges in this new field that merges the areas

of computer vision (CV) and human–computer interaction (HCI). Over the last

years, several new workshop series have been established such as CV4HCI and

human-centered CV. We expect that this marriage will provide further fruitful

influences on the field, taking two perspectives: how to design CV systems for

users, and how to effectively include the user in the visual processing loop.

One of the challenges pointed out in Section 8.4.2 was situatedness: Given

any situation along the interaction, when and with what information should

the user be bothered? The same question could be asked for the vision sys-

tem. Not all information is important, and not all detection results are valid.

The notion of context provides a notion of a global consistency on the one

hand and a frame of meaning on the other hand. Even with quite sophisti-

cated and high-performance recognition techniques, context will keep its role

when we talk about computer vision systems that need to act in real-world

environments.
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Computer vision systems need to combine techniques for application pur-

poses. This is the core of CV as an engineering discipline. However, it has been

proven over the years that generic architectures that integrate all the compo-

nents needed for different applications are hard to define. Some approaches

have shown their applicability in successful multi-partner European projects

(e.g., ActIPret, VAMPIRE, or CogX). Real progress is hard to achieve on the

theoretical side and needs to be proven by the practical realization of systems

(Kragic and Vincze 2009).

While these results indicate how the field has advanced, several challenges

lie ahead. For example, work on recognizing classes of objects is currently

limited to a few salient classes, such as wheels or airplanes; the ability to

detect grasp points on arbitrary objects needs to be extended from planar to

full 3D object locations; and it is not yet possible to deduce the function of an

object from imaging its shape. Nevertheless, the hope is that computer vision

will be increasingly integrated with other AI methods to build more complete

systems.

Further reading

Ballard, D. H. and Brown, C. M. (1982). Computer Vision. Englewood Cliffs, NJ:

Prentice Hall. The basic book on methods in computer vision. Available

online: http://homepages.inf.ed.ac.uk/rbf/BOOKS/BANDB/bandb.htm.

Dickinson, S. J., Leonardis, A., Schiele, B., and Tarr, M. J. (2009). Object Cat-

egorization: Computer and Human Vision Perspectives. Cambridge University

Press. Excellent overview of approaches to object recognition, including a

historical perspective. A must to get started in this direction.

Forsyth, D. A. and Ponce, J. (2011). Computer Vision: A Modern Approach (2nd

edn.). Upper Saddle River, NJ: Prentice Hall. A broad collection of computer

vision techniques that is a very good reference for the advanced study of

computer vision.

Hartley, R. and Zisserman, A. (2003). Multiple View Geometry in Computer Vision

(2nd edn.). Cambridge University Press. Provides deep coverage of geometrical

aspects in computer vision for the advanced reader.

Kragic, D. and Vincze, M. (2009). Vision for robotics, Foundations and Trends in

Robotics, 1: 1–78. An overview of the specific needs of robotics to computer

vision methods plus a survey of applications.

Szeliski, R. (2010). Computer Vision: Algorithms and Applications, London:

Springer. An excellent textbook for the introduction and more in-depth study

of computer vision. It has an emphasis on techniques that combine computer

vision and graphics, but covers also modern techniques for object recognition,

segmentation, and motion estimation. Available on-line: http://szeliski.org/

Book/

Finally, two great open-source collections of vision methods are openCV

(http://opencv.org/) and the Point Cloud Library (http://pointclouds.org/).
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9 Reasoning and decision making

Eyal Amir

9.1 Introduction

Reasoning and decision making are fundamental parts of the Knowledge repre-

sentation and reasoning (KR&R) AI approach. KR&R is devoted to the design,

analysis, and implementation of inference algorithms and data structures.

Work in KR&R has deep roots in reality: Reasoning problems arise natu-

rally in many applications that interact with the world – commonsense query

answering, diagnosis problem solving, planning, reasoning about knowledge

in the sciences, natural language processing, and multi-agent control, to name

a few. Aside from their obvious practical significance, reasoning algorithms

and knowledge representations form the foundations for theoretical investi-

gations into human-level AI.

Reasoning is the subfield of KR&R devoted to answering questions from

diverse data without human intervention or help. Typically, the data is given

in some formal system whose semantics is clear. In the early decades of

focused research on automated reasoning and question answering (1950s

onward) data was mostly akin to knowledge or our intuitions about it. More

recently (from the 1980s), people assume that the data involved in reasoning

are a mix of simple data and more complex data. The former take a low

degree of computational complexity to process and are the focus of research

on large databases (e.g., relational databases such as those recording sale

transactions in businesses, accounting software for individuals, and records of

stores’ items). The latter are given in a more expressive language, taking less

space to represent, and correspond to both generalizations and finer-grained

information.

Decision making is a form of reasoning that focuses on answering ques-

tions about preferences between activities, for example, in the context of an

autonomous agent trying to fulfill a task for a human. Often, decision making

is done in a dynamic domain that changes with the execution of actions and

the passage of time. In such domains earlier actions affect later decisions, and

the reasoning task is to find a sequence of actions or a universal response

plan (policy) to situations or sensory input. The decisions taken there involve

achieving goals or optimizing some criteria such as plan length, actions’ cost,

or future expected accumulated reward.
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Research on the two topics of reasoning and decision making is often done

in isolation, with different methods and different theoretical understandings

for the two topics, and this overview chapter is divided along similar lines.

The chapter also distinguishes research along representation lines, taking par-

ticular aim at logic-based and probability-based representations. However,

research on the two topics also has substantial cross-fertilization and transfer

of major results, techniques, and ideas, and this overview takes the larger

perspective that the two problems are fundamentally the same.

This chapter aims at both an overview of current research and a discussion

of current and emerging questions in this field. The two perspectives are

presented together, attempting to give them equal emphasis. Naturally, both

perspectives are severely limited. There are over 100,000 articles and books

on reasoning and decision making, with over 3,000 articles published every

year, and inevitably many technical details and large research efforts cannot

be covered here. For more information on these, readers are referred to the

“Further reading” section and to the works cited throughout.

9.2 Knowledge representation and reasoning

From the early days of the AI field one of the dominant views of the path

to solving the AI problem was looking for an explicit representation for the

knowledge of the system in question and for reasoning about it (McCarthy

1958). The 1960s had many successes for this approach, later known as KR&R.

A major part of the effort was devoted to first-order logic (FOL) as a general

representation language for knowledge and to FOL theorem provers as gener-

ators of intelligent behavior.

In the 1970s excitement subsided after the discovery of several obstacles.

These obstacles included the complexity of reasoning with FOL, the brittleness

of expert systems (Buchanan and Smith 1988), the difficulty of representing

everyday commonsense knowledge, and the problems FOL has in representing

jumping to conclusions or reasoning with defaults (Minsky 1975). The 1980s

further highlighted the gap between KR&R and research on machine learning,

control theory, and decision theory. Subsequent research in KR&R sought to

address these issues in two paths: understanding how to overcome difficulty of

computation with FOL, and understanding how to build useful representations

of real-world phenomena.

FOL is computationally equivalent to a Turing machine, and is thus able

to represent all that present computers can compute. This expressiveness of

representation is also the reason that computation with it is difficult, since

FOL must take a long time to compute many queries, and may never finish

computation for others. Research on representation languages that permit

tractable query answering yielded specialized languages with large bodies of
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applications. This section describes work along these research paths, focusing

on logical reasoning, probabilistic reasoning, and commonsense reasoning.

9.2.1 Logic and combinatorics

Mathematical logic (henceforth logic) serves as the formal basis for many

applications in the real world: computers and computational theory, our legal

system and argumentation, and theoretical developments and proofs through-

out science and engineering. Modern logic came about from efforts (of Frege,

Russell, Hilbert, and many others) at representing everyday arguments and

reasoning in a complete and irrefutable way.

The KR&R effort (following McCarthy 1958) focused on extending this

vision into a realizable automatic computer reasoner. In this vision, the rea-

soner represents its knowledge about the world in logic, and reasons about

this knowledge with general-purpose reasoning algorithms. The details of this

program proved challenging in several forms. First, some types of knowledge

(e.g., spatial, temporal, and uncertain knowledge) turn out to be difficult to

represent in a sentential language (McCarthy and Hayes 1969; Cohn 1997).

Second, it is not easy to compile the needed knowledge for sizable applica-

tions, nor is it simple to learn knowledge in an expressive logical language

(Lavrač and Džeroski 1994). Finally, it is not computationally feasible or easy

to reason with the expressive languages that seem to be needed, even when

one can overcome the first two difficulties (Tseitin 1970).

Three critical ongoing debates in this subject are the following: First is

the claim that logic cannot represent many things, such as analogy, space,

shape, uncertainty, and so should not be considered for an active role in

building a full-scale human-level AI system. The counterargument suggests

that logic can serve as one of several tools. At present its combination of

representation power, flexibility, and clarity are not matched by any other

method or system. A second critical debate surrounds the claim that logic is

too slow for inference and so will never play a role in a deployed system.

The counterclaim is that there are ways to approximate inference with logic

so that it conforms to time limits and progress is made in speeding up logical

inference. Finally, some claim that it is very hard to create systems of logical

axioms for sizable real-world applications. Those who believe differently are

developing a stream of active research on techniques for learning logical

axioms from natural-language text and contributors on the World Wide Web

(WWW) (Mancilla-Caceres and Amir 2011).

There are various different types of logic; we shall consider some of the

most important ones, including propositional logic, first-order logic, modal

logics, and nonmonotonic logic.

Propositional logic is a very simple and common formal representation

language. Representing knowledge in it is done with propositional symbols
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(a special case of Boolean variables)1 and propositional connectives such as �

(and), � (or), and ¬ (not). For example, the formula ϕ = ¬rain � clouds states

that if there is rain there must be clouds.

There are four typical reasoning tasks with propositional logical knowledge:

(1) Satisfiability: Is there a model for ϕ? (a model for a formula is an assign-

ment to all variables such that the formula evaluates to TRUE); (2) Entailment:

Does Q logically follow from ϕ? (written ϕ � Q for a given formula Q); (3) Model

counting: How many models does ϕ have?, and (4) Quantified Boolean formu-

las (QBFs): queries that interleave entailment conditions on some variables

and satisfiability on other variables.

A central concept in classical logic in general is that of entailment or

inference. The syntactic relation � designates the ability to mechanically

derive the query from the set of axioms ϕ by applying a series of syntactic

combinations and manipulations of formulas conforming to a given set of

rules. In contrast, the semantic relation � (logical entailment) provides us with

a definition of the meaning of entailment. Given a semantic relation between

formal structures (models) and logical sentences, definitions of entailment

typically say that a set of logical sentences entails another sentence if all

models satisfying every sentence of the former also satisfy the latter. For

example, if all models of “rain” satisfy “rain � clouds,” then we say that “rain”

logically entails “rain � clouds.” Logics typically have definitions for both

relations and theorems of “completeness” establishing equivalence between

the two relations. Together they enable computations of whether ϕ is entailed

by a set of premises T.

QBFs are propositional formulas with quantifiers. They represent statements

such as “there is a plan (sequence of actions) that will reach the goal regardless

of the initial state,” which can be written as QBF �plan �s0 goal(do(plan,s0)),

where plan and s0 are represented as sets of propositional logic sentences, do

is the propositional encoding (with more propositional variables) of executing

a sequence of actions plan starting from s0, and goal is a propositional formula

on the end variables of do(plan,s0).

Constraint satisfaction is a generalization of propositional logic to variables

that are not Boolean and can take values in a finite domain. Current research

on propositional logic and constraint satisfaction focuses on finding efficient

solvers for these tasks, with heuristics and theoretical understandings being

developed for different problem distributions (Selman, Mitchell, and Levesque

1997).

1 Boolean algebra is a general mathematical framework for describing opposites and parts of

opposites (such as a full set versus an empty set, a true statement versus a false one, etc.).

Typically, when people refer to Boolean variables they mean variables that take values true

or false (or 1,0).
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First-order logic (FOL) extends propositional logic and is comprised of a

language, a proof theory, and semantics. An example should explain the

difference:

ψ = ∃ time clouds(time, above(Chicago)) ∧ rain(time, Chicago)

is a formula in FOL that says that there are times (�time) in which there are

clouds over Chicago but not rain. Here, clouds and rain are predicates, that

is, symbols that stand for relations, time is a variable over entities (possible

times), Chicago is a constant symbol intended to refer to the city of Chicago,

USA, and above(x) is a function symbol intended to refer to the area above x.

Formally, the language of FOL has a set of object constant symbols, a set of

relation predicate symbols, a set of function symbols, and a set of connectives

(OR (�), AND (�), NOT (¬)), quantifiers (EXISTS (�), FOR ALL (�)), and

parentheses as the building operators. Together, the chosen set of predicate,

constant, and function symbols is called the signature of the language. For

example, the formula ψ above has the signature 〈Chicago; clouds, rain;〉.

FOL has a richer interpretation than propositional logic. An interpretation is

a pair M = 〈U, I〉 that specifies a universe of elements, U, and an interpretation

function, I, for the signature. For example, one interpretation is U = {3pm,

April 24, 2012, 4pm, April 24, 2012, Tel-Aviv} and I(clouds) = 〈3pm, Tel-

Aviv, 4pm, Tel-Aviv〉, I(rain) = 4pm, Tel-Aviv, and I(Chicago) = Tel-Aviv. In

this interpretation there are clouds in Tel-Aviv, Israel, at 3 pm as well as 4

pm, but there is rain only at 4 pm. The symbol Chicago in our signature is

interpreted as the real-world Tel-Aviv, Israel. M = 〈U, I〉 is called a model of

ψ above. Entailment is denoted with M � ψ because the interpretation of ψ

in M evaluates to TRUE.

FOL has a very rich expressive power, especially when equipped with the

proper vocabulary and axioms (e.g., set theory is a vocabulary and set of

axioms in FOL that can represent all of modern mathematics). In fact, it is

so expressive that it can represent every computational task solvable in a

common model of modern computers, a Turing machine. A Turing machine

models computation in all computers built to this day (if possible, future

quantum computers will go beyond this computational power). Therefore,

every computational problem and algorithm can be written in FOL such that

entailment in FOL is equivalent to the problem’s solution by a computer. This

is significant because it discourages pursuit of more expressive languages as

they will surely be outside of our computational abilities.

FOL’s expressivity helps researchers translate results about FOL to results on

more specialized problems. For example, results about automated reasoning

with FOL (Amir and McIlraith 2005) led to new methods in automatic planning

for robots (see Section 9.3.1.). Some claim that FOL has no practical use in real

applications because its expressivity results in difficult computations. Others
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argue that FOL’s expressivity is required for the representation of general

knowledge. Claims that FOL is not expressive enough to represent quantifica-

tion over relations or probabilities and modalities are met with counterargu-

ments that apply set theory in FOL to represent such missing constructs.

Modal logics are logics with modal operators, that is, operators that take

formulas as arguments. For example

believes(John, at(Sarah, Home))

has a modal operator believes, which takes constant symbol John and FOL for-

mula at(Sarah, Home) as arguments. In this example, modal operator believes

disregards the truth value of at(Sarah, Home). It may be that Sarah is not

at home, but still John believes it. Many modal operators used in AI denote

knowledge and belief, K and B, respectively (Fagin et al. 1995).

The unique capability of such languages is the ability to discuss beliefs

about beliefs about beliefs, and so on. For example, one can express (and

reason about) Sarah’s belief that John knows the combination to the safe:

BSarah (∃comb KJohn (unlocks(comb, Safe)))

Similarly, given a group of agents, one can represent and reason about the

beliefs of the group (e.g., everyone knows that John knows the combination

to the safe) and about common knowledge (i.e., everyone knows that everyone

knows . . . ).

Finally, another major use of modal logics is the ability to represent require-

ments and knowledge over time, such as eventually ϕ holds. This is particularly

useful in formal verification and other approaches for ensuring correctness of

digital circuits, protocols, and software (Manna and Pnueli 1995).

All the logics discussed above are monotonic, that is, adding knowledge

never makes us retract conclusions. Formally, for formulas A, B, C, if A � C,

then also A � B � C, regardless of what B is. This monotonicity does not

hold in real-life situations where one jumps to conclusions without notice,

so in the last thirty to forty years a field has emerged focusing on producing

systems that give the right framework for reasoning in nonmonotonic forms

about real-world situations.

An example of these nonmonotonic logics is circumscription (McCarthy

1986), which is a method for nonmonotonic reasoning that makes assumptions

about the minimality of some predicates, if those assumptions are consistent

with the rest of one’s knowledge. For example,

ϕ = Ab(John) → rich(John)

says that John is not rich unless he is abnormal. Minimizing the predicate Ab

in ϕ, so that it applies to only those things that are currently known to be

abnormal, implies that John is not rich. If we now learn that John has invested

in Google before its stockmarket launch, then Ab expands to include John,
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and we will retract the last conclusion. The nonmonotonic reasoning line of

work has expanded since its debut and several textbooks now exist that give

a fair view of it (e.g., Gabbay, Hogger, and Robinson 1993) and its uses (e.g.,

Reiter 2001).

In the study of different rules of inference and axioms the inference rela-

tion satisfies, one considers an inference relation as a relation between a set

of sentences and a sentence in a formal language – typically, either proposi-

tional or first order. Kraus, Lehmann, and Magidor (1990) and follow-up work

examine conditions that this entailment relation should meet, with some prac-

tical implications. The majority of work on this subject has tackled specific

scenarios, in particular that of revision of beliefs (Williams and Rott, 2001).

Present major uses of nonmonotonic reasoning systems are in formaliz-

ing different aspects of commonsense reasoning and fast implementation for

reasoning methods in restricted sets of nonmonotonic reasoning problems.

Application topics using these techniques include cognitive robotics, planning,

learning and representation of preferences, and fast solutions for expressive

extensions of propositional logic.

9.2.2 Probabilistic representations and reasoning

Knowledge about stochastic phenomena and uncertainty about knowledge and

belief can be captured using tools from probability theory and statistics. These

tools facilitate discussion and automated reasoning about the probability of

events, the beliefs that we may hold, the changes in those beliefs when we

make observations, and our degree of certainty in those beliefs.

Research on this paradigm has grown popular in recent years. The research

focuses on the representation of different types of uncertainty and uncertain

knowledge, reasoning with these types of knowledge, and learning them. It

is also closely related to statistical approaches to machine learning and con-

trol theory, thus facilitating the development of applied systems of practical

importance, such as medical diagnosis applications, robotic control, machine

vision, and natural language processing.

This section discusses the main approaches and problems concerning this

research subfield. It attends mostly to graphical models for probability dis-

tributions and describes some underlying assumptions in their usage. These

graphical models are mathematical constructs that describe fragments of real-

ity, with some structural assumptions and numeric parameters. The section

also discusses approaches for reasoning with those models and learning their

parameters and structures from data.

Probability theory is based on the notion of a random experiment, namely,

an experiment whose outcome can be predicted with limited certainty. Typi-

cally, we assume that the experiment can be repeated under identical circum-

stances with identical statistical properties for the outcome. These assumptions
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Rain

Wet Money

Sprinkler

Figure 9.1 A Bayesian network graph representing a joint distribution over binary

variables Rain, Wet, Sprinkler and multi-valued random variable Money.

permit discussion, description, and reasoning about uncertain knowledge (e.g.,

I believe that Facebook’s stock will go up tomorrow with certainty 0.5) and

statistical knowledge (e.g., 50% of the days Facebook’s stock goes up in value).

The properties of a random experiment are captured using random variables

and a probability distribution. Every random variable X is an abstraction that

refers to the (a priori unknown) result (value) x of a random experiment.

For example, random variable UpFacebook can have values TRUE or FALSE. A

probability distribution P maps the values that a random variable can take to

the real-numbers segment [0, 1]. In our example above, P(UpFacebook = TRUE) =

0.5 captures both notions of uncertain knowledge and statistical knowledge,

only with different underlying assumptions about the meaning of the random

experiment.

Many cases of interest to the AI community involve domains that are too

large for direct specification and reasoning. For example, when our sample

space Ω for the example above has n stocks, Ω has 2n values. A straightforward

representation of a distribution over those values takes the form of a table

whose every row is a possible combination of values to every stock’s state

(e.g., UpFacebook = True, UpGoogle = False, etc.). Thus, this table would have

2n rows, and would therefore be too large to contain in a computer memory

for a modest n = 50. For this reason, since the 1990s research has focused

on approaches to encoding probability distributions over such large domains,

together with methods for reasoning with these encodings.

Graphical probabilistic models (aka graphical models) are one of the most

popular approaches for representing probability distributions over such

real-world domains. A common version of this approach, Bayesian networks

encode probability distributions using directed graphs such as in Figure 9.1.

A directed graph is a set of nodes (circles in this diagram) and arrows

connecting them. Each node corresponds to a random variable and includes a

conditional-probability table (CPT) of the probability of that random variable,
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given values of its parents (nodes pointing arrows towards this one). A

Bayesian network representation of a probability distribution P(X1, . . . , Xn)

represents it as a product of conditional probabilities. It includes a directed

graph without directed cycles, and the conditional probabilities in the product

are P(Xi |pai), where pai are the parents of Xi. The resulting representation

is much more compact than the straightforward one because the number of

parents of a variable is typically smaller (e.g., two or three) than the total

number of variables, n, resulting in small conditional-probability tables.

Sometimes Bayesian networks are seen as encoding causality between

domain features, such as when Facebook’s stock influences another stock’s

state. Causality has little to do with the mathematical representation of

Bayesian networks, but the intuition of causality holds many times about the

directions shown in a Bayesian network and is a useful heuristic in building

those network representations.

There are several kinds of tasks for reasoning with probabilistic information.

Typical tasks are evaluating a marginal or conditional probability, finding

the most likely assignment to variables given observations, and generating

samples from the distribution.

For a joint distribution P(X, Y) the marginal P(X) is defined as P(X) = �Y

P(X, Y), where X and Y are sets of variables and the summation symbol with

subscript Y means summing over all the values Y can take. The marginal

probability, therefore, is the original probability applied over only a subset

of the variables. For example, P(tall,fat) is the joint probability of someone

being both tall and fat, whereas P(tall) is the marginal of the first, when we

are interested only in tall. Typically, we are interested in finding the marginal

probability that X takes a certain value x. This involves summing over all the

values that Y can take. For example, if we wish to find the probability that

Facebook’s stock will go up, UpFacebook, and we have a joint distribution over

the random variables for all stocks, we need to marginalize out (sum over) all

of the variables that are not UpFacebook.

Conceptually, computing marginals is straightforward from its definition. In

practice, marginalization is not simple for large models because the summation

can take time that is exponential in the number of variables that one sums out.

For this reason, much research is invested in computing marginals efficiently.

This research can also serve for easy computation of other reasoning tasks,

such as finding most-likely medical diagnoses and localizing robots.

For Bayesian networks, one simple way of computing marginals applies

summation over variables in a careful way along the structure of the graph.

It first sums out variables that have very few parents or children, preferably

no parents or no children. This summing out creates a new Bayesian network

graph without that node, possibly creating new connections between the par-

ents and children of the removed node. This way we eliminate nodes from the

graph until we are left with only our random variable of interest in the graph.
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During this iterative process we update the representation of the graph and

the CPTs in a way that does not require more than a local computation per

processing of a leaf (a leaf is a node without children). If the Bayesian network

graph structure is simple enough, this computation takes time that is linearly

proportional to the number of vertices in the graph (the number of variables

in the distribution) and also linearly proportional to the size of the CPTs.

Most practical applications require probabilistic models that are too complex

for precise methods. In these cases people turn to attractive approximate

reasoning methods. Such methods provide results that are related to correct

reasoning but with limited guarantees. The type of approximation given to

reasoning depends on the task and on the family of methods that we apply.

Early research sought to find methods that return inference results that are

imprecise by at most a constant factor. Unfortunately, results showed that such

approximation is not theoretically possible unless a fundamental question in

computer science is resolved positively. The question is whether finding a

satisfying assignment in propositional logic can be done in polynomial time

in the size of the input problem (reasoning task (1) mentioned in Section 9.2.1 –

Satisfiability: Is there a model for ϕ?). This question has been open now for

more than forty years, and many believe that its answer is negative. Since even

approximation of probabilistic inference is hence believed hard, this sealed the

pursuit for tractable ways to approximate the reasoning with guarantees for

precision.

Current approximate probabilistic reasoning techniques are divided into two

main paradigms. The first, variational approximation, tries to approximate

the probabilistic model with a model that is easier to compute with. The

most common technique uses a form of message-passing, that is, processing

evidence and observations in the graph and sending messages between nodes

in the graph. Such messages help update local estimates of marginals in each

vertex, and the consequences are used to deliver approximate solutions to

those marginals. The messages can pass in the graph with no specific order,

though sometimes some orders guarantee faster convergence.

The second paradigm for approximate inference, Monte Carlo techniques,

focuses on providing a set of responses to a query which can be used to

draw an approximation to the original query. This involves sampling. We

try to generate samples from the given probability distribution and use the

samples to answer our queries. For example, for our Facebook story above,

sampling would generate m examples (m depends on the time that we have for

computation), each of which assigns values to all the variables in the model –

that is, each example determines if each of the n stocks in our story goes up.

We count how many of these m samples answer our query positively, and use

that to return an approximate answer.

Machine learning is a subfield of artificial intelligence concerned with the

computerized automatic learning from data of patterns. The aim of machine
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learning is to use some training data to detect patterns, and then to use

these learned patterns to automatically answer questions and autonomously

make and execute decisions. Examples of machine learning are the models

learned by computers to predict users’ preferences for books, TV shows, and

purchasing decisions in grocery stores. There, the training data are books that

people have chosen in the past and the characteristics of those books and the

people who chose them. Models learned from these training data are then used

to predict other books those people would be likely to buy.

Probabilistic models are close to statistical machine learning and serve

as a medium between machine learning and automated reasoning. Machine

learning of probabilistic models is divided into two principal tasks: learning

the CPTs when the graph is given, and learning the graph itself. Given training

examples, machine learning of the CPTs is relatively easy, and it boils down to

counting the number of times a random variable receives a certain value out

of the times the parents received their respective values. This method is called

estimation of parameters by maximum likelihood. Learning the graph structure

of the model is harder and is done by improving the model one step at a time.

Typical methods apply an algorithm called expectation maximization (EM)

which measures the likelihood that the present hypothesized model explains

the data (i.e., that this model is in fact the correct one and that it generated the

training data). EM proposes alternative changes to the model and chooses the

one that best improves the explanation of the training data.

Present research on probabilistic representation, learning, and reasoning

focuses on issues that involve large numbers of variables (large here is larger

than, say, 100 variables). Joint distributions over more than 100 variables may

be very different when in fact (from a human perspective) they seem almost

identical (e.g., the distribution of characteristics of streets of one city block

can be very different from that of another, but they may look the same to the

untrained eye). Humans make assumptions such as independence of random

variables that do not hold in reality, leading to an incorrect perception of

similarity of situations.

9.3 Automated decision making

Decision making concerns making a decision that then gets executed in the

world by an autonomous agent or by someone taking advice from the decision

maker. For example, game-playing agents, autonomous robots, WWW agents,

and conversation agents all make decisions on what to do. Often those deci-

sions take the dynamics of the world into account, such as when a computer

chess-player chooses an action based on future possible actions of its oppo-

nent. Other times decisions are made without a clear path for the future,

for example when we decide to rent an apartment at a particular price and

location.
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Decision making as a research area spans the disciplines of economics,

psychology, computer science, and virtually all the engineering disciplines. In

computer science and AI in particular the focus of research into decision mak-

ing is on automated ways and computational properties of decision making.

Clearly, studies into human decision making affect the way decision making

is automated, but this aspect is outside the scope of AI and of this survey.

Automatic decision making can be divided along several axes that can be

framed as questions: (1) Is the domain of a dynamic nature where a sequence

of decisions is needed or of a more static nature where a single or a set of

concurrent decisions are made? If the former, do we try to optimize decisions

for a limited (small) set of time steps or make (close-to) optimal decisions

that take into account an (essentially) infinite future sequence of events? (2)

Is the domain of a deterministic, non-deterministic, or stochastic nature? For

example, do our actions affect the world in deterministic ways (always the

same, if performed under the same conditions) or stochastic ways (e.g., half

the time our actions fail)? (3) Are we trying to optimize a utility or are we

only trying to achieve a goal? (4) Is the domain fully observed at all times

(e.g., we see the complete state of the chess board at all times) or partially

observed (e.g., we do not see whether the light is on in a room unless we are

in that room)?

The rest of this section looks at approaches to autonomous decision making

developed over the past fifty years. These techniques were developed to

be practical, so they are the result of simplifying assumptions and design

decisions whose correctness is questionable. These assumptions include: the

chosen representations of deterministic actions (actions have preconditions

and effects specified by logical formulas); the existence of truly deterministic

actions in practice; a correct and complete knowledge of the world model

by the acting agent; and the existence of a clear reward or utility function

that characterizes our choices. Still, the driving force behind these problem

formulations and techniques is often a set of target applications, so the

effectiveness of these assumptions is tested and proven on successful

applications.

The first three axes above are covered in this section, but the fourth is

left for deeper consideration in Section 9.4.3. The discussion here divides

into decision making in logical, typically deterministic, domains and decision

making in domains of a stochastic nature. The former are simpler so they can

be approached effectively despite sometimes complex combinatorial structures

and they can typically be solved for larger domains. The latter are more

complex for decision making so they require many assumptions, but they are

also more effective and model problems better, when applicable in practice.

Later, in Section 9.4.2 we shall look at work that seeks to combine the two

approaches and the strengths of their methods.
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9.3.1 Decisions in logical, combinatorial spaces

Logical decision problems are those that have a non-stochastic nature. This

section considers two main settings for such decision problems: planning (sin-

gle actor or collaborative) and adversarial (mostly, two-player games). In both

settings the discussion assumes that we have complete information about the

initial and intermediate states of the world, that actions have only determin-

istic, known effects, and that there is a specific goal condition (e.g., winning

the game or a package being in a certain room). Both types of problems have

current real-world applications, such as in NASA’s space missions, robotic

control, logistics, gaming and virtual world softwares, complex behaviors on

the WWW, verification of software, and computer and network security.

In general, a planning problem consists of an initial situation, a goal condi-

tion, and a set of allowed actions or transitions between states. The outcome

of a planning process is a sequence or set of actions whose proper execution

leads the executor from the initial state to a state satisfying the goal condition.

Consider a scenario in which three blocks labeled A, B, C are on a table, and

a robot gripper needs to pick them up in the right order and put them down

so that A is on B and B is on C. A simple representation for this scenario is

called STRIPS and consists of a precondition list, Pre, a delete list, Del, and

an add list, Add, for every action of the robot. It represents a state with a set

of facts that hold true, and the possible actions with such Pre, Add, Del lists.

STRIPS can represent the blocks-world scenario with actions pickUp(x, y) and

putDown(x, y), where x, y are blocks A, B, C or Table. For example, pickUp(x, y)

can have Pre = on(x, y)�handEmpty, Add = inHand(x), and Del = on(x, y),

handEmpty. The intention of those operators and lists is to characterize the

preconditions and effects of those actions. The effect changes the present

state by adding and deleting from it. When the world state is {on(A, Table),

on(B, Table), on(C, Table), handEmpty}, the robot picks up A from the Table,

and then A is no longer on the table, the robot hand is no longer empty, and

the robot is now holding block A. Hence, a planning algorithm updates the

state with this action by applying delete on(A, Table), delete handEmpty, and

add inHand(A) to the state description.

The states and actions specify together a search space in which a plan

must be found. A plan in that space is a sequence of actions that leads from

the initial state (fully specified) to a state that satisfies the goal condition. A

planner (the process making the decision) receives such a representation for

the planning problem and has the task of finding a plan. For that purpose it

uses different search methods that can vary with the domain, and can include

general-purpose heuristics, look-ahead strategies, and domain knowledge.

Planning is computationally hard even for simple problem specification

languages such as that above. The search for a plan cannot represent or
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traverse the entire state-space graph in practice because it is exponentially

large in the number of state features defining the domain (e.g., corresponding

to the number of blocks in our example above). Therefore, search techniques

must create partial paths in hope of reaching the goal. The search for such

plans is backtracking when the planner decides that there is no sense in

expanding the plan further and that earlier steps in the plan must be changed

in order to permit reaching the goal.

Research on planning focuses on developing new search methods, new

representations for actions and states that facilitate easier planning, and

more expressive planning problem specification languages and methods. For

example, many planning algorithms use independence assumptions or loose

interactions between components in the planning domain to find plans more

efficiently (Amir and Engelhardt 2003). Hierarchical planners divide a goal

into subgoals (high-level operators) using a decomposition of the domain

into loosely interacting parts. Planning there is done at each level separately,

and later the subplans are pieced together to build a valid plan.

Making decisions when there are forces that try to affect our outcome

adversely is the topic of game theory. Here, the task of a decision maker is to

maximize its profit or chances for success while minimizing the adversarial

effect of decisions by others. This situation is typical for two-player board

games (e.g., chess, go, etc.), and is also relevant to minimizing malfunctions

in designs (e.g., of software and hardware) and to security (e.g., for computers

and networks).

Minimax is a simple model for making such decisions in two-player game

situations. A decision maker uses heuristic information about the value of

states (per their future outcomes) to give an estimate of the value of a decision

at a present state. For example, in chess we move a chess piece, the other

player moves a piece of his or her own, and we arrive at a new game state

that demands another decision. Every decision of ours leads to one of several

states, and so does the opponent’s decision. We can outline all of the possible

future states of the next d steps by looking at those states reachable from

our current state by a series of possible choices by us and our opponent. It is

convenient to put those reachable states in a tree, with the present state being

the root of that tree (the highest node in the tree) and the leaves of the tree

being the lowest nodes in the tree. (More generally, branches of the tree may

merge, but we ignore this to keep the discussion simple.)

In minimax we calculate the values of higher nodes according to this tree

in a min–max fashion. A level of the tree is min (minimizing) if the opponent

makes a decision in those states because his or her goal is to lead to states

that minimize our outcome. A level of the tree is max (maximizing) if we

are the ones making a decision in those states because our goal is to lead

to states that maximize our outcome. This is illustrated in Figure 9.2. In this

figure, the numbers at the bottom of the tree denote values that players would
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Figure 9.2 A minimax tree of depth 2.

estimate for being in that state (using a heuristic function, for example), and

each player chooses actions that minimize or maximize the values received

from below. Provably correct methods remove branches in the minimax tree

if there is no chance they will contribute to the solution (i.e., to the preference

among the higher branches). More recent research tries to estimate the value

of a state by sampling sub-trees of this min–max tree.

A challenge to adversarial decision making is the balancing of learning

and decisions. When an adversary is trying to clobber our attempts, learning

the domain while making decisions (e.g., by reinforcement learning) is tricky,

since exploration for the sake of learning may lead us to a very bad outcome.

We need to balance the likelihood of learning valuable information from

exploration against the risk of being set back by our opponent(s). However,

avoiding exploration is bound to bring sub-optimal results that might be very

far from desired or acceptable.

9.3.2 Stochastic domains

Many real-world domains have dynamics that evolve stochastically, that is,

with some nontrivial statistical properties. For example, we may consider pur-

chasing a car that has properties that are not known to us and that influence

its value. Those dependencies affect our decision and we need to evaluate

our utility given all the risks and uncertainties. Stochastic domains are harder

for decision making in practice but are also more permissive of approxi-

mations than deterministic domains. Simplifying assumptions that are made

in practice allow automatic decision making to be practical. There are sev-

eral problem formulations that capture different aspects and cases of decision

making in stochastic domains. The most prominent ones are decision networks

and Markov decision processes (MDP).
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Decision networks are akin to Bayesian networks (see Section 9.2.2) only

with three types of nodes: (1) random variables (as in Bayesian networks),

(2) decision nodes, and (3) utility nodes. Decision nodes require assignment

of a decision as to their value and they do not have a probability distribution

governing them (the values for other nodes can depend stochastically on

the value assigned to decision nodes, though). Utility nodes denote those

quantities that we wish to maximize (in expectation).

MDPs are the most popular formalism for modeling decision-making tasks

in dynamic stochastic environments. Their objective is to model situations

where actions have stochastic effects and one’s goal is not a specific target

but rather maximizing utility over time. Solutions to MDPs are policies that

select an action for each state such that the total cost of actions in expectation

is minimized and the total sum or positive rewards are maximized.

9.4 Cross-cutting issues

9.4.1 Commonsense reasoning

The terms “commonsense reasoning” and “commonsense knowledge” refer to

a broad set of abilities that humans bring into their decision making and

thinking. One example is the ability to reason about the very large number

of objects, properties, people, and relationships in our everyday life. We can

tell that a cup can hold its contents, but only if the cup is facing upwards

or the contents are securely connected to the cup. We can use this fact in

deciding on ways to transport the cup from one place to another. Research

on commonsense reasoning tries to endow applications and computers with

this ability to generalize, learn, and use a very broad set of knowledge about

everyday life.

Currently, practical applications sidestep many of the issues involved with

commonsense reasoning. They do so by carefully crafting the needed infor-

mation and models, limiting the set of topics and variables when learning, and

conceiving only those applications that do not require such common sense.

Research on commonsense reasoning is divided into three main streams: log-

ical theory, large commonsense knowledge bases, and ad hoc commonsense

reasoning techniques.

The logical formalization and theory of commonsense reasoning tries to

use and modify logic to represent and reason with commonsense knowledge

in ways that match our intuitions about such reasoning. For example, much

of human reasoning about the world uses a notion of defaults – assumptions

that are useful but may not be true. We say that birds fly (some of them

don’t); we assume that our computer is functioning correctly (it may not

be); and we follow medical doctors’ advice (they may be incorrect). Such

uncertainties and defaults are not easily captured by logic. Nonmonotonic
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reasoning (Section 9.2.1) tries and is helpful in generalizing them into a

form of useful commonsense reasoning. Such logics capture one property

needed for commonsense reasoning, namely, the ability to represent defaults

and reason about them. Still, much is left open: How can we acquire the

knowledge, how do we scale representation and reasoning techniques to the

large set of knowledge that seems needed, and how do we use this knowledge

in applications that need it?

Efforts at building large knowledge bases and at using information in new

ways try to overcome the limitations of logic-based commonsense reasoning.

For example, Cyc (Lenat 1995; Matuszek et al. 2005; Ramachandran, Reagan,

and Goolsbey 2005), the best-known large commonsense knowledge base

today, is the result of over twenty-five years of development and maintenance

by experts. It includes over 1,000,000 facts and logical sentences about over

100,000 objects, relations, types, and functions. Its semantics are not as simple

and clean as those suggested in the logical-formulations literature, but it seems

to be more usable as a result (initial applications exist in natural language

processing and decision making).

Other efforts try to create knowledge automatically from the contributors

and masses of information available on the WWW (Singh et al. 2002; Pentney

et al. 2007). The aim is to create systems of broad knowledge more easily but

with possibly looser semantics. These approaches avoid considering questions

about the meaning of knowledge that they hold and seem promising for

applications that need broad knowledge (e.g., autonomous real and virtual

robots).

9.4.2 Combining logic and probabilities

Many applications have both stochastic and non-stochastic elements. For

example, robot control can include high-level specifications in logic and a

lower-level probabilistic sensing model. Also, natural language processing

seeks to apply high-level knowledge in logic with lower-level probabilistic

models of text and spoken signals. Finally, many databases are logic based

(e.g., an entry 〈Eyal, Shavit〉 in database fatherOf indicates the logical state-

ment fatherOf(Eyal, Shavit)), while relationships between those databases and

recent extensions to databases are probabilistic (e.g., an entry 〈John, Mary〉 is

an uncertain entry in database loves with probability 0.7 either because John

is unsure or because the database holders are unsure).

Since 1990 there has been much work in the AI community and the

Databases community on the combination of logical and probabilistic expres-

sivity. This work presents languages that can express probability distributions

together with explicit references to objects, functions, and relationships, as in

first-order logic (e.g., Pfeffer et al. 1999). These languages are useful frame-

works for many machine learning applications, and recent work also shows

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139046855.013
https://www.cambridge.org/core


208 Eyal Amir

that they are useful for computational efficiency of inference (Poole 2003; de

Salvo Braz, Amir, and Roth 2006).

Research on the combination of logic and probability is ongoing. Current

challenges include (1) applying relational structure in speeding up inference

and treating probabilistic models over many objects, (2) combining knowledge

bases that are given already in probabilistic or logical form, and (3) extending

representation languages to include functions and equality of objects in sound

and simple ways.

9.4.3 Partial observability

Agents that act in many real-world domains do not know the exact state of

the world at any point in time. These domains are partially observable because

agents cannot observe all the features of the world that might be relevant

to them. For example, an agent trawling the WWW may press a button on a

page, but may not see the immediate effect of its action (but it could see it, if it

viewed another page). Problems involving partial observability are especially

difficult, and limited typically to very small domains (e.g., 100 states or 8

domain features) (Kaelbling, Littman, and Cassandra 1998). This is because

any choice of action depends on the state of knowledge of the agent and

the perceptions it receives, leading to a super-exponential computation in the

number of steps and features in the domain.

Acting in partially observable, partially known domains is particularly

tricky, and yet it is closest to real life. The main approaches involve at least

exhaustive exploration of the domain (e.g., reinforcement learning whereby

one learns to behave in a domain from rewards obtained over time and differ-

ent states; Even-Dar, Kakade, and Mansour 2005) or advice about promising

trajectories (Kearns, Mansour, and Ng 2000). Approaches that guarantee con-

vergence to a solution do so only in the limit of an infinite number of steps.

Most importantly, if the goal of the system changes, the process must get

restarted, and little use is made of knowledge accumulated in previous runs.

Recent approaches (e.g., Chang and Amir 2006) identify important tractable

cases of particular interest – for example, domains in which actions are

known to be deterministic and without conditional effects (e.g., STRIPS actions

(Section 9.3.1)). Such algorithms interleave planning and execution and pro-

vide some guarantees to reach the goal within a close-to-optimal number of

steps.

9.4.4 Applications are not programming

A dominant view in scientific research suggests that real-world applications

are straightforward implementations of theories and basic research. AI and

decision making in particular defy this view.
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Natural language processing, machine vision, and fraud detection are only

some of the applications that can be viewed in the abstract as applications

of basic research. Still, these topics demanded and received (and still receive)

heavy specialized attention before they could be put into practice. More gener-

ally, in theory one should be able to represent all that is needed for intelligent

behavior in FOL. This is because FOL is equivalent in representational power to

Turing machines2 (a dominant abstract model of computation). While human-

level AI in FOL is possible in theory (because if any computer can do it, then

FOL can), in practice there is little to gain by avoiding the problem of how to

actually represent knowledge or reason in FOL or another language.

The problems of actually building the needed knowledge and using it in

practice cannot be avoided if we wish to achieve practical human-level intel-

ligent applications. The devil is in the details, and without attention to those

details research will make little progress, as was seen in the numerous branches

of AI that developed over time (Formal Verification and Databases are two of

the fields that branched out of AI).

9.5 Conclusions

Since the mid 1990s the field of KR&R has gone through a major shift of focus

from mathematical-logic tools to probability-theory tools and from theory to

applications. This shift was sharp, leading to a split of research into logic-

based and probability-based work. Logic is more convenient for representing

sentential knowledge (especially relational, object-based knowledge) and is

well suited for combinatorial (non-convex) problems and structures, such as

search in a maze or solving puzzles, whereas probability-based approaches

(in particular, graphical probabilistic models) represent uncertain knowledge

better, are more suitable for learning in the presence of noise, and have many

real-world applications (following the 80–20 rule of thumb – do 20% of the

work for the easier 80% of the job). Reasoning and making decisions with each

of the representations is easier or harder in different situations, and typically

their strengths seem complementary (e.g., solving logical satisfiability prob-

lems is often fast, whereas probabilistic reasoning is easy to approximate).

Many researchers agree that both tools (logic and probability) are necessary

for scaling up systems to real-world applications, but the way in which to

combine their strengths remains unclear.

Further, research on machine learning and reasoning has reached a point

where it has many practical applications. Present research is more oriented

toward applications and this trend is registering a better focus and real-world

2 This reflects the author’s belief that a computer can indeed exhibit human-level intelligent

behavior and surpass it. This view is not unchallenged.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139046855.013
https://www.cambridge.org/core


210 Eyal Amir

successes. The emergence of the WWW and successful search engines for it

delivered a different kind of decision-making power, where the collective’s

power helps sidestep difficult theoretical problems.

Those changes are forming a different research environment and directions

for reasoning and decision making. These new directions will interact with

developments in game theory, neurobiology, and other scientific fields which

were not touched on here.
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10 Language and communication

Yorick Wilks

10.1 Introduction

Language and communication, considered as relevant to artificial intelligence

(AI) in general, I take to refer to the issues that cluster round the representa-

tion of language and meaning so as to enable language processing and the

communication of meaning by a computer, an area of research roughly cap-

tured by the fields of Natural Language Processing (NLP) and Computational

Linguistics (CL).

A remarkable feature of the fifty-year history of those two related fields is

how much of what we now take as topics of current interest was there from

the very beginning; all the pioneers lacked were real computers. In the fifties

and sixties, Gilbert King was arguing for machine translation by statistical

methods, which is only now a reality, Margaret Masterman for the power

of meaning-based structures in programs, and Vic Yngve, still working at

the time of writing, had designed COMIT, a special programming language

for NLP, and had stated his famous claim that limits on the way computers

process language should reflect the way the syntax of a language is structured.

This last project brought Yngve into direct conflict with Noam Chomsky over

permissible ways of drawing syntactic tree structures, which can now be seen

to have constituted a defining moment of schism in the history of NLP in

its relationship to mainstream linguistics. Chomsky has always denied any

relevance of computation to the understanding of language structure, and

this foundational schism was not healed until decades later, when Gerald

Gazdar became the first major linguist to embrace a computational strategy

explicitly.

A rule of thumb for expressing the difference between NLP and CL is that CL

has always claimed to be a program of scientific investigation using comput-

ers for language processing, while NLP is said to consist of applications, such

as machine translation (MT), which was the original task of NLP, and remains

a principal one. There is now a wide range of other NLP tasks that researchers

investigate and for which companies sell software solutions: question answer-

ing, information extraction, document summarization, and so on. Thus, NLP

does require a task and it is not in itself a program of scientific investigation,
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even though many believe that MT remains the application within which any

CL theory embodied in programs should be tested.

It is also important to distinguish major tasks, like those just mentioned,

from a wide range of tasks that are defined only in terms of linguistic theo-

ries and whose outcomes can only be judged by experts, as opposed to naı̈ve

users of the results of the major tasks above, in the sense that any competent

bilingual can judge the quality of output from an MT program. These more

subject-internal tasks include word-sense disambiguation, part-of-speech tag-

ging, syntactic analysis, parallel text alignment, and so on, and these can be

thought of as ways of testing individual CL hypotheses, rather than producing

useful artifacts.

Linguists are not the only scientists wishing to test theories of language

functioning: so do psychologists and neurophysiologists. The dominant lin-

guistic paradigm of the last half-century, Chomsky’s, has never accepted that

CL was the way to test linguistic theories. This dispute is over what constitutes

the data of language study, and it separates out very clearly NLP and CL on

the one side, from linguistics proper on the other, a subject for which data is

intimately connected with the intuitions of a speaker rather than with com-

putable processes applied to language data, usually called corpora. Since 1990

emphasis has shifted to the use of corpora of actual texts, rather than those

imagined or written by linguists. Corpora are now normally gleaned from the

web and have become the canonical data of NLP and CL.

10.2 Early systems in NLP/CL

A feature of the history of NLP/CL that cannot be overemphasized is the effect

of hardware developments, which have produced extraordinary increases in

the storage and processing power available for experiments. This is obvious,

and its effect on the field’s development can be seen by considering the case

of Karen Spärck Jones’ PhD thesis, which was almost certainly the first work

to apply statistical clustering techniques to semantic questions, and the first

to make use of a large corpus resource, Roget’s Thesaurus. Her statistical

“clump” algorithms required the computation of large matrices that simply

could not be fully computed with the tiny machines of 1964. Consequently,

this work’s significance was not appreciated at the time and it has been

regularly rediscovered, usually without knowledge of the original, at regular

intervals ever since.

The first piece of work to capture wider AI attention outside mainstream

NLP was Winograd’s MIT thesis (Winograd 1972) based on his SHRDLU sys-

tem. One reason for the interest it aroused was its choice of domain: the

MIT blocks world used for robotics and planning research, which consisted

of a tabletop containing blocks of different shapes that could be stacked, as

well as a crane and a box for putting blocks in, all of which were either

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139046855.014
https://www.cambridge.org/core


215 Language and communication

real or simulated (simulated in Winograd’s case). It was a small world about

which it was possible to know every fact. Winograd designed a dialogue pro-

gram that discussed this world and manipulated it by responding to ambigu-

ous requests such as PUT THE RED BLOCK ON THE GREEN BLOCK IN THE

BOX.

This system had many sophisticated features, including an implementation

of a linguistic grammar designed by Michael Halliday explicitly for commu-

nication purposes (unlike most linguistic grammars at the time which were

purely abstract). This grammar was programmed in a procedural language,

PROGRAMMAR, which prefigured the language LISP and was designed, like

COMIT before it, explicitly for processing strings of symbols such as sentences.

It also had a method for building representations of truth conditions in a LISP-

like language, which could then be evaluated against the state of the blocks

world. These conditions expressed the semantic content of an utterance and, if

the sentence evaluated to TRUE then the values of any object representations

in the conditions, when run as a program, gave the denotations of the objects

in the sentence, which would be the name of a particular block. This was

an elegant procedural implementation of Gottlob Frege’s distinction between

sense and reference. Like most systems at that time, it was not available for

general testing and performed on only a handful of sentences.

SHRDLU’s virtues and failings can be seen by contrasting it with a con-

temporary system from Stanford: Colby’s PARRY dialogue system (Parkinson,

Colby, and Faught 1977). This system, also programmed in LISP, was made

available over the then young internet and tested by thousands of users, who

often refused to believe they had not been typing to a human being. It sim-

ulated a paranoid patient in a Veterans’ hospital, and had all the interest

and conversational skills that Joseph Weizenbaum’s more famous but trivial

ELIZA lacked. It was very robust, appeared to remember what was said to it

and reacted badly when internal parameters called FEAR and ANGER became

high. It did not repeat itself and appeared anxious to contribute to the conver-

sation when subjects about which it was paranoid were touched on: horses,

racing, gambling, Italian-Americans and the Mafia. Unlike SHRDLU, it had no

grammar, parsing, or logic, but only a very fast table of some six thousand

patterns that were matched onto its input.

Contrasts between these two systems show issues that became more impor-

tant later in NLP: widely available and robust systems (PARRY) vs. toy

ones (SHRDLU); grammar parsing, which was cumbrous and rarely successful

(SHRDLU), vs. surface pattern matching (in PARRY, and later to be called infor-

mation extraction); systems driven by world knowledge (SHRDLU) vs. those

(such as PARRY) that were not and that essentially “knew” nothing (although

PARRY would have been a far better choice as a desert island companion

than SHRDLU). John McCarthy, in whose laboratory PARRY was created, said

that PARRY was not really AI “because it knew nothing, not even who the
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President is.” The day after he said this, PARRY did know that, which shows

the weakness of any such criterion for “being real AI.”

We began this chapter by looking briefly at samples of important and pre-

scient early work, and then showing two contrasting, slightly later, approaches

to the extraction of content, evaluation, representation, and the role of knowl-

edge. We shall now consider a range of systems embodying NLP/CL aspects

since the early seventies and divide them by their relationships to linguistic

systems (Section 10.3 below) and in relation to concepts normally taken as

central to AI, namely logic, knowledge, and semantics (Section 10.4 below).

10.3 NLP/CL systems in relation to linguistics

Explicit links between CL/NLP and linguistics proper are neither as numerous

nor as productive as one might imagine. We have already referred to the early

schism between Yngve and Chomsky over the nature of tree representations

and, more importantly, over the role of procedures and processing resources

in the computation of syntactic structure. It was Yngve’s claim that such com-

putation had to respect limits on storage capacity for intermediate structures,

which he assumed corresponded to innate constraints on human processing of

languages. (An example is that highlighted in George Miller’s contemporary

claim about the depth of human linguistic processing, usually known as “the

magical number seven, plus or minus two,” which indicates the number of

independent items – either words or syntactic structures of grammar codes –

that the brain could maintain and manipulate at one time in memory.) Chom-

sky, on the other hand, assigned all such considerations to mere language

performance.

In the sixties there were a number of attempts to program Chomsky’s trans-

formational grammars so as to parse sentences, the largest and longest run-

ning being at IBM in New York. These were uniformly unsuccessful in that

they parsed little or nothing beyond the sentences for which they had been

designed, and even then produced a large number of readings between which

it was impossible to choose. This last was the fate of virtually all syntactic

analyzers until the more recent statistical developments described below.

Even in these early days, some grammars (like those at IBM) were designed

explicitly as the basis of parsing programs, rather than for straightforward

linguistic investigation. Later, as linguists became more computationally ori-

entated, such parser-directed grammar research became important: The best

known was Generalized Phrase Structure Grammar (GPSG) from Gazdar and

colleagues which constituted a return to phrase structure from Chomsky-style

transformational grammar. Later came Head-driven Phrase Structure Gram-

mar (HPSG) from Ronald Kaplan and Joan Bresnan, and Functional Unifica-

tion Grammar (FUG) from Martin Kay. FUG, like Winograd’s earlier work, was

inspired by Halliday’s grammars, as well as the unification logic paradigm for
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grammar processing that came with the rise of the programming language

Prolog.

These researchers shared with Chomsky, and linguists in general, the belief

that the determination of syntactic structure was not only an end in itself, in

that it was a self-sufficient task, but was also necessary for the determination

of semantic structure. It was not until much later, with the development of

techniques like information extraction (a technique to be described in some

detail below), that this link was questioned with large-scale experimental

results.

However, this link was also questioned very early on by those in NLP who

saw semantic structure as primary and substantially independent of syntac-

tic structure as far as the determination of content was concerned. These

researchers, such as Roger Schank and Yorick Wilks in the sixties and sev-

enties, drew some inspiration and support from the case grammar of Charles

Fillmore. Fillmore had argued, initially within the Chomskyan paradigm, that

the case elements of a verb are crucial to sentence structure (e.g., agents,

patients, recipients of actions). His approach emphasized the semantic content

of language more than its grammatical structure, since these case elements

could appear under many grammatical forms. There have been hundreds of

attempts to parse sentences computationally into case structure, and Fillmore

remains almost certainly the linguist with most explicit influence on NLP/CL

as a whole.

10.4 Representation issues: Logic, knowledge, and semantics

The central AI vision (e.g., that of McCarthy and Hayes 1969) is that some

version of the first-order predicate calculus (FOPC), augmented by whatever

mechanisms are found necessary, will be sufficient for the task of representing

language and knowledge. This position and its parallel movement in linguistic

semantics claim that logic can and should provide the underlying semantics of

natural language, and it has had a profound and continuing effect on CL/NLP.

Although attempts in AI and linguistics to design some form of logical

semantics as the key to content representation for language sentences

have continued, they have had little success in producing any general and

usable program to translate English to formal logic. Nor has there been any

demonstration from psychology that such a translation into logic would

correspond to the way humans store and manipulate meaning. In the long

course of language processing competitions run by the US Defense Advanced

Research Projects Agency (DARPA), the translation of English to FOPC

structures remains a goal, but no one has yet set realistic standards for its

achievement.

There will undoubtedly be NLP applications that require logical inferences

to be established between sentence representations, but, if those are only
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part of an application (e.g., the consistency of times in an airline reservation

system), it is not obvious that they have anything to do with the underlying

meaning structure of natural language, and hence with CL/NLP proper, since

the original function of logical structure was to take part in inferences. At

this point in the discussion, there are a number of possible routes that can be

taken: One can say, (1) that logical inferences are intimately involved in the

meanings of sentences, since to know their meanings is to be able to draw

inferences, and logic is the best way to do that. A clear statement of this

view of the role of logic in AI is given by Thomason (2003). One can also

say (2) that there can be meaning representation outside logic, and this can

be found in linguistics back to the semantic marker theories of Jerry Fodor

and Jerrold Katz, developed within Chomsky’s transformational paradigm, as

well as quite independently in NLP as forms of computational semantics.

These theories postulate a number of semantic markers or primitives, such

as ANIMATE, or primitive actions, such as MOVE, that can be attached to

words so as to express their meaning; a process we would now normally call

“annotation.” There is also a more extreme position (3) that the predicates of

logic, and formal systems generally, only appear to be different from human

language (often accentuated by writing their predicates in capital letters, as

in (2) above), but this is an illusion, and their terms are in fact the language

words they appear to be, as prone to ambiguity and vagueness as other words.

Both sides of this are argued in Nirenburg and Wilks (2001).

Under (2) above, one can point to the AI NLP tradition of the seventies

and eighties of conceptual/semantic codings of meaning (already mentioned

in the last section) by means of a language of primitive elements and the

drawing of (non-logical) inferences from structures based on them. The best

known of such 1970s systems were Schank’s Conceptual Dependency system

(Schank and Rieger 1974) and Wilks’ Preference Semantics system (Wilks and

Fass 1992); both were implemented in MT systems, as well as a range of

other NLP applications. In the MT systems, codings comprising structures of

these primitive elements were used as an interlingua, or intermediate mean-

ing language, between the languages being translated. Schank’s system was

based on a set of fourteen primitive verbs, and Wilks’ on a set of about eighty

primitives of various types. Schank asserted firmly that his primitives were not

English words, in spite of similarities of appearance (e.g., with the English word

INGEST), whereas Wilks argued there could be many sets of primitives and

that they were no more than privileged words, as in dictionary definitions (see

Section 10.5 below). Wilks’ notion of “preference” became well established:

the notion that verbs and adjectives have preferred agents, objects, and so

on, and that knowledge of these default preferences is the major method of

ambiguity resolution and the detection of metaphor. Such preferences were

later computed statistically when NLP became larger scale and more empir-

ical (see Section 10.6 below). Schank later developed larger-scale structures
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called scripts that became highly influential as a way of capturing the overall

meaning of texts and dialogues.

There are analogies between this strand of NLP work and contemporary

work in linguistics, particularly that of Fillmore and George Lakoff, but there

was at that time little or no direct contact between researchers in NLP and

linguistics proper. One of the most striking changes over the last twenty

years is the realization by linguists, at least since the work of Gazdar, that

computational methods could be central for them. But there were undoubt-

edly influences across the divide: For example, Ray Jackendoff in 1990 pro-

posed structured sequences of primitives, such as CAUSE GO LIQUID TO IN

MOUTHOF to represent “drink,” which were virtually identical to the ear-

lier NLP structures of Wilks mentioned above. Again, this level of semantic

representation, between first-order logic and language not only took root

in linguistics but also returned later to AI via a peculiar route we shall

discuss later in connection with the Semantic Web, where a shallow but

tractable non-logical representation called RDF (Resource Description Frame-

work) has become a basic level of knowledge description within a new AI

tradition.

Three other representational traditions in AI also have direct relations to lan-

guage issues: speech acts, procedural semantics, and connectionism. Speech

acts is a notion drawn from John Searle’s work in philosophy which has

become the central concept in computational pragmatics. The notion might

enable a system to distinguish a request for information from an apparent

question that is really a command, such as “Can you close the door?” This

utterance appears to be a question, but Searle argued that it should be repre-

sented as a request to act, and close the door. Ray Perrault and his colleagues

at Toronto in the late seventies were the first group to compute over beliefs

represented in FOPC so as to assign speech acts to utterances in a dialogue

system. The Toronto system was designed as a railway advisory system for

passengers, and made use of limited logical reasoning to establish, for exam-

ple, that the system knew when a given train arrived, and the passenger knew

it did, so the question “Do you know when the next train from Montreal

arrives?” would not be, as it might appear, about the system’s own knowledge

of itself, but rather a request to disclose that knowledge. In translating Searle’s

ideas to programs, this group found errors in its formulation, and their account

of speech acts is in some ways more coherent than the original. Speech act rep-

resentation and its deployment in human–computer dialogue systems remains

important since it is fundamentally concerned with communication, in a way

few areas of NLP/CL are.

Procedural semantics was initially a strand in AI theory. The claim, in vari-

ous forms, is that the meanings of symbols in computations that express intel-

ligent functions are themselves procedures, rather than the referential enti-

ties declared in conventional formal semantics. Versions of such a procedural
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theory were put forward by Terry Winograd, Bill Woods, Philip Johnson-Laird,

and Yorick Wilks. In Winograd’s SHRDLU, for example, notions like moving

the crane arm were not expressed by any primitive action (like MOVE) but by

the actual procedures or code to move the arm. The notion of “meanings as

procedures” was attacked by Fodor on the grounds that all such theories are in

fact grounded in the bottom-level machine code of actual computing engines,

which really does provide the referential entities in question, by means of its

formal program semantics. This was strongly denied by some of that theory’s

proponents by making use of the Scott–Strachey principle that the semantics

of the different “program levels” are independent, and so the semantics of

one cannot be a semantics for another: That is, the semantics of machine-

code translations is irrelevant to the semantics of the higher-level action it

coded.

Some mention should also be made here of connectionism: The cluster of

AI theories based on the concept of very simple computing units, connected

in very large numbers, and “learning from experience” by means of shifting

aggregated weights in a network. This development may offer a way forward

in many areas of artificial intelligence, including computational semantics of

natural language. Connectionism shares many of the features of procedural

semantics that distinguish both from the logicist views. These features include

the integration of semantics and syntax; continuity between linguistic and

other forms of world knowledge (and again, not in the sense of simply assimi-

lating the former to the latter as some logicist and “expert-system” approaches

do); and a type of inference that is not reconcilable with the kind offered by

logic-based approaches. Moreover, connectionism has stressed notions such

as that of competition between representational structures so that the stronger,

more connected, structure “wins out,” a notion to be found explicitly in com-

putational semantics systems such as Preference Semantics.

An important difference, as regards lexical ambiguity resolution in particu-

lar, arises here between so-called sub-symbolic approaches within connection-

ism (defended by Paul Smolensky) and those usually called localist (defended

by David Waltz and Jordan Pollack). This difference bears very much on

the issue of representation: In a sub-symbolic approach to computational

semantics one would not necessarily expect to distinguish representations for

particular word senses; they would be simply different patterns of activation

over a set of units representing sub-symbolic features, where similar senses

would lead to similar patterns. On the other hand, localist approaches to com-

putational semantics have assumed real distinguishable word senses in their

symbolic representations at the outset, and have then given weighting criteria

for selecting between them. The mainstream of AI still remains, at the time of

writing, firmly committed to the notion of symbol manipulation and explicit

representations as the basis of their craft.
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10.5 Corpora, resources, and dictionaries

In the sixties, Margaret Masterman and Karen Spärck Jones made use of

Roget’s Thesaurus, punched onto IBM cards, as a device for word-sense dis-

ambiguation and semantic primitive derivation, even though they could not

do serious computations on the computers then available. After that, large-

scale linguistic computation was found only in machine translation; in the era

of the influence of AI methods in CL/NLP the vocabularies of working systems

were found by Boguraev to average about thirty-five, which gave rise to the

term “toy systems” to refer to most of the systems described earlier.

But there were movements to use substantial corpora of texts for exper-

iments, although these were driven largely from the humanities and in the

interests of stylistic studies and statistical measures of word use and dis-

tribution. The best known of these was the Brown-Oslo-Bergen corpus of

English, but the British National Corpus was constructed explicitly with the

needs of NLP in mind, and the University of Lancaster team, under Geoffrey

Leech, played a key role in its construction. This group had already created

the first effective piece of corpora-based statistical NLP, the part-of-speech

tagger CLAWS4 which assigned part-of-speech codes like ADJ (for adjective)

automatically to all the words in a corpus.

At the same time, in the early eighties, interest arose in the value to NLP

not only of text corpora in general, but specifically of dictionaries, both

monolingual and bilingual. Bran Boguraev in Cambridge was one of the first

researchers (since very early work on Webster’s Third Dictionary at Systems

Development Corporation in the sixties) to seek to make use of a dictionary via

its coded form used by its publishers, in this case the Longman Dictionary of

Contemporary English (LDOCE), a dictionary specifically designed for foreign

learners of the language. This had definitions with restricted syntax drawn

from a vocabulary of only 2,000 words.

In the eighties there was a great deal of activity devoted to extracting com-

putational meaning on a large scale from such machine-readable dictionaries.

It seemed a sensible way to overcome the “toy system” problem and, given

that dictionaries encode meanings, why not use them as a means of direct

access to semantic representations? Substantial and useful semantic databases

were constructed automatically from LDOCE and a range of other dictionaries,

again usually from dictionaries for learners of English since they expressed

themselves more explicitly than traditional dictionaries for scholars and the

broadly educated. Hierarchical ontologies of concepts were constructed auto-

matically, and these databases of definitions remain, along with thesauri, a

component database for many major systems for resolving word-sense ambi-

guity. An ontology can be broadly understood as a tree structure of concepts

that include concepts or individuals below them in the tree, in the way the
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class or concept “birds” contains “canaries” because all canaries are birds.

But such dictionaries were not a panacea that cured the problem of meaning,

and it became clear that dictionaries themselves require substantial implicit

knowledge to be of computational use.

Another quite independent source of annotated corpus resources was tree

banks, of which the Penn Tree Bank is the best known. This is a corpus

syntactically structured by hand, with the syntactic structure being added to

the text as annotations, indicating structure and not merely categories. One

effect of the wide use of the Penn Tree Bank for experiments was to enshrine

the texts used for it, in particular sections of the Wall Street Journal, as über-

corpora, used so much and so often that some believed their particular features

had distorted NLP research. In the recent past much energy and discussion was

put into the selecting and “balancing” of corpora – so much dialogue, so many

novels and memoranda etc. – but this activity is becoming irrelevant because

of the growing use of very large parts of the World Wide Web itself as a corpus

that can be annotated.

10.6 Statistical and quantitative methods in NLP

The large-scale introduction of statistical methods into CL/NLP is the recent

trend in the field most difficult to survey in brief, because we are still within

that movement at the time of writing (see a survey of the principal methods

in use in Manning and Schütze 1999). Broadly, statistical methods imply the

use of only numerical, quantitatively based, methods for NLP/CL, rather than

methods based on representations, whether those are assigned by humans

or by computers. The general strategy employed is to learn how to process

language, hopefully in the way humans do, though this is not essential. In the

case of MT, for example, this implies learning to translate by processing very

large corpora of actual translations, done by humans. It is often taken to mean

learning how to assign annotations, the marking up of corpora (of the sort

just discussed), with part-of-speech categories or semantic markers/primitives,

and doing this from large corpora already marked up in part by humans.

In the sixties, Gilbert King predicted that MT could be done by statistical

methods, on the ground of the well-known 50 percent redundancy of char-

acters and words in Western languages, though it is not easy to see why the

second implied the first. Later, and as we saw earlier, Spärck Jones pioneered

what were essentially information retrieval (IR) methods to produce semantic

classifications, intended ultimately for use in MT. We noted earlier that the

first clear example of modern statistical NLP was the work by Leech and his

colleagues on the CLAWS4 part-of-speech tagger in the late seventies. At the

time, few could see the interest of assigning part-of-speech categories to text

words. Yet now, almost all text-processing work starts with a part-of-speech
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assignment phase, since this is now believed (even at about 98 percent accu-

racy, the usual level achieved) to simplify all subsequent linguistic processes.

It does so by filtering out a large range of possibilities that used to overtax

syntactic analyzers. The undoubted success of such methods showed that anal-

ysis decisions previously believed to need “high-level” syntactic or semantic

information could be performed using only lower-level statistical information

about word sequences.

The greatest impetus for statistical NLP, however, came from work on the

MT research program of Frederick Jelinek and his group at IBM (Brown et al.,

1990), who applied machine learning methods that had been successful in

automatic speech recognition (ASR) to MT, which had been considered a purely

symbolic and linguistic problem. Jelinek began asking what the phenomenon

to be modeled was – answer, translation – and then seeking examples of

that human skill to apply machine learning to. The most obvious resource

capturing that skill was parallel corpora: texts expressing the same meaning

in more than one language. These were widely available and he took millions

of words from the Canadian Hansard texts in English and French.

We have already described one form machine learning (ML) in NLP can

take: In the CLAWS4 work the phenomenon (part-of-speech tagging) had

been annotated onto the text by humans and the ML algorithms were then

set to learn the possible associations of tags with words and were then able

to tag new, unseen, texts at some acceptable level of accuracy. This is called

supervised ML, by which is meant that the target for the learning is given. In

the Jelinek MT work, on the other hand, although the targets to be learned

are given, namely the translations in the parallel texts, the training material

had not been produced specifically for this task by humans assigning codings.

The target data is just naturally occurring texts, albeit produced by people.

Many would call this weakly supervised ML. In unsupervised ML, however, no

targets of any kind are given. In the work of Spärck Jones, mentioned earlier,

thesaurus data is clustered into semantically relevant groupings, which are

not given in advance at all.

Jelinek’s CANDIDE system worked by first learning to align the sentences of

the French and English texts so they corresponded in meaning. It then learned

the associations between the content words of the corresponding/aligned

French and English sentence pairs – so that English word Ex, say, was found

regularly opposite French words Fy or Fz in different aligned sentences. Mean-

while, it had learned likely word sequences in the output language, say French,

and with these it was able to show that, for sentences aligned with Ex, with

some set of neighboring words F . . . F, then Fy was the more likely output

for Ex, while in other sequences of neighbors F . . . F, the likely output would

be Fz. By such methods – largely derived from earlier work by this team on

speech-to-English transcriptions – CANDIDE was able to give discrimination

between possible output word strings in the target language.
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CANDIDE produced an accuracy level of about 50 percent of sentences

translated correctly, a remarkable fact given that the system had no explicitly

linguistic knowledge of any kind, such as dictionaries or grammars. When

applied to new, unseen, texts it nevertheless failed to beat the traditional,

hand-coded, MT system SYSTRAN, which had not been trained for specific

kinds of text. The system was only a benchmark, but the 50 percent limit sug-

gested there were bounds to purely statistical methods applied to a linguistic

task like MT. Jelinek himself began a program for the derivation of linguistic

structures (lexicons, grammars, etc.) by those same statistical ML methods, in

an attempt to raise the levels of CANDIDE’s success. In doing so he set in

motion a movement throughout NLP to learn traditional NLP/CL structures at

every linguistic level by those methods.

There are now far too many such applications to cite here, and this intro-

duction of ML into every part of NLP has served to bring language processing

closer again to the center of AI, since ML is such a fundamental methodology

in AI. ML (see Manning and Schütze, 1999) methods have been applied to the

alignment of texts, syntactic analysis, semantic tagging, word-sense disam-

biguation, speech act assignment, and even dialogue management. In the case

of some of these traditional tasks, the nature of the task has changed with the

evaluation and scoring regimes that have come along with the paradigm shift.

For example, only a few years ago it was conventional to say that syntactic

parsers had failed, at least for languages like English, and that there simply

was no parser that could be relied on to produce a correct parse for an unseen

English sentence. However, now that statistically based parsers can learn over

tree banks, like the Penn Tree Bank mentioned earlier, and are scored by the

number of brackets they can correctly insert and the appropriate phrase struc-

ture annotations they can assign, the issue is merely quantitative and it is no

longer considered essential that a “full parse” is produced.

There is a general perception that statistical, or corpus-driven (i.e., empir-

ical), linguistics have resulted in a shift to re-emphasizing surface consid-

erations in language. For example, the shallower syntactic parse results just

mentioned have allowed syntactic analysis to become more useful in lin-

guistic processing, because they are more successful and reliable. One could

also point to the success of the separate NLP task information extraction (IE)

(Cowie and Wilks, 2000), which, in broad terms, consists in extracting fact-like

structures from texts on a large scale for practical purposes by skimming the

surface structure of the text for patterns, rather than by parsing its syntactic

structure. For example, an IE system might seek all the facts in public source

newspapers about people in IBM who were promoted in 2010, and do so with

specific patterns coded for such a task, or machine learned from examples.

IE has become an established technology largely without the use of syntactic

analysis and access to knowledge structures, although those have played a

role in some successful systems. IE now works at the 95 percent plus level
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of success that is the norm of acceptability in empirical linguistics. However,

many of the more recent successes of this main modern approach, again based

on ML over corpora, have been in areas normally considered semantic or “less

superficial” in nature, such as word-sense disambiguation and the annota-

tion of dialogue utterances with their dialogue or speech acts, indicating their

function in the overall dialogue.

In the final parts of the chapter, I wish to consider two alternative traditions

to both the traditional GOFAI (Good Old-Fashioned AI) core of AI and the

period of statistical reaction against it, a period in whose ascendancy we

still are. One of these is an alternative statistical surface-like approach to

post-Jelinek empirical NLP: the tradition of IR, which is as old as AI itself.

The other is the more recent Semantic Web movement, which I believe has

roots in NLP and IE (though this would be contested by its founder Tim

Berners-Lee).

10.7 AI and Information Retrieval

As we noted at the start of the chapter, the classical, McCarthyan, period of

AI was logic- or symbol-based but not entirely devoid of numbers, of course,

for AI theories of vision flourished in close proximity to pattern-recognition

research. Although symbolic, representational, theories in computer vision

sometimes achieved prominence, as in the work of David Marr, nonetheless

it was always, at bottom, a quantitative engineering sub-discipline. But when

faced with any attempt to introduce quantitative methods into classical core

AI in the seventies, John McCarthy would always respond “But where do all

these numbers come from?”

Since the return of quantitative methods to NLP/CL, just described, we now

know better where the numbers come from; but nowhere have numbers been

more prominent than in the quite separate field of IR. IR is of similar antiquity

to AI, but the two have until now rarely tangled intellectually, although on

any broad definition of AI as “modeling intelligent human capacities,” one

might imagine that IR, like MT, would be covered. Yet neither IR nor MT

has traditionally been seen as part of AI. IR is fundamentally a statistical

document retrieval methodology, one that clusters documents on the basis

of their word contents into sets of documents relevant to each other, so that

anyone who wants one document may well want to see others in the same

cluster. It was for this reason that we described Spärck Jones’ early work on

clustering linguistic thesaurus terms as IR-inspired. In some sense, all such

unsupervised clustering tasks are forms of classification. IR, then, retrieves

documents from clusters of documents it has formed up, whereas IE retrieves

fact-like knowledge items from texts or, by extension, answers questions from

text. IR can only give you documents; however, the distinction blurs given

that a single sentence can be considered a small document.
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IR may, after all, not be a pre-existing intelligent human functionality

now being modeled by computers, like MT, because, in earlier pre-mechanical

times, humans were not in practice able to carry out the kinds of large-scale

searches and comparison operations on which IR rests. And, even though

IR often cohabits with library science, which grew out of card indexing in

libraries, there is perhaps no true continuity between those subfields, since

modern IR consists of operations of indexing and retrieval that humans could

not carry out in normal lifetimes.

Should any reader begin to wonder why I have raised the question of the

relationship of AI to IR, it is because Spärck Jones, in a remarkable paper,

has already done so in an AI context (2003) and argued that AI has much to

learn from IR. Her main target was AI researchers seen as what she called “The

Guardians of content.” I shall briefly set out her views and then contest them.

By making an analogy with the case of MT in particular, I shall suggest that the

influence is perhaps in the other direction, of AI on IR. That is demonstrated

both by limitations on statistical methods that MT developments have shown

in recent years, and by a curious reversal of terminology in IR that has taken

place in the same period. The important questions in Spärck Jones’ article

reduce to one crucial question: What is the primitive level of language data?

Her position on this is shown by the initial quotations below that capture the

essence of her views:

One of these [simple, revolutionary, IR] ideas is taking words as they stand.

(Spärck Jones 2003, p. 1)

The AI claim in its strongest form means that the knowledge base completely

replaces the text base of the documents. (Spärck Jones 1999, p. 258)

I would summarize her complex position as follows: Words are self-

representing in that they cannot be replaced by any more primitive repre-

sentation; all we, as technicians with computers, can add are sophisticated

associations between them. Yet, core AI mistakenly seeks to replace words,

with their inevitable inexactness, with exact logical – or at least non-word-

based – representations.

We should not see the issues here as simply Spärck Jones’ critique (based

on IR) of core, traditional or symbolic AI, for her views connect directly to

an internal issue within AI itself, one about which the discipline has held an

internal dialogue for many years, both broadly and in many of its subareas.

The issue is that of the nature of, and necessity for, structured symbolic

representations, and their relationship to the data they claim to represent. This

is an issue that we already discussed above in connection with the proposals

of Schank and Wilks in the 1970s for a level of representation of language

that was not logic but had some of the properties of language itself. The

key reference for the view Spärck Jones rejects would be the already cited
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McCarthy and Hayes paper (1969), and its extreme opposite would be any

view that has elements that could be termed connectionist, one that insists on

the primacy of data over any possible representation of it.

It should be clear from the preceding paragraphs that Spärck Jones is not

targeting all of AI, but only the strong representationalist tradition, one usually

(but not always, as in the case of Schank and others above) associated with

the use of first-order predicate calculus. Her basic argument is that words

remain their own best interpretation, and cannot be replaced by some other

artificial coding, such as logic, in order to represent their meaning. Unless

Spärck Jones really intends to claim that any method of language analysis

exploiting statistics and redundancy (like those cited in the last section) is

really IR, then there is little basis for her claim that AI has a lot to learn from

IR in this area, since it now has its own traditions of statistical methodology,

and these came into AI/NLP from speech research pioneered by Jelinek and

indigenous work on machine learning, and not at all from IR.

Annotations are also forms of representation, and there can be no doubt

that attaching to words even very low-level annotations, however obtained,

can produce results that would be hard to imagine without them. A strik-

ing case is the use of part-of-speech tags (such as PROPERNOUN) already

mentioned; given a word-sense resource such as the LDOCE, Mark Stevenson

and Yorick Wilks were able to show that those part-of-speech tags alone can

resolve word-sense ambiguity (at least at the level called homographs in the

LDOCE) at about a 92 percent accuracy level. Given such a simple tagging,

almost all word-sense ambiguity is trivially resolved against that particular

structured resource, a result that could not conceivably be obtained without

those low-level additional representations, which are not merely the words

themselves.

10.8 The Semantic Web and AI

Let us now turn in a final section to link together many of the considerations

of earlier parts of this chapter, in particular the role of annotations to texts

and the interpretability of core AI representations. Some have taken the initial

presentation of the Semantic Web (SW) proposal by Berners-Lee, Hendler, and

Lassila (2001) to be a restatement of the GOFAI agenda in new and fashionable

WWW terms. In that article, the three authors describe a system of services,

such as fixing up a doctor’s appointment for an elderly relative, which would

require planning and access to the databases of both the doctor’s and relative’s

diaries and synchronizing them. This kind of planning behavior was at the

heart of GOFAI, and there has been a direct transition (quite outside the

discussion of the SW proposals themselves) from decades of work on formal

knowledge representation in AI to the modern discussion of ontologies – which

are far more than hierarchical relations of concepts but are rather knowledge
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representations in general under a new name. The basic form of information

in the SW is that of a triplestore: very large numbers of simple graphs based

on words and primitive actions in what is called RDF, the Resource Description

Format. It is in this format that large numbers of official documents (as well

as Wikipedia, Facebook, etc.) are being released for further processing on the

internet. One more general way of describing the SW is as the WWW but in a

form which in some sense “understands” the semantic content of the web, in a

way the WWW plainly does not. It no more understands the texts it contains

than a television knows what it is showing.

This is clearest in work on formal ontologies as representing the content

of science (as in the work of Horrocks 2005), where many of the same indi-

viduals have transferred discussion of research issues from one paradigm –

Knowledge Representation (KR) in AI – to the other (SW). All this has been

done within the standard KR assumption within AI, and one that goes back

to the earliest work on systematic KR by McCarthy and Hayes (1969), a work

we took as defining core GOFAI. A key assumption of all such work was that

the predicates in KR representations merely look like English words but are in

fact formal objects, loosely related to the corresponding English, but without

its ambiguity, vagueness, and ability to acquire new senses with use. We shall

return below to this assumption, one which has certainly been important in

both the original SW paper and some of what has flowed from it.

Nonetheless, few of the complex theories about KR in GOFAI actually appear

in their original forms within SW discussions so far: from McCarthy and Hayes’

fluents, McCarthy’s later autoepistemic logic, and Hayes’ Naı̈ve Physics, to

name but a few prominent examples. A continuity of goals between GOFAI

and the SW has not simply meant continuity of particular research traditions

and this is both a gain and a loss: a gain because it has yielded simpler

schemes of representation which are probably computable; a loss because

of the lack of sophistication in current schemes of the DAML/OIL family of

reasoning languages for the SW. The underlying issue is whether these new

SW-orientated reasoning systems have the representational power needed for

the complexity of the world, commonsense or scientific. There have been at

least two other traditions of input to what we now call the SW, and I shall

discuss one: namely, the way in which the SW concept has grown from the

humanist tradition of document annotation.

In the original Scientific American paper introducing the SW, there is a

diagram of the SW’s structure with low-level XML at the bottom reaching up

to complex concepts at the upper levels such as rules, logic, proof, and trust.

Looking only at these upper-level labels has caused some critics and admirers

of the SW to say that it is the GOFAI project by another name, since those

notions were part of the core of traditional AI. But if one looks at the lower

levels one finds Namespaces and XML, which are all products of what we may
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broadly call NLP obtained from the annotation of texts by a technology we

may conveniently continue to call IE, as in the sections above.

IE now reliably locates names in text, their semantic types, and relates

them together by means of learned structures called templates into forms of

fact and events, objects virtually identical to the RDF triplestores at the base

of the SW, which are not quite logic, but very like IE output. IE began by

automating annotation but now has developed what we may call annotation

engines based on machine learning (e.g., Ciravegna et al. 2004), which learn to

annotate texts in any form and in any domain. This view of the SW, in which

NLP is crucial to its development, is not the only view, as I emphasized at the

beginning, but it is the one that underlies most work on the SW in Europe.

On such a view, the SW can be seen at its base level as a conversion from the

WWW of texts by means of an annotation process of increasing grasp and

vision, one that projects notions of meaning up the classic SW diagram from

the bottom to the complex concepts at the top. If this can be achieved within

the SW project – the assignment of meaning to abstract concepts by empirical

processes linking them back to text – then this will be a major intellectual

achievement of AI and the solution to a problem that has been with it from

its very beginning.

Further reading

Allen, J. (1995). Natural Language Understanding (2nd edn.). Redwood City, CA:

Benjamin/Cummings. The best survey of NLP/CL work from an AI perspective

by a major theoretical contributor.

Charniak, E. (1993). Statistical Language Learning. Cambridge, MA: MIT Press.

Short, accessible introduction to the motivations and methods of the statistical

movement in NLP/CL.

Gazdar, G. and Mellish, C. (1989). Natural Language Processing in PROLOG and

Natural Language Processing in LISP. Reading, MA: Addison-Wesley. A clas-

sic programming language and algorithmic approach to symbolic CL/NLP.

Grosz, B. J., Spärck Jones, K., and Webber, B. L. (1986). Readings in Natural

Language Processing. Los Altos, CA: Morgan Kaufmann. This reader contains

many classic papers from the first decades of CL/NLP.

Jurafsky, D. and Martin, J. H. (2008). Speech and Language Processing: An

Introduction to Natural Language Processing, Computational Linguistics, and

Speech Recognition (2nd edn.). Upper Saddle River, NJ: Prentice Hall. An

excellent survey that also covers the links between speech and language

processing in NLP.

Pinker, S. (1997). How the Mind Works. New York: Norton. A statement of the

assumptions behind the Chomskyan approach to language modeling, updated

beyond Chomsky’s own work to take account of the fact that language struc-

ture has itself evolved.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139046855.014
https://www.cambridge.org/core


230 Yorick Wilks

van Deemter, K. (2010). Not Exactly: In Praise of Vagueness. Oxford University

Press. A representative volume on the formal semantics approach to NLP,

including the possibility of modeling vague concepts.

Wilks, Y. and Brewster, C. (2009). Natural Language Processing as a Foundation

of the Semantic Web. Now Press: London. This book contains a great deal

of background on IE and on ontology building and maintenance by NLP

techniques and their relationship to Semantic Web construction.

Wilks, Y. A., Slator, B. M., and Guthrie, L. M. (1996). Electric Words: Dictionaries,

Computers and Meanings. Cambridge, MA: MIT Press. An account of meaning

representation in NLP/CL, particularly the use of dictionaries as resources for

meaning structures in language processing.
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11 Actions and agents

Eduardo Alonso

11.1 Introduction

Classical artificial intelligence (AI) approaches to action tended to focus on

single, isolated software systems that acted in a relatively inflexible way,

automatically following pre-set rules. However, new technologies and soft-

ware applications have created a need for artificial entities that are more

autonomous, flexible, and adaptive, and that operate as social entities in

multi-agent systems. This chapter introduces and surveys this emerging agent-

centered AI and highlights the importance of developing theories of action,

learning, and negotiation in multi-agent scenarios such as the internet.

11.2 Action in AI

Historically, the “Physical Symbol System Hypothesis” in AI (Newell and

Simon 1976) has been embedded in so-called deliberative systems. Such

systems are characterized by containing symbolic models of the world, and

decisions about which actions to perform are made via manipulation of

these symbols. To get an AI system to “act” it is enough to give it a logical

representation of a theory of action (how systems make decisions and act

accordingly) and get it to do a bit of theorem proving.

This approach to action is perhaps best illustrated in the planning problem,

where systems use symbolic manipulation to reason about which actions to

execute to achieve their goals, that is, to reason about how to behave efficiently

(Fikes and Nilsson 1971). Typically, the system will be given a description of

the state of the world it is in (the initial state) and of the desired state of the

world (the final state or goal). The system will also be provided with a set of

actions, each accompanied with a list of preconditions for the action to be

executed and a list of effects that result from the action being executed – which

predicates are deleted and which added to the description of the world. For

example, imagine that the world consists of two blocks and a table and that

the initial state of the world is “block B on table, block A on block B, nothing

on block A” or, formally, {OnTable(B), On(A, B), Clear(A)}; also

imagine that the goal is “block B on table and block A on table,” that is,
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{OnTable(A),OnTable(B)}, and that the system is able to execute two

actions, UnStack(x, y) and PutDown(x). These actions are accompanied

by the following lists of preconditions and effects. For UnStack(x, y):

Pre {On(x, y), Clear(x)}

Del {On(x, y)}

Add {Holding(x), Clear(y)}.

And for PutDown(x):

Pre {Holding(x)}

Del {Holding(x)}

Add {OnTable(x)}.

Clearly, in this example the plan consisting of the sequence of actions

{UnStack(A, B), PutDown(A)} will bring the world from its initial

state to the goal. At each step, the system that executes the planning algo-

rithm (the planner) tries to match the preconditions for various actions to the

description of the world. For example, the planner may begin by attempting

PutDown(A), but will fail since the precondition for this action (Hold-

ing(A)) does not apply. On the other hand, the preconditions for the action

UnStack(A, B) do hold (A is stacked on B, and it is clear), so this action

can be executed. As a result of executing this action, Holding(x), the

precondition for PutDown(A), is added to the description of the world.

After carrying out this second action in turn, the state of the world becomes

{OnTable(A), Clear(B), Clear(A), OnTable(B)}, which satis-

fies the goal {OnTable(A), OnTable(B)}.

Unfortunately, given the computational complexity of theorem proving in

even very simple logics, this approach to the design and implementation of

rational systems has not been widely applied in real-life scenarios. It has been

proved (Chapman 1987) that even refined planning techniques will ultimately

turn out to be unusable in any time-constrained system. As the extremely

simple example above illustrates, it just takes too long to search through all

possible combinations to deduce the goals (theorems) from a set of initial con-

ditions (premises). These results had a profound influence on AI, causing some

researchers to question the symbolic AI paradigm and leading to alternative

approaches, in reactive architectures in particular.

A reactive system is one that does not use a symbolic model of the world

nor symbolic reasoning to decide what to do next. Reactive architectures are

modeled as black boxes: They follow if-then rules that directly map inputs into

actions. Without a model of the world or of the task at hand, such systems

are cognitively elementary; they (re)act more like caterpillars rather than like

human beings. Perhaps the paradigmatic example of this type of system is

the subsumption architecture, which establishes a hierarchy of competing

behaviors where lower layers have precedence over higher ones (Brooks 1986).
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For example, let us imagine a reactive robot that picks up samples from,

say, the surface of Mars. Suppose the robot is given the following (situation →

action) rules:

1 If detect an obstacle then change direction.

2 If carrying samples and at the base then drop samples.

3 If carrying samples and not at the base then go to the base.

4 If detect a sample then pick sample up.

5 If true then move randomly.

Such rules form a hierarchy that ensures that the robot will turn if it finds

an obstacle; if it is at the base and carrying samples, then it will drop them

provided there is no immediate danger of crashing, and so on. The highest

behavior – a random walk – will only be carried out if the agent has nothing

more urgent to do: Its “If true” precondition is assumed to always fire. It is

a way of guaranteeing that if rules (1)–(4) do not apply the robot will still do

something.

The resulting systems are, computationally speaking, extremely simple, and

yet they can execute complex tasks. In addition, reactive systems are situated

in real-life domains and able to display flexible behavior. In fact, actions

are not planned ahead but are rather the emergent result of the system’s

“embeddedness” in a particular situation.

However interesting this approach may be, it presents several problems.

Reactive systems learn procedures but no declarative knowledge; that is, they

only learn values or attributes that are not easy to generalize to similar sit-

uations (or transmit to other systems). Besides, and perhaps more impor-

tantly, precisely because they show emergent properties there is no principled

methodology for building such systems.

Regardless of the many attempts to combine deliberative and reactive archi-

tectures in hybrid systems (Ferguson 1992; Müller 1997), it seems that at the

end of the day one is left to choose between theoretically sound but imprac-

tical deliberative systems and efficient yet loosely designed reactive systems.

This may reflect the fact that each type of AI system was designed to solve

related yet different problems: Symbolic AI resulted from the effort to formal-

ize and mechanize reasoning that blossomed with the development of expert

systems; whereas reactive systems were often motivated by efforts to solve

numerical, nonlinear problems, such as those associated with connectionism

and artificial life.

For the last couple of decades researchers have experienced the evolution

of new technologies such as the internet. These demand personal, continu-

ously running systems for which older notions of action – those resulting

from either cumbersome symbolic reasoning or ever-adaptive reflexes – may

be insufficient. Indeed, many researchers believe that in the twenty-first cen-

tury for AI systems to perform “intelligently” they must be able to behave
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in an autonomous, flexible manner in unpredictable, dynamic, typically social

domains. In other words, they believe that the “new” AI should develop agents

(Alonso 2002).

In fact, it can be argued that current trends in web development and web

design, as well as new applications in electronic commerce (for instance, Pay-

Pal) and social software (for example, Facebook), will only be fully developed

if an agents’ perspective is adopted.

11.3 The three principles of agent-centered AI

This section examines in detail the main functionalities software systems

would display in a social, agent-centered AI or, in other words, the principles

of behavior of the “new” AI.

11.3.1 Autonomous behavior

By autonomy researchers mean the ability of the systems to make their own

decisions and execute tasks on the designer’s behalf. The idea of delegating

some responsibility to the system to avoid tediously writing down code is cer-

tainly very attractive. Moreover, in scenarios where it is difficult to control the

behavior of our systems directly, the ability to act autonomously is essential.

For example, space missions increasingly depend on their unmanned space-

crafts and robots to make decisions on their own: This ability is paramount

since the costs (in time and money) of communication between the space

station and such systems can be prohibitive.

It is precisely this autonomy that defines agents. Traditionally, software

systems execute actions (so-called methods) automatically. Imagine that

the web application in your computer (the user or client) requests to access the

contents of a webpage that is stored in another software system elsewhere (the

server or host). The server cannot deny access to the content of the webpage; it

must execute the “send” method whenever it is requested to do so. By contrast,

agents decide by themselves whether to execute their methods according to

their beliefs, desires, and intentions (Bratman, Israel, and Pollack 1988). Para-

phrasing Jennings, Sycara, and Wooldridge (1998), “what traditional software

systems do for free, agents do for money.”

11.3.2 Adaptive behavior

Secondly, agents must be flexible. When designing agent systems, it is impos-

sible to foresee all the potential situations they may encounter and specify

their behavior optimally in advance. For example, the components of inter-

action in the internet (agents, protocols, languages) are not known a priori.

Agents therefore have to learn from, and adapt to, their environment. This
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task is even more complex when nature is not the only source of uncertainty,

but the agent is situated in a multi-agent system (MAS) that contains other

agents with potentially different capabilities, goals, and beliefs.

Besides, the new systems must be general. An agent must have the compe-

tence to display an action repertoire general enough to preserve its autonomy

in dynamic environments. Certainly, an agent can hardly be called intelligent

if it is not able to perform well when situated in an environment different

from (yet in some ways similar to) the one it was originally designed for.

Indeed, there is no need to learn anything in static, closed domains where

agents have perfect knowledge of state–action transitions. By contrast, intel-

ligence and learning are tightly tied in domains where autonomous agents

must make decisions with partial or uncertain information; that is, in domains

where agents learn without supervision and without the luxury of having a

complete model of the world. Such agents face the so-called reinforcement

learning problem (Kaelbling, Littman, and Moore 1996). In such scenarios, an

agent exists in an environment described by a set of possible states. Each time

an agent executes an action in a state it receives a numerical reward that

indicates the immediate value of this state–action transition – how “good” it

is. This produces a sequence of states, actions, and rewards. The agent’s task

is to learn a policy that maximizes the expected sum of rewards, typically

with future rewards discounted exponentially by their delay. In other words,

the further into the future the predictions are, the less likely the rewards

will count; a sensible principle, since more distant rewards are less probable.

Unlike supervised learning, such as pattern recognition or neural networks,

the learner is not told which actions to take, but instead must discover which

actions yield the most reward by exploiting and exploring their relationship

with the environment. Actions may affect not only the immediate reward but

also the next situation and, through that, all subsequent rewards. These two

characteristics, trial and error search and delayed reward, are the two most

important features of reinforcement learning.

This method has been successfully applied to several organizational prob-

lems in robotics, control, operation research, games, human–computer inter-

action, economics/finance, complex simulation, and marketing.

11.3.3 Social behavior

Agents must also show a social attitude. In an environment populated by

heterogeneous entities, agents need the ability to recognize their opponents,

and to form groups when it is profitable to do so. It is not a coincidence that

most agent-based platforms incorporate multi-agent tools (Luck et al. 2005).

Indeed, some authors state that agent-oriented software engineering needs to

be developed precisely because there is no notion of organizational structure

in traditional software systems (Etzioni and Weld 2007).
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Generally speaking, the design and implementation of multi-agent sys-

tems is an attractive platform for the convergence of various AI technolo-

gies. That is the underlying philosophy of competitions such as RoboCup

(www.robocup.org/), where teams of soccer agents must display their indi-

vidual and collective skills in real time. More importantly, multi-agent sys-

tems play several roles in information technology and telecoms: For clients,

they provide personalized, user-friendly interfaces; as middleware, they

have been used extensively to implement electronic markets and electronic

auctions.

The reasons for this happy marriage between MAS and new technologies

are various. When the domain involves a number of distinct software systems

that are physically or logically distributed (in terms of their data, expertise,

or resources), a multi-agent approach can often provide an effective solu-

tion. Relatedly, when the domain is large, sophisticated, or unpredictable, the

overall problem can be partitioned into a number of smaller and simpler com-

ponents, which are easier to develop and maintain, and which are specialized

at solving the constituent problems. That is, in most real-life applications

(single) agents can grow “too big” to work well, and a divide-and-conquer

strategy, where qualified agents work in parallel, seems more sensible. Exam-

ples include the geographical distribution of cameras in a traffic network or

the integrated approach required to solve complex tasks, for instance the col-

laboration between experts (surgeons, anesthetists, nurses) in an operating

room.

To sum up, it is widely accepted within the AI community that the “new” AI

would need to design and implement multi-agent systems capable of acting

and learning in a quick and efficient manner. The next two sections are

dedicated to describing the basics of multi-agent behavior and multi-agent

learning.

11.4 Multi-agent behavior

Approaches to multi-agent behavior differ mainly in regards to the degree

of control that the designer should have over individual agents and over the

social environment, that is, over the interaction mechanisms (Bond and Gasser

1988; Durfee 1988; Weiss 1999). In Distributed Problem Solving systems (DPS)

a single designer is able to control (or even explicitly design) each individual

agent in the domain – the task of solving a problem is distributed among

different agents, hence the name. In MAS on the other hand, there are multiple

designers and each is able to design only its agent and has no control over

the internal design of other agents.

The design of interaction protocols is also tightly coupled to the issue of

agents’ incentives. When agents are centrally designed they are assumed to

have a common general goal. As long as agents have to co-exist and cooperate
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in a single system, there is some notion of global utility that each agent is

trying to maximize. Agents form teams that jointly contribute towards the

overall goal. By contrast, in MAS each agent will be individually motivated

to achieve its own goal and to maximize its own utility. As a result, no

assumptions can be made about agents working together cooperatively. On

the contrary, agents will collaborate only when they can benefit from that

cooperation.

Research in DPS considers how work involved in solving a problem can

be divided among several nodes so as to enhance the system’s performance.

That is, the aim is to make independent nodes solve a global problem by

working together coherently, while maintaining low levels of communication.

MAS researchers are also concerned with coordinated interaction, but must

build agents without knowing how their opponents have been designed. The

central research issue in MAS is how to have these autonomous agents identify

common ground for cooperation, and choose and perform coherent actions.

In particular, DPS researchers see negotiation as a mechanism for assigning

tasks among agents and for allocating resources, using automated contracting.

Since all agents have a common goal and are designed to help one another (fol-

lowing the so-called benevolence assumption), there is no need to motivate an

agent to agree to execute a set of actions. Alternatively, multi-agent planning

is another DPS approach that avoids incoherent and inconsistent decisions by

planning beforehand exactly how each agent will act and interact. Multi-agent

planning has been formalized by extending single-agent planning languages

and techniques to describe complex mental states – usually by defining social

plans in terms of common beliefs and joint intentions (Rao, Georgeff, and

Sonenberg 1992).

On the other hand, MAS researchers have autonomous agents use negotia-

tion to share the work associated with carrying out a previously agreed plan

(for the agents’ mutual benefit), or to resolve outright conflict. In MAS sys-

tems, agents typically make pair-wise agreements through negotiation about

how they will coordinate, and there is no global control, no consistent knowl-

edge, and no shared goals and success criteria. So, the main purpose of this

incentive contracting mechanism is to “convince” agents to reach reasonable

agreements and do something in exchange for something else. In this case, AI

researchers have followed the studies on bargaining with incomplete infor-

mation developed in economics and game theory.

11.4.1 Negotiation

Since negotiation in MAS is probably the most common coordination tech-

nique, it is worth considering it in some detail (Rosenschein and Zlotkin 1994;

Jennings et al. 2001; Kraus 2001).
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In a MAS setting, agents are given a negotiation mechanism consisting of

a protocol and a set of strategies over a set of deals. Negotiation is defined

as a process through which at each temporal point one agent proposes an

agreement and the other agent either accepts the offer or does not. If the

offer is accepted, then the negotiation ends with the implementation of the

agreement. Otherwise, the second agent has to make a counteroffer, or reject its

opponent’s offer and abandon the process. Thus the protocol specifies when

and how to exchange offers (i.e., which actions the agents will execute or

abstain from executing and when). For example, an Offer(x, y, δi, t1)

means that the negotiation process will start at time t1 with agent x offering

agent y a deal δi from the set of potential deals, typically of the form “I will do

action 1 in exchange for action 2” or {Do(x, a1), Do(y, a2)}. Then, in

the next negotiation step, agent y will counteroffer, either with Accept(y,

δi, t2), in which case the negotiation episode ends with the implementation

of the agreement, δi; or with Reject(y, δi, t2), so that negotiation

fails. Or, alternatively, agent y can send a response, Offer(y, x, δj,

t2), with, say, δj = {Do(x, a3), Do(y, a2)}, “I would prefer you to

execute action a3 rather than a1,” so that the negotiation progresses to the

next stage in which the same routine applies.

Which specific offers the agents make depends on their negotiation strategy.

This is a function from the history of the negotiation to the current offer that is

consistent with the protocol. It determines what move an agent should make

to maximize its own utility, given the protocol, the negotiation up to this

point, and the agent’s beliefs and intentions. Such strategies also take into

account how risk-averse the agent might be; that is, how reluctant it is to

accept a bargain with an uncertain outcome rather than another bargain with

a more certain, but possibly lower, outcome.

Usually strategies are required to be in Nash equilibrium: That is, no agent

should have an incentive to deviate from agreed-upon strategies. Once a

strategy is adopted, under the assumption that agent x uses it, agent y can-

not do better by using a different strategy. To illustrate this, consider the

so-called Prisoners’ Dilemma. Two suspects are arrested by the police. The

police have insufficient evidence for a conviction, and, having separated both

prisoners, visit each of them to offer the same deal. If one testifies (defects

from the other) and the other remains silent, the betrayer goes free and the

silent accomplice receives the full ten-year sentence. If both remain silent,

both prisoners are sentenced to only six months in jail for a minor charge.

If each betrays the other, each receives a five-year sentence. Each prisoner

must choose to betray the other or to remain silent. The suspects cannot talk

to each other to reach an agreement. In this case, the Nash equilibrium is

that both testify. Each suspect knows that if one chose to remain silent, the

other one would do better by testifying, thus breaking the “remain silent equi-

librium.” Nash equilibrium is a particularly important attribute, because it is
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seen as the only sustainable outcome of rational negotiation in the absence

of externally enforceable agreements. Yet, this solution presents serious

drawbacks.

First, there are situations in which there is no Nash equilibrium. For instance,

Matching Pennies is an example of games where one player’s gain is exactly

equal to the other player’s loss. Second, there are situations in which there are

several pure Nash equilibria. In a simplified example, assume that two drivers

meet on a narrow road. Both have to swerve in order to avoid a head-on

collision. If both swerve to the same side they will manage to pass each other,

but if they choose different sides they will collide. In this case there are two

pure Nash equilibria: Either both swerve to the left, or both swerve to the right.

In this example, it doesn’t matter which side both players pick, as long as they

both pick the same. Since both strategies are equally good, one could just

toss a coin to choose between the two alternatives. There are other situations,

however, in which one would not have that choice: In the game Battle of the

Sexes both players prefer engaging in the same activity over being alone, but

their preferences differ over which activity they should engage in. Player 1

prefers that they both party while player 2 prefers that they both stay at home.

In this case, there are two pure Nash equlibria but no agreement is reached.

Finally, in accepting a Nash-equilibrium solution both agents may lose more

profitable agreements. This is the case in the Prisoner’s Dilemma: The Nash

equilibrium for this game is a sub-optimal solution, which leads both players

to defect, even though each player’s individual reward would be greater if

they both played cooperatively and remained silent.

Thus, instead of Nash-equilibrium constraints and in order to prevent irra-

tional attitudes, the following assumptions about social rationality are typ-

ically made: (1) Sincerity: No agent will attempt to have another believe a

proposition that it either knows or believes to be false or a proposition that it

wants to be false (e.g., agents cannot commit themselves to execute actions

that they are not able to perform). (2) Honesty: Agents have to act according

to their beliefs. (3) Fair play: agents must abide by the agreed deals. (4) Socia-

bility: In case of indifference, agents must accept others’ offers, and deals

must always be individually rational.

11.4.2 Argumentation

The assumptions about social rationality required to make the previous

approach work are not intuitive, and in any case, many real agents calcu-

late their options individually in terms of self-interest, ignoring negotiations

and agreed commitments. In response, many members of the MAS commu-

nity have adopted alternative approaches to MAS coordination. In particular,

several studies on argumentation-based negotiation have been presented as a
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powerful technique for cooperating and solving conflict situations (Rahwan

et al. 2003). In this type of negotiation agents open up the agreement space

by exchanging not only proposals and counterproposals but also reasons sup-

porting them. In addition, agents commit themselves to accept the results

of the argumentation, which follows strict rules regarding the validity and

acceptability of the arguments and their ordering in argumentative types.

For instance, imagine the following situation: Agent 1 has a hammer, a

screw, a screwdriver, and a picture it intends to hang by using the “plan”

{hammer + nail + picture}. Agent 2, on the other hand, owns a

mirror and a nail, has as its goal to hang the mirror, and plans to execute the

plan {hammer + nail + mirror}. Imagine that agent 1 knows agent 2

has a nail and asks for it. Obviously, agent 2 cannot agree to such a request

since it needs the nail to hang the mirror. Using a negotiation protocol, agent

2’s rejection will end the episode and neither agent will achieve their respective

goals. However, if they are allowed to argue, agent 2 can explain why it is

rejecting agent 1’s offer (“I need the nail to hang my mirror”), and with this

information, agent 1 can persuade agent 2 that in fact there is another way

to hang its mirror, a new plan that uses a screw and a screwdriver instead of

a nail. If agent 2 does not find a flaw in agent 1’s argument it is forced to

accept it. Since this seems to be the case, the agents agree to exchange the

nail for the screw and the screwdriver and, as a consequence, both achieve

their objectives.

Argumentation relies on the assumption that the agents will honor the rea-

soning underlying the agreements – a difficult assumption to maintain in

practice. Alternative approaches have investigated how to make MAS coor-

dination mechanisms “enforceable” via social laws, institutions, conventions,

and even rights (Alonso 2004).

This completes our account of the main issues and techniques in multi-agent

behavior. However, as introduced in Section 11.3.3, behaving in complex

dynamic scenarios such as MAS is not a one-shot task but a process of

refinement through which agents adapt their strategies to each other’s. Hence,

dealing with multi-agent learning is paramount when studying multi-agent

behavior.

11.5 Multi-agent learning

Research on machine learning has been mostly independent of agent research

and only recently has it received attention in connection with agents and

multi-agent systems (Stone and Veloso 2000; Alonso et al. 2001; Alonso

2007; Vohra and Wellman 2007; Tuyls and Weiss 2012). This is in some ways

surprising because the ability to learn and adapt is arguably one of the most

important features of intelligence. As discussed above, intelligence implies a
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certain degree of autonomy that in turn requires the ability to learn to make

independent decisions in dynamic, unpredictable domains such as those in

which agents co-exist.

Key issues in multi-agent learning relate to which family of techniques

should be used, and, indeed, what multi-agent learning is. At one level, agents

and multi-agent systems can be viewed as yet another application domain

for machine-learning systems, admittedly with its own challenges. Research

taking this view is mostly reduced to applying existing single-agent learning

algorithms more or less directly to MAS, so that multi-agent learning is only

seen as an emergent property. Even though this could be interesting from a

MAS point of view, it does not seem overly interesting for machine learning

research. Nevertheless, this is the direction most learning research for MAS

has followed.

Existing learning algorithms have been developed for single agents learning

separate and independent tasks. Alternatively, multi-agent systems pose the

problem of distributed learning, that is, many agents learning separately to

carry out a joint task. Once the learning process is distributed amongst several

learning agents, such learning algorithms require extensive modification, or

completely new algorithms need to be developed. In distributed learning,

agents need to cooperate and communicate in order to learn effectively; these

issues are being investigated extensively by MAS researchers but to date they

have received little attention in the areas of learning.

Regarding learning techniques, supervised learning methods are not easily

applied to multi-agent scenarios since they typically assume that the agents

can be provided with the correct behavior for a given situation. Thus, most

researchers have used reinforcement learning methods, to the point that the

multi-agent learning problem can be redefined as the reinforcement learn-

ing problem for multi-agent systems (Busoniu, Babuska, and De Schutter

2008).

Specifically, the simplest way to extend single-agent learning algorithms to

multi-agent problems is just to make each agent learn independently. Agents

learn “as if they were alone” (Weiss and Dillenbourg, 1999). Communication or

explicit coordination is not an issue therefore – cooperation and competition

are not tasks to be solved but just properties of the environment. Likewise,

agents do not have models of other agents’ mental states or try to build

models of other agents’ behaviors. However simple this approach to multi-

agent learning may be, the assumption that agents can learn efficient policies

in a MAS setting independently of the actions selected by other agents is

implausible. Intuitively, the most appealing alternative is to have the agents

learn Nash-equilibrium strategies. However, as described in Section 11.4.1 the

concept of Nash equilibrium is problematic, and the methods formulated using

such approach suffer from a plethora of technical difficulties that make their

application rather restricted.
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11.6 Challenges

Agent-based applications have enjoyed considerable success in manufactur-

ing, process control, telecommunications systems, air traffic control, traffic

and transportation management, information filtering and gathering, elec-

tronic commerce, business process management, entertainment, and medical

care (Jennings and Wooldridge 1998). Nonetheless, one of the key problems

has been the divide between theoretical and practical work, which have, to

a large extent, developed along different paths. As a consequence, designers

lack a systematic methodology for clearly specifying and structuring their

applications as (multi-)agent systems. Most agent-based applications have

been designed in an ad hoc manner, either by borrowing a methodology

from more traditional approaches or by designing the system on intuition and

(necessarily limited) experience. At any rate, if agents and multi-agent sys-

tems are to become the standard in the development of emerging web-based

applications – as their advocates believe they should – then some impor-

tant developments in agent-oriented methodologies and technologies will be

needed.

First, an agent-modeling language to specify, visualize, modify, construct,

and document (multi-)agent systems would have to be built. Agent developers

still characterize their systems as extensions of traditional systems, and thus

Unified Modeling Language (UML) is the de facto standard language in the

design and specification of agents and multi-agent systems. This drawback

extends to the lack of proper verification methods and techniques for agent

systems.

Second, while some programming features, such as abstraction, inheritance,

and modularity, make it easier to manage increasingly more complex systems,

Java and other programming languages cannot provide a direct solution to

agent implementation. So far, agent-oriented programs have been used mainly

to test ideas rather than for developing any realistic systems (but see Bordini

et al. 2005 for a survey of multi-agent programming, languages, platforms,

and applications).

Third, standards for interoperability between agents will need to be estab-

lished. The debate should not be focused exclusively on the pros and cons of

different agent-communication languages and protocols but also on ontolo-

gies – that is, on which types of entities and concepts define an agent domain

and what their properties and relations are. Currently, ontologies are often

specified informally or are implicit in the agent implementation. For true

interoperation, agents will need explicitly encoded, sharable ontologies.

A fourth issue is reusability. If multi-agent systems are to be sustain-

able, it will be necessary to develop techniques for specifying and main-

taining reusable models and software for MAS, agents, and agent compo-

nents. Reusability is also needed for mobility. If agents are to roam wide-area
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networks such as the WWW, then they must be capable of being continuously

reused in different scenarios.

Finally, if people are to be comfortable with the idea of delegating tasks

to agents, then issues relating to trust will have be addressed. These include

authentication, privacy of communication and user’s personal profile informa-

tion, auditing, accountability, and defense against malicious or incompetent

agents.

All in all, although there is a need to keep theory and practice at the

same pace, agent-centered AI has already brought mature and integrative

techniques and procedures that are ripe for exploitation. It can be claimed

that the agent paradigm has served as a bridge between traditional AI systems

and the software applications that have emerged in the last couple of decades.

When on the occasion of AI Magazine’s twenty-fifth anniversary experts were

asked about AI’s state of the art, the shared feeling was that AI needed to get

back to building intelligent systems of general competence (Leake 2005). It

seems that agents and MAS may provide us with the concepts, methodologies

and techniques necessary to realize AI’s original goal in the services and

applications that the internet offers.

11.7 Conclusion

AI systems have to make intelligent decisions. But, most importantly, they

must show that they do so by behaving accordingly. This chapter has focused

on the role of agents in the analysis of the behavior of AI systems. After all,

that is what agents do: They act. Hence, the study of behavior and action in

AI must talk about agents. In fact, there are strong reasons for thinking that

agents are the paradigm that will embody the “new” AI. More precisely, in the

era of the internet and web services, AI will come to focus on how collections

of autonomous agents coordinate their behavior (multi-agent behavior) and

on how they learn to do so (multi-agent learning).

Further reading

For those wishing to investigate agents and MAS, the following two books are

easy to read and full of useful references to specialized topics:

Russell, S. and Norvig, P. (2010). Artificial Intelligence: A Modern Approach (3rd

edn.). Upper Saddle River, NJ: Prentice Hall. The third edition of the first AI

handbook that shamelessly introduced AI from an agent’s perspective. See in

particular the second chapter on Intelligent Agents.

Wooldridge, M. (2009). An Introduction to Multiagent Systems. Chichester, UK:

John Wiley & Sons. The second edition of an ideal introductory text on agents
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and multi-agent systems, despite being somewhat limited in its coverage of

learning.

The best online references for further reading on agents are the AI Topics/Agents

webpage hosted by the Association for the Advancement of Artificial Intel-

ligence (www.aaai.org/), the UMBC AgentWeb (http://agents.umbc.edu/), and

AgentLink III, the European Coordination Action for Agent Based Computing

(www.agentlink.org/).
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12 Artificial emotions and machine consciousness

Matthias Scheutz

12.1 Introduction

Over the last decade, interest in artificial emotions and machine conscious-

ness has noticeably increased in artificial intelligence (AI), as witnessed by a

number of specialized conferences and workshops dedicated to these themes.

This interest is in part based on the recognition that emotions and con-

sciousness have useful roles in humans and other animals, and that under-

standing these roles and implementing models of them on computers might

help in making artificial agents smarter. But can machines even have emo-

tions and be conscious, and if so, how could we go about designing such

machines?

The goal of this chapter is to present an overview of the work in AI on

emotions and machine consciousness, with an eye toward answering these

questions. Starting with a brief philosophical perspective on emotions and

machine consciousness to frame the work, the chapter first focuses on artifi-

cial emotions, and then moves on to machine consciousness – reflecting the

fact that emotions and consciousness have been treated independently and by

different communities in AI. The chapter concludes by discussing philosophi-

cal implications of AI research on emotions and consciousness.

12.2 The philosophical perspective

Prima facie, it seems that research on emotions and consciousness in AI would

have to start from the assumption that it is actually possible to implement

emotions and consciousness in computational artifacts. Why else would one

bother attempting this goal if it cannot be reached in principle?

It turns out that AI researchers have typically not been impressed with

philosophical arguments about the possibility or impossibility of machines

replicating human mental states. Rather, they have always pursued a the-

oretically unencumbered approach to investigating possible algorithms and

mechanisms for achieving intelligent behavior. There are basically two main

attitudes in AI toward the question whether machines actually can have emo-

tions (e.g., like human emotions) or be conscious (e.g., like a normal human
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adult in waking states). The first is a pragmatic attitude that underlies much

of AI research and connects to related attitudes in psychology: Emotion terms

and “consciousness” are used in a pragmatic operational way that allows

researchers to make progress without having solved all the conceptual prob-

lems that beleaguer these concepts. Researchers in AI who are assuming this

attitude will look at results from psychology for the types of processes that

psychologists take to underlie or be involved in human mental activity and

attempt to formalize aspects of them algorithmically. The goal here is not to

replicate or model human mentality in a biologically or psychologically plau-

sible way, but rather to use whatever principles could be taken from emotion

processes or theories of consciousness to improve the performance of artificial

agents (and possibly surpass human performance).

The other attitude is to seek to refine, revise, or replace emotion concepts or

concepts of consciousness as a result of attempting to formally specify pro-

cesses that can implement emotions or bring about consciousness. This attitude

is closely aligned with the endeavor of computational modeling in cognitive

science, where the goal of a computational model is to replicate human per-

formance while providing mechanisms that explain how humans perform a

given task. Consequently, the way algorithms are generated, implemented,

and tested has implications for concepts of emotion and consciousness, which

in turn will require a philosophical elaboration.

Clearly, the first attitude is sufficient for research goals in AI (e.g., to build

intelligent agents), yet the second attitude will also allow AI researchers to

connect to other fields and open up their algorithms and implementations to

philosophical and psychological scrutiny. That way, psychologists might be

able to derive new experimental designs that can test predictions made by the

models, and philosophers might be able to sharpen their intuitions about what

these concepts are supposed to refer to.

Historically, the questions of whether machines can have emotions or can

be conscious have come up at various times in different fields. Here, we

will briefly review the philosophical perspectives of two pioneers in AI and

philosophy of mind – Alan Turing and Hilary Putnam, respectively.

Alan Turing, in his famous 1950 paper “Computing machinery and intelli-

gence” (Turing 1950) considers nine objections to his “imitation game,” which

has subsequently become known as the “Turing Test.”1 The fourth of these,

the “Argument from Consciousness,” attempts to dismiss machine intelligence

by pointing to the lack of emotions and feelings in machines. Here, Turing

cites Professor Geoffrey Jefferson as stating that

1 This an envisioned setup where a human subject has to interact via a chat-like computer

interface with two other participants, a human and a machine, without knowing which is

which. The subject’s goal is to determine which of the participants is human and which the

computer within a given time period through natural language interactions.
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Not until a machine can write a sonnet or compose a concerto because of

thoughts and emotions felt, and not by the chance fall of symbols, could we

agree that machine equals brain – that is, not only write it but know that it had

written it. No mechanism could feel (and not merely artificially signal, an easy

contrivance) pleasure at its successes, grief when its valves fuse, be warmed by

flattery, be made miserable by its mistakes, be charmed by sex, be angry or

depressed when it cannot get what it wants. (Quoted in Turing 1950, pp. 445–6).

Turing diagnoses this line of argument as ultimately promoting a solipsistic

perspective where “the only way by which one could be sure that a machine

thinks is to be the machine and to feel oneself thinking” (Turing 1950, p. 446).

He points out that the same line of argument would then also hold for people

(i.e., one could only be sure that another person has certain mental properties

or is in a particular mental state if one were that other person), a problem

known in philosophy as the “other minds problem.” In other words, he reduces

the other minds problem for machines to the other minds problem for humans.

Moreover, he points out that a sonnet-writing machine that gives reason-

able answers to an interrogator about its own sonnet using viva voce (and

thus presumably using intonation in a humanly plausible way, including the

expression of emotions) would likely not be viewed as an “easy contrivance.”

The assumption here is that a machine that can interact in natural spoken lan-

guage in human-like ways would cause people to view it as having pleasure,

pain, and so on, in very much the way people infer internal states of other

people based on their interactions (e.g., from the tone in a person’s voice).

The question of whether machines can have feelings and can be conscious

has been revisited in detail by Hilary Putnam. In his 1964 paper “Robots:

Machines or artificially created life?” (Putnam 1964), Putnam wants us to

imagine the robot Oscar which is psychologically isomorphic to a human –

that is, which has internal states that play the same causal roles as our mental

states do. Suppose Oscar is having the “sensation” of red in this sense, then

the question arises whether it is really having a sensation of red, that is,

whether Oscar is actually seeing anything, whether Oscar is feeling, whether

Oscar is conscious. Like Turing, Putnam links this question to the other minds

problem: “Whether, and under what conditions, a robot could be conscious is

a question that cannot be discussed without at once impinging on the topics

that have been treated under the headings Mind–Body Problem and Problem

of Other Minds” (p. 669). After dispelling several objections to the claim that

Oscar is conscious, he concludes that this question

calls for a decision and not for a discovery. If we are to make a decision, it seems

preferable to me to extend our concept so that robots are conscious – for

“discrimination” based on the “softness” or “hardness” of the body parts of a

synthetic “organism” seems as silly as discriminatory treatment of humans on

the basis of skin color. (p. 691)
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Turing and Putnam’s view that machines can be conscious in principle has

since been echoed by various philosophers (e.g., Lycan 1987). In all cases

the assumption is that machines will have to have the right kind of internal

structure and cognitive organization – the right type of architecture – for

them to be able to have emotions and to be conscious (whether they then will

actually instantiate emotions and/or be conscious will depend on additional

factors, as in the human case). The question about the right kind of architecture

that can implement emotions and consciousness, however, is exactly what

research in AI has attempted to tackle.

12.3 Emotions in AI

Different forms of emotions have been studied to varying degrees ever since

the beginning of AI (e.g., Pfeifer 1988), despite the original focus of AI on

deliberative, non-emotional mechanisms. More recently, however, work on

emotions and emotional agents has become much more mainstream, not least

due to Aaron Sloman’s work on emotional architectures (Sloman and Croucher

1981) and Ross Picard’s work on “affective computing” (Picard 1997), which

stressed the importance of human affect and explored how computers can

be made “affect-aware” or emotional. Today, we witness growing numbers

of research communities that investigate aspects of emotion and affect, from

“emotional” or “affective” user interfaces to “believable” synthetic characters

and life-like animated agents with emotions, to emotional or emotion-aware

pedagogic and instructional agents, to emotional virtual agents and robots

(see Trappl, Petta, and Payr 2002 for an overview).

The motivations for the various research directions and their specific aims

are naturally quite different. While for some emotions are about making ani-

mated characters more believable (e.g., by endowing them with emotional

facial expressions), for others recognizing emotions is crucial for a system to

be able to adapt to its user’s needs. Yet others take emotions to be an inte-

gral part of the control of complex agents, and thus focus on architectural

mechanisms that are required for emotion processes. But common to all these

different incentives for exploring emotions is the tacit assumption that emo-

tions, in one form or another, may have important applications in artificial

agents.

12.3.1 Functional roles of emotions

One major difficulty connected to concepts such as emotion (and conscious-

ness as well) is that they are not clearly specified, and likely not even clearly

specifiable in principle. Hence, there is no clear sense in psychology of exactly

what an emotion is (Griffiths 1997), and psychological accounts vary greatly
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as to how emotions are individuated (e.g., based on facial expressions, behav-

ioral patterns, brain regions, etc.). The conceptual difficulties with emotion

concepts, however, have not been a deterrent to attempts to implement pro-

cesses that at least resemble emotion processes, even though researchers in

AI often disagree on what they take “emotion” to be and what they believe it

means to implement emotions in artificial agents (e.g., Scheutz 2002).

Much research on the role of emotions in artificial agents has been moti-

vated by an analysis of possible functional roles of emotions in natural sys-

tems. The underlying assumptions are that (1) emotions have functional roles

in agent architectures, and that (2) having states with the right functional

roles is sufficient for having emotions, independent of the particular physical

makeup of the agent. While most researchers in the affective sciences will

agree on (1) (even though there are many examples of the effects of dysfunc-

tional affect as well), their views diverge on (2) – whether having the right kind

of functional architecture is all there is to having a particular emotion. For

example, they might hold that various bodily processes are involved in many

affective states: If particular biochemical processes, such as the secretion of

particular hormones, or changes in particular neurotransmitters, are taken to

be essential to, or constitutive of, affect, then artificial agents will, by defini-

tion, not be capable of instantiating affective states so construed. (Compare

the views some philosophers have voiced about consciousness or qualitative

states, e.g., Searle 1992.) Artificial agents will, however, still be capable of

instantiating the same kinds of control processes as those implemented in

neural activity in animals, since these are, also by definition, independent

of the physical makeup of an agent, and this may be sufficient for AI pur-

poses (e.g., for an artificial agent to be able to perform a particular task). If,

on the other hand, the exact nature of bodily states and processes does not

play a causal role in the functioning of affect processes, so that, for exam-

ple, simulated hormonal systems could be used to achieve the same effects

(e.g., Cañamero 1997), then artificial agents will be able to instantiate affect

processes if they have the right architectural prerequisites.

Regardless of what stance one takes on the qualitative nature of emotions

(i.e., on the question of “what it is like to experience state X”), the functional

aspects of emotions in the context of an agent’s control system can be inde-

pendently considered. In particular, there seem to be twelve potential roles of

emotions for artificial agents (see also Scheutz 2004):

1 Alarm mechanisms – e.g., fast reflex-like reactions in critical situations,

such as fear processes, that interrupt current behavior and initiate a retreat

response, moving the agent away from the danger zone.

2 Action selection – e.g., deciding what to do next based on the current

emotional state, such as switching from exploration to foraging behavior

based on the agent’s needs.
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3 Adaptation – e.g., short- or long-term changes in behavior due to affective

states, such as adapting one’s gait to uneven terrain based on negative

affect generated by sensors.

4 Social regulation – e.g., using emotional signals to achieve social effects,

such as aggressive display to deter another agent from interfering with

one’s activity.

5 Learning – e.g., using affective evaluations as utility estimates in rein-

forcement learning, such as learning the utility of different behaviors to

achieve goals in different contexts.

6 Motivation – e.g., adopting goals as part of an emotional coping mecha-

nism, such as when a high level of distress and frustration leads to adopting

the goal of asking a human supervisor for help)

7 Goal management – e.g., the creation of new goals or reprioritization of

existing ones, such as using positive and negative affect to modify cost

estimates used in the calculation of the expected utility of a goal.

8 Strategic processing – e.g., the selection of search strategies based on

overall affective state, such as using positive and negative affect to bias

search algorithms to top-down versus bottom-up search.

9 Memory control – e.g., the strategic use of affective bias on memory access

and retrieval as well as decay rate of memory items, such as using current

affective state to rank memory items with similar affect as better matches.

10 Information integration – e.g., emotional filtering of data from various

information channels or blocking of such integration, such as ignoring

positively valenced information from vision sensors about a happy face

when the acoustic information suggests an angry voice.

11 Attentional focus – e.g., selection of data to be processed based on affective

evaluation, such as biasing visual search in favor of objects the agent

highly desires.

12 Self model – e.g., using affect as a representation of “what a situation

is like for the agent,” such as using the overall affective evaluation of

different components of the agent’s control system as a measure of the

agent’s overall mood and how it “feels”.

While this list is not intended to be exhaustive, it does point to the varied

functional nature of emotions, from architectural roles to roles in social regu-

lation. And it provides a frame within which to locate past accomplishments

and future directions in research on architectural aspects of affect.

12.3.2 Communicative vs. architectural aspects of emotion

Work on emotions in AI can be roughly divided into two strands (with a small

overlap): communicative aspects and architectural aspects.
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Communicative aspects of emotions are mostly concerned with the fourth

role (social regulation) and have been explored mainly by the human–

computer interaction (HCI) and, more recently, the human–robot interaction

(HRI) communities. Efforts focus on emotion recognition, emotional expres-

sion, and sometimes on how to connect the two to improve the experience

of human users with an interactive system (e.g., via the user interface on

a computer or via the sensory and effector repertoire of a robot; Scheutz,

Schermerhorn, and Kramer 2006). Both communities have made important

advances in understanding the kinds of emotional interactions people engage

in (e.g., Brave and Nass 2003) and how to make machines recognize and signal

them (e.g., how to explore temporal patterns to detect frustrated vs. delighted

human smiles; Hoque, McDuff, and Picard 2012).

The second main strand, the architectural aspect of emotion, has focused on

the role and utility of emotions in agent architectures (such as using emotional

evaluations as quick heuristics in decision making) and is thus less concerned

with the social communicative aspects of emotions. This strand attempts to use

emotion mechanisms to improve the agent’s capabilities, and most work here

has focused on the first five roles. In particular, attention has been given to

affective or emotional action selection, both in simulated agents (e.g., Gadanho

2003) and robotic agents (Murphy et al. 2002). Similarly, quite a bit of work has

investigated the utility of evaluations that are internally generated and reflect

some aspect of the agent’s internal state (rather than external environmental

states) for reinforcement learning, even though most of these investigations do

not call these evaluations “affective” (e.g., Ichise, Shapiro, and Langley 2002).

Yet, surprisingly little work has focused on investigating roles (6) through

(12), although there are some notable exceptions (e.g., Gratch and Marsella

2004a). Note that especially the last four roles might turn out to be critical

for reflective, and thus conscious, systems (e.g., as described in Sloman and

Chrisley 2003). For, as we shall see in Section 12.4 on machine consciousness,

mechanisms for attentional control, information integration, working memory

and its access control, and an agent’s self-model are all taken to be essential

ingredients for developing conscious machines.

There are several crucial differences between research on the communicative

and the architectural aspects of emotions. Most importantly the former does

not require the instantiation of emotional states within a system. For example,

an agent does not have to be itself emotional (or capable of emotions) to be able

to recognize emotional expressions in human faces. The latter, on the other

hand, must claim that emotional states of a particular kind are instantiated

within the system. Moreover, researchers on the communicative aspects of

emotions do not need a satisfactory theory of emotion (i.e., a theory of what

emotional states are) to be able to produce working systems. Being able to

measure changes in a user’s skin conductance, breathing frequency, and so

on and using this information to change the level of detail in a graphical
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user interface does not automatically commit one to claiming that what was

measured was the user’s level of frustration, even though this seems to be

true in some cases. In fact, a pedagogical agent might learn important facts

about its user (e.g., the effectiveness of its instructional strategies) based on

such measures without requiring any representation of the user’s emotional

processes nor any emotional processes itself.

Contrariwise, architectures that claim to use emotional mechanisms (e.g.,

for the prioritization of goals or for memory retrieval) will have to make a

case that the implemented mechanisms indeed give rise to “emotional states”

in a clearly specified sense. Otherwise there is no sense, nor any reason, to

call them that, even though there is, and always has been, a tendency in AI

to present simplistic AI programs and robots as if they justified epithets like

“emotional,” “sad,” “surprised,” “afraid,” “affective,” and so on, without any

deep theory justifying these labels (e.g., McDermott 1981). Consequently, the

architectural route faces the challenge of saying exactly what it means to

“implement emotional states” of the kinds in question.

Researchers pursuing the architectural strand on emotions in AI can be

further divided into two main categories: those who attempt to model overt,

observable effects of emotion behavior (call these display models of emotions),

and those who aim to model the internal processes that bring about emotional

behavior (call these process models of emotion).

Most work on architectural aspects of emotion in AI to date has focused on

display models, which are intended to get the “input–output mapping” of a

given behavioral description right (e.g., the right kind of emotional response

for a given context, such as a fear expression on a robot’s face when there

is a rapidly approaching object in front of it). In the extreme case, such a

mapping could be as simple as that employed in an animated web-based

shopping agent which displays a surprised face if the user attempts to delete

an item from the shopping basket. Architectures of this kind are found in many

so-called “believable agents,” where the primary goal is to induce a human

observer to think that the agent is in a particular emotional state (see, e.g.,

Bates, Loyall, and Reilly 1994 for simulated agents, and Murphy et al. 2002

for robots). Whether the agent is indeed in the particular state is irrelevant.

In fact, emotions are here often represented as states or values of “emotion

variables,” either qualitatively, as suggested by emotion terms (e.g., “happy”,

“afraid”, etc.), or quantitatively, using numeric values (e.g., the agent is “0.4

happy,” “0.1 afraid,” etc.). And while some allow agents to be in only one

state at a time, others allow for “emotion blends” (mixtures of simultaneously

present emotional states), where individual emotions and their intensities span

a multi-dimensional space.

Note that these features should not be taken to imply that the design of

the architecture was devoid of biological motivation. Quite the opposite is

true: Most (if not all) display models derive their inspiration from research in

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139046855.016
https://www.cambridge.org/core


255 Artificial emotions and machine consciousness

the affective sciences. However, their goal is not to replicate any particular

empirical data from animal or human research, but rather to explore possible

mechanisms for yielding the desired observable effects.

The main problem with display models of emotions is that they are ulti-

mately silent about the role of emotions in agent architectures, for they may

or may not actually implement emotional processes to achieve the desired

overt behaviors. And even if they do, they may tell us little about the role of

emotions. For although the implemented states are often labeled with familiar

terms, they differ significantly from those usually denoted by these terms.

A state labeled “surprise,” for example, may be functionally defined to be

triggered by loud noises and have very little in common with the complex

processes underlying notions of “surprise” in humans and various animals,

which involve the violation of a predicted outcome. (For a state so defined,

“startle” would be the more appropriate label.)

In contrast, process models are intended to model and simulate some

aspects of emotional processes as they unfold. As many psychologists and AI

researchers have pointed out (e.g., Pfeifer 1988; Cosmides and Tooby 2004),

emotion concepts are best characterized as denoting enduring processes of

behavior control: action and reaction, adjustment and modification, anticipa-

tion and compensation of behavior in various (frequently social) situations.

Often it is not a single inner state of an agent architecture that determines

whether an agent experiences or displays some emotion, but rather a whole

sequence of such states in combination with environmental states. “Fear,” for

example, does not refer to the makeup of an agent at a particular moment

in time but to the unfolding of a sequence of events, starting from the per-

ception of a potentially threatening environmental condition, to a reaction of

the agent’s control system, to a reaction of the agent’s body, to a change in

perception, and so on. Process models are thus much more complex than dis-

play models since they focus on the internal processes (and processing states)

involved in emotions, typically drawing on a (psychological, neurological,

etc.) theory of emotion (Panksepp 1998; Ortony, Clore, and Collins 1988).

12.3.3 Process models of emotion

Process models are based on the various components that are characteristic

of emotion processes: a perceptual component that can trigger the emotion

process; a visceral component that affects homeostatic variables of the agent’s

body; a cognitive component that involves belief-like states as well as var-

ious kinds of deliberative processes (e.g., redirection of attentional mecha-

nisms, reallocation of processing resources, recall of past emotionally charged

episodes, etc.); a behavioral component that is a reaction to the affect process

(e.g., in the form of facial displays, gestures or bodily movements, etc.); and

an accompanying qualitative feeling (“what it is like to be in or experience

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139046855.016
https://www.cambridge.org/core


256 Matthias Scheutz

state S”). No single aspect is necessary for emotion, nor is any single aspect

sufficient on its own. Yet, most of them are taken to be part of the many forms

of human emotions we know from our own experience.

Process models themselves can be categorized into two main classes, based

on whether they are aimed at explaining low-level neurological structures

and mechanisms of emotion (“low-level process models”), or whether they are

intended to model higher-level emotion processes (“high-level process mod-

els”). Most research on low-level process models is concerned with Pavlovian

conditioning and is targeted at neural structures and processing mechanisms

(hence, most low-level models are “neural network” models). Higher-level

models of emotions are intended to capture more cognitive aspects involved

in affect processes and are typically concerned with a wider range of affect

(hence, most higher-level models are “symbolic” models).

The most extensively developed general low-level models are Grossberg’s

CogEM models (e.g., Grossberg and Schmajuk 1987), which are intended to

show interactions between emotional and non-emotional areas in the brain

(e.g., the amygdala vs. the sensory or prefrontal cortices). CogEM models can

account for several effects in Pavlovian fear conditioning, but have not been

directly applied to empirical data.

Specific low-level affect models, on the other hand, are targeted at mod-

eling the amygdala, which performs several functions in emotion processing

(LeDoux 1996). The lateral amygdala, for example, has been shown to be

involved in fear conditioning (Blair, et al. 2003), and a preliminary computa-

tional model of associative learning in the amygdala has been developed and

tested in three associative learning tasks (Balkenius and Morén 2001). More-

over, recent evidence from studies with rats suggests that the amygdala, in

particular the frontotemporal amygdala, integrates sensory information and

encodes affective evaluations as part of fear memory (Fanselow and Gale

2003). LeDoux and colleagues have hypothesized a dual pathway model of

emotional processing in the amygdala, which they tested in auditory fear

conditioning studies (LeDoux 1996). These models have been also used in

simulated lesion studies and successfully compared to data from actual lesion

studies with rats.

While all low-level models are neural network models, higher-level mod-

els comprise both connectionist and symbolic approaches. An example of

a high-level connectionist approach is the ITERA model (Nerb and Sperba

2001), which is designed to study how media information about environmen-

tal problems influences cognition, emotion, and behavior. Facts, input types,

emotions, and behavioral intentions are all represented in terms of individ-

ual neural units that are connected via excitatory and inhibitory links and

compete for activation.

Most attempts to model emotions at higher levels, however, are based on

symbolic architectures, for example, Soar (Laird, Newell, and Rosenbloom
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1987) or ACT (Anderson 1993). They typically focus on the OCC model (Ortony

et al. 1988), which provides “update rules” for changes in emotional states

that can be directly implemented in rule-based systems. The currently most

advanced implementations of high-level affect models are effected in the

context of the “virtual humans” (Rickel et al. 2002), where the utility of

emotions in artificial agents can be investigated in full immersion interactions

with people (Gratch and Marsella 2004b). One particular model, the EMA

model (Gratch and Marsella 2009), has also been used to further psychological

theories that posit different “emotional appraisal and coping” processes as

essential parts of human emotion processes.

Other higher-level architectures attempt to implement different aspects of

psychological theories of emotions; examples include the MAMID model,

whose emotional components “anger” and “fear” follow Frijda’s definition

(Frijda 1994), and the model of “surprise” suggested by Macedo and Cardoso

(2001). There are also a few conceptual suggestions for complex human-like

architectures that explicitly incorporate human-like emotion and cognition,

but without providing particular implementations of the proposed architec-

ture. Examples include Sloman’s H-CogAff model, Minsky’s emotion machine,

and Norman, Ortony, and Revelle’s 3-tier model.

Most emotion models have been implemented and tested in isolation from

any body model. Consequently, it is difficult, if not impossible, to investigate

crucial aspects of emotion processing that need a body to control and thus

go beyond functional properties (like the effects of Pavlovian conditioning),

which can be tested in stand-alone models (e.g., by applying a stimulus and

measuring the output). Various attempts have been made to include bodily

processes in simulated and robotic agents. Some have investigated the compu-

tational effects of simulated hormones for emotional control (Cañamero 1997),

while others have implemented connectionist emotion models on robots, where

different emotion types are represented as connectionist units that compete

for activation, which in turn cause the robot to exhibit a particular behavior

(e.g., Velásquez 1999). The main difference between these approaches and

both low-level models of affect and some high-level appraisal-based mod-

els (e.g., Gratch and Marsella 2004a, 2009) is that they do not attempt to

model any specific psychological or neurobiological theory of affect (e.g.,

in an effort to verify or falsify its predictions). Rather, they are concerned

with the applicability of a particular control mechanism from an engineering

perspective.

The main problem with process models of affect is a direct result of the

problems plaguing affect concepts: It is unclear what kind of affective state

a particular computational model is a model of. In some sense, process mod-

els without a functional characterization of the implemented affective states

are no more successful from a conceptual point of view than display models

which are not intended to implement specific kinds of affective states in the
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first place. However, even if no conceptual mileage is to be gained from a pro-

cess model right away, there is an important advantage to the methodological

approach of attempting to implement hypothesized affect mechanisms that

has borne fruit already in the short term. For the architectural mechanisms

intended to allow for the instantiation of affective states can be tested and

evaluated as such, regardless of what kinds of functional states they can

instantiate (e.g., one could treat them as “quasi-emotions” and investigate

their potential for improving an agent’s performance; Scheutz 2011). This

is analogous to what happened pragmatically within AI with other kinds of

architectures, such as belief-desire-intention (BDI) architectures, for example.

Here the same kinds of conceptual questions could be raised about the actual

nature of the instantiated “belief,” “desire,” and “intention” states, while the

architectural mechanisms for problem solving could be evaluated indepen-

dently in different domains for their technical merit.

Yet, there is an important difference between architectural approaches in the

domain of reasoning, problem solving, and so on, and architectural approaches

in the domain of affect: The former has often a well-developed theory of the

functional potential of the architectural mechanisms, while the latter has

currently no such theory. Rather, research on architectural aspects of affect is

still in a pre-theoretic stage. The current lack of a well-developed theory of the

utility of affective states in the control of artificial agents, however, does not

take away from the fact that attempts to characterize and implement affective

states and processes might yield architectural mechanisms that could prove

useful for a variety of domains and applications (e.g., applications that have

to deal with severe resource constraints as argued in Scheutz 2001b).

12.4 Machine consciousness in AI

Unlike emotion research, which dates back to the 1960s, investigation of

machine consciousness in AI is a much younger endeavor that started in the

mid 1990s and is really only beginning to gain momentum (although there

were some early attempts at laying out requirements for conscious machines;

see, e.g., Angel 1989).

One of the reasons for this later start may be that research on conscious

machines must build on research on the various functional components that

are required for consciousness, some of which may be emotions (for the sug-

gestion that emotions and consciousness are intrinsically linked, see, e.g.,

Alexandrov and Sams 2005). Somewhat surprisingly, however, the machine

consciousness community is not a subset of the emotion community in AI,

nor does it intersect much with it. And while the emotion community in

AI has fostered close ties to various psychologists and their theories (e.g.,

Andrew Ortony and Craig Smith, among others), the machine consciousness
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community seems to be more connected to philosophers who are interested in

giving a functional, implementable account of consciousness.

Similarly to the case of emotions in AI, where researchers working on the

communicative and other dimensions of emotion simply ignore questions

about what emotions are and how they are implemented, some researchers

interested in consciousness are not attempting to give an account of human

consciousness. Rather, they are interested in “simulating” processes they take

to be essential to consciousness – what (Holland 2003) calls “weak artificial

consciousness” – or using principles underwriting human consciousness to

design better control systems (Sanz, López, and Hernández 2007). Some, how-

ever, are interested in conscious machines (Franklin, Kelemen, and McCauley

1998; Aleksander and Dunmall 2003), and thus, like researchers on process

models of emotions, have to address the question of what they mean by

“consciousness” and, eventually, what it would take to implement it. Clearly,

this is a very difficult problem, given that neither philosophers nor psychol-

ogists agree on what “consciousness” is supposed to refer to or what it is to

be conscious. (Theories of consciousness range from neurological theories to

cognitive representational theories, such as the various forms of higher-order

thought theory, which hold that thoughts and perceptions become conscious

in virtue of being targeted by further thoughts or perceptions.) As with emo-

tions, AI researchers interested in achieving consciousness in machines have

proposed various principles and architectural mechanisms that they take to be

necessary for conscious machines.

In general, proposals vary along several dimensions: (1) the extent to which

they connect to philosophy, psychology, or neuroscience; (2) the extent to

which they lay out a particular architecture that can be conscious, or par-

ticular principles for such an architecture; and (3) the extent to which they

actually provide implementations of their architectures or models. However,

researchers agree that some type of “inner model” is required that is based on

representations of the agent’s perceptual states and allows the agent to simu-

late or predict future events and outcomes and what various possible actions

would be like for it. Researchers disagree, however, on the exact definition

and extension of the internal model and the other components to which it is

connected.

12.4.1 Architectural proposals

Most proposals on consciousness in artificial agents are conceptual at

present and provide a set of potentially implementable principles (some-

times with preliminary implementations for subsets). Pentti Haikonen, for

example, summarizes the architectural requirements for a conscious system as

follows:
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(1) A suitable method for the representation of information must be devised.

(2) Suitable information processing elements that allow the manipulation of

information by the chosen representation method must be designed. (3) A

machine architecture that can accommodate sensors, effectors, the processes of

perception, introspection and the grounding of meaning as well as the flow of

inner speech and inner imagery must be designed. (4) The system design must

also accommodate the functions of thinking and reasoning, emotions and

language. (Haikonen 2003, p. 168)

A more formal approach is taken by Aleksander and colleagues, who list five

principles, stated as axioms, that are taken to be sufficient for consciousness.

They specify the notion of “conscious of,” for an agent and a world, as

follows:

Let A be an agent in a sensorily-accessible world S. For A to be conscious of S it

is necessary that:

Axiom 1 (Depiction): A has perceptual states that depict parts of S.

Axiom 2 (Imagination): A has internal imaginational states that recall parts of

S or fabricate S-like sensations.

Axiom 3 (Attention): A is capable of selecting which parts of S to depict or

what to imagine.

Axiom 4 (Planning): A has means of control over imaginational state

sequences to plan actions.

Axiom 5 (Emotion): A has additional affective states that evaluate planned

actions and determine the ensuing action.

(Aleksander and Dunmall 2003, p. 9)

The claim is that this combination of sensory, imaginational, attentional and

affective depictions is what ultimately leads to a first-person perspective (the

“I” in humans). The axioms are motivated, not by a particular theory of

consciousness, but by a large collection of individual findings that seem to

suggest these principles as abstractions.

Sloman has for quite some time promoted the notion of “virtual machine

functionalism” as a way to account for rich internal processes of complex,

deliberative and reflective agents that might form the basis of introspection

and the development of internal categories and concepts that are not accessible

(even via language) to other agents, and thus form the basis of a conscious

agent’s first-person perspective (e.g., Sloman and Chrisley 2003). There are also

several other researchers who are attempting to give functional architectural

accounts of the requirements for consciousness. Proposed accounts range from

neural (Shanahan 2005), to robotic (Kuipers 2005), to control-theoretic (Sanz

et al. 2007), to process-based (Manzotti 2003), and others. Common to all of

the above researchers is that they have implemented some rudimentary models
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that demonstrate parts of the architecture, but not a complete functional, and

thus conscious, system.

12.4.2 Conscious agents

A notable exception among researchers in machine consciousness is the work

of Franklin and colleagues (Franklin et al. 1998), who have attempted to

implement a complete conscious agent, based on Baars’ global workspace

theory of consciousness. This is a “theater model” of consciousness, which

requires a central workspace (the “stage”) where “conscious contents emerge

when the bright spotlight of attention falls on a player on the stage of working

memory” (Baars 1997, p. 44).

The first functional prototype, “Conscious” Mattie, was a software agent

charged with writing seminar announcements, communicating by email with

seminar organizers, and reminding them when late. A second prototype, IDA

for “Intelligent Distribution Agent,” was developed for the US Navy to facilitate

the process of assigning sailors to new missions. Both architectures include

mechanisms for “consciousness,” comprising a spotlight controller, a broad-

cast manager, and a collection of attention codelets which recognize novel

or problematic situations, together with modules for perception, action selec-

tion, associate memory, emotions, and meta-cognition (see Franklin 2000).

The latest model is a complete cognitive architecture called LIDA (Learning

Intelligent Distribution Agent), which adds various types of learning to the

previous architecture.

12.5 Future perspectives

Emotion research has become an active interdisciplinary subfield in AI, and

machine consciousness is on the verge of establishing a research community

that pursues the design of conscious machines. Based on the current trajec-

tories, it is likely that both communities will grow together, especially as

the emotion community is pursuing more complex emotions, such as regret

about one’s own behavior or disappointment in someone else’s attitude toward

one, that require many of the architectural features necessary for conscious

machines, as postulated by the consciousness community (representations of

one’s perceptions, internal focus of attention, memories of past actions, rep-

resentations of possible futures, etc.).

Research in both areas promises not only to advance the state of the art

in AI, but also to shed light, if not directly on the human case, then on the

case of possible emotional and conscious beings, which should help us refine

our concepts. Moreover, both areas are likely to contribute to a better under-

standing of the trade-offs between systems that are emotional and conscious
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compared to systems that lack one or both properties. Given that both endeav-

ors are fairly young, however, it should not be too surprising that the fields

have neither worked out satisfactory criteria for success nor reflected on the

implications of their work. “Criteria for success” here is intended to refer to

ways that would allow us to tell whether a given machine has emotions or

is conscious. Presumably, this will involve claims about the machine’s func-

tional architecture and the types of states that it supports. This would also

include algorithms to determine whether a given system actually implements

the functional architecture, but unfortunately we are currently also missing a

good theory of implementation (Scheutz 2001a). Ideally, we would like to have

criteria that can establish whether a given machine is in a particular emotional

state or is conscious. This could involve procedures analogous to those psy-

chologists use to determine whether a person is in a particular emotional state

or is conscious.

While the specific need for such criteria might not arise as much within AI

itself, it is likely that there will eventually be strong societal pressure to settle

these and other fundamental questions about the nature of artificial minds,

especially when claims are made about the emotional and conscious states of

machines. This was a point recognized by Putnam over forty years ago:

Given the ever-accelerating rate of both technological and social change, it is

entirely possible that robots will one day exist, and argue “we are alive; we are

conscious!” In that event, what are today only philosophical prejudices of a

traditional anthropocentric and mentalistic kind would all too likely develop into

conservative political attitudes. But fortunately, we today have the advantage of

being able to discuss this problem disinterestedly, and a little more chance,

therefore, of arriving at the correct answer. (Putnam 1964, p. 678)

While Putnam was certainly right about the need to clarify questions about

machine consciousness, the urgency for working out answers to the prob-

lem has clearly changed between when he wrote about discussing it “disin-

terestedly” and today, with all the recent successes in artificial intelligence

and autonomous robotics, and with robots already being disseminated into

society. Hence, it is high time for AI researchers and philosophers to reflect

together on the potential of emotional and conscious machines. For we do

not want to wake up one day to discover that what we treated as emotionless,

non-conscious artifacts were really emotional, conscious beings, enslaved and

mistreated by us out of ignorance or prejudice.

Further reading

Scherer, K. R., Bänziger, T., and Roesch, E. B. (2010). Blueprint for Affective Com-

puting: A Sourcebook. Oxford University Press. A comprehensive collection
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of research chapters on the various aspects of emotions and current emo-

tion models, ranging from theoretical frameworks to specific algorithms for

implementing affectively competent artificial agents.

Wallach, W. and Allen, C. (2009). Moral Machines: Teaching Robots Right from

Wrong. Oxford University Press. A great foray into the problems associated

with building intelligent autonomous robots and an appeal to implement

moral decision making in artificial agents.

The International Journal of Synthetic Emotions (IGI). A good resource for research

papers on different models and implementations of artificial emotions.

The International Journal of Machine Consciousness (World Scientific). A great

resource for the latest research papers on the emergent field of machine

consciousness.

References

Aleksander, I. and Dunmall, B. (2003). Axioms and tests for the presence of min-

imal consciousness in agents, in O. Holland (ed.), Machine Consciousness

(pp. 7–18). New York: Imprint Academic.

Alexandrov, Y. I. and Sams, M. E. (2005). Emotion and consciousness: Ends of a

continuum, Cognitive Brain Research 25: 387–405.

Anderson, J. R. (1993). Rules of the Mind. Mahwah, NJ: Erlbaum.

Angel, L. (1989). How to Build a Conscious Machine. Boulder, CO: Westview Press.

Baars, B. J. (1997). In the Theater of Consciousness: The Workspace of the Mind.

New York: Oxford University Press.

Balkenius, C. and Morén, J. (2001). Emotional learning: A computational model

of the amygdala, Cybernetics and Systems 32: 611–36.

Bates, J., Loyall, A. B., and Reilly, W. S. (1994). An architecture for action, emotion,

and social behavior, in C. Castelfranchi and E. Werner (eds.), Artificial Social

Systems: 4th European Workshop on Modelling Autonomous Agents in a

Multi-Agent World (MAAMAW ’92) (pp. 55–68). Berlin: Springer.

Blair, H. T., Tinkelman, A., Moita, M. A. P., and LeDoux, J. E. (2003). Associative

plasticity in neurons of the lateral amygdala during auditory fear condition-

ing, Annals of the New York Academy of Sciences 985: 485–7.

Brave, S. and Nass, C. (2003). Emotion in human–computer interaction, in J.

A. Jacko and A. Sears (eds.), The Human–Computer Interaction Handbook:

Fundamentals, Evolving Technologies, and Emerging Applications (pp. 81–

96). Mahwah, NJ: Erlbaum.
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13 Robotics

Phil Husbands

13.1 Introduction

Robots are popularly thought of as mechanical men – humanoid machines

capable of performing many of the tasks we engage in all the time, such as

walking, talking, picking things up and moving them around, as well as some

of those that most of us try to avoid, such as indiscriminate acts of death and

destruction. In the next section we will see that this image – and indeed the

very idea of a robot – comes from the world of fiction. While it is true that these

myths and dreams have seeped into the collective conscious and undoubtedly

influence some of the scientific work in the field of robotics, the current

reality – though full of enormous interest and potential – is a little less

dramatic.

In the research community a typical working definition of a robot goes

something like this: a physical device capable of autonomous or pre-

programmed behavior in the world involving interactions with its environment

through sensors and actuators. In contrast to machines that perform precise

repetitive tasks ad nauseam (e.g., robots used in manufacturing production

lines), autonomous robots are required to behave in an appropriate way in

whatever circumstances they find themselves. Like biological creatures, their

behavior must be self-generated, making use of sensory information to mod-

erate their responses to the world.

In order to provide context, this chapter starts with a brief sketch of the

history of robotics and then gives some background on traditional approaches.

This allows a clearer understanding of the motivations for the development of

the biologically inspired approaches whose discussion forms the bulk of the

chapter. In recent years, as NASA’s planetary rovers, Honda’s Asimo walking

humanoid robot, iRobot’s autonomous vacuum cleaners, Sony’s Aibo robot

dog, and countless autonomous toys have captured the imagination, there has

never been so much momentum for the development of useful autonomous

robots. However, as we shall see, the challenges are still significant.

13.2 Early history

While stories of artificial human-like creatures go back at least to the myths

of ancient Greece, the notion of embodied mechanical intelligence was, quite
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literally, thrust centre stage in the years between the world wars when, in

1921, Karel Čapek’s play R.U.R. (Rossum’s Universal Robots) introduced the

world to robots, in the process forging the associated myths and images

that now permeate our culture. It was a worldwide smash hit capturing the

popular imagination as well as sparking much intellectual debate (Horáková

and Kelemen 2008). The play, with its roots in the dreams and folk tales of

old Europe, told of the mass production of artificial humanoid workers on

an isolated island. These robots are created using some sort of biochemical

process and sold throughout the world as cheap labor. After a while they

develop aggressive emotions and, realizing their physical and mental superi-

ority, the robots rise up and destroy the human race. The play ends on a more

positive note when two robots develop feelings of love and respect toward

life, becoming almost indistinguishable from the humans they have replaced.

Karel Čapek had difficulty in deciding what to call the artificial workers until

his brother, Joseph – a renowned Czech painter – coined the word robot. It is

derived from the ancient Czech word robota which means repetitive drudge

work.

Although many ingenious mechanical automata had been constructed since

the fifteenth century, including chess-playing Turks and flatulent ducks in the

1700s, it was not until the late 1940s that a device recognizable as a robot

(in the present-day sense of the term) appeared. In 1949 W. Grey Walter, a

neurologist based at the Burden Institute in Bristol who was a world leader

in EEG1 research, completed a pair of machines he called “tortoises.” Grey

Walter’s tortoises were the first ever wheeled mobile autonomous robots. The

devices were three-wheeled and sported a protective “shell” (see Figure 13.1).

They had a light sensor, touch sensor, propulsion motor, steering motor, and

an electronic valve-based analogue “nervous system.” Walter’s intention was

to show that even in a very simple nervous system (the tortoises had two

artificial neurons), complexity could arise out of the interactions between its

units. By studying whole embodied sensorimotor systems, he was pioneering

a style of research that was to become very prominent in AI many years later,

and remains so today (Brooks 1999; Holland 2003). Between Easter 1948 and

Christmas 1949, he built the first tortoises, Elmer and Elsie. They were rather

unreliable and required frequent attention. In 1951, his technician, Mr. W.

J. “Bunny” Warren, designed and built six new tortoises to a much higher

standard. Three of these tortoises were exhibited at the Festival of Britain in

1951; others were regularly demonstrated in public throughout the 1950s. The

robots were capable of phototaxis (steering toward a light source), by which

means they could find their way to a recharging station when they ran low

1 Electroencephalography (EEG) is the recording of the brain’s electrical activity as measured

by multiple electrodes placed on the scalp.
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Figure 13.1 Grey Walter watches one of his tortoises push aside some wooden blocks

on its way back to its recharging hutch. Circa 1952.

on battery power. He referred to the devices as Machina speculatrix after their

apparent tendency to speculatively explore their environment.

Walter was able to demonstrate a variety of interesting behaviors as the

robots interacted with their environment and each other. In one experiment

he placed a light on the “nose” of a tortoise and watched as the robot observed

itself in a mirror. “It began flickering,” he wrote. “Twittering, and jigging like

a clumsy Narcissus.” Walter argued that if this behavior was observed in an

animal it “might be accepted as evidence of some degree of self-awareness”

(Walter 1953).

Walter’s robots became very famous, featuring in newsreels, television

broadcasts and numerous newspaper articles. They have been acknowledged

as a major early influence by a number of leading robotics researchers of later

generations. For instance, Rodney Brooks, director of the Computer Science

and AI Laboratory at MIT, built his first robot – a version of Machina specu-

latrix making use of transistors rather than valves (Brooks 2002, p. 27) – after

coming across Walter’s book The Living Brain (1953).
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Figure 13.2 An articulated industrial robot arm. Arms vary in complexity with some

involving more joints and a greater number of degrees of freedom.

Walter was a major figure in the field of cybernetics, a name coined by

Norbert Wiener, meaning the study of control and communication in animals

and machines. This highly interdisciplinary field was the forerunner of much of

modern AI and robotics, and the root of current control and communications

theory. It also had a major impact on neuroscience and other branches of

biology. It had great influence in the late 1940s and throughout the 1950s,

spreading into economics and the arts, before losing favor. As we shall see,

many areas with origins in cybernetics, such as artificial neural networks and

evolutionary computing, re-emerged in the 1980s and are now stronger than

ever.

From these biologically inspired, and rather exploratory, beginnings, the

focus of robotics began to turn to more immediately practical applications

during the 1950s. The main emphasis was on the development of robot arms,

particularly for use on production lines. Rather gradually, over a period of

about twenty years, robot arms and manipulators became more and more

widespread in heavy industry.

The central goal of classical industrial robotics is to move the end of an

arm (which houses an actuator such as a gripper, known as the “end effector”)

to a predetermined point in space. This is generally approached by finding

the required torques, applied through the motors controlling the arm joints,

such that the resulting arm configuration puts the end effector in the desired

position. A typical robot arm is shown in Figure 13.2.

Control of classical industrial robots is often based on solutions to equations

describing the inverse-kinematics problem (finding the angle through which

the joints should be rotated to achieve a specific position of the end effector).

These usually rely on precise knowledge of the robot’s mechanics and its

environment. High-level aspects of control involve calculating the desired

joint rotations and the torques required to achieve them. Low-level control

is also needed to take care of the interface with the actuators in order to

implement the desired motor commands.
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Industrial robots are programmed to repeat precise manipulations, such as

welding or paint spraying, over and over again. Although they make use of

sensors to help control their movements, their behavior cannot be said to be

in any way intelligent. If the car on the production line is misaligned or is not

the expected shape, the robot cannot react to the new set of circumstances; it

can only repeat its pre-programmed movements. While these limitations are

manageable in the highly controlled environment of a production line, they

become problematic if a robot is to be used in less structured and predictable

environments – for instance in an exploration mission. In such scenarios, the

robot, usually a mobile free-roaming device, must interact with its environ-

ment in a much more intelligent way in order to cope with a noisy, dynamic

world. The control methods used for industrial arms are no longer sufficient.

The “classical” approach to intelligent mobile robotics is the focus of the next

section.

13.3 Classical intelligent mobile robotics

An industrial robot’s working environment is often carefully designed so that

intricate sensory feedback is unnecessary; the robot performs its repetitive

tasks in an accurate, efficient, but essentially unintelligent way. More com-

plex cases involving cluttered, dynamic, or noisy environments, or delicate

manipulations of objects, usually require more sophisticated sensory feedback

and perceptual processing, such as the use of a vision system. This brings

us into the realm of AI and intelligent robotics. Discussion of this area will

focus mainly on autonomous mobile robots, but many of the more general

approaches to “intelligent” control are applicable to other forms of robot.

From 1966 to 1972 the Artificial Intelligence Center at SRI International

(then Stanford Research Institute) conducted pioneering research on a mobile

robot system nicknamed “Shakey.” The robot had a vision system which gave

it the ability to perceive and model its environment in a limited way. Shakey

could perform tasks that required planning, route-finding, and the rearrange-

ment of simple objects. Shakey became a paradigm case for early AI-driven

robotics. The robot, shown in Figure 13.3, accepted goals from the user,

planned how to achieve them, and then executed those plans (Nilsson 1984).

The overall processing loop had at its heart the sequence of operations shown

in Figure 13.4. Here robot intelligence is functionally decomposed into a strict

pipeline of operations. Central to this view of intelligence is an internal model

of the world which must be extended, maintained, and constantly referred

to in order to decide what to do next. In Shakey’s case, as in much of AI at

the time, the world model was defined in terms of formal logic. The robot

was provided with an initial set of axioms, and then perceptual routines were

used to build up and modify the world model based on sensory information,

particularly from the robot’s vision system. Plans were built using the STRIPS
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Figure 13.3 Shakey the robot in 1970 reasoning about colored blocks in its

environment.
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Figure 13.4 Pipeline of functionally decomposed processing used in much classical AI

robotics (after Brooks 1986).
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system, which became very influential, helping to spark the subfield of AI

planning (Allen, Hendler, and Tate 1990).

After each action was executed, the high-level control system, PLANEX,

would execute the shortest plan subsequence that led to a goal and whose pre-

conditions were satisfied. If no subsequence applied, PLANEX called STRIPS

to make a new plan. This process could be computationally very expensive,

even in the carefully constructed environments in which the robot operated

(these mainly consisted of large colored blocks of various regular shapes and

sizes). However, the general approach was very influential and it dominated for

more than a decade, during which time the individual functions of Figure 13.4

tended to become separate specialisms which started to lose contact with each

other.

However, even though Shakey and robots like it were controlled by com-

puters the size of a room, the demands of the sequential processing model

they employed (Figure 13.4) were such that they could not operate in real

time. They would often take tens of minutes or even hours to complete a

single task such as navigating across a room avoiding obstacles. By the mid

1980s a number of leading researchers from the main AI robotics centers were

becoming more and more disillusioned with the approach.

Hans Moravec, an influential roboticist who had done important work on

the Stanford Cart, a project similar in spirit and approach to SRI’s Shakey and

which ran at about the same time, summed up such feelings:

For the last fifteen years I have worked with and around mobile robots controlled

by large programs that take in a certain amount of data and mull it over for

seconds, minutes or even hours. Although their accomplishments are sometimes

impressive, they are brittle – if any of many key steps do not work as planned,

the entire process is likely to fail beyond recovery. (Moravec 1987, p. 1)

Moravec goes on to point out how this is in strange contrast to the pioneering

work of Grey Walter and the projects that his tortoises inspired; such early

robots’ simple sensors were connected to their motors via fairly modest circuits

and yet they were able to behave very competently and “managed to extri-

cate themselves out of many very difficult and confusing situations” without

wasting inordinate amounts of time “thinking.” In conclusion, Moravec advo-

cates making the most effective use of whatever technology is available in

the present in order to be able to gradually build up experimental discoveries,

rather than developing more and more complex reasoning systems that cannot

be used in any meaningful way in real time in the real world.

13.4 Behavior-based and biologically inspired robotics

The dominant functional decomposition approach outlined in the previous sec-

tion was closely related to the general philosophy that held sway in most of AI
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Figure 13.5 The parallel behavioral decomposition for robot control as advocated by

Brooks and the behavior-based approach. Decomposition from Brooks (1986).

at that time. The mainstream were custodians of an essentially Cartesian view

of what AI was and how it should be practised: Intelligence was to be largely

understood in terms of manipulating carefully constructed internal models of

external reality; hence the quest for intelligent machines should focus on ways

of building models of the world and the development of algorithms to “rea-

son” about the world using these models. By the mid 1980s such an approach

was faltering in many areas of AI, not just robotics. Disillusionment with this

state of affairs found a particularly effective voice in Rodney Brooks, who was

developing an alternative vision of not only intelligent robotics, but also the

general AI problem. Influenced by Moravec, as well as by the unconventional

work of Marc Raibert (who produced a wonderful series of legged robots;

Raibert 1986), Brooks, along with his team at MIT, became central to a growing

band of dissidents who launched a salvo of attacks on the AI mainstream.

In a move that conjured up the spirit of cybernetics, the dissidents rejected

the assumptions of the establishment, and instead held that the major part

of natural intelligence is closely bound up with the generation of adaptive

behavior in the harsh unforgiving environments most animals inhabit. The

investigation of complete autonomous sensorimotor systems – “artificial

creatures” – was seen as the most fruitful way forward, rather than the

development of disembodied algorithms for abstract problem solving, which

had become the focus of most of AI by then. The central nervous system was

viewed as a fantastically sophisticated control system, not a chess-playing

computer. Hence it was claimed that the development of mobile autonomous

robots should be absolutely central to AI. Vested interests were threatened,

emotions ran high, insults were traded. It was an exciting time!

At the heart of Brooks’ approach was the idea of behavioral decomposition,

as opposed to traditional functional decomposition. Figure 13.5 illustrates the
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concept. The overall control architecture involves the coordination of several

loosely coupled behavior-generating systems all acting in parallel. Each has

access to sensors and actuators and can act as a standalone control system.

Each layer was thought of as a level of competence, with the simpler com-

petences at the bottom of the vertical decomposition and the more complex

ones at the top (Brooks 1986). Brooks developed a concrete implementation

of the idea which he called the subsumption architecture (Brooks 1986, 1999).

Higher-level layers are able to subsume the role of lower levels by taking

over control of their motor outputs. The architecture can be partitioned at any

level with the layers below always forming a complete control system. Each

layer had its own particular sensor–motor coupling, which might be quite

distinct from that of others, for instance using completely different sensors

and/or actuators. The idea was to allow overall competence to be increased

by adding new behavior-generating layers without having to change lower

levels. Layers were built from networks of simple processing units, giving the

systems a flavor much closer to neural networks than logic-based classical

AI, and usually involved tightly coupled sensorimotor feedback loops going

through the environment.

The whole concept was inspired by biology, and in particular invertebrate

neuroethology (the study of behavior in relation to its underlying neural

mechanisms), bringing it close to the cybernetic roots of AI; the spirit of Grey

Walter’s original robotics work had finally resurfaced. Such an approach was

shown to handle multiple goals robustly and could be expanded in a natural

way – areas in which traditional methods struggled. Brooks’ team demon-

strated the architecture on a series of autonomous mobile robots, including

legged walking machines, with a variety of competences that went at least

halfway up the decomposition illustrated in Figure 13.5 (Brooks 1999). In two

provocatively titled and highly influential papers, “Intelligence without rep-

resentation” and “Intelligence without reason” (Brooks 1991a, 1991b), Brooks

gave a detailed critique of the classical approach and made it clear that mono-

lithic representation and reasoning-hungry approaches were no longer the

only game in town. By demonstrating how well-crafted parallel behavioral

layers could generate coherent overall behavior in noisy environments, the

MIT team showed how complex internal world models were not necessary, at

least for a whole range of navigation and exploration behaviors. “The world

is its own best model” was one of their slogans, by which they meant that the

system could extract all pertinent information directly from the world itself

without needing to build and manipulate models.

Brooks’ work triggered the formation of the so-called “New AI” movement,

still strong today. With its focus on the development of whole artificial crea-

tures as an important way to deepen our understanding of natural intelligence

and provide new directions for the engineering of intelligent machines, it has

pushed robotics back to the forefront of AI.
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Figure 13.6 Kismet, a robot designed by Cynthia Breazeal to take part in social

interactions with humans.

Despite their success, after a while Brooks grew tired of insect-like robots

and wanted to attempt something much grander and more ambitious – a

humanoid robot that would interact with people and everyday objects in a

meaningful way and that would have something approaching human-level

capabilities (Brooks 2002). Hence the Cog project was born. The robot (Cog)

consisted of a torso with arms and a vision-equipped head, bolted to a bench

(Brooks et al. 1999). A generally behavior-based approach was taken (in the

sense illustrated by Figure 13.5), although individual competences were now

often more complex and no longer relied on simple network implementations,

and the interactions between the behaviors could be more involved (e.g.,

not just simple inhibition operations). Interesting developments were made

in robot engineering (e.g., in muscle-like actuators) and in behavior genera-

tion. However, few would claim that overall human-level competences were

demonstrated. What the project did achieve was an explosion of interest in

humanoid robotics and the development of social interaction as an important

area of study in robotics.

Through her work on the Cog project, Cynthia Breazeal, then a research

student in the MIT AI Lab, pioneered the notion of a robot that could engage

in social interaction. She developed Kismet, shown in Figure 13.6, which has

inspired the construction of many similar robots in labs all over the world.

Kismet has microphones in its ears and cameras hidden behind human-like

eyeballs. It can move its eyes and neck and can make facial expressions
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through its ability to open its jaw and move its ears, eyebrows, and lips.

As well as vision and hearing, the robot can interact via speech. Breazeal’s

robot was developed to the stage where it is able to interact in a convincing

way, exhibiting and reacting to mood and emotion (Breazeal 2002). As well as

pointing the way forward for robots that are intended to interact with humans,

the project also opened up the possibility of using robots as tools for studying

and better understanding certain types of social interaction (Breazeal et al.

2005).

The explosion in biologically inspired robotics that Brooks’ work helped to

fuel brought forth numerous interesting strands of research, many of which

are still very active, and pushed AI much closer to biology, particularly neu-

roscience, than it had been for many years. As the limitations of traditional

AI became more obvious, other biologically inspired areas such as neural net-

works, adaptive systems, artificial evolution, and artificial life had also come

to the fore. These various currents mingled with the “New AI” approaches to

robotics, spawning new attitudes and directions. The face of AI was radically

changed.

There is not enough space in this chapter to deal with the considerable

breadth of biologically inspired robotics (see the “Further reading” section),

so it will concentrate on two important and influential areas: evolutionary

robotics and insect-inspired approaches to visual navigation.

13.5 Evolutionary robotics

Alan Turing’s (1950) paper, “Computing machinery and intelligence,” is widely

regarded as one of the seminal works in artificial intelligence. It is best known

for what came to be called the Turing Test – a proposal for deciding whether or

not a machine is intelligent. However, tucked away toward the end of Turing’s

wide-ranging discussion of issues arising from the test is a far more inter-

esting proposal. He suggests that worthwhile intelligent machines should be

adaptive – should learn and develop – but concedes that designing, building,

and programming such machines by hand is probably completely infeasible.

He goes on to sketch an alternative way of creating machines based on an

artificial analogue of biological evolution. Each machine would have hered-

itary material encoding its structure, mutated copies of which would form

offspring machines. A selection mechanism would be used to favor better-

adapted machines – in this case those that learned to behave most intelli-

gently. Turing proposed that the selection mechanism should largely consist

of the experimenter’s judgment.

It was more than forty years before Turing’s long-forgotten suggestions

became reality. Building on the development of principled evolutionary search

algorithms (Holland 1975), researchers at the National Research Council (CNR)

in Rome, École Polytechnique Fédérale de Lausanne (EPFL), the University of
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Figure 13.7 Key elements of the evolutionary robotics approach.

Sussex, and Case Western University independently demonstrated method-

ologies and practical techniques to evolve, rather than design, control systems

for primitive intelligent machines. It was out of the spirited milieu of “New

AI” that the field of Evolutionary Robotics was born in the early 1990s. Initial

motivations were similar to Turing’s: The hand design of intelligent adap-

tive machines intended for operation in natural environments is extremely

difficult – would it be possible to wholly or partly automate the process? From

the outset the vast majority of work in this area has involved populations

of artificial genomes (lists of characters and numbers) encoding the structure

and other properties of artificial neural networks that control autonomous

mobile robots whose job is to carry out a particular task or exhibit some set

of behaviors. Other properties of the robot, such as sensor layout or body

morphology, may also be under genetic control. The genomes are mutated

and interbred, creating new generations of robots according to a Darwinian

scheme in which the fittest individuals are most likely to produce offspring

(see Figure 13.7). Fitness is measured in terms of how well a robot behaves

according to some evaluation criteria; this is usually automatically measured,

but may, in the manner of eighteenth-century pig breeders and in keeping with

Turing’s original proposal, be based on the experimenters’ direct judgment.

Work in evolutionary robotics is now carried out in many labs around the
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world and numerous papers have been published on many aspects of the

field.

Potential advantages of this methodology include:

� The ability to explore potentially unconstrained designs that have large

numbers of free variables. The genetic encoding defines a whole class of

robot designs. This means fewer assumptions and constraints are necessary

in specifying a viable solution. The evolutionary algorithm searches this

class of systems for suitable designs.
� The ability to use the methodology to fine-tune parameters of an already

successful design – perhaps in order to use it in a new application.
� The ability, through the careful design of fitness criteria and selection tech-

niques, to take into account multiple, and potentially conflicting, design

criteria and constraints (e.g., efficiency, cost, weight, power consumption,

etc.).
� The possibility of developing highly unconventional and minimal designs.

Prominent early centers for research in this area were EPFL and Sussex Uni-

versity, which are both still very active in the field. Much of the early EPFL

work used the miniature Khepera robot (Mondada, Franzi, and Ienne 1994),

which became a widespread tool in many areas of robotics research. With a

diameter of 55 mm and a height of 30 mm, in its basic configuration it is

equipped with eight infra-red proximity sensors – six on the front, two on the

back – that can also act as visible-light detectors. It has two independently

driven wheels allowing rapid maneuverability. The first successful evolution-

ary robots experiments at EPFL employed a population of bit strings encoding

the connection weights and node thresholds for a simple fixed-architecture

feedforward neural network. Each member of the population was decoded

into a particular instantiation of a neural network controller, which was then

downloaded onto the robot (Floreano and Mondada 1994). This controlled the

robot for a fixed period of time as it moved around a simple environment

with perimeter walls and a central diagonal wall which acted as an obstacle

around which the robots had to navigate.

The following simple fitness function was used to evolve obstacle-avoidance

behaviors:

F = V + (1 −
√

DV ) + (1 − I )

where V is the average rotation speed of opposing wheels, DV is the difference

between signed speed values of opposing wheels, I is the activation value of

the infra-red sensor with the highest input (readings are high if an obstacle is

close to a sensor). Maximizing this function ensures high speed, a tendency to

move in straight lines, and avoidance of walls and obstacles in the environ-

ment. After about thirty-six hours of real-world evolution using this setup,
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(a) (b)

Figure 13.8 An early version of the Sussex gantry robot right (b) was a “hardware

simulation” of a robot such as that shown left (a). It allowed real-world evolution of

visually guided behaviors in an easily controllable experimental setup.

controllers were evolved that successfully generated efficient motion around

the course avoiding collisions with the walls.

At the same time as this work was going on at EPFL, a series of pioneering

experiments on evolving visually guided behaviors were being performed at

Sussex University (Cliff, Husbands, and Harvey 1993; Harvey, Husbands, and

Cliff 1994) in which recurrent neural network controllers and visual sampling

morphologies were concurrently evolved to allow a gantry robot (as well as

other more standard mobile robots) to perform various visually guided tasks.

The visual sampling morphology specified which parts of the robot’s camera

image were used as input to the neural network controller. The number, size,

and position of small (input) image patches were genetically specified, the rest

of the image was thrown away.

An early instantiation of the Sussex gantry robot is shown in Figure 13.8b.

A camera points down towards a mirror angled at 45 degrees. The mirror can

rotate around an axis perpendicular to the camera’s image plane. The camera

is suspended from the gantry allowing motion in the X, Y, and Z dimensions.

This effectively provides an equivalent to a wheeled robot with a forward-

facing camera when only the X and Y dimensions of translation are used (see

Figure 13.8a). The additional dimension allows flying behaviors to be studied.

The apparatus was initially used in a manner similar to the real-world EPFL

evolutionary robots setup described earlier. A population of strings encoding

robot controllers and visual sensing morphologies are stored on a computer to

be downloaded one at a time onto the robot. The exact position and orientation

of the camera head can be accurately tracked and used in the fitness evalu-

ations. A number of visually guided navigation behaviors were successfully

achieved, including navigating around obstacles and discriminating between

different objects. In the experiment illustrated in Figure 13.8b, starting from

a random position and orientation the robot had to move to the triangle
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rather than the rectangle. This had to be achieved irrespective of the relative

positions of the shapes and under very noisy lighting conditions. Extremely

minimal systems were evolved, which used only two or three pixels of visual

information yet were still able to perform the task very robustly under highly

variable lighting conditions.

Since this early work, a great variety of behaviors has been successfully

evolved. There is not enough room to give an adequate summary of the whole

field, so a few interesting subareas are highlighted below (see “Further reading”

for more coverage).

Since the mid 1990s, there has been a growing body of work on evolving

controllers for various kinds of walking robots – a nontrivial sensorimotor

coordination task. Probably the first success in this direction was by Lewis,

Fagg, and Solidum (1992), who evolved a neural controller for a simple hexa-

pod robot. The robot was able to execute an efficient tripod gait on flat

surfaces. All evaluations were done on the actual robot with each leg con-

nected to its own pair of coupled neurons, leg swing being driven by one

neuron and leg elevation by the other. These pairs of neurons were cross-

connected, in a manner similar to that used in the neural architecture shown

in Figure 13.9, to allow coordination between the legs. This architecture for

locomotion, introduced by Beer, was based on studies of cockroaches, and gen-

eralizations and extensions of it have been much used ever since. Gallagher

et al. (1996) used a general version of it to evolve controllers for generating

locomotion in a simulated artificial insect. The controllers were later success-

fully downloaded onto a real hexapod robot. This machine was more complex

than Lewis et al.’s, with a greater number of degrees of freedom per leg. In this

work, each leg was controlled by a fully connected network of five neurons,

each receiving a weighted sensory input from that leg’s angle sensor as shown

in Figure 13.9 (see also Chapter 6 of this volume). The connection weights and

neuron parameters were under genetic control. This produced efficient tripod

gaits for walking on flat surfaces. In order to produce a wider range of gaits

operating at a number of speeds so that rougher terrain could be successfully

negotiated, a slightly different distributed architecture, inspired by stick insect

studies, was found to be more effective (Beer et al. 1997).

Jakobi (1998) successfully used his minimal simulation techniques (ultra-

fast, ultra-lean simulations employing multiple levels of noise) to evolve

controllers for an eight-legged robot. Evolution in simulation took less than

two hours on what would today be regarded as a very slow computer, and then

transferred successfully to the real robot. Jakobi evolved modular controllers

based on Beer’s recurrent network architecture to control the robot as it

engaged in walking about its environment, avoiding obstacles, and seeking

out goals. The robot could smoothly change gait, move backward and forward,

and even turn on the spot. More recently, related approaches have been

successfully used to evolve controllers for more mechanically sophisticated
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Figure 13.9 Left: schematic diagram of a distributed neural network for the control of

locomotion as used by Beer, Chiel, and Sterling (1989). Excitatory connections are

denoted by open triangles and inhibitory connections are denoted by filled circles.

C = command neuron; P = pacemaker neuron; FT = foot motor neuron; FS and

BS = forward swing and backward swing motor neurons; FAS and BAS = forward

and backward angle sensors. Reproduced with permission. Right: generalized

architecture using a fully connected dynamical network controller for each leg (a),

cross-coupled as shown (b).

robots such as the Sony Aibo (Tllez, Angulo, and Pardo 2006). There has also

been recent successful work on evolving neural controllers for the highly

unstable dynamic problem of bipedal walking (Reil and Husbands 2002).

These and similar studies have shown that the evolutionary development of

neural network controllers, with their intricate dynamics, generally produce a

wider range of gaits and generate smoother, more adaptive locomotion than

more traditional methods.

Early single-robot research was soon expanded to handle interactions

between multiple robots. Floreano and Nolfi did pioneering work on the coevo-

lution of predator–prey behaviors in physical robots (Floreano and Nolfi 1997).

The fitness of the predator robot was measured by how quickly it caught the

prey; the fitness of the prey was determined by how long it evaded the preda-

tor. Two Khepera robots were used in this experiment. Each had the standard

set of proximity sensors, but the predator also had a vision system and the prey
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was able to move twice as fast as the predator. A series of interesting chasing

and evading strategies emerged. Later, Quinn et al. (2003) demonstrated the

evolution of coordinated cooperative behavior in a group of robots. A group of

identical robots equipped only with infra-red proximity sensors were required

to move as far as possible as a coordinated group, starting from a random

configuration. Analysis of the best evolved solution showed that it involved

the robots adopting different roles, with the robots collectively “deciding”

which robot would perform each role.

In the work described so far there has been an overwhelming tendency to

evolve control systems for pre-existing robots: The brain is constrained to fit

a particular body and set of sensors. Of course in nature the nervous system

evolved simultaneously with the rest of the organism. As a result, the nervous

system is highly integrated with the sensory apparatus and the rest of the

body: The whole operates in a harmonious and balanced way, and there are

no distinct boundaries between control system, sensors, and body. Although

the limitations of not being able to genetically control body morphology

were acknowledged from the earliest days of evolutionary robotics research,

there were severe technical difficulties in overcoming them, so this issue was

somewhat sidelined.

Various researchers advocated the use of fully evolvable hardware to

develop not only a robot’s control circuits but also its body plan, which

might include the types, numbers, and positions of the sensors, the body size,

the wheel radius, actuator properties, and so on. However, this approach was

still largely confined to theoretical discussion until Lipson and Pollack’s work

on the Golem project (Lipson and Pollack 2000).

Working at Brandeis University, Lipson and Pollack pushed the idea of

fully evolvable robot hardware about as far as was reasonably technologically

feasible at the time. Autonomous “creatures” were evolved in simulation out

of basic building blocks (neurons, bars, actuators). The bars could connect

together to form arbitrary truss structures with the possibility of both rigid

and articulated substructures. Neurons could be connected to each other and

to bars whose length they were able to control via a linear actuator. Machines

defined in this way were required to move as far as possible in a limited time.

The fittest individuals were then fabricated robotically using rapid manufac-

turing technology (plastic extrusion three-dimensional printing) to produce

results such as that shown in Figure 13.10. The team thus achieved autonomy

of design and construction using evolution in a “limited universe” physi-

cal simulation coupled to automatic fabrication. The highly unconventional

designs thus realized performed as well in reality as in simulation. The success

of this work points the way to new possibilities in developing energy-efficient

fault-tolerant machines.

Today the field of evolutionary robotics has expanded in scope to take

in promising new work on autonomous flying machines, as well as research
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Figure 13.10 A fully automatically evolved robot developed by the Golem project (see

text for details).

aimed at exploring specific scientific issues, such as principles from neuro-

science or questions in cognitive science (see “Further reading”).

13.6 Insect-inspired navigation

In marked contrast to current artificial systems, insects learn to visually nav-

igate around complex environments in remarkably few trials, and use vision

to perform many rapid and intricate maneuvers. Given their relatively small

neural resources, there must be a premium on them using innate behaviors

and efficient processing methods to underpin such abilities. Studies in neu-

roethology and insect behavior have started to reveal some details of the clever

strategies involved, thus uncovering a potentially rich seam of inspiration for

highly efficient, yet robust, robot algorithms.

One important strand of insect-inspired visual navigation methods for

robots can be traced back to Cartwright and Collett’s (1983) computational

“snapshot” model developed to account for ants’ and bees’ ability to find their

way to a goal using visual guidance. Using an insect-like omnidirectional

(360-degree) panoramic view, in which landmarks in the environment can be

readily distinguished from the background, the model works by computing a

direction of movement based on the difference between the current view and

a stored “snapshot” of the view from the goal position. This simple technique

has been successfully demonstrated on a mobile robot navigating in a desert

environment with highly conspicuous black cylinders as landmarks (Franz

and Mallot 2000). The method was shown to work well in an area around the

goal in which the landmarks were all readily visible.

A closely related, and even simpler, method for local navigation is the

average landmark vector (ALV) technique (Lambrinos et al. 2000). The ALV

provides a sparse representation of the current visual scene by processing it

into a single two-dimensional vector. This vector is the average of the unit

vectors pointing from the center of the agent to each of the visible landmarks.

The heading direction is calculated from the difference between the current

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139046855.018
https://www.cambridge.org/core


287 Robotics

(a) (b)

Figure 13.11 (a) shows a bee flying down a tunnel with patterned walls. (b) shows a

robot built by the Research School of Biological Sciences, Australian National

University to demonstrate navigation strategies based on observations of the use of

optic flow for insects.

ALV and the ALV at the goal location. The ALV model is the most efficient,

and in some respects the most elegant, of the view-based homing methods and

has been shown to work surprisingly well in real environments. Smith et al.

(2007) have extended this technique to work in more complex large-scale

environments where route learning is achieved by chaining together local

navigation in a series of smaller visual locales (sub-environments) that are

chosen and learnt by the algorithm. More recent work has taken a radically

different approach by devising a model of ant navigation based on scene

familiarity (Baddeley et al. 2012). The model represents the only detailed

and complete model of insect route guidance to date and can be applied to

robotics. Moreover, the research provides a general demonstration that visu-

ally guided routes can be produced with highly parsimonious mechanisms that

neither specify when or what to learn, nor separate routes into sequences of

waypoints.

Another very useful source of inspiration for visually guided robot behavior

is the way insects use optic flow information. Optic flow refers to the changing

patterns of lights on the eye induced by motion relative to the environment.

Srinivasan and Zhang (1997) studied bee flight in tunnels with different pat-

terns on the left and right walls (see Figure 13.11a). They found that the

animals steered a course down the center of the tunnel, avoiding the walls,

by balancing the optic flow (rate of change of pattern) in the left and right

visual fields. For a given insect speed, the closer a pattern is, the greater the

optic flow on that side. This even allowed them to negotiate narrow passages

and fly between obstacles. The team successfully applied this strategy to the

mobile robot shown in Figure 13.11b.
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13.7 Probabilistic robotics

This section outlines an important area of robotics that emerged at about the

same time as behavior-based and biologically inspired approaches. Although

its methodology is mainly complementary to that of those areas, it certainly

has overlapping concerns. Just as biologically inspired robotics can be traced

back to the work of Grey Walter, the largely non-symbolic methods at the

core of probabilistic robotics also have their roots in cybernetics.

The mapping problem requires a robot, during a period of exploration,

to build a representation of its environment that can be used for accurate

navigation. A related problem is that of localization – the ability of a robot

to determine where it is, relative to a map, from its sensor readings. Since

the early 1990s most work in this area has concentrated on the Simultaneous

Localization and Mapping (SLAM) problem (Smith, Self, and Cheeseman 1990).

This requires a mobile robot, when placed at an unknown spot in an unknown

environment, to incrementally construct a consistent map of the environment

at the same time as determining its location in the map. A great deal of progress

has been made on this problem and for certain types of environments very

good solutions have been found. Nearly all these solutions rely on probabilistic

inference; indeed real progress on the problem was made only once it was cast

in probabilistic terms. The current solutions all use probabilistic models of the

robot and its environment, and all use probabilistic inference in building maps

from the robot’s sensor readings. The success of the probabilistic approach

stems from the fact that the mapping problem is inherently uncertain and

robot sensors are noisy, as is robot movement. The probabilistic approaches

embrace these characteristics of the problem rather than ignoring them or

trying to hide them.

Typically a map is represented as a set of vectors describing the location of

landmarks picked out by the robot’s perceptual system. More complex metric

maps describing various aspects of the geometrical layout of the environment

are also sometimes used, as are topological maps, which represent environ-

ments in terms of the relationships between key features. In probabilistic

terms, the SLAM problem requires the following probability distribution to be

computed for every time t:

P (xt |Z
t
,U t

, x0)

This is the conditional probability density of the vector xt, representing the

robot position and the map, given the recorded sensor inputs Z t and the motor

controls U t, along with the initial position of the robot, x0. Z t and U t represent

all sensor readings and motor commands from time t = 0 until the present.

Using Bayes’ Theorem, it is possible to expand this expression into one that

can be computed using efficient recursive procedures at each time step.
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There have been notable successes with these methods, including naviga-

tion over considerable distances (in 2005 probabilistic methods were used by

Sebastian Thrun’s team to win the DARPA Grand Challenge for an autonomous

vehicle to navigate across an unrehearsed 142-mile course in the Mojave

desert – see “Further reading”). However, there are still considerable chal-

lenges in dealing with dynamic environments and more generally with the

correspondence, or data association, problem (determining whether sensor

readings taken at different times correspond to the same location in the world).

Nevertheless, probabilistic approaches have proved their worth and are estab-

lished as the technique of choice for certain kinds of navigation problems.

13.8 Prospects

This chapter has concentrated on autonomous robotics, particularly biolog-

ically inspired approaches, showing how this area has become increasingly

central to AI. Although great progress has been made, and most of the ever-

proliferating mobile robots we now see in the home (e.g., autonomous vacuum

cleaners and toys), or in areas such as planetary exploration, security or mil-

itary applications, make use of the new techniques discussed earlier, many

challenges remain.

It is now possible to produce autonomous robots that behave in a robust

and reliable way in real environments, engaging in real tasks in real time.

However, the behaviors involved are still relatively simple. Progress has been

slow toward more sophisticated tasks such as learning what to focus atten-

tion on in a complex environment, coordinating many conflicting goals and

drives, interacting with other robots in complex group behaviors, learning to

communicate in a sophisticated way about the task at hand, and so on. Per-

haps this should not be at all surprising. One lesson that most neuroscientists

have understood for many decades, but which has often been overlooked in

AI, is that the generation of intelligent embodied behavior is an extremely

complicated problem. However, progress is being made and there are many

promising lines of research. One direction, briefly mentioned earlier, that is

likely to become increasingly important is the continued dismantling of the

line between brain and body that has traditionally been present in studies of

both natural and artificial intelligence.

The topics highlighted in this chapter have, appropriately enough, been

fairly mature areas of research. However, there are a number of potentially

very important emerging fields that may have a radical impact in the decades

to come. These include developments in interfacing digital electronics to neu-

ral tissue. The most frequent motivation for such work is to allow improved

prosthetics to be directly controlled by the nervous system. This points to the

possibility of an increased merging of robotic technology with human bodies –

something that a number of people have reflected on recently (e.g., Brooks
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2002) and that the work of Stelarc, the radical performance artist, has long

explored. A related area involves attempting to harness the sophisticated non-

linear adaptive properties of cultured (real) neural networks to develop hybrid

machines (DeMarse et al. 2001), pointing toward the possibility of robots

that include biological matter in their control systems – echoing the nature

of Čapek’s original theatrical robots. In the long run, that kind of approach

may prove more powerful than attempting to understand biological systems

in sufficient detail to be able to abstract general mechanisms underlying the

generation of intelligent behavior. However, the research is at an extremely

early stage, so we cannot yet properly assess its potential.

In addition to their central role in AI, autonomous robots are being

increasingly used in artistic and creative endeavors (Wilson 2002) and – in a

development that takes us back to Grey Walter once again – as tools to model

and study the generation of behavior in animals (see “Further reading”).

The field has massively expanded since the days when it was dominated by

cumbersome industrial arms; it is now quite possible that in the not too distant

future robots will become as widespread and as common as computers are

now.

Further reading

General robotics books

Bekey, G. A. (2005). Autonomous Robots: From Biological Inspiration to Implemen-

tation and Control. Cambridge, MA: MIT Press. A thorough general introduc-

tion to modern robotics. Accessible to those with only modest mathematical

knowledge.

Craig, J. J. (2005). Introduction to Robotics: Mechanics and Control (3rd edn.).

Upper Saddle River, NJ: Prentice Hall. A good introduction to classical

robotics, aimed at undergraduates. Requires some math.

Siciliano, B. and Khatib, O. (eds.) (2008). Springer Handbook of Robotics. Berlin:

Springer. An excellent comprehensive coverage of the whole of modern

robotics. Detailed review chapters, written by leading experts, on every topic

of importance. Mainly aimed at postgraduates and researchers, but much of

the material is fairly accessible.

History

Boden, M. A. (2006). Mind as Machine: A History of Cognitive Science (2 vols.).

Oxford University Press. A monumental, and very readable, history of cog-

nitive science. Much relevant material on early AI and the development of

behavior-based and evolutionary robotics.

Husbands, P., Holland, O, and Wheeler, M. (eds.) (2008). The Mechanical Mind

in History, Cambridge, MA: MIT Press. Concentrates on cybernetics and the
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early history of AI, including robotics. Detailed material on Grey Walter and

colleagues in the British cybernetics movement.

Wood, G. (2002). Living Dolls: A Magical History of the Quest for Mechanical

Life. London: Faber and Faber. (Published in the USA as Edison’s Eve.) An

excellent account of early automata. Written for a general audience.

Behavior-based robotics

Arkin, R. C. (1998). Behavior-based Robotics. Cambridge, MA: MIT Press. A good

introduction to some of the work that came under the umbrella of behavior-

based approaches.

Brooks, R. A. (1991a). Intelligence without representation. Artificial Intelligence

47: 139–59. First of a pair of classic papers critiquing traditional approaches

to AI and robotics.

(1991b). Intelligence without reason, in J. Mylopoulos and R. Reiter (eds.),

Proceedings of the 12th International Joint Conference on Artificial Intel-

ligence (pp. 569–95). San Mateo, CA: Morgan Kaufmann. Second paper of the

pair.

Biologically inspired robotics and robots as scientific tools

Adaptive Behavior 17(4) (2009). Special issue of journal on the status of simulation

and robotic models in adaptive behavior research.

Bigge, B. and Harvey, I. R. (2007). Programmable springs: Developing actua-

tors with programmable compliance for autonomous robots, Robotics and

Autonomous Systems 55: 728–34. An interesting example of advanced “arti-

ficial muscle”-like actuators that can be modulated in subtle ways.

Caprari, G., Colot, A., Siegwart, R., Halloy, J., and Deneubourg, J.-L. (2005). Animal

and robot mixed societies: Building cooperation between microrobots and

cockroaches, IEEE Robotics & Automation Magazine 12(2): 58–65. A very

interesting example of using robots to interact with (and control) animals.

Kato, N., Ayers, J., and Morikawa, H. (eds.) (2004). Bio-mechanisms of Swim-

ming and Flying. Tokyo: Springer. A collection of papers on the rich variety

of mechanisms employed by swimming and flying organisms, with many

examples of how aspects of these mechanisms can be exploited in artificial

systems. Aimed at postgraduates and researchers.

Pfeifer, R. and Bongard, J. (2007). How the Body Shapes the Way We Think: A

New View of Intelligence. Cambridge, MA: MIT Press. An excellent accessible

book on embodied intelligence and how the traditional boundaries between

brain, body, and world should be dissolved.

Pfeifer, R. and Scheier, C. (1999). Understanding Intelligence. Cambridge, MA: MIT

Press. A powerfully argued vision of how to understand and build embodied

intelligence.
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Webb, B. (2001). Can robots make good models of biological behaviour? Behavioral

and Brain Sciences 24: 1033–50. A discussion of how robots can be used as

scientific tools in the study of animal behavior.

Evolutionary robotics

Bongard, J. (2011). Morphological change in machines accelerates the evolution

of robust behavior, Proceedings of the National Academy of Sciences of the

United States of America 108:1234–9. Very interesting investigation into

the evolutionary advantages of lifetime changes in morphology (growth) in

simulated robots.

Floreano, D., Husbands, P., and Nolfi, S. (2008). Evolutionary robotics, in B. Sicil-

iano and O. Khatib (eds.), Springer Handbook of Robotics (pp. 1423–51).

Berlin: Springer. A detailed recent survey of the field.

Harvey, I., Di Paolo, E., Wood, R., Quinn, M., and Tuci, E. (2005). Evolutionary

robotics: A new scientific tool for studying cognition, Artificial Life 11:

79–98. An example of work where evolutionary robotics is used to probe

questions in cognitive science.

Nolfi, S. and Floreano, D. (2000). Evolutionary Robotics: The Biology, Intelligence,

and Technology of Self-Organizing Machines. Cambridge, MA: MIT Press. An

excellent introduction to the area.

Philippides, A., Husbands, P., Smith, T., and O’Shea, M. (2005). Flexible couplings:

Diffusing neuromodulators and adaptive robotics, Artificial Life 11:139–60.

An example of work where evolutionary robotics interfaces with contempo-

rary neuroscience.

Insect-inspired navigation

Srinivasan, M. V., Chahl, J. S., Weber, K., Venkatesh, S., Nagle, M. G., and Zhang,

S. W. (1999). Robot navigation inspired by principles of insect vision, Robotics

and Autonomous Systems 26: 203–16. A good example of how insect strate-

gies can be harnessed in robotics.

Vardy, A. and Moller, R. (2005). Biologically plausible visual homing methods

based on optical flow techniques, Connection Science 17: 47–89. Includes

good survey of current methods as well as original work.

Probabilistic robotics

Durrant-Whyte, H. and Bailey, T. (2006). Simultaneous localisation and map-

ping (SLAM): Part I The essential algorithms, IEEE Robotics & Automation

Magazine 13(2): 99–110. An excellent (technical) tutorial on the basics of

approaches to the SLAM problem.

Thrun, S., et al. (2006). Stanley: The robot that won the DARPA Grand Challenge,

Journal of Field Robotics 23: 661–92. Report on the robot that won the
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challenge to navigate across an unrehearsed 142-mile course in the Mojave

desert.
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14 Artificial life

Mark A. Bedau

Artificial life is one type of interdisciplinary study of life and life-like pro-

cesses. (Artificial life is also referred to as “ALife,” “A-Life,” “alife,” and the

like.) Artificial life has two distinctive properties. First, it studies life in any

form in which it can exist, so it focuses on life’s essential features rather than

its contingent features. Second, it studies life by artificially synthesizing and

simulating new forms of life and life’s fundamental processes. Studying life by

synthesizing and simulating it enables us to experiment with different forms

of life in an especially flexible manner. This makes it possible to give sharp

experimental answers to many general questions about the nature of life.

Artificial life research is mainly a scientific activity, but it also raises and

illuminates certain philosophical questions. The first part of this chapter

explains what artificial life is and how it is connected with artificial intelli-

gence, and briefly describes some of its representative scientific achievements.

The second part discusses some associated philosophical issues involving

emergence, creative evolution, the nature of life, the connection between

life and mind, and the social and ethical implications of creating life from

scratch.

14.1 The science and engineering of artificial life

The best way to appreciate artificial life’s focus on essential properties and its

synthetic methodology is to consider examples of its recent scientific achieve-

ments. Today, artificial life uses three kinds of synthetic methods. Hard arti-

ficial life produces actual physical hardware that acts autonomously in the

physical world. Autonomous robots are considered to be artificial life when

they embody and depend on important features of natural forms of life. By

contrast, wet artificial life creates new forms of life in test tubes, using the

latest materials and methods from biochemistry and molecular biology. Test-

tube artificial life is typically roughly like microscopic bacteria. Wet artificial

life is one kind of synthetic biology, combining science and engineering to

design and build novel biological functions and systems. Finally, soft artificial

life consists of computer simulations or other purely digital constructions that

exhibit life-like behavior. Soft artificial life systems typically exist only in

digital form, and they merely reside in computers.
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14.1.1 Hard artificial life

Artificial life’s most direct overlap with artificial intelligence is the creation of

autonomous physical agents or robots in “hard” artificial life (see Chapter 13).

These devices exhibit autonomous adaptive and intelligent behavior in real

physical environments. Hard artificial life contrasts with traditional robotics

by explicitly and extensively exploiting inspiration from all forms of life

including those that are much simpler than humans.

One important contemporary approach to the design of autonomous agents

is to let the physical environment play a large role in generating the agent’s

behavior. A related trick is to let the physical materials in which the robot

is embodied automatically provide as much functionality as possible (Pfeifer

and Bongard 2006). This hard artificial life “behavior-based” robotics was

pioneered by Rodney Brooks (Brooks and Flynn 1989; Brooks 1990, 1991).

Behavior-based robotics avoids the need for an elaborate and detailed inter-

nal representation of the external environment. With the right sensorimotor

architecture, a robot can quickly and intelligently navigate in complex and

unpredictable environments. The initial successes in insect-like robots have

now been extended to humanoid robots.

Even behavior-based intelligent autonomous agents require the right inter-

connections among many complex components. This is a very difficult design

task. The intelligent autonomous agents found in nature are all alive, and

their design was created by an evolutionary process involving natural selec-

tion. Analogously, computer programs using a certain evolutionary process

(so-called “genetic algorithms,” see below) can be used to design autonomous

agents. These evolutionary algorithms have been used to design many aspects

of robots, including control systems and sensors (Cliff, Husbands, and Harvey

1993; Nolfi and Floreano 2000).

In natural autonomous agents, the structure of the control system is tightly

coupled to the structure of the agents’ morphology. Sims (1994) showed how

to recreate this interconnection when he simultaneously coevolved simulated

creatures’ controllers, sensors, and morphology, but he relied on special-

purpose software running on extremely expensive supercomputers. Jordan

Pollack and his students have taken the next step and used similar methods to

develop actual physical robots. They have coupled the simulated coevolution

of controllers and morphology with inexpensive three-dimensional printers,

allowing their evolutionary design to be automatically implemented in the

real world (Lipson and Pollack 2000; Pollack et al. 2001). Robots with the

ability to continuously and autonomously diagnose and repair damage to

their bodies represent another step toward the flexible and robust behavior

exhibited by many life forms (Bongard, Zykov, and Lipson 2006). New

research frontiers in autonomous agents range from swarms of relatively

unintelligent insect-like drones, to autonomous robots with a continuously

evolving model of the external world.
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14.1.2 Wet artificial life

Some central figures in artificial intelligence believe that AI’s future hinges on

progress in wet artificial life (Brooks 2001). The holy grail of wet artificial life is

to create artificial cells out of biochemical raw materials, such as lipids, or DNA

and RNA molecules, that are not themselves alive. These minimal forms of

chemical cellular life would be microscopic, autonomously self-organizing and

self-reproducing entities built from simple organic and inorganic substances

(Rasmussen et al. 2004; Rasmussen et al. 2009). Although made by human

hands, and so artificial, for all intents and purposes they would be alive,

for they would maintain and repair themselves, and adapt in an open-ended

fashion to unpredictable environmental contingencies.

There are two main motivations for making artificial cells. One is scientific.

If one could make new cellular forms of life from scratch, using non-natural

materials or methods, this would provide an extremely powerful and flexi-

ble scientific tool for probing the molecular details of simple forms of life.

Artificial cells also have broad practical applications. Natural cells are very

complicated and have an adaptive flexibility that is unmatched so far by

human engineering. So, engineering artificial cells that organize and sustain

themselves and continually adapt to their environment would open the door

to a new kind of technology that captures the power of life.

What will artificial cells do? The initial functionality of these machines will

be simply to move through a fluid and process chemicals. To do this flexi-

bly, resiliently, and indefinitely requires solving the basic functions of self-

maintenance, autonomous control of internal chemical processes, autonomous

control of mobility, and the ability to reproduce.

Nobody has yet created a fully functioning artificial cell, but research toward

this goal is progressing in two main approaches. Human genome pioneer J.

Craig Venter and Nobel Prize winner Hamilton Smith are using the top-down

strategy of synthesizing and then redesigning the genome of existing simple

life forms such as bacteria (Gibson et al. 2010). This top-down approach

has the virtue that it can simply borrow the biological wisdom embodied in

existing forms of life. It has the corresponding disadvantage that this wisdom

is limited by the contingencies in the actual history of life.

The other approach to making artificial cells is bottom-up: to start from

non-living materials and build more and more complex physiochemical sys-

tems with more and more life-like properties. One critical component of any

artificial cell is its boundary with the external environment, and to achieve this

people typically use vesicles. A vesicle is a loosely spherical structure formed

from a continuous bilayer membrane, which typically exists in a watery fluid.

The walls of all natural living cells are bilayer membranes, formed from two

layers of amphiphilic molecules. Amphiphiles are hydrophylic (“water loving”)

on one end and hydrophobic (“water hating”) on the other. Bilayer membranes
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form spontaneously when amphiphilic molecules in sufficient concentrations

are in water. In the laboratory, vesicles have been shown to grow and divide

(“reproduce”). By employing the proper laboratory procedures, vesicle growth

and division can continue in the laboratory indefinitely.

Researchers have been able to produce a number of fundamental cellular

functions in vesicles. For example, RNA inside vesicles will replicate if the

vesicle contains energetically activated nucleotides and an enzyme found in

simple life forms. Bottom-up wet artificial life sometimes uses some material

derived from natural life forms. One example is “cell-free extract.” This is

harvested from bacteria and contains all of the hundreds of enzymes, other

proteins, and other complex biological structures normally found inside bacte-

ria. When supplied with cell-free extract, simple vesicles can produce proteins

that create structures such as pores and create networks of genes that control

other genes (see Luisi, Ferri, and Stano 2006 and Rasmussen et al. 2009 for

reviews).

14.1.3 Soft artificial life

Implementing life-like systems in software is a practical and constructive way

to study many issues about living systems. Some soft artificial life models

focus on self-organization and study how structure can emerge from unstruc-

tured ensembles of initial conditions. Other models target populations of com-

plex agents analogous to multi-cellular organisms, and some models focus

on interactions between different types of organisms. These models typically

allow an organism’s features to evolve through a process like Darwinian nat-

ural selection. Some other models target other important biological processes,

such as epigenetics and development.

One of the first significant achievements of spontaneous evolution in a

digital medium was Tierra (Ray 1992), which is a soft artificial life system that

consisted of a population of simple, self-replicating computer programs that

exist in computer memory and consume central processing unit (CPU) time.

A Tierran genotype consists of a string of machine code, and each Tierran

“creature” is an instance of some Tierran genotype. A simulation starts when

a single self-replicating program, the ancestor, is placed in computer memory

and left to replicate. The ancestor and its descendants repeatedly replicate until

computer memory is teeming with creatures that all share the same ancestral

genotype. Older creatures are continually removed from memory to create

space for new descendants. Mutations sometimes occur, and the population

of programs evolves by natural selection. If a mutation allows a program to

replicate faster, that genotype tends to spread through the population. Over

time, the ecology of Tierran genotypes becomes remarkably diverse. Quickly

reproducing parasites that exploit a host’s genetic code evolve, and the coevo-

lution between hosts and parasites spurs the evolution of parasite resistance
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and new forms of parasitism. After millions of CPU cycles of this coevolu-

tionary arms race, Tierra often contains many kinds of creatures exhibiting

a variety of competitive and cooperative ecological relationships. Ray subse-

quently extended Tierra to larger and more heterogeneous environments and

gave ancestral Tierran creatures multiple cell types. By allowing Tierran crea-

tures to migrate from machine to machine over the internet, looking for unused

resources and for more favorable local niches, Ray has found signs that they

evolve new types of cells. Furthermore, when Tierra is modified so that crea-

tures are rewarded for performing complex arithmetic operations on numbers

they find in their local environment, evolution produces the expected increase

in genetic complexity (Adami, Offria, and Collier 2000; Lenski et al. 2003).

Tierra and similar software systems illustrate the abstract character of many

soft artificial life systems. These abstract “models” are designed to explore

certain general principles, but not to represent details of known biological

systems. When designed correctly, abstract artificial life systems generate

wholly new and extremely simple instances of life-like phenomena. The sim-

plest example of such a system is the so-called “Game of Life,” devised by

the mathematician John Conway in the 1960s (Berlekamp, Conway, and Guy

1982). Conway’s Game of Life can be thought of as a model of biological

activity at the physical or chemical level, involving extremely simple and

abstract “biochemical” interactions. It is important to note that the Game of

Life is not a “model” of any actual chemical activity in the real world; instead,

it is a wholly new and abstract “instance” of life-like activity.

The Game of Life is a two-state, two-dimensional cellular automaton with

a trivial nearest-neighbor rule. Think of this “game” as taking place on a

two-dimensional rectangular grid of cells, analogous to a huge checkerboard.

Time advances in discrete steps, and a cell’s state at a given time is determined

by the states of its eight neighboring cells according to the following simple

birth–death rule: A “dead” cell becomes “alive” at some time if and only if

exactly three neighbors were alive at the previous moment, and a “living” cell

“dies” unless two or three of its neighbors were alive at the previous moment.

The Game starts with an initial configuration of living cells, and from there

it evolves in time, as each cell changes its state according to the birth–death

rule. With one eye on a cell and its neighbors and the other on the birth–death

rule, it is easy to tell how the state of the cell will evolve in time (Figures 14.1

and 14.2).

As more and more initial conditions in the Game of Life have been studied,

a rich variety of complicated behavior has been observed and a complex

zoo of structures has been identified and classified (blinkers, gliders, glider

guns, logic-switching circuits, etc.). It is even possible to construct a universal

Turing machine in the Game of Life, by cunningly positioning the initial

configuration of living cells. In such constructions, certain patterns of cells
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Time 1

Time 2

Time 3

Time 4

Time 5

Figure 14.1 A sequence of five steps in the evolution of the Game of Life. The initial

configuration contains four simple structures, from left to right. The first, a single

cell, dies immediately. The second, the block of four cells, remains unchanged

forever. This is an example of a “still life.” The third, a strip of three cells named the

“traffic light,” flips back and forth forever between two configurations, in which the

strip goes up and down or left and right. This is an example of a “blinker” of period

two. The fourth structure, a so-called “glider” consisting of five cells, cycles through a

sequence of four configurations and ends up in a state in which the original spatial

configuration is shifted in space.
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Time 1

Time 100

Time 200

Figure 14.2 The evolution of the so-called “r-pentomino” shown at times 1, 100, and

200. Note that familiar structures including “blocks,” “traffic lights,” and “gliders”

arise and persist for a while, but most are transitory.

that move in a straight direction across the Life checkerboard function to

carry signals and process information. A research thrust now in artificial life

is analyzing the computational potential of cellular automata on the basis of

glider interactions, and designing cellular automata that accomplish desired

computational tasks. The Game of Life and other cellular automata (e.g. von

Neumann 1966) are important in artificial life because they show how certain

kinds of complex life-like behavior can arise from massively parallel systems

composed of simple computational cells.

There is growing interest in soft artificial life systems that can be directly

related to empirical data from experimental systems in the laboratory. Some
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recent models of complex chemical systems (sometimes called “protocells”)

exhibit properties reminiscent of the simplest forms of life. Just as produ-

cing protocells is a grand challenge in wet artificial life, a grand challenge

in soft artificial life is to produce a protocell model that demonstrates the

emergence of life from non-life. Some protocell models explicitly represent

complex molecules like amphiphiles and informational polymers in a two-

or three-dimensional aqueous environment. These models produce behav-

iors like the self-replication of informational polymers or the self-assembly,

growth, and division of complex two- or three-dimensional cell-like struc-

tures such as vesicles. Other models of oil, water, and amphiphiles couple

a thermodynamically realistic self-assembly process with an evolving pop-

ulation of self-replicating molecules. Still simpler models show how weakly

bonded aggregations of amphiphiles can emerge and evolve spontaneously

(Rasmussen et al. 2009).

14.1.4 Comparison of soft artificial life and artificial intelligence

Soft artificial life differs from artificial intelligence, but the two are connected,

especially through machine learning. It should be no surprise that the subjects

of artificial intelligence and artificial life overlap, since both study natural

phenomena by simulating and synthesizing them, and since living and flour-

ishing in a changing and uncertain environment (the subject of artificial life)

is a rudimentary form of intelligence, the subject of AI.

One historically important overlap between artificial intelligence and arti-

ficial life is John Holland’s pioneering investigations of genetic algorithms

(1992) (see also Chapters 1 and 4 of this volume). The genetic algorithm

is a machine learning technique loosely modeled on biological evolution. It

treats learning the solution to a problem as a matter of competition among

candidate problem solutions, with the best candidate solutions eventually

winning. Potential solutions are encoded in an artificial chromosome, and an

initial population of candidate solutions is created randomly. The quality or

“fitness” of each solution is calculated by application of a “fitness function.”

For example, if the problem is to find the shortest route between two cities and

a candidate solution is a specific itinerary, then the fitness function might be

the sum of the distance of each segment in the itinerary and a solution’s fit-

ness is proportional to the reciprocal of its total distance. In effect, the fitness

function is the “environment” to which the population adapts. A candidate

solution’s “genotype” is its chromosome, and its “phenotype” is its fitness. On

analogy with natural selection, lower-fitness candidates are then replaced in

the population with new solutions modeled on higher-fitness candidates. New

candidates are generated by modifying earlier candidates with “mutations”

that randomly change chromosomal elements and “crossover” events that

combine pieces of two chromosomes. After reproducing variants of the most

fit candidates for many generations, the population contains better and better

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139046855.019
https://www.cambridge.org/core


304 Mark A. Bedau

solutions. The study of genetic algorithms has blossomed into a flourishing

study of evolutionary algorithms, which supports multiple annual interna-

tional conferences and multiple professional journals.

There is an important difference between the modeling strategies that arti-

ficial intelligence and artificial life typically employ. Most traditional AI mod-

els are top-down-specified serial systems involving a complicated, centralized

controller that makes decisions based on access to all aspects of the global

state (see Chapter 4). The controller’s decisions have the potential to affect

directly any aspect of the whole system. On the other hand, many natural liv-

ing systems exhibiting complex autonomous behavior are parallel, distributed

networks of relatively simple low-level “agents” that simultaneously interact

locally with each other. Each agent’s decisions are based on information about,

and directly affect, only their own local situation. Artifical life’s models char-

acteristically follow nature’s example. The models themselves are bottom-up-

specified parallel systems of simple agents interacting locally. The models are

repeatedly iterated and the resulting global behavior is observed. Such lower-

level models are sometimes said to be “agent-based” or “individual-based.”

The whole system’s behavior is represented only indirectly and it arises out of

the interactions of a collection of directly represented parts (“agents” or “indi-

viduals”). Two excellent illustrations of the bottom-up quality of artificial life

models are Tierra and the Game of Life, discussed earlier.

The parallel, distributed character of artificial life models is similar to the

structure of the models studied in the connectionist (parallel distributed pro-

cessing, neural network) movement (see Chapter 5). Both involve bottom-up

models in which a population of autonomous agents follows simple local rules.

In fact, the agents in many artificial life models are themselves controlled by

internal connectionist nets.

Three important differences distinguish typical artificial life models from

the connectionist models that have attracted the most attention, such as feed-

forward networks that learn by the backpropagation algorithm. First, artificial

life and connectionism depend on different kinds of learning algorithms. Con-

nectionist models often employ supervised learning algorithms like backprop-

agation. These learning algorithms are typically turned on when the network

is learning and then turned off when the acquired information is applied. This

distinction between training and application phases is sometimes unnatural.

In addition, supervised learning algorithms require an omniscient teacher,

which is also often unnatural. By contrast, the learning algorithms employed

in artificial life models usually avoid these criticisms. They are typically unsu-

pervised and in continual operation. Often the algorithm involves artificial

selection.

Second, human intervention and interpretation play different roles in arti-

ficial life and connectionism. Typical connectionist models passively receive

sensory information prepackaged by a human designer and produce output
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that must be interpreted by a human designer. In artificial life models, on

the other hand, a micro-level agent’s sensory input comes directly from the

environment in which the agent lives. In artificial life models the micro-level

agents’ output is to perform actions in their environment, and those actions

have direct consequences for the agents’ well-being. Thus their output has an

intrinsic meaning regardless of human interpretation.

Third, artificial life and connectionism typically seek different kinds of

dynamical behavior. Much connectionist modeling aims to produce behavior

that settles into an equilibrium. This is because both learning and applying

knowledge are conceived as fixed and determinate goals. By contrast, artificial

life views much of the distinctive behavior of living systems as a process of

continual creative evolution, so the aim of many artificial life models is an

open-ended evolutionary dynamic that is forever far from equilibrium.

14.2 Philosophical implications of artificial life

The science and engineering of artificial life impinges on a number of broad

philosophical issues, including how life emerges from non-life, whether the

evolution of life has a directional arrow, what life is, whether software systems

could ever be literally alive, and what the social and ethical implications of

creating artificial life are. In some cases artificial life’s scientific achievements

presuppose traditional philosophical positions or raise new philosophical pos-

sibilities, and in other cases they provide new traction on perennial problems

in philosophy and theoretical biology.

14.2.1 Emergence

One of life’s striking features is that the whole seems to be more than the

sum of the parts. This is called emergence (see, e.g., Bedau and Humphreys

2008). As a general definition, emergent phenomena involve the relation-

ship between wholes and their parts; specifically, the wholes both depend on,

and are autonomous from, their parts. The philosophical problem of emer-

gence involves evaluating whether emergence is metaphysically legitimate

and whether it plays a constructive role in scientific explanations of apparent

emergent phenomena such as those involving life.

The aggregate global behavior of soft artificial life models demonstrates

what has been called “weak” emergence (Bedau 2002). Weak emergence con-

trasts with the “strong” emergence that involves in principle the impossibility

of reducing wholes to their parts (Kim 1999). With weak emergence, the state

of a whole system is emergent just in case it can be derived from the system’s

boundary conditions and its micro-level dynamical processes, but only by

iterating and aggregating potentially all of the micro-level interactions that
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occur. In contrast to strong emergence, weak emergence entails that macro-

level phenomena are reducible to micro-level phenomena. The Game of Life is

a simple and vivid example of this; all of the global behavior of the Game of

Life is driven by the micro-level birth–death rule. Yet weak emergent macro-

level phenomena still have a kind of autonomy because the micro-level inter-

actions in the bottom-up models produce such complex macro-level effects

that the only way to recognize or predict them is by observing macro-level

behavior. Furthermore, the macro-level phenomena exhibit patterns and reg-

ularities that are robust and independent of many of the contingent details of

the micro-level interactions.

Weak emergence is commonplace in complex natural systems, and artificial

life’s models typically exhibit it. The unpredictability of weak emergent phe-

nomena comes from the complex network of nonlinear and context-dependent

local micro-level interactions that drive the systems. Macro-level weak emer-

gent phenomena can have causal powers, but merely by aggregating micro-

level causal powers (Rasmussen et al. 2001). Clearly, there need be nothing

metaphysically illegitimate or non-naturalistic about weak emergence.

Artificial life thus plays various roles in philosophical debates about emer-

gence. Bottom-up artificial life models generate impressive and vivid examples

of weak emergent macro-level phenomena. Thus, artificial life expands our

understanding of the kinds of macro-level complexity that can have simple

micro-level explanations. This gives philosophy a new purchase on the kind

of emergence that has seemed to many people to be involved in life and mind.

14.2.2 The arrow of evolution

The evolution of life has produced a remarkable growth in complexity. Life

started out with only very simple single-celled life forms, like bacteria. Even-

tually evolution produced more complex single-celled life forms like amoebas,

which have complex internal structures including a nucleus. Eventually mul-

ticellular life forms evolved, and then large-bodied vertebrate creatures with

sophisticated sensory processing capacities, and then highly intelligent crea-

tures that use language and sophisticated technology. This increase in life’s

maximal complexity raises the question of whether biological evolution has

an inherent arrow of directionality – that is, whether the process of evolution

contains some sort of inherent tendency to create greater and greater adap-

tive complexity, or whether life’s increasing complexity is just an accidental

by-product of evolutionary contingencies.

Stephen Jay Gould (1989) devised a clever way to frame this question:

the thought experiment of replaying the tape of life. This thought experiment

hypothetically assumes that the process of evolution is recorded on a tape. The

thought experiment involves rewinding the evolutionary process backward in

time, erasing the tape, and then playing the evolutionary process forward again

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139046855.019
https://www.cambridge.org/core


307 Artificial life

but this time allowing it to be shaped by different contingencies. Replaying

the tape of life many times will reveal what outcomes of the evolutionary

process are typical and to be expected, and what outcomes are accidents.

It is not obvious what the outcome of replaying the tape would be. Gould

himself says that “any replay of the tape would lead evolution down a pathway

radically different from the road actually taken” (1989, p. 51) and concludes

that the contingency of evolution makes any inherent growth in adaptive

complexity impossible. Daniel Dennett (1995) draws exactly the opposite con-

clusion. He argues that complex features, such as sophisticated sensory pro-

cessing, provide such a distinct adaptive advantage that natural selection will

almost inevitably discover them in one form or another. Dennett concludes

that replaying life’s tape will almost inevitably produce highly intelligent

creatures that use language and develop sophisticated technology.

There is a problem with the positions of both Gould and Dennett. Replaying

the tape of life is a good way to investigate the scope of contingency and

necessity in evolution, but neither Gould nor Dennett actually do replay the

tape. Instead, they speculate about what would happen if someone were to do

it. But it is notoriously common for predictions about such complex scenarios

to be mistaken, so we are still awaiting concrete evidence about what replaying

the tape of life would show.

Soft artificial life provides one method to replay the tape: Construct an

artificial biosphere that is like the real biosphere in the relevant respects, and

then learn its typical and expected behavior by repeatedly replaying the tape

(re-running the simulation). The easiest artificial biospheres to construct are

simply software systems. Of course, no software system will recreate all the

conditions of any actual earlier stage in the evolution of life on Earth. But

replaying life’s tape in a number of different model biospheres would surely

shed some light on the inherent creative potential of biological evolution, as

long as that biosphere’s creative evolutionary potential was sufficiently open.

14.2.3 The nature of life

The advent of artificial life has helped revitalize and refashion the question

of the nature of life. This question is highly controversial and there is no sign

of an emerging consensus (Bedau and Cleland 2010). But one can simulate or

synthesize essential features of living systems only if one has some idea what

life is. So, like those searching for extraterrestrial life or for the origin of life

on Earth, those attempting to synthesize life in the laboratory are forced to

confront the general question of what life is.

As it happens, almost all wet artificial life scientists trying to make arti-

ficial cells agree that their goal is a self-contained system that metabolizes

and evolves (e.g., Rasmussen et al. 2004). That is, an artificial cell is viewed

as any chemical system that chemically integrates three processes. The first

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139046855.019
https://www.cambridge.org/core


308 Mark A. Bedau

is the chemical process by which self-replicating molecules (“genes”) contain

information that influences and shapes how the cell functions. Errors (“muta-

tions”) can occur when the molecules replicate, so the molecules can evolve

by natural selection. The second is the metabolic process that extracts raw

materials and energy from the environment to repair and regenerate the con-

tainer and its contents and enable the whole system to reproduce. The third

is the process of assembling a container, such as a lipid vesicle, that concen-

trates the reagents needed for life and shields them from molecular parasites

and poisons. In this view of life as an integrated triad, the chemical processes

involving genes, metabolism, and containment support and enable each other,

so that there are functional feedback relations among all three. This view pre-

supposes that any biochemical realization of the integrated triad of functions

is a genuine instance of minimal chemical life. This is one example of how

scientific advances in wet artificial life provide new food for thought about

the nature of life in general.

The philosophy of mind has recently been dominated by functionalism: The

view that mental beings are a certain kind of input–output device and that

having a mind is simply having a set of internal states that causally interact

(or “function”) with respect to each other and with respect to environmental

inputs and behavioral outputs in a certain characteristic way. Functionalism

with respect to life is the analogous view that being alive is simply realizing a

network of processes that interact in a certain characteristic way. Some pro-

cesses (such as information processing, metabolism, purposeful activity) oper-

ate within the organism’s lifetime; other processes (such as self-reproduction

and adaptive evolution) span many lifetimes. These processes are always real-

ized in some material substratum, but the substratum’s material nature is

irrelevant so long as the forms of the processes are preserved. For these rea-

sons, functionalism is an attractive position with respect to life.

Chris Langton (1989, p. 41) gave a classic statement of functionalism with

respect to life when he said, “Life is a property of form, not matter, a result of

the organization of matter rather than something that inheres in the matter

itself.” He elaborates:

The big claim is that a properly organized set of artificial primitives carrying out

the same functional roles as the biomolecules in natural living systems will

support a process that is “alive” in the same way that natural organisms are

alive. Artificial Life will therefore be genuine life – it will simply be made of

different stuff than the life that has evolved here on Earth. (Langton 1989, p. 33)

We might be unsure about the details of the processes that are definitive of life,

and we might wish to reserve judgment about whether artificial life creations

are genuinely alive. Nevertheless, Langton is right that life’s characteristic

processes such as metabolism, information processing, and self-reproduction

could be realized in a wide and potentially open-ended range of materials.
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For that reason, there seems to be some truth in functionalism about life.

But functionalism about life should not presuppose any simplistic monolithic

dichotomy between form and matter (Sterelny and Griffith 1999).

The connection between life and mind is of growing philosophical interest

(e.g., Thompson 2007). All organisms have at least rudimentary mental capa-

cities, broadly speaking (Dennett 1996). They are sensitive to the environment

in various ways, and this environmental sensitivity affects their behavior

in various ways. Furthermore, the sophistication of these mental capacities

seems to correspond to the complexity of those forms of life. So it is natural

to ask if there is an interesting connection between life and mind, especially

for those who think that a central function of the mind is being able to

behave appropriately in a complex, dynamic, and unpredictable world (see

Chapter 6). Since all forms of life must cope in one way or another with a

complex, dynamic, and unpredictable world, perhaps this adaptive flexibility

intrinsically connects life and mind. Understanding the ways in which life and

mind are connected is one of the basic puzzles about the nature of life.

14.2.4 Strong artificial life

The aim of soft artificial life is to create software systems that synthesize

or simulate living systems. On analogy with the distinction between weak

and strong artificial intelligence (see Chapters 2 and 3), one should distin-

guish two fundamental hypotheses about soft artificial life. Weak soft artifi-

cial life is the thesis that artificial life software systems can be informative

and insightful simulations of living systems. Strong soft artificial life is the

thesis that artificial life software systems can be actual instances of life. There

are analogous theses about weak and strong versions of hard and wet artifi-

cial life. Note that the theses of weak and strong artificial life do not assert

that contemporary artificial life has already achieved any good simulations

or genuine realizations of life. Rather, they claim that such achievements are

possible. Hypotheses about weak and strong forms of artificial life illustrate

how the existence of the science of artificial life raises some new philosophical

questions.

The truth of the strong thesis about wet artificial life seems relatively uncon-

troversial, given minimal agreement that life is just a complex chemical and

biological process. If so, then synthesizing those chemical and biological pro-

cesses in the laboratory, if it can be done, would produce a new instance of

life. So, although there might be a significant scientific and technical barrier

to achieving wet artificial life that is literally alive, it is possible in principle.

The truth of the strong theses about hard and soft artificial life are more

controversial. Since soft artificial life presents the most extreme case, and

since many artificial-life scientists make claims that explicitly or implicitly

presuppose the truth of the strong thesis about soft artificial life, I will focus
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on it. The truth of strong soft artificial life depends to some extent on prior

agreement about the nature of life, but some progress can be made even if

that question remains unsettled.

Some people argue against strong soft artificial life on the grounds that it is

a simple category mistake to confuse a computer simulation of life with a real

instance of it. A flight simulation for an airplane, they argue, no matter how

detailed and realistic, does not really fly. A simulation of a hurricane does

not create real rain driven by real gale-force winds. Similarly, a computer

simulation of a living system produces merely a symbolic representation of the

living system. The intrinsic ontological status of this symbolic representation is

nothing more than certain electronic states inside the computer (e.g., patterns

of high and low voltages). This constellation of electronic states is no more

alive than is a series of English sentences describing an organism. It seems

alive only when it is given an appropriate interpretation.

But this charge of category mistake can be blunted. Many soft artificial

life systems are not simulations or models of familiar living systems but new

digital worlds. Conway’s Game of Life, for example, is not a simulation or

model of any real biochemical system but a digital universe that exhibits its

own distinctive form of spontaneous self-organization. So, when the Game

of Life is actually running in a computer, that physical device contains a

new physical instance of self-organization. Processes like self-organization

and evolution are multiply realizable and can be embodied in a wide vari-

ety of different media, including the physical media of suitably programmed

computers. So, to the extent that the essential properties of living systems

involve processes like self-organization and evolution, suitably programmed

computers will actually be novel realizations of life.

Boden (2003) has emphasized that this reply runs aground if metabolism

is included in the essential properties of living systems, as it often is (Bedau

and Cleland 2010). It might be possible to give a functional definition of

metabolism that allows many different instantiations, but the definition would

presumably put severe physical and chemical constraints on any actual chem-

ical metabolism. If metabolism is interpreted as the ability to use packets

of energy to maintain a body and power its behavior, Boden argues that

metabolism inevitably thwarts hard and soft artificial life.

14.2.5 The ethics of artificial life

Both the process of pursuing artificial life research and the scientific and prac-

tical products of that research process raise complicated ethical issues (see also

Chapter 15). These issues can be divided into four broad categories: the sanc-

tity of the biosphere, the sanctity of human life, the responsible treatment of

newly generated life forms, and the risks of using artificial life technology

(Bedau et al. 2000). Artificial life’s ethical issues are somewhat like those that

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139046855.019
https://www.cambridge.org/core


311 Artificial life

have been raised concerning other forms of biotechnology, such as animal

experimentation, cloning, and genetic engineering. It would be possible to

glean some ethical lessons for artificial life from the existing bioethics liter-

ature. But creating and interacting with new artificial life-like systems will

place us in increasingly uncharted ethical terrain.

Especially vivid ethical issues are being generated by wet artificial life

efforts to make new forms of life in the laboratory (Bedau and Parke 2009).

These efforts can be expected to generate public concern. Some will object

that that creating artificial cells is unnatural or fails to give life due respect

(Cho et al. 1999), or that it involves playing God (Cho 1999). One main driver

for these ethical concerns is that creating new forms of life will inevitably

involve what could be called “deciding in the dark.” Decisions in the dark

are those we make even though we are largely ignorant about the possible

consequences of different choices. New and revolutionary technologies are

allowing contemporary society to change its environment at an accelerating

rate. In general, the more revolutionary these technologies are, the harder it

is for us to forecast their implications for human health and the environment.

So, when society is deciding how to regulate new technologies like artificial

life, it is deciding in the dark.

One important tool for making complex decisions is risk analysis. Based

on decision theory, risk analysis is the primary method by which large orga-

nizations and public agencies such as the US Food and Drug Administration

(FDA) make decisions with major social and economic implications (Wilson

and Crouch 2001; Ropeik and Gray 2002). For example, top officials in the

US Department of Agriculture cited a Harvard Center for Risk Analysis study

to justify FDA inaction about mad cow disease.

Decision theory (Resnick 1987) has a well-developed arsenal for confronting

what are known as decisions “under risk” and decisions “under ignorance or

uncertainty.” Nevertheless, it is unequipped to help with decisions in the dark.

Decision theory approaches a decision in a given context by tabulating, in

tree form, the different possible actions that could be made in that context,

determining the likely consequences of each action, determining the likely

social utility of each consequence, and then analyzing this decision tree by

calculating such things as each action’s expected utility. Recommendations

about decisions can be gleaned from the decision table. Decisions under risk

are those in which the likely consequences of the actions are uncertain and

can only be assigned a probability. Decisions under ignorance or uncertainty

are those in which even the probabilities of the consequences are unknown,

so information about the decision tree is limited to its branching structure.

In both cases, however, the consequences of various courses of action can

be calculated and tabulated, yielding useful concrete recommendations about

pending decisions. Decisions in the dark are different in just this respect: We

are ignorant about even the possible outcomes of our actions, and so cannot
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even construct a decision tree, since we do not know the branches and their

branching structure. So decision theory is essentially mute about decisions in

the dark.

Nevertheless, decisions in the dark are increasingly confronting society

because of technological innovations, including artificial life. The economic

stakes for governments and commerce are huge. Simultaneously, the per-

ceived risks of these new technologies are also causing growing alarm. Genet-

ically modified foods are at the time of writing anathema throughout Europe.

Because these technologies are revolutionary, it is impossible for us to know

the likely consequences of their development. Yet we nevertheless face choices

today about whether and how to develop them, whether and how to regulate

them, and so on. We have to make these decisions in the dark.

One natural reaction to the problem of making decisions in the dark is the

Precautionary Principle. This principle states that we should ban new tech-

nologies that might create significant risks even if we lack solid scientific

evidence of such risks (Raffensperger and Tickner 1999). The Precautionary

Principle is designed to apply precisely to situations in which society is in the

dark, and it is playing an increasing role in international law, appearing in

over a dozen international treaties and agreements (e.g., the Rio Declaration

from the 1992 United Nations Conference on Environment and Development).

But the Principle remains controversial because it seems to give insufficient

attention to the possible benefits of new technologies. The scope and sound-

ness of the Precautionary Principle remains controversial today.

14.3 Conclusion

Software comprises one of artificial life’s synthetic methods, hardware another,

and test-tube constructions a third. To the extent that artificial life is successful

in creating wholly new forms of life in any synthetic medium, it will play a

role in shaping the future world in which humans live along with all other

life forms.

Artificial life can also become an important new tool for philosophy. At the

dawn of the last century analytical philosophy was transformed by the intro-

duction and assimilation of formal logic. Perhaps artificial life and related

scientific fields will, in a similar way, also transform philosophy by augment-

ing complex thought experiments with computational rigor and power.

Further reading

Artificial Life. A quarterly journal published by The MIT Press, publishing its

twentieth volume in 2014. It is devoted mostly to advances in soft artificial

life, but also covers representative work in hard and wet artificial life, as well

as some broader issues.
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Langton, C. G. (ed.) (1989). Artificial Life: The Proceedings of an Interdisciplinary

Workshop on the Synthesis and Simulation of Living Systems. Redwood City:

Addison-Wesley. Proceedings of the first “artificial life” conference identified

as such, with a classic introductory overview of the field and a forty-page

annotated bibliography of works relevant at the founding of artificial life.

Proceedings of the International Conference on Artificial Life (ALife), and Proceed-

ings of the European Conference on Artificial Life (ECAL), both biennial and

published in electronic form by MIT Press.

Rasmussen, S., Bedau, M. A., Chen, L., Deamer, D., Krakauer, D. C., Packard,

N. H., and Stadler, P. F. (eds.) (2009). Protocells: Bridging Nonliving and Living

Matter. Cambridge, MA: MIT Press. A comprehensive overview of protocell

achievements and guiding visions in the wet lab and in computer models.

Von Neumann, J. (1966). Theory of Self-Reproducing Automata. Urbana-

Champaign: University of Illinois Press. Von Neumann’s classic work on

self-reproducing automata, completed and edited after his death by Arthur

Burks.

Wolfram, S. (1994). Cellular Automata and Complexity: Collected Papers. Reading,

MA: Addison-Wesley. Contains important early technical papers on cellular

automata.
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15 The ethics of artificial intelligence

Nick Bostrom and Eliezer Yudkowsky

The possibility of creating thinking machines raises a host of ethical issues,

related both to ensuring that such machines do not harm humans and other

morally relevant beings, and to the moral status of the machines themselves.

This chapter surveys some of the ethical challenges that may arise as we create

artificial intelligences of various kinds and degrees.

15.1 Ethics in machine learning and other domain-specific
AI algorithms

Imagine, in the near future, a bank using a machine learning algorithm to

recommend mortgage applications for approval. A rejected applicant brings a

lawsuit against the bank, alleging that the algorithm is discriminating racially

against mortgage applicants. The bank replies that this is impossible, since the

algorithm is deliberately blinded to the race of the applicants. Indeed, that was

part of the bank’s rationale for implementing the system. Even so, statistics

show that the bank’s approval rate for black applicants has been steadily

dropping. Submitting ten apparently equally qualified genuine applicants (as

determined by a separate panel of human judges) shows that the algorithm

accepts white applicants and rejects black applicants. What could possibly be

happening?

Finding an answer may not be easy. If the machine learning algorithm is

based on a complicated neural network, or a genetic algorithm produced by

directed evolution, then it may prove nearly impossible to understand why, or

even how, the algorithm is judging applicants based on their race. On the other

hand, a machine learner based on decision trees or Bayesian networks is much

more transparent to programmer inspection (Hastie, Tibshirani, and Friedman

2001), which may enable an auditor to discover that the AI algorithm uses

the address information of applicants who were born or previously resided in

predominantly poverty-stricken areas.

AI algorithms play an increasingly large role in modern society, though usu-

ally not labeled “AI.” The scenario described above might be transpiring even

as we write. It will become increasingly important to develop AI algorithms

The authors are grateful to Rebecca Roache for research assistance and to the editors of this

volume for detailed comments on an earlier version of our manuscript.
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that are not just powerful and scalable, but also transparent to inspection – to

name one of many socially important properties.

Some challenges of machine ethics are much like many other challenges

involved in designing machines. Designing a robot arm to avoid crushing

stray humans is no more morally fraught than designing a flame-retardant

sofa. It involves new programming challenges, but no new ethical challenges.

But when AI algorithms take on cognitive work with social dimensions –

cognitive tasks previously performed by humans – the AI algorithm inherits

the social requirements. It would surely be frustrating to find that no bank in

the world will approve your seemingly excellent loan application, and nobody

knows why, and nobody can find out even in principle. (Maybe you have a

first name strongly associated with deadbeats? Who knows?)

Transparency is not the only desirable feature of AI. It is also important that

AI algorithms taking over social functions be predictable to those they govern.

To understand the importance of such predictability, consider an analogy.

The legal principle of stare decisis binds judges to follow past precedent

whenever possible. To an engineer, this preference for precedent may seem

incomprehensible – why bind the future to the past, when technology is always

improving? But one of the most important functions of the legal system is to

be predictable, so that, for example, contracts can be written knowing how

they will be executed. The job of the legal system is not necessarily to optimize

society, but to provide a predictable environment within which citizens can

optimize their own lives.

It will also become increasingly important that AI algorithms be robust

against manipulation. A machine vision system to scan airline luggage for

bombs must be robust against human adversaries deliberately searching for

exploitable flaws in the algorithm – for example, a shape that, placed next to a

pistol in one’s luggage, would neutralize recognition of it. Robustness against

manipulation is an ordinary criterion in information security – nearly the cri-

terion. But it is not a criterion that appears often in machine learning journals,

which are currently more interested in, for example, how an algorithm scales

up on larger parallel systems.

Another important social criterion for dealing with organizations is being

able to find the person responsible for getting something done. When an AI

system fails at its assigned task, who takes the blame? The programmers? The

end-users? Modern bureaucrats often take refuge in established procedures

that distribute responsibility so widely that no one person can be identified to

blame for the catastrophes that result (Howard 1994). The provably disinter-

ested judgment of an expert system could turn out to be an even better refuge.

Even if an AI system is designed with a user override, one must consider the

career incentive of a bureaucrat who will be personally blamed if the override

goes wrong, and who would much prefer to blame the AI for any difficult

decision with a negative outcome.
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Responsibility, transparency, auditability, incorruptibility, predictability,

and a tendency to not make innocent victims scream with helpless frustration:

all criteria that apply to humans performing social functions; all criteria that

must be considered in an algorithm intended to replace human judgment

of social functions; all criteria that may not appear in a journal of machine

learning considering how an algorithm scales up to more computers. This list

of criteria is by no means exhaustive, but it serves as a small sample of what

an increasingly computerized society should be thinking about.

15.2 Artificial General Intelligence

There is nearly universal agreement among modern AI professionals that

Artificial Intelligence falls short of human capabilities in some critical sense,

even though AI algorithms have beaten humans in many specific domains

such as chess. It has been suggested by some that as soon as AI researchers

figure out how to do something, that capability ceases to be regarded as

intelligent – chess was considered the epitome of intelligence until Deep Blue

won the world championship from Kasparov – but even these researchers agree

that something important is missing from modern AIs (e.g., Hofstadter 2006).

While this subfield of Artificial Intelligence is only just coalescing, “Artifi-

cial General Intelligence” (hereafter, AGI) is the emerging term of art used to

denote “real” AI (see, e.g., Goertzel and Pennachin 2007). As the name implies,

the emerging consensus is that the missing characteristic is generality. Cur-

rent AI algorithms with human-equivalent or human-superior performance

are characterized by a deliberately programmed competence only in a single,

restricted domain. Deep Blue became the world champion at chess, but it can-

not even play checkers, let alone drive a car or make a scientific discovery.

Such modern AI algorithms resemble all biological life with the sole excep-

tion of Homo sapiens. A bee exhibits competence at building hives; a beaver

exhibits competence at building dams; but a bee doesn’t build dams, and a

beaver can’t learn to build a hive. A human, watching, can learn to do both;

but this is a unique ability among biological life forms. It is debatable whether

human intelligence is truly general – we are certainly better at some cognitive

tasks than others (Hirschfeld and Gelman 1994) – but human intelligence is

surely significantly more generally applicable than nonhominid intelligence.

It is relatively easy to envisage the sort of safety issues that may result

from AI operating only within a specific domain. It is a qualitatively different

class of problem to handle an AGI operating across many novel contexts that

cannot be predicted in advance.

When human engineers build a nuclear reactor, they envision the specific

events that could go on inside it – valves failing, computers failing, cores

increasing in temperature – and engineer the reactor to render these events
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noncatastrophic. Or, on a more mundane level, building a toaster involves

envisioning bread and envisioning the reaction of the bread to the toaster’s

heating element. The toaster itself does not know that its purpose is to make

toast – the purpose of the toaster is represented within the designer’s mind,

but is not explicitly represented in computations inside the toaster – and so

if you place cloth inside a toaster, it may catch fire, as the design executes in

an unenvisioned context with an unenvisioned side effect.

Even task-specific AI algorithms throw us outside the toaster paradigm, the

domain of locally pre-programmed, specifically envisioned behavior. Con-

sider Deep Blue, the chess algorithm that beat Garry Kasparov for the world

championship of chess. Were it the case that machines can only do exactly

as they are told, the programmers would have had to manually pre-program

a database containing moves for every possible chess position that Deep Blue

could encounter. But this was not an option for Deep Blue’s programmers.

First, the space of possible chess positions is unmanageably large. Second,

if the programmers had manually input what they considered a good move

in each possible situation, the resulting system would not have been able to

make stronger chess moves than its creators. Since the programmers them-

selves were not world champions, such a system would not have been able to

defeat Garry Kasparov.

In creating a superhuman chess player, the human programmers necessarily

sacrificed their ability to predict Deep Blue’s local, specific game behavior.

Instead, Deep Blue’s programmers had (justifiable) confidence that Deep Blue’s

chess moves would satisfy a non-local criterion of optimality: namely, that the

moves would tend to steer the future of the game board into outcomes in the

“winning” region as defined by the chess rules. This prediction about distant

consequences, though it proved accurate, did not allow the programmers to

envision the local behavior of Deep Blue – its response to a specific attack

on its king – because Deep Blue computed the non-local game map, the link

between a move and its possible future consequences, more accurately than

the programmers could (Yudkowsky 2006).

Modern humans do literally millions of things to feed themselves – to serve

the final consequence of being fed. Few of these activities were “envisioned

by Nature” in the sense of being ancestral challenges to which we are directly

adapted. But our adapted brain has grown powerful enough to be significantly

more generally applicable; to let us foresee the consequences of millions of dif-

ferent actions across domains, and exert our preferences over final outcomes.

Humans crossed space and put footprints on the Moon, even though none

of our ancestors encountered a challenge analogous to vacuum. Compared to

domain-specific AI, it is a qualitatively different problem to design a system

that will operate safely across thousands of contexts; including contexts not

specifically envisioned by either the designers or the users; including contexts
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that no human has yet encountered. Here there may be no local specification

of good behavior – no simple specification over the behaviors themselves,

any more than there exists a compact local description of all the ways that

humans obtain their daily bread.

To build an AI that acts safely while acting in many domains, with many

consequences, including problems the engineers never explicitly envisioned,

one must specify good behavior in such terms as “X such that the consequence

of X is not harmful to humans.” This is non-local; it involves extrapolating the

distant consequences of actions. Thus, this is only an effective specification –

one that can be realized as a design property – if the system explicitly extrap-

olates the consequences of its behavior. A toaster cannot have this design

property because a toaster cannot foresee the consequences of toasting bread.

Imagine an engineer having to say, “Well, I have no idea how this airplane

I built will fly safely – indeed I have no idea how it will fly at all, whether

it will flap its wings or inflate itself with helium or something else I haven’t

even imagined – but I assure you, the design is very, very safe.” This may

seem like an unenviable position from the perspective of public relations, but

it’s hard to see what other guarantee of ethical behavior would be possible

for a general intelligence operating on unforeseen problems, across domains,

with preferences over distant consequences. Inspecting the cognitive design

might verify that the mind was, indeed, searching for solutions that we would

classify as ethical; but we couldn’t predict which specific solution the mind

would discover.

Respecting such a verification requires some way to distinguish trustwor-

thy assurances (a procedure which will not say the AI is safe unless the AI

really is safe) from pure hope and magical thinking (“I have no idea how the

Philosopher’s Stone will transmute lead to gold, but I assure you, it will!”).

One should bear in mind that purely hopeful expectations have previously

been a problem in AI research (McDermott 1976). Verifiably constructing a

trustworthy AGI will require different methods, and a different way of think-

ing, from inspecting power-plant software for bugs – it will require an AGI

that thinks like a human engineer concerned about ethics, not just a simple

product of ethical engineering.

Thus the discipline of AI ethics, especially as applied to AGI, is likely to

differ fundamentally from the ethical discipline of noncognitive technologies,

in that:

� The local, specific behavior of the AI may not be predictable apart from its

safety, even if the programmers do everything right.
� Verifying the safety of the system becomes a greater challenge because we

must verify what the system is trying to do, rather than being able to verify

the system’s safe behavior in all operating contexts.
� Ethical cognition itself must be taken as a subject matter of engineering.
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15.3 Machines with moral status

A different set of ethical issues arises when we contemplate the possibility

that some future AI systems might be candidates for having moral status. Our

dealings with beings possessed of moral status are not exclusively a matter of

instrumental rationality. We also have moral reasons to treat them in certain

ways, and to refrain from treating them in certain other ways. Francis Kamm

has proposed the following definition of moral status, which will serve for our

purposes:

X has moral status = because X counts morally in its own right, it is permissible/

impermissible to do things to it for its own sake. (Paraphrased from Kamm 2007,

ch. 7.)

A rock has no moral status. We may crush it, pulverize it, or subject it to

any treatment we like without any concern for the rock itself. A human

person, on the other hand, must be treated not only as a means but also as

an end. Exactly what it means to treat a person as an end is something about

which different ethical theories disagree; but it certainly involves taking her

legitimate interests into account – giving weight to her well-being – and it

may also involve accepting strict moral side-constraints in our dealings with

her, such as a prohibition against murdering her, stealing from her, or doing a

variety of other things to her or her property without her consent. Moreover, it

is because a human person counts in her own right, and for her sake, that it is

impermissible to do to her these things. This can be expressed more concisely

by saying that a human person has moral status.

Questions about moral status are important in some areas of practical ethics.

For example, disputes about the moral permissibility of abortion often hinge

on disagreements about the moral status of the embryo. Controversies about

animal experimentation and the treatment of animals in the food industry

involve questions about the moral status of different species of animal. And

our obligations towards human beings with severe dementia, such as late-stage

Alzheimer’s patients, may also depend on questions of moral status.

It is widely agreed that current AI systems have no moral status. We may

change, copy, terminate, delete, or use computer programs as we please; at

least as far as the programs themselves are concerned. The moral constraints

to which we are subject in our dealings with contemporary AI systems are all

grounded in our responsibilities to other beings, such as our fellow humans,

not in any duties to the systems themselves.

While it is generally agreed that present-day AI systems lack moral sta-

tus, it is unclear exactly what attributes ground moral status. Two criteria

are commonly proposed as being importantly linked to moral status, either

separately or in combination: sentience and sapience (or personhood). These

may be characterized roughly as follows:
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Sentience: the capacity for phenomenal experience or qualia, such as the

capacity to feel pain and suffer.

Sapience: a set of capacities associated with higher intelligence, such as

self-awareness and being a reason-responsive agent.

One common view is that many animals have qualia and therefore have some

moral status, but that only human beings have sapience, which gives them

a higher moral status than non-human animals.1 This view, of course, must

confront the existence of borderline cases such as, on the one hand, human

infants or human beings with severe mental retardation – sometimes unfortu-

nately referred to as “marginal humans” – which fail to satisfy the criteria for

sapience; and, on the other hand, some non-human animals, such as the great

apes, which might possess at least some of the elements of sapience. Some

deny that so-called “marginal humans” have full moral status. Others propose

additional ways in which an object could qualify as a bearer of moral status,

such as by being a member of a kind that normally has sentience or sapience,

or by standing in a suitable relation to some being that independently has

moral status (see Warren 1997). For present purposes, however, we will focus

on the criteria of sentience and sapience.

This picture of moral status suggests that an AI system will have some moral

status if it has the capacity for qualia, such as an ability to feel pain. A sentient

AI system, even if it lacks language and other higher cognitive faculties, is not

like a stuffed toy animal or a wind-up doll; it is more like a living animal. It is

wrong to inflict pain on a mouse, unless there are sufficiently strong morally

overriding reasons to do so. The same would hold for any sentient AI system.

If in addition to sentience, an AI system also has sapience of a kind similar to

that of a normal human adult, then it would have full moral status, equivalent

to that of human beings.

One of the ideas underlying this moral assessment can be expressed in

stronger form as a principle of non-discrimination:

Principle of Substrate Non-Discrimination: If two beings have the same

functionality and the same conscious experience, and differ only in the substrate

of their implementation, then they have the same moral status.

One can argue for this principle on grounds that rejecting it would amount

to embracing a position similar to racism. Substrate lacks fundamental moral

significance in the same way and for the same reason as skin color does.

The Principle of Substrate Non-Discrimination does not imply that a digital

1 Alternatively, one might deny that moral status comes in degrees. Instead, one might hold

that certain beings have more significant interests than other beings. Thus, for instance,

one could claim that it is better to save a human than to save a bird, not because the

human has higher moral status, but because the human has a more significant interest in

having her life saved than does the bird in having its life saved.
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computer could be conscious, or that it could have the same functionality as a

human being. Substrate can of course be morally relevant insofar as it makes

a difference to sentience or functionality. But holding these things constant,

it makes no moral difference whether a being is made of silicon or carbon, or

whether its brain uses semi-conductors or neurotransmitters.

It can also be proposed that the fact that AI systems are artificial – i.e., the

product of deliberate design – is not fundamentally relevant to their moral

status. We could formulate this principle as follows:

Principle of Ontogeny Non-Discrimination: If two beings have the same

functionality and the same consciousness experience, and differ only in how

they came into existence, then they have the same moral status.

Today, this idea is widely accepted in the human case – although in some

circles, particularly in the past, the idea that one’s moral status depends on

one’s bloodline or caste has been influential. We do not believe that causal

factors such as family planning, assisted delivery, in vitro fertilization, gamete

selection, deliberate enhancement of maternal nutrition, and so on – which

introduce an element of deliberate choice and design in the creation of human

persons – have any necessary implications for the moral status of the progeny.

Even those who are opposed to human reproductive cloning for moral or

religious reasons generally accept that, should a human clone be brought to

term, it would have the same moral status as any other human infant. The

Principle of Ontogeny Non-Discrimination extends this reasoning to the case

involving entirely artificial cognitive systems.

It is, of course, possible for circumstances of creation to affect the ensuing

progeny in such a way as to alter its moral status. For example, if some pro-

cedure were performed during conception or gestation that caused a human

fetus to develop without a brain, then this fact about ontogeny would be rel-

evant to our assessment of the moral status of the progeny. The anencephalic

child, however, would have the same moral status as any other similar anen-

cephalic child, including one that had come about through some entirely

natural process. The difference in moral status between an anencephalic child

and a normal child is grounded in the qualitative difference between the two –

the fact that one has a mind while the other does not. Since the two children

do not have the same functionality and the same conscious experience, the

Principle of Ontogeny Non-Discrimination does not apply.

Although the Principle of Ontogeny Non-Discrimination asserts that a

being’s ontogeny has no essential bearing on its moral status, it does not

deny that facts about ontogeny can affect what duties particular moral agents

have toward the being in question. Parents have special duties to their child

which they do not have to other children, and which they would not have even

if there were another child qualitatively identical to their own. Similarly, the

Principle of Ontogeny Non-Discrimination is consistent with the claim that
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the creators or owners of an AI system with moral status may have special

duties to their artificial mind which they do not have to another artificial

mind, even if the minds in question are qualitatively similar and have the

same moral status.

If the principles of non-discrimination with regard to substrate and

ontogeny are accepted, then many questions about how we ought to treat

artificial minds can be answered by applying the same moral principles that

we use to determine our duties in more familiar contexts. Insofar as moral

duties stem from moral status considerations, we ought to treat an artificial

mind in just the same way as we ought to treat a qualitatively identical natural

human mind in a similar situation. This simplifies the problem of developing

an ethics for the treatment of artificial minds.

Even if we accept this stance, however, we must confront a number of

novel ethical questions which the aforementioned principles leave unan-

swered. Novel ethical questions arise because artificial minds can have very

different properties from ordinary human or animal minds. We must consider

how these novel properties would affect the moral status of artificial minds

and what it would mean to respect the moral status of such exotic minds.

15.4 Minds with exotic properties

In the case of human beings, we do not normally hesitate to ascribe sentience

and conscious experience to any individual who exhibits the normal kinds

of human behavior. Few believe there to be other people who act perfectly

normally but lack consciousness. However, other human beings do not merely

behave in person-like ways similar to ourselves; they also have brains and

cognitive architectures that are constituted much like our own. An artificial

intellect, by contrast, might be constituted quite differently from a human

intellect yet still exhibit human-like behavior or possess the behavioral dis-

positions normally indicative of personhood. It might therefore be possible to

conceive of an artificial intellect that would be sapient, and perhaps would

be a person, yet would not be sentient or have conscious experiences of any

kind. (Whether this is really possible depends on the answers to some non-

trivial metaphysical questions.) Should such a system be possible, it would

raise the question whether a non-sentient person would have any moral sta-

tus whatever; and if so, whether it would have the same moral status as a

sentient person. Since sentience, or at least a capacity for sentience, is ordi-

narily assumed to be present in any individual who is a person, this question

has not received much attention to date.2

2 The question is related to some problems in the philosophy of mind which have received a

great deal of attention, in particular the “zombie problem”, which can be formulated as

follows: Is there a metaphysically possible world that is identical to the actual world with

regard to all physical facts (including the exact physical microstructure of all brains and
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Another exotic property, one which is certainly metaphysically and physi-

cally possible for an artificial intelligence, is for its subjective rate of time to

deviate drastically from the rate that is characteristic of a biological human

brain. The concept of subjective rate of time is best explained by first intro-

ducing the idea of whole brain emulation, or “uploading.”

“Uploading” refers to a hypothetical future technology that would enable

a human or other animal intellect to be transferred from its original imple-

mentation in an organic brain onto a digital computer. One scenario goes like

this: First, a very high-resolution scan is performed of some particular brain,

possibly destroying the original in the process. For example, the brain might

be vitrified and dissected into thin slices, which can then be scanned using

some form of high-throughput microscopy combined with automated image

recognition. We may imagine this scan to be detailed enough to capture all the

neurons, their synaptic interconnections, and other features that are function-

ally relevant to the original brain’s operation. Second, this three-dimensional

map of the components of the brain and their interconnections is combined

with a library of advanced neuroscientific theory which specifies the com-

putational properties of each basic type of element, such as different kinds

of neuron and synaptic junction. Third, the computational structure and the

associated algorithmic behavior of its components are implemented in some

powerful computer. If the uploading process has been successful, the computer

program should now replicate the essential functional characteristics of the

original brain. The resulting upload may inhabit a simulated virtual reality,

or, alternatively, it could be given control of a robotic body, enabling it to

interact directly with external physical reality.

A number of questions arise in the context of such a scenario: How plau-

sible is it that this procedure will one day become technologically feasible? If

the procedure worked and produced a computer program exhibiting roughly

the same personality, the same memories, and the same thinking patterns

as the original brain, would this program be sentient? Would the upload

be the same person as the individual whose brain was disassembled in the

uploading process? What happens to personal identity if an upload is copied

such that two similar or qualitatively identical upload minds are running in

parallel? Although all of these questions are relevant to the ethics of machine

intelligence, let us here focus on an issue involving the notion of a subjective

rate of time.

organisms), yet that differs from the actual world in regard to some phenomenal (subjective

experiential) facts? Put more crudely, is it metaphysically possible that there could be an

individual who is physically exactly identical to you but who is a “zombie,” i.e., lacking

qualia and phenomenal awareness (Chalmers 1996)? This familiar question differs from the

one referred to in the text: Our “zombie” is allowed to have systematically different

physical properties from normal humans. Moreover, we wish to draw attention specifically

to the ethical status of a sapient zombie.
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Suppose that an upload could be sentient. If we run the upload program

on a faster computer, this will cause the upload, if it is connected to an input

device such as a video camera, to perceive the external world as if it had been

slowed down. For example, if the upload is running a thousand times faster

than the original brain, then the external world will appear to the upload as

if it were slowed down by a factor of thousand. Somebody drops a physical

coffee mug. The upload observes the mug slowly falling to the ground while

the upload finishes reading the morning newspaper and sends off a few emails.

One second of objective time corresponds to seventeen minutes of subjective

time. Objective and subjective duration can thus diverge.

Subjective time is not the same as a subject’s estimate or perception of

how fast time flows. Human beings are often mistaken about the flow of

time. We may believe that it is one o’clock when it is in fact a quarter past

two; or a stimulant drug might cause our thoughts to race, making it seem

as though more subjective time has lapsed than is actually the case. These

mundane cases involve a distorted time perception rather than a shift in the

rate of subjective time. Even in a cocaine-addled brain, there is probably not

a significant change in the speed of basic neurological computations; more

likely, the drug is causing such a brain to flicker more rapidly from one

thought to another, making it spend less subjective time thinking each of a

greater number of distinct thoughts.

The variability of the subjective rate of time is an exotic property of arti-

ficial minds that raises novel ethical issues. For example, in cases where the

duration of an experience is ethically relevant, should duration be measured

in objective or subjective time? If an upload has committed a crime and is

sentenced to four years in prison, should this be four objective years – which

might correspond to many millennia of subjective time – or should it be four

subjective years, which might be over in a couple of days of objective time? If

a fast AI and a human are in pain, is it more urgent to alleviate the AI’s pain,

on grounds that it experiences a greater subjective duration of pain for each

sidereal second that palliation is delayed? Since in our accustomed context

of biological humans, subjective time is not significantly variable, it is unsur-

prising that this kind of question is not straightforwardly settled by familiar

ethical norms, even if these norms are extended to artificial intellects by means

of non-discrimination principles, such as those proposed in the previous

section.

To illustrate the kind of ethical claim that might be relevant here, we for-

mulate (but do not argue for) a principle privileging subjective time as the

normatively more fundamental notion:

Principle of Subjective Rate of Time: In cases where the duration of an

experience is of basic normative significance, it is the experience’s subjective

duration that counts.
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So far we have discussed two possibilities (non-sentient sapience and variable

subjective rate of time) which are exotic in the relatively profound sense of

being metaphysically problematic as well as lacking clear instances or parallels

in the contemporary world. Other properties of possible artificial minds would

be exotic in a more superficial sense; for example, by diverging in some

unproblematically quantitative dimension from the kinds of mind with which

we are familiar. But such superficially exotic properties may also pose novel

ethical problems – if not at the level of foundational moral philosophy, then

at the level of applied ethics or for mid-level ethical principles.

One important set of exotic properties of artificial intelligences relate to

reproduction. A number of empirical conditions that apply to human repro-

duction need not apply to artificial intelligences. For example, human children

are the product of recombination of the genetic material from two parents;

parents have limited ability to influence the character of their offspring; a

human embryo needs to be gestated in the womb for nine months; it takes fif-

teen to twenty years for a human child to reach maturity; a human child does

not inherit the skills and knowledge acquired by its parents; human beings

possess a complex evolved set of emotional adaptations related to reproduc-

tion, nurturing, and the child–parent relationship. None of these empirical

conditions need pertain in the context of a reproducing machine intelligence.

It is therefore plausible that many of the mid-level moral principles that we

have come to accept as norms governing human reproduction will need to

be rethought in the context of AI reproduction.

To illustrate why some of our moral norms need to be rethought in the

context of AI reproduction, it will suffice to consider just one exotic property of

AIs: their capacity for rapid reproduction. Given access to computer hardware,

an AI could duplicate itself very quickly, in no more time than it takes to make

a copy of the AI’s software. Moreover, since the AI copy would be identical

to the original, it would be born completely mature, and the copy could

begin making its own copies immediately. Absent hardware limitations, a

population of AIs could therefore grow exponentially at an extremely rapid

rate, with a doubling time on the order of minutes or hours rather than decades

or centuries.

Our current ethical norms about reproduction include some version of a

principle of reproductive freedom, to the effect that it is up to each individual

or couple to decide for themselves whether to have children and how many

children to have. Another norm we have (at least in rich and middle-income

countries) is that society must step in to provide the basic needs of children

in cases where their parents are unable or refusing to do so. It is easy to see

how these two norms could collide in the context of entities with the capacity

for extremely rapid reproduction.

Consider, for example, a population of uploads, one of whom happens

to have the desire to produce as large a clan as possible. Given complete
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reproductive freedom, this upload may start copying itself as quickly as it

can; and the copies it produces – which may run on new computer hardware

owned or rented by the original, or may share the same computer as the

original – will also start copying themselves, since they are identical to the

progenitor upload and share its philoprogenic desire. Soon, members of the

upload clan will find themselves unable to pay the electricity bill or the rent

for the computational processing and storage needed to keep them alive. At

this point, a social welfare system might kick in to provide them with at

least the bare necessities for sustaining life. But if the population grows faster

than the economy, resources will run out; at which point uploads will either

die or their ability to reproduce will be curtailed. (For two related dystopian

scenarios, see Bostrom 2004.)

This scenario illustrates how some mid-level ethical principles that are suit-

able in contemporary societies might need to be modified if those societies

were to include persons with the exotic property of being able to reproduce

very rapidly. The general point here is that when thinking about applied ethics

for contexts that are very different from our familiar human condition, we

must be careful not to mistake mid-level ethical principles for foundational

normative truths. Put differently, we must recognize both the extent to which

our ordinary normative precepts are implicitly conditioned on the obtaining of

various empirical conditions, and the need to adjust these precepts accordingly

when applying them to hypothetical futuristic cases in which their precondi-

tions are assumed not to obtain. By this, we are not making any controversial

claim about moral relativism, but merely highlighting the commonsensical

point that context is relevant to the application of ethics – and suggesting

that this point is especially pertinent when one is considering the ethics of

minds with exotic properties.

15.5 Superintelligence

I. J. Good (1965) set forth the classic hypothesis concerning superintelligence:

that an AI sufficiently intelligent to understand its own design could redesign

itself or create a successor system, more intelligent, which could then redesign

itself yet again to become even more intelligent, and so on in a positive feed-

back cycle. Good called this the “intelligence explosion.” Recursive scenarios

are not limited to AI: Humans with intelligence augmented through a brain–

computer interface might turn their minds to designing the next generation

of brain–computer interfaces. (If you had a machine that increased your IQ,

it would be bound to occur to you, once you became smart enough, to try to

design a more powerful version of the machine.)

Superintelligence may also be achievable by increasing processing speed.

The fastest observed neurons fire 1,000 times per second; the fastest axon

fibers conduct signals at 150 meters per second, a half-millionth the speed
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of light (Sandberg 1999). It seems that it should be physically possible to

build a brain which computes a million times as fast as a human brain,

without shrinking its size or rewriting its software. If a human mind were

thus accelerated, a subjective year of thinking would be accomplished for

every thirty-one physical seconds in the outside world, and a millennium

would fly by in eight and a half hours. Vinge (1993) referred to such sped-up

minds as “weak superintelligence”: A mind that thinks like a human but much

faster.

Yudkowsky (2008a) lists three families of metaphors for visualizing the

capability of a smarter-than-human AI:

� Metaphors inspired by differences of individual intelligence between

humans: AIs will patent new inventions, publish groundbreaking research

papers, make money on the stock market, or lead political power blocks.
� Metaphors inspired by knowledge differences between past and present

human civilizations: Fast AIs will invent capabilities that futurists com-

monly predict for human civilizations a century or millennium in the future,

like molecular nanotechnology or interstellar travel.
� Metaphors inspired by differences of brain architecture between humans

and other biological organisms: For example, “Imagine running a dog mind

at very high speed. Would a thousand years of doggy living add up to any

human insight?” (Vinge (1993)). That is, changes of cognitive architecture

might produce insights that no human-level mind would be able to find, or

perhaps even represent, after any amount of time.

Even if we restrict ourselves to historical metaphors, it becomes clear that

superhuman intelligence presents ethical challenges that are quite literally

unprecedented. At this point the stakes are no longer on an individual scale

(e.g., mortgage unjustly disapproved, house catches fire, person-agent mis-

treated) but on a global or cosmic scale (e.g., humanity is extinguished and

replaced by nothing we would regard as worthwhile). Or, if superintelligence

can be shaped to be beneficial, then, depending on its technological capa-

bilities, it might make short work of many present-day problems that have

proven difficult to our human-level intelligence.

Superintelligence is one of several “existential risks” as defined by Bostrom

(2002): a risk “where an adverse outcome would either annihilate Earth-

originating intelligent life or permanently and drastically curtail its potential.”

Conversely, a positive outcome for superintelligence could preserve Earth-

originating intelligent life and help fulfill its potential. It is important to

emphasize that smarter minds pose great potential benefits as well as risks.

Attempts to reason about global catastrophic risks may be susceptible to

a number of cognitive biases (Yudkowsky 2008b), including the “good-story

bias” proposed by Bostrom (2002):
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Suppose our intuitions about which future scenarios are “plausible and realistic”

are shaped by what we see on TV and in movies and what we read in novels.

(After all, a large part of the discourse about the future that people encounter is

in the form of fiction and other recreational contexts.) We should then, when

thinking critically, suspect our intuitions of being biased in the direction of

overestimating the probability of those scenarios that make for a good story,

since such scenarios will seem much more familiar and more “real.” This

Good-story bias could be quite powerful. When was the last time you saw a

movie about humankind suddenly going extinct (without warning and without

being replaced by some other civilization)? While this scenario may be much

more probable than a scenario in which human heroes successfully repel an

invasion of monsters or robot warriors, it wouldn’t be much fun to watch.

Truly desirable outcomes make poor movies – no conflict means no story.

While Asimov’s Three Laws of Robotics (Asimov 1942) are sometimes cited

as a model for ethical AI development, the Three Laws are as much a plot

device as Asimov’s “positronic brain.” If Asimov had depicted the Three Laws

as working well, he would have had no stories.

It would be a mistake to regard “AIs” as a species with fixed characteristics

and ask, “Will they be good or evil?” The term “Artificial Intelligence” refers

to a vast design space, presumably much larger than the space of human

minds (since all humans share a common brain architecture). It may be a form

of good-story bias to ask, “Will AIs be good or evil?” as if trying to pick a

premise for a movie plot. The reply should be, “Exactly which AI design are

you talking about?”

Can control over the initial programming of an artificial intelligence trans-

late into influence on its later effect on the world? Kurzweil (2005) holds

that “[i]ntelligence is inherently impossible to control,” and that despite any

human attempts at taking precautions, “[b]y definition . . . intelligent entities

have the cleverness to easily overcome such barriers.” Let us suppose that the

AI is not only clever, but that, as part of the process of improving its own

intelligence, it has unhindered access to its own source code – it can rewrite

itself to anything it wants itself to be. Yet it does not follow that the AI must

want to rewrite itself to a hostile form.

Consider Gandhi, who seems to have possessed a sincere desire not to kill

people. Gandhi would not knowingly take a pill that caused him to want to kill

people, because Gandhi knows that if he wants to kill people, he will probably

kill people, and the current version of Gandhi does not want to kill. More

generally, it seems likely that most self-modifying minds will naturally have

stable utility functions, which implies that an initial choice of mind design

can have lasting effects (Omohundro 2008).

At this point in the development of AI science, is there any way we can

translate the task of finding a design for “good” AIs into a modern research
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direction? It may seem premature to speculate, but one does suspect that

some AI paradigms are more likely than others to eventually prove conducive

to the creation of intelligent self-modifying agents whose goals remain pre-

dictable even after multiple iterations of self-improvement. For example, the

Bayesian branch of AI, inspired by coherent mathematical systems such as

probability theory and expected utility maximization, seems more amenable

to the predictable self-modification problem than evolutionary programming

and genetic algorithms. This is a controversial statement, but it illustrates the

point that if we are thinking about the challenge of superintelligence down

the road, this can indeed be turned into directional advice for present AI

research.

Yet even supposing that we can specify an AI’s goal system to be persistent

under self-modification and self-improvement, this only begins to touch on

the core ethical problems of creating superintelligence. Humans, the first gen-

eral intelligences to exist on Earth, have used that intelligence to substantially

reshape the globe – carving mountains, taming rivers, building skyscrapers,

farming deserts, producing unintended planetary climate changes. A more

powerful intelligence could have correspondingly larger consequences.

Consider again the historical metaphor for superintelligence – differences

similar to the differences between past and present civilizations. Our present

civilization is not separated from ancient Greece only by improved science and

increased technological capability. There is a difference of ethical perspectives:

Ancient Greeks thought slavery was acceptable; we think otherwise. Even

between the nineteenth and twentieth centuries, there were substantial ethical

disagreements – should women have the vote? Should blacks have the vote?

It seems likely that people today will not be seen as ethically perfect by future

civilizations – not just because of our failure to solve currently recognized

ethical problems, such as poverty and inequality, but also for our failure even

to recognize certain ethical problems. Perhaps someday the act of subjecting

children to involuntary schooling will be seen as child abuse – or maybe

allowing children to leave school at age 18 will be seen as child abuse. We

don’t know.

Considering the ethical history of human civilizations over centuries of

time, we can see that it might prove a very great tragedy to create a mind

that was stable in ethical dimensions along which human civilizations seem to

exhibit directional change. What if Archimedes of Syracuse had been able to

create a long-lasting artificial intellect with a fixed version of the moral code

of ancient Greece? But to avoid this sort of ethical stagnation is likely to prove

tricky. It would not suffice, for example, simply to render the mind randomly

unstable. The ancient Greeks, even if they had realized their own imperfection,

could not have done better by rolling dice. Occasionally a good new idea in

ethics comes along, and it comes as a surprise; but most randomly generated

ethical changes would strike us as folly or gibberish.
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This presents us with perhaps the ultimate challenge of machine ethics: How

do you build an AI which, when it executes, becomes more ethical than you?

This is not like asking our own philosophers to produce superethics, any more

than Deep Blue was constructed by getting the best human chess players to

program in good moves. But we have to be able to effectively describe the

question, if not the answer – rolling dice won’t generate good chess moves,

or good ethics either. Or, perhaps a more productive way to think about the

problem: What strategy would you want Archimedes to follow in building a

superintelligence, such that the overall outcome would still be acceptable, if

you couldn’t tell him what specifically he was doing wrong? This is very much

the situation that we are in, relative to the future.

One strong piece of advice that emerges from considering our situation as

analogous to that of Archimedes is that we should not try to invent a “super”

version of what our own civilization considers to be ethics – this is not the

strategy we would have wanted Archimedes to follow. Perhaps the question

we should be considering, rather, is how an AI programmed by Archimedes,

with no more moral expertise than Archimedes, could recognize (at least some

of) our own civilization’s ethics as moral progress as opposed to mere moral

instability. This would require that we begin to comprehend the structure of

ethical questions in the way that we have already comprehended the structure

of chess.

If we are serious about developing advanced AI, this is a challenge that we

must meet. If machines are to be placed in a position of being stronger, faster,

more trusted, or smarter than humans, then the discipline of machine ethics

must commit itself to seeking human-superior (not just human-equivalent)

niceness.

15.6 Conclusion

Although current AI offers us few ethical issues that are not already present

in the design of cars or power plants, the approach of AI algorithms toward

more human-like thought portends predictable complications. Social roles

may be filled by AI algorithms, implying new design requirements such as

transparency and predictability. Sufficiently general AI algorithms may no

longer execute in predictable contexts, requiring new kinds of safety assurance

and the engineering of artificial ethical considerations. AIs with sufficiently

advanced mental states, or the right kind of states, will have moral status,

and some may count as persons – though perhaps persons very much unlike

the sort that exist now, perhaps governed by different rules. And finally,

the prospect of AIs with superhuman intelligence and superhuman abilities

presents us with the extraordinary challenge of stating an algorithm that

outputs superethical behavior. These challenges may seem visionary, but it is
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predictable that we will encounter them, and they are not devoid of suggestions

for present-day research directions.

Further reading
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Wrong. Oxford University Press. A survey of some issues in the machine

ethics literature.

Yudkowsky, E. (2008). Artificial Intelligence as a positive and negative factor

in global risk, in N. Bostrom and M. Ćirković (eds.), Global Catastrophic
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agent A software entity that acts autonomously, that is, makes its own deci-

sions on behalf of the designer, typically in dynamic environments from

which it learns and to which it adapts. When applied to the development

of new internet technologies, agents need also to show a social attitude.

architectural aspects of emotion The role and utility of emotions in agent

architectures (e.g., the use of emotional evaluations as quick heuristics in

decision making). See also communicative aspects of emotion.

artificial general intelligence (AGI) Artificial intelligence that can be

applied to problems in many different domains, as human intelligence

can.

artificial intelligence (AI) The attempt to make computers do the sorts of

things human and animal minds can do – either for technological pur-

poses and/or to improve our theoretical understanding of psychological

phenomena.

artificial life (ALife, A-Life, alife) The interdisciplinary study of life and life-

like processes, focusing on life’s essential features rather than its contin-

gent ones and proceeding by artificially synthesizing and simulating new

forms of life and life’s fundamental processes. See also hard artificial life,

soft artificial life, and wet artificial life.

attractor A state or set of states of a dynamical system to which all nearby

states tend over time.

autonomous robot A robot whose behavior is (like that of biological crea-

tures) self-generated, making use of sensory information to moderate

its responses to the world. There can be no external control by remote

operators.

Bayesian inference Updating probabilities over hypotheses in a principled

manner in response to evidence.

Bayesian network A model for compactly representing probability distribu-

tions using conditional independence assumptions.

biologically inspired robotics The subfield of robotics concerned with robots

whose physical design and/or mechanisms of control and sensing are

inspired by those found in nature.

bottom-up processing Information processing that is driven by myriad indi-

vidual decisions taken at a low level, which are somehow integrated

into a pattern representing a higher-level decision. Contrast top-down

processing.
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canning The storage of previously worked-out answers to specific questions.

causal inference Learning (parts of) the causal structure of the world from

observational data given relatively domain-general assumptions.

cellular automata A regular lattice (usually in 1 or 2 dimensions) of uni-

formly programmed finite-state machines. A machine takes as input the

states of the neighboring machines in the lattice. The states of all the

machines in the lattice are usually updated synchronously. The most

famous cellular automaton is the Game of Life, invented by the mathe-

matician John Conway.

Chinese Room argument A thought experiment devised by John Searle, aim-

ing to show that computers qua formal symbol manipulators are inca-

pable of genuine thought or understanding. It depicts a human who

speaks English but no Chinese, placed inside a room that communicates

with the world only via input and output ports. The human is given

a long list of precise instructions, in English, dictating what string of

Chinese characters to produce at the output port when presented with

such-and-such Chinese characters as input. Assuming the instructions

capture Chinese linguistic competence, the room can appear to be flu-

ent in Chinese even though the person inside does not understand the

language at all. By analogy, a computer executing machine instructions

that manipulate English strings could give the appearance of fluency in

English and general intelligence, even though it had no genuine under-

standing of English and no intelligence at all.

commonsense knowledge A method for representing information about the

real world in a way that reflects humans’ higher-level cognitive abilities.

communicative aspects of emotion The role of emotion in social signaling

and social regulation. This is studied mainly by the human–computer

interaction (HCI) and, more recently, human–robot interaction (HRI) com-

munities. See also architectural aspects of emotion.

computational linguistics The construction and evaluation of theories of lan-

guage meaning and structure on a computer.

computational psychology An approach that explains mental phenomena

in information-processing terms, drawn from the various types of AI

(e.g., symbolic, connectionist, and evolutionary AI). Some computational

psychologists also build computer models in order to test the power and

coherence of their theories.

computational theory of mind (CTM) The hypothesis that intentional states,

such as beliefs and desires, are relations between cognizers and sym-

bolic mental representations that have syntax and semantics analo-

gous to those of natural languages. It also postulates that intelligent

thought (indeed, cognition in general) amounts to carrying out algorith-

mic operations over such representations, i.e., Turing-computable opera-

tions that can be specified by formal rules in terms of the syntax of the
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underlying mental representations. The CTM has been the fundamental

working hypothesis of most AI research to date, certainly all in the GOFAI

tradition.

computer vision (CV) The branch of AI concerned with the extraction of

meaningful structures from images perceived by a system.

connectionism A form of AI based on networks of simple, neuron-like pro-

cessing elements each of which performs simple numerical computations.

Most of these networks represent concepts as patterns of activation dis-

tributed across the entire system, and most are capable of learning by

being shown examples of unfamiliar patterns.

decision making, sequential A term referring broadly to automatic decision-

making algorithms that take the dynamics of the world into consideration.

depth image/range image An image containing information about the dis-

tance (or depth) between the scene and the camera for every pixel (as

opposed to the color and intensity information provided by color cam-

eras). Depth images can be obtained from scans with laser sensors or

lately with the Kinect (Microsoft).

display models of emotion Models that attempt to implement overt, observ-

able effects of emotion behavior. See also process models of emotion.

dynamics The change in state of a system over time.

embodied intelligence An approach to AI and cognitive science that largely

renounces symbolic representations and formal reasoning and empha-

sizes context, physical embodiment, social interaction, and sensorimotor

behavior over generality, abstractness, individualism, and logically rig-

orous thought.

embodiment The idea that an agent’s physical body plays a central role in

its behavior and cognition.

emergence A relationship between wholes and their parts. Properties of a

whole are emergent if they both depend on, and are autonomous from,

the properties of the parts. The two hallmarks of emergent properties are

almost inconsistent, and this has made emergence controversial in both

philosophy and science. Different kinds of dependence and autonomy

give rise to different conceptions of emergence, which play different

roles in philosophy and science.

evolutionary programs Programs that can alter their own rules by using

genetic algorithms.

evolutionary robotics The subfield of robotics concerned with the automated

design of some or all aspects of the robot through the use of artificial

evolution (search methods based on the Darwinian mechanisms of natural

evolution).

existential risk A risk that threatens the extinction of earth-originating intel-

ligent life or could otherwise permanently and drastically destroy its

potential for desirable future development.
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expert systems AI programs (usually of the GOFAI type) that can aid humans

in making decisions in a particular area of expertise; some expert systems

outperform even the best human experts.

feature vector A linear array of real numbers that characterizes an image or

part of an image and is relevant for applications such as recognition.

first-order logic A formal system that represents information using predicate,

function, and constant symbols, and whose semantics is represented as a

set of possible models.

fitness functions Functions used in evolutionary programming to select one

or two of the recently mutated rules to breed the next generation; this

may be done automatically or by human choice.

flexibility The ability to respond appropriately to a wide range of novel

circumstances.

formal symbol manipulation The manipulation of symbols solely in virtue

of their physical properties (e.g., their shape), without reference to what

they may mean.

frame A structure for representing knowledge of typical objects and situ-

ations. A frame consists of a set of slots, containing various kinds of

information, links to other frames, instructions, default values, or blank

spaces to be filled in for specific instances.

frame problem A reasoning problem that has many different variants but is

most commonly understood as the problem of working out just which

aspects of a situation are relevant to a given problem and which are not,

and which would actually be changed by a given action.

functionalism A view in philosophy of mind/psychology that interprets men-

tal phenomena as information-processing functions (“the mind is what

the brain does”).

genetic algorithm A machine learning method for finding solutions to cer-

tain kinds of problems, loosely analogous to the biological process of

artificial selection. Candidate solutions are encoded in a “genome” and

an initial population of solutions is created and evaluated on its “fitness”

for solving the problem at hand. More fit candidates are preferentially

“selected” to produce the next generation of candidate solutions, through

an error-prone process of copying that involves some mutations and

crossing over of genomes. After many generations, the population may

contain many highly fit solutions.

GOFAI (short for “Good Old-Fashioned AI”) AI based on symbolic rules; also

known as classical, traditional, or symbolic AI.

hard artificial life Physical hardware that depends on important features of

natural forms of life and acts autonomously in the physical world. Con-

trast soft artificial life and wet artificial life.

hybrid models Models that are a synthesis of connectionist and tradi-

tional symbolic models. They combine a variety of representations and
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processes, symbolic or connectionist. As a result, they tend to be

more expressive and efficient in both cognitive modeling and practical

applications.

image filter An operation on an image to better obtain the information

wanted, e.g., to remove noise or to enhance a feature such as intensity

gradient.

information extraction The use of a computer to extract factual content from

a text and ignore the rest.

intentionality Aboutness. Thoughts, for example, have intentionality – they

are about things (typically other than themselves, although a thought’s

being about itself is not ruled out by definition). Many other mental

states, notably beliefs, desires, and intentions are about things and so

have intentionality (e.g., intentions to do something are about actions

and circumstances). Intentionality is sometimes regarded as the feature

that distinguishes mental states from non-mental ones.

interest point A point in an image that is different from all its neighbors,

e.g., is of maximum gradient produced by an image filter. Describing the

immediate surroundings of an interest point with a feature vector is a

standard technique of object recognition.

knowledge representation and reasoning (KR&R) A field of AI research

devoted to the design, analysis, and implementation of data struc-

tures for representing knowledge and algorithms for inferencing from

it.

Lisp or LISP A programming language devised by John McCarthy in 1959

and subsequently developed into many variants. The language’s features

make it well suited for AI programming and it has been widely used in

the field.

logic A precisely defined formal system or set of principles used for defining

the inferential relations of reasoning. If coupled with a semantic inter-

pretation, logical systems can be used to represent knowledge.

machine consciousness A subfield of AI that attempts to define the architec-

tural requirements and conditions for a machine to be conscious.

machine learning Inferring structural relationships from data using (rela-

tively) domain-general methods.

machine translation The translation of texts in one language into texts in

another by computer.

mental content, problem of The problem of providing a naturalistic expla-

nation of the intentionality (“aboutness”) of mental states – that is, of

explaining how certain physical states inside our heads manage to refer

to external objects and situations.

multi-agent system (MAS) A collection of autonomous agents that need

to coordinate their activities in order to achieve their individual goals.

Coordination is achieved through negotiation or argumentation and, in
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most applications, requires that the agents learn to adapt to each other’s

strategies.

natural language processing Processing language texts by computer for

some practical or useful purpose.

neural network (artificial) A network of artificial neurons (simple processing

units) that purport to mimic biological neurons. Artificial neural networks

may be used to gain an understanding of biological neural networks or

for addressing AI and cognitive science problems (without being models

of real biological systems).

neural network (biological) A network of biological neurons that are inter-

connected in the nervous system. In neuroscience, they are often groups

of neurons that perform a specific physiological function.

object recognition The detection in images of a known instance (a specific

object, e.g., my mug) or a class of objects (e.g., the set of all mugs).

parallel distributed processing (PDP) A type of connectionism in which a

concept is represented not by local activations but by a pattern of acti-

vation distributed across the whole network.

perception The interpretation of information from sensors, such as visual

sensors.

process models of emotion Models of the internal processes that bring about

emotional behavior. Process models divide into low-level models, which

aim to explain the neurological structures and mechanisms of emotion,

and high-level models, which describe higher-level emotion processes

involving non-emotional cognitive processes. See also display models of

emotion.

production rule (or production) A form of knowledge representation con-

sisting of a rule of the form If A then B, where A is a condition or cue,

and B an action to be performed when A holds. When the condition is

matched and the action executed, the rule is said to fire.

production system An AI system built around a set of production rules,

together with a “working memory,” which contains information about

current conditions, and a rule interpreter, which selects rules to be fired

and resolves conflicts between them.

qualia Raw sensations or felt experiences, such as the sensation of red, or of

pain.

robot A physical device capable of behavior in the world involving inter-

actions with its environment through sensors and actuators. See also

autonomous robot.

robotics The field of study dedicated to the science and engineering

of robots. See also biologically inspired robotics and evolutionary

robotics.

script A structure for representing knowledge of typical situations and the

sequences of events and actions they involve.
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segmentation The parsing of an image into its parts. Often an unsolvable

problem, depending on the task given to the system.

semantic network A form of knowledge representation consisting of a set of

nodes representing objects, properties, or events, and links representing

relations of various kinds between them.

Semantic Web A proposal to create a computer-based web of data in which

textual content is “understood” by the computer by means of annotations

and representations.

Situated, Embodied, and Dynamical (SED) framework A way of conceptu-

alizing cognition that focuses on concrete action and emphasizes the

way in which an agent’s behavior arises from the dynamical interaction

between its brain, body, and environment.

situatedness The idea that closed-loop interaction with an environment plays

a central role in an agent’s behavior and cognition.

soft artificial life Computer simulations or other purely digital constructions

that exhibit life-like behavior. Contrast hard artificial life and wet arti-

ficial life.

stereo vision A configuration with two cameras that is able to obtain depth

images. In computer vision two fixed cameras are used, while humans

use two eyes converging on the target object.

strong AI John Searle’s term for the view that a properly programmed com-

puter would be a mind. Contrast weak AI.

strong artificial life A thesis about the capabilities of artificial life software,

to the effect that suitable hardware could literally become alive merely

by being programmed with suitable software.

superintelligence Any intellect that can greatly outperform the best human

minds in all practically relevant fields.

supervised learning A type of machine learning in which there is a specified

target or focus. Contrast unsupervised learning.

symbol-grounding problem The problem of specifying necessary and suffi-

cient conditions for a symbol in an artificial device to mean (represent,

or refer to) a certain thing or property.

systematicity (of language learning) The fact that we learn the use of sen-

tences in systematically related groups, not one at a time. For example,

those who have arrived at an understanding of “John loves Mary” also

understand “Mary loves Tom”, “Tom loves Susan,” and so on.

top-down processing Information processing that is guided/controlled by

some high-level executive or previously defined goal. Contrast bottom-

up processing.

tracking Following the motion of a relevant entity over a sequence of images.

Turing Test A popular term for an application of the “imitation game”

described by Alan Turing in his 1950 paper “Computing machinery and

intelligence.” According to the Turing Test, if interrogators of a human
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and a machine cannot reliably tell the difference, the machine should be

judged to have intelligence.

unsupervised learning A type of machine learning that aims to capture the

structure in the whole dataset, not any particular target. Contrast super-

vised learning.

weak AI John Searle’s term for the view that computers may be useful in

testing hypotheses about minds but would not actually be minds, no

matter how well programmed. Contrast strong AI.

wet artificial life New forms of life created in test tubes, using the latest

materials and methods from biochemistry and molecular biology. (Con-

trast hard artificial life and soft artificial life.)
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École Polytechnique Fédérale de Lausanne

(EPFL), 281

Edelman, G., 133

Edmonds, D., 19

Eigenfaces, 172

Eliasmith, C., 82

ELIZA, 215

Elman, J., 115, 118, 136

EMA model, 257

embodied AI, 28, 31, 54–6, 96

embodiment, 132–4; biological, 132, 133;

conceptual, 132, 134; physical, 132

emergence, 305–6; weak, 305–6

emotion machine, 257

emotions, communicative vs. architectural

aspects, 252; display models, 254–5;

functional role, 250–2; process models,

254, 255–8; theory of, 253

Engelhardt, B., 204

Enigma machine, 17

Essa, I., 185

estimation of parameters by maximum

likelihood, 201

Etzioni, O., 236

Even-Dar, E., 208

evolution, direction of, 306–7

evolutionary computing, 22, 92–3,

141

exotic minds, 324–8

expert systems, 20, 22–3, 25–6, 91,

101

extended mind, 131–2

Fanselow, M., 256

Fass, D., 218

Faugh, W., 215

Feigenbaum, E. A., 20, 91

Feldman, J., 110

Ferguson, I., 234

Fikes, R., 232

Fillmore, C., 217, 219

first-order logic (FOL), 192–3, 195–6, 209,

217–18

first order predicate logic, see first-order

logic

Fischler, M., 185

fitness function, 303

Floreano, D., 82, 141, 281, 284, 297

Flores, F., 129

fluent, 51

Fodor, J. A., 42, 46, 89, 218, 220

Fodor, J. A. and Pylyshyn, Z. W. (1988), 21,

36, 45, 51, 54, 77–8, 116

Ford, K., 131

formal systems, 70

formalism, 36–9

Forsyth, D., 168

frame problem, 47, 51, 75–6, 93, 101

Franklin, S., 4, 24, 27, 259, 261

Franz, M., 286

FREDDY, 168

free will, and rationality, 69–70

Freeman, W., 135

Frege, G., 38, 44, 193, 215

Freud, S., 102

Freund, Y., 156

Friedman, N., 151

Frijda, N., 257

Fukushima, K., 20

Functional Unification Grammar (FUG), 216

functionalism, 43, 89, 102, 308; and

defining life, 308–9; machine, 49

fuzzy set theory, 22

Gabbay, D., 197

Gage, A., 253

Gale, G., 256

Gallagher, J., 141, 283

Game of Life, 300–2, 304, 306, 310

game theory, 204

gaming, 24

Gandanho, S., 253

gantry robot, 282–3

Gasser, L., 237

Gazdar, G., 213, 216, 219

Gelernter’s geometry theorem-prover, 19

Gelman, S., 318

generalized Hough transform, 174

Generalized Phrase Structure Grammar

(GPSG), 216

genetic algorithms, 297, 303–4

Ghandi, 330

Gibson, D., 298

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139046855
https://www.cambridge.org/core


347 Index

Gibson, J., 129–30, 132, 138

Gluck, M., 114

Glymour, C., 158, 162
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Schöner, G., 133, 136

Schutze, H., 222, 224

Scientific American, 228

Scott-Strachey principle, 220

scripts, 219

search heuristics, 90

Searle, J., 4, 46, 49–50, 56, 65, 68, 72–5,

97–9, 160, 219, 251

segmentation-based techniques, 174

Sejnowski, T., 109, 133

self-aware computing systems, 29

Selfridge, O., 18, 39

Selman, B., 194

semantic nets, 24

semantic properties of symbols (see content

grounding problem and naturalizing

content)

Semantic Web, 227–9

sentience, 322

Shakey, 168, 273–5

Shallice, T., 96

Shanahan, M., 260

Shannon, C., 18, 39

Shapiro, D., 253

Shastri, L., 115

Shaw, C., 134

Shaw, J., 19, 37

Shipley, T., 176

Shortliffe, E., 20

SHRDLU, 19–20, 93, 214–16, 220

Simon, H. A., 18, 19, 21, 23, 37, 39, 40, 41,

58, 89, 90, 91, 92, 96, 97, 99, 100, 102,

131

Sims, K., 297

Simultaneous Localization and Mapping

(SLAM), 288–9

Singh, P., 207

situated activitiy, 128–32

Situated, Embodied, and Dynamical (SED)

framework, 5, 55–6, 128, 137, 234;

methodology, 141; perception, 138;

prospects, 142–3

situated robotics, 94

situatedness, 129

situation calculus, 51

situativity, 183

Skarda, C., 135

Sloman, A., 94, 99, 250, 253, 257, 260

smart software vs. cognitive modeling, 15,

30–1

Smolensky, P., 21, 78, 80, 119, 120,

220

Smith, B., 99

Smith, C., 258

Smith, H., 298

Smith, L., 133, 136, 287

Smith, R., 192, 288

Smithers, T., 136

SNARC, 19

SOAR, 30, 256

social behavior, 236–7

social rationality assumptions, 240

softbots, see virtual agents

soft computing, 21, 28

software agents, 27

Solina, F., 177

Solomonoff, R., 39, 58

Sony Aibo, 284

Spärck Jones, K., 214, 221, 222, 223, 225,

226–7

speech-act theory, 56, 219

Sperba, H., 256

Sperling, G., 41

Spirtes, P., 158, 162

Srinivasan, M., 287

St. John, M., 109

Stanford Cart, 275

Steels, L., 141

Stelarc, 290

Sterelny, K., 309

Stevenson, M., 227

stigmergy, 132

stochastic domains, 205–6

Stone, P., 241

Stork, D., 151

Strat, T., 185

Strawson, P. F., 56

STRIPS, 203, 208, 273

Strogatz, S., 134

strong AI, 7, 35–6, 89, 102–3; vs. weak AI,

65, 97

subjective rate of time, 325, 326

subsumption architecture, 31, 131, 233,

277

sub-symbolic approaches, 220

Suchman, L., 130

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139046855
https://www.cambridge.org/core


353 Index

Sun, R., 5, 109, 110, 112, 113, 114, 115,

118, 119, 120–2, 124

superintelligence, 328–32; weak, 329

superquadrics, 177

supervised learning, 111, 154, 223; vs.

unsupervised learning, 26

Supervisory Attentional System, 96

Sussex University, 281, 282

Sutton, R., 78, 109, 112

Swain, M., 172

symbol, 89–90, 97, see content grounding

problem and naturalizing content

symbolic AI vs. neural nets, 15, 31

syntactic engine driving semantic engine,

42

systematicity argument, see also Fodor and

Pylyshyn, 1988, 54, 77–8

Systems Reply, 50, 73–4

SYSTRAN, 224

target tracking, robustness, 178,

180–1

Tarski, A., 23, 44

task intelligence, 64

temporal consistency, 180

temporal data association, see temporal

consistency

Thagard, P., 115

Thelen, E., 133, 136

thing intelligence, 65; premium, 65;

regular, 65

Thirde, D., 182

Thomason, R., 218

Thompson, E., 28, 129, 133, 309

Thrun, S., 289

Tibshirani, R., 151

Tickner, J., 312

Tierra, 299–300, 304

Tinkelman, A., 256

Tllez, R., 284

Tolman, E. C., 41

Tooby, J., 255

Total Turing Test (TTT), 35

Touretzky, D., 117

tracking, see visual servoing

tracking cycle problem, 178–81

transformational grammars, 216

transparency in AI algorithms, 316–17

Trappl, R., 250

TRICLOPS, 180

Tseitin, G., 193

Tuci, E., 141

Turing, A. M., 17–18, 34, 37, 40, 65, 97, 99,

101, 248–9, 279

Turing machine, 17, 53, 111, 192, 195;

universal, 300

Turing-machine functionalism, 43

Turing Test, 17–18, 34–5, 40, 53, 65–7,

101, 248, 279

Turk, M., 172

Turner, J., 132

Turvery, M., 135

Tuyls, K., 241

Ullman, M., 77

Ullman, S., 174

Unified Modeling Language (UML), 243

unsupervised learning, 111, 154–5, 223,

304

uploading, 325

VAMPIRE system, 184

van Gelder, T., 54, 81, 82, 134, 135, 136,

140

Van Leeuwen, M., 136

Varela, F. J., 28, 100, 129, 133, 182,

183

variational approximation, 200

Velasquez, J., 257

Velastin, S., 182, 183

Veloso, M., 241

Venter, J., 298

Vera, A., 96, 131

Vickerstaff, R., 141

Vince, M., 5, 177, 179, 181, 187

Vinge, V., 329

Viola, P., 172, 174

virtual agents, 95

vision-based human–machine interface,

183–4

visual servoing, 178–81

visual surveillance, 182–3

Vohra, R., 241

von der Malsberg, C., 20

von Neumann, J., 89

Voronkov, A., 38

Wachsmuth, S., 5, 184

Walter, G., 270–2, 288, 290

Walter, W., 277

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139046855
https://www.cambridge.org/core


354 Index

Waltz, D., 110, 220

Wang, H., 37

Ward, R., 141

Warren, M., 322

Warren, W., 135, 270

Watson, 23–4

Watt governor, 81

weak AI, 35, 98, 102, 259

Weiss, G., 241, 242

Weizenbaum, J., 215

Weld, D., 236

Welman, M., 241

Wermter, S., 118, 119, 122

Wheeler, M., 129

Widrow, B., 110

Wiener, N., 272

Wilks, Y., 6, 217, 218–19, 220, 224, 226,

227

Williams, M., 197

Wilson, R., 311

Wilson, S., 290

Wilson, T., 162

Winograd, T., 19, 39, 93, 129, 214, 216, 220

Wittgenstein, L., 45, 48

Wohlkinger, W., 177

Wolpert, D., 158

Woods, R., 168, 172

Woods, W., 220

Woodward, J., 155

Wooldridge, M., 243

XCON, 22

Xiang, T., 182

Yamauchi, B., 141

Yngve, V., 213, 216

Yudkowsky, E., 6, 319, 329

Zadeh L. A., 22

Zhang, X., 109, 124, 287

Zisserman, A., 180

Zlotkin, G., 238

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139046855
https://www.cambridge.org/core

	Title page
	Copyright
	Table of contents
	List of figures
	Notes on contributors
	Acknowledgments
	Introduction • Keith Frankish and William M. Ramsey
	Part I: Foundations
	1 History, motivations, and core themes • Stan Franklin
	2 Philosophical foundations • Konstantine Arkoudas and Selmer Bringsjord
	3 Philosophical challenges • William S. Robinson

	Part II: Architectures
	4 GOFAI • Margaret A. Boden
	5 Connectionism and neural networks • Ron Sun
	6 Dynamical systems and embedded cognition • Randall D. Beer

	Part III: Dimensions
	7 Learning • David Danks
	8 Perception and computer vision • Markus Vincze, Sven Wachsmuth, and Gerhard Sagerer
	9 Reasoning and decision making • Eyal Amir
	10 Language and communication • Yorick Wilks
	11 Actions and agents • Eduardo Alonso
	12 Artificial emotions and machine consciousness • Matthias Scheutz

	Part IV: Extensions
	13 Robotics • Phil Husbands
	14 Artificial life • Mark A. Bedau
	15 The ethics of artificial intelligence • Nick Bostrom and Eliezer Yudkowsky

	Glossary
	Index


 
 
    
   HistoryItem_V1
   InsertBlanks
        
     Where: before current page
     Number of pages: 1
     Page size: same as current
      

        
     D:20180118152948
      

        
     Blanks
     1
     1
     1
     650
     1046
    
     0
     1
     qi3alphabase[QI 3.0/QHI 3.0 alpha]
     1
            
       CurrentAVDoc
          

     SameAsCur
     BeforeCur
      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0c
     Quite Imposing Plus 4
     1
      

        
     0
     1
      

   1
  

 HistoryList_V1
 qi2base





