Electric Field

E|cﬂm field is deﬁned as the slectric force per urit ch-m The direction of the field is taken
the force it est charge. The electric field is

Relation of Electric Field to Charge Density

Since clectric charge is the source of eleciric field, the electric field at any point in space can.
related to the charges present The simplest example is that of an isolated

ua.-u\ e hei positive charge and radially in toward 3 point charge.
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Click or any of the examples above for more detail

electric force

e
Charged

One approach to conti i
Gauss' law to relate the electric field at a surface to the total charge enclosed withia the
surface. This involves integration of the flux over the surface.

Another approach is 1o refate derivati:
approach can be considered to arise from one of Maxwell's equations and involves the vector
calculus operation called the divergencs

space is equal to the charge dens;

point charge. For multiple point charges, a vector sum of point charge fields is required. If

2 continuaus distribution of charge, then calculus is required and things can
 complex mathematicalty:

to define electric flux and make use of

ives of the electric field to the charge density. This

¢ The divergence of the clecric field at a point in
ded by the permittivify of space

E
P
£y = permittivity

= electric field
= charge density

In a charge free region of space where p = 0, we can say

V. E=0

could be used to calcolate the electric field produced by a given

charge distribution, the fact that E is a vector quantity increases the complenxity of that
catculation. Tt is often more practical to convert this relationship into one which relates the
scalar electric potential to the charge deasity. This gives Poissons equation and LaPlace's

Electric Field: Parallel Plates

Electric field in = in Newtons
N/C or volts/m. _——
q charge in
Coulombs
S8 Ean dabshod Upon While these
definton of the dectcfeld comesfrom the Loventz force lw. The alectric fidcnbe
force per g harge.
- - A(halge"ut is
F E - B equation
=qE+qvx s
4 v experience part of
Electric Magneti e
force Jfore bl o

Lorentz force law

](oppcallel\ charges parallel conducting plates are treated like infinite planes (neglecting

ien Gauss! law can be used to calculate the slectric field between the plates
¢ the plates to be at equilibriven with zero electric field inside the conductors, then

Coulomb's Law

Like charges repel, unlike charges attract.

acting o6 a poiat charge q & 8 resslt of the presence of a secoad point
e by Coslomb's Law

Coulomb's
Law

here ¢ = pemitici ofspace

[Note that this satisfies Newton's third law because it imoplies that exactly the same magnitude
of force acts

acts aloeg the line
Coulomb's law describes a force of infiaite raige which obeys the javerss wuace Inw and ia
of the same form as the sravity force

= Coulomb's constant

the result from a charged conducting surface can be used:

E=LZ
A
G ™ =0 | Thisis also consistent with treating the charge layers as two charge sheets
with electric field
j
=

in both directions.

Gauss's Law

The total of the electric flux out of a closed surface is equal to
the charge enclosed divided by the permittivity.
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o
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paportanst
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The clectric flux through an area is defined as the clecisic field multiplied by the area of the
surface projected in a plase perpendiouler to the field. Gauss's Law is 2 general lavw applying
to any closed surface. It is 2n important tool since it permits the assessment of the ameust of
enclosed charge by mapping the feld on a surface outaide the charge distribution. For
[gccmetsics of sufficient symmetsy, it simplifies the caloulation of the cleciric field.

| Another way of visualizing this i to consider a probe of area A which can measure the

electric field perpendicular to that area. Ifit picks any closed surface and steps over that
cface, measuring the perpendicular field times its area, it will obtain a measure of the net

electric charge within the surface, no matter how that internal charge is configured.

Electric field E= o
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Electric Field of Point Charge

The slectric field of 2 poiat charge can be obtained from
Coulomb's law

Point

F_ Qe _ *Quure
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The electric field is radially outward from the point charge in all
directions. The cicles represent spherical equipotential surfaces

The electric field from aay number of point charges can be obained from a vector sum of the
individual fields. A positive number is taken to be an outward field; the field of a negative
charge is toward it

This electric field expression can also be obtained by applying Gauss' law.
Electric Field of Conducting Sphere

The electric field of a conducting sphere with charge Q can be
obtained by a pplication of Gauss' law. Consi

a Ganssian surface in the form of a sphere at radins r > R | the

Infinite

ele

field times the area of the spherical surface

field has the same magnitude at every poiat of the surface
and is directed cutward. The electric flux is then just the electric

Gauss' Law, Integral Form

e

a2

The area integral of the electric field over
any closed sucface is =q\ml o the net charge
<nclosed in the surface
o e (T
one of Maxwell's equations, the four
fundamental equations for electricity and
magnetism

| Gauss'faw permits the evaluation of the electric field in many practical situations by forming
2 symmetric Gavssian surface surrounding a charge distribution and evaluating the electic
flux through that surface.

e

Electric Flux

The concept of electric flus s useful in association with Gauss' law. The electric flux through a
planar area is defined as the electric field times the component of the area perpendicular to the

icld. IF the area is not planar, then the evaluation of the flux generally requires an area integral
since the angle will be continually changing

Electric flux:

@= [Ecosoaal”
2}

flux= @ = EAcosf A
A
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Whten the area A is used in a vector operation lize this, it is understood that the magnitude of
the vector is equal to the area and the direction of the vector is perpendicular to the area

Lorentz Force Law
|Both the electric field and magnetic field can be defined from the Lorentz force law

-

F=qgE+qvxB
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Sorce

Magnetic
force

[The lectic force i strighforward, being i the disection of the slectrc field fthe cum e
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Electric Field:Disc of Charge

[The electric field of a disc of charge can be found by superposing the point charg:
infinitesmal charge elements. This can be facilitated by summing the fields of charged ring
The integral over the charged disc takes the form

Et,
R'dR'
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E. =ko2nz
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VI + R
= Coulomb’s
4me, constant

O =area charge
dens

P =EA=Ednr

The electric field is seen to be identical to that of a point charge Q at the

center of the sphere. Since all the charge will reside on the conducting -9

surface. a Gavssian suface at 1< R will enclose no charge, and by its 4,

symmetry can be seen to be zero at all points inside the spherical

conductor Forr<R
E=0

Electric Field: Sphere of Uniform Charge

The electric field of a sphere of uniform charge deasity and total
charge charge Q can be obtained by applying Gayss' law.
Considering a Gaussian surface in the form of a sphere at radius I >
R, the electric field has the same magnitude at every point of the
surface and is directed outward. The electric flu is then just the
electric field times the area of the spherical surface.

® = EA = Ednr’

The electric field outside the sphere (r > R)is seen to be identical to that 0
of 2 point charge Q at the center of the sphere. == _

For r<R
_or
4ne R

For a radivs 1 < R, 2 Gaussian surface will enclose less than the
total charge and the electric field will be less. Tnside the sphere of 1.
charge, the field is given by:

Inside a Sphere of Charge

The clectric field inside 2 sphere of uniform charge s radially
cutward (by symmetry), bt a spheﬂca] Gaussiaa surface would
enclose less then the total charge Q. The charge inside a radius 1is
given by the ratio of the volumes:

f
The electric flux is then given by ® = Edmr’ Q

AL*
The electric flux is then given by P = E27rL =
R

and the electric field is E =

Electric Field:Cylinder of Charge

(D=E2ﬂrL=%

The electric field of an infinite cylinder of uniform For 2R
volume charge densify can be cbiained by a using Gause

Law. Considering a Gaussian surface in the form of a A
eylinder at sadius 1 > R, the electric field has the same =
magnitude at every point of the cylinder and is directed 27 -

outwward. The electric flie is then just the electric field
times the area of the cylinder.

This expression is a good
approximation for the field
close to along cylindrical
charge.

B

IE AAT T Cylindrical Gaussian surface
AA

eylindrical Forr<R
charge A = charge per unit length
Ar
E=—2"_
27e,R*

Inside a Cylinder of Charge

The slectric field inside an infinite cylinder of uniform
charge is radially outward (by symmetry), but a cylindridal
Ganssian surface would enclose less than the total charge Q
The charge inside a radius 1 i given by the ratio of the
volumes:

Ar
27e, R

|Note that the limit at r= R agrees with the expression forr >=R.
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a cylinder at radius 1 > R, the electric field has the same
magnitude at every point of the cylinder and is directed.
outward. The lectrie flux is then just the clectric field
times the area of the cylinder.

Electric Field: Conducting Cylinder

(DZEZIH‘LZi—L

0

The slectric field of an infinite cylindrical conductor with  For 7 2 R
2 uniform lincar charge density can be obtained by using
Gauss' law. Considering a Gaussian surface in the form of A

E= Srer
mE,r

This expression is a good
approximation for the field
close to along conducting
cylinder.

£
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conductor . = charge per unit length E=0forr<R

any conductor

Electric Field of Line Charge

AL

O =E2xrL = —

and the electric field is

Y.Rs
Or

E=——
4re,R

Note that the limit at = R agrees with the expression for r »= R. The spherically symmetric

cylinder

cutward

The slectric field of an infinite line charge with a uniform
linear charge density can be obtained by a using Gauss’
Law. Considering a Gaussizn surface in the form of a

magnitude at every poiat of the cylinder and is directed

A
2nre,

at radius r, the electric field has the same

The electric flux is then just the electric field

<charge outside the radius £ does not affect the electric field atr. It follows that inside a
pherical shell of charge, you would have zero clectric field.

Voltage Difference and Electric Field

The change in yoltage is defined as the work done per unit charge against the glectric field Tn|
the case of constant electric field when the movement i directly against the field, this can be
written

Scalar Product of Vectors

The sealer product and the vector produet are the two ways of multiplying vectors which see
the most application in physics and astronomy. The scalar product of fio vectors can be

If the distance moved, d, is not in the direction of the electric field, the work expression
involves the scalar product

+ + +
i3 sowgaposne T | |0
P ot
V, V== —E-d=-Edcos8 smimages AV | /E
q thesame change a
it |
/

I the more general case where the clectric field and angle can be changing, the expression
[must be generalized to a line integral

+ 4 +
woveg apostecrge T T 7
A
- = - indicated would require
V,=V,==[E-ds biwiveiizan  ay 2

buinicovosdgue |
thesame valtage dference

Multiple Point Charges

The clectric field from multiple point charges can be obtained by taking the vector sum of the
electric fields of the individual charges.

E, = Ey+Ep
Ex = B+ By
T 7
E-\[E, +E, Resultant Field
E
no = gt "

Aftes calculating the
individval point charge fields,
their components must be Ey =
found and added to form the
components of the resultant

field. The resultant electric

Sield can then be put into

‘polar form Care must be

taken to establish the correct

quadrant for the angle

because of ambiguities in the

T i

0@

arctangent.

+ + + constructed by taking the component of one vector in the direction of the other and
\g it times the magnitude of the other vector. This can be expressed in the form:
Fd Moving a positive charge '
- = from the bottom to the - -
Vi=Vi=g =-Ed Guieet AV [IE AB=ABcos6 A s
e T -5 A arsusre
g V 1 (Calouaien) 0 B Gonckes e mar e

times the area of the cylinder

a£¢¢¢¢+b+t

This expression is a good

approximation for the field

close to.along line of charge.

AAT 1 Cylindrical Gaussian surface

= charge per unit length

If the vectors are expressed in terms of unit vectors £, and k along the x, , and z directions,
the scalar procuct can also be expressed i the form:

AEoAB B E=a0+A] +AK
B = + + where . " .
(o) BT AS B=8.T+B,] +B.K

The scalar product is also called the "inner product” or the "dot product” in some
mathematics texts.

o
density in Coulombs
per square meter -
2 D=
" AA

Electric Field: Sheet of Charge

= sheet charge

‘Work and Voltage: Constant Electric Field

+ 4+t +

The case of a constant electric field, as between
charged parallel plate conductors, is a good example |/
of the relationship between work and yoltage. |

;
l

O A= charge inside

M‘g

Gaussian surface

For an infinite shest of charge, the electric field will be perpendicular to the surface,
Therefore only the ends of a cylindrical Gaussian surface will contribute to the electric flux

ndrical Gaussian surface perpendicular to the charge sheet is nsed. The

resulting field is half that of a conductor at equilibrium with this surface charge density.
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The electric field is by definition the force per unit charge, so that multiplying the field times
the plate separation gives the work per uait charze, which is by definition the change in

F
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For constant
electric field.

Ed=

_ Joule

N
Units:  — m Volts
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This association is the reminder of many often-used relationships:

Vv

E

Constant field
special case

Ed etionships

General

F
E=—
definition

relationships

W =gAV

Capacitance of Parallel Plates

Q=chargeon
plate Plate arca A

= charge density
£ = pormittvty

work {a’um‘ Fd —Ed
charge q
It then follows from the definition of capacitance that
Q0 _0c_oe_Ae
V Ed o Qd d

The slecric fied befvveen o large parallel plate

difference between the two plates can be expressed in terms of the work don<
2 positive test charge q when it moves from the positive to the negative plate.



Potential of Line Charge

infinitesmal charge clements. It is 2n example of 2 continuous charge distribution.

V_j J” _J‘” b+b +d
» Loy —a++a*+d*
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The potential of a line of charge can be found by superposing the point charge potentials of

Potential for Disc of Charge

The potential of  disc of charge can be found by superposing the point charge potentials of
infinitesmal charge elements. It is an example of a continuous charge distribution. The
|evaluation of the potential can be facilitated by summing the potentials of charged rings. The
integral over the charged disc takes the form:

P

k2

1 O =area charge
= —— = Coulomb's
4mE,  constant

Potential of a Conductor

TWhen a conductor is at the electric field inside it is

to be zero

Since the electric field is equal to the

Potential for Ring of Charge

The potential of a ring of charge can be found by superposing the point chares potentials of
infinitesmal charee clements. It is an example of a confinuous charee distribution. The ring
potential can then be nsed as a charge clement to calcolate the potential of a charged disc

Potential for Disc of Charge

The potential of a disc of charge can be found \7\ snpeposing the poit charge poteatias of

Ttds an example gistribution. The
evaluation of the potential can be facilitated b\ summing the pctenux.ls of charged sings. The
integral over the charged disc takes the form:

Potential: Charged Conducting Sphere
The use of Gause' law to examine the

o electric field of a charged sphere
p shows that the electric field
eavironment outside the sphere is
ideatical to that of  point charge.
T p7 Therefore the potential is the same as

that of a point charge:
v_ke_ 0
r e,

The electric field inside a conducting
sphere is zero, so the potential
remains constant at the value it
seaches at the surface

_kQ_ 0

R 4me, R
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O =area charge
k =—— = Coulomb's density
4me,  constant
Electric Dipole Potential

The potential of an siestniz dipole can be found by superposing the pomnt charze potentials of

the two charges

Electric Dipole Field

The glectnis field of an glectnc dipole can be constructed a3 a vector sum of the pot charze
s of the two charges

Direction of
electric dipole

Adx=dQ  GdA=dQ pdV=dQ

Linear charge Area charge Volume charge
density density density

::;’?fc:w irnplics that ihe veltage inside a Since the potential is a scalar quantity, and since each P
sphere conductor at equilibriuen is clement ofthe ring i the same distancer fom the V= I\q ———|=kq|
point P, the potential s simply given by
constrained to be constant at the . r
value it reaches at the surface of the : - -~ s
ooy e ATl kQ  kA2aR' Q -cowlcharge P SEEi i
charged conducting sphere. but the i — 2 =linear charge z oo kpcos@
F principle applies to all conductors at v Lr = linear charg ==
ensity The 2
. potential of b
; ; e adooleso where P =G s deoes
Electric Potential Energy mostinterest 25 the dipole moment
o/ where r>>d.The
ko2aR'dR' N PR i
Potential energy can be defined as the capacity for doing work which arises from position or dv=———— - =T
configuration. In the electrical case, a charge will exert a force on 2ay other charge and r r.—r, =dcos@
potential energy arises from any collection of charges. For example, if a positive charge Q is 2
fixed at some point in space, any other positive charge which & brought close to it will In this form it could be used as a charge element for the determining of the potential of a disc Br=mr +q " —-q
experience a repulsive force and will therefore have potential enerzy. The potential enersy of |of charze. |-—oad |
2 test charge g in the vicinity of this sousce charge will be:
Energy of an Electric Dipole Dipole Moment
qu where k is Coulomb's constant
U=— An electric field produces a torque on
r  Inelectricity, it is usnally more convenient to use the electric " nin —q e _ The electric dipole moment for a pair of opposite charges of
7 potential enerzy per unif charge, just called electric potential | [7] \ - T | magnitude q s defined as the magnitude of the charge times the
or voltage. g/‘. 7= Epsin@ ( P distance between them and the defined direction is toward the
- P § y positie charge. It is a useful concept in atoms and molecules where
e @y which tends o take itto its low energy | TG o - the effects of charg but
configuration. To rotate it from the between the charges are too small to be easily measurable. It 15 also
low energy state against the field - E a useful concept in dielectrics and other applications in solid and.
sequires work p = q liquid materials.
d \__ . g T a
Continuous Charge Distributions N8B —>F I rd6' = j' Epsing'd@" | Asplicstons msce thececrc ield ofacpole e the enrgy of  iple whes placedin
an electric field
0 o0
The electric potential (voltage) at any point in space produced by a continuous charge L)
distribution can be calculated from the point charge expression by intepration since voltage is = Ep(1—-cos8)
& scalar quantity: ] p
Low eneray Hioh energy . E —_
(. confumten - confgunion - - — e B = -—
L " [kd( The cotinuous charge disribution requires an mfinite nuber of Choosing I/ = () at § = 90/ + dipole 4 3
V= | =X charge clements to characterize it, and the required infinite sum is givesapotentialenergy 7'[80
7 exactly what an integral doss. To actually carry out the £, F F £ U=EpcosO=—p-E
intepration, the charge element s expressed in terms of the
geometry of the distribution with the use of some charge density. = ~l i <~ where the shorter form employs the
= Stable s Unsmable - scalar product

Torque on Electric Dipole

| The torgue produced on an gleciric dipole by an clectric field can be expressed as a yector
product with direction given by the right hand role

The lever arm for each charge
with respect to the center is

Lsing

Egdsing = px E

Line Integral

Vector fanctions such as electric
field and magpetic field occur in
physical applications_ and sealar
products of these vector functions
with another vector such as distance
or path length appear with
regularity. When such a product is
summed over a path knm \ihzxs
the magnitudes and directi

change, that sum. P

Area Integral

JEd_;l = -[EcosedA

An area integral of a vector
function E can be defined as
the integral on a surface of the
scalar product of E with area
element dA. The direction of
the area element is defined to
e perpendicular to the area at
that point on the surface.

‘The outward directed surface
integral over an entire closed
surface is denoted

E-dA

Itis appropriate for such
physical applications as Gauss’
law.

Current
[ Charge
Current density j -
Volume charge density s -
Surface charge density o B
Lincar charge density A -
Electric potential @
Voltage v volt
enf s
Electric field E - N/C, Vim
Electric flux @ - Vm
Electric moment P - C*m
Resistance R~ ohm Q=Via
Specific resistance o Q*m
Capacil c farad F=C/V
Specific conductivity o - (0 *m)!
Magnetic field B tesla T=N/(A*m)
Magnetic flux D weber Wh=T*m2=V*s
Mu:::'“?nCE 1_‘4 henri H=Wb/A
Magnetic moment P - A*m?
Polarization P - Clm?
M I - Am

integal calied 2 line integral.

K, . B
J‘ E-a’.":J. EcosBds
la 7

A line integral is also used for the
3 general definition of work in
Vedtor field £ £ &

Applications

The Gradient

The gradient i 2 vestor operation which operates on a scalar fuaction to produce a vector
whose magnitude is the maximum rate of change of the function at the poiat of the gradieat
and which i pointed in the direction of that maximum sate of change. In tectangular
coordinates the gradient of foncticn fxy.2) is:

f ¥V iscommonly called ‘del"and

2 the gredient’del
z

If S is a surface of constant value for the function fix.y.z) then the gradient on the surface
defines a vector which is normal to the surface.

d d d
Vfi=|i—+j—+k—
'f [1ax+jay+

The civergence of the gradient is called the LaPlacian Tt is widely used in physics.

Vector Calculus Operations

Such an integral is also used for the caleulation of voltage difference since volt
[per unit charge. Calculating the voltage difference near a podnt charge is a good example.

The line integral of a force over a path is equal to the work done by that force on the path

W,

ab

by
:J F-ds

Gradient, Various Coordinates

(Compared to the gradient in rectangular coordinates

In cylindrical polar coordinates:

d
Vf==1
F=5

|and in spherical polar coordinates:

of

or

Vf=

rsinﬁﬁ

¢ is work

Equipotential
lines: dipole

The electric potential of a
dipole show mirror symmetry
about the center point of the
dipole. They are everywhere
perpendicular to the electric
field lines.

Equipotential Lines

Equipotential lines are like contour lines on a map which trace lines of equal altitude. In this
case the "altitude” is electric potential or valfage lines are

to the electric field, In three dimensions, the lines form equipotential surfaces, Movement
zlong an equipotential surface requires no work because such movement is always
perpendicular to the electric field.

Constant Electric Field

Point Charge

Electric Dipole

[ Three vector calelus operations wwhich find many applications in physics are

1. The divergence of a vector finction

JE,
+
dy

)il

JE,
ox

X

V.E=

2. The cut of a vector function
9E. OF,
ay  d

3. The Gradient of a sealar function

o,
az

o,
dr

vxE,[ Ez]

a0

'['hex examples ufiedm caleulus operaions ae expressed n Carteslan coordinates, but ey
system, aiding in the solution of
e o Bt i i s e e e

Dashed lines are equipotential lines while solid lines are electric field lines.
Click on ane of the diagrams for further detail.




