The sum of the first n natural numbers raised to some power a
Abstract:
By finding patterns in the coefficients of this popular sum, we can express it in a different way
Part 1: General derivation

| will begin with the most well-known proof of this sum:
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By expanding the (r — 1)**1 by polynomial expansion we get,
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Next | will separate the case where t=0 from the sum
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Seeing how this is a sum of a sum I can switch the positions of the sum signs.
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As the only part of the equation that the sum of r affects is 74*1~t, | can move that sum there
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Now, separating the t=1 case
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Rearranging to isolate the sum of r?on the left side
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Now I will shift the sum to be from t=1 to a by replacing any instance of t to t+1
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Part 2: Further simplification
Here 1 will substitute the parts of this equation with 2 functions
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Hence, | can rewrite the equation as
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Next, | will expand the sum of tto a

n n n n n
Zr“ = A(a) + B(a,1) -Zr“‘l + B(a,2) -Zra_z + B(a, 3) -Zr“‘3 .. B(a,a) -Zro
1 r=1 r=1 r=1 r=1

r=

With this equation, | can say that
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And if | substitute that where the sum of r®! is and expand, we get
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And then substitute sum of r*2 and expand

n

Zr“ =A(a)+A(a—1)-B(a, 1)+

r=1
A(a—2)-(B(a,2) +B(a,1)-B(a—11)) +

(B(a,3) +B(a,1)B(a—12) + B(a,2) *B(a—2,1) + B(a,1) - B(a — 1,1) - B(a — 2,1))

. Z ra_3
r=1

It is clear that if we continue this pattern, the sum could be expressed as
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Where C; is some coefficient that is a complicated function of function B. Now to find the value
of Ct, we should consider the first few values and look for a pattern.

When t=1, C; = B(a,1)
When t=2, C; = B(a,2) + B(a,1)*B(a-1,1)
When t=3 C: = B(a,3) + B(a,1)*B(a-1,2) + B(a,2)*B(a-2,1) + B(a,1)*B(a-1,1)*B(a-2,1)

Here | notice a few patterns. If you consider the second input of the B function, it resembles a
partition. Ex: the partition of 2 is 2 and 1,1, and the value of C; at t=2 is B(a,2) + B(a,1)*B(a-
1,1). Another noticeable pattern is that when there is a product of B functions, the first input is a
minus the sum of the previous second inputs. Ex: the last term of Ct when t=3 is B(a,1)*B(a-
1,1)*B(a-2,1).

A good analogy for how to think about C is the following. Imagine you are on a number line,
standing on point a. The point a distance 1 unit to the right is a-1 then a-2 and so on. To reach the
point a-3 from point a there are 4 ways:

1- You either jJump 3 units from a all at once (equivalent to B(a,3))

2- You jump 2 units to a-2 then from a-2 1 unit (equivalent to B(a,2)*B(a-2,1))
3- You jump 1 unit to a-1 then from a-1 2 units (equivalent to B(a,1)*B(a-1,2))
4- You make 3 single jumps (equivalent to B(a,1)*B(a-1,1)*B(a-2,1))



Using this analogy, the connection to partitions is clear and this pattern can then be generalized
to any value of Ci. More specifically, C: is a sum of every possible path you can take to move t
units from point a on a number line to point a-t, each of these paths being a unique order of
jumps and is equivalent to the partition of t. We then describe each of these paths as a product of
these jumps, and we describe each jump as a function B with the first input being the starting
point and the second input, the number of units jumped.

So, can we make a formula to calculate it? Well first, it would be helpful to make some
simplifications. Remember that so far, we said that:
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Where C: is a function of B and that
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Now we will focus on one part of the function B, specifically al/(a-t)!. So for some value of t,
let’s assume that one of the paths is by taking n1 steps from a to a-nl then n2 steps and then n3
steps and so on. What will the value of function B be in each jump? Well, in the first jump it will
be B(a,nl), in the second it will be B(a-n1,n2) then B(a-n1-n1,n3) and so on. If we focus on the
al/(a-t)! part we see that the first will be al/(a-n1)!, then (a-n1)!/(a-n1-n2)!, then (a-n1-n2)!/(a-n1-
n2-n3)! And so on. Since in the calculation we multiply all these values, it is clear that the will
cancel out and in the end what will remain is al/(a- the total number of steps)! So we arrive to the
conclusion that in any path the first part of the function B will always simplify to a!/(a-t)! and
since Ct is a sum of these paths, we can factor it out. And so we get:
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Where K¢ is a new function. We have basically factored out the first input of the function B.
Algebraically this means that after factoring out a!/(a-t)!, what remains of the function is (-
1)"/(t+1)! Which I will call function N(t).

Now to calculate the new coefficient we will follow the same procedure. We find every single
path to reach a-t from a and we fill in function N, but this time the part that cares about where we
start from has been factored out and so function N only takes in the number of steps. This links
better to partitions because you can fill them in easily. Then you multiply the N functions of
consecutive jumps (or of the different groups in one partition), and then add the results of each
path, and that is K.

Now we can expand function A and rearrange
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Part 3: Finding Kt

The next question would be, “Is there a way we can calculate Kt with an equation?” well, kind
of. First, let us take the partition of 3: 3, 2/1, 1/2, 1/1/1. So, calculating Kz would be as so:

Ks= N(3) + N(2)*N(1) + N(L)*N(2) + N(L)*N(1)*N(1)

We can imagine that the partition of 3 could be expressed as taking 3 steps at once or taking 1
step followed by taking all routes that jump 2 points which is the partition of 2! Or by taking 2
steps followed by all ways to jump one point or the partition of 1! Now | can re-express this as:

Ki=N@3)+N(2)-N(1) +N(1)-N(2)+ N(1)-N(1) - N(1)
K:=N(3)+ N(2)-N(1) + N(1) - (N(2) + N(1) - N(1))
Ki=NQ3)+N(Q2) K, + N1 K,

Hence | can rewrite K; as a function of its values from K1 to Kt.1
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I will rename K to function F(t). Now, substituting in function N we getn
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Finally putting everything together we get
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Part 4: Simplifying function F(t)



Here is a bit of a tricky part. I don’t want to keep making new functions to substitute old ones
every time | wish to manipulate this equation, and since F(t) is a function of itself many
interesting manipulations can be made.

| want to redefine function F using the following trick. I will make the new function F(t) = -1*
the old function F(t). So, every instance of F(t) in both equations should be substituted for -F(t),
S0 we get
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Next | can factor out (-1) t from the definition of function F
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Rearranging and simplifying we get
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Next, | will make all the sums start from zero,
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Well, since the main equation now has F(t+1), we find F(t+1) from the F(t) equation
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Next, | can redefine F(t), by replacing every instance of F(t+1) with F(t), giving us the final
equation of
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Part 5: Calculating F(t)

Well, we need to calculate the values of F if we want to use this equation or find some pattern if
we wish to simplify it further. Let us begin with F(0)
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F(0) = -
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The sum is invalid and so F(0) = 1/(2!) = 1/2.
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And so on. Interestingly F(any even number > 0) = 0, but I can’t seem to find a reason why. The

values of F(t) when t is odd switch signs with every consecutive odd number and are always
smaller than the value before it.



