

About This E-Book
EPUB is an open, industry-standard format for e-books. However, support

for EPUB and its many features varies across reading devices and
applications. Use your device or app settings to customize the presentation to
your liking. Settings that you can customize often include font, font size,
single or double column, landscape or portrait mode, and figures that you can
click or tap to enlarge. For additional information about the settings and
features on your reading device or app, visit the device manufacturer’s Web
site.

Many titles include programming code or configuration examples. To
optimize the presentation of these elements, view the e-book in single-
column, landscape mode and adjust the font size to the smallest setting. In
addition to presenting code and configurations in the reflowable text format,
we have included images of the code that mimic the presentation found in the
print book; therefore, where the reflowable format may compromise the
presentation of the code listing, you will see a “Click here to view code
image” link. Click the link to view the print-fidelity code image. To return to
the previous page viewed, click the Back button on your device or app.

Game Programming in C++
Creating 3D Games

Sanjay Madhav

Boston • Columbus • Indianapolis • New York • San Francisco
Amsterdam • Cape Town • Dubai • London • Madrid • Milan

Munich • Paris • Montreal • Toronto • Delhi • Mexico City • São
Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.
The author and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the
information or programs contained herein.
For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.
For government sales inquiries, please contact
governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact
intlcs@pearson.com.
Visit us on the Web: informit.com/aw
Library of Congress Control Number: 2017964125
Copyright © 2018 Pearson Education, Inc.
All rights reserved. Printed in the United States of America. This publication
is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding
permissions, request forms, and the appropriate contacts within the Pearson
Education Global Rights & Permissions Department, please visit
www.pearsoned.com/permissions/.
Overwatch™ is a trademark of Blizzard Entertainment, Inc., in the U.S.
and/or other countries.

Call of Duty® is a registered trademark of Activision Publishing, Inc.

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearsoned.com/permissions/

Uncharted ™ and Horizon: Zero Dawn™ are trademarks of and God of
War® is a registered trademark of Sony Interactive Entertainment LLC.

Visual Studio®, Xbox®, and Windows® are registered trademarks of
Microsoft Corporation.

Apple®, iOS®, Mac®, macOS®, and Xcode® are registered trademarks of
Apple Inc.

GitHub® is a registered trademark of GitHub, Inc.

OpenGL® and the oval logo are trademarks or registered trademarks of
Silicon Graphics, Inc. in the United States and/or other countries worldwide.

Linux® is a registered trademark of Linus Torvalds.

FMOD® is a registered trademark of Firelight Technologies Pty, Ltd.

Pac-Man® is a registered trademark of Bandai Namco Entertainment Inc.

Asteroids® and Pong® are registered trademarks of Atari Interactive Inc.

PlayStation® is a registered trademark of Sony Interactive Entertainment Inc.

Android® is a registered trademark of Google Inc.

Unreal® is a trademark or registered trademark of Epic Games, Inc. in the
United States of America and elsewhere.

Unity® is a registered trademark of Unity Technologies.

Maya® and FBX® are registered trademarks of Autodesk, Inc., in the USA
and other countries.

Skyrim® is a registered trademark of ZeniMax Media Inc.

Planet Coaster® is a registered trademark of Frontier Developments Plc.
ISBN-13: 978-0-13-459720-1
ISBN-10: 0-13-459720-6
1 18

Editor-in-Chief
Mark Taub

Executive Editor
Laura Lewin

Development Editor
Michael Thurston

Managing Editor
Sandra Schroeder

Tech Editors
Josh Glazer
Brian Overland
Matt Whiting

Senior Project Editor
Lori Lyons

Production Manager
Dhayanidhi Karunanidhi

Copy Editor
Kitty Wilson

Indexer
Lisa Stumpf

Proofreader
Larry Sulky

Editorial Assistant
Courtney Martin

Cover Designer
Chuti Prasertsith

Compositor
codemantra

To my family and friends: Thanks for the support.

Contents at a Glance
Preface
Acknowledgments
About the Author

1 Game Programming Overview

2 Game Objects and 2D Graphics

3 Vectors and Basic Physics

4 Artificial Intelligence

5 OpenGL

6 3D Graphics

7 Audio

8 Input Systems

9 Cameras

10 Collision Detection

11 User Interfaces

12 Skeletal Animation

13 Intermediate Graphics

14 Level Files and Binary Data

A Intermediate C++ Review
Index

Register your copy of Game Programming in C++ on the InformIT
site for convenient access to updates and corrections as they become
available. To start the registration process, go to informit.com/register
and log in or create an account. Enter the product ISBN
9780134597201 and click Submit. Look on the Registered Products
tab for an Access Bonus Content link next to this product, and follow
that link to access any available bonus materials. If you would like to
be notified of exclusive offers on new editions and updates, please
check the box to receive email from us.

Contents
Preface
Acknowledgments
About the Author

1 Game Programming Overview
Setting Up a Development Environment

Microsoft Windows
Apple macOS

Getting This Book’s Source Code
Beyond the C++ Standard Library
The Game Loop and Game Class

Anatomy of a Frame
Implementing a Skeleton Game Class
Main Function
Basic Input Processing

Basic 2D Graphics
The Color Buffer
Double Buffering
Implementing Basic 2D Graphics
Drawing Walls, a Ball, and a Paddle

Updating the Game

Real Time and Game Time
Logic as a Function of Delta Time

Updating the Paddle’s Position
Updating the Ball’s Position

Game Project
Summary
Additional Reading
Exercises

Exercise 1.1
Exercise 1.2

2 Game Objects and 2D Graphics
Game Objects

Types of Game Objects
Game Object Models
Integrating Game Objects into the Game Loop

Sprites
Loading Image Files
Drawing Sprites
Animating Sprites

Scrolling Backgrounds
Game Project
Summary
Additional Reading
Exercises

Exercise 2.1
Exercise 2.2
Exercise 2.3

3 Vectors and Basic Physics
Vectors

Getting a Vector between Two Points: Subtraction
Scaling a Vector: Scalar Multiplication
Combining Two Vectors: Addition
Determining a Distance: Length
Determining Directions: Unit Vectors and Normalization
Converting from an Angle to a Forward Vector
Converting a Forward Vector to an Angle: Arctangent
Determining the Angle between Two Vectors: Dot Product
Calculating a Normal: Cross Product

Basic Movement

Creating a Basic MoveComponent Class
Creating an InputComponent Class

Newtonian Physics
Linear Mechanics Overview
Computing Positions with Euler Integration
Issues with Variable Time Steps

Basic Collision Detection

Circle-Versus-Circle Intersection
Creating a CircleComponent Subclass

Game Project
Summary
Additional Reading
Exercises

Exercise 3.1

Exercise 3.2
Exercise 3.3

4 Artificial Intelligence
State Machine Behaviors

Designing a State Machine
Basic State Machine Implementation
States as Classes

Pathfinding

Graphs
Breadth-First Search
Heuristics
Greedy Best-First Search
A* Search
Dijkstra’s Algorithm
Following a Path
Other Graph Representations

Game Trees
Minimax
Handling Incomplete Game Trees
Alpha-Beta Pruning

Game Project
Summary
Additional Reading
Exercises

Exercise 4.1

Exercise 4.2

5 OpenGL
Initializing OpenGL

Setting Up the OpenGL Window
The OpenGL Context and Initializing GLEW
Rendering a Frame

Triangle Basics

Why Polygons?
Normalized Device Coordinates
Vertex and Index Buffers

Shaders
Vertex Shaders
Fragment Shaders
Writing Basic Shaders
Loading Shaders
Drawing Triangles

Transformation Basics

Object Space
World Space
Transforming to World Space

Matrices and Transformations
Matrix Multiplication
Transforming a Point by Using a Matrix
Transforming to World Space, Revisited
Adding World Transforms to Actor

Transforming from World Space to Clip Space
Updating Shaders to Use Transform Matrices

Texture Mapping

Loading the Texture
Updating the Vertex Format
Updating the Shaders
Alpha Blending

Game Project
Summary
Additional Reading
Exercises

Exercise 5.1
Exercise 5.2

6 3D Graphics
The Actor Transform in 3D

Transform Matrices for 3D
Euler Angles
Quaternions
New Actor Transform in Action

Loading 3D Models

Choosing a Model Format
Updating the Vertex Attributes
Loading a gpmesh File

Drawing 3D Meshes
Transforming to Clip Space, Revisited

Out with the Painter’s Algorithm, in with Z-Buffering
The BasicMesh Shader
The MeshComponent Class

Lighting

Revisiting Vertex Attributes
Types of Lights
Phong Reflection Model
Implementing Lighting

Game Project
Summary
Additional Reading
Exercises

Exercise 6.1
Exercise 6.2

7 Audio
Bootstrapping Audio

FMOD
Installing FMOD
Creating an Audio System
Banks and Events
The SoundEvent Class

3D Positional Audio

Setting Up a Basic Listener
Adding Positional Functionality to SoundEvent

Creating an AudioComponent to Associate Actors with Sound
Events
The Listener in a Third-Person Game
The Doppler Effect

Mixing and Effects

Buses
Snapshots
Occlusion

Game Project
Summary
Additional Reading
Exercises

Exercise 7.1
Exercise 7.2

8 Input Systems
Input Devices

Polling
Positive and Negative Edges
Events
Basic InputSystem Architecture

Keyboard Input
Mouse Input

Buttons and Position
Relative Motion
Scroll Wheel

Controller Input

Enabling a Single Controller
Buttons
Analog Sticks and Triggers
Filtering Analog Sticks in Two Dimensions
Supporting Multiple Controllers

Input Mappings
Game Project
Summary
Additional Reading
Exercises

Exercise 8.1
Exercise 8.2

9 Cameras
First-Person Camera

Basic First-Person Movement
Camera (Without Pitch)
Adding Pitch
First-Person Model

Follow Camera

Basic Follow Camera
Adding a Spring

Orbit Camera
Spline Camera
Unprojection

Game Project
Summary
Additional Reading
Exercises

Exercise 9.1
Exercise 9.2

10 Collision Detection
Geometric Types

Line Segments
Planes
Bounding Volumes

Intersection Tests
Contains Point Tests
Bounding Volume Tests
Line Segment Tests
Dynamic Objects

Adding Collisions to Game Code

The BoxComponent Class
The PhysWorld Class
Ball Collisions with SegmentCast
Testing Box Collisions in PhysWorld
Player Collision Against the Walls

Game Project
Summary
Additional Reading

Exercises

Exercise 10.1
Exercise 10.2
Exercise 10.3

11 User Interfaces
Font Rendering
UI Screens

The UI Screen Stack
The Pause Menu
Buttons
Dialog Boxes

HUD Elements
Adding an Aiming Reticule
Adding Radar

Localization

Working with Unicode
Adding a Text Map
Other Localization Concerns

Supporting Multiple Resolutions
Game Project
Summary
Additional Reading
Exercises

Exercise 11.1
Exercise 11.2

Exercise 11.3

12 Skeletal Animation
Foundations of Skeletal Animation

Skeletons and Poses
The Inverse Bind Pose Matrix
Animation Data
Skinning

Implementing Skeletal Animation

Drawing with Skinning Vertex Attributes
Loading a Skeleton
Loading the Animation Data
The Skinning Vertex Shader
Updating Animations

Game Project
Summary
Additional Reading
Exercises

Exercise 12.1
Exercise 12.2

13 Intermediate Graphics
Improving Texture Quality

Texture Sampling, Revisited
Mipmapping
Anisotropic Filtering

Rendering to Textures

Creating the Texture
Creating a Framebuffer Object
Rendering to a Framebuffer Object
Drawing the Mirror Texture in the HUD

Deferred Shading
Creating a G-Buffer Class
Writing to the G-buffer
Global Lighting
Adding Point Lights
Improvements and Issues

Game Project
Summary
Additional Reading
Exercises

Exercise 13.1
Exercise 13.2

14 Level Files and Binary Data
Level File Loading

Loading Global Properties
Loading Actors
Loading Components

Saving Level Files
Saving Global Properties
Saving Actors and Components

Binary Data

Saving a Binary Mesh File
Loading a Binary Mesh File

Game Project
Summary
Additional Reading
Exercises

Exercise 14.1
Exercise 14.2

A Intermediate C++ Review

Index

Preface

Today, video games are some of the most popular forms of entertainment.
Newzoo’s “Global Games Market Report” estimates over $100 billion in
revenue for games in 2017. This staggering amount shows how popular this
field truly is. Because of the size of this market, game programmers are in
low supply and high demand.

Alongside this explosion of games, game technology has become increasingly
democratized. A single developer can make award-winning and hit games by
using one of many popular game engines and tools. For game designers, these
tools are fantastic. So what value is there in learning how to program games
in C++?

If you take a step back, you can see that many game engines and tools are, at
their core, written in C++. This means that C++ is ultimately the technology
behind every game created using one of these tools.

Furthermore, top-notch developers who release some of the most popular
games today—including Overwatch, Call of Duty, and Uncharted—still
predominantly use C++ because it provides a great combination of
performance and usability. Thus, any developer who wants to eventually
work for one of these companies needs a strong understanding of
programming games—specifically in C++.

This book dives into many of the technologies and systems that real game
developers use. The basis for much of the material in this book is video game
programming courses taught at the University of Southern California over the
course of almost a decade. The approach used in this book has successfully
prepared many students to make it in the video games industry.

This book is also heavily focused on real working implementations of code
integrated into actual game project demos. It is critical to understand how all

the various systems that go into a game work together. For this reason, you
should keep the source code handy while working through this book.

At this writing, all the code provided with this book works on both PC and
macOS, using the Microsoft Visual Studio 2017 and Apple Xcode 9
development environments, respectively.

The source code for this book is available on GitHub, at
https://github.com/gameprogcpp/code. For instructions on setting up the
development environment for this book, see Chapter 1, “Game Programming
Overview.”

Who Should Read This Book?
This book is for you if you’re a programmer who is comfortable with C++
and wants to learn how to program 3D video games. For readers rusty on
C++, Appendix A, “Intermediate C++ Review,” reviews several C++
concepts. However, if you have with little or no prior C++ experience, you
should learn C++ before jumping into this book. (One option is
Programming Abstractions in C++ by Eric Roberts.) This book also
expects you to be familiar with some common data structures, including
dynamic arrays (vectors), trees, and graphs, and to have some recollection of
high school-level algebra.

The topics covered in this book are applicable to readers in academic
environments, hobbyists, and junior- and mid-level game programmers who
want to expand their knowledge of game programming. The content in this
book corresponds to a little more than a semester and a half of material in a
university setting.

How This Book Is Organized
This book is intended to be read linearly from Chapter 1 through Chapter 14.
However, in case you are not interested in some specific topics, Figure P.1
shows the dependencies between the chapters.

https://github.com/gameprogcpp/code

In the first handful of chapters, the games are in 2D as you learn core
concepts. From Chapter 6 onward (with the exception of Chapter 8), the
games are in 3D.

The chapters cover the following information:

Chapter 1, “Game Programming Overview,” looks at the fundamental
concepts of game programming and how to get an initial game up and
running. It also introduces the Simple DirectMedia Layer (SDL) library.
Chapter 2, “Game Objects and 2D Graphics,” discusses how
programmers organize the objects in their games and explores
additional 2D graphics concepts, such as flipbook animation.
Chapter 3, “Vectors and Basic Physics,” covers mathematical vectors,
which are critical tools for any game programmer. It also explores the
basics of physics, for use with both motion and collisions.
Chapter 4, “Artificial Intelligence,” looks at approaches to make game
characters that are computer controlled, including concepts such as state
machines and pathfinding.
Chapter 5, “OpenGL,” explores how to create an OpenGL renderer,
including implementing vertex and pixel shaders. It includes a
discussion of matrices.

Figure P.1 Chapter dependencies

Chapter 6, “3D Graphics,” focuses on converting the code created so
far to work for a 3D game, including how to represent the view,

projection, and rotations.
Chapter 7, “Audio,” covers how to bootstrap an audio system using the
excellent FMOD API. It includes coverage of 3D positional audio.
Chapter 8, “Input Systems,” discusses how to design a more robust input
system for processing keyboard, mouse, and game controller events.
Chapter 9, “Cameras,” shows how to implement several different 3D
cameras, including a first-person camera, a follow camera, and an orbit
camera.
Chapter 10, “Collision Detection,” dives into methods of collision
detection for games, including spheres, planes, line segments, and
boxes.
Chapter 11, “User Interfaces,” looks at implementing both a menu
system and heads-up display (HUD) elements such as a radar and
aiming reticule.
Chapter 12, “Skeletal Animation,” covers how to animate characters in
3D.
Chapter 13, “Intermediate Graphics,” explores a handful of intermediate
graphics topics, including how to implement deferred shading.
Chapter 14, “Level Files and Binary Data,” discusses how to load and
save level files, as well as how to write binary file formats.
Appendix A, “Intermediate C++ Review,” reviews several intermediate
C++ topics used throughout the book including memory allocation and
collections.

Each chapter includes a corresponding game project (with source code
available, as mentioned), recommended additional readings, and a couple of
exercises. These exercises generally instruct you to add additional features to
the code implemented in the chapter.

Conventions Used in This Book
New terms appear in bold. Code appears in a monospaced font. Small
snippets of code sometimes appear as standalone paragraphs:

DoSomething();

Longer code segments appear in code listings, as in Listing P.1.

Listing P.1 Sample Code Listing

void DoSomething()
{
 // Do the thing
 ThisDoesSomething();
}

From time to time, some paragraphs appear as notes, tips, sidebars, and
warnings. Here is an example of each.

note
Notes contain some useful information about implementation
changes or other features that are worth noting.

tip
Tips provide hints on how to add certain additional features to your
code.

warning
Warnings call out specific pitfalls that warrant caution.

SIDEBAR

Sidebars are lengthier discussions that are tangential to the main
content of the chapter. This content is interesting but isn’t crucial to
understanding the core topics of the chapter.

Acknowledgments

Although this is not my first book, writing this one has been an especially
long process. I am thankful that Laura Lewin, the executive editor on this
book, was especially patient throughout the two years this book was in
progress. I would also like to thank the rest of the team at Pearson, including
Michael Thurston, the development editor on this book.

I would also like to acknowledge the work put in by the technical editors on
this book: Josh Glazer, Brian Overland, and Matt Whiting. The technical
reviews were critical in making sure both that the content was correct and
that it was accessible for the target audience.

I’d also like to thank all my colleagues at the USC Information Technology
Program and especially those who helped shape the curriculum of the games
courses I teach: Josh Glazer, Jason Gregory, Clark Kromenaker, Mike
Sheehan, and Matt Whiting. Much of the inspiration for this book comes from
that curriculum. I would also like to thank all my excellent TAs over the
years, who are too numerous to name personally.

I would also like to thank the content creators on sites like
https://opengameart.org and https://freesound.org for creating excellent game
content released under Creative Commons licenses. These sites were critical
to finding assets for the game projects in this book.

Finally, I’d like to thank my parents, as well my sister, Nita, and her family.
Without their support, inspiration, and guidance, I never would have gotten
here in the first place. I’d also like to thank my friends, like Kevin, who
understood when I couldn’t go see the latest movie, go to dinner, or really do
anything social because I was “working on my book.” Well, I guess I have
time now.…

https://opengameart.org/
https://freesound.org/

About The Author

Sanjay Madhav is a senior lecturer at the University of Southern California,
where he teaches several programming and video game programming
courses. He has taught at USC since 2008.

Prior to joining USC, Sanjay worked as a programmer for several video
game developers, including Electronic Arts, Neversoft, and Pandemic
Studios. His credited games include Medal of Honor: Pacific Assault, Tony
Hawk’s Project 8, Lord of the Rings: Conquest, and The Saboteur.

Sanjay is also the author of Game Programming Algorithms and Techniques
and co-author of Multiplayer Game Programming. He has a B.S. and an
M.S. in computer science and is pursuing a Ph.D. in computer science, all
from USC.

Chapter 1
Game Programming Overview

This chapter first discusses how to set up a development
environment and access the source code for this book. Next, it
covers the core concepts behind any real-time game: the game loop,
how a game updates over time, and the basics of game input and
output. Throughout the chapter, you will see how to implement code
for a version of the classic game Pong.

Setting Up a Development Environment
Although it’s possible to write the source code for any program with a text
editor, professional developers typically use an integrated development
environment (IDE). The advantage of an IDE is that it provides code
completion and debugging in addition to text editing capabilities. The code for
this book works on both Microsoft Windows and Apple macOS, and the choice
of IDE depends on the choice of platform. For Windows, this book uses
Microsoft Visual Studio, and for macOS, it uses Apple Xcode. The remainder
of this section contains brief instructions on setup of these environments on their
respective platforms.

Microsoft Windows
For Windows development, the most popular IDE by far is Microsoft Visual
Studio. Visual Studio also tends to be the most popular IDE for C++ game
developers, with most PC and console developers gravitating toward the IDE.

This book uses Microsoft Visual Studio Community 2017, which is available as
a free download at https://www.visualstudio.com/downloads/. Installation of
Visual Studio Community 2017 requires Microsoft Windows 7 or higher.

When you run the installer program for Visual Studio, it asks which
“workloads” it should install. Make sure to minimally select the Game
Development with C++ workload. Feel free to also select any other workloads
or options desired.

warning
THERE ARE DIFFERENT VERSIONS OF VISUAL STUDIO:
There are several other products in the Microsoft Visual Studio suite,
including Visual Studio Code and Visual Studio for Mac. Neither of
these products are the same thing as Visual Studio Community 2017,
so be careful to install the correct version!

https://www.visualstudio.com/downloads/

Apple macOS
On macOS, Apple provides the free Xcode IDE for development of programs
for macOS, iOS, and other related platforms. The code for this book works in
both Xcode 8 and 9. Note that Xcode 8 requires macOS 10.11 El Capitan or
higher, while Xcode 9 requires macOS 10.12 Sierra or higher.

To install Xcode, simply go to the Apple App Store and search for Xcode. The
first time Xcode runs, it asks if you want to enable debugging features. Make
sure to select Yes.

Getting This Book’s Source Code
Most professional developers utilize source control systems, which, among
many other features, keep a history of the source code. With such a system, if
code changes cause unexpected or undesired behavior, it’s easy to return to a
previously known working version of code. Furthermore, source control allows
for much easier collaboration between multiple developers.

One popular source control system is Git, originally developed by Linus
Torvalds of Linux fame. In Git, the term repository refers to a specific project
hosted under source control. The GitHub website (https://github.com) provides
for easy creation and management of Git repositories.

The source code for this book is available on GitHub at
https://github.com/gameprogcpp/code. If you are unfamiliar with the Git system,
you can simply click the green Clone or Download button and choose
Download ZIP to download a compressed ZIP file that contains all the book’s
source code.

Alternatively, if you wish to use Git, you can clone the repository via the
command line, as follows:
Click here to view code image

$ git clone https://github.com/gameprogcpp/code.git

This command works out of the box in the macOS terminal, but Windows users
need to first install Git for Windows (see https://git-for-windows.github.io).

https://github.com/
https://github.com/gameprogcpp/code
https://git-for-windows.github.io/

The source code contains a separate directory (or folder) for each chapter. For
example, this chapter’s source code is in the Chapter01 directory. In this
directory, there is a Chapter01-Windows.sln file for Microsoft Visual
Studio and a Chapter01-Mac.xcodeproj file for Apple Xcode. Before
moving forward, make sure that you can compile the code for this chapter.

Beyond the C++ Standard Library
The C++ Standard Library only supports text console input and output and does
not have any graphics libraries built in. To implement graphics in a C++
program, you must use one of the many available external libraries.

Unfortunately, many libraries are platform specific, meaning they work on only
one operating system or type of computer. For example, the Microsoft Windows
application programming interface (API) can create windows and other UI
elements supported by the Windows operating system. However, the Windows
API doesn’t work on Apple macOS—for obvious reasons. Likewise, macOS
has its own set of libraries for these same features that do not work on
Windows. As a game programmer, you can’t always avoid platform-specific
libraries. For instance, game developers working with the Sony PlayStation 4
console must use libraries provided by Sony.

Luckily, this book sticks to cross-platform libraries, meaning that the libraries
work on many different platforms. All the source code for this book works on
recent versions of both Windows and macOS. Although Linux support is
untested, the game projects generally should also work on Linux.

One of the foundational libraries used in this book is Simple DirectMedia Layer
(SDL; see https://www.libsdl.org). The SDL library is a cross-platform game
development library written in C. It provides support for creating windows,
creating basic 2D graphics, processing input, and outputting audio, among other
features. SDL is a very lightweight library that works on many platforms,
including Microsoft Windows, Apple macOS, Linux, iOS, and Android.

In this first chapter, the only external library needed is SDL. Subsequent
chapters use other libraries and introduce them when needed.

https://www.libsdl.org/

The Game Loop and Game Class
One of the big differences between a game and any other program is that a game
must update many times per second for as long as the program runs. A game
loop is a loop that controls the overall flow for the entire game program. Like
any other loop, a game loop has code it executes on every iteration, and it has a
loop condition. For a game loop, you want to continue looping as long as the
player hasn’t quit the game program.

Each iteration of a game loop is a frame. If a game runs at 60 frames per
second (FPS), this means the game loop completes 60 iterations every second.
Many real-time games run at 30 or 60 FPS. By running this many iterations per
second, the game gives the illusion of continuous motion even though it’s only
updating at periodic intervals. The term frame rate is interchangeable with
FPS; a frame rate of 60 means the same thing as 60 FPS.

Anatomy of a Frame
At a high level, a game performs the following steps on each frame:

1. It processes any inputs.

2. It updates the game world.

3. It generates any outputs.

Each of these three steps has more depth than may be apparent at first glance.
For instance, processing inputs (step 1) clearly implies detecting any inputs
from devices such as a keyboard, mouse, or controller. But these might not be
the only inputs for a game. Consider a game that supports an online multiplayer
mode. In this case, the game receives data over the Internet as an input. In
certain types of mobile games, another input might be what’s visible to the
camera, or perhaps GPS information. Ultimately, the inputs to a game depend on
both the type of game and the platform it runs on.

Updating a game world (step 2) means going through every object in the game
world and updating it as needed. This could be hundreds or even thousands of
objects, including characters in the game world, parts of the user interface, and
other objects that affect the game—even if they are not visible.

For step 3, generating any outputs, the most apparent output is the graphics. But
there are other outputs, such as audio (including sound effects, music, and
dialogue). As another example, most console games have force feedback
effects, such as the controller shaking when something exciting happens in the
game. And for an online multiplayer game, an additional output would be data
sent to the other players over the Internet.

Consider how this style of game loop might apply to a simplified version of the
classic Namco arcade game Pac-Man. For this simplified version of the game,
assume that the game immediately begins with Pac-Man in a maze. The game
program continues running until Pac-Man either completes the maze or dies. In
this case, the “process inputs” phase of the game loop need only read in the
joystick input.

The “update game world” phase of the loop updates Pac-Man based on this
joystick input and then also updates the four ghosts, pellets, and the user
interface. Part of this update code must determine whether Pac-Man runs into
any ghosts. Pac-Man can also eat any pellets or fruits he moves over, so the
update portion of the loop also needs to check for this. Because the ghosts are
fully AI controlled, they also must update their logic. Finally, based on what
Pac-Man is doing, the UI may need to update what data it displays.

note
This style of game loop is single-threaded, meaning it does not take
advantage of modern CPUs that can execute multiple threads
simultaneously. Making a game loop that supports multiple threads is
very complex, and not necessary for games that are smaller in scope.
A good book to learn more about multi-threaded game loops is Jason
Gregory’s, listed in the “Additional Reading” section at the end of this
chapter.

The only outputs in the “generate outputs” phase of the classic Pac-Man game
are the audio and video. Listing 1.1 provides pseudocode showing what the
game loop for this simplified version of Pac-Man might look like.

Listing 1.1 Pac-Man Game Loop Pseudocode
Click here to view code image

void Game::RunLoop()
{
 while (!mShouldQuit)
 {
 // Process Inputs
 JoystickData j = GetJoystickData();

// Update Game World
 UpdatePlayerPosition(j);

for (Ghost& g : mGhost)
 {
 if (g.Collides(player))
 {
 // Handle Pac-Man colliding with a ghost
 }
 else
 {
 g.Update();
 }
 }

// Handle Pac-Man eating pellets
 // ...

// Generate Outputs
 RenderGraphics();
 RenderAudio();
 }
}

Implementing a Skeleton Game Class
You are now ready to use your basic knowledge of the game loop to create a
Game class that contains code to initialize and shut down the game as well as
run the game loop. If you are rusty in C++, you might want to first review the
content in Appendix A, “Intermediate C++ Review,” as the remainder of this
book assumes familiarity with C++. In addition, it may be helpful to keep this
chapter’s completed source code handy while reading along, as doing so will
help you understand how all the pieces fit together.

Listing 1.2 shows the declaration of the Game class in the Game.h header file.
Because this declaration references an SDL_Window pointer, you need to also
include the main SDL header file SDL/SDL.h. (If you wanted to avoid
including this here, you could use a forward declaration.) Many of the member
function names are self-explanatory; for example, the Initialize function
initializes the Game class, the Shutdown function shuts down the game, and
the RunLoop function runs the game loop. Finally, ProcessInput,
UpdateGame, and GenerateOutput correspond to the three steps of the
game loop.

Currently, the only member variables are a pointer to the window (which you’ll
create in the Initialize function) and a bool that signifies whether the game
should continue running the game loop.

Listing 1.2 Game Declaration
Click here to view code image

class Game
{
public:
 Game();
 // Initialize the game
 bool Initialize();
 // Runs the game loop until the game is over
 void RunLoop();
 // Shutdown the game
 void Shutdown();
private:
 // Helper functions for the game loop
 void ProcessInput();
 void UpdateGame();
 void GenerateOutput();

// Window created by SDL
 SDL_Window* mWindow;
 // Game should continue to run
 bool mIsRunning;
};

With this declaration in place, you can start implementing the member functions
in Game.cpp. The constructor simply initializes mWindow to nullptr and
mIsRunning to true.

Game::Initialize
The Initialize function returns true if initialization succeeds and false
otherwise. You need to initialize the SDL library with the SDL_Init function.
This function takes in a single parameter, a bitwise-OR of all subsystems to
initialize. For now, you only need to initialize the video subsystem, which you
do as follows:

Click here to view code image

int sdlResult = SDL_Init(SDL_INIT_VIDEO);

Note that SDL_Init returns an integer. If this integer is nonzero, it means the
initialization failed. In this case, Game::Initialize should return false
because without SDL, the game cannot continue:

Click here to view code image

if (sdlResult != 0)
{
 SDL_Log("Unable to initialize SDL: %s", SDL_GetError());
 return false;
}

Using the SDL_Log function is a simple way to output messages to the console
in SDL. It uses the same syntax as the C printf function, so it supports
outputting variables to printf specifiers such as %s for a C-style string and
%d for an integer. The SDL_GetError function returns an error message as a
C-style string, which is why it’s passed in as the %s parameter in this code.

SDL contains several different subsystems that you can initialize with
SDL_Init. Table 1.1 shows the most commonly used subsystems; for the full
list, consult the SDL API reference at https://wiki.libsdl.org.

Table 1.1 SDL Subsystem Flags of Note

Flag Subsystem

SDL_INIT_AUDIO Audio device management, playback, and
recording

SDL_INIT_VIDEO Video subsystem for creating a window,
interfacing with OpenGL, and 2D graphics

https://wiki.libsdl.org/

SDL_INIT_HAPTIC Force feedback subsystem

SDL_INIT_GAMECONTROLLE
R

Subsystem for supporting controller input
devices

If SDL initializes successfully, the next step is to create a window with the
SDL_CreateWindow function. This is just like the window that any other
Windows or macOS program uses. The SDL_CreateWindow function takes
in several parameters: the title of the window, the x/y coordinates of the top-left
corner, the width/height of the window, and optionally any window creation
flags:

Click here to view code image

mWindow = SDL_CreateWindow(
 "Game Programming in C++ (Chapter 1)", // Window title
 100, // Top left x-coordinate of window
 100, // Top left y-coordinate of window
 1024, // Width of window
 768, // Height of window
 0 // Flags (0 for no flags set)
);

As with the SDL_Init call, you should verify that SDL_CreateWindow
succeeded. In the event of failure, mWindow will be nullptr, so add this
check:
Click here to view code image

if (!mWindow)
{
 SDL_Log("Failed to create window: %s", SDL_GetError());
 return false;
}

As with the initialization flags, there are several possible window creation
flags, as shown in Table 1.2. As before, you can use a bitwise-OR to pass in
multiple flags. Although many commercial games use full-screen mode, it’s
faster to debug code if the game runs in windowed mode, which is why this
book shies away from full screen.

Table 1.2 Window Creation Flags of Note

Flag Result

SDL_WINDOW_FULLSCREEN Use full-screen mode

SDL_WINDOW_FULLSCREEN_DESKTO
P

Use full-screen mode at the current
desktop resolution (and ignore
width/height parameters to
SDL_CreateWindow)

SDL_WINDOW_OPENGL Add support for the OpenGL
graphics library

SDL_WINDOW_RESIZABLE Allow the user to resize the
window

If SDL initialization and window creation succeeds, Game::Initialize
returns true.

Game::Shutdown
The Shutdown function does the opposite of Initialize. It first destroys
the SDL_Window with SDL_DestroyWindow and then closes SDL with
SDL_Quit:
void Game::Shutdown()
{
 SDL_DestroyWindow(mWindow);
 SDL_Quit();
}

Game::RunLoop
The RunLoop function keeps running iterations of the game loop until
mIsRunning becomes false, at which point the function returns. Because
you have the three helper functions for each phase of the game loop, RunLoop
simply calls these helper functions inside the loop:

Click here to view code image

void Game::RunLoop()
{
 while (mIsRunning)
 {
 ProcessInput();
 UpdateGame();
 GenerateOutput();

 }
}

For now, you won’t implement these three helper functions, which means that
once in the loop, the game won’t do anything just yet. You’ll continue to build on
this Game class and implement these helper functions throughout the remainder
of the chapter.

Main Function
Although the Game class is a handy encapsulation of the game’s behavior, the
entry point of any C++ program is the main function. You must implement a
main function (in Main.cpp) as shown in Listing 1.3.

Listing 1.3 main Implementation
Click here to view code image

int main(int argc, char** argv)
{
 Game game;
 bool success = game.Initialize();
 if (success)
 {
 game.RunLoop();
 }
 game.Shutdown();
 return 0;
}

This implementation of main first constructs an instance of the Game class. It
then calls Initialize, which returns true if the game successfully
initializes, and false otherwise. If the game initializes, you then enter the
game loop with the call to RunLoop. Finally, once the loop ends, you call
Shutdown on the game.

With this code in place, you can now run the game project. When you do, you
see a blank window, as shown in Figure 1.1 (though on macOS, this window
may appear black instead of white). Of course, there’s a problem: The game
never ends! Because no code changes the mIsRunning member variable, the

game loop never ends, and the RunLoop function never returns. Naturally, the
next step is to fix this problem by allowing the player to quit the game.

Figure 1.1 Creating a blank window

Basic Input Processing
In any desktop operating system, there are several actions that the user can
perform on application windows. For example, the user can move a window,
minimize or maximize a window, close a window (and program), and so on. A
common way to represent these different actions is with events. When the user
does something, the program receives events from the operating system and can
choose to respond to these events.

SDL manages an internal queue of events that it receives from the operating
system. This queue contains events for many different window actions, as well
as events related to input devices. Every frame, the game must poll the queue for
any events and choose either to ignore or process each event in the queue. For
some events, such as moving the window around, ignoring the event means SDL
will just automatically handle it. But for other events, ignoring the event means
nothing will happen.

Because events are a type of input, it makes sense to implement event
processing in ProcessInput. Because the event queue may contain multiple
events on any given frame, you must loop over all events in the queue. The
SDL_PollEvent function returns true if it finds an event in the queue. So, a
very basic implementation of ProcessInput would keep calling
SDL_PollEvent as long as it returns true:

Click here to view code image

void Game::ProcessInput()
{
 SDL_Event event;
 // While there are still events in the queue
 while (SDL_PollEvent(&event))
 {
 }
}

Note that the SDL_PollEvent function takes in an SDL_Event by pointer.
This stores any information about the event just removed from the queue.

Although this version of ProcessInput makes the game window more
responsive, the player still has no way to quit the game. This is because you
simply remove all the events from the queue and don’t respond to them.

Given an SDL_Event, the type member variable contains the type of the
event received. So, a common approach is to create a switch based on the type
inside the PollEvent loop:
Click here to view code image

SDL_Event event;
while (SDL_PollEvent(&event))
{
 switch (event.type)
 {
 // Handle different event types here

 }
}

One useful event is SDL_QUIT, which the game receives when the user tries to
close the window (either by clicking on the X or using a keyboard shortcut).
You can update the code to set mIsRunning to false when it sees an
SDL_QUIT event in the queue:

Click here to view code image

SDL_Event event;
while (SDL_PollEvent(&event))
{
 switch (event.type)
 {
 case SDL_QUIT:
 mIsRunning = false;
 break;
 }
}

Now when the game is running, clicking the X on the window causes the
while loop inside RunLoop to terminate, which in turn shuts down the game
and exits the program. But what if you want the game to quit when the user
presses the Escape key? While you could check for a keyboard event
corresponding to this, an easier approach is to grab the entire state of the
keyboard with SDL_GetKeyboardState, which returns a pointer to an
array that contains the current state of the keyboard:
Click here to view code image

const Uint8* state = SDL_GetKeyboardState(NULL);

Given this array, you can then query a specific key by indexing into this array
with a corresponding SDL_SCANCODE value for the key. For example, the
following sets mIsRunning to false if the user presses Escape:

Click here to view code image

if (state[SDL_SCANCODE_ESCAPE])
{
 mIsRunning = false;
}

Combining all this yields the current version of ProcessInput, shown in
Listing 1.4. Now when running the game, the user can quit either by closing the
window or pressing the Escape key.

Listing 1.4 Game::ProcessInput Implementation
Click here to view code image

void Game::ProcessInput()
{
 SDL_Event event;
 while (SDL_PollEvent(&event))
 {
 switch (event.type)
 {
 // If this is an SDL_QUIT event, end loop
 case SDL_QUIT:
 mIsRunning = false;
 break;
 }
 }

// Get state of keyboard
 const Uint8* state = SDL_GetKeyboardState(NULL);
 // If escape is pressed, also end loop
 if (state[SDL_SCANCODE_ESCAPE])
 {
 mIsRunning = false;
 }
}

Basic 2D Graphics
Before you can implement the “generate outputs” phase of the game loop, you
need some understanding of how 2D graphics work for games

Most displays in use today—whether televisions, computer monitors, tablets, or
smartphones—use raster graphics, which means the display has a two-
dimensional grid of picture elements (or pixels). These pixels can individually
display different amounts of light as well as different colors. The intensity and
color of these pixels combine to create a perception of a continuous image for
the viewer. Zooming in on a part of a raster image makes each individual pixel
discernable, as you can see in Figure 1.2.

Figure 1.2 Zooming in on part of an image shows its distinct pixels

The resolution of a raster display refers to the width and height of the pixel
grid. For example, a resolution of 1920×1080, commonly known as 1080p,
means that there are 1080 rows of pixels, with each row containing 1920 pixels.
Similarly, a resolution of 3840×2160, known as 4K, has 2160 rows with 3840
pixels per row.

Color displays mix colors additively to create a specific hue for each pixel. A
common approach is to mix three colors together: red, green, and blue
(abbreviated RGB). Different intensities of these RGB colors combine to create
a range (or gamut) of colors. Although many modern displays also support
color formats other than RGB, most video games output final colors in RGB.
Whether or not RGB values convert to something else for display on the monitor
is outside the purview of the game programmer.

However, many games internally use a different color representation for much
of their graphics computations. For example, many games internally support
transparency with an alpha value. The abbreviation RGBA references RGB
colors with an additional alpha component. Adding an alpha component allows
certain objects in a game, such as windows, to have some amount of
transparency. But because few if any displays support transparency, the game
ultimately needs to calculate a final RGB color and compute any perceived
transparency itself.

The Color Buffer
For a display to show an RGB image, it must know the colors of each pixel. In
computer graphics, the color buffer is a location in memory containing the color
information for the entire screen. The display can use the color buffer for
drawing the contents screen. Think of the color buffer as a two-dimensional
array, where each (x, y) index corresponds to a pixel on the screen. In every
frame during the “generate outputs” phase of the game loop, the game writes
graphical output into the color buffer.

The memory usage of the color buffer depends on the number of bits that
represent each pixel, called the color depth. For example, in the common 24-bit
color depth, red, green, and blue each use 8 bits. This means there are 224, or
16,777,216, unique colors. If the game also wants to store an 8-bit alpha value,
this results in a total of 32 bits for each pixel in the color buffer. A color buffer
for a 1080p (1920×1080) target resolution with 32 bits per pixel uses
1920×1080×4 bytes, or approximately 7.9 MB.

note
Many game programmers also use the term framebuffer to reference
the location in memory that contains the color data for a frame.
However, a more precise definition of framebuffer is that it is the
combination of the color buffer and other buffers (such as the depth
buffer and stencil buffer). In the interest of clarity, this book
references the specific buffers.

Some recent games use 16 bits per RGB component, which increases the
number of unique colors. Of course, this doubles the memory usage of the color
buffer, up to approximately 16 MB for 1080p. This may seem like an
insignificant amount, given that most video cards have several gigabytes of
video memory available. But when considering all the other memory usage of a
cutting-edge game, 8 MB here and 8 MB there quickly adds up. Although most
displays at this writing do not support 16 bits per color, some manufacturers
now offer displays that support color depths higher than 8 bits per color.

Given an 8-bit value for a color, there are two ways to reference this value in
code. One approach involves simply using an unsigned integer corresponding to
the number of bits for each color (or channel). So, for a color depth with 8 bits
per channel, each channel has a value between 0 and 255. The alternative
approach is to normalize the integer over a decimal range from 0.0 to 1.0.

One advantage of using a decimal range is that a value yields roughly the same
color, regardless of the underlying color depth. For example, the normalized
RGB value (1.0, 0.0, 0.0) yields pure red whether the maximum value of red is
255 (8 bits per color) or 65,535 (16 bits per color). However, the unsigned
integer RGB value (255, 0, 0) yields pure red only if there are 8 bits per color.
With 16 bits per color, (255, 0, 0) is nearly black.

Converting between these two representations is straightforward. Given an
unsigned integer value, divide it by the maximum unsigned integer value to get
the normalized value. Conversely, given a normalized decimal value, multiply it
by the maximum unsigned integer value to get an unsigned integer value. For
now, you should use unsigned integers because the SDL library expects them.

Double Buffering
As mentioned earlier in this chapter, games update several times per second (at
the common rates of 30 and 60 FPS). If a game updates the color buffer at the
same rate, this gives the illusion of motion, much the way a flipbook appears to
show an object in motion when you flip through the pages.

However, the refresh rate, or the frequency at which the display updates, may
be different from the game’s frame rate. For example, most NTSC TV displays
have a refresh rate of 59.94 Hz, meaning they refresh very slightly less than 60
times per second. However, some newer computer monitors support a 144 Hz
refresh rate, which is more than twice as fast.

Furthermore, no current display technology can instantaneously update the entire
screen at once. There always is some update order—whether row by row,
column by column, in a checkerboard, and so on. Whatever update pattern the
display uses, it takes some fraction of a second for the whole screen to update.

Suppose a game writes to the color buffer, and the display reads from that same
color buffer. Because the timing of the game’s frame rate may not directly match

the monitor’s refresh rate, it’s very like that the display will read from the color
buffer while the game is writing to the buffer. This can be problematic.

For example, suppose the game writes the graphical data for frame A into the
color buffer. The display then starts reading from the color buffer to show frame
A on the screen. However, before the display finishes drawing frame A onto the
screen, the game overwrites the color buffer with the graphical data for frame
B. The display ends up showing part of frame A and part of frame B on the
screen. Figure 1.3 illustrates this problem, known as screen tearing.

Figure 1.3 Simulation of screen tearing with a camera panning to the right

Eliminating screen tearing requires two changes. First, rather than having one
color buffer that the game and display must share, you create two separate color
buffers. Then the game and display alternate between the color buffers they use
every frame. The idea is that with two separate buffers, the game can write to
one (the back buffer) and, at the same time, the display can read from the other
one (the front buffer). After the frame completes, the game and display swap

their buffers. Due to the use of two color buffers, the name for this technique is
double buffering.

As a more concrete example, consider the process shown in Figure 1.4. On
frame A, the game writes its graphical output to buffer X, and the display draws
buffer Y to the screen (which is empty). When this process completes, the game
and display swap which buffers they use. Then on frame B, the game draws its
graphical output to buffer Y, while the display shows buffer X on screen. On
frame C, the game returns to buffer X, and the display returns to buffer Y. This
swapping between the two buffers continues until the game program closes.

Figure 1.4 Double buffering involves swapping the buffers used by the game and display every frame

However, double buffering by itself does not eliminate screen tearing. Screen
tearing still occurs if the display is drawing buffer X when the game wants to
start writing to X. This usually happens only if the game is updating too quickly.
The solution to this problem is to wait until the display finishes drawing its
buffer before swapping. In other words, if the display is still drawing buffer X
when the game wants to swap back to buffer X, the game must wait until the
display finishes drawing buffer X. Developers call this approach vertical

synchronization, or vsync, named after the signal that monitors send when they
are about to refresh the screen.

With vertical synchronization, the game might have to occasionally wait for a
fraction of a second for the display to be ready. This means that the game loop
may not be able to achieve its target frame rate of 30 or 60 FPS exactly. Some
players argue that this causes unacceptable stuttering of the frame rate. Thus, the
decision on whether to enable vsync varies depending on the game or player. A
good idea is to offer vsync as an option in the engine so that you can choose
between occasional screen tearing or occasional stuttering.

Recent advances in display technology seek to solve this dilemma with an
adaptive refresh rate that varies based on the game. With this approach, rather
than the display notifying the game when it refreshes, the game tells the display
when to refresh. This way, the game and display are in sync. This provides the
best of both worlds as it eliminates both screen tearing and frame rate stuttering.
Unfortunately, at this writing, adaptive refresh technology is currently available
only on certain high-end computer monitors.

Implementing Basic 2D Graphics
SDL has a simple set of functions for drawing 2D graphics. Because the focus
of this chapter is 2D, you can stick with these functions. Starting in Chapter 5,
“OpenGL,” you’ll switch to the OpenGL library for graphics, as it supports both
2D and 3D.

Initialization and Shutdown
To use SDL’s graphics code, you need to construct an SDL_Renderer via the
SDL_CreateRenderer function. The term renderer generically refers to
any system that draws graphics, whether 2D or 3D. Because you need to
reference this SDL_Renderer object every time you draw something, first
add an mRenderer member variable to Game:
SDL_Renderer* mRenderer;

Next, in Game::Initialize, after creating the window, create the
renderer:

Click here to view code image

mRenderer = SDL_CreateRenderer(
 mWindow, // Window to create renderer for
 -1, // Usually -1
 SDL_RENDERER_ACCELERATED | SDL_RENDERER_PRESENTVSYNC
);

The first parameter to SDL_CreateRenderer is the pointer to the window
(which you saved in mWindow). The second parameter specifies which
graphics driver to use; this might be relevant if the game has multiple windows.
But with only a single window, the default is -1, which means to let SDL
decide. As with the other SDL creation functions, the last parameter is for
initialization flags. Here, you choose to use an accelerated renderer (meaning it
takes advantage of graphics hardware) and enable vertical synchronization.
These two flags are the only flags of note for SDL_CreateRenderer.

As with SDL_CreateWindow, the SDL_CreateRenderer function
returns a nullptr if it fails to initialize the renderer. As with initializing
SDL, Game::Initialize returns false if the renderer fails to initialize.

To shut down the renderer, simply add a call to SDL_DestroyRenderer in
Game::Shutdown:
SDL_DestroyRenderer(mRenderer);

Basic Drawing Setup
At a high level, drawing in any graphics library for games usually involves the
following steps:

1. Clear the back buffer to a color (the game’s current buffer).

2. Draw the entire game scene.

3. Swap the front buffer and back buffer.

First, let’s worry about the first and third steps. Because graphics are an output,
it makes sense to put graphics drawing code in Game::GenerateOutput.

To clear the back buffer, you first need to specify a color with
SDL_SetRenderDrawColor. This function takes in a pointer to the
renderer, as well as the four RGBA components (from 0 to 255). For example,
to set the color as blue with 100% opacity, use the following:

SDL_SetRenderDrawColor(
 mRenderer,
 0, // R
 0, // G
 255, // B
 255 // A
);

Next, call SDL_RenderClear to clear the back buffer to the current draw
color:
SDL_RenderClear(mRenderer);

The next step—skipped for now—is to draw the entire game scene.

Finally, to swap the front and back buffers, you call SDL_RenderPresent:
SDL_RenderPresent(mRenderer);

With this code in place, if you now run the game, you’ll see a filled-in blue
window, as shown in Figure 1.5.

Figure 1.5 Game drawing a blue background

Drawing Walls, a Ball, and a Paddle
This chapter’s game project is a version of the classic video game Pong, where
a ball moves around the screen, and the player controls a paddle that can hit the
ball. Making a version of Pong is a rite of passage for any aspiring game
developer—analogous to making a “Hello World” program when first learning
how to program. This section explores drawing rectangles to represent the
objects in Pong. Because these are objects in the game world, you draw them in
GenerateOuput—after clearing the back buffer but before swapping the
front and back buffers.

For drawing filled rectangles, SDL has a SDL_RenderFillRect function.
This function takes in an SDL_Rect that represents the bounds of the rectangle

and draws a filled-in rectangle using the current draw color. Of course, if you
keep the draw color the same as the background, you won’t see any rectangles.
You therefore need to change the draw color to white:

Click here to view code image

SDL_SetRenderDrawColor(mRenderer, 255, 255, 255, 255);

Next, to draw the rectangle, you need to specify dimensions via an SDL_Rect
struct. The rectangle has four parameters: the x/y coordinates of the top-left
corner of the rectangle onscreen, and the width/height of the rectangle. Keep in
mind that in SDL rendering, as in many other 2D graphics libraries, the top-left
corner of the screen is (0, 0), positive x is to the right, and positive y is down.

For example, if you want to draw a rectangle at the top of the screen, you can
use the following declaration of an SDL_Rect:
SDL_Rect wall{
 0, // Top left x
 0, // Top left y
 1024, // Width
 thickness // Height
};

Here, the x/y coordinates of the top-left corner are (0, 0), meaning the rectangle
will be at the top left of the screen. You hard-code the width of the rectangle to
1024, corresponding to the width of the window. (It’s generally frowned upon to
assume a fixed window size, as is done here, and you’ll remove this assumption
in later chapters.) The thickness variable is const int set to 15, which
makes it easy to adjust the thickness of the wall.

Finally, you draw the rectangle with SDL_RenderFillRect, passing in
SDL_Rect by pointer:

Click here to view code image

SDL_RenderFillRect(mRenderer, &wall);

The game then draws a wall in the top part of the screen. You can use similar
code to draw the bottom wall and the right wall, only changing the parameters
of the SDL_Rect. For example, the bottom wall could have the same rectangle
as the top wall except that the top-left y coordinate could be 768 -
thickness.

Unfortunately, hard-coding the rectangles for the ball and paddle does not work
because both objects will ultimately move in the UpdateGame stage of the
loop. Although it makes some sense to represent both the ball and paddle as
classes, this discussion doesn’t happen until Chapter 2, “Game Objects and 2D
Graphics.” In the meantime, you can just use member variables to store the
center positions of both objects and draw their rectangles based on these
positions.

First, declare a simple Vector2 struct that has both x and y components:
struct Vector2
{
 float x;
 float y;
};

For now, think of a vector (not a std::vector) as a simple container for
coordinates. Chapter 3, “Vectors and Basic Physics,” explores the topic of
vectors in much greater detail.

Next, add two Vector2s as member variables to Game—one for the paddle
position (mPaddlePos) and one for the ball’s position (mBallPos). The
game constructor then initializes these to sensible initial values: the ball
position to the center of the screen and the paddle position to the center of the
left side of the screen.

Armed with these member variables, you can then draw rectangles for the ball
and paddle in GenerateOutput. However, keep in mind that the member
variables represent the center points of the paddle and ball, while you define an
SDL_Rect in terms of the top-left point. To convert from the center point to
the top-left point, you simply subtract half the width/height from the x and y
coordinates, respectively. For example, the following rectangle works for the
ball:
Click here to view code image

SDL_Rect ball{
 static_cast<int>(mBallPos.x - thickness/2),
 static_cast<int>(mBallPos.y - thickness/2),
 thickness,
 thickness
};

The static casts here convert mBallPos.x and mBallPos.y from floats into
integers (which SDL_Rect uses). In any event, you can make a similar
calculation for drawing the paddle, except its width and height are different
sizes.

With all these rectangles, the basic game drawing now works, as shown in
Figure 1.6. The next step is to implement the UpdateGame phase of the loop,
which moves the ball and paddle.

Figure 1.6 A game with walls, a paddle, and a ball drawing

Updating the Game
Most video games have some concept of time progression. For real-time games,
you measure this progression of time in fractions of a second. For example, a

game running at 30 FPS has roughly 33 milliseconds (ms) elapse from frame to
frame. Remember that even though a game appears to feature continuous
movement, it is merely an illusion. The game loop actually runs several times
per second, and every iteration of the game loop updates the game in a discrete
time step. So, in the 30 FPS example, each iteration of the game loop should
simulate 33ms of time progression in the game. This section looks at how to
consider this discrete progression of time when programming a game.

Real Time and Game Time
It is important to distinguish real time, the time elapsing in the real world, from
game time, the time elapsing in the game’s world. Although there often is a 1:1
correspondence between real time and game time, this isn’t always the case.
Take, for instance, a game in a paused state. Although a great deal of time might
elapse in the real world, the game doesn’t advance at all. It’s not until the player
unpauses the game that the game time resumes updating.

There are many other instances where real time and game time might diverge.
For example, some games feature a “bullet time” gameplay mechanic that
reduces the speed of the game. In this case, the game time must update at a
substantially slower rate than actual time. On the opposite end of the spectrum,
many sports games feature sped-up time. In a football game, rather than
requiring a player to sit through 15 full minutes per quarter, the game may
update the clock twice as fast, so each quarter takes only 7.5 minutes. And some
games may even have time advance in reverse. For example, Prince of Persia:
The Sands of Time featured a unique mechanic where the player could rewind
the game time to a certain point.

With all these ways real time and game time might diverge, it’s clear that the
“update game” phase of the game loop should account for elapsed game time.

Logic as a Function of Delta Time
Early game programmers assumed a specific processor speed and, therefore, a
specific frame rate. The programmer might write the code assuming an 8 MHz
processor, and if it worked properly for those processors, the code was just

fine. When assuming a fixed frame rate, code that updates the position of an
enemy might look something like this:

Click here to view code image

// Update x position by 5 pixels
enemy.mPosition.x += 5;

If this code moves the enemy at the desired speed on an 8 MHz processor, what
happens on a 16 MHz processor? Well, because the game loop now runs twice
as fast, the enemy will now also move twice as fast. This could be the
difference between a game that’s challenging for players and one that’s
impossible. Imagine running this game on a modern processor that is thousands
of times faster. The game would be over in a heartbeat!

To solve this issue, games use delta time: the amount of elapsed game time
since the last frame. To convert the preceding code to using delta time, instead
of thinking of movement as pixels per frame, you should think of it as pixels per
second. So, if the ideal movement speed is 150 pixels per second, the following
code is much more flexible:
Click here to view code image

// Update x position by 150 pixels/second
enemy.mPosition.x += 150 * deltaTime;

Now the code will work well regardless of the frame rate. At 30 FPS, the delta
time is ~0.033, so the enemy will move 5 pixels per frame, for a total of 150
pixels per second. At 60 FPS, the enemy will move only 2.5 pixels per frame
but will still move a total of 150 pixels per second. The movement certainly
will be smoother in the 60 FPS case, but the overall per-second speed remains
the same.

Because this works across many frame rates, as a rule of thumb, everything in
the game world should update as a function of delta time.

To help calculate delta time, SDL provides an SDL_GetTicks member
function that returns the number of milliseconds elapsed since the SDL_Init
function call. By saving the result of SDL_GetTicks from the previous frame
in a member variable, you can use the current value to calculate delta time.

First, you declare an mTicksCount member variable (initializing it to zero in
the constructor):

Uint32 mTicksCount;

Using SDL_GetTicks, you can then create a first implementation of
Game::UpdateGame:
Click here to view code image

void Game::UpdateGame()
{
 // Delta time is the difference in ticks from last frame
 // (converted to seconds)
 float deltaTime = (SDL_GetTicks() - mTicksCount) / 1000.0f;
 // Update tick counts (for next frame)
 mTicksCount = SDL_GetTicks();

// TODO: Update objects in game world as function of delta time!
 // ...
}

Consider what happens the very first time you call UpdateGame. Because
mTicksCount starts at zero, you end up with some positive value of
SDL_GetTicks (the milliseconds since initialization) and divide it by
1000.0f to get a delta time in seconds. Next, you save the current value of
SDL_GetTicks in mTicksCount. On the next frame, the deltaTime line
calculates a new delta time based on the old value of mTicksCount and the
new value. Thus, on every frame, you compute a delta time based on the ticks
elapsed since the previous frame.

Although it may seem like a great idea to allow the game simulation to run at
whatever frame rate the system allows, in practice there can be several issues
with this. Most notably, any game that relies on physics (such as a platformer
with jumping) will have differences in behavior based on the frame rate.

Though there are more complex solutions to this problem, the simplest solution
is to implement frame limiting, which forces the game loop to wait until a target
delta time has elapsed. For example, suppose that the target frame rate is 60
FPS. If a frame completes after only 15ms, frame limiting says to wait an
additional ~1.6ms to meet the 16.6ms target time.

Conveniently, SDL also provides a method for frame limiting. For example, to
ensure that at least 16ms elapses between frames, you can add the following
code to the start of UpdateGame:
Click here to view code image

while (!SDL_TICKS_PASSED(SDL_GetTicks(), mTicksCount + 16))
 ;

You also must watch out for a delta time that’s too high. Most notably, this
happens when stepping through game code in the debugger. For example, if you
pause at a breakpoint in the debugger for five seconds, you’ll end up with a huge
delta time, and everything will jump far forward in the simulation. To fix this
problem, you can clamp the delta time to a maximum value (such as 0.05f).
This way, the game simulation will never jump too far forward on any one
frame. This yields the version of Game::UpdateGame in Listing 1.5. While
you aren’t updating the position of the paddle or ball just yet, you are at least
calculating the delta time value.

Listing 1.5 Game::UpdateGame Implementation
Click here to view code image

void Game::UpdateGame()
{
 // Wait until 16ms has elapsed since last frame
 while (!SDL_TICKS_PASSED(SDL_GetTicks(), mTicksCount + 16))
 ;

// Delta time is the difference in ticks from last frame
 // (converted to seconds)
 float deltaTime = (SDL_GetTicks() - mTicksCount) / 1000.0f;

// Clamp maximum delta time value
 if (deltaTime > 0.05f)
 {
 deltaTime = 0.05f;
 }

// TODO: Update objects in game world as function of delta time!
}

Updating the Paddle’s Position
In Pong, the player controls the position of the paddle based on input. Suppose
you want the W key to move the paddle up and the S key to move the paddle

down. Pressing neither key or both keys should mean the paddle doesn’t move
at all.

You can make this concrete by using a mPaddleDir integer member variable
that’s set to 0 if the paddle doesn’t move, -1 if if the paddle moves up
(negative y), and 1 if the paddle moves down (positive y).

Because the player controls the position of the paddle via keyboard input, you
need code in ProcessInput that updates mPaddleDir based on the input:
mPaddleDir = 0;
if (state[SDL_SCANCODE_W])
{
 mPaddleDir -= 1;
}
if (state[SDL_SCANCODE_S])
{
 mPaddleDir += 1;
}

Note how you add and subtract from mPaddleDir, which ensures that if the
player presses both keys, mPaddleDir is zero.

Next, in UpdateGame, you can add code that updates the paddle based on
delta time:
Click here to view code image

if (mPaddleDir != 0)
{
 mPaddlePos.y += mPaddleDir * 300.0f * deltaTime;
}

Here, you update the y position of the paddle based on the paddle direction, a
speed of 300.0f pixels/second, and delta time. If mPaddleDir is -1, the
paddle will move up, and if it’s 1, it’ll move down.

One problem is that this code allows the paddle to move off the screen. To fix
this, you can add boundary conditions for the paddle’s y position. If the position
is too high or too low, move it back to a valid position:

Click here to view code image

if (mPaddleDir != 0)
{
 mPaddlePos.y += mPaddleDir * 300.0f * deltaTime;
 // Make sure paddle doesn't move off screen!
 if (mPaddlePos.y < (paddleH/2.0f + thickness))

 {
 mPaddlePos.y = paddleH/2.0f + thickness;
 }
 else if (mPaddlePos.y > (768.0f - paddleH/2.0f - thickness))
 {
 mPaddlePos.y = 768.0f - paddleH/2.0f - thickness;
 }
}

Here, the paddleH variable is a constant that describes the height of the
paddle. With this code in place, the player can now move the paddle up and
down, and the paddle can’t move offscreen.

Updating the Ball’s Position
Updating the position of the ball is a bit more complex than updating the
position of the paddle. First, the ball travels in both the x and y directions, not
just in one direction. Second, the ball needs to bounce off the walls and
paddles, which changes the direction of travel. So you need to both represent
the velocity (speed and direction) of the ball and perform collision detection to
determine if the ball collides with a wall.

To represent the ball’s velocity, add another Vector2 member variable called
mBallVel. Initialize mBallVel to (-200.0f, 235.0f), which means
the ball starts out moving −200 pixels/second in the x direction and 235
pixels/second in the y direction. (In other words, the ball moves diagonally
down and to the left.)

To update the position of the ball in terms of the velocity, add the following two
lines of code to UpdateGame:
Click here to view code image

mBallPos.x += mBallVel.x * deltaTime;
mBallPos.y += mBallVel.y * deltaTime;

This is like updating the paddle’s position, except now you are updating the
position of the ball in both the x and y directions.

Next, you need code that bounces the ball off walls. The code for determining
whether the ball collides with a wall is like the code for checking whether the
paddle is offscreen. For example, the ball collides with the top wall if its y
position is less than or equal to the height of the ball.

The important question is: what to do when the ball collides with the wall? For
example, suppose the ball moves upward and to the right before colliding
against the top wall. In this case, you want the ball to now start moving
downward and to the right. Similarly, if the ball hits the bottom wall, you want
the ball to start moving upward. The insight is that bouncing off the top or
bottom wall negates the y component of the velocity, as shown in Figure 1.7(a).
Similarly, colliding with the paddle on the left or wall on the right should negate
the x component of the velocity.

Figure 1.7 (a) The ball collides with the top wall so starts moving down. (b) The y difference between the
ball and paddle is too large

For the case of the top wall, this yields code like the following:
if (mBallPos.y <= thickness)
{
 mBallVel.y *= -1;
}

However, there’s a key problem with this code. Suppose the ball collides with
the top wall on frame A, so the code negates the y velocity to make the ball start
moving downward. On frame B, the ball tries to move away from the wall, but
it doesn’t move far enough. Because the ball still collides with the wall, the
code negates the y velocity again, which means the ball starts moving upward.
Then on every subsequent frame, the code keeps negating the ball’s y velocity,
so it is forever stuck on the top wall.

To fix this issue of the ball getting stuck, you need an additional check. You
want to only negate the y velocity if the ball collides with the top wall and the
ball is moving toward the top wall (meaning the y velocity is negative):

Click here to view code image

if (mBallPos.y <= thickness && mBallVel.y < 0.0f)
{
 mBallVel.y *= -1;
}

This way, if the ball collides with the top wall but is moving away from the
wall, you do not negate the y velocity.

The code for colliding against the bottom and right walls is very similar to the
code for colliding against the top wall. Colliding against the paddle, however,
is slightly more complex. First, you calculate the absolute value of the
difference between the y position of the ball and the y position of the paddle. If
this difference is greater than half the height of the paddle, the ball is too high or
too low, as shown earlier in Figure 1.7(b). You also need to check that the ball’s
x-position lines up with the paddle, and the ball is not trying to move away from
the paddle. Satisfying all these conditions means the ball collides with the
paddle, and you should negate the x velocity:
Click here to view code image

if (
 // Our y-difference is small enough
 diff <= paddleH / 2.0f &&
 // Ball is at the correct x-position
 mBallPos.x <= 25.0f && mBallPos.x >= 20.0f &&
 // The ball is moving to the left
 mBallVel.x < 0.0f)
{
 mBallVel.x *= -1.0f;
}

With this code complete, the ball and paddle now both move onscreen, as in
Figure 1.8. You have now completed your simple version of Pong!

Figure 1.8 Final version of Pong

Game Project
This chapter’s game project implements the full Pong game code constructed
throughout the chapter. To control the paddle, the player uses the W and S keys.
The game ends when the ball moves offscreen. The code is available in the
book’s GitHub repository in the Chapter01 directory. Open Chapter01-
windows.sln in Windows and Chapter01-mac.xcodeproj on Mac.
(For instructions on how to access the GitHub repository, consult the
instructions at the beginning of this chapter.)

Summary

Real-time games update many times per second via a loop called the game loop.
Each iteration of this loop is a frame. For example, 60 frames per second means
that there are 60 iterations of the game loop per second. The game loop has
three main phases that it completes every frame: processing input, updating the
game world, and generating output. Input involves not only input devices such as
the keyboard and mouse but networking data, replay data, and so on. Outputs
include graphics, audio, and force feedback controllers.

Most displays use raster graphics, where the display contains a grid of pixels.
The size of the grid depends on the resolution of the display. The game
maintains a color buffer that saves color data for every pixel. Most games use
double buffering, where there are two color buffers, and the game and display
alternate between using these buffers. This helps reduce the amount of screen
tearing (that is, the screen showing parts of two frames at once). To eliminate
screen tearing, you also must enable vertical synchronization, which means the
buffers swap only when the display is ready.

For a game to work properly at variable frame rates, you need to write all game
logic as a function of delta time—the time interval between frames. Thus, the
“update game world” phase of the game loop should account for delta time. You
can further add frame limiting to ensure that the frame rate does not go over
some set cap.

In this chapter, you have combined all these different techniques to create a
simple version of the classic video game Pong.

Additional Reading
Jason Gregory dedicates several pages to discussing the different formulations
of a game loop, including how some games take better advantage of multi-core
CPUs. There are also many excellent references online for the various libraries
used; for example, the SDL API reference is handy.

Gregory, Jason. Game Engine Architecture, 2nd edition. Boca
Raton: CRC Press, 2014.
SDL API Reference. https://wiki.libsdl.org/APIByCategory.
Accessed June 15, 2016.

https://wiki.libsdl.org/APIByCategory

Exercises
Both of this chapter’s exercises focus on modifying your version of Pong. The
first exercise involves adding a second player, and the second exercise involves
adding support for multiple balls.

Exercise 1.1
The original version of Pong supported two players. Remove the right wall
onscreen and replace that wall with a second paddle for player 2. For this
second paddle, use the I and K keys to move the paddle up and down.
Supporting a second paddle requires duplicating all the functionality of the first
paddle: a member variable for the paddle’s position, the direction, code to
process input for player 2, code that draws the paddle, and code that updates the
paddle. Finally, make sure to update the ball collision code so that the ball
correctly collides with both paddles.

Exercise 1.2
Many pinball games support “multiball,” where multiple balls are in play at
once. It turns out multiball is also fun for Pong! To support multiple balls,
create a Ball struct that contains two Vector2s: one for the position and one
for the velocity. Next, create a std::vector<Ball> member variable for
Game to store these different balls. Then change the code in
Game::Initialize to initialize the positions and velocities of several
balls. In Game::UpdateGame, change the ball update code so that rather than
using the individual mBallVel and mBallPos variables, the code loops
over the std::vector for all the balls.

Chapter 2
Game Objects and 2D Graphics

Most games have many different characters and other objects, and
an important decision is how to represent these objects. This
chapter first covers different methods of object representation.
Next, it continues the discussion of 2D graphics techniques by
introducing sprites, sprite animations, and scrolling backgrounds.
This chapter culminates with a side-scrolling demo that applies the
covered techniques.

Game Objects
The Pong game created in Chapter 1 does not use separate classes to represent
the wall, paddles, and ball. Instead, the Game class uses member variables to
track the position and velocity of the different elements of the game. While this
can work for a very simple game, it’s not a scalable solution. The term game
object refers to anything in the game world that updates, draws, or both updates
and draws. There are several methods to represent game objects. Some games
employ object hierarchies, others employ composition, and still others utilize
more complex methods. Regardless of the implementation, a game needs some
way to track and update these game objects.

Types of Game Objects
A common type of game object is one that’s both updated every frame during the
“update game world” phase of the loop and drawn every frame during the
“generate outputs” phase. Any character, creature, or otherwise movable object
falls under this umbrella. For example, in Super Mario Bros., Mario, any
enemies, and all the dynamic blocks are game objects that the game both updates
and draws.

Developers sometimes use the term static object for game objects that draw but
don’t update. These objects are visible to the player but never need to update.
An example of this is a building in the background of a level. In most games, a
building doesn’t move or attack the player but is visible onscreen.

A camera is an example of a game object that updates but doesn’t draw to the
screen. Another example is a trigger, which causes something to occur based
on another object’s intersection. For instance, a horror game might want to have
zombies appear when the player approaches a door. In this case, the level
designer would place a trigger object that can detect when the player is near and
trigger the action to spawn the zombie. One way to implement a trigger is as an
invisible box that updates every frame to check for intersection with the player.

Game Object Models

There are numerous game object models, or ways to represent game objects.
This section discusses some types of game object models and the trade-offs
between these approaches.

Game Objects as a Class Hierarchy
One game object model approach is to declare game objects in a standard
object-oriented class hierarchy, which is sometimes called a monolithic class
hierarchy because all game objects inherit from one base class.

To use this object model, you first need a base class:

Click here to view code image

class Actor
{
public:
 // Called every frame to update the Actor
 virtual void Update(float deltaTime);
 // Called every frame to draw the Actor
 virtual void Draw();
};

Then, different characters have different subclasses:

Click here to view code image

class PacMan : public Actor
{
public:
 void Update(float deltaTime) override;
 void Draw() override;
};

Similarly, you could declare other subclasses of Actor. For example, there
may be a Ghost class that inherits from Actor, and then each individual ghost
could have its own class that inherits from Ghost. Figure 2.1 illustrates this
style of game object class hierarchy.

Figure 2.1 Partial class hierarchy for Pac-Man

A disadvantage of this approach is that it means that every game object must
have all the properties and functions of the base game object (in this case,
Actor). For example, this assumes that every Actor can update and draw.
But as discussed, there may be objects that aren’t visible, and thus calling Draw
on these objects is a waste of time.

The problem becomes more apparent as the functionality of the game increases.
Suppose many of the actors in the game—but not all of them—need to move. In

the case of Pac-Man, the ghosts and Pac-Man need to move, but the pellets do
not. One approach is to place the movement code inside Actor, but not every
subclass will need this code. Alternatively, you could extend the hierarchy with
a new MovingActor that exists between Actor and any subclasses that need
movement. However, this adds more complexity to the class hierarchy.

Furthermore, having one big class hierarchy can cause difficulties when two
sibling classes later need to have features shared between them. For instance, a
game in the vein of Grand Theft Auto might have a base Vehicle class. From
this class, it might make sense to create two subclasses: LandVehicle (for
vehicles that traverse land) and WaterVehicle (for water-based vehicles
like boats).

But what happens if one day a designer decides to add an amphibious vehicle?
It may be tempting to create a new subclass called AmphibiousVehicle
that inherits from both LandVehicle and WaterVehicle. However, this
requires use of multiple inheritance and, furthermore, means that
AmphibiousVehicle inherits from Vehicle along two different paths.
This type of hierarchy, called diamond inheritance, can cause issues because
the subclass might inherit multiple versions of a virtual function. For this
reason, it’s recommended that we avoid diamond hierarchies.

Game Objects with Components
Instead of using a monolithic hierarchy, many games instead use a component-
based game object model. This model has become increasingly popular,
especially because the Unity game engine uses it. In this approach, there is a
game object class, but there are no subclasses of the game object. Instead, the
game object class has-a collection of component objects that implement needed
functionality.

For example, in the monolithic hierarchy we looked at earlier, Pinky is a
subclass of Ghost, which is a subclass of Actor. However, in a component-
based model, Pinky is a GameObject instance containing four components:
PinkyBehavior, CollisionComponent, TransformComponent,
and DrawComponent. Figure 2.2 shows this relationship.

Figure 2.2 The components that make up the ghost Pinky

Each of these components has the specific properties and functionality needed
for that component. For example, DrawComponent handles drawing the
object to the screen, and TransformComponent stores the position and
transformation of an object in the game world.

One way to implement a component object model is with a class hierarchy for
components. This class hierarchy generally has a very shallow depth. Given a
base Component class, GameObject then simply has a collection of
components:

Click here to view code image

class GameObject
{
public:
 void AddComponent(Component* comp);
 void RemoveComponent(Component* comp);
private:
 std::unordered_set<Component*> mComponents;
};

Notice that GameObject contains only functions for adding and removing
components. This makes systems that track different types of components
necessary. For example, every DrawComponent might register with a
Renderer object so that when it is time to draw the frame, the Renderer is
aware of all the active DrawComponents.

One advantage of the component-based game object model is that it’s easier to
add functionality only to the specific game objects that require it. Any object
that needs to draw can have a DrawComponent, but objects that don’t simply
don’t have one.

However, a disadvantage of pure component systems is that dependencies
between components in the same game object are not clear. For instance, it’s
likely that the DrawComponent needs to know about the
TransformComponent in order know where the object should draw. This
means that the DrawComponent likely needs to ask the owning
GameObject about its TransformComponent. Depending on the
implementation, the querying can become a noticeable performance bottleneck.

Game Objects as a Hierarchy with Components
The game object model used in this book is a hybrid of the monolithic hierarchy
and the component object models. This is, in part, inspired by the game object
model used in Unreal Engine 4. There is a base Actor class with a handful of
virtual functions, but each actor also has a vector of components. Listing 2.1
shows the declaration of the Actor class, with some getter and setter functions
omitted.

Listing 2.1 Actor Declaration
Click here to view code image

class Actor
{
public:
 // Used to track state of actor
 enum State
 {
 EActive,
 EPaused,
 EDead

 };
 // Constructor/destructor
 Actor(class Game* game);
 virtual ~Actor();

// Update function called from Game (not overridable)
 void Update(float deltaTime);
 // Updates all the components attached to the actor (not
overridable)
 void UpdateComponents(float deltaTime);
 // Any actor-specific update code (overridable)
 virtual void UpdateActor(float deltaTime);

// Getters/setters
 // ...

// Add/remove components
 void AddComponent(class Component* component);
 void RemoveComponent(class Component* component);
private:
 // Actor's state
 State mState;
 // Transform
 Vector2 mPosition; // Center position of actor
 float mScale; // Uniforms scale of actor (1.0f for 100%)
 float mRotation; // Rotation angle (in radians)
 // Components held by this actor
 std::vector<class Component*> mComponents;
 class Game* mGame;
};

The Actor class has several notable features. The state enum tracks the status
of the actor. For example, Update only updates the actor when in the
EActive state. The EDead state notifies the game to remove the actor. The
Update function calls UpdateComponents first and then UpdateActor.
UpdateComponents loops over all the components and updates each in turn.
The base implementation of UpdateActor is empty, but Actor subclasses
can write custom behavior in an overridden UpdateActor function.

In addition, the Actor class needs access to the Game class for several
reasons, including to create additional actors. One approach is to make the game
object a singleton, a design pattern in which there is a single, globally
accessible instance of a class. But the singleton pattern can cause issues if it
turns out there actually need to be multiple instances of the class. Instead of
using singletons, this book uses an approach called dependency injection. In
this approach, the actor constructor receives a pointer to the Game class. Then

an actor can use this pointer to create another actor (or access any other
required Game functions).

As in the Chapter 1 game project, a Vector2 represents the position of an
Actor. Actors also support a scale (which makes the actor bigger or smaller)
and a rotation (to rotate the actor). Note that the rotation is in radians, not
degrees.

Listing 2.2 contains the declaration of the Component class. The
mUpdateOrder member variable is notable. It allows certain components to
update before or after other components, which can be useful in many situations.
For instance, a camera component tracking a player may want to update after the
movement component moves the player. To maintain this ordering, the
AddComponent function in Actor sorts the component vector whenever
adding a new component. Finally, note that the Component class has a pointer
to the owning actor. This is so that the component can access the transform data
and any other information it deems necessary.

Listing 2.2 Component Declaration
Click here to view code image

class Component
{
public:
 // Constructor
 // (the lower the update order, the earlier the component updates)
 Component(class Actor* owner, int updateOrder = 100);
 // Destructor
 virtual ~Component();
 // Update this component by delta time
 virtual void Update(float deltaTime);
 int GetUpdateOrder() const { return mUpdateOrder; }
protected:
 // Owning actor
 class Actor* mOwner;
 // Update order of component
 int mUpdateOrder;
};

Currently, the implementations of Actor and Component do not account for
player input devices, and this chapter’s game project simply uses special case

code for input. Chapter 3, “Vector and Basic Physics,” revisits how to
incorporate input into the hybrid game object model.

This hybrid approach does a better job of avoiding the deep class hierarchies in
the monolithic object model, but certainly the depth of the hierarchy is greater
than in a pure component-based model. The hybrid approach also generally
avoids, though does not eliminate, the issues of communication overhead
between components. This is because every actor has critical properties such as
the transform data.

Other Approaches
There are many other approaches to game object models. Some use interface
classes to declare the different possible functionalities, and each game object
then implements the interfaces necessary to represent it. Other approaches
extend the component model a step further and eliminate the containing game
object entirely. Instead, these approaches use a component database that tracks
objects with a numeric identifier. Still other approaches define objects by their
properties. In these systems, adding a health property to an object means that it
can take and receive damage.

With any game object model, each approach has advantages and disadvantages.
However, this book sticks to the hybrid approach because it’s a good
compromise and works relatively well for games of a certain complexity level.

Integrating Game Objects into the Game Loop
Integrating the hybrid game object model into the game loop requires some
code, but it ultimately isn’t that complex. First, add two std::vector of
Actor pointers to the Game class: one containing the active actors
(mActors), and one containing pending actors (mPendingActors). You
need the pending actors vector to handle the case where, while updating the
actors (and thus looping over mActors), you decide to create a new actor. In
this case, you cannot add an element to mActors because you’re iterating over
it. Instead, you need to add to the mPendingActors vector and then move
these actors into mActors after you’re done iterating.

Next, create two functions, AddActor and RemoveActor, which take in
Actor pointers. The AddActor function adds the actor to either

mPendingActors or mActors, depending on whether you are currently
updating all mActors (denoted by the mUpdatingActors bool):

Click here to view code image

void Game::AddActor(Actor* actor)
{
 // If updating actors, need to add to pending
 if (mUpdatingActors)
 {
 mPendingActors.emplace_back(actor);
 }
 else
 {
 mActors.emplace_back(actor);
 }
}

Similarly, RemoveActor removes the actor from whichever of the two
vectors it is in.

You then need to change the UpdateGame function so that it updates all the
actors, as shown in Listing 2.3. After computing delta time, as discussed in
Chapter 1, you then loop over every actor in mActors and call Update on
each. Next, you move any pending actors into the main mActors vector.
Finally, you see if any actors are dead, in which case you delete them.

Listing 2.3 Game::UpdateGame Updating Actors
Click here to view code image

void Game::UpdateGame()
{
 // Compute delta time (as in Chapter 1)
 float deltaTime = /* ... */;

// Update all actors
 mUpdatingActors = true;
 for (auto actor : mActors)
 {
 actor->Update(deltaTime);
 }
 mUpdatingActors = false;

// Move any pending actors to mActors
 for (auto pending : mPendingActors)

 {
 mActors.emplace_back(pending);
 }
 mPendingActors.clear();

// Add any dead actors to a temp vector
 std::vector<Actor*> deadActors;
 for (auto actor : mActors)
 {
 if (actor->GetState() == Actor::EDead)
 {
 deadActors.emplace_back(actor);
 }
 }

// Delete dead actors (which removes them from mActors)
 for (auto actor : deadActors)
 {
 delete actor;
 }
}

Adding and removing actors from the game’s mActors vector also adds some
complexity to the code. This chapter’s game project has the Actor object
automatically add or remove itself from the game in its constructor and
destructor, respectively. However, this means that code that loops over the
mActors vector and deletes the actors (such as in Game::Shutdown) must
be written carefully:

Click here to view code image

// Because ~Actor calls RemoveActor, use a different style loop
while (!mActors.empty())
{
 delete mActors.back();
}

Sprites
A sprite is a visual object in a 2D game, typically used to represent characters,
backgrounds, and other dynamic objects. Most 2D games have dozens if not
hundreds of sprites, and for mobile games, the sprite data accounts for much of
the overall download size of the game. Because of the prevalence of sprites in
2D games, it is important to use them as efficiently as possible.

Each sprite has one or more image files associated with it. There are many
different image file formats, and games use different formats based on platform
and other constraints. For example, PNG is a compressed image format, so
these files take up less space on disk. But hardware cannot natively draw PNG
files, so they take longer to load. Some platforms recommend using graphics
hardware–friendly formats such as PVR (for iOS) and DXT (for PC and Xbox).
This book sticks with the PNG file format because image editing programs
universally support PNGs.

Loading Image Files
For games that only need SDL’s 2D graphics, the simplest way to load image
files is to use the SDL Image library. The first step is to initialize SDL Image by
using IMG_Init, which takes in a flag parameter for the requested file
formats. To support PNG files, add the following call to
Game::Initialize:
IMG_Init(IMG_INIT_PNG)

Table 2.1 lists the supported file formats. Note that SDL already supports the
BMP file format without SDL Image, which is why there is no
IMG_INIT_BMP flag in this table.

Table 2.1 SDL Image File Formats

Flag Format

IMG_INIT_JPG JPEG

IMG_INIT_PNG PNG

IMG_INIT_TIF TIFF

Once SDL Image is initialized, you can use IMG_Load to load an image file
into an SDL_Surface:
Click here to view code image

// Loads an image from a file
// Returns a pointer to an SDL_Surface if successful, otherwise

nullptr
SDL_Surface* IMG_Load(
 const char* file // Image file name
);

Next, SDL_CreateTextureFromSurface converts an SDL_Surface
into an SDL_Texture (which is what SDL requires for drawing):

Click here to view code image

// Converts an SDL_Surface to an SDL_Texture
// Returns a pointer to an SDL_Texture if successful, otherwise
nullptr
SDL_Texture* SDL_CreateTextureFromSurface(
 SDL_Renderer* renderer, // Renderer used
 SDL_Surface* surface // Surface to convert
);

The following function encapsulates this image-loading process:
Click here to view code image

SDL_Texture* LoadTexture(const char* fileName)
{
 // Load from file
 SDL_Surface* surf = IMG_Load(fileName);
 if (!surf)
 {
 SDL_Log("Failed to load texture file %s", fileName);
 return nullptr;
 }
 // Create texture from surface
 SDL_Texture* text = SDL_CreateTextureFromSurface(mRenderer, surf);
 SDL_FreeSurface(surf);
 if (!text)
 {
 SDL_Log("Failed to convert surface to texture for %s",
fileName);
 return nullptr;
 }
 return text;
}

An interesting question is where to store the loaded textures. It’s very common
for a game to use the same image file multiple times for multiple different
actors. If there are 20 asteroids, and each asteroid uses the same image file, it
doesn’t make sense to load the file from disk 20 times.

A simple approach is to create a map of filenames to SDL_Texture pointers
in Game. You then create a GetTexture function in Game that takes in the

name of a texture and returns its corresponding SDL_Texture pointer. This
function first checks to see if the texture already exists in the map. If it does, you
can simply return that texture pointer. Otherwise, you run the code that loads the
texture from its file.

note
While a map of filenames to SDL_Texture pointers makes sense in
a simple case, consider that a game has many different types of assets
—textures, sound effects, 3D models, fonts, and so on. Therefore,
writing a more robust system to generically handle all types of assets
makes sense. But in the interest of simplicity, this book does not
implement such an asset management system.

To help split up responsibilities, you also create a LoadData function in
Game. This function is responsible for creating all the actors in the game world.
For now these actors are hard-coded, but Chapter 14, “Level Files and Binary
Data,” adds support for loading the actors from a level file. You call the
LoadData function at the end of Game::Initialize.

Drawing Sprites
Suppose a game has a basic 2D scene with a background image and a character.
A simple way to draw this scene is by first drawing the background image and
then the character. This is like how a painter would paint the scene, and hence
this approach is known as the painter’s algorithm. In the painter’s algorithm,
the game draws the sprites in back-to-front order. Figure 2.3 demonstrates the
painter’s algorithm, first drawing the background star field, then the moon, then
any asteroids, and finally the ship.

Figure 2.3 The painter’s algorithm applied to a space scene

Because this book uses a game object model with components, it makes a great
deal of sense to create a SpriteComponent class. Listing 2.4 provides the
declaration of SpriteComponent.

Listing 2.4 SpriteComponent Declaration
Click here to view code image

class SpriteComponent : public Component
{
public:
 // (Lower draw order corresponds with further back)
 SpriteComponent(class Actor* owner, int drawOrder = 100);
 ~SpriteComponent();
 virtual void Draw(SDL_Renderer* renderer);

 virtual void SetTexture(SDL_Texture* texture);

int GetDrawOrder() const { return mDrawOrder; }
 int GetTexHeight() const { return mTexHeight; }
 int GetTexWidth() const { return mTexWidth; }
protected:
 // Texture to draw
 SDL_Texture* mTexture;
 // Draw order used for painter's algorithm
 int mDrawOrder;
 // Width/height of texture
 int mTexWidth;
 int mTexHeight;
};

The game implements the painter’s algorithm by drawing sprite components in
the order specified by the mDrawOrder member variable. The
SpriteComponent constructor adds itself to a vector of sprite components
in the Game class via the Game::AddSprite function.

In Game::AddSprite, you need to ensure that mSprites stays sorted by
draw order. Because every call to AddSprite preserves the sorted order, you
can implement this as an insertion into an already-sorted vector:

Click here to view code image

void Game::AddSprite(SpriteComponent* sprite)
{
 // Find the insertion point in the sorted vector
 // (The first element with a higher draw order than me)
 int myDrawOrder = sprite->GetDrawOrder();
 auto iter = mSprites.begin();
 for (;
 iter != mSprites.end();
 ++iter)
 {
 if (myDrawOrder < (*iter)->GetDrawOrder())
 {
 break;
 }
 }

// Inserts element before position of iterator
 mSprites.insert(iter, sprite);
}

Because this orders the sprite components by mDrawOrder,
Game::GenerateOutput can just loop over the vector of sprite

components and call Draw on each. You put this code in between the code that
clears the back buffer and swaps the back buffer and front buffer, replacing the
code in the Chapter 1 game that drew the wall, ball, and paddle rectangles.

As discussed in Chapter 6, “3D Graphics,” 3D games can also use the painter’s
algorithm, though there are some drawbacks in doing so. But for 2D scenes, the
painter’s algorithm works very well.

The SetTexture function both sets the mTexture member variable and
uses SDL_QueryTexture to get the width and height of the texture:

Click here to view code image

void SpriteComponent::SetTexture(SDL_Texture* texture)
{
 mTexture = texture;
 // Get width/height of texture
 SDL_QueryTexture(texture, nullptr, nullptr,
 &mTexWidth, &mTexHeight);
}

To draw textures, there are two different texture drawing functions in SDL. The
simpler function is SDL_RenderCopy:
Click here to view code image

// Renders a texture to the rendering target
// Returns 0 on success, negative value on failure
int SDL_RenderCopy(
 SDL_Renderer* renderer, // Render target to draw to
 SDL_Texture* texture, // Texture to draw
 const SDL_Rect* srcrect, // Part of texture to draw (null if whole)
 const SDL_Rect* dstrect, // Rectangle to draw onto the target
);

However, for more advanced behavior (such as rotating sprites), you can use
SDL_RenderCopyEx:

Click here to view code image

// Renders a texture to the rendering target
// Returns 0 on success, negative value on failure
int SDL_RenderCopyEx(
 SDL_Renderer* renderer, // Render target to draw to
 SDL_Texture* texture, // Texture to draw
 const SDL_Rect* srcrect, // Part of texture to draw (null if whole)
 const SDL_Rect* dstrect, // Rectangle to draw onto the target
 double angle, // Rotation angle (in degrees, clockwise)
 const SDL_Point* center, // Point to rotate about (nullptr for

center)
 SDL_RenderFlip flip, // How to flip texture (usually
SDL_FLIP_NONE)
);

Because actors have a rotation, and you want your sprites to inherit this rotation,
you must use SDL_RenderCopyEx. This introduces a few complexities to the
SpriteComponent::Draw function. First, the SDL_Rect struct’s x/y
coordinates correspond to the top-left corner of the destination. However, the
actor’s position variable specifies the center position of the actor. So, as with
the ball and paddle in Chapter 1, you must compute the coordinates for the top-
left corner.

Second, SDL expects an angle in degrees, but Actor uses an angle in radians.
Luckily, this book’s custom math library in the Math.h header file includes a
Math::ToDegrees function that can handle the conversion. Finally, in SDL
a positive angle is clockwise, but this is the opposite of the unit circle (where
positive angles are counterclockwise). Thus, negate the angle to maintain the
unit circle behavior. Listing 2.5 shows the SpriteComponent::Draw
function.

Listing 2.5 SpriteComponent::Draw
Implementation
Click here to view code image

void SpriteComponent::Draw(SDL_Renderer* renderer)
{
 if (mTexture)
 {
 SDL_Rect r;
 // Scale the width/height by owner's scale
 r.w = static_cast<int>(mTexWidth * mOwner->GetScale());
 r.h = static_cast<int>(mTexHeight * mOwner->GetScale());
 // Center the rectangle around the position of the owner
 r.x = static_cast<int>(mOwner->GetPosition().x - r.w / 2);
 r.y = static_cast<int>(mOwner->GetPosition().y - r.h / 2);

// Draw
 SDL_RenderCopyEx(renderer,
 mTexture, // Texture to draw
 nullptr, // Source rectangle
 &r, // Destination rectangle
 -Math::ToDegrees(mOwner->GetRotation()), // (Convert angle)

 nullptr, // Point of rotation
 SDL_FLIP_NONE); // Flip behavior
 }
}

This implementation of Draw assumes that the position of the actor corresponds
to its position onscreen. This assumption holds only for games where the game
world exactly corresponds to the screen. This doesn’t work for a game like
Super Mario Bros. that has a game world larger than one single screen. To
handle such a case, the code needs a camera position. Chapter 9, “Cameras,”
discusses how to implement cameras in the context of a 3D game.

Animating Sprites
Most 2D games implement sprite animation using a technique like flipbook
animation: a series of static 2D images played in rapid succession to create an
illusion of motion. Figure 2.4 illustrates what such a series of images for
different animations for a skeleton sprite might look like.

Figure 2.4 Series of images for a skeleton sprite

The frame rate of sprite animations can vary, but many games choose to use 24
FPS (the traditional frame rate used in film). This means that every second of an
animation needs 24 individual images. Some genres, such as 2D fighting games,
may use 60 FPS sprite animations, which dramatically increases the required
number of images. Luckily, most sprite animations are significantly shorter than
1 second in duration.

The simplest way to represent an animated sprite is with a vector of the
different images corresponding to each frame in an animation. The
AnimSpriteComponent class, declared in Listing 2.6, uses this approach.

Listing 2.6 AnimSpriteComponent Declaration
Click here to view code image

class AnimSpriteComponent : public SpriteComponent
{
public:
 AnimSpriteComponent(class Actor* owner, int drawOrder = 100);
 // Update animation every frame (overriden from component)
 void Update(float deltaTime) override;
 // Set the textures used for animation
 void SetAnimTextures(const std::vector<SDL_Texture*>& textures);
 // Set/get the animation FPS
 float GetAnimFPS() const { return mAnimFPS; }
 void SetAnimFPS(float fps) { mAnimFPS = fps; }
private:
 // All textures in the animation
 std::vector<SDL_Texture*> mAnimTextures;
 // Current frame displayed
 float mCurrFrame;
 // Animation frame rate
 float mAnimFPS;
};

The mAnimFPS variable allows different animated sprites to run at different
frame rates. It also allows the animation to dynamically speed up or slow down.
For instance, as a character gains speed, you could increase the frame rate of the
animation to further add to the illusion of speed. The mCurrFrame variable
tracks the current frame displayed as a float, which allows you to also keep
track of how long that frame has displayed.

The SetAnimTextures function simply sets the mAnimTextures member
variable to the provided vector and resets mCurrFrame to zero. It also calls
the SetTexture function (inherited from SpriteComponent) and passes
in the first frame of the animation. Since this code uses the SetTexture
function from SpriteComponent, it’s unnecessary to override the inherited
Draw function.

The Update function, shown in Listing 2.7, is where most of the heavy lifting
of AnimSpriteComponent occurs. First, update mCurrFrame as a
function of the animation FPS and delta time. Next, you make sure that
mCurrFrame remains less than the number of textures (which means you need
to wrap around back to the start of the animation if needed). Finally, cast
mCurrFrame to an int, grab the correct texture from mAnimTextures,
and call SetTexture.

Listing 2.7 AnimSpriteComponent::Update
Implementation
Click here to view code image

void AnimSpriteComponent::Update(float deltaTime)
{
 SpriteComponent::Update(deltaTime);

if (mAnimTextures.size() > 0)
 {
 // Update the current frame based on frame rate
 // and delta time
 mCurrFrame += mAnimFPS * deltaTime;

// Wrap current frame if needed
 while (mCurrFrame >= mAnimTextures.size())
 {
 mCurrFrame -= mAnimTextures.size();
 }

// Set the current texture
 SetTexture(mAnimTextures[static_cast<int>(mCurrFrame)]);
 }
}

One feature missing from AnimSpriteComponent is better support for
switching between animations. Currently, the only way to switch an animation is
to call SetAnimTextures repeatedly. It makes more sense to have a vector
of all the different textures for all of a sprite’s animations and then specify
which images correspond to which animation. You’ll explore this idea further in
Exercise 2.2.

Scrolling Backgrounds
A trick often used in 2D games is having a background that scrolls by. This
creates an impression of a larger world, and infinite scrolling games often use
this technique. For now, we are focusing on scrolling backgrounds, as opposed
to scrolling through an actual level. The easiest method is to split the
background into screen-sized image segments, which are repositioned every
frame to create the illusion of scrolling.

As with animated sprites, it makes sense to create a subclass of
SpriteComponent for backgrounds. Listing 2.8 shows the declaration of
BGSpriteComponent.

Listing 2.8 BGSpriteComponent Declaration
Click here to view code image

class BGSpriteComponent : public SpriteComponent
{
public:
 // Set draw order to default to lower (so it's in the background)
 BGSpriteComponent(class Actor* owner, int drawOrder = 10);
 // Update/draw overriden from parent
 void Update(float deltaTime) override;
 void Draw(SDL_Renderer* renderer) override;
 // Set the textures used for the background
 void SetBGTextures(const std::vector<SDL_Texture*>& textures);
 // Get/set screen size and scroll speed
 void SetScreenSize(const Vector2& size) { mScreenSize = size; }
 void SetScrollSpeed(float speed) { mScrollSpeed = speed; }
 float GetScrollSpeed() const { return mScrollSpeed; }
private:
 // Struct to encapsulate each BG image and its offset
 struct BGTexture
 {

 SDL_Texture* mTexture;
 Vector2 mOffset;
 };
 std::vector<BGTexture> mBGTextures;
 Vector2 mScreenSize;
 float mScrollSpeed;
};

The BGTexture struct associates each background texture with its
corresponding offset. The offsets update every frame to create the scrolling
effect. You need to initialize the offsets in SetBGTextures, positioning each
background to the right of the previous one:

Click here to view code image

void BGSpriteComponent::SetBGTextures(const std::vector<SDL_Texture*>&
textures)
{
 int count = 0;
 for (auto tex : textures)
 {
 BGTexture temp;
 temp.mTexture = tex;
 // Each texture is screen width in offset
 temp.mOffset.x = count * mScreenSize.x;
 temp.mOffset.y = 0;
 mBGTextures.emplace_back(temp);
 count++;
 }
}

This code assumes that each background image has a width corresponding to the
screen width, but it’s certainly possible to modify the code to account for
variable sizes. The Update code updates the offsets of each background,
taking to account when one image moves all the way off the screen. This allows
the images to infinitely repeat:
Click here to view code image

void BGSpriteComponent::Update(float deltaTime)
{
 SpriteComponent::Update(deltaTime);
 for (auto& bg : mBGTextures)
 {
 // Update the x offset
 bg.mOffset.x += mScrollSpeed * deltaTime;
 // If this is completely off the screen, reset offset to
 // the right of the last bg texture
 if (bg.mOffset.x < -mScreenSize.x)

 {
 bg.mOffset.x = (mBGTextures.size() - 1) * mScreenSize.x - 1;
 }
 }
}

The Draw function simply draws each background texture using
SDL_RenderCopy, making sure to adjust the position based on the owner’s
position and the offset of that background. This achieves the simple scrolling
behavior.

Some games also implement parallax scrolling. In this approach, you use
multiple layers for the background. Each layer scrolls at different speeds, which
gives an illusion of depth. For example, a game might have a cloud layer and a
ground layer. If the cloud layer scrolls more slowly than the ground layer, it
gives the impression that the clouds are farther away than the ground.
Traditional animation has used this technique for nearly a century, and it is
effective. Typically, only three layers are necessary to create a believable
parallax effect, as illustrated in Figure 2.5. Of course, more layers add more
depth to the effect.

Figure 2.5 Space scene broken into three layers to facilitate parallax scrolling

To implement the parallax effect, attach multiple BGSpriteComponents to a
single actor and specify different draw order values. Then you can use a
different scroll speed for each background to complete the effect.

Game Project

Unfortunately, you have not learned about enough new topics to make a game
with noticeably more complex mechanics than the Pong clone created in
Chapter 1, “Game Programming Overview.” And it wouldn’t be particularly
interesting to just add sprites to the previous chapter’s game. So in lieu of a
complete game, this chapter’s game project demonstrates the new techniques
covered in this chapter. The code is available in the book’s GitHub repository,
in the Chapter02 directory. Open Chapter02-windows.sln on
Windows and Chapter02-mac.xcodeproj on Mac. Figure 2.6 shows the
game project in action. Jacob Zinman-Jeanes created the sprite images, which
are licensed under the CC BY license.

Figure 2.6 Side-scroller project in action

The code includes an implementation of the hybrid Actor/Component
model, SpriteComponent, AnimSpriteComponent, and parallax

scrolling. It also includes a subclass of Actor called Ship. The Ship class
contains two speed variables to control the left/right speed and the up/down
speed, respectively. Listing 2.9 shows the declaration of Ship.

Listing 2.9 Ship Declaration
Click here to view code image

class Ship : public Actor
{
public:
 Ship(class Game* game);
 void UpdateActor(float deltaTime) override;
 void ProcessKeyboard(const uint8_t* state);
 float GetRightSpeed() const { return mRightSpeed; }
 float GetDownSpeed() const { return mDownSpeed; }
private:
 float mRightSpeed;
 float mDownSpeed;
};

The Ship constructor initializes mRightSpeed and mDownSpeed to 0, and
also creates an AnimSpriteComponent attached to the ship, with the
associated textures:

Click here to view code image

AnimSpriteComponent* asc = new AnimSpriteComponent(this);
std::vector<SDL_Texture*> anims = {
 game->GetTexture("Assets/Ship01.png"),
 game->GetTexture("Assets/Ship02.png"),
 game->GetTexture("Assets/Ship03.png"),
 game->GetTexture("Assets/Ship04.png"),
};
asc->SetAnimTextures(anims);

The keyboard input directly affects the speed of the ship. The game uses the W
and S keys to move the ship up and down and the A and D keys to move the ship
left and right. The ProcessKeyboard function takes in these inputs and
updates mRightSpeed and mDownSpeed as appropriate.

The Ship::UpdateActor function implements the ship’s movement, using
techniques similar to those shown in Chapter 1:
Click here to view code image

	About This E-Book
	Title Page
	Copyright Page
	Dedication Page
	Contents at a Glance
	Contents
	Preface
	Acknowledgments
	About the Author
	Chapter 1: Game Programming Overview
	Setting Up a Development Environment
	Microsoft Windows
	Apple macOS

	Getting This Book’s Source Code
	Beyond the C++ Standard Library
	The Game Loop and Game Class
	Anatomy of a Frame
	Implementing a Skeleton Game Class
	Main Function
	Basic Input Processing

	Basic 2D Graphics
	The Color Buffer
	Double Buffering
	Implementing Basic 2D Graphics
	Drawing Walls, a Ball, and a Paddle

	Updating the Game
	Real Time and Game Time
	Logic as a Function of Delta Time
	Updating the Paddle’s Position
	Updating the Ball’s Position

	Game Project
	Summary
	Additional Reading
	Exercises
	Exercise 1.1
	Exercise 1.2

	Chapter 2: Game Objects and 2D Graphics
	Game Objects
	Types of Game Objects
	Game Object Models
	Integrating Game Objects into the Game Loop

	Sprites
	Loading Image Files
	Drawing Sprites
	Animating Sprites

	Scrolling Backgrounds
	Game Project

