
The sum of the first n natural numbers raised to some power a 

Abstract: 

By finding patterns in the coefficients of this popular sum, we can express it in a different way 

Part 1: General derivation 

I will begin with the most well-known proof of this sum: 

∑ 𝑟𝑎+1

𝑛

𝑟=1

− ∑(𝑟 − 1)𝑎+1

𝑛

𝑟=1

= 𝑛𝑎+1 

By expanding the (𝑟 − 1)𝑎+1 by polynomial expansion we get, 

∑ (𝑟𝑎+1 − ∑
(𝑎 + 1)! ∙ (−1)𝑡 ∙ 𝑟𝑎+1−𝑡

(𝑎 + 1 − 𝑡)! ∙ 𝑡!

𝑎+1

𝑡=0

)

𝑛

𝑟=1

= 𝑛𝑎+1 

Next I will separate the case where t=0 from the sum 

∑ (𝑟𝑎+1 − 𝑟𝑎+1 − ∑
(𝑎 + 1)! ∙ (−1)𝑡 ∙ 𝑟𝑎+1−𝑡

(𝑎 + 1 − 𝑡)! ∙ 𝑡!

𝑎+1

𝑡=1

)

𝑛

𝑟=1

= 𝑛𝑎+1 

∑ (− ∑
(𝑎 + 1)! ∙ (−1)𝑡 ∙ 𝑟𝑎+1−𝑡

(𝑎 + 1 − 𝑡)! ∙ 𝑡!

𝑎+1

𝑡=1

)

𝑛

𝑟=1

= 𝑛𝑎+1 

∑ (∑
(𝑎 + 1)! ∙ (−1)𝑡 ∙ 𝑟𝑎+1−𝑡

(𝑎 + 1 − 𝑡)! ∙ 𝑡!

𝑎+1

𝑡=1

)

𝑛

𝑟=1

= −𝑛𝑎+1 

Seeing how this is a sum of a sum I can switch the positions of the sum signs. 

∑ (∑
(𝑎 + 1)! ∙ (−1)𝑡 ∙ 𝑟𝑎+1−𝑡

(𝑎 + 1 − 𝑡)! ∙ 𝑡!

𝑛

𝑟=1

)

𝑎+1

𝑡=1

= −𝑛𝑎+1 

As the only part of the equation that the sum of r affects is 𝑟𝑎+1−𝑡, I can move that sum there 

∑ (
(𝑎 + 1)! ∙ (−1)𝑡

(𝑎 + 1 − 𝑡)! ∙ 𝑡!
∙ ∑ 𝑟𝑎+1−𝑡

𝑛

𝑟=1

)

𝑎+1

𝑡=1

= −𝑛𝑎+1 

Now, separating the t=1 case 

−(𝑎 + 1) ∙ ∑ 𝑟𝑎

𝑛

𝑟=1

+ ∑ (
(𝑎 + 1)! ∙ (−1)𝑡

(𝑎 + 1 − 𝑡)! ∙ 𝑡!
∙ ∑ 𝑟𝑎+1−𝑡

𝑛

𝑟=1

)

𝑎+1

𝑡=2

= −𝑛𝑎+1 

Rearranging to isolate the sum of ra on the left side 



∑ 𝑟𝑎

𝑛

𝑟=1

=
𝑛𝑎+1

𝑎 + 1
+ ∑ (

𝑎! ∙ (−1)𝑡

(𝑎 + 1 − 𝑡)! ∙ 𝑡!
∙ ∑ 𝑟𝑎+1−𝑡

𝑛

𝑟=1

)

𝑎+1

𝑡=2

 

Now I will shift the sum to be from t=1 to a by replacing any instance of t to t+1 

∑ 𝑟𝑎

𝑛

𝑟=1

=
𝑛𝑎+1

𝑎 + 1
+ ∑ (

𝑎! ∙ (−1)𝑡+1

(𝑎 − 𝑡)! ∙ (𝑡 + 1)!
∙ ∑ 𝑟𝑎−𝑡

𝑛

𝑟=1

)

𝑎

𝑡=1

 

 

Part 2: Further simplification 

Here I will substitute the parts of this equation with 2 functions 

𝐴(𝑎) =
𝑛𝑎+1

𝑎 + 1
 , 𝐵(𝑎, 𝑡) =

𝑎!

(𝑎 − 𝑡)!
 ∙

(−1)𝑡+1

(𝑡 + 1)!
 

Hence, I can rewrite the equation as 

∑ 𝑟𝑎

𝑛

𝑟=1

= 𝐴(𝑎) + ∑ (𝐵(𝑎, 𝑡) ∙ ∑ 𝑟𝑎−𝑡

𝑛

𝑟=1

)

𝑎

𝑡=1

 

Next, I will expand the sum of t to a 

∑ 𝑟𝑎

𝑛

𝑟=1

= 𝐴(𝑎) + 𝐵(𝑎, 1) ∙ ∑ 𝑟𝑎−1

𝑛

𝑟=1

+ 𝐵(𝑎, 2) ∙ ∑ 𝑟𝑎−2

𝑛

𝑟=1

+ 𝐵(𝑎, 3) ∙ ∑ 𝑟𝑎−3

𝑛

𝑟=1

…  𝐵(𝑎, 𝑎) ∙ ∑ 𝑟0

𝑛

𝑟=1

 

With this equation, I can say that 

∑ 𝑟𝑎−1

𝑛

𝑟=1

= 𝐴(𝑎 − 1) + 𝐵(𝑎 − 1,1) ∙ ∑ 𝑟𝑎−2

𝑛

𝑟=1

+ 𝐵(𝑎 − 1,2) ∙ ∑ 𝑟𝑎−3

𝑛

𝑟=1

…  𝐵(𝑎 − 1, 𝑎 − 1)

∙ ∑ 𝑟0

𝑛

𝑟=1

 

 

And if I substitute that where the sum of ra-1 is and expand, we get 

∑ 𝑟𝑎

𝑛

𝑟=1

= 𝐴(𝑎) + 𝐴(𝑎 − 1) ∙ 𝐵(𝑎, 1) + 

(𝐵(𝑎, 2) + 𝐵(𝑎, 1) ∙ 𝐵(𝑎 − 1,1)) ∙ ∑ 𝑟𝑎−2

𝑛

𝑟=1

+ 



(𝐵(𝑎, 3) + 𝐵(𝑎, 1) ∙ 𝐵(𝑎 − 1,2)) ∙ ∑ 𝑟𝑎−3

𝑛

𝑟=1

…  

(𝐵(𝑎, 𝑎) + 𝐵(𝑎, 1) ∙ 𝐵(𝑎 − 1, 𝑎 − 1)) ∙ ∑ 𝑟0

𝑛

𝑟=1

 

And then substitute sum of ra-2 and expand 

∑ 𝑟𝑎

𝑛

𝑟=1

= 𝐴(𝑎) + 𝐴(𝑎 − 1) ∙ 𝐵(𝑎, 1) + 

𝐴(𝑎 − 2) ∙ (𝐵(𝑎, 2) + 𝐵(𝑎, 1) ∙ 𝐵(𝑎 − 1,1)) + 

(𝐵(𝑎, 3) + 𝐵(𝑎, 1) ∙ 𝐵(𝑎 − 1,2) + 𝐵(𝑎, 2) ∙ 𝐵(𝑎 − 2,1) + 𝐵(𝑎, 1) ∙ 𝐵(𝑎 − 1,1) ∙ 𝐵(𝑎 − 2,1))

∙ ∑ 𝑟𝑎−3

𝑛

𝑟=1

… 

It is clear that if we continue this pattern, the sum could be expressed as 

∑ 𝑟𝑎

𝑛

𝑟=1

= 𝐴(𝑎) + ∑ 𝐶𝑡 ∙ 𝐴(𝑎 − 𝑡)

𝑎

𝑡=1

 

Where Ct is some coefficient that is a complicated function of function B. Now to find the value 

of Ct, we should consider the first few values and look for a pattern. 

When t=1, Ct = B(a,1) 

When t=2, Ct = B(a,2) + B(a,1)*B(a-1,1) 

When t=3 Ct = B(a,3) + B(a,1)*B(a-1,2) + B(a,2)*B(a-2,1) + B(a,1)*B(a-1,1)*B(a-2,1) 

Here I notice a few patterns. If you consider the second input of the B function, it resembles a 

partition. Ex: the partition of 2 is 2 and 1,1, and the value of Ct at t=2 is B(a,2) + B(a,1)*B(a-

1,1). Another noticeable pattern is that when there is a product of B functions, the first input is a 

minus the sum of the previous second inputs. Ex: the last term of Ct when t=3 is B(a,1)*B(a-

1,1)*B(a-2,1). 

A good analogy for how to think about Ct is the following. Imagine you are on a number line, 

standing on point a. The point a distance 1 unit to the right is a-1 then a-2 and so on. To reach the 

point a-3 from point a there are 4 ways: 

1- You either jump 3 units from a all at once (equivalent to B(a,3)) 

2- You jump 2 units to a-2 then from a-2 1 unit (equivalent to B(a,2)*B(a-2,1)) 

3- You jump 1 unit to a-1 then from a-1 2 units (equivalent to B(a,1)*B(a-1,2)) 

4- You make 3 single jumps (equivalent to B(a,1)*B(a-1,1)*B(a-2,1)) 



Using this analogy, the connection to partitions is clear and this pattern can then be generalized 

to any value of Ct. More specifically, Ct is a sum of every possible path you can take to move t 

units from point a on a number line to point a-t, each of these paths being a unique order of 

jumps and is equivalent to the partition of t. We then describe each of these paths as a product of 

these jumps, and we describe each jump as a function B with the first input being the starting 

point and the second input, the number of units jumped. 

 So, can we make a formula to calculate it? Well first, it would be helpful to make some 

simplifications. Remember that so far, we said that: 

∑ 𝑟𝑎

𝑛

𝑟=1

= 𝐴(𝑎) + ∑ 𝐶𝑡 ∙ 𝐴(𝑎 − 𝑡)

𝑎

𝑡=1

 

Where Ct is a function of B and that 

𝐴(𝑎) =
𝑛𝑎+1

𝑎 + 1
 , 𝐵(𝑎, 𝑡) =

𝑎!

(𝑎 − 𝑡)!
 ∙

(−1)𝑡+1

(𝑡 + 1)!
 

Now we will focus on one part of the function B, specifically a!/(a-t)!. So for some value of t, 

let’s assume that one of the paths is by taking n1 steps from a to a-n1 then n2 steps and then n3 

steps and so on. What will the value of function B be in each jump? Well, in the first jump it will 

be B(a,n1), in the second it will be B(a-n1,n2) then B(a-n1-n1,n3) and so on. If we focus on the 

a!/(a-t)! part we see that the first will be a!/(a-n1)!, then (a-n1)!/(a-n1-n2)!, then (a-n1-n2)!/(a-n1-

n2-n3)! And so on. Since in the calculation we multiply all these values, it is clear that the will 

cancel out and in the end what will remain is a!/(a- the total number of steps)! So we arrive to the 

conclusion that in any path the first part of the function B will always simplify to a!/(a-t)! and 

since Ct is a sum of these paths, we can factor it out. And so we get: 

∑ 𝑟𝑎

𝑛

𝑟=1

= 𝐴(𝑎) + ∑ 𝐶𝑡 ∙ 𝐴(𝑎 − 𝑡)

𝑎

𝑡=1

=  𝐴(𝑎) + ∑ 𝐾𝑡 ∙
𝑎!

(𝑎 − 𝑡)!
∙ 𝐴(𝑎 − 𝑡)

𝑎

𝑡=1

 

Where Kt is a new function. We have basically factored out the first input of the function B. 

Algebraically this means that after factoring out a!/(a-t)!, what remains of the function is (-

1)t+1/(t+1)! Which I will call function N(t). 

Now to calculate the new coefficient we will follow the same procedure. We find every single 

path to reach a-t from a and we fill in function N, but this time the part that cares about where we 

start from has been factored out and so function N only takes in the number of steps. This links 

better to partitions because you can fill them in easily. Then you multiply the N functions of 

consecutive jumps (or of the different groups in one partition), and then add the results of each 

path, and that is Kt. 

Now we can expand function A and rearrange 



∑ 𝑟𝑎

𝑛

𝑟=1

=
𝑛𝑎+1

𝑎 + 1
+ ∑ 𝐾𝑡 ∙

𝑎!

(𝑎 − 𝑡)!
∙

𝑛𝑎+1−𝑡

𝑎 + 1 − 𝑡

𝑎

𝑡=1

 

∑ 𝑟𝑎

𝑛

𝑟=1

=
𝑛𝑎+1

𝑎 + 1
+ 𝑎! ∙ ∑ 𝐾𝑡 ∙

𝑛𝑎+1−𝑡

(𝑎 + 1 − 𝑡)!

𝑎

𝑡=1

 

 

Part 3: Finding Kt 

The next question would be, “Is there a way we can calculate Kt with an equation?” well, kind 

of. First, let us take the partition of 3: 3, 2/1, 1/2, 1/1/1. So, calculating K3 would be as so: 

K3 = N(3) + N(2)*N(1) + N(1)*N(2) + N(1)*N(1)*N(1) 

We can imagine that the partition of 3 could be expressed as taking 3 steps at once or taking 1 

step followed by taking all routes that jump 2 points which is the partition of 2! Or by taking 2 

steps followed by all ways to jump one point or the partition of 1! Now I can re-express this as: 

𝐾3 = 𝑁(3) + 𝑁(2) ∙ 𝑁(1) + 𝑁(1) ∙ 𝑁(2) + 𝑁(1) ∙ 𝑁(1) ∙ 𝑁(1) 

𝐾3 = 𝑁(3) + 𝑁(2) ∙ 𝑁(1) + 𝑁(1) ∙ (𝑁(2) + 𝑁(1) ∙ 𝑁(1)) 

𝐾3 = 𝑁(3) + 𝑁(2) ∙ 𝐾1 + 𝑁(1) ∙ 𝐾2 

Hence I can rewrite Kt as a function of its values from K1 to Kt-1 

𝐾𝑡 = 𝑁(𝑡) + ∑ 𝑁(𝑡 − 𝐿) ∙ 𝐾𝐿

𝑡−1

𝐿=1

 

I will rename Kt to function F(t). Now, substituting in function N we getn 

𝐹(𝑡) =
(−1)𝑡+1

(𝑡 + 1)!
+ ∑

(−1)𝑡+1−𝐿

(𝑡 + 1 − 𝐿)!
∙ 𝐹(𝐿)

𝑡−1

𝐿=1

 

Finally putting everything together we get 

∑ 𝑟𝑎

𝑛

𝑟=1

=
𝑛𝑎+1

𝑎 + 1
+ 𝑎! ∙ ∑ 𝐹(𝑡) ∙

𝑛𝑎+1−𝑡

(𝑎 + 1 − 𝑡)!

𝑎

𝑡=1

 

𝐹(𝑡) =
(−1)𝑡+1

(𝑡 + 1)!
+ ∑

(−1)𝑡+1−𝐿

(𝑡 + 1 − 𝐿)!
∙ 𝐹(𝐿)

𝑡−1

𝐿=1

 

 

Part 4: Simplifying function F(t) 



Here is a bit of a tricky part. I don’t want to keep making new functions to substitute old ones 

every time I wish to manipulate this equation, and since F(t) is a function of itself many 

interesting manipulations can be made. 

I want to redefine function F using the following trick. I will make the new function F(t) = -1* 

the old function F(t). So, every instance of F(t) in both equations should be substituted for -F(t), 

so we get 

∑ 𝑟𝑎

𝑛

𝑟=1

=
𝑛𝑎+1

𝑎 + 1
+ 𝑎! ∙ ∑ −𝐹(𝑡) ∙

𝑛𝑎+1−𝑡

(𝑎 + 1 − 𝑡)!

𝑎

𝑡=1

 

−𝐹(𝑡) =
(−1)𝑡+1

(𝑡 + 1)!
+ ∑

(−1)𝑡+1−𝐿

(𝑡 + 1 − 𝐿)!
∙ −𝐹(𝐿)

𝑡−1

𝐿=1

 

Simplifying a bit, we get 

∑ 𝑟𝑎

𝑛

𝑟=1

=
𝑛𝑎+1

𝑎 + 1
− 𝑎! ∙ ∑ 𝐹(𝑡) ∙

𝑛𝑎+1−𝑡

(𝑎 + 1 − 𝑡)!

𝑎

𝑡=1

 

𝐹(𝑡) =
(−1)𝑡

(𝑡 + 1)!
− ∑

(−1)𝑡−𝐿

(𝑡 + 1 − 𝐿)!
∙ 𝐹(𝐿)

𝑡−1

𝐿=1

 

Next I can factor out (-1) ^t from the definition of function F 

𝐹(𝑡) = (−1)𝑡 ∙ (
1

(𝑡 + 1)!
− ∑

(−1)−𝐿

(𝑡 + 1 − 𝐿)!
∙ 𝐹(𝐿)

𝑡−1

𝐿=1

) 

Now, I can replace every instance of F(t) with F(t)*(-1) ^t 

∑ 𝑟𝑎

𝑛

𝑟=1

=
𝑛𝑎+1

𝑎 + 1
− 𝑎! ∙ ∑(−1)𝑡 ∙ 𝐹(𝑡) ∙

𝑛𝑎+1−𝑡

(𝑎 + 1 − 𝑡)!

𝑎

𝑡=1

 

(−1)𝑡 ∙ 𝐹(𝑡) = (−1)𝑡 ∙ (
1

(𝑡 + 1)!
− ∑

(−1)−𝐿

(𝑡 + 1 − 𝐿)!
∙ (−1)𝐿 ∙ 𝐹(𝐿)

𝑡−1

𝐿=1

) 

Rearranging and simplifying we get 

∑ 𝑟𝑎

𝑛

𝑟=1

=
𝑛𝑎+1

𝑎 + 1
− 𝑎! ∙ ∑ 𝐹(𝑡) ∙

(−1)𝑡 ∙ 𝑛𝑎+1−𝑡

(𝑎 + 1 − 𝑡)!

𝑎

𝑡=1

 

𝐹(𝑡) =
1

(𝑡 + 1)!
− ∑

𝐹(𝐿)

(𝑡 + 1 − 𝐿)!

𝑡−1

𝐿=1

 



Next, I will make all the sums start from zero, 

∑ 𝑟𝑎

𝑛

𝑟=1

=
𝑛𝑎+1

𝑎 + 1
− 𝑎! ∙ ∑ 𝐹(𝑡 + 1) ∙

(−1)𝑡+1 ∙ 𝑛𝑎+1−(𝑡+1)

(𝑎 + 1 − (𝑡 + 1))!

𝑎−1

𝑡=0

 

𝐹(𝑡) =
1

(𝑡 + 1)!
− ∑

𝐹(𝐿 + 1)

(𝑡 + 1 − (𝐿 + 1))!

𝑡−2

𝐿=0

 

simplify 

∑ 𝑟𝑎

𝑛

𝑟=1

=
𝑛𝑎+1

𝑎 + 1
+ 𝑎! ∙ ∑ 𝐹(𝑡 + 1) ∙

(−1)𝑡 ∙ 𝑛𝑎−𝑡

(𝑎 − 𝑡)!

𝑎−1

𝑡=0

 

𝐹(𝑡) =
1

(𝑡 + 1)!
− ∑

𝐹(𝐿 + 1)

(𝑡 − 𝐿)!

𝑡−2

𝐿=0

 

Well, since the main equation now has F(t+1), we find F(t+1) from the F(t) equation 

𝐹(𝑡 + 1) =
1

(𝑡 + 2)!
− ∑

𝐹(𝐿 + 1)

(𝑡 + 1 − 𝐿)!

𝑡−1

𝐿=0

 

Next, I can redefine F(t), by replacing every instance of F(t+1) with F(t), giving us the final 

equation of 

∑ 𝑟𝑎

𝑛

𝑟=1

=
𝑛𝑎+1

𝑎 + 1
+ 𝑎! ∙ ∑ 𝐹(𝑡) ∙

(−1)𝑡 ∙ 𝑛𝑎−𝑡

(𝑎 − 𝑡)!

𝑎−1

𝑡=0

 

𝐹(𝑡) =
1

(𝑡 + 2)!
− ∑

𝐹(𝐿)

(𝑡 + 1 − 𝐿)!

𝑡−1

𝐿=0

 

 

Part 5: Calculating F(t) 

Well, we need to calculate the values of F if we want to use this equation or find some pattern if 

we wish to simplify it further. Let us begin with F(0) 

𝐹(0) =
1

(0 + 2)!
− ∑

𝐹(𝐿)

(1 − 𝐿)!

−1

𝐿=0

 

The sum is invalid and so F(0) = 1/(2!) = 1/2. 



𝐹(1) =
1

(1 + 2)!
− ∑

𝐹(𝐿)

(2 − 𝐿)!

0

𝐿=0

=  
1

6
−

𝐹(0)

2
=

1

6
−

1

4
= −

1

12
 

𝐹(2) =
1

(2 + 2)!
− ∑

𝐹(𝐿)

(3 − 𝐿)!

1

𝐿=0

=  
1

24
−

𝐹(0)

6
−

𝐹(1)

2
=

1

24
−

1

12
+

1

24
= 0 

And so on. Interestingly F(any even number > 0) = 0, but I can’t seem to find a reason why. The 

values of F(t) when t is odd switch signs with every consecutive odd number and are always 

smaller than the value before it. 


