The sum of the first n natural numbers raised to some power a

Abstract:

By finding patterns in the coefficients of this popular sum, we can express it in a different way

Part 1: General derivation

I will begin with the most well-known proof of this sum:

$$
\sum_{r=1}^{n} r^{a+1} - \sum_{r=1}^{n} (r-1)^{a+1} = n^{a+1}
$$

By expanding the $(r - 1)^{a+1}$ by polynomial expansion we get,

$$
\sum_{r=1}^{n} \left(r^{a+1} - \sum_{t=0}^{a+1} \frac{(a+1)! \cdot (-1)^t \cdot r^{a+1-t}}{(a+1-t)! \cdot t!} \right) = n^{a+1}
$$

Next I will separate the case where t=0 from the sum

$$
\sum_{r=1}^{n} \left(r^{a+1} - r^{a+1} - \sum_{t=1}^{a+1} \frac{(a+1)! \cdot (-1)^t \cdot r^{a+1-t}}{(a+1-t)! \cdot t!} \right) = n^{a+1}
$$

$$
\sum_{r=1}^{n} \left(-\sum_{t=1}^{a+1} \frac{(a+1)! \cdot (-1)^t \cdot r^{a+1-t}}{(a+1-t)! \cdot t!} \right) = n^{a+1}
$$

$$
\sum_{r=1}^{n} \left(\sum_{t=1}^{a+1} \frac{(a+1)! \cdot (-1)^t \cdot r^{a+1-t}}{(a+1-t)! \cdot t!} \right) = -n^{a+1}
$$

Seeing how this is a sum of a sum I can switch the positions of the sum signs.

$$
\sum_{t=1}^{a+1} \left(\sum_{r=1}^{n} \frac{(a+1)! \cdot (-1)^t \cdot r^{a+1-t}}{(a+1-t)! \cdot t!} \right) = -n^{a+1}
$$

As the only part of the equation that the sum of r affects is r^{a+1-t} , I can move that sum there

$$
\sum_{t=1}^{a+1} \left(\frac{(a+1)! \cdot (-1)^t}{(a+1-t)! \cdot t!} \cdot \sum_{r=1}^n r^{a+1-t} \right) = -n^{a+1}
$$

Now, separating the $t=1$ case

$$
-(a+1)\cdot \sum_{r=1}^{n} r^a + \sum_{t=2}^{a+1} \left(\frac{(a+1)! \cdot (-1)^t}{(a+1-t)! \cdot t!} \cdot \sum_{r=1}^{n} r^{a+1-t} \right) = -n^{a+1}
$$

Rearranging to isolate the sum of r^a on the left side

$$
\sum_{r=1}^{n} r^{a} = \frac{n^{a+1}}{a+1} + \sum_{t=2}^{a+1} \left(\frac{a! \cdot (-1)^{t}}{(a+1-t)! \cdot t!} \cdot \sum_{r=1}^{n} r^{a+1-t} \right)
$$

Now I will shift the sum to be from $t=1$ to a by replacing any instance of t to $t+1$

$$
\sum_{r=1}^{n} r^{a} = \frac{n^{a+1}}{a+1} + \sum_{t=1}^{a} \left(\frac{a! \cdot (-1)^{t+1}}{(a-t)! \cdot (t+1)!} \cdot \sum_{r=1}^{n} r^{a-t} \right)
$$

Part 2: Further simplification

Here I will substitute the parts of this equation with 2 functions

$$
A(a) = \frac{n^{a+1}}{a+1}, B(a,t) = \frac{a!}{(a-t)!} \cdot \frac{(-1)^{t+1}}{(t+1)!}
$$

Hence, I can rewrite the equation as

$$
\sum_{r=1}^{n} r^{a} = A(a) + \sum_{t=1}^{a} \left(B(a, t) \cdot \sum_{r=1}^{n} r^{a-t} \right)
$$

Next, I will expand the sum of t to a

$$
\sum_{r=1}^{n} r^{a} = A(a) + B(a, 1) \cdot \sum_{r=1}^{n} r^{a-1} + B(a, 2) \cdot \sum_{r=1}^{n} r^{a-2} + B(a, 3) \cdot \sum_{r=1}^{n} r^{a-3} \dots B(a, a) \cdot \sum_{r=1}^{n} r^{0}
$$

With this equation, I can say that

$$
\sum_{r=1}^{n} r^{a-1} = A(a-1) + B(a-1,1) \cdot \sum_{r=1}^{n} r^{a-2} + B(a-1,2) \cdot \sum_{r=1}^{n} r^{a-3} \dots B(a-1, a-1)
$$

$$
\sum_{r=1}^{n} r^{0}
$$

And if I substitute that where the sum of r^{a-1} is and expand, we get

$$
\sum_{r=1}^{n} r^{a} = A(a) + A(a - 1) \cdot B(a, 1) +
$$

$$
(B(a, 2) + B(a, 1) \cdot B(a - 1, 1)) \cdot \sum_{r=1}^{n} r^{a-2} +
$$

$$
(B(a,3) + B(a,1) \cdot B(a-1,2)) \cdot \sum_{r=1}^{n} r^{a-3} \dots
$$

$$
(B(a,a) + B(a,1) \cdot B(a-1,a-1)) \cdot \sum_{r=1}^{n} r^0
$$

And then substitute sum of r^{a-2} and expand

$$
\sum_{r=1}^{n} r^{a} = A(a) + A(a - 1) \cdot B(a, 1) +
$$
\n
$$
A(a - 2) \cdot (B(a, 2) + B(a, 1) \cdot B(a - 1, 1)) +
$$
\n
$$
(B(a, 3) + B(a, 1) \cdot B(a - 1, 2) + B(a, 2) \cdot B(a - 2, 1) + B(a, 1) \cdot B(a - 1, 1) \cdot B(a - 2, 1))
$$
\n
$$
\sum_{r=1}^{n} r^{a-3} \dots
$$

It is clear that if we continue this pattern, the sum could be expressed as

$$
\sum_{r=1}^{n} r^a = A(a) + \sum_{t=1}^{a} C_t \cdot A(a-t)
$$

Where C_t is some coefficient that is a complicated function of function B. Now to find the value of Ct, we should consider the first few values and look for a pattern.

When
$$
t=1
$$
, $C_t = B(a,1)$

When t=2, $C_t = B(a,2) + B(a,1)^*B(a-1,1)$

When t=3 C_t = B(a,3) + B(a,1)*B(a-1,2) + B(a,2)*B(a-2,1) + B(a,1)*B(a-1,1)*B(a-2,1)

Here I notice a few patterns. If you consider the second input of the B function, it resembles a partition. Ex: the partition of 2 is 2 and 1,1, and the value of C_t at t=2 is $B(a,2) + B(a,1)^*B(a-1)$ 1,**1**). Another noticeable pattern is that when there is a product of B functions, the first input is a minus the sum of the previous second inputs. Ex: the last term of C_t when t=3 is $B(a,1)^*B(a-$ **1**,**1**)*B(a-**2**,1).

A good analogy for how to think about C_t is the following. Imagine you are on a number line, standing on point a. The point a distance 1 unit to the right is a-1 then a-2 and so on. To reach the point a-3 from point a there are 4 ways:

- 1- You either jump 3 units from a all at once (equivalent to $B(a,3)$)
- 2- You jump 2 units to a-2 then from a-2 1 unit (equivalent to $B(a,2)^*B(a-2,1)$)
- 3- You jump 1 unit to a-1 then from a-1 2 units (equivalent to $B(a,1)^*B(a-1,2)$)
- 4- You make 3 single jumps (equivalent to $B(a,1)^*B(a-1,1)^*B(a-2,1)$)

Using this analogy, the connection to partitions is clear and this pattern can then be generalized to any value of C_t . More specifically, C_t is a sum of every possible path you can take to move t units from point a on a number line to point a-t, each of these paths being a unique order of jumps and is equivalent to the partition of t. We then describe each of these paths as a product of these jumps, and we describe each jump as a function B with the first input being the starting point and the second input, the number of units jumped.

So, can we make a formula to calculate it? Well first, it would be helpful to make some simplifications. Remember that so far, we said that:

$$
\sum_{r=1}^{n} r^{a} = A(a) + \sum_{t=1}^{a} C_{t} \cdot A(a - t)
$$

Where C_t is a function of B and that

$$
A(a) = \frac{n^{a+1}}{a+1}, B(a,t) = \frac{a!}{(a-t)!} \cdot \frac{(-1)^{t+1}}{(t+1)!}
$$

Now we will focus on one part of the function B, specifically a!/(a-t)!. So for some value of t, let's assume that one of the paths is by taking n1 steps from a to a-n1 then n2 steps and then n3 steps and so on. What will the value of function B be in each jump? Well, in the first jump it will be $B(a,n1)$, in the second it will be $B(a-n1,n2)$ then $B(a-n1-n1,n3)$ and so on. If we focus on the a!/(a-t)! part we see that the first will be a!/(a-n1)!, then $(a-n1)!/(a-n1-n2)!$, then $(a-n1-n2)!/(a-n1-n2)!$ n2-n3)! And so on. Since in the calculation we multiply all these values, it is clear that the will cancel out and in the end what will remain is a!/(a- the total number of steps)! So we arrive to the conclusion that in any path the first part of the function B will always simplify to a!/(a-t)! and since C_t is a sum of these paths, we can factor it out. And so we get:

$$
\sum_{r=1}^{n} r^{a} = A(a) + \sum_{t=1}^{a} C_{t} \cdot A(a-t) = A(a) + \sum_{t=1}^{a} K_{t} \cdot \frac{a!}{(a-t)!} \cdot A(a-t)
$$

Where K_t is a new function. We have basically factored out the first input of the function B. Algebraically this means that after factoring out a!/(a-t)!, what remains of the function is (- 1 ^{t+1}/(t+1)! Which I will call function N(t).

Now to calculate the new coefficient we will follow the same procedure. We find every single path to reach a-t from a and we fill in function N, but this time the part that cares about where we start from has been factored out and so function N only takes in the number of steps. This links better to partitions because you can fill them in easily. Then you multiply the N functions of consecutive jumps (or of the different groups in one partition), and then add the results of each path, and that is K_t .

Now we can expand function A and rearrange

$$
\sum_{r=1}^{n} r^{a} = \frac{n^{a+1}}{a+1} + \sum_{t=1}^{a} K_{t} \cdot \frac{a!}{(a-t)!} \cdot \frac{n^{a+1-t}}{a+1-t}
$$

$$
\sum_{r=1}^{n} r^{a} = \frac{n^{a+1}}{a+1} + a! \cdot \sum_{t=1}^{a} K_{t} \cdot \frac{n^{a+1-t}}{(a+1-t)!}
$$

Part 3: Finding K^t

The next question would be, "Is there a way we can calculate K_t with an equation?" well, kind of. First, let us take the partition of 3: 3, $2/1$, $1/2$, $1/1/1$. So, calculating K_3 would be as so:

$$
K_3 = N(3) + N(2)^*N(1) + N(1)^*N(2) + N(1)^*N(1)^*N(1)
$$

We can imagine that the partition of 3 could be expressed as taking 3 steps at once or taking 1 step followed by taking all routes that jump 2 points which is the partition of 2! Or by taking 2 steps followed by all ways to jump one point or the partition of 1! Now I can re-express this as:

$$
K_3 = N(3) + N(2) \cdot N(1) + N(1) \cdot N(2) + N(1) \cdot N(1) \cdot N(1)
$$

\n
$$
K_3 = N(3) + N(2) \cdot N(1) + N(1) \cdot (N(2) + N(1) \cdot N(1))
$$

\n
$$
K_3 = N(3) + N(2) \cdot K_1 + N(1) \cdot K_2
$$

Hence I can rewrite K_t as a function of its values from K_1 to K_{t-1}

$$
K_t = N(t) + \sum_{L=1}^{t-1} N(t-L) \cdot K_L
$$

I will rename K_t to function $F(t)$. Now, substituting in function N we getn

$$
F(t) = \frac{(-1)^{t+1}}{(t+1)!} + \sum_{L=1}^{t-1} \frac{(-1)^{t+1-L}}{(t+1-L)!} \cdot F(L)
$$

Finally putting everything together we get

$$
\sum_{r=1}^{n} r^{a} = \frac{n^{a+1}}{a+1} + a! \cdot \sum_{t=1}^{a} F(t) \cdot \frac{n^{a+1-t}}{(a+1-t)!}
$$

$$
F(t) = \frac{(-1)^{t+1}}{(t+1)!} + \sum_{L=1}^{t-1} \frac{(-1)^{t+1-L}}{(t+1-L)!} \cdot F(L)
$$

Part 4: Simplifying function F(t)

Here is a bit of a tricky part. I don't want to keep making new functions to substitute old ones every time I wish to manipulate this equation, and since F(t) is a function of itself many interesting manipulations can be made.

I want to redefine function F using the following trick. I will make the new function $F(t) = -1^*$ the old function $F(t)$. So, every instance of $F(t)$ in both equations should be substituted for $-F(t)$, so we get

$$
\sum_{r=1}^{n} r^{a} = \frac{n^{a+1}}{a+1} + a! \cdot \sum_{t=1}^{a} -F(t) \cdot \frac{n^{a+1-t}}{(a+1-t)!}
$$

$$
-F(t) = \frac{(-1)^{t+1}}{(t+1)!} + \sum_{L=1}^{t-1} \frac{(-1)^{t+1-L}}{(t+1-L)!} \cdot -F(L)
$$

Simplifying a bit, we get

$$
\sum_{r=1}^{n} r^{a} = \frac{n^{a+1}}{a+1} - a! \cdot \sum_{t=1}^{a} F(t) \cdot \frac{n^{a+1-t}}{(a+1-t)!}
$$

$$
F(t) = \frac{(-1)^{t}}{(t+1)!} - \sum_{L=1}^{t-1} \frac{(-1)^{t-L}}{(t+1-L)!} \cdot F(L)
$$

Next I can factor out (-1) ^t from the definition of function F

$$
F(t) = (-1)^{t} \cdot \left(\frac{1}{(t+1)!} - \sum_{L=1}^{t-1} \frac{(-1)^{-L}}{(t+1-L)!} \cdot F(L) \right)
$$

Now, I can replace every instance of $F(t)$ with $F(t)^*(-1)$ ^t

$$
\sum_{r=1}^{n} r^{a} = \frac{n^{a+1}}{a+1} - a! \cdot \sum_{t=1}^{a} (-1)^{t} \cdot F(t) \cdot \frac{n^{a+1-t}}{(a+1-t)!}
$$

$$
(-1)^{t} \cdot F(t) = (-1)^{t} \cdot \left(\frac{1}{(t+1)!} - \sum_{L=1}^{t-1} \frac{(-1)^{L}}{(t+1-L)!} \cdot (-1)^{L} \cdot F(L)\right)
$$

Rearranging and simplifying we get

$$
\sum_{r=1}^{n} r^{a} = \frac{n^{a+1}}{a+1} - a! \cdot \sum_{t=1}^{a} F(t) \cdot \frac{(-1)^{t} \cdot n^{a+1-t}}{(a+1-t)!}
$$

$$
F(t) = \frac{1}{(t+1)!} - \sum_{L=1}^{t-1} \frac{F(L)}{(t+1-L)!}
$$

Next, I will make all the sums start from zero,

$$
\sum_{r=1}^{n} r^{a} = \frac{n^{a+1}}{a+1} - a! \cdot \sum_{t=0}^{a-1} F(t+1) \cdot \frac{(-1)^{t+1} \cdot n^{a+1-(t+1)}}{(a+1-(t+1))!}
$$

$$
F(t) = \frac{1}{(t+1)!} - \sum_{L=0}^{t-2} \frac{F(L+1)}{(t+1-(L+1))!}
$$

simplify

$$
\sum_{r=1}^{n} r^{a} = \frac{n^{a+1}}{a+1} + a! \cdot \sum_{t=0}^{a-1} F(t+1) \cdot \frac{(-1)^{t} \cdot n^{a-t}}{(a-t)!}
$$

$$
F(t) = \frac{1}{(t+1)!} - \sum_{L=0}^{t-2} \frac{F(L+1)}{(t-L)!}
$$

Well, since the main equation now has $F(t+1)$, we find $F(t+1)$ from the $F(t)$ equation

$$
F(t+1) = \frac{1}{(t+2)!} - \sum_{L=0}^{t-1} \frac{F(L+1)}{(t+1-L)!}
$$

Next, I can redefine $F(t)$, by replacing every instance of $F(t+1)$ with $F(t)$, giving us the final equation of

$$
\sum_{r=1}^{n} r^{a} = \frac{n^{a+1}}{a+1} + a! \cdot \sum_{t=0}^{a-1} F(t) \cdot \frac{(-1)^{t} \cdot n^{a-t}}{(a-t)!}
$$

$$
F(t) = \frac{1}{(t+2)!} - \sum_{L=0}^{t-1} \frac{F(L)}{(t+1-L)!}
$$

Part 5: Calculating F(t)

Well, we need to calculate the values of F if we want to use this equation or find some pattern if we wish to simplify it further. Let us begin with F(0)

$$
F(0) = \frac{1}{(0+2)!} - \sum_{L=0}^{-1} \frac{F(L)}{(1-L)!}
$$

The sum is invalid and so $F(0) = 1/(2!) = 1/2$.

$$
F(1) = \frac{1}{(1+2)!} - \sum_{L=0}^{0} \frac{F(L)}{(2-L)!} = \frac{1}{6} - \frac{F(0)}{2} = \frac{1}{6} - \frac{1}{4} = -\frac{1}{12}
$$

$$
F(2) = \frac{1}{(2+2)!} - \sum_{L=0}^{1} \frac{F(L)}{(3-L)!} = \frac{1}{24} - \frac{F(0)}{6} - \frac{F(1)}{2} = \frac{1}{24} - \frac{1}{12} + \frac{1}{24} = 0
$$

And so on. Interestingly $F($ any even number $> 0) = 0$, but I can't seem to find a reason why. The values of F(t) when t is odd switch signs with every consecutive odd number and are always smaller than the value before it.