MEI Further Maths First order DEs

Section 2: Integrating factors

Exercise level 1

1. In each case find the general solution of the exact differential equation.

(i)
$$x^2 \frac{\mathrm{d}y}{\mathrm{d}x} + 2xy = \cos x$$

(ii)
$$x^3 e^y \frac{dy}{dx} + 3x^2 e^y = 4$$

(iii)
$$\frac{2y}{x}\frac{dy}{dx} - \frac{y^2}{x^2} = e^x$$

(iv)
$$\sin x \frac{\mathrm{d}y}{\mathrm{d}x} + y \cos x = x^2$$

2. Use an integrating factor to find the general solution of each of these differential equations.

(i)
$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{y}{x} = \frac{1}{x}$$

(ii)
$$\frac{\mathrm{d}y}{\mathrm{d}x} + y\cos x = \mathrm{e}^{-\sin x}$$

(iii)
$$\frac{dy}{dx} + \frac{y}{x+2} = x-3$$

(iv)
$$x\frac{\mathrm{d}y}{\mathrm{d}x} - y = x^3 \mathrm{e}^{2x}$$

(v)
$$\frac{dy}{dx} + y \cot x = x \csc x$$

(vi)
$$x\frac{\mathrm{d}y}{\mathrm{d}x} + 2y = x + 1$$

3. Find the particular solutions of these differential equations for the given conditions.

(i)
$$\frac{dy}{dx} + \frac{y}{x} = e^x$$
 $y = 1$ when $x = 1$

(ii)
$$\frac{dy}{dx} + 2xy = e^{-(x-2)^2}$$
 $y = 0$ when $x = 1$